WorldWideScience

Sample records for maximum shear rate

  1. Cosmic shear measurement with maximum likelihood and maximum a posteriori inference

    Science.gov (United States)

    Hall, Alex; Taylor, Andy

    2017-06-01

    We investigate the problem of noise bias in maximum likelihood and maximum a posteriori estimators for cosmic shear. We derive the leading and next-to-leading order biases and compute them in the context of galaxy ellipticity measurements, extending previous work on maximum likelihood inference for weak lensing. We show that a large part of the bias on these point estimators can be removed using information already contained in the likelihood when a galaxy model is specified, without the need for external calibration. We test these bias-corrected estimators on simulated galaxy images similar to those expected from planned space-based weak lensing surveys, with promising results. We find that the introduction of an intrinsic shape prior can help with mitigation of noise bias, such that the maximum a posteriori estimate can be made less biased than the maximum likelihood estimate. Second-order terms offer a check on the convergence of the estimators, but are largely subdominant. We show how biases propagate to shear estimates, demonstrating in our simple set-up that shear biases can be reduced by orders of magnitude and potentially to within the requirements of planned space-based surveys at mild signal-to-noise ratio. We find that second-order terms can exhibit significant cancellations at low signal-to-noise ratio when Gaussian noise is assumed, which has implications for inferring the performance of shear-measurement algorithms from simplified simulations. We discuss the viability of our point estimators as tools for lensing inference, arguing that they allow for the robust measurement of ellipticity and shear.

  2. Dinosaur Metabolism and the Allometry of Maximum Growth Rate

    OpenAIRE

    Myhrvold, Nathan P.

    2016-01-01

    The allometry of maximum somatic growth rate has been used in prior studies to classify the metabolic state of both extant vertebrates and dinosaurs. The most recent such studies are reviewed, and their data is reanalyzed. The results of allometric regressions on growth rate are shown to depend on the choice of independent variable; the typical choice used in prior studies introduces a geometric shear transformation that exaggerates the statistical power of the regressions. The maximum growth...

  3. Shear rate analysis of water dynamic in the continuous stirred tank

    Science.gov (United States)

    Tulus; Mardiningsih; Sawaluddin; Sitompul, O. S.; Ihsan, A. K. A. M.

    2018-02-01

    Analysis of mixture in a continuous stirred tank reactor (CSTR) is an important part in some process of biogas production. This paper is a preliminary study of fluid dynamic phenomenon in a continuous stirred tank numerically. The tank is designed in the form of cylindrical tank equipped with a stirrer. In this study, it is considered that the tank is filled with water. Stirring is done with a stirring speed of 10rpm, 15rpm, 20rpm, and 25rpm. Mathematical modeling of stirred tank is derived. The model is calculated by using the finite element method that are calculated using CFD software. The result shows that the shear rate is high on the front end portion of the stirrer. The maximum shear rate tend to a stable behaviour after the stirring time of 2 second. The relation between the speed and the maximum shear rate is in the form of linear equation.

  4. Dinosaur Metabolism and the Allometry of Maximum Growth Rate.

    Science.gov (United States)

    Myhrvold, Nathan P

    2016-01-01

    The allometry of maximum somatic growth rate has been used in prior studies to classify the metabolic state of both extant vertebrates and dinosaurs. The most recent such studies are reviewed, and their data is reanalyzed. The results of allometric regressions on growth rate are shown to depend on the choice of independent variable; the typical choice used in prior studies introduces a geometric shear transformation that exaggerates the statistical power of the regressions. The maximum growth rates of extant groups are found to have a great deal of overlap, including between groups with endothermic and ectothermic metabolism. Dinosaur growth rates show similar overlap, matching the rates found for mammals, reptiles and fish. The allometric scaling of growth rate with mass is found to have curvature (on a log-log scale) for many groups, contradicting the prevailing view that growth rate allometry follows a simple power law. Reanalysis shows that no correlation between growth rate and basal metabolic rate (BMR) has been demonstrated. These findings drive a conclusion that growth rate allometry studies to date cannot be used to determine dinosaur metabolism as has been previously argued.

  5. Dinosaur Metabolism and the Allometry of Maximum Growth Rate

    Science.gov (United States)

    Myhrvold, Nathan P.

    2016-01-01

    The allometry of maximum somatic growth rate has been used in prior studies to classify the metabolic state of both extant vertebrates and dinosaurs. The most recent such studies are reviewed, and their data is reanalyzed. The results of allometric regressions on growth rate are shown to depend on the choice of independent variable; the typical choice used in prior studies introduces a geometric shear transformation that exaggerates the statistical power of the regressions. The maximum growth rates of extant groups are found to have a great deal of overlap, including between groups with endothermic and ectothermic metabolism. Dinosaur growth rates show similar overlap, matching the rates found for mammals, reptiles and fish. The allometric scaling of growth rate with mass is found to have curvature (on a log-log scale) for many groups, contradicting the prevailing view that growth rate allometry follows a simple power law. Reanalysis shows that no correlation between growth rate and basal metabolic rate (BMR) has been demonstrated. These findings drive a conclusion that growth rate allometry studies to date cannot be used to determine dinosaur metabolism as has been previously argued. PMID:27828977

  6. Experimental study of shear rate dependence in perpetually sheared granular matter

    Science.gov (United States)

    Liu, Sophie Yang; Guillard, François; Marks, Benjy; Rognon, Pierre; Einav, Itai

    2017-06-01

    We study the shear behaviour of various granular materials by conducting novel perpetual simple shear experiments over four orders of magnitude of relatively low shear rates. The newly developed experimental apparatus employed is called "3D Stadium Shear Device" which is an extended version of the 2D Stadium Shear Device [1]. This device is able to provide a non-radial dependent perpetual shear flow and a nearly linear velocity profile between two oppositely moving shear walls. Using this device, we are able to test a large variety of granular materials. Here, we demonstrate the applicability of the device on glass beads (diameter 1 mm, 3 mm, and 14 mm) and rice. We particularly focus on studying these materials at very low inertial number I ranging from 10-6 to 10-2. We find that, within this range of I, the friction coefficient μ of glass beads has no shear rate dependence. A particularly appealing observation comes from testing rice, where the attainment of critical state develops under much longer duration than in other materials. Initially during shear we find a value of μ similar to that found for glass beads, but with time this value decreases gradually towards the asymptotic critical state value. The reason, we believe, lies in the fact that rice grains are strongly elongated; hence the time to achieve the stable μ is primarily controlled by the time for particles to align themselves with respect to the shear walls. Furthermore, the initial packing conditions of samples also plays a role in the evolution of μ when the shear strain is small, but that impact will eventually be erased after sufficient shear strain.

  7. Experimental study of shear rate dependence in perpetually sheared granular matter

    Directory of Open Access Journals (Sweden)

    Liu Sophie Yang

    2017-01-01

    Full Text Available We study the shear behaviour of various granular materials by conducting novel perpetual simple shear experiments over four orders of magnitude of relatively low shear rates. The newly developed experimental apparatus employed is called “3D Stadium Shear Device” which is an extended version of the 2D Stadium Shear Device [1]. This device is able to provide a non-radial dependent perpetual shear flow and a nearly linear velocity profile between two oppositely moving shear walls. Using this device, we are able to test a large variety of granular materials. Here, we demonstrate the applicability of the device on glass beads (diameter 1 mm, 3 mm, and 14 mm and rice. We particularly focus on studying these materials at very low inertial number I ranging from 10−6 to 10−2. We find that, within this range of I, the friction coefficient μ of glass beads has no shear rate dependence. A particularly appealing observation comes from testing rice, where the attainment of critical state develops under much longer duration than in other materials. Initially during shear we find a value of μ similar to that found for glass beads, but with time this value decreases gradually towards the asymptotic critical state value. The reason, we believe, lies in the fact that rice grains are strongly elongated; hence the time to achieve the stable μ is primarily controlled by the time for particles to align themselves with respect to the shear walls. Furthermore, the initial packing conditions of samples also plays a role in the evolution of μ when the shear strain is small, but that impact will eventually be erased after sufficient shear strain.

  8. Thrombus Formation at High Shear Rates.

    Science.gov (United States)

    Casa, Lauren D C; Ku, David N

    2017-06-21

    The final common pathway in myocardial infarction and ischemic stroke is occlusion of blood flow from a thrombus forming under high shear rates in arteries. A high-shear thrombus forms rapidly and is distinct from the slow formation of coagulation that occurs in stagnant blood. Thrombosis at high shear rates depends primarily on the long protein von Willebrand factor (vWF) and platelets, with hemodynamics playing an important role in each stage of thrombus formation, including vWF binding, platelet adhesion, platelet activation, and rapid thrombus growth. The prediction of high-shear thrombosis is a major area of biofluid mechanics in which point-of-care testing and computational modeling are promising future directions for clinically relevant research. Further research in this area will enable identification of patients at high risk for arterial thrombosis, improve prevention and treatment based on shear-dependent biological mechanisms, and improve blood-contacting device design to reduce thrombosis risk.

  9. Relative viscosity of emulsions in simple shear flow: Temperature, shear rate, and interfacial tension dependence

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Se Bin; Lee, Joon Sang [Dept. of Mechanical Engineering, Yonsei Unversity, Seoul (Korea, Republic of)

    2015-08-15

    We simulate an emulsion system under simple shear rates to analyze its rheological characteristics using the lattice Boltzmann method (LBM). We calculate the relative viscosity of an emulsion under a simple shear flow along with changes in temperature, shear rate, and surfactant concentration. The relative viscosity of emulsions decreased with an increase in temperature. We observed the shear-thinning phenomena, which is responsible for the inverse proportion between the shear rate and viscosity. An increase in the interfacial tension caused a decrease in the relative viscosity of the decane-in-water emulsion because the increased deformation caused by the decreased interfacial tension significantly influenced the wall shear stress.

  10. Localization in inelastic rate dependent shearing deformations

    KAUST Repository

    Katsaounis, Theodoros

    2016-09-18

    Metals deformed at high strain rates can exhibit failure through formation of shear bands, a phenomenon often attributed to Hadamard instability and localization of the strain into an emerging coherent structure. We verify formation of shear bands for a nonlinear model exhibiting strain softening and strain rate sensitivity. The effects of strain softening and strain rate sensitivity are first assessed by linearized analysis, indicating that the combined effect leads to Turing instability. For the nonlinear model a class of self-similar solutions is constructed, that depicts a coherent localizing structure and the formation of a shear band. This solution is associated to a heteroclinic orbit of a dynamical system. The orbit is constructed numerically and yields explicit shear localizing solutions. © 2016 Elsevier Ltd

  11. Localization in inelastic rate dependent shearing deformations

    KAUST Repository

    Katsaounis, Theodoros; Lee, Min-Gi; Tzavaras, Athanasios

    2016-01-01

    Metals deformed at high strain rates can exhibit failure through formation of shear bands, a phenomenon often attributed to Hadamard instability and localization of the strain into an emerging coherent structure. We verify formation of shear bands for a nonlinear model exhibiting strain softening and strain rate sensitivity. The effects of strain softening and strain rate sensitivity are first assessed by linearized analysis, indicating that the combined effect leads to Turing instability. For the nonlinear model a class of self-similar solutions is constructed, that depicts a coherent localizing structure and the formation of a shear band. This solution is associated to a heteroclinic orbit of a dynamical system. The orbit is constructed numerically and yields explicit shear localizing solutions. © 2016 Elsevier Ltd

  12. Modeling of the reactant conversion rate in a turbulent shear flow

    Science.gov (United States)

    Frankel, S. H.; Madnia, C. K.; Givi, P.

    1992-01-01

    Results are presented of direct numerical simulations (DNS) of spatially developing shear flows under the influence of infinitely fast chemical reactions of the type A + B yields Products. The simulation results are used to construct the compositional structure of the scalar field in a statistical manner. The results of this statistical analysis indicate that the use of a Beta density for the probability density function (PDF) of an appropriate Shvab-Zeldovich mixture fraction provides a very good estimate of the limiting bounds of the reactant conversion rate within the shear layer. This provides a strong justification for the implementation of this density in practical modeling of non-homogeneous turbulent reacting flows. However, the validity of the model cannot be generalized for predictions of higher order statistical quantities. A closed form analytical expression is presented for predicting the maximum rate of reactant conversion in non-homogeneous reacting turbulence.

  13. To determine the slow shearing rate for consolidation drained shear box tests

    Science.gov (United States)

    Jamalludin, Damanhuri; Ahmad, Azura; Nordin, Mohd Mustaqim Mohd; Hashim, Mohamad Zain; Ibrahim, Anas; Ahmad, Fauziah

    2017-08-01

    Slope failures always occur in Malaysia especially during the rainy seasons. They cause damage to properties and fatalities. In this study, a total of 24 one dimensional consolidation tests were carried out on soil samples taken from 16 slope failures in Penang Island and in Baling, Kedah. The slope failures in Penang Island are within the granitic residual soil while in Baling, Kedah they are situated within the sedimentary residual soil. Most of the disturbed soil samples were taken at 100mm depth from the existing soil surface while some soil samples were also taken at 400, 700 and 1000mm depths from the existing soil surface. They were immediately placed in 2 layers of plastic bag to prevent moisture loss. Field bulk density tests were also carried out at all the locations where soil samples were taken. The field bulk density results were later used to re-compact the soil samples for the consolidation tests. The objective of the research is to determine the slow shearing rate to be used in consolidated drained shear box for residual soils taken from slope failures so that the effective shear strength parameters can be determined. One dimensional consolidation tests were used to determine the slow shearing rate. The slow shearing rate found in this study to be used in the consolidated drained shear box tests especially for Northern Malaysian residual soils was 0.286mm/minute.

  14. High strength semi-active energy absorbers using shear- and mixedmode operation at high shear rates

    Science.gov (United States)

    Becnel, Andrew C.

    This body of research expands the design space of semi-active energy absorbers for shock isolation and crash safety by investigating and characterizing magnetorheological fluids (MRFs) at high shear rates ( > 25,000 1/s) under shear and mixed-mode operation. Magnetorheological energy absorbers (MREAs) work well as adaptive isolators due to their ability to quickly and controllably adjust to changes in system mass or impact speed while providing fail-safe operation. However, typical linear stroking MREAs using pressure-driven flows have been shown to exhibit reduced controllability as impact speed (shear rate) increases. The objective of this work is to develop MREAs that improve controllability at high shear rates by using pure shear and mixed shear-squeeze modes of operation, and to present the fundamental theory and models of MR fluids under these conditions. A proof of concept instrument verified that the MR effect persists in shear mode devices at shear rates corresponding to low speed impacts. This instrument, a concentric cylinder Searle cell magnetorheometer, was then used to characterize three commercially available MRFs across a wide range of shear rates, applied magnetic fields, and temperatures. Characterization results are presented both as flow curves according to established practice, and as an alternate nondimensionalized analysis based on Mason number. The Mason number plots show that, with appropriate correction coefficients for operating temperature, the varied flow curve data can be collapsed to a single master curve. This work represents the first shear mode characterization of MRFs at shear rates over 10 times greater than available with commercial rheometers, as well as the first validation of Mason number analysis to high shear rate flows in MRFs. Using the results from the magnetorheometer, a full scale rotary vane MREA was developed as part of the Lightweight Magnetorheological Energy Absorber System (LMEAS) for an SH-60 Seahawk helicopter

  15. Study of magnetorheological fluids at high shear rates

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaojie; Gordaninejad, Faramarz [University of Nevada, Department of Mechanical Engineering, Reno, NV (United States)

    2006-08-15

    The tunable rheological properties of magnetorheological (MR) materials at high shear rates are studied using a piston-driven flow-mode-type rheometer. The proposed method provides measurement of the apparent viscosity and yield stress of MR fluids for a shear rate range of 50 to 40,000 s{sup -1}. The rheological properties of a commercial MR fluid, as well as a newly developed MR polymeric gel, and a ferrofluid-based MR fluid are investigated. The results for apparent viscosity and dynamic and static shear stresses under different applied magnetic fields are reported. (orig.)

  16. Microfluidic thrombosis under multiple shear rates and antiplatelet therapy doses.

    Directory of Open Access Journals (Sweden)

    Melissa Li

    Full Text Available The mainstay of treatment for thrombosis, the formation of occlusive platelet aggregates that often lead to heart attack and stroke, is antiplatelet therapy. Antiplatelet therapy dosing and resistance are poorly understood, leading to potential incorrect and ineffective dosing. Shear rate is also suspected to play a major role in thrombosis, but instrumentation to measure its influence has been limited by flow conditions, agonist use, and non-systematic and/or non-quantitative studies. In this work we measured occlusion times and thrombus detachment for a range of initial shear rates (500, 1500, 4000, and 10000 s(-1 and therapy concentrations (0-2.4 µM for eptifibatide, 0-2 mM for acetyl-salicylic acid (ASA, 3.5-40 Units/L for heparin using a microfluidic device. We also measured complete blood counts (CBC and platelet activity using whole blood impedance aggregometry. Effects of shear rate and dose were analyzed using general linear models, logistic regressions, and Cox proportional hazards models. Shear rates have significant effects on thrombosis/dose-response curves for all tested therapies. ASA has little effect on high shear occlusion times, even at very high doses (up to 20 times the recommended dose. Under ASA therapy, thrombi formed at high shear rates were 4 times more prone to detachment compared to those formed under control conditions. Eptifibatide reduced occlusion when controlling for shear rate and its efficacy increased with dose concentration. In contrast, the hazard of occlusion from ASA was several orders of magnitude higher than that of eptifibatide. Our results show similar dose efficacy to our low shear measurements using whole blood aggregometry. This quantitative and statistically validated study of the effects of a wide range of shear rate and antiplatelet therapy doses on occlusive thrombosis contributes to more accurate understanding of thrombosis and to models for optimizing patient treatment.

  17. Modeling the shear rate and pressure drop in a hydrodynamic cavitation reactor with experimental validation based on KI decomposition studies.

    Science.gov (United States)

    Badve, Mandar P; Alpar, Tibor; Pandit, Aniruddha B; Gogate, Parag R; Csoka, Levente

    2015-01-01

    A mathematical model describing the shear rate and pressure variation in a complex flow field created in a hydrodynamic cavitation reactor (stator and rotor assembly) has been depicted in the present study. The design of the reactor is such that the rotor is provided with surface indentations and cavitational events are expected to occur on the surface of the rotor as well as within the indentations. The flow characteristics of the fluid have been investigated on the basis of high accuracy compact difference schemes and Navier-Stokes method. The evolution of streamlining structures during rotation, pressure field and shear rate of a Newtonian fluid flow have been numerically established. The simulation results suggest that the characteristics of shear rate and pressure area are quite different based on the magnitude of the rotation velocity of the rotor. It was observed that area of the high shear zone at the indentation leading edge shrinks with an increase in the rotational speed of the rotor, although the magnitude of the shear rate increases linearly. It is therefore concluded that higher rotational speeds of the rotor, tends to stabilize the flow, which in turn results into less cavitational activity compared to that observed around 2200-2500RPM. Experiments were carried out with initial concentration of KI as 2000ppm. Maximum of 50ppm of iodine liberation was observed at 2200RPM. Experimental as well as simulation results indicate that the maximum cavitational activity can be seen when rotation speed is around 2200-2500RPM. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Temperature and shear rate characteristics of electrorheological gel applied to a clutch

    International Nuclear Information System (INIS)

    Koyanagi, K; Takata, Y; Motoyoshi, T; Oshima, T; Kakinuma, Y; Anzai, H; Sakurai, K

    2013-01-01

    This investigation reports the physical characteristics of electrorheological (ER) gels, which are a type of functional material having controlled surface friction. We previously developed slip clutches using ER gels sandwiched between electrodes, and verified their responses and controllability. We newly report the temperature and shear rate characteristics of ER gel in this study because the input and output electrodes of the clutch continuously slip past each other. While the temperature of ER gels increased when energized, the shear stress hardly changed. Instead, wearing and adaptation to the electrode affect the property. The shear rate hardly affected the shear stress in the high-shear-rate region. Conversely, the shear stress depended on the shear rate in the lower region.

  19. Effects of the shear layer growth rate on the supersonic jet noise

    Science.gov (United States)

    Ozawa, Yuta; Nonomura, Taku; Oyama, Akira; Mamori, Hiroya; Fukushima, Naoya; Yamamoto, Makoto

    2017-11-01

    Strong acoustic waves emitted from rocket plume might damage to rocket payloads because their payloads consist of fragile structure. Therefore, understanding and prediction of acoustic wave generation are of importance not only in science, but also in engineering. The present study makes experiments of a supersonic jet flow at the Mach number of 2.0 and investigates a relationship between growth rate of a shear layer and noise generation of the supersonic jet. We conducted particle image velocimetry (PIV) and acoustic measurements for three different shaped nozzles. These nozzles were employed to control the condition of a shear layer of the supersonic jet flow. We applied single-pixel ensemble correlation method (Westerweel et al., 2004) for the PIV images to obtain high-resolution averaged velocity profiles. This correlation method enabled us to obtain detailed data of the shear layer. For all cases, acoustic measurements clearly shows the noise source position at the end of a potential core of the jet. In the case where laminar to turbulent transition occurred in the shear layer, the sound pressure level increased by 4 dB at the maximum. This research is partially supported by Presto, JST (JPMJPR1678) and KAKENHI (25709009 and 17H03473).

  20. Shear-Rate-Dependent Behavior of Clayey Bimaterial Interfaces at Landslide Stress Levels

    Science.gov (United States)

    Scaringi, Gianvito; Hu, Wei; Xu, Qiang; Huang, Runqiu

    2018-01-01

    The behavior of reactivated and first-failure landslides after large displacements is controlled by the available shear resistance in a shear zone and/or along slip surfaces, such as a soil-bedrock interface. Among the factors influencing the resistance parameter, the dependence on the shear rate can trigger catastrophic evolution (rate-weakening) or exert a slow-down feedback (rate-strengthening) upon stress perturbation. We present ring-shear test results, performed under various normal stresses and shear rates, on clayey soils from a landslide shear zone, on its parent lithology and other lithologies, and on clay-rock interface samples. We find that depending on the materials in contact, the normal stress, and the stress history, the shear-rate-dependent behaviors differ. We discuss possible models and underlying mechanisms for the time-dependent behavior of landslides in clay soils.

  1. Comminution of solids caused by kinetic energy of high shear strain rate, with implications for impact, shock, and shale fracturing.

    Science.gov (United States)

    Bazant, Zdenek P; Caner, Ferhun C

    2013-11-26

    Although there exists a vast literature on the dynamic comminution or fragmentation of rocks, concrete, metals, and ceramics, none of the known models suffices for macroscopic dynamic finite element analysis. This paper outlines the basic idea of the macroscopic model. Unlike static fracture, in which the driving force is the release of strain energy, here the essential idea is that the driving force of comminution under high-rate compression is the release of the local kinetic energy of shear strain rate. The density of this energy at strain rates >1,000/s is found to exceed the maximum possible strain energy density by orders of magnitude, making the strain energy irrelevant. It is shown that particle size is proportional to the -2/3 power of the shear strain rate and the 2/3 power of the interface fracture energy or interface shear stress, and that the comminution process is macroscopically equivalent to an apparent shear viscosity that is proportional (at constant interface stress) to the -1/3 power of this rate. A dimensionless indicator of the comminution intensity is formulated. The theory was inspired by noting that the local kinetic energy of shear strain rate plays a role analogous to the local kinetic energy of eddies in turbulent flow.

  2. Structural state diagram of concentrated suspensions of jammed soft particles in oscillatory shear flow

    Science.gov (United States)

    Khabaz, Fardin; Cloitre, Michel; Bonnecaze, Roger T.

    2018-03-01

    In a recent study [Khabaz et al., Phys. Rev. Fluids 2, 093301 (2017), 10.1103/PhysRevFluids.2.093301], we showed that jammed soft particle glasses (SPGs) crystallize and order in steady shear flow. Here we investigate the rheology and microstructures of these suspensions in oscillatory shear flow using particle-dynamics simulations. The microstructures in both types of flows are similar, but their evolutions are very different. In both cases the monodisperse and polydisperse suspensions form crystalline and layered structures, respectively, at high shear rates. The crystals obtained in the oscillatory shear flow show fewer defects compared to those in the steady shear. SPGs remain glassy for maximum oscillatory strains less than about the yield strain of the material. For maximum strains greater than the yield strain, microstructural and rheological transitions occur for SPGs. Polydisperse SPGs rearrange into a layered structure parallel to the flow-vorticity plane for sufficiently high maximum shear rates and maximum strains about 10 times greater than the yield strain. Monodisperse suspensions form a face-centered cubic (FCC) structure when the maximum shear rate is low and hexagonal close-packed (HCP) structure when the maximum shear rate is high. In steady shear, the transition from a glassy state to a layered one for polydisperse suspensions included a significant induction strain before the transformation. In oscillatory shear, the transformation begins to occur immediately and with different microstructural changes. A state diagram for suspensions in large amplitude oscillatory shear flow is found to be in close but not exact agreement with the state diagram for steady shear flow. For more modest amplitudes of around one to five times the yield strain, there is a transition from a glassy structure to FCC and HCP crystals, at low and high frequencies, respectively, for monodisperse suspensions. At moderate frequencies, the transition is from glassy to HCP via

  3. 7 CFR 3565.210 - Maximum interest rate.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Maximum interest rate. 3565.210 Section 3565.210... AGRICULTURE GUARANTEED RURAL RENTAL HOUSING PROGRAM Loan Requirements § 3565.210 Maximum interest rate. The interest rate for a guaranteed loan must not exceed the maximum allowable rate specified by the Agency in...

  4. Influence of the potential well on the breakage rate of colloidal aggregates in simple shear and uniaxial extensional flows.

    Science.gov (United States)

    Ren, Zhiqiang; Harshe, Yogesh M; Lattuada, Marco

    2015-06-02

    In this work we build on our previous paper (Harshe, Y. M.; Lattuada, M. Langmuir 2012, 28, 283-292) and compute the breakage rate of colloidal aggregates under the effect of shear forces by means of Stokesian dynamics simulations. A library of clusters made of identical spherical particles covering a broad range of masses and fractal dimension values (from 1.8 to 3.0) was generated by means of a combination of several Monte Carlo methods. DLVO theory has been used to describe the interparticle interactions, and contact forces have been introduced by means of the discrete element method. The aggregate breakage process was investigated by exposing them to well-defined shear forces, generated under both simple shear and uniaxial extensional flow conditions, and by recording the time required to reach the first breakage event. It has been found that the breakage rate of clusters was controlled by the potential well between particles as described by DLVO theory. A semiempirical Arrhenius-type exponential equation that relates the potential well to the breakage rate has been used to fit the simulation results. The dependence of the breakage process on the radius of gyration, on the external shear strength, and on the fractal dimension has been obtained, providing a very general relationship for the breakage rate of clusters. It was also found that the fragment mass distribution is insensitive to the presence of electrostatic repulsive interactions. We also clarify the physical reason for the large difference in the breakage rate of clusters between simple shear and the uniaxial extensional flow using a criterion based on the energy dissipation rate. Finally, in order to answer the question of the minimum cluster size that can break under simple shear conditions, a critical rotation number has been introduced, expressing the maximum number of rotations that a cluster exposed to simple shear could sustain before breakage.

  5. Measurement of viscosity of slush at high shear rates

    OpenAIRE

    小林, 俊一; 川村, 公之; 津川, 圭一; 和泉, 薫; Kobayashi, Shun'ichi; Kawamura, Kimiyuki; Tugawa, Keiichi; Izumi, Kaoru

    1988-01-01

    Measurements of viscosity of slush were carried out using a method of flow along an inclined smooth surface in a 0℃cold room. The method was used to get the values of viscosity under high shear rates (25 and 75s^). From our experiments two important results were obtained: 1) the viscosity of slush decreases with increasing shear rates; 2) The fluid behavior is pseudoplastic that the values of non-Newtonian index of viscosity were less than unity.

  6. Monodimensional estimation of maximum Reynolds shear stress in the downstream flow field of bileaflet valves.

    Science.gov (United States)

    Grigioni, Mauro; Daniele, Carla; D'Avenio, Giuseppe; Barbaro, Vincenzo

    2002-05-01

    Turbulent flow generated by prosthetic devices at the bloodstream level may cause mechanical stress on blood particles. Measurement of the Reynolds stress tensor and/or some of its components is a mandatory step to evaluate the mechanical load on blood components exerted by fluid stresses, as well as possible consequent blood damage (hemolysis or platelet activation). Because of the three-dimensional nature of turbulence, in general, a three-component anemometer should be used to measure all components of the Reynolds stress tensor, but this is difficult, especially in vivo. The present study aimed to derive the maximum Reynolds shear stress (RSS) in three commercially available prosthetic heart valves (PHVs) of wide diffusion, starting with monodimensional data provided in vivo by echo Doppler. Accurate measurement of PHV flow field was made using laser Doppler anemometry; this provided the principal turbulence quantities (mean velocity, root-mean-square value of velocity fluctuations, average value of cross-product of velocity fluctuations in orthogonal directions) needed to quantify the maximum turbulence-related shear stress. The recorded data enabled determination of the relationship, the Reynolds stresses ratio (RSR) between maximum RSS and Reynolds normal stress in the main flow direction. The RSR was found to be dependent upon the local structure of the flow field. The reported RSR profiles, which permit a simple calculation of maximum RSS, may prove valuable during the post-implantation phase, when an assessment of valve function is made echocardiographically. Hence, the risk of damage to blood constituents associated with bileaflet valve implantation may be accurately quantified in vivo.

  7. Steady shear rate rheology of suspensions, as described by the gaint floc model

    NARCIS (Netherlands)

    Stein, H.N.; Laven, J.

    2001-01-01

    The break-down of a particle network by shear is described as the development of shear planes: a region able to withstand low shear stresses may break down under a larger stress; thus with increasing shear stress and shear rate, the mutual distance (A) between successive shear planes decreases

  8. E x B shearing rate in quasi-symmetric plasmas

    International Nuclear Information System (INIS)

    Hahm, T.S.

    1997-01-01

    The suppression of turbulence by the E x B shear is studied in systems with quasi-symmetry using the nonlinear analysis of eddy decorrelation previously utilized in finite aspect ratio tokamak plasmas. The analytically derived E x B shearing rate which contains the relevant geometric dependence can be used for quantitative assessment of the fluctuation suppression in stellarators with quasi-symmetry

  9. Strength and behavior in shear of reinforced concrete deep beams under dynamic loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Adhikary, Satadru Das [School of Civil and Environmental Engineering, Nanyang Technological University, 639798 (Singapore); Li, Bing, E-mail: cbli@ntu.edu.sg [School of Civil and Environmental Engineering, Nanyang Technological University, 639798 (Singapore); Fujikake, Kazunori [Department of Civil and Environmental Engineering, National Defense Academy, Yokosuka 239 8686 (Japan)

    2013-06-15

    Highlights: ► Effects of wider range of loading rates on dynamic shear behavior of RC deep beams. ► Experimental investigation of RC deep beam with and without shear reinforcements. ► Verification of experimental results with truss model and FE simulation results. ► Empirical equations are proposed to predict the dynamic increase factor of maximum resistance. -- Abstract: Research on reinforced concrete (RC) deep beams has seen considerable headway over the past three decades; however, information on the dynamic shear strength and behavior of RC deep beams under varying rates of loads remains limited. This paper describes the experimental results of 24 RC deep beams with and without shear reinforcements under varying rates of concentrated loading. Results obtained serve as useful data on shear resistance, failure patterns and strain rates corresponding to varying loading rates. An analytical truss model approach proves its efficacy in predicting the dynamic shear resistance under varying loading rates. Furthermore, three-dimensional nonlinear finite element (FE) model is described and the simulation results are verified with the experimental results. A parametric study is then conducted to investigate the influence of longitudinal reinforcement ratio, transverse reinforcement ratio and shear span to effective depth ratio on shear behavior. Subsequently, two empirical equations were proposed by integrating the various parameters to assess the dynamic increase factor (DIF) of maximum resistance under varying rates of concentrated loading.

  10. Shear induced phase transitions induced in edible fats

    Science.gov (United States)

    Mazzanti, Gianfranco; Welch, Sarah E.; Marangoni, Alejandro G.; Sirota, Eric B.; Idziak, Stefan H. J.

    2003-03-01

    The food industry crystallizes fats under different conditions of temperature and shear to obtain products with desired crystalline phases. Milk fat, palm oil, cocoa butter and chocolate were crystallized from the melt in a temperature controlled Couette cell. Synchrotron x-ray diffraction studies were conducted to examine the role of shear on the phase transitions seen in edible fats. The shear forces on the crystals induced acceleration of the alpha to beta-prime phase transition with increasing shear rate in milk fat and palm oil. The increase was slow at low shear rates and became very strong above 360 s-1. In cocoa butter the acceleration between beta-prime-III and beta-V phase transition increased until a maximum of at 360 s-1, and then decreased, showing competition between enhanced heat transfer and viscous heat generation.

  11. Measuring Local Strain Rates In Ductile Shear Zones: A New Approach From Deformed Syntectonic Dykes

    Science.gov (United States)

    Sassier, C.; Leloup, P.; Rubatto, D.; Galland, O.; Yue, Y.; Ding, L.

    2006-12-01

    At the Earth surface, deformation is mostly localized in fault zones in between tectonic plates. In the upper crust, the deformation is brittle and the faults are narrow and produce earthquakes. In contrast, deformation in the lower ductile crust results in larger shear zones. While it is relatively easy to measure in situ deformation rates at the surface using for example GPS data, it is more difficult to determinate in situ values of strain rate in the ductile crust. Such strain rates can only be estimated in paleo-shear zones. Various methods have been used to assess paleo-strain rates in paleo-shear zones. For instance, cooling and/or decompression rates associated with assumptions on geothermic gradients and shear zone geometry can lead to such estimates. Another way to estimate strain rates is the integration of paleo-stress measurements in a power flow law. But these methods are indirect and imply strong assumptions. Dating of helicitic garnets or syntectonic fibres are more direct estimates. However these last techniques have been only applied in zones of low deformation and not in major shear zones. We propose a new direct method to measure local strain rates in major ductile shear zones from syntectonic dykes by coupling quantification of deformation and geochronology. We test our method in a major shear zone in a well constrained tectonic setting: the Ailao-Shan - Red River Shear Zone (ASRRsz) located in SE Asia. For this 10 km wide shear zone, large-scale fault rates, determined in three independent ways, imply strain rates between 1.17×10^{-13 s-1 and 1.52×10^{-13 s-1 between 35 and 16 Ma. Our study focused on one outcrop where different generations of syntectonic dykes are observed. First, we quantified the minimum shear strain γ for each dyke using several methods: (1) by measuring the stretching of dykes with a surface restoration method (2) by measuring the final angle of the dykes with respect to the shear direction and (3) by combining the two

  12. Gas leakage rate through reinforced concrete shear walls: Numerical study

    International Nuclear Information System (INIS)

    Wang Ting; Hutchinson, Tara C.

    2005-01-01

    Unlined reinforced concrete shear walls are often used as 'tertiary boundaries' in the United States Department of Energy (DOE) to house dangerous gases. An unanticipated event, such as an earthquake, may cause gases stored inside the walls to disperse into the environment resulting in excess pollution. To address this concern, in this paper, a methodology to numerically predict the gas leakage rate through these shear walls under lateral loading conditions is proposed. This methodology involves finite element and flow rate analysis. Strain distributions are obtained from the finite element analysis, and then used to simulate the crack characteristics on the concrete specimen. The flow rate through the damaged concrete specimen is then estimated using flow rate formulas available from the literature. Results from an experimental specimen are used to evaluate the methodology, and particularly its robustness in the flow rate estimation

  13. Dynamical analysis of electrochemical wall shear rate measurements

    NARCIS (Netherlands)

    Steenhoven, van A.A.; Beucken, van den F.J.H.M.

    1991-01-01

    The performance of a circular electrochemical wall shear rate probe under unsteady flow conditions is analysed through a combined ezxperimental, numerical and analytical approach. The experiments are performed with a ferri- and ferrocyanide redox couple and compared to finite element analysis of the

  14. Biofouling of reverse-osmosis membranes under different shear rates during tertiary wastewater desalination: microbial community composition.

    Science.gov (United States)

    Al Ashhab, Ashraf; Gillor, Osnat; Herzberg, Moshe

    2014-12-15

    We investigated the influence of feed-water shear rate during reverse-osmosis (RO) desalination on biofouling with respect to microbial community composition developed on the membrane surface. The RO membrane biofilm's microbial community profile was elucidated during desalination of tertiary wastewater effluent in a flat-sheet lab-scale system operated under high (555.6 s(-1)), medium (370.4 s(-1)), or low (185.2 s(-1)) shear rates, corresponding to average velocities of 27.8, 18.5, and 9.3 cm s(-1), respectively. Bacterial diversity was highest when medium shear was applied (Shannon-Weaver diversity index H' = 4.30 ± 0.04) compared to RO-membrane biofilm developed under lower and higher shear rates (H' = 3.80 ± 0.26 and H' = 3.42 ± 0.38, respectively). At the medium shear rate, RO-membrane biofilms were dominated by Betaproteobacteria, whereas under lower and higher shear rates, the biofilms were dominated by Alpha- and Gamma- Proteobacteria, and the latter biofilms also contained Deltaproteobacteria. Bacterial abundance on the RO membrane was higher at low and medium shear rates compared to the high shear rate: 8.97 × 10(8) ± 1.03 × 10(3), 4.70 × 10(8) ± 1.70 × 10(3) and 5.72 × 10(6) ± 2.09 × 10(3) copy number per cm(2), respectively. Interestingly, at the high shear rate, the RO-membrane biofilm's bacterial community consisted mainly of populations known to excrete high amounts of extracellular polymeric substances. Our results suggest that the RO-membrane biofilm's community composition, structure and abundance differ in accordance with applied shear rate. These results shed new light on the biofouling phenomenon and are important for further development of antibiofouling strategies for RO membranes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Wingtip Vortices and Free Shear Layer Interaction in the Vicinity of Maximum Lift to Drag Ratio Lift Condition

    Science.gov (United States)

    Memon, Muhammad Omar

    Cost-effective air-travel is something everyone wishes for when it comes to booking flights. The continued and projected increase in commercial air travel advocates for energy efficient airplanes, reduced carbon footprint, and a strong need to accommodate more airplanes into airports. All of these needs are directly affected by the magnitudes of drag these aircraft experience and the nature of their wingtip vortex. A large portion of the aerodynamic drag results from the airflow rolling from the higher pressure side of the wing to the lower pressure side, causing the wingtip vortices. The generation of this particular drag is inevitable however, a more fundamental understanding of the phenomenon could result in applications whose benefits extend much beyond the relatively minuscule benefits of commonly-used winglets. Maximizing airport efficiency calls for shorter intervals between takeoffs and landings. Wingtip vortices can be hazardous for following aircraft that may fly directly through the high-velocity swirls causing upsets at vulnerably low speeds and altitudes. The vortex system in the near wake is typically more complex since strong vortices tend to continue developing throughout the near wake region. Several chord lengths distance downstream of a wing, the so-called fully rolled up wing wake evolves into a combination of a discrete wingtip vortex pair and a free shear layer. Lift induced drag is generated as a byproduct of downwash induced by the wingtip vortices. The parasite drag results from a combination of form/pressure drag and the upper and lower surface boundary layers. These parasite effects amalgamate to create the free shear layer in the wake. While the wingtip vortices embody a large portion of the total drag at lifting angles, flow properties in the free shear layer also reveal their contribution to the aerodynamic efficiency of the aircraft. Since aircraft rarely cruise at maximum aerodynamic efficiency, a better understanding of the balance

  16. Evaluation of total energy-rate feedback for glidescope tracking in wind shear

    Science.gov (United States)

    Belcastro, C. M.; Ostroff, A. J.

    1986-01-01

    Low-altitude wind shear is recognized as an infrequent but significant hazard to all aircraft during take-off and landing. A total energy-rate sensor, which is potentially applicable to this problem, has been developed for measuring specific total energy-rate of an airplane with respect to the air mass. This paper presents control system designs, with and without energy-rate feedback, for the approach to landing of a transport airplane through severe wind shear and gusts to evaluate application of this sensor. A system model is developed which incorporates wind shear dynamics equations with the airplance equations of motion, thus allowing the control systems to be analyzed under various wind shears. The control systems are designed using optimal output feedback and are analyzed using frequency domain control theory techniques. Control system performance is evaluated using a complete nonlinear simulation of the airplane and a severe wind shear and gust data package. The analysis and simulation results indicate very similar stability and performance characteristics for the two designs. An implementation technique for distributing the velocity gains between airspeed and ground speed in the simulation is also presented, and this technique is shown to improve the performance characteristics of both designs.

  17. Implementation of a Refined Shear Rating Methodology for Prestressed Concrete Girder Bridges

    Science.gov (United States)

    2017-12-01

    Lower than desirable shear ratings at the ends of prestressed concrete beams have been the topic of ongoing research between MnDOT and the University of Minnesota. A recent study by the University of Minnesota entitled Investigation of Shear Distribu...

  18. Exercise-induced maximum metabolic rate scaled to body mass by ...

    African Journals Online (AJOL)

    Exercise-induced maximum metabolic rate scaled to body mass by the fractal ... rate scaling is that exercise-induced maximum aerobic metabolic rate (MMR) is ... muscle stress limitation, and maximized oxygen delivery and metabolic rates.

  19. The Influence of Forming Directions and Strain Rate on Dynamic Shear Properties of Aerial Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Ying Meng

    2018-03-01

    Full Text Available Dynamic shear properties under high strain rate are an important basis for studying the dynamic mechanical properties and microscopic mechanisms of materials. Dynamic impact shear tests of aerial aluminum alloy 7050-T7451 in rolling direction (RD, transverse direction (TD and normal direction (ND were performed at a range of strain rates from 2.5 × 104 s−1 to 4.5 × 104 s−1 by High Split Hopkinson Pressure Bar (SHPB. The influence of different forming directions and strain rates on the dynamic shear properties of material and the microstructure evolution under dynamic shear were emphatically analyzed. The results showed that aluminum alloy 7050-T7451 had a certain strain rate sensitivity and positive strain rate strengthening effect, and also the material had no obvious strain strengthening effect. Different forming directions had a great influence on dynamic shear properties. The shear stress in ND was the largest, followed by that in RD, and the lowest was that in TD. The microstructure observation showed that the size and orientation of the grain structure were different in three directions, which led to the preferred orientation of the material. All of those were the main reasons for the difference of dynamic shear properties of the material.

  20. Shear Strains, Strain Rates and Temperature Changes in Adiabatic Shear Bands

    Science.gov (United States)

    1980-05-01

    X14A. It has been found that when bainitic and martensitic steels are sheared adiabatically, a layer of material within ths shear zone is altezed and...Sooiety for Metals, Metals Park, Ohio, 1978, pp. 148-0. 21 TABLE II SOLID-STATE TRANSFORMATIONS IN BAINITIC STEEL TRANSFORMATION TRANSFORMATION...shear, thermoplastic, plasticity, plastic deformation, armor, steel IL AnSRACT ( -=nba asoa.tm a naeoesM iN faity by bleak n bet/2972 Experiments

  1. Shear Capacity of C-Shaped and L-Shaped Angle Shear Connectors.

    Directory of Open Access Journals (Sweden)

    Farzad Tahmasbi

    Full Text Available This paper investigates the behaviour of C-shaped and L-shaped angle shear connectors embedded in solid concrete slabs. An effective finite element model is proposed to simulate the push out tests of these shear connectors that encompass nonlinear material behaviour, large displacement and damage plasticity. The finite element models are validated against test results. Parametric studies using this nonlinear model are performed to investigate the variations in concrete strength and connector dimensions. The finite element analyses also confirm the test results that increasing the length of shear connector increases their shear strength proportionately. It is observed that the maximum stress in L-shaped angle connectors takes place in the weld attachment to the beam, whereas in the C-shaped angle connectors, it is in the attached leg. The location of maximum concrete compressive damage is rendered in each case. Finally, a new equation for prediction of the shear capacity of C-shaped angle connectors is proposed.

  2. Shear Capacity of C-Shaped and L-Shaped Angle Shear Connectors

    Science.gov (United States)

    Tahmasbi, Farzad; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.; Tahir, M. M.

    2016-01-01

    This paper investigates the behaviour of C-shaped and L-shaped angle shear connectors embedded in solid concrete slabs. An effective finite element model is proposed to simulate the push out tests of these shear connectors that encompass nonlinear material behaviour, large displacement and damage plasticity. The finite element models are validated against test results. Parametric studies using this nonlinear model are performed to investigate the variations in concrete strength and connector dimensions. The finite element analyses also confirm the test results that increasing the length of shear connector increases their shear strength proportionately. It is observed that the maximum stress in L-shaped angle connectors takes place in the weld attachment to the beam, whereas in the C-shaped angle connectors, it is in the attached leg. The location of maximum concrete compressive damage is rendered in each case. Finally, a new equation for prediction of the shear capacity of C-shaped angle connectors is proposed. PMID:27478894

  3. Dependency of Shear Strength on Test Rate in SiC/BSAS Ceramic Matrix Composite at Elevated Temperature

    Science.gov (United States)

    Choi, Sung R.; Bansal, Narottam P.; Gyekenyesi, John P.

    2003-01-01

    Both interlaminar and in-plane shear strengths of a unidirectional Hi-Nicalon(TM) fiber-reinforced barium strontium aluminosilicate (SiC/BSAS) composite were determined at 1100 C in air as a function of test rate using double notch shear test specimens. The composite exhibited a significant effect of test rate on shear strength, regardless of orientation which was either in interlaminar or in in-plane direction, resulting in an appreciable shear-strength degradation of about 50 percent as test rate decreased from 3.3 10(exp -1) mm/s to 3.3 10(exp -5) mm/s. The rate dependency of composite's shear strength was very similar to that of ultimate tensile strength at 1100 C observed in a similar composite (2-D SiC/BSAS) in which tensile strength decreased by about 60 percent when test rate varied from the highest (5 MPa/s) to the lowest (0.005 MPa/s). A phenomenological, power-law slow crack growth formulation was proposed and formulated to account for the rate dependency of shear strength of the composite.

  4. Effects of different aging statuses and strain rate on the adiabatic shear susceptibility of 2195 aluminum–lithium alloy

    International Nuclear Information System (INIS)

    Yang, Y.; Tan, G.Y.; Chen, P.X.; Zhang, Q.M.

    2012-01-01

    The adiabatic shear susceptibility of 2195 aluminum–lithium alloy was investigated by means of split Hopkinson pressure bar. The stress collapse in true stress–true strain curves and true stress–time curves was observed. The adiabatic shear susceptibility of different aging statuses and strain rate were discussed by means of metallography observation. The critical strain, stress collapse time and formation energy of adiabatic shear bands were compared. The results show that different aging statuses and strain rate have significant influences on adiabatic shear behaviors of 2195 aluminum–lithium alloy. The peak-aged specimen has the highest adiabatic shearing susceptibility, while the under-aged specimen has the least adiabatic shear susceptibility. The susceptibility of adiabatic shearing increases with the increases of strain rate.

  5. Effects of different aging statuses and strain rate on the adiabatic shear susceptibility of 2195 aluminum-lithium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Y. [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); State Key Laboratory of Explosion Science and Technology, Beijing 100081 (China); Tan, G.Y., E-mail: yangyanggroup@163.com [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); Chen, P.X. [School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan (China); Zhang, Q.M. [State Key Laboratory of Explosion Science and Technology, Beijing 100081 (China)

    2012-06-01

    The adiabatic shear susceptibility of 2195 aluminum-lithium alloy was investigated by means of split Hopkinson pressure bar. The stress collapse in true stress-true strain curves and true stress-time curves was observed. The adiabatic shear susceptibility of different aging statuses and strain rate were discussed by means of metallography observation. The critical strain, stress collapse time and formation energy of adiabatic shear bands were compared. The results show that different aging statuses and strain rate have significant influences on adiabatic shear behaviors of 2195 aluminum-lithium alloy. The peak-aged specimen has the highest adiabatic shearing susceptibility, while the under-aged specimen has the least adiabatic shear susceptibility. The susceptibility of adiabatic shearing increases with the increases of strain rate.

  6. Shear-rate-dependent strength control on the dynamics of rainfall-triggered landslides, Tokushima Prefecture, Japan

    Science.gov (United States)

    Wang, G.; Suemine, A.; Schulz, W.H.

    2010-01-01

    A typhoon (Typhoon No. 10) attacked Shikoku Island and the Tyugoku area of Japan in 2004. This typhoon produced a new daily precipitation record of 1317 mm on Shikoku Island and triggered hundreds of landslides in Tokushima Prefecture. One catastrophic landslide was triggered in the Shiraishi area of Kisawa village, and destroyed more than 10 houses while also leaving an unstable block high on the slope. The unstable block kept moving after the event, showing accelerating and decelerating movement during and after rainfall and reaching a displacement of several meters before countermeasures were put into place. To examine the mechanism for this landsliding characteristic, samples (weathered serpentinite) were taken from the field, and their shear behaviours examined using ring shear tests. The test results revealed that the residual shear strength of the samples is positively dependent on the shear rate, which may provide an explanation for the continuous acceleratingdecelerating process of the landsliding. The roughness of the shear surface and the microstructure of the shear zone were measured and observed by laser microscope and SEM techniques in an attempt to clarify the mechanism of shear rate effect on the residual shear strength. Copyright ?? 2010 John Wiley & Sons, Ltd.

  7. 5 CFR 531.221 - Maximum payable rate rule.

    Science.gov (United States)

    2010-01-01

    ... before the reassignment. (ii) If the rate resulting from the geographic conversion under paragraph (c)(2... previous rate (i.e., the former special rate after the geographic conversion) with the rates on the current... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Maximum payable rate rule. 531.221...

  8. Flow rate dependency of critical wall shear stress in a radial-flow cell

    DEFF Research Database (Denmark)

    Detry, J.G.; Jensen, Bo Boye Busk; Sindic, M.

    2009-01-01

    In the present work, a radial-flow cell was used to study the removal of starch particle aggregates from several solid substrates (glass, stainless steel, polystyrene and PTFE) in order to determine the critical wall shear stress value for each case. The particle aggregates were formed by aspersion...... of a water or ethanol suspension of starch granules on the surfaces. Depending on the substrate and on the suspending liquid, the aggregates differed in size and shape. Aggregate removal was studied at two flow rates. At the lower flow rate (Re-inlet = 955), the values of critical wall shear stress...... for the different surfaces suggested that capillary forces were, for all of them, playing an important role in aggregate adhesion since aqueous based aggregates were always more difficult to remove. At the higher flow rate (Re-inlet = 2016) the critical wall shear stress increased as a result of the change...

  9. Shear Resistance Variations in Experimentally Sheared Mudstone Granules: A Possible Shear-Thinning and Thixotropic Mechanism

    Science.gov (United States)

    Hu, Wei; Xu, Qiang; Wang, Gonghui; Scaringi, Gianvito; Mcsaveney, Mauri; Hicher, Pierre-Yves

    2017-11-01

    We present results of ring shear frictional resistance for mudstone granules of different size obtained from a landslide shear zone. Little rate dependency of shear resistance was observed in sand-sized granules in any wet or dry test, while saturated gravel-sized granules exhibited significant and abrupt reversible rate-weakening (from μ = 0.6 to 0.05) at about 2 mm/s. Repeating resistance variations occurred also under constant shear displacement rate. Mudstone granules generate mud as they are crushed and softened. Shear-thinning and thixotropic behavior of the mud can explain the observed behavior: with the viscosity decreasing, the mud can flow through the coarser soil pores and migrate out from the shear zone. This brings new granules into contact which produces new mud. Thus, the process can start over. Similarities between experimental shear zones and those of some landslides in mudstone suggest that the observed behavior may play a role in some landslide kinematics.

  10. High-Strain Rate Failure Modeling Incorporating Shear Banding and Fracture

    Science.gov (United States)

    2017-11-22

    High Strain Rate Failure Modeling Incorporating Shear Banding and Fracture The views, opinions and/or findings contained in this report are those of...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6. AUTHORS...Report as of 05-Dec-2017 Agreement Number: W911NF-13-1-0238 Organization: Columbia University Title: High Strain Rate Failure Modeling Incorporating

  11. Influence of static pressure and shear rate on hemolysis of red blood cells.

    Science.gov (United States)

    Yasuda, T; Funakubo, A; Miyawaki, F; Kawamura, T; Higami, T; Fukui, Y

    2001-01-01

    The purpose of this study was to investigate the effect of multiple mechanical forces in hemolysis. Specific attention is focused on the effects of shear and pressure. An experimental apparatus consisting of a rotational viscometer, compression chamber, and heat exchanger was prepared to apply multiple mechanical forces to a blood sample. The rotational viscometer, in which bovine blood was subjected to shear rates of 0, 500, 1,000, and 1,500 s(-1), was set in the compression chamber and pressurized with an air compressor at 0, 200, 400, and 600 mm Hg. The blood temperature was maintained at 21 degrees C and 28 degrees C. Free hemoglobin at 600 mm Hg was observed to be approximately four times higher than at 0 mm Hg for a shear rate of 1,500 s(-1) (p dynamics analysis, flow visualization, and computational fluid dynamics.

  12. 44 CFR 208.12 - Maximum Pay Rate Table.

    Science.gov (United States)

    2010-10-01

    ...) Physicians. DHS uses the latest Special Salary Rate Table Number 0290 for Medical Officers (Clinical... Personnel, in which case the Maximum Pay Rate Table would not apply. (3) Compensation for Sponsoring Agency... organizations, e.g., HMOs or medical or engineering professional associations, under the revised definition of...

  13. Rating precast prestressed concrete bridges for shear

    Science.gov (United States)

    2008-12-01

    Shear capacity of real-world prestressed concrete girders designed in the 1960s and 1970s is a concern because : AASHTO Standard Specifications (AASHTO-STD) employed the quarter-point rule for shear design, which is less : conservative for shea...

  14. Quantitative Maximum Shear-Wave Stiffness of Breast Masses as a Predictor of Histopathologic Severity.

    Science.gov (United States)

    Berg, Wendie A; Mendelson, Ellen B; Cosgrove, David O; Doré, Caroline J; Gay, Joel; Henry, Jean-Pierre; Cohen-Bacrie, Claude

    2015-08-01

    The objective of our study was to compare quantitative maximum breast mass stiffness on shear-wave elastography (SWE) with histopathologic outcome. From September 2008 through September 2010, at 16 centers in the United States and Europe, 1647 women with a sonographically visible breast mass consented to undergo quantitative SWE in this prospective protocol; 1562 masses in 1562 women had an acceptable reference standard. The quantitative maximum stiffness (termed "Emax") on three acquisitions was recorded for each mass with the range set from 0 (very soft) to 180 kPa (very stiff). The median Emax and interquartile ranges (IQRs) were determined as a function of histopathologic diagnosis and were compared using the Mann-Whitney U test. We considered the impact of mass size on maximum stiffness by performing the same comparisons for masses 9 mm or smaller and those larger than 9 mm in diameter. The median patient age was 50 years (mean, 51.8 years; SD, 14.5 years; range, 21-94 years), and the median lesion diameter was 12 mm (mean, 14 mm; SD, 7.9 mm; range, 1-53 mm). The median Emax of the 1562 masses (32.1% malignant) was 71 kPa (mean, 90 kPa; SD, 65 kPa; IQR, 31-170 kPa). Of 502 malignancies, 23 (4.6%) ductal carcinoma in situ (DCIS) masses had a median Emax of 126 kPa (IQR, 71-180 kPa) and were less stiff than 468 invasive carcinomas (median Emax, 180 kPa [IQR, 138-180 kPa]; p = 0.002). Benign lesions were much softer than malignancies (median Emax, 43 kPa [IQR, 24-83 kPa] vs 180 kPa [IQR, 129-180 kPa]; p masses. Despite overlap in Emax values, maximum stiffness measured by SWE is a highly effective predictor of the histopathologic severity of sonographically depicted breast masses.

  15. Comparison of direct shear and simple shear responses of municipal solid waste in USA

    KAUST Repository

    Fei, Xunchang

    2017-10-25

    Although large-size simple shear (SS) testing of municipal solid waste (MSW) may arguably provide a more realistic estimate of the shear strength (τ ) of MSW than the most commonly used direct shear (DS) testing, a systematic comparison between the shear responses of MSW obtained from the two testing methods is lacking. In this study, a large-size shear device was used to test identical MSW specimens sampled in USA in DS and SS. Eight DS tests and 11 SS tests were conducted at vertical effective stresses of 50–500 kPa. The stress–displacement response of MSW in SS testing was hyperbolic and a maximum shear stress was reached, whereas a maximum shear stress was not reached in most DS tests. The τ, effective friction angle (ϕ ′) and cohesion (c ′) of MSW were obtained from DS and SS tests by using a displacement failure criterion of 40 mm. τ in SS testing was found to be equal to or lower than τ in DS testing with ratios of τ between 73 and 101%. SS testing resulted in higher ϕ ′ but lower c ′ than DS testing. The shear strength parameters were lower than those obtained in previous studies from DS tests at 55 mm displacement.

  16. Shear Tests and Calculation of Shear Resistance with the PC Program RFEM from Thin Partition Walls of Brick in Old Buildings

    Directory of Open Access Journals (Sweden)

    Korjenic Sinan

    2015-11-01

    Full Text Available This paper is about the shear capacity of partition walls in old buildings based on shear tests which were carried out under real conditions in an existing building. There were experiments conducted on different floors and in each case, the maximum recordable horizontal force and the horizontal displacement of the respective mortar were measured. At the same time material studies and material investigations were carried out in the laboratory. The material parameters were used for the calculation of the precise shear capacity of each joint. In the shear tests, the maximum displacement of a mortar joint was determined at a maximum of two to four millimetres. Furthermore, no direct linear relationship between the theoretical load (wall above it and the shear stress occurred could be detected in the analysis of the experiment, as it was previously assumed.

  17. Shear Tests and Calculation of Shear Resistance with the PC Program RFEM from Thin Partition Walls of Brick in Old Buildings

    Science.gov (United States)

    Korjenic, Sinan; Nowak, Bernhard; Löffler, Philipp; Vašková, Anna

    2015-11-01

    This paper is about the shear capacity of partition walls in old buildings based on shear tests which were carried out under real conditions in an existing building. There were experiments conducted on different floors and in each case, the maximum recordable horizontal force and the horizontal displacement of the respective mortar were measured. At the same time material studies and material investigations were carried out in the laboratory. The material parameters were used for the calculation of the precise shear capacity of each joint. In the shear tests, the maximum displacement of a mortar joint was determined at a maximum of two to four millimetres. Furthermore, no direct linear relationship between the theoretical load (wall above it) and the shear stress occurred could be detected in the analysis of the experiment, as it was previously assumed.

  18. Impact of finite rate chemistry on the hydrodynamic stability of shear flows in turbulent lean premixed combustion

    Science.gov (United States)

    Dagan, Yuval; Ghoniem, Ahmed

    2017-11-01

    Recent experimental observations show that the dynamic response of a reactive flow is strongly impacted by the fuel chemistry. In order to gain insight into some of the underlying mechanisms we formulate a new linear stability model that incorporates the impact of finite rate chemistry on the hydrodynamic stability of shear flows. Contrary to previous studies which typically assume that the velocity field is independent of the kinetic rates, the velocity field in our study is coupled with the temperature field. Using this formulation, we reproduce previous results, e.g., most unstable global modes, obtained for non-reacting shear flow. Moreover, we show that these modes are significantly altered in frequency and gain by the presence of a reaction region within the shear layer. This qualitatively agrees with results of our recent experimental and numerical studies, which show that the flame surface location relative to the shear layer influences the stability characteristics in combustion tunnels. This study suggests a physical explanation for the observed impact of finite rate chemistry on shear flow stability.

  19. A practical method for estimating maximum shear modulus of cemented sands using unconfined compressive strength

    Science.gov (United States)

    Choo, Hyunwook; Nam, Hongyeop; Lee, Woojin

    2017-12-01

    The composition of naturally cemented deposits is very complicated; thus, estimating the maximum shear modulus (Gmax, or shear modulus at very small strains) of cemented sands using the previous empirical formulas is very difficult. The purpose of this experimental investigation is to evaluate the effects of particle size and cement type on the Gmax and unconfined compressive strength (qucs) of cemented sands, with the ultimate goal of estimating Gmax of cemented sands using qucs. Two sands were artificially cemented using Portland cement or gypsum under varying cement contents (2%-9%) and relative densities (30%-80%). Unconfined compression tests and bender element tests were performed, and the results from previous studies of two cemented sands were incorporated in this study. The results of this study demonstrate that the effect of particle size on the qucs and Gmax of four cemented sands is insignificant, and the variation of qucs and Gmax can be captured by the ratio between volume of void and volume of cement. qucs and Gmax of sand cemented with Portland cement are greater than those of sand cemented with gypsum. However, the relationship between qucs and Gmax of the cemented sand is not affected by the void ratio, cement type and cement content, revealing that Gmax of the complex naturally cemented soils with unknown in-situ void ratio, cement type and cement content can be estimated using qucs.

  20. Maximum organic carbon limits at different melter feed rates (U)

    International Nuclear Information System (INIS)

    Choi, A.S.

    1995-01-01

    This report documents the results of a study to assess the impact of varying melter feed rates on the maximum total organic carbon (TOC) limits allowable in the DWPF melter feed. Topics discussed include: carbon content; feed rate; feed composition; melter vapor space temperature; combustion and dilution air; off-gas surges; earlier work on maximum TOC; overview of models; and the results of the work completed

  1. Shear thinning and shear thickening of a confined suspension of vesicles

    Science.gov (United States)

    Nait Ouhra, A.; Farutin, A.; Aouane, O.; Ez-Zahraouy, H.; Benyoussef, A.; Misbah, C.

    2018-01-01

    Widely regarded as an interesting model system for studying flow properties of blood, vesicles are closed membranes of phospholipids that mimic the cytoplasmic membranes of red blood cells. In this study we analyze the rheology of a suspension of vesicles in a confined geometry: the suspension, bound by two planar rigid walls on each side, is subject to a shear flow. Flow properties are then analyzed as a function of shear rate γ ˙, the concentration of the suspension ϕ , and the viscosity contrast λ =ηin/ηout , where ηin and ηout are the fluid viscosities of the inner and outer fluids, respectively. We find that the apparent (or effective viscosity) of the suspension exhibits both shear thinning (decreasing viscosity with shear rate) or shear thickening (increasing viscosity with shear rate) in the same concentration range. The shear thinning or thickening behaviors appear as subtle phenomena, dependant on viscosity contrast λ . We provide physical arguments on the origins of these behaviors.

  2. Visco-instability of shear viscoelastic collisional dusty plasma systems

    Science.gov (United States)

    Mahdavi-Gharavi, M.; Hajisharifi, K.; Mehidan, H.

    2018-04-01

    In this paper, the stability of Newtonian and non-Newtonian viscoelastic collisional shear-velocity dusty plasmas is studied, using the framework of a generalized hydrodynamic (GH) model. Motivated by Banerjee et al.'s work (Banerjee et al., New J. Phys., vol. 12 (12), 2010, p. 123031), employing linear perturbation theory as well as the local approximation method in the inhomogeneous direction, the dispersion relations of the Fourier modes are obtained for Newtonian and non-Newtonian dusty plasma systems in the presence of a dust-neutral friction term. The analysis of the obtained dispersion relation in the non-Newtonian case shows that the inhomogeneous viscosity force depending on the velocity shear profile can be the genesis of a free energy source which leads the shear system to be unstable. Study of the dust-neutral friction effect on the instability of the considered systems using numerical analysis of the dispersion relation in the Newtonian case demonstrates that the maximum growth rate decreases considerably by increasing the collision frequency in the hydrodynamic regime, while this reduction can be neglected in the kinetic regime. Results show a more significant stabilization role of the dust-neutral friction term in the non-Newtonian cases, through decreasing the maximum growth rate at any fixed wavenumber and construction of the instable wavenumber region. The results of the present investigation will greatly contribute to study of the time evolution of viscoelastic laboratory environments with externally applied shear; where in these experiments the dust-neutral friction process can play a considerable role.

  3. Adiabatic shear bands as predictors of strain rate in high speed machining of ramax-2

    International Nuclear Information System (INIS)

    Zeb, M.A.; Irfan, M.A.; Velduis, A.C.

    2008-01-01

    Shear band formation was studied in the chips obtained by turning of stainless steel- Ramax-2 (AISI 420F). The machining was performed on a CNC lathe using a PVD (Physical Vapor Deposition) cutting tool insert. The cutting speeds ranged from 50 m/ min to 250 m/min. Dry cutting conditions were employed. At cutting speeds higher than 30 m/mill, the chip did not remain intact with the workpiece using quick stop device. It was difficult to get the chip root SEM (Scanning Electron Microscope) micrographs at further higher speeds. Therefore, the width of the shear bands was used as the predictor of the strain rates involved at various cutting speeds. The results showed that the strain rates are quite in agreement with the amount of strain rate found during machining of such types of stainless steels. It was also observed that shear band density increased with increasing cutting speed. (author)

  4. Blood viscosity during coagulation at different shear rates

    Science.gov (United States)

    Ranucci, Marco; Laddomada, Tommaso; Ranucci, Matteo; Baryshnikova, Ekaterina

    2014-01-01

    Abstract During the coagulation process, blood changes from a liquid to a solid gel phase. These changes are reflected by changes in blood viscosity; however, blood viscosity at different shear rates (SR) has not been previously explored during the coagulation process. In this study, we investigated the viscosity changes of whole blood in 10 subjects with a normal coagulation profile, using a cone‐on‐plate viscosimeter. For each subject, three consecutive measurements were performed, at a SR of 20, 40, 80 sec−1. On the basis of the time‐dependent changes in blood viscosity, we identified the gel point (GP), the time‐to‐gel point (TGP), the maximum clot viscosity (MCV), and the clot lysis half‐time (CLH). The TGP significantly (P = 0.0023) shortened for increasing SR, and was significantly associated with the activated partial thromboplastin time at a SR of 20 sec−1 (P = 0.038) and 80 sec−1 (P = 0.019). The MCV was significantly lower at a SR of 80 sec−1 versus 40 sec−1 (P = 0.027) and the CLH significantly (P = 0.048) increased for increasing SR. These results demonstrate that measurement of blood viscosity during the coagulation process offers a number of potentially useful parameters. In particular, the association between the TGP and the activated partial thromboplastin time is an expression of the clotting time (intrinsic and common pathway), and its shortening for increasing SR may be interpreted the well‐known activating effects of SR on platelet activation and thrombin generation. Further studies focused on the TGP under conditions of hypo‐ or hypercoagulability are required to confirm its role in the clinical practice. PMID:24994896

  5. Degradation of homogeneous polymer solutions in high shear turbulent pipe flow

    Science.gov (United States)

    Elbing, B. R.; Winkel, E. S.; Solomon, M. J.; Ceccio, S. L.

    2009-12-01

    This study quantifies degradation of polyethylene oxide (PEO) and polyacrylamide (PAM) polymer solutions in large diameter (2.72 cm) turbulent pipe flow at Reynolds numbers to 3 × 105 and shear rates greater than 105 1/s. The present results support a universal scaling law for polymer chain scission reported by Vanapalli et al. (2006) that predicts the maximum chain drag force to be proportional to Re 3/2, validating this scaling law at higher Reynolds numbers than prior studies. Use of this scaling gives estimated backbone bond strengths from PEO and PAM of 3.2 and 3.8 nN, respectively. Additionally, with the use of synthetic seawater as a solvent the onset of drag reduction occurred at higher shear rates relative to the pure water solvent solutions, but had little influence on the extent of degradation at higher shear rates. These results are significant for large diameter pipe flow applications that use polymers to reduce drag.

  6. Localization and Instability in Sheared Granular Materials: Role of Pore Fluids and Non-monotonic Rate Dependent Rheology

    Science.gov (United States)

    Ma, X.; Elbanna, A. E.; Kothari, K.

    2017-12-01

    Fault zone dynamics hold the key to resolving many outstanding geophysical problems including the heat flow paradox, discrepancy between fault static and dynamic strength, and energy partitioning. Most fault zones that generate tectonic events are gouge filled and fluid saturated posing the need for formulating gouge-specific constitutive models that capture spatially heterogeneous compaction and dilation, non-monotonic rate dependence, and transition between localized and distributed deformation. In this presentation, we focus primarily on elucidating microscopic underpinnings for shear banding and stick-slip instabilities in sheared saturated granular materials and explore their implications for earthquake dynamics. We use a non-equilibrium thermodynamics model, the Shear Transformation Zone theory, to investigate the dynamics of strain localization and its connection to stability of sliding in the presence and absence of pore fluids. We also consider the possible influence of self-induced mechanical vibrations as well as the role of external acoustic vibrations as analogue for triggering by a distant event. For the dry case, our results suggest that at low and intermediate strain rates, persistent shear bands develop only in the absence of vibrations. Vibrations tend to fluidize the granular network and de-localize slip at these rates. Stick-slip is only observed for rough grains and it is confined to the shear band. At high strain rates, stick-slip disappears and the different systems exhibit similar stress-slip response. Changing the vibration intensity, duration or time of application alters the system response and may cause long-lasting rheological changes. The presence of pore fluids modifies the stick slip pattern and may lead to both loss and development of slip instability depending on the value of the confining pressure, imposed strain rate and hydraulic parameters. We analyze these observations in terms of possible transitions between rate

  7. 47 CFR 1.1507 - Rulemaking on maximum rates for attorney fees.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Rulemaking on maximum rates for attorney fees... § 1.1507 Rulemaking on maximum rates for attorney fees. (a) If warranted by an increase in the cost of... types of proceedings), the Commission may adopt regulations providing that attorney fees may be awarded...

  8. Allometries of Maximum Growth Rate versus Body Mass at Maximum Growth Indicate That Non-Avian Dinosaurs Had Growth Rates Typical of Fast Growing Ectothermic Sauropsids

    Science.gov (United States)

    Werner, Jan; Griebeler, Eva Maria

    2014-01-01

    We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes) strongly differed from Case’s study (1978), which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles) to 20 (fishes) times (in comparison to mammals) or even 45 (reptiles) to 100 (fishes) times (in comparison to birds) lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule out either

  9. Allometries of maximum growth rate versus body mass at maximum growth indicate that non-avian dinosaurs had growth rates typical of fast growing ectothermic sauropsids.

    Science.gov (United States)

    Werner, Jan; Griebeler, Eva Maria

    2014-01-01

    We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes) strongly differed from Case's study (1978), which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles) to 20 (fishes) times (in comparison to mammals) or even 45 (reptiles) to 100 (fishes) times (in comparison to birds) lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule out either of

  10. Allometries of maximum growth rate versus body mass at maximum growth indicate that non-avian dinosaurs had growth rates typical of fast growing ectothermic sauropsids.

    Directory of Open Access Journals (Sweden)

    Jan Werner

    Full Text Available We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes strongly differed from Case's study (1978, which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles to 20 (fishes times (in comparison to mammals or even 45 (reptiles to 100 (fishes times (in comparison to birds lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule

  11. Turbulence-assisted shear exfoliation of graphene using household detergent and a kitchen blender

    Science.gov (United States)

    Varrla, Eswaraiah; Paton, Keith R.; Backes, Claudia; Harvey, Andrew; Smith, Ronan J.; McCauley, Joe; Coleman, Jonathan N.

    2014-09-01

    To facilitate progression from the lab to commercial applications, it will be necessary to develop simple, scalable methods to produce high quality graphene. Here we demonstrate the production of large quantities of defect-free graphene using a kitchen blender and household detergent. We have characterised the scaling of both graphene concentration and production rate with the mixing parameters: mixing time, initial graphite concentration, rotor speed and liquid volume. We find the production rate to be invariant with mixing time and to increase strongly with mixing volume, results which are important for scale-up. Even in this simple system, concentrations of up to 1 mg ml-1 and graphene masses of >500 mg can be achieved after a few hours mixing. The maximum production rate was ~0.15 g h-1, much higher than for standard sonication-based exfoliation methods. We demonstrate that graphene production occurs because the mean turbulent shear rate in the blender exceeds the critical shear rate for exfoliation.To facilitate progression from the lab to commercial applications, it will be necessary to develop simple, scalable methods to produce high quality graphene. Here we demonstrate the production of large quantities of defect-free graphene using a kitchen blender and household detergent. We have characterised the scaling of both graphene concentration and production rate with the mixing parameters: mixing time, initial graphite concentration, rotor speed and liquid volume. We find the production rate to be invariant with mixing time and to increase strongly with mixing volume, results which are important for scale-up. Even in this simple system, concentrations of up to 1 mg ml-1 and graphene masses of >500 mg can be achieved after a few hours mixing. The maximum production rate was ~0.15 g h-1, much higher than for standard sonication-based exfoliation methods. We demonstrate that graphene production occurs because the mean turbulent shear rate in the blender exceeds

  12. Meniscal shear stress for punching.

    Science.gov (United States)

    Tuijthof, Gabrielle J M; Meulman, Hubert N; Herder, Just L; van Dijk, C Niek

    2009-01-01

    Experimental determination of the shear stress for punching meniscal tissue. Meniscectomy (surgical treatment of a lesion of one of the menisci) is the most frequently performed arthroscopic procedure. The performance of a meniscectomy is not optimal with the currently available instruments. To design new instruments, the punching force of meniscal tissue is an important parameter. Quantitative data are unavailable. The meniscal punching process was simulated by pushing a rod through meniscal tissue at constant speed. Three punching rods were tested: a solid rod of Oslash; 3.00 mm, and two hollow tubes (Oslash; 3.00-2.60 mm) with sharpened cutting edges of 0.15 mm and 0.125 mm thick, respectively. Nineteen menisci acquired from 10 human cadaveric knee joints were punched (30 tests). The force and displacement were recorded from which the maximum shear stress was determined (average added with three times the standard deviation). The maximum shear stress for the solid rod was determined at 10.2 N/mm2. This rod required a significantly lower punch force in comparison with the hollow tube having a 0.15 mm cutting edge (plt;0.01). The maximum shear stress for punching can be applied to design instruments, and virtual reality training environments. This type of experiment is suitable to form a database with material properties of human tissue similar to databases for the manufacturing industry.

  13. Characterization of commercial magnetorheological fluids at high shear rate: influence of the gap

    Science.gov (United States)

    Golinelli, Nicola; Spaggiari, Andrea

    2018-07-01

    This paper reports the experimental tests on the behaviour of a commercial MR fluid at high shear rates and the effect of the gap. Three gaps were considered at multiple magnetic fields and shear rates. From an extended set of almost two hundred experimental flow curves, a set of parameters for the apparent viscosity are retrieved by using the Ostwald de Waele model for non-Newtonian fluids. It is possible to simplify the parameter correlation by making the following considerations: the consistency of the model depends only on the magnetic field, the flow index depends on the fluid type and the gap shows an important effect only at null or very low magnetic fields. This lead to a simple and useful model, especially in the design phase of a MR based product. During the off state, with no applied field, it is possible to use a standard viscous model. During the active state, with high magnetic field, a strong non-Newtonian nature becomes prevalent over the viscous one even at very high shear rate; the magnetic field dominates the apparent viscosity change, while the gap does not play any relevant role on the system behaviour. This simple assumption allows the designer to dimension the gap only considering the non-active state, as in standard viscous systems, and taking into account only the magnetic effect in the active state, where the gap does not change the proposed fluid model.

  14. 5 CFR 9901.312 - Maximum rates of base salary and adjusted salary.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Maximum rates of base salary and adjusted salary. 9901.312 Section 9901.312 Administrative Personnel DEPARTMENT OF DEFENSE HUMAN RESOURCES....312 Maximum rates of base salary and adjusted salary. (a) Subject to § 9901.105, the Secretary may...

  15. Interfacial shear behavior of composite flanged concrete beams

    Directory of Open Access Journals (Sweden)

    Moataz Awry Mahmoud

    2014-08-01

    Full Text Available Composite concrete decks are commonly used in the construction of highway bridges due to their rapid constructability. The interfacial shear transfer between the top slab and the supporting beams is of great significance to the overall deck load carrying capacity and performance. Interfacial shear capacity is directly influenced by the distribution and the percentage of shear connectors. Research and design guidelines suggest the use of two different approaches to quantify the required interfacial shear strength, namely based on the maximum compressive forces in the flange at mid span or the maximum shear flow at the supports. This paper investigates the performance of flanged reinforced concrete composite beams with different shear connector’s distribution and reinforcing ratios. The study incorporated both experimental and analytical programs for beams. Key experimental findings suggest that concentrating the connectors at the vicinity of the supports enhances the ductility of the beam. The paper proposes a simple and straight forward approach to estimate the interfacial shear capacity that was proven to give good correlation with the experimental results and selected code provisions. The paper presents a method to predict the horizontal shear force between precast beams and cast in-situ slabs.

  16. The scaling of maximum and basal metabolic rates of mammals and birds

    Science.gov (United States)

    Barbosa, Lauro A.; Garcia, Guilherme J. M.; da Silva, Jafferson K. L.

    2006-01-01

    Allometric scaling is one of the most pervasive laws in biology. Its origin, however, is still a matter of dispute. Recent studies have established that maximum metabolic rate scales with an exponent larger than that found for basal metabolism. This unpredicted result sets a challenge that can decide which of the concurrent hypotheses is the correct theory. Here, we show that both scaling laws can be deduced from a single network model. Besides the 3/4-law for basal metabolism, the model predicts that maximum metabolic rate scales as M, maximum heart rate as M, and muscular capillary density as M, in agreement with data.

  17. Discontinuous Shear Thickening and Dilatancy: Frictional Effects in Viscous Suspensions

    Science.gov (United States)

    Morris, Jeffrey

    2015-03-01

    Shear thickening in concentrated suspensions has been well-known for quite a long time, yet a firm consensus on the basis for very abrupt or ``discontinuous'' shear thickening (DST) seen in suspensions of large solid fraction, ϕ, has not been reached. This work addresses the DST phenomenon, and proposes a simulation method based in the Stokesian Dynamics algorithm to explore the role of various forces between the particles, including hydrodynamic, conservative potential, and frictional interactions. This work shows that allowance for friction between spherical particles suspended in a viscous liquid causes a significant reduction in the jamming solid fraction of the mixture, ϕmax, taken as the maximum fraction at which the suspension will flow. A consequence of this is a shifting of the singularity in the effective viscosity, η, to smaller ϕmax, and the frictional suspension has a larger viscosity than does the frictionless suspension of the same solid fraction, as is clear from the standard empirical modeling of η (ϕ) =(1 - ϕ /ϕmax) - α , α ~ 2 . When a counterbalancing repulsive force between the particles, representative for example of charge-induced repulsion, is incorporated in the dynamics, the mixture undergoes a transition from frictionless to frictional interactions, and from low to high effective viscosity, at a critical shear rate. Comparison with experimental data shows remarkable agreement in the features of DST captured by the method. The basic algorithm and results of both rate-controlled and stress-controlled simulations will be presented. Like the shear stress, the magnitude of the normal stress exerted by the suspended particles also increases abruptly at the critical shear rate, consistent with the long-standing notion that dilatancy and shear-thickening are synonymous. We will show that considering all shear thickening materials as dilatant is a misconception, but demonstrate the validity of the connection of dilatancy with DST in

  18. Rate maximum calculation of Dpa in CNA-II pressure vessel

    International Nuclear Information System (INIS)

    Mascitti, J. A

    2012-01-01

    The maximum dpa rate was calculated for the reactor in the following state: fresh fuel, no Xenon, a Boron concentration of 15.3 ppm, critical state, its control rods in the criticality position, hot, at full power (2160 MW). It was determined that the maximum dpa rate under such conditions is 3.54(2)x10 12 s -1 and it is located in the positions corresponding to θ=210 o in the azimuthal direction, and z=20 cm and -60 cm respectively in the axial direction, considering the calculation mesh centered at half height of the fuel element (FE) active length. The dpa rate spectrum was determined as well as the contribution to it for 4 energy groups: a thermal group, two epithermal groups and a fast one. The maximum dpa rate considering the photo-neutrons production from (γ, n) reaction in the heavy water of coolant and moderator was 3.93(4)x10 12 s -1 that is 11% greater than the obtained without photo-neutrons. This verified significant difference between both cases, suggest that photo-neutrons in large heavy water reactors such as CNA-II should not be ignored. The maximum DPA rate in the first mm of the reactor pressure vessel was calculated too and it was obtained a value of 4.22(6)x10 12 s -1 . It should be added that the calculation was carried out with the reactor complete accurate model, with no approximations in spatial or energy variables. Each value has, between parentheses, a percentage relative error representing the statistical uncertainty due to the probabilistic Monte Carlo method used to estimate it. More representative values may be obtained with this method if equilibrium burn-up distribution is used (author)

  19. Periodic Viscous Shear Heating Instability in Fine-Grained Shear Zones: Possible Mechanism for Intermediate Depth Earthquakes and Slow Earthquakes?

    Science.gov (United States)

    Kelemen, P. B.; Hirth, G.

    2004-12-01

    Localized ductile shear zones with widths of cm to m are observed in exposures of Earth's shallow mantle (e.g., Kelemen & Dick JGR 95; Vissers et al. Tectonophys 95) and dredged from oceanic fracture zones (e.g., Jaroslow et al. Tectonophys 96). These are mylonitic (grain size 10 to 100 microns) and record mineral cooling temperatures from 1100 to 600 C. Pseudotachylites in a mantle shear zone show that shear heating temperatures can exceed the mantle solidus (e.g., Obata & Karato Tectonophys 95). Simple shear, recrystallization, and grain boundary sliding all decrease the spacing between pyroxenes, so olivine grain growth at lower stress is inhibited; thus, once formed, these shear zones do not "heal" on geological time scales. Reasoning that grain-size sensitive creep will be localized within these shear zones, rather than host rocks (grain size 1 to 10 mm), and inspired by the work of Whitehead & Gans (GJRAS 74), we thought these might undergo repeated shear heating instabilities. In this view, as elastic stress increases, the shear zone weakens via shear heating; rapid deformation of the weak shear zone releases most stored elastic stress; lower stress and strain rate coupled with diffusion of heat into host rocks leads to cooling and strengthening, after which the cycle repeats. We constructed a simple numerical model incorporating olivine flow laws for dislocation creep, diffusion creep, grain boundary sliding, and low T plasticity. We assumed that viscous deformation remains localized in shear zones, surrounded by host rocks undergoing elastic deformation. We fixed the velocity along one side of an elastic half space, and calculated stress due to elastic strain. This stress drives viscous deformation in a shear zone of specified width. Shear heating and thermal diffusion control temperature evolution in the shear zone and host rocks. A maximum of 1400 C (where substantial melting of peridotite would occur) is imposed. Grain size evolves during dislocation

  20. Microstructural evolution in adiabatic shear bands of copper at high strain rates: Electron backscatter diffraction characterization

    International Nuclear Information System (INIS)

    Tang Lin; Chen Zhiyong; Zhan Congkun; Yang Xuyue; Liu Chuming; Cai Hongnian

    2012-01-01

    The microstructural evolution of adiabatic shear bands in annealed copper with different large strains at high strain rates has been investigated by electron backscatter diffraction. The results show that mechanical twinning can occur with minimal contribution to shear localization under dynamic loading. Elongated ultrafine grains with widths of 100–300 nm are observed during the evolution of the adiabatic shear bands. A rotational dynamic recrystallization mechanism is proposed to explain the formation of the elongated ultrafine grains. - Highlights: ► The microstructural evolution of ASB is studied by electron backscatter diffraction. ► Twinning can occur in ASB while the contribution to shear localization is slight. ► Elongated ultrafine grains are observed during the evolution process of ASB. ► A possible mechanism is proposed to explain the microstructure evolution of ASB.

  1. Effect of Different Loading Conditions on the Nucleation and Development of Shear Zones Around Material Heterogeneities

    Science.gov (United States)

    Rybacki, E.; Nardini, L.; Morales, L. F.; Dresen, G.

    2017-12-01

    Rock deformation at depths in the Earth's crust is often localized in high temperature shear zones, which occur in the field at different scales and in a variety of lithologies. The presence of material heterogeneities has long been recognized to be an important cause for shear zones evolution, but the mechanisms controlling initiation and development of localization are not fully understood, and the question of which loading conditions (constant stress or constant deformation rate) are most favourable is still open. To better understand the effect of boundary conditions on shear zone nucleation around heterogeneities, we performed a series of torsion experiments under constant twist rate (CTR) and constant torque (CT) conditions in a Paterson-type deformation apparatus. The sample assemblage consisted of copper-jacketed Carrara marble hollow cylinders with one weak inclusion of Solnhofen limestone. The CTR experiments were performed at maximum bulk strain rates of 1.8-1.9*10-4 s-1, yielding shear stresses of 19-20 MPa. CT tests were conducted at shear stresses between 18.4 and 19.8 MPa resulting in shear strain rates of 1-2*10-4 s-1. All experiments were run at 900 °C temperature and 400 MPa confining pressure. Maximum bulk shear strains (γ) were ca. 0.3 and 1. Strain localized within the host marble in front of the inclusion in an area termed process zone. Here grain size reduction is intense and local shear strain (estimated from markers on the jackets) is up to 8 times higher than the applied bulk strain, rapidly dropping to 2 times higher at larger distance from the inclusion. The evolution of key microstructural parameters such as average grain size and average grain orientation spread (GOS, a measure of lattice distortion) within the process zone, determined by electron backscatter diffraction analysis, differs significantly as a function of loading conditions. Both parameters indicate that, independent of bulk strain and distance from the inclusion, the

  2. Retrograde shear rate in formerly preeclamptic and healthy women before and after exercise training: relationship with endothelial function.

    NARCIS (Netherlands)

    Scholten, R.R.; Spaanderman, M.E.A.; Green, D.J.; Hopman, M.T.E.; Thijssen, D.H.J.

    2014-01-01

    Blood flow patterns in conduit arteries characterized by high levels of retrograde shear stress can be detrimental for vascular health. In this study we examined whether retrograde shear rate and endothelial function are related in healthy and formerly preeclamptic (PE) women and whether this

  3. Frictional processes in smectite-rich gouges sheared at slow to high slip rates

    Science.gov (United States)

    Aretusini, Stefano; Mittempergher, Silvia; Gualtieri, Alessandro; Di Toro, Giulio

    2015-04-01

    The slipping zones of shallow sections of megathrusts and of large landslides are often smectite-rich (e.g., montmorillonite type). Consequently, similar "frictional" processes operating at high slip rates (> 1 m/s) might be responsible of the large slips estimated in megathrust (50 m for the 2011 Tohoku Mw 9.1 earthquake) and measured in large landslides (500 m for the 1963 Vajont slide, Italy). At present, only rotary shear apparatuses can reproduce simultaneously the large slips and slip rates of these events. Noteworthy, the frictional processes proposed so far (thermal and thermochemical pressurization, etc.) remain rather obscure. Here we present preliminary results obtained with the ROtary Shear Apparatus (ROSA) installed at Padua University. Thirty-one experiments were performed at ambient conditions on pure end-members of (1) smectite-rich standard powders (STx-1b: ~68 wt% Ca-montmorillonite, ~30 wt% opal-CT and ~2 wt% quartz), (2) quartz powders (qtz) and (3) on 80:20 = Stx-1b:qtz mixtures. The gouges were sandwiched between two (1) hollow (25/15 mm external/internal diameter) or (2) solid (25 mm in diameter) stainless-steel made cylinders and confined by inner and outer Teflon rings (only outer for solid cylinders). Gouges were sheared at a normal stress of 5 MPa, slip rates V from 300 μm/s to 1.5 m/s and total slip of 3 m. The deformed gouges were investigated with quantitative (Rietveld method with internal standard) X-ray powder diffraction (XRPD) and Scanning Electron Microscopy (SEM). In the smectite-rich standard endmember, (1) for 300 μm/s ≤ V ≤ 0.1 m/s, initial friction coefficient (μi) was 0.6±0.05 whereas the steady-state friction coefficient (μss) was velocity and slip strengthening (μss 0.85±0.05), (2) for 0.1 m/s 0.8 m/s, velocity and slip weakening (μi = 0.7±0.1 and μss = 0.25±0.05). In the 80:20 Stx-1b:qtz mixtures, (1) for 300 μm/s ≤ V ≤ 0.1 m/s, μi ranged was 0.7±0.05 and increased with slip to μss = 0.77±0

  4. Rheokinetics and effect of shear rate on the kinetics of linear polyurethane formation

    NARCIS (Netherlands)

    Navarchian, AH; Picchioni, F; Janssen, LPBM

    In this article, the rheokinetics of polyurethane formation and the influence of shear rate on its kinetics have been studied. Two different linear polyurethane systems with 0% and 100% hard segments are examined in a cone and plate rheometer. The isothermal increase of viscosity during polyurethane

  5. The MMS Dayside Magnetic Reconnection Locations During Phase 1 and Their Relation to the Predictions of the Maximum Magnetic Shear Model

    Science.gov (United States)

    Trattner, K. J.; Burch, J. L.; Ergun, R.; Eriksson, S.; Fuselier, S. A.; Giles, B. L.; Gomez, R. G.; Grimes, E. W.; Lewis, W. S.; Mauk, B.; Petrinec, S. M.; Russell, C. T.; Strangeway, R. J.; Trenchi, L.; Wilder, F. D.

    2017-12-01

    Several studies have validated the accuracy of the maximum magnetic shear model to predict the location of the reconnection site at the dayside magnetopause. These studies found agreement between model and observations for 74% to 88% of events examined. It should be noted that, of the anomalous events that failed the prediction of the model, 72% shared a very specific parameter range. These events occurred around equinox for an interplanetary magnetic field (IMF) clock angle of about 240°. This study investigates if this remarkable grouping of events is also present in data from the recently launched MMS. The MMS magnetopause encounter database from the first dayside phase of the mission includes about 4,500 full and partial magnetopause crossings and flux transfer events. We use the known reconnection line signature of switching accelerated ion beams in the magnetopause boundary layer to identify encounters with the reconnection region and identify 302 events during phase 1a when the spacecraft are at reconnection sites. These confirmed reconnection locations are compared with the predicted location from the maximum magnetic shear model and revealed an 80% agreement. The study also revealed the existence of anomalous cases as mentioned in an earlier study. The anomalies are concentrated for times around the equinoxes together with IMF clock angles around 140° and 240°. Another group of anomalies for the same clock angle ranges was found during December events.

  6. Effects of the cooling rate on the shear behavior of continuous glass fiber/impact polypropylene composites (GF-IPP)

    KAUST Repository

    Wafai, Husam

    2016-09-20

    Fiber-reinforced composites with improved dissipation of energy during impact loading have recently been developed based on a polypropylene copolymer commonly called impact polypropylene (IPP). Composites made of IPP reinforced with glass fibers (GF) are particularly attractive to the automotive industry due to their low cost and good impact resistance. In such composites, the cooling rate varies depending on processing techniques and manufacturing choices. Here, we study the effects of the cooling rate of GF-IPP composites on shear behavior, which is critical in impact applications, using [±45]s monotonic and cyclic (load/unload) tensile specimens. The specimens were manufactured under a wide range of cooling rates (3 °C/min, 22 °C/min, 500–1000 °C/min). Mainly dominated by the properties of the matrix, the global shear behavior of GF-IPP composites differed considerably with respect to the cooling rate. However, the performance of the fiber-matrix interface (chemically modified) appeared to be unaffected by the range of cooling rates used in this study. We found that the cooling rate has a minor effect on the rate of damage accumulation, while it strongly modifies the shear-activated rate-dependant viscoelastic behavior. © 2016 Elsevier Ltd

  7. Experiments in a flighted conveyor comparing shear rates in compressed versus free surface flows

    Science.gov (United States)

    Pohlman, Nicholas; Higgins, Hannah; Krupiarz, Kamila; O'Connor, Ryan

    2017-11-01

    Uniformity of granular flow rate is critical in industry. Experiments in a flighted conveyor system aim to fill a gap in knowledge of achieving steady mass flow rate by correlating velocity profile data with mass flow rate measurements. High speed images were collected for uniformly-shaped particles in a bottom-driven flow conveyor belt system from which the velocity profiles can be generated. The correlation of mass flow rates from the velocity profiles to the time-dependent mass measurements will determine energy dissipation rates as a function of operating conditions. The velocity profiles as a function of the size of the particles, speed of the belt, and outlet size, will be compared to shear rate relationships found in past experiments that focused on gravity-driven systems. The dimension of the linear shear and type of decaying transition to the stationary bed may appear different due to the compression versus dilation space in open flows. The application of this research can serve to validate simulations in discrete element modeling and physically demonstrate a process that can be further developed and customized for industry applications, such as feeding a biomass conversion reactor. Sponsored by NIU's Office of Student Engagement and Experiential Learning.

  8. Effect of tip clearance on wall shear stress of an axial LVAD

    Science.gov (United States)

    Sarath, S.; Vikas, R.

    2017-09-01

    Wall shear stress is a crucial parameter used for blood damage analysis, and typically a value of 400 Pa is set as a limit. Tip clearance is a major factor contributing to hemolysis and pump efficiency. In this study, different tip gap configurations are used to analyse the wall shear stress developed on the blade surface of a constant thickness blade design, and a varying thickness blade design using CFD analysis. It was found that, for a particular geometry, as the clearance gap reduces, flow rate over the high wall shear stress area decreases even though the high wall shear stress span is found to extend. For each design, the optimum clearance gap is iteratively attained, keeping the maximum WSS as a limiting factor. Thus a better pump designs is obtained, whose leakage flow patterns are lower than that of the initial design, hence also leading to higher pump efficiency.

  9. Exercise-induced maximum metabolic rate scaled to body mass by ...

    African Journals Online (AJOL)

    user

    2016-10-27

    Oct 27, 2016 ... maximum aerobic metabolic rate (MMR) is proportional to the fractal extent ... metabolic rate with body mass can be obtained by taking body .... blood takes place. ..... MMR and BMR is that MMR is owing mainly to respiration in skeletal .... the spectra of surface area scaling strategies of cells and organisms:.

  10. Material model for shear of the buffer - evaluation of laboratory test results

    International Nuclear Information System (INIS)

    Boergesson, Lennart; Dueck, Ann; Johannesson, Lars-Erik

    2010-12-01

    The report describes the material model of bentonite used for analysing a rock shear through a deposition hole. The old model used in SR-Can has been considerably changed. The new reference model that has been developed for SR-Site is described and motivated. The relevant properties of the buffer that affect the response to a rock shear are (in addition to the bentonite type) the density (which yields a swelling pressure), the shear strength, the stiffness before the maximum shear stress is reached and the shear rate, which also affects the shear strength. Since the shear caused by an earthquake is very fast and the hydraulic conductivity of the bentonite is very low there is no possibility for the pore water in the water saturated bentonite to be redistributed. Since the compressibility of water and particles are negligible, the bentonite can be modelled as a solid material that cannot change volume but only exhibit shear deformations. A proper and simple model that behaves accordingly is a model with von Mises' stress modelled as a function of the strain (stress-strain model). The model is elastic-plastic with an E-modulus that determines the behaviour until the material starts yielding whereupon the plastic strain is modelled as a function of von Mises' stress and added to the elastic strain. Included in the model is also a strain rate dependency of the stress-strain relation, which ranges between the strain rates 10 -6 1/s 3 1/s. The reference material model is derived from a large number of laboratory tests made on different bentonites at different strain rates, densities and with different techniques. Since it cannot be excluded that the exchangeable cat-ions in the Na-bentonite MX-80 is exchanged to calcium-ions the Ca-bentonite Deponit CaN is proposed to be used as reference material. The overall conclusion is that a relevant and probably also slightly conservative material model of Ca-converted MX-80 is derived, presented and well motivated

  11. In-shoe plantar tri-axial stress profiles during maximum-effort cutting maneuvers.

    Science.gov (United States)

    Cong, Yan; Lam, Wing Kai; Cheung, Jason Tak-Man; Zhang, Ming

    2014-12-18

    Soft tissue injuries, such as anterior cruciate ligament rupture, ankle sprain and foot skin problems, frequently occur during cutting maneuvers. These injuries are often regarded as associated with abnormal joint torque and interfacial friction caused by excessive external and in-shoe shear forces. This study simultaneously investigated the dynamic in-shoe localized plantar pressure and shear stress during lateral shuffling and 45° sidestep cutting maneuvers. Tri-axial force transducers were affixed at the first and second metatarsal heads, lateral forefoot, and heel regions in the midsole of a basketball shoe. Seventeen basketball players executed both cutting maneuvers with maximum efforts. Lateral shuffling cutting had a larger mediolateral braking force than 45° sidestep cutting. This large braking force was concentrated at the first metatarsal head, as indicated by its maximum medial shear stress (312.2 ± 157.0 kPa). During propulsion phase, peak shear stress occurred at the second metatarsal head (271.3 ± 124.3 kPa). Compared with lateral shuffling cutting, 45° sidestep cutting produced larger peak propulsion shear stress (463.0 ± 272.6 kPa) but smaller peak braking shear stress (184.8 ± 181.7 kPa), of which both were found at the first metatarsal head. During both cutting maneuvers, maximum medial and posterior shear stress occurred at the first metatarsal head, whereas maximum pressure occurred at the second metatarsal head. The first and second metatarsal heads sustained relatively high pressure and shear stress and were expected to be susceptible to plantar tissue discomfort or injury. Due to different stress distribution, distinct pressure and shear cushioning mechanisms in basketball footwear might be considered over different foot regions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The effects of buoyancy on shear-induced melt bands in a compacting porous medium

    Science.gov (United States)

    Butler, S. L.

    2009-03-01

    It has recently been shown [Holtzman, B., Groebner, N., Zimmerman, M., Ginsberg, S., Kohlstedt, D., 2003. Stress-driven melt segregation in partially molten rocks. Geochem. Geophys. Geosyst. 4, Art. No. 8607; Holtzman, B.K., Kohlstedt, D.L., 2007. Stress-driven melt segregation and strain partitioning in partially molten rocks: effects of stress and strain. J. Petrol. 48, 2379-2406] that when partially molten rock is subjected to simple shear, bands of high and low porosity are formed at a particular angle to the direction of instantaneous maximum extension. These have been modeled numerically and it has been speculated that high porosity bands may form an interconnected network with a bulk, effective permeability that is enhanced in a direction parallel to the bands. As a result, the bands may act to focus mantle melt towards the axis of mid-ocean ridges [Katz, R.F., Spiegelman, M., Holtzman, B., 2006. The dynamics of melt and shear localization in partially molten aggregates. Nature 442, 676-679]. In this contribution, we examine the combined effects of buoyancy and matrix shear on a deforming porous layer. The linear theory of Spiegelman [Spiegelman, M., 1993. Flow in deformable porous media. Part 1. Simple analysis. J. Fluid Mech. 247, 17-38; Spiegelman, M., 2003. Linear analysis of melt band formation by simple shear. Geochem. Geophys. Geosyst. 4, doi:10.1029/2002GC000499, Article 8615] and Katz et al. [Katz, R.F., Spiegelman, M., Holtzman, B., 2006. The dynamics of melt and shear localization in partially molten aggregates. Nature 442, 676-679] is generalized to include both the effects of buoyancy and matrix shear on a deformable porous layer with strain-rate dependent rheology. The predictions of linear theory are compared with the early time evolution of our 2D numerical model and they are found to be in excellent agreement. For conditions similar to the upper mantle, buoyancy forces can be similar to or much greater than matrix shear-induced forces. The

  13. Flow behavior at different shear rates for dry powders

    NARCIS (Netherlands)

    Singh, A.; Singh, A.; Luding, Stefan; Nürnberg Messe GmbH,

    2010-01-01

    Using Discrete Element Simulations (DEM), an effort is made to study the so called “Split bottom ring shear cell” where a slow, quasi-static deformation leads to wide shear bands. Density, velocity and deformation gradients as well as structure and stress tensors, can be computed by a single

  14. Augmentative effect of pulsatility on the wall shear stress in tube flow.

    Science.gov (United States)

    Nakata, M; Tatsumi, E; Tsukiya, T; Taenaka, Y; Nishimura, T; Nishinaka, T; Takano, H; Masuzawa, T; Ohba, K

    1999-08-01

    Wall shear stress (WSS) has been considered to play an important role in the physiological and metabolic functions of the vascular endothelial cells. We investigated the effects of the pulse rate and the maximum flow rate on the WSS to clarify the influence of pulsatility. Water was perfused in a 1/2 inch transparent straight cylinder with a nonpulsatile centrifugal pump and a pulsatile pneumatic ventricular assist device (VAD). In nonpulsatile flow (NF), the flow rate was changed 1 to 6 L/min by 1 L/min increments to obtain standard values of WSS at each flow rate. In pulsatile flow (PF), the pulse rate was controlled at 40, 60, and 80 bpm, and the maximum flow rate was varied from 3.3 to 12.0 L/min while the mean flow rate was kept at 3 L/min. The WSS was estimated from the velocity profile at measuring points using the laser illuminated fluorescence method. In NF, the WSS was 12.0 dyne/cm2 at 3 L/min and 33.0 dyne/cm2 at 6 L/min. In PF, the pulse rate change with the same mean, and the maximum flow rate did not affect WSS. On the other hand, the increase in the maximum flow rate at the constant mean flow rate of 3 L/min augmented the mean WSS from 13.1 to 32.9 dyne/cm2. We concluded that the maximum flow rate exerted a substantial augmentative effect on WSS, and the maximum flow rate was a dominant factor of pulsatility in this effect.

  15. The effect of shear flow and the density gradient on the Weibel instability growth rate in the dense plasma

    Science.gov (United States)

    Amininasab, S.; Sadighi-Bonabi, R.; Khodadadi Azadboni, F.

    2018-02-01

    Shear stress effect has been often neglected in calculation of the Weibel instability growth rate in laser-plasma interactions. In the present work, the role of the shear stress in the Weibel instability growth rate in the dense plasma with density gradient is explored. By increasing the density gradient, the shear stress threshold is increasing and the range of the propagation angles of growing modes is limited. Therefore, by increasing steps of the density gradient plasma near the relativistic electron beam-emitting region, the Weibel instability occurs at a higher stress flow. Calculations show that the minimum value of the stress rate threshold for linear polarization is greater than that of circular polarization. The Wiebel instability growth rate for linear polarization is 18.3 times circular polarization. One sees that for increasing stress and density gradient effects, there are smaller maximal growth rates for the range of the propagation angles of growing modes /π 2 propagation angles of growing modes /π 2 < θ m i n < π and /3 π 2 < θ m i n < 2 π in circular polarized plasma.

  16. Estimation of maximum credible atmospheric radioactivity concentrations and dose rates from nuclear tests

    International Nuclear Information System (INIS)

    Telegadas, K.

    1979-01-01

    A simple technique is presented for estimating maximum credible gross beta air concentrations from nuclear detonations in the atmosphere, based on aircraft sampling of radioactivity following each Chinese nuclear test from 1964 to 1976. The calculated concentration is a function of the total yield and fission yield, initial vertical radioactivity distribution, time after detonation, and rate of horizontal spread of the debris with time. calculated maximum credible concentrations are compared with the highest concentrations measured during aircraft sampling. The technique provides a reasonable estimate of maximum air concentrations from 1 to 10 days after a detonation. An estimate of the whole-body external gamma dose rate corresponding to the maximum credible gross beta concentration is also given. (author)

  17. Wind speed and direction shears with associated vertical motion during strong surface winds

    Science.gov (United States)

    Alexander, M. B.; Camp, D. W.

    1984-01-01

    Strong surface winds recorded at the NASA 150-Meter Ground Winds Tower facility at Kennedy Space Center, Florida, are analyzed to present occurrences representative of wind shear and vertical motion known to be hazardous to the ascent and descent of conventional aircraft and the Space Shuttle. Graphical (percentage frequency distributions) and mathematical (maximum, mean, standard deviation) descriptions of wind speed and direction shears and associated updrafts and downdrafts are included as functions of six vertical layers and one horizontal distance for twenty 5-second intervals of parameters sampled simultaneously at the rate of ten per second during a period of high surface winds.

  18. Maximum production rate optimization for sulphuric acid decomposition process in tubular plug-flow reactor

    International Nuclear Information System (INIS)

    Wang, Chao; Chen, Lingen; Xia, Shaojun; Sun, Fengrui

    2016-01-01

    A sulphuric acid decomposition process in a tubular plug-flow reactor with fixed inlet flow rate and completely controllable exterior wall temperature profile and reactants pressure profile is studied in this paper by using finite-time thermodynamics. The maximum production rate of the aimed product SO 2 and the optimal exterior wall temperature profile and reactants pressure profile are obtained by using nonlinear programming method. Then the optimal reactor with the maximum production rate is compared with the reference reactor with linear exterior wall temperature profile and the optimal reactor with minimum entropy generation rate. The result shows that the production rate of SO 2 of optimal reactor with the maximum production rate has an increase of more than 7%. The optimization of temperature profile has little influence on the production rate while the optimization of reactants pressure profile can significantly increase the production rate. The results obtained may provide some guidelines for the design of real tubular reactors. - Highlights: • Sulphuric acid decomposition process in tubular plug-flow reactor is studied. • Fixed inlet flow rate and controllable temperature and pressure profiles are set. • Maximum production rate of aimed product SO 2 is obtained. • Corresponding optimal temperature and pressure profiles are derived. • Production rate of SO 2 of optimal reactor increases by 7%.

  19. Study on the shear transfer of reinforced concrete at elevated temperature

    International Nuclear Information System (INIS)

    Ishida, Hiroaki; Kanazu, Tsutomu

    1989-01-01

    Reinforced concrete structures in nuclear power stations, such as a containment vessel and structural members supporting a reactor vessel, are designed assuming that they may be subjected to elevated temperature. In the design code, it is specified that the temperature of concrete must not exceed the limitation, and thermal effect shall be taken into account. In this study, the shearing test using Mattock type specimens was performed to investigate into the shear behavior of the reinforced concrete subjected to elevated temperature. The test parameters studied in this program were the reinforcement ratio in a shear plane, the compressive stress normal to a shear plane and temperature. The maximum shearing load of the specimens heated to 200 degC was about 10-20 % lower than that at normal temperature, but nearly equal to that of the specimens heated to 100 degC. The equation for evaluating the shearing strength ratio was proposed. The cracking width and slip at maximum shearing load increased as temperature rose. Up to 200 degC, the same relation existed between interface shear transfer rigidity and cracking width. (K.I.)

  20. A dilatometer to measure the influence of cooling rate and melt shearing on specific volume

    NARCIS (Netherlands)

    van der Beek, M.H.E.; Peters, G.W.M.; Meijer, H.E.H.

    2005-01-01

    We developed a dilatometer to investigate the specific volume of polymers as a function of pressure (to 100 MPa), temperature (to 260 oC), cooling rate (to 80 C/s), and shear rate (to 77 1/s). The dilatometeris based on the principle of con¯ned compression and comprises of a pressure cell used in

  1. Turbulence suppression by E x B shear in JET optimized shear pulses

    International Nuclear Information System (INIS)

    Beer, M.A.; Budny, R.V.; Challis, C.D.; Conway, G.

    2000-01-01

    The authors calculate microinstability growth rates in JET optimized shear plasmas with a comprehensive gyrofluid model, including sheared E x B flows, trapped electrons, and all dominant ion species in realistic magnetic geometry. They find good correlation between E x B shear suppression of microinstabilities and both the formation and collapse of the internal transport barrier

  2. Shear-wave elastography and immunohistochemical profiles in invasive breast cancer: Evaluation of maximum and mean elasticity values

    Energy Technology Data Exchange (ETDEWEB)

    Ganau, Sergi, E-mail: sganau@tauli.cat [Women' s Imaging Department, UDIAT-Centre Diagnòstic, Institut Universitari Parc Taulí – UAB, Parc Taulí, 1, 08205 Sabadell, Barcelona (Spain); Andreu, Francisco Javier, E-mail: xandreu@tauli.cat [Pathology Department, UDIAT-Centre Diagnòstic, Institut Universitari Parc Taulí – UAB, Parc Taulí, 1, 08205 Sabadell, Barcelona (Spain); Escribano, Fernanda, E-mail: fescribano@tauli.cat [Women' s Imaging Department, UDIAT-Centre Diagnòstic, Institut Universitari Parc Taulí – UAB, Parc Taulí, 1, 08205 Sabadell, Barcelona (Spain); Martín, Amaya, E-mail: amartino@tauli.cat [Women' s Imaging Department, UDIAT-Centre Diagnòstic, Institut Universitari Parc Taulí – UAB, Parc Taulí, 1, 08205 Sabadell, Barcelona (Spain); Tortajada, Lidia, E-mail: ltortajada@tauli.cat [Women' s Imaging Department, UDIAT-Centre Diagnòstic, Institut Universitari Parc Taulí – UAB, Parc Taulí, 1, 08205 Sabadell, Barcelona (Spain); Villajos, Maite, E-mail: mvillajos@tauli.cat [Women' s Imaging Department, UDIAT-Centre Diagnòstic, Institut Universitari Parc Taulí – UAB, Parc Taulí, 1, 08205 Sabadell, Barcelona (Spain); and others

    2015-04-15

    Highlights: •Shear wave elastography provides a quantitative assessment of the hardness of breast lesions. •The hardness of breast lesions correlates with lesion size: larger lesions are harder than smaller ones. •Histologic type and grade do not correlate clearly with elastography parameters. •HER2, luminal B HER2+, and triple-negative tumors have lower maximum hardness and mean hardness than other tumor types. •Half the tumors classified as BI-RADS 3 were luminal A and half were HER2. -- Abstract: Purpose: To evaluate the correlations of maximum stiffness (Emax) and mean stiffness (Emean) of invasive carcinomas on shear-wave elastography (SWE) with St. Gallen consensus tumor phenotypes. Methods: We used an ultrasound system with SWE capabilities to prospectively study 190 women with 216 histologically confirmed invasive breast cancers. We obtained one elastogram for each lesion. We correlated Emax and Emean with tumor size, histologic type and grade, estrogen and progesterone receptors, HER2 expression, the Ki67 proliferation index, and the five St. Gallen molecular subtypes: luminal A, luminal B without HER2 overexpression (luminal B HER2−), luminal B with HER2 overexpression (luminal B HER2+), HER2, and triple negative. Results: Lesions larger than 20 mm had significantly higher Emax (148.04 kPa) and Emean (118.32 kPa) (P = 0.005) than smaller lesions. We found no statistically significant correlations between elasticity parameters and histologic type and grade or molecular subtypes, although tumors with HER2 overexpression regardless whether they expressed hormone receptors (luminal B HER2+ and HER2 phenotypes) and triple-negative tumors had lower Emax and Emean than the others. We assessed the B-mode ultrasound findings of the lesions with some of the Emax or Emean values less than or equal to 80 kPa; only four of these had ultrasound findings suggestive of a benign lesion (two with luminal A phenotype and two with HER2 phenotype). Conclusions: We

  3. Shear-wave elastography and immunohistochemical profiles in invasive breast cancer: Evaluation of maximum and mean elasticity values

    International Nuclear Information System (INIS)

    Ganau, Sergi; Andreu, Francisco Javier; Escribano, Fernanda; Martín, Amaya; Tortajada, Lidia; Villajos, Maite

    2015-01-01

    Highlights: •Shear wave elastography provides a quantitative assessment of the hardness of breast lesions. •The hardness of breast lesions correlates with lesion size: larger lesions are harder than smaller ones. •Histologic type and grade do not correlate clearly with elastography parameters. •HER2, luminal B HER2+, and triple-negative tumors have lower maximum hardness and mean hardness than other tumor types. •Half the tumors classified as BI-RADS 3 were luminal A and half were HER2. -- Abstract: Purpose: To evaluate the correlations of maximum stiffness (Emax) and mean stiffness (Emean) of invasive carcinomas on shear-wave elastography (SWE) with St. Gallen consensus tumor phenotypes. Methods: We used an ultrasound system with SWE capabilities to prospectively study 190 women with 216 histologically confirmed invasive breast cancers. We obtained one elastogram for each lesion. We correlated Emax and Emean with tumor size, histologic type and grade, estrogen and progesterone receptors, HER2 expression, the Ki67 proliferation index, and the five St. Gallen molecular subtypes: luminal A, luminal B without HER2 overexpression (luminal B HER2−), luminal B with HER2 overexpression (luminal B HER2+), HER2, and triple negative. Results: Lesions larger than 20 mm had significantly higher Emax (148.04 kPa) and Emean (118.32 kPa) (P = 0.005) than smaller lesions. We found no statistically significant correlations between elasticity parameters and histologic type and grade or molecular subtypes, although tumors with HER2 overexpression regardless whether they expressed hormone receptors (luminal B HER2+ and HER2 phenotypes) and triple-negative tumors had lower Emax and Emean than the others. We assessed the B-mode ultrasound findings of the lesions with some of the Emax or Emean values less than or equal to 80 kPa; only four of these had ultrasound findings suggestive of a benign lesion (two with luminal A phenotype and two with HER2 phenotype). Conclusions: We

  4. Maximum discharge rate of liquid-vapor mixtures from vessels

    International Nuclear Information System (INIS)

    Moody, F.J.

    1975-09-01

    A discrepancy exists in theoretical predictions of the two-phase equilibrium discharge rate from pipes attached to vessels. Theory which predicts critical flow data in terms of pipe exit pressure and quality severely overpredicts flow rates in terms of vessel fluid properties. This study shows that the discrepancy is explained by the flow pattern. Due to decompression and flashing as fluid accelerates into the pipe entrance, the maximum discharge rate from a vessel is limited by choking of a homogeneous bubbly mixture. The mixture tends toward a slip flow pattern as it travels through the pipe, finally reaching a different choked condition at the pipe exit

  5. Line Crack Subject to Antiplane Shear.

    Science.gov (United States)

    1978-07-01

    shear is obtained for the initiation of fracture. If the concept of the surface tension is usedone is able to calculate the cohesive stress for brittle ...Expression of the Griffith -racture criterion for brittle fracture. We have arrived at this result via the maximum shear-stress hypothesis, rather than...Crescent Beach Road, Glen Cove Prof. G.S. Heller Long Island, New York 11542 Division of Engineering Brown University Prof. Daniel

  6. On the equivalence between the minimum entropy generation rate and the maximum conversion rate for a reactive system

    International Nuclear Information System (INIS)

    Bispo, Heleno; Silva, Nilton; Brito, Romildo; Manzi, João

    2013-01-01

    Highlights: • Minimum entropy generation (MEG) principle improved the reaction performance. • MEG rate and the maximum conversion equivalence have been analyzed. • Temperature and residence time are used to the domain establishment of MEG. • Satisfying the temperature and residence time relationship results a optimal performance. - Abstract: The analysis of the equivalence between the minimum entropy generation (MEG) rate and the maximum conversion rate for a reactive system is the main purpose of this paper. While being used as a strategy of optimization, the minimum entropy production was applied to the production of propylene glycol in a Continuous Stirred-Tank Reactor (CSTR) with a view to determining the best operating conditions, and under such conditions, a high conversion rate was found. The effects of the key variables and restrictions on the validity domain of MEG were investigated, which raises issues that are included within a broad discussion. The results from simulations indicate that from the chemical reaction standpoint a maximum conversion rate can be considered as equivalent to MEG. Such a result can be clearly explained by examining the classical Maxwell–Boltzmann distribution, where the molecules of the reactive system under the condition of the MEG rate present a distribution of energy with reduced dispersion resulting in a better quality of collision between molecules with a higher conversion rate

  7. Study of shear thickening behavior in colloidal suspensions

    Directory of Open Access Journals (Sweden)

    N Maleki Jirsaraee

    2015-01-01

    Full Text Available We studied the shear thickening behavior of the nano silica suspension (silica nanoparticles 12 nm in size suspended in ethylene glycol under steady shear. The critical shear rate for transition into shear thickening phase was determined at different concentrations and temperatures. The effect of temperature and concentration was studied on the shear thickening behavior. In silica suspension, it was observed that all the samples had a transition into shear thickening phase and also by increasing the temperature, critical shear rate increased and viscosity decreased. Our observations showed that movement in silica suspension was Brownian and temperature could cause a delay in transition into shear thickening phase. Yet, we observed that increasing the concentration would decrease critical shear rate and increase viscosity. Increasing temperature increased Brownian forces and increasing concentration increased hydrodynamic forces, confirming the contrast between these two forces for transition into shear thickening phase for the suspensions containing nano particles

  8. Slip rate of the Calico fault: Implications for geologic versus geodetic rate discrepancy in the Eastern California Shear Zone

    Science.gov (United States)

    Oskin, Michael; Perg, Lesley; Blumentritt, Dylan; Mukhopadhyay, Sujoy; Iriondo, Alexander

    2007-03-01

    Long-term (105 years) fault slip rates test the scale of discrepancy between infrequent paleoseismicity and relatively rapid geodetic rates of dextral shear in the Eastern California Shear Zone (ECSZ). The Calico fault is one of a family of dextral faults that traverse the Mojave Desert portion of the ECSZ. Its slip rate is determined from matching and dating incised Pleistocene alluvial fan deposits and surfaces displaced by fault slip. A high-resolution topographic base acquired via airborne laser swath mapping aids in identification and mapping of deformed geomorphic features. The oldest geomorphically preserved alluvial fan, unit B, is displaced 900 ± 200 m from its source at Sheep Springs Wash in the northern Rodman Mountains. This fan deposit contains the first preserved occurrence of basalt clasts derived from the Pipkin lava field and overlies Quaternary conglomerate deposits lacking these clasts. The 40Ar/39Ar dating of two flows from this field yields consistent ages of 770 ± 40 ka and 735 ± 9 ka. An age of 650 ± 100 ka is assigned to this fan deposit based on these ages and on the oldest cosmogenic 3He exposure date of 653 ± 20 ka on a basalt boulder from the surface of unit B. This assigned age and offset together yield a mid-Pleistocene to present average slip rate of 1.4 ± 0.4 mm/yr. A younger fan surface, unit K, records 100 ± 10 m of dextral displacement and preserves original depositional morphology of its surface. Granitic boulders and pavement samples from this surface yield an average age of 56.4 ± 7.7 ka after taking into account minimal cosmogenic inheritance of granitic clasts. The displaced and dated K fans yield a slip rate of 1.8 ± 0.3 mm/yr. Distributed deformation of the region surrounding the fault trace, if active, could increase the overall displacement rate to 2.1 ± 0.5 mm/yr. Acceleration of slip rate from an average of 1.4 mm/yr prior to ˜50 ka to 1.8 mm/yr since ˜50 ka is possible, though a single time-averaged slip

  9. Non-homogeneous flow profiles in sheared bacterial suspensions

    Science.gov (United States)

    Samanta, Devranjan; Cheng, Xiang

    Bacterial suspensions under shear exhibit interesting rheological behaviors including the remarkable ``superfluidic'' state with vanishing viscosity at low shear rates. Theoretical studies have shown that such ``superfluidic'' state is linked with non-homogeneous shear flows, which are induced by coupling between nematic order of active fluids and hydrodynamics of shear flows. However, although bulk rheology of bacterial suspensions has been experimentally studied, shear profiles within bacterial suspensions have not been explored so far. Here, we experimentally investigate the flow behaviors of E. coli suspensions under planar oscillatory shear. Using confocal microscopy and PIV, we measure velocity profiles across gap between two shear plates. We find that with increasing shear rates, high-concentration bacterial suspensions exhibit an array of non-homogeneous flow behaviors like yield-stress flows and shear banding. We show that these non-homogeneous flows are due to collective motion of bacterial suspensions. The phase diagram of sheared bacterial suspensions is systematically mapped as functions of shear rates an bacterial concentrations. Our experiments provide new insights into rheology of bacterial suspensions and shed light on shear induced dynamics of active fluids. Chemical Engineering and Material Science department.

  10. Experimental study of the vortex-induced vibration of drilling risers under the shear flow with the same shear parameter at the different Reynolds numbers.

    Science.gov (United States)

    Liangjie, Mao; Qingyou, Liu; Shouwei, Zhou

    2014-01-01

    A considerable number of studies for VIV under the uniform flow have been performed. However, research on VIV under shear flow is scarce. An experiment for VIV under the shear flow with the same shear parameter at the two different Reynolds numbers was conducted in a deep-water offshore basin. Various measurements were obtained by the fiber bragg grating strain sensors. Experimental data were analyzed by modal analysis method. Results show several valuable features. First, the corresponding maximum order mode of the natural frequency for shedding frequency is the maximum dominant vibration mode and multi-modal phenomenon is appeared in VIV under the shear flow, and multi-modal phenomenon is more apparent at the same shear parameter with an increasing Reynolds number under the shear flow effect. Secondly, the riser vibrates at the natural frequency and the dominant vibration frequency increases for the effect of the real-time tension amplitude under the shear flow and the IL vibration frequency is the similar with the CF vibration frequency at the Reynolds number of 1105 in our experimental condition and the IL dominant frequency is twice the CF dominant frequency with an increasing Reynolds number. In addition, the displacement trajectories at the different locations of the riser appear the same shape and the shape is changed at the same shear parameter with an increasing Reynolds number under the shear flow. The diagonal displacement trajectories are observed at the low Reynolds number and the crescent-shaped displacement trajectories appear with an increasing Reynolds number under shear flow in the experiment.

  11. Experimental study of the vortex-induced vibration of drilling risers under the shear flow with the same shear parameter at the different Reynolds numbers.

    Directory of Open Access Journals (Sweden)

    Mao Liangjie

    Full Text Available A considerable number of studies for VIV under the uniform flow have been performed. However, research on VIV under shear flow is scarce. An experiment for VIV under the shear flow with the same shear parameter at the two different Reynolds numbers was conducted in a deep-water offshore basin. Various measurements were obtained by the fiber bragg grating strain sensors. Experimental data were analyzed by modal analysis method. Results show several valuable features. First, the corresponding maximum order mode of the natural frequency for shedding frequency is the maximum dominant vibration mode and multi-modal phenomenon is appeared in VIV under the shear flow, and multi-modal phenomenon is more apparent at the same shear parameter with an increasing Reynolds number under the shear flow effect. Secondly, the riser vibrates at the natural frequency and the dominant vibration frequency increases for the effect of the real-time tension amplitude under the shear flow and the IL vibration frequency is the similar with the CF vibration frequency at the Reynolds number of 1105 in our experimental condition and the IL dominant frequency is twice the CF dominant frequency with an increasing Reynolds number. In addition, the displacement trajectories at the different locations of the riser appear the same shape and the shape is changed at the same shear parameter with an increasing Reynolds number under the shear flow. The diagonal displacement trajectories are observed at the low Reynolds number and the crescent-shaped displacement trajectories appear with an increasing Reynolds number under shear flow in the experiment.

  12. Behavior of Tilted Angle Shear Connectors

    Science.gov (United States)

    Khorramian, Koosha; Maleki, Shervin; Shariati, Mahdi; Ramli Sulong, N. H.

    2015-01-01

    According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type. PMID:26642193

  13. Behavior of Tilted Angle Shear Connectors.

    Directory of Open Access Journals (Sweden)

    Koosha Khorramian

    Full Text Available According to recent researches, angle shear connectors are appropriate to transfer longitudinal shear forces across the steel-concrete interface. Angle steel profile has been used in different positions as L-shaped or C-shaped shear connectors. The application of angle shear connectors in tilted positions is of interest in this study. This study investigates the behaviour of tilted-shaped angle shear connectors under monotonic loading using experimental push out tests. Eight push-out specimens are tested to investigate the effects of different angle parameters on the ultimate load capacity of connectors. Two different tilted angles of 112.5 and 135 degrees between the angle leg and steel beam are considered. In addition, angle sizes and lengths are varied. Two different failure modes were observed consisting of concrete crushing-splitting and connector fracture. By increasing the size of connector, the maximum load increased for most cases. In general, the 135 degrees tilted angle shear connectors have a higher strength and stiffness than the 112.5 degrees type.

  14. Fumigant dosages below maximum label rate control some soilborne pathogens

    Directory of Open Access Journals (Sweden)

    Shachaf Triky-Dotan

    2016-08-01

    Full Text Available The activity of commercial soil fumigants on some key soilborne pathogens was assessed in sandy loam soil under controlled conditions. Seven soil fumigants that are registered in California or are being or have been considered for registration were used in this study: dimethyl disulfide (DMDS mixed with chloropicrin (Pic (79% DMDS and 21% Pic, Tri-Con (50% methyl bromide and 50% Pic, Midas Gold (33% methyl iodide [MI] and 67% Pic, Midas Bronze (50% MI and 50% Pic, Midas (MI, active ingredient [a.i.] 97.8%, Pic (a.i. 99% trichloronitromethane and Pic-Clor 60 (57% Pic and 37% 1,3-dichloropropene [1–3,D]. Dose-response models were calculated for pathogen mortality after 24 hours of exposure to fumigants. Overall, the tested fumigants achieved good efficacy with dosages below the maximum label rate against the tested pathogens. In this study, Pythium ultimum and citrus nematode were sensitive to all the fumigants and Verticillium dahliae was resistant. For most fumigants, California regulations restrict application rates to less than the maximum (federal label rate, meaning that it is possible that the fumigants may not control major plant pathogens. This research provides information on the effectiveness of these alternatives at these lower application rates. The results from this study will help growers optimize application rates for registered fumigants (such as Pic and 1,3-D and will help accelerate the adoption of new fumigants (such as DMDS if they are registered in California.

  15. [The maximum heart rate in the exercise test: the 220-age formula or Sheffield's table?].

    Science.gov (United States)

    Mesquita, A; Trabulo, M; Mendes, M; Viana, J F; Seabra-Gomes, R

    1996-02-01

    To determine in the maximum cardiac rate in exercise test of apparently healthy individuals may be more properly estimated through 220-age formula (Astrand) or the Sheffield table. Retrospective analysis of clinical history and exercises test of apparently healthy individuals submitted to cardiac check-up. Sequential sampling of 170 healthy individuals submitted to cardiac check-up between April 1988 and September 1992. Comparison of maximum cardiac rate of individuals studied by the protocols of Bruce and modified Bruce, in interrupted exercise test by fatigue, and with the estimated values by the formulae: 220-age versus Sheffield table. The maximum cardiac heart rate is similar with both protocols. This parameter in normal individuals is better predicted by the 220-age formula. The theoretic maximum cardiac heart rate determined by 220-age formula should be recommended for a healthy, and for this reason the Sheffield table has been excluded from our clinical practice.

  16. High shear stress relates to intraplaque haemorrhage in asymptomatic carotid plaques

    DEFF Research Database (Denmark)

    Tuenter, A.; Selwaness, M.; Arias Lorza, A.

    2016-01-01

    estimating equations analysis, adjusting for age, sex and carotid wall thickness. RESULTS: The study group consisted of 93 atherosclerotic carotid arteries of 74 participants. In plaques with higher maximum shear stresses, IPH was more often present (OR per unit increase in maximum shear stress (log......BACKGROUND AND AIMS: Carotid artery plaques with vulnerable plaque components are related to a higher risk of cerebrovascular accidents. It is unknown which factors drive vulnerable plaque development. Shear stress, the frictional force of blood at the vessel wall, is known to influence plaque...... formation. We evaluated the association between shear stress and plaque components (intraplaque haemorrhage (IPH), lipid rich necrotic core (LRNC) and/or calcifications) in relatively small carotid artery plaques in asymptomatic persons. METHODS: Participants (n = 74) from the population-based Rotterdam...

  17. Fast maximum likelihood estimation of mutation rates using a birth-death process.

    Science.gov (United States)

    Wu, Xiaowei; Zhu, Hongxiao

    2015-02-07

    Since fluctuation analysis was first introduced by Luria and Delbrück in 1943, it has been widely used to make inference about spontaneous mutation rates in cultured cells. Under certain model assumptions, the probability distribution of the number of mutants that appear in a fluctuation experiment can be derived explicitly, which provides the basis of mutation rate estimation. It has been shown that, among various existing estimators, the maximum likelihood estimator usually demonstrates some desirable properties such as consistency and lower mean squared error. However, its application in real experimental data is often hindered by slow computation of likelihood due to the recursive form of the mutant-count distribution. We propose a fast maximum likelihood estimator of mutation rates, MLE-BD, based on a birth-death process model with non-differential growth assumption. Simulation studies demonstrate that, compared with the conventional maximum likelihood estimator derived from the Luria-Delbrück distribution, MLE-BD achieves substantial improvement on computational speed and is applicable to arbitrarily large number of mutants. In addition, it still retains good accuracy on point estimation. Published by Elsevier Ltd.

  18. 13 CFR 107.845 - Maximum rate of amortization on Loans and Debt Securities.

    Science.gov (United States)

    2010-01-01

    ... ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES Financing of Small Businesses by Licensees Structuring Licensee's Financing of An Eligible Small Business: Terms and Conditions of Financing § 107.845 Maximum... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Maximum rate of amortization on...

  19. Shear Elasticity and Shear Viscosity Imaging in Soft Tissue

    Science.gov (United States)

    Yang, Yiqun

    In this thesis, a new approach is introduced that provides estimates of shear elasticity and shear viscosity using time-domain measurements of shear waves in viscoelastic media. Simulations of shear wave particle displacements induced by an acoustic radiation force are accelerated significantly by a GPU. The acoustic radiation force is first calculated using the fast near field method (FNM) and the angular spectrum approach (ASA). The shear waves induced by the acoustic radiation force are then simulated in elastic and viscoelastic media using Green's functions. A parallel algorithm is developed to perform these calculations on a GPU, where the shear wave particle displacements at different observation points are calculated in parallel. The resulting speed increase enables rapid evaluation of shear waves at discrete points, in 2D planes, and for push beams with different spatial samplings and for different values of the f-number (f/#). The results of these simulations show that push beams with smaller f/# require a higher spatial sampling rate. The significant amount of acceleration achieved by this approach suggests that shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs. Shear wave elasticity imaging determines the mechanical parameters of soft tissue by analyzing measured shear waves induced by an acoustic radiation force. To estimate the shear elasticity value, the widely used time-of-flight method calculates the correlation between shear wave particle velocities at adjacent lateral observation points. Although this method provides accurate estimates of the shear elasticity in purely elastic media, our experience suggests that the time-of-flight (TOF) method consistently overestimates the shear elasticity values in viscoelastic media because the combined effects of diffraction, attenuation, and dispersion are not considered. To address this problem, we have developed an approach that directly accounts for all

  20. Relationship between the shear viscosity and heating rate in metallic glasses below the glass transition

    International Nuclear Information System (INIS)

    Khonik, Vitaly A.; Kobelev, N. P.

    2008-01-01

    It has been shown that first-order irreversible structural relaxation with distributed activation energies must lead to a linear decrease of the logarithm of Newtonian shear viscosity with the logarithm of heating rate upon linear heating of glass. Such a behavior is indeed observed in the experiments on metallic glasses. Structural relaxation-induced viscous flow leads to infra-low-frequency Maxwell viscoelastic internal friction, which is predicted to increase with the heating rate

  1. Naesliden Project: direct shear tests of filled and unfilled joints

    Energy Technology Data Exchange (ETDEWEB)

    Ludvig, B.

    1980-05-15

    Joints from the Naesliden mine have been tested in a small field shear box and in a large shear rig. The large shear rig is described in detail, and its ability to test joints with an area of 600 mc/sup 2/ at a maximum normal stress of up to 20 MPa is emphasized. The stiffness and shear strength of the discontinuities in the Naesliden mine is presented. The values estimated at direct shear tests are compared with results from in situ measurements and tests on drillcores. The results show that the in situ measurements give lower values for the shear resistance than the direct shear tests. Estimation of the normal stiffness for joints in drill cores gave much higher stiffness than the estimations in the shear rig.

  2. Methodological aspects of crossover and maximum fat-oxidation rate point determination.

    Science.gov (United States)

    Michallet, A-S; Tonini, J; Regnier, J; Guinot, M; Favre-Juvin, A; Bricout, V; Halimi, S; Wuyam, B; Flore, P

    2008-11-01

    Indirect calorimetry during exercise provides two metabolic indices of substrate oxidation balance: the crossover point (COP) and maximum fat oxidation rate (LIPOXmax). We aimed to study the effects of the analytical device, protocol type and ventilatory response on variability of these indices, and the relationship with lactate and ventilation thresholds. After maximum exercise testing, 14 relatively fit subjects (aged 32+/-10 years; nine men, five women) performed three submaximum graded tests: one was based on a theoretical maximum power (tMAP) reference; and two were based on the true maximum aerobic power (MAP). Gas exchange was measured concomitantly using a Douglas bag (D) and an ergospirometer (E). All metabolic indices were interpretable only when obtained by the D reference method and MAP protocol. Bland and Altman analysis showed overestimation of both indices with E versus D. Despite no mean differences between COP and LIPOXmax whether tMAP or MAP was used, the individual data clearly showed disagreement between the two protocols. Ventilation explained 10-16% of the metabolic index variations. COP was correlated with ventilation (r=0.96, P<0.01) and the rate of increase in blood lactate (r=0.79, P<0.01), and LIPOXmax correlated with the ventilation threshold (r=0.95, P<0.01). This study shows that, in fit healthy subjects, the analytical device, reference used to build the protocol and ventilation responses affect metabolic indices. In this population, and particularly to obtain interpretable metabolic indices, we recommend a protocol based on the true MAP or one adapted to include the transition from fat to carbohydrate. The correlation between metabolic indices and lactate/ventilation thresholds suggests that shorter, classical maximum progressive exercise testing may be an alternative means of estimating these indices in relatively fit subjects. However, this needs to be confirmed in patients who have metabolic defects.

  3. Disentangling the effects of alternation rate and maximum run length on judgments of randomness

    Directory of Open Access Journals (Sweden)

    Sabine G. Scholl

    2011-08-01

    Full Text Available Binary sequences are characterized by various features. Two of these characteristics---alternation rate and run length---have repeatedly been shown to influence judgments of randomness. The two characteristics, however, have usually been investigated separately, without controlling for the other feature. Because the two features are correlated but not identical, it seems critical to analyze their unique impact, as well as their interaction, so as to understand more clearly what influences judgments of randomness. To this end, two experiments on the perception of binary sequences orthogonally manipulated alternation rate and maximum run length (i.e., length of the longest run within the sequence. Results show that alternation rate consistently exerts a unique effect on judgments of randomness, but that the effect of alternation rate is contingent on the length of the longest run within the sequence. The effect of maximum run length was found to be small and less consistent. Together, these findings extend prior randomness research by integrating literature from the realms of perception, categorization, and prediction, as well as by showing the unique and joint effects of alternation rate and maximum run length on judgments of randomness.

  4. Length and activation dependent variations in muscle shear wave speed

    International Nuclear Information System (INIS)

    Chernak, L A; DeWall, R J; Lee, K S; Thelen, D G

    2013-01-01

    Muscle stiffness is known to vary as a result of a variety of disease states, yet current clinical methods for quantifying muscle stiffness have limitations including cost and availability. We investigated the capability of shear wave elastography (SWE) to measure variations in gastrocnemius shear wave speed induced via active contraction and passive stretch. Ten healthy young adults were tested. Shear wave speeds were measured using a SWE transducer positioned over the medial gastrocnemius at ankle angles ranging from maximum dorsiflexion to maximum plantarflexion. Shear wave speeds were also measured during voluntary plantarflexor contractions at a fixed ankle angle. Average shear wave speed increased significantly from 2.6 to 5.6 m s –1 with passive dorsiflexion and the knee in an extended posture, but did not vary with dorsiflexion when the gastrocnemius was shortened in a flexed knee posture. During active contractions, shear wave speed monotonically varied with the net ankle moment generated, reaching 8.3 m s –1 in the maximally contracted condition. There was a linear correlation between shear wave speed and net ankle moment in both the active and passive conditions; however, the slope of this linear relationship was significantly steeper for the data collected during passive loading conditions. The results show that SWE is a promising approach for quantitatively assessing changes in mechanical muscle loading. However, the differential effect of active and passive loading on shear wave speed makes it important to carefully consider the relevant loading conditions in which to use SWE to characterize in vivo muscle properties. (paper)

  5. 19 CFR 212.07 - Rulemaking on maximum rates for attorney fees.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Rulemaking on maximum rates for attorney fees. 212.07 Section 212.07 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE IMPLEMENTATION OF THE EQUAL ACCESS TO JUSTICE ACT General Provisions...

  6. The role of flow shear in the ballooning stability of tokamak transport barriers

    International Nuclear Information System (INIS)

    Webster, A.J.; Wilson, H.R.; Scaife, A.M.M.

    2004-01-01

    A tokamak's economic performance is strongly affected by the plasma pressure that it may sustain, which in turn is limited by the maximum pressure gradients that may be supported. Ballooning modes are typically driven unstable by increasing the pressure gradient, and because they can radially extend across many rational surfaces, they can seriously reduce a plasma's energy confinement. Here an eigenmode formulation is used to study the stability of ballooning modes in internal transport barriers ('ITBs'), in which very strong pressure gradients and flow shears may be found. This extends previous studies that used an 'eikonal' formulation, as it enables the study of: ballooning modes with a finite toroidal mode-number n (finite wavelength perpendicular to the magnetic field), to find new solution branches, to obtain the eigenmode structures, and to investigate the effects of a radially varying equilibrium. The structure of a finite n ballooning mode in flow shear is found to be significantly affected by a radially varying equilibrium, and at low flow shears the growth rates are increased above those of modes studied in the limit of n→∞. The different solution branches can couple as the flow shear is increased, leading to a pair of asymmetric mode structures with complex conjugate growth rates. These effects are shown to be a consequence of the mode trying to localize at the most unstable radial location, and its desire to rotate with the flow. In addition, closer to marginal stability a sufficiently strong flow-shear can (at least for some cases), destabilize a previously stable mode

  7. Effect of nitrogen concentration and temperature on the critical resolved shear stress and strain rate sensitivity of vanadium

    International Nuclear Information System (INIS)

    Rehbein, D.K.

    1980-08-01

    The critical resolved shear stress and strain rate sensitivity were measured over the temperature range from 77 to 400 0 K for vanadium-nitrogen alloys containing from 0.0004 to 0.184 atom percent nitrogen. These properties were found to be strongly dependent on both the nitrogen concentration and temperature. The following observations were seen in this investigation: the overall behavior of the alloys for the temperature and concentration range studied follows a form similar to that predicted; the concentration dependence of the critical resolved shear stress after subtracting the hardening due to the pure vanadium lattice obeys Labusch's c/sup 2/3/ relationship above 200 0 K and Fleischer's c/sup 1/2/ relationship below 200 0 K; the theoretical predictions of Fleischer's model for the temperature dependence of the critical resolved shear stress are in marked disagreement with the behavior found; and the strain rate sensitivity, par. delta tau/par. deltaln γ, exhibits a peak at approximately 100 0 K that decreases in height as the nitrogen concentration increases. A similar peak has been observed in niobium by other investigators but the effect of concentration on the peak height is quite different

  8. Low reproducibility of maximum urinary flow rate determined by portable flowmetry

    NARCIS (Netherlands)

    Sonke, G. S.; Kiemeney, L. A.; Verbeek, A. L.; Kortmann, B. B.; Debruyne, F. M.; de la Rosette, J. J.

    1999-01-01

    To evaluate the reproducibility in maximum urinary flow rate (Qmax) in men with lower urinary tract symptoms (LUTSs) and to determine the number of flows needed to obtain a specified reliability in mean Qmax, 212 patients with LUTSs (mean age, 62 years) referred to the University Hospital Nijmegen,

  9. Pulsatility Index as a Diagnostic Parameter of Reciprocating Wall Shear Stress Parameters in Physiological Pulsating Waveforms.

    Directory of Open Access Journals (Sweden)

    Idit Avrahami

    Full Text Available Arterial wall shear stress (WSS parameters are widely used for prediction of the initiation and development of atherosclerosis and arterial pathologies. Traditional clinical evaluation of arterial condition relies on correlations of WSS parameters with average flow rate (Q and heart rate (HR measurements. We show that for pulsating flow waveforms in a straight tube with flow reversals that lead to significant reciprocating WSS, the measurements of HR and Q are not sufficient for prediction of WSS parameters. Therefore, we suggest adding a third quantity-known as the pulsatility index (PI-which is defined as the peak-to-peak flow rate amplitude normalized by Q. We examine several pulsating flow waveforms with and without flow reversals using a simulation of a Womersley model in a straight rigid tube and validate the simulations through experimental study using particle image velocimetry (PIV. The results indicate that clinically relevant WSS parameters such as the percentage of negative WSS (P[%], oscillating shear index (OSI and the ratio of minimum to maximum shear stress rates (min/max, are better predicted when the PI is used in conjunction with HR and Q. Therefore, we propose to use PI as an additional and essential diagnostic quantity for improved predictability of the reciprocating WSS.

  10. Simulation of shear thickening in attractive colloidal suspensions.

    Science.gov (United States)

    Pednekar, Sidhant; Chun, Jaehun; Morris, Jeffrey F

    2017-03-01

    The influence of attractive forces between particles under conditions of large particle volume fraction, ϕ, is addressed using numerical simulations which account for hydrodynamic, Brownian, conservative and frictional contact forces. The focus is on conditions for which a significant increase in the apparent viscosity at small shear rates, and possibly the development of a yield stress, is observed. The high shear rate behavior for Brownian suspensions has been shown in recent work [R. Mari, R. Seto, J. F. Morris and M. M. Denn PNAS, 2015, 112, 15326-15330] to be captured by the inclusion of pairwise forces of two forms, one a contact frictional interaction and the second a repulsive force often found in stabilized colloidal dispersions. Under such conditions, shear thickening is observed when shear stress is comparable to the sum of the Brownian stress, kT/a 3 , and a characteristic stress based on the combination of interparticle force, i.e. σ ∼ F 0 /a 2 with kT the thermal energy, F 0 the repulsive force scale and a the particle radius. At sufficiently large ϕ, this shear thickening can be very abrupt. Here it is shown that when attractive interactions are present with the noted forces, the shear thickening is obscured, as the viscosity shear thins with increasing shear rate, eventually descending from an infinite value (yield stress conditions) to a plateau at large stress; this plateau is at the same level as the large-shear rate viscosity found in the shear thickened state without attractive forces. It is shown that this behavior is consistent with prior observations in shear thickening suspensions modified to be attractive through depletion flocculation [V. Gopalakrishnan and C. F. Zukoski J. Rheol., 2004, 48, 1321-1344]. The contributions of the contact, attractive, and hydrodynamics forces to the bulk stress are presented, as are the contact networks found at different attractive strengths.

  11. Effect of microstructure on the nucleation and initiation of adiabatic shear bands (ASBs) during impact

    Energy Technology Data Exchange (ETDEWEB)

    Boakye Yiadom, Solomon, E-mail: boakyeys@cc.umanitoba.ca; Khaliq Khan, Abdul, E-mail: abdulkhaliq.khan@umanitoba.ca; Bassim, Nabil, E-mail: nabil.bassim@ad.umanitoba.ca

    2014-10-06

    While instability may occur homogenously during plastic deformation, the formation of adiabatic shear band (ASBs) does not follow a homogenous instability during impact. Geometrical stress concentration sites and/or microstructural inhomogeneities result in the nucleation and initiation of shear strain localization. In this study, initial microstructural inhomogeneity was found to produce nucleation sites for the initiation of ASBs. It was observed that double misfit interfaces and boundary layers with random arrangement of atomic columns are formed around precipitated carbides and they increase the volume fraction of dislocation sources within the specimens. The AISI 4340 steel specimens which were tempered at the lowest temperature had smaller precipitated carbides with high aspect ratios densely distributed within the matrix and were easily susceptible to the formation of ASBs. As the tempering temperature increased, the relative sizes of the carbides increased with a corresponding reduction in their aspect ratios and their distribution density within the matrix and thus were more resistant to the formation of ASBs. In this study, it is demonstrated that the intersection of an activated dislocation source with the direction of maximum shear (regions of stress concentrations) within the specimens during impact, is a necessary condition for the point of intersection to act as a possible site for the nucleation of ASBs, depending on the rate of dislocation generation, local strain and strain rate. At a constant carbide volume fraction, the higher susceptibility of the tempered specimens to the initiation of ASBs is attributed to the volume fraction of the points of intersection between activated dislocation sources and direction of maximum shear during impact. Additionally, the smaller carbides, with their higher aspect ratios and distribution densities, accentuate the effect of strain gradients and the microstructural inhomogeneities associated with the tempered

  12. Evaluation of shear mounted elastomeric damper

    Science.gov (United States)

    Zorzi, E.; Walton, J.

    1982-01-01

    Viton-70 elastomeric shear mounted damper was built and tested on a T-55 power turbine spool in the rotor's high speed balancing rig. This application of a shear mounted elastomeric damper demonstrated for the first time, the feasibility of using elastomers as the primary rotor damping source in production turbine engine hardware. The shear damper design was selected because it was compatible with actual gas turbine engine radial space constraints, could accommodate both the radial and axial thrust loads present in gas turbine engines, and was capable of controlled axial preload. The shear damper was interchangeable with the production T-55 power turbine roller bearing support so that a direct comparison between the shear damper and the production support structure could be made. Test results show that the Viton-70 elastomer damper operated successfully and provided excellent control of both synchronous and nonsynchronous vibrations through all phases of testing up to the maximum rotor speed of 16,000 rpm. Excellent correlation between the predicted and experienced critical speeds, mode shapes and log decrements for the power turbine rotor and elastomer damper assembly was also achieved.

  13. Finite element approximation of flow of fluids with shear-rate- and pressure-dependent viscosity

    Czech Academy of Sciences Publication Activity Database

    Hirn, A.; Lanzendörfer, Martin; Stebel, Jan

    2012-01-01

    Roč. 32, č. 4 (2012), s. 1604-1634 ISSN 0272-4979 R&D Projects: GA ČR GA201/09/0917; GA AV ČR IAA100300802; GA MŠk LC06052 Institutional research plan: CEZ:AV0Z10300504; CEZ:AV0Z10190503 Keywords : non-Newtonian fluid * shear-rate- and pressure-dependent viscosity * finite element method * error analysis Subject RIV: BK - Fluid Dynamics Impact factor: 1.326, year: 2012

  14. Time-dependent behavior of rough discontinuities under shearing conditions

    Science.gov (United States)

    Wang, Zhen; Shen, Mingrong; Ding, Wenqi; Jang, Boan; Zhang, Qingzhao

    2018-02-01

    The mechanical properties of rocks are generally controlled by their discontinuities. In this study, the time-dependent behavior of rough artificial joints under shearing conditions was investigated. Based on Barton’s standard profile lines, samples with artificial joint surfaces were prepared and used to conduct the shear and creep tests. The test results showed that the shear strength of discontinuity was linearly related to roughness, and subsequently an empirical equation was established. The long-term strength of discontinuity can be identified using the inflection point of the isocreep-rate curve, and it was linearly related to roughness. Furthermore, the ratio of long-term and instantaneous strength decreased with the increase of roughness. The shear-stiffness coefficient increased with the increase of shear rate, and the influence of shear rate on the shear stiffness coefficient decreased with the decrease of roughness. Further study of the mechanism revealed that these results could be attributed to the different time-dependent behavior of intact and joint rocks.

  15. The development of a tensile-shear punch correlation for yield properties of model austenitic alloys

    Energy Technology Data Exchange (ETDEWEB)

    Hankin, G.L.; Faulkner, R.G. [Loughborough Univ. (United Kingdom); Hamilton, M.L.; Garner, F.A. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-08-01

    The effective shear yield and maximum strengths of a set of neutron-irradiated, isotopically tailored austentic alloys were evaluated using the shear punch test. The dependence on composition and neutron dose showed the same trends as were observed in the corresponding miniature tensile specimen study conducted earlier. A single tensile-shear punch correlation was developed for the three alloys in which the maximum shear stress or Tresca criterion was successfully applied to predict the slope. The correlation will predict the tensile yield strength of the three different austenitic alloys tested to within {+-}53 MPa. The accuracy of the correlation improves with increasing material strength, to within {+-} MPa for predicting tensile yield strengths in the range of 400-800 MPa.

  16. Microstructural characteristics of adiabatic shear localization in a metastable beta titanium alloy deformed at high strain rate and elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Hongyi, E-mail: h.zhan@uq.edu.au [Centre for Advanced Materials Processing and Manufacture, School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Queensland 4072 (Australia); Zeng, Weidong [State Key Laboratory of Solidification Processing, School of Materials, Northwestern Polytechnical University, Xi' an 710072 (China); Wang, Gui [Centre for Advanced Materials Processing and Manufacture, School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Queensland 4072 (Australia); Defence Material Technology Centre, Level 2, 24 Wakefield St, Hawthorn, VIC 3122 (Australia); Kent, Damon [School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4575 (Australia); Dargusch, Matthew [Centre for Advanced Materials Processing and Manufacture, School of Mechanical and Mining Engineering, The University of Queensland, St Lucia, Queensland 4072 (Australia); Defence Material Technology Centre, Level 2, 24 Wakefield St, Hawthorn, VIC 3122 (Australia)

    2015-04-15

    The microstructural evolution and grain refinement within adiabatic shear bands in the Ti6554 alloy deformed at high strain rates and elevated temperatures have been characterized using transmission electron microscopy. No stress drops were observed in the corresponding stress–strain curve, indicating that the initiation of adiabatic shear bands does not lead to the loss of load capacity for the Ti6554 alloy. The outer region of the shear bands mainly consists of cell structures bounded by dislocation clusters. Equiaxed subgrains in the core area of the shear band can be evolved from the subdivision of cell structures or reconstruction and transverse segmentation of dislocation clusters. It is proposed that dislocation activity dominates the grain refinement process. The rotational recrystallization mechanism may operate as the kinetic requirements for it are fulfilled. The coexistence of different substructures across the shear bands implies that the microstructural evolution inside the shear bands is not homogeneous and different grain refinement mechanisms may operate simultaneously to refine the structure. - Graphical abstract: Display Omitted - Highlights: • The microstructure within the adiabatic shear band was characterized by TEM. • No stress drops were observed in the corresponding stress–strain curve. • Dislocation activity dominated the grain refinement process. • The kinetic requirements for rotational recrystallization mechanism were fulfilled. • Different grain refinement mechanisms operated simultaneously to refine the structure.

  17. Hydrodynamical fluctuations in smooth shear flows

    International Nuclear Information System (INIS)

    Chagelishvili, G.D.; Khujadze, G.R.; Lominadze, J.G.

    1999-11-01

    Background of hydrodynamical fluctuations in a intrinsically/stochastically forced, laminar, uniform shear flow is studied. The employment of so-called nonmodal mathematical analysis makes it possible to represent the background of fluctuations in a new light and to get more insight into the physics of its formation. The basic physical processes responsible for the formation of vortex and acoustic wave fluctuation backgrounds are analyzed. Interplay of the processes at low and moderate shear rates is described. Three-dimensional vortex fluctuations around a given macroscopic state are numerically calculated. The correlation functions of the fluctuations of physical quantities are analyzed. It is shown that there exists subspace D k in the wave-number space (k-space) that is limited externally by spherical surface with radius k ν ≡ A/ν (where A is the velocity shear parameter, ν - the kinematic viscosity) in the nonequilibrium open system under study. The spatial Fourier harmonics of vortex as well as acoustic wave fluctuations are strongly subjected by flow shear (by the open character of the system) at wave-numbers satisfying the condition k ν . Specifically it is shown that in D k : The fluctuations are non-Markovian; the spatial spectral density of energy of the vortex fluctuations by far exceeds the white-noise; the term of a new type associated to the hydrodynamical fluctuation of velocity appears in the correlation function of pressure; the fluctuation background of the acoustic waves is completely different at low and moderate shear rates (at low shear rates it is reduced in D k in comparison to the uniform (non-shear) flow; at moderate shear rates it it comparable to the background of the vortex fluctuations). The fluctuation background of both the vortex and the acoustic wave modes is anisotropic. The possible significance of the fluctuation background of vortices for the subcritical transition to turbulence and Brownian motion of small macroscopic

  18. Maximum inflation of the type 1 error rate when sample size and allocation rate are adapted in a pre-planned interim look.

    Science.gov (United States)

    Graf, Alexandra C; Bauer, Peter

    2011-06-30

    We calculate the maximum type 1 error rate of the pre-planned conventional fixed sample size test for comparing the means of independent normal distributions (with common known variance) which can be yielded when sample size and allocation rate to the treatment arms can be modified in an interim analysis. Thereby it is assumed that the experimenter fully exploits knowledge of the unblinded interim estimates of the treatment effects in order to maximize the conditional type 1 error rate. The 'worst-case' strategies require knowledge of the unknown common treatment effect under the null hypothesis. Although this is a rather hypothetical scenario it may be approached in practice when using a standard control treatment for which precise estimates are available from historical data. The maximum inflation of the type 1 error rate is substantially larger than derived by Proschan and Hunsberger (Biometrics 1995; 51:1315-1324) for design modifications applying balanced samples before and after the interim analysis. Corresponding upper limits for the maximum type 1 error rate are calculated for a number of situations arising from practical considerations (e.g. restricting the maximum sample size, not allowing sample size to decrease, allowing only increase in the sample size in the experimental treatment). The application is discussed for a motivating example. Copyright © 2011 John Wiley & Sons, Ltd.

  19. Modeling combined tension-shear failure of ductile materials

    International Nuclear Information System (INIS)

    Partom, Y

    2014-01-01

    Failure of ductile materials is usually expressed in terms of effective plastic strain. Ductile materials can fail by two different failure modes, shear failure and tensile failure. Under dynamic loading shear failure has to do with shear localization and formation of adiabatic shear bands. In these bands plastic strain rate is very high, dissipative heating is extensive, and shear strength is lost. Shear localization starts at a certain value of effective plastic strain, when thermal softening overcomes strain hardening. Shear failure is therefore represented in terms of effective plastic strain. On the other hand, tensile failure comes about by void growth under tension. For voids in a tension field there is a threshold state of the remote field for which voids grow spontaneously (cavitation), and the material there fails. Cavitation depends on the remote field stress components and on the flow stress. In this way failure in tension is related to shear strength and to failure in shear. Here we first evaluate the cavitation threshold for different remote field situations, using 2D numerical simulations with a hydro code. We then use the results to compute examples of rate dependent tension-shear failure of a ductile material.

  20. Gelation under shear

    Energy Technology Data Exchange (ETDEWEB)

    Butler, B.D.; Hanley, H.J.M.; Straty, G.C. [National Institute of Standards and Technology, Boulder, CO (United States); Muzny, C.D. [Univ. of Colorado, Boulder, CO (United States)

    1995-12-31

    An experimental small angle neutron scattering (SANS) study of dense silica gels, prepared from suspensions of 24 nm colloidal silica particles at several volume fractions {theta} is discussed. Provided that {theta}{approx_lt}0.18, the scattered intensity at small wave vectors q increases as the gelation proceeds, and the structure factor S(q, t {yields} {infinity}) of the gel exhibits apparent power law behavior. Power law behavior is also observed, even for samples with {theta}>0.18, when the gel is formed under an applied shear. Shear also enhances the diffraction maximum corresponding to the inter-particle contact distance of the gel. Difficulties encountered when trying to interpret SANS data from these dense systems are outlined. Results of computer simulations intended to mimic gel formation, including computations of S(q, t), are discussed. Comments on a method to extract a fractal dimension characterizing the gel are included.

  1. Focusing of Shear Shock Waves

    Science.gov (United States)

    Giammarinaro, Bruno; Espíndola, David; Coulouvrat, François; Pinton, Gianmarco

    2018-01-01

    Focusing is a ubiquitous way to transform waves. Recently, a new type of shock wave has been observed experimentally with high-frame-rate ultrasound: shear shock waves in soft solids. These strongly nonlinear waves are characterized by a high Mach number, because the shear wave velocity is much slower, by 3 orders of magnitude, than the longitudinal wave velocity. Furthermore, these waves have a unique cubic nonlinearity which generates only odd harmonics. Unlike longitudinal waves for which only compressional shocks are possible, shear waves exhibit cubic nonlinearities which can generate positive and negative shocks. Here we present the experimental observation of shear shock wave focusing, generated by the vertical motion of a solid cylinder section embedded in a soft gelatin-graphite phantom to induce linearly vertically polarized motion. Raw ultrasound data from high-frame-rate (7692 images per second) acquisitions in combination with algorithms that are tuned to detect small displacements (approximately 1 μ m ) are used to generate quantitative movies of gel motion. The features of shear shock wave focusing are analyzed by comparing experimental observations with numerical simulations of a retarded-time elastodynamic equation with cubic nonlinearities and empirical attenuation laws for soft solids.

  2. Exponential Shear Flow of Linear, Entangled Polymeric Liquids

    DEFF Research Database (Denmark)

    Neergaard, Jesper; Park, Kyungho; Venerus, David C.

    2000-01-01

    A previously proposed reptation model is used to interpret exponential shear flow data taken on an entangled polystyrenesolution. Both shear and normal stress measurements are made during exponential shear using mechanical means. The model iscapable of explaining all trends seen in the data......, and suggests a novel analysis of the data. This analysis demonstrates thatexponential shearing flow is no more capable of stretching polymer chains than is inception of steady shear at comparableinstantaneous shear rates. In fact, all exponential shear flow stresses measured are bounded quantitatively...

  3. Confocal microscopy of colloidal dispersions in shear flow using a counter-rotating cone-plate shear cell

    International Nuclear Information System (INIS)

    Derks, Didi; Wisman, Hans; Blaaderen, Alfons van; Imhof, Arnout

    2004-01-01

    We report on novel possibilities for studying colloidal suspensions in a steady shear field in real space. Fluorescence confocal microscopy is combined with the use of a counter-rotating cone-plate shear cell. This allows imaging of individual particles in the bulk of a sheared suspension in a stationary plane. Moreover, this plane of zero velocity can be moved in the velocity gradient direction while keeping the shear rate constant. The colloidal system under study consists of rhodamine labelled PMMA spheres in a nearly density and refractive index matched mixture of cyclohexylbromide and cis-decalin. We show measured flow profiles in both the fluid and the crystalline phase and find indications for shear banding in the case of a sheared crystal. Furthermore, we show that, thanks to the counter-rotating principle of the cone-plate shear cell, a layer of particles in the bulk of a sheared crystalline suspension can be imaged for a prolonged time, with the result that their positions can be tracked

  4. Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length.

    Science.gov (United States)

    Rossi, Sergio; Deslauriers, Annie; Anfodillo, Tommaso; Morin, Hubert; Saracino, Antonio; Motta, Renzo; Borghetti, Marco

    2006-01-01

    Intra-annual radial growth rates and durations in trees are reported to differ greatly in relation to species, site and environmental conditions. However, very similar dynamics of cambial activity and wood formation are observed in temperate and boreal zones. Here, we compared weekly xylem cell production and variation in stem circumference in the main northern hemisphere conifer species (genera Picea, Pinus, Abies and Larix) from 1996 to 2003. Dynamics of radial growth were modeled with a Gompertz function, defining the upper asymptote (A), x-axis placement (beta) and rate of change (kappa). A strong linear relationship was found between the constants beta and kappa for both types of analysis. The slope of the linear regression, which corresponds to the time at which maximum growth rate occurred, appeared to converge towards the summer solstice. The maximum growth rate occurred around the time of maximum day length, and not during the warmest period of the year as previously suggested. The achievements of photoperiod could act as a growth constraint or a limit after which the rate of tree-ring formation tends to decrease, thus allowing plants to safely complete secondary cell wall lignification before winter.

  5. Apparatus for emulsion production in small scale and under controlled shear conditions

    DEFF Research Database (Denmark)

    Adler-Nissen, Jens; Mason, Sarah; Jacobsen, Charlotte

    2004-01-01

    In this article, a rotor-stator apparatus for the production of 5 g batches of emulsion is introduced. Special attention was paid to the design of the apparatus and its construction, ensuring close tolerances in all machined parts. The size of the dispersing gap was 500 µm. The need to prepare...... small quantities of homogeneous emulsion formulations containing costly ingredients formed the impetus for this work. We present a set of emulsion production experiments using a model mayonnaise recipe with a weight percentage of dispersed oil of 80%, and illustrate the effect of rotor speed...... on the average size and size distributions of the resulting oil droplets. These size distributions were within the same range as a commercial mayonnaise. The maximum shear rates and corresponding shear stresses existing in the apparatus at different rotational speeds were estimated. A stabilization time related...

  6. Maximum Acceptable Vibrato Excursion as a Function of Vibrato Rate in Musicians and Non-musicians

    DEFF Research Database (Denmark)

    Vatti, Marianna; Santurette, Sébastien; Pontoppidan, Niels H.

    2014-01-01

    and, in most listeners, exhibited a peak at medium vibrato rates (5–7 Hz). Large across-subject variability was observed, and no significant effect of musical experience was found. Overall, most listeners were not solely sensitive to the vibrato excursion and there was a listener-dependent rate...... for which larger vibrato excursions were favored. The observed interaction between maximum excursion thresholds and vibrato rate may be due to the listeners’ judgments relying on cues provided by the rate of frequency changes (RFC) rather than excursion per se. Further studies are needed to evaluate......Human vibrato is mainly characterized by two parameters: vibrato extent and vibrato rate. These parameters have been found to exhibit an interaction both in physical recordings of singers’ voices and in listener’s preference ratings. This study was concerned with the way in which the maximum...

  7. LASER: A Maximum Likelihood Toolkit for Detecting Temporal Shifts in Diversification Rates From Molecular Phylogenies

    Directory of Open Access Journals (Sweden)

    Daniel L. Rabosky

    2006-01-01

    Full Text Available Rates of species origination and extinction can vary over time during evolutionary radiations, and it is possible to reconstruct the history of diversification using molecular phylogenies of extant taxa only. Maximum likelihood methods provide a useful framework for inferring temporal variation in diversification rates. LASER is a package for the R programming environment that implements maximum likelihood methods based on the birth-death process to test whether diversification rates have changed over time. LASER contrasts the likelihood of phylogenetic data under models where diversification rates have changed over time to alternative models where rates have remained constant over time. Major strengths of the package include the ability to detect temporal increases in diversification rates and the inference of diversification parameters under multiple rate-variable models of diversification. The program and associated documentation are freely available from the R package archive at http://cran.r-project.org.

  8. Results of shear studies with 241-AY-101 sludge

    International Nuclear Information System (INIS)

    WARRANT, R.W.

    2001-01-01

    The Department of Energy's Tanks Focus Area (TFA) authorized a project to study the effect of shear on the settling properties of high-level waste sludge to support retrieval programs. A series of settling studies was conducted on a composite sample of tank 241-AY-101 (AY-101) material. Comparisons were made with duplicate samples that were sheared with a tissue homogenizer and allowed to settle. Aliquots of sheared and unsheared settled solids were submitted for chemical and radiological analyses. There are five major conclusions from the study that apply to AY-101 sludge: (1) Sludge settling rates are detectably decreased after shearing of particles by means of a tissue homogenizer. A significant decrease in the settling rates was measured after 2 minutes of shearing. A smaller additional decrease in the settling rates was observed after an additional 10 minutes of shearing. (2) Sodium and Cesium appear to be present in both the liquid and solid phases of the composite sample. (3) The shearing of the solids does not appear to significantly change the distribution of the radionuclides, ( 241 Am, 90 Sr, Total Alpha, or other radionuclides), within the solids. (4) The mean particle diameter decreases after shearing with the tissue homogenizer and affects the settling rate in proportion to the square of the particle diameter. (5) The sonication of the unsheared particles produces a similar particle size reduction to that of shearing with a tissue homogenizer. It is difficult to quantitatively compare the shear produced by a mixer pump installed in a double-shell tank with that produced by the tissue homogenizer in the laboratory. On a qualitative basis, the mixing pump would be expected to have less mechanical and more hydraulic shearing effect than the tissue homogenizer. Since the particle size distribution studies indicate that (for the AY-101 solids) the breaking up of particle aggregates is the main means of particle size reduction, then the hydraulic shearing

  9. The development of a tensile-shear punch correlation for yield properties of model austenitic alloys

    International Nuclear Information System (INIS)

    Hankin, G.L.; Faulkner, R.G.; Hamilton, M.L.; Garner, F.A.

    1997-01-01

    The effective shear yield and maximum strengths of a set of neutron-irradiated, isotopically tailored austentic alloys were evaluated using the shear punch test. The dependence on composition and neutron dose showed the same trends as were observed in the corresponding miniature tensile specimen study conducted earlier. A single tensile-shear punch correlation was developed for the three alloys in which the maximum shear stress or Tresca criterion was successfully applied to predict the slope. The correlation will predict the tensile yield strength of the three different austenitic alloys tested to within ±53 MPa. The accuracy of the correlation improves with increasing material strength, to within ± MPa for predicting tensile yield strengths in the range of 400-800 MPa

  10. Universal behaviour of silica suspensions gelled under shear

    International Nuclear Information System (INIS)

    Hanley, H J M; Muzny, C D; Bartlett, J; Drabarek, E

    2007-01-01

    The shear-influenced gelation of three aqueous suspensions consisting of silica particles of nominal diameter 7, 12 and 24 nm, respectively, is reported. It is shown that the viscosity/stress of a gelling system increases with time after gel initiation, reaches a maximum, then falls to a plateau value. A very simple relation between this maximum stress and the precursor volume fraction is verified experimentally

  11. The roles of electric field shear and Shafranov shift in sustaining high confinement in enhanced reversed shear plasmas on the TFTR tokamak

    International Nuclear Information System (INIS)

    Synakowski, E.J.; Beer, M.A.

    1997-02-01

    The relaxation of core transport barriers in TFTR Enhanced Reversed Shear plasmas has been studied by varying the radial electric field using different applied torques from neutral beam injection. Transport rates and fluctuations remain low over a wide range of radial electric field shear, but increase when the local E x B shearing rates are driven below a threshold comparable to the fastest linear growth rates of the dominant instabilities. Shafranov-shift-induced stabilization alone is not able to sustain enhanced confinement

  12. Flow and wall shear stress characterization after endovascular aneurysm repair and endovascular aneurysm sealing in an infrarenal aneurysm model.

    Science.gov (United States)

    Boersen, Johannes T; Groot Jebbink, Erik; Versluis, Michel; Slump, Cornelis H; Ku, David N; de Vries, Jean-Paul P M; Reijnen, Michel M P J

    2017-12-01

    Endovascular aneurysm repair (EVAR) with a modular endograft has become the preferred treatment for abdominal aortic aneurysms. A novel concept is endovascular aneurysm sealing (EVAS), consisting of dual endoframes surrounded by polymer-filled endobags. This dual-lumen configuration is different from a bifurcation with a tapered trajectory of the flow lumen into the two limbs and may induce unfavorable flow conditions. These include low and oscillatory wall shear stress (WSS), linked to atherosclerosis, and high shear rates that may result in thrombosis. An in vitro study was performed to assess the impact of EVAR and EVAS on flow patterns and WSS. Four abdominal aortic aneurysm phantoms were constructed, including three stented models, to study the influence of the flow divider on flow (Endurant [Medtronic, Minneapolis, Minn], AFX [Endologix, Irvine, Calif], and Nellix [Endologix]). Experimental models were tested under physiologic resting conditions, and flow was visualized with laser particle imaging velocimetry, quantified by shear rate, WSS, and oscillatory shear index (OSI) in the suprarenal aorta, renal artery (RA), and common iliac artery. WSS and OSI were comparable for all models in the suprarenal aorta. The RA flow profile in the EVAR models was comparable to the control, but a region of lower WSS was observed on the caudal wall compared with the control. The EVAS model showed a stronger jet flow with a higher shear rate in some regions compared with the other models. Small regions of low WSS and high OSI were found near the distal end of all stents in the common iliac artery compared with the control. Maximum shear rates in each region of interest were well below the pathologic threshold for acute thrombosis. The different stent designs do not influence suprarenal flow. Lower WSS is observed in the caudal wall of the RA after EVAR and a higher shear rate after EVAS. All stented models have a small region of low WSS and high OSI near the distal outflow

  13. Pulsatile blood flow, shear force, energy dissipation and Murray's Law

    Directory of Open Access Journals (Sweden)

    Bengtsson Hans-Uno

    2006-08-01

    Full Text Available Abstract Background Murray's Law states that, when a parent blood vessel branches into daughter vessels, the cube of the radius of the parent vessel is equal to the sum of the cubes of the radii of daughter blood vessels. Murray derived this law by defining a cost function that is the sum of the energy cost of the blood in a vessel and the energy cost of pumping blood through the vessel. The cost is minimized when vessel radii are consistent with Murray's Law. This law has also been derived from the hypothesis that the shear force of moving blood on the inner walls of vessels is constant throughout the vascular system. However, this derivation, like Murray's earlier derivation, is based on the assumption of constant blood flow. Methods To determine the implications of the constant shear force hypothesis and to extend Murray's energy cost minimization to the pulsatile arterial system, a model of pulsatile flow in an elastic tube is analyzed. A new and exact solution for flow velocity, blood flow rate and shear force is derived. Results For medium and small arteries with pulsatile flow, Murray's energy minimization leads to Murray's Law. Furthermore, the hypothesis that the maximum shear force during the cycle of pulsatile flow is constant throughout the arterial system implies that Murray's Law is approximately true. The approximation is good for all but the largest vessels (aorta and its major branches of the arterial system. Conclusion A cellular mechanism that senses shear force at the inner wall of a blood vessel and triggers remodeling that increases the circumference of the wall when a shear force threshold is exceeded would result in the observed scaling of vessel radii described by Murray's Law.

  14. Freezing of a colloidal liquid subject to shear flow

    International Nuclear Information System (INIS)

    Bagchi, B.; Thirumalai, D.

    1988-01-01

    A nonequilibrium generalization of the density-functional theory of freezing is proposed to investigate the shear-induced first-order phase transition in colloidal suspensions. It is assumed that the main effect of a steady shear is to break the symmetry of the structure factor of the liquid and that for small shear rate, the phenomenon of a shear-induced order-disorder transition may be viewed as an equilibrium phase transition. The theory predicts that the effective density at which freezing takes place increases with shear rate. The solid (which is assumed to be a bcc lattice) formed upon freezing is distorted and specifically there is less order in one plane compared with the order in the other two perpendicular planes. It is shown that there exists a critical shear rate above which the colloidal liquid does not undergo a transition to an ordered (or partially ordered) state no matter how large the density is. Conversely, above the critical shear rate an initially formed bcc solid always melts into an amorphous or liquidlike state. Several of these predictions are in qualitative agreement with the light-scattering experiments of Ackerson and Clark. The limitations as well as possible extensions of the theory are also discussed

  15. Focus: Nucleation kinetics of shear bands in metallic glass.

    Science.gov (United States)

    Wang, J Q; Perepezko, J H

    2016-12-07

    The development of shear bands is recognized as the primary mechanism in controlling the plastic deformability of metallic glasses. However, the kinetics of the nucleation of shear bands has received limited attention. The nucleation of shear bands in metallic glasses (MG) can be investigated using a nanoindentation method to monitor the development of the first pop-in event that is a signature of shear band nucleation. The analysis of a statistically significant number of first pop-in events demonstrates the stochastic behavior that is characteristic of nucleation and reveals a multimodal behavior associated with local spatial heterogeneities. The shear band nucleation rate of the two nucleation modes and the associated activation energy, activation volume, and site density were determined by loading rate experiments. The nucleation activation energy is very close to the value that is characteristic of the β relaxation in metallic glass. The identification of the rate controlling kinetics for shear band nucleation offers guidance for promoting plastic flow in metallic glass.

  16. Influences of Shear History and Infilling on the Mechanical Characteristics and Acoustic Emissions of Joints

    Science.gov (United States)

    Meng, Fanzhen; Zhou, Hui; Wang, Zaiquan; Zhang, Liming; Kong, Liang; Li, Shaojun; Zhang, Chuanqing

    2017-08-01

    Filled joints, which are characterized by high deformability and low shear strength, are among the most critical discontinuities in rock mass and may be sheared repeatedly when subject to cyclic loading. Shear tests were carried out on tension splitting joints, with soil and granular cement mortar particles used as infillings, and the effects of the shear history on the mechanical behavior and acoustic emission (AE) of clean and filled joints were studied. The maximum strength in the subsequent shears was approximately 60% of the peak strength of the first shear for a clean joint, and the friction angle degraded from 63° to 45° after the first shear. The maximum shear strength of the filled joints was lower than 35% of the peak strength of the clean joint under the same normal stress. The change in the shear strength of filled joints with the number of shearing cycles was closely related to the transformation of the shear medium. Rolling friction occurred and the shear strength was low for the granular particle-filled joint, but the strength was elevated when the particles were crushed and sliding friction occurred. The AEs were significantly reduced during the second shear for the clean joint, and the peak AEs were mainly obtained at or near the turning point of the shear stress curve for the filled joint. The AEs were the highest for the cement particle-filled joint and lowest for the dry soil-filled joint; when subjected to repeated shears, the AEs were more complex because of the continuous changes to the shear medium. The evolution of the AEs with the shear displacement can accurately reflect the shear failure mechanism during a single shear process.

  17. Evaluation of shear bond strength and shear stress on zirconia reinforced lithium silicate and high translucency zirconia.

    Directory of Open Access Journals (Sweden)

    Amanda Maria de Oliveira Dal Piva

    2018-01-01

    Full Text Available This study evaluated the shear stress distribution on the adhesive interface and the bond strength between resin cement and two ceramics. For finite element analysis (FEA, a tridimensional model was made using computer-aided design software. This model consisted of a ceramic slice (10x10x2mm partially embedded on acrylic resin with a resin cement cylinder (Ø=3.4 mm and h=3mm cemented on the external surface. Results of maximum principal stress and maximum principal shear were obtained to evaluate the stress generated on the ceramic and the cylinder surfaces. In order to reproduce the in vitro test, similar samples to the computational model were manufactured according to ceramic material (Zirconia reinforced lithium silicate - ZLS and high translucency Zirconia - YZHT, (N=48, n=12. Half of the specimens were submitted to shear bond test after 24h using a universal testing machine (0.5 mm/min, 50kgf until fracture. The other half was stored (a (180 days, water, 37ºC prior to the test. Bond strength was calculated in MPa and submitted to analysis of variance. The results showed that ceramic material influenced bond strength mean values (p=0.002, while aging did not: YZHT (19.80±6.44a, YZHTa (17.95±7.21a, ZLS (11.88±5.40b, ZLSa (11.76±3.32b. FEA results showed tensile and shear stress on ceramic and cylinder surfaces with more intensity on their periphery. Although the stress distribution was similar for both conditions, YZHT showed higher bond strength values; however, both materials seemed to promote durable bond strength.

  18. Maximum entropy production rate in quantum thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Beretta, Gian Paolo, E-mail: beretta@ing.unibs.i [Universita di Brescia, via Branze 38, 25123 Brescia (Italy)

    2010-06-01

    In the framework of the recent quest for well-behaved nonlinear extensions of the traditional Schroedinger-von Neumann unitary dynamics that could provide fundamental explanations of recent experimental evidence of loss of quantum coherence at the microscopic level, a recent paper [Gheorghiu-Svirschevski 2001 Phys. Rev. A 63 054102] reproposes the nonlinear equation of motion proposed by the present author [see Beretta G P 1987 Found. Phys. 17 365 and references therein] for quantum (thermo)dynamics of a single isolated indivisible constituent system, such as a single particle, qubit, qudit, spin or atomic system, or a Bose-Einstein or Fermi-Dirac field. As already proved, such nonlinear dynamics entails a fundamental unifying microscopic proof and extension of Onsager's reciprocity and Callen's fluctuation-dissipation relations to all nonequilibrium states, close and far from thermodynamic equilibrium. In this paper we propose a brief but self-contained review of the main results already proved, including the explicit geometrical construction of the equation of motion from the steepest-entropy-ascent ansatz and its exact mathematical and conceptual equivalence with the maximal-entropy-generation variational-principle formulation presented in Gheorghiu-Svirschevski S 2001 Phys. Rev. A 63 022105. Moreover, we show how it can be extended to the case of a composite system to obtain the general form of the equation of motion, consistent with the demanding requirements of strong separability and of compatibility with general thermodynamics principles. The irreversible term in the equation of motion describes the spontaneous attraction of the state operator in the direction of steepest entropy ascent, thus implementing the maximum entropy production principle in quantum theory. The time rate at which the path of steepest entropy ascent is followed has so far been left unspecified. As a step towards the identification of such rate, here we propose a possible

  19. Shear banding, discontinuous shear thickening, and rheological phase transitions in athermally sheared frictionless disks

    Science.gov (United States)

    Vâgberg, Daniel; Olsson, Peter; Teitel, S.

    2017-05-01

    We report on numerical simulations of simple models of athermal, bidisperse, soft-core, massive disks in two dimensions, as a function of packing fraction ϕ , inelasticity of collisions as measured by a parameter Q , and applied uniform shear strain rate γ ˙. Our particles have contact interactions consisting of normally directed elastic repulsion and viscous dissipation, as well as tangentially directed viscous dissipation, but no interparticle Coulombic friction. Mapping the phase diagram in the (ϕ ,Q ) plane for small γ ˙, we find a sharp first-order rheological phase transition from a region with Bagnoldian rheology to a region with Newtonian rheology, and show that the system is always Newtonian at jamming. We consider the rotational motion of particles and demonstrate the crucial importance that the coupling between rotational and translational degrees of freedom has on the phase structure at small Q (strongly inelastic collisions). At small Q , we show that, upon increasing γ ˙, the sharp Bagnoldian-to-Newtonian transition becomes a coexistence region of finite width in the (ϕ ,γ ˙) plane, with coexisting Bagnoldian and Newtonian shear bands. Crossing this coexistence region by increasing γ ˙ at fixed ϕ , we find that discontinuous shear thickening can result if γ ˙ is varied too rapidly for the system to relax to the shear-banded steady state corresponding to the instantaneous value of γ ˙.

  20. Stimulated bioluminescence by fluid shear stress associated with pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Cao Jing; Wang Jiangan; Wu Ronghua, E-mail: caojing981@126.com [Col. of Electronic Eng., Naval University of Engineering, Wuhan 430033 (China)

    2011-01-01

    Dinoflagellate can be stimulated bioluminescence by hydrodynamic agitation. Two typical dinoflagellate (Lingulodinium polyedrum and Pyrocystis noctiluca) was choosed to research stimulated bioluminescence. The bioluminescence intensity and shear stress intensity were measured using fully developed pipe flow. There is shear stress threshold to agitate organism bioluminescence. From these experiment, the response thresholds of the stimulated bioluminscence always occurred in laminar flows at a shear stress level of 0.6-3 dyn/cm{sup 2}. At the same time, the spectral characteristc of dinoflagellate was recorded, the wavelength of them is about 470nm, and the full width at half maximum is approximate 30nm.

  1. High shear microfluidics and its application in rheological measurement

    Science.gov (United States)

    Kang, Kai; Lee, L. James; Koelling, Kurt W.

    2005-02-01

    High shear rheology was explored experimentally in microchannels (150×150 μm). Two aqueous polymer solutions, polyethylene oxide (viscoelastic fluid) and hydroxyethyl cellulose (viscous fluid) were tested. Bagley correction was applied to remove the end effect. Wall slip was investigated with Mooney’s analysis. Shear rates as high as 106 s-1 were obtained in the pressure-driven microchannel flow, allowing a smooth extension of the low shear rheological data obtained from the conventional rheometers. At high shear rates, polymer degradation was observed for PEO solutions at a critical microchannel wall shear stress of 4.1×103 Pa. Stresses at the ends of the microchannel also contributed to PEO degradation significantly.

  2. Experimental Investigation of Adiabatic Shear Banding at Different Impact Velocities

    Science.gov (United States)

    1993-01-01

    plasticity and ASB’s is the Double-notch Shear specimen, it has been decided to use this concept in shear testing at medium and high strain rates...is the Double-notch Shear specimen. it has been decided to use this concept in shear testing at medium and high strain rates. Originally, Campbell...7] C. Fressengeas, Analyse dynamique 61asto-viscoplastique de l’h6tdrogdndit6 de la ddforma- tion plastique de cisalllement, Proc. Int. Conf. on

  3. Effect of temperature on the rheological properties with shear stress limit of iron oxide nanoparticle modified bentonite drilling muds

    Directory of Open Access Journals (Sweden)

    Ahmed S. Mohammed

    2017-09-01

    Full Text Available In this study, the effect of temperature on the rheological properties and weight loss of a water based bentonite drilling mud modified with iron oxide nanoparticle (nanoFe2O3 was investigated. The bentonite contents in the drilling muds were varied up to 6% by the weight of water and temperature was varied from 25 °C to 85 °C. The nanoFe2O3 content was varied between 0 and 1% by the weight of the drilling mud to modify the rheological properties of the drilling mud. The nanoFe2O3 and bentonite clay were characterized using the X-ray diffraction analysis (XRD and thermal gravimetric analysis (TGA. In the TGA study, the total weight loss at 800 °C for the bentonite decreased from 13% to 1.16%, a 91% reduction when the bentonite clay was mixed with 1% of nanoFe2O3. The results also showed that 1% of nanoFe2O3 increased the rheological properties of the drilling mud. The nanoFe2O3 modification increased the yield stress (τo and plastic viscosity (PV by 45–200% and 20–105% respectively based on the bentonite content and temperature of the drilling mud. The shear thinning behavior of the bentonite drilling mud with and without nanoFe2O3 has been quantified using the hyperbolic model and compared with three parameters Herschel–Bulkley model. The results showed that the hyperbolic model predicted the shear thinning relationship between the shear stress and shear strain rate of the nanoFe2O3 modified bentonite drilling mud very well. Also the hyperbolic model has a maximum shear stress limit whereas the Herschel–Bulkley model did not have a limit on the maximum shear stress. Based on the hyperbolic model the maximum shear stress for the 2%, 4% and 6% bentonite drilling muds without nanoFe2O3 at room temperature were 25 Pa, 35 Pa and 51 Pa respectively. The maximum shear stress for the 2%, 4% and 6% bentonite drilling muds modified with 1% nanoFe2O3 at 25 °C were 59 Pa, 84 Pa and 140 Pa respectively, hence an increase of 135–175

  4. Effect of shear rate on aggregate size and structure in the process of aggregation and at steady state

    Czech Academy of Sciences Publication Activity Database

    Bubáková, Petra; Pivokonský, Martin; Filip, Petr

    2013-01-01

    Roč. 235, February (2013), s. 540-549 ISSN 0032-5910 R&D Projects: GA ČR GAP105/11/0247 Institutional support: RVO:67985874 Keywords : aggregation * aggregate size * fractal dimension * shear rate * steady state * time evolution Subject RIV: BK - Fluid Dynamics Impact factor: 2.269, year: 2013

  5. Discrete element simulation studies of angles of repose and shear flow of wet, flexible fibers.

    Science.gov (United States)

    Guo, Y; Wassgren, C; Ketterhagen, W; Hancock, B; Curtis, J

    2018-04-18

    A discrete element method (DEM) model is developed to simulate the dynamics of wet, flexible fibers. The angles of repose of dry and wet fibers are simulated, and the simulation results are in good agreement with experimental results, validating the wet, flexible fiber model. To study wet fiber flow behavior, the model is used to simulate shear flows of wet fibers in a periodic domain under Lees-Edwards boundary conditions. Significant agglomeration is observed in dilute shear flows of wet fibers. The size of the largest agglomerate in the flow is found to depend on a Bond number, which is proportional to liquid surface tension and inversely proportional to the square of the shear strain rate. This Bond number reflects the relative importance of the liquid-bridge force to the particle's inertial force, with a larger Bond number leading to a larger agglomerate. As the fiber aspect ratio (AR) increases, the size of the largest agglomerate increases, while the coordination number in the largest agglomerate initially decreases and then increases when the AR is greater than four. A larger agglomerate with a larger coordination number is more likely to form for more flexible fibers with a smaller bond elastic modulus due to better connectivity between the more flexible fibers. Liquid viscous force resists pulling of liquid bridges and separation of contacting fibers, and therefore it facilitates larger agglomerate formation. The effect of liquid viscous force is more significant at larger shear strain rates. The solid-phase shear stress is increased due to the presence of liquid bridges in moderately dense flows. As the solid volume fraction increases, the effect of fiber-fiber friction coefficient increases sharply. When the solid volume fraction approaches the maximum packing density, the fiber-fiber friction coefficient can be a more dominant factor than the liquid bridge force in determining the solid-phase shear stress.

  6. Shear induced structures in crystallizing cocoa butter

    Science.gov (United States)

    Mazzanti, Gianfranco; Guthrie, Sarah E.; Sirota, Eric B.; Marangoni, Alejandro G.; Idziak, Stefan H. J.

    2004-03-01

    Cocoa butter is the main structural component of chocolate and many cosmetics. It crystallizes in several polymorphs, called phases I to VI. We used Synchrotron X-ray diffraction to study the effect of shear on its crystallization. A previously unreported phase (phase X) was found and a crystallization path through phase IV under shear was observed. Samples were crystallized under shear from the melt in temperature controlled Couette cells, at final crystallization temperatures of 17.5^oC, 20^oC and 22.5^oC in Beamline X10A of NSLS. The formation of phase X was observed at low shear rates (90 s-1) and low crystallization temperature (17.5^oC), but was absent at high shear (720 s-1) and high temperature (20^oC). The d-spacing and melting point suggest that this new phase is a mixture rich on two of the three major components of cocoa butter. We also found that, contrary to previous reports, the transition from phase II to phase V can happen through the intermediate phase IV, at high shear rates and temperature.

  7. Insights into the growth rate of spatially evolving plane turbulent free-shear layers from 2D vortex-gas simulations

    Science.gov (United States)

    Suryanarayanan, Saikishan; Narasimha, Roddam

    2017-02-01

    Although the free-shear or mixing layer has been a subject of extensive research over nearly a century, there are certain fundamental issues that remain controversial. These include the influence of initial and downstream conditions on the flow, the effect of velocity ratio across the layer, and the nature of any possible coupling between small scale dynamics and the large scale evolution of layer thickness. In the spirit of the temporal vortex-gas simulations of Suryanarayanan et al. ["Free turbulent shear layer in a point vortex gas as a problem in nonequilibrium statistical mechanics," Phys. Rev. E 89, 013009 (2014)], we revisit the simple 2D inviscid vortex-gas model with extensive computations and detailed analysis, in order to gain insights into some of the above issues. Simulations of the spatially evolving vortex-gas shear layer are carried out at different velocity ratios using a computational model based on the work of Basu et al. ["Vortex sheet simulation of a plane canonical mixing layer," Comput. Fluids 21, 1-30 (1992) and "Modelling plane mixing layers using vortex points and sheets," Appl. Math. Modell. 19, 66-75 (1995)], but with a crucial improvement that ensures conservation of global circulation. The simulations show that the conditions imposed at the origin of the free shear layer and at the exit to the computational domain can affect flow evolution in their respective downstream and upstream neighbourhoods, the latter being particularly strong in the single stream limit. In between these neighbourhoods at the ends is a regime of universal self-preserving growth rate given by a universal function of velocity ratio. The computed growth rates are generally located within the scatter of experimental data on plane mixing layers and closely agree with recent high Reynolds number experiments and 3D large eddy simulation studies. These findings support the view that observed free-shear layer growth can be largely explained by the 2D vortex dynamics of

  8. High shear microfluidics and its application in rheological measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kai; Lee, L.James; Koelling, Kurt W. [The Ohio State University, Department of Chemical Engineering, Columbus, OH (United States)

    2005-02-01

    High shear rheology was explored experimentally in microchannels (150 x 150 {mu}m). Two aqueous polymer solutions, polyethylene oxide (viscoelastic fluid) and hydroxyethyl cellulose (viscous fluid) were tested. Bagley correction was applied to remove the end effect. Wall slip was investigated with Mooney's analysis. Shear rates as high as 10{sup 6} s {sup -1} were obtained in the pressure-driven microchannel flow, allowing a smooth extension of the low shear rheological data obtained from the conventional rheometers. At high shear rates, polymer degradation was observed for PEO solutions at a critical microchannel wall shear stress of 4.1 x 10 {sup 3} Pa. Stresses at the ends of the microchannel also contributed to PEO degradation significantly. (orig.)

  9. Fluid Effects on Shear Waves in Finely Layered Porous Media

    International Nuclear Information System (INIS)

    Berryman, J G

    2004-01-01

    Although there are five effective shear moduli for any layered VTI medium, one and only one effective shear modulus for the layered system contains all the dependence of pore fluids on the elastic or poroelastic constants that can be observed in vertically polarized shear waves. Pore fluids can increase the magnitude the shear energy stored by this modulus by a term that ranges from the smallest to the largest shear moduli of the VTI system. But, since there are five shear moduli in play, the increase in shear energy overall is reduced by a factor of about 5 in general. We can therefore give definite bounds on the maximum increase of shear modulus, being about 20% of the permitted range, when gas is fully replaced by liquid. An attendant increase of density (depending on porosity and fluid density) by approximately 5 to 10% partially offsets the effect of this shear modulus increase. Thus, an increase of shear wave speed on the order of 5 to 10% is shown to be possible when circumstances are favorable - i.e., when the shear modulus fluctuations are large (resulting in strong anisotropy), and the medium behaves in an undrained fashion due to fluid trapping. At frequencies higher than seismic (such as sonic and ultrasonic waves for well-logging or laboratory experiments), short response times also produce the requisite undrained behavior and, therefore, fluids also affect shear waves at high frequencies by increasing rigidity

  10. Effects of shear flow on phase nucleation and crystallization.

    Science.gov (United States)

    Mura, Federica; Zaccone, Alessio

    2016-04-01

    Classical nucleation theory offers a good framework for understanding the common features of new phase formation processes in metastable homogeneous media at rest. However, nucleation processes in liquids are ubiquitously affected by hydrodynamic flow, and there is no satisfactory understanding of whether shear promotes or slows down the nucleation process. We developed a classical nucleation theory for sheared systems starting from the molecular level of the Becker-Doering master kinetic equation and we analytically derived a closed-form expression for the nucleation rate. The theory accounts for the effect of flow-mediated transport of molecules to the nucleus of the new phase, as well as for the mechanical deformation imparted to the nucleus by the flow field. The competition between flow-induced molecular transport, which accelerates nucleation, and flow-induced nucleus straining, which lowers the nucleation rate by increasing the nucleation energy barrier, gives rise to a marked nonmonotonic dependence of the nucleation rate on the shear rate. The theory predicts an optimal shear rate at which the nucleation rate is one order of magnitude larger than in the absence of flow.

  11. Nonlinear modeling and testing of magneto-rheological fluids in low shear rate squeezing flows

    International Nuclear Information System (INIS)

    Farjoud, Alireza; Ahmadian, Mehdi; Craft, Michael; Mahmoodi, Nima; Zhang, Xinjie

    2011-01-01

    A novel analytical investigation of magneto-rheological (MR) fluids in squeezing flows is performed and the results are validated with experimental test data. The squeeze flow of MR fluids has recently been of great interest to researchers. This is due to the large force capacity of MR fluids in squeeze mode compared to other modes (valve and shear modes), which makes the squeeze mode appropriate for a wide variety of applications such as impact dampers and engine mounts. Tested MR fluids were capable of providing a large range of controllable force along a short stroke in squeeze mode. A mathematical model was developed using perturbation techniques to predict closed-form solutions for velocity field, shear rate distribution, pressure distribution and squeeze force. Therefore, the obtained solutions greatly help with the design process of intelligent devices that use MR fluids in squeeze mode. The mathematical model also reduces the need for complicated and computationally expensive numerical simulations. The analytical results are validated by performing experimental tests on a novel MR device called an 'MR pouch' in an MR squeeze mode rheometer, both designed and built at CVeSS

  12. 7 CFR 4290.845 - Maximum rate of amortization on Loans and Debt Securities.

    Science.gov (United States)

    2010-01-01

    ...) RURAL BUSINESS-COOPERATIVE SERVICE AND RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE RURAL BUSINESS INVESTMENT COMPANY (âRBICâ) PROGRAM Financing of Enterprises by RBICs Structuring Rbic Financing of Eligible Enterprises-Types of Financings § 4290.845 Maximum rate of amortization on Loans and Debt Securities. The...

  13. Far-from-equilibrium sheared colloidal liquids: Disentangling relaxation, advection, and shear-induced diffusion

    KAUST Repository

    Lin, Neil Y. C.

    2013-12-01

    Using high-speed confocal microscopy, we measure the particle positions in a colloidal suspension under large-amplitude oscillatory shear. Using the particle positions, we quantify the in situ anisotropy of the pair-correlation function, a measure of the Brownian stress. From these data we find two distinct types of responses as the system crosses over from equilibrium to far-from-equilibrium states. The first is a nonlinear amplitude saturation that arises from shear-induced advection, while the second is a linear frequency saturation due to competition between suspension relaxation and shear rate. In spite of their different underlying mechanisms, we show that all the data can be scaled onto a master curve that spans the equilibrium and far-from-equilibrium regimes, linking small-amplitude oscillatory to continuous shear. This observation illustrates a colloidal analog of the Cox-Merz rule and its microscopic underpinning. Brownian dynamics simulations show that interparticle interactions are sufficient for generating both experimentally observed saturations. © 2013 American Physical Society.

  14. Far-from-equilibrium sheared colloidal liquids: Disentangling relaxation, advection, and shear-induced diffusion

    KAUST Repository

    Lin, Neil Y. C.; Goyal, Sushmit; Cheng, Xiang; Zia, Roseanna N.; Escobedo, Fernando A.; Cohen, Itai

    2013-01-01

    Using high-speed confocal microscopy, we measure the particle positions in a colloidal suspension under large-amplitude oscillatory shear. Using the particle positions, we quantify the in situ anisotropy of the pair-correlation function, a measure of the Brownian stress. From these data we find two distinct types of responses as the system crosses over from equilibrium to far-from-equilibrium states. The first is a nonlinear amplitude saturation that arises from shear-induced advection, while the second is a linear frequency saturation due to competition between suspension relaxation and shear rate. In spite of their different underlying mechanisms, we show that all the data can be scaled onto a master curve that spans the equilibrium and far-from-equilibrium regimes, linking small-amplitude oscillatory to continuous shear. This observation illustrates a colloidal analog of the Cox-Merz rule and its microscopic underpinning. Brownian dynamics simulations show that interparticle interactions are sufficient for generating both experimentally observed saturations. © 2013 American Physical Society.

  15. The response of dense dry granular material to the shear reversal

    Science.gov (United States)

    Zhang, Jie; Ren, Jie; Farhadi, Somayeh; Behringer, Robert

    2008-11-01

    We have performed two dimensional granular experiments under pure shear using bidisperse photo-elastic disks. Starting from a stress free state, a square box filled with granular particles is subject to shear. The forward shears involved various number of steps, leading to maximum strains between 0.1 and 0.3. The area is kept constant during the shear. The network of force chains gradually built up as the strain increased, leading to increased pressure and shear stress. Reverse shear was then applied to the system. Depending on the initial packing fraction and the strain at which the shear is reversed, the force chain network built prior to the shear reversal may be destroyed completely or partially destroyed. Following the force chain weakening, when the reserve shear is continuously applied to the system, there is a force chain strengthening. Following each change of the system, contact forces of individual disks were measured by applying an inverse algorithm. We also kept track of the displacement and angle of rotation of every particle from frame to frame. We present the results for the structure failure and reconstruction during shear reversals. We also present data for stresses, contact force distributions and other statistical measures.

  16. Shear layer characteristics of supersonic free and impinging jets

    Science.gov (United States)

    Davis, T. B.; Kumar, R.

    2015-09-01

    The initial shear layer characteristics of a jet play an important role in the initiation and development of instabilities and hence radiated noise. Particle image velocimetry has been utilized to study the initial shear layer development of supersonic free and impinging jets. Microjet control employed to reduce flow unsteadiness and jet noise appears to affect the development of the shear layer, particularly near the nozzle exit. Velocity field measurements near the nozzle exit show that the initially thin, uncontrolled shear layer develops at a constant rate while microjet control is characterized by a rapid nonlinear thickening that asymptotes downstream. The shear layer linear growth rate with microjet control, in both the free and the impinging jet, is diminished. In addition, the thickened shear layer with control leads to a reduction in azimuthal vorticity for both free and impinging jets. Linear stability theory is used to compute unstable growth rates and convection velocities of the resultant velocity profiles. The results show that while the convection velocity is largely unaffected, the unstable growth rates are significantly reduced over all frequencies with microjet injection. For the case of the impinging jet, microjet control leads to near elimination of the impingement tones and an appreciable reduction in broadband levels. Similarly, for the free jet, significant reduction in overall sound pressure levels in the peak radiation direction is observed.

  17. Turbulent flows over superhydrophobic surfaces with shear-dependent slip length

    Science.gov (United States)

    Khosh Aghdam, Sohrab; Seddighi, Mehdi; Ricco, Pierre

    2015-11-01

    Motivated by recent experimental evidence, shear-dependent slip length superhydrophobic surfaces are studied. Lyapunov stability analysis is applied in a 3D turbulent channel flow and extended to the shear-dependent slip-length case. The feedback law extracted is recognized for the first time to coincide with the constant-slip-length model widely used in simulations of hydrophobic surfaces. The condition for the slip parameters is found to be consistent with the experimental data and with values from DNS. The theoretical approach by Fukagata (PoF 18.5: 051703) is employed to model the drag-reduction effect engendered by the shear-dependent slip-length surfaces. The estimated drag-reduction values are in very good agreement with our DNS data. For slip parameters and flow conditions which are potentially realizable in the lab, the maximum computed drag reduction reaches 50%. The power spent by the turbulent flow on the walls is computed, thereby recognizing the hydrophobic surfaces as a passive-absorbing drag-reduction method, as opposed to geometrically-modifying techniques that do not consume energy, e.g. riblets, hence named passive-neutral. The flow is investigated by visualizations, statistical analysis of vorticity and strain rates, and quadrants of the Reynolds stresses. Part of this work was funded by Airbus Group. Simulations were performed on the ARCHER Supercomputer (UKTC Grant).

  18. Development of a Skewed Pipe Shear Connector for Precast Concrete Structures.

    Science.gov (United States)

    Kim, Sang-Hyo; Choi, Jae-Gu; Park, Sejun; Lee, Hyunmin; Heo, And Won-Ho

    2017-05-13

    Joint connection methods, such as shear key and loop bar, improve the structural performance of precast concrete structures; consequently, there is usually decreased workability or constructional efficiency. This paper proposes a high-efficiency skewed pipe shear connector. To resist shear and pull-out forces, the proposed connectors are placed diagonally between precast concrete segments and a cast-in-place concrete joint part on a girder. Design variables (such as the pipe diameter, length, and insertion angle) have been examined to investigate the connection performance of the proposed connector. The results of our testing indicate that the skewed pipe shear connectors have 50% higher ductility and a 15% higher ratio of maximum load to yield strength as compared to the corresponding parameters of the loop bar. Finite element analysis was used for validation. The resulting validation indicates that, compared to the loop bar, the skewed pipe shear connector has a higher ultimate shear and pull-out resistance. These results indicate that the skewed pipe shear connector demonstrates more idealized behavior than the loop bar in precast concrete structures.

  19. Origins of the anomalous stress behavior in charged colloidal suspensions under shear.

    Science.gov (United States)

    Kumar, Amit; Higdon, Jonathan J L

    2010-11-01

    Numerical simulations are conducted to determine microstructure and rheology of sheared suspensions of charged colloidal particles at a volume fraction of ϕ=0.33. Over broad ranges of repulsive force strength F0 and Péclet number Pe, dynamic simulations show coexistence of ordered and disordered stable states with the state dependent on the initial condition. In contrast to the common view, at low shear rates, the disordered phase exhibits a lower viscosity (μ(r)) than the ordered phase, while this behavior is reversed at higher shear rates. Analysis shows the stress reversal is associated with different shear induced microstructural distortions in the ordered and disordered systems. Viscosity vs shear rate data over a wide range of F0 and Pe collapses well upon rescaling with the long-time self-diffusivity. Shear thinning viscosity in the ordered phase scaled as μ(r)∼Pe(-0.81) at low shear rates. The microstructural dynamics revealed in these studies explains the anomalous behavior and hysteresis loops in stress data reported in the literature.

  20. Investigation of sheared liquids by neutron backscattering and reflectivity

    CERN Document Server

    Wolff, M; Hock, R; Frick, B; Zabel, H

    2002-01-01

    We have investigated by neutron scattering structural and dynamical properties of water solutions of the triblock copolymer P85 under shear. To this end a shear cell that suits the requirements for neutron backscattering and another for reflectivity experiments have been built. In reflectivity measurements we find the polymer concentration (nominal concentration of 33% by weight) to vary right at the surface between 12% and 52% for hydrophilic or hydrophobic coated silicon wavers, for temperatures between 18 C and 73 C and for shear rates up to 2500 s sup - sup 1. Additional structural changes deeper in the bulk are also observed. On the backscattering instrument (IN10 at ILL) we find that the liquid appears to stick to the plates of the shear cell, implying an unusual macroscopic velocity distribution that differs from that found earlier for lubrication oils. We report further on changes of the quasielastic line width in the direction of the shear gradient for different temperatures and shear rates. (orig.)

  1. Shear Melting of a Colloidal Glass

    Science.gov (United States)

    Eisenmann, Christoph; Kim, Chanjoong; Mattsson, Johan; Weitz, David A.

    2010-01-01

    We use confocal microscopy to explore shear melting of colloidal glasses, which occurs at strains of ˜0.08, coinciding with a strongly non-Gaussian step size distribution. For larger strains, the particle mean square displacement increases linearly with strain and the step size distribution becomes Gaussian. The effective diffusion coefficient varies approximately linearly with shear rate, consistent with a modified Stokes-Einstein relationship in which thermal energy is replaced by shear energy and the length scale is set by the size of cooperatively moving regions consisting of ˜3 particles.

  2. Cargo Release from Polymeric Vesicles under Shear

    Directory of Open Access Journals (Sweden)

    Yingying Guo

    2018-03-01

    Full Text Available In this paper we study the release of cargo from polymeric nano-carriers under shear. Vesicles formed by two star block polymers— A 12 B 6 C 2 ( A B C and A 12 B 6 A 2 ( A B A —and one linear block copolymer— A 14 B 6 ( A B , are investigated using dissipative particle dynamics (DPD simulations. A - and C -blocks are solvophobic and B -block is solvophilic. The three polymers form vesicles of different structures. The vesicles are subjected to shear both in bulk and between solvophobic walls. In bulk shear, the mechanisms of cargo release are similar for all vesicles, with cargo travelling through vesicle membrane with no preferential release location. When sheared between walls, high cargo release rate is only observed with A B C vesicle after it touches the wall. For A B C vesicle, the critical condition for high cargo release rate is the formation of wall-polymersome interface after which the effect of shear rate in promoting cargo release is secondary. High release rate is achieved by the formation of solvophilic pathway allowing cargo to travel from the vesicle cavity to the vesicle exterior. The results in this paper show that well controlled target cargo release using polymersomes can be achieved with polymers of suitable design and can potentially be very useful for engineering applications. As an example, polymersomes can be used as carriers for surface active friction reducing additives which are only released at rubbing surfaces where the additives are needed most.

  3. Rheometry-PIV of shear-thickening wormlike micelles.

    Science.gov (United States)

    Marín-Santibañez, Benjamín M; Pérez-Gonzalez, José; de Vargas, Lourdes; Rodríguez-Gonzalez, Francisco; Huelsz, Guadalupe

    2006-04-25

    The shear-thickening behavior of an equimolar semidilute aqueous solution of 40 mM/L cetylpyridinium chloride and sodium salicylate was studied in this work by using a combined method of rheometry and particle image velocimetry (PIV). Experiments were conducted at 27.5 degrees C with Couette, vane-bob, and capillary rheometers in order to explore a wide shear stress range as well as the effect of boundary conditions and time of flow on the creation and destruction of shear-induced structures (SIS). The use of the combined method of capillary rheometry with PIV allowed the detection of fast spatial and temporal variations in the flow kinematics, which are related to the shear-thickening behavior and the dynamics of the SIS but are not distinguished by pure rheometrical measurements. A rich-in-details flow curve was found for this solution, which includes five different regimes. Namely, at very low shear rates a Newtonian behavior was found, followed by a shear thinning one in the second regime. In the third, shear banding was observed, which served as a precursor of the SIS and shear-thickening. The fourth and fifth regimes in the flow curve were separated by a spurtlike behavior, and they clearly evidenced the existence of shear-thickening accompanied by stick-slip oscillations at the wall of the rheometer, which subsequently produced variations in the shear rate under shear stress controlled flow. Such a stick-slip phenomenon prevailed up to the highest shear stresses used in this work and was reflected in asymmetric velocity profiles with spatial and temporal variations linked to the dynamics of creation and breakage of the SIS. The presence of apparent slip at the wall of the rheometer provides an energy release mechanism which leads to breakage of the SIS, followed by their further reformation during the stick part of the cycles. In addition, PIV measurements allowed the detection of apparent slip at the wall, as well as mechanical failures in the bulk of the

  4. Shear machines

    International Nuclear Information System (INIS)

    Astill, M.; Sunderland, A.; Waine, M.G.

    1980-01-01

    A shear machine for irradiated nuclear fuel elements has a replaceable shear assembly comprising a fuel element support block, a shear blade support and a clamp assembly which hold the fuel element to be sheared in contact with the support block. A first clamp member contacts the fuel element remote from the shear blade and a second clamp member contacts the fuel element adjacent the shear blade and is advanced towards the support block during shearing to compensate for any compression of the fuel element caused by the shear blade (U.K.)

  5. Shear rheological properties of fresh human faeces with different ...

    African Journals Online (AJOL)

    Samples were further tested for moisture content, total solids, volatile content, and ash content. Faecal samples were found to have a yield stress; there was a decrease in apparent viscosity with increasing shear rate. For any given shear rate, higher apparent viscosities are associated with lower moisture contents. Across a ...

  6. Amorphization and Frictional Processes in Smectite-Quartz Gouge Mixtures Sheared from Sub-seismic to Seismic Slip Rates

    Science.gov (United States)

    Aretusini, S.; Mittempergher, S.; Spagnuolo, E.; Di Toro, G.; Gualtieri, A.; Plümper, O.

    2015-12-01

    Slipping zones in shallow sections of megathrusts and large landslides are often made of smectite and quartz gouge mixtures. Experiments aimed at investigating the frictional processes operating at high slip rates (>1 m/s) may unravel the mechanics of these natural phenomena. Here we present a new dataset obtained with two rotary shear apparatus (ROSA, Padua University; SHIVA, INGV-Rome). Experiments were performed at room humidity and temperature on four mixtures of smectite (Ca-Montmorillonite) and quartz with 68, 50, 25, 0 wt% of smectite. The gouges were slid for 3 m at normal stress of 5 MPa and slip rate V from 300 µm/s to 1.5 m/s. Temperature during the experiments was monitored with four thermocouples and modeled with COMSOL Multiphysics. In smectite-rich mixtures, the friction coefficient µ evolved with slip according to three slip rate regimes: in regime 1 (V0.3 m/s) µ had strong slip-weakening behavior. Instead, in quartz-rich mixtures the gouge had a monotonic slip-weakening behavior, independently of V. Temperature modelling showed that the fraction of work rate converted into heat decreased with increasing smectite content and slip rate. Quantitative X-ray powder diffraction (Rietveld method) indicates that the production of amorphous material from smectite breakdown increased with frictional work but was independent of work rate. Scanning Electron Microscopy investigation evidenced strain localization and presence of dehydrated clays for V≥0.3 m/s; instead, for V<0.3 m/s, strain was distributed and the gouge layer pervasively foliated. In conclusion, amorphization of the sheared gouges was not responsible of the measured frictional weakening. Instead, slip-weakening was concomitant to strain localization and possible vaporization of water adsorbed on smectite grain surfaces.

  7. Shear zone nucleation and deformation transient: effect of heterogeneities and loading conditions in experimentally deformed calcite

    Science.gov (United States)

    Morales, L. F. G.; Rybacki, E.; Dresen, G. H.; Kilian, R.

    2015-12-01

    In the Earth's middle to lower crust, strain is frequently localized along ductile shear zones, which commonly nucleate at structural and material heterogeneities. To investigate shear zone nucleation and development due to heterogeneities, we performed constant strain-rate (CSR) and constant stress (CS) simple shear (torsion) deformation experiments on Carrara marble samples containing weak (limestone) inclusions. The experiments were conducted in a Paterson-type gas deformation apparatus at 900 °C temperature and 400 MPa confining pressure and maximum bulk shear strains of 3. Peak shear stress was about 20 MPa for all the samples, followed by smooth weakening and steady state behavior. The strain is predominantly localized in the host marble within the process zone in front of the inclusion, defined by a zone of intense grain size reduction due to dynamic recrystallization. In CS tests a narrow shear zone developed in front of the inclusion, whereas in CSR experiments the deformation is more heterogeneously distributed, up to g=3.. In the later, secondary foliations oblique to the process zone and alternating thin, high-strain layers are common. In samples deformed at the same shear strain (g=1), the average recrystallized grain size in the process zone is similar for CS and CSR conditions. Crystallographic preferred orientation (CPO) measurements shows that different grain sizes have slightly different CPO patterns. CPO strength varies for different grain sizes, with a CPO strength peak between 40-50 μm, decreasing progressively within smaller grain size, but with secondary peaks for different coarse-grained sizes. Our observations suggest that the initial formation and transient deformation of shear zones is strongly affected by loading conditions.

  8. Radially sheared azimuthal flows and turbulent transport in a cylindrical helicon plasma device

    International Nuclear Information System (INIS)

    Tynan, G R; Burin, M J; Holland, C; Antar, G; Diamond, P H

    2004-01-01

    A radially sheared azimuthal flow is observed in a cylindrical helicon plasma device. The shear flow is roughly azimuthally symmetric and contains both time-stationary and slowly varying components. The turbulent radial particle flux is found to peak near the density gradient maximum and vanishes at the shear layer location. The shape of the radial plasma potential profile associated with the azimuthal E x B flow is predicted accurately by theory. The existence of the mean shear flow in a plasma with finite flow damping from ion-neutral collisions and no external momentum input implies the existence of radial angular momentum transport from the turbulent Reynolds-stress

  9. Shear- and magnetic-field-induced ordering in magnetic nanoparticle dispersion from small-angle neutron scattering

    International Nuclear Information System (INIS)

    Krishnamurthy, V.V.; Bhandar, A.S.; Piao, M.; Zoto, I.; Lane, A.M.; Nikles, D.E.; Wiest, J.M.; Mankey, G.J.; Porcar, L.; Glinka, C.J.

    2003-01-01

    Small-angle neutron scattering experiments have been performed to investigate orientational ordering of a dispersion of rod-shaped ferromagnetic nanoparticles under the influence of shear flow and static magnetic field. In this experiment, the flow and flow gradient directions are perpendicular to the direction of the applied magnetic field. The scattering intensity is isotropic in zero-shear-rate or zero-applied-field conditions, indicating that the particles are randomly oriented. Anisotropic scattering is observed both in a shear flow and in a static magnetic field, showing that both flow and field induce orientational order in the dispersion. The anisotropy increases with the increase of field and with the increase of shear rate. Three states of order have been observed with the application of both shear flow and magnetic field. At low shear rates, the particles are aligned in the field direction. When increasing shear rate is applied, the particles revert to random orientations at a characteristic shear rate that depends on the strength of the applied magnetic field. Above the characteristic shear rate, the particles align along the flow direction. The experimental results agree qualitatively with the predictions of a mean field model

  10. A mathematical model for fluid shear-sensitive 3D tissue construct development.

    Science.gov (United States)

    Liu, Dan; Chua, Chee-Kai; Leong, Kah-Fai

    2013-01-01

    This research studies dynamic culture for 3D tissue construct development with computational fluid dynamics. It proposes a mathematical model to evaluate the impact of flow rates and flow shear stress on cell growth in 3D constructs under perfusion. The modeling results show that dynamic flow, even at flow rate as low as 0.002 cm/s, can support much better mass exchange, higher cell number, and more even cell and nutrient distribution compared to static culture. Higher flow rate can further improve nutrient supply and mass exchange in the construct, promoting better nutritious environment and cell proliferation compared to lower flow rate. In addition, consideration of flow shear stress predicts much higher cell number in the construct compared to that without shear consideration. While the nutrient can dominate shear stress in influencing cell proliferation, the shear effect increases with flow rate. The proposed model helps tissue engineers better understand the cell-flow relationship at the molecular level during dynamic culture.

  11. Displacement-length scaling of brittle faults in ductile shear.

    Science.gov (United States)

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-11-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement-distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow.

  12. Displacement–length scaling of brittle faults in ductile shear

    Science.gov (United States)

    Grasemann, Bernhard; Exner, Ulrike; Tschegg, Cornelius

    2011-01-01

    Within a low-grade ductile shear zone, we investigated exceptionally well exposed brittle faults, which accumulated antithetic slip and rotated into the shearing direction. The foliation planes of the mylonitic host rock intersect the faults approximately at their centre and exhibit ductile reverse drag. Three types of brittle faults can be distinguished: (i) Faults developing on pre-existing K-feldspar/mica veins that are oblique to the shear direction. These faults have triclinic flanking structures. (ii) Wing cracks opening as mode I fractures at the tips of the triclinic flanking structures, perpendicular to the shear direction. These cracks are reactivated as faults with antithetic shear, extend from the parent K-feldspar/mica veins and form a complex linked flanking structure system. (iii) Joints forming perpendicular to the shearing direction are deformed to form monoclinic flanking structures. Triclinic and monoclinic flanking structures record elliptical displacement–distance profiles with steep displacement gradients at the fault tips by ductile flow in the host rocks, resulting in reverse drag of the foliation planes. These structures record one of the greatest maximum displacement/length ratios reported from natural fault structures. These exceptionally high ratios can be explained by localized antithetic displacement along brittle slip surfaces, which did not propagate during their rotation during surrounding ductile flow. PMID:26806996

  13. Onset of shear thinning in glassy liquids: Shear-induced small reduction of effective density.

    Science.gov (United States)

    Furukawa, Akira

    2017-01-01

    We propose a simple mechanism for describing the onset of shear thinning in a high-density glassy liquid. In a shear flow, along the compression axis, the overlap between neighboring particles is more enhanced than that at equilibrium, meaning that the "effective" size is reduced along this axis. On the other hand, along the extension axis perpendicular to the compression axis, the average structural configurations are stretched, but it does not indicate the expansion of the "effective" size itself. This asymmetric shear flow effect for particles results in a small reduction of the "effective" density. Because, in glass-forming liquids, the structural relaxation time τ_{α} strongly depends on the density ρ, even a very small reduction of the effective density should lead to a significant decrease of the relaxation time under shear flow. We predict that the crossover shear rate from Newtonian to non-Newtonian flow behaviors is given by γ[over ̇]_{c}=[ρ(∂τ_{α}/∂ρ)]^{-1}, which can be much smaller than 1/τ_{α} near the glass transition point. It is shown that this prediction is consistent with the results of molecular dynamics simulations.

  14. Structure-rheology relationship in a sheared lamellar fluid.

    Science.gov (United States)

    Jaju, S J; Kumaran, V

    2016-03-01

    The structure-rheology relationship in the shear alignment of a lamellar fluid is studied using a mesoscale model which provides access to the lamellar configurations and the rheology. Based on the equations and free energy functional, the complete set of dimensionless groups that characterize the system are the Reynolds number (ργL(2)/μ), the Schmidt number (μ/ρD), the Ericksen number (μγ/B), the interface sharpness parameter r, the ratio of the viscosities of the hydrophilic and hydrophobic parts μ(r), and the ratio of the system size and layer spacing (L/λ). Here, ρ and μ are the fluid density and average viscosity, γ is the applied strain rate, D is the coefficient of diffusion, B is the compression modulus, μ(r) is the maximum difference in the viscosity of the hydrophilic and hydrophobic parts divided by the average viscosity, and L is the system size in the cross-stream direction. The lattice Boltzmann method is used to solve the concentration and momentum equations for a two dimensional system of moderate size (L/λ=32) and for a low Reynolds number, and the other parameters are systematically varied to examine the qualitative features of the structure and viscosity evolution in different regimes. At low Schmidt numbers where mass diffusion is faster than momentum diffusion, there is fast local formation of randomly aligned domains with "grain boundaries," which are rotated by the shear flow to align along the extensional axis as time increases. This configuration offers a high resistance to flow, and the layers do not align in the flow direction even after 1000 strain units, resulting in a viscosity higher than that for an aligned lamellar phase. At high Schmidt numbers where momentum diffusion is fast, the shear flow disrupts layers before they are fully formed by diffusion, and alignment takes place by the breakage and reformation of layers by shear, resulting in defects (edge dislocations) embedded in a background of nearly aligned layers

  15. Rôle of contrast media viscosity in altering vessel wall shear stress and relation to the risk of contrast extravasations.

    Science.gov (United States)

    Sakellariou, Sophia; Li, Wenguang; Paul, Manosh C; Roditi, Giles

    2016-12-01

    Iodinated contrast media (CM) are the most commonly used injectables in radiology today. A range of different media are commercially available, combining various physical and chemical characteristics (ionic state, osmolality, viscosity) and thus exhibiting distinct in vivo behaviour and safety profiles. In this paper, numerical simulations of blood flow with contrast media were conducted to investigate the effects of contrast viscosity on generated vessel wall shear stress and vessel wall pressure to elucidate any possible relation to extravasations. Five different types of contrast for Iodine fluxes ranging at 1.5-2.2gI/s were modelled through 18G and 20G cannulae placed in an ideal vein at two different orientation angles. Results demonstrate that the least viscous contrast media generate the least maximum wall shear stress as well as the lowest total pressure for the same flow rate. This supports the empirical clinical observations and hypothesis that more viscous contrast media are responsible for a higher percentage of contrast extravasations. In addition, results support the clinical hypothesis that a catheter tip directed obliquely to the vein wall always produces the highest maximum wall shear stress and total pressure due to impingement of the contrast jet on the vessel wall. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  16. Compressibility effects in the shear layer over a rectangular cavity

    Energy Technology Data Exchange (ETDEWEB)

    Beresh, Steven J.; Wagner, Justin; Casper, Katya Marie

    2016-10-26

    we studied the influence of compressibility on the shear layer over a rectangular cavity of variable width in a free stream Mach number range of 0.6–2.5 using particle image velocimetry data in the streamwise centre plane. As the Mach number increases, the vertical component of the turbulence intensity diminishes modestly in the widest cavity, but the two narrower cavities show a more substantial drop in all three components as well as the turbulent shear stress. Furthermore, this contrasts with canonical free shear layers, which show significant reductions in only the vertical component and the turbulent shear stress due to compressibility. The vorticity thickness of the cavity shear layer grows rapidly as it initially develops, then transitions to a slower growth rate once its instability saturates. When normalized by their estimated incompressible values, the growth rates prior to saturation display the classic compressibility effect of suppression as the convective Mach number rises, in excellent agreement with comparable free shear layer data. The specific trend of the reduction in growth rate due to compressibility is modified by the cavity width.

  17. The effect of shape on the fracture of a soft elastic gel subjected to shear load.

    Science.gov (United States)

    Kundan, Krishna Kant; Ghatak, Animangsu

    2018-02-21

    For brittle solids, the fracture energy is the energy required to create a unit area of new surface through the process of division. For crosslinked materials, it is a function of the intrinsic properties like crosslinking density and bond strength of the crosslinks. Here we show that the energy released due to fracture can depend also on the shape of a joint made of this material. Our experiment involves two gel blocks connected via a thin gel disk. The disk is formed into different regular and exotic shapes, but with identical areas of cross-section. When one of the blocks is sheared with respect to the other, the shear load increases with vertical displacement, eventually causing a fracture at a threshold load. The maximum fracture load is different for different disks and among different regularly shaped disks, it is at a maximum for pentagon and hexagon shapes. The fracture energy release rate of the joint depends also on the aspect ratio (height/width) of the shapes. Our experiments also throw light on possible reasons for such a dependence on the shape of the joints.

  18. New England observed and predicted August stream/river temperature maximum daily rate of change points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted August stream/river temperature maximum negative rate of change in New England based on a...

  19. High Resolution Shear Profile Measurements in Entangled Polymers

    KAUST Repository

    Hayes, Keesha A.; Buckley, Mark R.; Cohen, Itai; Archer, Lynden A.

    2008-01-01

    spanning a wide range of molecular weights and number of entanglements (8≤Z≤56), but reveal large differences between the imposed and measured shear rates. These findings disagree with recent reports that shear banding is a characteristic flow response

  20. Loading direction-dependent shear behavior at different temperatures of single-layer chiral graphene sheets

    Science.gov (United States)

    Zhao, Yang; Dong, Shuhong; Yu, Peishi; Zhao, Junhua

    2018-06-01

    The loading direction-dependent shear behavior of single-layer chiral graphene sheets at different temperatures is studied by molecular dynamics (MD) simulations. Our results show that the shear properties (such as shear stress-strain curves, buckling strains, and failure strains) of chiral graphene sheets strongly depend on the loading direction due to the structural asymmetry. The maximum values of both the critical buckling shear strain and the failure strain under positive shear deformation can be around 1.4 times higher than those under negative shear deformation. For a given chiral graphene sheet, both its failure strain and failure stress decrease with increasing temperature. In particular, the amplitude to wavelength ratio of wrinkles for different chiral graphene sheets under shear deformation using present MD simulations agrees well with that from the existing theory. These findings provide physical insights into the origins of the loading direction-dependent shear behavior of chiral graphene sheets and their potential applications in nanodevices.

  1. Shear thinning behavior of monolayer liquid lubricant films measured by fiber wobbling method

    International Nuclear Information System (INIS)

    Hamamoto, Y; Itoh, S; Fukuzawa, K; Zhang, H

    2010-01-01

    It is essential to clarify mechanical properties of monolayer lubricant films coated on magnetic disks under shearing motion for designing future hard disk drives with ultra-low flying height. Many of previous researchers reported that strong shear rate dependence of viscoelasticity was one of the typical phenomena observed with molecularly thin liquid films. However, it has not been clarified whether or not perfluoropolyether (PFPE) lubricant films, which are used for the head-disk interface (HDI) lubrication, show shear thinning behavior under actual HDI conditions. In this study, we used the fiber wobbling method that can achieve both highly-sensitive shear force measurement and precise gap control and measured shear rate dependence of viscoelastic properties of monolayer PFPE films coated on the magnetic disk. Our experimental results showed that shear thinning does occur at high shear rate ranged from 10 2 to 10 6 s -1 .

  2. Shear-induced phase changes in mixtures

    International Nuclear Information System (INIS)

    Romig, K.D.; Hanley, H.J.M.

    1986-01-01

    A thermodynamic theory to account for the behavior of liquid mixtures exposed to a shear is developed. One consequence of the theory is that shear-induced phase changes are predicted. The theory is based on a thermodynamics that includes specifically the shear rate in the formalism and is applied to mixtures by a straightforward modification of the corresponding states, conformalsolution approach. The approach is general but is used here for a mixture of Lennard-Jones particles with a Lennard-Jones equation of state as a reference fluid. The results are discussed in the context of the Scott and Van Konynenberg phase classification. It is shown that the influence of a shear does affect substantially the type of the phase behavior. Results from the model mixture are equated loosely with those from real polymeric liquids

  3. Shear-limited test particle diffusion in 2-dimensional plasmas

    International Nuclear Information System (INIS)

    Anderegg, Francois; Driscoll, C. Fred; Dubin, Daniel H.E.

    2002-01-01

    Measurements of test-particle diffusion in pure ion plasmas show 2D enhancements over the 3D rates, limited by shear in the plasma rotation ω E (r). The diffusion is due to 'long-range' ion-ion collisions in the quiescent, steady-state Mg + plasma. For short plasma length L p and low shear S≡r∂ω E /∂r, thermal ions bounce axially many times before shear separates them in θ, so the ions move in (r,θ) as bounce averaged 'rods' of charge (i.e. 2D point vortices). Experimentally, we vary the number of bounces over the range 0.2≤N b ≤10,000. For long plasmas with N b ≤1, we observe diffusion in quantitative agreement with the 3D theory of long-range ExB drift collisions. For shorter plasmas or lower shear, with N b >1, we measure diffusion rates enhanced by up to 100x. For exceedingly small she0ar, i.e. N b ≥1000, we observe diffusion rates consistent with the Taylor-McNamara estimates for a shear-free thermal plasma. Overall, the data shows fair agreement with Dubin's new theory of 2D diffusion in shear, which predicts an enhancement of D 2D /D 3D ≅N b up to the Taylor-McNamara limit

  4. Model shear tests of canisters with smectite clay envelopes in deposition holes

    International Nuclear Information System (INIS)

    Boergesson, L.

    1986-01-01

    The consequences of rock displacement across a deposition hole has been investigated by some model tests. The model was scaled 1:10 to a real deposition hole. It was filled with a canister made of solid copper surrounded by highly compacted water saturated MX-80 bentonite. Before shear the swelling pressure was measured by six transducers in order to follow the water uptake process. During shear, pressure, strain, force and deformation were measured in altogether 18 points. The shearing was made at different rates in the various tests. An extensive sampling after shear was made through which the density, water content, degree of saturation, homogenization and the effect of shear on the bentonite and canister could be studied. One important conlusion from these tests was that the rate dependence is about 10% increased shear resistance per decade increased rate of shear. This resulted also in a very clear increase in strain in the canister with increased rate. The results also showed that the saturated bentonite has excellent stress distributing properties and that there is no risk of destroying the canister if the rock displacement is smaller than the thickness of the bentonite cover. The high density of the clay makes the bentonite produce such a high swelling pressure that the material will be very stiff. In the case of a larger shear deformation corresponding to ≅ 50% of the bentonite thickness the result will be a rather large deformation of the canister. A lower density would be preferable if it can be accepted with respect to other required isolating properties. The results also showed that three-dimensional FEM calculation using non-linear material properties is necessary to simulate the shear process. The rate dependence may be taken into account by adapting the properties to the actual rate of shear but might in a later stage be included in the model by giving the material viscous properties. (orig./HP)

  5. Vesicle dynamics in shear and capillary flows

    International Nuclear Information System (INIS)

    Noguchi, Hiroshi; Gompper, Gerhard

    2005-01-01

    The deformation of vesicles in flow is studied by a mesoscopic simulation technique, which combines multi-particle collision dynamics for the solvent with a dynamically triangulated surface model for the membrane. Shape transitions are investigated both in simple shear flows and in cylindrical capillary flows. We focus on reduced volumes, where the discocyte shape of fluid vesicles is stable, and the prolate shape is metastable. In simple shear flow at low membrane viscosity, the shear induces a transformation from discocyte to prolate with increasing shear rate, while at high membrane viscosity, the shear induces a transformation from prolate to discocyte, or tumbling motion accompanied by oscillations between these two morphologies. In capillary flow, at small flow velocities the symmetry axis of the discocyte is found not to be oriented perpendicular to the cylinder axis. With increasing flow velocity, a transition to a prolate shape occurs for fluid vesicles, while vesicles with shear-elastic membranes (like red blood cells) transform into a coaxial parachute-like shape

  6. Diagnostic performance of quantitative shear wave elastography in the evaluation of solid breast masses: determination of the most discriminatory parameter.

    Science.gov (United States)

    Au, Frederick Wing-Fai; Ghai, Sandeep; Moshonov, Hadas; Kahn, Harriette; Brennan, Cressida; Dua, Hemi; Crystal, Pavel

    2014-09-01

    The purpose of this article is to assess the diagnostic performance of quantitative shear wave elastography in the evaluation of solid breast masses and to determine the most discriminatory parameter. B-mode ultrasound and shear wave elastography were performed before core biopsy of 123 masses in 112 women. The diagnostic performance of ultrasound and quantitative shear wave elastography parameters (mean elasticity, maximum elasticity, and elasticity ratio) were compared. The added effect of shear wave elastography on the performance of ultrasound was determined. The mean elasticity, maximum elasticity, and elasticity ratio were 24.8 kPa, 30.3 kPa, and 1.90, respectively, for 79 benign masses and 130.7 kPa, 154.9 kPa, and 11.52, respectively, for 44 malignant masses (p shear wave elastography parameter was higher than that of ultrasound (p shear wave elastography parameters to the evaluation of BI-RADS category 4a masses, about 90% of masses could be downgraded to BI-RADS category 3. The numbers of downgraded masses were 40 of 44 (91%) for mean elasticity, 39 of 44 (89%) for maximum elasticity, and 42 of 44 (95%) for elasticity ratio. The numbers of correctly downgraded masses were 39 of 40 (98%) for mean elasticity, 38 of 39 (97%) for maximum elasticity, and 41 of 42 (98%) for elasticity ratio. There was improvement in the diagnostic performance of ultrasound of mass assessment with shear wave elastography parameters added to BI-RADS category 4a masses compared with ultrasound alone. Combined ultrasound and elasticity ratio had the highest improvement, from 35.44% to 87.34% for specificity, from 45.74% to 80.77% for positive predictive value, and from 57.72% to 90.24% for accuracy (p shear wave elastography parameters of benign and malignant solid breast masses. By adding shear wave elastography parameters to BI-RADS category 4a masses, we found that about 90% of them could be correctly downgraded to BI-RADS category 3, thereby avoiding biopsy. Elasticity ratio

  7. Shear-induced particle migration in suspensions of rods

    Energy Technology Data Exchange (ETDEWEB)

    Mondy, L.A. (Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)); Brenner, H. (Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)); Altobelli, S.A. (The Lovelace Institutes, 2425 Ridgecrest Drive, S. E., Albuquerque, New Mexico 87108 (United States)); Abbott, J.R.; Graham, A.L. (Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States))

    1994-03-01

    Shear-induced migration of particles occurs in suspensions of neutrally buoyant spheres in Newtonian fluids undergoing shear in the annular space between two rotating, coaxial cylinders (a wide-gap Couette), even when the suspension is in creeping flow. Previous studies have shown that the rate of migration of spherical particles from the high-shear-rate region near the inner (rotating) cylinder to the low-shear-rate region near the outer (stationary) cylinder increases rapidly with increasing sphere size. To determine the effect of particle shape, the migration of rods suspended in Newtonian fluids was recently measured. The behavior of several suspensions was studied. Each suspension contained well-characterized, uniform rods with aspect ratios ranging from 2 to 18 at either 0.30 or 0.40 volume fraction. At the same volume fraction of solids, the steady-state, radial concentration profiles for rods were independent of aspect ratio and were indistinguishable from those obtained from suspended spheres. Only minor differences near the walls (attributable to the finite size of the rods relative to the curvature of the walls) appeared to differentiate the profiles. Data taken during the transition from a well-mixed suspension to the final steady state show that the rate of migration increased as the volume of the individual rods increased.

  8. Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks

    International Nuclear Information System (INIS)

    Walton, O.R.; Braun, R.L.

    1986-01-01

    Employing nonequilibrium molecular-dynamics methods the effects of two energy loss mechanisms on viscosity, stress, and granular-temperature in assemblies of nearly rigid, inelastic frictional disks undergoing steady-state shearing are calculated. Energy introduced into the system through forced shearing is dissipated by inelastic normal forces or through frictional sliding during collisions resulting in a natural steady-state kinetic energy density (granular-temperature) that depends on the density and shear rate of the assembly and on the friction and inelasticity properties of the disks. The calculations show that both the mean deviatoric particle velocity and the effective viscosity of a system of particles with fixed friction and restitution coefficients increase almost linearly with strain rate. Particles with a velocity-dependent coefficient of restitution show a less rapid increase in both deviatoric velocity and viscosity as strain rate increases. Particles with highly dissipative interactions result in anisotropic pressure and velocity distributions in the assembly, particularly at low densities. At very high densities the pressure also becomes anisotropic due to high contact forces perpendicular to the shearing direction. The mean rotational velocity of the frictional disks is nearly equal to one-half the shear rate. The calculated ratio of shear stress to normal stress varies significantly with density while the ratio of shear stress to total pressure shows much less variation. The inclusion of surface friction (and thus particle rotation) decreases shear stress at low density but increases shear stress under steady shearing at higher densities

  9. Analysis of reaction schemes using maximum rates of constituent steps

    Science.gov (United States)

    Motagamwala, Ali Hussain; Dumesic, James A.

    2016-01-01

    We show that the steady-state kinetics of a chemical reaction can be analyzed analytically in terms of proposed reaction schemes composed of series of steps with stoichiometric numbers equal to unity by calculating the maximum rates of the constituent steps, rmax,i, assuming that all of the remaining steps are quasi-equilibrated. Analytical expressions can be derived in terms of rmax,i to calculate degrees of rate control for each step to determine the extent to which each step controls the rate of the overall stoichiometric reaction. The values of rmax,i can be used to predict the rate of the overall stoichiometric reaction, making it possible to estimate the observed reaction kinetics. This approach can be used for catalytic reactions to identify transition states and adsorbed species that are important in controlling catalyst performance, such that detailed calculations using electronic structure calculations (e.g., density functional theory) can be carried out for these species, whereas more approximate methods (e.g., scaling relations) are used for the remaining species. This approach to assess the feasibility of proposed reaction schemes is exact for reaction schemes where the stoichiometric coefficients of the constituent steps are equal to unity and the most abundant adsorbed species are in quasi-equilibrium with the gas phase and can be used in an approximate manner to probe the performance of more general reaction schemes, followed by more detailed analyses using full microkinetic models to determine the surface coverages by adsorbed species and the degrees of rate control of the elementary steps. PMID:27162366

  10. Structure in sheared supercooled liquids: Dynamical rearrangements of an effective system of icosahedra.

    Science.gov (United States)

    Pinney, Rhiannon; Liverpool, Tanniemola B; Royall, C Patrick

    2016-12-21

    We consider a binary Lennard-Jones glassformer whose super-Arrhenius dynamics are correlated with the formation of particles organized into icosahedra under simple steady state shear. We recast this glassformer as an effective system of icosahedra [Pinney et al., J. Chem. Phys. 143, 244507 (2015)]. From the observed population of icosahedra in each steady state, we obtain an effective temperature which is linearly dependent on the shear rate in the range considered. Upon shear banding, the system separates into a region of high shear rate and a region of low shear rate. The effective temperatures obtained in each case show that the low shear regions correspond to a significantly lower temperature than the high shear regions. Taking a weighted average of the effective temperature of these regions (weight determined by region size) yields an estimate of the effective temperature which compares well with an effective temperature based on the global mesocluster population of the whole system.

  11. Shear-wave elastography for breast masses: local shear wave speed (m/sec) versus Young modulus (kPa).

    Science.gov (United States)

    Youk, Ji Hyun; Son, Eun Ju; Park, Ah Young; Kim, Jeong-Ah

    2014-01-01

    To evaluate and compare the performance of shear-wave elastography (SWE) for breast masses using the local shear wave speed (m/sec) vs. Young modulus (kPa). A total of 130 breast lesions in 123 women who underwent SWE before ultrasound- guided core needle biopsy or surgical excision were included. With the region-of-interest placed over the stiffest areas of the lesion on SWE, the quantitative mean, maximum, and standard deviation (SD) of the elasticity values were measured in kPa and m/sec for each lesion. The SD was also measured with the region-of-interest including the whole breast lesion (wSD). The area under the receiver operating characteristic curve (AUC), sensitivity, and specificity of each elasticity value measured in kPa and m/sec were compared. Of the 130 lesions, 49 (37.7%) were malignant and 81 (62.3%) were benign. The AUCs for the mean, maximum, and SD of the elasticity values using kPa and m/sec did not differ significantly: mean, 0.974 vs. 0.974; maximum, 0.960 vs. 0.976; SD, 0.916 vs. 0.916. However, the AUC for wSD showed a significant difference: 0.964 (kPa) vs. 0.960 (m/sec) (P=0.036). There was no significant difference in the sensitivity and specificity of the mean, maximum, and wSD of the elasticity values. However, the specificity of the SD was significantly different between the two different measurements: 95.1% (kPa) vs. 87.7% (m/sec) (P=0.031). The quantitative elasticity values measured in kPa and m/sec on SWE showed good diagnostic performance. The specificity of the SD and AUC of the wSD measured in kPa were significantly higher than those measured in m/sec.

  12. Shear-wave elastography for breast masses: local shear wave speed (m/sec) versus Young modulus (kPa)

    Energy Technology Data Exchange (ETDEWEB)

    Youk, Ji Hyun; Son, Eun Ju; Park, Ah Young; Kim, Jeong Ah [Dept. of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2014-03-15

    To evaluate and compare the performance of shear-wave elastography (SWE) for breast masses using the local shear wave speed (m/sec) vs. Young modulus (kPa). A total of 130 breast lesions in 123 women who underwent SWE before ultrasound- guided core needle biopsy or surgical excision were included. With the region-of-interest placed over the stiffest areas of the lesion on SWE, the quantitative mean, maximum, and standard deviation (SD) of the elasticity values were measured in kPa and m/sec for each lesion. The SD was also measured with the region-of-interest including the whole breast lesion (wSD). The area under the receiver operating characteristic curve (AUC), sensitivity, and specificity of each elasticity value measured in kPa and m/sec were compared. Of the 130 lesions, 49 (37.7%) were malignant and 81 (62.3%) were benign. The AUCs for the mean, maximum, and SD of the elasticity values using kPa and m/sec did not differ significantly: mean, 0.974 vs. 0.974; maximum, 0.960 vs. 0.976; SD, 0.916 vs. 0.916. However, the AUC for wSD showed a significant difference: 0.964 (kPa) vs. 0.960 (m/sec) (P=0.036). There was no significant difference in the sensitivity and specificity of the mean, maximum, and wSD of the elasticity values. However, the specificity of the SD was significantly different between the two different measurements: 95.1% (kPa) vs. 87.7% (m/sec) (P=0.031). The quantitative elasticity values measured in kPa and m/sec on SWE showed good diagnostic performance. The specificity of the SD and AUC of the wSD measured in kPa were significantly higher than those measured in m/sec.

  13. Shear-wave elastography for breast masses: local shear wave speed (m/sec) versus Young modulus (kPa)

    International Nuclear Information System (INIS)

    Youk, Ji Hyun; Son, Eun Ju; Park, Ah Young; Kim, Jeong Ah

    2014-01-01

    To evaluate and compare the performance of shear-wave elastography (SWE) for breast masses using the local shear wave speed (m/sec) vs. Young modulus (kPa). A total of 130 breast lesions in 123 women who underwent SWE before ultrasound- guided core needle biopsy or surgical excision were included. With the region-of-interest placed over the stiffest areas of the lesion on SWE, the quantitative mean, maximum, and standard deviation (SD) of the elasticity values were measured in kPa and m/sec for each lesion. The SD was also measured with the region-of-interest including the whole breast lesion (wSD). The area under the receiver operating characteristic curve (AUC), sensitivity, and specificity of each elasticity value measured in kPa and m/sec were compared. Of the 130 lesions, 49 (37.7%) were malignant and 81 (62.3%) were benign. The AUCs for the mean, maximum, and SD of the elasticity values using kPa and m/sec did not differ significantly: mean, 0.974 vs. 0.974; maximum, 0.960 vs. 0.976; SD, 0.916 vs. 0.916. However, the AUC for wSD showed a significant difference: 0.964 (kPa) vs. 0.960 (m/sec) (P=0.036). There was no significant difference in the sensitivity and specificity of the mean, maximum, and wSD of the elasticity values. However, the specificity of the SD was significantly different between the two different measurements: 95.1% (kPa) vs. 87.7% (m/sec) (P=0.031). The quantitative elasticity values measured in kPa and m/sec on SWE showed good diagnostic performance. The specificity of the SD and AUC of the wSD measured in kPa were significantly higher than those measured in m/sec.

  14. Seismic Failure Mechanism of Reinforced Cold-Formed Steel Shear Wall System Based on Structural Vulnerability Analysis

    Directory of Open Access Journals (Sweden)

    Jihong Ye

    2017-02-01

    Full Text Available A series of structural vulnerability analyses are conducted on a reinforced cold-formed steel (RCFS shear wall system and a traditional cold-formed steel (CFS shear wall system subjected to earthquake hazard based on forms in order to investigate their failure mechanisms. The RCFS shear wall adopts rigid beam-column joints and continuous concrete-filled CFS tube end studs rather than coupled-C section end studs that are used in traditional CFS shear walls, to achieve the rigid connections in both beam-column joints and column bases. The results show that: the RCFS and traditional CFS shear wall systems both exhibit the maximum vulnerability index associated with the failure mode in the first story. Therefore, the first story is likely to be a weakness of the CFS shear wall system. Once the wall is damaged, the traditional CFS shear wall system would collapse because the shear wall is the only lateral-resisting component. However, the collapse resistance of the RCFS shear wall system is effectively enhanced by the second defense, which is provided by a framework integrated by rigid beam-column joints and fixed column bases. The predicted collapse mode with maximum vulnerability index that was obtained by structural vulnerability analysis agrees well with the experimental result, and the structural vulnerability method is thereby verified to be reasonable to identify the weaknesses of framed structures and predict their collapse modes. Additionally, the quantitative vulnerability index indicates that the RCFS shear wall system exhibits better robustness compared to the traditional one. Furthermore, the “strong frame weak wallboard” and the “strong column weak beam” are proposed in this study as conceptional designations for the RCFS shear wall systems.

  15. Three-dimensional flow structure and patterns of bed shear stress in an evolving compound meander bend

    Science.gov (United States)

    Engel, Frank; Rhoads, Bruce L.

    2016-01-01

    Compound meander bends with multiple lobes of maximum curvature are common in actively evolving lowland rivers. Interaction among spatial patterns of mean flow, turbulence, bed morphology, bank failures and channel migration in compound bends is poorly understood. In this paper, acoustic Doppler current profiler (ADCP) measurements of the three-dimensional (3D) flow velocities in a compound bend are examined to evaluate the influence of channel curvature and hydrologic variability on the structure of flow within the bend. Flow structure at various flow stages is related to changes in bed morphology over the study timeframe. Increases in local curvature within the upstream lobe of the bend reduce outer bank velocities at morphologically significant flows, creating a region that protects the bank from high momentum flow and high bed shear stresses. The dimensionless radius of curvature in the upstream lobe is one-third less than that of the downstream lobe, with average bank erosion rates less than half of the erosion rates for the downstream lobe. Higher bank erosion rates within the downstream lobe correspond to the shift in a core of high velocity and bed shear stresses toward the outer bank as flow moves through the two lobes. These erosion patterns provide a mechanism for continued migration of the downstream lobe in the near future. Bed material size distributions within the bend correspond to spatial patterns of bed shear stress magnitudes, indicating that bed material sorting within the bend is governed by bed shear stress. Results suggest that patterns of flow, sediment entrainment, and planform evolution in compound meander bends are more complex than in simple meander bends. Moreover, interactions among local influences on the flow, such as woody debris, local topographic steering, and locally high curvature, tend to cause compound bends to evolve toward increasing planform complexity over time rather than stable configurations.

  16. Impact of Age and Aerobic Exercise Training on Conduit Artery Wall Thickness: Role of the Shear Pattern.

    Science.gov (United States)

    Tanahashi, Koichiro; Kosaki, Keisei; Sawano, Yuriko; Yoshikawa, Toru; Tagawa, Kaname; Kumagai, Hiroshi; Akazawa, Nobuhiko; Maeda, Seiji

    2017-01-01

    Hemodynamic shear stress is the frictional force of blood on the arterial wall. The shear pattern in the conduit artery affects the endothelium and may participate in the development and progression of atherosclerosis. We investigated the role of the shear pattern in age- and aerobic exercise-induced changes in conduit artery wall thickness via cross-sectional and interventional studies. In a cross-sectional study, we found that brachial shear rate patterns and brachial artery intima-media thickness (IMT) correlated with age. Additionally, brachial artery shear rate patterns were associated with brachial artery IMT in 102 middle-aged and older individuals. In an interventional study, 39 middle-aged and older subjects were divided into 2 groups: control and exercise. The exercise group completed 12 weeks of aerobic exercise training. Aerobic exercise training significantly increased the antegrade shear rate and decreased the retrograde shear rate and brachial artery IMT. Moreover, changes in the brachial artery antegrade shear rate and the retrograde shear rate correlated with the change in brachial artery IMT. The results of the present study indicate that changes in brachial artery shear rate patterns may contribute to age- and aerobic exercise training-induced changes in brachial artery wall thickness. © 2017 S. Karger AG, Basel.

  17. High speed all optical shear wave imaging optical coherence elastography (Conference Presentation)

    Science.gov (United States)

    Song, Shaozhen; Hsieh, Bao-Yu; Wei, Wei; Shen, Tueng; O'Donnell, Matthew; Wang, Ruikang K.

    2016-03-01

    Optical Coherence Elastography (OCE) is a non-invasive testing modality that maps the mechanical property of soft tissues with high sensitivity and spatial resolution using phase-sensitive optical coherence tomography (PhS-OCT). Shear wave OCE (SW-OCE) is a leading technique that relies on the speed of propagating shear waves to provide a quantitative elastography. Previous shear wave imaging OCT techniques are based on repeated M-B scans, which have several drawbacks such as long acquisition time and repeated wave stimulations. Recent developments of Fourier domain mode-locked high-speed swept-source OCT system has enabled enough speed to perform KHz B-scan rate OCT imaging. Here we propose ultra-high speed, single shot shear wave imaging to capture single-shot transient shear wave propagation to perform SW-OCE. The frame rate of shear wave imaging is 16 kHz, at A-line rate of ~1.62 MHz, which allows the detection of high-frequency shear wave of up to 8 kHz. The shear wave is generated photothermal-acoustically, by ultra-violet pulsed laser, which requires no contact to OCE subjects, while launching high frequency shear waves that carries rich localized elasticity information. The image acquisition and processing can be performed at video-rate, which enables real-time 3D elastography. SW-OCE measurements are demonstrated on tissue-mimicking phantoms and porcine ocular tissue. This approach opens up the feasibility to perform real-time 3D SW-OCE in clinical applications, to obtain high-resolution localized quantitative measurement of tissue biomechanical property.

  18. SEDflume - High Shear Stress Flume

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Army Corps of Engineers High Shear Stress flume (SEDflume) is designed for estimating erosion rates of fine-grained and mixed fine/coarse grained sediments...

  19. What controls the maximum magnitude of injection-induced earthquakes?

    Science.gov (United States)

    Eaton, D. W. S.

    2017-12-01

    Three different approaches for estimation of maximum magnitude are considered here, along with their implications for managing risk. The first approach is based on a deterministic limit for seismic moment proposed by McGarr (1976), which was originally designed for application to mining-induced seismicity. This approach has since been reformulated for earthquakes induced by fluid injection (McGarr, 2014). In essence, this method assumes that the upper limit for seismic moment release is constrained by the pressure-induced stress change. A deterministic limit is given by the product of shear modulus and the net injected fluid volume. This method is based on the assumptions that the medium is fully saturated and in a state of incipient failure. An alternative geometrical approach was proposed by Shapiro et al. (2011), who postulated that the rupture area for an induced earthquake falls entirely within the stimulated volume. This assumption reduces the maximum-magnitude problem to one of estimating the largest potential slip surface area within a given stimulated volume. Finally, van der Elst et al. (2016) proposed that the maximum observed magnitude, statistically speaking, is the expected maximum value for a finite sample drawn from an unbounded Gutenberg-Richter distribution. These three models imply different approaches for risk management. The deterministic method proposed by McGarr (2014) implies that a ceiling on the maximum magnitude can be imposed by limiting the net injected volume, whereas the approach developed by Shapiro et al. (2011) implies that the time-dependent maximum magnitude is governed by the spatial size of the microseismic event cloud. Finally, the sample-size hypothesis of Van der Elst et al. (2016) implies that the best available estimate of the maximum magnitude is based upon observed seismicity rate. The latter two approaches suggest that real-time monitoring is essential for effective management of risk. A reliable estimate of maximum

  20. Evaluation of the interfacial shear strength and residual stress of TiAlN coating on ZIRLO™ fuel cladding using a modified shear-lag model approach

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y., E-mail: troy.liu@manchester.ac.uk [Materials Performance Centre, School of Materials, The University of Manchester, M13 9PL (United Kingdom); Bhamji, I., E-mail: imran.bhamji@manchester.ac.uk [Materials Performance Centre, School of Materials, The University of Manchester, M13 9PL (United Kingdom); Withers, P.J., E-mail: p.j.withers@manchester.ac.uk [Materials Performance Centre, School of Materials, The University of Manchester, M13 9PL (United Kingdom); Wolfe, D.E., E-mail: dew125@arl.psu.edu [The Pennsylvania State University, University Park, State College, PA 16801 (United States); Motta, A.T., E-mail: atmnuc@engr.psu.edu [The Pennsylvania State University, University Park, State College, PA 16801 (United States); Preuss, M., E-mail: michael.preuss@manchester.ac.uk [Materials Performance Centre, School of Materials, The University of Manchester, M13 9PL (United Kingdom)

    2015-11-15

    This paper investigates the residual stresses and interfacial shear strength of a TiAlN coating on Zr–Nb–Sn–Fe alloy (ZIRLO™) substrate designed to improve corrosion resistance of fuel cladding used in water-cooled nuclear reactors, both during normal and exceptional conditions, e.g. a loss of coolant event (LOCA). The distribution and maximum value of the interfacial shear strength has been estimated using a modified shear-lag model. The parameters critical to this analysis were determined experimentally. From these input parameters the interfacial shear strength between the TiAlN coating and ZIRLO™ substrate was inferred to be around 120 MPa. It is worth noting that the apparent strength of the coating is high (∼3.4 GPa). However, this is predominantly due to the large compressive residuals stress (3 GPa in compression), which must be overcome for the coating to fail in tension, which happens at a load just 150 MPa in excess of this.

  1. Crosswind Shear Gradient Affect on Wake Vortices

    Science.gov (United States)

    Proctor, Fred H.; Ahmad, Nashat N.

    2011-01-01

    Parametric simulations with a Large Eddy Simulation (LES) model are used to explore the influence of crosswind shear on aircraft wake vortices. Previous studies based on field measurements, laboratory experiments, as well as LES, have shown that the vertical gradient of crosswind shear, i.e. the second vertical derivative of the environmental crosswind, can influence wake vortex transport. The presence of nonlinear vertical shear of the crosswind velocity can reduce the descent rate, causing a wake vortex pair to tilt and change in its lateral separation. The LES parametric studies confirm that the vertical gradient of crosswind shear does influence vortex trajectories. The parametric results also show that vortex decay from the effects of shear are complex since the crosswind shear, along with the vertical gradient of crosswind shear, can affect whether the lateral separation between wake vortices is increased or decreased. If the separation is decreased, the vortex linking time is decreased, and a more rapid decay of wake vortex circulation occurs. If the separation is increased, the time to link is increased, and at least one of the vortices of the vortex pair may have a longer life time than in the case without shear. In some cases, the wake vortices may never link.

  2. A sensitive dynamic viscometer for measuring the complex shear modulus in a steady shear flow using the method of orthogonal superposition

    NARCIS (Netherlands)

    Zeegers, J.C.H.; Zeegers, Jos; van den Ende, Henricus T.M.; Blom, C.; Altena, E.G.; Beukema, Gerrit J.; Beukema, G.J.; Mellema, J.

    1995-01-01

    A new instrument to carry out complex viscosity measurements in equilibrium and in a steady shear flow has been developed. A small amplitude harmonic excitation is superimposed orthogonally to the steady shear rate component. It is realized by a thin-walled cylinder, which oscillates in the axial

  3. Diagnostic performance of shear wave elastography of the breast according to scanning orientation.

    Science.gov (United States)

    Kim, Solip; Choi, SeonHyeong; Choi, Yoonjung; Kook, Shin-Ho; Park, Hee Jin; Chung, Eun Chul

    2014-10-01

    To evaluate the influence of the scanning orientation on diagnostic performance measured by the mean elasticity, maximum elasticity, and fat-to-lesion elasticity ratio on ultrasound-based shear wave elastography in differentiating breast cancers from benign lesions. In this study, a total of 260 breast masses from 235 consecutive patients were observed from March 2012 to November 2012. For each lesion, the mean elasticity value, maximum elasticity value, and fat-to-lesion ratio were measured along two orthogonal directions, and all values were compared with pathologic results. There were 59 malignant and 201 benign lesions. Malignant masses showed higher mean elasticity, maximum elasticity, and fat-to-lesion ratio values than benign lesions (P masses; and mean elasticity, 0.392, for anterior mammary fat. Mean elasticity, maximum elasticity, and fat-to-lesion elasticity ratio values were helpful in differentiating benign and malignant breast masses. The scanning orientation did not significantly affect the diagnostic performance of shear wave elastography for breast masses. © 2014 by the American Institute of Ultrasound in Medicine.

  4. Brachial Artery Flow-mediated Dilation Following Exercise with Augmented Oscillatory and Retrograde Shear Rate

    Directory of Open Access Journals (Sweden)

    Johnson Blair D

    2012-08-01

    Full Text Available Abstract Background Acute doses of elevated retrograde shear rate (SR appear to be detrimental to endothelial function in resting humans. However, retrograde shear increases during moderate intensity exercise which also enhances post-exercise endothelial function. Since SR patterns differ with the modality of exercise, it is important to determine if augmented retrograde SR during exercise influences post-exercise endothelial function. This study tested the hypothesis that (1 increased doses of retrograde SR in the brachial artery during lower body supine cycle ergometer exercise would attenuate post-exercise flow-mediated dilation (FMD in a dose-dependent manner, and (2 antioxidant vitamin C supplementation would prevent the attenuated post-exercise FMD response. Methods Twelve men participated in four randomized exercise sessions (90 W for 20 minutes on separate days. During three of the sessions, one arm was subjected to increased oscillatory and retrograde SR using three different forearm cuff pressures (20, 40, 60 mmHg (contralateral arm served as the control and subjects ingested placebo capsules prior to exercise. A fourth session with 60 mmHg cuff pressure was performed with 1 g of vitamin C ingested prior to the session. Results Post-exercise FMD following the placebo conditions were lower in the cuffed arm versus the control arm (arm main effect: P P > 0.05. Following vitamin C treatment, post-exercise FMD in the cuffed and control arm increased from baseline (P P > 0.05. Conclusions These results indicate that augmented oscillatory and retrograde SR in non-working limbs during lower body exercise attenuates post-exercise FMD without an evident dose–response in the range of cuff pressures evaluated. Vitamin C supplementation prevented the attenuation of FMD following exercise with augmented oscillatory and retrograde SR suggesting that oxidative stress contributes to the adverse effects of oscillatory and

  5. Magnetic fabric of sheared till: A strain indicator for evaluating the bed deformation model of glacier flow

    Science.gov (United States)

    Hooyer, T.S.; Iverson, N.R.; Lagroix, F.; Thomason, J.F.

    2008-01-01

    Wet-based portions of ice sheets may move primarily by shearing their till beds, resting in high sediment fluxes and the development of subglacial landforms. This model of glacier movement, which requires high bed shear strains, can be tested using till microstructural characteristics that evolve during till deformation. Here we examine the development of magnetic fabric using a ring shear device to defom two Wisconsin-age basal tills to shear strains as high as 70. Hysteresis experiments and the dependence of magnetic susceptibility of these tills on temperature demonstrate that anisotropy of magnetic susceptibility (AMS) develops during shear due to the rotation of primarily magnetite particles that are silt sized or smaller. At moderate shear strains (???6-25), principal axes of maximum magnetic susceptibility develop a strong fabric (S1 eignevalues of 0.83-0.96), without further strengthening at higher strains, During deformation, directions of maximum susceptibility cluster strongly in the direction of shear and plunge 'up-glacier,' consistent with the behavior of pebbles and sand particles studied in earlier experiments. In contrast, the magnitude of AMS does not vary systematically with strain and is small relative to its variability among samples; this is because most magnetite grains are contained as inclusions in larger particles and hence do not align during shear. Although processes other than pervasive bed deformation may result in strong flow parallel fabrics, AMS fabrics provide a rapid and objective means of identifying basal tills that have not been sheared sufficiently to be compatible with the bed deformation model. Copyright 2008 by the American Geophysical Union.

  6. Influence of heat and shear induced protein aggregation on the in vitro digestion rate of whey proteins.

    Science.gov (United States)

    Singh, Tanoj K; Øiseth, Sofia K; Lundin, Leif; Day, Li

    2014-11-01

    Protein intake is essential for growth and repair of body cells, the normal functioning of muscles, and health related immune functions. Most food proteins are consumed after undergoing various degrees of processing. Changes in protein structure and assembly as a result of processing impact the digestibility of proteins. Research in understanding to what extent the protein structure impacts the rate of proteolysis under human physiological conditions has gained considerable interest. In this work, four whey protein gels were prepared using heat processing at two different pH values, 6.8 and 4.6, with and without applied shear. The gels showed different protein network microstructures due to heat induced unfolding (at pH 6.8) or lack of unfolding, thus resulting in fine stranded protein networks. When shear was applied during heating, particulate protein networks were formed. The differences in the gel microstructures resulted in considerable differences in their rheological properties. An in vitro gastric and intestinal model was used to investigate the resulting effects of these different gel structures on whey protein digestion. In addition, the rate of digestion was monitored by taking samples at various time points throughout the in vitro digestion process. The peptides in the digesta were profiled using SDS-polyacrylamide gel electrophoresis, reversed-phase-HPLC and LC-MS. Under simulated gastric conditions, whey proteins in structured gels were hydrolysed faster than native proteins in solution. The rate of peptides released during in vitro digestion differed depending on the structure of the gels and extent of protein aggregation. The outcomes of this work highlighted that changes in the network structure of the protein can influence the rate and pattern of its proteolysis under gastrointestinal conditions. Such knowledge could assist the food industry in designing novel food formulations to control the digestion kinetics and the release of biologically

  7. Observation of Droplet Size Oscillations in a Two-Phase Fluid under Shear Flow

    Science.gov (United States)

    Courbin, Laurent; Panizza, Pascal; Salmon, Jean-Baptiste

    2004-01-01

    Experimental observations of droplet size sustained oscillations are reported in a two-phase flow between a lamellar and a sponge phase. Under shear flow, this system presents two different steady states made of monodisperse multilamellar droplets, separated by a shear-thinning transition. At low and high shear rates, the droplet size results from a balance between surface tension and viscous stress, whereas for intermediate shear rates it becomes a periodic function of time. A possible mechanism for such kinds of oscillations is discussed.

  8. LensEnt2: Maximum-entropy weak lens reconstruction

    Science.gov (United States)

    Marshall, P. J.; Hobson, M. P.; Gull, S. F.; Bridle, S. L.

    2013-08-01

    LensEnt2 is a maximum entropy reconstructor of weak lensing mass maps. The method takes each galaxy shape as an independent estimator of the reduced shear field and incorporates an intrinsic smoothness, determined by Bayesian methods, into the reconstruction. The uncertainties from both the intrinsic distribution of galaxy shapes and galaxy shape estimation are carried through to the final mass reconstruction, and the mass within arbitrarily shaped apertures are calculated with corresponding uncertainties. The input is a galaxy ellipticity catalog with each measured galaxy shape treated as a noisy tracer of the reduced shear field, which is inferred on a fine pixel grid assuming positivity, and smoothness on scales of w arcsec where w is an input parameter. The ICF width w can be chosen by computing the evidence for it.

  9. Shear-Induced Membrane Fusion in Viscous Solutions

    KAUST Repository

    Kogan, Maxim

    2014-05-06

    Large unilamellar lipid vesicles do not normally fuse under fluid shear stress. They might deform and open pores to relax the tension to which they are exposed, but membrane fusion occurring solely due to shear stress has not yet been reported. We present evidence that shear forces in a viscous solution can induce lipid bilayer fusion. The fusion of 1,2-dioleoyl-sn-glycero-3- phosphocholine (DOPC) liposomes is observed in Couette flow with shear rates above 3000 s-1 provided that the medium is viscous enough. Liposome samples, prepared at different viscosities using a 0-50 wt % range of sucrose concentration, were studied by dynamic light scattering, lipid fusion assays using Förster resonance energy transfer (FRET), and linear dichroism (LD) spectroscopy. Liposomes in solutions with 40 wt % (or more) sucrose showed lipid fusion under shear forces. These results support the hypothesis that under suitable conditions lipid membranes may fuse in response to mechanical-force- induced stress. © 2014 American Chemical Society.

  10. Earthquake induced rock shear through a deposition hole. Influence of shear plane inclination and location as well as buffer properties on the damage caused to the canister

    International Nuclear Information System (INIS)

    Boergesson, Lennart; Hernelind, Jan

    2006-10-01

    The effect on the canister of an earthquake induced 20 cm rock shear with the shear rate 1 m/s along a fracture intersecting a deposition hole in a KBS-V repository has been investigated for a number of different shear cases and for different properties of the buffer material. The scenarios have been modelled with the finite element method and calculations have been done using the code ABAQUS. D-element models of the rock, the buffer and the canister have been used. Contact elements that can model separation have been used for the interfaces between the buffer and the rock and the interfaces between the buffer and the canister. The influence of mainly the following factors has been investigated: 1. Inclination of the intersecting fracture. 2. Shear direction when the fracture is not horizontal (inclination deviates from 90 deg). 3. Location of the shear plane when the inclination is 90 deg. 4. Magnitude of the shear displacement. 5. Bentonite type. 6. Bentonite density. 7. Transformation of the buffer to illite or cemented bentonite. The results from the calculations show that all these factors have important influence on the damage of the canister but the influence is for most factors not easily described since there are mutual interferences between the different factors. Plastic strain larger than 1% was reached in the copper already at 10 cm shear in all cases with Na- and Ca- bentonite. However, for several cases of Na-bentonite and one case of Ca-bentonite such plastic strain was only reached in the lid. The plastic strain in the steel was generally smaller than in the copper mainly due to the higher yield stress in the steel. For all cases of Na-bentonite except one and for about half of the Ca-bentonite cases the plastic strain in the steel was smaller than 1% after 10 cm shear. The shear inclination 45 deg was more harmful for the copper tube than the shear inclination 90 deg when tension shear was considered. At the shear inclinations 45 deg and 22.5 deg

  11. Earthquake induced rock shear through a deposition hole. Influence of shear plane inclination and location as well as buffer properties on the damage caused to the canister

    Energy Technology Data Exchange (ETDEWEB)

    Boergesson, Lennart [Clay Technology AB, Lund (Sweden); Hernelind, Jan [5T Engineering AB, Vaesteraas (Sweden)

    2006-10-15

    The effect on the canister of an earthquake induced 20 cm rock shear with the shear rate 1 m/s along a fracture intersecting a deposition hole in a KBS-V repository has been investigated for a number of different shear cases and for different properties of the buffer material. The scenarios have been modelled with the finite element method and calculations have been done using the code ABAQUS. D-element models of the rock, the buffer and the canister have been used. Contact elements that can model separation have been used for the interfaces between the buffer and the rock and the interfaces between the buffer and the canister. The influence of mainly the following factors has been investigated: 1. Inclination of the intersecting fracture. 2. Shear direction when the fracture is not horizontal (inclination deviates from 90 deg). 3. Location of the shear plane when the inclination is 90 deg. 4. Magnitude of the shear displacement. 5. Bentonite type. 6. Bentonite density. 7. Transformation of the buffer to illite or cemented bentonite. The results from the calculations show that all these factors have important influence on the damage of the canister but the influence is for most factors not easily described since there are mutual interferences between the different factors. Plastic strain larger than 1% was reached in the copper already at 10 cm shear in all cases with Na- and Ca- bentonite. However, for several cases of Na-bentonite and one case of Ca-bentonite such plastic strain was only reached in the lid. The plastic strain in the steel was generally smaller than in the copper mainly due to the higher yield stress in the steel. For all cases of Na-bentonite except one and for about half of the Ca-bentonite cases the plastic strain in the steel was smaller than 1% after 10 cm shear. The shear inclination 45 deg was more harmful for the copper tube than the shear inclination 90 deg when tension shear was considered. At the shear inclinations 45 deg and 22.5 deg

  12. New England observed and predicted August stream/river temperature maximum positive daily rate of change points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted August stream/river temperature maximum positive daily rate of change in New England based on a...

  13. New England observed and predicted July stream/river temperature maximum positive daily rate of change points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted July stream/river temperature maximum positive daily rate of change in New England based on a...

  14. New England observed and predicted July maximum negative stream/river temperature daily rate of change points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted July stream/river temperature maximum negative daily rate of change in New England based on a...

  15. Modeling Shear Induced Von Willebrand Factor Binding to Collagen

    Science.gov (United States)

    Dong, Chuqiao; Wei, Wei; Morabito, Michael; Webb, Edmund; Oztekin, Alparslan; Zhang, Xiaohui; Cheng, Xuanhong

    2017-11-01

    Von Willebrand factor (vWF) is a blood glycoprotein that binds with platelets and collagen on injured vessel surfaces to form clots. VWF bioactivity is shear flow induced: at low shear, binding between VWF and other biological entities is suppressed; for high shear rate conditions - as are found near arterial injury sites - VWF elongates, activating its binding with platelets and collagen. Based on parameters derived from single molecule force spectroscopy experiments, we developed a coarse-grain molecular model to simulate bond formation probability as a function of shear rate. By introducing a binding criterion that depends on the conformation of a sub-monomer molecular feature of our model, the model predicts shear-induced binding, even for conditions where binding is highly energetically favorable. We further investigate the influence of various model parameters on the ability to predict shear-induced binding (vWF length, collagen site density and distribution, binding energy landscape, and slip/catch bond length) and demonstrate parameter ranges where the model provides good agreement with existing experimental data. Our results may be important for understanding vWF activity and also for achieving targeted drug therapy via biomimetic synthetic molecules. National Science Foundation (NSF),Division of Mathematical Sciences (DMS).

  16. 2D micromechanical analysis of SiC/Al metal matrix composites under tensile, shear and combined tensile/shear loads

    DEFF Research Database (Denmark)

    Qing, Hai

    2013-01-01

    The influence of interface strength and loading conditions on the mechanical behavior of the metal-matrix composites is investigated in this paper. A program is developed to generate automatically 2D micromechanical Finite element (FE) models including interface, in which both the locations...... and dimensions of Silicon-Carbide (SiC) particles are randomly distributed. Finite element simulations of the deformation and damage evolution of SiC particle reinforced Aluminum (Al) alloy composite are carried out for different microstructures and interphase strengths under tensile, shear and combined tensile....../shear loads. 2D cohesive element is applied to describe the fracture and failure process of interphase, while the damage models based on maximum principal stress criterion and the stress triaxial indicator are developed within Abaqus/Standard Subroutine USDFLD to simulate the failure process of SiC particles...

  17. Shear-driven dynamic clusters in a colloidal glass

    Science.gov (United States)

    Eisenmann, Christoph; Kim, Chanjoong; Mattsson, Johan; Weitz, David

    2007-03-01

    We investigate the effect of shear applied to a colloidal glass on a microscopic level using a shear device that can be mounted on top of a confocal microscope. We find that the glass yields at a critical strain of about 10%, independently of the shear rate. Surprisingly, the yielding is accompanied by an increase of cooperative particle movements and a formation of dynamic clusters which is in contrast to the normal glass transition where one typically finds heterogeneity increasing whilst moving towards the glass transition.

  18. Mean E×B shear effect on geodesic acoustic modes in Tokamaks

    International Nuclear Information System (INIS)

    Singh, Rameswar; Gurcan, Ozgur D.

    2015-01-01

    E × B shearing effect on geodesic acoustic mode (GAM) is investigated for the first time both as an initial value problem in the shearing frame and as an eigenvalue value problem in the lab frame. The nontrivial effects are that E × B shearing couples the standard GAM perturbations to their complimentary poloidal parities. The resulting GAM acquires an effective inertia increasing in time leading to GAM damping. Eigenmode analysis shows that GAMs are radially localized by E × B shearing with the mode width being inversely proportional and radial wave number directly proportional to the shearing rate for weak shear. (author)

  19. Effects of Shear on the Smectic A Phase of Thermotropic Liquid Crystals

    Science.gov (United States)

    Panizza, Pascal; Archambault, Pascal; Roux, Didier

    1995-02-01

    The rheological behaviour of the smectic A phase of the thermotropic liquid crystal 4-cyano-4'-octylbiphenyl (8CB) is examined. X-ray scattering studies under shear flow were performed to probe changes of structures. We found that in a certain range of temperatures two states of orientation of lamellae exist. These two steady states of orientation are separated by a first order dynamic transition that becomes continuous at T_c (a temperature different from that of the smectic/nematic transition). At low shear rates, the smectic A phase is non-Newtonian: its viscosity η varies as (T_c-T)^{1/2}.dot{γ}^{-1/2} (where dot{γ} is the shear rate and T the temperature). In this regime, the structure of the system is compatible with multilamellar cylinders oriented along the flow direction. At high shear rates, the system becomes Newtonian, its layers are then oriented perpendicular to the shearing plates (as already noticed by Safinya et al. [1]).

  20. Influence of velocity shear on the Rayleigh-Taylor instability

    International Nuclear Information System (INIS)

    Guzdar, P.N.; Satyanarayana, P.; Huba, J.D.; Ossakow, S.L.

    1982-01-01

    The influence of a transverse velocity shear on the Rayleigh-Taylor instability is investigated. It is found that a sheared velocity flow can substantially reduce the growth rate of the Rayleigh-Taylor instability in short wavelength regime (i.e., kL>1 where L is the scale length of the density inhomogeneity), and causes the growth rate to maximize at kL<1.0. Applications of this result to ionospheric phenomena [equatorial spread F (ESF) and ionospheric plasma clouds] are discussed. In particular, the effect of shear could account for, at times, the 100's of km modulation observed on the bottomside of the ESF ionosphere and the km scale size wavelengths observed in barium cloud prompt striation phenomena

  1. Flare research with the NASA/MSFC vector magnetograph - Observed characteristics of sheared magnetic fields that produce flares

    Science.gov (United States)

    Moore, R. L.; Hagyard, M. J.; Davis, J. M.

    1987-01-01

    The present MSFC Vector Magnetograph has sufficient spatial resolution (2.7 arcsec pixels) and sensitivity to the transverse field (the noise level is about 100 gauss) to map the transverse field in active regions accurately enough to reveal key aspects of the sheared magnetic fields commonly found at flare sites. From the measured shear angle along the polarity inversion line in sites that flared and in other shear sites that didn't flare, evidence is found that a sufficient condition for a flare to occur in 1000 gauss fields in and near sunspots is that both: (1) the maximum shear angle exceed 85 degrees; and (2) the extent of strong shear (shear angle of greater than 80 degrees) exceed 10,000 km.

  2. Adiabatic shear localization in ultrafine grained 6061 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bingfeng, E-mail: biw009@ucsd.edu [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Department of Mechanical and Aerospace Engineering, University of California, San Diego (United States); State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); Key Lab of Nonferrous Materials, Ministry of Education, Central South University, Changsha 410083 (China); Ma, Rui; Zhou, Jindian [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Li, Zezhou; Zhao, Shiteng [Department of Mechanical and Aerospace Engineering, University of California, San Diego (United States); Huang, Xiaoxia [School of Materials Science and Engineering, Central South University, Changsha 410083 (China)

    2016-10-15

    Localized shear is an important mode of deformation; it leads to catastrophic failure with low ductility, and occurs frequently during high strain-rate deformation. The hat-shaped specimen has been successfully used to generate shear bands under controlled shock-loading tests. The microstructure in the forced shear band was characterized by optical microscopy, microhardness, and transmission electron microscopy. The true flow stress in the shear region can reach 800 MPa where the strain is about 2.2. The whole shear localization process lasts for about 100 μs. The shear band is a long and straight band distinguished from the matrix by boundaries. It can be seen that the grains in the boundary of the shear band are highly elongated along the shear direction and form the elongated cell structures (0.2 µm in width), and the core of the shear band consists of a number of recrystallized equiaxed grains with 0.2−0.3 µm in diameters, and the second phase particles distribute in the boundary of the ultrafine equiaxed new grains. The calculated temperature in the shear band can reach about 667 K. Finally, the formation of the shear band in the ultrafine grained 6061 aluminum alloy and its microstructural evolution are proposed.

  3. An experimental investigation for external RC shear wall applications

    Science.gov (United States)

    Kaltakci, M. Y.; Ozturk, M.; Arslan, M. H.

    2010-09-01

    The strength and rigidity of most reinforced concrete (RC) buildings in Turkey, which are frequently hit by destructive earthquakes, is not at a sufficient level. Therefore, the result of earthquakes is a significant loss of life and property. The strengthening method most commonly preferred for these type of RC buildings is the application of RC infilled walls (shear walls) in the frame openings of the building. However, since the whole building has to be emptied and additional heavy costs arise during this type of strengthening, users prefer not to strengthen their buildings despite the heavy risk they are exposed to. Therefore, it is necessary to develop easier-to-apply and more effective methods for the rapid strengthening of housing and the heavily-used public buildings which cannot be emptied during the strengthening process (such as hospitals and schools). This study empirically analyses the different methods of a new system which can meet this need. In this new system, named "external shear wall application", RC shear walls are applied on the external surface of the building, along the frame plane rather than in the building. To this end, 7 test samples in 1/2 and 1/3 geometrical scale were designed to analyse the efficiency of the strengthening technique where the shear wall leans on the frame from outside of the building (external shear wall application) and of the strengthening technique where a specific space is left between the frame and the external shear wall by using a coupling beam to connect elements (application of external shear wall with coupling beam). Test results showed that the maximum lateral load capacity, initial rigidity and energy dissipation behaviours of the samples strengthened with external shear wall were much better than those of the bare frames.

  4. An experimental investigation for external RC shear wall applications

    Directory of Open Access Journals (Sweden)

    M. Y. Kaltakci

    2010-09-01

    Full Text Available The strength and rigidity of most reinforced concrete (RC buildings in Turkey, which are frequently hit by destructive earthquakes, is not at a sufficient level. Therefore, the result of earthquakes is a significant loss of life and property. The strengthening method most commonly preferred for these type of RC buildings is the application of RC infilled walls (shear walls in the frame openings of the building. However, since the whole building has to be emptied and additional heavy costs arise during this type of strengthening, users prefer not to strengthen their buildings despite the heavy risk they are exposed to. Therefore, it is necessary to develop easier-to-apply and more effective methods for the rapid strengthening of housing and the heavily-used public buildings which cannot be emptied during the strengthening process (such as hospitals and schools. This study empirically analyses the different methods of a new system which can meet this need. In this new system, named "external shear wall application", RC shear walls are applied on the external surface of the building, along the frame plane rather than in the building. To this end, 7 test samples in 1/2 and 1/3 geometrical scale were designed to analyse the efficiency of the strengthening technique where the shear wall leans on the frame from outside of the building (external shear wall application and of the strengthening technique where a specific space is left between the frame and the external shear wall by using a coupling beam to connect elements (application of external shear wall with coupling beam. Test results showed that the maximum lateral load capacity, initial rigidity and energy dissipation behaviours of the samples strengthened with external shear wall were much better than those of the bare frames.

  5. Reversed magnetic shear suppression of electron-scale turbulence on NSTX

    Science.gov (United States)

    Yuh, Howard Y.; Levinton, F. M.; Bell, R. E.; Hosea, J. C.; Kaye, S. M.; Leblanc, B. P.; Mazzucato, E.; Smith, D. R.; Domier, C. W.; Luhmann, N. C.; Park, H. K.

    2009-11-01

    Electron thermal internal transport barriers (e-ITBs) are observed in reversed (negative) magnetic shear NSTX discharges^1. These e-ITBs can be created with either neutral beam heating or High Harmonic Fast Wave (HHFW) RF heating. The e-ITB location occurs at the location of minimum magnetic shear determined by Motional Stark Effect (MSE) constrained equilibria. Statistical studies show a threshold condition in magnetic shear for e-ITB formation. High-k fluctuation measurements at electron turbulence wavenumbers^3 have been made under several different transport regimes, including a bursty regime that limits temperature gradients at intermediate magnetic shear. The growth rate of fluctuations has been calculated immediately following a change in the local magnetic shear, resulting in electron temperature gradient relaxation. Linear gyrokinetic simulation results for NSTX show that while measured electron temperature gradients exceed critical linear thresholds for ETG instability, growth rates can remain low under reversed shear conditions up to high electron temperatures gradients. ^1H. Yuh, et. al., PoP 16, 056120 ^2D.R. Smith, E. Mazzucato et al., RSI 75, 3840 ^3E. Mazzucato, D.R. Smith et al., PRL 101, 075001

  6. Application of an Ultrafine Shearing Method for the Extraction of C-Phycocyanin from Spirulina platensis

    Directory of Open Access Journals (Sweden)

    Jianfeng Yu

    2017-11-01

    Full Text Available Cell disruption is an important step during the extraction of C-phycocyanin from Spirulina platensis. An ultrafine shearing method is introduced and combined with soaking and ultrasonication to disrupt the cell walls of S. platensis efficiently and economically. Five kinds of cell disruption method, including soaking, ultrasonication, freezing-thawing, soaking-ultrafine shearing and soaking-ultrafine shearing-ultrasonication were applied to break the cell walls of S. platensis. The effectiveness of cell breaking was evaluated based on the yield of the C-phycocyanin. The results show that the maximum C-phycocyanin yield was 9.02%, achieved by the soaking-ultrafine shearing-ultrasonication method, followed by soaking (8.43%, soaking-ultrafine shearing (8.89%, freezing and thawing (8.34%, and soaking-ultrasonication (8.62%. The soaking-ultrafine shearing-ultrasonication method is a novel technique for breaking the cell walls of S. platensis for the extraction of C-phycocyanin.

  7. Producing High-Performance, Stable, Sheared-Flow Z-Pinches in the FuZE project

    Science.gov (United States)

    Golingo, R. P.; Shumlak, U.,; Nelson, B. A.; Claveau, E. L.; Forbes, E. G.; Stepanov, A. D.; Weber, T. R.; Zhang, Y.; McLean, H. S.; Tummel, K. K.; Higginson, D. P.; Schmidt, A. E.; University of Washington (UW) Collaboration; Lawrence Livermore National Laboratory (LLNL) Collaboration

    2017-10-01

    The Fusion Z-Pinch Experiment (FuZE) has made significant strides towards generating high-performance, stable Z-pinch plasmas with goals of ne = 1018 cm-3 and T =1 keV. The Z-pinch plasmas are stabilized with a sheared axial flow that is driven by a coaxial accelerator. The new FuZE device has been constructed and reproduces the major scientific achievements the ZaP project at the University of Washington; ne = 1016 cm-3,T = 100 eV, r20 μs. These parameters are measured with an array of magnetic field probes, spectroscopy, and fast framing cameras. The plasma parameters are achieved using a small fraction of the maximum energy storage and gas injection capability of the FuZE device. Higher density, ne = 5×1017 cm-3, and temperature, T = 500 eV, Z-pinch plasmas are formed by increasing the pinch current. At the higher voltages and currents, the ionization rates in the accelerator increase. By modifying the neutral gas profile in the accelerator, the plasma flow from the accelerator is maintained, driving the flow shear. Formation and sustainment of the sheared-flow Z-pinch plasma will be discussed. Experimental data demonstrating high performance plasmas in a stable Z-pinches will be shown. This work is supported by an award from US ARPA-E.

  8. Study on shear properties of coral sand under cyclic simple shear condition

    Science.gov (United States)

    Ji, Wendong; Zhang, Yuting; Jin, Yafei

    2018-05-01

    In recent years, the ocean development in our country urgently needs to be accelerated. The construction of artificial coral reefs has become an important development direction. In this paper, experimental studies of simple shear and cyclic simple shear of coral sand are carried out, and the shear properties and particle breakage of coral sand are analyzed. The results show that the coral sand samples show an overall shear failure in the simple shear test, which is more accurate and effective for studying the particle breakage. The shear displacement corresponding to the peak shear stress of the simple shear test is significantly larger than that corresponding to the peak shear stress of the direct shear test. The degree of particle breakage caused by the simple shear test is significantly related to the normal stress level. The particle breakage of coral sand after the cyclic simple shear test obviously increases compared with that of the simple shear test, and universal particle breakage occurs within the whole particle size range. The increasing of the cycle-index under cyclic simple shear test results in continuous compacting of the sample, so that the envelope curve of peak shearing force increases with the accumulated shear displacement.

  9. 30 CFR 75.601-3 - Short circuit protection; dual element fuses; current ratings; maximum values.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Short circuit protection; dual element fuses... Trailing Cables § 75.601-3 Short circuit protection; dual element fuses; current ratings; maximum values. Dual element fuses having adequate current-interrupting capacity shall meet the requirements for short...

  10. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh

    1997-01-01

    The paper deals with the plastic shear strength of non shear reinforced T-beams.The influence of an un-reinforced flange on the shear capacity is investigated by considering a failure mechanism involving crack sliding in the web and a kind of membrane action over an effective width of the flange...

  11. Effect of particle-particle shearing on the bioleaching of sulfide minerals.

    Science.gov (United States)

    Chong, N; Karamanev, D G; Margaritis, A

    2002-11-05

    The biological leaching of sulfide minerals, used for the production of gold, copper, zinc, cobalt, and other metals, is very often carried out in slurry bioreactors, where the shearing between sulfide particles is intensive. In order to be able to improve the efficiency of the bioleaching, it is of significant importance to know the effect of particle shearing on the rate of leaching. The recently proposed concept of ore immobilization allowed us to study the effect of particle shearing on the rate of sulfide (pyrite) leaching by Thiobacillus ferrooxidans. Using this concept, we designed two very similar bioreactors, the main difference between which was the presence and absence of particle-particle shearing. It was shown that when the oxygen mass transfer was not the rate-limiting step, the rate of bioleaching in the frictionless bioreactor was 2.5 times higher than that in a bioreactor with particle friction (shearing). The concentration of free suspended cells in the frictionless bioreactor was by orders of magnitude lower than that in the frictional bioreactor, which showed that particle friction strongly reduces the microbial attachment to sulfide surface, which, in turn, reduces the rate of bioleaching. Surprisingly, it was found that formation of a layer of insoluble iron salts on the surface of sulfide particles is much slower under shearless conditions than in the presence of particle-particle shearing. This was explained by the effect of particle friction on liquid-solid mass transfer rate. The results of this study show that reduction of the particle friction during bioleaching of sulfide minerals can bring important advantages not only by increasing significantly the bioleaching rate, but also by increasing the rate of gas-liquid oxygen mass transfer, reducing the formation of iron precipitates and reducing the energy consumption. One of the efficient methods for reduction of particle friction is ore immobilization in a porous matrix. Copyright 2002

  12. NUMERICAL SIMULATION OF AN AGRICULTURAL SOIL SHEAR STRESS TEST

    Directory of Open Access Journals (Sweden)

    Andrea Formato

    2007-03-01

    Full Text Available In this work a numerical simulation of agricultural soil shear stress tests was performed through soil shear strength data detected by a soil shearometer. We used a soil shearometer available on the market to measure soil shear stress and constructed special equipment that enabled automated detection of soil shear stress. It was connected to an acquisition data system that displayed and recorded soil shear stress during the full field tests. A soil shearometer unit was used to the in situ measurements of soil shear stress in full field conditions for different types of soils located on the right side of the Sele river, at a distance of about 1 km from each other, along the perpendicular to the Sele river in the direction of the sea. Full field tests using the shearometer unit were performed alongside considered soil characteristic parameter data collection. These parameter values derived from hydrostatic compression and triaxial tests performed on considered soil samples and repeated 4 times and we noticed that the difference between the maximum and minimum values detected for every set of performed tests never exceeded 4%. Full field shear tests were simulated by the Abaqus program code considering three different material models of soils normally used in the literature, the Mohr-Coulomb, Drucker-Prager and Cam-Clay models. We then compared all data outcomes obtained by numerical simulations with those from the experimental tests. We also discussed any further simulation data results obtained with different material models and selected the best material model for each considered soil to be used in tyre/soil contact simulation or in soil compaction studies.

  13. Shear strength of shock-loaded polycrystalline tungsten

    International Nuclear Information System (INIS)

    Asay, J.R.; Chhabildas, L.C.; Dandekar, D.P.

    1980-01-01

    Previous experiments have suggested that tungsten undergoes a significant loss of shear strength when shock loaded to stresses greater than 7 GPa. In order to investigate this effect in more detail, a series of experiments was conducted in which polycrystalline tungsten was first shock loaded to approximately 10 GPa and then either unloaded or reloaded from the shocked state. Analysis of measured time-resolved wave profiles indicates that during initial compression to 9.7 GPa, the shear stress in polycrystalline tungsten increases to a maximum value of 1.1 GPA near a longitudinal stress of 5 GPa, but decreases to a final value of 0.8 GPa for stresses approaching 10 GPa. During reloading from a longitudinal stress of 9.7 GPa to a final value of approx.14 GPa, the shear stress increases to a peak value of 1.2 GPa and softens to 1.0 GPa in the final state. During unloading from the shocked state, the initial response is elastic with a strong Baushinger effect. Examination of a recovered sample shows evidence for both deformation slipping and twinning, which may be responsible for the observed softening

  14. Deformation of a Capsule in a Power-Law Shear Flow

    Directory of Open Access Journals (Sweden)

    Fang-Bao Tian

    2016-01-01

    Full Text Available An immersed boundary-lattice Boltzmann method is developed for fluid-structure interactions involving non-Newtonian fluids (e.g., power-law fluid. In this method, the flexible structure (e.g., capsule dynamics and the fluid dynamics are coupled by using the immersed boundary method. The incompressible viscous power-law fluid motion is obtained by solving the lattice Boltzmann equation. The non-Newtonian rheology is achieved by using a shear rate-dependant relaxation time in the lattice Boltzmann method. The non-Newtonian flow solver is then validated by considering a power-law flow in a straight channel which is one of the benchmark problems to validate an in-house solver. The numerical results present a good agreement with the analytical solutions for various values of power-law index. Finally, we apply this method to study the deformation of a capsule in a power-law shear flow by varying the Reynolds number from 0.025 to 0.1, dimensionless shear rate from 0.004 to 0.1, and power-law index from 0.2 to 1.8. It is found that the deformation of the capsule increases with the power-law index for different Reynolds numbers and nondimensional shear rates. In addition, the Reynolds number does not have significant effect on the capsule deformation in the flow regime considered. Moreover, the power-law index effect is stronger for larger dimensionless shear rate compared to smaller values.

  15. Edge-Induced Shear Banding in Entangled Polymeric Fluids.

    Science.gov (United States)

    Hemingway, Ewan J; Fielding, Suzanne M

    2018-03-30

    Despite decades of research, the question of whether solutions and melts of highly entangled polymers exhibit shear banding as their steady state response to a steadily imposed shear flow remains controversial. From a theoretical viewpoint, an important unanswered question is whether the underlying constitutive curve of shear stress σ as a function of shear rate γ[over ˙] (for states of homogeneous shear) is monotonic, or has a region of negative slope, dσ/dγ[over ˙]<0, which would trigger banding. Attempts to settle the question experimentally via velocimetry of the flow field inside the fluid are often confounded by an instability of the free surface where the sample meets the outside air, known as "edge fracture." Here we show by numerical simulation that in fact even only very modest edge disturbances-which are the precursor of full edge fracture but might well, in themselves, go unnoticed experimentally-can cause strong secondary flows in the form of shear bands that invade deep into the fluid bulk. Crucially, this is true even when the underlying constitutive curve is monotonically increasing, precluding true bulk shear banding in the absence of edge effects.

  16. Aerobic exercise acutely prevents the endothelial dysfunction induced by mental stress among subjects with metabolic syndrome: the role of shear rate.

    Science.gov (United States)

    Sales, Allan R K; Fernandes, Igor A; Rocha, Natália G; Costa, Lucas S; Rocha, Helena N M; Mattos, João D M; Vianna, Lauro C; Silva, Bruno M; Nóbrega, Antonio C L

    2014-04-01

    Mental stress induces transient endothelial dysfunction, which is an important finding for subjects at cardiometabolic risk. Thus, we tested whether aerobic exercise prevents this dysfunction among subjects with metabolic syndrome (MetS) and whether an increase in shear rate during exercise plays a role in this phenomenon. Subjects with MetS participated in two protocols. In protocol 1 (n = 16), endothelial function was assessed using brachial artery flow-mediated dilation (FMD). Subjects then underwent a mental stress test followed by either 40 min of leg cycling or rest across two randomized sessions. FMD was assessed again at 30 and 60 min after exercise or rest, with a second mental stress test in between. Mental stress reduced FMD at 30 and 60 min after the rest session (baseline: 7.7 ± 0.4%, 30 min: 5.4 ± 0.5%, and 60 min: 3.9 ± 0.5%, P exercise prevented this reduction (baseline: 7.5 ± 0.4%, 30 min: 7.2 ± 0.7%, and 60 min: 8.7 ± 0.8%, P > 0.05 vs. baseline). Protocol 2 (n = 5) was similar to protocol 1 except that the first period of mental stress was followed by either exercise in which the brachial artery shear rate was attenuated via forearm cuff inflation or exercise without a cuff. Noncuffed exercise prevented the reduction in FMD (baseline: 7.5 ± 0.7%, 30 min: 7.0 ± 0.7%, and 60 min: 8.7 ± 0.8%, P > 0.05 vs. baseline), whereas cuffed exercise failed to prevent this reduction (baseline: 7.5 ± 0.6%, 30 min: 5.4 ± 0.8%, and 60 min: 4.1 ± 0.9%, P exercise prevented mental stress-induced endothelial dysfunction among subjects with MetS, and an increase in shear rate during exercise mediated this effect.

  17. Probabilistic fatigue life of balsa cored sandwich composites subjected to transverse shear

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov; Berggreen, Christian

    2015-01-01

    A probabilistic fatigue life model for end-grain balsa cored sandwich composites subjectedto transverse shear is proposed. The model is calibrated to measured three-pointbending constant-amplitude fatigue test data using the maximum likelihood method. Some possible applications of the probabilistic...

  18. A thin rivulet or ridge subject to a uniform transverse shear stress at its free surface due to an external airflow

    KAUST Repository

    Sullivan, J. M.

    2012-01-01

    We use the lubrication approximation to analyze three closely related problems involving a thin rivulet or ridge (i.e., a two-dimensional droplet) of fluid subject to a prescribed uniform transverse shear stress at its free surface due to an external airflow, namely a rivulet draining under gravity down a vertical substrate, a rivulet driven by a longitudinal shear stress at its free surface, and a ridge on a horizontal substrate, and find qualitatively similar behaviour for all three problems. We show that, in agreement with previous numerical studies, the free surface profile of an equilibrium rivulet/ridge with pinned contact lines is skewed as the shear stress is increased from zero, and that there is a maximum value of the shear stress beyond which no solution with prescribed semi-width is possible. In practice, one or both of the contact lines will de-pin before this maximum value of the shear stress is reached, and so we consider situations in which the rivulet/ridge de-pins at one or both contact lines. In the case of de-pinning only at the advancing contact line, the rivulet/ridge is flattened and widened as the shear stress is increased from its critical value, and there is a second maximum value of the shear stress beyond which no solution with a prescribed advancing contact angle is possible. In contrast, in the case of de-pinning only at the receding contact line, the rivulet/ridge is thickened and narrowed as the shear stress is increased from its critical value, and there is a solution with a prescribed receding contact angle for all values of the shear stress. In general, in the case of de-pinning at both contact lines there is a critical "yield" value of the shear stress beyond which no equilibrium solution is possible and the rivulet/ridge will evolve unsteadily. In the Appendix, we show that an equilibrium rivulet/ridge with prescribed flux/area is quasi-statically stable to two-dimensional perturbations. © 2012 American Institute of Physics.

  19. A simple model to understand the role of membrane shear elasticity and stress-free shape on the motion of red blood cells in shear flow

    Science.gov (United States)

    Viallat, Annie; Abkarian, Manouk; Dupire, Jules

    2015-11-01

    The analytical model presented by Keller and Skalak on the dynamics of red blood cells in shear flow described the cell as a fluid ellipsoid of fixed shape. It was extended to introduce shear elasticity of the cell membrane. We further extend the model when the cell discoid physiological shape is not a stress-free shape. We show that spheroid stress-free shapes enables fitting experimental data with values of shear elasticity typical to that found with micropipettes and optical tweezers. For moderate shear rates (when RBCs keep their discoid shape) this model enables to quantitatively determine an effective cell viscosity, that combines membrane and hemoglobin viscosities and an effective shear modulus of the membrane that combines shear modulus and stress-free shape. This model allows determining RBC mechanical parameters both in the tanktreading regime for cells suspended in a high viscosity medium, and in the tumbling regime for cells suspended in a low viscosity medium. In this regime,a transition is predicted between a rigid-like tumbling motion and a fluid-like tumbling motion above a critical shear rate, which is directly related to the mechanical parameters of the cell. A*MIDEX (n ANR-11-IDEX-0001-02) funded by the ''Investissements d'Avenir'', Region Languedoc-Roussillon, Labex NUMEV (ANR-10-LABX-20), BPI France project DataDiag.

  20. Biomechanics of P-selectin PSGL-1 bonds: Shear threshold and integrin-independent cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Zhihua; Goldsmith, Harry L.; MacIntosh, Fiona A.; Shankaran, Harish; Neelamegham, Sriram

    2006-03-01

    Platelet-leukocyte adhesion may contribute to thrombosis and inflammation. We examined the heterotypic interaction between unactivated neutrophils and either thrombin receptor activating peptide (TRAP) stimulated platelets or P-selectin bearing beads (Ps-beads) in suspension. Cone-plate viscometers were used to apply controlled shear rates from 14-3000/s. Platelet-neutrophil and bead-neutrophil adhesion analysis was performed using both flow cytometry and high-speed videomicroscopy. We observed that while blocking antibodies against either P-selectin or P-selectin glycoprotein ligand-1 (PSGL-1) alone inhibited platelet-neutrophil adhesion by ~60% at 140/s, these reagents completely blocked adhesion at 3000/s. Anti-Mac-1 alone did not alter platelet-neutrophil adhesion rates at any shear rate, though in synergy with selectin antagonists it abrogated cell binding. Unstimulated neutrophils avidly bound Ps-beads and activated platelets in an integrin-independent manner, suggesting that purely selectin-dependent cell adhesion is possible. In support of this, antagonists against P-selectin or PSGL-1 dissociated previously formed platelet-neutrophil and Ps-bead neutrophil aggregates under shear in a variety of experimental systems, including in assays performed with whole blood. In studies where medium viscosity and shear rate were varied, a subtle shear threshold for P-selectin PSGL-1 binding was also noted at shear rates<100/s and at force loading rates of ~300pN/sec. Results are discussed in light of biophysical computations that characterize the collision between unequal size particles in linear shear flow. Overall, our studies reveal an integrin-independent regime for cell adhesion that may be physiologically relevant.

  1. Structural optimization and shear performances of the nanopins based on Y-junction carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhong-Qiang, E-mail: zhangzq@mail.ujs.edu.cn [Micro/Nano Science and Technology Center, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu (China); State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian 116024 (China); Zhong, Jun [Micro/Nano Science and Technology Center, Jiangsu University, Zhenjiang 212013 (China); Ye, Hong-Fei [State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian 116024 (China); Cheng, Guang-Gui [Micro/Nano Science and Technology Center, Jiangsu University, Zhenjiang 212013 (China); Ding, Jian-Ning, E-mail: dingjn@ujs.edu.cn [Micro/Nano Science and Technology Center, Jiangsu University, Zhenjiang 212013 (China); Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu (China)

    2017-01-01

    Utilizing the classical molecular dynamic, we have briefly conducted geometry optimization on several typical nanopins based on Y-junction carbon nanotubes (CNTs), and further investigated their shear performance. The service performance of the nanopin is not sensitive to the length of the inserting end, while as the height of the branch tube increases, the maximum unloading force increases firstly and then keeps relatively stable. The overlong inserting end and high branch tube can lead to the severe oscillation in unloading force due to the continuous morphology change. Moreover, results show that a small angle included in Y-junction CNTs can contribute to both of the fixity of the nanopin and instability of the uninstallation process. Further investigation indicates that the orientation of the branch tubes of the nanopin determines the maximum shear performance, while the radial stability of the CNTs plays an important role in the shear performance of the nanopin. And the microstructure of the Y-junction CNT occurred during the using process can also influence its service performance.

  2. High Resolution Shear Profile Measurements in Entangled Polymers

    KAUST Repository

    Hayes, Keesha A.

    2008-11-17

    We use confocal microscopy and particle image velocimetry to visualize motion of 250-300 nm. fluorescent tracer particles in entangled polymers subject to a rectilinear shear flow. Our results show linear velocity profiles in polymer solutions spanning a wide range of molecular weights and number of entanglements (8≤Z≤56), but reveal large differences between the imposed and measured shear rates. These findings disagree with recent reports that shear banding is a characteristic flow response of entangled polymers, and instead point to interfacial slip as an important source of strain loss. © 2008 The American Physical Society.

  3. Effect of pre-existing shear bands on the tensile mechanical properties of a bulk metallic glass

    International Nuclear Information System (INIS)

    Cao, Q.P.; Liu, J.W.; Yang, K.J.; Xu, F.; Yao, Z.Q.; Minkow, A.; Fecht, H.J.; Ivanisenko, J.; Chen, L.Y.; Wang, X.D.; Qu, S.X.; Jiang, J.Z.

    2010-01-01

    Bulk Zr 64.13 Cu 15.75 Ni 10.12 Al 10 metallic glass has been rolled at room temperature in two different directions, and the dependences of microstructure and tensile mechanical property on the degree of deformation and rolling directions have been investigated. No deformation-induced crystallization occurs except for shear bands. Shear band formation in conjugated directions is achieved in the specimen rolled in two directions, while rolling in one direction induces shear band formation only in a single direction. Pre-existing properly spaced soft inhomogeneities can stabilize shear bands and lead to tensile plastic strain, and the efficient intersection of shear bands in conjugated directions results in work-hardening behavior, which is further confirmed by in situ tensile scanning electron microscopic observation. Based on the experimental results obtained in two different specimen geometries and finite element analysis, it is deduced that a normal-stress-modified maximum shear stress criterion rather than a shear plane criterion can describe the conditions for the formation of shear bands in uniaxial tension.

  4. Seismic cycle feedbacks in a mid-crustal shear zone

    Science.gov (United States)

    Melosh, Benjamin L.; Rowe, Christie D.; Gerbi, Christopher; Smit, Louis; Macey, Paul

    2018-07-01

    Mid-crustal fault rheology is controlled by alternating brittle and plastic deformation mechanisms, which cause feedback cycles that influence earthquake behavior. Detailed mapping and microstructural observations in the Pofadder Shear Zone (Namibia and South Africa) reveal a lithologically heterogeneous shear zone core with quartz-rich mylonites and ultramylonites, plastically overprinted pseudotachylyte and active shear folds. We present evidence for a positive feedback cycle in which coseismic grain size reduction facilitates active shear folding by enhancing competency contrasts and promoting crystal plastic flow. Shear folding strengthens a portion of a shear zone by limb rotation, focusing deformation and promoting plastic flow or brittle slip in resulting areas of localized high stress. Using quartz paleopiezometry, we estimate strain and slip rates consistent with other studies of exhumed shear zones and modern plate boundary faults, helping establish the Pofadder Shear Zone as an ancient analogue to modern, continental-scale, strike-slip faults. This feedback cycle influences seismicity patterns at the scale of study (10s of meters) and possibly larger scales as well, and contributes to bulk strengthening of the brittle-plastic transition on modern plate boundary faults.

  5. ReplacementMatrix: a web server for maximum-likelihood estimation of amino acid replacement rate matrices.

    Science.gov (United States)

    Dang, Cuong Cao; Lefort, Vincent; Le, Vinh Sy; Le, Quang Si; Gascuel, Olivier

    2011-10-01

    Amino acid replacement rate matrices are an essential basis of protein studies (e.g. in phylogenetics and alignment). A number of general purpose matrices have been proposed (e.g. JTT, WAG, LG) since the seminal work of Margaret Dayhoff and co-workers. However, it has been shown that matrices specific to certain protein groups (e.g. mitochondrial) or life domains (e.g. viruses) differ significantly from general average matrices, and thus perform better when applied to the data to which they are dedicated. This Web server implements the maximum-likelihood estimation procedure that was used to estimate LG, and provides a number of tools and facilities. Users upload a set of multiple protein alignments from their domain of interest and receive the resulting matrix by email, along with statistics and comparisons with other matrices. A non-parametric bootstrap is performed optionally to assess the variability of replacement rate estimates. Maximum-likelihood trees, inferred using the estimated rate matrix, are also computed optionally for each input alignment. Finely tuned procedures and up-to-date ML software (PhyML 3.0, XRATE) are combined to perform all these heavy calculations on our clusters. http://www.atgc-montpellier.fr/ReplacementMatrix/ olivier.gascuel@lirmm.fr Supplementary data are available at http://www.atgc-montpellier.fr/ReplacementMatrix/

  6. Cyclic Behavior of Low Rise Concrete Shear Walls Containing Recycled Coarse and Fine Aggregates.

    Science.gov (United States)

    Qiao, Qiyun; Cao, Wanlin; Qian, Zhiwei; Li, Xiangyu; Zhang, Wenwen; Liu, Wenchao

    2017-12-07

    In this study, the cyclic behaviors of low rise concrete shear walls using recycled coarse or fine aggregates were investigated. Eight low rise Recycled Aggregates Concrete (RAC) shear wall specimens were designed and tested under a cyclic loading. The following parameters were varied: replacement percentages of recycled coarse or fine aggregates, reinforcement ratio, axial force ratio and X-shaped rebars brace. The failure characteristics, hysteretic behavior, strength and deformation capacity, strain characteristics and stiffness were studied. Test results showed that the using of the Recycled Coarse Aggregates (RCA) and its replacement ratio had almost no influence on the mechanical behavior of the shear wall; however, the using of Recycled Fine Aggregates (RFA) had a certain influence on the ductility of the shear wall. When the reinforcement ratio increased, the strength and ductility also increased. By increasing the axial force ratio, the strength increased but the ductility decreased significantly. The encased brace had a significant effect on enhancing the RAC shear walls. The experimental maximum strengths were evaluated with existing design codes, it was indicated that the strength evaluation of the low rise RAC shear walls can follow the existing design codes of the conventional concrete shear walls.

  7. Constitutive Curve and Velocity Profile in Entangled Polymers during Start-Up of Steady Shear Flow

    KAUST Repository

    Hayes, Keesha A.

    2010-05-11

    Time-dependent shear stress versus shear rate, constitutive curve, and velocity profile measurements are reported in entangled polymer solutions during start-up of steady shear flow. By combining confocal microscopy and particle image velocimetry (PIV), we determine the time-dependent velocity profile in polybutadiene and polystyrene solutions seeded with fluorescent 150 nm silica and 7.5 μm melamine particles. By comparing these profiles with time-dependent constitutive curves obtained from experiment and theory, we explore the connection between transient nonmonotonic regions in the constitutive curve for an entangled polymer and its susceptibility to unstable flow by shear banding [Adams et al. Phys. Rev. Lett. 2009, 102, 067801-4]. Surprisingly, we find that even polymer systems which exhibit transient, nonmonotonic shear stress-shear rate relationships in bulk rheology experiments manifest time-dependent velocity profiles that are decidedly linear and show no evidence of unstable flow. We also report that interfacial slip plays an important role in the steady shear flow behavior of entangled polymers at shear rates above the reciprocal terminal relaxation time but has little, if any, effect on the shape of the velocity profile. © 2010 American Chemical Society.

  8. Directional dependence of depth of correlation due to in-plane fluid shear in microscopic particle image velocimetry

    International Nuclear Information System (INIS)

    Olsen, Michael G

    2009-01-01

    An analytical model for the microscopic particle image velocimetry (microPIV) correlation signal peak in a purely shearing flow was derived for the case of in-plane shearing (out-of-plane shearing was not considered). This model was then used to derive equations for the measured velocity weighting functions for the two velocity components, and the weighting functions were in turn used to define the depths of correlation associated with the two measured velocity components. The depth of correlation for the velocity component perpendicular to the shear was found to be unaffected by the shear rate. However, the depth of correlation for the velocity component in the direction of the shear was found to be highly dependent on the shear rate, with the depth of correlation increasing as the shear rate increased. Thus, in a flow with shear, there is not a single value for the depth of correlation within an interrogation region. Instead, the depth of correlation exhibits directional dependence, with a different depth of correlation for each of the two measured velocity components. The increase in the depth of correlation due to the shear rate is greater for large numerical aperture objectives than for small numerical aperture objectives. This increase in the depth of correlation in a shearing flow can be quite large, with increases in the depth of correlation exceeding 100% being very possible for high numerical aperture objectives. The effects of out-of-plane shear are beyond the capabilities of this analysis, although the possible consequences of out-of-plane shear are discussed

  9. The microstructure and rheology of a model, thixotropic nanoparticle gel under steady shear and large amplitude oscillatory shear (LAOS)

    International Nuclear Information System (INIS)

    Min Kim, Jung; Kate Gurnon, A.; Wagner, Norman J.; Eberle, Aaron P. R.; Porcar, Lionel

    2014-01-01

    The microstructure-rheology relationship for a model, thermoreversible nanoparticle gel is investigated using a new technique of time-resolved neutron scattering under steady and time-resolved large amplitude oscillatory shear (LAOS) flows. A 21 vol. % gel is tested with varying strength of interparticle attraction. Shear-induced structural anisotropy is observed as butterfly scattering patterns and quantified through an alignment factor. Measurements in the plane of flow show significant, local anisotropy develops with alignment along the compressional axis of flow, providing new insights into how gels flow. The microstructure-rheology relationship is analyzed through a new type of structure-Lissajous plot that shows how the anisotropic microstructure is responsible for the observed LAOS response, which is beyond a response expected for a purely viscous gel with constant structure. The LAOS shear viscosities are observed to follow the “Delaware-Rutgers” rule. Rheological and microstructural data are successfully compared across a broad range of conditions by scaling the shear rate by the strength of attraction, providing a method to compare behavior between steady shear and LAOS experiments. However, important differences remain between the microstructures measured at comparatively high frequency in LAOS experiments and comparable steady shear experiments that illustrate the importance of measuring the microstructure to properly interpret the nonlinear, dynamic rheological response

  10. The microstructure and rheology of a model, thixotropic nanoparticle gel under steady shear and large amplitude oscillatory shear (LAOS)

    Energy Technology Data Exchange (ETDEWEB)

    Min Kim, Jung; Kate Gurnon, A.; Wagner, Norman J., E-mail: wagnernj@udel.edu [Department of Chemical and Biomolecular Engineering and Center for Neutron Science, University of Delaware, Newark, Delaware 19716 (United States); Eberle, Aaron P. R. [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Porcar, Lionel [NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 and Institut Laue-Langevin, BP 156, F-38042 Grenoble Cedex 9 (France)

    2014-09-01

    The microstructure-rheology relationship for a model, thermoreversible nanoparticle gel is investigated using a new technique of time-resolved neutron scattering under steady and time-resolved large amplitude oscillatory shear (LAOS) flows. A 21 vol. % gel is tested with varying strength of interparticle attraction. Shear-induced structural anisotropy is observed as butterfly scattering patterns and quantified through an alignment factor. Measurements in the plane of flow show significant, local anisotropy develops with alignment along the compressional axis of flow, providing new insights into how gels flow. The microstructure-rheology relationship is analyzed through a new type of structure-Lissajous plot that shows how the anisotropic microstructure is responsible for the observed LAOS response, which is beyond a response expected for a purely viscous gel with constant structure. The LAOS shear viscosities are observed to follow the “Delaware-Rutgers” rule. Rheological and microstructural data are successfully compared across a broad range of conditions by scaling the shear rate by the strength of attraction, providing a method to compare behavior between steady shear and LAOS experiments. However, important differences remain between the microstructures measured at comparatively high frequency in LAOS experiments and comparable steady shear experiments that illustrate the importance of measuring the microstructure to properly interpret the nonlinear, dynamic rheological response.

  11. Numerical study on shear resisting mechanism for corroded RC box culverts

    International Nuclear Information System (INIS)

    Matsuo, Toyofumi; Matsumura, Takuro; Iwamori, Akiyuki

    2013-01-01

    This paper discusses the effects of reinforcing steel corrosion on the shear resisting mechanism of RC box culverts and the applicability of the material degradation model in a finite element method. First, in FEM analyses, loss of reinforcement section area and initial tension strain due to reinforcement corrosion, and deteriorated bond characteristics between reinforcement and concrete, were considered. Second, cyclic loading tests using full-scale corroded specimens were numerically analyzed. The analyzed crack patterns and load-displacement relationships up to the maximum load were observed to be in close agreement with the experiment results within the average corrosion ratio of 10% of primary reinforcement. The fact that corrosion cracks can importantly affect the progression of shear cracks and shear strength of RC beams was also found. On the other hand, we established that RC box culverts being statically indeterminate structures, sectional forces are redistributed after cracking damage, and local material deterioration has a minor effect on shear capacity. Furthermore, a parametric study was carried out for corroded RC box culverts using parameters such as size, steel corrosion location, and corrosion level. (author)

  12. Numerical simulation of systems of shear bands in ductile metal with inclusions

    Energy Technology Data Exchange (ETDEWEB)

    Plohr, JeeYeon N., E-mail: jplohr@lanl.gov; Plohr, Bradley J. [Los Alamos National Laboratory, Theoretical Division, Los Alamos, NM 87545 (United States)

    2016-02-15

    We develop a method for numerical simulations of high strain-rate loading of mesoscale samples of ductile metal with inclusions. Because of its small-scale inhomogeneity, the composite material is prone to localized shear deformation (adiabatic shear bands). This method employs the Generalized Method of Cells of Paley and Aboudi [Mech. Materials, vol. 14, pp. 127–139, 1992] to ensure that the micro mechanical behavior of the metal and inclusions is reflected properly in the behavior of the composite at the mesoscale. To find the effective plastic strain rate when shear bands are present, we extend and apply the analytic and numerical analysis of shear bands of Glimm, Plohr, and Sharp [Mech. Materials, vol. 24, pp. 31–41, 1996]. Our tests of the method focus on the stress/strain response in uniaxial-strain flow, both compressive and tensile, of depleted uranium metal containing silicon carbide inclusions. We use the Preston-Tonks-Wallace viscoplasticity model [J. Appl. Phys., vol. 93, pp. 211–220, 2003], which applies to the high strain-rate regime of an isotropic viscoplastic solid. In results, we verify the elevated temperature and thermal softening at shear bands in our simulations of pure DU and DU/SiC composites. We also note that in composites, due the asymmetry caused by the inclusions, shear band form at different times in different subcells. In particular, in the subcells near inclusions, shear band form much earlier than they do in pure DU.

  13. Numerical simulation of systems of shear bands in ductile metal with inclusions

    Directory of Open Access Journals (Sweden)

    JeeYeon N. Plohr

    2016-02-01

    Full Text Available We develop a method for numerical simulations of high strain-rate loading of mesoscale samples of ductile metal with inclusions. Because of its small-scale inhomogeneity, the composite material is prone to localized shear deformation (adiabatic shear bands. This method employs the Generalized Method of Cells of Paley and Aboudi [Mech. Materials, vol. 14, pp. 127–139, 1992] to ensure that the micro mechanical behavior of the metal and inclusions is reflected properly in the behavior of the composite at the mesoscale. To find the effective plastic strain rate when shear bands are present, we extend and apply the analytic and numerical analysis of shear bands of Glimm, Plohr, and Sharp [Mech. Materials, vol. 24, pp. 31–41, 1996]. Our tests of the method focus on the stress/strain response in uniaxial-strain flow, both compressive and tensile, of depleted uranium metal containing silicon carbide inclusions. We use the Preston-Tonks-Wallace viscoplasticity model [J. Appl. Phys., vol. 93, pp. 211–220, 2003], which applies to the high strain-rate regime of an isotropic viscoplastic solid. In results, we verify the elevated temperature and thermal softening at shear bands in our simulations of pure DU and DU/SiC composites. We also note that in composites, due the asymmetry caused by the inclusions, shear band form at different times in different subcells. In particular, in the subcells near inclusions, shear band form much earlier than they do in pure DU.

  14. Zonal flow shear amplification by depletion of anisotropic potential eddies in a magnetized plasma: idealized models and laboratory experiment

    International Nuclear Information System (INIS)

    Fedorczak, N; Manz, P; Chakraborty Thakur, S; Xu, M; Tynan, G R

    2013-01-01

    The consequences of vorticity conservation on the spatio-temporal interaction of a E × B zonal shear with a generic pattern of plasma potential modes are investigated in a magnetized plasma environment. Eddies organized on a chain along the zonal direction are locally depleted, resulting in what appears to be a radial decorrelation by the shear flow in the absence of dissipation. The eddy depletion occurs due to a transfer of enstrophy from the chain to the shear flow during the progressive growth in the chain anisotropy. The rate of zonal shear acceleration is derived analytically and its expression is validated by numerical simulations. The rate is proportional to the chain amplitude in the weak shear regime and to the shearing rate in the strong shear regime. Basic properties of the model are validated with fast visible imaging data collected on a magnetized plasma column experiment. A characteristic vorticity flux across the edge shear layer of tokamak plasmas is associated with the model predictions. The dependence of the interaction rate with turbulence amplitude and shearing rate could be an important ingredient of the low to high confinement mode transition. (paper)

  15. FRP-RC Beam in Shear: Mechanical Model and Assessment Procedure for Pseudo-Ductile Behavior

    Directory of Open Access Journals (Sweden)

    Floriana Petrone

    2014-07-01

    Full Text Available This work deals with the development of a mechanics-based shear model for reinforced concrete (RC elements strengthened in shear with fiber-reinforced polymer (FRP and a design/assessment procedure capable of predicting the failure sequence of resisting elements: the yielding of existing transverse steel ties and the debonding of FRP sheets/strips, while checking the corresponding compressive stress in concrete. The research aims at the definition of an accurate capacity equation, consistent with the requirement of the pseudo-ductile shear behavior of structural elements, that is, transverse steel ties yield before FRP debonding and concrete crushing. For the purpose of validating the proposed model, an extended parametric study and a comparison against experimental results have been conducted: it is proven that the common accepted rule of assuming the shear capacity of RC members strengthened in shear with FRP as the sum of the maximum contribution of both FRP and stirrups can lead to an unsafe overestimation of the shear capacity. This issue has been pointed out by some authors, when comparing experimental shear capacity values with the theoretical ones, but without giving a convincing explanation of that. In this sense, the proposed model represents also a valid instrument to better understand the mechanical behavior of FRP-RC beams in shear and to calculate their actual shear capacity.

  16. Shear localization and microstructure in coarse grained beta titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bingfeng, E-mail: biw009@ucsd.edu [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Department of Mechanical and Aerospace Engineering, University of California, San Diego, United States of America (United States); Key Lab of Nonferrous Materials, Ministry of Education, Central South University, Changsha, Hunan (China); Wang, Xiaoyan [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Li, Zezhou [Department of Mechanical and Aerospace Engineering, University of California, San Diego, United States of America (United States); Ma, Rui [School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Zhao, Shiteng [Department of Mechanical and Aerospace Engineering, University of California, San Diego, United States of America (United States); Xie, Fangyu [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); School of Materials Science and Engineering, Central South University, Changsha, Hunan (China); Zhang, Xiaoyong [State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China)

    2016-01-15

    Adiabatic shear localization plays an important role in the deformation and failure of the coarse grained beta titanium alloy Ti-5 Al-5 Mo-5 V-1 Cr-1 Fe with grain size about 1 mm at high strain rate deformation. Hat shaped specimens with different nominal shear strains are used to induce the formation of shear bands under the controlled shock-loading experiments. The true stress in the specimens can reach about 1040 MPa where the strain is about 1.83. The whole shear localization process lasts about 35 μs. The microstructures within the shear band are investigated by optical microscopy, scanning electron microscopy / electron backscatter diffraction, and transmission electron microscopy. The results show that the width of the shear bands decreases with increasing nominal shear strain, and the grains in the transition region near the shear band are elongated along the shear band, and the core of the shear band consists of the ultrafine deformed grains with width of 0.1 μm and heavy dislocations. With the aims of accommodating the imposed shear strain and maintaining neighboring grain compatibility, the grain subdivision continues to take place within the band. A fiber texture is formed in the core of the shear band. The calculated temperature rise in the shear band can reach about 722 K. Dynamic recovery is responsible for the formation of the microstructure in coarse grained beta titanium alloy.

  17. The electronic origin of shear-induced direct to indirect gap transition and anisotropy diminution in phosphorene.

    Science.gov (United States)

    Sa, Baisheng; Li, Yan-Ling; Sun, Zhimei; Qi, Jingshan; Wen, Cuilian; Wu, Bo

    2015-05-29

    Artificial monolayer black phosphorus, so-called phosphorene, has attracted global interest with its distinguished anisotropic, optoelectronic, and electronic properties. Here, we unraveled the shear-induced direct-to-indirect gap transition and anisotropy diminution in phosphorene based on first-principles calculations. Lattice dynamic analysis demonstrates that phosphorene can sustain up to 10% applied shear strain. The bandgap of phosphorene experiences a direct-to- indirect transition when 5% shear strain is applied. The electronic origin of the direct-to-indirect gap transition from 1.54 eV at ambient conditions to 1.22 eV at 10% shear strain for phosphorene is explored. In addition, the anisotropy diminution in phosphorene is discussed by calculating the maximum sound velocities, effective mass, and decomposed charge density, which signals the undesired shear-induced direct-to-indirect gap transition in applications of phosphorene for electronics and optoelectronics. On the other hand, the shear-induced electronic anisotropy properties suggest that phosphorene can be applied as the switcher in nanoelectronic applications.

  18. Laboratory studies on the effects of shear on fish: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, Duane A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richmond, M. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dauble, D. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mueller, R. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moursund, R. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Abernethy, C. S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Guensch, G. R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cada, G. F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2000-09-01

    The overall objective of these studies was to specify an index describing the hydraulic force that fish experience when subjected to a shear environment. Fluid shear is a phenomenon that is important to fish. However, elevated levels of shear may result in strain rates that injure or kill fish. At hydroelectric generating facilities, concerns have been expressed that strain rates associated with passage through turbines, spillways, and fish bypass systems may adversely affect migrating fish. Development of fish-friendly hydroelectric turbines requires knowledge of the physical forces (injury mechanisms) that impact entrained fish and the fish’s tolerance to these forces. It requires up-front, pre-design specifications for the environmental conditions that occur within the turbine system; in other words, determining or assuming conditions known to injure fish will assist engineers in the design of a fish-friendly turbine system. To address the development of biological specifications, this experiment designed and built a test facility where juvenile fish could be subjected to a range of shear environments and quantified their biological response. The test data reported here provide quantified strain rates and the relationship of these forces to direct and indirect biological effects on fish. The study concludes that juvenile salmonids and American shad should survive shear environments where strain rates do not exceed 500 cm/s/cm at a Dy of 1.8 cm. Additional studies are planned with a sensor fish to better link hydraulic conditions found within the laboratory and field environments.

  19. Lattice Boltzmann Study of Bubbles on a Patterned Superhydrophobic Surface under Shear Flow

    Science.gov (United States)

    Chen, Wei; Wang, Kai; Hou, Guoxiang; Leng, Wenjun

    2018-01-01

    This paper studies shear flow over a 2D patterned superhydrophobic surface using lattice Boltzmann method (LBM). Single component Shan-Chen multiphase model and Carnahan-Starling EOS are adopted to handle the liquid-gas flow on superhydrophobic surface with entrapped micro-bubbles. The shape of bubble interface and its influence on slip length under different shear rates are investigated. With increasing shear rate, the bubble interface deforms. Then the contact lines are depinned from the slot edges and move downstream. When the shear rate is high enough, a continuous gas layer forms. If the protrusion angle is small, the gas layer forms and collapse periodically, and accordingly the slip length changes periodically. While if the protrusion angle is large, the gas layer is steady and separates the solid wall from liquid, resulting in a very large slip length.

  20. The importance of strain localisation in shear zones

    Science.gov (United States)

    Bons, Paul D.; Finch, Melanie; Gomez-Rivas, Enrique; Griera, Albert; Llorens, Maria-Gema; Steinbach, Florian; Weikusat, Ilka

    2016-04-01

    The occurrence of various types of shear bands (C, C', C'') in shear zones indicate that heterogeneity of strain is common in strongly deformed rocks. However, the importance of strain localisation is difficult to ascertain if suitable strain markers are lacking, which is usually the case. Numerical modelling with the finite-element method has so far not given much insight in the development of shear bands. We suggest that this is not only because the modelled strains are often not high enough, but also because this technique (that usually assumes isotropic material properties within elements) does not properly incorporate mineral deformation behaviour. We simulated high-strain, simple-shear deformation in single- and polyphase materials with a full-field theory (FFT) model coupled to the Elle modelling platform (www.elle.ws; Lebensohn 2001; Bons et al. 2008). The FFT-approach simulates visco-plastic deformation by dislocation glide, taking into account the different available slip systems and their critical resolved shear stresses in relations to the applied stresses. Griera et al. (2011; 2013) have shown that this approach is particularly well suited for strongly anisotropic minerals, such as mica and ice Ih (Llorens 2015). We modelled single- and polyphase composites of minerals with different anisotropies and strengths, roughly equivalent to minerals such as ice Ih, mica, quartz and feldspar. Single-phase polycrystalline aggregates show distinct heterogeneity of strain rate, especially in case of ice Ih, which is mechanically close to mica (see also Griera et al. 2015). Finite strain distributions are heterogeneous as well, but the patterns may differ from that of the strain rate distribution. Dynamic recrystallisation, however, usually masks any strain and strain rate localisation (Llorens 2015). In case of polyphase aggregates, equivalent to e.g. a granite, we observe extensive localisation in both syn- and antithetic shear bands. The antithetic shear bands

  1. Shear viscosity of phase-separating polymer blends with viscous asymmetry

    International Nuclear Information System (INIS)

    Jeon, H. S.; Hobbie, E. K.

    2001-01-01

    Rheo-optical measurements of phase separating polymer mixtures under simple shear flow have been used to investigate the influence of domain morphology on the viscosity of emulsionlike polymer blends, in which the morphology under weak shear is droplets of one coexisting phase dispersed in a matrix of the second. The structure and viscosity of low-molecular-weight polybutadiene and polyisoprene mixtures, phase separated by quenching to a temperature inside the coexistence region of the phase diagram, were measured as a function of shear rate and composition. In the weak shear regime, the data are in qualitative agreement with an effective medium model for non-dilute suspensions of slightly deformed interacting droplets. In the strong shear regime, where a stringlike pattern appears en route to a shear-homogenized state, the data are in qualitative agreement with a simple model that accounts for viscous asymmetry in the components

  2. Maximum heart rate in brown trout (Salmo trutta fario) is not limited by firing rate of pacemaker cells.

    Science.gov (United States)

    Haverinen, Jaakko; Abramochkin, Denis V; Kamkin, Andre; Vornanen, Matti

    2017-02-01

    Temperature-induced changes in cardiac output (Q̇) in fish are largely dependent on thermal modulation of heart rate (f H ), and at high temperatures Q̇ collapses due to heat-dependent depression of f H This study tests the hypothesis that firing rate of sinoatrial pacemaker cells sets the upper thermal limit of f H in vivo. To this end, temperature dependence of action potential (AP) frequency of enzymatically isolated pacemaker cells (pacemaker rate, f PM ), spontaneous beating rate of isolated sinoatrial preparations (f SA ), and in vivo f H of the cold-acclimated (4°C) brown trout (Salmo trutta fario) were compared under acute thermal challenges. With rising temperature, f PM steadily increased because of the acceleration of diastolic depolarization and shortening of AP duration up to the break point temperature (T BP ) of 24.0 ± 0.37°C, at which point the electrical activity abruptly ceased. The maximum f PM at T BP was much higher [193 ± 21.0 beats per minute (bpm)] than the peak f SA (94.3 ± 6.0 bpm at 24.1°C) or peak f H (76.7 ± 2.4 at 15.7 ± 0.82°C) (P brown trout in vivo. Copyright © 2017 the American Physiological Society.

  3. Swimming efficiency in a shear-thinning fluid

    Science.gov (United States)

    Nganguia, Herve; Pietrzyk, Kyle; Pak, On Shun

    2017-12-01

    Micro-organisms expend energy moving through complex media. While propulsion speed is an important property of locomotion, efficiency is another factor that may determine the swimming gait adopted by a micro-organism in order to locomote in an energetically favorable manner. The efficiency of swimming in a Newtonian fluid is well characterized for different biological and artificial swimmers. However, these swimmers often encounter biological fluids displaying shear-thinning viscosities. Little is known about how this nonlinear rheology influences the efficiency of locomotion. Does the shear-thinning rheology render swimming more efficient or less? How does the swimming efficiency depend on the propulsion mechanism of a swimmer and rheological properties of the surrounding shear-thinning fluid? In this work, we address these fundamental questions on the efficiency of locomotion in a shear-thinning fluid by considering the squirmer model as a general locomotion model to represent different types of swimmers. Our analysis reveals how the choice of surface velocity distribution on a squirmer may reduce or enhance the swimming efficiency. We determine optimal shear rates at which the swimming efficiency can be substantially enhanced compared with the Newtonian case. The nontrivial variations of swimming efficiency prompt questions on how micro-organisms may tune their swimming gaits to exploit the shear-thinning rheology. The findings also provide insights into how artificial swimmers should be designed to move through complex media efficiently.

  4. Evidence for shear stress-mediated dilation of the internal carotid artery in humans

    DEFF Research Database (Denmark)

    Carter, Howard Henry; Atkinson, Ceri L; Heinonen, Ilkka H A

    2016-01-01

    -mediated dilation of larger conduit arteries in humans. There was a strong association between change in shear and diameter of the internal carotid (r=0.68; Ptime in humans, that shear stress is an important stimulus for hypercapnic vasodilation of the internal carotid...... increases carotid shear stress, a known stimulus to vasodilation in other conduit arteries. To explore the hypothesis that shear stress contributes to hypercapnic internal carotid dilation in humans, temporal changes in internal and common carotid shear rate and diameter, along with changes in middle.......01) carotids. Diameter also increased (Ptime course is associated with shear...

  5. The effects of size and period of administration of gold nanoparticles on rheological parameters of blood plasma of rats over a wide range of shear rates: In vivo

    Directory of Open Access Journals (Sweden)

    Abdelhalim Mohamed Anwar K

    2011-10-01

    Full Text Available Abstract Background Blood viscosity appears to be independent predictor of stroke, carotid intima-media thickening, atherosclerosis and most cardiovascular diseases. In an attempt to understand the toxicity and the potential threat of GNPs therapeutic and diagnostic use, an array of rheological parameters were performed to quantify the blood plasma response to different sizes and administration periods of GNPs over a wide range of shear rates. Methods Healthy, thirty male Wistar-Kyoto rats, 8-12 weeks old (approximately 250 g body weight were divided into control group (NG: n = 10, group 1 (G1A: intraperitoneal infusion of 10 nm GNPs for 3 days, n = 5 and G1B: intraperitoneal infusion of 10 nm GNPs for 7 days, n = 5, group 2 (G2A: intraperitoneal infusion of 50 nm GNPs for 3 days, n = 5 and G2B: intraperitoneal infusion of 50 nm GNPs for 7 days, n = 5. Dose of 100 μl of GNPs was administered to the animals via intraperitoneal injection. Blood samples of nearly 1 ml were obtained from each rat. Various rheological parameters such as torque, shear stress, shear rate, viscosity, plastic velocity, yield stress, consistency index (k and flow index (n were measured in the blood plasma of rats after the intraperitoneal administration of 10 and 50 nm GNP for 3 and 7 days using Brookfield LVDV-III Programmable rheometer. Results The relationship between shear stress and shear rate for control, G1A, G1B, G2A and G2B was linearly related. The plastic viscosity and the yield stress values for G1A, G1B, G2A and G2B significantly (p Conclusions At these particular shear rates, the estimated rheological parameters are not influenced by GNPs size and shape, number of NPs, surface area and administration period of GNPs. This study demonstrates that the highly decrease in blood plasma viscosity was accompanied with the smaller 10 nm GNPs compared with the 50 nm GNPs. The decrease in blood plasma viscosity induced with 10 and 50 nm GNPs may be attributed to

  6. Relating rheology to geometry in large-scale natural shear zones

    Science.gov (United States)

    Platt, John

    2016-04-01

    The geometry and width of the ductile roots of plate boundary scale faults are very poorly understood. Some field and geophysical data suggests widths of tens of km in the lower crust, possibly more in the upper mantle. Other observations suggest they are much narrower. Dip slip shear zones may flatten out and merge into zones of subhorizontal lower crustal or asthenospheric flow. The width of a ductile shear zone is simply related to relative velocity and strain rate. Strain rate is related to stress through the constitutive relationship. Can we constrain the stress, and do we understand the rheology of materials in ductile shear zones? A lot depends on how shear zones are initiated. If they are localized by pre-existing structures, width and/or rheology may be inherited, and we have too many variables. If shear zones are localized primarily by shear heating, initial shear stress has to be very high (> 1 GPa) to overcome conductive heat loss, and very large feedbacks (both positive and negative) make the system highly unstable. Microstructural weakening requires a minimum level of stress to cause deformation and damage in surrounding rock, thereby buffering the stress. Microstructural weakening leads to grain-size sensitive creep, for which we have constitutive laws, but these are complicated by phase mixing in polyphase materials, by viscous anisotropy, by hydration, and by changes in mineral assemblage. Here are some questions that need to be addressed. (1) If grain-size reduction by dynamic recrystallization results in a switch to grain-size sensitive creep (GSSC) in a stress-buffered shear zone, does dynamic recrystallization stop? Does grain growth set in? If grain-size is still controlled by dislocation processes, then the effective stress exponent for GSSC is 4-5, even though the dominant mechanism may be diffusion and/or grain-boundary sliding (GBS). (2) Is phase mixing in ultramylonites primarily a result of GBS + neighbour switching, creep cavitation and

  7. Enhancing Rotational Diffusion Using Oscillatory Shear

    KAUST Repository

    Leahy, Brian D.

    2013-05-29

    Taylor dispersion - shear-induced enhancement of translational diffusion - is an important phenomenon with applications ranging from pharmacology to geology. Through experiments and simulations, we show that rotational diffusion is also enhanced for anisotropic particles in oscillatory shear. This enhancement arises from variations in the particle\\'s rotation (Jeffery orbit) and depends on the strain amplitude, rate, and particle aspect ratio in a manner that is distinct from the translational diffusion. This separate tunability of translational and rotational diffusion opens the door to new techniques for controlling positions and orientations of suspended anisotropic colloids. © 2013 American Physical Society.

  8. Stud-bolts strength for cell-liner design under shearing deformation

    International Nuclear Information System (INIS)

    Watashi, Katsumi; Nakanishi, Seiji

    1991-01-01

    This paper presents experimental and analytical stud-bolt strength subjected to large shearing deformation at high temperature. Tensile test result of the material, SM41B, was shown in the range of room temperature to 550degC at 10 -3 and 10 -4 m/m/s in strain rate. Shearing fracture test result of the stud-bolt is shown at room temperature and 530degC. Shearing fracture criterion was discussed based on both test results and FEM analysis result. (author)

  9. Pore Fluid Effects on Shear Modulus for Sandstones with Soft Anisotropy

    International Nuclear Information System (INIS)

    Berryman, J G

    2004-01-01

    A general analysis of poroelasticity for vertical transverse isotropy (VTI) shows that four eigenvectors are pure shear modes with no coupling to the pore-fluidmechanics. The remaining two eigenvectors are linear combinations of pure compression and uniaxial shear, both of which are coupled to the fluid mechanics. After reducing the problem to a 2x2 system, the analysis shows in a relatively elementary fashion how a poroelastic system with isotropic solid elastic frame, but with anisotropy introduced through the poroelastic coefficients, interacts with the mechanics of the pore fluid and produces shear dependence on fluid properties in the overall mechanical system. The analysis shows, for example, that this effect is always present (though sometimes small in magnitude) in the systems studied, and can be quite large (up to a definite maximum increase of 20 per cent) in some rocks--including Spirit River sandstone and Schuler-Cotton Valley sandstone

  10. Shear wall ultimate drift limits

    International Nuclear Information System (INIS)

    Duffey, T.A.; Goldman, A.; Farrar, C.R.

    1994-04-01

    Drift limits for reinforced-concrete shear walls are investigated by reviewing the open literature for appropriate experimental data. Drift values at ultimate are determined for walls with aspect ratios ranging up to a maximum of 3.53 and undergoing different types of lateral loading (cyclic static, monotonic static, and dynamic). Based on the geometry of actual nuclear power plant structures exclusive of containments and concerns regarding their response during seismic (i.e.,cyclic) loading, data are obtained from pertinent references for which the wall aspect ratio is less than or equal to approximately 1, and for which testing is cyclic in nature (typically displacement controlled). In particular, lateral deflections at ultimate load, and at points in the softening region beyond ultimate for which the load has dropped to 90, 80, 70, 60, and 50 percent of its ultimate value, are obtained and converted to drift information. The statistical nature of the data is also investigated. These data are shown to be lognormally distributed, and an analysis of variance is performed. The use of statistics to estimate Probability of Failure for a shear wall structure is illustrated

  11. Effects of Particle Size on the Shear Behavior of Coarse Grained Soils Reinforced with Geogrid.

    Science.gov (United States)

    Kim, Daehyeon; Ha, Sungwoo

    2014-02-07

    In order to design civil structures that are supported by soils, the shear strength parameters of soils are required. Due to the large particle size of coarse-grained soils, large direct shear tests should be performed. In this study, large direct shear tests on three types of coarse grained soils (4.5 mm, 7.9 mm, and 15.9 mm) were performed to evaluate the effects of particle size on the shear behavior of coarse grained soils with/without geogrid reinforcements. Based on the direct shear test results, it was found that, in the case of no-reinforcement, the larger the maximum particle size became, the larger the friction angle was. Compared with the no-reinforcement case, the cases reinforced with either soft geogrid or stiff geogrid have smaller friction angles. The cohesion of the soil reinforced with stiff geogrid was larger than that of the soil reinforced with soft geogrid. The difference in the shear strength occurs because the case with a stiff geogrid has more soil to geogrid contact area, leading to the reduction in interlocking between soil particles.

  12. Microturbulence and Flow Shear in High-performance JET ITB Plasma; TOPICAL

    International Nuclear Information System (INIS)

    R.V. Budny; A. Andre; A. Bicoulet; C. Challis; G.D. Conway; W. Dorland; D.R. Ernst; T.S. Hahm; T.C. Hender; D. McCune; G. Rewoldt; S.E. Sharapov

    2001-01-01

    The transport, flow shear, and linear growth rates of microturbulence are studied for a Joint European Torus (JET) plasma with high central q in which an internal transport barrier (ITB) forms and grows to a large radius. The linear microturbulence growth rates of the fastest growing (most unstable) toroidal modes with high toroidal mode number are calculated using the GS2 and FULL gyrokinetic codes. These linear growth rates, gamma (subscript lin) are large, but the flow-shearing rates, gamma (subscript ExB) (dominated by the toroidal rotation contribution) are also comparably large when and where the ITB exists

  13. Large-scale dynamo action due to α fluctuations in a linear shear flow

    Science.gov (United States)

    Sridhar, S.; Singh, Nishant K.

    2014-12-01

    We present a model of large-scale dynamo action in a shear flow that has stochastic, zero-mean fluctuations of the α parameter. This is based on a minimal extension of the Kraichnan-Moffatt model, to include a background linear shear and Galilean-invariant α-statistics. Using the first-order smoothing approximation we derive a linear integro-differential equation for the large-scale magnetic field, which is non-perturbative in the shearing rate S , and the α-correlation time τα . The white-noise case, τα = 0 , is solved exactly, and it is concluded that the necessary condition for dynamo action is identical to the Kraichnan-Moffatt model without shear; this is because white-noise does not allow for memory effects, whereas shear needs time to act. To explore memory effects we reduce the integro-differential equation to a partial differential equation, valid for slowly varying fields when τα is small but non-zero. Seeking exponential modal solutions, we solve the modal dispersion relation and obtain an explicit expression for the growth rate as a function of the six independent parameters of the problem. A non-zero τα gives rise to new physical scales, and dynamo action is completely different from the white-noise case; e.g. even weak α fluctuations can give rise to a dynamo. We argue that, at any wavenumber, both Moffatt drift and Shear always contribute to increasing the growth rate. Two examples are presented: (a) a Moffatt drift dynamo in the absence of shear and (b) a Shear dynamo in the absence of Moffatt drift.

  14. Nondimensional scaling of magnetorheological rotary shear mode devices using the Mason number

    Science.gov (United States)

    Becnel, Andrew C.; Sherman, Stephen; Hu, Wei; Wereley, Norman M.

    2015-04-01

    Magnetorheological fluids (MRFs) exhibit rapidly adjustable viscosity in the presence of a magnetic field, and are increasingly used in adaptive shock absorbers for high speed impacts, corresponding to high fluid shear rates. However, the MRF properties are typically measured at very low (γ ˙10,000 s-1) Searle cell magnetorheometer, along with a full scale rotary-vane magnetorheological energy absorber (γ ˙>25,000 s-1) are employed to analyze MRF property scaling across shear rates using a nondimensional Mason number to generate an MRF master curve. Incorporating a Reynolds temperature correction factor, data from both experiments is shown to collapse to a single master curve, supporting the use of Mason number to correlate low- and high-shear rate characterization data.

  15. Vibratory shear enhanced membrane process and its application in starch wastewater recycle

    Directory of Open Access Journals (Sweden)

    Kazi Sarwar Hasan

    2002-11-01

    Full Text Available Membrane application in wastewater is gaining significant popularity. Selecting the right membrane and filtration technique is an important consideration to ensure a successful system development and long term performance. A new type of membrane filtration technology known as ‘Vibratory Shear Enhanced Process’ (VSEP is introduced in this paper with some test results that has been conducted with VSEP pilot unit to recycle starch wastewater. Conventional cross flow membrane process used in wastewater application always led to rapid fouling. This loss in throughput capacity is primarily due to the formation of a layer that builds up naturally on the membranes surface during the filtration process. In addition to cutting down on the flux performance of the membrane, this boundary or gel layer acts as a secondary membrane reducing the native design selectivity of the membrane in use. This inability to handle the buildup of solids has also limited the use of membranes to low-solids feed streams. In a VSEP system, an additional shear wave produced by the membrane’s vibration cause solids and foulants to be lifted off the membrane surface and remixed with the bulk material flowing through the membrane stack. This high shear processing exposes the membrane pores for maximum throughput that is typically between 3 to10 times the throughput of conventional cross-flow systems. The short term results with raw starch wastewater shows very stable flux rate of 110 lmh using the VSEP system and selecting the PVDF ultrafiltration membrane with no pre-filtration.

  16. Cyclic Behavior of Low Rise Concrete Shear Walls Containing Recycled Coarse and Fine Aggregates

    Directory of Open Access Journals (Sweden)

    Qiyun Qiao

    2017-12-01

    Full Text Available In this study, the cyclic behaviors of low rise concrete shear walls using recycled coarse or fine aggregates were investigated. Eight low rise Recycled Aggregates Concrete (RAC shear wall specimens were designed and tested under a cyclic loading. The following parameters were varied: replacement percentages of recycled coarse or fine aggregates, reinforcement ratio, axial force ratio and X-shaped rebars brace. The failure characteristics, hysteretic behavior, strength and deformation capacity, strain characteristics and stiffness were studied. Test results showed that the using of the Recycled Coarse Aggregates (RCA and its replacement ratio had almost no influence on the mechanical behavior of the shear wall; however, the using of Recycled Fine Aggregates (RFA had a certain influence on the ductility of the shear wall. When the reinforcement ratio increased, the strength and ductility also increased. By increasing the axial force ratio, the strength increased but the ductility decreased significantly. The encased brace had a significant effect on enhancing the RAC shear walls. The experimental maximum strengths were evaluated with existing design codes, it was indicated that the strength evaluation of the low rise RAC shear walls can follow the existing design codes of the conventional concrete shear walls.

  17. The Formation and Evolution of Shear Bands in Plane Strain Compressed Nickel-Base Superalloy

    Directory of Open Access Journals (Sweden)

    Bin Tang

    2018-02-01

    Full Text Available The formation and evolution of shear bands in Inconel 718 nickel-base superalloy under plane strain compression was investigated in the present work. It is found that the propagation of shear bands under plane strain compression is more intense in comparison with conventional uniaxial compression. The morphology of shear bands was identified to generally fall into two categories: in “S” shape at severe conditions (low temperatures and high strain rates and “X” shape at mild conditions (high temperatures and low strain rates. However, uniform deformation at the mesoscale without shear bands was also obtained by compressing at 1050 °C/0.001 s−1. By using the finite element method (FEM, the formation mechanism of the shear bands in the present study was explored for the special deformation mode of plane strain compression. Furthermore, the effect of processing parameters, i.e., strain rate and temperature, on the morphology and evolution of shear bands was discussed following a phenomenological approach. The plane strain compression attempt in the present work yields important information for processing parameters optimization and failure prediction under plane strain loading conditions of the Inconel 718 superalloy.

  18. Laboratory Studies on the Effects of Shear on Fish

    Energy Technology Data Exchange (ETDEWEB)

    Neitzel, Duane A.; Richmond, Marshall C.; Dauble, Dennis D.; Mueller, Robert P.; Moursund, Russell A.; Abernethy, Cary S.; Guensch, Greg R.

    2000-09-20

    The overall objective of our studies was to specify an index describing the hydraulic force that fish experience when subjected to a shear environment. Fluid shear is a phenomenon that is important to fish. However, elevated levels of shear may result in strain rates that injure or kill fish. At hydroelectric generating facilities, concerns have been expressed that strain rates associated with passage through turbines, spillways, and fish bypass systems may adversely affect migrating fish. Development of fish friendly hydroelectric turbines requires knowledge of the physical forces (injury mechanisms) that impact entrained fish and the fish's tolerance to these forces. It requires up-front, pre-design specifications for the environmental conditions that occur within the turbine system, in other words, determining or assuming that those conditions known to injure fish will provide the descriptions of conditions that engineers must consider in the design of a turbine system. These biological specifications must be carefully and thoroughly documented throughout the design of a fish friendly turbine. To address the development of biological specifications, we designed and built a test facility where juvenile fish could be subjected to a range of shear environments and quantified their biological response.

  19. Shear-induced aggregation or disaggregation in edible oils: Models, computer simulation, and USAXS measurements

    Science.gov (United States)

    Townsend, B.; Peyronel, F.; Callaghan-Patrachar, N.; Quinn, B.; Marangoni, A. G.; Pink, D. A.

    2017-12-01

    The effects of shear upon the aggregation of solid objects formed from solid triacylglycerols (TAGs) immersed in liquid TAG oils were modeled using Dissipative Particle Dynamics (DPD) and the predictions compared to experimental data using Ultra-Small Angle X-ray Scattering (USAXS). The solid components were represented by spheres interacting via attractive van der Waals forces and short range repulsive forces. A velocity was applied to the liquid particles nearest to the boundary, and Lees-Edwards boundary conditions were used to transmit this motion to non-boundary layers via dissipative interactions. The shear was created through the dissipative forces acting between liquid particles. Translational diffusion was simulated, and the Stokes-Einstein equation was used to relate DPD length and time scales to SI units for comparison with USAXS results. The SI values depended on how large the spherical particles were (250 nm vs. 25 nm). Aggregation was studied by (a) computing the Structure Function and (b) quantifying the number of pairs of solid spheres formed. Solid aggregation was found to be enhanced by low shear rates. As the shear rate was increased, a transition shear region was manifested in which aggregation was inhibited and shear banding was observed. Aggregation was inhibited, and eventually eliminated, by further increases in the shear rate. The magnitude of the transition region shear, γ˙ t, depended on the size of the solid particles, which was confirmed experimentally.

  20. Numerical simulation of systems of shear bands in ductile metal with inclusions

    Science.gov (United States)

    Plohr, Jeeyeon

    2017-06-01

    We develop a method for numerical simulations of high strain-rate loading of mesoscale samples of ductile metal with inclusions. Because of its small-scale inhomogeneity, the composite material is prone to localized shear deformation. This method employs the Generalized Method of Cells to ensure that the micro mechanical behavior of the metal and inclusions is reflected properly in the behavior of the composite at the mesoscale. To find the effective plastic strain rate when shear bands are present, we extend and apply the analytic and numerical analysis of shear bands of Glimm, Plohr, and Sharp. Our tests of the method focus on the stress/strain response in uniaxial-strain flow, both compressive and tensile, of depleted uranium metal containing silicon carbide inclusions. In results, we verify the elevated temperature and thermal softening at shear bands in our simulations of pure DU and DU/SiC composites. We also note that in composites, due the asymmetry caused by the inclusions, shear band form at different times in different subcells. In particular, in the subcells near inclusions, shear band form much earlier than they do in pure DU.

  1. Viscoelasticity, nonlinear shear start-up, and relaxation of entangled star polymers

    KAUST Repository

    Snijkers, Frank

    2013-07-23

    We report on a detailed rheological investigation of well-defined symmetric entangled polymer stars of low functionality with varying number of arms, molar mass of the arms, and solvent content. Emphasis is placed on the response of the stars in simple shear, during start-up, and for relaxation upon flow cessation. To reduce experimental artifacts associated with edge fracture (primarily) and wall slip, we employ a homemade cone-partitioned plate fixture which was successfully implemented in recent studies. Reliable data for these highly entangled stars could be obtained for Weissenberg numbers below 300. The appearance of a stress overshoot during start-up with a corresponding strain approaching a value of 2 suggests that in the investigated shear regime the stars orient but do not stretch. This is corroborated by the fact that the empirical Cox-Merx rule appears to be validated, within experimental error. On the other hand, the (shear) rate dependent steady shear viscosity data exhibit a slope smaller than the convective constraint release slope of -1 (for linear polymers) for the investigated range of rates. The broadness of the stress overshoot reflects the broad linear relaxation spectrum of the stars. The initial stress relaxation rate, reflecting the initial loss of entanglements due to the action of convective constraint release in steady shear flow, increases with Weissenberg number. More importantly, when compared against the relevant rates for comb polymers with relatively short arms, the latter are slower at larger Weissenberg numbers. At long times, the relaxation data are consistent with the linear viscoelastic data on these systems. © 2013 American Chemical Society.

  2. Refined shear correction factor for very thick simply supported and uniformly loaded isosceles right triangular auxetic plates

    International Nuclear Information System (INIS)

    Lim, Teik-Cheng

    2016-01-01

    For moderately thick plates, the use of First order Shear Deformation Theory (FSDT) with a constant shear correction factor of 5/6 is sufficient to take into account the plate deflection arising from transverse shear deformation. For very thick plates, the use of Third order Shear Deformation Theory (TSDT) is preferred as it allows the shear strain distribution to be varied through the plate thickness. Therefore no correction factor is required in TSDT, unlike FSDT. Due to the complexity involved in TSDT, this paper obtains a more accurate shear correction factor for use in FSDT of very thick simply supported and uniformly loaded isosceles right triangular plates based on the TSDT. By matching the maximum deflections for this plate according to FSDT and TSDT, a variable shear correction factor is obtained. Results show that the shear correction factor for the simplified TSDT, i.e. 14/17, is least accurate. The commonly adopted shear correction factor of 5/6 in FSDT is valid only for very thin or highly auxetic plates. This paper provides a variable shear correction for FSDT deflection that matches the plate deflection by TSDT. This variable shear correction factor allows designers to justify the use of a commonly adopted shear correction factor of 5/6 even for very thick plates as long as the Poisson’s ratio of the plate material is sufficiently negative. (paper)

  3. Study on viscosity of conventional and polymer modified asphalt binders in steady and dynamic shear domain

    Science.gov (United States)

    Saboo, Nikhil; Singh, Bhupendra; Kumar, Praveen; Vikram, Durgesh

    2018-02-01

    This study focuses on evaluating the flow behavior of conventional and polymer modified asphalt binders in steady- and dynamic-shear domain, for a temperature range of 20-70 °C, using a Dynamic Shear Rheometer (DSR). Steady-shear viscosity and frequency sweep tests were carried out on two conventional (VG 10 and VG 30) and two polymer (SBS and EVA) modified asphalt binders. Applicability of the Cox-Merz principle was evaluated and complex viscosity master curves were analyzed at five different reference temperatures. Cross model was used to simulate the complex viscosity master curves at different temperatures. It was found that asphalt binders exhibited shear-thinning behavior at all the test temperatures. The critical shear rate increased with increase in temperature and was found to be lowest for plastomeric modified asphalt binder. The Cox-Merz principle was found to be valid in the zero-shear viscosity (ZSV) domain and deviated at higher frequency/shear rate for all the binders. Results from the study indicated that the ratio of ZSV can be successfully used as shift factors for construction of master curves at different reference temperatures. Cross model was found to be suitable in simulating the complex viscosity master curves at all the test temperatures. Analysis of model parameters indicated that a strong relationship exists between ZSV and the critical shear rate. ZSV and critical shear rate varied exponentially with temperature. This relationship was used to propose a simple equation for assessing the shift factors for construction of master curves.

  4. Observation of Droplet Size Oscillations in a Two Phase Fluid under Shear Flow

    Science.gov (United States)

    Courbin, Laurent; Panizza, Pascal

    2004-11-01

    It is well known that complex fluids exhibit strong couplings between their microstructure and the flow field. Such couplings may lead to unusual non linear rheological behavior. Because energy is constantly brought to the system, richer dynamic behavior such as non linear oscillatory or chaotic response is expected. We report on the observation of droplet size oscillations at fixed shear rate. At low shear rates, we observe two steady states for which the droplet size results from a balance between capillary and viscous stress. For intermediate shear rates, the droplet size becomes a periodic function of time. We propose a phenomenological model to account for the observed phenomenon and compare numerical results to experimental data.

  5. On the interaction of deep water waves and exponential shear currents

    Science.gov (United States)

    Cheng, Jun; Cang, Jie; Liao, Shi-Jun

    2009-05-01

    A train of periodic deep-water waves propagating on a steady shear current with a vertical distribution of vorticity is investigated by an analytic method, namely the homotopy analysis method (HAM). The magnitude of the vorticity varies exponentially with the magnitude of the stream function, while remaining constant on a particular streamline. The so-called Dubreil-Jacotin transformation is used to transfer the original exponentially nonlinear boundary-value problem in an unknown domain into an algebraically nonlinear boundary-value problem in a known domain. Convergent series solutions are obtained not only for small amplitude water waves on a weak current but also for large amplitude waves on a strong current. The nonlinear wave-current interaction is studied in detail. It is found that an aiding shear current tends to enlarge the wave phase speed, sharpen the wave crest, but shorten the maximum wave height, while an opposing shear current has the opposite effect. Besides, the amplitude of waves and fluid velocity decay over the depth more quickly on an aiding shear current but more slowly on an opposing shear current than that of waves on still water. Furthermore, it is found that Stokes criteria of wave breaking is still valid for waves on a shear current: a train of propagating waves on a shear current breaks as the fiuid velocity at crest equals the wave phase speed. Especially, it is found that the highest waves on an opposing shear current are even higher and steeper than that of waves on still water. Mathematically, this analytic method is rather general in principle and can be employed to solve many types of nonlinear partial differential equations with variable coefficients in science, finance and engineering.

  6. Reduced transport and ER shearing in improved confinement regimes in JT-60U

    International Nuclear Information System (INIS)

    Shirai, H.; Kikuchi, M.; Takizuka, T.

    2001-01-01

    The global confinement and the local transport properties of improved core confinement plasmas in JT-60U have been studied in connection with E r shear formation. The improved core confinement mode with ITB, the internal transport barrier, is roughly classified into 'parabolic' type ITBs and 'box' type ITBs. The parabolic type ITB has the reduced thermal diffusivity, χ, in the core region; however, the E r shear, dE r /dr, is not so strong. The box type ITB has a very strong E r shear at the thin ITB layer and the χ value decreases to the level of neoclassical transport there. The estimated ExB shearing rate, ω ExB , becomes almost the same as the linear growth rate of the drift microinstability, γ L , at the ITB layer in the box type ITB. Experiments of hot ion mode plasmas during the repetitive L-H-L transition shows that the thermal diffusivity clearly depends on the E r shear and the strong E r shear contributes to the reduced thermal diffusivity. (author)

  7. Reduced transport and Er shearing in improved confinement regimes in JT-60U

    International Nuclear Information System (INIS)

    Shirai, H.; Kikuchi, M.; Takizuka, T.

    1999-01-01

    The global confinement and the local transport properties of improved core confinement plasmas in JT-60U were studied in connection with E r shear formation. In the improved core confinement mode with internal transport barriers (ITBs), these are roughly classified into 'parabolic type' ITBs and 'box type' ITBs. The parabolic type ITB has a reduced thermal diffusivity χ in the core region; however, the E r shear, dE r /dr, is not as strong. The box type ITB has a very strong E r shear at the thin ITB layer and χ decreases to the level of neoclassical transport there. The estimated E x B shearing rate, ω ExB , becomes almost the same as the linear growth rate of the drift microinstability, γ L , at the ITB layer in the box type ITB. Experiments with hot ion mode plasmas during the repetitive L-H-L transition showed that the thermal diffusivity clearly depends on the E r shear and the strong E r shear contributes to the reduced thermal diffusivity. (author)

  8. Micromechanics of soil responses in cyclic simple shear tests

    Directory of Open Access Journals (Sweden)

    Cui Liang

    2017-01-01

    Full Text Available Offshore wind turbine (OWT foundations are subjected to a combination of cyclic and dynamic loading arising from wind, wave, rotor and blade shadowing. Under cyclic loading, most soils change their characteristics including stiffness, which may cause the system natural frequency to approach the loading frequency and lead to unplanned resonance and system damage or even collapse. To investigate such changes and the underlying micromechanics, a series of cyclic simple shear tests were performed on the RedHill 110 sand with different shear strain amplitudes, vertical stresses and initial relative densities of soil. The test results showed that: (a Vertical accumulated strain is proportional to the shear strain amplitude but inversely proportional to relative density of soil; (b Shear modulus increases rapidly in the initial loading cycles and then the rate of increase diminishes and the shear modulus remains below an asymptote; (c Shear modulus increases with increasing vertical stress and relative density, but decreasing with increasing strain amplitude. Coupled DEM simulations were performed using PFC2D to analyse the micromechanics underlying the cyclic behaviour of soils. Micromechanical parameters (e.g. fabric tensor, coordination number were examined to explore the reasons for the various cyclic responses to different shear strain amplitudes or vertical stresses. Both coordination number and magnitude of fabric anisotropy contribute to the increasing shear modulus.

  9. Shear flow in smectic A liquid crystals

    International Nuclear Information System (INIS)

    Stewart, I W; Stewart, F

    2009-01-01

    This paper considers the onset of a shear-induced instability in a sample of smectic A liquid crystal. Unlike many previous models, the usual director n need not necessarily coincide with the local smectic layer normal a; the traditional Oseen constraint (∇xa=0) is not imposed when flow is present. A recent dynamic theory for smectic A (Stewart 2007 Contin. Mech. Thermodyn. 18 343-60) will be used to examine a stationary instability in a simple model when the director reorientation and smectic layer distortions are, firstly, assumed not to be coupled to the velocity and, secondly, are supposed coupled to the velocity. A critical shear rate at which the onset of the instability occurs will be identified, together with an accompanying critical director tilt angle and critical wavenumber for the associated smectic layer undulations. Despite some critical phenomena being largely unaffected by any coupling to the flow, it will be shown that the influence of some material parameters, especially the smectic layer compression constant B 0 and the coupling constant B 1 , upon the critical shear rate and critical tilt angle can be greatly affected by flow.

  10. Dependence of Shear and Concentration on Fouling in a Membrane Bioreactor with Rotating Membrane Discs

    DEFF Research Database (Denmark)

    Jørgensen, Mads Koustrup; Pedersen, Malene Thostrup; Christensen, Morten Lykkegaard

    2014-01-01

    Rotating ceramic membrane discs were fouled with lab-scale membrane bioreactors (MBR) sludge. Sludge filtrations were performed at varying rotation speeds and in different concentric rings of the membranes on different sludge concentrations. Data showed that the back transport expressed by limiting...... flux increased with rotation speed and distance from membrane center as an effect of shear. Further, the limiting flux decreased with increasing sludge concentration. A model was developed to link the sludge concentration and shear stress to the limiting flux. The model was able to simulate the effect...... of shear stress and sludge concentration on the limiting flux. The model was developed by calculating the shear rate at laminar flow regime at different rotation speeds and radii on the membrane. Furthermore, through the shear rate and shear stress, the non-Newtonian behavior of MBR sludge was addressed...

  11. Clinical evaluation of a simple uroflowmeter for categorization of maximum urinary flow rate

    Directory of Open Access Journals (Sweden)

    Simon Pridgeon

    2007-01-01

    Full Text Available Objective: To evaluate the accuracy and diagnostic usefulness of a disposable flowmeter consisting of a plastic funnel with a spout divided into three chambers. Materials and Methods: Men with lower urinary tract symptoms (LUTS voided sequentially into a standard flowmeter and the funnel device recording maximum flow rate (Q max and voided volume (V void . The device was precalibrated such that filling of the bottom, middle and top chambers categorized maximum input flows as 15 ml s -1 respectively. Subjects who agreed to use the funnel device at home obtained readings of flow category and V void twice daily for seven days. Results: A single office reading in 46 men using the device showed good agreement with standard measurement of Q max for V void > 150 ml (Kappa = 0.68. All 14 men whose void reached the top chamber had standard Q max > 15 ml s -1 (PPV = 100%, NPV = 72% whilst eight of 12 men whose void remained in the bottom chamber had standard Q max < 10 ml s -1 (PPV = 70%, NPV = 94%. During multiple home use by 14 men the device showed moderate repeatability (Kappa = 0.58 and correctly categorized Q max in comparison to standard measurement for 12 (87% men. Conclusions: This study suggests that the device has sufficient accuracy and reliability for initial flow rate assessment in men with LUTS. The device can provide a single measurement or alternatively multiple home measurements to categorize men with Q max < 15 ml s -1 .

  12. The plane strain shear fracture of the advanced high strength steels

    International Nuclear Information System (INIS)

    Sun, Li

    2013-01-01

    The “shear fracture” which occurs at the high-curvature die radii in the sheet metal forming has been reported to remarkably limit the application of the advanced high strength steels (AHSS) in the automobile industry. However, this unusual fracture behavior generally cannot be predicted by the traditional forming limit diagram (FLD). In this research, a new experimental system was developed in order to simulate the shear fracture, especially at the plane strain state which is the most common state in the auto-industry and difficult to achieve in the lab due to sample size. Furthermore, the system has the capability to operate in a strain rate range from quasi-static state to the industrial forming state. One kinds of AHSS, Quenching-Partitioning (QP) steels have been performed in this test and the results show that the limiting fracture strain is related to the bending ratio and strain rate. The experimental data support that deformation-induced heating is an important cause of “shear fracture” phenomena for AHSS: a deformation-induced quasi-heating caused by smaller bending ratio and high strain rate produce a smaller limiting plane strain and lead a “shear fracture” in the component

  13. Morphology and mechanical properties of PA12/plasticized starch blends prepared by high-shear extrusion

    International Nuclear Information System (INIS)

    Teyssandier, F.; Cassagnau, P.; Gérard, J.F.; Mignard, N.; Mélis, F.

    2012-01-01

    Highlights: ► High shear rate processing was found to greatly impact PA12/starch blend morphologies. ► The morphology was observed to be stable under subsequent processing conditions. ► The mechanical properties of the blends under high-shear rate were greatly improved. ► Polymer blend preparation via high-shear processing has proved to be very effective. ► Finally, polymer blends with improved mechanical properties were obtained. - Abstract: PA12/plasticized starch blends (PA12/TPS) were prepared by high-shear twin screw extruder. The morphology development and the mechanical properties of the blends were investigated as a function of the apparent shear rate. High-shear processing has proved to be an efficient method to finely disperse thermoplastic starch in polyamide 12 matrix. Blends containing TPS domains with a size at the nano-scale (R n ∼ 150 nm) homogeneously dispersed in PA12 matrix were obtained. From a modeling point of view, the variation of the droplet radius is closer to the Wu's predictions compared to the Serpe's predictions. From the basic hypothesis of these models, it can be then assumed that compatibilization between both phases occurs during the blend processing. Furthermore, this morphology of the blends has been proved to be stable after a reprocessing step in an internal mixer most likely due to either strong hydrogen bonds between the hydroxyl groups of starch and amide groups of polyamide 12 or to potentially cross reactions between macroradicals accounting for in situ formation of graft copolymers with the potential function of compatibilizers. Mechanical properties of the blends were found to be strongly dependent on the shear rate parameter of blend processing as the mechanical properties increase with shear rate. In agreement to the blend morphology, the elongation at break of the blends was greatly improved attesting of a good adhesion between both phases.

  14. Self-diffusion in dense granular shear flows.

    Science.gov (United States)

    Utter, Brian; Behringer, R P

    2004-03-01

    Diffusivity is a key quantity in describing velocity fluctuations in granular materials. These fluctuations are the basis of many thermodynamic and hydrodynamic models which aim to provide a statistical description of granular systems. We present experimental results on diffusivity in dense, granular shear flows in a two-dimensional Couette geometry. We find that self-diffusivities D are proportional to the local shear rate gamma; with diffusivities along the direction of the mean flow approximately twice as large as those in the perpendicular direction. The magnitude of the diffusivity is D approximately gamma;a(2), where a is the particle radius. However, the gradient in shear rate, coupling to the mean flow, and strong drag at the moving boundary lead to particle displacements that can appear subdiffusive or superdiffusive. In particular, diffusion appears to be superdiffusive along the mean flow direction due to Taylor dispersion effects and subdiffusive along the perpendicular direction due to the gradient in shear rate. The anisotropic force network leads to an additional anisotropy in the diffusivity that is a property of dense systems and has no obvious analog in rapid flows. Specifically, the diffusivity is suppressed along the direction of the strong force network. A simple random walk simulation reproduces the key features of the data, such as the apparent superdiffusive and subdiffusive behavior arising from the mean velocity field, confirming the underlying diffusive motion. The additional anisotropy is not observed in the simulation since the strong force network is not included. Examples of correlated motion, such as transient vortices, and Lévy flights are also observed. Although correlated motion creates velocity fields which are qualitatively different from collisional Brownian motion and can introduce nondiffusive effects, on average the system appears simply diffusive.

  15. Oscillatory shear response of moisture barrier coatings containing clay of different shape factor.

    Science.gov (United States)

    Kugge, C; Vanderhoek, N; Bousfield, D W

    2011-06-01

    Oscillatory shear rheology of barrier coatings based on dispersed styrene-butadiene latex and clay of various shape factors or aspect ratio has been explored. Barrier performance of these coatings when applied to paperboard has been assessed in terms of water vapour transmission rates and the results related to shape factor, dewatering and critical strain. It has been shown that a system based on clay with high shape factor gives a lower critical strain, dewatering and water vapour transmission rate compared with clays of lower shape factor. The dissipated energy, as calculated from an amplitude sweep, indicated no attractive interaction between clay and latex implying a critical strain that appears to be solely dependent on the shape factor at a constant volume fraction. Particle size distribution was shown to have no effect on the critical strain while coatings of high elasticity exhibited high yield strains as expected. The loss modulus demonstrated strain hardening before the elastic to viscous transition. The loss modulus peak was identified by a maximum strain which was significantly lower for a coating based on clay with a high shape factor. The characteristic elastic time was found to vary between 0.6 and 1.3s. The zero shear viscosity of barrier dispersion coatings were estimated from the characteristic elastic time and the characteristic modulus to be of the order of 25-100 Pa s. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Accurate nonlinear modeling for flexible manipulators using mixed finite element formulation in order to obtain maximum allowable load

    Energy Technology Data Exchange (ETDEWEB)

    Esfandiar, Habib; KoraYem, Moharam Habibnejad [Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-09-15

    In this study, the researchers try to examine nonlinear dynamic analysis and determine Dynamic load carrying capacity (DLCC) in flexible manipulators. Manipulator modeling is based on Timoshenko beam theory (TBT) considering the effects of shear and rotational inertia. To get rid of the risk of shear locking, a new procedure is presented based on mixed finite element formulation. In the method proposed, shear deformation is free from the risk of shear locking and independent of the number of integration points along the element axis. Dynamic modeling of manipulators will be done by taking into account small and large deformation models and using extended Hamilton method. System motion equations are obtained by using nonlinear relationship between displacements-strain and 2nd PiolaKirchoff stress tensor. In addition, a comprehensive formulation will be developed to calculate DLCC of the flexible manipulators during the path determined considering the constraints end effector accuracy, maximum torque in motors and maximum stress in manipulators. Simulation studies are conducted to evaluate the efficiency of the method proposed taking two-link flexible and fixed base manipulators for linear and circular paths into consideration. Experimental results are also provided to validate the theoretical model. The findings represent the efficiency and appropriate performance of the method proposed.

  17. Accurate nonlinear modeling for flexible manipulators using mixed finite element formulation in order to obtain maximum allowable load

    International Nuclear Information System (INIS)

    Esfandiar, Habib; KoraYem, Moharam Habibnejad

    2015-01-01

    In this study, the researchers try to examine nonlinear dynamic analysis and determine Dynamic load carrying capacity (DLCC) in flexible manipulators. Manipulator modeling is based on Timoshenko beam theory (TBT) considering the effects of shear and rotational inertia. To get rid of the risk of shear locking, a new procedure is presented based on mixed finite element formulation. In the method proposed, shear deformation is free from the risk of shear locking and independent of the number of integration points along the element axis. Dynamic modeling of manipulators will be done by taking into account small and large deformation models and using extended Hamilton method. System motion equations are obtained by using nonlinear relationship between displacements-strain and 2nd PiolaKirchoff stress tensor. In addition, a comprehensive formulation will be developed to calculate DLCC of the flexible manipulators during the path determined considering the constraints end effector accuracy, maximum torque in motors and maximum stress in manipulators. Simulation studies are conducted to evaluate the efficiency of the method proposed taking two-link flexible and fixed base manipulators for linear and circular paths into consideration. Experimental results are also provided to validate the theoretical model. The findings represent the efficiency and appropriate performance of the method proposed.

  18. Evaluation of seismic shear capacity of prestressed concrete containment vessels with fiber reinforcement

    Energy Technology Data Exchange (ETDEWEB)

    Choun, Young Sun; Park, Jun Hee [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Fibers have been used in cement mixture to improve its toughness, ductility, and tensile strength, and to enhance the cracking and deformation characteristics of concrete structural members. The addition of fibers into conventional reinforced concrete can enhance the structural and functional performances of safety-related concrete structures in nuclear power plants. The effects of steel and polyamide fibers on the shear resisting capacity of a prestressed concrete containment vessel (PCCV) were investigated in this study. For a comparative evaluation between the shear performances of structural walls constructed with conventional concrete, steel fiber reinforced concrete, and polyamide fiber reinforced concrete, cyclic tests for wall specimens were conducted and hysteretic models were derived. The shear resisting capacity of a PCCV constructed with fiber reinforced concrete can be improved considerably. When steel fiber reinforced concrete contains hooked steel fibers in a volume fraction of 1.0%, the maximum lateral displacement of a PCCV can be improved by > 50%, in comparison with that of a conventional PCCV. When polyamide fiber reinforced concrete contains polyamide fibers in a volume fraction of 1.5%, the maximum lateral displacement of a PCCV can be enhanced by ∼40%. In particular, the energy dissipation capacity in a fiber reinforced PCCV can be enhanced by > 200%. The addition of fibers into conventional concrete increases the ductility and energy dissipation of wall structures significantly. Fibers can be effectively used to improve the structural performance of a PCCV subjected to strong ground motions. Steel fibers are more effective in enhancing the shear performance of a PCCV than polyamide fibers.

  19. Evaluation of seismic shear capacity of prestressed concrete containment vessels with fiber reinforcement

    International Nuclear Information System (INIS)

    Choun, Young Sun; Park, Jun Hee

    2015-01-01

    Fibers have been used in cement mixture to improve its toughness, ductility, and tensile strength, and to enhance the cracking and deformation characteristics of concrete structural members. The addition of fibers into conventional reinforced concrete can enhance the structural and functional performances of safety-related concrete structures in nuclear power plants. The effects of steel and polyamide fibers on the shear resisting capacity of a prestressed concrete containment vessel (PCCV) were investigated in this study. For a comparative evaluation between the shear performances of structural walls constructed with conventional concrete, steel fiber reinforced concrete, and polyamide fiber reinforced concrete, cyclic tests for wall specimens were conducted and hysteretic models were derived. The shear resisting capacity of a PCCV constructed with fiber reinforced concrete can be improved considerably. When steel fiber reinforced concrete contains hooked steel fibers in a volume fraction of 1.0%, the maximum lateral displacement of a PCCV can be improved by > 50%, in comparison with that of a conventional PCCV. When polyamide fiber reinforced concrete contains polyamide fibers in a volume fraction of 1.5%, the maximum lateral displacement of a PCCV can be enhanced by ∼40%. In particular, the energy dissipation capacity in a fiber reinforced PCCV can be enhanced by > 200%. The addition of fibers into conventional concrete increases the ductility and energy dissipation of wall structures significantly. Fibers can be effectively used to improve the structural performance of a PCCV subjected to strong ground motions. Steel fibers are more effective in enhancing the shear performance of a PCCV than polyamide fibers

  20. Non-Newtonian behavior and molecular structure of Cooee bitumen under shear flow

    DEFF Research Database (Denmark)

    Lemarchand, Claire; Bailey, Nicholas; Daivis, Peter

    2015-01-01

    The rheology and molecular structure of a model bitumen (Cooee bitumen) under shear are investigated in the non-Newtonian regime using non-equilibrium molecular dynamics simulations. The shear viscosity, normal stress differences, and pressure of the bitumen mixture are computed at different shear...... rates and different temperatures. The model bitumen is shown to be a shear-thinning fluid at all temperatures. In addition, the Cooee model is able to reproduce experimental results showing the formation of nanoaggregates composed of stacks of flat aromatic molecules in bitumen. These nanoaggregates...

  1. Fatigue life assessment of thin-walled welded joints under non-proportional load-time histories by the shear stress rate integral approach

    Directory of Open Access Journals (Sweden)

    A. Bolchoun

    2016-10-01

    Full Text Available Fatigue life tests under constant and variable amplitude loadings were performed on the tube-tube thin-walled welded specimens made of magnesium (AZ31 and AZ61 alloys. The tests included pure axial, pure torsional and combined in-phase and out-of-phase loadings with the load ratio  RR " ", " " 1  . For the tests with variable amplitude loads a Gaußdistributed loading spectrum with S L 4 5 10  cycles was used. Since magnesium welds show a fatigue life reduction under out-of-phase loads, a stress-based method, which takes this behavior into account, is proposed. The out-of-phase loading results in rotating shear stress vectors in the section planes, which are not orthogonal to the surface. This fact is used in order to provide an out-of-phase measure of the load. This measure is computed as an area covered by the shear stress vectors in all planes over a certain time interval, its computation involves the shear stress and the shear stress rate vectors in the individual planes. Fatigue life evaluation for the variable amplitudes loadings is performed using the Palmgren-Miner linear damage accumulation, whereas the total damage of every cycle is split up into two components: the amplitude component and the out-of-phase component. In order to compute the two components a modification of the rainflow counting method, which keeps track of the time intervals, where the cycles occur, must be used. The proposed method also takes into account different slopes of the pure axial and the pure torsional Wöhler-line by means of a Wöhler-line interpolation for combined loadings

  2. A film-based wall shear stress sensor for wall-bounded turbulent flows

    Science.gov (United States)

    Amili, Omid; Soria, Julio

    2011-07-01

    In wall-bounded turbulent flows, determination of wall shear stress is an important task. The main objective of the present work is to develop a sensor which is capable of measuring surface shear stress over an extended region applicable to wall-bounded turbulent flows. This sensor, as a direct method for measuring wall shear stress, consists of mounting a thin flexible film on the solid surface. The sensor is made of a homogeneous, isotropic, and incompressible material. The geometry and mechanical properties of the film are measured, and particles with the nominal size of 11 μm in diameter are embedded on the film's surface to act as markers. An optical technique is used to measure the film deformation caused by the flow. The film has typically deflection of less than 2% of the material thickness under maximum loading. The sensor sensitivity can be adjusted by changing the thickness of the layer or the shear modulus of the film's material. The paper reports the sensor fabrication, static and dynamic calibration procedure, and its application to a fully developed turbulent channel flow at Reynolds numbers in the range of 90,000-130,000 based on the bulk velocity and channel full height. The results are compared to alternative wall shear stress measurement methods.

  3. The Effect of Wetting Gravity Regime on Shear Strength of SAC and Sn-Pb Solder Lap Joints

    Science.gov (United States)

    Sona, Mrunali; Prabhu, K. Narayan

    2017-09-01

    The failure of solder joints due to imposed stresses in an electronic assembly is governed by shear bond strength. In the present study, the effect of wetting gravity regime on single-lap shear strength of Sn-0.3Ag-0.7Cu and Sn-2.5Ag-0.5Cu solder alloys reflowed between bare copper substrates as well as Ni-coated Cu substrates was investigated. Samples were reflowed for 10 s, T gz (time corresponding to the end of gravity regime) and 100 s individually and tested for single-lap shear strength. The single-lap shear test was also carried out on eutectic Sn-Pb/Cu- and Sn-Pb/Ni-coated Cu specimens to compare the shear strength values obtained with those of lead-free alloys. The eutectic Sn-Pb showed significantly higher ultimate shear strength on bare Cu substrates when compared to Sn-Ag-Cu alloys. However, SAC alloys reflowed on nickel-coated copper substrate exhibited higher shear strength when compared to eutectic Sn-Pb/Ni-coated Cu specimens. All the substrate/solder/substrate lap joint specimens that were reflowed for the time corresponding to the end of gravity regime exhibited maximum ultimate shear strength.

  4. Effects of shear during the cooling on the rheology and morphology of immiscible polymer blends

    International Nuclear Information System (INIS)

    Hammani, S; Moulai-Mostefa, N; Benyahia, L; Tassin, J F

    2014-01-01

    The aim of this work was the generation of a microfibrillar structure in immiscible polymer blends using a new technique. The blend polymer model is the emulsion formed by a mixture of polypropylene (PP) with polystyrene (PS) in the proportion of PP10/PS90. In the first case the pellets of polystyrene and polypropylene were blended on the twin-screw mini extruder in the classical manner with different shear rates. In the second case, the same blend was prepared in the same way followed by a dynamic cooling at different shear rates. The phase morphologies of PP in the blend were determined by Scanning Electron Microscopy on two directions (transversal and longitudinal direction to the flow). In the two cases, the dispersed phase size decreased with the increase of the shear rate in the extruder. An anomaly was registered in the classical method at 200 rpm, where the size of the dispersed phase increases with the increase of the shear rate. The dynamic cooling technique recorded smaller diameters (4 to 5 times) of the dispersed phase compared to the conventional technique. In addition, the reappearance of the microfilaments at 200rpm was observed. The rheological properties were determined by RS100 (Thermo Scientific Haake). Using this new technique, it was noticed that he elastic modulus increases with one decade compared to the classical method and the complex viscosity decreases with the increase of the shear rate. An anomaly was registered in the classical technique, where the dynamic viscosity at 200rpm increases with increasing the shear rate in the extruder

  5. Estimation of basal shear stresses from now ice-free LIA glacier forefields in the Swiss Alps

    Science.gov (United States)

    Fischer, Mauro; Haeberli, Wilfried; Huss, Matthias; Paul, Frank; Linsbauer, Andreas; Hoelzle, Martin

    2013-04-01

    In most cases, assessing the impacts of climatic changes on glaciers requires knowledge about the ice thickness distribution. Miscellaneous methodological approaches with different degrees of sophistication have been applied to model glacier thickness so far. However, all of them include significant uncertainty. By applying a parameterization scheme for ice thickness determination relying on assumptions about basal shear stress by Haeberli and Hoelzle (1995) to now ice-free glacier forefields in the Swiss Alps, basal shear stress values can be calculated based on a fast and robust experimental approach. In a GIS, the combination of recent (1973) and Little Ice Age (LIA) maximum (around 1850) glacier outlines, central flowlines, a recent Digital Elevation Model (DEM) and a DEM of glacier surface topography for the LIA maximum allows extracting local ice thickness over the forefield of individual glaciers. Subsequently, basal shear stress is calculated via the rheological assumption of perfect-plasticity relating ice thickness and surface slope to shear stress. The need of only very few input data commonly stored in glacier inventories permits an application to a large number of glaciers. Basal shear stresses are first calculated for subsamples of glaciers belonging to two test sites where the LIA maximum glacier surface is modeled with DEMs derived from accurate topographic maps for the mid 19th century. Neglecting outliers, the average resulting mean basal shear stress is around 80 kPa for the Bernina region (range 25-100 kPa) and 120 kPa (range 50-150 kPa) for the Aletsch region. For the entire Swiss Alps it is 100 kPa (range 40-175 kPa). Because complete LIA glacier surface elevation information is lacking there, a DEM is first created from reconstructed height of LIA lateral moraines and trimlines by using a simple GIS-based tool. A sensitivity analysis of the input parameters reveals that the performance of the developed approach primarily depends on the

  6. Experimental Research on Boundary Shear Stress in Typical Meandering Channel

    Science.gov (United States)

    Chen, Kai-hua; Xia, Yun-feng; Zhang, Shi-zhao; Wen, Yun-cheng; Xu, Hua

    2018-06-01

    A novel instrument named Micro-Electro-Mechanical System (MEMS) flexible hot-film shear stress sensor was used to study the boundary shear stress distribution in the generalized natural meandering open channel, and the mean sidewall shear stress distribution along the meandering channel, and the lateral boundary shear stress distribution in the typical cross-section of the meandering channel was analysed. Based on the measurement of the boundary shear stress, a semi-empirical semi-theoretical computing approach of the boundary shear stress was derived including the effects of the secondary flow, sidewall roughness factor, eddy viscosity and the additional Reynolds stress, and more importantly, for the first time, it combined the effects of the cross-section central angle and the Reynolds number into the expressions. Afterwards, a comparison between the previous research and this study was developed. Following the result, we found that the semi-empirical semi-theoretical boundary shear stress distribution algorithm can predict the boundary shear stress distribution precisely. Finally, a single factor analysis was conducted on the relationship between the average sidewall shear stress on the convex and concave bank and the flow rate, water depth, slope ratio, or the cross-section central angle of the open channel bend. The functional relationship with each of the above factors was established, and then the distance from the location of the extreme sidewall shear stress to the bottom of the open channel was deduced based on the statistical theory.

  7. Shear-induced Bubble Coalescence in Rhyolitic Melts with Low Vesicularity

    Science.gov (United States)

    Okumura, S.; Nakamura, M.; Tsuchiyama, A.

    2006-12-01

    Development of bubble structure during magma ascent controls the dynamics of volcanic eruption, because the bubble structure influences the magma rheology and permeability, and hence magma degassing. In the flowing magmas, the bubble structure is expected to be changed by shear, as pointed out by some previous studies based on geological observations. However, the development of bubble structure has been experimentally studied only in the isostatic magmas. We have experimentally demonstrated for the first time, the shear-induced development of number density, size and shape of bubbles in a rhyolitic melt. The deformation experiments were performed by using an externally heated, piston-cylinder type apparatus with a rotational piston. At 975°C, natural obsidian (initial water content of 0.5 wt%) having cylindrical shape (ca. 4.7 mm in diameter and 5 mm in length) was vesiculated in the graphite container (ca. 5 and 9 mm in the inner and the outer diameters, respectively, and 5 mm in length), and the vesiculated samples were twisted at various rotational speeds up to 1 rpm. The number density, size and shape of bubbles in the quenched samples were then measured by using the X-ray computed tomography. The size distribution of bubbles shows that the number of larger bubbles increases with the rotational speed and at the outer zone of the samples at which the shear rate is high. In the high shear rate zone, the magnitude of bubble deformation is large. The 3D images of large bubbles clearly indicate that they were formed by coalescence. These results indicate that the degree of bubble coalescence is enhanced with the shear rate. The experimental results also demonstrated that the coalescence of bubbles occur even at low vesicularity (ca. 20 vol.%). Because the shear rate induced in this study (in the order of 0.01 1/s) seems to be produced for magmas ascending in a volcanic conduit, we propose the possibility that the vesiculated magmas undergo bubble coalescence at a

  8. Three-dimensional modelling of the human carotid artery using the lattice Boltzmann method: II. Shear analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, J [Cardiovascular Research Group, Physics, University of New England, Armidale, NSW 2351 (Australia); Buick, J M [Mechanical and Design Engineering, Anglesea Building, Anglesea Road, University of Portsmouth, Portsmouth, PO1 3DJ (United Kingdom)

    2008-10-21

    Near-wall shear is known to be important in the pathogenesis and progression of atherosclerosis. In this paper, the shear field in a three-dimensional model of the human carotid artery is presented. The simulations are performed using the lattice Boltzmann model and are presented at six times of interest during a physiologically accurate velocity waveform. The near-wall shear rate and von Mises effective shear are also examined. Regions of low near-wall shear rates are observed near the outer wall of the bifurcation and in the lower regions of the external carotid artery. These are regions where low near-wall velocity and circulatory flows have been observed and are regions that are typically prone to atherosclerosis.

  9. Three-dimensional modelling of the human carotid artery using the lattice Boltzmann method: II. Shear analysis

    International Nuclear Information System (INIS)

    Boyd, J; Buick, J M

    2008-01-01

    Near-wall shear is known to be important in the pathogenesis and progression of atherosclerosis. In this paper, the shear field in a three-dimensional model of the human carotid artery is presented. The simulations are performed using the lattice Boltzmann model and are presented at six times of interest during a physiologically accurate velocity waveform. The near-wall shear rate and von Mises effective shear are also examined. Regions of low near-wall shear rates are observed near the outer wall of the bifurcation and in the lower regions of the external carotid artery. These are regions where low near-wall velocity and circulatory flows have been observed and are regions that are typically prone to atherosclerosis.

  10. The interaction of two spheres in a simple-shear flow of complex fluids

    Science.gov (United States)

    Firouznia, Mohammadhossein; Metzger, Bloen; Ovarlez, Guillaume; Hormozi, Sarah

    2017-11-01

    We study the interaction of two small freely-moving spheres in a linear flow field of Newtonian, shear thinning and yield stress fluids. We perform a series of experiments over a range of shear rates as well as different shear histories using an original apparatus and with the aid of conventional rheometry, Particle Image Velocimetry and Particle Tracking Velocimetry. Showing that the non-Newtonian nature of the suspending fluid strongly affects the shape of particle trajectories and the irreversibility. An important point is that non-Newtonian effects can be varied and unusual. Depending on the shear rate, nonideal shear thinning and yield stress suspending fluids might show elasticity that needs to be taken into account. The flow field around one particle is studied in different fluids when subjected to shear. Then using these results to explain the two particle interactions in a simple-shear flow we show how particle-particle contact and non-Newtonian behaviors result in relative trajectories with fore-aft asymmetry. Well-resolved velocity and stress fields around the particles are presented here. Finally, we discuss how the relative particle trajectories may affect the microstructure of complex suspensions and consequently the bulk rheology. NSF (Grant No. CBET-1554044-CAREER).

  11. Effect of sheared flows on neoclassical tearing modes

    Energy Technology Data Exchange (ETDEWEB)

    Sen, A [Institute for Plasma Research, Bhat, Gandhinagar (India); Chandra, D; Kaw, P [Institute for Plasma Research, Bhat, Gandhinagar (India); Bora, M P [Physics Dept., Gauhati University, Guwahati (India); Kruger, S [Tech-X, Boulder, CO (United States); Ramos, J [Plasma Science and Fusion Center, MIT, Cambridge, MA (United States)

    2005-01-01

    The influence of toroidal sheared equilibrium flows on the nonlinear evolution of classical and neoclassical tearing modes (NTMs) is studied through numerical solutions of a set of reduced generalized MHD equations that include viscous force effects based on neoclassical closures. In general, differential flow is found to have a strong stabilizing influence leading to lower saturated island widths for the classical (m/n = 2/1) mode and reduced growth rates for the (m/n = 3/1) neoclassical mode. Velocity shear on the other hand is seen to make a destabilizing contribution. An analytic model calculation, consisting of a generalized Rutherford island evolution equation that includes shear flow effects is also presented and the numerical results are discussed in the context of this model. (author)

  12. Precessing rotating flows with additional shear: stability analysis.

    Science.gov (United States)

    Salhi, A; Cambon, C

    2009-03-01

    We consider unbounded precessing rotating flows in which vertical or horizontal shear is induced by the interaction between the solid-body rotation (with angular velocity Omega(0)) and the additional "precessing" Coriolis force (with angular velocity -epsilonOmega(0)), normal to it. A "weak" shear flow, with rate 2epsilon of the same order of the Poincaré "small" ratio epsilon , is needed for balancing the gyroscopic torque, so that the whole flow satisfies Euler's equations in the precessing frame (the so-called admissibility conditions). The base flow case with vertical shear (its cross-gradient direction is aligned with the main angular velocity) corresponds to Mahalov's [Phys. Fluids A 5, 891 (1993)] precessing infinite cylinder base flow (ignoring boundary conditions), while the base flow case with horizontal shear (its cross-gradient direction is normal to both main and precessing angular velocities) corresponds to the unbounded precessing rotating shear flow considered by Kerswell [Geophys. Astrophys. Fluid Dyn. 72, 107 (1993)]. We show that both these base flows satisfy the admissibility conditions and can support disturbances in terms of advected Fourier modes. Because the admissibility conditions cannot select one case with respect to the other, a more physical derivation is sought: Both flows are deduced from Poincaré's [Bull. Astron. 27, 321 (1910)] basic state of a precessing spheroidal container, in the limit of small epsilon . A Rapid distortion theory (RDT) type of stability analysis is then performed for the previously mentioned disturbances, for both base flows. The stability analysis of the Kerswell base flow, using Floquet's theory, is recovered, and its counterpart for the Mahalov base flow is presented. Typical growth rates are found to be the same for both flows at very small epsilon , but significant differences are obtained regarding growth rates and widths of instability bands, if larger epsilon values, up to 0.2, are considered. Finally

  13. Effects of Particle Size on the Shear Behavior of Coarse Grained Soils Reinforced with Geogrid

    Directory of Open Access Journals (Sweden)

    Daehyeon Kim

    2014-02-01

    Full Text Available In order to design civil structures that are supported by soils, the shear strength parameters of soils are required. Due to the large particle size of coarse-grained soils, large direct shear tests should be performed. In this study, large direct shear tests on three types of coarse grained soils (4.5 mm, 7.9 mm, and 15.9 mm were performed to evaluate the effects of particle size on the shear behavior of coarse grained soils with/without geogrid reinforcements. Based on the direct shear test results, it was found that, in the case of no-reinforcement, the larger the maximum particle size became, the larger the friction angle was. Compared with the no-reinforcement case, the cases reinforced with either soft geogrid or stiff geogrid have smaller friction angles. The cohesion of the soil reinforced with stiff geogrid was larger than that of the soil reinforced with soft geogrid. The difference in the shear strength occurs because the case with a stiff geogrid has more soil to geogrid contact area, leading to the reduction in interlocking between soil particles.

  14. On the appearance of vorticity and gradient shear bands in wormlike micellar solutions of different CPCl/salt systems

    Energy Technology Data Exchange (ETDEWEB)

    Mütze, Annekathrin, E-mail: muetzea@ethz.ch; Heunemann, Peggy; Fischer, Peter [ETH Zürich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 9, 8092 Zürich (Switzerland)

    2014-11-01

    Wormlike micellar salt/surfactant solutions (X-salicylate, cetylpyridinium chloride) are studied with respect to the applied shear stress, concentration, temperature, and composition of the counterions (X = lithium, sodium, potassium, magnesium, and calcium) of the salicylate salt solute to determine vorticity and gradient shear bands. A combination of rheological measurements, laser technique, video analysis, and rheo-small-angle neutron scattering allow for a detailed exploration of number and types of shear bands. Typical flow curves of the solutions show Newtonian, shear-thinning, and shear-thickening flow behavior. In the shear-thickening regime, the solutions show vorticity and gradient shear bands simultaneously, in which vorticity shear bands dominate the visual effect, while gradient shear bands always coexist and predominate the rheological response. It is shown that gradient shear bands change their phases (turbid, clear) with the same frequency as the shear rate oscillates, whereas vorticity shear bands change their phases with half the frequency of the shear rate. Furthermore, we show that with increasing molecular mass of the counterions the number of gradient shear bands increases, while the number of vorticity shear bands remains constant. The variation of temperature, shear stress, concentration, and counterions results in a predictable change in the rheological behavior and therefore allows adjustment of the number of vorticity shear bands in the shear band regime.

  15. AEROSOL NUCLEATION AND GROWTH DURING LAMINAR TUBE FLOW: MAXIMUM SATURATIONS AND NUCLEATION RATES. (R827354C008)

    Science.gov (United States)

    An approximate method of estimating the maximum saturation, the nucleation rate, and the total number nucleated per second during the laminar flow of a hot vapour–gas mixture along a tube with cold walls is described. The basis of the approach is that the temperature an...

  16. Effects of cyclic shear loads on strength, stiffness and dilation of rock fractures

    Directory of Open Access Journals (Sweden)

    Thanakorn Kamonphet

    2015-12-01

    Full Text Available Direct shear tests have been performed to determine the peak and residual shear strengths of fractures in sandstone, granite and limestone under cyclic shear loading. The fractures are artificially made in the laboratory by tension inducing and saw-cut methods. Results indicate that the cyclic shear load can significantly reduce the fracture shear strengths and stiffness. The peak shear strengths rapidly decrease after the first cycle and tend to remain unchanged close to the residual strengths through the tenth cycle. Degradation of the first order asperities largely occurs after the first cycle. The fracture dilation rates gradually decrease from the first through the tenth cycles suggesting that the second order asperities continuously degrade after the first load cycle. The residual shear strengths are lower than the peak shear strengths and higher than those of the smooth fractures. The strength of smooth fracture tends to be independent of cyclic shear loading.

  17. Dynamic Response and Failure Mechanism of Brittle Rocks Under Combined Compression-Shear Loading Experiments

    Science.gov (United States)

    Xu, Yuan; Dai, Feng

    2018-03-01

    A novel method is developed for characterizing the mechanical response and failure mechanism of brittle rocks under dynamic compression-shear loading: an inclined cylinder specimen using a modified split Hopkinson pressure bar (SHPB) system. With the specimen axis inclining to the loading direction of SHPB, a shear component can be introduced into the specimen. Both static and dynamic experiments are conducted on sandstone specimens. Given carefully pulse shaping, the dynamic equilibrium of the inclined specimens can be satisfied, and thus the quasi-static data reduction is employed. The normal and shear stress-strain relationships of specimens are subsequently established. The progressive failure process of the specimen illustrated via high-speed photographs manifests a mixed failure mode accommodating both the shear-dominated failure and the localized tensile damage. The elastic and shear moduli exhibit certain loading-path dependence under quasi-static loading but loading-path insensitivity under high loading rates. Loading rate dependence is evidently demonstrated through the failure characteristics involving fragmentation, compression and shear strength and failure surfaces based on Drucker-Prager criterion. Our proposed method is convenient and reliable to study the dynamic response and failure mechanism of rocks under combined compression-shear loading.

  18. Modelling and analysis of canister and buffer for earthquake induced rock shear and glacial load

    International Nuclear Information System (INIS)

    Hernelind, Jan

    2010-08-01

    Existing fractures crossing a deposition hole may be activated and sheared by an earthquake. The effect of such a rock shear has been investigated by finite element calculations. The buffer material in a deposition hole acts as a cushion between the canister and the rock, which reduces the effect of a rock shear substantially. Lower density of the buffer yields softer material and reduced effect on the canister. However, at the high density that is suggested for a repository the stiffness of the buffer is rather high. The stiffness is also a function of the rate of shear, which means that there may be a substantial damage on the canister at very high shear rates. However, the earthquake induced rock shear velocity is lower than 1 m/s which is not considered to be very high. The rock shear has been modelled with finite element calculations with the code Abaqus. A three dimensional finite element mesh of the buffer and the canister has been created and simulation of a rock shear has been performed. The rock shear has been assumed to take place either perpendicular to the canister at the quarter point or at an inclined angle of 22.5 deg in tension. Furthermore horizontal shear has been studied using a vertical shear plane either at the centre or at 1/4-point for the canister. The shear calculations have been driven to a total shear of 10 cm. The canister also has to be designed to withstand the loads caused by a thick ice sheet. Besides rock shear the model has been used to analyse the effect of such glacial load (either combined with rock shear or without rock shear). This report also summarizes the effect when considering creep in the copper shell

  19. Modelling and analysis of canister and buffer for earthquake induced rock shear and glacial load

    Energy Technology Data Exchange (ETDEWEB)

    Hernelind, Jan (5T Engineering AB (Sweden))

    2010-08-15

    Existing fractures crossing a deposition hole may be activated and sheared by an earthquake. The effect of such a rock shear has been investigated by finite element calculations. The buffer material in a deposition hole acts as a cushion between the canister and the rock, which reduces the effect of a rock shear substantially. Lower density of the buffer yields softer material and reduced effect on the canister. However, at the high density that is suggested for a repository the stiffness of the buffer is rather high. The stiffness is also a function of the rate of shear, which means that there may be a substantial damage on the canister at very high shear rates. However, the earthquake induced rock shear velocity is lower than 1 m/s which is not considered to be very high. The rock shear has been modelled with finite element calculations with the code Abaqus. A three dimensional finite element mesh of the buffer and the canister has been created and simulation of a rock shear has been performed. The rock shear has been assumed to take place either perpendicular to the canister at the quarter point or at an inclined angle of 22.5 deg in tension. Furthermore horizontal shear has been studied using a vertical shear plane either at the centre or at 1/4-point for the canister. The shear calculations have been driven to a total shear of 10 cm. The canister also has to be designed to withstand the loads caused by a thick ice sheet. Besides rock shear the model has been used to analyse the effect of such glacial load (either combined with rock shear or without rock shear). This report also summarizes the effect when considering creep in the copper shell

  20. The effect of shear rate on aggregate size distribution and structure at steady state: a comparison between a Taylor–Couette reactor to a mixing tank

    Czech Academy of Sciences Publication Activity Database

    Bubáková, Petra; Pivokonský, Martin; Pivokonský, Radek; Filip, Petr

    2013-01-01

    Roč. 62, č. 5 (2013), s. 288-295 ISSN 0003-7214 R&D Projects: GA ČR GAP105/11/0247 Institutional support: RVO:67985874 Keywords : aggregate size distribution * aggregation * flocculation * fractal dimension * shear rate Subject RIV: BK - Fluid Dynamics Impact factor: 0.521, year: 2013

  1. A new confined high pressure rotary shear apparatus: preliminary results

    Science.gov (United States)

    Faulkner, D.; Coughlan, G.; Bedford, J. D.

    2017-12-01

    The frictional properties of fault zone materials, and their evolution during slip, are of paramount importance for determining the earthquake mechanics of large tectonic faults. Friction is a parameter that is difficult to determine from seismological methods so much of our understanding comes from experiment. Rotary shear apparatuses have been widely used in experimental studies to elucidate the frictional properties of faults under realistic earthquake slip velocities (0.1-10 m/s) and displacements (>20 m). However one technical limitation of rotary shear experiments at seismic slip rates has been the lack of confinement. This has led to a limit on the normal stress (due to the strength of the forcing blocks) and also a lack of control of measurements of the pore fluid pressure. Here we present the first preliminary results from a rotary shear apparatus that has been developed to attempt to address this issue. The new fully confined ring shear apparatus has a fast-acting servo-hydraulic confining pressure system of up to 200 MPa and a servo-controlled upstream and downstream pore pressure system of up to 200 MPa. Displacement rates of 0.01μ/s to 2 m/s can be achieved. Fault gouge samples can therefore be sheared at earthquake speed whilst being subject to pressures typically associated with the depth of earthquake nucleation.

  2. Nonequilibrium statistical mechanics of shear flow: invariant quantities and current relations

    International Nuclear Information System (INIS)

    Baule, A; Evans, R M L

    2010-01-01

    In modeling nonequilibrium systems one usually starts with a definition of the microscopic dynamics, e.g., in terms of transition rates, and then derives the resulting macroscopic behavior. We address the inverse question for a class of steady state systems, namely complex fluids under continuous shear flow: how does an externally imposed shear current affect the microscopic dynamics of the fluid? The answer can be formulated in the form of invariant quantities, exact relations for the transition rates in the nonequilibrium steady state, as discussed in a recent letter (Baule and Evans, 2008 Phys. Rev. Lett. 101 240601). Here, we present a more pedagogical account of the invariant quantities and the theory underlying them, known as the nonequilibrium counterpart to detailed balance (NCDB). Furthermore, we investigate the relationship between the transition rates and the shear current in the steady state. We show that a fluctuation relation of the Gallavotti–Cohen type holds for systems satisfying NCDB

  3. 3D finite element analysis of stress distributions and strain energy release rates for adhesive bonded flat composite lap shear joints having pre-existing delaminations

    Energy Technology Data Exchange (ETDEWEB)

    Parida, S. K.; Pradhan, A. K. [Indian Institute of Technology, Bhubaneswar (India)

    2014-02-15

    The rate of propagation of embedded delamination in the strap adherend of lap shear joint (LSJ) made of carbon/epoxy composites has been evaluated employing three-dimensional non-linear finite elements. The delamination has been presumed to pre-exist in the thin resin layer between the first and second plies of the strap adherend. The inter-laminar peel and shear stress distributions have been studied in details and are seen to be predominantly three-dimensional in nature. The components of strain energy release rate (SERR) corresponding to the opening, sliding and cross sliding modes of delamination are significantly different at the two fronts of the embedded delamination. The sequential release of multi-point constraint (MPC) finite elements in the vicinity of the delamination fronts enables to simulate the growth of the delamination at either ends. This simulation procedure can be utilized effectively for evaluation of the status of the structural integrity of the bonded joints.

  4. Shear-induced breaking of cages in colloidal glasses: Scattering experiments and mode coupling theory

    Energy Technology Data Exchange (ETDEWEB)

    Amann, Christian P., E-mail: Christian.2.Amann@uni-konstanz.de; Fuchs, Matthias, E-mail: Matthias.Fuchs@uni-konstanz.de [Fachbereich Physik, Universität Konstanz, 78457 Konstanz (Germany); Denisov, Dmitry; Dang, Minh Triet; Schall, Peter [Van der Waals-Zeeman Institute, University of Amsterdam, Amsterdam (Netherlands); Struth, Bernd [Deutsches Elektronen-Synchrotron, Hamburg (Germany)

    2015-07-21

    We employ x-ray scattering on sheared colloidal suspensions and mode coupling theory to study structure factor distortions of glass-forming systems under shear. We find a transition from quadrupolar elastic distortion at small strains to quadrupolar and hexadecupolar modes in the stationary state. The latter are interpreted as signatures of plastic rearrangements in homogeneous, thermalized systems. From their transient evolution with strain, we identify characteristic strain and length-scale values where these plastic rearrangements dominate. This characteristic strain coincides with the maximum of the shear stress versus strain curve, indicating the proliferation of plastic flow. The hexadecupolar modes dominate at the wavevector of the principal peak of the equilibrium structure factor that is related to the cage-effect in mode coupling theory. We hence identify the structural signature of plastic flow of glasses.

  5. Shear-induced breaking of cages in colloidal glasses: Scattering experiments and mode coupling theory

    International Nuclear Information System (INIS)

    Amann, Christian P.; Fuchs, Matthias; Denisov, Dmitry; Dang, Minh Triet; Schall, Peter; Struth, Bernd

    2015-01-01

    We employ x-ray scattering on sheared colloidal suspensions and mode coupling theory to study structure factor distortions of glass-forming systems under shear. We find a transition from quadrupolar elastic distortion at small strains to quadrupolar and hexadecupolar modes in the stationary state. The latter are interpreted as signatures of plastic rearrangements in homogeneous, thermalized systems. From their transient evolution with strain, we identify characteristic strain and length-scale values where these plastic rearrangements dominate. This characteristic strain coincides with the maximum of the shear stress versus strain curve, indicating the proliferation of plastic flow. The hexadecupolar modes dominate at the wavevector of the principal peak of the equilibrium structure factor that is related to the cage-effect in mode coupling theory. We hence identify the structural signature of plastic flow of glasses

  6. Shear-induced breaking of cages in colloidal glasses: Scattering experiments and mode coupling theory.

    Science.gov (United States)

    Amann, Christian P; Denisov, Dmitry; Dang, Minh Triet; Struth, Bernd; Schall, Peter; Fuchs, Matthias

    2015-07-21

    We employ x-ray scattering on sheared colloidal suspensions and mode coupling theory to study structure factor distortions of glass-forming systems under shear. We find a transition from quadrupolar elastic distortion at small strains to quadrupolar and hexadecupolar modes in the stationary state. The latter are interpreted as signatures of plastic rearrangements in homogeneous, thermalized systems. From their transient evolution with strain, we identify characteristic strain and length-scale values where these plastic rearrangements dominate. This characteristic strain coincides with the maximum of the shear stress versus strain curve, indicating the proliferation of plastic flow. The hexadecupolar modes dominate at the wavevector of the principal peak of the equilibrium structure factor that is related to the cage-effect in mode coupling theory. We hence identify the structural signature of plastic flow of glasses.

  7. Closed compact Taylor's droplets in a phase-separated lamellar-sponge mixture under shear flow

    Science.gov (United States)

    Courbin, L.; Cristobal, G.; Rouch, J.; Panizza, P.

    2001-09-01

    We have studied by optical microscopy, small-angle light scattering, and rheology, the behavior under shear flow of a phase-separated lamellar-sponge (Lα - L3) ternary mixture. We observe in the Lα-rich region (ΦLα > 80%) the existence of a Newtonian assembly made of closed compact monodisperse lamellar droplets immersed in the sponge phase. Contrary to the classical onion glassy texture obtained upon shearing Lα phases, the droplet size scales herein as dot gamma-1, the inverse of the shear rate. This result is in good agreement with Taylor's picture. Above a critical shear rate, dot gammac, the droplets organize to form a single colloidal crystal whose lattice size varies as dot gamma-1/3. To the memory of Tess Melissa P.

  8. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh

    1997-01-01

    The paper deals with the shear strength of prestressed hollow-core slabs determined by the theory of plasticity. Two failure mechanisms are considered in order to derive the solutions.In the case of sliding failure in a diagonal crack, the shear strength is determined by means of the crack sliding...

  9. Hydrodynamic of a deformed bubble in linear shear flow

    International Nuclear Information System (INIS)

    Adoua, S.R.

    2007-07-01

    This work is devoted to the study of an oblate spheroidal bubble of prescribed shape set fixed in a linear shear flow using direct numerical simulation. The three dimensional Navier-Stokes equations are solved in orthogonal curvilinear coordinates using a finite volume method. The bubble response is studied over a wide range of the aspect ratio (1-2.7), the bubble Reynolds number (50-2000) and the non-dimensional shear rate (0.-1.2). The numerical simulations shows that the shear flow imposes a plane symmetry of the wake whatever the parameters of the flow. The trailing vorticity is organized into two anti-symmetrical counter rotating tubes with a sign imposed by the competition of two mechanisms (the Lighthill mechanism and the instability of the wake). Whatever the Reynolds number, the lift coefficient reaches the analytical value obtained in an inviscid, weakly sheared flow corresponding to a lift force oriented in the same direction as that of a spherical bubble. For moderate Reynolds numbers, the direction of the lift force reverses when the bubble aspect ratio is large enough as observed in experiments. This reversal occurs for aspect ratios larger than 2.225 and is found to be directly linked to the sign of the trailing vorticity which is concentrated within two counter-rotating threads which propel the bubble in a direction depending of their sign of rotation. The behavior of the drag does not revel any significant effect induced by the wake structure and follows a quadratic increase with the shear rate. Finally, the torque experienced by the bubble also reverses for the same conditions inducing the reversal of the lift force. By varying the orientation of the bubble in the shear flow, a stable equilibrium position is found corresponding to a weak angle between the small axis of the bubble and the flow direction. (author)

  10. Introduction to the viewpoint set on shear bands

    International Nuclear Information System (INIS)

    Hutchinson, J.W.

    1984-01-01

    Recent work aimed at improving our understanding of shear banding and flow localization as modes of deformation and failure is summarized in the six viewpoint articles which follow. For the most part, the emphasis here is on the observation and analysis of shear banding in metals, but active efforts are also underway to understand the role of shear bands in the deformation and failure of soils and rocks. There is a tendency to regard shear bands as a failure mode, as indeed they often are. But extensive straining under highly constrained conditions such as rolling can give rise to profuse flow localization into shear bands which can be regarded as microscopic in the sense that their extent is on the scale of the grains rather than the overall dimensions of the block of material being deformed. Hatherly and Malin describe in detail the observation of such bands and emphasize that they should be considered as a mode of deformation under these circumstances. They relate the formation of the bands to microstructural aspects and discuss their role in the development of recrystallization textures. It will be clear from reading the articles in this viewpoint set that the beginnings of a quantitative theory of shear banding is in place. Continued progress will require parallel developments in constitutive theory and experimental observation. Moreover, basic questions remain to be explored related to the spatial development of the shear bands, their mutual interaction, their development into a failure mode, and how these are influenced by factors such as overall deformational constraint, rate of straining, and temperature

  11. 22 CFR 201.67 - Maximum freight charges.

    Science.gov (United States)

    2010-04-01

    ..., commodity rate classification, quantity, vessel flag category (U.S.-or foreign-flag), choice of ports, and... the United States. (2) Maximum charter rates. (i) USAID will not finance ocean freight under any... owner(s). (4) Maximum liner rates. USAID will not finance ocean freight for a cargo liner shipment at a...

  12. Seismic Behaviour of Composite Steel Fibre Reinforced Concrete Shear Walls

    Science.gov (United States)

    Boita, Ioana-Emanuela; Dan, Daniel; Stoian, Valeriu

    2017-10-01

    In this paper is presented an experimental study conducted at the “Politehnica” University of Timisoara, Romania. This study provides results from a comprehensive experimental investigation on the behaviour of composite steel fibre reinforced concrete shear walls (CSFRCW) with partially or totally encased profiles. Two experimental composite steel fibre reinforced concrete walls (CSFRCW) and, as a reference specimen, a typical reinforced concrete shear wall (RCW), (without structural reinforcement), were fabricated and tested under constant vertical load and quasi-static reversed cyclic lateral loads, in displacement control. The tests were performed until failure. The tested specimens were designed as 1:3 scale steel-concrete composite elements, representing a three storeys and one bay element from the base of a lateral resisting system made by shear walls. Configuration/arrangement of steel profiles in cross section were varied within the specimens. The main objective of this research consisted in identifying innovative solutions for composite steel-concrete shear walls with enhanced performance, as steel fibre reinforced concrete which was used in order to replace traditional reinforced concrete. A first conclusion was that replacing traditional reinforcement with steel fibre changes the failure mode of the elements, as from a flexural mode, in case of element RCW, to a shear failure mode for CSFRCW. The maximum lateral force had almost similar values but test results indicated an improvement in cracking response, and a decrease in ductility. The addition of steel fibres in the concrete mixture can lead to an increase of the initial cracking force, and can change the sudden opening of a crack in a more stable process.

  13. Interfacial shear stress in stratified flow in a horizontal rectangular duct

    International Nuclear Information System (INIS)

    Lorencez, C.; Kawaji, M.; Murao, Y.

    1995-01-01

    Interfacial shear stress has been experimentally examined for both cocurrent and countercurrent stratified wavy flows in a horizontal interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress values at high gas flow rates which could be attributed to the assumptions and procedures involved in each method. The interfacial waves and secondary motions were also found to have significant effects on the accuracy of Reynolds stress and turbulence kinetic energy extrapolation methods

  14. Interfacial shear stress in stratified flow in a horizontal rectangular duct

    Energy Technology Data Exchange (ETDEWEB)

    Lorencez, C.; Kawaji, M. [Univ. of Toronto (Canada); Murao, Y. [Tokushima Univ. (Japan)] [and others

    1995-09-01

    Interfacial shear stress has been experimentally examined for both cocurrent and countercurrent stratified wavy flows in a horizontal interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress from the measurements were examined and the results have been compared with existing correlations. Some differences were found in the estimated interfacial shear stress values at high gas flow rates which could be attributed to the assumptions and procedures involved in each method. The interfacial waves and secondary motions were also found to have significant effects on the accuracy of Reynolds stress and turbulence kinetic energy extrapolation methods.

  15. Performance of a Polymer Flood with Shear-Thinning Fluid in Heterogeneous Layered Systems with Crossflow

    Directory of Open Access Journals (Sweden)

    Kun Sang Lee

    2011-08-01

    Full Text Available Assessment of the potential of a polymer flood for mobility control requires an accurate model on the viscosities of displacement fluids involved in the process. Because most polymers used in EOR exhibit shear-thinning behavior, the effective viscosity of a polymer solution is a highly nonlinear function of shear rate. A reservoir simulator including the model for the shear-rate dependence of viscosity was used to investigate shear-thinning effects of polymer solution on the performance of the layered reservoir in a five-spot pattern operating under polymer flood followed by waterflood. The model can be used as a quantitative tool to evaluate the comparative studies of different polymer flooding scenarios with respect to shear-rate dependence of fluids’ viscosities. Results of cumulative oil recovery and water-oil ratio are presented for parameters of shear-rate dependencies, permeability heterogeneity, and crossflow. The results of this work have proven the importance of taking non-Newtonian behavior of polymer solution into account for the successful evaluation of polymer flood processes. Horizontal and vertical permeabilities of each layer are shown to impact the predicted performance substantially. In reservoirs with a severe permeability contrast between horizontal layers, decrease in oil recovery and sudden increase in WOR are obtained by the low sweep efficiency and early water breakthrough through highly permeable layer, especially for shear-thinning fluids. An increase in the degree of crossflow resulting from sufficient vertical permeability is responsible for the enhanced sweep of the low permeability layers, which results in increased oil recovery. It was observed that a thinning fluid coefficient would increase injectivity significantly from simulations with various injection rates. A thorough understanding of polymer rheology in the reservoir and accurate numerical modeling are of fundamental importance for the exact estimation

  16. Continuous shear - a method for studying material elements passing a stationary shear plane

    DEFF Research Database (Denmark)

    Lindegren, Maria; Wiwe, Birgitte; Wanheim, Tarras

    2003-01-01

    circumferential groove. Normally shear in metal forming processes is of another nature, namely where the material elements move through a stationary shear zone, often of small width. In this paper a method enabling the simulation of this situation is presented. A tool for continuous shear has beeen manufactured...... and tested with AlMgSil and copper. The sheared material has thereafter been tested n plane strain compression with different orientation concerning the angle between the shear plane and the compression direction....

  17. Theory of high-n toroidicity-induced shear Alfven eigenmode in tokamaks

    International Nuclear Information System (INIS)

    Fu, G.Y.; Cheng, C.Z.; Princeton Univ., NJ

    1989-07-01

    High-n WKB-ballooning mode equation is employed to study toroidicity-induced shear Alfven eigenmodes (TAE) in the δ - α space, where δ = (r/q)(dq/dr) is the magnetic shear, and α = -(2Rq 2 /B 2 )(dp/dr) is the normalized pressure gradient for tokamak plasmas. In the ballooning mode first stability region, TAE modes are found to exist only for α less than some critical value α c . We also find that these TAE modes reappear in the ballooning mode second stability region for bands of α values. The global envelope structures of these TAE modes are studied by WKB method and are found to be bounded radially if the local mode frequency has a maximum in radius. 15 refs., 14 figs

  18. 19 mm sized bileaflet valve prostheses' flow field investigated by bidimensional laser Doppler anemometry (part II: maximum turbulent shear stresses)

    Science.gov (United States)

    Barbaro, V; Grigioni, M; Daniele, C; D'Avenio, G; Boccanera, G

    1997-11-01

    The investigation of the flow field generated by cardiac valve prostheses is a necessary task to gain knowledge on the possible relationship between turbulence-derived stresses and the hemolytic and thrombogenic complications in patients after valve replacement. The study of turbulence flows downstream of cardiac prostheses, in literature, especially concerns large-sized prostheses with a variable flow regime from very low up to 6 L/min. The Food and Drug Administration draft guidance requires the study of the minimum prosthetic size at a high cardiac output to reach the maximum Reynolds number conditions. Within the framework of a national research project regarding the characterization of cardiovascular endoprostheses, an in-depth study of turbulence generated downstream of bileaflet cardiac valves is currently under way at the Laboratory of Biomedical Engineering of the Istituto Superiore di Sanita. Four models of 19 mm bileaflet valve prostheses were used: St Jude Medical HP, Edwards Tekna, Sorin Bicarbon, and CarboMedics. The prostheses were selected for the nominal Tissue Annulus Diameter as reported by manufacturers without any assessment of valve sizing method, and were mounted in aortic position. The aortic geometry was scaled for 19 mm prostheses using angiographic data. The turbulence-derived shear stresses were investigated very close to the valve (0.35 D0), using a bidimensional Laser Doppler anemometry system and applying the Principal Stress Analysis. Results concern typical turbulence quantities during a 50 ms window at peak flow in the systolic phase. Conclusions are drawn regarding the turbulence associated to valve design features, as well as the possible damage to blood constituents.

  19. Effect of rock joint roughness on its cyclic shear behavior

    Directory of Open Access Journals (Sweden)

    S.M. Mahdi Niktabar

    2017-12-01

    Full Text Available Rock joints are often subjected to dynamic loads induced by earthquake and blasting during mining and rock cutting. Hence, cyclic shear load can be induced along the joints and it is important to evaluate the shear behavior of rock joint under this condition. In the present study, synthetic rock joints were prepared with plaster of Paris (PoP. Regular joints were simulated by keeping regular asperity with asperity angles of 15°–15° and 30°–30°, and irregular rock joints which are closer to natural joints were replicated by keeping the asperity angles of 15°–30° and 15°–45°. The sample size and amplitude of roughness were kept the same for both regular and irregular joints which were 298 mm × 298 mm × 125 mm and 5 mm, respectively. Shear test was performed on these joints using a large-scale direct shear testing machine by keeping the frequency and amplitude of shear load under constant cyclic condition with different normal stress values. As expected, the shear strength of rock joints increased with the increases in the asperity angle and normal load during the first cycle of shearing or static load. With the increase of the number of shear cycles, the shear strength decreased for all the asperity angles but the rate of reduction was more in case of high asperity angles. Test results indicated that shear strength of irregular joints was higher than that of regular joints at different cycles of shearing at low normal stress. Shearing and degradation of joint asperities on regular joints were the same between loading and unloading, but different for irregular joints. Shear strength and joint degradation were more significant on the slope of asperity with higher angles on the irregular joint until two angles of asperities became equal during the cycle of shearing and it started behaving like regular joints for subsequent cycles.

  20. Separate structure of two branches of sheared slab ηi mode and effects of plasma rotation shear in weak magnetic shear region

    International Nuclear Information System (INIS)

    Jiquan Li; Kishimoto, Y.; Tuda, T.

    2000-01-01

    The separate structure of two branches of the sheared slab η i mode near the minimum-q magnetic surface is analysed and the effects of plasma rotation shears are considered in the weak magnetic shear region. Results show that the separation condition depends on the non-monotonous q profile and the deviation of rational surface from the minimum-q surface. Furthermore, it is found that the diamagnetic rotation shear may suppress the perturbation of the sheared slab η i mode at one side of the minimum-q surface, the poloidal rotation shear from the sheared E-vector x B-vector flow has a similar role to the slab mode structure when it possesses a direction same as the diamagnetic shear. A plausible interrelation between the separate structures of the two branches of the sheared slab mode and the discontinuity or gap of the radially global structure of the drift wave near the minimum-q surface observed in the toroidal particle simulation (Kishimoto Y et al 1998 Plasma Phys. Control. Fusion 40 A663) is discussed. It seems to support such a viewpoint: the double or/and global branches of the sheared slab η i mode near the minimum-q surface may become a bridge to connect the radially global structures of the drift wave at two sides of the minimum-q surface and the discontinuity may originate from the separate structures of these slab modes for a flatter q profile. (author)

  1. Glass transition memorized by the enthalpy-entropy compensation in the shear thinning of supercooled metallic liquids

    Science.gov (United States)

    Zhang, Meng; Liu, Lin

    2018-06-01

    To unravel the true nature of glass transition, broader insights into glass forming have been gained by examining the stress-driven glassy systems, where strong shear thinning, i.e. a reduced viscosity under increasing shear rate, is encountered. It is argued that arbitrarily small stress-driven shear rates would ‘melt’ the glass and erase any memory of its thermal history. In this work, we report a glass transition memorized by the enthalpy-entropy compensation in strongly shear-thinned supercooled metallic liquids, which coincides with the thermal glass transition in both the transition temperature and the activation Gibbs free energy. Our findings provide distinctive insights into both glass forming and shear thinning, and enrich current knowledge on the ubiquitous enthalpy-entropy compensation empirical law in condensed matter physics.

  2. Aspiration of human neutrophils: effects of shear thinning and cortical dissipation.

    Science.gov (United States)

    Drury, J L; Dembo, M

    2001-12-01

    It is generally accepted that the human neutrophil can be mechanically represented as a droplet of polymeric fluid enclosed by some sort of thin slippery viscoelastic cortex. Many questions remain however about the detailed rheology and chemistry of the interior fluid and the cortex. To address these quantitative issues, we have used a finite element method to simulate the dynamics of neutrophils during micropipet aspiration using various plausible assumptions. The results were then systematically compared with aspiration experiments conducted at eight different combinations of pipet size and pressure. Models in which the cytoplasm was represented by a simple Newtonian fluid (i.e., models without shear thinning) were grossly incapable of accounting for the effects of pressure on the general time scale of neutrophil aspiration. Likewise, models in which the cortex was purely elastic (i.e., models without surface viscosity) were unable to explain the effects of pipet size on the general aspiration rate. Such models also failed to explain the rapid acceleration of the aspiration rate during the final phase of aspiration nor could they account for the geometry of the neutrophil during various phases of aspiration. Thus, our results indicate that a minimal mechanical model of the neutrophil needs to incorporate both shear thinning and surface viscosity to remain valid over a reasonable range of conditions. At low shear rates, the surface dilatation viscosity of the neutrophil was found to be on the order of 100 poise-cm, whereas the viscosity of the interior cytoplasm was on the order of 1000 poise. Both the surface viscosity and the interior viscosity seem to decrease in a similar fashion when the shear rate exceeds approximately 0.05 s(-1). Unfortunately, even models with both surface viscosity and shear thinning studied are still not sufficient to fully explain all the features of neutrophil aspiration. In particular, the very high rate of aspiration during the

  3. Mechanical properties and local mobility of atactic-polystyrene films under constant-shear deformation

    NARCIS (Netherlands)

    Hudzinskyy, D.; Michels, M.A.J.; Lyulin, A.V.

    2012-01-01

    We have performed molecular-dynamics simulations of atactic polystyrene thin films to study the effect of shear rate, pressure, and temperature on the stress-strain behaviour, the relevant energetic contributions and non-affine displacements of polymer chains during constant-shear deformation. Under

  4. The brittle-viscous-plastic evolution of shear bands in the South Armorican Shear Zone

    Science.gov (United States)

    Bukovská, Zita; Jeřábek, Petr; Morales, Luiz F. G.; Lexa, Ondrej; Milke, Ralf

    2014-05-01

    Shear bands are microscale shear zones that obliquely crosscut an existing anisotropy such as a foliation. The resulting S-C fabrics are characterized by angles lower than 45° and the C plane parallel to shear zone boundaries. The S-C fabrics typically occur in granitoids deformed at greenschist facies conditions in the vicinity of major shear zones. Despite their long recognition, mechanical reasons for localization of deformation into shear bands and their evolution is still poorly understood. In this work we focus on microscale characterization of the shear bands in the South Armorican Shear Zone, where the S-C fabrics were first recognized by Berthé et al. (1979). The initiation of shear bands in the right-lateral South Armorican Shear Zone is associated with the occurrence of microcracks crosscutting the recrystallized quartz aggregates that define the S fabric. In more advanced stages of shear band evolution, newly formed dominant K-feldspar, together with plagioclase, muscovite and chlorite occur in the microcracks, and the shear bands start to widen. K-feldspar replaces quartz by progressively bulging into the grain boundaries of recrystallized quartz grains, leading to disintegration of quartz aggregates and formation of fine-grained multiphase matrix mixture. The late stages of shear band development are marked by interconnection of fine-grained white mica into a band that crosscuts the original shear band matrix. In its extremity, the shear band widening may lead to the formation of ultramylonites. With the increasing proportion of shear band matrix from ~1% to ~12%, the angular relationship between S and C fabrics increases from ~30° to ~40°. The matrix phases within shear bands show differences in chemical composition related to distinct evolutionary stages of shear band formation. The chemical evolution is well documented in K-feldspar, where the albite component is highest in porphyroclasts within S fabric, lower in the newly formed grains within

  5. Influence of Equilibrium Perpendicular Shear Flow on Peeling-ballooning Instabilities

    Science.gov (United States)

    Xi, P. W.; Xu, X. Q.

    2011-10-01

    The influence of perpendicular ExB shear flow on peeling-ballooning instabilities is investigated with BOUT++ code. In our simulation, a set of reduced MHD equations are solved for a very unstable equilibrium and a marginal unstable equilibrium in shifted-circular tokamak geometry. For ideal MHD cases without diamagnetic terms and resistivity, we find that flow shear shows dramatic stabilizing effect on peeling-ballooning modes and the stabilizing degree increases with mode number. When the flow shear is large enough, we find the curvature of growth rate verse mode number has the same shape like that for the case with only diamagnetic term, and this implies that diamagnetic term and the shear flow have the same mechanism acting on peeling-ballooning instabilities. The role of Kelvin-Helmholtz term is also investigated and we find it is destabilizing and the effect depends on both flow shear and mode number. For cases with both diamagnetic term and the applied shear flow, modes with intermediate mode number are strongest stabilized while high n and low n mode keep unstable. Based on these results, an ELM trigger sketch is proposed. Performed for USDoE by LLNL Contract DE-AC52-07NA27344.

  6. Investigation of the Shear Flow Effect and Tip Clearance on a Low Speed Axial Flow Compressor Cascade

    Directory of Open Access Journals (Sweden)

    Mahesh Varpe

    2013-01-01

    Full Text Available This paper explores the effect of inlet shear flow on the tip leakage flow in an axial flow compressor cascade. A flow with a high shear rate is generated in the test section of an open circuit cascade wind tunnel by using a combination of screens with a prescribed solidity. It is observed that a stable shear flow of shear rate 1.33 is possible and has a gradual decay rate until 15 times the height of the shear flow generator downstream. The computational results obtained agree well with the available experimental data on the baseline configuration. The detailed numerical analysis shows that the tip clearance improves the blade loading near the tip through the promotion of favorable incidence by the tip leakage flow. The tip clearance shifts the centre of pressure on the blade surface towards the tip. It, however, has no effect on the distribution of end wall loss and deviation angle along the span up to 60% from the hub. In the presence of a shear inflow, the end wall effects are considerable. On the other hand, with a shear inflow, the effects of tip leakage flow are observed to be partly suppressed. The shear flow reduces the tip leakage losses substantially in terms of kinetic energy associated with it.

  7. Shear thickening in suspensions: the lubricated-to-frictional contact scenario

    Science.gov (United States)

    Morris, Jeffrey

    2017-11-01

    Suspensions of solid particles in viscous liquids can vary from low-viscosity liquids to wet granular materials or soft solids depending on the solids loading and the forces acting between particles. When the particles are very concentrated, these mixtures are ''dense suspensions.'' Dense suspensions often exhibit shear thickening, an increase in apparent viscosity as the shear rate is increased. In its most extreme form, order of magnitude increases in viscosity over such a narrow range in shear rate occur that the term discontinuous shear thickening (DST) is applied. DST is particularly striking as it occurs in the relatively simple case of nearly hard spheres in a Newtonian liquid, and is found to take place for submicron particles in colloidal dispersions to much larger particle corn starch dispersions. We focus on simulations of a recently developed ``lubricated-to-frictional'' rheology in which the interplay of viscous lubrication, repulsive surface forces, and contact friction between particle surfaces provides a scenario to explain DST. Our simulation method brings together elements of the discrete-element method from granular flow with a simplified Stokesian Dynamics, and can rationalize not only the abrupt change in properties with imposed shear rate (or shear stress), but also the magnitude of the change. The large change in properties is associated with the breakdown of lubricating films between particles, with activation of Coulomb friction between particles. The rate dependence is caused by the shearing forces driving particles to contact, overwhelming conservative repulsive forces between surfaces; the repulsive forces are representative of colloidal stabilization by surface charge or steric effects, e.g. due to adsorbed polymer. The results of simulation are compared to developments by other groups, including a number of experimental studies and a theory incorporating the same basic elements as the simulation. The comparison to experiments of the

  8. Signal-to-noise ratio, contrast-to-noise ratio and their trade-offs with resolution in axial-shear strain elastography

    International Nuclear Information System (INIS)

    Thitaikumar, Arun; Krouskop, Thomas A; Ophir, Jonathan

    2007-01-01

    In axial-shear strain elastography, the local axial-shear strain resulting from the application of quasi-static axial compression to an inhomogeneous material is imaged. In this paper, we investigated the image quality of the axial-shear strain estimates in terms of the signal-to-noise ratio (SNR asse ) and contrast-to-noise ratio (CNR asse ) using simulations and experiments. Specifically, we investigated the influence of the system parameters (beamwidth, transducer element pitch and bandwidth), signal processing parameters (correlation window length and axial window shift) and mechanical parameters (Young's modulus contrast, applied axial strain) on the SNR asse and CNR asse . The results of the study show that the CNR asse (SNR asse ) is maximum for axial-shear strain values in the range of 0.005-0.03. For the inclusion/background modulus contrast range considered in this study ( asse (SNR asse ) is maximum for applied axial compressive strain values in the range of 0.005%-0.03%. This suggests that the RF data acquired during axial elastography can be used to obtain axial-shear strain elastograms, since this range is typically used in axial elastography as well. The CNR asse (SNR asse ) remains almost constant with an increase in the beamwidth while it increases as the pitch increases. As expected, the axial shift had only a weak influence on the CNR asse (SNR asse ) of the axial-shear strain estimates. We observed that the differential estimates of the axial-shear strain involve a trade-off between the CNR asse (SNR asse ) and the spatial resolution only with respect to pitch and not with respect to signal processing parameters. Simulation studies were performed to confirm such an observation. The results demonstrate a trade-off between CNR asse and the resolution with respect to pitch

  9. Structural predictor for nonlinear sheared dynamics in simple glass-forming liquids.

    Science.gov (United States)

    Ingebrigtsen, Trond S; Tanaka, Hajime

    2018-01-02

    Glass-forming liquids subjected to sufficiently strong shear universally exhibit striking nonlinear behavior; for example, a power-law decrease of the viscosity with increasing shear rate. This phenomenon has attracted considerable attention over the years from both fundamental and applicational viewpoints. However, the out-of-equilibrium and nonlinear nature of sheared fluids have made theoretical understanding of this phenomenon very challenging and thus slower to progress. We find here that the structural relaxation time as a function of the two-body excess entropy, calculated for the extensional axis of the shear flow, collapses onto the corresponding equilibrium curve for a wide range of pair potentials ranging from harsh repulsive to soft and finite. This two-body excess entropy collapse provides a powerful approach to predicting the dynamics of nonequilibrium liquids from their equilibrium counterparts. Furthermore, the two-body excess entropy scaling suggests that sheared dynamics is controlled purely by the liquid structure captured in the form of the two-body excess entropy along the extensional direction, shedding light on the perplexing mechanism behind shear thinning.

  10. Structural predictor for nonlinear sheared dynamics in simple glass-forming liquids

    Science.gov (United States)

    Ingebrigtsen, Trond S.; Tanaka, Hajime

    2018-01-01

    Glass-forming liquids subjected to sufficiently strong shear universally exhibit striking nonlinear behavior; for example, a power-law decrease of the viscosity with increasing shear rate. This phenomenon has attracted considerable attention over the years from both fundamental and applicational viewpoints. However, the out-of-equilibrium and nonlinear nature of sheared fluids have made theoretical understanding of this phenomenon very challenging and thus slower to progress. We find here that the structural relaxation time as a function of the two-body excess entropy, calculated for the extensional axis of the shear flow, collapses onto the corresponding equilibrium curve for a wide range of pair potentials ranging from harsh repulsive to soft and finite. This two-body excess entropy collapse provides a powerful approach to predicting the dynamics of nonequilibrium liquids from their equilibrium counterparts. Furthermore, the two-body excess entropy scaling suggests that sheared dynamics is controlled purely by the liquid structure captured in the form of the two-body excess entropy along the extensional direction, shedding light on the perplexing mechanism behind shear thinning.

  11. Grain refinement of DC cast magnesium alloys with intensive melt shearing

    International Nuclear Information System (INIS)

    Zuo, Y B; Jiang, B; Zhang, Y; Fan, Z

    2012-01-01

    A new direct chill (DC) casting process, melt conditioned DC (MC-DC) process, has been developed for the production of high quality billets/slabs of light alloys by application of intensive melt shearing through a rotor-stator high shear device during the DC casting process. The rotor-stator high shear device provides intensive melt shearing to disperse the naturally occurring oxide films, and other inclusions, while creating a microscopic flow pattern to homogenize the temperature and composition fields in the sump. In this paper, we report the grain refining effect of intensive melt shearing in the MC-DC casting processing. Experimental results on DC casting of Mg-alloys with and without intensive melt shearing have demonstrated that the MC-DC casting process can produce magnesium alloy billets with significantly refined microstructure. Such grain refinement in the MC-DC casting process can be attributed to enhanced heterogeneous nucleation by dispersed naturally occurring oxide particles, increased nuclei survival rate in uniform temperature and compositional fields in the sump, and potential contribution from dendrite arm fragmentation.

  12. Shear melting and high temperature embrittlement: theory and application to machining titanium.

    Science.gov (United States)

    Healy, Con; Koch, Sascha; Siemers, Carsten; Mukherji, Debashis; Ackland, Graeme J

    2015-04-24

    We describe a dynamical phase transition occurring within a shear band at high temperature and under extremely high shear rates. With increasing temperature, dislocation deformation and grain boundary sliding are supplanted by amorphization in a highly localized nanoscale band, which allows for massive strain and fracture. The mechanism is similar to shear melting and leads to liquid metal embrittlement at high temperature. From simulation, we find that the necessary conditions are lack of dislocation slip systems, low thermal conduction, and temperature near the melting point. The first two are exhibited by bcc titanium alloys, and we show that the final one can be achieved experimentally by adding low-melting-point elements: specifically, we use insoluble rare earth metals (REMs). Under high shear, the REM becomes mixed with the titanium, lowering the melting point within the shear band and triggering the shear-melting transition. This in turn generates heat which remains localized in the shear band due to poor heat conduction. The material fractures along the shear band. We show how to utilize this transition in the creation of new titanium-based alloys with improved machinability.

  13. Exact solutions for oscillatory shear sweep behaviors of complex fluids from the Oldroyd 8-constant framework

    Science.gov (United States)

    Saengow, Chaimongkol; Giacomin, A. Jeffrey

    2018-03-01

    In this paper, we provide a new exact framework for analyzing the most commonly measured behaviors in large-amplitude oscillatory shear flow (LAOS), a popular flow for studying the nonlinear physics of complex fluids. Specifically, the strain rate sweep (also called the strain sweep) is used routinely to identify the onset of nonlinearity. By the strain rate sweep, we mean a sequence of LAOS experiments conducted at the same frequency, performed one after another, with increasing shear rate amplitude. In this paper, we give exact expressions for the nonlinear complex viscosity and the corresponding nonlinear complex normal stress coefficients, for the Oldroyd 8-constant framework for oscillatory shear sweeps. We choose the Oldroyd 8-constant framework for its rich diversity of popular special cases (we list 18 of these). We evaluate the Fourier integrals of our previous exact solution to get exact expressions for the real and imaginary parts of the complex viscosity, and for the complex normal stress coefficients, as functions of both test frequency and shear rate amplitude. We explore the role of infinite shear rate viscosity on strain rate sweep responses for the special case of the corotational Jeffreys fluid. We find that raising η∞ raises the real part of the complex viscosity and lowers the imaginary. In our worked examples, we thus first use the corotational Jeffreys fluid, and then, for greater accuracy, we use the Johnson-Segalman fluid, to describe the strain rate sweep response of molten atactic polystyrene. For our comparisons with data, we use the Spriggs relations to generalize the Oldroyd 8-constant framework to multimode. Our generalization yields unequivocally, a longest fluid relaxation time, used to assign Weissenberg and Deborah numbers to each oscillatory shear flow experiment. We then locate each experiment in the Pipkin space.

  14. Adhesion behavior of endothelial progenitor cells to endothelial cells in simple shear flow

    Science.gov (United States)

    Gong, Xiao-Bo; Li, Yu-Qing; Gao, Quan-Chao; Cheng, Bin-Bin; Shen, Bao-Rong; Yan, Zhi-Qiang; Jiang, Zong-Lai

    2011-12-01

    The adhesion of endothelial progenitor cells (EPCs) on endothelial cells (ECs) is one of the critical physiological processes for the regenesis of vascular vessels and the prevention of serious cardiovascular diseases. Here, the rolling and adhesion behavior of EPCs on ECs was studied numerically. A two-dimensional numerical model was developed based on the immersed boundary method for simulating the rolling and adhesion of cells in a channel flow. The binding force arising from the catch bond of a receptor and ligand pair was modeled with stochastic Monte Carlo method and Hookean spring model. The effect of tumor necrosis factor alpha (TNF- α) on the expression of the number of adhesion molecules in ECs was analyzed experimentally. A flow chamber system with CCD camera was set up to observe the top view of the rolling of EPCs on the substrate cultivated with ECs. Numerical results prove that the adhesion of EPC on ECs is closely related to membrane stiffness of the cell and shear rate of the flow. It also suggests that the adhesion force between EPC and EC by P-selectin glycoprotein ligand-1 only is not strong enough to bond the cell onto vessel walls unless contributions of other catch bond are considered. Experimental results demonstrate that TNF- α enhanced the expressions of VCAM, ICAM, P-selectin and E-selectin in ECs, which supports the numerical results that the rolling velocity of EPC on TNF- α treated EC substrate decreases obviously compared with its velocity on the untreated one. It is found that because the adhesion is affected by both the rolling velocity and the deformability of the cell, an optimal stiffness of EPC may exist at a given shear rate of flow for achieving maximum adhesion rates.

  15. Effect of shear connectors on local buckling and composite action in steel concrete composite walls

    International Nuclear Information System (INIS)

    Zhang, Kai; Varma, Amit H.; Malushte, Sanjeev R.; Gallocher, Stewart

    2014-01-01

    Steel concrete composite (SC) walls are being used for the third generation nuclear power plants, and also being considered for small modular reactors. SC walls consist of thick concrete walls with exterior steel faceplates serving as reinforcement. These steel faceplates are anchored to the concrete infill using shear connectors, for example, headed steel studs. The steel faceplate thickness (t p ) and yield stress (F y ), and the shear connector spacing (s), stiffness (k s ), and strength (Q n ) determine: (a) the level of composite action between the steel plates and the concrete infill, (b) the development length of steel faceplates, and (c) the local buckling of the steel faceplates. Thus, the shear connectors have a significant influence on the behavior of composite SC walls, and should be designed accordingly. This paper presents the effects of shear connector design on the level of composite action and development length of steel faceplates in SC walls. The maximum steel plate slenderness, i.e., ratio of shear connector spacing-to-plate thickness (s/t p ) ratio to prevent local buckling before yielding is also developed based on the existing experimental database and additional numerical analysis

  16. Effect of shear connectors on local buckling and composite action in steel concrete composite walls

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai, E-mail: kai-zh@purdue.edu [School of Civil Engineering, Purdue University, West Lafayette, IN (United States); Varma, Amit H., E-mail: ahvarma@purdue.edu [School of Civil Engineering, Purdue University, West Lafayette, IN (United States); Malushte, Sanjeev R., E-mail: smalusht@bechtel.com [Bechtel Power Corporation, Frederick, MD (United States); Gallocher, Stewart, E-mail: stewart.gallocher@steelbricks.com [Modular Walling Systems Ltd., Glasgow (United Kingdom)

    2014-04-01

    Steel concrete composite (SC) walls are being used for the third generation nuclear power plants, and also being considered for small modular reactors. SC walls consist of thick concrete walls with exterior steel faceplates serving as reinforcement. These steel faceplates are anchored to the concrete infill using shear connectors, for example, headed steel studs. The steel faceplate thickness (t{sub p}) and yield stress (F{sub y}), and the shear connector spacing (s), stiffness (k{sub s}), and strength (Q{sub n}) determine: (a) the level of composite action between the steel plates and the concrete infill, (b) the development length of steel faceplates, and (c) the local buckling of the steel faceplates. Thus, the shear connectors have a significant influence on the behavior of composite SC walls, and should be designed accordingly. This paper presents the effects of shear connector design on the level of composite action and development length of steel faceplates in SC walls. The maximum steel plate slenderness, i.e., ratio of shear connector spacing-to-plate thickness (s/t{sub p}) ratio to prevent local buckling before yielding is also developed based on the existing experimental database and additional numerical analysis.

  17. Maximum permissible continuous release rates of phosphorus-32 and sulphur-35 to atmosphere in a milk producing area

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, P M

    1963-01-01

    A method is given for calculating, for design purposes, the maximum permissible continuous release rates of phosphorus-32 and sulphur-35 to atmosphere with respect to milk contamination. In the absence of authoritative advice from the Medical Research Council, provisional working levels for the concentration of phosphorus-32 and sulphur-35 in milk are derived, and details are given of the agricultural assumptions involved in the calculation of the relationship between the amount of the nuclide deposited on grassland and that to be found in milk. The agricultural and meteorological conditions assumed are applicable as an annual average to England and Wales. The results (in mc/day) for phosphorus-32 and sulphur-35 for a number of stack heights and distances are shown graphically; typical values, quoted in a table, include 20 mc/day of phosphorus-32 and 30 mc/day of sulfur-35 as the maximum permissible continuous release rates with respect to ground level releases at a distance of 200 metres from pastureland.

  18. Shear of ordinary and elongated granular mixtures

    Science.gov (United States)

    Hensley, Alexander; Kern, Matthew; Marschall, Theodore; Teitel, Stephen; Franklin, Scott

    2015-03-01

    We present an experimental and computational study of a mixture of discs and moderate aspect-ratio ellipses under two-dimensional annular planar Couette shear. Experimental particles are cut from acrylic sheet, are essentially incompressible, and constrained in the thin gap between two concentric cylinders. The annular radius of curvature is much larger than the particles, and so the experiment is quasi-2d and allows for arbitrarily large pure-shear strains. Synchronized video cameras and software identify all particles and track them as they move from the field of view of one camera to another. We are particularly interested in the global and local properties as the mixture ratio of discs to ellipses varies. Global quantities include average shear rate and distribution of particle species as functions of height, while locally we investigate the orientation of the ellipses and non-affine events that can be characterized as shear transformational zones or possess a quadrupole signature observed previously in systems of purely circular particles. Discrete Element Method simulations on mixtures of circles and spherocylinders extend the study to the dynamics of the force network and energy dissipated as the system evolves. Supported by NSF CBET #1243571 and PRF #51438-UR10.

  19. Formation of structural steady states in lamellar/sponge phase-separating fluids under shear flow

    Science.gov (United States)

    Panizza, P.; Courbin, L.; Cristobal, G.; Rouch, J.; Narayanan, T.

    2003-05-01

    We investigate the effect of shear flow on a lamellar-sponge phase-separating fluid when subjected to shear flow. We show the existence of two different steady states (droplets and ribbons structures) whose nature does not depend on the way to reach the two-phase unstable region of the phase diagram (temperature quench or stirring). The transition between ribbons and droplets is shear thickening and its nature strongly depends on what dynamical variable is imposed. If the stress is fixed, flow visualization shows the existence of shear bands at the transition, characteristic of coexistence in the cell between ribbons and droplets. In this shear-banding region, the viscosity oscillates. When the shear rate is fixed, no shear bands are observed. Instead, the transition exhibits a hysteretic behavior leading to a structural bi-stability of the phase-separating fluid under flow.

  20. Crack Features and Shear-Wave Splitting Associated with Fracture Extension during Hydraulic Stimulation of the Geothermal Reservoir in Soultz-sous-Forêts

    Directory of Open Access Journals (Sweden)

    Adelinet M.

    2016-05-01

    cracks remain large because the system has time to relax. We also calculate the extension and opening rates during all hydraulic stimulation sets. While the opening rate is unchanged, the extension rate varies depending on the stimulation phase. It is also shown to be higher around and above the open-hole section than below. This can indicate a potential upward path that makes fluid percolation easier within the granite formation, this path being induced by the temperature gradient. We also compare the evolution of crack extension during injection with shear-wave splitting. Split shear waves were recorded at 2 stations during hydraulic stimulation and processed in terms of splitting parameters. The fast shear-wave polarization remains constant and parallel to the maximum horizontal stress orientation while the amplitude of splitting varies with time. We observe a good agreement between travel-time differences and crack extension rates during the first 4 days of the stimulation experiment. Afterwards, these two parameters depart from each other. This study emphasizes the added value of the coupling between effective medium modeling and shear-wave splitting to monitor meso-scale cracks in reservoirs submitted to hydraulic stimulation.

  1. Plasticity Approach to Shear Design

    DEFF Research Database (Denmark)

    Hoang, Cao Linh; Nielsen, Mogens Peter

    1998-01-01

    The paper presents some plastic models for shear design of reinforced concrete beams. Distinction is made between two shear failure modes, namely web crushing and crack sliding. The first mentioned mode is met in beams with large shear reinforcement degrees. The mode of crack sliding is met in non......-shear reinforced beams as well as in lightly shear reinforced beams. For such beams the shear strength is determined by the recently developed crack sliding model. This model is based upon the hypothesis that cracks can be transformed into yield lines, which have lower sliding resistance than yield lines formed...... in uncracked concrete. Good agree between theory and tests has been found.Keywords: dsign, plasticity, reinforced concrete, reinforcement, shear, web crushing....

  2. Strengthening of Reinforced Concrete Beam in Shear Zone by Compensation the Stirrups with Equivalent External Steel Plates

    Directory of Open Access Journals (Sweden)

    Khamail Abdul-Mahdi Mosheer

    2016-09-01

    Full Text Available An experimental study on reinforced concrete beams strengthened with external steel plates instead of shear stirrups has been held in this paper. Eight samples of the same dimensions and properties were used. Two of them were tested up to failure and specified as references beams; one with shear reinforcement and the other without shear reinforcement. Another samples without shear reinforcement were tested until the first shear crack occurs, then the samples strengthened on both sides with external steel plates as equivalent area of removed stirrups. The strengthened beams were divided into three groups according to the thickness of plates (1, 1.5, 2 mm, each group involved two beams; one bonded using epoxy and the other bonded using epoxy with anchored bolts. Finally, the strengthened beams tested when using anchored bolts with epoxy glue to bond plates. Where the increasing in maximum load is higher than that in reference beam with no internal stirrups reach to (75.46 –106.13% and has a good agreement with the control beam with shear reinforcement reach to (76.06 – 89.36% of ultimate load.

  3. Deformation and failure response of 304L stainless steel SMAW joint under dynamic shear loading

    International Nuclear Information System (INIS)

    Lee, Woei-Shyan; Cheng, J.-I.; Lin, C.-F.

    2004-01-01

    The dynamic shear deformation behavior and fracture characteristics of 304L stainless steel shielded metal arc welding (SMAW) joint are studied experimentally with regard to the relations between mechanical properties and strain rate. Thin-wall tubular specimens are deformed at room temperature under strain rates in the range of 8 x 10 2 to 2.8 x 10 3 s -1 using a torsional split-Hopkinson bar. The results indicate that the strain rate has a significant influence on the mechanical properties and fracture response of the tested SMAW joints. It is found that the flow stress, total shear strain to failure, work hardening rate and strain rate sensitivity all increase with increasing strain rate, but that the activation volume decreases. The observed dynamic shear deformation behavior is modeled using the Kobayashi-Dodd constitutive law, and it is shown that the predicted results are in good agreement with the experimental data. Fractographic analysis using scanning electron microscopy reveals that the tested specimens all fracture within their fusion zones, and that the primary failure mechanism is one of the extensive localized shearing. The fracture surfaces are characterized by the presence of many dimples. A higher strain rate tends to reduce the size of the dimples and to increase their density. The observed fracture features are closely related to the preceding flow behavior

  4. Modeling of the blood rheology in steady-state shear flows

    International Nuclear Information System (INIS)

    Apostolidis, Alex J.; Beris, Antony N.

    2014-01-01

    We undertake here a systematic study of the rheology of blood in steady-state shear flows. As blood is a complex fluid, the first question that we try to answer is whether, even in steady-state shear flows, we can model it as a rheologically simple fluid, i.e., we can describe its behavior through a constitutive model that involves only local kinematic quantities. Having answered that question positively, we then probe as to which non-Newtonian model best fits available shear stress vs shear-rate literature data. We show that under physiological conditions blood is typically viscoplastic, i.e., it exhibits a yield stress that acts as a minimum threshold for flow. We further show that the Casson model emerges naturally as the best approximation, at least for low and moderate shear-rates. We then develop systematically a parametric dependence of the rheological parameters entering the Casson model on key physiological quantities, such as the red blood cell volume fraction (hematocrit). For the yield stress, we base our description on its critical, percolation-originated nature. Thus, we first determine onset conditions, i.e., the critical threshold value that the hematocrit has to have in order for yield stress to appear. It is shown that this is a function of the concentration of a key red blood cell binding protein, fibrinogen. Then, we establish a parametric dependence as a function of the fibrinogen and the square of the difference of the hematocrit from its critical onset value. Similarly, we provide an expression for the Casson viscosity, in terms of the hematocrit and the temperature. A successful validation of the proposed formula is performed against additional experimental literature data. The proposed expression is anticipated to be useful not only for steady-state blood flow modeling but also as providing the starting point for transient shear, or more general flow modeling

  5. Ultrasound viscoelasticity assessment using an adaptive torsional shear wave propagation method

    Energy Technology Data Exchange (ETDEWEB)

    Ouared, Abderrahmane [Laboratory of Biorheology and Medical Ultrasonics, University of Montréal Hospital Research Center (CRCHUM), Montréal, Québec H2X 0A9, Canada and Institute of Biomedical Engineering, University of Montréal, Montréal, Québec H3T 1J4 (Canada); Kazemirad, Siavash; Montagnon, Emmanuel [Laboratory of Biorheology and Medical Ultrasonics, University of Montréal Hospital Research Center (CRCHUM), Montréal, Québec H2X 0A9 (Canada); Cloutier, Guy, E-mail: guy.cloutier@umontreal.ca [Laboratory of Biorheology and Medical Ultrasonics, University of Montréal Hospital Research Center (CRCHUM), Montréal, Québec H2X 0A9 (Canada); Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montréal, Montréal, Québec H3T 1J4 (Canada); Institute of Biomedical Engineering, University of Montréal, Montréal, Québec H3T 1J4 (Canada)

    2016-04-15

    Purpose: Different approaches have been used in dynamic elastography to assess mechanical properties of biological tissues. Most techniques are based on a simple inversion based on the measurement of the shear wave speed to assess elasticity, whereas some recent strategies use more elaborated analytical or finite element method (FEM) models. In this study, a new method is proposed for the quantification of both shear storage and loss moduli of confined lesions, in the context of breast imaging, using adaptive torsional shear waves (ATSWs) generated remotely with radiation pressure. Methods: A FEM model was developed to solve the inverse wave propagation problem and obtain viscoelastic properties of interrogated media. The inverse problem was formulated and solved in the frequency domain and its robustness to noise and geometric constraints was evaluated. The proposed model was validated in vitro with two independent rheology methods on several homogeneous and heterogeneous breast tissue-mimicking phantoms over a broad range of frequencies (up to 400 Hz). Results: Viscoelastic properties matched benchmark rheology methods with discrepancies of 8%–38% for the shear modulus G′ and 9%–67% for the loss modulus G″. The robustness study indicated good estimations of storage and loss moduli (maximum mean errors of 19% on G′ and 32% on G″) for signal-to-noise ratios between 19.5 and 8.5 dB. Larger errors were noticed in the case of biases in lesion dimension and position. Conclusions: The ATSW method revealed that it is possible to estimate the viscoelasticity of biological tissues with torsional shear waves when small biases in lesion geometry exist.

  6. On Shear Stress Distributions for Flow in Smooth or Partially Rough Annuli

    Energy Technology Data Exchange (ETDEWEB)

    Kjellstroem, B; Hedberg, S

    1966-08-15

    It is commonly assumed that for turbulent flow in annuli the radii of zero shear and maximum velocity are coincident. By inspection of the differential equations for such flow and by an integral analysis it is shown that this is not necessarily true. To check whether important differences could occur, experiments were made in which velocity and shear stress distributions were measured in one smooth and two partially rough annuli. The results show no difference in the radii for the smooth annulus, but for the partially rough annuli there was a small but significant difference. This difference explains the breakdown of Hall's transformation theory reported by other investigators. The error introduced by use of Hall's theory is however small, of the order of 10 % or less.

  7. On Shear Stress Distributions for Flow in Smooth or Partially Rough Annuli

    International Nuclear Information System (INIS)

    Kjellstroem, B.; Hedberg, S.

    1966-08-01

    It is commonly assumed that for turbulent flow in annuli the radii of zero shear and maximum velocity are coincident. By inspection of the differential equations for such flow and by an integral analysis it is shown that this is not necessarily true. To check whether important differences could occur, experiments were made in which velocity and shear stress distributions were measured in one smooth and two partially rough annuli. The results show no difference in the radii for the smooth annulus, but for the partially rough annuli there was a small but significant difference. This difference explains the breakdown of Hall's transformation theory reported by other investigators. The error introduced by use of Hall's theory is however small, of the order of 10 % or less

  8. Renal shear wave velocity by acoustic radiation force impulse did not reflect advanced renal impairment.

    Science.gov (United States)

    Takata, Tomoaki; Koda, Masahiko; Sugihara, Takaaki; Sugihara, Shinobu; Okamoto, Toshiaki; Miyoshi, Kenichi; Matono, Tomomitsu; Hosho, Keiko; Mae, Yukari; Iyama, Takuji; Fukui, Takeaki; Fukuda, Satoko; Munemura, Chishio; Isomoto, Hajime

    2016-12-01

    Acoustic radiation force impulse is a noninvasive method for evaluating tissue elasticity on ultrasound. Renal shear wave velocity measured by this technique has not been fully investigated in patients with renal disease. The aim of the present study was to compare renal shear wave velocity in end-stage renal disease patients and that in patients without chronic kidney disease and to investigate influencing factors. Renal shear wave velocities were measured in 59 healthy young subjects (control group), 31 subjects without chronic kidney disease (non-CKD group), and 39 end-stage renal disease patients (ESRD group). Each measurement was performed 10 times at both kidneys, and the mean value of eight of 10 measurements, excluding the maximum and minimum values, was compared. Renal shear wave velocity could be measured in all subjects. Renal shear wave velocity in the control group was higher than in the non-CKD group and in the ESRD group, and no difference was found between the non-CKD group and the ESRD group. Age and depth were negatively correlated to the renal shear wave velocity. In multiple regression analysis, age and depth were independent factors for renal shear wave velocity, while renal impairment was not. There was no difference between the non-CKD group and the ESRD group, even when ages were matched and depth was adjusted. Renal shear wave velocity was not associated with advanced renal impairment. However, it reflected alteration of renal aging, and this technique may be useful to detect renal impairment in the earlier stages. © 2015 Asian Pacific Society of Nephrology.

  9. Evolution of solar magnetic arcades. I. Ideal MHD evolution under footpoint shearing

    International Nuclear Information System (INIS)

    Choe, G.S.; Lee, L.C.

    1996-01-01

    The ideal MHD evolution of a single magnetic arcade undergoing footpoint motions in a two-dimensional Cartesian geometry is investigated using numerical simulation. Also, force-free states of the same arcade are constructed with the use of a magnetofrictional method, which is formulated differently from those used in previous studies. In MHD simulations, no instability or nonequilibrium is found to the value of shear 100 times as large as the footprint separation in the potential field. The evolutionary sequence is composed of three distinct phases. The first phase is characterized by the increase of the toroidal field strength and the second phase by a sort of self-similar expansion. In the third phase, the formation and growth of a central current layer are conspicuous. With increasing shear, the maximum current density increases, the width of the current layer decreases, and the feet of the current layer, which bifurcates above the bottom boundary, get closer to each other. The field lines in the current layer tend to thread the bottom boundary nearly horizontally for a large shear. From our results, it is inductively inferred that the magnetic arcade in a two-dimensional Cartesian geometry approaches an open field as the shear increases indefinitely. copyright 1996 The American Astronomical Society

  10. Influence of turbulent horseshoe vortex and associated bed shear stress on sediment transport in front of a cylinder

    DEFF Research Database (Denmark)

    Li, Jinzhao; Qi, Meilan; Fuhrman, David R.

    2018-01-01

    -normal distribution for uniform channel-open flows. The comparisons of sediment transport rates where turbulent fluctuations in the bed shear stress are, or are not, taken into account show that the sediment transport rates calculated by the mean bed shear stress are under-predicted. Furthermore, a new sediment......This study concerns the flow and associated sediment transport in front of a cylinder in steady currents. The study comprises (i) flow characteristics induced by the turbulent horseshoe vortex (THV), (ii) bed shear stress within the THV region, and (iii) predicted sediment transport rates...

  11. Shear layer flame stabilization sensitivities in a swirling flow

    Directory of Open Access Journals (Sweden)

    Christopher Foley

    2017-03-01

    Full Text Available A variety of different flame configurations and heat release distributions exist in high swirl, annular flows, due to the existence of inner and outer shear layers as well a vortex breakdown bubble. Each of these different configurations, in turn, has different thermoacoustic sensitivities and influences on combustor emissions, nozzle durability, and liner heating. This paper presents findings on the sensitivities of the outer shear layer- stabilized flames to a range of parameters, including equivalence ratio, bulkhead temperature, flow velocity, and preheat temperature. There is significant hysteresis for flame attachment/detachment from the outer shear layer and this hysteresis is also described. Results are also correlated with extinction stretch rate calculations based on detailed kinetic simulations. In addition, we show that the bulkhead temperature near the flame attachment point has significant impact on outer shear layer detachment. This indicates that understanding the heat transfer between the edge flame stabilized in the shear layer and the nozzle hardware is needed in order to predict shear layer flame stabilization limits. Moreover, it shows that simulations cannot simply assume adiabatic boundary conditions if they are to capture these transitions. We also show that the reference temperature for correlating these transitions is quite different for attachment and local blow off. Finally, these results highlight the deficiencies in current understanding of the influence of fluid mechanic parameters (e.g. velocity, swirl number on shear layer flame attachment. For example, they show that the seemingly simple matter of scaling flame transition points with changes in flow velocities is not understood.

  12. Deformation localization at the tips of shear fractures: An analytical approach

    Science.gov (United States)

    Misra, Santanu

    2011-04-01

    Mechanical heterogeneities are important features in rocks which trigger deformation localization in brittle, ductile or brittle-ductile modes during deformation. In a recent study Misra et al. (2009) have investigated these different processes of deformation localization at the tips of pre-existing planar shear fractures. The authors identified four mechanisms of deformation, ranging from brittle to ductile, operating at the crack tips. Mechanism A: brittle deformation is the dominant process that forms a pair of long tensile fractures at the two crack tips. Mechanism B: nature of deformation is mixed where the tensile fractures grow to a finite length with incipient plastic deformation at the tips. Mechanism C: mixed mode deformation characterized by dominating macro-scale shear bands, and short, opened-out tensile fissures. Mechanism D: localization of plastic bands in the form of a pair of shear bands at each tip without any discernible brittle fracturing. The transition of the mechanisms is a function of orientation ( α) of the crack with respect to the bulk compression direction and the finite length ( l) of the crack. The aim of this study is to present a theoretical analysis to account for the variability of deformation localization in the vicinity of pre-existing shear cracks considering an elastic-plastic rheological model. The analysis calculates the principal tensile stress ( σ1) and the second stress invariant ( I2) of the stress field at the fracture tip to explain the transition from Mechanism A (tensile fracturing) to Mechanism D (ductile strain). The results show that σ1 at the fracture tip increases non-linearly with increasing α and Ar (aspect ratio of the shear crack), and assumes a large value when α > 50 o, promoting tensile fractures. On the other hand, I2 is a maximum at α < 45°, resulting in nucleation of ductile shear bands.

  13. Maximum type I error rate inflation from sample size reassessment when investigators are blind to treatment labels.

    Science.gov (United States)

    Żebrowska, Magdalena; Posch, Martin; Magirr, Dominic

    2016-05-30

    Consider a parallel group trial for the comparison of an experimental treatment to a control, where the second-stage sample size may depend on the blinded primary endpoint data as well as on additional blinded data from a secondary endpoint. For the setting of normally distributed endpoints, we demonstrate that this may lead to an inflation of the type I error rate if the null hypothesis holds for the primary but not the secondary endpoint. We derive upper bounds for the inflation of the type I error rate, both for trials that employ random allocation and for those that use block randomization. We illustrate the worst-case sample size reassessment rule in a case study. For both randomization strategies, the maximum type I error rate increases with the effect size in the secondary endpoint and the correlation between endpoints. The maximum inflation increases with smaller block sizes if information on the block size is used in the reassessment rule. Based on our findings, we do not question the well-established use of blinded sample size reassessment methods with nuisance parameter estimates computed from the blinded interim data of the primary endpoint. However, we demonstrate that the type I error rate control of these methods relies on the application of specific, binding, pre-planned and fully algorithmic sample size reassessment rules and does not extend to general or unplanned sample size adjustments based on blinded data. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  14. Fourier band-power E/B-mode estimators for cosmic shear

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Matthew R.; Rozo, Eduardo

    2016-01-20

    We introduce new Fourier band-power estimators for cosmic shear data analysis and E/B-mode separation. We consider both the case where one performs E/B-mode separation and the case where one does not. The resulting estimators have several nice properties which make them ideal for cosmic shear data analysis. First, they can be written as linear combinations of the binned cosmic shear correlation functions. Secondly, they account for the survey window function in real-space. Thirdly, they are unbiased by shape noise since they do not use correlation function data at zero separation. Fourthly, the band-power window functions in Fourier space are compact and largely non-oscillatory. Fifthly, they can be used to construct band-power estimators with very efficient data compression properties. In particular, we find that all of the information on the parameters Ωm, σ8 and ns in the shear correlation functions in the range of ~10–400 arcmin for single tomographic bin can be compressed into only three band-power estimates. Finally, we can achieve these rates of data compression while excluding small-scale information where the modelling of the shear correlation functions and power spectra is very difficult. Given these desirable properties, these estimators will be very useful for cosmic shear data analysis.

  15. Shear wave elastography for breast masses is highly reproducible.

    Science.gov (United States)

    Cosgrove, David O; Berg, Wendie A; Doré, Caroline J; Skyba, Danny M; Henry, Jean-Pierre; Gay, Joel; Cohen-Bacrie, Claude

    2012-05-01

    To evaluate intra- and interobserver reproducibility of shear wave elastography (SWE) for breast masses. For intraobserver reproducibility, each observer obtained three consecutive SWE images of 758 masses that were visible on ultrasound. 144 (19%) were malignant. Weighted kappa was used to assess the agreement of qualitative elastographic features; the reliability of quantitative measurements was assessed by intraclass correlation coefficients (ICC). For the interobserver reproducibility, a blinded observer reviewed images and agreement on features was determined. Mean age was 50 years; mean mass size was 13 mm. Qualitatively, SWE images were at least reasonably similar for 666/758 (87.9%). Intraclass correlation for SWE diameter, area and perimeter was almost perfect (ICC ≥ 0.94). Intraobserver reliability for maximum and mean elasticity was almost perfect (ICC = 0.84 and 0.87) and was substantial for the ratio of mass-to-fat elasticity (ICC = 0.77). Interobserver agreement was moderate for SWE homogeneity (κ = 0.57), substantial for qualitative colour assessment of maximum elasticity (κ = 0.66), fair for SWE shape (κ = 0.40), fair for B-mode mass margins (κ = 0.38), and moderate for B-mode mass shape (κ = 0.58), orientation (κ = 0.53) and BI-RADS assessment (κ = 0.59). SWE is highly reproducible for assessing elastographic features of breast masses within and across observers. SWE interpretation is at least as consistent as that of BI-RADS ultrasound B-mode features. • Shear wave ultrasound elastography can measure the stiffness of breast tissue • It provides a qualitatively and quantitatively interpretable colour-coded map of tissue stiffness • Intraobserver reproducibility of SWE is almost perfect while intraobserver reproducibility of SWE proved to be moderate to substantial • The most reproducible SWE features between observers were SWE image homogeneity and maximum elasticity.

  16. Nonlinear dynamics and anisotropic structure of rotating sheared turbulence.

    Science.gov (United States)

    Salhi, A; Jacobitz, F G; Schneider, K; Cambon, C

    2014-01-01

    Homogeneous turbulence in rotating shear flows is studied by means of pseudospectral direct numerical simulation and analytical spectral linear theory (SLT). The ratio of the Coriolis parameter to shear rate is varied over a wide range by changing the rotation strength, while a constant moderate shear rate is used to enable significant contributions to the nonlinear interscale energy transfer and to the nonlinear intercomponental redistribution terms. In the destabilized and neutral cases, in the sense of kinetic energy evolution, nonlinearity cannot saturate the growth of the largest scales. It permits the smallest scale to stabilize by a scale-by-scale quasibalance between the nonlinear energy transfer and the dissipation spectrum. In the stabilized cases, the role of rotation is mainly nonlinear, and interacting inertial waves can affect almost all scales as in purely rotating flows. In order to isolate the nonlinear effect of rotation, the two-dimensional manifold with vanishing spanwise wave number is revisited and both two-component spectra and single-point two-dimensional energy components exhibit an important effect of rotation, whereas the SLT as well as the purely two-dimensional nonlinear analysis are unaffected by rotation as stated by the Proudman theorem. The other two-dimensional manifold with vanishing streamwise wave number is analyzed with similar tools because it is essential for any shear flow. Finally, the spectral approach is used to disentangle, in an analytical way, the linear and nonlinear terms in the dynamical equations.

  17. Pressure-induced forces and shear stresses on rubble mound breakwater armour layers in regular waves

    DEFF Research Database (Denmark)

    Jensen, Bjarne; Christensen, Erik Damgaard; Sumer, B. Mutlu

    2014-01-01

    This paper presents the results from an experimental investigation of the pressure-induced forces in the core material below the main armour layer and shear stresses on the armour layer for a porous breakwater structure. Two parallel experiments were performed which both involved pore pressure...... structure i.e. no additional filter layers were applied. For both experiments, high-speed video recordings were synchronised with the pressure measurements for a detailed investigation of the coupling between the run-up and run-down flow processes and the measured pressure variations. Outward directed...... and turbulence measurements showed that the large outward directed pressure gradients in general coincide, both in time and space, with the maximum bed-shear stresses on the armour layer based on the Reynolds-stresses. The bed-shear stresses were found to result in a Shields parameter in the same order...

  18. Modeling of microalgal shear-induced flocculation and sedimentation using a coupled CFD-population balance approach.

    Science.gov (United States)

    Golzarijalal, Mohammad; Zokaee Ashtiani, Farzin; Dabir, Bahram

    2018-01-01

    In this study, shear-induced flocculation modeling of Chlorella sp. microalgae was conducted by combination of population balance modeling and CFD. The inhomogeneous Multiple Size Group (MUSIG) and the Euler-Euler two fluid models were coupled via Ansys-CFX-15 software package to achieve both fluid and particle dynamics during the flocculation. For the first time, a detailed model was proposed to calculate the collision frequency and breakage rate during the microalgae flocculation by means of the response surface methodology as a tool for optimization. The particle size distribution resulted from the model was in good agreement with that of the jar test experiment. Furthermore, the subsequent sedimentation step was also examined by removing the shear rate in both simulations and experiments. Consequently, variation in the shear rate and its effects on the flocculation behavior, sedimentation rate and recovery efficiency were evaluated. Results indicate that flocculation of Chlorella sp. microalgae under shear rates of 37, 182, and 387 s -1 is a promising method of pre-concentration which guarantees the cost efficiency of the subsequent harvesting process by recovering more than 90% of the biomass. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:160-174, 2018. © 2017 American Institute of Chemical Engineers.

  19. Ribbon phase in a phase-separated lyotropic lamellar-sponge mixture under shear flow

    Science.gov (United States)

    Cristobal, G.; Rouch, J.; Panizza, P.; Narayanan, T.

    2001-07-01

    We report the effect of shear flow on a phase-separated system composed of lyotropic lamellar (Lα) and sponge (L3) phases in a mixture of brine, surfactant, and cosurfactant. Optical microscopy, small-angle light, and x-ray scattering measurements are consistent with the existence of a steady state made of multilamellar ribbonlike structures aligned in the flow direction. At high shear rates, these ribbonlike structures become unstable and break up into monodisperse droplets resulting in a shear-thickening transition.

  20. Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds

    Science.gov (United States)

    Jia, Yali; Bagnaninchi, Pierre O.; Yang, Ying; Haj, Alicia El; Hinds, Monica T.; Kirkpatrick, Sean J.; Wang, Ruikang K.

    2009-05-01

    Establishing a relationship between perfusion rate and fluid shear stress in a 3D cell culture environment is an ongoing and challenging task faced by tissue engineers. We explore Doppler optical coherence tomography (DOCT) as a potential imaging tool for in situ monitoring of local fluid flow profiles inside porous chitosan scaffolds. From the measured fluid flow profiles, the fluid shear stresses are evaluated. We examine the localized fluid flow and shear stress within low- and high-porosity chitosan scaffolds, which are subjected to a constant input flow rate of 0.5 ml.min-1. The DOCT results show that the behavior of the fluid flow and shear stress in micropores is strongly dependent on the micropore interconnectivity, porosity, and size of pores within the scaffold. For low-porosity and high-porosity chitosan scaffolds examined, the measured local fluid flow and shear stress varied from micropore to micropore, with a mean shear stress of 0.49+/-0.3 dyn.cm-2 and 0.38+/-0.2 dyn.cm-2, respectively. In addition, we show that the scaffold's porosity and interconnectivity can be quantified by combining analyses of the 3D structural and flow images obtained from DOCT.

  1. Constitutive Curve and Velocity Profile in Entangled Polymers during Start-Up of Steady Shear Flow

    KAUST Repository

    Hayes, Keesha A.; Buckley, Mark R.; Qi, Haibo; Cohen, Itai; Archer, Lynden A.

    2010-01-01

    -4]. Surprisingly, we find that even polymer systems which exhibit transient, nonmonotonic shear stress-shear rate relationships in bulk rheology experiments manifest time-dependent velocity profiles that are decidedly linear and show no evidence of unstable flow

  2. Local transport barrier formation and relaxation in reverse-shear plasmas on the TFTR tokamak

    International Nuclear Information System (INIS)

    Synakowski, E.J.; Beer, M.A.

    1997-02-01

    The roles of turbulence stabilization by sheared E x B flow and Shafranov-shift gradients are examined for TFTR. Enhanced Reverse-Shear plasmas. Both effects in combination provide the basis of a positive-feedback model that predicts reinforced turbulence suppression with increasing pressure gradient. Local fluctuation behavior at the onset of ERS confinement is consistent with this framework. The power required for transitions into the ERS regime are lower when high power neutral beams are applied earlier in the current profile evolution, consistent with the suggestion that both effects play a role. Separation of the roles of E x B and Shafranov shift effects was performed by varying the E x B shear through changes in the toroidal velocity with nearly-steady-state pressure profiles. Transport and fluctuation levels increase only when E x B shearing rates are driven below a critical value that is comparable to the fastest linear growth rates of the dominant instabilities. While a turbulence suppression criterion that involves the ratio of shearing to linear growth rates is in accord with many of these results, the existence of hidden dependencies of the criterion is suggested in experiments where the toroidal field was varied. The forward transition into the ERS regime has also been examined in strongly rotating plasmas. The power threshold is higher with unidirectional injection than with balanced injection

  3. Lattice Boltzmann simulation of shear-induced particle migration in plane Couette-Poiseuille flow: Local ordering of suspension

    Science.gov (United States)

    Chun, Byoungjin; Kwon, Ilyoung; Jung, Hyun Wook; Hyun, Jae Chun

    2017-12-01

    The shear-induced migration of concentrated non-Brownian monodisperse suspensions in combined plane Couette-Poiseuille (C-P) flows is studied using a lattice Boltzmann simulation. The simulations are mainly performed for a particle volume fraction of ϕbulk = 0.4 and H/a = 44.3, 23.3, where H and a denote the channel height and radius of suspended particles, respectively. The simulation method is validated in two simple flows, plane Poiseuille and plane Couette flows. In the Poiseuille flow, particles migrate to the mid-plane of the channel where the local concentration is close to the limit of random-close-packing, and a random structure is also observed at the plane. In the Couette flow, the particle distribution remains in the initial uniform distribution. In the combined C-P flows, the behaviors of migration are categorized into three groups, namely, Poiseuille-dominant, Couette-dominant, and intermediate regimes, based on the value of a characteristic force, G, where G denotes the relative magnitude of the body force (P) against the wall-driving force (C). With respect to the Poiseuille-dominant regime, the location of the maximum concentration is shifted from the mid-plane to the lower wall moving in the same direction as the external body force, when G decreases. With respect to the Couette-dominant regime, the behavior is similar to that of a simple shear flow with the exception that a slightly higher concentration of particles is observed near the lower wall. However, with respect to the intermediate value of G, several layers of highly ordered particles are unexpectedly observed near the lower wall where the plane of maximum concentration is located. The locally ordered structure is mainly due to the lateral migration of particles and wall confinement. The suspended particles migrate toward a vanishingly small shear rate at the wall, and they are consequently layered into highly ordered two-dimensional structures at the high local volume fraction.

  4. Dynamic behavior and functional integrity tests on RC shear walls

    International Nuclear Information System (INIS)

    Akino, Kinji; Nasuda, Toshiaki; Shibata, Akenori.

    1991-01-01

    A project consisting of seven subprojects has been conducted to study the dynamic behavior and functional integrity of reinforced concrete (RC) shear walls in reactor buildings. The objective of this project is to obtain the data to improve and prepare the seismic analysis code regarding the nonlinear structural behavior and integrity of reactor buildings during and after earthquakes. The project started in April, 1986, and will end in March, 1994. Seven subprojects are strain rate test, damping characteristic test, ultimate state response test and the verification test for the test of restoring force characteristics regarding dynamic restoring force characteristics and damping performance; the restoring force characteristic test on the shear walls with openings; and pull-out strength test and the test on air leakage through concrete cracks regarding the functional integrity. The objectives of respective subprojects, the test models and the interim results are reported. Three subprojects have been completed by March, 1990. The results of these projects will be used for the overall evaluation. The strain rate test showed that the ultimate strength of shear walls increased with strain rate. A formula for estimating air flow through the cracks in walls was given by the leakage test. (K.I.)

  5. Shear-mediated dilation of the internal carotid artery occurs independent of hypercapnia

    DEFF Research Database (Denmark)

    Hoiland, Ryan L; Smith, Kurt J; Carter, Howard Henry

    2017-01-01

    preceded increases in diameter in both transient (time: 16.8 ± 13.2 vs. 59.4 ± 60.3 s, P time: 18.2 ± 14.2 vs. 110.3 ± 79.6 s, P dilation was positively correlated with shear rate area under the curve in the transient (r2 = 0.44, P ...Evidence for shear stress as a regulator of carotid artery dilation in response to increased arterial CO2 was recently demonstrated in humans during sustained elevations in CO2 (hypercapnia); however, the relative contributions of CO2 and shear stress to this response remains unclear. We examined...... the hypothesis that, after a 30-s transient increase in arterial CO2 tension and consequent increase in internal carotid artery shear stress, internal carotid artery diameter would increase, indicating shear-mediated dilation, in the absence of concurrent hypercapnia. In 27 healthy participants, partial...

  6. Shear-wave elastography in the diagnosis of solid breast masses: what leads to false-negative or false-positive results?

    Science.gov (United States)

    Yoon, Jung Hyun; Jung, Hae Kyoung; Lee, Jong Tae; Ko, Kyung Hee

    2013-09-01

    To investigate the factors that have an effect on false-positive or false-negative shear-wave elastography (SWE) results in solid breast masses. From June to December 2012, 222 breast lesions of 199 consecutive women (mean age: 45.3 ± 10.1 years; range, 21 to 88 years) who had been scheduled for biopsy or surgical excision were included. Greyscale ultrasound and SWE were performed in all women before biopsy. Final ultrasound assessments and SWE parameters (pattern classification and maximum elasticity) were recorded and compared with histopathology results. Patient and lesion factors in the 'true' and 'false' groups were compared. Of the 222 masses, 175 (78.8 %) were benign, and 47 (21.2 %) were malignant. False-positive rates of benign masses were significantly higher than false-negative rates of malignancy in SWE patterns, 36.6 % to 6.4 % (P masses, factors showing significance among false SWE features were lesion size, breast thickness and lesion depth (all P breast masses had SWE images of good quality. False SWE features were more significantly seen in benign masses. Lesion size, breast thickness and lesion depth have significance in producing false results, and this needs consideration in SWE image acquisition. • Shear-wave elastography (SWE) is widely used during breast imaging • At SWE, false-positive rates were significantly higher than false-negative rates • Larger size, breast thickness, depth and fair quality influences false-positive SWE features • Smaller size, larger breast thickness and depth influences false-negative SWE features.

  7. Bounded energy states in homogeneous turbulent shear flow: An alternative view

    Science.gov (United States)

    Bernard, Peter S.; Speziale, Charles G.

    1990-01-01

    The equilibrium structure of homogeneous turbulent shear flow is investigated from a theoretical standpoint. Existing turbulence models, in apparent agreement with physical and numerical experiments, predict an unbounded exponential time growth of the turbulent kinetic energy and dissipation rate; only the anisotropy tensor and turbulent time scale reach a structural equilibrium. It is shown that if vortex stretching is accounted for in the dissipation rate transport equation, then there can exist equilibrium solutions, with bounded energy states, where the turbulence production is balanced by its dissipation. Illustrative calculations are present for a k-epsilon model modified to account for vortex stretching. The calculations indicate an initial exponential time growth of the turbulent kinetic energy and dissipation rate for elapsed times that are as large as those considered in any of the previously conducted physical or numerical experiments on homogeneous shear flow. However, vortex stretching eventually takes over and forces a production-equals-dissipation equilibrium with bounded energy states. The validity of this result is further supported by an independent theoretical argument. It is concluded that the generally accepted structural equilibrium for homogeneous shear flow with unbounded component energies is in need of re-examination.

  8. Effect of Asymmetric Rolling on Plastic Anisotropy of Low Carbon Steels during Simple Shear Tests

    International Nuclear Information System (INIS)

    Gracio, J. J.; Vincze, G.; Panigrahi, B. B.; Kim, H. J.; Barlat, F.; Rauch, E. F.; Yoon, J. W.

    2010-01-01

    Simple shear tests are performed on low carbon steel pre-deformed in conventional, asymmetric and orthogonal-asymmetric rolling. The simple-shear tests were carried out at 0 deg. , 45 deg. and 135 deg. with respect to the previous rolling direction. For a reduction ratio of 15%, a transient stagnation in the hardening rate is observed at reloading for all changes in strain path. The shear stress level, the hardening rate and extent of the plateau appear to be insensitive to the preliminary applied rolling conditions. After a reduction ratio of 50%, plastic instability was detected at reloading for all the changes of strain path and rolling conditions studied. A specific heat treatment was then designed allowing the material to become ductile after rolling while retaining the fine microstructure and therefore the high strength. Promising results were obtained essentially for 45 deg. shear tests.

  9. A Novel Geometry for Shear Test Using Axial Tensile Setup

    Directory of Open Access Journals (Sweden)

    Sibo Yuan

    2018-05-01

    Full Text Available This paper studies a novel geometry for the in-plane shear test performed with an axial electromechanical testing machine. In order to investigate the influence of the triaxiality rate on the mechanical behavior, different tests will be performed on the studied material: simple tensile tests, large tensile tests and shear tests. For the whole campaign, a common equipment should be employed to minimize the impact of the testing device. As a consequence, for the shear tests, the geometry of the specimen must be carefully designed in order to adapt the force value and make it comparable to the one obtained for the tensile tests. Like most of the existing shear-included tensile test specimens, the axial loading is converted to shear loading at a particular region through the effect of geometry. A symmetric shape is generally preferred, since it can restrict the in-plane rotation of the shear section, keep shear increasing in a more monotonic path and double the force level thanks to the two shear zones. Due to the specific experimental conditions, such as dimensions of the furnace and the clamping system, the position of the extensometer or the restriction of sheet thickness (related to the further studies of size effect at mesoscale and hot temperature, several geometries were brought up and evaluated in an iterative procedure via finite element simulations. Both the numerical and experimental results reveal that the final geometry ensures some advantages. For instance, a relatively low triaxiality in the shear zone, limited in-plane rotation and no necking are observed. Moreover, it also prevents any out-of-plane displacement of the specimen which seems to be highly sensitive to the geometry, and presents a very limited influence of the material and the thickness.

  10. Thinning Approximation for Two-Dimensional Scattering Patterns from Coarse-Grained Polymer Melts under Shear Flow

    Science.gov (United States)

    Hagita, Katsumi; Murashima, Takahiro; Takano, Hiroshi; Kawakatsu, Toshihiro

    2017-12-01

    We proposed a thinning approximation (TA) for estimation of the two-dimensional (2D) wide-angle scattering patterns from Kremer-Grest polymer melts under shear. In the TA, extra particles are inserted at the middle of bonds for fine-graining of the coarse-grained polymers. For the case without the TA, spots corresponding to the orientation of bonds at a high shear rate are difficult to observe because the bond length of successive particles is comparable to the distance between neighboring particles. With the insertion of the extra particles, a ring pattern originating from the neighboring particles can be moved to a wide-angle region. Thus, we can observe the spots at high shear rates. We also examined the relationship between 2D scattering patterns and the Weissenberg number, which is defined as the product of the shear rate and the longest relaxation time. It is confirmed that the relationship for coarse-grained polymers with the TA is consistent with that of the all-atomistic model of polyethylene.

  11. Shear induced structures of soft colloids: Rheo-SANS experiments on kinetically frozen PEP-PEO diblock copolymer micelles

    International Nuclear Information System (INIS)

    Stellbrink, J; Lonetti, B; Rother, G; Willner, L; Richter, D

    2008-01-01

    We investigated the effect of external steady shear on dilute to concentrated solutions of PEP-PEO diblock copolymer micelles (soft colloids). The degree of softness in terms of particle interactions (intermolecular softness) and deformability of the individual particle (intramolecular softness) was varied by changing the ratio between hydrophobic and hydrophilic blocks from symmetric (1:1, hard sphere-like) to very asymmetric (1:20, star-like). We performed in situ rheology and small angle neutron scattering experiments (Rheo-SANS) to relate macroscopic flow properties to microscopic structural changes. The rheology data qualitatively show the same behavior for both types of micelles: (i) a divergence of the zero shear viscosity η 0 at a critical concentration φ c approximately following a Vogel-Fulcher-Tammann law and (ii) close to this liquid-solid transition a shear rate dependent viscosity which can be described by the Carreau function with an asymptotic power law η(γ-dot) ∼ γ-dot -0.4 starting at a critical shear rate γ-dot c . Rheo-SANS experiments in the liquid phase close to φ c were extended into the strong shear thinning region for both types of micelles at φ/φ c ∼0.8 and γ-dot red =γ-dot/γ-dot c approx. 10. In our Rheo-SANS data we observe a rather controversial influence of external shear on the structural properties of the two different micellar systems. With increasing shear rate the symmetric, hard sphere-like micelles show a decreasing structure factor S(Q) but a shear rate independent interparticle distance. The asymmetric, star-like micelles show an increase in S(Q) and an increase of the interparticle distance, both in the flow and vorticity direction. This unexpected behavior can be rationalized by a shear induced elongation and tilt of the star-like micelles along the flow direction as predicted by recent MD simulations (Ripoll et al 2006 Phys. Rev. Lett. 96 188302)

  12. Analysis of the Shear Behavior of Stubby Y-Type Perfobond Rib Shear Connectors for a Composite Frame Structure.

    Science.gov (United States)

    Kim, Sang-Hyo; Kim, Kun-Soo; Lee, Do-Hoon; Park, Jun-Seung; Han, Oneil

    2017-11-22

    Shear connectors are used in steel beam-concrete slabs of composite frame and bridge structures to transfer shear force according to design loads. The existing Y-type perfobond rib shear connectors are designed for girder slabs of composite bridges. Therefore, the rib and transverse rebars of the conventional Y-type perfobond rib shear connectors are extremely large for the composite frames of building structures. Thus, this paper proposes stubby Y-type perfobond rib shear connectors, redefining the existing connectors, for composite frames of building structures; these were used to perform push-out tests. These shear connectors have relatively small ribs compared to the conventional Y-type perfobond rib shear connectors. To confirm the shear resistance of these stubby shear connectors, we performed an experiment by using transverse rebars D13 and D16. The results indicate that these shear connectors have suitable shear strength and ductility for application in composite frame structures. The shear strengths obtained using D13 and D16 were not significantly different. However, the ductility of the shear connectors with D16 was 45.1% higher than that of the shear connectors with D13.

  13. Comparison of direct shear and simple shear responses of municipal solid waste in USA

    KAUST Repository

    Fei, Xunchang; Zekkos, Dimitrios

    2017-01-01

    Although large-size simple shear (SS) testing of municipal solid waste (MSW) may arguably provide a more realistic estimate of the shear strength (τ ) of MSW than the most commonly used direct shear (DS) testing, a systematic comparison between

  14. Shear-induced nano-macro structural transition in a polymeric bicontinuous microemulsion

    DEFF Research Database (Denmark)

    Krishnan, K.; Almdal, K.; Burghardt, W.R.

    2001-01-01

    structure. In situ neutron scattering shows flow-induced anisotropy in the nanometer-scale microemulsion structure at moderate shear rates, while higher rates induce bulk phase separation, with micron-size morphology, which is characterized with in situ light scattering and optical microscopy....

  15. Use of the shearing interferometry for dense inhomogeneous plasma diagnostics

    International Nuclear Information System (INIS)

    Zakharenkov, Yu.A.; Sklizkov, G.V.; Shikanov, A.S.

    1980-01-01

    Investigated is a possibility of applying the shearing interferometry for diagnostics of a dense inhomogeneous laser plasma which makes it possible to measure the electron density without losses in accuracy near the critical surface. A shearing interferogram is formed upon interference of two identical images of the object under study shifted at some fixed distance. The value of the interference band deflection inside phase inhomogeneity depends on the gradient of the index of refraction in the direction of shift. It has been found that for studying the inner region of the laser plasma a small shift should be used, and for the external one - a large one. The version of a radial shift interferometry is shown to be optimum. For the inner region of the interferogram the error of the electron density restoration does not exceed 10%, and for the external one the error is comparable with that for the version of standard interferometry. A systematic analysis of the optimum type interferometers shows advantages of shearing interferometers. The maximum electron density recorded in experiments makes up approximately equal to 10 20 cm -3 , which is 3-5 times higher than the corresponding value obtained by a standard double-slit type interferometer at equal limiting parameters of the optical system applied

  16. Non-Newtonian stress tensor and thermal conductivity tensor in granular plane shear flow

    Science.gov (United States)

    Alam, Meheboob; Saha, Saikat

    2014-11-01

    The non-Newtonian stress tensor and the heat flux in the plane shear flow of smooth inelastic disks are analysed from the Grad-level moment equations using the anisotropic Gaussian as a reference. Closed-form expressions for shear viscosity, pressure, first normal stress difference (N1) and the dissipation rate are given as functions of (i) the density or the area fraction (ν), (ii) the restitution coefficient (e), (iii) the dimensionless shear rate (R), (iv) the temperature anisotropy [ η, the difference between the principal eigenvalues of the second moment tensor] and (v) the angle (ϕ) between the principal directions of the shear tensor and the second moment tensor. Particle simulation data for a sheared hard-disk system is compared with theoretical results, with good agreement for p, μ and N1 over a large range of density. In contrast, the predictions from a Navier-Stokes order constitutive model are found to deviate significantly from both the simulation and the moment theory even at moderate values of e. We show that the gradient of the deviatoric part of the kinetic stress drives a heat current and the thermal conductivity is characterized by an anisotropic 2nd rank tensor for which explicit expressions are derived.

  17. Gecko toe and lamellar shear adhesion on macroscopic, engineered rough surfaces.

    Science.gov (United States)

    Gillies, Andrew G; Henry, Amy; Lin, Hauwen; Ren, Angela; Shiuan, Kevin; Fearing, Ronald S; Full, Robert J

    2014-01-15

    The role in adhesion of the toes and lamellae - intermediate-sized structures - found on the gecko foot remains unclear. Insight into the function of these structures can lead to a more general understanding of the hierarchical nature of the gecko adhesive system, but in particular how environmental topology may relate to gecko foot morphology. We sought to discern the mechanics of the toes and lamellae by examining gecko adhesion on controlled, macroscopically rough surfaces. We used live Tokay geckos, Gekko gecko, to observe the maximum shear force a gecko foot can attain on an engineered substrate constructed with sinusoidal patterns of varying amplitudes and wavelengths in sizes similar to the dimensions of the toes and lamellae structures (0.5 to 6 mm). We found shear adhesion was significantly decreased on surfaces that had amplitudes and wavelengths approaching the lamella length and inter-lamella spacing, losing 95% of shear adhesion over the range tested. We discovered that the toes are capable of adhering to surfaces with amplitudes much larger than their dimensions even without engaging claws, maintaining 60% of shear adhesion on surfaces with amplitudes of 3 mm. Gecko adhesion can be predicted by the ratio of the lamella dimensions to surface feature dimensions. In addition to setae, remarkable macroscopic-scale features of gecko toes and lamellae that include compliance and passive conformation are necessary to maintain contact, and consequently, generate shear adhesion on macroscopically rough surfaces. Findings on the larger scale structures in the hierarchy of gecko foot function could provide the biological inspiration to drive the design of more effective and versatile synthetic fibrillar adhesives.

  18. Semiconductor laser shearing interferometer

    International Nuclear Information System (INIS)

    Ming Hai; Li Ming; Chen Nong; Xie Jiaping

    1988-03-01

    The application of semiconductor laser on grating shearing interferometry is studied experimentally in the present paper. The method measuring the coherence of semiconductor laser beam by ion etching double frequency grating is proposed. The experimental result of lens aberration with semiconductor laser shearing interferometer is given. Talbot shearing interferometry of semiconductor laser is also described. (author). 2 refs, 9 figs

  19. Shear effects on crystallization behaviors and structure transitions of isotactic poly-1-butene

    DEFF Research Database (Denmark)

    Li, Jingqing; Guan, Peipei; Zhang, Yao

    2014-01-01

    Different melt pre-shear conditions were applied to isotactic poly-1-butene (iP-1-B) and the effect on the crystallization behaviors and the crystalline structure transitions of iP-1-B were investigated. The polarized optical microscope observations during isothermal crystallization process...... revealed that the applied melt pre-shear within the experimental range could enhance the nucleation of crystal II and accelerate the diameter growth of the formed spherulites. If the applied melt pre-shear rate was large enough, Shish-Kebabs structure could be formed. After the isothermal crystallization...... was formed in the melt pre-sheared iP-1-B samples. Further investigations were applied with synchrotron radiation instruments. Wide angle X-ray scattering (WAXS) and small angle X-ray scattering (SAXS) after the crystal transition showed that the applied melt pre-shear could result in orientated fine...

  20. Laser-assisted shearing: new application for high-power diode lasers

    Science.gov (United States)

    Emonts, Michael; Brecher, Christian

    2010-02-01

    Due to the growing ranges of applications for stamped parts in the electrical and electronics industry (e.g. switch cabinet cladding and transformer plates) as well as in the automotive industry (e.g. stamp, bent and drawn components), flexible sheet metal forming has become a more important process. The inner and outer contours as well as the forming operations needed to reinforce metal sheets can be carried out by punching machines without re-clamping the metal sheet. In contrast, the potential of conventional punching machines is now exhausted in terms of the material spectrum that can be processed, the tool life and the quality of the machined product. Particularly in view of the machining quality of the sheared edges, the achievable clear-cut surface rates are limited due to the limited plasticity of the sheet materials. When cracks form between the grain boundaries of the sheet material during the conventional shearing process, the cutting edge is divided into a clear-cut surface zone (approx. 30% of the plate thickness when shearing stainless steel plates: 1.4301) and a shearing zone with crack formation. This shearing zone can not be used as a functional surface. The shearing process is divided into the four phases (DIN 8588) "warping", "clear-cutting", "fracture" and "ejection of the piece punched out".

  1. Dynamics of shear-induced ATP release from red blood cells.

    Science.gov (United States)

    Wan, Jiandi; Ristenpart, William D; Stone, Howard A

    2008-10-28

    Adenosine triphosphate (ATP) is a regulatory molecule for many cell functions, both for intracellular and, perhaps less well known, extracellular functions. An important example of the latter involves red blood cells (RBCs), which help regulate blood pressure by releasing ATP as a vasodilatory signaling molecule in response to the increased shear stress inside arterial constrictions. Although shear-induced ATP release has been observed widely and is believed to be triggered by deformation of the cell membrane, the underlying mechanosensing mechanism inside RBCs is still controversial. Here, we use an in vitro microfluidic approach to investigate the dynamics of shear-induced ATP release from human RBCs with millisecond resolution. We demonstrate that there is a sizable delay time between the onset of increased shear stress and the release of ATP. This response time decreases with shear stress, but surprisingly does not depend significantly on membrane rigidity. Furthermore, we show that even though the RBCs deform significantly in short constrictions (duration of increased stress <3 ms), no measurable ATP is released. This critical timescale is commensurate with a characteristic membrane relaxation time determined from observations of the cell deformation by using high-speed video. Taken together our results suggest a model wherein the retraction of the spectrin-actin cytoskeleton network triggers the mechanosensitive ATP release and a shear-dependent membrane viscosity controls the rate of release.

  2. Experimental investigation of edge sheared flow development and configuration effects in the TJ-II stellarator

    International Nuclear Information System (INIS)

    Pedrosa, M.A.; Hidalgo, C.; Alonso, A.; Calderon, E.; Orozco, O.; Pablos, J.L. de

    2005-01-01

    Experimental results have shown that the generation of spontaneous perpendicular sheared flow (i.e. the naturally occurring shear layer) requires a minimum plasma density or gradient in the TJ-II stellarator. This finding has been observed by means of multiple plasma diagnostics, including probes, fast cameras, reflectometry and HIBP. The obtained shearing rate of the naturally occurring shear layer results in general comparable to the one observed during biasing-improved confinement regimes. It has been found that there is a coupling between the onset of sheared flow development and an increase in the level of plasma edge fluctuations pointing to turbulence as the main ingredient of the radial electric field drive; once the shear flow develops the level of turbulence tends to decrease. The link between the development of sheared flows and plasma density in TJ-II has been observed in different magnetic configurations and plasma regimes. Preliminary results show that the threshold density value depends on the iota value and on the magnetic ripple (plasma volume). Recent experiments carried out in the LHD stellarator have shown that edge sheared flows are also affected by the magnitude of edge magnetic ripple: the threshold density to trigger edge sheared flows increases with magnetic ripple . Those results have been interpreted as an evidence of the importance of neoclassical effect in the physics of ExB sheared flows. For some TJ-II magnetic configurations with higher edge iota (ι/2π≥ 1.8) there is a sharp increase in the edge density gradient simultaneous to a strong reduction of fluctuations and transport and a slight increase of the shearing rate and perpendicular rotation (≥2 km/s) as density increases above the threshold. The role of the edge ripple, the presence of edge rational surfaces and properties of turbulent transport are considered as possible ingredients to explain the spontaneous development of edge sheared flows in TJ-II. (author)

  3. IR thermographic observation and shear bands plasticity analysis in Fe-based metallic glass

    International Nuclear Information System (INIS)

    Bouzakher, B.; Benameur, T.; Sidhom, H.

    2009-01-01

    Infrared thermography observation and in situ atomic force microscopy characterization were carried out to investigate the mechanical damage processes at the edge-notch region of large ribbons of Fe 78 Si 10 B 12 metallic glass. An obvious thermoelastic and inelastic degradation phenomenon was observed ahead at the notched region of the specimens, which probably result from free volume accumulation process and shear band activity during plane stress solicitations. Moreover, AFM topographic and frictional analysis of changes in the crack path during stable crack propagation regime revealed a periodic morphology evolution, formation of nanoscale damage cavity in the range of 20-140 nm and a maximum temperature rise ahead of the pre-crack tip was found in the order of 1.5 deg. C. The nanometer scaled shear offset, discreteness and shear bands density were determined. While these key parameters play a role in observing a large plastic zone in front of the crack, however they are unable to explain the distinct intrinsic ductility of some monolithic metallic glasses. A general Mohr-Coulomb-type constitutive description was used to deduce analytic expressions for prediction of the variation of hydrostatic component of the applied stress to the shear stress ratio as function of Poisson's ratio.

  4. Experimental investigations into the shear behavior of self-compacting RC beams with and without shear reinforcement

    Directory of Open Access Journals (Sweden)

    Ammar N. HANOON

    2014-12-01

    Full Text Available Self-compacting concrete (SCC is a new generation of high-performance concrete, known for its excellent deformability and high resistance to segregation and bleeding. Nonetheless, SCC may be incapable of resisting shear because the shear resistance mechanisms of this concrete are uncertain, especially the aggregate interlock mechanism. This uncertainty is attributed to the fact that SCC contains a smaller amount of coarse aggregates than normal concrete (NC does. This study focuses on the shear strength of self-compacting reinforced concrete (RC beams with and without shear reinforcement. A total of 16 RC beam specimens was manufactured and tested in terms of shear span-to-depth ratio and flexural and shear reinforcement ratio. The test results were compared with those of the shear design equations developed by ACI, BS, CAN and NZ codes. Results show that an increase in web reinforcement enhanced cracking strength and ultimate load. Shear-tension failure was the control failure in all tested beams.

  5. [Research on lateral shearing interferometer for field monitoring of natural gas pipeline leak].

    Science.gov (United States)

    Zhang, Xue-Feng; Gao, Yu-Bin

    2012-09-01

    Aimed at the mechanical scanning spectroscopy equipment with poor anti-interference and anti-jamming ability, which affects the accuracy of its natural gas pipeline leak detection in the wild, a new type of lateral shearing interferometer system was designed. The system uses a beam splitter to get optical path difference by a mechanical scanning part, and it cancel the introduction of external vibration interference through the linkage between the two beam splitterw. The interference intensity of interference fringes produced was calculated, and analysis of a rotating beam splitter corresponds to the angle of the optical path difference function, solving for the maximum angle of the forward rotation and reverse rotation, which is the maximum optical path range. Experiments using the gas tank deflated simulated natural gas pipeline leak process, in the interference conditions, and the test data of the type WQF530 spectrometer and the new type of lateral shearing interferometer system were comparedt. The experimental results show that the relative error of both systems is about 1% in indoor conditions without interference. However, in interference environment, the error of WQF530 type spectrometer becomes larger, more than 10%, but the error of the new type of lateral shearing interferometer system is still below 5%. The detection accuracy of the type WQF530 spectrometer decreased significantly due to the environment. Therefore, the seismic design of the system can effectively offset power deviation and half-width increases of center wavelength caused by external interference, and compared to conventional mechanical scanning interferometer devices the new system is more suitable for field detection.

  6. Laboratory investigation of nonlinear flow characteristics in rough fractures during shear process

    Science.gov (United States)

    Rong, Guan; Yang, Jie; Cheng, Long; Zhou, Chuangbing

    2016-10-01

    To understand the influence of shear behavior on the transporting properties of fluid through a single fracture, splitting fractures were made in the laboratory and shear flow tests were carried out under constant normal load conditions. The applied normal stress is in the range of 0.5-3.0 MPa. Before the physical test, the fracture's morphology is measured for identification of the roughness. At each shear step, we performed 5-8 high precise hydraulic tests with different hydraulic gradient. The relationship between pressure gradient and volume flow rate demonstrates to be nonlinear and fits very well with Forchheimer's and Izbash's laws. The linear and nonlinear coefficients in Forchheimer's law are quite sensitive to shear deformation (closure or dilation), experienced 1-2 and 1-3 orders of magnitude reduction during shear, respectively. An empirical equation is proposed to quantify the relationship between linear coefficient and nonlinear coefficient based on the experimental observations. The two coefficients in Izbash's law are quantified. The m value is in the range between 1.06 and 1.41 and the λ value experiences a reduction of 1-2 orders of magnitude during shear. In addition, the studied critical Reynolds number exhibits a decreasing and increasing variation corresponding to shear contraction and shear dilation of rock fracture. For all the cases in this study, the critical Reynolds number ranges between 1.5 and 13.0.

  7. Effects of Toroidal Rotation Shear on Toroidicity-induced Alfven Eigenmodes in the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Podesta, M.; Bell, R.E.; Fredrickson, E.D.; Gorelenkov, N.N.; LeBlanc, B.P.; Heidbrink, W.W.; Crocker, N.A.; Kubota, S.; Yuh, H.

    2010-01-01

    The effects of a sheared toroidal rotation on the dynamics of bursting Toroidicity-induced Alfven eigenmodes are investigated in neutral beam heated plasmas on the National Spherical Torus Experiment (NSTX) (M. Ono et al., Nucl. Fusion 40 557 (2000)). The modes have a global character, extending over most of the minor radius. A toroidal rotation shear layer is measured at the location of maximum drive for the modes. Contrary to results from other devices, no clear evidence of increased damping is found. Instead, experiments with simultaneous neutral beam and radio-frequency auxiliary heating show a strong correlation between the dynamics of the modes and the instability drive. It is argued that kinetic effects involving changes in the mode drive and damping mechanisms other than rotation shear, such as continuum damping, are mostly responsible for the bursting dynamics of the modes.

  8. Shear-wave elastographic features of breast cancers: comparison with mechanical elasticity and histopathologic characteristics.

    Science.gov (United States)

    Lee, Su Hyun; Moon, Woo Kyung; Cho, Nariya; Chang, Jung Min; Moon, Hyeong-Gon; Han, Wonshik; Noh, Dong-Young; Lee, Jung Chan; Kim, Hee Chan; Lee, Kyoung-Bun; Park, In-Ae

    2014-03-01

    The objective of this study was to compare the quantitative and qualitative shear-wave elastographic (SWE) features of breast cancers with mechanical elasticity and histopathologic characteristics. This prospective study was conducted with institutional review board approval, and written informed consent was obtained. Shear-wave elastography was performed for 30 invasive breast cancers in 30 women before surgery. The mechanical elasticity of a fresh breast tissue section, correlated with the ultrasound image, was measured using an indentation system. Quantitative (maximum, mean, minimum, and standard deviation of elasticity in kilopascals) and qualitative (color heterogeneity and presence of signal void areas in the mass) SWE features were compared with mechanical elasticity and histopathologic characteristics using the Pearson correlation coefficient and the Wilcoxon signed rank test. Maximum SWE values showed a moderate correlation with maximum mechanical elasticity (r = 0.530, P = 0.003). There were no significant differences between SWE values and mechanical elasticity in histologic grade I or II cancers (P = 0.268). However, SWE values were significantly higher than mechanical elasticity in histologic grade III cancers (P masses were present in 43% of breast cancers (13 of 30) and were correlated with dense collagen depositions (n = 11) or intratumoral necrosis (n = 2). Quantitative and qualitative SWE features reflect both the mechanical elasticity and histopathologic characteristics of breast cancers.

  9. Brownian dynamics simulations of an order-disorder transition in sheared sterically stabilized colloidal suspensions

    International Nuclear Information System (INIS)

    Rigos, A.A.; Wilemski, G.

    1992-01-01

    The shear thinning behavior of a sterically stabilized nonaqueous colloidal suspension was investigated using nonequilibrium Brownian dynamics simulations of systems with 108 and 256 particles. At a volume fraction of 0.4, the suspension is thixotropic: it has a reversible shear thinning transition from a disordered state to an ordered, lamellar state with triangularly packed strings of particles. The time scale for the transition is set by the free particle diffusion constant. For the smaller system, the transition occurs gradually with increasing shear rate. For the larger system, the transition is sharp and discontinuous shear thinning is found. 34 refs., 9 figs., 1 tab

  10. Steady shear flow properties of Cordia myxa leaf gum as a function of concentration and temperature.

    Science.gov (United States)

    Chaharlang, Mahmood; Samavati, Vahid

    2015-08-01

    The steady shear flow properties of dispersions of Cordia myxa leaf gum (CMLG) were determined as a function of concentration (0.5-2.5%, w/w), and temperature (10-50 °C). The CMLG dispersions exhibited strong shear-thinning behavior at all concentrations and temperatures. The Power-law (Ostwald-Waele's) and Herschel-Bulkley models were employed to characterize flow behavior of CMLG solutions at 0.1-100 s(-1) shear rate. Non-Newtonian shear-thinning behavior was observed at all temperatures and concentrations. While increase in temperature decreased the viscosity and increased the flow behavior indices, adverse effect was obtained by increasing the concentration. The Power-law model was found the best model to describe steady shear flow behavior of CMLG. The pseudoplasticity of CMLG increased markedly with concentration. An Arrhenius-type model was also used to describe the effect of temperature. The activation energy (Ea) appeared in the range of 5.972-18.104 kJ/mol, as concentration increased from 0.5% to 2.5%, at a shear rate of 10 s(-1). Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Excited waves in shear layers

    Science.gov (United States)

    Bechert, D. W.

    1982-01-01

    The generation of instability waves in free shear layers is investigated. The model assumes an infinitesimally thin shear layer shed from a semi-infinite plate which is exposed to sound excitation. The acoustical shear layer excitation by a source further away from the plate edge in the downstream direction is very weak while upstream from the plate edge the excitation is relatively efficient. A special solution is given for the source at the plate edge. The theory is then extended to two streams on both sides of the shear layer having different velocities and densities. Furthermore, the excitation of a shear layer in a channel is calculated. A reference quantity is found for the magnitude of the excited instability waves. For a comparison with measurements, numerical computations of the velocity field outside the shear layer were carried out.

  12. The cation-controlled and hydrogen bond-mediated shear-thickening behaviour of a tree-fern isolated polysaccharide.

    Science.gov (United States)

    Wee, May S M; Matia-Merino, Lara; Goh, Kelvin K T

    2015-10-05

    The shear-thickening rheological behaviour (between 5 and 20s(-1)) of a 5% (w/w) viscoelastic gum extracted from the fronds of the native New Zealand black tree fern or mamaku in Māori was further explored by manipulating the salt content. The freeze-dried mamaku gum contained a high mineral content and sugars which upon removal via dialysis, resulted in the loss of shear thickening. However, this loss was reversible by the addition of salts to the dialysed dispersion. The mechanism of shear-thickening behaviour was therefore hypothesised to be due to shear-induced transition of intra- to intermolecular hydrogen bonding, promoted by the screening effect of cations. Mono-, di- and trivalent salts, i.e. Na(+), K(+), N(CH3)4(+), Ca(2+), Mg(2+), Al(3+) and La(3+) at concentrations between 0.001 and 1.0M were tested to support the hypothesis as well as to demonstrate the sensitivity of the biopolymer to cation valency and concentrations. The cation valency and concentration were crucial factors in determining: (i) zero-shear viscosity, (ii) critical shear rate, γ˙c (or shear rate at the onset of shear-thickening) and (iii) the extent of shear-thickening of the solution. For mono- and divalent cations these parameters were similar at equivalent ionic strengths and fairly independent of the cation type. Trivalent cations (La(3+)) however caused precipitation of the gum in the concentration range of 0.005-0.05 M but clear dispersions were obtained above 0.05 M. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Slicken 1.0: Program for calculating the orientation of shear on reactivated faults

    Science.gov (United States)

    Xu, Hong; Xu, Shunshan; Nieto-Samaniego, Ángel F.; Alaniz-Álvarez, Susana A.

    2017-07-01

    The slip vector on a fault is an important parameter in the study of the movement history of a fault and its faulting mechanism. Although there exist many graphical programs to represent the shear stress (or slickenline) orientations on faults, programs to quantitatively calculate the orientation of fault slip based on a given stress field are scarce. In consequence, we develop Slicken 1.0, a software to rapidly calculate the orientation of maximum shear stress on any fault plane. For this direct method of calculating the resolved shear stress on a planar surface, the input data are the unit vector normal to the involved plane, the unit vectors of the three principal stress axes, and the stress ratio. The advantage of this program is that the vertical or horizontal principal stresses are not necessarily required. Due to its nimble design using Java SE 8.0, it runs on most operating systems with the corresponding Java VM. The software program will be practical for geoscience students, geologists and engineers and will help resolve a deficiency in field geology, and structural and engineering geology.

  14. Shear dilatancy and acoustic emission in dry and saturated granular materials

    Science.gov (United States)

    Brodsky, E. E.; Siman-Tov, S.

    2017-12-01

    Shearing of granular materials plays a strong role in naturally sheared systems as landslides and faults. Many works on granular flows have concentrated on dry materials, but relatively little work has been done on water saturated sands. Here we experimentally investigate dry versus saturated quartz-rich sand to understand the effect of the fluid medium on the rheology and acoustic waves emission of the sheared sand. The sand was sheared in a rotary shear rheometer under applied constant normal stress boundary at low (100 µm/s) to high (1 m/s) velocities. Mechanical, acoustic data and deformation were continuously recorded and imaged. For dry and water saturated experiments the granular volume remains constant for low shear velocities ( 10-3 m/s) and increases during shearing at higher velocities ( 1 m/s). Continuous imaging of the sheared sand show that the steady state shear band thickness is thicker during the high velocity steps. No significant change observed in the shear band thickness between dry and water saturated experiments. In contrast, the amount of dilation during water saturated experiments is about half the value measured for dry material. The measured decrease cannot be explained by shear band thickness change as such is not exist. However, the reduced dilation is supported by our acoustic measurements. In general, the event rate and acoustic event amplitudes increase with shear velocity. While isolated events are clearly detected during low velocities at higher the events overlap, resulting in a noisy signal. Although detection is better for saturated experiments, during the high velocity steps the acoustic energy measured from the signal is lower compared to that recorded for dry experiments. We suggest that the presence of fluid suppresses grain motion and particles impacts leading to mild increase in the internal pressure and therefore for the reduced dilation. In addition, the viscosity of fluids may influence the internal pressure via

  15. Upward swimming of a sperm cell in shear flow.

    Science.gov (United States)

    Omori, Toshihiro; Ishikawa, Takuji

    2016-03-01

    Mammalian sperm cells are required to swim over long distances, typically around 1000-fold their own length. They must orient themselves and maintain a swimming motion to reach the ovum, or egg cell. Although the mechanism of long-distance navigation is still unclear, one possible mechanism, rheotaxis, was reported recently. This work investigates the mechanism of the rheotaxis in detail by simulating the motions of a sperm cell in shear flow adjacent to a flat surface. A phase diagram was developed to show the sperm's swimming motion under different shear rates, and for varying flagellum waveform conditions. The results showed that, under shear flow, the sperm is able to hydrodynamically change its swimming direction, allowing it to swim upwards against the flow, which suggests that the upward swimming of sperm cells can be explained using fluid mechanics, and this can then be used to further understand physiology of sperm cell navigation.

  16. Some consequences of shear on galactic dynamos with helicity fluxes

    Science.gov (United States)

    Zhou, Hongzhe; Blackman, Eric G.

    2017-08-01

    Galactic dynamo models sustained by supernova (SN) driven turbulence and differential rotation have revealed that the sustenance of large-scale fields requires a flux of small-scale magnetic helicity to be viable. Here we generalize a minimalist analytic version of such galactic dynamos to explore some heretofore unincluded contributions from shear on the total turbulent energy and turbulent correlation time, with the helicity fluxes maintained by either winds, diffusion or magnetic buoyancy. We construct an analytic framework for modelling the turbulent energy and correlation time as a function of SN rate and shear. We compare our prescription with previous approaches that include only rotation. The solutions depend separately on the rotation period and the eddy turnover time and not just on their ratio (the Rossby number). We consider models in which these two time-scales are allowed to be independent and also a case in which they are mutually dependent on radius when a radial-dependent SN rate model is invoked. For the case of a fixed rotation period (or a fixed radius), we show that the influence of shear is dramatic for low Rossby numbers, reducing the correlation time of the turbulence, which, in turn, strongly reduces the saturation value of the dynamo compared to the case when the shear is ignored. We also show that even in the absence of winds or diffusive fluxes, magnetic buoyancy may be able to sustain sufficient helicity fluxes to avoid quenching.

  17. Shear strength of non-shear reinforced concrete elements

    DEFF Research Database (Denmark)

    Hoang, Cao linh

    1997-01-01

    is based upon the hypothesis that cracks can be transformed into yield lines, which have lower sliding resistance than yield lines formed in uncracked concrete.Proposals have been made on how the derived standard solutions may be applied to more complicated cases, such as continuous beams, beams......The report deals with the shear strength of statically indeterminate reinforced concrete beams without shear reinforcement. Solutions for a number of beams with different load and support conditions have been derived by means of the crack sliding model developed by Jin- Ping Zhang.This model...

  18. Experiments on sheet metal shearing

    OpenAIRE

    Gustafsson, Emil

    2013-01-01

    Within the sheet metal industry, different shear cutting technologies are commonly used in several processing steps, e.g. in cut to length lines, slitting lines, end cropping etc. Shearing has speed and cost advantages over competing cutting methods like laser and plasma cutting, but involves large forces on the equipment and large strains in the sheet material.Numerical models to predict forces and sheared edge geometry for different sheet metal grades and different shear parameter set-ups a...

  19. A Conceptual Model for Shear-Induced Phase Behavior in Crystallizing Cocoa Butter

    International Nuclear Information System (INIS)

    Mazzanti, G.; Guthrie, S.; Marangoni, A.; Idziak, S.

    2007-01-01

    We propose a conceptual model to explain the quantitative data from synchrotron X-ray diffraction experiments on the shear-induced phase behavior of cocoa butter, the main structural component of chocolate. We captured two-dimensional diffraction patterns from cocoa butter at crystallization temperatures of 17.5, 20.0, and 22.5 o C under shear rates from 45 to 1440 s -1 and under static conditions. From the simultaneous analysis of the integrated intensity, correlation length, lamellar thickness, and crystalline orientation, we postulate a conceptual model to provide an explanation for the distribution of phases II, IV, V, and X and the kinetics of the process. As previously proposed in the literature, we assume that the crystallites grow layer upon layer of slightly different composition. The shear rate and temperature applied define these compositions. Simultaneously, the shear and temperature define the crystalline interface area available for secondary nucleation by promoting segregation and affecting the size distribution of the crystallites. The combination of these factors (composition, area, and size distribution) favors dramatically the early onset of phase V under shear and determines the proportions of phases II, IV, V, and X after the transition. The experimental observations, the methodology used, and the proposed explanation are of fundamental and industrial interest, since the structural properties of crystalline networks are determined by their microstructure and polymorphic crystalline state. Different proportions of the phases will thus result in different characteristics of the final material

  20. Experimental observation of shear thickening oscillation

    DEFF Research Database (Denmark)

    Nagahiro, Shin-ichiro; Nakanishi, Hiizu; Mitarai, Namiko

    2013-01-01

    We report experimental observations of the shear thickening oscillation, i.e. the spontaneous macroscopic oscillation in the shear flow of severe shear thickening fluid. Using a density-matched starch-water mixture, in the cylindrical shear flow of a few centimeters flow width, we observed...

  1. Effect of Substrate Friction in a Two-Dimensional Granular Couette Shearing Cell

    Science.gov (United States)

    Templeman, Chris; Garg, Shila

    2001-03-01

    An investigation of the effect of substrate friction on the kinematics of rigid granular material in a two-dimensional granular Couette shearing cell was conducted. Cylindrical disks resting on a substrate were packed between a stationary outer ring and a rotating inner wheel. Previous work reports the velocity and particle rotation rates as a function of packing fraction and shearing rates [1]. The authors report the existence of a stick-slip condition of the disks in contact with the shearing wheel. The focus of our study is to investigate the impact of the substrate friction on the stick-slip condition as well as the kinematics of the system in general. [1] C.T. Veje, Daniel W. Howell, and R.P Behringer, Phys. Rev. E 59, 739 (1999). This research was partially supported by the Copeland Fund, administered by The College of Wooster. C.T. received support from NASA GRC LERCIP internship program.

  2. Shear behaviour of reinforced phyllite concrete beams

    International Nuclear Information System (INIS)

    Adom-Asamoah, Mark; Owusu Afrifa, Russell

    2013-01-01

    Highlights: ► Phyllite concrete beams often exhibited shear with anchorage bond failure. ► Different shear design provisions for reinforced phyllite beams are compared. ► Predicted shear capacity of phyllite beams must be modified by a reduction factor. -- Abstract: The shear behaviour of concrete beams made from phyllite aggregates subjected to monotonic and cyclic loading is reported. First diagonal shear crack load of beams with and without shear reinforcement was between 42–58% and 42–92% of the failure loads respectively. The phyllite concrete beams without shear links had lower post-diagonal cracking shear resistance compared to corresponding phyllite beams with shear links. As a result of hysteretic energy dissipation, limited cyclic loading affected the stiffness, strength and deformation of the phyllite beams with shear reinforcement. Generally, beams with and without shear reinforcement showed anchorage bond failure in addition to the shear failure due to high stress concentration near the supports. The ACI, BS and EC codes are conservative for the prediction of phyllite concrete beams without shear reinforcement but they all overestimate the shear strength of phyllite concrete beams with shear reinforcement. It is recommended that the predicted shear capacity of phyllite beams reinforced with steel stirrups be modified by a reduction factor of 0.7 in order to specify a high enough safety factor on their ultimate strength. It is also recommended that susceptibility of phyllite concrete beams to undergo anchorage bond failure is averted in design by the provision of greater anchorage lengths than usually permitted.

  3. A Six-Week Resistance Training Program Does Not Change Shear Modulus of the Triceps Brachii.

    Science.gov (United States)

    Akagi, Ryota; Shikiba, Tomofumi; Tanaka, Jun; Takahashi, Hideyuki

    2016-08-01

    We investigated the effect of a 6-week resistance training program on the shear modulus of the triceps brachii (TB). Twenty-three young men were randomly assigned to either the training (n = 13) or control group (n = 10). Before and after conducting the resistance training program, the shear modulus of the long head of the TB was measured at the point 70% along the length of the upper arm from the acromial process of the scapula to the lateral epicondyle of the humerus using shear wave ultrasound elastography. Muscle thickness of the long head of the TB was also determined at the same site by ultrasonography used during both tests. A resistance exercise was performed 3 days a week for 6 weeks using a dumbbell mass-adjusted to 80% of the 1-repetition maximum (1RM). The training effect on the muscle thickness and 1RM was significant. Nevertheless, the muscle shear modulus was not significantly changed after the training program. From the perspective of muscle mechanical properties, the present results indicate that significant adaptation must occur to make the TB more resistant to subsequent damaging bouts during the 6-week training program to target the TB.

  4. Rotational and magnetic shear stabilization of magnetohydrodynamic modes and turbulence in DIII-D high performance discharges

    International Nuclear Information System (INIS)

    Lao, L.L.; Burrell, K.H.; Casper, T.S.

    1996-08-01

    The confinement and the stability properties of the DIII-D tokamak high performance discharges are evaluated in terms of rotational and magnetic shear with emphasis on the recent experimental results obtained from the negative central magnetic shear (NCS) experiments. In NCS discharges, a core transport barrier is often observed to form inside the NCS region accompanied by a reduction in core fluctuation amplitudes. Increasing negative magnetic shear contributes to the formation of this core transport barrier, but by itself is not sufficient to fully stabilize the toroidal drift mode (trapped- electron-η i mode) to explain this formation. Comparison of the Doppler shift shear rate to the growth rate of the η i mode suggests that the large core E x B flow shear can stabilize this mode and broaden the region of reduced core transport . Ideal and resistive stability analysis indicates the performance of NCS discharges with strongly peaked pressure profiles is limited by the resistive interchange mode to low Β N < 2.3. This mode is insensitive to the details of the rotational and the magnetic shear profiles. A new class of discharges which has a broad region of weak or slightly negative magnetic shear (WNS) is described. The WNS discharges have broader pressure profiles and higher values than the NCS discharges together with high confinement and high fusion reactivity

  5. Eigenmode characteristics of the double tearing mode in the presence of shear flows

    International Nuclear Information System (INIS)

    Mao Aohua; Li Jiquan; Kishimoto, Y.; Liu Jinyuan

    2013-01-01

    The double tearing mode (DTM) is characterized by two eigen states with antisymmetric or symmetric magnetic island structure, referred to as the even or odd DTM. In this work, we systematically revisit the DTM instabilities in the presence of an antisymmetric shear flow with a focus on eigenmode characteristics as well as the stabilization or destabilization mechanism in a wide parameter region. Both initial value simulation and eigenvalue analysis are performed based on reduced resistive MHD model in slab geometry. A degenerated eigen state is found at a critical flow amplitude v c . The even (or odd) DTM is stabilized (or destabilized) by weak shear flow below v c through the distortion of magnetic islands mainly due to the global effect of shear flow rather than the local flow shear. The distortion can be quantified by the phase angles of the perturbed flux, showing a perfect correspondence to the growth rates. As the shear flow increases above v c , the degenerated eigen state bifurcates into two eigen modes with the same growth rate but opposite propagating direction, resulting in an oscillatory growth of fluctuation energy. It is identified that two eigen modes show the single tearing mode structure due to the Alfvén resonance (AR) occurring on one current sheet. Most importantly, the AR can destabilize the DTMs through enhancing the plasma flow exerting on the remaining island. Meanwhile, the local flow shear plays a remarkable stabilizing role in this region. In addition, the eigenmode characteristic of the electromagnetic Kelvin-Helmholtz instability is also discussed.

  6. Influence of equilibrium shear flow in the parallel magnetic direction on edge localized mode crash

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Y.; Xiong, Y. Y. [College of Physical Science and Technology, Sichuan University, 610064 Chengdu (China); Chen, S. Y., E-mail: sychen531@163.com [College of Physical Science and Technology, Sichuan University, 610064 Chengdu (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China); Southwestern Institute of Physics, Chengdu 610041 (China); Huang, J.; Tang, C. J. [College of Physical Science and Technology, Sichuan University, 610064 Chengdu (China); Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064 (China)

    2016-04-15

    The influence of the parallel shear flow on the evolution of peeling-ballooning (P-B) modes is studied with the BOUT++ four-field code in this paper. The parallel shear flow has different effects in linear simulation and nonlinear simulation. In the linear simulations, the growth rate of edge localized mode (ELM) can be increased by Kelvin-Helmholtz term, which can be caused by the parallel shear flow. In the nonlinear simulations, the results accord with the linear simulations in the linear phase. However, the ELM size is reduced by the parallel shear flow in the beginning of the turbulence phase, which is recognized as the P-B filaments' structure. Then during the turbulence phase, the ELM size is decreased by the shear flow.

  7. The value of quantitative shear wave elastography in differentiating the cervical lymph nodes in patients with thyroid nodules.

    Science.gov (United States)

    You, Jun; Chen, Juan; Xiang, Feixiang; Song, Yue; Khamis, Simai; Lu, Chengfa; Lv, Qing; Zhang, Yanrong; Xie, Mingxing

    2018-04-01

    This study aimed at evaluating the diagnostic performance of quantitative shear wave elastography (SWE) in differentiating metastatic cervical lymph nodes from benign nodes in patients with thyroid nodules. One hundred and forty-one cervical lymph nodes from 39 patients with thyroid nodules that were diagnosed as papillary thyroid cancer had been imaged with SWE. The shear elasticity modulus, which indicates the stiffness of the lymph nodes, was measured in terms of maximum shear elasticity modulus (maxSM), minimum shear elasticity modulus (minSM), mean shear elasticity modulus (meanSM), and standard deviation (SD) of the shear elasticity modulus. All the patients underwent thyroid surgery, 50 of the suspicious lymph nodes were resected, and 91 lymph nodes were followed up for 6 months. The maxSM value, minSM value, meanSM value, and SD value of the metastatic lymph nodes were significantly higher than those of the benign nodes. The area under the curve of the maxSM value, minSM value, meanSM value, and SD value were 0.918, 0.606, 0.865, and 0.915, respectively. SWE can differentiate metastasis from benign cervical lymph nodes in patients with thyroid nodules, and the maxSM, meanSM, and SD may be valuable quantitative indicators for characterizing cervical lymph nodes.

  8. Maximum power point tracking

    International Nuclear Information System (INIS)

    Enslin, J.H.R.

    1990-01-01

    A well engineered renewable remote energy system, utilizing the principal of Maximum Power Point Tracking can be m ore cost effective, has a higher reliability and can improve the quality of life in remote areas. This paper reports that a high-efficient power electronic converter, for converting the output voltage of a solar panel, or wind generator, to the required DC battery bus voltage has been realized. The converter is controlled to track the maximum power point of the input source under varying input and output parameters. Maximum power point tracking for relative small systems is achieved by maximization of the output current in a battery charging regulator, using an optimized hill-climbing, inexpensive microprocessor based algorithm. Through practical field measurements it is shown that a minimum input source saving of 15% on 3-5 kWh/day systems can easily be achieved. A total cost saving of at least 10-15% on the capital cost of these systems are achievable for relative small rating Remote Area Power Supply systems. The advantages at larger temperature variations and larger power rated systems are much higher. Other advantages include optimal sizing and system monitor and control

  9. Strain rate measurement by Electronic Speckle Pattern Interferometry: A new look at the strain localization onset

    International Nuclear Information System (INIS)

    Guelorget, Bruno; Francois, Manuel; Vial-Edwards, Cristian; Montay, Guillaume; Daniel, Laurent; Lu, Jian

    2006-01-01

    In-plane Electronic Speckle Pattern Interferometry has been successfully used during tensile testing of semi-hard copper sheets in order to measure the strain rate. On one hand, heterogeneity in strain rate field has been found before the maximum of the tensile force (ε t ≅ 19.4 and 25.4%, respectively). Thus, a localization phenomenon occurs before the classic Considere's criterion (dF = 0) for the diffuse neck initiation. On the other hand, strain rate measurement before fracture shows the moment where one of the two slip band systems becomes predominant, then strain concentrates in a small area, the shear band. Uncertainty evaluation has been carried out, which shows a very good accuracy of the total strain and the strain rate measurements

  10. Strain rate measurement by Electronic Speckle Pattern Interferometry: A new look at the strain localization onset

    Energy Technology Data Exchange (ETDEWEB)

    Guelorget, Bruno [Universite de Technologie de Troyes (UTT), Laboratoire des Systemes Mecaniques et d' ingenierie Simultanee (LASMIS, CNRS FRE 2719), 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France)]. E-mail: bruno.guelorget@utt.fr; Francois, Manuel [Universite de Technologie de Troyes (UTT), Laboratoire des Systemes Mecaniques et d' ingenierie Simultanee (LASMIS, CNRS FRE 2719), 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France); Vial-Edwards, Cristian [Departemento de Ingenieria Mecanica y Metalurgica, Pontificia Universidad Catolica de Chile, Vicuna Mackenna 4860, 6904411 Santiago (Chile); Montay, Guillaume [Universite de Technologie de Troyes (UTT), Laboratoire des Systemes Mecaniques et d' ingenierie Simultanee (LASMIS, CNRS FRE 2719), 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France); Daniel, Laurent [Universite de Technologie de Troyes (UTT), Laboratoire des Systemes Mecaniques et d' ingenierie Simultanee (LASMIS, CNRS FRE 2719), 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France); Lu, Jian [Universite de Technologie de Troyes (UTT), Laboratoire des Systemes Mecaniques et d' ingenierie Simultanee (LASMIS, CNRS FRE 2719), 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France)

    2006-01-15

    In-plane Electronic Speckle Pattern Interferometry has been successfully used during tensile testing of semi-hard copper sheets in order to measure the strain rate. On one hand, heterogeneity in strain rate field has been found before the maximum of the tensile force ({epsilon} {sup t} {approx_equal} 19.4 and 25.4%, respectively). Thus, a localization phenomenon occurs before the classic Considere's criterion (dF = 0) for the diffuse neck initiation. On the other hand, strain rate measurement before fracture shows the moment where one of the two slip band systems becomes predominant, then strain concentrates in a small area, the shear band. Uncertainty evaluation has been carried out, which shows a very good accuracy of the total strain and the strain rate measurements.

  11. Improving Bayesian credibility intervals for classifier error rates using maximum entropy empirical priors.

    Science.gov (United States)

    Gustafsson, Mats G; Wallman, Mikael; Wickenberg Bolin, Ulrika; Göransson, Hanna; Fryknäs, M; Andersson, Claes R; Isaksson, Anders

    2010-06-01

    Successful use of classifiers that learn to make decisions from a set of patient examples require robust methods for performance estimation. Recently many promising approaches for determination of an upper bound for the error rate of a single classifier have been reported but the Bayesian credibility interval (CI) obtained from a conventional holdout test still delivers one of the tightest bounds. The conventional Bayesian CI becomes unacceptably large in real world applications where the test set sizes are less than a few hundred. The source of this problem is that fact that the CI is determined exclusively by the result on the test examples. In other words, there is no information at all provided by the uniform prior density distribution employed which reflects complete lack of prior knowledge about the unknown error rate. Therefore, the aim of the study reported here was to study a maximum entropy (ME) based approach to improved prior knowledge and Bayesian CIs, demonstrating its relevance for biomedical research and clinical practice. It is demonstrated how a refined non-uniform prior density distribution can be obtained by means of the ME principle using empirical results from a few designs and tests using non-overlapping sets of examples. Experimental results show that ME based priors improve the CIs when employed to four quite different simulated and two real world data sets. An empirically derived ME prior seems promising for improving the Bayesian CI for the unknown error rate of a designed classifier. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Residual shear strength variability as a primary control on movement of landslides reactivated by earthquake-induced ground motion: Implications for coastal Oregon, U.S.

    Science.gov (United States)

    Schulz, William H.; Wang, Gonghui

    2014-01-01

    Most large seismogenic landslides are reactivations of preexisting landslides with basal shear zones in the residual strength condition. Residual shear strength often varies during rapid displacement, but the response of residual shear zones to seismic loading is largely unknown. We used a ring shear apparatus to perform simulated seismic loading tests, constant displacement rate tests, and tests during which shear stress was gradually varied on specimens from two landslides to improve understanding of coseismic landslide reactivation and to identify shear strength models valid for slow gravitational failure through rapid coseismic failure. The landslides we studied represent many along the Oregon, U.S., coast. Seismic loading tests resulted in (1) catastrophic failure involving unbounded displacement when stresses represented those for the existing landslides and (2) limited to unbounded displacement when stresses represented those for hypothetical dormant landslides, suggesting that coseismic landslide reactivation may be significant during future great earthquakes occurring near the Oregon Coast. Constant displacement rate tests indicated that shear strength decreased exponentially during the first few decimeters of displacement but increased logarithmically with increasing displacement rate when sheared at 0.001 cm s−1 or greater. Dynamic shear resistance estimated from shear strength models correlated well with stresses observed during seismic loading tests, indicating that displacement rate and amount primarily controlled failure characteristics. We developed a stress-based approach to estimate coseismic landslide displacement that utilizes the variable shear strength model. The approach produced results that compared favorably to observations made during seismic loading tests, indicating its utility for application to landslides.

  13. High fluid shear strain causes injury in silver shark: Preliminary implications for Mekong hydropower turbine design

    Energy Technology Data Exchange (ETDEWEB)

    Baumgartner, L. J. [New South Wales Department of Primary Industries, Narrandera Fisheries Centre, Narrandera NSW Australia; Institute of Land, Water and Society, Charles Sturt University, Albury NSW Australia; Thorncraft, G. [Faculty of Agriculture, Forestry and Fisheries, National University of Laos, Vientiane Lao People’s Democratic Republic; Phonekhampheng, O. [Faculty of Agriculture, Forestry and Fisheries, National University of Laos, Vientiane Lao People’s Democratic Republic; Boys, C. [New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Nelson Bay NSW Australia; Navarro, A. [Institute of Land, Water and Society, Charles Sturt University, Albury NSW Australia; Robinson, W. [Institute of Land, Water and Society, Charles Sturt University, Albury NSW Australia; Brown, R. [Pacific Northwest National Laboratory, Richland WA USA; Deng, Z. D. [Pacific Northwest National Laboratory, Richland WA USA

    2017-02-09

    Fluid shear arises when two bodies of water, travelling at different velocities, intersect. Fish entrained at the interface of these two water masses will experience shear stress; which can be harmful. The stress magnitude is dependent on waterbody mass and velocity; with the fish impact largely related to body size. Elevated shear stress occurs where rapidly flowing water passes near spillways, across screens, within turbine draft tubes or other passage routes. A flume was used to determine critical tolerances of silver shark (Balantiocheilos melanopterus) to different shear stress rates generated by a high velocity jet. Fish experienced higher levels of injury and mortality as shear stress was increased. Excessive shear forces had damaging impacts on fish. Mortality occurred at shear levels higher that 600/s. It is important that developers should attempt to model potential shear profiles expected during turbine passage in selected designs. These data will be critical to determine potential impacts on fish. If the likelihood of adverse impact is high, then alternative designs which have lower shear stress could be explored.

  14. Sheared Electroconvective Instability

    Science.gov (United States)

    Kwak, Rhokyun; Pham, Van Sang; Lim, Kiang Meng; Han, Jongyoon

    2012-11-01

    Recently, ion concentration polarization (ICP) and related phenomena draw attention from physicists, due to its importance in understanding electrochemical systems. Researchers have been actively studying, but the complexity of this multiscale, multiphysics phenomenon has been limitation for gaining a detailed picture. Here, we consider electroconvective(EC) instability initiated by ICP under pressure-driven flow, a scenario often found in electrochemical desalinations. Combining scaling analysis, experiment, and numerical modeling, we reveal unique behaviors of sheared EC: unidirectional vortex structures, its size selection and vortex propagation. Selected by balancing the external pressure gradient and the electric body force, which generates Hagen-Poiseuille(HP) flow and vortical EC, the dimensionless EC thickness scales as (φ2 /UHP)1/3. The pressure-driven flow(or shear) suppresses unfavorably-directed vortices, and simultaneously pushes favorably-directed vortices with constant speed, which is linearly proportional to the total shear of HP flow. This is the first systematic characterization of sheared EC, which has significant implications on the optimization of electrodialysis and other electrochemical systems.

  15. Temperature-dependent residual shear strength characteristics of smectite-rich landslide soils

    Science.gov (United States)

    Shibasaki, Tatsuya; Matsuura, Sumio; Okamoto, Takashi

    2015-04-01

    On gentle clayey slopes in weathered argillaceous rock areas, there exist many landslides which repeatedly reactivate with slow movement. The slip surface soils of these landslides are sometimes composed dominantly of swelling clay mineral (smectite) which is well known to show extremely low residual friction angle. From field data monitored at landslide sites in Japan, it has become clear that some landslides with relatively shallow slip surface begin to move and become active in late autumn or early winter every year. In such cases, the triggering mechanisms of landslides have not been understood well enough, because landslide initiation and movement are not always clearly linked with rises in pore water pressures (ground water levels). In this study, we focus on the influence of seasonal variation in ground temperature on slope stability and have investigated the effect of temperature on the shear strength of slip surface soils. Undisturbed soil samples were collected by boring from the Busuno landslide in Japan. We performed box shear experiments on undisturbed slip surface soils at low temperature ranges (approximately 5-25 °C). XRD analysis revealed that these soils contain high fraction of smectite. Slickensided slip surface within test specimen was coincided with the shearing plane of the shear box and shear displacement was applied precisely along the localized slip surface. Experiments were performed under slow shearing rate condition (0.005mm/min) and the results showed that shear strength decreased with decreasing temperature. Temperature effect was rather significant on frictional angle than on cohesion. Ring shear experiments were also performed on normally-consolidated remoulded samples. Under residual strength condition, temperature-change experiments (cooling-event tests) ranging approximately from 5 to 25 °C were performed on smectite-rich landslide soils and commercial bentonites. As well as the results by box shear test, shear weakening

  16. Stress in closed thin-walled tubes of single box subjected by shear forces and application to airfoils

    Directory of Open Access Journals (Sweden)

    Zebbiche Toufik

    2014-09-01

    Full Text Available The presented work is to develop a numerical computation program to determine the distribution of the shear stress to shear in closed tubes with asymmetric single thin wall section with a constant thickness and applications to airfoils and therefore determining the position and value of the maximum stress. In the literature, there are exact analytical solutions only for some sections of simple geometries such as circular section. Hence our interest is focused on the search of approximate numerical solutions for more complex sections used in aeronautics. In the second stage the position of the shear center is determined so that the section does not undergo torsion. The analytic function of the boundary of the airfoil is obtained by using the cubic spline interpolation since it is given in the form of tabulated points.

  17. Formal comment on: Myhrvold (2016) Dinosaur metabolism and the allometry of maximum growth rate. PLoS ONE; 11(11): e0163205.

    Science.gov (United States)

    Griebeler, Eva Maria; Werner, Jan

    2018-01-01

    In his 2016 paper, Myhrvold criticized ours from 2014 on maximum growth rates (Gmax, maximum gain in body mass observed within a time unit throughout an individual's ontogeny) and thermoregulation strategies (ectothermy, endothermy) of 17 dinosaurs. In our paper, we showed that Gmax values of similar-sized extant ectothermic and endothermic vertebrates overlap. This strongly questions a correct assignment of a thermoregulation strategy to a dinosaur only based on its Gmax and (adult) body mass (M). Contrary, Gmax separated similar-sized extant reptiles and birds (Sauropsida) and Gmax values of our studied dinosaurs were similar to those seen in extant similar-sized (if necessary scaled-up) fast growing ectothermic reptiles. Myhrvold examined two hypotheses (H1 and H2) regarding our study. However, we did neither infer dinosaurian thermoregulation strategies from group-wide averages (H1) nor were our results based on that Gmax and metabolic rate (MR) are related (H2). In order to assess whether single dinosaurian Gmax values fit to those of extant endotherms (birds) or of ectotherms (reptiles), we already used a method suggested by Myhrvold to avoid H1, and we only discussed pros and cons of a relation between Gmax and MR and did not apply it (H2). We appreciate Myhrvold's efforts in eliminating the correlation between Gmax and M in order to statistically improve vertebrate scaling regressions on maximum gain in body mass. However, we show here that his mass-specific maximum growth rate (kC) replacing Gmax (= MkC) does not model the expected higher mass gain in larger than in smaller species for any set of species. We also comment on, why we considered extant reptiles and birds as reference models for extinct dinosaurs and why we used phylogenetically-informed regression analysis throughout our study. Finally, we question several arguments given in Myhrvold in order to support his results.

  18. Fifty years of shear zones

    Science.gov (United States)

    Graham, Rodney

    2017-04-01

    We are here, of course, because 1967 saw the publication of John Ramsay's famous book. Two years later a memorable field trip from Imperial College to the Outer Hebrides saw John on a bleak headland on the coast of North Uist where a relatively undeformed metadolerite within Lewisian (Precambrian) gneisses contained ductile shear zones with metamorphic fabrics in amphibolite facies. One particular outcrop was very special - a shear zone cutting otherwise completely isotropic, undeformed metadolerite, with an incremental foliation starting to develop at 45° to the deformation zone, and increasing in intensity as it approached the shear direction. Here was proof of the process of simple shear under ductile metamorphic conditions - the principles of simple shear outlined in John Ramsay's 1967 book clearly visible in nature, and verified by Ramsay's mathematical proofs in the eventual paper (Ramsay and Graham, 1970). Later work on the Lewisian on the mainland of Scotland, in South Harris, in Africa, and elsewhere applied Ramsay's simple shear principles more liberally, more imprecisely and on larger scale than at Caisteal Odair, but in retrospect it documented what seems now to be the generality of mid and lower crustal deformation. Deep seismic reflection data show us that on passive margins hyper-stretched continental crust (whether or not cloaked by Seaward Dipping Reflectors) seems to have collapsed onto the mantle. Crustal faults mostly sole out at or above the mantle - so the Moho is a detachment- an 'outer marginal detachment', if you like, and, of course, it must be a ductile shear. On non-volcanic margins this shear zone forms the first formed ocean floor before true sea floor spreading gets going to create real oceanic crust. Gianreto Manatschal, Marcel Lemoine and others realised that the serpentinites described in parts of the Alps are exposed remnants of this ductile shear zone. Associated ophicalcite breccias tell of sea floor exposure, while high

  19. Viscoelasticity and nonlinear simple shear flow behavior of an entangled asymmetric exact comb polymer solution

    KAUST Repository

    Snijkers, F.; Kirkwood, K. M.; Vlassopoulos, D.; Leal, L. G.; Nikopoulou, A.; Hadjichristidis, Nikolaos; Coppola, S.

    2016-01-01

    We report upon the characterization of the steady-state shear stresses and first normal stress differences as a function of shear rate using mechanical rheometry (both with a standard cone and plate and with a cone partitioned plate) and optical rheometry (with a flow-birefringence setup) of an entangled solution of asymmetric exact combs. The combs are polybutadienes (1,4-addition) consisting of an H-skeleton with an additional off-center branch on the backbone. We chose to investigate a solution in order to obtain reliable nonlinear shear data in overlapping dynamic regions with the two different techniques. The transient measurements obtained by cone partitioned plate indicated the appearance of overshoots in both the shear stress and the first normal stress difference during start-up shear flow. Interestingly, the overshoots in the start-up normal stress difference started to occur only at rates above the inverse stretch time of the backbone, when the stretch time of the backbone was estimated in analogy with linear chains including the effects of dynamic dilution of the branches but neglecting the effects of branch point friction, in excellent agreement with the situation for linear polymers. Flow-birefringence measurements were performed in a Couette geometry, and the extracted steady-state shear and first normal stress differences were found to agree well with the mechanical data, but were limited to relatively low rates below the inverse stretch time of the backbone. Finally, the steady-state properties were found to be in good agreement with model predictions based on a nonlinear multimode tube model developed for linear polymers when the branches are treated as solvent.

  20. Viscoelasticity and nonlinear simple shear flow behavior of an entangled asymmetric exact comb polymer solution

    KAUST Repository

    Snijkers, F.

    2016-03-31

    We report upon the characterization of the steady-state shear stresses and first normal stress differences as a function of shear rate using mechanical rheometry (both with a standard cone and plate and with a cone partitioned plate) and optical rheometry (with a flow-birefringence setup) of an entangled solution of asymmetric exact combs. The combs are polybutadienes (1,4-addition) consisting of an H-skeleton with an additional off-center branch on the backbone. We chose to investigate a solution in order to obtain reliable nonlinear shear data in overlapping dynamic regions with the two different techniques. The transient measurements obtained by cone partitioned plate indicated the appearance of overshoots in both the shear stress and the first normal stress difference during start-up shear flow. Interestingly, the overshoots in the start-up normal stress difference started to occur only at rates above the inverse stretch time of the backbone, when the stretch time of the backbone was estimated in analogy with linear chains including the effects of dynamic dilution of the branches but neglecting the effects of branch point friction, in excellent agreement with the situation for linear polymers. Flow-birefringence measurements were performed in a Couette geometry, and the extracted steady-state shear and first normal stress differences were found to agree well with the mechanical data, but were limited to relatively low rates below the inverse stretch time of the backbone. Finally, the steady-state properties were found to be in good agreement with model predictions based on a nonlinear multimode tube model developed for linear polymers when the branches are treated as solvent.

  1. Role of Wall Shear Stress in Cryptosporidium parvum Oocyst Attachment to Environmental Biofilms.

    Science.gov (United States)

    Luo, Xia; Jedlicka, Sabrina S; Jellison, Kristen L

    2017-12-15

    This study investigated Cryptosporidium parvum oocyst deposition onto biofilms as a function of shear stress under laminar or turbulent flow. Annular rotating bioreactors were used to grow stabilized stream biofilms at shear stresses ranging from 0.038 to 0.46 Pa. These steady-state biofilms were then used to assess the impact of hydrodynamic conditions on C. parvum oocyst attachment. C. parvum deposition onto biofilms followed a pseudo-second-order model under both laminar (after a lag phase) and turbulent flows. The total number of oocysts attached to the biofilm at steady state decreased as the hydrodynamic wall shear stress increased. The oocyst deposition rate constant increased with shear stress but decreased at high shear, suggesting that increasing wall shear stress results in faster attachment of Cryptosporidium due to higher mass transport until the shear forces exceed a critical limit that prevents oocyst attachment. These data show that oocyst attachment in the short and long term are impacted differently by shear: higher shear (to a certain limit) may be associated with faster initial oocyst attachment, but lower shear is associated with greater numbers of oocysts attached at equilibrium. IMPORTANCE This research provides experimental evidence to demonstrate that shear stress plays a critical role in protozoan-pathogen transport and deposition in environmental waters. The data presented in this work expand scientific understanding of Cryptosporidium attachment and fate, which will further influence the development of timely and accurate sampling strategies, as well as advanced water treatment technologies, to target protozoan pathogens in surface waters that serve as municipal drinking water sources. Copyright © 2017 American Society for Microbiology.

  2. Three-Dimensional Geostatistical Analysis of Rock Fracture Roughness and Its Degradation with Shearing

    Directory of Open Access Journals (Sweden)

    Nima Babanouri

    2013-12-01

    Full Text Available Three-dimensional surface geometry of rock discontinuities and its evolution with shearing are of great importance in understanding the deformability and hydro-mechanical behavior of rock masses. In the present research, surfaces of three natural rock fractures were digitized and studied before and after the direct shear test. The variography analysis of the surfaces indicated a strong non-linear trend in the data. Therefore, the spatial variability of rock fracture surfaces was decomposed to one deterministic component characterized by a base polynomial function, and one stochastic component described by the variogram of residuals. By using an image-processing technique, 343 damaged zones with different sizes, shapes, initial roughness characteristics, local stress fields, and asperity strength values were spatially located and clustered. In order to characterize the overall spatial structure of the degraded zones, the concept of ‘pseudo-zonal variogram’ was introduced. The results showed that the spatial continuity at the damage locations increased due to asperity degradation. The increase in the variogram range was anisotropic and tended to be higher in the shear direction; thus, the direction of maximum continuity rotated towards the shear direction. Finally, the regression-kriging method was used to reconstruct the morphology of the intact surfaces and degraded areas. The cross-validation error of interpolation for the damaged zones was found smaller than that obtained for the intact surface.

  3. Self-organization behaviors of shear bands in 7075 T73 and annealed aluminum alloy

    International Nuclear Information System (INIS)

    Yang, Y.; Li, D.H.; Zheng, H.G.; Li, X.M.; Jiang, F.

    2009-01-01

    The self-organization behaviors of multiple adiabatic shear bands (ASBs) in the 7075 T73 aluminum alloy were investigated by means of the thick-walled cylinder (TWC) technique. Shear bands first nucleate at the inner boundary of the aluminum alloy tube and propagate along the maximum shear stress direction in the spiral trajectory. On the cross section of the specimen, shear bands distribute either in the clockwise or the anticlockwise direction. The number of ASBs in the clockwise direction is roughly twice that in the anticlockwise direction. However, the 7075 annealed alloy does not generate any shear band under the same experimental conditions. Numerical simulation with coupled thermo-mechanical analysis was carried out to investigate the evolution mechanism of adiabatic shear bands. Both uniform and non-uniform finite element models were created. The simulation results of the non-uniform model are in better agreement with those of the experiment. In the non-uniform case, the spacing between ASBs is larger than that of the uniform model, and most of the ASBs prefer to propagate in the clockwise direction. For the first time, two types of particles (second phase), hard particles and soft particles, are separately introduced into the metal matrix in the non-uniform model to simulate their effects on the self-organization of ASBs. The soft particles reduce the time required for ASBs nucleation. Stress collapse first occurs at the region where the soft particles are located and most of the ASBs pass through these soft particles. However, ASBs propagate along the paths that are adjacent to the hard particles instead of passing through them. As experimental observations, there is no shear band nucleating in the annealed alloy in simulation. Under the same conditions, the energy barrier for the formation of ASBs in the annealed aluminum alloy is about 2.5 times larger than that in the T73 alloy, which means that the adiabatic shearing is less likely to nucleate in the

  4. Post retention and post/core shear bond strength of four post systems.

    Science.gov (United States)

    Stockton, L W; Williams, P T; Clarke, C T

    2000-01-01

    As clinicians we continue to search for a post system which will give us maximum retention while maximizing resistance to root fracture. The introduction of several new post systems, with claims of high retentive and resistance to root fracture values, require that independent studies be performed to evaluate these claims. This study tested the tensile and shear dislodgment forces of four post designs that were luted into roots 10 mm apical of the CEJ. The Para Post Plus (P1) is a parallel-sided, passive design; the Para Post XT (P2) is a combination active/passive design; the Flexi-Post (F1) and the Flexi-Flange (F2) are active post designs. All systems tested were stainless steel. This study compared the test results of the four post designs for tensile and shear dislodgment. All mounted samples were loaded in tension until failure occurred. The tensile load was applied parallel to the long axis of the root, while the shear load was applied at 450 to the long axis of the root. The Flexi-Post (F1) was significantly different from the other three in the tensile test, however, the Para Post XT (P2) was significantly different to the other three in the shear test and had a better probability for survival in the Kaplan-Meier survival function test. Based on the results of this study, our recommendation is for the Para Post XT (P2).

  5. A Piezoelectric Shear Stress Sensor

    Science.gov (United States)

    Kim, Taeyang; Saini, Aditya; Kim, Jinwook; Gopalarathnam, Ashok; Zhu, Yong; Palmieri, Frank L.; Wohl, Christopher J.; Jiang, Xiaoning

    2016-01-01

    In this paper, a piezoelectric sensor with a floating element was developed for shear stress measurement. The piezoelectric sensor was designed to detect the pure shear stress suppressing effects of normal stress generated from the vortex lift-up by applying opposite poling vectors to the: piezoelectric elements. The sensor was first calibrated in the lab by applying shear forces and it showed high sensitivity to shear stress (=91.3 +/- 2.1 pC/Pa) due to the high piezoelectric coefficients of PMN-33%PT (d31=-1330 pC/N). The sensor also showed almost no sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the device. The usable frequency range of the sensor is 0-800 Hz. Keywords: Piezoelectric sensor, shear stress, floating element, electromechanical symmetry

  6. The dynamics of a shear band

    Science.gov (United States)

    Giarola, Diana; Capuani, Domenico; Bigoni, Davide

    2018-03-01

    A shear band of finite length, formed inside a ductile material at a certain stage of a continued homogeneous strain, provides a dynamic perturbation to an incident wave field, which strongly influences the dynamics of the material and affects its path to failure. The investigation of this perturbation is presented for a ductile metal, with reference to the incremental mechanics of a material obeying the J2-deformation theory of plasticity (a special form of prestressed, elastic, anisotropic, and incompressible solid). The treatment originates from the derivation of integral representations relating the incremental mechanical fields at every point of the medium to the incremental displacement jump across the shear band faces, generated by an impinging wave. The boundary integral equations (under the plane strain assumption) are numerically approached through a collocation technique, which keeps into account the singularity at the shear band tips and permits the analysis of an incident wave impinging a shear band. It is shown that the presence of the shear band induces a resonance, visible in the incremental displacement field and in the stress intensity factor at the shear band tips, which promotes shear band growth. Moreover, the waves scattered by the shear band are shown to generate a fine texture of vibrations, parallel to the shear band line and propagating at a long distance from it, but leaving a sort of conical shadow zone, which emanates from the tips of the shear band.

  7. Metamorphism and Shear Localization in the Oceanic and Continental Lithosphere: A Local or Lithospheric-Scale Effect?

    Science.gov (United States)

    Montesi, L.

    2017-12-01

    Ductile rheologies are characterized by strain rate hardening, which favors deformation zones that are as wide as possible, thus minimizing strain rate and stress. By contrast, plate tectonics and the observation of ductile shear zones in the exposed middle to lower crust show that deformation is often localized, that is, strain (and likely strain rate) is locally very high. This behavior is most easily explained if the material in the shear zone is intrinsically weaker than the reference material forming the wall rocks. Many origins for that weakness have been proposed. They include higher temperature (shear heating), reduced grain size, and fabric. The latter two were shown to be the most effective in the middle crust and upper mantle (given observational limits restricting heating to 50K or less) but they were not very important in the lower crust. They are not sufficient to explain the generation of narrow plate boundaries in the oceans. We evaluate here the importance of metamorphism, especially related to hydration, in weakening the lithosphere. Serpentine is a major player in the dynamics of the oceanic lithosphere. Although its ductile behavior is poorly constrained, serpentine is likely to behave in a brittle or quasi-plastic manner with a reduced coefficient of friction, replacing stronger peridotite. Serpentinization sufficiently weakens the oceanic lithosphere to explain the generation of diffuse plate boundaries and, combined with grain size reduction, the development of narrow plate boundaries. Lower crust outcrops, especially in the Bergen Arc (Norway), display eclogite shear zones hosted in metastable granulites. The introduction of water triggered locally a metamorphic reaction that reduces rock strength and resulted in a ductile shear zone. The presence of these shear zones has been used to explain the weakness of the lower crust perceived from geodesy and seismic activity. We evaluate here how much strain rate may increase as a result of

  8. The power and robustness of maximum LOD score statistics.

    Science.gov (United States)

    Yoo, Y J; Mendell, N R

    2008-07-01

    The maximum LOD score statistic is extremely powerful for gene mapping when calculated using the correct genetic parameter value. When the mode of genetic transmission is unknown, the maximum of the LOD scores obtained using several genetic parameter values is reported. This latter statistic requires higher critical value than the maximum LOD score statistic calculated from a single genetic parameter value. In this paper, we compare the power of maximum LOD scores based on three fixed sets of genetic parameter values with the power of the LOD score obtained after maximizing over the entire range of genetic parameter values. We simulate family data under nine generating models. For generating models with non-zero phenocopy rates, LOD scores maximized over the entire range of genetic parameters yielded greater power than maximum LOD scores for fixed sets of parameter values with zero phenocopy rates. No maximum LOD score was consistently more powerful than the others for generating models with a zero phenocopy rate. The power loss of the LOD score maximized over the entire range of genetic parameters, relative to the maximum LOD score calculated using the correct genetic parameter value, appeared to be robust to the generating models.

  9. Laser reflection method for determination of shear stress in low density transitional flows

    Science.gov (United States)

    Sathian, Sarith P.; Kurian, Job

    2006-03-01

    The details of laser reflection method (LRM) for the determination of shear stress in low density transitional flows are presented. The method is employed to determine the shear stress due to impingement of a low density supersonic free jet issuing out from a convergent divergent nozzle on a flat plate. The plate is smeared with a thin oil film and kept parallel to the nozzle axis. For a thin oil film moving under the action of aerodynamic boundary layer, the shear stress at the air-oil interface is equal to the shear stress between the surface and air. A direct and dynamic measurement of the oil film slope generated by the shear force is done using a position sensing detector (PSD). The thinning rate of the oil film is directly measured which is the major advantage of the LRM. From the oil film slope history, calculation of the shear stress is done using a three-point formula. The range of Knudsen numbers investigated is from 0.028 to 0.516. Pressure ratio across the nozzle varied from 3,500 to 8,500 giving highly under expanded free jets. The measured values of shear, in the overlapping region of experimental parameters, show fair agreement with those obtained by force balance method and laser interferometric method.

  10. Ideal MHD stability properties of pressure-driven modes in low shear tokamaks

    International Nuclear Information System (INIS)

    Manickam, J.; Pomphrey, N.; Todd, A.M.M.

    1987-03-01

    The role of shear in determining the ideal MHD stability properties of tokamaks is discussed. In particular, we assess the effects of low shear within the plasma upon pressure-driven modes. The standard ballooning theory is shown to break down, as the shear is reduced and the growth rate is shown to be an oscillatory function of n, the toroidal mode number, treated as a continuous parameter. The oscillations are shown to depend on both the pressure and safety-factor profiles. When the shear is sufficiently weak, the oscillations can result in bands of unstable n values which are present even when the standard ballooning theory predicts complete stability. These instabilities are named ''infernal modes.'' The occurrence of these instabilities at integer n is shown to be a sensitive function of q-axis, raising the possibility of a sharp onset as plasma parameters evolve. 20 refs., 31 figs

  11. Simulations of Granular Particles Under Cyclic Shear

    Science.gov (United States)

    Royer, John; Chaikin, Paul

    2012-02-01

    We perform molecular dynamics (MD) simulations of spherical grains subjected to cyclic, quasi-static shear in a 3D parallelepiped shear cell. This virtual shear cell is constructed out of rough, bumpy walls in order to minimize wall-induced ordering and has an open top surface to allow the packing to readily dilate or compact. Using a standard routine for MD simulations of frictional grains, we simulate over 1000 shear cycles, measuring grain displacements, the local packing density and changes in the contact network. Varying the shear amplitude and the friction coefficient between grains, we map out a phase diagram for the different types of behavior exhibited by these sheared grains. With low friction and high enough shear, the grains can spontaneously order into densely packed crystals. With low shear and increasing friction the packing remains disordered, yet the grains arrange themselves into configurations which exhibit limit cycles where all grains return to the same position after each full shear cycle. At higher shear and friction there is a transition to a diffusive state, where grains continue rearrange and move throughout the shear cell.

  12. Adiabatic shear behaviors in rolled and annealed pure titanium subjected to dynamic impact loading

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, Lianjun; Chen, Zhiyong, E-mail: czysh@netease.com; Jiang, Yanghui; Wang, Zhiming; Wang, Renke; Liu, Chuming

    2017-02-08

    The hat-shaped samples cut from rolled and annealed titanium plates were prepared to explore the adiabatic shear behaviors subjected to high-strain-rate deformation operated via Split Hopkinson Pressure Bar. The dynamic shear response calculation reveals that dynamic deformation processes of both state samples can be divided in similar three stages but rolled sample shows a higher susceptibility of adiabatic shear localization compared with the annealed one. Optical microscopy and electronic backscatter diffraction technique (EBSD) were used to systematically analyze the microstructure and texture characteristics. The results show that adiabatic shear bands form in both state samples and rotational dynamic recrystallization (RDRX) occurs within shear area and results in the formation of ultrafine equiaxed grains. Furthermore, ultrafine equiaxed grains within adiabatic shear bands have the same texture feature that <11–20> direction and {10-10} plane parallel to macro local shear direction and shear plane respectively. In the deformation region around the shear band, {10–12} <–1011> tensile and {11–22} <11-2-3> compressive two types twins are observed in both state samples and {10–12} <–1011> tensile twins are more frequently observed in rolled sample. In the rolled sample, {10–12} <–1011> tensile twins are more likely to happen in the hat-brim side than the hat-body side due to the difference of stress state in two sides.

  13. Prediction of soil shear strength in agricultural and natural environments of the Brazilian Cerrado

    Directory of Open Access Journals (Sweden)

    Reginaldo Barboza da Silva

    2015-01-01

    Full Text Available The objective of this work was to develop uni- and multivariate models to predict maximum soil shear strength (τmax under different normal stresses (σn, water contents (U, and soil managements. The study was carried out in a Rhodic Haplustox under Cerrado (control area and under no-tillage and conventional tillage systems. Undisturbed soil samples were taken in the 0.00-0.05 m layer and subjected to increasing U and σn, in shear strength tests. The uni- and multivariate models - respectively τmax=10(a+bU and τmax=10(a+bU+cσn - were significant in all three soil management systems evaluated and they satisfactorily explain the relationship between U, σn, and τmax. The soil under Cerrado has the highest shear strength (τ estimated with the univariate model, regardless of the soil water content, whereas the soil under conventional tillage shows the highest values with the multivariate model, which were associated to the lowest water contents at the soil consistency limits in this management system.

  14. Power turbine dynamics - An evaluation of a shear-mounted elastomeric damper

    Science.gov (United States)

    Zorzi, E. S.; Walton, J.; Cunningham, R.

    1983-01-01

    As an alternative to the more conventional squeeze-film bearing damper designs, a Viton-70 shear-mounted, elastomeric damper was built and tested in a T-55 power turbine high-speed balancing rig. This application demonstrated, for the first time, the feasibility of using elastomers as the primary rotor damping source in production turbine engine hardware. The shear-mounted damper design was selected because of its compatibility with actual gas turbine engine radial space constraints, its accommodation of both the radial and axial thrust loads present in gas turbine engines, and its capability of controlled axial preload. Test results showed that the Viton-70 elastomeric damper operated successfully and provided excellent control of both synchronous and nonsynchronous vibrations through all phases of testing to the maximum rotor speed of 1676 rad/s (16,000 rpm). Excellent correlation between the predicted and experienced critical speeds, mode shapes, and log decrements for the power turbine rotor and elastomer damper assembly was also achieved.

  15. An experimental study for the interface shear stress of near vertical air-water separated flow on evaporation

    International Nuclear Information System (INIS)

    Kwon, H.; Park, G. C.

    2000-01-01

    The object of experiment is improved model of evaporative heat transfer coefficient using interfacial friction factor on evaporation. Experiments have been conducted with near-vertical(87 .deg.) flat plate on evaporation for air-water countercurrent stratified flow. Experiment facility is consisted of 1.7m length and 0.2 X 0.005m cross section, the one side direct heating system which have 10kw power capacity. The interfacial shear stress, pressure drop and temperatures in test section were measured. These parameters were measured by DP-103 pressure transducer, K-type thermocouple, RTD and Hot Wire Anemometer(HWA). Experimental results were inclination as increased interfacial shear stress with increased the evaporation rate. Interfacial shear stress was increased as increased water flow rate and air flow rate too. For the evaluation of the measured evaporative heat transfer coefficients and physical understanding of the evaporation phenomena, the evaporative heat transfer coefficients were obtained through the simple calculation process by the use of mass transfer coefficient correlation and the experimental data of wavy film surface effect on shear and on evaporation

  16. Normal force of magnetorheological fluids with foam metal under oscillatory shear modes

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Xingyan, E-mail: yaoxingyan-jsj@163.com [Research Center of System Health Maintenance, Chongqing Technology and Business University, Chongqing 400067 (China); Chongqing Engineering Laboratory for Detection Control and Integrated System, Chongqing 400067 (China); Liu, Chuanwen; Liang, Huang; Qin, Huafeng [Chongqing Engineering Laboratory for Detection Control and Integrated System, Chongqing 400067 (China); Yu, Qibing; Li, Chuan [Research Center of System Health Maintenance, Chongqing Technology and Business University, Chongqing 400067 (China); Chongqing Engineering Laboratory for Detection Control and Integrated System, Chongqing 400067 (China)

    2016-04-01

    The normal force of magnetorheological (MR) fluids in porous foam metal was investigated in this paper. The dynamic repulsive normal force was studied using an advanced commercial rheometer under oscillatory shear modes. In the presence of magnetic fields, the influences of time, strain amplitude, frequency and shear rate on the normal force of MR fluids drawn from the porous foam metal were systematically analysed. The experimental results indicated that the magnetic field had the greatest effect on the normal force, and the effect increased incrementally with the magnetic field. Increasing the magnetic field produced a step-wise increase in the shear gap. However, other factors in the presence of a constant magnetic field only had weak effects on the normal force. This behaviour can be regarded as a magnetic field-enhanced normal force, as increases in the magnetic field resulted in more MR fluids being released from the porous foam metal, and the chain-like magnetic particles in the MR fluids becoming more elongated with aggregates spanning the gap between the shear plates. - Highlights: • Normal force of MR fluids with metal foam under oscillatory shear modes was studied. • The shear gap was step-wise increased with magnetic fields. • The magnetic field has a greater impact on the normal force.

  17. Normal force of magnetorheological fluids with foam metal under oscillatory shear modes

    International Nuclear Information System (INIS)

    Yao, Xingyan; Liu, Chuanwen; Liang, Huang; Qin, Huafeng; Yu, Qibing; Li, Chuan

    2016-01-01

    The normal force of magnetorheological (MR) fluids in porous foam metal was investigated in this paper. The dynamic repulsive normal force was studied using an advanced commercial rheometer under oscillatory shear modes. In the presence of magnetic fields, the influences of time, strain amplitude, frequency and shear rate on the normal force of MR fluids drawn from the porous foam metal were systematically analysed. The experimental results indicated that the magnetic field had the greatest effect on the normal force, and the effect increased incrementally with the magnetic field. Increasing the magnetic field produced a step-wise increase in the shear gap. However, other factors in the presence of a constant magnetic field only had weak effects on the normal force. This behaviour can be regarded as a magnetic field-enhanced normal force, as increases in the magnetic field resulted in more MR fluids being released from the porous foam metal, and the chain-like magnetic particles in the MR fluids becoming more elongated with aggregates spanning the gap between the shear plates. - Highlights: • Normal force of MR fluids with metal foam under oscillatory shear modes was studied. • The shear gap was step-wise increased with magnetic fields. • The magnetic field has a greater impact on the normal force.

  18. CAT LIDAR wind shear studies

    Science.gov (United States)

    Goff, R. W.

    1978-01-01

    The studies considered the major meteorological factors producing wind shear, methods to define and classify wind shear in terms significant from an aircraft perturbation standpoint, the significance of sensor location and scan geometry on the detection and measurement of wind shear, and the tradeoffs involved in sensor performance such as range/velocity resolution, update frequency and data averaging interval.

  19. LES-ODT Simulations of Turbulent Reacting Shear Layers

    Science.gov (United States)

    Hoffie, Andreas; Echekki, Tarek

    2012-11-01

    Large-eddy simulations (LES) combined with the one-dimensional turbulence (ODT) simulations of a spatially developing turbulent reacting shear layer with heat release and high Reynolds numbers were conducted and compared to results from direct numerical simulations (DNS) of the same configuration. The LES-ODT approach is based on LES solutions for momentum on a coarse grid and solutions for momentum and reactive scalars on a fine ODT grid, which is embedded in the LES computational domain. The shear layer is simulated with a single-step, second-order reaction with an Arrhenius reaction rate. The transport equations are solved using a low Mach number approximation. The LES-ODT simulations yield reasonably accurate predictions of turbulence and passive/reactive scalars' statistics compared to DNS results.

  20. Effects of adipose tissue distribution on maximum lipid oxidation rate during exercise in normal-weight women.

    Science.gov (United States)

    Isacco, L; Thivel, D; Duclos, M; Aucouturier, J; Boisseau, N

    2014-06-01

    Fat mass localization affects lipid metabolism differently at rest and during exercise in overweight and normal-weight subjects. The aim of this study was to investigate the impact of a low vs high ratio of abdominal to lower-body fat mass (index of adipose tissue distribution) on the exercise intensity (Lipox(max)) that elicits the maximum lipid oxidation rate in normal-weight women. Twenty-one normal-weight women (22.0 ± 0.6 years, 22.3 ± 0.1 kg.m(-2)) were separated into two groups of either a low or high abdominal to lower-body fat mass ratio [L-A/LB (n = 11) or H-A/LB (n = 10), respectively]. Lipox(max) and maximum lipid oxidation rate (MLOR) were determined during a submaximum incremental exercise test. Abdominal and lower-body fat mass were determined from DXA scans. The two groups did not differ in aerobic fitness, total fat mass, or total and localized fat-free mass. Lipox(max) and MLOR were significantly lower in H-A/LB vs L-A/LB women (43 ± 3% VO(2max) vs 54 ± 4% VO(2max), and 4.8 ± 0.6 mg min(-1)kg FFM(-1)vs 8.4 ± 0.9 mg min(-1)kg FFM(-1), respectively; P normal-weight women, a predominantly abdominal fat mass distribution compared with a predominantly peripheral fat mass distribution is associated with a lower capacity to maximize lipid oxidation during exercise, as evidenced by their lower Lipox(max) and MLOR. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. Shear flow effect on ion temperature gradient vortices in plasmas with sheared magnetic field

    DEFF Research Database (Denmark)

    Chakrabarti, N.; Juul Rasmussen, J.

    1999-01-01

    The effect of velocity shear on ion temperature gradient (ITG) driven vortices in a nonuniform plasma in a curved, sheared magnetic field is investigated. In absence of parallel ion dynamics, vortex solutions for the ITG mode are studied analytically. It is shown that under certain conditions...... and ultimately lead to a dominating monopolar form. The effects of magnetic shear indicate it may destroy these structures. (C) 1999 American Institute of Physics....

  2. Friction of Shear-Fracture Zones

    Science.gov (United States)

    Riikilä, T. I.; Pylväinen, J. I.; Åström, J.

    2017-12-01

    A shear fracture of brittle solids under compression undergoes a substantial evolution from the initial microcracking to a fully formed powder-filled shear zone. Experiments covering the entire process are relatively easy to conduct, but they are very difficult to investigate in detail. Numerically, the large strain limit has remained a challenge. An efficient simulation model and a custom-made experimental device are employed to test to what extent a shear fracture alone is sufficient to drive material to spontaneous self-lubrication. A "weak shear zone" is an important concept in geology, and a large number of explanations, specific for tectonic conditions, have been proposed. We demonstrate here that weak shear zones are far more general, and that their emergence only demands that a microscopic, i.e., fragment-scale, stress relaxation mechanism develops during the fracture process.

  3. The non-monotonic shear-thinning flow of two strongly cohesive concentrated suspensions

    OpenAIRE

    Buscall, Richard; Kusuma, Tiara E.; Stickland, Anthony D.; Rubasingha, Sayuri; Scales, Peter J.; Teo, Hui-En; Worrall, Graham L.

    2014-01-01

    The behaviour in simple shear of two concentrated and strongly cohesive mineral suspensions showing highly non-monotonic flow curves is described. Two rheometric test modes were employed, controlled stress and controlled shear-rate. In controlled stress mode the materials showed runaway flow above a yield stress, which, for one of the suspensions, varied substantially in value and seemingly at random from one run to the next, such that the up flow-curve appeared to be quite irreproducible. Th...

  4. Shear Viscosity of Hot QED at Finite Chemical Potential from Kubo Formula

    International Nuclear Information System (INIS)

    Liu Hui; Hou Defu; Li Jiarong

    2008-01-01

    Within the framework of finite temperature feld theory this paper discusses the shear viscosity of hot QED plasma through Kubo formula at one-loop skeleton diagram level with a finite chemical potential. The effective widths (damping rates) are introduced to regulate the pinch singularities and then gives a reliable estimation of the shear viscous coefficient. The finite chemical potential contributes positively compared to the pure temperature case. The result agrees with that from the kinetics theory qualitatively

  5. Imaging the Microscopic Structure of Shear Thinning and Thickening Colloidal Suspensions

    KAUST Repository

    Cheng, X.

    2011-09-01

    The viscosity of colloidal suspensions varies with shear rate, an important effect encountered in many natural and industrial processes. Although this non-Newtonian behavior is believed to arise from the arrangement of suspended particles and their mutual interactions, microscopic particle dynamics are difficult to measure. By combining fast confocal microscopy with simultaneous force measurements, we systematically investigate a suspension\\'s structure as it transitions through regimes of different flow signatures. Our measurements of the microscopic single-particle dynamics show that shear thinning results from the decreased relative contribution of entropic forces and that shear thickening arises from particle clustering induced by hydrodynamic lubrication forces. This combination of techniques illustrates an approach that complements current methods for determining the microscopic origins of non-Newtonian flow behavior in complex fluids.

  6. Is the poleward migration of tropical cyclone maximum intensity associated with a poleward migration of tropical cyclone genesis?

    Science.gov (United States)

    Daloz, Anne Sophie; Camargo, Suzana J.

    2018-01-01

    A recent study showed that the global average latitude where tropical cyclones achieve their lifetime-maximum intensity has been migrating poleward at a rate of about one-half degree of latitude per decade over the last 30 years in each hemisphere. However, it does not answer a critical question: is the poleward migration of tropical cyclone lifetime-maximum intensity associated with a poleward migration of tropical cyclone genesis? In this study we will examine this question. First we analyze changes in the environmental variables associated with tropical cyclone genesis, namely entropy deficit, potential intensity, vertical wind shear, vorticity, skin temperature and specific humidity at 500 hPa in reanalysis datasets between 1980 and 2013. Then, a selection of these variables is combined into two tropical cyclone genesis indices that empirically relate tropical cyclone genesis to large-scale variables. We find a shift toward greater (smaller) average potential number of genesis at higher (lower) latitudes over most regions of the Pacific Ocean, which is consistent with a migration of tropical cyclone genesis towards higher latitudes. We then examine the global best track archive and find coherent and significant poleward shifts in mean genesis position over the Pacific Ocean basins.

  7. Shear-induced partial translational ordering of a colloidal solid

    Science.gov (United States)

    Ackerson, B. J.; Clark, N. A.

    1984-08-01

    Highly charged submicrometer plastic spheres suspended in water at low ionic strength will order spontaneously into bcc crystals or polycrystals. A simple linear shear orients and disorders these crystals by forcing (110) planes to stack normal to the shear gradient and to slide relative to each other with a direction parallel to the solvent flow. In this paper we analyze in detail the disordering and flow processes occurring beyond the intrinsic elastic limit of the bcc crystal. We are led to a model in which the flow of a colloidal crystal is interpreted as a fundamentally different process from that found in atomic crystals. In the colloidal crystal the coupling of particle motion to the background fluid forces a homogeneous flow, where every layer is in motion relative to its neighboring layers. In contrast, the plastic flow in an atomic solid is defect mediated flow. At the lowest applied stress, the local bcc order in the colloidal crystal exhibits shear strains both parallel and perpendicular to the direction of the applied stress. The magnitude of these deformations is estimated using the configurational energy for bcc and distorted bcc crystals, assuming a screened Coulomb pair interaction between colloidal particles. As the applied stress is increased, the intrinsic elastic limit of the crystal is exceeded and the crystal begins to flow with adjacent layers executing an oscillatory path governed by the balance of viscous and screened Coulomb forces. The path takes the structure from the bcc1 and bcc2 twins observed at zero shear to a distorted two-dimensional hcp structure at moderate shear rates, with a loss of interlayer registration as the shear is increased. This theoretical model is consistent with other experimental observations, as well.

  8. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Larsen, Gunner Chr.

    2005-01-01

    In order to continue cost-optimisation of modern large wind turbines, it is important to continuously increase the knowledge of wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... by a model that, on a statistically consistent basis, describes the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of full-scale measurements recorded with a high sampling rate...

  9. Combined modeling of cell aggregation and adhesion mediated by receptor–ligand interactions under shear flow

    Directory of Open Access Journals (Sweden)

    Yu Du

    2015-11-01

    Full Text Available Blood cell aggregation and adhesion to endothelial cells under shear flow are crucial to many biological processes such as thrombi formation, inflammatory cascade, and tumor metastasis, in which these cellular interactions are mainly mediated by the underlying receptor–ligand bindings. While theoretical modeling of aggregation dynamics and adhesion kinetics of interacting cells have been well studied separately, how to couple these two processes remains unclear. Here we develop a combined model that couples cellular aggregation dynamics and adhesion kinetics under shear flow. The impacts of shear rate (or shear stress and molecular binding affinity were elucidated. This study provides a unified model where the action of a fluid flow drives cell aggregation and adhesion under the modulations of the mechanical shear flow and receptor–ligand interaction kinetics. It offers an insight into understanding the relevant biological processes and functions.

  10. Magnetorheological dampers in shear mode

    International Nuclear Information System (INIS)

    Wereley, N M; Cho, J U; Choi, Y T; Choi, S B

    2008-01-01

    In this study, three types of shear mode damper using magnetorheological (MR) fluids are theoretically analyzed: linear, rotary drum, and rotary disk dampers. The damping performance of these shear mode MR dampers is characterized in terms of the damping coefficient, which is the ratio of the equivalent viscous damping at field-on status to the damping at field-off status. For these three types of shear mode MR damper, the damping coefficient or dynamic range is derived using three different constitutive models: the Bingham–plastic, biviscous, and Herschel–Bulkley models. The impact of constitutive behavior on shear mode MR dampers is theoretically presented and compared

  11. Size and structure of Chlorella zofingiensis /FeCl 3 flocs in a shear flow: Algae Floc Structure

    Energy Technology Data Exchange (ETDEWEB)

    Wyatt, Nicholas B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); O' Hern, Timothy J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shelden, Bion [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hughes, Lindsey G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mondy, Lisa A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-07-26

    Flocculation is a promising method to overcome the economic hurdle to separation of algae from its growth medium in large scale operations. But, understanding of the floc structure and the effects of shear on the floc structure are crucial to the large scale implementation of this technique. The floc structure is important because it determines, in large part, the density and settling behavior of the algae. Freshwater algae floc size distributions and fractal dimensions are presented as a function of applied shear rate in a Couette cell using ferric chloride as a flocculant. Comparisons are made with measurements made for a polystyrene microparticle model system taken here as well as reported literature results. The algae floc size distributions are found to be self-preserving with respect to shear rate, consistent with literature data for polystyrene. Moreover, three fractal dimensions are calculated which quantitatively characterize the complexity of the floc structure. Low shear rates result in large, relatively dense packed flocs which elongate and fracture as the shear rate is increased. Our results presented here provide crucial information for economically implementing flocculation as a large scale algae harvesting strategy.

  12. Shear flow generation by Reynolds stress and suppression of resistive g modes

    International Nuclear Information System (INIS)

    Sugama, H.; Horton, W.

    1993-01-01

    The authors have investigated suppression of the resistive g mode turbulence by background shear flow produced by the external source and by the fluctuation-induced Reynolds stress. For that purpose, the authors used the model consisting of the equations describing the electrostatic potential φ≡(φ 0 +φ) and the pressure fluctuation p of the resistive g mode, and the equation for the background poloidal flow. They have done the single-helicity nonlinear simulations using the model equations in the sheared slab configuration. They find that, in the nonlinear turbulent regime, significant suppression of the turbulent transport is realized only when the shear flow v' E exceeds that which makes the fastest-growing linear modes marginally stable. With the shear flow which decreases the fastest linear growth rates by about a half, the turbulent transport in the saturated state is about the same as in the case of no shear flow. As seen from the equation for the background flow v E , the relative efficiency of the external flow and the Reynolds stress for producing shear flow depends on the parameter ν. For large ν, the external flow is a dominant contribution to the total background poloidal shear flow although its strength predicted by the neoclassical theory is not enough to suppress the turbulence significantly. On the other hand, for small ν, they observe that, as the fluctuations grow, the Reynolds stress becomes large and suddenly at some critical point in time shear flow much larger than the external one is generated and leads to the significant reduction of the turbulent transport just like that of the L-H transition in tokamak experiments. It is remarkable that the Reynolds stress due to the resistive g mode fluctuations works not as a conventional viscosity term weakening the shear flow but as a negative viscosity term enhancing it

  13. IMAGE ANALYSIS FOR MODELLING SHEAR BEHAVIOUR

    Directory of Open Access Journals (Sweden)

    Philippe Lopez

    2011-05-01

    Full Text Available Through laboratory research performed over the past ten years, many of the critical links between fracture characteristics and hydromechanical and mechanical behaviour have been made for individual fractures. One of the remaining challenges at the laboratory scale is to directly link fracture morphology of shear behaviour with changes in stress and shear direction. A series of laboratory experiments were performed on cement mortar replicas of a granite sample with a natural fracture perpendicular to the axis of the core. Results show that there is a strong relationship between the fracture's geometry and its mechanical behaviour under shear stress and the resulting damage. Image analysis, geostatistical, stereological and directional data techniques are applied in combination to experimental data. The results highlight the role of geometric characteristics of the fracture surfaces (surface roughness, size, shape, locations and orientations of asperities to be damaged in shear behaviour. A notable improvement in shear understanding is that shear behaviour is controlled by the apparent dip in the shear direction of elementary facets forming the fracture.

  14. Resetting of Quartz OSL (optically stimulated luminescence) Signals by Frictional Heating in Experimentally Sheared Gouges at Seismic Slip Rates.

    Science.gov (United States)

    Kim, J. H.; Choi, J. H.; Chauhan, N.; Lee, S.; Hirose, T.; Ree, J. H.

    2014-12-01

    Recent studies on natural and experimental seismic faults have revealed that frictional heating plays an important role in earthquake dynamics as well as in producing mineralogical and microstructural signatures of seismic faulting. Here, we report changes in OSL signals in quartz by frictional heating in experimental fault gouges. The gouges (80% of quartz and 20% of bentonite by weight) with a thickness of 1 mm were sheared between sandstone cylinders (diameter: 25 mm) at a normal stress of 1 MPa and slip rate of 1.31 m/s. The quartz grains from a sand dune on the western coast of South Korea were sieved to select size fractions between 90 and 250 μm. The equivalent dose (De) of the undeformed quartz grains was 8.0 ± 0.3 Gy. Upon displacement, the friction abruptly increases to the 1st peak (with friction coefficient μ ≈ 0.75) followed by slip weakening. Then the fault zones show two more peak frictions (μ ≈ 0.53~0.75) and finally reach a steady-state friction (μ ≈ 0.2~0.35). The fault can be divided into three zones based grain size (thus slip rate); slip localization (SLZ), intermediate slip-rate (ISZ) and low slip-rate (LSZ) zones. SLZ develops adjacent to the moving side of the sandstone cylinder with P-foliation and shear band. The size of quartz (Dq) in ISZ and LSZ is 5-30 μm and 50-250 μm, respectively. SEM and TEM analyses indicate that the fault gouge of SLZ consists of subangular quartz clasts (Dq ≈ 3 μm) and matrix of nano-scale quartz, unidentified silicate minerals and amorphous material. The fault zones were sectioned into six layers (~160 µm thick for each layer) parallel to the fault zone boundary for OSL analyses. Quartz grains from all the layers except the one immediately adjacent to the stationary side of the sandstone cylinder show De of 'effectively' 0 Gy indicating a full resetting of OSL signals. The partial resetting of OSL signal in the layer adjacent to the stationary side of the cylinder indicates the temperature (T

  15. Shear flow effects on ion thermal transport in tokamaks

    International Nuclear Information System (INIS)

    Tajima, T.; Horton, W.; Dong, J.Q.; Kishimoto, Y.

    1995-03-01

    From various laboratory and numerical experiments, there is clear evidence that under certain conditions the presence of sheared flows in a tokamak plasma can significantly reduce the ion thermal transport. In the presence of plasma fluctuations driven by the ion temperature gradient, the flows of energy and momentum parallel and perpendicular to the magnetic field are coupled with each other. This coupling manifests itself as significant off-diagonal coupling coefficients that give rise to new terms for anomalous transport. The authors derive from the gyrokinetic equation a set of velocity moment equations that describe the interaction among plasma turbulent fluctuations, the temperature gradient, the toroidal velocity shear, and the poloidal flow in a tokamak plasma. Four coupled equations for the amplitudes of the state variables radially extended over the transport region by toroidicity induced coupling are derived. The equations show bifurcations from the low confinement mode without sheared flows to high confinement mode with substantially reduced transport due to strong shear flows. Also discussed is the reduced version with three state variables. In the presence of sheared flows, the radially extended coupled toroidal modes driven by the ion temperature gradient disintegrate into smaller, less elongated vortices. Such a transition to smaller spatial correlation lengths changes the transport from Bohm-like to gyrobohm-like. The properties of these equations are analyzed. The conditions for the improved confined regime are obtained as a function of the momentum-energy deposition rates and profiles. The appearance of a transport barrier is a consequence of the present theory

  16. Theory of dissipative drift instabilities in sheared magnetic fields

    International Nuclear Information System (INIS)

    Chen, L.; Guzdar, P.N.; Hsu, J.Y.; Kaw, P.K.; Oberman, C.; White, R.

    1978-07-01

    It is found that in the slab approximation, where usual shear damping is operative, resistivity contributes to an enhancement of this damping and the enhancement factor increases with the electron-ion collision frequency ν/sub ei/. Thus no unstable eigenmodes result. If the shear damping is nullified, either by introducing a strong spatial variation of the density gradient, or by working in toroidal geometry with strong toroidal coupling effects, then unstable eigenmodes with growth rates increasing with ν/sub ei/ are recovered. A perturbation calculation shows that retention of electron temperature fluctuations associated with the mode and inclusion of temperature gradients does not alter these conclusions. Extensive numerical calculations and relation to published experimental results are also presented

  17. Dynamic mortar finite element method for modeling of shear rupture on frictional rough surfaces

    Science.gov (United States)

    Tal, Yuval; Hager, Bradford H.

    2017-09-01

    This paper presents a mortar-based finite element formulation for modeling the dynamics of shear rupture on rough interfaces governed by slip-weakening and rate and state (RS) friction laws, focusing on the dynamics of earthquakes. The method utilizes the dual Lagrange multipliers and the primal-dual active set strategy concepts, together with a consistent discretization and linearization of the contact forces and constraints, and the friction laws to obtain a semi-smooth Newton method. The discretization of the RS friction law involves a procedure to condense out the state variables, thus eliminating the addition of another set of unknowns into the system. Several numerical examples of shear rupture on frictional rough interfaces demonstrate the efficiency of the method and examine the effects of the different time discretization schemes on the convergence, energy conservation, and the time evolution of shear traction and slip rate.

  18. Control of a three-dimensional turbulent shear layer by means of oblique vortices

    Science.gov (United States)

    Jürgens, Werner; Kaltenbach, Hans-Jakob

    2018-04-01

    The effect of local forcing on the separated, three-dimensional shear layer downstream of a backward-facing step is investigated by means of large-eddy simulation for a Reynolds number based on the step height of 10,700. The step edge is either oriented normal to the approaching turbulent boundary layer or swept at an angle of 40°. Oblique vortices with different orientation and spacing are generated by wavelike suction and blowing of fluid through an edge parallel slot. The vortices exhibit a complex three-dimensional structure, but they can be characterized by a wavevector in a horizontal section plane. In order to determine the step-normal component of the wavevector, a method is developed based on phase averages. The dependence of the wavevector on the forcing parameters can be described in terms of a dispersion relation, the structure of which indicates that the disturbances are mainly convected through the fluid. The introduced vortices reduce the size of the recirculation region by up to 38%. In both the planar and the swept case, the most efficient of the studied forcings consists of vortices which propagate in a direction that deviates by more than 50° from the step normal. These vortices exhibit a spacing in the order of 2.5 step heights. The upstream shift of the reattachment line can be explained by increased mixing and momentum transport inside the shear layer which is reflected in high levels of the Reynolds shear stress -ρ \\overline{u'v'}. The position of the maximum of the coherent shear stress is found to depend linearly on the wavelength, similar to two-dimensional free shear layers.

  19. Effect of Shear History on Rheology of Time-Dependent Colloidal Silica Gels

    Directory of Open Access Journals (Sweden)

    Paulo H. S. Santos

    2017-11-01

    Full Text Available This paper presents a rheological study describing the effects of shear on the flow curves of colloidal gels prepared with different concentrations of fumed silica (4%, 5%, 6%, and 7% and a hydrophobic solvent (Hydrocarbon fuel, JP-8. Viscosity measurements as a function of time were carried out at different shear rates (10, 50, 100, 500, and 1000 s−1, and based on this data, a new structural kinetics model was used to describe the system. Previous work has based the analysis of time dependent fluids on the viscosity of the intact material, i.e., before it is sheared, which is a condition very difficult to achieve when weak gels are tested. The simple action of loading the gel in the rheometer affects its structure and rheology, and the reproducibility of the measurements is thus seriously compromised. Changes in viscosity and viscoelastic properties of the sheared material are indicative of microstructural changes in the gel that need to be accounted for. Therefore, a more realistic method is presented in this work. In addition, microscopical images (Cryo-SEM were obtained to show how the structure of the gel is affected upon application of shear.

  20. Design and implementation of a shearing apparatus for the experimental study of shear displacement in rocks

    Science.gov (United States)

    Moore, Johnathan; Crandall, Dustin; Gill, Magdalena; Brown, Sarah; Tennant, Bryan

    2018-04-01

    Fluid flow in the subsurface is not well understood in the context of "impermeable" geologic media. This is especially true of formations that have undergone significant stress fluctuations due to injection or withdrawal of fluids that alters the localized pressure regime. When the pressure regime is altered, these formations, which are often already fractured, move via shear to reduce the imbalance in the stress state. While this process is known to happen, the evolution of these fractures and their effects on fluid transport are still relatively unknown. Numerous simulation and several experimental studies have been performed that characterize the relationship between shearing and permeability in fractures; while many of these studies utilize measurements of fluid flow or the starting and ending geometries of the fracture to characterize shear, they do not characterize the intermediate stages during shear. We present an experimental apparatus based on slight modifications to a commonly available Hassler core holder that allows for shearing of rocks, while measuring the hydraulic and mechanical changes to geomaterials during intermediate steps. The core holder modification employs the use of semi-circular end caps and structural supports for the confining membrane that allow for free movement of the sheared material while preventing membrane collapse. By integrating this modified core holder with a computed tomography scanner, we show a new methodology for understanding the interdependent behavior between fracture structure and flow properties during intermediate steps in shearing. We include a case study of this device function which is shown here through shearing of a fractured shale core and simultaneous observation of the mechanical changes and evolution of the hydraulic properties during shearing.