Sample records for maximum pumping rate

  1. The maximum rate of mammal evolution

    Evans, Alistair R.; Jones, David; Boyer, Alison G.; Brown, James H.; Costa, Daniel P.; Ernest, S. K. Morgan; Fitzgerald, Erich M. G.; Fortelius, Mikael; Gittleman, John L.; Hamilton, Marcus J.; Harding, Larisa E.; Lintulaakso, Kari; Lyons, S. Kathleen; Okie, Jordan G.; Saarinen, Juha J.; Sibly, Richard M.; Smith, Felisa A.; Stephens, Patrick R.; Theodor, Jessica M.; Uhen, Mark D.


    How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years, during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000-fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous-Paleogene (K-Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes.

  2. The maximum rate of mammal evolution

    Evans, Alistair R.; Jones, David; Boyer, Alison G.; Brown, James H.; Costa, Daniel P.; Ernest, S. K. Morgan; Fitzgerald, Erich M. G.; Fortelius, Mikael; Gittleman, John L.; Hamilton, Marcus J.; Harding, Larisa E.; Lintulaakso, Kari; Lyons, S. Kathleen; Okie, Jordan G.; Saarinen, Juha J.; Sibly, Richard M.; Smith, Felisa A.; Stephens, Patrick R.; Theodor, Jessica M.; Uhen, Mark D.


    How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years, during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000-fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous–Paleogene (K–Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes. PMID:22308461

  3. The maximum rate of mammal evolution.

    Evans, Alistair R; Jones, David; Boyer, Alison G; Brown, James H; Costa, Daniel P; Ernest, S K Morgan; Fitzgerald, Erich M G; Fortelius, Mikael; Gittleman, John L; Hamilton, Marcus J; Harding, Larisa E; Lintulaakso, Kari; Lyons, S Kathleen; Okie, Jordan G; Saarinen, Juha J; Sibly, Richard M; Smith, Felisa A; Stephens, Patrick R; Theodor, Jessica M; Uhen, Mark D


    How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years, during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000-fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous-Paleogene (K-Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes.

  4. The effect of maximum open height on operating characteristics of polymer injected pump poppet valve

    Zhang, S. C.; Chen, X. D.; Deng, H. Y.


    Reciprocating polymer injected pump is the key injection equipment of tertiary oil recovery, the poppet valve in it exists the problem of large vibration noise, low efficiency and short life when transportation high viscosity medium. So the CFD technique is adopted to simulate and analyze the inner flow fields of fluid end poppet valve. According to the practical structure of the poppet valve, a simplified 2D axis-symmetry geometry model of the flow field is established. Combined with pump speed, plunger stroke and plunger diameter, given the boundary condition of the inlet valve, then the numerical simulation of flow field under six different maximum open heights is done depending on software Fluent. The relationship between open height to valve gap flow velocity, hydraulic loss and lag angle is obtained. The results indicate that, with the increase of open height, the valve gap flow velocity decreases, inlet outlet pressure differential decreases and hydraulic loss decreases. But the lag angle is continuously increasing with the increase of maximum open height, the valve has a good work performance when the open height is 1, 1.5, 2, 2.5, 3mm, but when it reaches 3.5mm, the valve performance becomes poor. The study can offer certain reference to understand operating characteristics of poppet valve, help to reduce the hydraulic losses and raise volume efficiency of the pump.

  5. Mean square convergence rates for maximum quasi-likelihood estimator

    Arnoud V. den Boer


    Full Text Available In this note we study the behavior of maximum quasilikelihood estimators (MQLEs for a class of statistical models, in which only knowledge about the first two moments of the response variable is assumed. This class includes, but is not restricted to, generalized linear models with general link function. Our main results are related to guarantees on existence, strong consistency and mean square convergence rates of MQLEs. The rates are obtained from first principles and are stronger than known a.s. rates. Our results find important application in sequential decision problems with parametric uncertainty arising in dynamic pricing.

  6. The tropical lapse rate steepened during the Last Glacial Maximum.

    Loomis, Shannon E; Russell, James M; Verschuren, Dirk; Morrill, Carrie; De Cort, Gijs; Sinninghe Damsté, Jaap S; Olago, Daniel; Eggermont, Hilde; Street-Perrott, F Alayne; Kelly, Meredith A


    The gradient of air temperature with elevation (the temperature lapse rate) in the tropics is predicted to become less steep during the coming century as surface temperature rises, enhancing the threat of warming in high-mountain environments. However, the sensitivity of the lapse rate to climate change is uncertain because of poor constraints on high-elevation temperature during past climate states. We present a 25,000-year temperature reconstruction from Mount Kenya, East Africa, which demonstrates that cooling during the Last Glacial Maximum was amplified with elevation and hence that the lapse rate was significantly steeper than today. Comparison of our data with paleoclimate simulations indicates that state-of-the-art models underestimate this lapse-rate change. Consequently, future high-elevation tropical warming may be even greater than predicted.

  7. The tropical lapse rate steepened during the Last Glacial Maximum

    Loomis, Shannon E.; Russell, James M.; Verschuren, Dirk; Morrill, Carrie; De Cort, Gijs; Sinninghe Damsté, Jaap S.; Olago, Daniel; Eggermont, Hilde; Street-Perrott, F. Alayne; Kelly, Meredith A.


    The gradient of air temperature with elevation (the temperature lapse rate) in the tropics is predicted to become less steep during the coming century as surface temperature rises, enhancing the threat of warming in high-mountain environments. However, the sensitivity of the lapse rate to climate change is uncertain because of poor constraints on high-elevation temperature during past climate states. We present a 25,000-year temperature reconstruction from Mount Kenya, East Africa, which demonstrates that cooling during the Last Glacial Maximum was amplified with elevation and hence that the lapse rate was significantly steeper than today. Comparison of our data with paleoclimate simulations indicates that state-of-the-art models underestimate this lapse-rate change. Consequently, future high-elevation tropical warming may be even greater than predicted. PMID:28138544

  8. Maximum orbit plane change with heat-transfer-rate considerations

    Lee, J. Y.; Hull, D. G.


    Two aerodynamic maneuvers are considered for maximizing the plane change of a circular orbit: gliding flight with a maximum thrust segment to regain lost energy (aeroglide) and constant altitude cruise with the thrust being used to cancel the drag and maintain a high energy level (aerocruise). In both cases, the stagnation heating rate is limited. For aeroglide, the controls are the angle of attack, the bank angle, the time at which the burn begins, and the length of the burn. For aerocruise, the maneuver is divided into three segments: descent, cruise, and ascent. During descent the thrust is zero, and the controls are the angle of attack and the bank angle. During cruise, the only control is the assumed-constant angle of attack. During ascent, a maximum thrust segment is used to restore lost energy, and the controls are the angle of attack and bank angle. The optimization problems are solved with a nonlinear programming code known as GRG2. Numerical results for the Maneuverable Re-entry Research Vehicle with a heating-rate limit of 100 Btu/ft(2)-s show that aerocruise gives a maximum plane change of 2 deg, which is only 1 deg larger than that of aeroglide. On the other hand, even though aerocruise requires two thrust levels, the cruise characteristics of constant altitude, velocity, thrust, and angle of attack are easy to control.

  9. Maximum, minimum, and optimal mutation rates in dynamic environments

    Ancliff, Mark; Park, Jeong-Man


    We analyze the dynamics of the parallel mutation-selection quasispecies model with a changing environment. For an environment with the sharp-peak fitness function in which the most fit sequence changes by k spin flips every period T , we find analytical expressions for the minimum and maximum mutation rates for which a quasispecies can survive, valid in the limit of large sequence size. We find an asymptotic solution in which the quasispecies population changes periodically according to the periodic environmental change. In this state we compute the mutation rate that gives the optimal mean fitness over a period. We find that the optimal mutation rate per genome, k/T , is independent of genome size, a relationship which is observed across broad groups of real organisms.

  10. Readout of relaxation rates by nonadiabatic pumping spectroscopy

    Riwar, Roman-Pascal; Roche, Benoît; Jehl, Xavier; Splettstoesser, Janine


    We put forward nonadiabatic charge pumping as a method for accessing the different charge relaxation rates as well as the relaxation rates of excited orbital states in double-quantum-dot setups, based on extremely size-limited quantum dots and dopant systems. The rates are obtained in a well-separated manner from plateaus, occurring when comparing the steady-state current for reversed driving cycles. This yields a reliable readout independent of any fitting parameters. Importantly, the nonadiabatic pumping spectroscopy essentially exploits the same driving scheme that the operation of these devices generally employs. We provide a detailed analysis of the working principle of the readout scheme as well as of possible errors, thereby demonstrating its broad applicability. The precise knowledge of relaxation rates is highly relevant for the implementation of time-dependently operated devices, such as electron pumps for metrology or qubits in quantum information.

  11. High repetition rate femtosecond dye amplifier using a laser diode pumped neodymium:YAG laser

    Zysset, B.; LaGasse, M.J.; Fujimoto, J.G.; Kafka, J.D.


    A high repetition rate femtosecond dye amplifier is demonstrated using a laser diode pumped Q-switched Nd:YAG laser. Amplification of wavelength tunable 300 fs pulses from a synchronously mode-locked rhodamine dye laser is achieved with a saturated gain of 70 and a small gain of 200 at a repetition rate of 800 Hz. Maximum pulse energies of 40 nJ are obtained, and pulse compression to as short as 30 fs is demonstrated.

  12. High repetition rate femtosecond dye amplifier using a laser diode pumped neodymium:YAG laser

    Zysset, B.; LaGasse, M. J.; Fujimoto, J. G.; Kafka, J. D.


    A high repetition rate femtosecond dye amplifier is demonstrated using a laser diode pumped Q-switched Nd:YAG laser. Amplification of wavelength tunable 300 fs pulses from a synchronously mode-locked rhodamine dye laser is achieved with a saturated gain of 70 and a small gain of 200 at a repetition rate of 800 Hz. Maximum pulse energies of 40 nJ are obtained, and pulse compression to as short as 30 fs is demonstrated.

  13. Predicting the solar maximum with the rising rate

    Du, Z L


    The growth rate of solar activity in the early phase of a solar cycle has been known to be well correlated with the subsequent amplitude (solar maximum). It provides very useful information for a new solar cycle as its variation reflects the temporal evolution of the dynamic process of solar magnetic activities from the initial phase to the peak phase of the cycle. The correlation coefficient between the solar maximum (Rmax) and the rising rate ({\\beta}a) at {\\Delta}m months after the solar minimum (Rmin) is studied and shown to increase as the cycle progresses with an inflection point (r = 0.83) at about {\\Delta}m = 20 months. The prediction error of Rmax based on {\\beta}a is found within estimation at the 90% level of confidence and the relative prediction error will be less than 20% when {\\Delta}m \\geq 20. From the above relationship, the current cycle (24) is preliminarily predicted to peak around October 2013 with a size of Rmax =84 \\pm 33 at the 90% level of confidence.

  14. Measurement and relevance of maximum metabolic rate in fishes.

    Norin, T; Clark, T D


    Maximum (aerobic) metabolic rate (MMR) is defined here as the maximum rate of oxygen consumption (M˙O2max ) that a fish can achieve at a given temperature under any ecologically relevant circumstance. Different techniques exist for eliciting MMR of fishes, of which swim-flume respirometry (critical swimming speed tests and burst-swimming protocols) and exhaustive chases are the most common. Available data suggest that the most suitable method for eliciting MMR varies with species and ecotype, and depends on the propensity of the fish to sustain swimming for extended durations as well as its capacity to simultaneously exercise and digest food. MMR varies substantially (>10 fold) between species with different lifestyles (i.e. interspecific variation), and to a lesser extent (aerobic scope, interest in measuring this trait has spread across disciplines in attempts to predict effects of climate change on fish populations. Here, various techniques used to elicit and measure MMR in different fish species with contrasting lifestyles are outlined and the relevance of MMR to the ecology, fitness and climate change resilience of fishes is discussed.

  15. Optical Fiber Pumped High Repetition Rate and High Power Nd:YVO4 Picosecond Regenerative Amplifier

    Zhen-Ao Bai


    Full Text Available We report a stable optical fiber pumped Nd:YVO4 all solid state regenerative amplifier with all fiber picosecond laser as seed source. 888 nm Yb optical fiber lasers was chosen as pump source to reduce quantum defect for improved thermal performance. At the repetition rate of 99.6 kHz, maximum power of 19.63 W with 36 ps pulse duration were achieved when seeded by a 150 mW picosecond oscillator. The wavelength delivered was 1064.07 nm with spectral width of 0.14 nm.

  16. High-power, high repetition-rate, green-pumped, picosecond LBO optical parametric oscillator.

    Kienle, Florian; Teh, Peh Siong; Lin, Dejiao; Alam, Shaif-Ul; Price, Jonathan H V; Hanna, D C; Richardson, David J; Shepherd, David P


    We report on a picosecond, green-pumped, lithium triborate optical parametric oscillator with record-high output power. It was synchronously pumped by a frequency-doubled (530 nm), pulse-compressed (4.4 ps), high-repetition-rate (230 MHz), fiber-amplified gain-switched laser diode. For a pump power of 17 W, a maximum signal and idler power of 3.7 W and 1.8 W was obtained from the optical parametric oscillator. A signal pulse duration of ~3.2 ps was measured and wide tunability from 651 nm to 1040 nm for the signal and from 1081 nm to 2851 nm for the idler was achieved.

  17. Analog Fixed Maximum Power Point Control for a PWM Step-downConverter for Water Pumping Installations

    Beltran, H.; Perez, E.; Chen, Zhe


    This paper describes a Fixed Maximum Power Point analog control used in a step-down Pulse Width Modulated power converter. The DC/DC converter drives a DC motor used in small water pumping installations, without any electric storage device. The power supply is provided by PV panels working around...

  18. Quantification of Na+,K+ pumps and their transport rate in skeletal muscle: functional significance.

    Clausen, Torben


    During excitation, muscle cells gain Na(+) and lose K(+), leading to a rise in extracellular K(+) ([K(+)]o), depolarization, and loss of excitability. Recent studies support the idea that these events are important causes of muscle fatigue and that full use of the Na(+),K(+)-ATPase (also known as the Na(+),K(+) pump) is often essential for adequate clearance of extracellular K(+). As a result of their electrogenic action, Na(+),K(+) pumps also help reverse depolarization arising during excitation, hyperkalemia, and anoxia, or from cell damage resulting from exercise, rhabdomyolysis, or muscle diseases. The ability to evaluate Na(+),K(+)-pump function and the capacity of the Na(+),K(+) pumps to fill these needs require quantification of the total content of Na(+),K(+) pumps in skeletal muscle. Inhibition of Na(+),K(+)-pump activity, or a decrease in their content, reduces muscle contractility. Conversely, stimulation of the Na(+),K(+)-pump transport rate or increasing the content of Na(+),K(+) pumps enhances muscle excitability and contractility. Measurements of [(3)H]ouabain binding to skeletal muscle in vivo or in vitro have enabled the reproducible quantification of the total content of Na(+),K(+) pumps in molar units in various animal species, and in both healthy people and individuals with various diseases. In contrast, measurements of 3-O-methylfluorescein phosphatase activity associated with the Na(+),K(+)-ATPase may show inconsistent results. Measurements of Na(+) and K(+) fluxes in intact isolated muscles show that, after Na(+) loading or intense excitation, all the Na(+),K(+) pumps are functional, allowing calculation of the maximum Na(+),K(+)-pumping capacity, expressed in molar units/g muscle/min. The activity and content of Na(+),K(+) pumps are regulated by exercise, inactivity, K(+) deficiency, fasting, age, and several hormones and pharmaceuticals. Studies on the α-subunit isoforms of the Na(+),K(+)-ATPase have detected a relative increase in their

  19. The mechanics of granitoid systems and maximum entropy production rates.

    Hobbs, Bruce E; Ord, Alison


    A model for the formation of granitoid systems is developed involving melt production spatially below a rising isotherm that defines melt initiation. Production of the melt volumes necessary to form granitoid complexes within 10(4)-10(7) years demands control of the isotherm velocity by melt advection. This velocity is one control on the melt flux generated spatially just above the melt isotherm, which is the control valve for the behaviour of the complete granitoid system. Melt transport occurs in conduits initiated as sheets or tubes comprising melt inclusions arising from Gurson-Tvergaard constitutive behaviour. Such conduits appear as leucosomes parallel to lineations and foliations, and ductile and brittle dykes. The melt flux generated at the melt isotherm controls the position of the melt solidus isotherm and hence the physical height of the Transport/Emplacement Zone. A conduit width-selection process, driven by changes in melt viscosity and constitutive behaviour, operates within the Transport Zone to progressively increase the width of apertures upwards. Melt can also be driven horizontally by gradients in topography; these horizontal fluxes can be similar in magnitude to vertical fluxes. Fluxes induced by deformation can compete with both buoyancy and topographic-driven flow over all length scales and results locally in transient 'ponds' of melt. Pluton emplacement is controlled by the transition in constitutive behaviour of the melt/magma from elastic-viscous at high temperatures to elastic-plastic-viscous approaching the melt solidus enabling finite thickness plutons to develop. The system involves coupled feedback processes that grow at the expense of heat supplied to the system and compete with melt advection. The result is that limits are placed on the size and time scale of the system. Optimal characteristics of the system coincide with a state of maximum entropy production rate.

  20. 47 CFR 65.700 - Determining the maximum allowable rate of return.


    ... CARRIER SERVICES (CONTINUED) INTERSTATE RATE OF RETURN PRESCRIPTION PROCEDURES AND METHODOLOGIES Maximum Allowable Rates of Return § 65.700 Determining the maximum allowable rate of return. (a) The maximum allowable rate of return for any exchange carrier's earnings on any access service category shall...

  1. Determination Of The Maximum Explosion Pressure And The Maximum Rate Of Pressure Rise During Explosion Of Wood Dust Clouds

    Kuracina Richard


    Full Text Available The article deals with the measurement of maximum explosion pressure and the maximum rate of exposure pressure rise of wood dust cloud. The measurements were carried out according to STN EN 14034-1+A1:2011 Determination of explosion characteristics of dust clouds. Part 1: Determination of the maximum explosion pressure pmax of dust clouds and the maximum rate of explosion pressure rise according to STN EN 14034-2+A1:2012 Determination of explosion characteristics of dust clouds - Part 2: Determination of the maximum rate of explosion pressure rise (dp/dtmax of dust clouds. The wood dust cloud in the chamber is achieved mechanically. The testing of explosions of wood dust clouds showed that the maximum value of the pressure was reached at the concentrations of 450 g / m3 and its value is 7.95 bar. The fastest increase of pressure was observed at the concentrations of 450 g / m3 and its value was 68 bar / s.

  2. Autonomous BDFIG-wind generator with torque and pitch control for maximum efficiency in a water pumping system

    Camocardi, P. [LEICI, Universidad Nacional de La Plata, 1 y 47, CC 91 (1900) La Plata (Argentina); CONICET (Argentina); Battaiotto, P. [LEICI, Universidad Nacional de La Plata, 1 y 47, CC 91 (1900) La Plata (Argentina); Mantz, R. [LEICI, Universidad Nacional de La Plata, 1 y 47, CC 91 (1900) La Plata (Argentina); Comision de Investigaciones Cientificas de la Provincia de Buenos Aires (Argentina)


    This paper presents and analyzes the operation strategy for an autonomous wind energy conversion system oriented to water pumping. It consists of a wind turbine with a Brushless Doubly-Fed Induction Generator (BDFIG), electrically coupled with a squirrel cage induction machine moving a centrifugal type water pump. Because of no brushes and slip rings, the BDFIG is suitable for autonomous systems, which often work in hard conditions. Additionally, the power flow on the BDFIG principal stator could be driven from a fractional power converter connected on the auxiliary stator winding. This Turbine-BDFIG and Motor-Pump configuration provides a high robustness and reliability, reducing the operational and maintenance costs. The operation strategy proposes, for wind speeds smaller than the rated, to maximize the volume of water pumped based on the optimization of the wind energy capture. To do that, a sliding mode control tracks the optimal turbine torque by means of a torque control. Meanwhile, for wind speeds greater than the rated, a pitch control keeps the water pump within the safe operation area by adjusting the speed and power of the turbine in their rated values. To assess and corroborate the proposed strategy, simulations with different wind profiles are made. (author)

  3. The tropical lapse rate steepened during the Last Glacial Maximum

    Loomis, S.E.; Russell, J.M.; Verschuren, D.; Morrill, C.; De Cort, G.; Sinninghe Damsté, J.S.; Olago, D.; Eggermont, H.; Street-Perrott, F.A.; Kelly, M.A.


    The gradient of air temperature with elevation (the temperature lapse rate) in the tropics is predicted to become lesssteep during the coming century as surface temperature rises, enhancing the threat of warming in high-mountainenvironments. However, the sensitivity of the lapse rate to climate

  4. The tropical lapse rate steepened during the Last Glacial Maximum

    Loomis, Shannon E; Russell, James M; Verschuren, Dirk; Morrill, Carrie; De Cort, Gijs; Sinninghe Damsté, Jaap S|info:eu-repo/dai/nl/07401370X; Olago, Daniel; Eggermont, Hilde; Street-Perrott, F Alayne; Kelly, Meredith A

    The gradient of air temperature with elevation (the temperature lapse rate) in the tropics is predicted to become less steep during the coming century as surface temperature rises, enhancing the threat of warming in high-mountain environments. However, the sensitivity of the lapse rate to climate

  5. Leak rate analysis of the Westinghouse Reactor Coolant Pump

    Boardman, T.; Jeanmougin, N.; Lofaro, R.; Prevost, J.


    An independent analysis was performed by ETEC to determine what the seal leakage rates would be for the Westinghouse Reactor Coolant Pump (RCP) during a postulated station blackout resulting from loss of ac electric power. The object of the study was to determine leakage rates for the following conditions: Case 1: All three seals function. Case 2: No. 1 seal fails open while Nos. 2 and 3 seals function. Case 3: All three seals fail open. The ETEC analysis confirmed Westinghouse calculations on RCP seal performance for the conditions investigated. The leak rates predicted by ETEC were slightly lower than those predicted by Westinghouse for each of the three cases as summarized below. Case 1: ETEC predicted 19.6 gpm, Westinghouse predicted 21.1 gpm. Case 2: ETEC predicted 64.7 gpm, Westinghouse predicted 75.6 gpm. Case 3: ETEC predicted 422 gpm, Westinghouse predicted 480 gpm. 3 refs., 22 figs., 6 tabs.

  6. Optimum Organization and Maximum Capabilities of Heat-Pump Heating Systems

    Tsirlin, A. M.; Kuz‧min, V. A.


    The authors obtained a lower bound for the energy consumption in heating (maintaining an assigned temperature distribution in the system of intercommunicating chambers) and the corresponding distributions of the total heat-transfer coefficients and the temperature of the working medium of a heat pump in contact with the chambers and the environment.

  7. Allometries of Maximum Growth Rate versus Body Mass at Maximum Growth Indicate That Non-Avian Dinosaurs Had Growth Rates Typical of Fast Growing Ectothermic Sauropsids

    Jan Werner; Eva Maria Griebeler


    We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes) strongly differed from Case's study (1978), which...

  8. A Maximum Information Rate Quaternion Filter for Spacecraft Attitude Estimation

    Reijneveld, J.; Maas, A.; Choukroun, D.; Kuiper, J.M.


    Building on previous works, this paper introduces a novel continuous-time stochastic optimal linear quaternion estimator under the assumptions of rate gyro measurements and of vector observations of the attitude. A quaternion observation model, which observation matrix is rank degenerate, is reduced

  9. 78 FR 13999 - Maximum Interest Rates on Guaranteed Farm Loans


    ... have removed the term. Comment: Don't remove the ``average agricultural loan customer'' definition. The... the following methods: Federal eRulemaking Portal: Go to . Follow the.... Comment: FSA should let the market dictate what interest rate lenders charge guaranteed borrowers, rather...

  10. High-repetition-rate femtosecond dye amplifier using a laser-diode-pumped neodymium:YAG laser

    Zysset, B.; LaGasse, M.J.; Fujimoto, J.G.; Kafka, J.D.


    A high-repetition-rate femotosecond dye amplifier is demonstrated using a laser-diode-pumped Q-switched Nd:YAG laser. Amplification of wavelength-tunable 300-fs pulses from a synchronously mode-locked rhodamine dye laser is achieved with a saturated gain of 70 and a small gain of 200 at a repetition rate of 800 Hz. Maximum pulse energies of 40 nJ are obtained, and pulse compression to as short as 30 fs is demonstrated.

  11. 9 CFR 381.68 - Maximum inspection rates-New turkey inspection system.


    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Maximum inspection rates-New turkey inspection system. 381.68 Section 381.68 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... Procedures § 381.68 Maximum inspection rates—New turkey inspection system. (a) The maximum inspection...

  12. Allometries of maximum growth rate versus body mass at maximum growth indicate that non-avian dinosaurs had growth rates typical of fast growing ectothermic sauropsids.

    Jan Werner

    Full Text Available We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes strongly differed from Case's study (1978, which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles to 20 (fishes times (in comparison to mammals or even 45 (reptiles to 100 (fishes times (in comparison to birds lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule

  13. Allometries of maximum growth rate versus body mass at maximum growth indicate that non-avian dinosaurs had growth rates typical of fast growing ectothermic sauropsids.

    Werner, Jan; Griebeler, Eva Maria


    We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes) strongly differed from Case's study (1978), which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles) to 20 (fishes) times (in comparison to mammals) or even 45 (reptiles) to 100 (fishes) times (in comparison to birds) lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule out either of

  14. The big squeeze : multi-phase pumping technology aims to increase recovery rates from aging fields

    Ross, E.


    New technologies developed to assist with offshore oil and gas activities were discussed. The BP King multi-phase pumping project in the Gulf of Mexico is now expecting to enhance production by 20 per cent and extend the life of its field by 5 years through the use of multibooster pumps installed in 2007. The subsea boosting technology has reduced back pressure on the wells and increased oil recovery rates. Multi-phase pumping increased the distance over which the wellstream could be transported. The pump consisted of 4 main components: (1) a motor barrel; (2) a motor cartridge; (3) a pump barrel; and (4) a twin screw pump cartridge. The twin screw product has the ability to pump oil and gas streams with a range of gas void fractions. The pump is self-priming and runs at a relatively low rate. Changes to the pitch and diameter of the screw are used to control the volume of flow and the pressure. The project is also using a long-distance, high voltage distribution system to control multiple pumps at different speeds. The power umbilical system was developed to provide delivery lines for hydraulic fluids, and the umbilical cords also house a fibre-optic communications system to ensure high speed pump response. 3 figs.


    Salam J. AlMaliky


    Full Text Available The increasingly importance for the uses of the air lift pump in widespread list of fields (mining, nuclear industries, agricultural uses, petroleum industries...etc. makes it very interested for the researchers to find tools to raise the performance outcome of such pumps.An air lift pump system is setup to study the effect of the suction pipe diameter and submergence ratio on the liquid (water pumping rate. The system has a lift pipe of (0.021 m diameter and (1.25 m length. Five diameters for the suction pipe (0.021, 0.027, 0.033, 0.048 and 0.063 m with  a fixed length of (0.3 m, are tested for each of the submergence ratios (0.2, 0.3, 0.4, 0.5 respectively.        Results indicate that the higher the diameter of suction pipe is the higher the pumping rate for a fixed submergence ratio. From another side, the higher the submergence ratio is the higher the pumping rate for a fixed suction pipe diameter. Also, under high submergence ratios, high pumping rates are achieved by the use of lower air flow rates compared with those used with lower submergence ratios. The experimental results show good compatibility with the model suggested by Stenning and Martin for the performance of an air lift pump.

  16. Computational Study of the Noise Radiation in a Centrifugal Pump When Flow Rate Changes

    Ming Gao


    Full Text Available Noise radiation is of importance for the performance of centrifugal pumps. Aiming at exploring noise radiation patterns of a typical centrifugal pump at different flow rates, a three-dimensional unsteady hydro/aero acoustic model with large eddy simulation (LES closure is developed. Specifically, the Ffowcs Williams-Hawkings model (FW-H is employed to predict noise generation by the impeller and volute. The simulated flow fields reveal that the interactions of the blades with the volute induce root mean square (RMS pressure and further lead to noise radiation. Moreover, it is found that the profiles of total sound pressure level (TSPL regarding the directivity field for the impeller-generated noise demonstrate a typical dipole characteristic behavior, whereas strictly the volute-generated noise exhibits an apparently asymmetric behavior. Additionally, the design operation (Here, 1 Q represents the design operation generates the lowest TSPL vis-a-vis the off-design operations for all the flow rates studied. In general, as the flow rates decrease from 1 Q to 0.25 Q, TSPL initially increases significantly before 0.75 Q and then levels off afterwards. A similar trend appears for cases having the larger flow rates (1–1.25 Q. The TSPL deviates with the radiation directivity and the maximum is about 50%. It is also found that TSPL by the volute and the blades can reach ~87 dB and ~70 dB at most, respectively. The study may offer a priori guidance for the experimental set up and the actual design layout.

  17. PUMPS

    Thornton, J.D.


    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  18. LASER: A Maximum Likelihood Toolkit for Detecting Temporal Shifts in Diversification Rates From Molecular Phylogenies

    Daniel L. Rabosky


    Full Text Available Rates of species origination and extinction can vary over time during evolutionary radiations, and it is possible to reconstruct the history of diversification using molecular phylogenies of extant taxa only. Maximum likelihood methods provide a useful framework for inferring temporal variation in diversification rates. LASER is a package for the R programming environment that implements maximum likelihood methods based on the birth-death process to test whether diversification rates have changed over time. LASER contrasts the likelihood of phylogenetic data under models where diversification rates have changed over time to alternative models where rates have remained constant over time. Major strengths of the package include the ability to detect temporal increases in diversification rates and the inference of diversification parameters under multiple rate-variable models of diversification. The program and associated documentation are freely available from the R package archive at

  19. 13 CFR 107.845 - Maximum rate of amortization on Loans and Debt Securities.


    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Maximum rate of amortization on... ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES Financing of Small Businesses by Licensees Structuring... rate of amortization on Loans and Debt Securities. The principal of any Loan (or the loan portion...

  20. The influence of the flow rate on periodic flow unsteadiness behaviors in a sewage centrifugal pump

    裴吉; 袁寿其; 袁建平; 王文杰


    To design a single-blade pump with a good performance in a wide operational range and to increase the pump reliability in the multi-conditional hydraulic design process, an understanding of the unsteady flow behaviors as related with the flow rate is very important. However, the traditional design often considers only a single design condition, and the unsteady flow behaviors have not been well studied for single-blade pumps under different conditions. A comparison analysis of the flow unsteadiness behaviors at di-fferent flow rates within the whole flow passage of the pump is carried out in this paper by solving the three-dimensional unsteady Reynolds-averaged Navier-Stokes equations with the Shear Stress Transport (SST) turbulence model. A definition of the unsteadi-ness in the pump is made and applied to analyze the unsteady intensity distributions, and the flow rate effect on the complex unsteady flow in the pump is studied quantitatively while the flow mechanism is also analyzed. The CFD results are validated by experimental data collected at the laboratory. It is shown that a significant flow rate effect on the time-averaged unsteadiness and the turbulence in-tensity distribution can be observed in both rotor and stator domains including the side chamber. The findings would be useful to re-duce the flow unsteadiness and to increase the pump reliability under multi-conditions.

  1. The Scaling of Maximum and Basal Metabolic Rates of Mammals and Birds

    Barbosa, L A; Silva, J K L; Barbosa, Lauro A.; Garcia, Guilherme J. M.; Silva, Jafferson K. L. da


    Allometric scaling is one of the most pervasive laws in biology. Its origin, however, is still a matter of dispute. Recent studies have established that maximum metabolic rate scales with an exponent larger than that found for basal metabolism. This unpredicted result sets a challenge that can decide which of the concurrent hypotheses is the correct theory. Here we show that both scaling laws can be deduced from a single network model. Besides the 3/4-law for basal metabolism, the model predicts that maximum metabolic rate scales as $M^{6/7}$, maximum heart rate as $M^{-1/7}$, and muscular capillary density as $M^{-1/7}$, in agreement with data.

  2. Setting maximum emission rates from ozone emitting consumer appliances in the United States and Canada

    Morrison, Glenn; Shaughnessy, Richard; Shu, Shi


    A Monte Carlo analysis of indoor ozone levels in four cities was applied to provide guidance to regulatory agencies on setting maximum ozone emission rates from consumer appliances. Measured distributions of air exchange rates, ozone decay rates and outdoor ozone levels at monitoring stations were combined with a steady-state indoor air quality model resulting in emission rate distributions (mg h -1) as a function of % of building hours protected from exceeding a target maximum indoor concentration of 20 ppb. Whole-year, summer and winter results for Elizabeth, NJ, Houston, TX, Windsor, ON, and Los Angeles, CA exhibited strong regional differences, primarily due to differences in air exchange rates. Infiltration of ambient ozone at higher average air exchange rates significantly reduces allowable emission rates, even though air exchange also dilutes emissions from appliances. For Houston, TX and Windsor, ON, which have lower average residential air exchange rates, emission rates ranged from -1.1 to 2.3 mg h -1 for scenarios that protect 80% or more of building hours from experiencing ozone concentrations greater than 20 ppb in summer. For Los Angeles, CA and Elizabeth, NJ, with higher air exchange rates, only negative emission rates were allowable to provide the same level of protection. For the 80th percentile residence, we estimate that an 8-h average limit concentration of 20 ppb would be exceeded, even in the absence of an indoor ozone source, 40 or more days per year in any of the cities analyzed. The negative emission rates emerging from the analysis suggest that only a zero-emission rate standard is prudent for Los Angeles, Elizabeth, NJ and other regions with higher summertime air exchange rates. For regions such as Houston with lower summertime air exchange rates, the higher emission rates would likely increase occupant exposure to the undesirable products of ozone reactions, thus reinforcing the need for zero-emission rate standard.

  3. 17 CFR 148.7 - Rulemaking on maximum rates for attorney fees.


    ... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Rulemaking on maximum rates for attorney fees. 148.7 Section 148.7 Commodity and Securities Exchanges COMMODITY FUTURES TRADING... increase in the cost of living or by special circumstances (such as limited availability of...

  4. The 220-age equation does not predict maximum heart rate in children and adolescents

    Verschuren, Olaf; Maltais, Desiree B.; Takken, Tim

    Our primary purpose was to provide maximum heart rate (HR(max)) values for ambulatory children with cerebral palsy (CP). The secondary purpose was to determine the effects of age, sex, ambulatory ability, height, and weight on HR(max). In 362 ambulatory children and adolescents with CP (213 males

  5. The 220-age equation does not predict maximum heart rate in children and adolescents

    Verschuren, Olaf; Maltais, Desiree B.; Takken, Tim


    Our primary purpose was to provide maximum heart rate (HR(max)) values for ambulatory children with cerebral palsy (CP). The secondary purpose was to determine the effects of age, sex, ambulatory ability, height, and weight on HR(max). In 362 ambulatory children and adolescents with CP (213 males an

  6. Design and optimization of a large flow rate booster pump in SWRO energy recovery system

    Lai, Z. N.; Wu, P.; Wu, D. Z.; Wang, L. Q.


    Seawater reverse osmosis (SWRO) is a high energy-consumption industry, so energy efficiency is an important issue. Energy recovery systems, which contain a pressure exchanger and a booster pump, are widely used in SWRO plants. As a key part of energy recovery system, the difficulty of designing booster pumps lies in high inlet pressure, high medium causticity and large flow rate. High inlet pressure adds difficulties to seal design, and large flow rate and high efficiency requirement bring high demand for hydraulic design. In this paper, a 625 m3/h booster pump is designed and optimized according to the CFD (Computational Fluid Dynamics) simulation results. The impeller and volute is well designed, a new type of high pressure mechanical seal is applied and axial force is well balanced. After optimization based on blade redesign, the efficiency of the pump was improved. The best efficiency reaches more than 85% at design point according to the CFD simulation result.

  7. Performance prediction and flow analysis in the vaned distributor of a pump turbine under low flow rate in pump mode


    The main goal of this work is to investigate the possible different flow patterns existing in pump turbine under off-design conditions in pump mode. Numerical simulations by solving the Navier-Stokes equation, coupled with the "SST k-ω" turbulence model, were carried out. Flow characteristics were assumed to be stalled in the appropriate region of ?ow rate levels of Q/QD=0.15–0.61. The simulation result was compared with experimental data and they showed good agreement. Consequently, velocity fields in three axial locations in stay vanes and guide vanes were analysed in details. It was shown that "jet-wake" flow pattern exists near the band, which changes little in the whole shape with flow rate increasing; to the middle location of vanes, reverse flow begins to appear on the interface between the runner and guide vanes, which will disappear gradually as the flow rate increases; massive reverse flow is captured near the crown, whose intensity will be weakened as the flow rate increases. Ultimately, it was found that the special head-flow profile can be ascribed to the special hydraulic loss characteristics of the stay vanes and guide vanes.

  8. Maximum initial growth-rate of strong-shock-driven Richtmyer-Meshkov instability

    Dell, Z. R.; Pandian, A.; Bhowmick, A. K.; Swisher, N. C.; Stanic, M.; Stellingwerf, R. F.; Abarzhi, S. I.


    We focus on the classical problem of the dependence on the initial conditions of the initial growth-rate of strong shock driven Richtmyer-Meshkov instability (RMI) by developing a novel empirical model and by employing rigorous theories and Smoothed Particle Hydrodynamics simulations to describe the simulation data with statistical confidence in a broad parameter regime. For the given values of the shock strength, fluid density ratio, and wavelength of the initial perturbation of the fluid interface, we find the maximum value of the RMI initial growth-rate, the corresponding amplitude scale of the initial perturbation, and the maximum fraction of interfacial energy. This amplitude scale is independent of the shock strength and density ratio and is characteristic quantity of RMI dynamics. We discover the exponential decay of the ratio of the initial and linear growth-rates of RMI with the initial perturbation amplitude that excellently agrees with available data.

  9. Pulsed pumped Yb-doped fiber amplifier at low repetition rate

    Changgeng Ye; Ping Yan; Mali Gong; Ming Lei


    A pulsed pumped Yb-doped double-clad fiber (DCF) master-oscillator power amplifier (MOPA) at low repetition rate is reported. Seeded by a passive Q-switched Nd:YAG microchip laser, the fiber amplifier can generate 167-kW peak-power and 0.83-ns duration pulses at 200-Hz repetition rate. Because of the pulsed pump approach, the amplified spontaneous emission (ASE) and the spurious lasing between pulses are well avoided, and the repetition rate can be set freely from single-shot to 1 kHz. Peak power scaling limitations that arise from the fiber facet damage are discussed.

  10. Effects of electric field on the maximum electro-spinning rate of silk fibroin solutions.

    Park, Bo Kyung; Um, In Chul


    Owing to the excellent cyto-compatibility of silk fibroin (SF) and the simple fabrication of nano-fibrous webs, electro-spun SF webs have attracted much research attention in numerous biomedical fields. Because the production rate of electro-spun webs is strongly dependent on the electro-spinning rate used, the electro-spinning rate becomes more important. In the present study, to improve the electro-spinning rate of SF solutions, various electric fields were applied during electro-spinning of SF, and its effects on the maximum electro-spinning rate of SF solution as well as diameters and molecular conformations of the electro-spun SF fibers were examined. As the electric field was increased, the maximum electro-spinning rate of the SF solution also increased. The maximum electro-spinning rate of a 13% SF solution could be increased 12×by increasing the electric field from 0.5kV/cm (0.25mL/h) to 2.5kV/cm (3.0mL/h). The dependence of the fiber diameter on the present electric field was not significant when using less-concentrated SF solutions (7-9% SF). On the other hand, at higher SF concentrations the electric field had a greater effect on the resulting fiber diameter. The electric field had a minimal effect of the molecular conformation and crystallinity index of the electro-spun SF webs. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Rate equations model and optical external efficiency of optically pumped electrically driven terahertz quantum cascade lasers

    Hamadou, A.; Thobel, J.-L.; Lamari, S.


    A four level rate equations model for a terahertz optically pumped electrically driven quantum cascade laser is here introduced and used to model the system both analytically and numerically. In the steady state, both in the presence and absence of the terahertz optical field, we solve the resulting nonlinear system of equations and obtain closed form expressions for the levels occupation, population inversion as well as the mid-infrared pump threshold intensity in terms of the device parameters. We also derive, for the first time for this system, an analytical formula for the optical external efficiency and analyze the simultaneous effects of the cavity length and pump intensity on it. At moderate to high pump intensities, we find that the optical external efficiency scales roughly as the reciprocal of the cavity length.

  12. Maximum Data Collection Rate Routing Protocol Based on Topology Control for Rechargeable Wireless Sensor Networks.

    Lin, Haifeng; Bai, Di; Gao, Demin; Liu, Yunfei


    In Rechargeable Wireless Sensor Networks (R-WSNs), in order to achieve the maximum data collection rate it is critical that sensors operate in very low duty cycles because of the sporadic availability of energy. A sensor has to stay in a dormant state in most of the time in order to recharge the battery and use the energy prudently. In addition, a sensor cannot always conserve energy if a network is able to harvest excessive energy from the environment due to its limited storage capacity. Therefore, energy exploitation and energy saving have to be traded off depending on distinct application scenarios. Since higher data collection rate or maximum data collection rate is the ultimate objective for sensor deployment, surplus energy of a node can be utilized for strengthening packet delivery efficiency and improving the data generating rate in R-WSNs. In this work, we propose an algorithm based on data aggregation to compute an upper data generation rate by maximizing it as an optimization problem for a network, which is formulated as a linear programming problem. Subsequently, a dual problem by introducing Lagrange multipliers is constructed, and subgradient algorithms are used to solve it in a distributed manner. At the same time, a topology controlling scheme is adopted for improving the network's performance. Through extensive simulation and experiments, we demonstrate that our algorithm is efficient at maximizing the data collection rate in rechargeable wireless sensor networks.

  13. On the rate of convergence of the maximum likelihood estimator of a k-monotone density

    WELLNER; Jon; A


    Bounds for the bracketing entropy of the classes of bounded k-monotone functions on [0,A] are obtained under both the Hellinger distance and the Lp(Q) distance,where 1 p < ∞ and Q is a probability measure on [0,A].The result is then applied to obtain the rate of convergence of the maximum likelihood estimator of a k-monotone density.

  14. On the rate of convergence of the maximum likelihood estimator of a K-monotone density

    GAO FuChang; WELLNER Jon A


    Bounds for the bracketing entropy of the classes of bounded K-monotone functions on [0, A] are obtained under both the Hellinger distance and the LP(Q) distance, where 1 ≤ p < ∞ and Q is a probability measure on [0, A]. The result is then applied to obtain the rate of convergence of the maximum likelihood estimator of a K-monotone density.

  15. Variation analysis of flow rate delivered using a blister pump

    Selvakumar, Sivesh; Linares, Rodrigo; Oppenheimer, Aaron; Anthony, Brian


    Components for on-chip storage and delivery of liquid reagent are necessary for many commercial applications of lab-on- a-chip technology. One such system uses a 'blister-pack' that is pushed by an actuator. This paper explores the sensitivity of the flow rate produced by a blister-actuator pair to the expected manufacturing variations in its dimensions. A numerical model of the blister-actuator pair is developed and the tool of Variation Simulation Modeling (VSM) is used to determine the robustness of fluid delivery. For a flow-rate requirement of +/- 10%, the number of out-of-spec parts is found to be less than 0.01%. The critical dimensions that need to be controlled to improve robustness are also identified.

  16. A real-time maximum-likelihood heart-rate estimator for wearable textile sensors.

    Cheng, Mu-Huo; Chen, Li-Chung; Hung, Ying-Che; Yang, Chang Ming


    This paper presents a real-time maximum-likelihood heart-rate estimator for ECG data measured via wearable textile sensors. The ECG signals measured from wearable dry electrodes are notorious for its susceptibility to interference from the respiration or the motion of wearing person such that the signal quality may degrade dramatically. To overcome these obstacles, in the proposed heart-rate estimator we first employ the subspace approach to remove the wandering baseline, then use a simple nonlinear absolute operation to reduce the high-frequency noise contamination, and finally apply the maximum likelihood estimation technique for estimating the interval of R-R peaks. A parameter derived from the byproduct of maximum likelihood estimation is also proposed as an indicator for signal quality. To achieve the goal of real-time, we develop a simple adaptive algorithm from the numerical power method to realize the subspace filter and apply the fast-Fourier transform (FFT) technique for realization of the correlation technique such that the whole estimator can be implemented in an FPGA system. Experiments are performed to demonstrate the viability of the proposed system.

  17. Scaling of heat production by thermogenic flowers: limits to floral size and maximum rate of respiration.

    Seymour, Roger S


    Effect of size of inflorescences, flowers and cones on maximum rate of heat production is analysed allometrically in 23 species of thermogenic plants having diverse structures and ranging between 1.8 and 600 g. Total respiration rate (, micromol s(-1)) varies with spadix mass (M, g) according to in 15 species of Araceae. Thermal conductance (C, mW degrees C(-1)) for spadices scales according to C = 18.5M(0.73). Mass does not significantly affect the difference between floral and air temperature. Aroids with exposed appendices with high surface area have high thermal conductance, consistent with the need to vaporize attractive scents. True flowers have significantly lower heat production and thermal conductance, because closed petals retain heat that benefits resident insects. The florets on aroid spadices, either within a floral chamber or spathe, have intermediate thermal conductance, consistent with mixed roles. Mass-specific rates of respiration are variable between species, but reach 900 nmol s(-1) g(-1) in aroid male florets, exceeding rates of all other plants and even most animals. Maximum mass-specific respiration appears to be limited by oxygen delivery through individual cells. Reducing mass-specific respiration may be one selective influence on the evolution of large size of thermogenic flowers.


    Riisgård, H.U.; Thomassen, S.; Jakobsen, H.


    Filtration rate (measured as clearance of algal cells) was measured at different temperatures in the sponge Halichondria panicea. An increase in water temperature from 6 to 12-degrees-C caused the mean filtration rate to increase 4.3 +/- 2.3 times. This value was higher than previously found...... for other marine ciliary suspension-feeding animals. Filtration rate at 12-degrees-C was also measured in Haliclona urceolus by means of an indirect clearance method in addition to a direct technique for measuring pumping rate. It was found that the 2 sponge species had near-identical filtration rates......, with maximum rates of approximately 60 ml min-1 (g dry weight)-1 at 12-degrees-C. The normal pump pressure, or operating point O(p), of a standard sponge (based on our own measurements and calculations from literature data for a 0.1 g dry weight Haliclona sp.) was estimated as the sum of main contributions...

  19. Maximum Likelihood based comparison of the specific growth rates for P. aeruginosa and four mutator strains

    Philipsen, Kirsten Riber; Christiansen, Lasse Engbo; Mandsberg, Lotte Frigaard


    that best describes data is a model taking into account the full covariance structure. An inference study is made in order to determine whether the growth rate of the five bacteria strains is the same. After applying a likelihood-ratio test to models with a full covariance structure, it is concluded...... that the specific growth rate is the same for all bacteria strains. This study highlights the importance of carrying out an explorative examination of residuals in order to make a correct parametrization of a model including the covariance structure. The ML method is shown to be a strong tool as it enables......The specific growth rate for P. aeruginosa and four mutator strains mutT, mutY, mutM and mutY–mutM is estimated by a suggested Maximum Likelihood, ML, method which takes the autocorrelation of the observation into account. For each bacteria strain, six wells of optical density, OD, measurements...

  20. Selecting surfactants for the maximum inhibition of the activity of the multidrug resistance efflux pump transporter, P-glycoprotein: conceptual development

    Shireesh Apte


    Full Text Available Amphiphilic excipients, such as surfactants, have been shown to be inhibitors of the multidrug resistance (MDR efflux pump transporter protein, P glycoprotein (Pgp. In vitro studies using many surfactants have demonstrated that those with an optimum hydrophilic-lipophilic balance (HLB exhibit greater efflux pump inhibition than those that are either very hydrophobic, or very hydrophilic, although the correlation of HLB to Pgp inhibition activity remains weak. Using the data from multiple in vitro studies, a model has been conceptualized that underscores the attributes of both the HLB and the critical micellar concentration (CMC, occurring in tandem, and unable of being varied independently, as key determinants toward prediction of surfactant Pgp inhibition activity. The algorithm that formalizes this concept provides a ‘semi-rational’ method of choosing surfactants for a specific type of cancer for maximum inhibition of MDR.

  1. Determination of zero-coupon and spot rates from treasury data by maximum entropy methods

    Gzyl, Henryk; Mayoral, Silvia


    An interesting and important inverse problem in finance consists of the determination of spot rates or prices of the zero coupon bonds, when the only information available consists of the prices of a few coupon bonds. A variety of methods have been proposed to deal with this problem. Here we present variants of a non-parametric method to treat with such problems, which neither imposes an analytic form on the rates or bond prices, nor imposes a model for the (random) evolution of the yields. The procedure consists of transforming the problem of the determination of the prices of the zero coupon bonds into a linear inverse problem with convex constraints, and then applying the method of maximum entropy in the mean. This method is flexible enough to provide a possible solution to a mispricing problem.

  2. Group differences in measures of voice production and revised values of maximum airflow declination rate.

    Perkell, J S; Hillman, R E; Holmberg, E B


    In previous reports, aerodynamic and acoustic measures of voice production were presented for groups of normal male and female speakers [Holmberg et al., J. Acoust. Soc. Am. 84, 511-529 (1988); J. Voice 3, 294-305 (1989)] that were used as norms in studies of voice disorders [Hillman et al., J. Speech Hear. Res. 32, 373-392 (1989); J. Voice 4, 52-63 (1990)]. Several of the measures were extracted from glottal airflow waveforms that were derived by inverse filtering a high-time-resolution oral airflow signal. Recently, the methods have been updated and a new study of additional subjects has been conducted. This report presents previous (1988) and current (1993) group mean values of sound pressure level, fundamental frequency, maximum airflow declination rate, ac flow, peak flow, minimum flow, ac-dc ratio, inferred subglottal air pressure, average flow, and glottal resistance. Statistical tests indicate overall group differences and differences for values of several individual parameters between the 1988 and 1993 studies. Some inter-study differences in parameter values may be due to sampling effects and minor methodological differences; however, a comparative test of 1988 and 1993 inverse filtering algorithms shows that some lower 1988 values of maximum flow declination rate were due at least in part to excessive low-pass filtering in the 1988 algorithm. The observed differences should have had a negligible influence on the conclusions of our studies of voice disorders.

  3. Botanical and agronomic growth of two Panicum maximum cultivars, Mombasa and Tanzania, at varying sowing rates

    Michael D. Hare


    Full Text Available A field trial in northeast Thailand during 2011–2013 compared the establishment and growth of 2 Panicum maximum cultivars, Mombasa and Tanzania, sown at seeding rates of 2, 4, 6, 8, 10 and 12 kg/ha. In the first 3 months of establishment, higher sowing rates produced significantly more DM than sowing at 2 kg/ha, but thereafter there were no significant differences in total DM production between sowing rates of 2–12 kg/ha. Lower sowing rates produced fewer tillers/m2 than higher sowing rates but these fewer tillers were significantly heavier than the more numerous smaller tillers produced by higher sowing rates. Mombasa produced 23% more DM than Tanzania in successive wet seasons (7,060 vs. 5,712 kg DM/ha from 16 June to 1 November 2011; and 16,433 vs. 13,350 kg DM/ha from 25 April to 24 October 2012. Both cultivars produced similar DM yields in the dry seasons (November–April, averaging 2,000 kg DM/ha in the first dry season and 1,750 kg DM/ha in the second dry season. Mombasa produced taller tillers (104 vs. 82 cm, longer leaves (60 vs. 47 cm, wider leaves (2 vs. 1.8 cm and heavier tillers (1 vs. 0.7 g than Tanzania but fewer tillers/m2 (260 vs. 304. If farmers improve soil preparation and place more emphasis on sowing techniques, there is potential to dramatically reduce seed costs.Keywords: Guinea grass, tillering, forage production, seeding rates, Thailand.DOI: 10.17138/TGFT(2246-253

  4. Maximum Rain-Rate Evaluations in Aegean Archipelagos Hellas for Rain Attenuation Modeling at Microwave Frequencies

    Evangelia Karagianni


    Full Text Available By utilizing meteorological data such as relative humidity, temperature, pressure, rain rate and precipitation duration at eight (8 stations in Aegean Archipelagos from six recent years (2007 – 2012, the effect of the weather on Electromagnetic wave propagation is studied. The EM wave propagation characteristics depend on atmospheric refractivity and consequently on Rain-Rate which vary in time and space randomly. Therefore the statistics of radio refractivity, Rain-Rate and related propagation effects are of main interest. This work investigates the maximum value of rain rate in monthly rainfall records, for a 5 min interval comparing it with different values of integration time as well as different percentages of time. The main goal is to determine the attenuation level for microwave links based on local rainfall data for various sites in Greece (L-zone, namely Aegean Archipelagos, with a view on improved accuracy as compared with more generic zone data available. A measurement of rain attenuation for a link in the S-band has been carried out and the data compared with prediction based on the standard ITU-R method.

  5. Inferring kinetic pathways, rates, and force dependence from nonprocessive optical tweezers experiments: a maximum likelihood approach

    Kalafut, Bennett; Visscher, Koen


    Optical tweezers experiments allow us to probe the role of force and mechanical work in a variety of biochemical processes. However, observable states do not usually correspond in a one-to-one fashion with the internal state of an enzyme or enzyme-substrate complex. Different kinetic pathways yield different distributions for the dwells in the observable states. Furthermore, the dwell-time distribution will be dependent upon force, and upon where in the biochemical pathway force acts. I will present a maximum-likelihood method for identifying rate constants and the locations of force-dependent transitions in transcription initiation by T7 RNA Polymerase. This method is generalizable to systems with more complicated kinetic pathways in which there are two observable states (e.g. bound and unbound) and an irreversible final transition.

  6. Asymptotic correctability of Bell-diagonal quantum states and maximum tolerable bit error rates

    Ranade, K S; Ranade, Kedar S.; Alber, Gernot


    The general conditions are discussed which quantum state purification protocols have to fulfill in order to be capable of purifying Bell-diagonal qubit-pair states, provided they consist of steps that map Bell-diagonal states to Bell-diagonal states and they finally apply a suitably chosen Calderbank-Shor-Steane code to the outcome of such steps. As a main result a necessary and a sufficient condition on asymptotic correctability are presented, which relate this problem to the magnitude of a characteristic exponent governing the relation between bit and phase errors under the purification steps. These conditions allow a straightforward determination of maximum tolerable bit error rates of quantum key distribution protocols whose security analysis can be reduced to the purification of Bell-diagonal states.

  7. Phylogenetic prediction of the maximum per capita rate of population growth.

    Fagan, William F; Pearson, Yanthe E; Larsen, Elise A; Lynch, Heather J; Turner, Jessica B; Staver, Hilary; Noble, Andrew E; Bewick, Sharon; Goldberg, Emma E


    The maximum per capita rate of population growth, r, is a central measure of population biology. However, researchers can only directly calculate r when adequate time series, life tables and similar datasets are available. We instead view r as an evolvable, synthetic life-history trait and use comparative phylogenetic approaches to predict r for poorly known species. Combining molecular phylogenies, life-history trait data and stochastic macroevolutionary models, we predicted r for mammals of the Caniformia and Cervidae. Cross-validation analyses demonstrated that, even with sparse life-history data, comparative methods estimated r well and outperformed models based on body mass. Values of r predicted via comparative methods were in strong rank agreement with observed values and reduced mean prediction errors by approximately 68 per cent compared with two null models. We demonstrate the utility of our method by estimating r for 102 extant species in these mammal groups with unknown life-history traits.

  8. Statistical properties of the maximum Lyapunov exponent calculated via the divergence rate method.

    Franchi, Matteo; Ricci, Leonardo


    The embedding of a time series provides a basic tool to analyze dynamical properties of the underlying chaotic system. To this purpose, the choice of the embedding dimension and lag is crucial. Although several methods have been devised to tackle the issue of the optimal setting of these parameters, a conclusive criterion to make the most appropriate choice is still lacking. An accepted procedure to rank different embedding methods relies on the evaluation of the maximum Lyapunov exponent (MLE) out of embedded time series that are generated by chaotic systems with explicit analytic representation. The MLE is evaluated as the local divergence rate of nearby trajectories. Given a system, embedding methods are ranked according to how close such MLE values are to the true MLE. This is provided by the so-called standard method in a way that exploits the mathematical description of the system and does not require embedding. In this paper we study the dependence of the finite-time MLE evaluated via the divergence rate method on the embedding dimension and lag in the case of time series generated by four systems that are widely used as references in the scientific literature. We develop a completely automatic algorithm that provides the divergence rate and its statistical uncertainty. We show that the uncertainty can provide useful information about the optimal choice of the embedding parameters. In addition, our approach allows us to find which systems provide suitable benchmarks for the comparison and ranking of different embedding methods.


    Alvah C. Stahlnecker IV


    Full Text Available A percentage of either measured or predicted maximum heart rate is commonly used to prescribe and measure exercise intensity. However, maximum heart rate in athletes may be greater during competition or training than during laboratory exercise testing. Thus, the aim of the present investigation was to determine if endurance-trained runners train and compete at or above laboratory measures of 'maximum' heart rate. Maximum heart rates were measured utilising a treadmill graded exercise test (GXT in a laboratory setting using 10 female and 10 male National Collegiate Athletic Association (NCAA division 2 cross-country and distance event track athletes. Maximum training and competition heart rates were measured during a high-intensity interval training day (TR HR and during competition (COMP HR at an NCAA meet. TR HR (207 ± 5.0 b·min-1; means ± SEM and COMP HR (206 ± 4 b·min-1 were significantly (p < 0.05 higher than maximum heart rates obtained during the GXT (194 ± 2 b·min-1. The heart rate at the ventilatory threshold measured in the laboratory occurred at 83.3 ± 2.5% of the heart rate at VO2 max with no differences between the men and women. However, the heart rate at the ventilatory threshold measured in the laboratory was only 77% of the maximal COMP HR or TR HR. In order to optimize training-induced adaptation, training intensity for NCAA division 2 distance event runners should not be based on laboratory assessment of maximum heart rate, but instead on maximum heart rate obtained either during training or during competition

  10. High energy high repetition-rate thin-disk amplifier for OPCPA pumping

    Schulz, Michael


    The development of a pump laser system for a high power and high repetition rate optical parametric chirped-pulse amplification (OPCPA) is presented in this thesis. The OPCPA system requires pump pulse energies in the range of tens of millijoules at high repetition rates with sub-picosecond pulse durations. This can be achieved to some extend with Innoslab amplifier technology. However, scaling to higher pulse energies at high repetition rates may be problematic. With the thin-disk amplifier presented in this thesis, output energies of 140 mJ at 100 kHz repetition rate could be achieved in burst-mode operation, which is a world record for this type of laser amplifier. Due to its material and spectral properties, ytterbium doped YAG (Yb:YAG) is used as a gain medium for the high power amplifier stages. The low quantum defect and the comparatively large emission bandwidth makes this material the choice for high power operation and sub-picosecond compressed pulse durations. The output beam profile as well as the shape of the output bursts is ideal to pump an OPCPA system. An OPCPA output energy in the millijoule range with repetition rates of 100 kHz to 1 MHz is needed to generate seed pulses for the FEL and for the application as pump-probe laser at the FEL facility. Since the development of this laser system needs to meet requirements set by the Free-Electron Laser in Hamburg (FLASH), the amplifier is conceived for burst-mode operation. The main requirement is a high intra-burst pulse repetition rate of more than 100 kHz and a uniform pulse train (burst) with equal properties for every pulse. The burst-mode is an operation mode where the laser never reaches a lasing equilibrium, which means that the behavior of the amplifier is similar to a switch-on of the laser system for every burst. This makes the development of the amplifier system difficult. Therefore, an analytical model has been developed to study the amplification process during the burst. This includes the

  11. MHD interaction in an Electromagnetic Pump for high flow rate loop of ASTRID Sodium Fast Reactor secondary circuit -performances

    Letout, S; Duterrail, Y; Fautrelle, Y; Medina, M. , il.; Rey, F.; Laffont, G.


    International audience; The present paper deals with the analysis of the performances of a very large Annular Linear Induction Pumps (ALIP) for liquid sodium. This pump is able to provide high flow rates (more than 7,000 m3.h-1 with a pressure discharge of about 3.7 bar). Dimensions of pumping channel under the active part are of an average diameter of 966 mm and a length of 4,500 mm. It’s a double sided inductor pump. On the base of an imposed 2D axisymmetric geometry, performances (discharg...

  12. MHD interaction in an Electromagnetic Pump for high flow rate loop of ASTRID Sodium Fast Reactor secondary circuit, behavior

    Letout, S; Duterrail, Y; Fautrelle, Y; Medina, M. , il.; Rey, F.; Laffont, G.


    International audience; The present paper deals with the analysis of the behaviour of a very large Annular Linear Induction Pumps (ALIP) for liquid sodium. This pump is able to provide high flow rates (more than 7,000 m3/h with a pressure discharge of about 3.7 bar). Dimensions of pumping channel under the active part are of an average diameter of 966 mm and a length of 4,500 mm. The global and local stability of the pump are analyzed. It is found that in the nominal conditions, stable operat...

  13. High-repetition-rate picosecond pump laser based on a Yb:YAG disk amplifier for optical parametric amplification.

    Metzger, Thomas; Schwarz, Alexander; Teisset, Catherine Yuriko; Sutter, Dirk; Killi, Alexander; Kienberger, Reinhard; Krausz, Ferenc


    We report an optically synchronized picosecond pump laser for optical parametric amplifiers based on an Yb:YAG thin-disk amplifier. At 3 kHz repetition rate, pulse energies of 25 mJ with 1.6 ps pulse duration were achieved with an rms fluctuation in pulse energy of pumped regenerative amplifier.

  14. Existing and Past Methods of Test and Rating Standards Related to Integrated Heat Pump Technologies

    Reedy, Wayne R. [Sentech, Inc.


    This report evaluates existing and past US methods of test and rating standards related to electrically operated air, water, and ground source air conditioners and heat pumps, 65,000 Btu/hr and under in capacity, that potentiality incorporate a potable water heating function. Two AHRI (formerly ARI) standards and three DOE waivers were identified as directly related. Six other AHRI standards related to the test and rating of base units were identified as of interest, as they would form the basis of any new comprehensive test procedure. Numerous other AHRI and ASHRAE component test standards were also identified as perhaps being of help in developing a comprehensive test procedure.

  15. Why does steady-state magnetic reconnection have a maximum local rate of order 0.1?

    Liu, Yi-Hsin; Guo, F; Daughton, W; Li, H; Cassak, P A; Shay, M A


    Simulations suggest collisionless steady-state magnetic reconnection of Harris-type current sheets proceeds with a rate of order 0.1, independent of dissipation mechanism. We argue this long-standing puzzle is a result of constraints at the magnetohydrodynamic (MHD) scale. We perform a scaling analysis of the reconnection rate as a function of the opening angle made by the upstream magnetic fields, finding a maximum reconnection rate close to 0.2. The predictions compare favorably to particle-in-cell simulations of relativistic electron-positron and non-relativistic electron-proton reconnection. The fact that simulated reconnection rates are close to the predicted maximum suggests reconnection proceeds near the most efficient state allowed at the MHD-scale. The rate near the maximum is relatively insensitive to the opening angle, potentially explaining why reconnection has a similar fast rate in differing models.

  16. Optimizing electroosmotic pumping rates in a rectangular channel with vertical gratings

    Lai, Anison K. R.; Chang, Chien-Cheng; Wang, Chang-Yi


    The Helmholtz-Smoluchowski (H-S) velocity is known to be an accurate and useful formula for estimating the electro-osmotic (EO) flow rates in a simple micro-channel with a thin electric-double layer. However, in case the channel cross section is not so simple, the usefulness of H-S velocity could be sharply limited. A case of fundamental interest representing this situation is a rectangular channel (comprising parallel plates) with built-in vertical gratings, in which the surfaces inside the channel may develop different normalized zeta potentials α (on the gratings) and β (on the side walls). In this study, analytical solutions are pursued under the Debye-Hückel approximation to obtain EO pumping rates in a rectangular channel with vertical gratings. In particular, we identify the conditions under which the H-S formula can be properly applied and investigate how the EO flow rates may deviate from those predicted by the H-S velocity with varying physical parameters. Moreover, a diagram of the optimal EO pumping rates on the α-β plane is introduced that accounts for the general features of the analysis, which is consistent with a mathematical model and may serve as a convenient guide for engineering design and applications.

  17. Effects of diaphragmatic control on the assessment of sniff nasal inspiratory pressure and maximum relaxation rate

    Benício, Kadja; Dias, Fernando A. L.; Gualdi, Lucien P.; Aliverti, Andrea; Resqueti, Vanessa R.; Fregonezi, Guilherme A. F.


    OBJECTIVE: To assess the influence of diaphragmatic activation control (diaphC) on Sniff Nasal-Inspiratory Pressure (SNIP) and Maximum Relaxation Rate of inspiratory muscles (MRR) in healthy subjects. METHOD: Twenty subjects (9 male; age: 23 (SD=2.9) years; BMI: 23.8 (SD=3) kg/m2; FEV1/FVC: 0.9 (SD=0.1)] performed 5 sniff maneuvers in two different moments: with or without instruction on diaphC. Before the first maneuver, a brief explanation was given to the subjects on how to perform the sniff test. For sniff test with diaphC, subjects were instructed to perform intense diaphragm activation. The best SNIP and MRR values were used for analysis. MRR was calculated as the ratio of first derivative of pressure over time (dP/dtmax) and were normalized by dividing it by peak pressure (SNIP) from the same maneuver. RESULTS: SNIP values were significantly different in maneuvers with and without diaphC [without diaphC: -100 (SD=27.1) cmH2O/ with diaphC: -72.8 (SD=22.3) cmH2O; p<0.0001], normalized MRR values were not statistically different [without diaphC: -9.7 (SD=2.6); with diaphC: -8.9 (SD=1.5); p=0.19]. Without diaphC, 40% of the sample did not reach the appropriate sniff criteria found in the literature. CONCLUSION: Diaphragmatic control performed during SNIP test influences obtained inspiratory pressure, being lower when diaphC is performed. However, there was no influence on normalized MRR. PMID:26578254


    K. N. Gorbachenya


    Full Text Available Diode-pumped passively Q-switched microchip Er,Yb:YAl3(BO34 laser for range-finding has been demonstrated. By using a Co2+:MgAl2O4 as a saturable absorber TEM00–mode Q-switched average output power of 315 mW was demonstrated at 1522 nm with pulse duration of 5 ns and pulse energy of 5,25 μJ at a repetition rate of 60 kHz.

  19. Electron trajectories and growth rates of the plasma wave pumped free-electron laser

    Jafari, S.; Jafarinia, F.; Nilkar, M.; Amiri, M.


    A theory for a plasma wave wiggler has been described which employs the plasma whistler wave for producing laser radiation in a free-electron laser (FEL). While electromagnetically pumped FELs have been proven to be an effective means generating short wavelengths, practical difficulties occur in the design of these wigglers. For this reason, it is found that a plasma wave wiggler can be employed in concept with an electromagnetic wave wiggler due to both higher tunability and holding the focus of pump wave and e-beam over a significant distance to achieve a suitable amplification. Plasma in the presence of static magnetic field supports a plasma whistler wave. The plasma wiggler period can be tuned by varying the plasma density and/or ambient magnetic field. Electron trajectories have been analyzed using single particle dynamics and regimes of orbital stability have been demonstrated. A polynomial dispersion relation for electromagnetic and space-charge waves has then been derived, analytically. Numerical studies of the dispersion relation reveal that the growth rates are sensitive functions of the cyclotron frequency. It has been shown that by increasing the axial magnetic field strength (or cyclotron frequency), the growth rate for groups I and III orbits increases, while a growth decrement has been obtained for groups II and IV orbits.

  20. Optimum poultry litter rates for maximum profit vs. yield in cotton production

    Cotton lint yield responds well to increasing rates of poultry litter fertilization, but little is known of how optimum rates for yield compare with optimum rates for profit. The objectives of this study were to analyze cotton lint yield response to poultry litter application rates, determine and co...

  1. Rate of strong consistency of the maximum quasi-likelihood estimator in quasi-likelihood nonlinear models


    Quasi-likelihood nonlinear models (QLNM) include generalized linear models as a special case.Under some regularity conditions,the rate of the strong consistency of the maximum quasi-likelihood estimation (MQLE) is obtained in QLNM.In an important case,this rate is O(n-1/2(loglogn)1/2),which is just the rate of LIL of partial sums for I.I.d variables,and thus cannot be improved anymore.

  2. Numerical Simulation of Cavitation in a Centrifugal Pump at Low Flow Rate

    TAN Lei; CAO Shu-Liang; WANG Yu-Ming; ZHU Bao-Shan


    Based on the full cavitation model which adopts homogeneous flow supposition and considering the compressibility effect on cavitation flow to modify the re-normalization group k-e turbulence model by the density function,a computational model is developed to simulate cavitation flow of a centrifugal pump at low flow rate.The NavierStokes equation is solved with the SIMPLEC algorithm.The calculated curves of net positive suction head available (NPSHa) HNPSHa agree well with the experimental data.The critical point of cavitation in centrifugal pump can be predicted precisely,and the NPSH critical values derived from simulation are consistent with the experimental data.Thus the veracity and reliability of this computational model are verified.Based on the result of numerical simulation,the distribution of vapor volume fraction in the impeller and pressure at the impeller inlet are analyzed.Cavities first appear on the suction side of the blade head near the front shroud.A large number of cavities block the impeller channels,which leads to the sudden drop of head at the cavitation critical point.With the reduction of NPSHa,the distribution of pressure at the impeller inlet is more uniform.%Based on the full cavitation model which adopts homogeneous Sow supposition and considering the compressibility effect on cavitation Row to modify the re-normalization group κ-ε turbulence model by the density function, a computational model is developed to simulate cavitation Bow of a centrifugal pump at low Bow rate. The Navier-Stokes equation is solved with the SIMPLEC algorithm. The calculated curves of net positive suction head available (NPSHa) Hnpshs agree well with the experimental data. The critical point of cavitation in centrifugal pump can be predicted precisely, and the NPSH critical values derived from simulation are consistent with the experimental data. Thus the veracity and reliability of this computational model are veriBed. Based on the result of numerical

  3. Laser-diode pumped self-mode-locked praseodymium visible lasers with multi-gigahertz repetition rate.

    Zhang, Yuxia; Yu, Haohai; Zhang, Huaijin; Di Lieto, Alberto; Tonelli, Mauro; Wang, Jiyang


    We demonstrate efficient laser-diode pumped multi-gigahertz (GHz) self-mode-locked praseodymium (Pr3+) visible lasers with broadband spectra from green to deep red for the first time to our knowledge. With a Pr3+-doped GdLiF4 crystal, stable self-mode-locked visible pulsed lasers at the wavelengths of 522 nm, 607 nm, 639 nm, and 720 nm have been obtained with the repetition rates of 2.8 GHz, 3.1 GHz, 3.1 GHz, and 3.0 GHz, respectively. The maximum output power was 612 mW with the slope efficiency of 46.9% at 639 nm. The mode-locking mechanism was theoretically analyzed. The stable second-harmonic mode-locking with doubled repetition frequency was also realized based on the Fabry-Perot effect formed in the laser cavity. In addition, we find that the polarization directions were turned with lasing wavelengths. This work may provide a new way for generating efficient ultrafast pulses with high- and changeable-repetition rates in the visible range.

  4. On the maximum rate of change in sunspot number growth and the size of the sunspot cycle

    Wilson, Robert M.


    Statistically significant correlations exist between the size (maximum amplitude) of the sunspot cycle and, especially, the maximum value of the rate of rise during the ascending portion of the sunspot cycle, where the rate of rise is computed either as the difference in the month-to-month smoothed sunspot number values or as the 'average rate of growth' in smoothed sunspot number from sunspot minimum. Based on the observed values of these quantities (equal to 10.6 and 4.63, respectively) as of early 1989, it is inferred that cycle 22's maximum amplitude will be about 175 + or - 30 or 185 + or - 10, respectively, where the error bars represent approximately twice the average error found during cycles 10-21 from the two fits.

  5. High energy picosecond Yb:YAG CPA system at 10 Hz repetition rate for pumping optical parametric amplifiers.

    Klingebiel, Sandro; Wandt, Christoph; Skrobol, Christoph; Ahmad, Izhar; Trushin, Sergei A; Major, Zsuzsanna; Krausz, Ferenc; Karsch, Stefan


    We present a chirped pulse amplification (CPA) system based on diode-pumped Yb:YAG. The stretched ns-pulses are amplified and have been compressed to less than 900 fs with an energy of 200 mJ and a repetition rate of 10 Hz. This system is optically synchronized with a broadband seed laser and therefore ideally suited for pumping optical parametric chirped pulse amplification (OPCPA) stages on a ps-timescale.

  6. The Optimum Plate to Plate Spacing for Maximum Heat Transfer Rate from a Flat Plate Type Heat Exchanger

    Ambarita, Himsar; Kishinami, Koki; Daimaruya, Mashashi; Tokura, Ikuo; Kawai, Hideki; Suzuki, Jun; Kobiyama, Mashayosi; Ginting, Armansyah

    The present paper is a study on the optimum plate to plate spacing for maximum heat transfer rate from a flat plate type heat exchanger. The heat exchanger consists of a number of parallel flat plates. The working fluids are flowed at the same operational conditions, either fixed pressure head or fixed fan power input. Parallel and counter flow directions of the working fluids were considered. While the volume of the heat exchanger is kept constant, plate number was varied. Hence, the spacing between plates as well as heat transfer rate will vary and there exists a maximum heat transfer rate. The objective of this paper is to seek the optimum plate to plate spacing for maximum heat transfer rate. In order to solve the problem, analytical and numerical solutions have been carried out. In the analytical solution, the correlations of the optimum plate to plate spacing as a function of the non-dimensional parameters were developed. Furthermore, the numerical simulation is carried out to evaluate the correlations. The results show that the optimum plate to plate spacing for a counter flow heat exchanger is smaller than parallel flow ones. On the other hand, the maximum heat transfer rate for a counter flow heat exchanger is bigger than parallel flow ones.

  7. Increasing the pump-up rate to polarize 3He gas using spin-exchange optical pumping method

    Lee, Wai Tung; Tong, Xin; Rich, Dennis; Liu, Yun; Fleenor, Michael; Ismaili, Akbar; Pierce, Joshua; Hagen, Mark; Dadras, Jonny; Robertson, J. Lee


    In recent years, polarized 3He gas has increasingly been used as neutron polarizers and polarization analyzers. Two of the leading methods to polarize the 3He gas are the spin-exchange optical pumping (SEOP) method and the meta-stable exchange optical pumping (MEOP) method. At present, the SEOP setup is comparatively compact due to the fact that it does not require the sophisticated compressor system used in the MEOP method. The temperature and the laser power available determine the speed, at which the SEOP method polarizes the 3He gas. For the quantity of gas typically used in neutron scattering work, this speed is independent of the quantity of the gas required, whereas the polarizing time using the MEOP method is proportional to the quantity of gas required. Currently, using the SEOP method to polarize several bar-liters of 3He to 70% polarization would require 20-40 h. This is an order of magnitude longer than the MEOP method for the same quantity of gas and polarization. It would therefore be advantageous to speed up the SEOP process. In this article, we analyze the requirements for temperature, laser power, and the type of alkali used in order to shorten the time required to polarize 3He gas using the SEOP method.

  8. Maximum Acceptable Vibrato Excursion as a Function of Vibrato Rate in Musicians and Non-musicians

    Vatti, Marianna; Santurette, Sébastien; Pontoppidan, Niels H.

    and, in most listeners, exhibited a peak at medium vibrato rates (5–7 Hz). Large across-subject variability was observed, and no significant effect of musical experience was found. Overall, most listeners were not solely sensitive to the vibrato excursion and there was a listener-dependent rate...

  9. Maximum Acceptable Vibrato Excursion as a Function of Vibrato Rate in Musicians and Non-musicians

    Vatti, Marianna; Santurette, Sébastien; Pontoppidan, Niels H.


    and, in most listeners, exhibited a peak at medium vibrato rates (5–7 Hz). Large across-subject variability was observed, and no significant effect of musical experience was found. Overall, most listeners were not solely sensitive to the vibrato excursion and there was a listener-dependent rate...

  10. 7 CFR 1.187 - Rulemaking on maximum rates for attorney fees.


    ... the types of proceedings in which the rate should be used. It also should explain fully the reasons... certain types of proceedings), the Department may adopt regulations providing that attorney fees may be awarded at a rate higher than $125 per hour in some or all of the types of proceedings covered by...

  11. Maximum likelihood methods for investigating reporting rates of rings on hunter-shot birds

    Conroy, M.J.; Morgan, B.J.T.; North, P.M.


    It is well known that hunters do not report 100% of the rings that they find on shot birds. Reward studies can be used to estimate what this reporting rate is, by comparison of recoveries of rings offering a monetary reward, to ordinary rings. A reward study of American Black Ducks (Anas rubripes) is used to illustrate the design, and to motivate the development of statistical models for estimation and for testing hypotheses of temporal and geographic variation in reporting rates. The method involves indexing the data (recoveries) and parameters (reporting, harvest, and solicitation rates) by geographic and temporal strata. Estimates are obtained under unconstrained (e.g., allowing temporal variability in reporting rates) and constrained (e.g., constant reporting rates) models, and hypotheses are tested by likelihood ratio. A FORTRAN program, available from the author, is used to perform the computations.

  12. Rate of strong consistency of quasi maximum likelihood estimate in generalized linear models


    [1]McCullagh, P., Nelder, J. A., Generalized Linear Models, New York: Chapman and Hall, 1989.[2]Wedderbum, R. W. M., Quasi-likelihood functions, generalized linear models and Gauss-Newton method,Biometrika, 1974, 61:439-447.[3]Fahrmeir, L., Maximum likelihood estimation in misspecified generalized linear models, Statistics, 1990, 21:487-502.[4]Fahrmeir, L., Kaufmann, H., Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models, Ann. Statist., 1985, 13: 342-368.[5]Melder, J. A., Pregibon, D., An extended quasi-likelihood function, Biometrika, 1987, 74: 221-232.[6]Bennet, G., Probability inequalities for the sum of independent random variables, JASA, 1962, 57: 33-45.[7]Stout, W. F., Almost Sure Convergence, New York:Academic Press, 1974.[8]Petrov, V, V., Sums of Independent Random Variables, Berlin, New York: Springer-Verlag, 1975.

  13. High repetition rate tunable femtosecond pulses and broadband amplification from fiber laser pumped parametric amplifier.

    Andersen, T V; Schmidt, O; Bruchmann, C; Limpert, J; Aguergaray, C; Cormier, E; Tünnermann, A


    We report on the generation of high energy femtosecond pulses at 1 MHz repetition rate from a fiber laser pumped optical parametric amplifier (OPA). Nonlinear bandwidth enhancement in fibers provides the intrinsically synchronized signal for the parametric amplifier. We demonstrate large tunability extending from 700 nm to 1500 nm of femtosecond pulses with pulse energies as high as 1.2 muJ when the OPA is seeded by a supercontinuum generated in a photonic crystal fiber. Broadband amplification over more than 85 nm is achieved at a fixed wavelength. Subsequent compression in a prism sequence resulted in 46 fs pulses. With an average power of 0.5 W these pulses have a peak-power above 10 MW. In particular, the average power and pulse energy scalability of both involved concepts, the fiber laser and the parametric amplifier, will enable easy up-scaling to higher powers.

  14. Maximum growth rate of Mycobacterium avium in continuous culture or chronically infected BALB/c mice.

    McCarthy, C M; Taylor, M A; Dennis, M W


    Mycobacterium avium is a human pathogen which may cause either chronic or disseminated disease and the organism exhibits a slow rate of growth. This study provides information on the growth rate of the organism in chronically infected mice and its maximal growth rate in vitro. M. avium was grown in continuous culture, limited for nitrogen with 0.5 mM ammonium chloride and dilution rates that ranged from 0.054 to 0.153 h-1. The steady-state concentration of ammonia nitrogen and M. avium cells for each dilution rate were determined. The bacterial saturation constant for growth-limiting ammonia was 0.29 mM (4 micrograms nitrogen/ml) and, from this, the maximal growth rate for M. avium was estimated to be 0.206 h-1 or a doubling time of 3.4 h. BALB/c mice were infected intravenously with 3 x 10(6) colony-forming units and a chronic infection resulted, typical of virulent M. avium strains. During a period of 3 months, the number of mycobacteria remained constant in the lungs, but increased 30-fold and 8,900-fold, respectively, in the spleen and mesenteric lymph nodes. The latter increase appeared to be due to proliferation in situ. The generation time of M. avium in the mesenteric lymph nodes was estimated to be 7 days.

  15. Comparing maximum rate and sustainability of pacing by mechanical vs. electrical stimulation in the Langendorff-perfused rabbit heart.

    Quinn, T Alexander; Kohl, Peter


    Mechanical stimulation (MS) represents a readily available, non-invasive means of pacing the asystolic or bradycardic heart in patients, but benefits of MS at higher heart rates are unclear. Our aim was to assess the maximum rate and sustainability of excitation by MS vs. electrical stimulation (ES) in the isolated heart under normal physiological conditions. Trains of local MS or ES at rates exceeding intrinsic sinus rhythm (overdrive pacing; lowest pacing rates 2.5±0.5 Hz) were applied to the same mid-left ventricular free-wall site on the epicardium of Langendorff-perfused rabbit hearts. Stimulation rates were progressively increased, with a recovery period of normal sinus rhythm between each stimulation period. Trains of MS caused repeated focal ventricular excitation from the site of stimulation. The maximum rate at which MS achieved 1:1 capture was lower than during ES (4.2±0.2 vs. 5.9±0.2 Hz, respectively). At all overdrive pacing rates for which repetitive MS was possible, 1:1 capture was reversibly lost after a finite number of cycles, even though same-site capture by ES remained possible. The number of MS cycles until loss of capture decreased with rising stimulation rate. If interspersed with ES, the number of MS to failure of capture was lower than for MS only. In this study, we demonstrate that the maximum pacing rate at which MS can be sustained is lower than that for same-site ES in isolated heart, and that, in contrast to ES, the sustainability of successful 1:1 capture by MS is limited. The mechanism(s) of differences in MS vs. ES pacing ability, potentially important for emergency heart rhythm management, are currently unknown, thus warranting further investigation. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Cardiology.

  16. Maximum Rate of Growth of Enstrophy in Solutions of the Fractional Burgers Equation

    Yun, Dongfang


    This investigation is a part of a research program aiming to characterize the extreme behavior possible in hydrodynamic models by probing the sharpness of estimates on the growth of certain fundamental quantities. We consider here the rate of growth of the classical and fractional enstrophy in the fractional Burgers equation in the subcritical, critical and supercritical regime. First, we obtain estimates on these rates of growth and then show that these estimates are sharp up to numerical prefactors. In particular, we conclude that the power-law dependence of the enstrophy rate of growth on the fractional dissipation exponent has the same global form in the subcritical, critical and parts of the supercritical regime. This is done by numerically solving suitably defined constrained maximization problems and then demonstrating that for different values of the fractional dissipation exponent the obtained maximizers saturate the upper bounds in the estimates as the enstrophy increases. In addition, nontrivial be...

  17. Rate of strong consistency of quasi maximum likelihood estimate in generalized linear models

    YUE Li; CHEN Xiru


    Under the assumption that in the generalized linear model (GLM) the expectation of the response variable has a correct specification and some other smooth conditions,it is shown that with probability one the quasi-likelihood equation for the GLM has a solution when the sample size n is sufficiently large. The rate of this solution tending to the true value is determined. In an important special case, this rate is the same as specified in the LIL for iid partial sums and thus cannot be improved anymore.

  18. Allometric equations for maximum filtration rate in blue mussels Mytilus edulis and importance of condition index

    Riisgård, Hans Ulrik; Larsen, Poul Scheel; Pleissner, Daniel


    rate (F, l h-1), W (g), and L (mm) as described by the equations: FW = aWb and FL = cLd, respectively. This is done by using available and new experimental laboratory data on M. edulis obtained by members of the same research team using different methods and controlled diets of cultivated algal cells...

  19. Maximum organic loading rate for the single-stage wet anaerobic digestion of food waste.

    Nagao, Norio; Tajima, Nobuyuki; Kawai, Minako; Niwa, Chiaki; Kurosawa, Norio; Matsuyama, Tatsushi; Yusoff, Fatimah Md; Toda, Tatsuki


    Anaerobic digestion of food waste was conducted at high OLR from 3.7 to 12.9 kg-VS m(-3) day(-1) for 225 days. Periods without organic loading were arranged between the each loading period. Stable operation at an OLR of 9.2 kg-VS (15.0 kg-COD) m(-3) day(-1) was achieved with a high VS reduction (91.8%) and high methane yield (455 mL g-VS-1). The cell density increased in the periods without organic loading, and reached to 10.9×10(10) cells mL(-1) on day 187, which was around 15 times higher than that of the seed sludge. There was a significant correlation between OLR and saturated TSS in the sludge (y=17.3e(0.1679×), r(2)=0.996, P<0.05). A theoretical maximum OLR of 10.5 kg-VS (17.0 kg-COD) m(-3) day(-1) was obtained for mesophilic single-stage wet anaerobic digestion that is able to maintain a stable operation with high methane yield and VS reduction.

  20. Validity of heart rate based nomogram fors estimation of maximum oxygen uptake in Indian population.

    Kumar, S Krishna; Khare, P; Jaryal, A K; Talwar, A


    Maximal oxygen uptake (VO2max) during a graded maximal exercise test is the objective method to assess cardiorespiratory fitness. Maximal oxygen uptake testing is limited to only a few laboratories as it requires trained personnel and strenuous effort by the subject. At the population level, submaximal tests have been developed to derive VO2max indirectly based on heart rate based nomograms or it can be calculated using anthropometric measures. These heart rate based predicted standards have been developed for western population and are used routinely to predict VO2max in Indian population. In the present study VO2max was directly measured by maximal exercise test using a bicycle ergometer and was compared with VO2max derived by recovery heart rate in Queen's College step test (QCST) (PVO2max I) and with VO2max derived from Wasserman equation based on anthropometric parameters and age (PVO2max II) in a well defined age group of healthy male adults from New Delhi. The values of directly measured VO2max showed no significant correlation either with the estimated VO2max with QCST or with VO2max predicted by Wasserman equation. Bland and Altman method of approach for limit of agreement between VO2max and PVO2max I or PVO2max II revealed that the limits of agreement between directly measured VO2max and PVO2max I or PVO2max II was large indicating inapplicability of prediction equations of western population in the population under study. Thus it is evident that there is an urgent need to develop nomogram for Indian population, may be even for different ethnic sub-population in the country.

  1. Longitudinal Examination of Age-Predicted Symptom-Limited Exercise Maximum Heart Rate

    Zhu, Na; Suarez, Jose; Sidney, Steve; Sternfeld, Barbara; Schreiner, Pamela J.; Carnethon, Mercedes R.; Lewis, Cora E.; Crow, Richard S.; Bouchard, Claude; Haskell, William; Jacobs, David R.


    Purpose To estimate the association of age with maximal heart rate (MHR). Methods Data were obtained in the Coronary Artery Risk Development in Young Adults (CARDIA) study. Participants were black and white men and women aged 18-30 in 1985-86 (year 0). A symptom-limited maximal graded exercise test was completed at years 0, 7, and 20 by 4969, 2583, and 2870 participants, respectively. After exclusion 9622 eligible tests remained. Results In all 9622 tests, estimated MHR (eMHR, beats/minute) had a quadratic relation to age in the age range 18 to 50 years, eMHR=179+0.29*age-0.011*age2. The age-MHR association was approximately linear in the restricted age ranges of consecutive tests. In 2215 people who completed both year 0 and 7 tests (age range 18 to 37), eMHR=189–0.35*age; and in 1574 people who completed both year 7 and 20 tests (age range 25 to 50), eMHR=199–0.63*age. In the lowest baseline BMI quartile, the rate of decline was 0.20 beats/minute/year between years 0-7 and 0.51 beats/minute/year between years 7-20; while in the highest baseline BMI quartile there was a linear rate of decline of approximately 0.7 beats/minute/year over the full age of 18 to 50 years. Conclusion Clinicians making exercise prescriptions should be aware that the loss of symptom-limited MHR is much slower at young adulthood and more pronounced in later adulthood. In particular, MHR loss is very slow in those with lowest BMI below age 40. PMID:20639723

  2. Measurement of phytoplankton photosynthesis rate using a pump-and-probe fluorometer

    Taras K. Antal


    Full Text Available In this work we have studied the possibility of determining the rate of phytoplankton photosynthesis in situ using a submersible pump-and-probe fluorometer in water areas differing in their trophic level, as well as in climatic and hydrophysical characteristics. A biophysical model was used to describe the relationship between photosynthesis, underwater irradiance, and the intensity of phytoplankton fluorescence excited by an artificial light source. Fluorescence intensity was used as a measure of light absorption by phytoplankton and for assessing the efficiency of photochemical energy conversion at photosynthetic reaction centers. Parameters of the model that could not be measured experimentally were determined by calibrating fluorescence and irradiance data against the primary production measured in the Baltic Sea with the radioactive carbon method. It was shown that the standard deviation of these parameters in situ did not exceed 20%, and the use of their mean values to estimate the phytoplankton photosynthetic rate showed a good correlation between the calculated and meas

  3. Maximum Likelihood based comparison of the specific growth rates for P. aeruginosa and four mutator strains

    Philipsen, Kirsten Riber; Christiansen, Lasse Engbo; Mandsberg, Lotte Frigaard


    with an exponentially decaying function of the time between observations is suggested. A model with a full covariance structure containing OD-dependent variance and an autocorrelation structure is compared to a model with variance only and with no variance or correlation implemented. It is shown that the model...... are used for parameter estimation. The data is log-transformed such that a linear model can be applied. The transformation changes the variance structure, and hence an OD-dependent variance is implemented in the model. The autocorrelation in the data is demonstrated, and a correlation model...... that best describes data is a model taking into account the full covariance structure. An inference study is made in order to determine whether the growth rate of the five bacteria strains is the same. After applying a likelihood-ratio test to models with a full covariance structure, it is concluded...

  4. Efficient intracavity frequency doubling of a high-repetition-rate diode-pumped Nd:YAG laser.

    Hanson, F; Poirier, P


    Efficient operation of a pulsed, high-repetition-rate diode-pumped and intracavity frequency-doubled Nd:YAG laser is reported. A 3-mm-diameter laser rod was side-pumped with a 5-bar stack of high-duty-cycle 1-cm diodearrays. The average Q-switched power at 1.06microum was 3.8 W at 1.33 kH(z), and more than 4 W at 0.532 ,microm wasobtained through intracavity frequency doubling with LiB(3)O(5).

  5. Maximum type I error rate inflation from sample size reassessment when investigators are blind to treatment labels.

    Żebrowska, Magdalena; Posch, Martin; Magirr, Dominic


    Consider a parallel group trial for the comparison of an experimental treatment to a control, where the second-stage sample size may depend on the blinded primary endpoint data as well as on additional blinded data from a secondary endpoint. For the setting of normally distributed endpoints, we demonstrate that this may lead to an inflation of the type I error rate if the null hypothesis holds for the primary but not the secondary endpoint. We derive upper bounds for the inflation of the type I error rate, both for trials that employ random allocation and for those that use block randomization. We illustrate the worst-case sample size reassessment rule in a case study. For both randomization strategies, the maximum type I error rate increases with the effect size in the secondary endpoint and the correlation between endpoints. The maximum inflation increases with smaller block sizes if information on the block size is used in the reassessment rule. Based on our findings, we do not question the well-established use of blinded sample size reassessment methods with nuisance parameter estimates computed from the blinded interim data of the primary endpoint. However, we demonstrate that the type I error rate control of these methods relies on the application of specific, binding, pre-planned and fully algorithmic sample size reassessment rules and does not extend to general or unplanned sample size adjustments based on blinded data. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  6. Scaling of resting and maximum hopping metabolic rate throughout the life cycle of the locust Locusta migratoria.

    Snelling, Edward P; Seymour, Roger S; Matthews, Philip G D; Runciman, Sue; White, Craig R


    The hemimetabolous migratory locust Locusta migratoria progresses through five instars to the adult, increasing in size from 0.02 to 0.95 g, a 45-fold change. Hopping locomotion occurs at all life stages and is supported by aerobic metabolism and provision of oxygen through the tracheal system. This allometric study investigates the effect of body mass (Mb) on oxygen consumption rate (MO2, μmol h(-1)) to establish resting metabolic rate (MRO2), maximum metabolic rate during hopping (MMO2) and maximum metabolic rate of the hopping muscles (MMO2,hop) in first instar, third instar, fifth instar and adult locusts. Oxygen consumption rates increased throughout development according to the allometric equations MRO2=30.1Mb(0.83±0.02), MMO2=155Mb(1.01±0.02), MMO2,hop=120Mb(1.07±0.02) and, if adults are excluded, MMO2,juv=136Mb(0.97±0.02) and MMO2,juv,hop=103Mb(1.02±0.02). Increasing body mass by 20-45% with attached weights did not increase mass-specific MMO2 significantly at any life stage, although mean mass-specific hopping MO2 was slightly higher (ca. 8%) when juvenile data were pooled. The allometric exponents for all measures of metabolic rate are much greater than 0.75, and therefore do not support West, Brown and Enquist’s optimised fractal network model, which predicts that metabolism scales with a 3⁄4-power exponent owing to limitations in the rate at which resources can be transported within the body.

  7. ReplacementMatrix: a web server for maximum-likelihood estimation of amino acid replacement rate matrices.

    Dang, Cuong Cao; Lefort, Vincent; Le, Vinh Sy; Le, Quang Si; Gascuel, Olivier


    Amino acid replacement rate matrices are an essential basis of protein studies (e.g. in phylogenetics and alignment). A number of general purpose matrices have been proposed (e.g. JTT, WAG, LG) since the seminal work of Margaret Dayhoff and co-workers. However, it has been shown that matrices specific to certain protein groups (e.g. mitochondrial) or life domains (e.g. viruses) differ significantly from general average matrices, and thus perform better when applied to the data to which they are dedicated. This Web server implements the maximum-likelihood estimation procedure that was used to estimate LG, and provides a number of tools and facilities. Users upload a set of multiple protein alignments from their domain of interest and receive the resulting matrix by email, along with statistics and comparisons with other matrices. A non-parametric bootstrap is performed optionally to assess the variability of replacement rate estimates. Maximum-likelihood trees, inferred using the estimated rate matrix, are also computed optionally for each input alignment. Finely tuned procedures and up-to-date ML software (PhyML 3.0, XRATE) are combined to perform all these heavy calculations on our clusters. Supplementary data are available at

  8. Relationship between silent atrial fibrillation and the maximum heart rate in the 24-hour Holter: cross-sectional study.

    Kruse, Marcelo Lapa; Kruse, José Cláudio Lupi; Leiria, Tiago Luiz Luz; Pires, Leonardo Martins; Gensas, Caroline Saltz; Gomes, Daniel Garcia; Boris, Douglas; Mantovani, Augusto; Lima, Gustavo Glotz de


    Occurrences of asymptomatic atrial fibrillation (AF) are common. It is important to identify AF because it increases morbidity and mortality. 24-hour Holter has been used to detect paroxysmal AF (PAF). The objective of this study was to investigate the relationship between occurrence of PAF in 24-hour Holter and the symptoms of the population studied. Cross-sectional study conducted at a cardiology hospital. 11,321 consecutive 24-hour Holter tests performed at a referral service were analyzed. Patients with pacemakers or with AF throughout the recording were excluded. There were 75 tests (0.67%) with PAF. The mean age was 67 ± 13 years and 45% were female. The heart rate (HR) over the 24 hours was a minimum of 45 ± 8 bpm, mean of 74 ± 17 bpm and maximum of 151 ± 32 bpm. Among the tests showing PAF, only 26% had symptoms. The only factor tested that showed a correlation with symptomatic AF was maximum HR (165 ± 34 versus 147 ± 30 bpm) (P = 0.03). Use of beta blockers had a protective effect against occurrence of PAF symptoms (odds ratio: 0.24, P = 0.031). PAF is a rare event in 24-hour Holter. The maximum HR during the 24 hours was the only factor correlated with symptomatic AF, and use of beta blockers had a protective effect against AF symptom occurrence.

  9. Comparative Study of Peak Expiratory Flow Rate and Maximum Voluntary Ventilation Between Smokers and Non-Smokers

    Karia Ritesh M


    Full Text Available Objective: Objectives of this study is to study effect of smoking on Peak Expiratory Flow Rate and Maximum Voluntary Ventilation in apparently healthy tobacco smokers and non-smokers and to compare the result of both the studies to assess the effects of smoking Method: The present study was carried out by computerized software of Pulmonary Function Test named ‘Spiro Excel’ on 50 non-smokers and 50 smokers. Smokers are divided in three gropus. Full series of test take 4 to 5 minutes. Tests were compared in the both smokers and non-smokers group by the ‘unpaired t test’. Statistical significance was indicated by ‘p’ value < 0.05. Results: From the result it is found that actual value of Peak Expiratory Flow Rate and Maximum Voluntary Ventilation are significantly lower in all smokers group than non-smokers. The difference of actual mean value is increases as the degree of smoking increases. [National J of Med Res 2012; 2(2.000: 191-193

  10. The differential effect of metabolic alkalosis on maximum force and rate of force development during repeated, high-intensity cycling.

    Siegler, Jason C; Marshall, Paul W M; Raftry, Sean; Brooks, Cristy; Dowswell, Ben; Romero, Rick; Green, Simon


    The purpose of this investigation was to assess the influence of sodium bicarbonate supplementation on maximal force production, rate of force development (RFD), and muscle recruitment during repeated bouts of high-intensity cycling. Ten male and female (n = 10) subjects completed two fixed-cadence, high-intensity cycling trials. Each trial consisted of a series of 30-s efforts at 120% peak power output (maximum graded test) that were interspersed with 30-s recovery periods until task failure. Prior to each trial, subjects consumed 0.3 g/kg sodium bicarbonate (ALK) or placebo (PLA). Maximal voluntary contractions were performed immediately after each 30-s effort. Maximal force (F max) was calculated as the greatest force recorded over a 25-ms period throughout the entire contraction duration while maximal RFD (RFD max) was calculated as the greatest 10-ms average slope throughout that same contraction. F max declined similarly in both the ALK and PLA conditions, with baseline values (ALK: 1,226 ± 393 N; PLA: 1,222 ± 369 N) declining nearly 295 ± 54 N [95% confidence interval (CI) = 84-508 N; P force vs. maximum rate of force development during a whole body fatiguing task.

  11. Depressed pacemaker activity of sinoatrial node myocytes contributes to the age-dependent decline in maximum heart rate

    Larson, Eric D.; St. Clair, Joshua R.; Sumner, Whitney A.; Bannister, Roger A.; Proenza, Cathy


    An inexorable decline in maximum heart rate (mHR) progressively limits human aerobic capacity with advancing age. This decrease in mHR results from an age-dependent reduction in “intrinsic heart rate” (iHR), which is measured during autonomic blockade. The reduced iHR indicates, by definition, that pacemaker function of the sinoatrial node is compromised during aging. However, little is known about the properties of pacemaker myocytes in the aged sinoatrial node. Here, we show that depressed excitability of individual sinoatrial node myocytes (SAMs) contributes to reductions in heart rate with advancing age. We found that age-dependent declines in mHR and iHR in ECG recordings from mice were paralleled by declines in spontaneous action potential (AP) firing rates (FRs) in patch-clamp recordings from acutely isolated SAMs. The slower FR of aged SAMs resulted from changes in the AP waveform that were limited to hyperpolarization of the maximum diastolic potential and slowing of the early part of the diastolic depolarization. These AP waveform changes were associated with cellular hypertrophy, reduced current densities for L- and T-type Ca2+ currents and the “funny current” (If), and a hyperpolarizing shift in the voltage dependence of If. The age-dependent reduction in sinoatrial node function was not associated with changes in β-adrenergic responsiveness, which was preserved during aging for heart rate, SAM FR, L- and T-type Ca2+ currents, and If. Our results indicate that depressed excitability of individual SAMs due to altered ion channel activity contributes to the decline in mHR, and thus aerobic capacity, during normal aging. PMID:24128759

  12. Error Rates of the Maximum-Likelihood Detector for Arbitrary Constellations: Convex/Concave Behavior and Applications

    Loyka, Sergey; Gagnon, Francois


    Motivated by a recent surge of interest in convex optimization techniques, convexity/concavity properties of error rates of the maximum likelihood detector operating in the AWGN channel are studied and extended to frequency-flat slow-fading channels. Generic conditions are identified under which the symbol error rate (SER) is convex/concave for arbitrary multi-dimensional constellations. In particular, the SER is convex in SNR for any one- and two-dimensional constellation, and also in higher dimensions at high SNR. Pairwise error probability and bit error rate are shown to be convex at high SNR, for arbitrary constellations and bit mapping. Universal bounds for the SER 1st and 2nd derivatives are obtained, which hold for arbitrary constellations and are tight for some of them. Applications of the results are discussed, which include optimum power allocation in spatial multiplexing systems, optimum power/time sharing to decrease or increase (jamming problem) error rate, an implication for fading channels ("fa...

  13. End-pumped all solid-state high repetition rate Tm, Ho:LuLF laser

    Shijiang Shu; Ting Yu; Junyan Hou; Rongtao Liu; Minjie Huang; Weibiao Chen


    @@ The characteristics of diode end-pumped Tm,Ho:LuLiF for continuous wave (CW) running and high pulse repetition frequency (PRF) Q-switched operation are illustrated. In the CW mode, 950-mW output power with a slope efficiency of 24% is obtained. In the Q-switched mode, output energy of 78 μJ under 10 kHz with a slope efficiency of 23% is achieved. The pulse stability, pulse width as a function of pump intensity, and spectral characteristics are also analyzed.%The characteristics of diode end-pumped Tm,Ho:LuLiF for continuous wave (CW) running and high pulse repetition frequency (PRF) Q-switched operation are illustrated. In the CW mode, 950-mW output power with a slope efficiency of 24% is obtained. In the Q-switched mode, output energy of 78μJ under 10 kHz with a slope efficiency of 23% is achieved. The pulse stability, pulse width as a function of pump intensity, and spectral characteristics are also analyzed.

  14. Nectar intake rate is modulated by changes in sucking pump activity according to colony starvation in carpenter ants.

    Falibene, Agustina; Josens, Roxana


    Dynamics of fluid feeding has been deeply studied in insects. However, the ability to vary the nectar-intake rate depending only on the carbohydrate deprivation has been clearly demonstrated only in Camponotus mus ants. When insect morphometry and fluid properties remain constant, changes in intake rate could only be attributed to variations in sucking pump activity. Previous records of the electrical activity generated during feeding in C. mus have revealed two different signal patterns: the regular (RP, frequencies: 2-5 Hz) and the irregular (IP, frequencies: 7-12 Hz). This work studies the mechanism underlying food intake-rate modulation in ants by analysing whether these patterns are involved. Behaviour and electrical activity generated by ants at different starvation levels were analysed during feeding on sucrose solutions. Ants were able to modulate the intake rate for a variety of sucrose concentrations (10, 40 and 60%w/w). The IP only occurred for 60% of solutions and its presence did not affect the intake rate. However, during the RP generated under the starved state, we found frequencies up to 7.5 Hz. RP frequencies positively correlated with the intake-rate for all sucrose concentrations. Hence, intake-rate modulation according to sugar deprivation is mainly achieved by the ant's ability to vary the pumping frequency.

  15. Releasable activity and maximum permissible leakage rate within a transport cask of Tehran Research Reactor fuel samples

    Rezaeian Mahdi


    Full Text Available Containment of a transport cask during both normal and accident conditions is important to the health and safety of the public and of the operators. Based on IAEA regulations, releasable activity and maximum permissible volumetric leakage rate within the cask containing fuel samples of Tehran Research Reactor enclosed in an irradiated capsule are calculated. The contributions to the total activity from the four sources of gas, volatile, fines, and corrosion products are treated separately. These calculations are necessary to identify an appropriate leak test that must be performed on the cask and the results can be utilized as the source term for dose evaluation in the safety assessment of the cask.

  16. Effects of adipose tissue distribution on maximum lipid oxidation rate during exercise in normal-weight women.

    Isacco, L; Thivel, D; Duclos, M; Aucouturier, J; Boisseau, N


    Fat mass localization affects lipid metabolism differently at rest and during exercise in overweight and normal-weight subjects. The aim of this study was to investigate the impact of a low vs high ratio of abdominal to lower-body fat mass (index of adipose tissue distribution) on the exercise intensity (Lipox(max)) that elicits the maximum lipid oxidation rate in normal-weight women. Twenty-one normal-weight women (22.0 ± 0.6 years, 22.3 ± 0.1 kg.m(-2)) were separated into two groups of either a low or high abdominal to lower-body fat mass ratio [L-A/LB (n = 11) or H-A/LB (n = 10), respectively]. Lipox(max) and maximum lipid oxidation rate (MLOR) were determined during a submaximum incremental exercise test. Abdominal and lower-body fat mass were determined from DXA scans. The two groups did not differ in aerobic fitness, total fat mass, or total and localized fat-free mass. Lipox(max) and MLOR were significantly lower in H-A/LB vs L-A/LB women (43 ± 3% VO(2max) vs 54 ± 4% VO(2max), and 4.8 ± 0.6 mg min(-1)kg FFM(-1)vs 8.4 ± 0.9 mg min(-1)kg FFM(-1), respectively; P normal-weight women, a predominantly abdominal fat mass distribution compared with a predominantly peripheral fat mass distribution is associated with a lower capacity to maximize lipid oxidation during exercise, as evidenced by their lower Lipox(max) and MLOR. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Optimization of pumping rate and recharge through numerical modeling with special reference to small coral island aquifer

    Banerjee, Pallavi; Singh, V. S.

    The groundwater is the only source of availability of fresh water in tiny coral islands. In the past decades, there has been growing demand for fresh water to meet the need of domestic besides other purposes. The aquifer system on these islands is fragile besides being subjected to various stresses like high subsurface discharge, increased abstraction, improper disposal of waste water and tidal waves of ocean all of which subject the aquifer prone to sea water intrusion and thus reduction and deterioration the water quality. Therefore, understanding the aquifer’s behavior and then work out a sustainable option for fresh water is essential. The paper concerns optimizing of pumping and artificial recharge paces to reduce the effects of various stresses over tiny and fragile lens-shaped coral island aquifer system. The density driven ground water flow was simulated using SEAWAT (MODFLOW and MT3D based computer program) model. Detailed hydrogeological investigations were carried out to determine the quantity of freshwater that could be pumped to avoid the seawater intrusion into the aquifer through modeling. Initial heads, physical parameters and boundary conditions of the study area have been defined in the model based on field data, geophysical measurements and interpretations and hydrogeological studies. The model was calibrated by obtaining a match of computed and observed values of the water table, as hydraulic head is much more sensitive to pumping rates than any other stress. A few sentences about: flow model were utilized to derive optimal pumping rate; the effect of artificial recharge through the model, has also proved that the salt-water intrusion could be stopped by raising the water level through temporarily storing the artificially recharged water post construction of subsurface dam near the coast.

  18. Estimation of the players maximum heart rate in real game situations in team sports: a practical propose

    Jorge Cuadrado Reyes


    Full Text Available Abstract   This  research developed a logarithms  for calculating the maximum heart rate (max. HR for players in team sports in  game situations. The sample was made of  thirteen players (aged 24 ± 3   to a  Division Two Handball team. HR was initially measured by Course Navette test.  Later, twenty one training sessions were conducted  in which HR and Rate of Perceived Exertion (RPE, were  continuously monitored, in each task. A lineal regression analysis was done  to help find a max. HR prediction equation from the max. HR of the three highest intensity sessions. Results from  this equation correlate significantly with data obtained in the Course Navette test and with those obtained by other indirect methods. The conclusion of this research is that this equation provides a very useful and easy way to measure the max. HR in real game situations, avoiding non-specific analytical tests and, therefore laboratory testing..   Key words: workout control, functional evaluation, prediction equation.

  19. 34 CFR 614.6 - What is the maximum indirect cost rate for all consortium members and any cost-type contract?


    ... PREPARING TOMORROW'S TEACHERS TO USE TECHNOLOGY § 614.6 What is the maximum indirect cost rate for all... requirements; or (3) Charged by the grantee to another Federal award. (Authority: 20 U.S.C. 6832)...

  20. Effect of phentolamine, alprenolol and prenylamine on maximum rate of rise of action potential in guinea-pig papillary muscles.

    Sada, H


    Effects of phentolamine (13.3, 26.5 and 53.0 micron), alprenolol (3.5, 7.0 and 17.5 micron) and prenylamine (2.4, 4.8 and 11.9 micron) on the transmembrane potential were studied in isolated guinea-pig papillary muscles, superfused with Tyrode's solution. 1. Phentolamine, alprenolol and prenylamine reduced the maximum rate of rise of action potential (.Vmax) dose-dependently. Higher concentrations of phentolamine and prenylamine caused a loss of plateau in a majority of the preparations. Resting potential was not altered by any of the drugs. Readmittance of drug-free Tyrode's solution reversed these changes induced by 13.3 micron of phentolamine and all conconcentrations of alprenolol almost completely but those induced by higher concentrations of phentolamine and all concentrations of prenylamine only slightly. 2. .Vmax at steady state was increased with decreasing driving frequencies (0.5 and 0.25 Hz) and was decreased with increasing ones (2--5 Hz) in comparison with that at 1 Hz. Such changes were all exaggerated by the above drugs, particularly by prenylamine. 3. Prenylamine and, to a lesser degree, phentolamine and alprenolol delayed dose-dependently the recovery process of .Vmax in premature responses. 4. .Vmax in the first response after interruption of stimulation recovered toward the predrug value in the presence of the above three drugs. The time constants of recovery process ranged between 10.5 and 15.0s for phentolamine, between 4.5 and 15.5s for alprenolol. The time constant of the main component was estimated to be approximately 2s for the recovery process with prenylamine. 5. On the basis of the model recently proposed by Hondeghem and Katzung (1977), it is suggested that the drug molecules associate with the open sodium channels and dissociated slowly from the closed channels and that the inactivation parameter in the drug-associated channels is shifted in the hyperpolarizing direction.

  1. Relationship between visual prostate score (VPSS and maximum flow rate (Qmax in men with urinary tract symptoms

    Mazhar A. Memon


    Full Text Available ABSTRACT Objective: To evaluate correlation between visual prostate score (VPSS and maximum flow rate (Qmax in men with lower urinary tract symptoms. Material and Methods: This is a cross sectional study conducted at a university Hospital. Sixty-seven adult male patients>50 years of age were enrolled in the study after signing an informed consent. Qmax and voided volume recorded at uroflowmetry graph and at the same time VPSS were assessed. The education level was assessed in various defined groups. Pearson correlation coefficient was computed for VPSS and Qmax. Results: Mean age was 66.1±10.1 years (median 68. The mean voided volume on uroflowmetry was 268±160mL (median 208 and the mean Qmax was 9.6±4.96mLs/sec (median 9.0. The mean VPSS score was 11.4±2.72 (11.0. In the univariate linear regression analysis there was strong negative (Pearson's correlation between VPSS and Qmax (r=848, p<0.001. In the multiple linear regression analyses there was a significant correlation between VPSS and Qmax (β- after adjusting the effect of age, voided volume (V.V and level of education. Multiple linear regression analysis done for independent variables and results showed that there was no significant correlation between the VPSS and independent factors including age (p=0.27, LOE (p=0.941 and V.V (p=0.082. Conclusion: There is a significant negative correlation between VPSS and Qmax. The VPSS can be used in lieu of IPSS score. Men even with limited educational background can complete VPSS without assistance.

  2. A Methodology for the Optimization of Flow Rate Injection to Looped Water Distribution Networks through Multiple Pumping Stations

    Christian León-Celi


    Full Text Available The optimal function of a water distribution network is reached when the consumer demands are satisfied using the lowest quantity of energy, maintaining the minimal pressure required at the same time. One way to achieve this is through optimization of flow rate injection based on the use of the setpoint curve concept. In order to obtain that, a methodology is proposed. It allows for the assessment of the flow rate and pressure head that each pumping station has to provide for the proper functioning of the network while the minimum power consumption is kept. The methodology can be addressed in two ways: the discrete method and the continuous method. In the first method, a finite set of combinations is evaluated between pumping stations. In the continuous method, the search for the optimal solution is performed using optimization algorithms. In this paper, Hooke–Jeeves and Nelder–Mead algorithms are used. Both the hydraulics and the objective function used by the optimization are solved through EPANET and its Toolkit. Two case studies are evaluated, and the results of the application of the different methods are discussed.

  3. Performance of a Centrifugal Slurry Pump

    Hawas Yahya Bajawi


    Full Text Available The aim of this study was to experimentally investigate the effect of speed, concentration and size of slurry on the performance of a centrifugal pump. For this purpose a facility was built where the performance of a centrifugal slurry pump was examined using aggregate slurry. Three sizes of slurry with three concentrations and at three impeller speeds were used for the performance investigations of a centrifugal slurry pump. As a reference performance the performance of centrifugal slurry pump was also tested with clean water. The performance of pump has been reported as variations of head, power and efficiency at various flow rates along with the system characteristics of the pump. The results reveal that the pump performance is grossly affected by the type of slurry, its concentration and size. Besides this the variation in speed also affects the performance as is observed in pumps with water. The maximum decrease in the head, with respect to clear water, at the operating point was found to be 47% for aggregate for size 20 mm, 15% concentration and 2600 rpm. The maximum decrement in efficiency at operating point for aggregate was found to be 47% for 4 mm size, 15% concentration and at 2200 rpm. The power increment requirement for aggregate was 9% for 4 mm size, 15% concentration and 2600 rpm.

  4. High energy high repetition rate compact picosecond Holmium YLF laser for mid-IR OPCPA pumping

    Sanchez, Daniel; Biegert, Jens; Matras, Guillaume; Simon-Boisson, Christophe


    Holmium YLF laser developed in order to be used as the puming laser for the first mid-IR optical parametric chirped pulse amplifier (OPCPA) operating at a center wavelength of 7 μm with output parameters suitable already for strong-field experiments. It is also the first demonstration of an Optical Parametric Chirped Pulse Amplifier (OPCPA) using a 2 μm laser pump source which enables the use of nonoxide nonlinear crystals with typically limited transparency at 1 mm wavelength. This new OPCPA system is alloptically synchronized and generates 0.2 mJ energy, CEP stable optical pulses. The pulses are currently compressed to sub-8 optical cycles but support a sub-4 cycle pulse duration. The discrepancy in compression is due to uncompensated higher order phase from the grating compressor which will be addressed in the future.

  5. Insulin Pump Therapy Is Associated with Lower Rates of Retinopathy and Peripheral Nerve Abnormality

    Zabeen, Bedowra; Craig, Maria E.; Virk, Sohaib A.; Pryke, Alison; Chan, Albert K. F.; Cho, Yoon Hi; Benitez-Aguirre, Paul Z.; Hing, Stephen; Donaghue, Kim C.


    Objective To compare rates of microvascular complications in adolescents with type 1 diabetes treated with continuous subcutaneous insulin infusion (CSII) versus multiple daily injections (MDI). Research Design and Methods Prospective cohort of 989 patients (aged 12–20 years; diabetes duration >5 years) treated with CSII or MDI for >12 months. Microvascular complications were assessed from 2000–14: early retinopathy (seven-field fundal photography), peripheral nerve function (thermal and vibration threshold testing), autonomic nerve abnormality (heart rate variability analysis of electrocardiogram recordings) and albuminuria (albumin creatinine ratio/timed overnight albumin excretion). Generalized estimating equations (GEE) were used to examine the relationship between treatment and complications rates, adjusting for socio-economic status (SES) and known risk factors including HbA1c and diabetes duration. Results Comparing CSII with MDI: HbA1C was 8.6% [70mmol/mol] vs. 8.7% [72 mmol/mol]) (p = 0.7), retinopathy 17% vs. 22% (p = 0.06); microalbuminuria 1% vs. 4% (p = 0.07), peripheral nerve abnormality 27% vs. 33% (p = 0.108) and autonomic nerve abnormality 24% vs. 28% (p = 0.401). In multivariable GEE, CSII use was associated with lower rates of retinopathy (OR 0.66, 95% CI 0.45–0.95, p = 0.029) and peripheral nerve abnormality (OR 0.63, 95% CI 0.42–0.95, p = 0.026), but not albuminuria (OR 0.46, 95% CI 0.10–2.17, p = 0.33). SES was not associated with any of the complication outcomes. Conclusions In adolescents, CSII use is associated with lower rates of retinopathy and peripheral nerve abnormality, suggesting an apparent benefit of CSII over MDI independent of glycemic control or SES. PMID:27050468

  6. Insulin Pump Therapy Is Associated with Lower Rates of Retinopathy and Peripheral Nerve Abnormality.

    Bedowra Zabeen

    Full Text Available To compare rates of microvascular complications in adolescents with type 1 diabetes treated with continuous subcutaneous insulin infusion (CSII versus multiple daily injections (MDI.Prospective cohort of 989 patients (aged 12-20 years; diabetes duration >5 years treated with CSII or MDI for >12 months. Microvascular complications were assessed from 2000-14: early retinopathy (seven-field fundal photography, peripheral nerve function (thermal and vibration threshold testing, autonomic nerve abnormality (heart rate variability analysis of electrocardiogram recordings and albuminuria (albumin creatinine ratio/timed overnight albumin excretion. Generalized estimating equations (GEE were used to examine the relationship between treatment and complications rates, adjusting for socio-economic status (SES and known risk factors including HbA1c and diabetes duration.Comparing CSII with MDI: HbA1C was 8.6% [70mmol/mol] vs. 8.7% [72 mmol/mol] (p = 0.7, retinopathy 17% vs. 22% (p = 0.06; microalbuminuria 1% vs. 4% (p = 0.07, peripheral nerve abnormality 27% vs. 33% (p = 0.108 and autonomic nerve abnormality 24% vs. 28% (p = 0.401. In multivariable GEE, CSII use was associated with lower rates of retinopathy (OR 0.66, 95% CI 0.45-0.95, p = 0.029 and peripheral nerve abnormality (OR 0.63, 95% CI 0.42-0.95, p = 0.026, but not albuminuria (OR 0.46, 95% CI 0.10-2.17, p = 0.33. SES was not associated with any of the complication outcomes.In adolescents, CSII use is associated with lower rates of retinopathy and peripheral nerve abnormality, suggesting an apparent benefit of CSII over MDI independent of glycemic control or SES.

  7. Boundary condition effects on maximum groundwater withdrawal in coastal aquifers.

    Lu, Chunhui; Chen, Yiming; Luo, Jian


    Prevention of sea water intrusion in coastal aquifers subject to groundwater withdrawal requires optimization of well pumping rates to maximize the water supply while avoiding sea water intrusion. Boundary conditions and the aquifer domain size have significant influences on simulating flow and concentration fields and estimating maximum pumping rates. In this study, an analytical solution is derived based on the potential-flow theory for evaluating maximum groundwater pumping rates in a domain with a constant hydraulic head landward boundary. An empirical correction factor, which was introduced by Pool and Carrera (2011) to account for mixing in the case with a constant recharge rate boundary condition, is found also applicable for the case with a constant hydraulic head boundary condition, and therefore greatly improves the usefulness of the sharp-interface analytical solution. Comparing with the solution for a constant recharge rate boundary, we find that a constant hydraulic head boundary often yields larger estimations of the maximum pumping rate and when the domain size is five times greater than the distance between the well and the coastline, the effect of setting different landward boundary conditions becomes insignificant with a relative difference between two solutions less than 2.5%. These findings can serve as a preliminary guidance for conducting numerical simulations and designing tank-scale laboratory experiments for studying groundwater withdrawal problems in coastal aquifers with minimized boundary condition effects.

  8. 34 CFR 694.9 - What is the maximum indirect cost rate for an agency of a State or local government?


    ... for an agency of a State or local government? Notwithstanding 34 CFR 75.560-75.562 and 34 CFR 80.22, the maximum indirect cost rate that an agency of a State or local government receiving funds under... a State or local government? 694.9 Section 694.9 Education Regulations of the Offices of...

  9. Origin of dc voltage in type II superconducting flux pumps: field, field rate of change, and current density dependence of resistivity

    Geng, J.; Matsuda, K.; Fu, L.; Fagnard, J.-F.; Zhang, H.; Zhang, X.; Shen, B.; Dong, Q.; Baghdadi, M.; Coombs, T. A.


    Superconducting flux pumps are the kind of devices which can generate direct current into superconducting circuit using external magnetic field. The key point is how to induce a dc voltage across the superconducting load by ac fields. Giaever (1966 IEEE Spectr. 3 117) pointed out flux motion in superconductors will induce a dc voltage, and demonstrated a rectifier model which depended on breaking superconductivity. van de Klundert et al (1981 Cryogenics 21 195, 267) in their review(s) described various configurations for flux pumps all of which relied on inducing the normal state in at least part of the superconductor. In this letter, following their work, we reveal that a variation in the resistivity of type II superconductors is sufficient to induce a dc voltage in flux pumps and it is not necessary to break superconductivity. This variation in resistivity is due to the fact that flux flow is influenced by current density, field intensity, and field rate of change. We propose a general circuit analogy for travelling wave flux pumps, and provide a mathematical analysis to explain the dc voltage. Several existing superconducting flux pumps which rely on the use of a travelling magnetic wave can be explained using the analysis enclosed. This work can also throw light on the design and optimization of flux pumps.

  10. High-repetition-rate quasi-CW side-pumped mJ eye-safe laser with a monolithic KTP crystal for intracavity optical parametric oscillator.

    Cho, C Y; Chen, Y C; Huang, Y P; Huang, Y J; Su, K W; Chen, Y F


    We demonstrate a high-repetition-rate millijoule passively Q-switched eye-safe Nd:YVO(4) laser pumped by a quasi-CW diode stack. A theoretical analysis has been explored for the design criteria of generating TEM(n,0) mode in the diode-stack directly side-pumping configuration. We successfully generate TEM(n,0) modes at 1064 nm by adjusting the gain medium with respected to the laser axis. We further observe the spatial cleaning ability for generating an nearly TEM(0,0) mode output at 1573 nm with a monolithic OPO cavity. At the repetition rate up to 200 Hz, the output pulse energy reaches 1.21 mJ with the threshold pump energy of 17.9 mJ.

  11. Pumping machinery theory and practice

    Badr, Hassan M


    Pumping Machinery Theory and Practice comprehensively covers the theoretical foundation and applications of pumping machinery. Key features: Covers characteristics of centrifugal pumps, axial flow pumps and displacement pumpsConsiders pumping machinery performance and operational-type problemsCovers advanced topics in pumping machinery including multiphase flow principles, and two and three-phase flow pumping systemsCovers different methods of flow rate control and relevance to machine efficiency and energy consumptionCovers different methods of flow rate control and relevance to machine effi

  12. Online rate control in digital cameras for near-constant distortion based on minimum/maximum criterion

    Lee, Sang-Yong; Ortega, Antonio


    We address the problem of online rate control in digital cameras, where the goal is to achieve near-constant distortion for each image. Digital cameras usually have a pre-determined number of images that can be stored for the given memory size and require limited time delay and constant quality for each image. Due to time delay restrictions, each image should be stored before the next image is received. Therefore, we need to define an online rate control that is based on the amount of memory used by previously stored images, the current image, and the estimated rate of future images. In this paper, we propose an algorithm for online rate control, in which an adaptive reference, a 'buffer-like' constraint, and a minimax criterion (as a distortion metric to achieve near-constant quality) are used. The adaptive reference is used to estimate future images and the 'buffer-like' constraint is required to keep enough memory for future images. We show that using our algorithm to select online bit allocation for each image in a randomly given set of images provides near constant quality. Also, we show that our result is near optimal when a minimax criterion is used, i.e., it achieves a performance close to that obtained by applying an off-line rate control that assumes exact knowledge of the images. Suboptimal behavior is only observed in situations where the distribution of images is not truly random (e.g., if most of the 'complex' images are captured at the end of the sequence.) Finally, we propose a T- step delay rate control algorithm and using the result of 1- step delay rate control algorithm, we show that this algorithm removes the suboptimal behavior.

  13. Body position and activity, but not heart rate, affect pump flows in patients with continuous-flow left ventricular assist devices.

    Muthiah, Kavitha; Gupta, Sunil; Otton, James; Robson, Desiree; Walker, Robyn; Tay, Andre; Macdonald, Peter; Keogh, Anne; Kotlyar, Eugene; Granger, Emily; Dhital, Kumud; Spratt, Phillip; Jansz, Paul; Hayward, Christopher S


    The aim of this study was to determine the contribution of pre-load and heart rate to pump flow in patients implanted with continuous-flow left ventricular assist devices (cfLVADs). Although it is known that cfLVAD pump flow increases with exercise, it is unclear if this increment is driven by increased heart rate, augmented intrinsic ventricular contraction, or enhanced venous return. Two studies were performed in patients implanted with the HeartWare HVAD. In 11 patients, paced heart rate was increased to approximately 40 beats/min above baseline and then down to approximately 30 beats/min below baseline pacing rate (in pacemaker-dependent patients). Ten patients underwent tilt-table testing at 30°, 60°, and 80° passive head-up tilt for 3 min and then for a further 3 min after ankle flexion exercise. This regimen was repeated at 20° passive head-down tilt. Pump parameters, noninvasive hemodynamics, and 2-dimensional echocardiographic measures were recorded. Heart rate alteration by pacing did not affect LVAD flows or LV dimensions. LVAD pump flow decreased from baseline 4.9 ± 0.6 l/min to approximately 4.5 ± 0.5 l/min at each level of head-up tilt (p heart rate, but they change significantly with body position and passive filling. Previously demonstrated exercise-induced changes in pump flows may be related to altered loading conditions, rather than changes in heart rate. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  14. The Energy Dissipation Rate Per Unit Mass of Jet Pump Mixture%射流泵混合的单位质量能量耗散率

    李廷浩; 陆宏圻


    The formula of jet pump energy dissipation rate per unit mass is derived in this paper related to jet pump axis dimension with energy dissipation rote. Thereby replenishes the lack of basic capability equation only referred to section dimension. By comparing and analyzing the formula of jet pump energy dissipation rate per unit mass with beater and static, it comes to the conclusion that jet pump has great capability of liquid-liquid mixing. Although the efficiency of jet pump is lower, but it can get high intensity when it used for mixing%推导出射流泵单位质量能量耗散率公式,涉及到射流泵轴向尺寸与能耗率,弥补了基本性能方程只涉及截面尺寸的不足。将射流泵的单位质量能量耗散率公式与搅拌器和静态混合器比较,进而分析得出射流泵有较强液一液混合性能的本质。虽然射流泵效率低,但将其用作混合时却强度高。

  15. 9 CFR 381.67 - Young chicken and squab slaughter inspection rate maximums under traditional inspection procedure.


    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Young chicken and squab slaughter... INSPECTION REGULATIONS Operating Procedures § 381.67 Young chicken and squab slaughter inspection rate... inspector per minute under the traditional inspection procedure for the different young chicken and...

  16. Motionless heat pump - A new application of thermal transpiration

    Kugimoto, K.; Hirota, Y.; Kizaki, Y.


    A motionless heat pump system using a combination of thermal transpiration flow of a rarefied gas and a phase change of water has been proposed. This system consists primarily of a thermal transpiration pump, referred to as a Knudsen pump, and two chambers filled with water and water vapor, respectively. The Knudsen pump moves water vapor from one chamber to the other. The pressure drop in the outflow chamber promotes the evaporation of water and heat absorption, whereas the pressure increase in the inflow chamber promotes vapor condensation and heat generation. The maximum pressure difference and mass flow rate obtained by a Knudsen pump composed of a glass fiber filter were 57.6 Pa and 0.0484 mg/s/cm2, respectively, at a temperature difference across the filter of 120 K between the two chambers. The vapor delivery capacity of this pump was also measured experimentally.

  17. LD-pumped high repetition rate Q-switched Nd:YVO4 laser by using La3Ga5SiO14 single crystal electro-optic modulator

    Chunyu Wang; Huaguo Zang; Xiaoli Li; Yutian Lu; Xiaolei Zhu


    A diode-end-pumped electro-optic (EO) Q-switched Nd:YVO4 laser operating at repetition rate of 10 kpps (pulses per second) was reported. A block of La3Ga5SiO14 (LGS) single crystal was used as a Q-switch and the driver was a metal oxide semiconductor field effect transistor (MOS-FET) pulser of high repetition rate and high voltage. At continuous wave (CW) operation, the slope efficiency of the laser was 46%, and maximum optical-to-optical efficiency was 38.5%. Using an output coupler with transmission of 70%, a 10-kpps Q-switched pulse train with 0.4-mJ monopulse energy and 8.2-ns pulse width was achieved, the optical conversion efficiency was around 15%, and the beam quality M2 factor was less than 1.2.

  18. Study of Peak Expiratory Flow Rate as the Assessment of Lung Function in Occupationally Exposed Petrol Pump Workers of Western Maharashtra

    Patil Smita V


    Full Text Available Background: Fast urbanization trends, rapid industrial growth, globalization, and poor environmental conditions at work places have created a lot of healthrelated issues. Aim and Objectives: The aim of this study is to investigate Peak Expiratory Flow Rate (PEFR as the assessment of lung function in occupationally exposed petrol pump workers and also check whether PEFR increases or decreases with duration of exposure. Material and Methods: The study was conducted on 60 male petrol pump workers between age group of 20-40 years who were working as petrol filling attendants for more than one year from western Maharashtra. 50 normal healthy males with same socioeconomic status were chosen as controls to find out the effect of occupational exposure to petroleum product on PEFR as the assessment of lung function tests. Petrol pump workers were divided into three groups based on their duration of exposure i.e. 1- 5 yrs, 6- 10 yrs and more than 11 years. PEFR of petrol pump workers and control was measured by using a Mini Wright peak flow meter which is a portable device for measuring ventilator functions. Comparisons was done using unpaired t-test for 2 groups comparisons and one way ANOVAfor multiple groups of exposures. Results: The PEFR was significantly lower decrease (p=0.001 around petrol pump workers (389.17 as compared to control (534.2. As year of exposure increased mean value of PEFR was significantly decreased from 452.17, 378.00 and 283.64 respectively in petrol pump workers. Conclusion: The results suggested that respiratory functions i.e. PEFR of occupationally exposed petrol pump workers are significantly reduced as compared to controls, also PEFR is significantly reduced with increase in the duration of exposure.

  19. Spin-scattering rates in metallic thin films measured by ferromagnetic resonance damping enhanced by spin-pumping

    Boone, C. T.; Shaw, J. M.; Nembach, H. T.; Silva, T. J. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)


    We determined the spin-transport properties of Pd and Pt thin films by measuring the increase in ferromagnetic resonance damping due to spin-pumping in ferromagnetic (FM)-nonferromagnetic metal (NM) multilayers with varying NM thicknesses. The increase in damping with NM thickness depends strongly on both the spin- and charge-transport properties of the NM, as modeled by diffusion equations that include both momentum- and spin-scattering parameters. We use the analytical solution to the spin-diffusion equations to obtain spin-diffusion lengths for Pt and Pd. By measuring the dependence of conductivity on NM thickness, we correlate the charge- and spin-transport parameters, and validate the applicability of various models for momentum-scattering and spin-scattering rates in these systems: constant, inverse-proportional (Dyakanov-Perel), and linear-proportional (Elliot-Yafet). We confirm previous reports that the spin-scattering time appears to be shorter than the momentum scattering time in Pt, and the Dyakanov-Perel-like model is the best fit to the data.

  20. FastMG: a simple, fast, and accurate maximum likelihood procedure to estimate amino acid replacement rate matrices from large data sets.

    Dang, Cuong Cao; Le, Vinh Sy; Gascuel, Olivier; Hazes, Bart; Le, Quang Si


    Amino acid replacement rate matrices are a crucial component of many protein analysis systems such as sequence similarity search, sequence alignment, and phylogenetic inference. Ideally, the rate matrix reflects the mutational behavior of the actual data under study; however, estimating amino acid replacement rate matrices requires large protein alignments and is computationally expensive and complex. As a compromise, sub-optimal pre-calculated generic matrices are typically used for protein-based phylogeny. Sequence availability has now grown to a point where problem-specific rate matrices can often be calculated if the computational cost can be controlled. The most time consuming step in estimating rate matrices by maximum likelihood is building maximum likelihood phylogenetic trees from protein alignments. We propose a new procedure, called FastMG, to overcome this obstacle. The key innovation is the alignment-splitting algorithm that splits alignments with many sequences into non-overlapping sub-alignments prior to estimating amino acid replacement rates. Experiments with different large data sets showed that the FastMG procedure was an order of magnitude faster than without splitting. Importantly, there was no apparent loss in matrix quality if an appropriate splitting procedure is used. FastMG is a simple, fast and accurate procedure to estimate amino acid replacement rate matrices from large data sets. It enables researchers to study the evolutionary relationships for specific groups of proteins or taxa with optimized, data-specific amino acid replacement rate matrices. The programs, data sets, and the new mammalian mitochondrial protein rate matrix are available at




    Rotary blood pumps are used for cardiac assist and cardiopulmonary support since mechanical blood damage is less than with conventional roller pumps. The high shear rate in the rotary pump and the reduced anticoagulation of the patient during prolonged pumping enforces high demands on the biocompati

  2. High Voltage Charge Pump

    Emira, Ahmed A.


    Various embodiments of a high voltage charge pump are described. One embodiment is a charge pump circuit that comprises a plurality of switching stages each including a clock input, a clock input inverse, a clock output, and a clock output inverse. The circuit further comprises a plurality of pumping capacitors, wherein one or more pumping capacitors are coupled to a corresponding switching stage. The circuit also comprises a maximum selection circuit coupled to a last switching stage among the plurality of switching stages, the maximum selection circuit configured to filter noise on the output clock and the output clock inverse of the last switching stage, the maximum selection circuit further configured to generate a DC output voltage based on the output clock and the output clock inverse of the last switching stage.

  3. Gas surface density, star formation rate surface density, and the maximum mass of young star clusters in a disk galaxy. I. The flocculent galaxy M33

    Gonzalez-Lopezlira, Rosa A; Kroupa, Pavel


    We analyze the relationship between maximum cluster mass, M_max, and surface densities of total gas (Sigma_gas), molecular gas (Sigma_H2) and star formation rate (Sigma_SFR) in the flocculent galaxy M33, using published gas data and a catalog of more than 600 young star clusters in its disk. By comparing the radial distributions of gas and most massive cluster masses, we find that M_max is proportional to Sigma_gas^4.7, M_max is proportional Sigma_H2^1.3, and M_max is proportional to Sigma_SFR^1.0. We rule out that these correlations result from the size of sample; hence, the change of the maximum cluster mass must be due to physical causes.

  4. Modeling Non-Equilibrium Dynamics of a Discrete Probability Distribution: General Rate Equation for Maximal Entropy Generation in a Maximum-Entropy Landscape with Time-Dependent Constraints

    Gian Paolo Beretta


    Full Text Available A rate equation for a discrete probability distribution is discussed as a route to describe smooth relaxation towards the maximum entropy distribution compatible at all times with one or more linear constraints. The resulting dynamics follows the path of steepest entropy ascent compatible with the constraints. The rate equation is consistent with the Onsager theorem of reciprocity and the fluctuation-dissipation theorem. The mathematical formalism was originally developed to obtain a quantum theoretical unification of mechanics and thermodinamics. It is presented here in a general, non-quantal formulation as a part of an effort to develop tools for the phenomenological treatment of non-equilibrium problems with applications in engineering, biology, sociology, and economics. The rate equation is also extended to include the case of assigned time-dependences of the constraints and the entropy, such as for modeling non-equilibrium energy and entropy exchanges.

  5. Modeling Non-Equilibrium Dynamics of a Discrete Probability Distribution: General Rate Equation for Maximal Entropy Generation in a Maximum-Entropy Landscape with Time-Dependent Constraints

    Beretta, Gian P.


    A rate equation for a discrete probability distribution is discussed as a route to describe smooth relaxation towards the maximum entropy distribution compatible at all times with one or more linear constraints. The resulting dynamics follows the path of steepest entropy ascent compatible with the constraints. The rate equation is consistent with the Onsager theorem of reciprocity and the fluctuation-dissipation theorem. The mathematical formalism was originally developed to obtain a quantum theoretical unification of mechanics and thermodinamics. It is presented here in a general, non-quantal formulation as a part of an effort to develop tools for the phenomenological treatment of non-equilibrium problems with applications in engineering, biology, sociology, and economics. The rate equation is also extended to include the case of assigned time-dependences of the constraints and the entropy, such as for modeling non-equilibrium energy and entropy exchanges.

  6. Experimental test on impeller clocking effect in a multistage centrifugal pump

    Minggao Tan


    Full Text Available In this article, the effects of clocking effect on performance and vibration intensity of a five-stage centrifugal pump were investigated by experimental tests. The vibration characteristics of five positions in the pump were measured, including axial direction of the pump and horizontal and vertical directions of pump inlet and outlet. There are eight clocking schemes between the impellers in the test, which are arranged by orthogonal experimental design. The test results show that the clocking effect of impellers has little effect on the head and efficiency of the five-stage pump in the whole flow rate. Compared with the results of 0° stagger angle clocking scheme between each impeller, in the whole flow rate, the pulsation of pump head and efficiency is just 1.5% and 1.3%, respectively, under other clocking schemes of impellers. Instead, the impeller clocking has a significant effect on the vibration characteristics of the model pump. The maximum vibration intensity of the five-stage pump locates in the vertical direction of pump inlet within the whole flow rate. Under the best clocking scheme of impellers, the maximum vibration intensity of the pump can decrease by 23.1% and the mean vibration intensity can decrease by 17.3%.

  7. An analysis of tank and pump pit flammable gas data in support of saltwater pumping safety basis simplification

    MCCAIN, D.J.


    show that these rates and maximum concentrations are so low as to make it unlikely that the LFL concentration would ever be approached. The second objective of this analysis is to review the data provided by two separate flammable gas measurement systems on each tank being saltwell pumped to see if there is an unnecessary redundancy. Eliminating redundant measurement systems would provide cost savings if the quality of data and resultant margin of safety during saltwell pumping activity are not compromised.

  8. Design and investigation of bladder power pump driven by an external electromagnet

    Li, Xiao; Zhou, Dongcai; Liu, Chunbao [University of Technology, Guangzhou (China); Guan, Ting [Guangzhou General Hospital of Guangzhou Military Command, Guangzhou (China)


    This study aims to evaluate the feasibility of the bladder power pump driven by an external electromagnet proposed by the authors. The structure of the pump was designed based on its working principle. The mathematical model and 3D finite element model of the electromagnetic field of the pump were established. The electromagnetic driving property of the pump was analyzed using the models, and the micturition performance of the pump was investigated in the simulated experimental system. Results show that maximum intravesical pressure and maximum urine flow rate reached 10.8 KPa and 13.9 cm{sup 3} /s, respectively, approaching the normal human urodynamic parameters. This novel pump has the potential of being used for assisting neurogenic bladder micturition.

  9. The effect of strength training and short-term detraining on maximum force and the rate of force development of older men.

    Lovell, Dale I; Cuneo, Ross; Gass, Greg C


    This study examined the effect of strength training (ST) and short-term detraining on maximum force and rate of force development (RFD) in previously sedentary, healthy older men. Twenty-four older men (70-80 years) were randomly assigned to a ST group (n = 12) and C group (control, n = 12). Training consisted of three sets of six to ten repetitions on an incline squat at 70-90% of one repetition maximum three times per week for 16 weeks followed by 4 weeks of detraining. Regional muscle mass was assessed before and after training by dual-energy X-ray absorptiometry. Training increased RFD, maximum bilateral isometric force, and force in 500 ms, upper leg muscle mass and strength above pre-training values (14, 25, 22, 7, 90%, respectively; P force and RFD of older men. However, older individuals may lose some neuromuscular performance after a period of short-term detraining and that resistance exercise should be performed on a regular basis to maintain training adaptations.

  10. 新型微量注药泵与注射泵流速精度检测的对比与分析%A new detection and analysis of flow rate accuracy on a new tracetype micro-injection drug ;pump and syringe pump flow rate accuracy

    张华伟; 柏正璐; 蒋红兵


    目的:对一款新型微量注药泵的流速进行质量控制检测,通过与微量注射泵的对比分析,研究其准确性和稳定性。方法:使用专业的Fluke输液设备分析仪以及指定的输液管路对某品牌注药泵和注射泵的流速精度和稳定性进行检测。结果:从注药泵和注射泵流速误差比较中发现,流速为1 ml/h时,注药泵流速误差范围较注射泵偏大;流速为25 ml/h和50 ml/h时,两者流速误差基本相当;注药泵的流速随着检测时间趋向于稳定,流速稳定后,检测时间越长,总体误差越小;在第15 min时,检测数据符合国家相关检测标准。结论:该微量注药泵结合了输液泵和注射泵的特点,稳定性和准确性均能满足国家相关标准,能够满足临床科室的应用需求。%Objective:is toTo detect a new type of micro-injection pump, its flow rate of quality control testing and syringe pump through the comparative analysis, and study its accuracy and stability. Methods:A certain brand of injection flow rate accuracy and stability of drug pumps and syringe pumps were detected by the use of professional Fluke infusion device analyzer and a dedicated infusion line. Results:Compared the injection pump with syringe pump flow rate of errors, a flow rate was 1 ml/h, t. The errordeviation range of micro-injection pump flow rate is larger than the syringe pump, and a flow rate was 25 ml/h and 50 ml/h, both the same, . Wwith drug detection time went on, a flow rate of injection pump has tended to stabilize. After the flow rate is stable, the longer the detection time is, the overall error is smaller. At the time of 15 min, test data are in line with national testing standards. Conclusion:The combination of injection pump and infusion pump, the micro-injection pump can meet the growing demand for clinical departments, and its stability and accuracy can meet the national standards.

  11. Effect of precipitation, sorption and stable of isotope on maximum release rates of radionuclides from engineered barrier system (EBS) in deep repository.

    Malekifarsani, A; Skachek, M A


    shown that the concentrations of the following radionuclides are limited by solubility and precipitate around the waste and buffer: U, Np, Ra, Sm, Zr, Se, Tc, and Pd. The Sensitivity of maximum release rates in case precipitation shows that some nuclides such as Cs-135, Nb-94, Nb-93 m, Zr-93, Sn-126, Th-230, Pu-240, Pu-242, Pu-239, Cm-245, Am-243, Cm-245, U-233, Ac-227, Pb-210, Pa-231 and Th-229 are very little changed in case the maximum release rate from EBS corresponding to eliminate precipitation in buffer material. Some nuclides such as Se-79, Tc-99, Pd-107, Th-232, U-236, U-233, Ra-226, Np-237 U-235, U-234, and U-238 are virtually changed in the maximum release rate compared to case that taking account precipitation. In Sensitivity of maximum release rates in case to taking account stable isotopes (according to the table of inventory) there are only some nuclides with their stable isotopes in the vitrified waste. And calculation shows that Pd-107 and Se-79 are very increase in case eliminate stable isotope. The Sensitivity of maximum release rates in case retardation with sorption shows that some nuclides such as Pu-240, Pu-241, Pu-239, Cm-245, Am-241, Cm-246, and Am-243 are increased in some time in case maximum release rate from EBS corresponding to eliminate retardation in buffer material. Some nuclides such as U-235, U-233 and U-236 have a little decrease in case maximum release because their parents have short live and before decay to their daughter will released from the EBS. If the characteristic time taken for a nuclide to diffuse across the buffer exceeds its half-life, then the release rate of that nuclide from the EBS will be attenuated by radioactive decay. Thus, the retardation of the diffusion process due to sorption tends to reduce the release rates of short-lived nuclides more effectively than for the long-lived ones. For example, release rates of Pu-240, Cm-246 and Am-241, which are relatively short-lived and strongly sorbing, are very small

  12. Optimum bleeding rate of open loop ground source heat pump systems determined by hydrogeological modeling in Korea

    Jeon, W. H.; Kim, N.; Lee, J. Y.


    This study aims to evaluate the influence of open loop ground source heat pump systems operation on hydrological conditions of aquifer. Test bed is located in Chuncheon, Korea. The step drawdown test was conducted in five stages for 300 minutes. The variation of groundwater levels by open loop ground source heat pump systems operation was estimated using Visual MODFLOW. Transmissivity ranged from 2.02×10-4 to 9.36×10-4, and storage coefficient ranged from 0.00067 to 0.021. The amount of optimum bleeding was calculated to be 240 m3/day. When bleeding will be 50, 90, 240 and 450 m3/day for 5 years, groundwater levels may decrease 1.84, 3.31, 8.89 and 17.0 m, respectively. If the amount of bleeding is 50 m3/day, the influence of bleeding will not reach the boundary regions of the Soyang River after 5 years. Regarding the open loop ground source heat pump system installed at the test bed, the amount of optimum bleeding in accordance with the stand are proposed by the government is 90 m3/day, which is 20% of the 450 m3/day circulation quantity of the system. However, if continuous bleeding of more than 90 m3/day occurs, then the radius of influence is expected to reach the boundary regions of the Soyang River after 5 years. These results indicate that amount of optimum bleeding differ in each open loop ground soured heat pump system. Therefore, the debate for the amount of optimum bleeding in open loop ground source heat pump systems is demanded. This work is supported by the Energy Efficiency and Resources of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No.20123040110010).

  13. Maximum Heart Rate during exercise: Reliability of the 220-age and Tanaka formulas in healthy young people at a moderate elevation

    Luis Eduardo Cruz-Martínez


    Full Text Available Background. The formulas to predict maximum heart rate have been used for many years in different populations. Objective. To verify the significance and the association of formulas of Tanaka and 220-age when compared to real maximum heart rate. Materials and methods. 30 subjects -22 men, 8 women- between 18 and 30 years of age were evaluated on a cycle ergometer and their real MHR values were statistically compared with the values of formulas currently used to predict MHR. Results. The results demonstrate that both Tanaka p=0.0026 and 220-age p=0.000003 do not predict real MHR, nor does a linear association exist between them. Conclusions. Due to the overestimation with respect to real MHR value that these formulas make, we suggest a correction of 6 bpm to the final result. This value represents the median of the difference between the Tanaka value and the real MHR. Both Tanaka (r=0.272 and 220-age (r=0.276 are not adequate predictors of MHR during exercise at the elevation of Bogotá in subjects of 18 to 30 years of age, although more study with a larger sample size is suggested.

  14. A new approach to assess the dependency of extant half-saturation coefficients on maximum process rates and estimate intrinsic coefficients.

    Shaw, A; Takács, I; Pagilla, K R; Murthy, S


    The Monod equation is often used to describe biological treatment processes and is the foundation for many activated sludge models. The Monod equation includes a "half-saturation coefficient" to describe the effect of substrate limitations on the process rate and it is customary to consider this parameter to be a constant for a given system. The purpose of this study was to develop a methodology, and its use to show that the half-saturation coefficient for denitrification is not constant but is in fact a function of the maximum denitrification rate. A 4-step procedure is developed to investigate the dependency of half-saturation coefficients on the maximum rate and two different models are used to describe this dependency: (a) an empirical linear model and (b) a deterministic model based on Fick's law of diffusion. Both models are proved better for describing denitrification kinetics than assuming a fixed K(NO3) at low nitrate concentrations. The empirical model is more utilitarian whereas the model based on Fick's law has a fundamental basis that enables the intrinsic K(NO3) to be estimated. In this study data was analyzed from 56 denitrification rate tests and it was found that the extant K(NO3) varied between 0.07 mgN/L and 1.47 mgN/L (5th and 95th percentile respectively) with an average of 0.47 mgN/L. In contrast to this, the intrinsic K(NO3) estimated for the diffusion model was 0.01 mgN/L which indicates that the extant K(NO3) is greatly influenced by, and mostly describes, diffusion limitations.

  15. Flow control of intra aorta pump based on heart rate%基于心率的主动脉血泵流量控制

    谷凯云; 高斌; 常宇


    BACKGROUND: With the development of the research and application of artificial heart, people hope that it can accord with physiological mechanism of natural heart and meet demand of human body in device performance.OBJECTIVE: For the control of intra-aorta pump, this paper proposed the flow control algorithm based on heart rate.METHODS: Utilizing the PID control algorithm to maintain the output flow satisfy the physical needs of patients. Simulation results show the accuracy of the algorithm to achieve fast and stable flow blood pump output.RESULTS AND CONCLUSION: When the heart rate was of 75 times per minute, blood pump flow rate could reach 5.01 L/min;blood pump flow gradually increased with the heart rate when the heart rate was in the range from 50 to 120 times per minute;blood pump kept constant flow state when the heart rate less than 50 times per minute or more than 120 times per minute.Through PID control, the actual flow rate tracks the reference one within 0.1 s. The blood pump flow model based on heart rate can reflect the needs of human blood flow. The control algorithm can achieve stable flow blood pump output, to keep pace human needs of patients.%背景:随着人工心脏研究和应用的不断发展,在装置的性能上,人们希望它能符合自然心脏的生理机制,满足受者的生理需求.目的:针对主动脉血泵的控制,提出了基于心率的血泵流量控制算法.方法:通过分析心率与流量之间的关系,建立了心率与流量的关系模型,并根据人体心率流量关系验证血泵流量模型的准确性.运用PID控制算法对血泵流量进行控制.结果与结论:仿真结果表明血泵可以实现快速稳定的输出.当心率为75次/min时,流量能达到5.01 L/min;在50~120次/min心率范围内,流量会随着心率的提高而增大;当心率大小于50次/min或于120次/min时,血泵工作在恒流量状态下.通过PID控制,可使流量在0.1 s内跟踪上参考流量.基于心率的血泵

  16. Characterization of a new class of surface micromachined pumps.

    Galambos, Paul C.


    This is the latest in a series of LDRD's that we have been conducting with Florida State University/Florida A&M University (FSU/FAMU) under the campus executive program. This research builds on the earlier projects; ''Development of Highly Integrated Magnetically and Electrostatically Actuated Micropumps'' (SAND2003-4674) and ''Development of Magnetically and Electrostatically Driven Surface Micromachined Pumps'' (SAND2002-0704P). In this year's LDRD we designed 2nd generation of surface micromachined (SMM) gear and viscous pumps. Two SUMMiT{trademark} modules full of design variations of these pumps were fabricated and one SwIFT{trademark} module is still in fabrication. The SwIFT{trademark} fabrication process results in a transparent pump housing cover that will enable visualization inside the pumps. Since the SwIFT{trademark} pumps have not been tested as they are still in fabrication, this report will focus on the 2nd generation SUMMiT{trademark} designs. Pump testing (pressure vs. flow) was conducted on several of the SUMMiT{trademark} designs resulting in the first pump curve for this class of SMM pumps. A pump curve was generated for the higher torque 2nd generation gear pump designed by Jason Hendrix of FSU. The pump maximum flow rate at zero head was 6.5 nl/s for a 30V, 30 Hz square wave signal. This level of flow rate would be more than adequate for our typical SMM SUMMiT{trademark} or SwIFT{trademark} channels which have typical volumes on the order of 50 pl.

  17. Maximum Fidelity

    Kinkhabwala, Ali


    The most fundamental problem in statistics is the inference of an unknown probability distribution from a finite number of samples. For a specific observed data set, answers to the following questions would be desirable: (1) Estimation: Which candidate distribution provides the best fit to the observed data?, (2) Goodness-of-fit: How concordant is this distribution with the observed data?, and (3) Uncertainty: How concordant are other candidate distributions with the observed data? A simple unified approach for univariate data that addresses these traditionally distinct statistical notions is presented called "maximum fidelity". Maximum fidelity is a strict frequentist approach that is fundamentally based on model concordance with the observed data. The fidelity statistic is a general information measure based on the coordinate-independent cumulative distribution and critical yet previously neglected symmetry considerations. An approximation for the null distribution of the fidelity allows its direct conversi...

  18. Measuring maximum and standard metabolic rates using intermittent-flow respirometry: a student laboratory investigation of aerobic metabolic scope and environmental hypoxia in aquatic breathers.

    Rosewarne, P J; Wilson, J M; Svendsen, J C


    Metabolic rate is one of the most widely measured physiological traits in animals and may be influenced by both endogenous (e.g. body mass) and exogenous factors (e.g. oxygen availability and temperature). Standard metabolic rate (SMR) and maximum metabolic rate (MMR) are two fundamental physiological variables providing the floor and ceiling in aerobic energy metabolism. The total amount of energy available between these two variables constitutes the aerobic metabolic scope (AMS). A laboratory exercise aimed at an undergraduate level physiology class, which details the appropriate data acquisition methods and calculations to measure oxygen consumption rates in rainbow trout Oncorhynchus mykiss, is presented here. Specifically, the teaching exercise employs intermittent flow respirometry to measure SMR and MMR, derives AMS from the measurements and demonstrates how AMS is affected by environmental oxygen. Students' results typically reveal a decline in AMS in response to environmental hypoxia. The same techniques can be applied to investigate the influence of other key factors on metabolic rate (e.g. temperature and body mass). Discussion of the results develops students' understanding of the mechanisms underlying these fundamental physiological traits and the influence of exogenous factors. More generally, the teaching exercise outlines essential laboratory concepts in addition to metabolic rate calculations, data acquisition and unit conversions that enhance competency in quantitative analysis and reasoning. Finally, the described procedures are generally applicable to other fish species or aquatic breathers such as crustaceans (e.g. crayfish) and provide an alternative to using higher (or more derived) animals to investigate questions related to metabolic physiology.

  19. Remotely Adjustable Hydraulic Pump

    Kouns, H. H.; Gardner, L. D.


    Outlet pressure adjusted to match varying loads. Electrohydraulic servo has positioned sleeve in leftmost position, adjusting outlet pressure to maximum value. Sleeve in equilibrium position, with control land covering control port. For lowest pressure setting, sleeve shifted toward right by increased pressure on sleeve shoulder from servovalve. Pump used in aircraft and robots, where hydraulic actuators repeatedly turned on and off, changing pump load frequently and over wide range.

  20. Maximum removal rate of propionic acid as a sole carbon source in UASB reactors and the importance of the macro- and micro-nutrients stimulation.

    Ma, Jingxing; Mungoni, Lucy Jubeki; Verstraete, Willy; Carballa, Marta


    The maximum propionic acid (HPr) removal rate (R(HPr)) was investigated in two lab-scale Upflow Anaerobic Sludge Bed (UASB) reactors. Two feeding strategies were applied by modifying the hydraulic retention time (HRT) in the UASB(HRT) and the influent HPr concentration in the UASB(HPr), respectively. The experiment was divided into three main phases: phase 1, influent with only HPr; phase 2, HPr with macro-nutrients supplementation and phase 3, HPr with macro- and micro-nutrients supplementation. During phase 1, the maximum R(HPr) achieved was less than 3 g HPr-CODL(-1)d(-1) in both reactors. However, the subsequent supplementation of macro- and micro-nutrients during phases 2 and 3 allowed to increase the R(HPr) up to 18.1 and 32.8 g HPr-CODL(-1)d(-1), respectively, corresponding with an HRT of 0.5h in the UASB(HRT) and an influent HPr concentration of 10.5 g HPr-CODL(-1) in the UASB(HPr). Therefore, the high operational capacity of these reactor systems, specifically converting HPr with high throughput and high influent HPr level, was demonstrated. Moreover, the presence of macro- and micro-nutrients is clearly essential for stable and high HPr removal in anaerobic digestion.

  1. Gas surface density, star formation rate surface density, and the maximum mass of young star clusters in a disk galaxy. II. The grand-design galaxy M51

    Gonzalez-Lopezlira, Rosa A; Kroupa, Pavel


    We analyze the relationship between maximum cluster mass, and surface densities of total gas (Sigma_gas), molecular gas (Sigma_H_2), neutral gas (Sigma_HI) and star formation rate (Sigma_SFR) in the grand design galaxy M51, using published gas data and a catalog of masses, ages, and reddenings of more than 1800 star clusters in its disk, of which 223 are above the cluster mass distribution function completeness limit. We find for clusters older than 25 Myr that M_3rd, the median of the 5 most massive clusters, is proportional to Sigma_HI^0.4. There is no correlation with Sigma_gas, Sigma_H2, or Sigma_SFR. For clusters younger than 10 Myr, M_3rd is proportional to Sigma_HI^0.6, M_3rd is proportional to Sigma_gas^0.5; there is no correlation with either Sigma_H_2 or Sigma_SFR. The results could hardly be more different than those found for clusters younger than 25 Myr in M33. For the flocculent galaxy M33, there is no correlation between maximum cluster mass and neutral gas, but M_3rd is proportional to Sigma_g...

  2. Centrifugal pumps

    Anderson, HH


    Centrifugal Pumps describes the whole range of the centrifugal pump (mixed flow and axial flow pumps are dealt with more briefly), with emphasis on the development of the boiler feed pump. Organized into 46 chapters, this book discusses the general hydrodynamic principles, performance, dimensions, type number, flow, and efficiency of centrifugal pumps. This text also explains the pumps performance; entry conditions and cavitation; speed and dimensions for a given duty; and losses. Some chapters further describe centrifugal pump mechanical design, installation, monitoring, and maintenance. The

  3. Application of wind energy to Great Plains irrigation pumping. Final report

    Hagen, L.J.; Lyles, L.; Skidmore, E.L.


    Wind energy systems without energy storage for irrigation in the Great Plains are studied. Major uses of irrigation energy were identified as pumping for surface distribution systems, which could be supplied by variable flow, and pumping for sprinkler systems using constant flow. A computer program was developed to simulate operation of wind-powered irrigation wells. Pumping by wind turbine systems was simulated for 2 variable and 2 constant flow operational modes in which auxiliary motors were used in 3 of the modes. Using the simulation program, the well yields and maximum pumping rates among the 4 modes as a function of drawdown in a typical well are compared.

  4. Properties of cat mutually pumped phase conjugation and two-wave mixing gain in doped KNSBN

    Xinguang Xu(许心光); Zongshu Shao(邵宗书); Zhengping Wang(王正平); Junhai Liu(刘均海); Guibao Xu(许贵宝); Dawei Hu(胡大伟)


    Cat mutually pumped phase conjugation configuration is discovered and investigated by using two-wavemixing in (KyNa1-y)2z(SrxBa1-x)1-zNb2O6 (KNSBN) crystal. When only one signal or pumped beamdoes not give birth to phase conjugation, the maximum reflectivity of signal and pumped beam attain140% and 30% due to two-wave mixing, respectively. The experimental results show that the two-wavemixing can reduce the threshold of incident beams power, extend the incident angle range, and shortenresponse rate in the process of self-pumped phase conjugator (SPPC) in KNSBN crystal.

  5. Pumping life

    Sitsel, Oleg; Dach, Ingrid; Hoffmann, Robert Daniel


    of membrane proteins: P-type ATPase pumps. This article takes the reader on a tour from Aarhus to Copenhagen, from bacteria to plants and humans, and from ions over protein structures to diseases caused by malfunctioning pump proteins. The magazine Nature once titled work published from PUMPKIN ‘Pumping ions......’. Here we illustrate that the pumping of ions means nothing less than the pumping of life....

  6. Numerical simulation of a thermal-bubble actuated diffuser-nozzle valveless pump


    A valveless micropump actuated by thermal bubbles which are generated by an electrode heater mounted with a pair of diffuser nozzles has been numerically studied by commercial CFD software FLUENT. The relationships between the net flow rate and the superheating and heat supplying frequency have been investigated. The depth of the diffuser-nozzle micropump is 200 μm, the diameter of the actuating chamber is 1 mm, and a pair of diffuser nozzles whose gap has been expanded from 30 μm to 274 μm with an open angle of 7° are connected to the actuating chamber. The working fluid is methanol. In the numerical simulation, the flow pattern is laminar. The results show that the pump has different optimal driving frequencies at different superheating. A cycle resulting from bubble growth and shrinking costs more time at higher superheating temperature; different superheating has different optimal driving frequency; when the superheating increases, the maximum volume flow rate and the maximum pump pressure will increase simultaneously, and the optimal driving frequency decreases as well, the maximum volume flow rate and pump pressure also have the same tendency; in the condition of uncontrolled condensing, the bubble shrinking process is longer than the growth process, thus it is the determining factor to affect the pump performance. The maximum volume flow rate is 9.02 μL/min at △T = 15℃, and the maximum pump pressure is 680 Pa. With the increase of wall superheat, cycle including the bubble growth and condensation will become longer, resulting in a significant impact on the pumping flow; different wall superheat has different optimized frequency, increasing superheat will bring increased pumping flow and pump pressure, the optimized driving frequency will be reduced; liquid supply phase is longer than pumping phase.

  7. Seawater intrusion and pumping wells in coastal aquifers

    Nadjafzadeh Anvar, Amir; Riva, Monica


    Coastal aquifers are affected by seawater intrusion (SWI), this problem is exacerbated by groundwater extractions. In this work, we analyze key parameters affecting pumping wells contamination in costal aquifers. The USGS SUTRA code is employed to solve numerically flow and transport and to characterize SWI under diverse groundwater withdrawal scenarios. We developed two- and three-dimensional variable-density flow and solute transport models, respectively representing the existence of a pumping well barrier and of a single pumping well. The impact of the joint extraction of fresh- and salt- water has also been considered. We then analyzed the effect of (i) the location and pumping rate of fresh- and salt- water pumping wells (ii) the permeability of the aquifer as well as (iii) the transverse and longitudinal dispersivity on the maximum pumping time, tmax. The latter is defined as the maximum freshwater pumping time preventing the well to be contaminated by salt water. Finally we derived empirical equations to be used in practical applications to evaluate tmax as a function of key parameters highlighted.

  8. Electronic Unit Pump Test Bench Development and Pump Properties Research

    LIU Bo-lan; HUANG Ying; ZHANG Fu-jun; ZHAO Chang-lu


    A unit pump test bench is developed on an in-line pump test platform. The bench is composed of pump adapting assembly, fuel supply subsystem, lubricating subsystem and a control unit. A crank angle domain injection control method is given out and the control accuracy can be 0.1° crank degree. The bench can test bot h mechanical unit pump and electronic unit pump. A test model-PLD12 electronic unit pump is tested. Full pump delivery map and some influence factors test is d one. Experimental results show that the injection quantity is linear with the de livery angle. The quantity change rate is 15% when fuel temperature increases 30℃. The delivery quantity per cycle increases 30mg at 28V drive voltage. T he average delivery difference for two same type pumps is 5%. Test results show that the bench can be used for unit pump verification.

  9. n-Order and maximum fuzzy similarity entropy for discrimination of signals of different complexity: Application to fetal heart rate signals.

    Zaylaa, Amira; Oudjemia, Souad; Charara, Jamal; Girault, Jean-Marc


    This paper presents two new concepts for discrimination of signals of different complexity. The first focused initially on solving the problem of setting entropy descriptors by varying the pattern size instead of the tolerance. This led to the search for the optimal pattern size that maximized the similarity entropy. The second paradigm was based on the n-order similarity entropy that encompasses the 1-order similarity entropy. To improve the statistical stability, n-order fuzzy similarity entropy was proposed. Fractional Brownian motion was simulated to validate the different methods proposed, and fetal heart rate signals were used to discriminate normal from abnormal fetuses. In all cases, it was found that it was possible to discriminate time series of different complexity such as fractional Brownian motion and fetal heart rate signals. The best levels of performance in terms of sensitivity (90%) and specificity (90%) were obtained with the n-order fuzzy similarity entropy. However, it was shown that the optimal pattern size and the maximum similarity measurement were related to intrinsic features of the time series.

  10. Petroleum production at Maximum Efficient Rate Naval Petroleum Reserve No. 1 (Elk Hills), Kern County, California. Final Supplemental Environmental Impact Statement


    This document provides an analysis of the potential impacts associated with the proposed action, which is continued operation of Naval Petroleum Reserve No. I (NPR-1) at the Maximum Efficient Rate (MER) as authorized by Public law 94-258, the Naval Petroleum Reserves Production Act of 1976 (Act). The document also provides a similar analysis of alternatives to the proposed action, which also involve continued operations, but under lower development scenarios and lower rates of production. NPR-1 is a large oil and gas field jointly owned and operated by the federal government and Chevron U.SA Inc. (CUSA) pursuant to a Unit Plan Contract that became effective in 1944; the government`s interest is approximately 78% and CUSA`s interest is approximately 22%. The government`s interest is under the jurisdiction of the United States Department of Energy (DOE). The facility is approximately 17,409 acres (74 square miles), and it is located in Kern County, California, about 25 miles southwest of Bakersfield and 100 miles north of Los Angeles in the south central portion of the state. The environmental analysis presented herein is a supplement to the NPR-1 Final Environmental Impact Statement of that was issued by DOE in 1979 (1979 EIS). As such, this document is a Supplemental Environmental Impact Statement (SEIS).

  11. High density 3D printed microfluidic valves, pumps, and multiplexers.

    Gong, Hua; Woolley, Adam T; Nordin, Gregory P


    In this paper we demonstrate that 3D printing with a digital light processor stereolithographic (DLP-SLA) 3D printer can be used to create high density microfluidic devices with active components such as valves and pumps. Leveraging our previous work on optical formulation of inexpensive resins (RSC Adv., 2015, 5, 106621), we demonstrate valves with only 10% of the volume of our original 3D printed valves (Biomicrofluidics, 2015, 9, 016501), which were already the smallest that have been reported. Moreover, we show that incorporation of a thermal initiator in the resin formulation along with a post-print bake can dramatically improve the durability of 3D printed valves up to 1 million actuations. Using two valves and a valve-like displacement chamber (DC), we also create compact 3D printed pumps. With 5-phase actuation and a 15 ms phase interval, we obtain pump flow rates as high as 40 μL min(-1). We also characterize maximum pump back pressure (i.e., maximum pressure the pump can work against), maximum flow rate (flow rate when there is zero back pressure), and flow rate as a function of the height of the pump outlet. We further demonstrate combining 5 valves and one DC to create a 3-to-2 multiplexer with integrated pump. In addition to serial multiplexing, we also show that the device can operate as a mixer. Importantly, we illustrate the rapid fabrication and test cycles that 3D printing makes possible by implementing a new multiplexer design to improve mixing, and fabricate and test it within one day.

  12. Generation of 220 mJ nanosecond pulses at a 10 Hz repetition rate with excellent beam quality in a diode-pumped Yb:YAG MOPA system.

    Wandt, Christoph; Klingebiel, Sandro; Siebold, Mathias; Major, Zsuzsanna; Hein, Joachim; Krausz, Ferenc; Karsch, Stefan


    A novel all-diode-pumped master oscillator power amplifier system based on Yb:YAG crystal rods has been developed. It consists of a Q-switched oscillator delivering 3 mJ, 6.4 ns pulses at a 10 Hz repetition rate and an additional four-pass amplifier, which boosts the output energy to 220 mJ, while a close to TEM(00) beam quality could be observed. Additionally a simulation of the amplification was written that allows for further scaling considerations.

  13. Effects of box size, frequency of lifting, and height of lift on maximum acceptable weight of lift and heart rate for male university students in Iran.

    Abadi, Ali Salehi Sahl; Mazlomi, Adel; Saraji, Gebraeil Nasl; Zeraati, Hojjat; Hadian, Mohammad Reza; Jafari, Amir Homayoun


    In spite of the widespread use of automation in industry, manual material handling (MMH) is still performed in many occupational settings. The emphasis on ergonomics in MMH tasks is due to the potential risks of workplace accidents and injuries. This study aimed to assess the effect of box size, frequency of lift, and height of lift on maximum acceptable weight of lift (MAWL) on the heart rates of male university students in Iran. This experimental study was conducted in 2015 with 15 male students recruited from Tehran University of Medical Sciences. Each participant performed 18 different lifting tasks that involved three lifting frequencies (1lift/min, 4.3 lifts/min and 6.67 lifts/min), three lifting heights (floor to knuckle, knuckle to shoulder, and shoulder to arm reach), and two box sizes. Each set of experiments was conducted during the 20 min work period using the free-style lifting technique. The working heart rates (WHR) were recorded for the entire duration. In this study, we used SPSS version 18 software and descriptive statistical methods, analysis of variance (ANOVA), and the t-test for data analysis. The results of the ANOVA showed that there was a significant difference between the mean of MAWL in terms of frequencies of lifts (p = 0.02). Tukey's post hoc test indicated that there was a significant difference between the frequencies of 1 lift/minute and 6.67 lifts/minute (p = 0. 01). There was a significant difference between the mean heart rates in terms of frequencies of lifts (p = 0.006), and Tukey's post hoc test indicated a significant difference between the frequencies of 1 lift/minute and 6.67 lifts/minute (p = 0.004). But, there was no significant difference between the mean of MAWL and the mean heart rate in terms of lifting heights (p > 0.05). The results of the t-test showed that there was a significant difference between the mean of MAWL and the mean heart rate in terms of the sizes of the two boxes (p = 0.000). Based on the results of

  14. Asymmetric changes in circulating insulin levels after an increase compared with a reduction in insulin pump basal rate in people with Type 1 diabetes.

    McAuley, S A; Ward, G M; Horsburgh, J C; Gooley, J L; Jenkins, A J; MacIsaac, R J; O'Neal, D N


    To investigate circulating insulin profiles after a clinically relevant insulin pump basal rate increase vs a reduction, and the associated glucose responses. A cohort of 12 adults with Type 1 diabetes undertook this two-stage university hospital study using Accu-Chek pumps (Roche Diagnostics, Mannheim, Germany) and insulin aspart. An insulin basal rate change of 0.2 unit/h (increase in first stage, reduction in second stage) was implemented at ~09:30 h, after a single overnight basal rate (without bolus insulin), while fasting participants rested. Frequent venous samples for the assessment of plasma free insulin, glucose and cortisol were collected from 60 min before until 300 min after rate change. The primary outcome was time to steady-state insulin. The 0.2-unit/h rate change represented a mean ± sd alteration of 23 ± 6%. After the rate increase, the median (interquartile range) times to 80% and 90% steady-state insulin were 170 (45) min and 197 (87) min, respectively. By contrast, after rate reduction, 80% steady-state insulin was not achieved. After the rate increase, mean ± se insulin levels increased by 4.3 ± 3.1%, 12.0 ± 2.9% and 25.6 ± 2.6% at 60, 120 and 300 min, respectively (with no significant difference until 180 min). After the rate reduction, insulin decreased by 8.3 ± 3.0% at 300 min (with no significant difference until 300 min). After rate reduction, glucose levels paradoxically declined by 17.4 ± 3.7% after 300 min; cortisol levels also fell during observation (P = 0.0003). The time to circulating insulin change after a 0.2-unit/h basal rate change was substantial, and was greater after a reduction than after an increase. Counter-regulatory hormone circadian variation may affect glycaemia when implementing minor changes at low basal rates. Both direction of basal rate change, and time of day, warrant consideration when anticipating the clinical effects of basal rate changes. © 2017 Diabetes UK.

  15. Pumping characteristics of roots blower pumps for light element gases

    Hiroki, Seiji; Abe, Tetsuya; Tanzawa, Sadamitsu; Nakamura, Jun-ichi; Ohbayashi, Tetsuro [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment


    The pumping speed and compression ratio of the two-stage roots blower pumping system were measured for light element gases (H{sub 2}, D{sub 2} and He) and for N{sub 2}, in order to assess validity of the ITER torus roughing system as an ITER R and D task (T234). The pumping system of an Edwards EH1200 (nominal pumping speed of 1200 m{sup 3}/s), two EH250s (ibid. 250 m{sup 3}/s) and a backing pump (ibid. 100 m{sup 3}/s) in series connection was tested under PNEUROP standards. The maximum pumping speeds of the two-stage system for D{sub 2} and N{sub 2} were 1200 and 1300 m{sup 3}/h, respectively at 60 Hz, which satisfied the nominal pumping speed. These experimental data support the design validity of the ITER torus roughing system. (author)

  16. Maximum Plant Uptakes for Water, Nutrients, and Oxygen Are Not Always Met by Irrigation Rate and Distribution in Water-based Cultivation Systems.

    Blok, Chris; Jackson, Brian E; Guo, Xianfeng; de Visser, Pieter H B; Marcelis, Leo F M


    Growing on rooting media other than soils in situ -i.e., substrate-based growing- allows for higher yields than soil-based growing as transport rates of water, nutrients, and oxygen in substrate surpass those in soil. Possibly water-based growing allows for even higher yields as transport rates of water and nutrients in water surpass those in substrate, even though the transport of oxygen may be more complex. Transport rates can only limit growth when they are below a rate corresponding to maximum plant uptake. Our first objective was to compare Chrysanthemum growth performance for three water-based growing systems with different irrigation. We compared; multi-point irrigation into a pond (DeepFlow); one-point irrigation resulting in a thin film of running water (NutrientFlow) and multi-point irrigation as droplets through air (Aeroponic). Second objective was to compare press pots as propagation medium with nutrient solution as propagation medium. The comparison included DeepFlow water-rooted cuttings with either the stem 1 cm into the nutrient solution or with the stem 1 cm above the nutrient solution. Measurements included fresh weight, dry weight, length, water supply, nutrient supply, and oxygen levels. To account for differences in radiation sum received, crop performance was evaluated with Radiation Use Efficiency (RUE) expressed as dry weight over sum of Photosynthetically Active Radiation. The reference, DeepFlow with substrate-based propagation, showed the highest RUE, even while the oxygen supply provided by irrigation was potentially growth limiting. DeepFlow with water-based propagation showed 15-17% lower RUEs than the reference. NutrientFlow showed 8% lower RUE than the reference, in combination with potentially limiting irrigation supply of nutrients and oxygen. Aeroponic showed RUE levels similar to the reference and Aeroponic had non-limiting irrigation supply of water, nutrients, and oxygen. Water-based propagation affected the subsequent

  17. Detection of pump degradation

    Casada, D. [Oak Ridge National Lab., TN (United States)


    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous special vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Pump head and flow rate are also monitored, per code requirements. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition; advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed.

  18. Magnetocaloric pump

    Brown, G. V.


    Very cold liquids and gases such as helium, neon, and nitrogen can be pumped by using magnetocaloric effect. Adiabatic magnetization and demagnetization are used to alternately heat and cool slug of pumped fluid contained in closed chamber.

  19. Chiral brownian heat pump.

    van den Broek, M; Van den Broeck, C


    We present the exact analysis of a chiral Brownian motor and heat pump. Optimization of the construction predicts, for a nanoscale device, frequencies of the order of kHz and cooling rates of the order of femtojoule per second.

  20. Chiral Brownian heat pump

    Van Den Broek, Martijn; Van Den Broeck, Christian


    We present the exact analysis of a chiral Brownian motor and heat pump. Optimization of the construction predicts, for a nanoscale device, frequencies of the order of kHz and cooling rates of the order of femtojoule per second.

  1. Heat pumps

    Macmichael, DBA


    A fully revised and extended account of the design, manufacture and use of heat pumps in both industrial and domestic applications. Topics covered include a detailed description of the various heat pump cycles, the components of a heat pump system - drive, compressor, heat exchangers etc., and the more practical considerations to be taken into account in their selection.

  2. The Impact of Alternative Trait-Scaling Hypotheses for the Maximum Photosynthetic Carboxylation Rate (V (sub cmax)) on Global Gross Primary Production

    Walker, Anthony P.; Quaife, Tristan; Van Bodegom, Peter M.; De Kauwe, Martin G.; Keenan, Trevor F.; Joiner, Joanna; Lomas, Mark R.; MacBean, Natasha; Xu, Chongang; Yang, Xiaojuan; hide


    The maximum photosynthetic carboxylation rate (V (sub cmax)) is an influential plant trait that has multiple scaling hypotheses, which is a source of uncertainty in predictive understanding of global gross primary production (GPP). Four trait-scaling hypotheses (plant functional type, nutrient limitation, environmental filtering, and plant plasticity) with nine specific implementations were used to predict global V(sub cmax) distributions and their impact on global GPP in the Sheffield Dynamic Global Vegetation Model (SDGVM). Global GPP varied from 108.1 to 128.2 petagrams of Carbon (PgC) per year, 65 percent of the range of a recent model intercomparison of global GPP. The variation in GPP propagated through to a 27percent coefficient of variation in net biome productivity (NBP). All hypotheses produced global GPP that was highly correlated (r equals 0.85-0.91) with three proxies of global GPP. Plant functional type-based nutrient limitation, underpinned by a core SDGVM hypothesis that plant nitrogen (N) status is inversely related to increasing costs of N acquisition with increasing soil carbon, adequately reproduced global GPP distributions. Further improvement could be achieved with accurate representation of water sensitivity and agriculture in SDGVM. Mismatch between environmental filtering (the most data-driven hypothesis) and GPP suggested that greater effort is needed understand V(sub cmax) variation in the field, particularly in northern latitudes.

  3. Modal dispersion, pulse broadening and maximum transmission rate in GRIN optical fibers encompass a central dip in the core index profile

    El-Diasty, Fouad; El-Hennawi, H. A.; El-Ghandoor, H.; Soliman, Mona A.


    Intermodal and intramodal dispersions signify one of the problems in graded-index multi-mode optical fibers (GRIN) used for LAN communication systems and for sensing applications. A central index dip (depression) in the profile of core refractive-index may occur due to the CVD fabrication processes. The index dip may also be intentionally designed to broaden the fundamental mode field profile toward a plateau-like distribution, which have advantages for fiber-source connections, fiber amplifiers and self-imaging applications. Effect of core central index dip on the propagation parameters of GRIN fiber, such as intermodal dispersion, intramodal dispersion and root-mean-square broadening, is investigated. The conventional methods usually study optical signal propagation in optical fiber in terms of mode characteristics and the number of modes, but in this work multiple-beam Fizeau interferometry is proposed as an inductive but alternative methodology to afford a radial approach to determine dispersion, pulse broadening and maximum transmission rate in GRIN optical fiber having a central index dip.

  4. Estimation of autotrophic maximum specific growth rate constant--experience from the long-term operation of a laboratory-scale sequencing batch reactor system.

    Su, Yu-min; Makinia, Jacek; Pagilla, Krishna R


    The autotrophic maximum specific growth rate constant, muA,max, is the critical parameter for design and performance of nitrifying activated sludge systems. In literature reviews (i.e., Henze et al., 1987; Metcalf and Eddy, 1991), a wide range of muA,max values have been reported (0.25 to 3.0 days(-1)); however, recent data from several wastewater treatment plants across North America revealed that the estimated muA,max values remained in the narrow range 0.85 to 1.05 days(-1). In this study, long-term operation of a laboratory-scale sequencing batch reactor system was investigated for estimating this coefficient according to the low food-to-microorganism ratio bioassay and simulation methods, as recommended in the Water Environment Research Foundation (Alexandria, Virginia) report (Melcer et al., 2003). The estimated muA,max values using steady-state model calculations for four operating periods ranged from 0.83 to 0.99 day(-1). The International Water Association (London, United Kingdom) Activated Sludge Model No. 1 (ASM1) dynamic model simulations revealed that a single value of muA,max (1.2 days(-1)) could be used, despite variations in the measured specific nitrification rates. However, the average muA,max was gradually decreasing during the activated sludge chlorination tests, until it reached the value of 0.48 day(-1) at the dose of 5 mg chlorine/(g mixed liquor suspended solids x d). Significant discrepancies between the predicted XA/YA ratios were observed. In some cases, the ASM1 predictions were approximately two times higher than the steady-state model predictions. This implies that estimating this ratio from a complex activated sludge model and using it in simple steady-state model calculations should be accepted with great caution and requires further investigation.

  5. A high-repetition rate scheme for synchrotron-based picosecond laser pump/x-ray probe experiments on chemical and biological systems in solution.

    Lima, Frederico A; Milne, Christopher J; Amarasinghe, Dimali C V; Rittmann-Frank, Mercedes Hannelore; van der Veen, Renske M; Reinhard, Marco; Pham, Van-Thai; Karlsson, Susanne; Johnson, Steven L; Grolimund, Daniel; Borca, Camelia; Huthwelker, Thomas; Janousch, Markus; van Mourik, Frank; Abela, Rafael; Chergui, Majed


    We present the extension of time-resolved optical pump/x-ray absorption spectroscopy (XAS) probe experiments towards data collection at MHz repetition rates. The use of a high-power picosecond laser operating at an integer fraction of the repetition rate of the storage ring allows exploitation of up to two orders of magnitude more x-ray photons than in previous schemes based on the use of kHz lasers. Consequently, we demonstrate an order of magnitude increase in the signal-to-noise of time-resolved XAS of molecular systems in solution. This makes it possible to investigate highly dilute samples at concentrations approaching physiological conditions for biological systems. The simplicity and compactness of the scheme allows for straightforward implementation at any synchrotron beamline and for a wide range of x-ray probe techniques, such as time-resolved diffraction or x-ray emission studies.

  6. Heat pumps

    Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski


    Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o

  7. Changes in basal rates and bolus calculator settings in insulin pumps during pregnancy in women with type 1 diabetes

    Mathiesen, Jonathan M; Secher, Anna L; Ringholm, Lene


    and HbA1c were recorded. Results were compared with 96 women with type 1 diabetes on multiple daily injection therapy. RESULTS: Throughout pregnancy, the carbohydrate-to-insulin ratio decreased at all three main meals. The most pronounced decrease was observed at breakfast, where the carbohydrate......-to-insulin ratio was reduced, from median 12 (range 4-20) in early pregnancy to 3 (2-10) g carbohydrate per unit insulin in late pregnancy. Basal insulin delivery increased by ∼50%, i.e. from 0.8 (0.5-2.2) to 1.2 (0.6-2.5) IU/h at 5 a.m. and from 1.0 (0.6-1.5) to 1.3 (0.2-2.3) IU/h at 5 p.m. during pregnancy. HbA1......c levels during pregnancy, the occurrence of severe hypoglycemia and pregnancy outcomes were similar in the two groups. CONCLUSIONS: In women with type 1 diabetes on insulin pump therapy with a bolus calculator, the carbohydrate-to-insulin ratio declined 4-fold from early to late pregnancy, whereas...

  8. Sliding mode controller for a photovoltaic pumping system

    ElOugli, A.; Miqoi, S.; Boutouba, M.; Tidhaf, B.


    In this paper, a sliding mode control scheme (SMC) for maximum power point tracking controller for a photovoltaic pumping system, is proposed. The main goal is to maximize the flow rate for a water pump, by forcing the photovoltaic system to operate in its MPP, to obtain the maximum power that a PV system can deliver.And this, through the intermediary of a sliding mode controller to track and control the MPP by overcoming the power oscillation around the operating point, which appears in most implemented MPPT techniques. The sliding mode control approach is recognized as one of the efficient and powerful tools for nonlinear systems under uncertainty conditions.The proposed controller with photovoltaic pumping system is designed and simulated using MATLAB/SIMULINK environment. In addition, to evaluate its performances, a classical MPPT algorithm using perturb and observe (P&O) has been used for the same system to compare to our controller. Simulation results are shown.


    Gonzalez-Lopezlira, Rosa A. [On sabbatical leave from the Centro de Radioastronomia y Astrofisica, UNAM, Campus Morelia, Michoacan, C.P. 58089, Mexico. (Mexico); Pflamm-Altenburg, Jan; Kroupa, Pavel, E-mail: [Argelander Institut fuer Astronomie, Universitaet Bonn, Auf dem Huegel 71, D-53121 Bonn (Germany)


    We analyze the relationship between maximum cluster mass and surface densities of total gas ({Sigma}{sub gas}), molecular gas ({Sigma}{sub H{sub 2}}), neutral gas ({Sigma}{sub H{sub I}}), and star formation rate ({Sigma}{sub SFR}) in the grand-design galaxy M51, using published gas data and a catalog of masses, ages, and reddenings of more than 1800 star clusters in its disk, of which 223 are above the cluster mass distribution function completeness limit. By comparing the two-dimensional distribution of cluster masses and gas surface densities, we find for clusters older than 25 Myr that M{sub 3rd}{proportional_to}{Sigma}{sub H{sub I}{sup 0.4{+-}0.2}}, whereM{sub 3rd} is the median of the five most massive clusters. There is no correlation with{Sigma}{sub gas},{Sigma}{sub H2}, or{Sigma}{sub SFR}. For clusters younger than 10 Myr, M{sub 3rd}{proportional_to}{Sigma}{sub H{sub I}{sup 0.6{+-}0.1}} and M{sub 3rd}{proportional_to}{Sigma}{sub gas}{sup 0.5{+-}0.2}; there is no correlation with either {Sigma}{sub H{sub 2}} or{Sigma}{sub SFR}. The results could hardly be more different from those found for clusters younger than 25 Myr in M33. For the flocculent galaxy M33, there is no correlation between maximum cluster mass and neutral gas, but we have determined M{sub 3rd}{proportional_to}{Sigma}{sub gas}{sup 3.8{+-}0.3}, M{sub 3rd}{proportional_to}{Sigma}{sub H{sub 2}{sup 1.2{+-}0.1}}, and M{sub 3rd}{proportional_to}{Sigma}{sub SFR}{sup 0.9{+-}0.1}. For the older sample in M51, the lack of tight correlations is probably due to the combination of strong azimuthal variations in the surface densities of gas and star formation rate, and the cluster ages. These two facts mean that neither the azimuthal average of the surface densities at a given radius nor the surface densities at the present-day location of a stellar cluster represent the true surface densities at the place and time of cluster formation. In the case of the younger sample, even if the clusters have not yet

  10. 46 CFR 169.654 - Bilge pumps.


    ... 46 Shipping 7 2010-10-01 2010-10-01 false Bilge pumps. 169.654 Section 169.654 Shipping COAST... Electrical Bilge Systems § 169.654 Bilge pumps. (a) Vessels of less than 65 feet in length must have a portable hand bilge pump having a maximum capacity of 5 gpm. (b) In addition to the requirements...

  11. Evaluation of adaptation to visually induced motion sickness based on the maximum cross-correlation between pulse transmission time and heart rate

    Chiba Shigeru


    Full Text Available Abstract Background Computer graphics and virtual reality techniques are useful to develop automatic and effective rehabilitation systems. However, a kind of virtual environment including unstable visual images presented to wide field screen or a head mounted display tends to induce motion sickness. The motion sickness induced in using a rehabilitation system not only inhibits effective training but also may harm patients' health. There are few studies that have objectively evaluated the effects of the repetitive exposures to these stimuli on humans. The purpose of this study is to investigate the adaptation to visually induced motion sickness by physiological data. Methods An experiment was carried out in which the same video image was presented to human subjects three times. We evaluated changes of the intensity of motion sickness they suffered from by a subjective score and the physiological index ρmax, which is defined as the maximum cross-correlation coefficient between heart rate and pulse wave transmission time and is considered to reflect the autonomic nervous activity. Results The results showed adaptation to visually-induced motion sickness by the repetitive presentation of the same image both in the subjective and the objective indices. However, there were some subjects whose intensity of sickness increased. Thus, it was possible to know the part in the video image which related to motion sickness by analyzing changes in ρmax with time. Conclusion The physiological index, ρmax, will be a good index for assessing the adaptation process to visually induced motion sickness and may be useful in checking the safety of rehabilitation systems with new image technologies.

  12. Pumping of titanium sapphire laser

    Jelínková, H.; Vaněk, P.; Valach, P.; Hamal, K.; Kubelka, J.; Škoda, V.; Jelínek, M.


    Two methods of Ti:Sapphire pumping for the generation of tunable laser radiation in the visible region were studied. For coherent pumping, the radiation of the second harmonic of a Nd:YAP laser was used and a maximum output energy of E out=4.5 mJ was reached from the Ti:Sapphire laser. For noncoherent pumping, two different lengths of flashlamp pulses were used and a maximum of E out=300 mJ was obtained. Preliminary estimations of the wavelength range of tunability were made.

  13. High-Resolution Chronostratigraphic Correlation and Sedimentation Rate Calculations With Maximum Depositional Ages Derived From Large-n Detrital Zircon Datasets

    Hubbard, S. M.; Coutts, D. S.; Matthews, W.; Guest, B.; Bain, H.


    In basins adjacent to continually active arcs, detrital zircon geochronology can be used to establish a high-resolution chronostratigraphic framework for deep-time strata. Large-nU-Pb geochronological datasets can yield a statistically significant signature from the youngest sub-population of detrital zircons, which we deduce from maximum depositional age (MDA) calculations. MDA is determined through numerous methods such as the mean age of three or more overlapping grain ages at 2σ error, favored in this analysis. Positive identification of the youngest detrital zircon population in a rock is the limiting factor on precision and resolution. The Campanian-Paleogene Nanaimo Group of B.C., Canada, was deposited in a forearc basin, outboard of the Coast Mountain Batholith. The record of a deep-water sediment-routing system is exhumed at Denman and Hornby islands; sandstone- and conglomerate- dominated strata compose a composite sedimentary unit 20 km across and 1.5 km thick, in strike section. Volcanic ashes are absent from the succession, which has been constrained biostratigraphically. Eleven detrital zircon samples are analyzed to define stratigraphic architecture and provide insight into sedimentation rates. Our dataset (n=3081) constrains the overall duration of channelization to ~18 Ma. A series of at least five distinct composite channel fills 3-6 km wide and 400-600 m thick are identified. The MDA of these units are statistically distinct and constrained to better than 3% precision. Sedimentation rates amongst the channel fills increase upward, from 60-100 m/Ma to >500 m/Ma. This is likely linked to the tendency of a slope channel system to be dominated by sediment bypass early in its evolution, and later dominated by aggradation as large-scale levees develop. Channel processes were not continuous, with the longest hiatus ~6 Ma. The large-n detrital zircon dataset provides unprecedented insight into long-term sediment routing, evidence for which is

  14. SHINE Vacuum Pump Test Verification

    Morgan, Gregg A; Peters, Brent


    Normetex pumps used world-wide for tritium service are no longer available. DOE and other researchers worldwide have spent significant funds characterizing this pump. Identification of alternate pumps is required for performance and compatibility with tritium gas. Many of the pumps that could be used to meet the functional performance requirements (e.g. pressure and flow conditions) of the Normetex pump have features that include the use of polymers or oils and greases that are not directly compatible with tritium service. This study assembles a test system to determine the flow characteristics for candidate alternate pumps. These tests are critical to the movement of tritium through the SHINE Tritium Purification System (TPS). The purpose of the pump testing is two-fold: (1) obtain baseline vacuum pump characteristics for an alternate (i.e. ''Normetex replacement'') pump intended for use in tritium service; and (2) verify that low pressure hydrogen gas can be transported over distances up to 300 feet by the candidate pumps. Flow rates and nominal system pressures have been identified for the SHINE Mo-99 production process Tritium Purification System (TPS). To minimize the line sizes for the transfer of low pressure tritium from the Neutron Driver Accelerator System (NDAS) to the primary processing systems in the TPS, a ''booster'' pump has been located near the accelerator in the design. A series of pump tests were performed at various configurations using hydrogen gas (no tritium) to ensure that this concept is practical and maintains adequate flow rates and required pressures. This report summarizes the results of the tests that have been performed using various pump configurations. The current design of the Tritium Purification System requires the ''booster'' pump to discharge to or to be backed by another vacuum pump. Since Normetex pumps are no longer manufactured, a commercially available Edwards

  15. Centrifugal pumps

    Gülich, Johann Friedrich


    This book gives an unparalleled, up-to-date, in-depth treatment of all kinds of flow phenomena encountered in centrifugal pumps including the complex interactions of fluid flow with vibrations and wear of materials. The scope includes all aspects of hydraulic design, 3D-flow phenomena and partload operation, cavitation, numerical flow calculations, hydraulic forces, pressure pulsations, noise, pump vibrations (notably bearing housing vibration diagnostics and remedies), pipe vibrations, pump characteristics and pump operation, design of intake structures, the effects of highly viscous flows, pumping of gas-liquid mixtures, hydraulic transport of solids, fatigue damage to impellers or diffusers, material selection under the aspects of fatigue, corrosion, erosion-corrosion or hydro-abrasive wear, pump selection, and hydraulic quality criteria. As a novelty, the 3rd ed. brings a fully analytical design method for radial impellers, which eliminates the arbitrary choices inherent to former design procedures. The d...

  16. Variability of Basal Rate Profiles in Insulin Pump Therapy and Association with Complications in Type 1 Diabetes Mellitus.

    Markus Laimer

    Full Text Available Traditionally, basal rate profiles in continuous subcutaneous insulin infusion therapy are individually adapted to cover expected insulin requirements. However, whether this approach is indeed superior to a more constant BR profile has not been assessed so far. This study analysed the associations between variability of BR profiles and acute and chronic complications in adult type 1 diabetes mellitus.BR profiles of 3118 female and 2427 male patients from the "Diabetes-Patienten-Verlaufsdokumentation" registry from Germany and Austria were analysed. Acute and chronic complications were recorded 6 months prior and after the most recently documented basal rate. The "variability index" was calculated as variation of basal rate intervals in percent and describes the excursions of the basal rate intervals from the median basal rate.The variability Index correlated positively with severe hypoglycemia (r = .06; p<0.001, hypoglycemic coma (r = .05; p = 0.002, and microalbuminuria (r = 0.05; p = 0.006. In addition, a higher variability index was associated with higher frequency of diabetic ketoacidosis (r = .04; p = 0.029 in male adult patients. Logistic regression analysis adjusted for age, gender, duration of disease and total basal insulin confirmed significant correlations of the variability index with severe hypoglycemia (β = 0.013; p<0.001 and diabetic ketoacidosis (β = 0.012; p = 0.017.Basal rate profiles with higher variability are associated with an increased frequency of acute complications in adults with type 1 diabetes.

  17. Pumps used as turbines power recovery, energy efficiency, CFD analysis

    Bogdanović-Jovanović Jasmina B.


    Full Text Available As the global demand for energy grows, numerous studies in the field of energy efficiency are stimulated, and one of them is certainly the use of pumps in turbine operating mode. In order to reduce time necessary to determine pump characteristic in turbine operating mode problem was studied by computational fluid dynamics approach. The paper describes various problems faced during modeling (pump and turbine mode and the approaches used to resolve the problems. Since in the majority of applications, the turbine is a pump running in reverse, many attempts have been made to predict the turbine performance from the known pump performance, but only for best efficiency point. This approach does not provide reliable data for the design of the system with maximum energy efficiency and does not allow the determination of the head for a wide range of flow rates. This paper presents an example of centrifugal norm pump operating in both (pump and turbine regime and comparison of experimentally obtained results and computational fluid dynamics simulations. [Projekat Ministarstva nauke Republike Srbije, br. TR33040: Revitalization of existing and designing new micro and mini hydropower plants (from 100 to 1000 kW in the territory of South and Southeast Serbia

  18. Different elution modes and field programming in gravitational field-flow fractionation. III. Field programming by flow-rate gradient generated by a programmable pump.

    Plocková, J; Chmelík, J


    Gravitational field-flow fractionation (GFFF) utilizes the Earth's gravitational field as an external force that causes the settlement of particles towards the channel accumulation wall. Hydrodynamic lift forces oppose this action by elevating particles away from the channel accumulation wall. These two counteracting forces enable modulation of the resulting force field acting on particles in GFFF. In this work, force-field programming based on modulating the magnitude of hydrodynamic lift forces was implemented via changes of flow-rate, which was accomplished by a programmable pump. Several flow-rate gradients (step gradients, linear gradients, parabolic, and combined gradients) were tested and evaluated as tools for optimization of the separation of a silica gel particle mixture. The influence of increasing amount of sample injected on the peak resolution under flow-rate gradient conditions was also investigated. This is the first time that flow-rate gradients have been implemented for programming of the resulting force field acting on particles in GFFF.

  19. Velocity selective optical pumping

    Aminoff, C. G.; Pinard, M.


    We consider optical pumping with a quasi monochromatic tunable light beam, in the low intensity limit where a rate equation regime is obtained The velocity selective optical pumping (V.S.O.P.) introduces a correlation between atomic velocity and internal variables in the ground (or metastable) state. The aim of this article is to evaluate these atomic observables (orientation, alignment, population) as a function of velocity, using a phenomenological description of the relaxation effect of co...

  20. A Peristaltic Pump Integrated on a 100% Glass Microchip Using Computer Controlled Piezoelectric Actuators

    Yo Tanaka


    Full Text Available Lab-on-a-chip technology is promising for the miniaturization of chemistry, biochemistry, and/or biology researchers looking to exploit the advantages of a microspace. To manipulate fluid on a microchip, on-chip pumps are indispensable. To date, there have been several types of on-chip pumps including pneumatic, electroactive, and magnetically driven. However these pumps introduce polymers, metals, and/or silicon to the microchip, and these materials have several disadvantages, including chemical or physical instability, or an inherent optical detection limit. To overcome/avoid these issues, glass has been one of the most commonly utilized materials for the production of multi-purpose integrated chemical systems. However, glass is very rigid, and it is difficult to incorporate pumps onto glass microchips. This paper reports the use of a very flexible, ultra-thin glass sheet (minimum thickness of a few micrometers to realize a pump installed on an entirely glass-based microchip. The pump is a peristaltic-type, composed of four serial valves sealing a cavity with two penetrate holes using ultra-thin glass sheet. By this pump, an on-chip circulating flow was demonstrated by directly observing fluid flow, visualized via polystyrene tracking particles. The flow rate was proportional to the pumping frequency, with a maximum flow rate of approximately 0.80 μL/min. This on-chip pump could likely be utilized in a wide range of applications which require the stability of a glass microchip.

  1. The effect of blade outlet angle on performance and internal flow condition of mini turbo-pump

    Shigemitsu, T.; Fukutomi, J.; Nasada, R.; Kaji, K.


    Mini turbo-pumps having a diameter smaller than 100mm are employed in many fields; automobile radiator pump, ventricular assist pump, cooling pump for electric devices, washing machine pump and so on. Further, the needs for mini turbo-pumps would become larger with the increase of the application of it for electrical machines. It is desirable that the mini turbo-pump design is as simple as possible due to restriction to make precise manufactures. But the design method for the mini turbo-pump is not established because the internal flow condition for these small-sized fluid machineries is not clarified and conventional theory is not conductive for small-sized pumps. Three types of rotors with different outlet angles are prepared for an experiment and a numerical analysis. The performance tests are conducted with these rotors in order to investigate the effect of the blade outlet angle on performance and internal flow condition of mini turbo-pumps. It is clarified from the experimental results that head of the mini turbo-pump increases and maximum efficiency flow rate shifts to larger flow rate according to the increase of the blade outlet angle, however the maximum efficiency decreases with the increase of it. In the present paper, the performance of the mini turbo-pump is shown and the internal flow conditions are clarified with the results of the experiment and the numerical flow analysis. Furthermore, the effects of the blade outlet angle on the performance are investigated and high performance design with simple structure for the mini turbo-pump would be considered.

  2. Dispersion relation and growth rate for a corrugated channel free-electron laser with a helical wiggler pump

    A.Hasanbeigi; H.Mehdian


    The effects of corrugated ion channels on electron trajectories and spatial growth rate for a free-electron laser with a one-dimensional helical wiggler have been investigated.Analysis of the steady-state electron trajectories is performed by solving the equations of motion.Our results show that the presence of a corrugated channel shifts the resonance frequency to smaller values of ion channel frequency.The sixth-order dispersion equation describing the coupling between the electrostatic beam mode and the electromagnetic mode has also been derived.The dispersion relation characteristic is analyzed in detail by numerical solution.Results show that the growth rate of instability in the presence of corrugated ion channels can be greatly enhanced relative to the case of an uniform ion channel.

  3. Development of a proof of concept low temperature 4He Superfluid Magnetic Pump

    Jahromi, Amir E.; Miller, Franklin K.


    We describe the development and experimental results of a proof of concept Superfluid Magnetic Pump in this work. This novel low temperature, no moving part pump can replace the existing bellows-piston driven 4He or 3He-4He mixture compressor/circulators used in various sub Kelvin refrigeration systems such as dilution, Superfluid pulse tube, Stirling, or active magnetic regenerative refrigerators. Due to the superior thermal transport properties of sub-Lambda 4He this pump can also be used as a simple circulator to distribute cooling over large surface areas. Our pump was experimentally shown to produce a maximum flow rate of 440 mg/s (averaged over cycle), 665 mg/s (peak) and produced a maximum pressure difference of 2323 Pa using only the more common isotope of helium, 4He. This pump worked in an ;ideal; thermodynamic state: The experimental results matched with the theoretical values predicted by a computer model. Pump curves were developed to map the performance of this pump. This successful demonstration will enable this novel pump to be implemented in suitable sub Kelvin refrigeration systems.

  4. Maximum-power-point tracking control of solar heating system

    Huang, Bin-Juine


    The present study developed a maximum-power point tracking control (MPPT) technology for solar heating system to minimize the pumping power consumption at an optimal heat collection. The net solar energy gain Q net (=Q s-W p/η e) was experimentally found to be the cost function for MPPT with maximum point. The feedback tracking control system was developed to track the optimal Q net (denoted Q max). A tracking filter which was derived from the thermal analytical model of the solar heating system was used to determine the instantaneous tracking target Q max(t). The system transfer-function model of solar heating system was also derived experimentally using a step response test and used in the design of tracking feedback control system. The PI controller was designed for a tracking target Q max(t) with a quadratic time function. The MPPT control system was implemented using a microprocessor-based controller and the test results show good tracking performance with small tracking errors. It is seen that the average mass flow rate for the specific test periods in five different days is between 18.1 and 22.9kg/min with average pumping power between 77 and 140W, which is greatly reduced as compared to the standard flow rate at 31kg/min and pumping power 450W which is based on the flow rate 0.02kg/sm 2 defined in the ANSI/ASHRAE 93-1986 Standard and the total collector area 25.9m 2. The average net solar heat collected Q net is between 8.62 and 14.1kW depending on weather condition. The MPPT control of solar heating system has been verified to be able to minimize the pumping energy consumption with optimal solar heat collection. © 2012 Elsevier Ltd.

  5. Ferroelectric Pump

    Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)


    A ferroelectric pump has one or more variable volume pumping chambers internal to a housing. Each chamber has at least one wall comprising a dome shaped internally prestressed ferroelectric actuator having a curvature and a dome height that varies with an electric voltage applied between an inside and outside surface of the actuator. A pumped medium flows into and out of each pumping chamber in response to displacement of the ferroelectric actuator. The ferroelectric actuator is mounted within each wall and isolates each ferroelectric actuator from the pumped medium, supplies a path for voltage to be applied to each ferroelectric actuator, and provides for positive containment of each ferroelectric actuator while allowing displacement of the entirety of each ferroelectric actuator in response to the applied voltage.

  6. Space Station Environmental Control and Life Support System Purge Control Pump Assembly Modeling and Analysis

    Schunk, R. Gregory; Hunt, Patrick L. (Technical Monitor)


    Preliminary results from a thermal/flow analysis of the Purge Control Pump Assembly (PCPA) indicate that pump performance (mass flow rate) is enhanced via cooling of the housing and lowering of the inlet vapor quality. Under a nominal operational profile (25% duty cycle or less), at the maximum motor dissipation, it appears that the peristaltic tubing temperature will still remain significantly below the expected UPA condenser temperature (78 F max versus approximately 105 F in the condenser) permitting condensation in the pump head.

  7. Effect of Aerobic Exercise with 75-85% of Maximum Heart Rate on Apelin and Insulin Resistance Index in Sedentary Men

    N. Alavizadeh


    Full Text Available ims: Apelin is an adipokine, which secreted from adipose tissue and has positive effects against the insulin resistance. The aim of this study was to investigate the effect of 8-week aerobic exercise on levels of apelin and insulin resistance index in sedentary men. Materials & Methods: In this semi-experimental study with controlled group pre/post-test design in 2015, 27 healthy sedentary men living in Mashhad City, Iran, were selected by convenience sampling method. They were divided into two groups; experimental group (n=14 and control group (n=13. In the trained group, the volunteers participated in 8 weeks aerobic exercise, 3 days/week (equivalent to 75-85% of maximum oxygen consumption for 60 minutes per session. The research variables were assessed before and after the intervention in both groups. The collected data were analyzed using SPSS 20 software using paired and independent sample T tests. Findings: 8-week aerobic exercise significantly decreased the weight, BMI and apelin, insulin and insulin resistance index levels and increased the maximum oxygen consumption in experimental group sedentary men (p<0.05. Moreover, there were significant differences in levels of FBS, insulin, apelin, insulin resistance index and maximum oxygen consumption between experimental and control groups (p<0.05. Conclusion: 8-week aerobic exercise reduces apelin levels and insulin resistance index in sedentary men.

  8. Combining pump-and-treat and physical barriers for contaminant plume control.

    Bayer, Peter; Finkel, Michael; Teutsch, Georg


    A detailed analysis is presented of the hydraulic efficiency of plume management alternatives that combine a conventional pump-and-treat system with vertical, physical hydraulic barriers such as slurry walls or sheet piles. Various design settings are examined for their potential to reduce the pumping rate needed to obtain a complete capture of a given contaminated area. Using established modeling techniques for flow and transport, those barrier configurations (specified by location, shape, and length) that yield a maximum reduction of the pumping rate are identified assuming homogeneous aquifer conditions. Selected configurations are further analyzed concerning their hydraulic performance under heterogeneous aquifer conditions by means of a stochastic approach (Monte Carlo simulations) with aquifer transmissivity as a random space function. The results show that physical barriers are an appropriate means to decrease expected (mean) pumping rates, as well as the variance of the corresponding pumping rate distribution at any given degree of heterogeneity. The methodology presented can be transferred easily to other aquifer scenarios, provided some basic premises are fulfilled, and may serve as a basis for reducing the pumping rate in existing pump-and-treat systems.

  9. Vacuum pump age effects by the exposure to the corrosive gases on the Cr etch rate as observed using optical emission spectroscopy in an Ar/O{sub 2}/Cl{sub 2} mixed plasma

    Park, Seolhye; Roh, Hyun-Joon; Jang, Yunchang; Jeong, Sangmin; Ryu, Sangwon; Choe, Jae-Myung; Kim, Gon-Ho, E-mail:


    Vacuum pumps of different ages were used to prepare Cl{sub 2} based plasmas for use in Cr etching. The effects of the vacuum pump age on the etching results were investigated using optical emission spectroscopy analysis. The composition of gas at the base pressure was mainly nitrogen and oxygen, although the ratio depended on the vacuum pump age and therefore, modulated the etch rate in a manner that was difficult to monitor. The effects of the pump age on the etch rate were clearly observed in the Cl{sub 2} plasma-assisted chromium film etching process, in which oxygen and chlorine radicals were responsible for the etching process. The electron energy distribution function (EEDF), which provided a proxy for the thermal equilibrium properties of the etching plasmas, was monitored. The shape of EEDF was derived from an analysis of the optical emission spectral data using an analysis model described previously. Because molecular nitrogen has a higher threshold energy and a larger cross-section of inelastic collisional processes than oxygen, the tail of the EEDF depends on the mixing ratio between nitrogen and oxygen. The various mechanisms that contribute to the chromium etch rate varied with subtle differences in the vacuum conditions, which were determined by age of the turbo molecular pump. The rates at which oxygen and chlorine radicals were generated were estimated using the measured EEDF, and the estimated oxygen radical and etching product contents were verified by comparing the residual gas analyzer data. The results revealed that the residual nitrogen partial pressures in two etchers equipped with either a new or an aged pump differed by 0.18%, and the EEDF tail areas differed by 10{sup −4}. Importantly, the chromium etch rates in these two instruments differed by 30%. These results suggest that the chamber-to-chamber mismatch should be monitored during plasma-assisted device fabrication processes. - Highlights: • We observed the vacuum pump age effect

  10. A self-priming, roller-free, miniature, peristaltic pump operable with a single, reciprocating actuator

    Shkolnikov, Viktor; Ramunas, John; Santiago, Juan G.


    We present a design for a miniature self-priming peristaltic pump actuated with a single linear actuator, and which can be manufactured using conventional materials and methods. The pump is tolerant of bubbles and particles and can pump liquids, foams, and gases. We explore designs actuated by a motor (in depth) and a shape memory alloy (briefly); and briefly present a manually actuated version. The pump consists of a Delrin acetal plastic body with two integrated valves, a flexible silicone tube, and an actuator. Pumping is achieved as the forward motion of the actuator first closes the upstream valve, and then compresses a section of the tube. The increased internal pressure opens a downstream burst valve to expel the fluid. Reduced pressure in the pump tube allows the downstream valve to close, and removal of actuator force allows the upstream valve and pump tube to open, refilling the pump. The motor actuated design offers a linear dependence of flow rate on voltage in the range of 1.75–3 V. Flow rate decreases from 780 μl/min with increasing back pressure up to the maximum back pressure of 48 kPa. At 3 V and minimum back pressure, the pump consumes 90 mW. The shape memory alloy actuated design offers a 5-fold size and 4-fold weight reduction over the motor design, higher maximum back pressure, and substantial insensitivity of flow rate to back pressure at the cost of lower power efficiency and flow rate. The manually actuated version is simpler and appropriate for applications unconstrained by actuation distance. PMID:24672145

  11. A novel all-in-one magnetic pump and power harvester design for bio-medical applications

    Kim, Sung Hoon; Shin, Jaewon; Hashi, Shuichiro; Ishiyama, Kazushi


    This paper presents a magnetic centrifugal pump with a magnetic power harvester (all-in-one system) for medical applications. The proposed pump is driven by an external rotating magnetic field. To produce pressure and electrical power, an all-in-one device consisting of a pump and a power harvester was designed. It consists of a multi-stage impeller, a disc type NdFeB permanent magnet, and a fixed wound coil on the pump case. The rotation of the rotor creates a continuous flow of liquid through the pump, with a pressure head, and an electrical power is generated in the wound coil because of the rotating magnetic field. The maximum flow rate and pressure are 5000 ml min-1 and 16 kPa, respectively, at 100 Hz. These results meet the requirements of an artificial heart assistance blood pump. Under these operating conditions, the harvested voltage can reach a maximum of 8.2 Vp-p. With this configuration and control method, wireless and battery-free operation is possible, which is required in the medical field. Moreover, the power harvester can monitor the pump conditions without additional electrical power and can provide electrical power to other implanted electrical devices. The performances of the pump and power harvester were verified in a laboratory experiment. Overall, the proposed system acts as a pump and a power harvester that is fully wireless and battery-free.

  12. Penis Pump

    ... claim that they can be used to increase penis size, but there's no evidence that they work for ... circumstances, using a penis pump might help your penis maintain its natural size and shape after prostate surgery or if you ...

  13. Maximum Plant Uptakes for Water, Nutrients, and Oxygen Are Not Always Met by Irrigation Rate and Distribution in Water-based Cultivation Systems

    Blok, Chris; Jackson, Brian E.; Guo, Xianfeng; Visser, De Pieter H.B.; Marcelis, Leo F.M.


    Growing on rooting media other than soils in situ -i.e., substrate-based growing- allows for higher yields than soil-based growing as transport rates of water, nutrients, and oxygen in substrate surpass those in soil. Possibly water-based growing allows for even higher yields as transport rates of

  14. Diode-pumped Yb3+:KYF4 femtosecond laser.

    Coluccelli, Nicola; Galzerano, Gianluca; Tonelli, Mauro; Laporta, Paolo; Svelto, Orazio


    Passive mode locking of a diode-pumped Yb(3+):KYF(4) laser is demonstrated using a semiconductor saturable absorber mirror. A high-stability, transform-limited pulse train with a repetition rate of 57 MHz is generated. Solitonlike pulses with maximum average output power of 250 mW, minimum pulse duration of 170 fs, and rms time jitter of 360 fs were obtained.

  15. LOX/LH2 vane pump for auxiliary propulsion systems

    Hemminger, J. A.; Ulbricht, T. E.


    Positive displacement pumps offer potential efficiency advantages over centrifugal pumps for future low thrust space missions. Low flow rate applications, such as space station auxiliary propulsion or dedicated low thrust orbiter transfer vehicles, are typical of missions where low flow and high head rise challenge centrifugal pumps. The positive displacement vane pump for pumping of LOX and LH2 is investigated. This effort has included: (1) a testing program in which pump performance was investigated for differing pump clearances and for differing pump materials while pumping LN2, LOX, and LH2; and (2) an analysis effort, in which a comprehensive pump performance analysis computer code was developed and exercised. An overview of the theoretical framework of the performance analysis computer code is presented, along with a summary of analysis results. Experimental results are presented for pump operating in liquid nitrogen. Included are data on the effects on pump performance of pump clearance, speed, and pressure rise. Pump suction performance is also presented.

  16. A miniature intraventricular axial flow blood pump that is introduced through the left ventricular apex.

    Yamazaki, K; Umezu, M; Koyanagi, H; Kitamura, M; Eishi, K; Kawai, A; Tagusari, O; Niinami, H; Akimoto, T; Nojiri, C


    A new intraventricular axial flow blood pump has been designed and developed as an implantable left ventricular assist device (LVAD). The pump consists of a tube housing (10 cm in length and 14 mm in diameter), a three-vane impeller combined with a guide vane, and a DC motor. This pump is introduced into the LV cavity through the LV apex, and the outlet cannula is passed antegrade across the aortic valve. Blood is withdrawn from the LV through the inlet ports at the pump base, and discharged into the ascending aorta. A pump flow of > 8 L/min was obtained against 90 mmHg differential pressure in the mock circulatory system. In an acute dog model, this pump could produce a sufficient output of 200 ml/kg/min. In addition, the pump flow profile demonstrated a pulsatile pattern, although the rotation speed was fixed. This is mainly due to the changes in flow rate during a cardiac cycle--that is, during systole, the flow rate increases to the maximum, while the differential pressure between the LV and the aorta decreases to the minimum. Thus, this simple and compact axial flow blood pump can be a potential LVAD, with prompt accessibility and need for less invasive surgical procedures.

  17. High-power LD side-pump Nd: YAG regenerative amplifier at 1 kHz repetition rate with volume Bragg gratings (VBG) for broadening and compressor

    Long, Ming-Liang; Chen, Li-Yuan; Chen, Meng; Li, Gang


    Pulse width of 8.7 ps was broadened to 102.2, 198 ps with single and double pass the VBG respectively. When the 102.2 ps pulse was injected into 1 kHz repetition rate of LD side-pump Nd: YAG regenerative amplifier (RA), pulse width of 87.5 ps at 1 kHz was obtained with the pulse energy of 9.4 mJ, the beam quality of M^2 factor was 1.2. The pulse width was compressed to 32.7 ps with a single pass VBG and the pulse energy reduced to 8.8 mJ, and the power density was up to 15.2 GW/cm2, the stability for pulse to pulse rms is about 0.6 %, beam pointing was about 35 μrad. In addition, when 198 ps pulse was injected into RA, pulse width of 156 ps was obtained which energy was 9.6 mJ, the pulse width was compressed to 38 ps by double passing the VBG, the pulse energy decreased to 8.5 mJ. Chirped VBG is a new way to obtain high-intensity picosecond pulse laser system simple and smaller.

  18. Should measurement of maximum urinary flow rate and residual urine volume be a part of a "minimal care" assessment programme in female incontinence?

    Sander, Pia; Mouritsen, L; Andersen, J Thorup


    OBJECTIVE: The aim of this study was to evaluate the value of routine measurements of urinary flow rate and residual urine volume as a part of a "minimal care" assessment programme for women with urinary incontinence in detecting clinical significant bladder emptying problems. MATERIAL AND METHOD...... female urinary incontinence. Thus, primary health care providers can assess women based on simple guidelines without expensive equipment for assessment of urine flow rate and residual urine....

  19. Oxygen supply in disposable shake-flasks: prediction of oxygen transfer rate, oxygen saturation and maximum cell concentration during aerobic growth.

    Schiefelbein, Sarah; Fröhlich, Alexander; John, Gernot T; Beutler, Falco; Wittmann, Christoph; Becker, Judith


    Dissolved oxygen plays an essential role in aerobic cultivation especially due to its low solubility. Under unfavorable conditions of mixing and vessel geometry it can become limiting. This, however, is difficult to predict and thus the right choice for an optimal experimental set-up is challenging. To overcome this, we developed a method which allows a robust prediction of the dissolved oxygen concentration during aerobic growth. This integrates newly established mathematical correlations for the determination of the volumetric gas-liquid mass transfer coefficient (kLa) in disposable shake-flasks from the filling volume, the vessel size and the agitation speed. Tested for the industrial production organism Corynebacterium glutamicum, this enabled a reliable design of culture conditions and allowed to predict the maximum possible cell concentration without oxygen limitation.

  20. A data pump for communication

    Kang, Myong H.; Moskowitz, Ira S.


    As computer systems become more open and interconnected, the need for reliable and secure communication also increases. In this paper, we introduce a communication device, the Pump, that balances the requirements of reliability and security. The Pump provides acknowledgements (ACK's) to the message source to insure reliability. These ACK's are also used to regulate the source to prevent the Pump's buffer from becoming/staying full. This is desirable because once the buffer is filled there exists a huge covert communication channel. The Pump controls the input rate from the source by attempting to slave the input rate to the service rate through the randomized ACK back to the source. An analysis of the covert channel is also presented. The purpose of the covert channel analysis is to provide guidelines for the designer of the Pump to choose appropriate design parameters (e.g., size of buffer) dependent upon the analysis presented in this paper and system requirements.

  1. [Guide values for heart rate and blood pressure with reference to 20, 40, 60 und 80% of maximum exertion considering age, sex and body mass in non-trained individuals].

    Strasser, Barbara; Schwarz, Joachim; Haber, Paul; Schobersberger, Wolfgang


    Aim of this study was to evaluate reliable guide values for heart rate (HF) and blood pressure (RR) with reference to defined sub maximum exertion considering age, gender and body mass. One hundred and eighteen healthy but non-trained subjects (38 women, 80 men) were included in the study. For interpretation, finally facts of 28 women and 59 men were used. We found gender differences for HF and RR. Further, we noted significant correlations between HF and age as well as between RR and body mass at all exercise levels. We established formulas for gender-specific calculation of reliable guide values for HF and RR on sub maximum exercise levels.

  2. Supercritical waste oxidation pump investigation

    Thurston, G.; Garcia, K.


    This report investigates the pumping techniques and pumping equipment that would be appropriate for a 5,000 gallon per day supercritical water oxidation waste disposal facility. The pumps must boost water, waste, and additives from atmospheric pressure to approximately 27.6 MPa (4,000 psia). The required flow ranges from 10 gpm to less than 0.1 gpm. For the higher flows, many commercial piston pumps are available. These pumps have packing and check-valves that will require periodic maintenance; probably at 2 to 6 month intervals. Several commercial diaphragm pumps were also discovered that could pump the higher flow rates. Diaphragm pumps have the advantage of not requiring dynamic seals. For the lower flows associated with the waste and additive materials, commercial diaphragm pumps. are available. Difficult to pump materials that are sticky, radioactive, or contain solids, could be injected with an accumulator using an inert gas as the driving mechanism. The information presented in this report serves as a spring board for trade studies and the development of equipment specifications.

  3. The stress analysis of a heavy liquid metal pump impeller

    Ma, X. D.; Li, X. L.; Zhu, Z. Q.; Li, C. J.; Gao, S.


    Lead-based coolant reactor is a promising Generation-IV reactor. In the lead-based coolant reactor, the coolant is liquid lead or lead-bismuth eutectic. The main pump in the reactor is a very important device. It supplies force for the coolant circulation. The liquid metal has a very large density which is about ten times of the water. Also, the viscosity of the coolant is small which is about one sixth of the water. When the pump transports heavy liquid, the blade loading is heavy. The large force can cause the failure of the blade when the fatigue stress exceeds the allowable stress. The impeller fraction is a very serious accident which is strictly prohibited in the nuclear reactor. In this paper, the numerical method is used to simulate the flow field of a heavy liquid metal pump. The SST k-w turbulent model is used in the calculation to get a more precise flow structure. The hydraulic force is obtained with the one way fluid solid coupling. The maximum stress in the impeller is analyzed. The stress in the liquid metal pump is compared with that in the water pump. The calculation results show that the maximum stress of the impeller blade increases with increase of flow rate. In the design of the impeller blade thickness, the impeller strength in large operating condition should be considered. The maximum stress of the impeller blade located in the middle and near the hub of the leading edge. In this position, the blade is easy to fracture. The maximum deformation of the impeller firstly increase with increase of flow rate and then decrease with increase of flow rate. The maximum deformation exists in the middle of the leading edge when in small flow rate and in the out radius of the impeller when in large flow rate. Comparing the stress of the impeller when transporting water and LBE, the maximum stress is almost one-tenth of that in the LBE impeller which is the same ratio of the density. The static stress in different medium is proportional to the pressure

  4. Simulation of groundwater and surface-water interaction and effects of pumping in a complex glacial-sediment aquifer, east central Massachusetts

    Eggleston, Jack R.; Carlson, Carl S.; Fairchild, Gillian M.; Zarriello, Phillip J.


    The effects of groundwater pumping on surface-water features were evaluated by use of a numerical groundwater model developed for a complex glacial-sediment aquifer in northeastern Framingham, Massachusetts, and parts of surrounding towns. The aquifer is composed of sand, gravel, silt, and clay glacial-fill sediments up to 270 feet thick over an irregular fractured bedrock surface. Surface-water bodies, including Cochituate Brook, the Sudbury River, Lake Cochituate, Dudley Pond, and adjoining wetlands, are in hydraulic connection with the aquifer and can be affected by groundwater withdrawals. Groundwater and surface-water interaction was simulated with MODFLOW-NWT under current conditions and a variety of hypothetical pumping conditions. Simulations of hypothetical pumping at reactivated water supply wells indicate that captured groundwater would decrease baseflow to the Sudbury River and induce recharge from Lake Cochituate. Under constant (steady-state) pumping, induced groundwater recharge from Lake Cochituate was equal to about 32 percent of the simulated pumping rate, and flow downstream in the Sudbury River decreased at the same rate as pumping. However, surface water responded quickly to pumping stresses. When pumping was simulated for 1 month and then stopped, streamflow depletions decreased by about 80 percent within 2 months and by about 90 percent within about 4 months. The fast surface water response to groundwater pumping offers the potential to substantially reduce streamflow depletions during periods of low flow, which are of greatest concern to the ecological integrity of the river. Results indicate that streamflow depletion during September, typically the month of lowest flow, can be reduced by 29 percent by lowering the maximum pumping rates to near zero during September. Lowering pumping rates for 3 months (July through September) reduces streamflow depletion during September by 79 percent as compared to constant pumping. These results

  5. Solid-state led-pumped YAG:Nd/sup 3 +/ ring laser

    Belozerov, S.A.; Korniyenko, L.S.; Kravtsov, N.V.; Kuratev, I.I.; Rusakov, S.I.; Stel' makh, M.F.; Shelayev, A.A.; Shelayev, A.N.


    The article is a report on attainment of stimulated emission in a YAG:Nd/sup 3 +/ solid-state ring laser (lambda = 1.06 with both cw and pulsed pumping by light-emitting diodes. The YAG:Nd/sup 3 +/ crystal was 1.5 mm in diameter and 20 mm long with Brewster faces. The laser was made as a monoblock in which channels were drilled for the laser beam. Total losses on the mirrors did not exceed 0.2%. Cavity perimeter was 22 cm. Pumping was by two lines of LEDs based on epitaxial heterostructure Al/sub x/Ga/sub 1-x/As. In the pulsed pumping mode maximum pulse duration was 8 ms, and maximum recurrence rate was 100 Hz. The threshold pumping current in the pulsed mode was about 1.1 A with prf of 10 Hz, pulse duration of 0.5 ms and temperature of 300 K. Maximum admissible current in this mode is 6 A. In cw pumping, the LED lines were fed by a stabilized DC source at voltage of about 40 V. Threshold pumping current was about 1.5 A, i.e., the threshold power was about 60 W. The optimum maximum current in the cw mode was about 2.0 A. Emission power was a near-linear function of current through the LEDs in either pumping mode. It was experimentally demonstrated that a rotating ring laser can produce stable beats with both cw and pulsed LED pumping. It should be possible to use self-switching modes to measure non-reciprocal effects. 5 references, 2 figures.

  6. A micro-integrated Peltier heat pump for localized on-chip temperature control

    Shafai, C.; Brett, M.J. [Alberta Univ., Edmonton, AB (Canada). Dept. of Electrical Engineering


    Peltier heat pumps are often used for the thermal regulation of small-sized sensors and electronics such as integrated circuits. Integrated Peltier devices would need less power and would provide better thermal compensation than exterior devices. A thin-film Peltier heat pump was designed and built using standard semiconductor patterning and etching techniques. Chrome-gold and bismuth telluride metallization formed the thermoelectric junctions. A maximum heat-pumping rate of -24 uW at a current of 0.89 mA was achieved when operating in the cooling mode. This pumping rate was proportional to the dimensions of the Peltier device and the thickness of the Bi{sub 2}Te{sub 3} thin film. The performance can be optimized by choosing an appropriate geometry for the Peltier device. 20 refs., 5 figs.

  7. Experimental Study of Air-Lift Pumps Characteristics

    Naji F. Al-Saqer


    Full Text Available The mean aim of this work is to study the Air-lift pumps characteristics according to design parameters such as the percentage of the distance between throat section and nozzle and the driving air pressure, suction head and also study the effect of each parameter on the air lift pump characteristics in order to have a better performance of such pump under various conditions. A certain geometry for air-lift pump designed and manufactured. The experiments show that there must be careful in increasing the suction head, and a balance must be considered between the suction head and the driving air volumetric flow rate. While the effect of increasing air pressure will stop at certain maximum of the ratio of the volumetric flow rate of water and air that is any increase in air pressure will meet no change ratio of the volumetric flow rate of water and air, While Increasing S/Dth will leads to decrease in the percentage of ratio of the volumetric flow rate of water and air because the optimum S/Dth so that at this value we will have the best performance and any other values for S/Dth the percentage of ratio of the volumetric flow rate of water and air will decreases , but this effect is not so clear and it could be neglected. The pump performance is not so sensitive with the change of S/Dth after a certain value, this information will help in the use of the air-lift pump in several applications using the predetermined operating conditions.

  8. Prediction of rotating stall and cavitation inception in pump turbines

    Anciger, D; Jung, A; Aschenbrenner, T, E-mail: [Voith Hydro Holding GmbH and Co. KG Alexanderstr. 11, 89522 Heidenheim (Germany)


    The current development of modern pump storage plants aims towards a higher flexibility in operation, an extended operation range of the hydraulic machine, especially in the pumping mode, and a higher reliability. A major design target for state-of-the-art reversible Francis-type pump turbines is to find an optimal balance between pumping and generating performance. The pumping requirements are the crucial design drivers, since, even if the turbine mode performance is world class, the success of a project depends on the pump turbine delivering the required maximum pump head and starting reliably in pump mode. The proposed paper describes how advanced computational fluid dynamic (CFD) simulations can help the designer to evaluate his design with respect to hydraulic performance and dynamic phenomena occurring in pump turbines. A standard procedure today is to compute the flow by applying the Reynolds-averaged Navier-Stokes equations (RANS) on the steady-state flow in individual components or in multiple components which are coupled by mixing-plane interfaces (sometimes also called stage-interface). This standard approach gives fast turnaround times and is a good engineering tool. However, accuracy is limited due to necessary simplifications. Therefore methods are developed and evaluated which allow a more reliable prediction of the onset of rotating stall which is the operation limit of the pump under high heads and low flow rates. The behaviour a modern pump turbine design in this instability region is investigated in detail. Another important task in the design process is the proper prediction of cavitation phenomena in the runner. Predicting cavitating flows with multi-phase CFD computations is still a very challenging task. Some results of ongoing work in this field are presented and compared to single phase computations and results from model tests. The relevance and applicability of such computations is discussed. All the information gained from these kinds of

  9. Microfluidic "blinking" bubble pump

    Yin, Zhizhong; Prosperetti, Andrea


    The paper reports data obtained on a simple micropump, suitable for electrolytes, based on the periodic growth and collapse of a single vapor bubble in a microchannel. With a channel diameter of the order of 100 µm, pumping rates of several tens of µl/min and pressure differences of several kPa are

  10. Maximum Likelihood Associative Memories

    Gripon, Vincent; Rabbat, Michael


    Associative memories are structures that store data in such a way that it can later be retrieved given only a part of its content -- a sort-of error/erasure-resilience property. They are used in applications ranging from caches and memory management in CPUs to database engines. In this work we study associative memories built on the maximum likelihood principle. We derive minimum residual error rates when the data stored comes from a uniform binary source. Second, we determine the minimum amo...

  11. Effect of contraction mode of slow-speed resistance training on the maximum rate of force development in the human quadriceps

    Blazevich, Anthony J; Horne, Sara; Cannavan, Dale


    knee extension training was performed 3 x week(-1) for 10 weeks. Maximal isometric strength (+11.2%) and RFD (measured from 0-30/50/100/200 ms, respectively; +10.5%-20.5%) increased after 10 weeks (P training mode. Peak EMG amplitude and rate of EMG rise......This study examined the effects of slow-speed resistance training involving concentric (CON, n = 10) versus eccentric (ECC, n = 11) single-joint muscle contractions on contractile rate of force development (RFD) and neuromuscular activity (EMG), and its maintenance through detraining. Isokinetic...... were not significantly altered with training or detraining. Subjects with below-median normalized RFD (RFD/MVC) at 0 weeks significantly increased RFD after 5- and 10-weeks training, which was associated with increased neuromuscular activity. Subjects who maintained their higher RFD after detraining...

  12. Allocation of new growth between shoot, root and mycorrhiza in relation to carbon, nitrogen and phosphate supply: teleonomy with maximum growth rate.

    Thornley, John H M; Parsons, Anthony J


    Treating resource allocation within plants, and between plants and associated organisms, is essential for plant, crop and ecosystem modelling. However, it is still an unresolved issue. It is also important to consider quantitatively when it is efficient and to what extent a plant can invest profitably in a mycorrhizal association. A teleonomic model is used to address these issues. A six state-variable model giving exponential growth is constructed. This represents carbon (C), nitrogen (N) and phosphorus (P) substrates with structure in shoot, root and mycorrhiza. The shoot is responsible for uptake of substrate C, the root for substrates N and P, and the mycorrhiza also for substrates N and P. A teleonomic goal, maximizing proportional growth rate, is solved analytically for the allocation fractions. Expressions allocating new dry matter to shoot, root and mycorrhiza are derived which maximize growth rate. These demonstrate several key intuitive phenomena concerning resource sharing between plant components and associated mycorrhizae. For instance, if root uptake rate for phosphorus is equal to that achievable by mycorrhiza and without detriment to root uptake rate for nitrogen, then this gives a faster growing mycorrhizal-free plant. However, if root phosphorus uptake is below that achievable by mycorrhiza, then a mycorrhizal association may be a preferred strategy. The approach offers a methodology for introducing resource sharing between species into ecosystem models. Applying teleonomy may provide a valuable short-term means of modelling allocation, avoiding the circularity of empirical models, and circumventing the complexities and uncertainties inherent in mechanistic approaches. However it is subjective and brings certain irreducible difficulties with it.

  13. Experimental Investigation of a Rectangular Airlift Pump

    I. I. Esen


    Full Text Available Hydraulic performance of an airlift pump having a rectangular cross-section 20 mm × 80 mm was investigated through an experimental program. The pump was operated at six different submergence ratios and the liquid flow rate was measured at various flowrates of air injected. The effectiveness of the pump, defined as the ratio of the mass of liquid pumped to the mass of air injected, was determined as a function of the mass of air injected for different submergence ratios. Results obtained were compared with those for circular airlift pumps using an analytical model for circular pumps. Effectiveness of the rectangular airlift pump was observed to be comparable to that of the circular pumps. Hydraulic performance of the rectangular airlift pump investigated was then described by a set of semilogarithmic empirical equations.

  14. Procedure to estimate maximum ground acceleration from macroseismic intensity rating: application to the Lima, Perú data from the October-3-1974-8.1-Mw earthquake

    L. Ocola


    Full Text Available Post-disaster reconstruction management of urban areas requires timely information on the ground response microzonation to strong levels of ground shaking to minimize the rebuilt-environment vulnerability to future earthquakes. In this paper, a procedure is proposed to quantitatively estimate the severity of ground response in terms of peak ground acceleration, that is computed from macroseismic rating data, soil properties (acoustic impedance and predominant frequency of shear waves at a site. The basic mathematical relationships are derived from properties of wave propagation in a homogeneous and isotropic media. We define a Macroseismic Intensity Scale IMS as the logarithm of the quantity of seismic energy that flows through a unit area normal to the direction of wave propagation in unit time. The derived constants that relate the IMS scale and peak acceleration agree well with coefficients derived from a linear regression between MSK macroseismic rating and peak ground acceleration for historical earthquakes recorded at a strong motion station, at IGP's former headquarters, since 1954. The procedure was applied to 3-October-1974 Lima macroseismic intensity data at places where there was geotechnical data and predominant ground frequency information. The observed and computed peak acceleration values, at nearby sites, agree well.

  15. Pumps; Pumpen

    Bauer, H. [Gesellschaft fuer Praktische Energiekunde e.V., Muenchen (Germany). Forschungsstelle fuer Energiewirtschaft; Hellriegel, E. [Gesellschaft fuer Praktische Energiekunde e.V., Muenchen (Germany). Forschungsstelle fuer Energiewirtschaft; Pfitzner, G. [Gesellschaft fuer Praktische Energiekunde e.V., Muenchen (Germany). Forschungsstelle fuer Energiewirtschaft


    The technical features of commercial pump types are described with regard to their technical, energy-related and economic parameters, and characteristic data are presented in the form of data sheets. This is to provide a basis for a comparative assessment of different technologies and technical variants. The chapter `System specifications` describes the various fields of application of pumps and the resulting specific requirements. The design and function of the different pump types are described in `Technical description`. `System and plant description dscribes the design and adaptation of pumps, i.e. the adaptation of the plant data to the system requirements. `Data compilation` provides a survey of the types and systematics of the compiled data as well as a decision aid for selecting the pumps best suited to the various applications. The `Data sheet` section describes the structure and handling of the data sheets as well as the data contained therein. The data sheets are contained in the apapendix of this report. The section `General analysis` compares typical technical, energy-related and economic characteristics of the different pump types. This is to enable a rough comparison of pump types and to facilitate decisions. The chapter `Example` illustrates the use of the data sheets by means of a selected example. (orig./GL) [Deutsch] Die vorliegende Arbeit hat zum Ziel, Technik seriengefertigter und marktgaengiger Pumpen in typisierter Form hinsichtlich ihrer technischen, energetischen und wirtschaftlichen Parameter zu beschreiben und ihre charakteristischen Kennwerte in Datenblaettern abzubilden. Damit wird ein grundlegendes Instrument fuer die vergleichende Beurteilung unterschiedlicher Techniken bzw. Technikvarianten hinsichtlich energetischer und wirtschaftlicher Kriterien geschaffen. Im Abschnitt `Systemanforderungen` erfolgt die Beschreibung der einzelnen Anwendungsbereiche fuer Pumpen mit den speziellen daraus resultierenden Anforderungen. Der Aufbau und

  16. Power scaling of directly dual-end-pumped Nd:GdVO4 laser using grown-together composite crystal.

    Li, XuDong; Yu, Xin; Chen, Fei; Yan, RenPeng; Luo, Ming; Yu, JunHua; Chen, DeYing


    Power scaling of end-pumped Nd:GdVO(4) laser was realized by direct pumping, grown-together composite crystal and dual-end-pumping. A maximum CW output power of 46.0W with M(2)switch operation, peak power of 304.1kW, 58.6kW and 23.8kW, pulse width of 7.2ns, 11.3ns and 16.2ns were obtained at the repetition rates of 10kHz, 50kHz and 100kHz, respectively.

  17. High power CW and Q-switched operation of a diode-side-pumped Nd: YAG 1319-nm laser

    Yunfang Wan; Kezhen Han; Yun Wang; Jingliang He


    We demonstrated the highly efficient continuous wave(CW)and Q-switched infrared laser from a diodeside-pumped Nd:YAG crystal.A CW output as high as 66 W at 1319 nm was achieved under the pump power of 460 W,corresponding to a coversion efficiency of 14.3%.A maximum average power of 8.9 W of TEM00 mode was obtained in Q-switched operation at the repetition rate of 8 kHz.The performance of the laser considering the thermal lens effect induced by pump power Was also analyzed.

  18. Effects of whole-body electromyostimulation on resting metabolic rate, body composition, and maximum strength in postmenopausal women: the Training and ElectroStimulation Trial.

    Kemmler, Wolfgang; Schliffka, Rebecca; Mayhew, Jerry L; von Stengel, Simon


    We evaluated the effect of whole-body electromyostimulation (WB-EMS) during dynamic exercises over 14 weeks on anthropometric, physiological, and muscular parameters in postmenopausal women. Thirty women (64.5 +/- 5.5 years) with experience in physical training (>3 years) were randomly assigned either to a control group (CON, n = 15) that maintained their general training program (2 x 60 min.wk of endurance and dynamic strength exercise) or to an electromyostimulation group (WB-EMS, n = 15) that additionally performed a 20-minute WB-EMS training (2 x 20 min.10 d). Resting metabolic rate (RMR) determined from spirometry was selected to indicate muscle mass. In addition, body circumferences, subcutaneous skinfolds, strength, power, and dropout and adherence values. Resting metabolic rate was maintained in WB-EMS (-0.1 +/- 4.8 kcal.h) and decreased in CON (-3.2+/-5.2 kcal.h, p = 0.038); although group differences were not significant (p = 0.095), there was a moderately strong effect size (ES = 0.62). Sum of skinfolds (28.6%) and waist circumference (22.3%) significantly decreased in WB-EMS whereas both parameters (1.4 and 0.1%, respectively) increased in CON (p = 0.001, ES = 1.37 and 1.64, respectively), whereas both parameters increased in CON (1.4 and 0.1%, respectively). Isometric strength changes of the trunk extensors and leg extensors differed significantly (p < or = 0.006) between WB-EMS and CON (9.9% vs. -6.4%, ES = 1.53; 9.6% vs. -4.5%, ES = 1.43, respectively). In summary, adjunct WB-EMS training significantly exceeds the effect of isolated endurance and resistance type exercise on fitness and fatness parameters. Further, we conclude that for elderly subjects unable or unwilling to perform dynamic strength exercises, electromyostimulation may be a smooth alternative to maintain lean body mass, strength, and power.

  19. Method for controlling powertrain pumps

    Sime, Karl Andrew; Spohn, Brian L; Demirovic, Besim; Martini, Ryan D; Miller, Jean Marie


    A method of controlling a pump supplying a fluid to a transmission includes sensing a requested power and an excess power for a powertrain. The requested power substantially meets the needs of the powertrain, while the excess power is not part of the requested power. The method includes sensing a triggering condition in response to the ability to convert the excess power into heat in the transmission, and determining that an operating temperature of the transmission is below a maximum. The method also includes determining a calibrated baseline and a dissipation command for the pump. The calibrated baseline command is configured to supply the fluid based upon the requested power, and the dissipation command is configured to supply additional fluid and consume the excess power with the pump. The method operates the pump at a combined command, which is equal to the calibrated baseline command plus the dissipation command.

  20. Types of Breast Pumps

    ... Devices Consumer Products Breast Pumps Types of Breast Pumps Share Tweet Linkedin Pin it More sharing options ... used for feeding a baby. Types of Breast Pumps There are three basic types of breast pumps: ...

  1. Characterization of the heart rate curve during a maximum incremental test on a treadmill. DOI: 10.5007/1980-0037.2011v13n4p285

    Eduardo Marcel Fernandes Nascimento


    Full Text Available The objective of this study was to analyze the heart rate (HR profile plotted against incremental workloads (IWL during a treadmill test using three mathematical models [linear, linear with 2 segments (Lin2, and sigmoidal], and to determine the best model for the identification of the HR threshold that could be used as a predictor of ventilatory thresholds (VT1 and VT2. Twenty-two men underwent a treadmill incremental test (retest group: n=12 at an initial speed of 5.5 km.h-1, with increments of 0.5 km.h-1 at 1-min intervals until exhaustion. HR and gas exchange were continuously measured and subsequently converted to 5-s and 20-s averages, respectively. The best model was chosen based on residual sum of squares and mean square error. The HR/IWL ratio was better fitted with the Lin2 model in the test and retest groups (p0.05. During a treadmill incremental test, the HR/IWL ratio seems to be better fitted with a Lin2 model, which permits to determine the HR threshold that coincides with VT1.

  2. Multistage quantum absorption heat pumps

    Correa, Luis A.


    It is well known that heat pumps, while being all limited by the same basic thermodynamic laws, may find realization on systems as "small" and "quantum" as a three-level maser. In order to quantitatively assess how the performance of these devices scales with their size, we design generalized N-dimensional ideal heat pumps by merging N -2 elementary three-level stages. We set them to operate in the absorption chiller mode between given hot and cold baths and study their maximum achievable cooling power and the corresponding efficiency as a function of N. While the efficiency at maximum power is roughly size-independent, the power itself slightly increases with the dimension, quickly saturating to a constant. Thus, interestingly, scaling up autonomous quantum heat pumps does not render a significant enhancement beyond the optimal double-stage configuration.

  3. New constraints on the maximum rate of change of the geomagnetic field intensity in Western Europe during the last two millennia

    Gomez-Paccard, Miriam; Osete, Maria Luisa; Chauvin, Annick; Pérez-Asensio, Manuel; Jimenez-Castillo, Pedro


    Available European data indicate that during the past 2500 years there have been periods of rapid intensity geomagnetic fluctuations interspersed with periods of little change. The challenge now is to precisely describe these rapid changes. Due to the difficulty to obtain precisely dated heated materials to obtain a high-resolution description of past geomagnetic field intensity changes, new high-quality archeomagnetic data from archeological heated materials founded in well-defined superposed stratigraphic units are particularly valuable. In this work we report the archeomagnetic study of several groups of ceramic fragments from southeastern Spain that belong to 14 superposed stratigraphic levels corresponding to a surface no bigger than 3 m by 7 m. Between four and eight ceramic fragments were selected per stratigraphic unit. The age of the pottery fragments range from the second half of the 7th to the11th centuries. The dates were established by three radiocarbon dates and by archeological/historical constraints including typological comparisons and well-controlled stratigraphic constrains.Between two and four specimens per pottery fragment were studied. The classical Thellier and Thellier method including pTRM checks and TRM anisotropy and cooling rate corrections was used to estimate paleointensities at specimen level. All accepted results correspond to well-defined single components of magnetization going toward the origin and to high-quality paleointensity determinations. From these experiments nine new high-quality mean intensities have been obtained. The new data provide an improved description of the sharp abrupt intensity changes that took place in this region between the 7th and the 11th centuries. The results confirm that several rapid intensity changes (of about ~15-20 µT/century) took place in Western Europe during the recent history of the Earth.

  4. Pumps in wearable ultrafiltration devices: pumps in wuf devices.

    Armignacco, Paolo; Garzotto, Francesco; Bellini, Corrado; Neri, Mauro; Lorenzin, Anna; Sartori, Marco; Ronco, Claudio


    The wearable artificial kidney (WAK) is a device that is supposed to operate like a real kidney, which permits prolonged, frequent, and continuous dialysis treatments for patients with end-stage renal disease (ESRD). Its functioning is mainly related to its pumping system, as well as to its dialysate-generating and alarm/shutoff ones. A pump is defined as a device that moves fluids by mechanical action. In such a context, blood pumps pull blood from the access side of the dialysis catheter and return the blood at the same rate of flow. The main aim of this paper is to review the current literature on blood pumps, describing the way they have been functioning thus far and how they are being engineered, giving details about the most important parameters that define their quality, thus allowing the production of a radar comparative graph, and listing ideal pumps' features.

  5. Position Sensorless Drive o SRM Mounted on Hydraulic Pump Unit

    Kosaka, Takashi; Nabeya, Yoshinari; Ohyama, Kazunobu; Matsui, Nobuyuki

    Recently, Switched Reluctance Motors (SRM)have been applied to several industrial products such as fans, blowers, pumps and so forth because of their simple construction and relatively high e ciency.As one of the examples, Daikin Industries Ltd.has been successful in manufacturing hydraulic pump unit using 2.2kW three-phase SRM with shaft mounted position sensor for its control. This paper presents the position sensorless drive o the SRM for the purposes of reducing cost and down sizing of the hydraulic pump unit system.The controller, intentionally designed for this special application, realizes the following characteristics;the maximum and minimum speeds are 5000 and 300rpm, the speed response between the maximum and minimum speeds is within 100msec and the starting torque is less than 20% of the rated torque.The experimental studies using the hydraulic pump unit show that the proposed sensorless control scheme satis es the requirements for this application.

  6. Dynamics analysis and experiment on the fishtailing type of valveless piezoelectric pump with rectangular vibrator


    In recent years, the research and development of piezoelectric pumps have become an increasingly popular topic. Minimization, structure simplification and stronger output become the focus of piezoelectric pumps’ research due to its possible application in MEMS technology. The valveless fishtailing piezoelectric pump, neither a volumetric nor a rotating pump, was invented according to the bionics of fish swimming. With assumption that the head of the fish is fixed while its tail is swinging, fluid would flow toward the end of the tail, achieving the function of a valveless pump. This type of pumps creates a new branch for the piezoelectric pump research, which is proposed for the first time in this paper. The relationship between the flow rates and vibrating frequencies was derived from the interaction between the vibrator and fluid. Numerical simulations with FEM software were conducted to study the first and second vibration modes of the piezoelectric vibrator. The results showed that the maximum amplitude of the vibrator was 0.9 mm at the frequency of 76 Hz for the first vibration mode, while the maximum amplitude of the vibrator was 0.22 mm at the frequency of 781 Hz for the second vibration mode. Experiments were conducted with the Doppler laser vibration measurement system, and the results were compared to those of the FEM simulation. It was shown that in the first vibration mode the piezoelectric vibrator reached its maximum amplitude of about 0.9 mm at the driving frequency of 49 Hz, which gives the flow rate of 2.0 mL/min, in the second vibration mode, the maximum amplitude was about 0.25 mm at the frequency of 460 Hz with the flow rate being 6.4 mL/min.

  7. Quasi-flat-top frequency-doubled Nd:glass laser for pumping of high-power Ti:sapphire amplifiers at a 0.1 Hz repetition rate.

    Yanovsky, Victor; Kalinchenko, Galina; Rousseau, Pascal; Chvykov, Vladimir; Mourou, Gerard; Krushelnick, Karl


    A Nd:glass laser based on a novel design delivers up to 120 J energy pulses with a quasi-flat-top spatial profile at a 0.1 Hz repetition rate. The laser output is frequency-doubled with 50% efficiency and used to pump Ti:sapphire amplifiers. The developed design is perspective for use in the currently contemplated next step in ultra-high-intensity laser development.

  8. An improved model of an actively contracting lymphatic vessel composed of several lymphangions: pumping characteristics

    Bertram, C D; Moore, J E


    Using essentially our 2011 numerical model of a multi-lymphangion segment of a collecting lymphatic vessel, but augmented by inclusion of a refractory period and definition of a mid lymphangion pressure, we explore the effect of several parameters on the form of pump function curves. Pump function is sensitively dependent on the shape of the passive constitutive relation between lymphangion diameter and transmural pressure. Maximum flow-rate increases with the diameter scale applied to the constitutive relation and decreases with the pressure scale. Both maximum flow-rate and maximum pressure difference which can be overcome increase as the excess of lymphangion chain inlet pressure over external pressure is reduced, until inlet pressure is low enough that lymphangion collapse intervenes. The results are discussed in comparison with findings from biological experiments.

  9. A miniature ultransonic pump using a bending disk transducer and a gap.

    Hasegawa, Takeshi; Nakamura, Kentaro; Ueha, Sadayuki


    It is known that if a pipe end is faced at a vibrating surface in liquid with a small gap, liquid is suctioned into the pipe. As a miniature configuration, we introduce a bending disk transducer 30 mm in diameter using a ring-shaped PZT element. The disk vibrator is worked at the fundamental resonance frequency of 19 kHz of the bending mode. To optimize the pipe geometry, we experimentally investigated the effect of the outer diameter on the pump performance. As a result, the outer/inner diameter ratio of 3:2 is optimum for the gap smaller than 20 microm. We achieved the maximum pump pressure of 14.8 kPa and the maximum flow rate of 10 ml/min. using the prototype pump.

  10. Experimental Study on Series Operation of Sliding Vane Pump and Centrifugal Pump

    Tao Li


    Full Text Available A platform for sliding vane pump and centrifugal pump tests is installed to study the series operation of them under different characteristics of pipeline. Firstly, the sliding vane pump and the centrifugal pump work independently, and the performance is recorded. Then, the two types of pumps are combined together, with the sliding vane pump acting as the feeding pump. Comparison is made between the performance of the independently working pump and the performance of series operation pump. Results show that the system flow rate is determined by the sliding vane pump. In order to ensure the stability of the series operation pumping system, the energy consumption required by the pipeline under the system flow should be greater than the pressure energy centrifugal pump can generate. Otherwise, the centrifugal pump can not operate stably, with reflux, swirl, gas-liquid two-phase flow in the runner and strong vibration and noise. The sliding vane pump can be in serial operation with the centrifugal pump under limited conditions.

  11. Analytical and Semi-Analytical Tools for the Design of Oscillatory Pumping Tests.

    Cardiff, Michael; Barrash, Warren


    Oscillatory pumping tests-in which flow is varied in a periodic fashion-provide a method for understanding aquifer heterogeneity that is complementary to strategies such as slug testing and constant-rate pumping tests. During oscillatory testing, pressure data collected at non-pumping wells can be processed to extract metrics, such as signal amplitude and phase lag, from a time series. These metrics are robust against common sensor problems (including drift and noise) and have been shown to provide information about aquifer heterogeneity. Field implementations of oscillatory pumping tests for characterization, however, are not common and thus there are few guidelines for their design and implementation. Here, we use available analytical solutions from the literature to develop design guidelines for oscillatory pumping tests, while considering practical field constraints. We present two key analytical results for design and analysis of oscillatory pumping tests. First, we provide methods for choosing testing frequencies and flow rates which maximize the signal amplitude that can be expected at a distance from an oscillating pumping well, given design constraints such as maximum/minimum oscillator frequency and maximum volume cycled. Preliminary data from field testing helps to validate the methodology. Second, we develop a semi-analytical method for computing the sensitivity of oscillatory signals to spatially distributed aquifer flow parameters. This method can be quickly applied to understand the "sensed" extent of an aquifer at a given testing frequency. Both results can be applied given only bulk aquifer parameter estimates, and can help to optimize design of oscillatory pumping test campaigns.

  12. Cooperative Suction by Vertical Capillary Array Pump for Controlling Flow Profiles of Microfluidic Sensor Chips

    Emi Tamechika


    Full Text Available A passive pump consisting of integrated vertical capillaries has been developed for a microfluidic chip as an useful component with an excellent flow volume and flow rate. A fluidic chip built into a passive pump was used by connecting the bottoms of all the capillaries to a top surface consisting of a thin layer channel in the microfluidic chip where the thin layer channel depth was smaller than the capillary radius. As a result the vertical capillaries drew fluid cooperatively rather than independently, thus exerting the maximum suction efficiency at every instance. This meant that a flow rate was realized that exhibited little variation and without any external power or operation. A microfluidic chip built into this passive pump had the ability to achieve a quasi-steady rather than a rapidly decreasing flow rate, which is a universal flow characteristic in an ordinary capillary.

  13. A Peristaltic Micro Pump Driven by a Rotating Motor with Magnetically Attracted Steel Balls

    Zhaoying Zhou


    Full Text Available In this paper, we present a membrane peristaltic micro pump driven by a rotating motor with magnetically attracted steel balls for lab-on-a-chip applications. The fabrication process is based on standard soft lithography technology and bonding of a PDMS layer with a PMMA substrate. A linear flow rate range ~490 μL/min was obtained by simply varying the rotation speed of a DC motor, and a maximum back pressure of 592 Pa was achieved at a rotation speed of 43 rpm. The flow rate of the pump can also be adjusted by using steel balls with different diameters or changing the number of balls. Nevertheless, the micro pump can also work in high speed mode. A high back pressure up to 10 kPa was achieved at 500 rpm using a high speed DC motor, and an utmost flow rate up to 5 mL/min was reached.

  14. A peristaltic micro pump driven by a rotating motor with magnetically attracted steel balls.

    Du, Min; Ye, Xiongying; Wu, Kang; Zhou, Zhaoying


    In this paper, we present a membrane peristaltic micro pump driven by a rotating motor with magnetically attracted steel balls for lab-on-a-chip applications. The fabrication process is based on standard soft lithography technology and bonding of a PDMS layer with a PMMA substrate. A linear flow rate range ∼490 μL/min was obtained by simply varying the rotation speed of a DC motor, and a maximum back pressure of 592 Pa was achieved at a rotation speed of 43 rpm. The flow rate of the pump can also be adjusted by using steel balls with different diameters or changing the number of balls. Nevertheless, the micro pump can also work in high speed mode. A high back pressure up to 10 kPa was achieved at 500 rpm using a high speed DC motor, and an utmost flow rate up to 5 mL/min was reached.

  15. Maximum Autocorrelation Factorial Kriging

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Pedersen, John L.


    This paper describes maximum autocorrelation factor (MAF) analysis, maximum autocorrelation factorial kriging, and its application to irregularly sampled stream sediment geochemical data from South Greenland. Kriged MAF images are compared with kriged images of varimax rotated factors from...

  16. Nonlinear Heart Rate Dynamics in Off-pump Coronary Artery Bypass Grafting Patients and The Relevance with Atrial Fibrillation and Ventricular Tachycardia

    Wu Zhongkai; Yao Jianping; Huang Xiaodan; Jari Laurikka; Saila Vikman; Matti R. Tarkka


    Objectives To elucidate the clinical relevance of nonlinear HRV with postoperative arrhythmias in patients undergoing off-pump CABG. Methods Twenty-seven elective off-pump CABG patients were recruited in the present study. Atrial fibrillation (AF),ventricular tachycardia (VT), linear and nonlinear HRV were analysed using 24-hour electrocardiogram before and after surgery. Results All time domain (SDNN,pNN50 and rMSSD ), frequency domain (LF and HF)of linear measures of HRV variables and nonlinear measures of HRV variable, the short-term fractal-like correlation α1 decreased significantly after surgery. The postoperative nonlinear HRV variable α1 tended to be lower in patients with postoperative AF ( P = 0.056). Significant depressed α1 was found in patients with postoperative VT(P = 0.022 ). Elder patient's age and longer inotropic treatment time negatively correlated with postoperative α1. Conclusions Off-pump CABG procedures resulted in significant depressed of linear and nonlinear HRV variables. The depressed nonlinear HRV variables α1 related to age, inotropic supports and postoperative AF and VT.

  17. A short-term rating method for heat pump heating systems; phase 5: test of the fault diagnosis systems; Kurztestmethode fuer Waermepumpenanlagen; Phase 5: Test der Fehlerdiagnosesysteme

    Zogg, D.; Esfandiar, S.


    This final report for the Swiss Federal Office of Energy (SFOE) describes the testing phase of a project that developed systems for the operational monitoring and optimisation of heat pump installations along with a diagnosis system for faults. The heat pump is considered as a sub-system. The report describes two monitoring systems and a simulation model that are used to monitor the state of the heat pump both during commissioning as well as during operation. The aim is also to detect faults as early as possible during the whole of the operational life of the installation. A state-orientated approach is propagated as being cheaper than fixed service intervals or repairing after breakdown and standstill. The development of the two monitoring systems called 'HeatWatch' and 'FuzzyWatch' is described. The effort needed for the parametrisation and training of these systems is discussed. The testing of the systems on two test beds using real-life measured values for a single-family home and further simulation data is described and the results listed. The authors state that the monitoring systems can also be used for refrigeration and air-conditioning systems.

  18. Performance Testing of a Prototypic Annular Linear Induction Pump for Fission Surface Power

    Polzin, K. A.; Pearson, J. B.; Schoenfeld, M. P.; Webster, K.; Houts, M. G.; Godfroy, T. J.; Bossard, J. A.


    Results of performance testing of an annular linear induction pump are presented. The pump electromagnetically pumps liquid metal (NaK) through a circuit specially designed to allow for quantification of the performance. Testing was conducted over a range of conditions, including frequencies of 33, 36, 39, and 60 Hz, liquid metal temperatures from 25 to 525 C, and input voltages from 5 to 120 V. Pump performance spanned a range of flow rates from roughly 0.16 to 5.7 L/s (2.5 to 90 gpm), and pressure head <1 to 90 kPa (<0.145 to 13 psi). The maximum efficiency measured during testing was slightly greater than 6%. The efficiency was fairly insensitive to input frequency from 33 to 39 Hz, and was markedly lower at 60 Hz. In addition, the efficiency decreased as the NaK temperature was raised. While the pump was powered, the fluid responded immediately to changes in the input power level, but when power was removed altogether, there was a brief slow-down period before the fluid would come to rest. The performance of the pump operating on a variable frequency drive providing 60 Hz power compared favorably with the same pump operating on 60 Hz power drawn directly from the electrical grid.

  19. Economical Feasibility of Utilizing Photovoltaics for Water Pumping in Saudi Arabia

    Ahmet Z. Sahin


    Full Text Available Energy and water are the two major need of the globe which need to be addressed for the sustenance of the human beings on this planet. All the nations, no matter most populous, developed and developing need to diversify the means and ways of producing energy and at the same time guarding the environment. This study aims at techno economical feasibility of producing energy using PV solar panels and utilizing it to pump-water at Dhahran, Riyadh, Jeddah, Guriat, and Nejran regions in Saudi Arabia. The solar radiation data from these stations was used to generate electricity using PV panels of 9.99 kW total capacity. Nejran region was found to be most economical in terms of minimal payback period and cost of energy and maximum internal rate of return whereas PV power production was concerned. Water-pumping capacity of the solar PV energy system was calculated at five locations based on the PV power production and Goulds model 45J series of pumps. Monthly total and annual total water pumping capacities were determined. Considering the capital cost of combined solar PV energy system and the pump unit a cost analysis of water pumping for a well of 50 m total dynamic head (TDH was carried out. The cost of water pumping was found to vary between 2 and 3 /m3.

  20. Paper pump for passive and programmable transport.

    Wang, Xiao; Hagen, Joshua A; Papautsky, Ian


    In microfluidic systems, a pump for fluid-driving is often necessary. To keep the size of microfluidic systems small, a pump that is small in size, light-weight and needs no external power source is advantageous. In this work, we present a passive, simple, ultra-low-cost, and easily controlled pumping method based on capillary action of paper that pumps fluid through conventional polymer-based microfluidic channels with steady flow rate. By using inexpensive cutting tools, paper can be shaped and placed at the outlet port of a conventional microfluidic channel, providing a wide range of pumping rates. A theoretical model was developed to describe the pumping mechanism and aid in the design of paper pumps. As we show, paper pumps can provide steady flow rates from 0.3 μl/s to 1.7 μl/s and can be cascaded to achieve programmable flow-rate tuning during the pumping process. We also successfully demonstrate transport of the most common biofluids (urine, serum, and blood). With these capabilities, the paper pump has the potential to become a powerful fluid-driving approach that will benefit the fielding of microfluidic systems for point-of-care applications.

  1. Pump characteristics and applications

    Volk, Michael


    Providing a wealth of information on pumps and pump systems, Pump Characteristics and Applications, Third Edition details how pump equipment is selected, sized, operated, maintained, and repaired. The book identifies the key components of pumps and pump accessories, introduces the basics of pump and system hydraulics as well as more advanced hydraulic topics, and details various pump types, as well as special materials on seals, motors, variable frequency drives, and other pump-related subjects. It uses example problems throughout the text, reinforcing the practical application of the formulae

  2. Water Pump Development for the EVA PLSS

    Schuller, Michael; Kurwitz, Cable; Goldman, Jeff; Morris, Kim; Trevino, Luis


    This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design, fabricate, and test a preflight prototype pump for use in the Extravehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump will accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting noncondensable gas without becoming "air locked." The chosen pump design consists of a 28 V DC, brushless, sealless, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. Although the planned flight unit will use a sensorless motor with custom designed controller, the preflight prototype to be provided for this project incorporates Hall effect sensors, allowing an interface with a readily available commercial motor controller. This design approach reduced the cost of this project and gives NASA more flexibility in future PLSS laboratory testing. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES will simulate the vacuum environment in which the flight pump will operate. Testing will verify that the pump meets design requirements for range of flow rates, pressure rise, power consumption, working fluid temperature, operating time, and restart capability. Pump testing is currently

  3. Estimation of changes in dynamic hydraulic force in a magnetically suspended centrifugal blood pump with transient computational fluid dynamics analysis.

    Masuzawa, Toru; Ohta, Akiko; Tanaka, Nobuatu; Qian, Yi; Tsukiya, Tomonori


    The effect of the hydraulic force on magnetically levitated (maglev) pumps should be studied carefully to improve the suspension performance and the reliability of the pumps. A maglev centrifugal pump, developed at Ibaraki University, was modeled with 926 376 hexahedral elements for computational fluid dynamics (CFD) analyses. The pump has a fully open six-vane impeller with a diameter of 72.5 mm. A self-bearing motor suspends the impeller in the radial direction. The maximum pressure head and flow rate were 250 mmHg and 14 l/min, respectively. First, a steady-state analysis was performed using commercial code STAR-CD to confirm the model's suitability by comparing the results with the real pump performance. Second, transient analysis was performed to estimate the hydraulic force on the levitated impeller. The impeller was rotated in steps of 1 degrees using a sliding mesh. The force around the impeller was integrated at every step. The transient analysis revealed that the direction of the radial force changed dynamically as the vane's position changed relative to the outlet port during one circulation, and the magnitude of this force was about 1 N. The current maglev pump has sufficient performance to counteract this hydraulic force. Transient CFD analysis is not only useful for observing dynamic flow conditions in a centrifugal pump but is also effective for obtaining information about the levitation dynamics of a maglev pump.

  4. Low-voltage electroosmotic pumps fabricated from track-etched polymer membranes.

    Wang, Ceming; Wang, Lin; Zhu, Xiaorui; Wang, Yugang; Xue, Jianming


    Track-etched polymer membranes are used to realize low-voltage electroosmotic (EO) pumps. The nanopores in polycarbonate (PC) and polyethylene terephthalate (PET) membranes were fabricated by the track-etching technique, the pore diameter was controlled in the range of 100 to 250 nm by adjusting the etching time. The results show that these EO pumps can provide high flow rates at low applied voltages (2-5 V). The maximum normalized flow rate is as high as 0.12 ml min(-1) V(-1) cm(-2), which is comparable to the best values of previously demonstrated EO pumps. We attribute this high performance to the unique properties of the track-etched nanopores in the membranes.

  5. The mechanical design of a vapor compressor for a heat pump to be used in space

    Berner, F.; Oesch, H.; Goetz, K.; Savage, C. J.


    A heat pump developed for use in Spacelab as a stand-alone refrigeration unit as well as within a fluid loop system is discussed. It will provide an active thermal control for payloads. Specifications for the heat pump were established: (1) heat removal rates at the source; (2) heat source temperatures from room temperature; (3) heat-sink fluid temperatures at condenser inlet; and (4) minimum power consumption. A reversed Carnot cycle heat pump using Freon 12 as working fluid incorporating a one-cylinder reciprocating compressor was selected. The maximum crankshaft speed was fixed relatively high at 100 rpm. The specified cooling rates then made it necessary to select a cylinder volume of 10 cu cm, which was obtained with a bore of 40 mm and a stroke of 8 mm.

  6. 3D CFD modeling of subsonic and transonic flowing-gas DPALs with different pumping geometries

    Yacoby, Eyal; Sadot, Oren; Barmashenko, Boris D.; Rosenwaks, Salman


    Three-dimensional computational fluid dynamics (3D CFD) modeling of subsonic (Mach number M ~ 0.2) and transonic (M ~ 0.9) diode pumped alkali lasers (DPALs), taking into account fluid dynamics and kinetic processes in the lasing medium is reported. The performance of these lasers is compared with that of supersonic (M ~ 2.7 for Cs and M ~ 2.4 for K) DPALs. The motivation for this study stems from the fact that subsonic and transonic DPALs require much simpler hardware than supersonic ones where supersonic nozzle, diffuser and high power mechanical pump (due to a drop in the gas total pressure in the nozzle) are required for continuous closed cycle operation. For Cs DPALs with 5 x 5 cm2 flow cross section pumped by large cross section (5 x 2 cm2) beam the maximum achievable power of supersonic devices is higher than that of the transonic and subsonic devices by only ~ 3% and ~ 10%, respectively. Thus in this case the supersonic operation mode has no substantial advantage over the transonic one. The main processes limiting the power of Cs supersonic DPALs are saturation of the D2 transition and large ~ 60% losses of alkali atoms due to ionization, whereas the influence of gas heating is negligible. For K transonic DPALs both the gas heating and ionization effects are shown to be unimportant. The maximum values of the power are higher than those in Cs transonic laser by ~ 11%. The power achieved in the supersonic and transonic K DPAL is higher than for the subsonic version, with the same resonator and K density at the inlet, by ~ 84% and ~ 27%, respectively, showing a considerable advantaged of the supersonic device over the transonic one. For pumping by rectangular beams of the same (5 x 2 cm2) cross section, comparison between end-pumping - where the laser beam and pump beam both propagate at along the same axis, and transverse-pumping - where they propagate perpendicularly to each other, shows that the output power and optical-to-optical efficiency are not

  7. LMFBR with booster pump in pumping loop

    Rubinstein, H.J.


    A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation.

  8. Heat pump technology

    Von Cube, Hans Ludwig; Goodall, E G A


    Heat Pump Technology discusses the history, underlying concepts, usage, and advancements in the use of heat pumps. The book covers topics such as the applications and types of heat pumps; thermodynamic principles involved in heat pumps such as internal energy, enthalpy, and exergy; and natural heat sources and energy storage. Also discussed are topics such as the importance of the heat pump in the energy industry; heat pump designs and systems; the development of heat pumps over time; and examples of practical everyday uses of heat pumps. The text is recommended for those who would like to kno

  9. Weak Consistency and Convergence Rate of Quasi -Maximum Likelihood Estimated in Generalized Linear Models%广义线性模型中拟似然估计的弱相合性及收敛速度

    邓春亮; 胡南辉


    在非自然联系情形下讨论了广义线性模型拟似然方程的解βn在λn→∞和其他一些正则性条件下证明了解的弱相合性,并得到其收敛于真值βo的速度为Op(λn^-1/2),其中λn(λ^-n)为方阵Sn=n∑i=1XiX^11的最小(最大)特征值.%In this paper,we study the solution βn of quasi - maximum likelihood equation for generalized linear mod- els (GLMs). Under the assumption of an unnatural link function and other some mild conditions , we prove the weak consistency of the solution to βnquasi - - maximum likelihood equation and present its convergence rate isOp(λn^-1/2),λn(^λn) which denotes the smallest (Maximum)eigervalue of the matrixSn =n∑i=1XiX^11,

  10. Q-switched mode-locked diode-pumped Nd:YVO4 laser with a saturable Bragg reflector

    Juan Du(杜鹃); Jingliang He(何京良); Jie Liu(刘杰); Qiuxia Jiang(姜秋霞); Sheng Liu(刘胜); Huitian Wang(王慧田)


    We demonstrated a diode-pumped passively Q-switched mode-locked Nd:YVO4 laser by using a relaxed saturable Bragg reflector (SBR). Stable mode-locked pulse train with the repetition rate of ~230 MHz was achieved and the pulse train was modulated by the Q-switched envelope with the repetition rate of ~150 kHz. The maximum output of 4 W was obtained under the pump power of 13.5 W. The optical-to-optical efficiency was 30%. We also discussed the transition of each process having emerged.

  11. Q-switched mode-locked diode-pumped Nd:YVO4 laser with a saturable Bragg reflector

    杜鹃; 何京良; 刘杰; 姜秋霞; 刘胜; 王慧田


    We demonstrated a diode-pumped passively Q-switched mode-locked Nd:YVO4 laser by using a relaxed saturable Bragg reflector (SBR). Stable mode-locked pulse train with the repetition rate of ~230 MHz was achieved and the pulse train was modulated by the Q-switched envelope with the repetition rate of ~150kHz. The maximum output of 4 W was obtained under the pump power of 13.5 W. The optical-to-optical efficiency was 30%. We also discussed the transition of each process having emerged.

  12. 指数多项式模型中参数最大似然估计的收敛速度%Convergence rate for maximum likelihood estimation of parameters in exponential polynomial model

    房祥忠; 陈家鼎


    强度随时间变化的非齐次Possion过程在很多领域应用广泛.对一类非常广泛的非齐次Poisson过程—指数多项式模型,得到了当观测时间趋于无穷大时,参数的最大似然估计的“最优”收敛速度.%The model of nonhomogeneous Poisson processes with varying intensity function is applied in many fields. The best convergence rate for the maximum likelihood estimate ( MLE ) of exponential polynomial model, which is a kind of wide used nonhomogeneous Poisson processes, is given when time going to infinity.

  13. Systematic Method for Evaluating Extraction and Injection Flow Rates for 100-KR-4 and 100-HR-3 Groundwater Operable Unit Pump-and-Treat Interim Actions for Hydraulic Containment

    Spiliotopoulos, Alexandros A.


    This document describes a systematic method to develop flow rate recommendations for Pump-and-Treat (P&T) extraction and injection wells in 100-KR-4 and 100-HR-3 Groundwater Operable Units (OU) of the Hanford Site. Flow rate recommendations are developed as part of ongoing performance monitoring and remedy optimization of the P&T interim actions to develop hydraulic contairnnent of the dissolved chromium plume in groundwater and protect the Columbia River from further discharges of groundwater from inland. This document details the methodology and data required to infer the influence of individual wells near the shoreline on hydraulic containment and river protection and develop flow rate recommendations to improve system performance and mitigate potential shortcomings of the system configuration in place.

  14. Short term pumped storage scheduling using two proposed techniques

    M.M. Salama, M.M. Elgazar, S.M. Abdelmaksoud, H.A. Henry


    Full Text Available In this paper, a genetic algorithm and constriction factor based particle swarm optimization technique are proposed for solving the short term pumped storage hydro thermal scheduling problem. The performance efficiency of the proposed techniques is demonstrated on hydrothermal test system comprising of five thermal units and one pumped storage power plant. A wide rang of thermal and hydraulic constraints are taken into consideration such as real power balance constraint, minimum and maximum limits of thermal units and pumped storage power plant, water discharge and water pumping rate limits and reservoir storage volume constraints. The simulation results obtained from the constriction factor based particle swarm optimization technique are compared with the outcomes obtained from the genetic algorithm in terms of cost saving and execution time to reveal the validity and verify the feasibility of the proposed methods. The test results show that the constriction factor based particle swarm optimization technique performs better than genetic algorithm in solving this problem in terms of cost saving and computational time.

  15. Dry vacuum pumps

    Sibuet, R.


    For decades and for ultimate pressure below 1 mbar, oil-sealed Rotary Vane Pumps have been the most popular solution for a wide range of vacuum applications. In the late 80ies, Semiconductor Industry has initiated the development of the first dry roughing pumps. Today SC applications are only using dry pumps and dry pumping packages. Since that time, pumps manufacturers have developed dry vacuum pumps technologies in order to make them attractive for other applications. The trend to replace lubricated pumps by dry pumps is now spreading over many other market segments. For the Semiconductor Industry, it has been quite easy to understand the benefits of dry pumps, in terms of Cost of Ownership, process contamination and up-time. In this paper, Technology of Dry pumps, its application in R&D/industries, merits over conventional pumps and future growth scope will be discussed.

  16. Fiber laser pumped burst-mode operated picosecond mid-infrared laser

    魏凯华; 姜培培; 吴波; 陈滔; 沈永行


    We demonstrate a compact periodically poled MgO-doped lithium niobate (MgO:PPLN)-based optical parametric oscillator (OPO) quasi-synchronously pumped by a fiber laser system with burst-mode operation. The pump source is a peak-power-selectable pulse-multiplied picosecond Yb fiber laser. The chirped pulses from a figure of eight-cavity mode-locked fiber laser seed are narrowed to a duration of less than 50 ps using an FBG refl ector and a circulator. The narrowed pulses are directed to pass through a pulse multiplier and to form pulse bunches, each of which is composed of 13 sub-pulses. The obtained pulse bunches are amplified by two-stage fiber pre-amplifiers:one-stage is core-pumped and the other is cladding-pumped. A fiberized acousto–optic modulator is inserted to control the pulse repetition rate (PRR) of the pulse bunches before they are power-amplified in the final amplifier stage with a large mode area (LMA) PM Yb-doped fiber. The maximum average powers from the final amplifier are 85 W, 60 W, and 45 W respectively, corresponding to the PRR of 2.72 MHz, 1.36 MHz, and 0.68 MHz. The amplified pulses are directed to pump an MgO:PPLN-based optical parametric oscillator (OPO). A maximum peak power at 3.45 µm is obtained approximately to be 8.4 kW. Detailed performance characteristics are presented.

  17. Analysis of electrokinetic pumping efficiency in capillary tubes.

    Chein, Reiyu; Liao, Jenchen


    A mathematical model for predicting the maximum pumping efficiency and pressure difference generation by an electrokinetic-driven fluid pumping system through a capillary tube is presented in this study. Both the maximum pumping efficiency and optimum pressure difference generation are found to depend on a single variable. This single variable is termed as the figure of merit since it determines the performance of electrokinetic pumping. The figure of merit is found to depend on three dimensionless parameters, the normalized Debye length, zeta potential, and Levine number indicating the nominal ratio of convective current to conductive current. All three parameters can be related to the pH value and concentration of aqueous salt solution by the introduction of concentration-dependent electrical conductivity and pH-dependent zeta potential. By presenting the maximum pumping efficiency and optimum pressure difference generation as functions of pH value, salt concentration, and capillary tube radius, it is found that both maximum pumping efficiency and optimum pressure difference generation increase with the decrease in capillary radius and salt concentration. The optimum pH values at which the maximum pumping efficiency and optimum pressure difference generation occur are found to be in the range between 6 and 9. For the salt concentration of 10(-6) M, pH 6.9, and a capillary tube radius value of 0.5 micro m, the predicted maximum pumping efficiency is 5.4% which is close to the experimental measurement reported in the literature.

  18. Peltier heat pumps. Peltiervaermepumpar

    Torstensson, H. (Studsvik Energy, Nykoeping (SE))


    Todays Peltier devices in heat pump applications gives a low coeffificent of performance. A temperature difference of 40 deg C results in a COP-value of approx. 1.3. Peltier devices are manufactured of alloys composed of heavy elements like tellurium, selenium, bismuth and antimony. These elements thermoelectrical properties, figure of merit are decisive to the performance of the Peltier devices. An upper limit for the figure of merit, ZT, is said to be 2, which at {Delta}T=40 deg C would yield a COP of 2.0 as a maximum. Organic compounds have been investigated with regard to the electric conductivity. Thin film technique have been used for Peltier devices in micro-scale. There are no large-scale applications. The method does not give enhanced termoelectrical properties, but more rational and cheaper manufacturing. (author) (47 refs., 26 figs.).

  19. Patient-controlled analgesic infusion pumps.


    Patient-controlled analgesic (PCA) infusion devices allow patients to self-administer narcotic analgesics within the limits prescribed by the physician. PCA therapy is typically used for postoperative, obstetric, terminally ill, and trauma patients. PCA pumps deliver solutions intravenously, subcutaneously, or epidurally and allow patient activation by means of a pendant button on a cord connected to the pump or a button directly on the pump. We evaluated nine PCA pumps from six suppliers. Three of these pumps are syringe-type, while the others use cassette-based fluid delivery. Because PCA pumps have often been cited as examples of devices that contribute to medical error (the most significant risk connected with PCA infusion is overmedication), the accident resistance of each device weighed heavily in our testing. The pumps we tested exhibit varying levels of performance, resistance to accidents and tampering, and ease of use. We rate six of them Acceptable. While none of the six units stands out as ideal, they meet most of our criteria, and we consider them somewhat better choices than the rest. We rate one other pump Acceptable (with Conditions) because, in one of its operating modes, it has a drawback that could be dangerous to patients; we consider its use acceptable only if the hospital doesn't employ the operating mode in question. Finally, we rate two pumps Not Recommended because they both have a significant number of disadvantages.

  20. Maximum Entropy in Drug Discovery

    Chih-Yuan Tseng


    Full Text Available Drug discovery applies multidisciplinary approaches either experimentally, computationally or both ways to identify lead compounds to treat various diseases. While conventional approaches have yielded many US Food and Drug Administration (FDA-approved drugs, researchers continue investigating and designing better approaches to increase the success rate in the discovery process. In this article, we provide an overview of the current strategies and point out where and how the method of maximum entropy has been introduced in this area. The maximum entropy principle has its root in thermodynamics, yet since Jaynes’ pioneering work in the 1950s, the maximum entropy principle has not only been used as a physics law, but also as a reasoning tool that allows us to process information in hand with the least bias. Its applicability in various disciplines has been abundantly demonstrated. We give several examples of applications of maximum entropy in different stages of drug discovery. Finally, we discuss a promising new direction in drug discovery that is likely to hinge on the ways of utilizing maximum entropy.

  1. Maximum Autocorrelation Factorial Kriging

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Pedersen, John L.; Steenfelt, Agnete


    This paper describes maximum autocorrelation factor (MAF) analysis, maximum autocorrelation factorial kriging, and its application to irregularly sampled stream sediment geochemical data from South Greenland. Kriged MAF images are compared with kriged images of varimax rotated factors from an ordinary non-spatial factor analysis, and they are interpreted in a geological context. It is demonstrated that MAF analysis contrary to ordinary non-spatial factor analysis gives an objective discrimina...

  2. Next Generation Electromagnetic Pump Analysis Tools (PLM DOC-0005-2188). Final Report

    Stregy, Seth [GE Hitachi Nuclear Energy Americas LLC, Wilmington, NC (United States); Dasilva, Ana [GE Hitachi Nuclear Energy Americas LLC, Wilmington, NC (United States); Yilmaz, Serkan [GE Hitachi Nuclear Energy Americas LLC, Wilmington, NC (United States); Saha, Pradip [GE Hitachi Nuclear Energy Americas LLC, Wilmington, NC (United States); Loewen, Eric [GE Hitachi Nuclear Energy Americas LLC, Wilmington, NC (United States)


    This report provides the broad historical review of EM Pump development and details of MATRIX development under this project. This report summarizes the efforts made to modernize the legacy performance models used in previous EM Pump designs and the improvements made to the analysis tools. This report provides information on Tasks 1, 3, and 4 of the entire project. The research for Task 4 builds upon Task 1: Update EM Pump Databank and Task 3: Modernize the Existing EM Pump Analysis Model, which are summarized within this report. Where research for Task 2: Insulation Materials Development and Evaluation identified parameters applicable to the analysis model with Task 4, the analysis code was updated, and analyses were made for additional materials. The important design variables for the manufacture and operation of an EM Pump that the model improvement can evaluate are: space constraints; voltage capability of insulation system; maximum flux density through iron; flow rate and outlet pressure; efficiency and manufacturability. The development of the next-generation EM Pump analysis tools during this two-year program provides information in three broad areas: Status of analysis model development; Improvements made to older simulations; and Comparison to experimental data.

  3. Performance of an Annular Linear Induction Pump with Applications to Space Nuclear Power Systems

    Polzin, Kurt A.; Schoenfeld, Michael; Pearson, J. Boise; Webster, Kenneth; Godfroy, Thomas; Adkins, Harold E., Jr.; Werner, James E.


    Results of performance testing of an annular linear induction pump are presented. The pump electromagnetically pumps liquid metal through a circuit specially designed to allow for quantification of the performance. Testing was conducted over a range of conditions, including frequencies of 33, 36, 39, and 60 Hz, liquid metal temperatures from 125 to 525 C, and input voltages from 5 to 120 V. Pump performance spanned a range of flow rates from roughly 0.16 to 5.7 L/s (2.5 to 90 gpm), and pressure head less than 1 to 90 kPa (less than 0.145 to 13 psi). The maximum efficiency measured during testing was slightly greater than 6%. The efficiency was fairly insensitive to input frequency from 33 to 39 Hz, and was markedly lower at 60 Hz. In addition, the efficiency decreased as the NaK temperature was raised. The performance of the pump operating on a variable frequency drive providing 60 Hz power compared favorably with the same pump operating on 60 Hz power drawn directly from the electrical grid.

  4. Centrifugal pump handbook

    Pumps, Sulzer


    This long-awaited new edition is the complete reference for engineers and designers working on pump design and development or using centrifugal pumps in the field. This authoritative guide has been developed with access to the technical expertise of the leading centrifugal pump developer, Sulzer Pumps. In addition to providing the most comprehensive centrifugal pump theory and design reference with detailed material on cavitation, erosion, selection of materials, rotor vibration behavior and forces acting on pumps, the handbook also covers key pumping applications topics and operational

  5. A straight path centrifugal blood pump concept in the Capiox centrifugal pump.

    Kijima, T; Oshiyama, H; Horiuchi, K; Nogawa, A; Hamasaki, H; Amano, N; Nojiri, C; Fukasawa, H; Akutsu, T


    This article describes comparative studies of a newly developed "straight path" centrifugal pump (Capiox centrifugal pump) targeted for open-heart surgery and circulatory support. A unique straight path design of the rotor was very effective in reducing the pump's rotational speed and prime volume. This pump was evaluated for hydraulics, hemolysis, depriming characteristics, cavitation, and heat generation. Two commercially available centrifugal pumps, the Biomedicus cone-type pump and the Sarns 3M impeller-type pump, were used as controls. The new pump required the lowest pump speed to produce the same flow rates under the same pressure loads and demonstrated the lowest hemolysis and the lowest temperature rise with the outlet clamped. The air volume required to deprime the new pump was one-third to one-half that for the other pumps, and no sign of cavitation was observed even if a small amount of air was introduced to the pump inlet under a negative pressure of 200 mm Hg.

  6. Threshold ratios for molecular lasers with optical pumping

    Kuntsevich, B.F.; Churakou, U.V.


    A series of relationships was obtained for threshold characteristics of high pressure molecular lasers with optical pumping. The threshold pumping density increases in proportion to the square of the active medium's pressure. The minimum value of threshold pumping corresponds to the maximum of the Boltzmann distribution function for rotating sublevels both in the pumping channel and in generation. A weak or strong relationship was observed between the threshold impulse energy and the pressure that is caused by fluctuative relaxation of the upper laser level for various relationships between the intensity of the pumping impulse, pressure and loss coefficient.

  7. Effect of pumping chamber on performance of non-overload centrifugal pump

    谷云庆; 吴登昊; 牟介刚; 蒋兰芳; 代东顺; 施瀚昱; 郑水华


    In order to specify the characteristics of un-overloaded centrifugal pumps, the IH100-65-200 pump was chosen as the model pump. Different calculation models for centrifugal pumps were established under different pumping chamber sectional parameters. In the numerical simulation of the centrifugal pumps flow field, the shaft power, head, efficiency, and the changes of the internal flow field under different sectional areas and sectional shapes were studied with the RNGk−εturbulence model, and the influence of the pumping chamber section characteristics of the non-overloaded centrifugal pumps were analyzed. The results show that sectional areas have a significant impact on the non-overload characteristics of centrifugal pumps. The shaft power and head of centrifugal pump are increasing with a lager sectional area, by which the gradient of head curves decreases. The efficiency is improved under a large flow rate condition, but the head and the efficiency are reduced at a small flow rate. It is also observed that the sectional shapes have less influence on the shaft power, the hydraulic performance and flow field characteristics of a centrifugal pump.

  8. Results of a multi-site field treatability test for bioslurping: A comparison of LNAPL rates using vacuum-enhanced recovery (bioslurping), passive skimming, and pump drawdown recovery techniques. Field test report

    Kittel, J.A.; Leeson, A.; Hinchee, R.E.; Miller, R.E.; Haas, P.E.


    Bioslurping is a new dynamic technology designed to efficiently recover free-floating petroleum hydrocarbons (free product) from the subsurface while simultaneously enhancing natural biodegradation of petroleum hydrocarbons in the vadose zone. Bioslurping is a vacuum-enhanced fluids pumping technology that simultaneously extracts groundwater, free product, and soil gas in the same process stream. The U.S. Air Force has initiated a multi-site program to evaluate the widespread application of bioslurping at free product-contaminated Air Force sites. The Air Force Bioslurper Initiative is designed to access the field application of the bioslurping technology at 36 Air Force sites. The field studies are designed to evaluate the efficacy of bioslurping for the recovery of free-floating fuel (free product) and to evaluate the potential for bioventing to enhance natural biodegradation of petroleum contaminants. The technical approach for conducting the bioslurper pilot tests includes assessing the geologic and hydrologic characteristics of each site, free-product baildown testing in site monitoring wells, soil gas analysis, and a bioslurper pump test. Bioslurping free-product recovery efficiency is compared to conventional skimming and dual-pump free-product recovery technologies, and bioventing potential is assessed via in situ respiration testing. The Air Force field program was initiated in July 1994. At the time of this writing, seven field tests have been completed. At each site bioslurping has yielded the highest LNAPL recovery rate. This paper presents a summary of LNAPL recovery data to date. Operational issues such as permitting and treatment of vapor and wastewater discharge will be discussed.

  9. Pre-pumped passively Q-switched Nd:YAG/Cr:YAG microchip laser

    Xinning Tian(田信宁); Ping Yan(闫平); Qiang Liu(柳强); Mali Gong(巩马理); Yun Liao(廖云)


    A pre-pumped passively Q-switched Nd:YAG/Cr:YAG microchip laser is demonstrated with a peak power of 7.5 kW at pulse repetition rate of serveral kilohertzs. The full-width at half-maximum(FWHM)is 734 ps, and the pulse energy is 5.5 μJ with a fundamental spatial mode. In this system, the pre-pumped microchip laser of Nd:YAG/Cr:YAG wafer which is bonded through the thermal-bonding technique has achieved a time jitter value of 12 μs and a Q-switched amplitude instability of 1.26%(15)through the pre-pumped modulation technique.

  10. Influence of Prewhirl Regulation by Inlet Guide Vanes on Cavitation Performance of a Centrifugal Pump

    Lei Tan


    Full Text Available The influence of prewhirl regulation by inlet guide vanes (IGVs on a centrifugal pump performance is investigated experimentally and numerically. The experimental results show that IGVs can obviously change the head and increase the efficiency of the tested centrifugal pump over a wide range of flow rates. Although the cavitation performance is degraded, the variation of the cavitation critical point is less than 0.5 m. Movement of the computed three-dimensional streamlines in suction pipe and impeller are analyzed in order to reveal the mechanism how the IGVs realize the prewhirl regulation. The calculated results show that the influence of IGVs on the cavitation performance of centrifugal pump is limited by a maximum total pressure drop of 1777 Pa, about 7.6% of the total pressure at the suction pipe inlet for a prewhirl angle of 24°.

  11. Experimental analysis on performance of high temperature heat pump and desiccant wheel system

    Sheng, Ying; Zhang, Yufeng; Deng, Na


    In order to solve the problem of high energy consumption for regeneration of desiccant wheel in the rotary desiccant system, high temperature heat pump and desiccant wheel (HTHP&DW) system and corresponding air conditioning unit is built and tested in the extensive thermal hygrometric environment....... When the mixture refrigerant BY-3 is involved in the air source heat pump, the supply air temperatures are in the range as expected except that when in the extreme hot environment (above 36°C), dehumidification capability are satisfied and the regeneration temperatures can satisfy the regeneration...... requirement of desiccant without additional heat. It is also found that outdoor air temperature, humidity ratio and regeneration air flow rate have great impact on the performance of heat pump based on the coefficient of performance (COP) evaluated. COP is not quite high, as the maximum value is 2.26 for heat...

  12. Absorption heat pump for space applications

    Nguyen, Tuan; Simon, William E.; Warrier, Gopinath R.; Woramontri, Woranun


    In the first part, the performance of the Absorption Heat Pump (AHP) with water-sulfuric acid and water-magnesium chloride as two new refrigerant-absorbent fluid pairs was investigated. A model was proposed for the analysis of the new working pairs in a heat pump system, subject to different temperature lifts. Computer codes were developed to calculate the Coefficient of Performance (COP) of the system with the thermodynamic properties of the working fluids obtained from the literature. The study shows the potential of water-sulfuric acid as a satisfactory replacement for water-lithium bromide in the targeted temperature range. The performance of the AHP using water-magnesium chloride as refrigerant-absorbent pair does not compare well with those obtained using water-lithium bromide. The second part concentrated on the design and testing of a simple ElectroHydrodynamic (EHD) Pump. A theoretical design model based on continuum electromechanics was analyzed to predict the performance characteristics of the EHD pump to circulate the fluid in the absorption heat pump. A numerical method of solving the governing equations was established to predict the velocity profile, pressure - flow rate relationship and efficiency of the pump. The predicted operational characteristics of the EHD pump is comparable to that of turbomachinery hardware; however, the overall efficiency of the electromagnetic pump is much lower. An experimental investigation to verify the numerical results was conducted. The pressure - flow rate performance characteristics and overall efficiency of the pump obtained experimentally agree well with the theoretical model.

  13. Finite time exergoeconomic performance optimization for an irreversible universal steady flow variable-temperature heat reservoir heat pump cycle model

    Huijun Feng, Lingen Chen, Fengrui Sun


    Full Text Available An irreversible universal steady flow heat pump cycle model with variable-temperature heat reservoirs and the losses of heat-resistance and internal irreversibility is established by using the theory of finite time thermodynamics. The universal heat pump cycle model consists of two heat-absorbing branches, two heat-releasing branches and two adiabatic branches. Expressions of heating load, coefficient of performance (COP and profit rate of the universal heat pump cycle model are derived, respectively. By means of numerical calculations, heat conductance distributions between hot- and cold-side heat exchangers are optimized by taking the maximum profit rate as objective. There exist an optimal heat conductance distribution and an optimal thermal capacity rate matching between the working fluid and heat reservoirs which lead to a double maximum profit rate. The effects of internal irreversibility, total heat exchanger inventory, thermal capacity rate of the working fluid and heat capacity ratio of the heat reservoirs on the optimal finite time exergoeconomic performance of the cycle are discussed in detail. The results obtained herein include the optimal finite time exergoeconomic performances of endoreversible and irreversible, constant- and variable-temperature heat reservoir Brayton, Otto, Diesel, Atkinson, Dual, Miller and Carnot heat pump cycles.

  14. 一类化学泵的最佳性能系数与泵能率间的关系%The Relation between the Optimal Coefficient of Performance and the Rate of Energy Pumping for a Class of Chemical Pumps

    林国星; 陈金灿


    The cyclic model of a class of chemical pumps is established.The effect of the irreversibility of mass transfer on the cyclic performance is taken into account,and the relationship between the optimal coefficient of performance and the rate of energy pumping is derived.Moreover,other optimal performances of the cycle are discussed.The results obtained here can provide some new theoretical guidelines for the optimal design of a class of apparatus such as electrochemical,photochemical,and mass exchangers and solid state devices.%建立了一类化学泵循环模型,考虑质量传递不可逆性对循环性能的影响,导出循环的泵能率与性能系数间的优化关系.在此基础上进一步讨论了循环的其它优化特性.所得结论可为电化学、光化学、质量交换器及固态设备等的优化设计提供新的理论指导.

  15. Alternative backing up pump for turbomolecular pumps

    Myneni, Ganapati Rao


    As an alternative to the use of a mechanical backing pump in the application of wide range turbomolecular pumps in ultra-high and extra high vacuum applications, palladium oxide is used to convert hydrogen present in the evacuation stream and related volumes to water with the water then being cryo-pumped to a low pressure of below about 1.e.sup.-3 Torr at K. Cryo-pumping is achieved using a low cost Kleemenco cycle cryocooler, a somewhat more expensive thermoelectric cooler, a Venturi cooler or a similar device to achieve the required minimization of hydrogen partial pressure.

  16. Implementation of time-resolved step-scan fourier transform infrared (FT-IR) spectroscopy using a kHz repetition rate pump laser.

    Magana, Donny; Parul, Dzmitry; Dyer, R Brian; Shreve, Andrew P


    Time-resolved step-scan Fourier transform infrared (FT-IR) spectroscopy has been shown to be invaluable for studying excited-state structures and dynamics in both biological and inorganic systems. Despite the established utility of this method, technical challenges continue to limit the data quality and more wide ranging applications. A critical problem has been the low laser repetition rate and interferometer stepping rate (both are typically 10 Hz) used for data acquisition. Here we demonstrate significant improvement in the quality of time-resolved spectra through the use of a kHz repetition rate laser to achieve kHz excitation and data collection rates while stepping the spectrometer at 200 Hz. We have studied the metal-to-ligand charge transfer excited state of Ru(bipyridine)(3)Cl(2) in deuterated acetonitrile to test and optimize high repetition rate data collection. Comparison of different interferometer stepping rates reveals an optimum rate of 200 Hz due to minimization of long-term baseline drift. With the improved collection efficiency and signal-to-noise ratio, better assignments of the MLCT excited-state bands can be made. Using optimized parameters, carbonmonoxy myoglobin in deuterated buffer is also studied by observing the infrared signatures of carbon monoxide photolysis upon excitation of the heme. We conclude from these studies that a substantial increase in performance of ss-FT-IR instrumentation is achieved by coupling commercial infrared benches with kHz repetition rate lasers.

  17. Maximum likely scale estimation

    Loog, Marco; Pedersen, Kim Steenstrup; Markussen, Bo


    A maximum likelihood local scale estimation principle is presented. An actual implementation of the estimation principle uses second order moments of multiple measurements at a fixed location in the image. These measurements consist of Gaussian derivatives possibly taken at several scales and/or ...

  18. Unintended Insulin Pump Delivery in Hyperbaric Conditions.

    Bertuzzi, Federico; Pintaudi, Basilio; Bonomo, Matteo; Garuti, Fabio


    Unintended pump insulin delivery was reported to occur as a consequence of decreased atmospheric pressure, probably mediated by air bubble formation and the expansion of existing bubbles. This observation has been used to explain some hypoglycemic episodes occurring in patients on insulin pump treatment in between 1 and 1 h 45 min after the flight takeoff. New models of insulin pumps have been introduced in the market, most of them are waterproof certified. It is not clear if in these new pumps the influence of atmospheric pressure changes on the insulin delivery is still present. Moreover, there are no evidences related to the insulin pump operations in hyperbaric conditions, like as during diving activities. Our aim is therefore to verify the eventual variation of insulin pump delivery determined by atmospheric pressure changes in hyperbaric conditions. Three new models of insulin pumps were tested in hyperbaric conditions at a flow rate of 2 U/h. Atmospheric pressure variation affected pump insulin release. An increase in the atmospheric pressure from 1 to 1.3 atmosphere (ATA) induced a decrease of pump basal insulin release (about -0.2 U/10 min); conversely, when the atmospheric pressure returned from 1.3 to 1 ATA, an unintended insulin delivery was observed (about +0.3 U/10 min). This phenomenon appeared to be independent of the insulin pump rate and dependent on the presence of air bubbles within the insulin tube setting and cartridge. Unintended insulin delivery driven by atmospheric pressure changes in hyperbaric conditions occurred in the new insulin pumps available. Patients should pay attention to possible variation of insulin rate during the flight or during diving activities.

  19. Large electromagnetic pumps. [LMFBR

    Kilman, G.B.


    The development of large electromagnetic pumps for the liquid metal heat transfer systems of fission reactors has progressed for a number of years. Such pumps are now planned for fusion reactors and solar plants as well. The Einstein-Szilard (annular) pump has been selected as the preferred configuration. Some of the reasons that electromagnetic pumps may be preferred over mechanical pumps and why the annular configuration was selected are discussed. A detailed electromagnetic analysis of the annular pump, based on slug flow, is presented. The analysis is then used to explore the implications of large size and power on considerations of electromagnetic skin effect, geometric skin effect and the cylindrical geometry.

  20. Performance Analysis Of Single-Pumped And Dual-Pumped Parametric Optical Amplifier

    Sandar Myint


    Full Text Available Abstract In this study we present a performance analysis of single-pumped and dual- pumped parametric optical amplifier and present the analysis of gain flatness in dual- pumped Fiber Optical Parametric Amplifier FOPA based on four-wave mixing FWM. Result shows that changing the signal power and pump power give the various gains in FOPA. It is also found out that the parametric gain increase with increase in pump power and decrease in signal power. .Moreover in this paper the phase matching condition in FWM plays a vital role in predicting the gain profile of the FOPAbecause the parametric gain is maximum when the total phase mismatch is zero.In this paper single-pumped parametric amplification over a 50nm gain bandwidth is demonstrated using 500 nm highly nonlinear fiber HNLF and signal achieves about 31dB gain. For dual-pumped parametric amplification signal achieves 26.5dB gains over a 50nm gain bandwidth. Therefore dual-pumped parametric amplifier can provide relatively flat gain over a much wider bandwidth than the single-pumped FOPA.

  1. Analysis of Pressure Pulsation Induced by Rotor-Stator Interaction in Nuclear Reactor Coolant Pump

    Xu Zhang


    Full Text Available The internal flow of reactor coolant pump (RCP is much more complex than the flow of a general mixed-flow pump due to high temperature, high pressure, and large flow rate. The pressure pulsation that is induced by rotor-stator interaction (RSI has significant effects on the performance of pump; therefore, it is necessary to figure out the distribution and propagation characteristics of pressure pulsation in the pump. The study uses CFD method to calculate the behavior of the flow. Results show that the amplitudes of pressure pulsation get the maximum between the rotor and stator, and the dissipation rate of pressure pulsation in impellers passage is larger than that in guide vanes passage. The behavior is associated with the frequency of pressure wave in different regions. The flow rate distribution is influenced by the operating conditions. The study finds that, at nominal flow, the flow rate distribution in guide vanes is relatively uniform and the pressure pulsation amplitude is the smallest. Besides, the vortex shedding or backflow from the impeller blade exit has the same frequency as pressure pulsation but there are phase differences, and it has been confirmed that the absolute value of phase differences reflects the vorticity intensity.

  2. Pump element for a tube pump


    The invention relates to a tube pump comprising a tube and a pump element inserted in the tube, where the pump element comprises a rod element and a first and a second non-return valve member positioned a distance apart on the rod element. The valve members are oriented in the same direction rela...... to a part of the tube. The invention further relates to a method for creating a flow of a fluid within an at least partly flexible tube by means of a pump element as mentioned above.......The invention relates to a tube pump comprising a tube and a pump element inserted in the tube, where the pump element comprises a rod element and a first and a second non-return valve member positioned a distance apart on the rod element. The valve members are oriented in the same direction...... portion acts to alternately close and open the valve members thereby generating a fluid flow through the tube. The invention further relates to a pump element comprising at least two non-return valve members connected by a rod element, and for insertion in an at least partly flexible tube in such tube...

  3. Estimation of pump operational state with model-based methods

    Ahonen, Tero; Tamminen, Jussi; Ahola, Jero; Viholainen, Juha; Aranto, Niina [Institute of Energy Technology, Lappeenranta University of Technology, P.O. Box 20, FI-53851 Lappeenranta (Finland); Kestilae, Juha [ABB Drives, P.O. Box 184, FI-00381 Helsinki (Finland)


    Pumps are widely used in industry, and they account for 20% of the industrial electricity consumption. Since the speed variation is often the most energy-efficient method to control the head and flow rate of a centrifugal pump, frequency converters are used with induction motor-driven pumps. Although a frequency converter can estimate the operational state of an induction motor without external measurements, the state of a centrifugal pump or other load machine is not typically considered. The pump is, however, usually controlled on the basis of the required flow rate or output pressure. As the pump operational state can be estimated with a general model having adjustable parameters, external flow rate or pressure measurements are not necessary to determine the pump flow rate or output pressure. Hence, external measurements could be replaced with an adjustable model for the pump that uses estimates of the motor operational state. Besides control purposes, modelling the pump operation can provide useful information for energy auditing and optimization purposes. In this paper, two model-based methods for pump operation estimation are presented. Factors affecting the accuracy of the estimation methods are analyzed. The applicability of the methods is verified by laboratory measurements and tests in two pilot installations. Test results indicate that the estimation methods can be applied to the analysis and control of pump operation. The accuracy of the methods is sufficient for auditing purposes, and the methods can inform the user if the pump is driven inefficiently. (author)

  4. Maximum information photoelectron metrology

    Hockett, P; Wollenhaupt, M; Baumert, T


    Photoelectron interferograms, manifested in photoelectron angular distributions (PADs), are a high-information, coherent observable. In order to obtain the maximum information from angle-resolved photoionization experiments it is desirable to record the full, 3D, photoelectron momentum distribution. Here we apply tomographic reconstruction techniques to obtain such 3D distributions from multiphoton ionization of potassium atoms, and fully analyse the energy and angular content of the 3D data. The PADs obtained as a function of energy indicate good agreement with previous 2D data and detailed analysis [Hockett et. al., Phys. Rev. Lett. 112, 223001 (2014)] over the main spectral features, but also indicate unexpected symmetry-breaking in certain regions of momentum space, thus revealing additional continuum interferences which cannot otherwise be observed. These observations reflect the presence of additional ionization pathways and, most generally, illustrate the power of maximum information measurements of th...

  5. Proton pump inhibitors

    Proton pump inhibitors (PPIs) are medicines that work by reducing the amount of stomach acid made by ... Proton pump inhibitors are used to: Relieve symptoms of acid reflux, or gastroesophageal reflux disease (GERD). This ...

  6. 20 CFR 229.48 - Family maximum.


    ... month on one person's earnings record is limited. This limited amount is called the family maximum. The family maximum used to adjust the social security overall minimum rate is based on the employee's Overall..., when any of the persons entitled to benefits on the insured individual's compensation would, except...

  7. Freqüência cardíaca máxima em idosas brasileiras: uma comparação entre valores medidos e previstos Maximum heart rate in Brazilian elderly women: comparing measured and predicted values

    Valter Abrantes Pereira da Silva


    Full Text Available OBJETIVO: O presente estudo objetivou comparar os valores de freqüência cardíaca máxima (FCmáx medidos durante um teste de esforço progressivo (TEP, com os obtidos através de equações de predição, em idosas brasileiras. MÉTODOS: Um TEP máximo sob o protocolo modificado de Bruce, realizado em esteira, foi utilizado para obtenção dos valores de referência da freqüência cardíaca máxima (FCmáx, em 93 mulheres idosas (67,1±5,16 anos. Os valores obtidos foram comparados aos estimados pelas equações "220 - idade" e a de Tanaka e cols., através da ANOVA, para amostras repetidas. A correlação e a concordância entre os valores medidos e os estimados foram testadas. Adicionalmente, a correlação entre os valores de FCmáx medidos e a idade das voluntárias foi examinada. RESULTADOS: Os resultados foram os seguintes: 1 a média da FCmáx atingida no TEP foi de 145,5±12,5 batimentos por minuto (bpm; 2 as equações "220 - idade" e a de Tanaka e cols. (2001 superestimaram significativamente (p OBJECTIVE: This study sought to compare maximum heart rate (HRmax values measured during a graded exercise test (GXT with those calculated from prediction equations in Brazilian elderly women. METHODS: A treadmill maximal graded exercise test in accordance with the modified Bruce protocol was used to obtain reference values for maximum heart rate (HRmax in 93 elderly women (mean age 67.1 ± 5.16. Measured values were compared with those estimated from the "220 - age" and Tanaka et al formulas using repeated-measures ANOVA. Correlation and agreement between measured and estimated values were tested. Also evaluated was the correlation between measured HRmax and volunteers’ age. RESULTS: Results were as follows: 1 mean HRmax reached during GXT was 145.5 ± 12,5 beats per minute (bpm; 2 both the "220 - age" and Tanaka et al (2001 equations significantly overestimated (p < 0.001 HRmax by a mean difference of 7.4 and 15.5 bpm, respectively; 3

  8. Piezoelectric Pump Used in Bionic Underwater Propulsion Unit


    A new piezoelectric pump can pump liquid either forward or backward and adjust the flow rate. Thus an object can be driven forward or backward at different speeds. The driver of the pump, a circular piezoelectric plate, is modelled by Finite Element Method (FEM) in ANSYS and its performance is simulated and analyzed. The pump gives the best performance when the driving signals of the inlet and outlet valves have a bigger duty cycle and the plate has a higher voltage applied.

  9. International Prostatic Symptom Score-voiding/storage subscore ratio in association with total prostatic volume and maximum flow rate is diagnostic of bladder outlet-related lower urinary tract dysfunction in men with lower urinary tract symptoms.

    Yuan-Hong Jiang

    Full Text Available OBJECTIVES: The aim of this study was to investigate the predictive values of the total International Prostate Symptom Score (IPSS-T and voiding to storage subscore ratio (IPSS-V/S in association with total prostate volume (TPV and maximum urinary flow rate (Qmax in the diagnosis of bladder outlet-related lower urinary tract dysfunction (LUTD in men with lower urinary tract symptoms (LUTS. METHODS: A total of 298 men with LUTS were enrolled. Video-urodynamic studies were used to determine the causes of LUTS. Differences in IPSS-T, IPSS-V/S ratio, TPV and Qmax between patients with bladder outlet-related LUTD and bladder-related LUTD were analyzed. The positive and negative predictive values (PPV and NPV for bladder outlet-related LUTD were calculated using these parameters. RESULTS: Of the 298 men, bladder outlet-related LUTD was diagnosed in 167 (56%. We found that IPSS-V/S ratio was significantly higher among those patients with bladder outlet-related LUTD than patients with bladder-related LUTD (2.28±2.25 vs. 0.90±0.88, p1 or >2 was factored into the equation instead of IPSS-T, PPV were 91.4% and 97.3%, respectively, and NPV were 54.8% and 49.8%, respectively. CONCLUSIONS: Combination of IPSS-T with TPV and Qmax increases the PPV of bladder outlet-related LUTD. Furthermore, including IPSS-V/S>1 or >2 into the equation results in a higher PPV than IPSS-T. IPSS-V/S>1 is a stronger predictor of bladder outlet-related LUTD than IPSS-T.

  10. Pump for Saturated Liquids

    Elliott, D. G.


    Boiling liquids pumped by device based on proven components. Expanding saturated liquid in nozzle and diverting its phases along separate paths in liquid/vapor separator raises pressure of liquid. Liquid cooled in process. Pump makes it unnecessary to pressurize cryogenic liquids in order to pump them. Problems of introducing noncondensable pressurizing gas avoided.

  11. High power 888 nm optical fiber end-pumped Nd:YVO4 picosecond regenerative amplifier at hundreds kHz

    Bai, Zhenao; Fan, Zhongwei; Lian, Fuqiang; Tan, Tan; Bai, Zhenxu; Yang, Chao; Kang, Zhijun; Liu, Chang


    This paper describes a demonstration of a high power 888 nm end-pumped Nd:YVO4 picosecond regenerative amplifier operated at high repetition rate. By utilizing an all-fiber mode-locking picosecond laser as seed source and 888 nm continuous wave (CW) as pumping source, we obtained regenerative amplified output at 1064.07 nm with spectrum width 0.16 nm, pulse width of 38 ps, maximum power of 21 W, and the repetition rate is continuously adjustable from 300 to 500 kHz. The regenerative amplifier has high power stability and high compact structure.

  12. Stable mode-locked operation of a low repetition rate diode-pumped Nd:GdVO4 laser by combining quadratic polarisation switching and a semiconductor saturable absorber mirror.

    Gerhard, Christoph; Druon, Frédéric; Georges, Patrick; Couderc, Vincent; Leproux, Philippe


    In this paper, we present the mode-locked operation of an ultra-robustly stabilised Nd:GdVO(4) laser with low repetition rate by combining quadratic polarisation switching and a semiconductor saturable absorber mirror (SESAM). In addition, similar experiment was also done with Nd:YVO(4). For Nd:GdVO(4), 16-ps pulses at 1063 nm with a repetition rate of 3.95 MHz have been obtained for a laser average output power of 1.4 W. For Nd:YVO(4), the performance was 2.5 W of average power for 15-ps pulses at 1064 nm. Moreover, we demonstrate experimentally the advantage of combining these two passive mode locking techniques in terms of stability ranges. We show how the dual mode-locking technique is crucial to obtain a stable and long-term mode-locked regime in our case of a diode-pumped Nd:GdVO(4) laser operating at low repetition rate and more generally how this dual mode-locking technique improves the stability range of the mode-locked operation giving more flexibility on different parameters.

  13. Maximum likely scale estimation

    Loog, Marco; Pedersen, Kim Steenstrup; Markussen, Bo


    A maximum likelihood local scale estimation principle is presented. An actual implementation of the estimation principle uses second order moments of multiple measurements at a fixed location in the image. These measurements consist of Gaussian derivatives possibly taken at several scales and....../or having different derivative orders. Although the principle is applicable to a wide variety of image models, the main focus here is on the Brownian model and its use for scale selection in natural images. Furthermore, in the examples provided, the simplifying assumption is made that the behavior...... of the measurements is completely characterized by all moments up to second order....

  14. Do perceptions of insulin pump usability impact attitudes toward insulin pump therapy? A pilot study of individuals with type 1 and insulin-treated type 2 diabetes.

    Chamberlain, James J; Gilgen, Emily


    We assessed the impact of perceived insulin pump usability on attitudes toward insulin pump therapy in diabetic individuals currently treated with multiple daily insulin injections (MDI). This comparative, single-arm study recruited 28 adults with type 1 (n = 16) and insulin-treated type 2 diabetes (n = 12) to evaluate 2 current insulin pumps: Medtronic Revel 723 (Pump 1), Asante Snap Insulin Pump (Pump 2). Participants were randomized 1:1 to 1 of 2 assessment sequences: Pump 1 followed by Pump 2; and Pump 2 followed by Pump 1. Structured observational protocols were utilized to assess participants' ability and time required to learn/perform common tasks associated with pump setup/use. Participants used a modified version of the System Usability Scale (SUS) and investigator-developed questionnaires to rate pump usability and task difficulty; pre-post questionnaires assessed changes in attitudes toward insulin pump therapy. All participants completed the study. SUS scores showed Pump 2 to be more usable than Pump 1 on all usability attributes. Participants rated Pump 2 more positively than Pump 1, overall mean SUS scores of 5.7 versus 4.1 respectively, F(1, 52) = 32.7, P Pump 2 last, 5.3 versus 4.4 for Pump 1 last, F(1, 52) = 10.8, P Pump 2 was preferred for all tasks: manual bolus (86%), bolus calculation (71%), managing basal rates (93%), interpreting alarms (96%), transferring settings (100%), changing insulin and infusion sets (93%), all P pump usability can directly impact acceptance and use of features that may benefit those who wear them. Simpler pump devices that decrease perceptions of complexity may encourage broader use of this technology. © 2014 Diabetes Technology Society.

  15. 低扬程大流量泵装置马鞍区的流动特性%Flow characteristics of low-lift and large flow rate pump installation in saddle zone

    郑源; 茅媛婷; 周大庆; 张单


    运用数值模拟与模型试验相结合的方法,采用计算流体动力学软件Fluent,在双参考坐标系下,利用有限体积法对雷诺时均Navier-Stokes方程进行数值离散,选用标准k-ε湍流模型,SIMPLEC方法求解,对轴流泵模型装置20%~130%额定流量工况点的外特性进行了数值模拟,并将计算结果与模型试验结果进行对比.通过对设计工况和小流量马鞍区工况下CFD流态图样的对比分析,对马鞍区的流动特性进行了研究.结果表明:在50%~65%设计流量区域存在轴流泵的运行不稳定马鞍区;小流量工况下泵室内转轮进出口均存在大范围的回流和旋涡,激烈的能量交换是轴流泵出现不稳定区、装置无法稳定运行的主要原因;数值模拟与模型试验结果吻合较好,整体误差不超过5%,由此证明了数值模拟的有效性和准确性.%Numerical and experimental methods were applied to investigate the axial pump flow characteristics in the saddle zone. The standard k-e turbulence model and SIMPLEC algorithm were chosen in computation fluid dynamics software Fluent, the Reynolds-averaged Navier-Stokes equation was dispersed by the finite volume method, and external characteristics of axial pump model were numerical simulated in a test facility from 20% to 130% of designed flow rate. The results between numerical calculation and model experiment were compared. Flow characteristics in saddle zone were studied by comparing flow patterns between designed condition and small flow rate condition. The results show that unsteady operation saddle zone exists between 50% of designed flow rate and 65% of designed flow rate. Large range recirculation and vortex exist at the inlet and outlet of the impeller under small flow rate condition. Intensive power-exchange is the main cause of the pump unstable operation. The results of three dimensions CFD simulation and test results agree well near the best efficiency point, and

  16. Development and Application of a Diaphragm Micro-Pump with Piezoelectric Device

    Ma, H K; Wu, H Y; Lin, C Y; Gao, J J; Kou, M C


    In this study, a new type of thin, compact, and light weighed diaphragm micro-pump has been successfully developed to actuate the liquid by the vibration of a diaphragm. The micro-diaphragm pump with two valves is fabricated in an aluminum case by using highly accurate CNC machine, and the cross-section dimension is 5mm x 8mm. Both valves and diaphragm are manufactured from PDMS. The amplitude of vibration by a piezoelectric device produces an oscillating flow which may change the chamber volume by changing the curvature of a diaphragm. Several experimental set-ups for performance test in a single micro-diaphragm pump, isothermal flow open system, and a closed liquid cooling system is designed and implemented. The performance of one-side actuating micro-diaphragm pump is affected by the design of check valves, diaphragm, piezoelectric device, chamber volume, input voltage and frequency. The measured maximum flow rate of present design is 72 ml/min at zero total pump head in the range of operation frequency 70...

  17. Multiobjective Optimization of Low-Specific-Speed Multistage Pumps by Using Matrix Analysis and CFD Method

    Qiaorui Si


    Full Text Available The implementation of energy-saving and emission-reduction techniques has become a worldwide consensus. Thus, special attention should be provided to the field of pump optimization. With the objective of focusing on multiobjective optimization problems in low-specific-speed pumps, 10 parameters were carefully selected in this study for an L27(310 orthogonal experiment. The parameters include the outlet width of the impeller blade, blade number, and inlet setting angle of the guide vane. The numerical calculation appropriate for forecasting the performance of multistage pumps, such as the head, efficiency, and shaft power, was analyzed. Results were obtained after calculating the two-stage flow field of the pump through computational fluid dynamics (CFD methods. A matrix method was proposed to optimize the results of the orthographic experiment. The optimal plan was selected according to the weight of each factor. Calculated results indicate that the inlet setting angle of the guide vane influences efficiency significantly and that the outlet angle of blades has an effect on the head and shaft power. A prototype was produced with the optimal plan for testing. The efficiency rating of the prototype reached 58.61%; maximum shaft power was within the design requirements, which verifies that the proposed method is feasible for pump optimization.

  18. Custom Unit Pump Development for the EVA PLSS

    Schuller, Michael; Kurwitz, Cable; Little, Frank; Oinuma, Ryoji; Larsen, Ben; Goldman, Jeff; Reinis, Filip; Trevino, Luis


    This paper describes the effort by the Texas Engineering Experiment Station (TEES) and Honeywell for NASA to design and test a pre-flight prototype pump for use in the Extra-vehicular activity (EVA) portable life support subsystem (PLSS). Major design decisions were driven by the need to reduce the pump s mass, power, and volume compared to the existing PLSS pump. In addition, the pump must accommodate a much wider range of abnormal conditions than the existing pump, including vapor/gas bubbles and increased pressure drop when employed to cool two suits simultaneously. A positive displacement, external gear type pump was selected because it offers the most compact and highest efficiency solution over the required range of flow rates and pressure drops. An additional benefit of selecting a gear pump design is that it is self priming and capable of ingesting non-condensable gas without becoming air locked. The chosen pump design consists of a 28 V DC, brushless, seal-less, permanent magnet motor driven, external gear pump that utilizes a Honeywell development that eliminates the need for magnetic coupling. The pump design was based on existing Honeywell designs, but incorporated features specifically for the PLSS application, including all of the key features of the flight pump. Testing at TEES verified that the pump meets the design requirements for range of flow rates, pressure drop, power consumption, working fluid temperature, operating time, gas ingestion, and restart capability under both ambient and vacuum conditions. The pump operated at 40 to 240 lbm/hr flow rate, 35 to 100 oF pump temperature, and 5 to 10 psid pressure rise. Power consumption of the pump controller at the nominal operating point in both ambient and vacuum conditions was 9.5 W, which was less than the 12 W predicted. Gas ingestion capabilities were tested by injecting 100 cc of air into the fluid line; the pump operated normally throughout this test.

  19. Vibration Characteristics Induced by Cavitation in a Centrifugal Pump with Slope Volute

    Ning Zhang


    Full Text Available Cavitation is one of the instability sources in centrifugal pump, which would cause some unexpected results. The goal of this paper was to analyze the influence of cavitation process on different frequency bands in a centrifugal pump with slope volute. And special attention was paid to low frequency signals, which were often filtered in the reported researches. Results show that at noncavitation condition, vibration level is closely related to flow structure interior pump. At partial flow rates, especially low flow rates, vibration level increases rapidly with the onset of rotating stall. At cavitation condition, it is proved that cavitation process has a significant impact on low frequency signals. With cavitation number decreasing, vibration level first rises to a local maximum, then it drops to a local minimum, and finally it rises again. At different flow rates, vibration trends in variable frequency bands differ obviously. Critical point inferred from vibration level is much larger than that from 3% head drop, which indicates that cavitation occurs much earlier than that reflected in head curve. Also, it is noted that high frequency signals almost increase simultaneously with cavitation occurring, which can be used to detect cavitation in centrifugal pump.

  20. Clinical evaluation of pulsatile flow mode of Terumo Capiox centrifugal pump.

    Nishida, H; Uesugi, H; Nishinaka, T; Uwabe, K; Aomi, S; Endo, M; Koyanagi, H; Oshiyama, H; Nogawa, A; Akutsu, T


    The Terumo Capiox centrifugal pump system possesses an automatic priming function in which the motor repeatedly stops and runs intermittently to eliminate air bubbles in the circuit through the micropores of the hollow-fiber membrane oxygenator. By modifying this mechanism, we have developed a pulsatile flow mode. In this mode, maximum and minimum pump rotational speeds can be independently set every 20 rpm in the range of 0 to 3,000 rpm. The duration of the pump run at maximum and minimum speeds can also be independently set every 0.1 s in the range of 0.2 to 15 s. In a clinical trial, after obtaining the desired flow rate, 2.4 L/min/m2 in nonpulsatile flow mode, a pulsatile flow mode of 60 cycles/min (with 1 cycle being maximum speed for 0.4 s and minimum speed for 0.6 s) was obtained by adding and subtracting 500 rpm to and from the rotational speed in nonpulsatile flow mode. Pulse pressures in the femoral artery and in the circuit just proximal to the perfusion cannula (6.5 mm Sarns high flow cannula with metal tip) were measured in 5 patients who underwent pulsatile cardiopulmonary bypass (CPB) for a coronary artery bypass graft (CABG), and compared to pulse pressures obtained by intraaortic balloon pumping (IABP) in 3 patients and by the pulsatile mode of the 3M Delphin pump in 3 patients. The platelet count, free hemoglobin, and beta-thromboglobulin (beta-TG) were measured and compared with measurements from another 5 patients who underwent nonpulsatile CPB. Although the pulse pressure measured in the circuit was 180 mm Hg on average, the pressure in the femoral artery was only 15 to 40 mm Hg with a mean of 20 mm Hg. In the same patients, 60 to 80 mm Hg pulse pressure was obtained with IABP. The pulse pressure obtained with the Delphin pump was not more than that obtained with the Terumo pump. There were no significant differences in percents of preoperative levels of platelet counts (pulsatile, 87.6 +/- 15.8% and nonpulsatile, 72.4 +/- 40.6%), free

  1. 电脑输液泵控制鼻饲滴速的临床研究%Clinical research in controlling infusion rate during nasal feeding by infusion pump

    严英; 刘玲


    目的 研究改进鼻饲的方法,减少腹泻、呕吐等并发症的发生.方法 选择重型颅脑外伤昏迷患者140例,按采用的鼻饲法分为对照组50例,实验组90例.对照组采用传统的鼻饲方法,实验组应用电脑输液泵控制鼻饲滴速,比较2组并发症的发生率.将实验组患者随机分为3组各30例,在营养液及总量相同的情况下,分别维持10,16,18 h,观察各时间段并发症发生率.结果 实验组腹泻、呕吐等并发症的发生率显著低于对照组;实验组在3个时间段中腹泻、呕吐等并发症的发生率比较无明显差异.结论 使用电脑输液泵控制鼻饲滴速,可明显降低腹泻、呕吐等并发症的发生率;鼻饲营养液在电脑输液泵控制下不必维持很长时间.%Objective To investigate and improve the methods of nasal feeding to reduce the occurrence of complication such as diarrhea and vomiting.Methods We separated 140 patients with heavy craniocerebral injury into the control group (50 patients) and the experimental group (90 patients) according to different nasal feeding methods. For the control group traditional method was used. For the experimental group infusion pump was used to control infusion rate. The incidence of complication was compared between two groups. And within experimental group, the same nutrient solutions in respect of type and volume were infused during 10 hours, 16 hours, and 18 hours respectively. The relationship between infusion rate and the occurrence of complication was observed, analyzed and compared to seek for the most suitable enteral nutrition route which incurred the least complication.Results The incidence of diarrhea and vomiting in the experimental group was lower than that of the control group. And there were no significant differences in the occurrence of complication by using infusion pump at three different infusion rates within the experimental group. Conclusions The application of infusion pump in nasal feeding

  2. Maximum Entropy Fundamentals

    F. Topsøe


    Full Text Available Abstract: In its modern formulation, the Maximum Entropy Principle was promoted by E.T. Jaynes, starting in the mid-fifties. The principle dictates that one should look for a distribution, consistent with available information, which maximizes the entropy. However, this principle focuses only on distributions and it appears advantageous to bring information theoretical thinking more prominently into play by also focusing on the "observer" and on coding. This view was brought forward by the second named author in the late seventies and is the view we will follow-up on here. It leads to the consideration of a certain game, the Code Length Game and, via standard game theoretical thinking, to a principle of Game Theoretical Equilibrium. This principle is more basic than the Maximum Entropy Principle in the sense that the search for one type of optimal strategies in the Code Length Game translates directly into the search for distributions with maximum entropy. In the present paper we offer a self-contained and comprehensive treatment of fundamentals of both principles mentioned, based on a study of the Code Length Game. Though new concepts and results are presented, the reading should be instructional and accessible to a rather wide audience, at least if certain mathematical details are left aside at a rst reading. The most frequently studied instance of entropy maximization pertains to the Mean Energy Model which involves a moment constraint related to a given function, here taken to represent "energy". This type of application is very well known from the literature with hundreds of applications pertaining to several different elds and will also here serve as important illustration of the theory. But our approach reaches further, especially regarding the study of continuity properties of the entropy function, and this leads to new results which allow a discussion of models with so-called entropy loss. These results have tempted us to speculate over

  3. Low-cost water-lifting from groundwater sources: a comparison of the EMAS Pump with the Rope Pump

    MacCarthy, Michael F.; Carpenter, Jacob D.; Mihelcic, James R.


    In sub-Saharan Africa, low-cost groundwater supply systems offer great opportunities for the current unserved population of >300 million to access drinking water. A comparative study was performed in Uganda of the EMAS Pump (designed by Escuela Móvil Aguas y Saneamiento Básico) with the trade-named Rope Pump, two low-cost manual water-lifting devices appropriate to pumping from shallow groundwater sources. Pumping rates, energy expended, material costs, and construction requirements were analyzed. Focus was on low-cost application for use in shallow groundwater systems at the household level in developing countries, particularly in sub-Saharan Africa. The study site was northern Uganda, with testing performed at several drilled boreholes. Two variants of each pump were tested by a male and female user, pumping from multiple static water-level depths ranging from 5 to 28 m. Results demonstrated the most common version of the EMAS Pump to perform similarly to the comparable version of the Rope Pump in terms of average pumping rate at depth range 5 to 18 m (93-111%), but less so at deeper depths (63-85%). Normalized pumping rates (considering energy expended) accentuated differences between these versions of the EMAS Pump and Rope Pump (47-97%). Cost of materials to construct the EMAS Pump were 21-60% those of the Rope Pump, and EMAS Pump construction requirements were also less. Based on the assessed factors, it is concluded that the EMAS Pump has potential for success in "self-supply" groundwater systems in sub-Saharan Africa and is particularly appropriate to link with low-cost shallow groundwater sources.

  4. Five-Year Outcomes after On-Pump and Off-Pump Coronary-Artery Bypass.

    Shroyer, A Laurie; Hattler, Brack; Wagner, Todd H; Collins, Joseph F; Baltz, Janet H; Quin, Jacquelyn A; Almassi, G Hossein; Kozora, Elizabeth; Bakaeen, Faisal; Cleveland, Joseph C; Bishawi, Muath; Grover, Frederick L


    Coronary-artery bypass grafting (CABG) surgery may be performed either with cardiopulmonary bypass (on pump) or without cardiopulmonary bypass (off pump). We report the 5-year clinical outcomes in patients who had been included in the Veterans Affairs trial of on-pump versus off-pump CABG. From February 2002 through June 2007, we randomly assigned 2203 patients at 18 medical centers to undergo either on-pump or off-pump CABG, with 1-year assessments completed by May 2008. The two primary 5-year outcomes were death from any cause and a composite outcome of major adverse cardiovascular events, defined as death from any cause, repeat revascularization (CABG or percutaneous coronary intervention), or nonfatal myocardial infarction. Secondary 5-year outcomes included death from cardiac causes, repeat revascularization, and nonfatal myocardial infarction. Primary outcomes were assessed at a P value of 0.05 or less, and secondary outcomes at a P value of 0.01 or less. The rate of death at 5 years was 15.2% in the off-pump group versus 11.9% in the on-pump group (relative risk, 1.28; 95% confidence interval [CI], 1.03 to 1.58; P=0.02). The rate of major adverse cardiovascular events at 5 years was 31.0% in the off-pump group versus 27.1% in the on-pump group (relative risk, 1.14; 95% CI, 1.00 to 1.30; P=0.046). For the 5-year secondary outcomes, no significant differences were observed: for nonfatal myocardial infarction, the rate was 12.1% in the off-pump group and 9.6% in the on-pump group (P=0.05); for death from cardiac causes, the rate was 6.3% and 5.3%, respectively (P=0.29); for repeat revascularization, the rate was 13.1% and 11.9%, respectively (P=0.39); and for repeat CABG, the rate was 1.4% and 0.5%, respectively (P=0.02). In this randomized trial, off-pump CABG led to lower rates of 5-year survival and event-free survival than on-pump CABG. (Funded by the Department of Veterans Affairs Office of Research and Development Cooperative Studies Program and others

  5. Continuous-wave and Q-switched operation of a resonantly pumped Ho³⁺:KY₃F₁₀ laser.

    Schellhorn, Martin; Parisi, Daniela; Eichhorn, Marc; Tonelli, Mauro


    We report continuous-wave and repetitively Q-switched operation of a resonantly pumped Ho3+:KY3F10 laser at room temperature. End pumped by a Tm3+-doped silica fiber laser operating at 1938 nm, a maximum laser power of 7.8 W was obtained at a wavelength of ∼2041  nm for 21 W of absorbed pump power, corresponding to a slope efficiency of 60.7% with respect to absorbed power. At a repetition rate of 10 kHz up to 0.78 mJ, energy per pulse was demonstrated with pulse widths of 100 ns. The beam propagation factor (M2) was measured to be <1.26 at the maximum output power.

  6. Operating characteristics of isocaloric fountain-effect pumps

    Kittel, Peter


    The governing equations of thermomechanical (fountain-effect) pumps are usually given for pumps operating at a constant temperature difference. These are the thermomechanical and mechanocaloric effects in which the pressure head and mass flow are independent of each other. Here, these equations are recast for a pump operating at a constant heat input (isocaloric). This form more closely represents how such pumps are likely to be used. Under these conditions, the pressure head and mass flow are shown to be related. For ideal pumps, the head and flow are related by a universal curve. For real pumps (those that have normal fluid leakage), a family of curves is developed. These curves approach the curve for an ideal pump at high flow rates. The isocaloric equations are also extended to multistage pumps.

  7. Regularized maximum correntropy machine

    Wang, Jim Jing-Yan


    In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.

  8. Flow Characteristics of the PHTS Mechanical Pump in PGSFR

    Yoon, Jung; Lee, Tae-Hoo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Hwi-Seob [CD-adapco, Seoul (Korea, Republic of)


    The PHTS (Primary Heat Transfer System) mechanical pump is one of the most important parts in the PGSFR. The objective of the PHTS pump is to circulate a sodium coolant to transfer the heat generated in the core to the IHTS (Intermediate Heat Transfer System). Therefore, it is important to verify the performance of the PHTS pump under various flow conditions. The flow inside the pump is a very complex multi-dimensional phenomenon that depends on the rotation speed of the pump, and the geometry of the impeller and diffuser. In particular, the pump performance and flow characteristics can be evaluated using a homologous curve represented by normalized variables of the head and torque. Using a homologous curve obtained by a real pump or model pump reduced by the same specific speed is reasonable, but the detailed design procedure about the prototype PHTS pump has not been completed at this point. In this study, the flow characteristics and homologous curve of the PHTS pump are evaluated by CFD. The flow characteristic of the PHTS pump is evaluated by the CFD. The head and torque are calculated at several flow rates and rotation speeds, and these values are substituted with normalized pump parameters. Also, the homologous head and torque curve is plotted using normalized pump parameters. This curve is used as the input of the safety analysis.

  9. Maximum Throughput in Multiple-Antenna Systems

    Zamani, Mahdi


    The point-to-point multiple-antenna channel is investigated in uncorrelated block fading environment with Rayleigh distribution. The maximum throughput and maximum expected-rate of this channel are derived under the assumption that the transmitter is oblivious to the channel state information (CSI), however, the receiver has perfect CSI. First, we prove that in multiple-input single-output (MISO) channels, the optimum transmission strategy maximizing the throughput is to use all available antennas and perform equal power allocation with uncorrelated signals. Furthermore, to increase the expected-rate, multi-layer coding is applied. Analogously, we establish that sending uncorrelated signals and performing equal power allocation across all available antennas at each layer is optimum. A closed form expression for the maximum continuous-layer expected-rate of MISO channels is also obtained. Moreover, we investigate multiple-input multiple-output (MIMO) channels, and formulate the maximum throughput in the asympt...

  10. Numerical Simulation of Pressure Fluctuation around the Tongue Region in a Centrifugal Pump

    Zheng, L. L.; Dou, H.-S.; Chen, X. P.; Zhu, Z. C.; Cui, B. L.


    Pressure fluctuation near the tongue is one of the primary sources of pump vibration and noise. In order to investigate the effect of pressure fluctuation near the tongue, the RANS equations and the RNG k-epsilon turbulence model are employed to simulate the flow in the pump. The SIMPLE algorithm is applied to couple the solutions of the system of equations. Flow field within the centrifugal pump under different flow rates are obtained by simulation. The simulation results are compared with the experimental data to verify the reliability of the calculation model. It is found that the pressure fluctuation at each monitor point is a periodic wave but non-uniform under small flow rate. When the flow rate is larger than the design flow rate, average pressure and standard deviation at monitor points is relative uniform. The dominate frequency of pressure fluctuation is the blade passing frequency and the amplitude of pressure fluctuation is regular. At small flow rate, complex unstable flow makes average pressure and standard deviation at monitor points increasing obviously. Amplitude of pressure fluctuation is larger than that of design flow rate conditions and the maximum amplitude of pressure fluctuation in frequency domain exists at the monitor point just behind the tongue along the impeller rotation direction.

  11. MTBF evaluation for 2-out-of-3 redundant repairable systems with common cause and cascade failures considering fuzzy rates for failures and repair: a case study of a centrifugal water pumping system

    Mortazavi, Seyed Mohammad; Mohamadi, Maryam; Jouzdani, Javid


    In many cases, redundant systems are beset by both independent and dependent failures. Ignoring dependent variables in MTBF evaluation of redundant systems hastens the occurrence of failure, causing it to take place before the expected time, hence decreasing safety and creating irreversible damages. Common cause failure (CCF) and cascading failure are two varieties of dependent failures, both leading to a considerable decrease in the MTBF of redundant systems. In this paper, the alpha-factor model and the capacity flow model are combined so as to incorporate CCF and cascading failure in the evaluation of MTBF of a 2-out-of-3 repairable redundant system. Then, using a transposed matrix, the MTBF function of the system is determined. Due to the fact that it is difficult to estimate the independent and dependent failure rates, industries are interested in considering uncertain failure rates. Therefore, fuzzy theory is used to incorporate uncertainty into the model presented in this study, and a nonlinear programming model is used to determine system's MTBF. Finally, in order to validate the proposed model, evaluation of MTBF of the redundant system of a centrifugal water pumping system is presented as a practical example.

  12. Modeling of forward pump EDFA under pump power through MATLAB

    Raghuwanshi, Sanjeev Kumar; Sharma, Reena


    Optical fiber loss is a limiting factor for high-speed optical network applications. However, the loss can be compensated by variety of optical amplifiers. Raman amplifier and EDFA amplifier are widely used in optical communication systems. There are certain advantages of EDFA over Raman amplifier like amplifying the signal at 1550 nm wavelength at which the fiber loss is minimum. Apart from that there is no pulse walk-off problem with an EDFA amplifier. With the advent of optical amplifiers like EDFA, it is feasible to achieve a high bit rate beyond terabits in optical network applications. In our study, a MATLAB simulink-based forward pumped EDFA (operating in C-band 1525-1565 nm) simulation platform has been devised to evaluate the following performance parameters like gain, noise figure, amplified spontaneous emission power variations of a forward pumped EDFA operating in C-band (1525-1565 nm) as functions of Er3+ fiber length, injected pump power, signal input power, and Er3+ doping density. The effect of an input pump power on gain and noise figure was illustrated graphically. It is possible to completely characterize and optimize the EDFA performance using our dynamic simulink test bed.

  13. Effects of Temperature on Maximum Metabolic Rate and Metabolic Scope of Juvenile Manchurian Trout, Brachymystax lenok (Pallas)%温度对细鳞鲑幼鱼最大代谢率和代谢范围的影响

    徐革锋; 尹家胜; 韩英; 刘洋; 牟振波


    This study examined the effects of water temperature on the metabolic characteristics and aerobic exer-cise capacity of juvenile manchurian trout , Brachymystax lenok ( Pallas) .The resting metabolic rate ( RMR) ,maxi-mum metabolic rate (MMR), metabolic scope(MS)and critical swimming speed (UCrit) of juveniles were measured at different temperature (4, 8, 12, 16, 20℃).The results showed that both the RMR and the MMR increased sig-nificantly with the increasing of water temperature ( P<0 .05 ) .Compared with test group at 4℃, the RMR for 8℃, 12℃, 16℃ and 20℃increased by 62%, 165%, 390%, 411%,respectively, and the MMR increased by 3%, 34%, 111%, 115%, respectively .However , the MS decreased with the increasing of water temperature with the highest MS occurring at 4℃.UCrit was significantly affected by water temperature (P<0.05), but the varia-tions of UCrit didn′t follow certain pattern with temperature .In the test of aerobic exercise , the MMR for each tem-perature level occurred at the swimming speed of 70% UCrit , probably due to the start of anaerobic metabolism , which caused excessive creatine in body , consequently hindered the aerobic metabolism .%为了探究温度对细鳞鲑( Brachymystax lenok)幼鱼的代谢特征和有氧运动能力的影响,在不同温度(4℃、8℃、12℃、16℃、20℃)下测定了实验鱼的静止代谢率( RMR)、有氧运动过程中的最大代谢率( MMR)以及能量代谢范围(MS)和临界游泳速度(UCrit)。结果表明,随着温度的上升,RMR和MMR均显著提高(P<0.05),各温度下的RMR和MMR分别较4℃条件的提高了62%(8℃)、165%(12℃)、390%(16℃)、411%(20℃)和3%(8℃)、34%(12℃)、111%(16℃)、115%(20℃);MS随水温的升高呈现下降的趋势,且4℃条件具有最大的代谢范围。不同温度条件下UCrit存在显著性差异,但随着温度升高未表现出明显的变

  14. Efficient, resonantly pumped, room-temperature Er3+:GdVO4 laser.

    Ter-Gabrielyan, N; Fromzel, V; Ryba-Romanowski, W; Lukasiewicz, T; Dubinskii, M


    We report an efficient room-temperature operation of a resonantly pumped Er3+:GdVO4 laser at 1598.5 nm. The maximum continuous wave (CW) output power of 3.5 W with slope efficiency of 56% was achieved with resonant pumping by an Er-fiber laser at 1538.6 nm. With pumping by a commercial laser diode bar stack, a quasi-CW (QCW) output of 7.7 W and maximum slope efficiency of ~53% versus absorbed pump power were obtained. This is believed to be the first resonantly (in-band) pumped, room-temperature Er3+:GdVO4 laser.

  15. Directly diode-pumped high-energy Ho:YAG oscillator.

    Lamrini, Samir; Koopmann, Philipp; Schäfer, Michael; Scholle, Karsten; Fuhrberg, Peter


    We report on the high-energy laser operation of an Ho:YAG oscillator resonantly pumped by a GaSb-based laser diode stack at 1.9 μm. The output energy was extracted from a compact plano-concave acousto-optically Q-switched resonator optimized for low repetition rates. Operating at 100 Hz, pulse energies exceeding 30 mJ at a wavelength of 2.09 μm were obtained. The corresponding pulse duration at the highest pump power was 100 ns, leading to a maximum peak power above 300 kW. Different pulse repetition rates and output coupling transmissions of the Ho:YAG resonator were studied. In addition, intracavity laser-induced damage threshold measurements are discussed.

  16. Experimental investigation of thermoelectric power generation versus coolant pumping power in a microchannel heat sink

    Kolaei, Alireza Rezania; Rosendahl, Lasse; Andreasen, Søren Juhl


    The coolant heat sinks in thermoelectric generators (TEG) play an important role in order to power generation in the energy systems. This paper explores the effective pumping power required for the TEGs cooling at five temperature difference of the hot and cold sides of the TEG. In addition......, the temperature distribution and the pressure drop in sample microchannels are considered at four sample coolant flow rates. The heat sink contains twenty plate-fin microchannels with hydraulic diameter equal to 0.93 mm. The experimental results show that there is a unique flow rate that gives maximum net...

  17. Advanced Electric Submersible Pump Design Tool for Geothermal Applications

    Xuele Qi; Norman Turnquist; Farshad Ghasripoor


    Electrical Submersible Pumps (ESPs) present higher efficiency, larger production rate, and can be operated in deeper wells than the other geothermal artificial lifting systems. Enhanced Geothermal Systems (EGS) applications recommend lifting 300 C geothermal water at 80kg/s flow rate in a maximum 10-5/8-inch diameter wellbore to improve the cost-effectiveness. In this paper, an advanced ESP design tool comprising a 1D theoretical model and a 3D CFD analysis has been developed to design ESPs for geothermal applications. Design of Experiments was also performed to optimize the geometry and performance. The designed mixed-flow type centrifugal impeller and diffuser exhibit high efficiency and head rise under simulated EGS conditions. The design tool has been validated by comparing the prediction to experimental data of an existing ESP product.

  18. Equalized near maximum likelihood detector


    This paper presents new detector that is used to mitigate intersymbol interference introduced by bandlimited channels. This detector is named equalized near maximum likelihood detector which combines nonlinear equalizer and near maximum likelihood detector. Simulation results show that the performance of equalized near maximum likelihood detector is better than the performance of nonlinear equalizer but worse than near maximum likelihood detector.

  19. Generalized Maximum Entropy

    Cheeseman, Peter; Stutz, John


    A long standing mystery in using Maximum Entropy (MaxEnt) is how to deal with constraints whose values are uncertain. This situation arises when constraint values are estimated from data, because of finite sample sizes. One approach to this problem, advocated by E.T. Jaynes [1], is to ignore this uncertainty, and treat the empirically observed values as exact. We refer to this as the classic MaxEnt approach. Classic MaxEnt gives point probabilities (subject to the given constraints), rather than probability densities. We develop an alternative approach that assumes that the uncertain constraint values are represented by a probability density {e.g: a Gaussian), and this uncertainty yields a MaxEnt posterior probability density. That is, the classic MaxEnt point probabilities are regarded as a multidimensional function of the given constraint values, and uncertainty on these values is transmitted through the MaxEnt function to give uncertainty over the MaXEnt probabilities. We illustrate this approach by explicitly calculating the generalized MaxEnt density for a simple but common case, then show how this can be extended numerically to the general case. This paper expands the generalized MaxEnt concept introduced in a previous paper [3].

  20. Development of liquid nitrogen Centrifugal Pump

    Abe, M; Sagiyama, R; Tsuchiya, H [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Takayama, T [Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585 (Japan); Torii, Y [OMNIX, 1-15-3 Nishishinjuku, Shinjuku, Tokyo, 160-0023 (Japan); Nakamura, M [YN Nakamura Ltd, 3-9-25 Ohjima, Koto, Tokyo, 136-0072 (Japan); Hoshino, Y [JECC TORISHA Co. Ltd, 2-8-52 Yoshinodai, Kawagoe-shi, Saitama, 350-0833 (Japan); Odashima, Y [Department of Basic Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 (Japan)], E-mail:


    Usually liquid nitrogen (LN{sub 2}) transfer from a container to a laboratory equipment takes place by applying pressure to the container to push out liquid or pouring liquid into the cryostat directly by lifting the container. In order to overcome inconvenience of pressuring or lifting containers, we have been developing the Liquid Nitrogen Centrifugal Pump of a small electric turbine pump. Significant advantages that both reducing time to fill LN{sub 2}and controlling the flow rate of liquid into the cryostat are obtained by introducing this pump. We have achieved the lift of about 800mm with the vessel's opening diameter of 28mm.

  1. Detection of pump degradation

    Greene, R.H.; Casada, D.A.; Ayers, C.W. [and others


    This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented.

  2. Ejercicio físico, salud y supuestos en el cálculo de la frecuencia cardíaca máxima estimada / Exercise, Health and Assumptions in Calculating the Estimated Maximum Heart Rate

    Alixon David Reyes Rodríguez


    theoretical points of reference that responded to scientific needs before, but which are insufficient now.  It has been observed in national and international conferences, seminaries, research encounters, in our universities and in different kinds of scientific meetings that some obsolete assumptions are still being taught, which slows down progress in Education Sciences and Sports Science. We recognize that some predictive formulas used to calculate the estimated maximum heart rate (EMHR represented progress for Exercise Science and Exercise Physiology, at some point; however, there are important aspects that should be considered. It is not that we despise them, but we intend to demonstrate and demystify the use of the traditional formula almost as the only calculation and measurement pattern for EMHR and, to offer, from the perspective of other researchers, better possibilities of exercise dosage for certain populations with particular characteristics.

  3. Optically pumped atoms

    Happer, William; Walker, Thad


    Covering the most important knowledge on optical pumping of atoms, this ready reference is backed by numerous examples of modelling computation for optical pumped systems. The authors show for the first time that modern scientific computing software makes it practical to analyze the full, multilevel system of optically pumped atoms. To make the discussion less abstract, the authors have illustrated key points with sections of MATLAB codes. To make most effective use of contemporary mathematical software, it is especially useful to analyze optical pumping situations in the Liouville spa

  4. Champagne Heat Pump

    Jones, Jack A.


    The term champagne heat pump denotes a developmental heat pump that exploits a cycle of absorption and desorption of carbon dioxide in an alcohol or other organic liquid. Whereas most heat pumps in common use in the United States are energized by mechanical compression, the champagne heat pump is energized by heating. The concept of heat pumps based on other absorption cycles energized by heat has been understood for years, but some of these heat pumps are outlawed in many areas because of the potential hazards posed by leakage of working fluids. For example, in the case of the water/ammonia cycle, there are potential hazards of toxicity and flammability. The organic-liquid/carbon dioxide absorption/desorption cycle of the champagne heat pump is similar to the water/ammonia cycle, but carbon dioxide is nontoxic and environmentally benign, and one can choose an alcohol or other organic liquid that is also relatively nontoxic and environmentally benign. Two candidate nonalcohol organic liquids are isobutyl acetate and amyl acetate. Although alcohols and many other organic liquids are flammable, they present little or no flammability hazard in the champagne heat pump because only the nonflammable carbon dioxide component of the refrigerant mixture is circulated to the evaporator and condenser heat exchangers, which are the only components of the heat pump in direct contact with air in habitable spaces.

  5. Resonance wave pumping: wave mass transport pumping

    Carmigniani, Remi; Violeau, Damien; Gharib, Morteza


    It has been previously reported that pinching at intrinsic resonance frequencies a valveless pump (or Liebau pump) results in a strong pulsating flow. A free-surface version of the Liebau pump is presented. The experiment consists of a closed tank with a submerged plate separating the water into a free-surface and a recirculation section connected through two openings at each end of the tank. A paddle is placed at an off-centre position at the free-surface and controlled in a heaving motion with different frequencies and amplitudes. Near certain frequencies identified as resonance frequencies through a linear potential theory analysis, the system behaves like a pump. Particle Image Velocimetry (PIV) is performed in the near free surface region and compared with simulations using Volume of Fluid (VOF) method. The mean eulerian mass flux field (ρ) is extracted. It is observed that the flow is located in the vicinity of the surface layer suggesting Stokes Drift (or Wave Mass Transport) is the source of the pumping. A model is developped to extend the linear potential theory to the second order to take into account these observations. The authors would like to acknowledge the Gordon and Betty Moore Foundation for their generous support.

  6. Test results for the Oasis 3C high performance water-pumping windmill

    Eggleston, D.M. [DME Engineering, Midland, TX (United States)


    The WINDTech International, L.L.C. Oasis 3C, a 3 m diameter, high-performance water-pumping windmill, was tested at the DME Engineering Wind Test Site just south of Midland, Texas from August through December, 1996. This machine utilizes a 3:1 gearbox with rotating counterweights, similar to a conventional oilfield pumping unit, driven by a multibladed rotor. The rotating counterweight system balances most of the pumping loads and reduces gear loads and starting torque by a factor of at least two and often by a factor of four or more. The torque reduction substantially extends gear and bearing life, and reduces wind speeds required for starting by 30 to 50% or more. The O3C was tested pumping from a quiescent fluid depth of 12.2 m (40 ft) from a 28.3 m (93 ft)-deep well, with additional pumping depth simulated using a pressure regulator valve system. A 9.53 cm (3.75 in.) diameter Harbison-Fischer seal-less single-acting piston pump was used to eliminate pump seal friction as a variable, and standard O3C stroke lengths of 30.5 and 15.2 cm (12 and 6 inches) were used. The regulator spring was set to give a maximum stroke rate of 33 strokes per minute. The water pumped was returned to the well after flowing through a settling tank. The tests were performed in accordance with AWEA WECS testing standards. Instrumentation provided 16 channels of data to accurately measure machine performance, including starting wind speeds, flow rates, O3C azimuth, tail furl angle, wind direction tracking errors, RPM, sucker rod loads, and other variables. The most significant performance data is summarized herein. A mathematical model of machine performance was developed that fairly accurately predicts performance for each of three test conditions. The results verify that the O3C is capable of pumping water at wind speeds from 30% to more than 50% lower than comparable un-counterbalanced units.

  7. Enhancement of pump efficiency of thin disk lasers by compensation of directional image extension on pumping spot

    Zamani, Sasan Seyed; Eslami, Esmaeil


    The effect of directional image extension on the total pumping spot in thin disk lasers is reviewed. Three modified pumping setups that can compensate this effect and improve the absorption pumping area are presented, and the efficiency, advantages, and disadvantages of each modified configuration are discussed. Numerical comparison between absorption intensity profiles confirms an increment of maximum pump absorption density at the central region of the pumping area with respect to normal setup. Experimental investigation for the last modified pumping arrangement is in good agreement with simulation results. Measuring laser power output with a similar simple I-shaped resonator shows an enhancement of slope efficiency up to 2.5% together with a lower laser threshold for our modified setup.

  8. Laser radiation frequency conversion in carbon- and cluster-containing plasma plumes under conditions of single and two-color pumping by pulses with a 10-Hz repetition rate

    Ganeev, R. A.


    This work reviews a series of investigations of different plasma plumes using single- and two-color laser systems that emit femtosecond pulses with a 10-Hz repetition rate. Results of investigation of the resonant enhancement of harmonics in tin plasma with the use of two types of pumps are analyzed, and it is shown that the tuning of the wavelengths of harmonics to ion-resonance levels plays an important role in increasing the conversion efficiency to high-order harmonics of the radiation to be converted. Investigations of different carbon-containing plasma media (carbon nanotubes, graphite, carbon aerogel, etc.) exhibit attractive properties of the nonlinear medium of this type for efficient generation of high-order harmonics. The results of the first experiments on the use of nanoparticles produced directly in the course of laser ablation of metals for increasing the efficiency of harmonics generated in this cluster-containing medium are analyzed. It is shown that new approaches realized in these investigations give hope that the nonlinear optical response of plasma media in the far-ultraviolet range can be further increased.

  9. Study on testing method of Roots pump%罗茨真空泵试验方法的研究

    王西龙; 罗根松; 朱赛赛; 王玲玲


    The pumping speed and ultimate pressure is the basic performance of a Roots pump, but both rely on the type and performance of its backing pump to a great extent. It implies that the two parameters cannot represent the essential characteristics of Roots pumps. What represent the essential characteristics of Roots pumps include the zero flow compression ratio, maximum permissible differential pressure and the differential pressure of overflow valve, leakage rate and noise, and all of them are irrelevant to the hacking pump but closely relevant to the vacuum conditions, evacuating capacity and operating conditions of Roots pumps. The testing methods and relevant devices of Roots pumps' characteristic properties are investigated and, as a result, some penetrating and distinctive ideas dissimilar to existing domestic/foreign standards are put forward.%罗茨泵的抽气速率和极限压力是泵的主要性能,但它在很大程度上要依赖于前级泵的型式和性能,因此它并不是罗茨泵本身特有的性能.能代表罗茨泵特征性能,而又与前级泵无关的是零流量压缩比、最大允许压差与溢流阀压差、漏率和噪声,它们与罗茨泵的真空状态、抽气性能和运行质量有着极其密切的关系.文中对特征性能的试验方法和装置进行了分析和研究,提出了有异于国内外现行标准的,更精粹、独特的见解.

  10. Low threshold and high efficiency solar-pumped laser with Fresnel lens and a grooved Nd:YAG rod

    Guan, Zhe; Zhao, Changming; Yang, Suhui; Wang, Yu; Ke, Jieyao; Gao, Fengbin; Zhang, Haiyang


    Sunlight is considered as a new efficient source for direct optical-pumped solid state lasers. High-efficiency solar pumped lasers with low threshold power would be more promising than semiconductor lasers with large solar panel in space laser communication. Here we report a significant advance in solar-pumped laser threshold by pumping Nd:YAG rod with a grooved sidewall. Two-solar pumped laser setups are devised. In both cases, a Fresnel lens is used as the primary sunlight concentrator. Gold-plated conical cavity with a liquid light-guide lens is used as the secondary concentrator to further increase the solar energy concentration. In the first setup, solar pumping a 6mm diameter Nd:YAG rod, maximum laser power of 31.0W/m2 cw at 1064nm is produced, which is higher than the reported record, and the slope efficiency is 4.98% with the threshold power on the surface of Fresnel lens is 200 W. In the second setup, a 5 mm diameter laser rod output power is 29.8W/m2 with a slope efficiency of 4.3%. The threshold power of 102W is obtained, which is 49% lower than the former. Meanwhile, the theoretical calculating of the threshold power and slope efficiency of the solar-pumped laser has been established based on the rate-equation of a four-level system. The results of the finite element analysis by simulation software are verified in experiment. The optimization of the conical cavity by TraceProsoftware and the optimization of the laser resonator by LASCADare useful for the design of a miniaturization solar- pumped laser.

  11. Energy Savings Potential for Pumping Water in District Heating Stations

    Ioan Sarbu


    Full Text Available In district heating stations, the heat carrier is circulated between the energy source and consumers by a pumping system. Fluid handling systems, such as pumping systems, are responsible for a significant portion of the total electrical energy use. Significant opportunities exist to reduce pumping energy through smart design, retrofitting, and operating practices. Most existing systems requiring flow control make use of bypass lines, throttling valves or pump speed adjustments. The most efficient of these options is pump speed control. One of the issues in using variable-speed pumping systems, however, is the total efficiency of the electric motor/pump arrangement under a given operating condition. This paper provides a comprehensive discussion about pump control in heating stations and analyzes the energy efficiency of flow control methods. Specific attention is also given to the selection of motor types, sizing and pump duty cycle. A comparative energy analysis is performed on the hot water discharge adjustment using throttling control valves and variable-speed drives in a district heating station constructed in Romania. To correlate the pumped flow rate with the heat demand and to ensure the necessary pressure using minimum energy, an automatic system has been designed. The performances of these control methods are evaluated in two practical applications. The results show that approximately 20%–50% of total pumping energy could be saved by using the optimal control method with variable-speed pumps. Additionally, some modernization solutions to reduce the environmental impact of heating stations are described.

  12. Demanding pump power; Krevende pumpekraft

    Lie, Oeyvind


    The potential for pump power in Norway is huge, but it is difficult to exploit it. Norway has some pumping plants, but these are built for seasonal pumping (pumping up to the magazine in the summer, and production in the winter). Pump power plants for short periods do not exist in Norway. (AG)

  13. Multilayer impedance pump: a bio-inspired valveless pump with medical applications

    Loumes, Laurence

    This thesis introduces the concept of multilayer impedance pump, a novel pumping mechanism inspired from the embryonic heart structure.The multilayer impedance pump is a composite two-layer fluid-filled elastic tube featuring a thick, gelatin-like internal layer similar in nature to the embryonic cardiac jelly, and that is used to amplify longitudinal elastic waves. Pumping is based on the impedance pumping mechanism. Elastic waves are generated upon small external periodic compressions of the elastic tube. They propagate along the tube's walls, reflect at the tube's extremities and drive the flow in a preferential direction. This fully coupled fluid-structure interaction problem is solved for the flow and the structure using the finite element method over a relevant range of frequencies of excitation. Results show that the two-layer configuration can be an efficient wave propagation combination, and that it allows the pump to produce significant flow for small excitations. The multilayer impedance pump is a complex system in which flow and structure exhibit a resonant behavior. At resonance, a constructive elastic wave interaction coupled with a most efficient energy transmission between the elastic walls and the fluid is responsible for the maximum exit flow. The pump efficiency reaches its highest at resonance, highlighting furthermore the concept of resonance pumping.Using the proposed multilayer impedance pump model, we are able to bring an additional proof on the impedance nature of the embryonic heart by comparing a peristaltic and an impedance multilayer pump both excited in similar fashion to the one observed in the embryonic heart.The gelatin layer that models the embryonic cardiac jelly occupies most of the tube walls and is essential to the propagation of elastic waves. A comparison between the exact same impedance pump with and without the additional gelatin layer sheds light on the dynamic role of the cardiac jelly in the embryonic heart and on nature

  14. Pump element for a tube pump


    relative to the rod element so as to allow for a fluid flow in the tube through the first valve member, along the rod element, and through the second valve member. The tube comprises an at least partly flexible tube portion between the valve members such that a repeated deformation of the flexible tube...... portion acts to alternately close and open the valve members thereby generating a fluid flow through the tube. The invention further relates to a pump element comprising at least two non-return valve members connected by a rod element, and for insertion in an at least partly flexible tube in such tube...... pump as mentioned above, thereby acting to generate a fluid flow through the tube upon repeated deformation of the tube between the two valve members. The pump element may comprise a connecting part for coupling to another tube and may comprise a sealing part establishing a fluid tight connection...

  15. Results of Investigations of Failures of Geothermal Direct Use Well Pumps

    Culver, G.


    Failures of 13 geothermal direct-use well pumps were investigated and information obtained about an additional 5 pumps that have been in service up to 23 years, but have not failed. Pumps with extra long lateral and variable-speed drives had the highest correlation with reduced time in service. There appears to be at least circumstantial evidence that recirculation may be a cause of reduced pump life. If recirculation is a cause of pump failures, pump specifiers will need to be more aware of minimum flow conditions as well as maximum flow conditions when specifying pumps. Over-sizing pumps and the tendency to specify pumps with high flow and low Net Positive Suction Head (NPSH) could lead to increased problems with recirculation.

  16. Results of investigations of failures of geothermal direct-use well pumps

    Culver, G.


    Failures of 13 geothermal direct-use well pumps were investigated and information obtained about an additional 5 pumps that have been in service up to 23 years, but have not failed. Pumps with extra long lateral and variable-speed drives had the highest correlation with reduced time in service. There appears to be at least circumstantial evidence that recirculation may be a cause of reduced pump life. If recirculation is a cause of pump failures, pump specifiers will need to be more aware of minimum flow conditions as well as maximum flow conditions when specifying pumps. Over-sizing pumps and the tendency to specify pumps with high flow and low Net Positive Suction Head (NPSH) could lead to increased problems with recirculation.

  17. 36 W Q-switched Ho:YAG laser at 2097 nm pumped by a Tm fiber laser: evaluation of different Ho3+ doping concentrations

    Antipov, O. L.; Eranov, I. D.; Kositsyn, R. I.


    A laser oscillator based on Ho:YAG crystal pumped by a Tm fiber laser with an acousto-optical Q-switch was optimized for maximum output power and pulse-to-pulse stability. Stable operation at 2097 nm in Q-switched mode is demonstrated, with pulse repetition rates from 10 to 30 kHz, and output power of 36 W (at 55 W of pump power at 1908 nm) in the good quality beam. The influence of Ho ion up-conversion and thermal lensing on the oscillation efficiency is discussed.

  18. Diode-pumped passively dual-wavelength Q-switched Nd:GYSGG laser using graphene oxide as the saturable absorber.

    Song, Qi; Wang, Guoju; Zhang, Bingyuan; Wang, Wenjun; Wang, Minghong; Zhang, Qingli; Sun, Guihua; Bo, Yong; Peng, Qinjun


    The performance of a diode end-pumped passively Q-switched dual-wavelength Nd:GYSGG laser operating at 1057.28 and 1060.65 nm with graphene oxide as the saturable absorber was demonstrated. The maximum dual-wavelength average output power of 521 mW was achieved under the absorbed pump power of 5.4 W, corresponding to the optical-to-optical conversion and slope efficiency of 9.8% and 21%, respectively. The minimum pulse width was 115 ns with a pulse repetition rate of 338 kHz.

  19. Evaluation of Flow-Induced Dynamic Stress and Vibration of Volute Casing for a Large-Scale Double-Suction Centrifugal Pump

    Fu-Jun Wang


    Full Text Available The transient analysis was carried out to investigate the dynamic stress and vibration of volute casing for a large double-suction centrifugal pump by using the transient fluid-structure interaction theory. The flow pulsations at flow rate ranging from 60% to 100% of the nominal flow rate (Qd were taken as the boundary conditions for FEM analysis of the pump volute casing structure. The results revealed that, for all operating conditions, the maximum stress located at the volute tongue region, whereas the maximum vibration displacement happened close to the shaft hole region. It was also found that the blade passing frequency and its harmonics were dominant in the variations of dynamic stress and vibration displacement. The amplitude of the dominant frequency for the maximum stress detected at 0.6 Qd was 1.14 times that at Qd, lower than the related difference observed for pressure fluctuations (3.23 times. This study provides an effective method to quantify the flow-induced structural dynamic characteristics for a large-scale double-suction pump. It can be used to direct the hydraulic and structural design and stable operation, as well as fatigue life prediction for large-scale pumps.

  20. Clinical experience with the Sarns centrifugal pump.

    Curtis, J J; Walls, J T; Demmy, T L; Boley, T M; Schmaltz, R A; Goss, C F; Wagner-Mann, C C


    Since October 1986, we have had experience with 96 Sarns centrifugal pumps in 72 patients (pts). Heparinless left atrial to femoral artery or aorta bypass was used in 14 pts undergoing surgery on the thoracic aorta with 13 survivors (93%). No paraplegia or device-related complications were observed. In 57 patients, the Sarns centrifugal pump was used as a univentricular (27 pts) or biventricular (30 pts) cardiac assist device for postcardiotomy cardiogenic shock. In these patients, cardiac assist duration ranged from 2 to 434 h with a hospital survival rate of 29% in those requiring left ventricular assist and 13% in those requiring biventricular assist. Although complications were ubiquitous in this mortally ill patient population, in 5,235 pump-hours, no pump thrombosis was observed. Hospital survivors followed for 4 months to 6 years have enjoyed an improved functional class. We conclude that the Sarns centrifugal pump is an effective cardiac assist device when used to salvage patients otherwise unweanable from cardiopulmonary bypass. Partial left ventricular bypass using a centrifugal pump has become our procedure of choice for unloading the left ventricle and for maintenance of distal aortic perfusion pressure when performing surgery on the thoracic aorta. This clinical experience with the Sarns centrifugal pump appears to be similar to that reported with other centrifugal assist devices.

  1. A Shocking New Pump


    Hydro Dynamics, Inc. received a technical helping hand from NASA that made their Hydrosonic Pump (HPump) a reality. Marshall engineers resolved a bearing problem in the rotor of the pump and recommended new bearings, housings and mounting hardware as a solution. The resulting HPump is able to heat liquids with greater energy efficiency using shock waves to generate heat.

  2. Water Treatment Technology - Pumps.

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on pumps provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pumps in plant and distribution systems, pump…

  3. Tm:GGAG crystal for 2μm tunable diode-pumped laser

    Šulc, Jan; Boháček, Pavel; Němec, Michal; Fibrich, Martin; Jelínková, Helena; Trunda, Bohumil; Havlák, Lubomír.; Jurek, Karel; Nikl, Martin


    The spectroscopy properties and wavelength tunability of diode pumped laser based on Tm-doped mixed gadolinium-gallium-aluminium garnet Gd3(GaxAl1-x)5O12 (Tm:GGAG) single crystal were investigated for the first time. The crystal was grown by Czochralski method in a slightly oxidative atmosphere using an iridium crucible. The tested Tm:GGAG sample was cut from the grown crystal boule perpendicularly to growth direction (c-axis). The composition of sample was determined using electron microprobe X-ray elemental analysis. For spectroscopy and laser experiments 3.5mm thick plane-parallel face-polished plate (without AR coatings) with composition Gd2.76Tm0.0736Ga2.67Al2.50O12 (2.67 at.% Tm/Gd) was used. A fiber (core diameter 400 μm, NA= 0.22) coupled laser diode (emission wavelength 786 nm) was used for longitudinal Tm:GGAG pumping. The laser diode was operating in the pulsed regime (10 ms pulse length, 10 Hz repetition rate, maximum power amplitude 18 W). The 145mm long semi-hemispherical laser resonator consisted of a flat pumping mirror (HR @ 1.8- 2.10 μm, HT @ 0.78 μm) and curved (r = 150mm) output coupler with a reflectivity of » 97% @ 1.8- 2.10 µm. The maximum laser output power amplitude 1.14W was obtained at wavelength 2003nm for absorbed pump power amplitude 4.12W. The laser slope efficiency was 37% in respect to absorbed pumping power. Wavelength tuning was accomplished by using 2mm thick MgF2 birefringent filter placed inside the laser resonator at the Brewster angle. The laser was continuously tunable over 180nm in a spectral region from 1856nm to 2036 nm.

  4. Testing of an Annular Linear Induction Pump for the Fission Surface Power Technology Demonstration Unit

    Polzin, K. A.; Pearson, J. B.; Webster, K.; Godfoy, T. J.; Bossard, J. A.


    Results of performance testing of an annular linear induction pump that has been designed for integration into a fission surface power technology demonstration unit are presented. The pump electromagnetically pushes liquid metal (NaK) through a specially-designed apparatus that permits quantification of pump performance over a range of operating conditions. Testing was conducted for frequencies of 40, 55, and 70 Hz, liquid metal temperatures of 125, 325, and 525 C, and input voltages from 30 to 120 V. Pump performance spanned a range of flow rates from roughly 0.3 to 3.1 L/s (4.8 to 49 gpm), and pressure heads of <1 to 104 kPa (<0.15 to 15 psi). The maximum efficiency measured during testing was 5.4%. At the technology demonstration unit operating temperature of 525 C the pump operated over a narrower envelope, with flow rates from 0.3 to 2.75 L/s (4.8 to 43.6 gpm), developed pressure heads from <1 to 55 kPa (<0.15 to 8 psi), and a maximum efficiency of 3.5%. The pump was supplied with three-phase power at 40 and 55 Hz using a variable-frequency motor drive, while power at 55 and 70 Hz was supplied using a variable-frequency power supply. Measured performance of the pump at 55 Hz using either supply exhibited good quantitative agreement. For a given temperature, the peak in efficiency occurred at different flow rates as the frequency was changed, but the maximum value of efficiency was relative insensitive within 0.3% over the frequency range tested, including a scan from 45 to 78 Hz. The objectives of the FSP technology project are as follows:5 • Develop FSP concepts that meet expected surface power requirements at reasonable cost with added benefits over other options. • Establish a nonnuclear hardware-based technical foundation for FSP design concepts to reduce overall development risk. • Reduce the cost uncertainties for FSP and establish greater credibility for flight system cost estimates. • Generate the key nonnuclear products to allow Agency

  5. Review of magnetohydrodynamic pump applications

    Al-Habahbeh, O.M; Al-Saqqa, M; Safi, M; Abo Khater, T


    Magneto-hydrodynamic (MHD) principle is an important interdisciplinary field. One of the most important applications of this effect is pumping of materials that are hard to pump using conventional pumps...

  6. RETRAN analysis results of feedwater pump trip transient for Lungmen ABWR Plant

    Ma Shaoshih, E-mail: [Department of Engineering and System Science, National Tsing Hua University, 101, Section 2, Kuang Fu Rd., HsinChu City 30013, Taiwan (China); Institute of Nuclear Energy Research, Atomic Energy Council, ROC, P.O. Box 3-3, Lungtan, Taoyuan 325, Taiwan (China); Shih Chunkuan [Department of Engineering and System Science, National Tsing Hua University, 101, Section 2, Kuang Fu Rd., HsinChu City 30013, Taiwan (China); Yuann Yngruey [Institute of Nuclear Energy Research, Atomic Energy Council, ROC, P.O. Box 3-3, Lungtan, Taoyuan 325, Taiwan (China)


    Highlights: > The RETRAN model was used to predict one feedwater pump trip (FWPT) transient. > The result shows that the margin sustains at least 30 cm above the L3 setpoint. > The unavailable motor driven pump case eventually actuates the low level scram signal. > The lowest load line case without motor driven pump still actuates the L3 scram. - Abstract: The RETRAN model of Lungmen ABWR was used to simulate one feedwater pump trip (FWPT) transient of the Lungmen start-up test program. The purpose of this test is to verify the capability of one surviving Turbine Driven Reactor Feedwater Pump (TDRFP) plus a Motor Driven Feedwater Pump (MDRFP) to continue operating the reactor stably following the incident. There are three major control systems implanted in Lungmen RETRAN model (LRM), which include Recirculation Flow Control System (RFCS), Steam Bypass and Pressure Control System (SBPCS), and Feedwater Control System (FWCS). The reactor water level margin with respect to the low level scram setpoint in the transient is monitored to confirm whether the acceptance criteria has been satisfied, which depends on the responses of the control systems to the FWPT transient. The analysis result of base case at 100% rated power/100% rated core flow with automatic start of MDRFP demonstrates that the acceptance criteria are met, which shows that the water level still sustains ample margin of 30 cm above the low level setpoint, and the reactor does not scram. To get more insight into the function of MDRFP, a set of sensitivity studies with the assumption of unavailable MDRFP, and with a different initial condition which extended to the maximum allowable core flow of 111% rated at rated power, was conducted to verify the superior capability of power coastdown due to the RIPs runback logic under the lowest load line, and also the delay time of the Reactor Internal Pumps (RIPs). Finally, it is concluded that FWPT transient without start of MDRFP eventually actuates the low level

  7. A study on diagnostic techniques of pump operating condition

    Cho, Du Eon; Park, Jong Ho; Song, Gyu Jo; Shin, Pil Kwon; Lee, Nam Gil; Shin, Wan Sun; Kang, Hyeon Taek; Lee, Taek Sang [Chungnam National Univ., Taejon (Korea, Republic of)


    The scope and contents investigate and reviewed are as follows : establishment of study plan and references survey, review of related problems and inservice test standards of safety injection pump in use nuclear power plant, review of the study results in laboratory, the theoretical investigation of temperature rise according to mini-flow rate of pump, mini-flow rate working characteristics of high and low pressure injection pumps at nuclear power plants, setup of testing equipment for measuring ampere, discharge pressure and vibration, selection and behaviors analysis of major parameters concerning pump degradation.

  8. Insulin Pump Failures: Has There Been an Improvement? Update of a Prospective Observational Study.

    Guenego, Agathe; Bouzillé, Guillaume; Breitel, Stéphanie; Esvant, Annabelle; Poirier, Jean-Yves; Bonnet, Fabrice; Guilhem, Isabelle


    Insulin pump failures had been assessed in our center by a prospective observational study from 2001 to 2007. The aim of this study was to update our data since 2008 and to determine whether there exist specific risk factors for insulin pump failures. All insulin pump defects were prospectively collected between 2008 and 2013 in a monocentric cohort of 350 new pumps. Clinical consequences were recorded. Brand and model of pumps and type of defects and patients' characteristics (gender, type of diabetes, age at diabetes diagnosis, age at first pump, pump treatment duration, number of previous pumps, and number of previous pump failures) were tested for possible association with insulin pump failure. Malfunctions occurred in 239 (68%) pumps. The incidence rate was 33/100 pump-years. There were 28 (12%) complete failures, 17 (7%) alarms, 83 (35%) mechanical defects, and 105 (44%) minor defects. Survival curves did not differ according to pump brand and model. Hyperglycemia occurred in 2.9% of cases. In multivariate analysis, only patient age less than 40 years at the initiation of pump therapy was associated with higher risk of malfunction (hazard ratio 1.64; 95% confidence interval 1.19-2.24; P = 0.002). Pump malfunctions remain common with modern pumps. We report less complete failures than in our previous study. This could be because of improvement in quality of pumps or to our strategy of systematic screening and replacement in case of mechanical defects.

  9. A comparison of pumping speed measurement methods

    Denison, D R


    A comparison of pumping speed measurement method was made using three types of apparatus. These were: (i) the Fischer-Mommsen system, developed at CERN in which the gas flow rate is measured by the pressure drop across an orifice of known conductance at the test vessel inlet and the pressure gauge is arrayed to serve as a molecular flux transducer, (ii) the three gauge system used by some pump manufacturers in which the gas flow rate is determined by measuring the pressure drop across a long tube whose conductance is calculated from its dimensions and (iii) the constant pressure/pipette system in which the time is measured to evacuate a known quantity of gas. A sputter-ion pump with Ti and Ta cathodes and 32 Penning cells was used as the test pump. The Fischer and Mommsen and pipette procedures gave good agreement for the pumping speeds of N/sub 2/ (within 1%) but allowance had to be made for mass discrimination in the gas flow through an orifice when air was pumped. The three gauge method consistently gave a...

  10. Development of a surface micromachined spiral-channel viscous pump

    Kilani, Mohammad Ibrahim

    This work introduces a new pump, called the spiral pump, which targets the surface micromachining technology. We demonstrate the possibility of realizing the spiral pump geometry in standard surface micromachining, lay out the theoretical foundation for its operation, and conduct an objective assessment for its practicality. The spiral pump is a shear-driven viscous pump, which works by rotating a disk with a spiral groove at a close proximity over a stationary plate. Fluid contained in the spiral groove between the stationary plate and the rotating disk, is subject to a net tangential viscous stress, which allows it to be transported against an imposed pressure difference. A number of spiral pumps were fabricated in 5 levels of polysilicon using Sandia's Ultraplanar Multilevel Surface Micromachining Technology, SUMMiT, and the fabricated micropump were tested in dry-run mode using electrostatic probing and optical microscopy. To achieve a more comprehensive understanding of the spiral micropump operation, an analytical model was developed for the flow field in the spiral channel of the pump using an approximation which replaces the spiral channel with an equivalent straight channel with appropriate dimensions and boundary conditions. An analytical solution for this model at the lubrication limit relates the flow rate, torque and power consumption of the spiral pump to the pressure difference and rotation rate. The model was validated using macroscale experiments conducted on a scaled up spiral pump model, which involved a quantitative characterization of the spiral pump performance. Those experiments validate the developed theory and help assess the practicality of the spiral pump concept. In addition to the spiral pump, two positive-displacement ring-gear pumps were designed and fabricated in this work. The feasibility of surface micromachined ring-gear pumps is briefly investigated in this work, and compare to that of the spiral micropump.

  11. Modelling end-pumped solid state lasers

    Bernhardi, E.H.; Bollig, C.; Forbes, A.; Esser, M.J.D.; Wörhoff, K.; Agazzi, L.; Ismail, N.; Leijtens, X.


    The operation dynamics of end-pumped solid-state lasers are investigated by means of a spatially resolved numerical rate-equation model and a time-dependent analytical thermal model. The rate-equation model allows the optimization of parameters such as the output coupler transmission and gain medium

  12. Little pump that could : hydraulic submersible pump tackles low pressure, low fluid volume gas wells

    Ross, E.


    A new pump designed by Global Energy Services was described. The pump was designed to address problems associated with downhole pumps in coalbed methane (CBM) wells. The hydraulic submersible pump (HSP) was designed to address issues related to artificial lift gas lock and solids. The pump has been installed at 35 CBM wells in western Canada as well as at natural gas wells with low pressures and low rates of water. The HSP technology was designed for use with wells between 0.01 cubic metres and 24 cubic metres per day of water. A single joystick in the surface unit is used to determine the amount of hydraulic oil delivered to the bottomhole pump when then determines the amounts of fluid produced. A 10-slot self-flushing sand screen is used to filter out particles of sand, coal, and cement. The pump also includes a hydraulic flow control valve to control water volumes. The HSP's positive displacement design makes it suitable for use in horizontal and deviated wells. The pump technology is currently being re-designed to handle larger volumes at deeper depths. 2 figs.

  13. Concept designs of nonrotating-type centrifugal blood pump and basic study on output characteristics of the oscillating disk-type centrifugal pump.

    Kabei, N; Tuichiya, K; Sakurai, Y


    When designing a turbo-type blood pump as an artificial heart, the gap between a rotating shaft and a pump housing should be perfectly sealed to prevent any leakage or contamination through a seal. In addition, blood coagulation in a blood chamber must be avoided. To overcome these problems, we proposed five different nonrotating-type turbo pumps: a caudal-fin-type axial-flow pump, a caudal-fin-type centrifugal pump, a nutating-column-type centrifugal pump, a nutating-collapsible-tube-type centrifugal pump, and an oscillating-disk-type centrifugal pump. We selected and developed the oscillating-disk-type centrifugal pump that consists of a disk, a driving rod, a seal, an oscillation mechanism, and a pump housing. The disk is mounted on the end of the rod, which is connected to a high-speed DC motor through an oscillation mechanism. The rod and the disk do not rotate, but they oscillate in the pump housing. This movement of the disk generates forward fluid flow around the axis (i.e., the rotational fluid flow). Centrifugal force due to fluid rotation supports the pressure difference between the outlet and the inlet. The diameter of the disk is 39 mm, the maximum inner diameter of the pump housing is 40 mm, and the volume of the blood chamber for 25 degrees' oscillation is 16.9 ml. The performance of the pump was tested in a mock circulatory system.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Determination of Glomerular Filtration Rate Using Micro-osmotic Pump in Conscious Rat%采用微渗透泵测定清醒大鼠肾小球滤过率

    王静波; 王海涛; 汪照寒


    Objective Two non-radioactive methods for determining glomerular filtration rate ( GFR) in conscious rat using FITC-labeled inulin ( FITC-inulin) and micro-osmotic pumps were evaluated. Methods FITC-inulin (24% ) was dissolved in 0. 9% NaCl and the concentration decreased to 8% after 24 h of dialysis. Two micro-osmotic pumps filled with 200 |xL of 8% FITC-inulin were inserted into the peritoneal cavity of rats. After their complete recovery from anesthesia, the rats were housed individually in metabolic cages. Urine and the residual fluorescence remaining on the cages were collection over 24 h on day 7 after micro-osmotic pump implantation. Blood sample was collected through the saphenous vein at the end of 24-h urine collection. Only blood was sampled using the same method in another group. GFR was evaluated on day 7 after micro-osmotic pump implantation using two methods expressed in microliters per minute, microliters per minute per kilogram body weight and per gram kidney weight. Results Based on the approach measuringurinary inulin clearance with urine collection and without urine collection the estimated GFR was (2. 31 ±0. 33) microliters per minute and ( 2. 53 ± 0. 33) microliters per minute (P = 0. 564) , respectively. These values of GFR in conscious rats were only ca. 70% of that obtained in anesthetized rats determined in other previous studies. It was revealed that anesthesia may significantly influence GFR. Conclusions The results of the present study demonstrate the feasibility of the osmotic micropump approach to monitor GFR in conscious rat using FITC-inulin. Especially, the method without collecting urine is more convenient.%目的 分析以荧光素异硫氰酸酯标记的菊粉(FITC-菊粉)作为标记物,通过微渗透泵,在大鼠清醒状态下,采用菊粉尿排泄率方法测定肾小球滤过率的可行性.方法 将FITC -菊粉溶解在生理盐水中配成浓度为24%的溶液,经滤过后(浓度降至8%)装在微

  15. Side-pumped neodymium slab lasers Q-switched by V:YAG on 1.3μm

    Jabczyński, Jan K.; Żendzian, Waldemar; Kwiatkowski, Jacek; Šulc, Jan; Němec, Michal; Jelínkova, Helena


    Nd:YAG and Nd:YAP crystals in form of triangle which makes possible to realize a slab side-pumped configuration with one total internal reflection were tested as an active media for diode-pumped laser. The resonator arrangements for Q-switched regime were prepared for the emission corresponding to Nd 3+ ion transition 4F 3/2--> 4I 13/2 referring to each crystal (λ= 1318 nm Nd:YAG and λ= 1342 nm Nd:YAP). Optical pumping was accomplished by a fast axis collimated quasi-CW diode DILAS E7Y1-808.3-600Q-H175V with peak power 600 W. Pumping radiation was focused by two plan-convex lenses into an active medium. The parameters of the pumping radiation were: wavelength 806nm, maximum pumping energy was 150mJ, pulse length 250μs, repetition rate up to 14 Hz. In free running regime the maximum reached energy was 24 mJ and 27.5 mJ for Nd:YAG and Nd:YAP, respectively. The corresponding obtained slope efficiency was 19.9 % and 23.7 % for Nd:YAG and Nd:YAP laser oscillator, respectively. Proper Q-switching for 1.3 μm was realized with saturable absorber V:YAG which initial transmission was optimized for shortest possible pulse length. For that obtained pulses were 6 ns with the energies 740 μJ and 432 μJ for Nd:YAG and Nd:YAP, respectively. This results correspond to peak power reached 125 kW (Nd:YAG), and 77 kW (Nd:YAP) in fundamental TEM 00 mode which allows this laser to be used as an efficient source for further nonlinear conversion or other applications.

  16. Balloon Pump with Floating Valves for Portable Liquid Delivery

    Yuya Morimoto


    Full Text Available In this paper, we propose a balloon pump with floating valves to control the discharge flow rates of sample solutions. Because the floating valves were made from a photoreactive resin, the shapes of the floating valves could be controlled by employing different exposure patterns without any change in the pump configurations. Owing to the simple preparation process of the pump, we succeeded in changing the discharge flow rates in accordance with the number and length of the floating valves. Because our methods could be used to easily prepare balloon pumps with arbitrary discharge properties, we achieved several microfluidic operations by the integration of the balloon pumps with microfluidic devices. Therefore, we believe that the balloon pump with floating valves will be a useful driving component for portable microfluidic systems.

  17. Development and test of a plastic deep-well pump

    Zhang, Q. H.; Gao, X. F.; Xu, Y.; Shi, W. D.; Lu, W. G.; Liu, W.


    To develop a plastic deep-well pump, three methods are proposed on structural and forming technique. First, the major hydraulic components are constructed by plastics, and the connection component is constructed by steel. Thus the pump structure is more concise and slim, greatly reducing its weight and easing its transportation, installation, and maintenance. Second, the impeller is designed by maximum diameter method. Using same pump casing, the stage head is greatly increased. Third, a sealing is formed by impeller front end face and steel end face, and two slots are designed on the impeller front end face, thus when the two end faces approach, a lubricating pair is formed, leading to an effective sealing. With above methods, the pump's axial length is greatly reduced, and its stage head is larger and more efficient. Especially, the pump's axial force is effectively balanced. To examine the above proposals, a prototype pump is constructed, and its testing results show that the pump efficiency exceeds the national standard by 6%, and the stage head is improved by 41%, meanwhile, its structure is more concise and ease of transportation. Development of this pump would provide useful experiences for further popularity of plastic deep-well pumps.

  18. High-power passively Q-switched Nd:KGW laser pumped at 877 nm

    Huang, K.; Ge, W. Q.; Zhao, T. Z.; Feng, C. Y.; Yu, J.; He, J. G.; Xiao, H.; Fan, Z. W.


    In this work, we demonstrate, for the first time, a high-power passively Q-switched Ng-cut Nd3+:KGd(WO4)2/Cr4+:YAG laser pumped at 877 nm. The maximum average output power of ~1.6 W is obtained at the pump power of 5.22 W, when a saturable absorber with 98 % of initial transmission is used. The corresponding pulse energy is up to 16 µJ. The maximum pulse energy of 25.3 µJ is achieved at a repetition rate of 59 kHz, by employing a saturable absorber with 95 % of initial transmission. The corresponding pulse width and average output power are 89.0 ns and 1.5 W, respectively. A careful cavity design and a good thermal management ensure nearly TEM00 output with M 2 ≤ 1.22 within the whole range of operation in both N p and N m directions at 877 nm pump.

  19. Identifying the optimal HVOF spray parameters to attain minimum porosity and maximum hardness in iron based amorphous metallic coatings

    S. Vignesh


    Full Text Available Flow based Erosion – corrosion problems are very common in fluid handling equipments such as propellers, impellers, pumps in warships, submarine. Though there are many coating materials available to combat erosion–corrosion damage in the above components, iron based amorphous coatings are considered to be more effective to combat erosion–corrosion problems. High velocity oxy-fuel (HVOF spray process is considered to be a better process to coat the iron based amorphous powders. In this investigation, iron based amorphous metallic coating was developed on 316 stainless steel substrate using HVOF spray technique. Empirical relationships were developed to predict the porosity and micro hardness of iron based amorphous coating incorporating HVOF spray parameters such as oxygen flow rate, fuel flow rate, powder feed rate, carrier gas flow rate, and spray distance. Response surface methodology (RSM was used to identify the optimal HVOF spray parameters to attain coating with minimum porosity and maximum hardness.

  20. [Insulin pump therapy in children, adolescents and adults].

    Stadler, Marietta; Zlamal-Fortunat, Sandra; Schütz-Fuhrmann, Ingrid; Rami-Merhar, Birgit; Fröhlich-Reiterer, Elke; Hofer, Sabine; Mader, Julia; Resl, Michael; Kautzky-Willer, Alexandra; Weitgasser, Raimund; Prager, Rudolf; Bischof, Martin


    This position statement is based on the current evidence available on the safety and benefits of continuous subcutaneous insulin pump therapy (CSII) in diabetes with an emphasis on the effects of CSII on glycemic control, hypoglycaemia rates, occurrence of ketoacidosis, quality of life and the use of insulin pump therapy in pregnancy. The current article represents the recommendations of the Austrian Diabetes Association for the clinical praxis of insulin pump treatment in children, adolescents and adults.

  1. Field Performance of Inverter-Driven Heat Pumps in Cold Climates

    Williamson, James [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Aldrich, Robb [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)


    CARB observed a wide range of operating efficiencies and outputs from site to site. Maximum capacities were found to be generally in line with manufacturer's claims as outdoor temperatures fell to -10°F. The reasons for the wide range in heating performance likely include: low indoor air flow rates, poor placement of outdoor units, relatively high return air temperatures, thermostat set back, integration with existing heating systems, and occupants limiting indoor fan speed. Even with lower efficiencies than published in other studies, most of the heat pumps here still provide heat at lower cost than oil, propane, or certainly electric resistance systems.

  2. Performance study of a heat pump dryer system for speciality crops - Pt. 2: model verification

    Adapa, P.K.; Schoenau, G.J.; Sokhansanj, S. [University of Saskatchewan (Canada). College of Engineering


    The experimental and predicted performance data of a heat pump dryer system is reported. Chopped alfalfa was dried in a cabinet dryer in batches and also by emulating continuous bed drying using two heat pumps operating in parallel. Results showed that alfalfa was dried from an initial moisture content of 70% (wb) to a final moisture content of 10% (wb). The batch drying took about 4.5 h while continuous bed drying took 4 h to dry the same amount of material. The average air velocity inside the dryer was 0.36 m s{sup -1}. Low temperatures (30-45{sup o}C) for safe drying of specialty crops were achieved experimentally. The heat pump drying system used in this study was about 50% more efficient in recovering the latent heat from the dryer exhaust compared to the conventional dryers. Specific moisture extraction rate (SMER) was maximum when relative humidity stayed above 40%. The dryer was shown to be capable of SMER of between 0.5 and 1.02 kg kW{sup -1} h{sup -1}. It was concluded that continuous bed drying is potentially a better option than batch drying because high process air humidity ratios at the entrance of the evaporator and constant moisture extraction rate and specific moisture extraction rate values can be maintained. An uncertainty analysis confirmed the accuracy of the model. (author)

  3. A regenerative elastocaloric heat pump

    Tušek, Jaka; Engelbrecht, Kurt; Eriksen, Dan; Dall'Olio, Stefano; Tušek, Janez; Pryds, Nini


    A large fraction of global energy use is for refrigeration and air-conditioning, which could be decarbonized if efficient renewable energy technologies could be found. Vapour-compression technology remains the most widely used system to move heat up the temperature scale after more than 100 years; however, caloric-based technologies (those using the magnetocaloric, electrocaloric, barocaloric or elastocaloric effect) have recently shown a significant potential as alternatives to replace this technology due to high efficiency and the use of green solid-state refrigerants. Here, we report a regenerative elastocaloric heat pump that exhibits a temperature span of 15.3 K on the water side with a corresponding specific heating power up to 800 W kg-1 and maximum COP (coefficient-of-performance) values of up to 7. The efficiency and specific heating power of this device exceeds those of other devices based on caloric effects. These results open up the possibility of using the elastocaloric effect in various cooling and heat-pumping applications.

  4. Pump polarization insensitive and efficient laser-diode pumped Yb:KYW ultrafast oscillator.

    Wang, Sha; Wang, Yan-Biao; Feng, Guo-Ying; Zhou, Shou-Huan


    We theoretically and experimentally report and evaluate a novel split laser-diode (LD) double-end pumped Yb:KYW ultrafast oscillator aimed at improving the performance of an ultrafast laser. Compared to a conventional unpolarized single-LD end-pumped ultrafast laser system, we improve the laser performance such as absorption efficiency, slope efficiency, cw mode-locking threshold, and output power by this new structure LD-pumped Yb:KYW ultrafast laser. Experiments were carried out with a 1 W output fiber-coupled LD. Experimental results show that the absorption increases from 38.7% to 48.4%, laser slope efficiency increases from 18.3% to 24.2%, cw mode-locking threshold decreases 12.7% from 630 to 550 mW in cw mode-locking threshold, and maximum output-power increases 28.5% from 158.4 to 221.5 mW when we switch the pump scheme from an unpolarized single-end pumping structure to a split LD double-end pumping structure.

  5. Reliance on Pumped Mother's Milk Has an Environmental Impact.

    Becker, Genevieve; Ryan-Fogarty, Yvonne


    Breastfeeding is an environmentally friendly process; however when feeding relies on pumped mother's milk, the environmental picture changes. Waste plastics and heavy metals raise concerns regarding resource efficiency, waste treatment, and detrimental effects on health. Reliance on pumped milk rather than breastfeeding may also effect obesity and family size, which in turn have further environmental impacts. Information on pump equipment rarely includes environmental information and may focus on marketing the product for maximum profit. In order for parents, health workers, and health policy makers to make informed decisions about the reliance on pumped mother's milk, they need information on the broad and far reaching environmental aspects. There was no published research found that examined the environmental impact of using pumped mother's milk. A project is ongoing to examine this issue.

  6. Nuclear-pumped lasers

    Prelas, Mark


    This book focuses on Nuclear-Pumped Laser (NPL) technology and provides the reader with a fundamental understanding of NPLs, a review of research in the field, and exploration of large scale NPL system design and applications. Early chapters look at the fundamental properties of lasers, nuclear-pumping and nuclear reactions that may be used as drivers for nuclear-pumped lasers. The book goes on to explore the efficient transport of energy from the ionizing radiation to the laser medium and then the operational characteristics of existing nuclear-pumped lasers. Models based on Mathematica, explanations and a tutorial all assist the reader’s understanding of this technology. Later chapters consider the integration of the various systems involved in NPLs and the ways in which they can be used, including beyond the military agenda. As readers will discover, there are significant humanitarian applications for high energy/power lasers, such as deflecting asteroids, space propulsion, power transmission and mining....

  7. Absorption heat pump system

    Grossman, G.


    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  8. Regenerative Hydride Heat Pump

    Jones, Jack A.


    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  9. Underground pumped hydroelectric storage

    Allen, R. D.; Doherty, T. J.; Kannberg, L. D.


    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-velocity requirements of a greater metropolitan area with population of 1 million or more.

  10. Regenerative Hydride Heat Pump

    Jones, Jack A.


    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  11. Liquid jet pumped by rising gas bubbles

    Hussain, N. A.; Siegel, R.


    A two-phase mathematical model is proposed for calculating the induced turbulent vertical liquid flow. Bubbles provide a large buoyancy force and the associated drag on the liquid moves the liquid upward. The liquid pumped upward consists of the bubble wakes and the liquid brought into the jet region by turbulent entrainment. The expansion of the gas bubbles as they rise through the liquid is taken into account. The continuity and momentum equations are solved numerically for an axisymmetric air jet submerged in water. Water pumping rates are obtained as a function of air flow rate and depth of submergence. Comparisons are made with limited experimental information in the literature.

  12. Proton pumping in cytochrome c oxidase: energetic requirements and the role of two proton channels.

    Blomberg, Margareta R A; Siegbahn, Per E M


    Cytochrome c oxidase is a superfamily of membrane bound enzymes catalyzing the exergonic reduction of molecular oxygen to water, producing an electrochemical gradient across the membrane. The gradient is formed both by the electrogenic chemistry, taking electrons and protons from opposite sides of the membrane, and by proton pumping across the entire membrane. In the most efficient subfamily, the A-family of oxidases, one proton is pumped in each reduction step, which is surprising considering the fact that two of the reduction steps most likely are only weakly exergonic. Based on a combination of quantum chemical calculations and experimental information, it is here shown that from both a thermodynamic and a kinetic point of view, it should be possible to pump one proton per electron also with such an uneven distribution of the free energy release over the reduction steps, at least up to half the maximum gradient. A previously suggested pumping mechanism is developed further to suggest a reason for the use of two proton transfer channels in the A-family. Since the rate of proton transfer to the binuclear center through the D-channel is redox dependent, it might become too slow for the steps with low exergonicity. Therefore, a second channel, the K-channel, where the rate is redox-independent is needed. A redox-dependent leakage possibility is also suggested, which might be important for efficient energy conservation at a high gradient. A mechanism for the variation in proton pumping stoichiometry over the different subfamilies of cytochrome oxidase is also suggested. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Experimental and Numerical Investigation of an Axial Rotary Blood Pump.

    Schüle, Chan Yong; Thamsen, Bente; Blümel, Bastian; Lommel, Michael; Karakaya, Tamer; Paschereit, Christian Oliver; Affeld, Klaus; Kertzscher, Ulrich


    Left ventricular assist devices (LVADs) have become a standard therapy for patients with severe heart failure. As low blood trauma in LVADs is important for a good clinical outcome, the assessment of the fluid loads inside the pump is critical. More specifically, the flow features on the surfaces where the interaction between blood and artificial material happens is of great importance. Therefore, experimental data for the near-wall flows in an axial rotary blood pump were collected and directly compared to computational fluid dynamic results. For this, the flow fields based on unsteady Reynolds-averaged Navier-Stokes simulations-computational fluid dynamics (URANS-CFD) of an axial rotary blood pump were calculated and compared with experimental flow data at one typical state of operation in an enlarged model of the pump. The focus was set on the assessment of wall shear stresses (WSS) at the housing wall and rotor gap region by means of the wall-particle image velocimetry technique, and the visualization of near-wall flow structures on the inner pump surfaces by a paint erosion method. Additionally, maximum WSS and tip leakage volume flows were measured for 13 different states of operation. Good agreement between CFD and experimental data was found, which includes the location, magnitude, and direction of the maximum and minimum WSS and the presence of recirculation zones on the pump stators. The maximum WSS increased linearly with pressure head. They occurred at the upstream third of the impeller blades and exceeded the critical values with respect to hemolysis. Regions of very high shear stresses and recirculation zones could be identified and were in good agreement with simulations. URANS-CFD, which is often used for pump performance and blood damage prediction, seems to be, therefore, a valid tool for the assessment of flow fields in axial rotary blood pumps. The magnitude of maximum WSS could be confirmed and were in the order of several hundred Pascal.

  14. Lunar Base Heat Pump

    Walker, D.; Fischbach, D.; Tetreault, R.


    The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for lde support systems. Initial analysis of a heat pump of this type called for a temperature lift of approximately 378 deg. K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381 deg. K), extreme flexibility in the configuration and operation of the heat pump is required. A three-stage compression cycle using a refrigerant such as CFC-11 or HCFC-123 was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions. A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining cooling water temperature well within the required specification of 40 deg. C +/- 1.7 deg. C. This performance was verified through testing.

  15. Maximum Performance Tests in Children with Developmental Spastic Dysarthria.

    Wit, J.; And Others


    Three Maximum Performance Tasks (Maximum Sound Prolongation, Fundamental Frequency Range, and Maximum Repetition Rate) were administered to 11 children (ages 6-11) with spastic dysarthria resulting from cerebral palsy and 11 controls. Despite intrasubject and intersubject variability in normal and pathological speakers, the tasks were found to be…

  16. Pumping a playground swing.

    Post, Auke A; de Groot, Gert; Daffertshofer, Andreas; Beek, Peter J


    In mechanical studies of pumping a playground swing, two methods of energy insertion have been identified: parametric pumping and driven oscillation. While parametric pumping involves the systematic raising and lowering of the swinger's center of mass (CM) along the swing's radial axis (rope), driven oscillation may be conceived as rotation of the CM around a pivot point at a fixed distance to the point of suspension. We examined the relative contributions of those two methods of energy insertion by inviting 18 participants to pump a swing from standstill and by measuring and analyzing the swing-swinger system (defined by eight markers) in the sagittal plane. Overall, driven oscillation was found to play a major role and parametric pumping a subordinate role, although the relative contribution of driven oscillation decreased as swinging amplitude increased, whereas that of parametric pumping increased slightly. Principal component analysis revealed that the coordination pattern of the swing-swinger system was largely determined (up to 95%) by the swing's motion, while correlation analysis revealed that (within the remaining 5% of variance) trunk and leg rotations were strongly coupled.

  17. Continuous-wave and Q-switched operation of a compact, diode-pumped Yb3+:KY(WO4)2 planar waveguide laser.

    Bain, F M; Lagatsky, A A; Kurilchick, S V; Kisel, V E; Guretsky, S A; Luginets, A M; Kalanda, N A; Kolesova, I M; Kuleshov, N V; Sibbett, W; Brown, C T A


    A diode-pumped LPE-grown Yb:KYW planar waveguide laser is demonstrated in a microchip monolithic cavity configuration. Output powers as high as 148 mW and thresholds as low as 40 mW were demonstrated during continuous-wave operation. Pulses of 170 ns duration with maximum pulse energy of 44 nJ at a 722 kHz repetition rate were generated when Q-switched using a semiconductor saturable absorber mirror.

  18. The helical flow pump with a hydrodynamic levitation impeller.

    Abe, Yusuke; Ishii, Kohei; Isoyama, Takashi; Saito, Itsuro; Inoue, Yusuke; Ono, Toshiya; Nakagawa, Hidemoto; Nakano, Emiko; Fukazawa, Kyoko; Ishihara, Kazuhiko; Fukunaga, Kazuyoshi; Ono, Minoru; Imachi, Kou


    The helical flow pump (HFP) is a novel rotary blood pump invented for developing a total artificial heart (TAH). The HFP with a hydrodynamic levitation impeller, which consists of a multi-vane impeller involving rotor magnets, stator coils at the core position, and double helical-volute pump housing, was developed. Between the stator and impeller, a hydrodynamic bearing is formed. Since the helical volutes are formed at both sides of the impeller, blood flows with a helical flow pattern inside the pump. The developed HFP showed maximum output of 19 l/min against 100 mmHg of pressure head and 11 % maximum efficiency. The profile of the H-Q (pressure head vs. flow) curve was similar to that of the undulation pump. Hydrodynamic levitation of the impeller was possible with higher than 1,000 rpm rotation speed. The normalized index of the hemolysis ratio of the HFP to centrifugal pump (BPX-80) was from 2.61 to 8.07 depending on the design of the bearing. The HFP was implanted in two goats with a left ventricular bypass method. After surgery, hemolysis occurred in both goats. The hemolysis ceased on postoperative days 14 and 9, respectively. In the first experiment, no thrombus was found in the pump after 203 days of pumping. In the second experiment, a white thrombus was found in the pump after 23 days of pumping. While further research and development are necessary, we are expecting to develop an excellent TAH with the HFP.


    CHEN Hong-xun


    Based on the standard k-ε turbulence model and the RANS equations, the finite volume method and the SIMPLE algorithm were adopted to carry out the three-dimensional viscous numerical simulation of the internal flow within a vortex pump in double reference frames. According to the results of numerical simulation, the internal flow in the vortex pump was analyzed, and the calculated results of blade surface pressure of the impeller were compared with experimental results. The maximum relative error is 6.6% between calculated value and experimental value of the pump head under operation conditions.

  20. Intracavity interferometry using synchronously pumped OPO

    Zavadilová, Alena; Vyhlídal, David; Kubeček, Václav; Šulc, Jan; Navrátil, Petr


    The concept of system for intracavity interferometry based on the beat note detection in subharmonic synchronously intracavity pumped optical parametrical oscillator (OPO) is presented. The system consisted of SESAM-modelocked, picosecond, diode pumped Nd:YVO4 laser, operating at wavelength 1.06 μm and tunable linear intracavity pumped OPO based on MgO:PPLN crystal, widely tunable in 1.5 μm able to deliver two independent trains of picosecond pulses. The optical length of the OPO cavity was set to be exactly twice the pumping cavity length. In this configuration the OPO produces signal pulses with the same repetition frequency as the pump laser but the signal consists of two completely independent pulse trains. For purpose of pump probe measurements the setup signal with half repetition rate and scalable amplitude was derived from the OPO signal using RF signal divider, electropotical modulator and fiber amplifier. The impact of one pump beam on the sample is detected by one probing OPO train, the other OPO train is used as a reference. The beat note measured using the intracavity interferometer is proportional to phase modulation caused by the pump beam. The bandwidth of observed beat-note was less than 1 Hz (FWHM), it corresponds to a phase shift measurement error of less than 1.5 × 10-7 rad without any active stabilization. Such compact low-cost system could be used for ultra-sensitive phase-difference measurements (e.g. nonlinear refractive index measurement) for wide range of material especially in spectral range important for telecom applications.

  1. Comparison of Nd:YAG Ceramic Laser Pumped at 885 nm and 808 nm

    ZONG Nan; ZHANG Xiao-Fu; MA Qing-Lei; WANG Bao-Shan; CUI Da-Fu; PENG Qin-Jun; XU Zu-Yan; PAN Yu-Bai; FENG Xi-Qi


    Laser performance of 1064 nm domestic Nd: YA G ceramic lasers for 885 nm direct pumping and 808 nm traditional pumping are compared. Higher slope efficiency of 34% and maximum output power of 16.5 W are obtained for the 885nm pump with a 6ram length 1 at% Nd:YAG ceramic. The advantages for 885nm direct pumping are discussed in detail. This pumping scheme for highly doping a Nd:YAG ceramic laser is considered as an available way to generate high power and good beam quality simultaneously.

  2. Thermally Actuated Hydraulic Pumps

    Jones, Jack; Ross, Ronald; Chao, Yi


    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  3. Generalized Performance Characteristics of Refrigeration and Heat Pump Systems

    Mahmoud Huleihil


    Full Text Available A finite-time generic model to describe the behavior of real refrigeration systems is discussed. The model accounts for finite heat transfer rates, heat leaks, and friction as different sources of dissipation. The performance characteristics are cast in terms of cooling rate (r versus coefficient of performance (w. For comparison purposes, various types of refrigeration/heat pump systems are considered: the thermoelectric refrigerator, the reverse Brayton cycle, and the reverse Rankine cycle. Although the dissipation mechanisms are different (e.g., heat leak and Joule heating in the thermoelectric refrigerator, isentropic losses in the reverse Brayton cycle, and limits arising from the equation of state in the reverse Rankine cycle, the r−w characteristic curves have a general loop shape. There are four limiting types of operation: open circuit in which both r and w vanish in the limit of slow operation; short circuit in which again r and w vanish but in the limit of fast operation; maximum r; maximum w. The behavior of the considered systems is explained by means of the proposed model. The derived formulae could be used for a quick estimation of w and the temperatures of the working fluid at the hot and cold sides.

  4. Assessing variable speed pump efficiency in water distribution systems

    A. Marchi


    Full Text Available Energy savings and greenhouse gas emission reductions are increasingly becoming important design targets in many industrial systems where fossil fuel based electrical energy is heavily utilised. In water distribution systems (WDSs a significant portion of operational cost is related to pumping. Recent studies have considered variable speed pumps (VSPs which aim to vary the operating point of the pump to match demand to pumping rate. Depending on the system characteristics, this approach can lead to considerable savings in operational costs. In particular, cost reductions can take advantage of the demand variability and can decrease energy consumption significantly. One of the issues in using variable speed pumping systems, however, is the total efficiency of the electric motor/pump arrangement under a given operating condition. This paper aims to provide a comprehensive discussion about the components of WDS that incorporate variable speed pumps (including electric motors, variable frequency drives and the pumps themselves to provide an insight of ways of increasing the system efficiency and hence to reduce energy consumption. In addition, specific attention is given to selection of motor types, sizing, duty cycle of pump (ratio of on-time and time period, losses due to installation and motor faults. All these factors affect the efficiency of motor drive/pump system.

  5. Assessing variable speed pump efficiency in water distribution systems

    A. Marchi


    Full Text Available Energy savings and greenhouse gas emission reductions are increasingly becoming important design targets in many industrial systems where fossil fuel based electrical energy is heavily utilised. In water distribution systems (WDSs a significant portion of operational cost is related to pumping. Recent studies have considered variable speed pumps (VSPs which aim to vary the operating point of the pump to match demand to pumping rate. Depending on the system characteristics, this approach can lead to considerable savings in operational costs. In particular, cost reductions can take advantage of the demand variability and can decrease energy consumption significantly. One of the issues in using variable speed pumping systems, however, is the total efficiency of the electric motor/pump arrangement under a given operating condition. This paper aims to provide a comprehensive discussion about the components of WDS that incorporate variable speed pumps (including electric motors, inverters and the pumps themselves to provide an insight of ways of increasing the system efficiency and hence to reduce energy consumption. In addition, specific attention is given to selection of motor types, sizing, duty cycle of pump (ratio of on-time and time period, losses due to installation and motor faults. All these factors affect the efficiency of motor drive/pump system.

  6. A Numerical Study on System Performance of Groundwater Heat Pumps

    Jin Sang Kim


    Full Text Available Groundwater heat pumps have energy saving potential where the groundwater resources are sufficient. System Coefficients of Performance (COPs are measurements of performance of groundwater heat pump systems. In this study, the head and power of submersible pumps, heat pump units, piping, and heat exchangers are expressed as polynomial equations, and these equations are solved numerically to determine the system performance. Regression analysis is used to find the coefficients of the polynomial equations from a catalog of performance data. The cooling and heating capacities of water-to-water heat pumps are determined using Energy Plus. Results show that system performance drops as the water level drops, and the lowest flow rates generally achieve the highest system performance. The system COPs are used to compare the system performance of various system configurations. The groundwater pumping level and temperature provide the greatest effects on the system performance of groundwater heat pumps along with the submersible pumps and heat exchangers. The effects of groundwater pumping levels, groundwater temperatures, and the heat transfer coefficient in heat exchanger on the system performance are given and compared. This analysis needs to be included in the design process of groundwater heat pump systems, possibly with analysis tools that include a wide range of performance data.

  7. Performance of a newly developed implantable centrifugal blood pump.

    Tsukiya, T; Taenaka, Y; Tatsumi, E; Takano, H


    The performance of the newly developed implantable centrifugal blood pump was investigated in vitro. The pump was developed with the end goal of building a versatile system that includes a left ventricular assist system with an internal secondary battery or an implantable biventricular assist system with two implantable blood pumps. The hydrodynamic characteristics and efficiency of the blood pump were evaluated, and the mechanical damage to the blood caused by the blood pump was assessed through a hemolysis test using fresh goat blood. The pump could generate 120 mm Hg at a flow rate of 5 L/min and a motor speed of 2,500 rpm. The electric input power to the pump was approximately 5 watts under these working conditions. The hemolysis caused by the pump was a bit higher than that by the former model, but stayed within an acceptable range. Performance of the pump in vitro was considered sufficient for a left ventricular assist device, although further design improvement is necessary in terms of hemolysis and system efficiency to improve biocompatibility of the pump.

  8. Wave optics simulation of diode pumped alkali laser (DPAL)

    Endo, Masamori; Nagaoka, Ryuji; Nagaoka, Hiroki; Nagai, Toru; Wani, Fumio


    A numerical simulation code for a diode pumped alkali laser (DPAL) was developed. The code employs the Fresnel- Kirchhoff diffraction integral for both laser mode and pump light propagations. A three-dimensional rate equation set was developed to determine the local gain. The spectral divergence of the pump beam was represented by a series of monochromatic beams with different wavelengths. The calculated results showed an excellent agreements with relevant experimental results. It was found that the main channel of the pump power drain is the spontaneous emission from the upper level of the lasing transition.

  9. 拟似然非线性模型中极大拟似然估计的强收敛速度%Strong Convergence Rates of Maximum Quasi-likelihood Estimation in Quasi-likelihood nonlinear model



    We studies the issue raised by Reference[3],according to appropriate assumptions and other smooth conditions,With a more simple method,Proved that asymptotic existence of quasi likelihood equations in Quasi-likelihood nonlinear model ,and proved the convergence rate of the solution.%在适当假定及其它一些光滑条件下,用更为简便的方法证明了拟似然非线性模型的拟似然方程解的渐近存在性,并且求出了该解收敛于真值的速度.

  10. System curves for 100-K water plant expansion pump analysis

    Rudock, E.R.


    Modifications to the 100-K water plant will be made, under Project CG-775, to increase total process water flow rates to 175,000 gpm or greater. Included in the modifications will be the installation of new pump impellers for the primary and secondary process water pumps located in the 190-K Buildings.

  11. 3-D PIV Test of Inner Flow in a Double-blade Pump under Zero Flow Rate Condition%零流量工况下双叶片泵内部流场三维PIV测量

    王凯; 刘厚林; 袁寿其; 谈明高; 杨东升


    Inner flow in a double-blade pump impeller, whose specific speed is 111, was measured under zero flow rate condition by using 3-D PIV test technology. In order to ensure the accuracy of 3-D PIV test, the external trigger synchronization system which was made with fiber optic and equivalent calibration method was applied. In Visual C+ + 2005 platform, according to the velocity triangle, 3-D PIV velocity synthetic procedure was compiled to obtain the relative velocity synthesized by the absolute velocity and the circular velocity. The results showed that volute tongue had greater impact on the absolute velocity field within the impeller. There were vortices regions at three measurement surfaces within impeller, but the sizes and locations of vortices were different. Moreover, there was a low velocity region at the volute diffuser, the absolute velocity values in the region were less than 0. 62 m/s, and there were vortices at the volute diffuser. The axial velocities values of impeller passage, volute diffuser and region near volute tongue were different at three measurement planes.%采用三维PIV测试技术对一比转数为111的双叶片泵零流量工况下的内部流动进行了测量.采用基于光纤制作的外触发同步系统和等效标定方法等关键技术来保证三维PIV测试精度.在Visual C++2005平台下,根据速度三角形,编写了三维PIV速度合成程序,将测量的绝对速度与圆周速度合成得到相对速度.结果表明:隔舌对叶轮内绝对速度场影响较大;叶轮流道内3个测量平面上都存在较大范围的漩涡区,但漩涡的大小、位置有所不同;蜗壳扩散段存在低速区域,该区域的绝对速度小于0.62 m/s,且存在漩涡现象;3个测量平面上,叶轮流道内、蜗壳扩散段及隔舌附近区域的轴向速度各不相同.

  12. PCM Vulcain : a pumping revolution in the thermal recovery of heavy oil



    Nearly half of the world's oil reserves are made up of unconventional heavy oil that requires thermal recovery methods. Since the oil pumped to the surface is extremely hot (350 degrees C), traditional pumps such as standard progressing cavity pumps, sucker rod pumps and electrical submersible pumps are limited in terms of maximum operating temperature. For that reason, PCM developed the PCM Vulcain, a revolutionary all-metal pump that is capable of extracting heavy oil and aggressive fluids during thermal recovery. The applications include artificial lifting in SAGD processes and artificial lifting in cyclic steam stimulation processes. The pump withstands the extreme downhole temperatures of thermal oil recovery and can pump extremely hot and extremely viscous fluids. PCM Vulcain provides all the advantages and flexibility of progressing cavity pump technology at extreme temperatures. The rotary action of PCM Vulcain outperforms beam pumps in overall system efficiency and it is less fragile than electric submersible pumps. PCM Vulcain provides extremely low submergence production capability and can operate at low downhole pressures and higher viscosities. PCM Vulcain also has lower capital expenditure than comparable submersible and rod pumps. In addition, it offers lower workover costs and reduced installation and operational complexity. The pump's seals reduce the risk of on-site leakage, thereby reducing environmental impact. PCM Vulcain has field-proven performance in some of the world's major unconventional oilfields, including the Athabasca oil sands in northern Alberta. 1 fig.


    Lee, S; Richard Dimenna, R


    Computational Fluid Dynamics (CFD) models of Tank 50 with different numbers of pumps and operational modes, including pump rotation, have been developed to estimate flow patterns and the resultant sludge mixing. Major solid obstructions including the tank wall, the pump housing, the pump columns, and the 82-in central support column were included in the model. Transient analyses with a two-equation turbulence model were performed with FLUENT{trademark}, a commercial CFD code. All analyses were based on three-dimensional results. Recommended operational guidance was developed assuming that local fluid velocity and characteristic measures of local turbulence could be used as indicators of sludge suspension and spatial mixing. The calculation results show that three pumps, the maximum number of pumps studied, will give acceptable homogeneous mixing in about 6 minutes in terms of flow patterns and turbulent energy dissipation. These qualitative results are consistent with literature results. Sensitivity calculations have also been performed to assess the impact of different operating modes on sludge suspension and mixing. Two-pump operation provides a marginal level of sludge suspension and turbulent mixing, while one pump does not provide acceptable flow patterns and turbulent eddies for good mixing.

  14. New downshifted maximum in stimulated electromagnetic emission spectra

    Sergeev, Evgeny; Grach, Savely

    A new spectral maximum in spectra of stimulated electromagnetic emission of the ionosphere (SEE, [1]) was detected in experiments at the SURA facility in 2008 for the pump frequencies f0 4.4-4.5 MHz, most stably for f0 = 4.3 MHz, the lowest possible pump frequency at the SURA facility. The new maximum is situated at frequency shifts ∆f -6 kHz from the pump wave frequency f0 , ∆f = fSEE - f0 , somewhat closer to the f0 than the well known [2,3] Downshifted Maximum in the SEE spectrum at ∆f -9 kHz. The detection and detailed study of the new feature (which we tentatively called the New Downshifted Maximum, NDM) became possible due to high frequency resolution in spectral analysis. The following properties of the NDM are established. (i) The NDM appears in the SEE spectra simultaneously with the DM and UM features after the pump turn on (recall that the less intensive Upshifted Maximum, UM, is situated at ∆f +(6-8) kHz [2,3]). The NDM can't be attributed to 1 DM [4] or Narrow Continuum Maximum (NCM, 2 [5]) SEE features, as well as to splitted DM near gyroharmonics [2]. (ii) The NDM is observed as prominent feature for maximum pump power of the SURA facility P ≈ 120 MW ERP, for which the DM is almost covered by the Broad Continuum SEE feature [2,3]. For P ˜ 30-60 MW ERP the DM and NDM have comparable intensities. For the lesser pump power the DM prevails in the SEE spectrum, while the NDM becomes invisible being covered by the thermal Narrow Continuum feature [2]. (iii) The NDM is exactly symmetrical for the UM relatively to f0 when the former one is observed, although the UM frequency offset increases up to ∆fUM ≈ +9 kHz with a decrease of the pump power up to P ≈ 4 MW ERP. The DM formation in the SEE spectrum is attributed to a three-wave interaction between the upper and lower hybrid waves in the ionosphere, and the lower hybrid frequency ( 7 kHz) determines the frequency offset of the DM high frequency flank [2,6]. The detection of the NDM with

  15. Impact of insulin pumps on glycaemic control in a pump-naïve paediatric regional population.

    de Bock, Martin; Gunn, Alistair Jan; Holt, Jean-Ann; Derraik, José G B; Reed, Peter; Cutfield, Wayne; Mouat, Fran; Hofman, Paul; Jefferies, Craig


    To examine the clinical impact of insulin-pump therapy for children with type 1 diabetes mellitus (T1DM) in a regional paediatric service, Auckland, New Zealand. Retrospective analysis of children with T1DM from the Starship paediatric diabetes database who started on insulin-pump therapy from 2002 to 2008 compared with the whole T1DM population and with an equal number of non-pump patients matched by age, sex, ethnicity and duration of diabetes. From 621 subjects with 6680 clinic visits, 75 children were treated with insulin-pump therapy for more than 12 months. Transitioning to insulin-pump treatment was associated with an improvement in HbA1c compared with baseline (-0.3%/year, P pump controls showed a continuing trend to higher HbA1C values (+0.2%/year, P pump start (from 27 (0-223) to 5 (0-0.91) events/100 patient years) with no change in non-pump controls; the rate of diabetic ketoacidosis remained low in both groups. In a pump-naïve regional paediatric population, insulin-pump therapy for T1DM was safe and effective, and associated with sustained improvements in HbA1c and lower risk of hypoglycaemia. © 2011 The Authors. Journal of Paediatrics and Child Health © 2011 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  16. Zipf's law and maximum sustainable growth

    Malevergne, Y; Sornette, D


    Zipf's law states that the number of firms with size greater than S is inversely proportional to S. Most explanations start with Gibrat's rule of proportional growth but require additional constraints. We show that Gibrat's rule, at all firm levels, yields Zipf's law under a balance condition between the effective growth rate of incumbent firms (which includes their possible demise) and the growth rate of investments in entrant firms. Remarkably, Zipf's law is the signature of the long-term optimal allocation of resources that ensures the maximum sustainable growth rate of an economy.

  17. The Sherpa Maximum Likelihood Estimator

    Nguyen, D.; Doe, S.; Evans, I.; Hain, R.; Primini, F.


    A primary goal for the second release of the Chandra Source Catalog (CSC) is to include X-ray sources with as few as 5 photon counts detected in stacked observations of the same field, while maintaining acceptable detection efficiency and false source rates. Aggressive source detection methods will result in detection of many false positive source candidates. Candidate detections will then be sent to a new tool, the Maximum Likelihood Estimator (MLE), to evaluate the likelihood that a detection is a real source. MLE uses the Sherpa modeling and fitting engine to fit a model of a background and source to multiple overlapping candidate source regions. A background model is calculated by simultaneously fitting the observed photon flux in multiple background regions. This model is used to determine the quality of the fit statistic for a background-only hypothesis in the potential source region. The statistic for a background-plus-source hypothesis is calculated by adding a Gaussian source model convolved with the appropriate Chandra point spread function (PSF) and simultaneously fitting the observed photon flux in each observation in the stack. Since a candidate source may be located anywhere in the field of view of each stacked observation, a different PSF must be used for each observation because of the strong spatial dependence of the Chandra PSF. The likelihood of a valid source being detected is a function of the two statistics (for background alone, and for background-plus-source). The MLE tool is an extensible Python module with potential for use by the general Chandra user.

  18. Heat driven pulse pump

    Benner, Steve M (Inventor); Martins, Mario S. (Inventor)


    A heat driven pulse pump includes a chamber having an inlet port, an outlet port, two check valves, a wick, and a heater. The chamber may include a plurality of grooves inside wall of the chamber. When heated within the chamber, a liquid to be pumped vaporizes and creates pressure head that expels the liquid through the outlet port. As liquid separating means, the wick, disposed within the chamber, is to allow, when saturated with the liquid, the passage of only liquid being forced by the pressure head in the chamber, preventing the vapor from exiting from the chamber through the outlet port. A plurality of grooves along the inside surface wall of the chamber can sustain the liquid, which is amount enough to produce vapor for the pressure head in the chamber. With only two simple moving parts, two check valves, the heat driven pulse pump can effectively function over the long lifetimes without maintenance or replacement. For continuous flow of the liquid to be pumped a plurality of pumps may be connected in parallel.

  19. InfuShield: a shielded enclosure for administering therapeutic radioisotope treatments using standard syringe pumps.

    Rushforth, Dominic P; Pratt, Brenda E; Chittenden, Sarah J; Murray, Iain S; Causer, Louise; Grey, Matthew J; Gear, Jonathan I; Du, Yong; Flux, Glenn D


    The administration of radionuclide therapies presents significant radiation protection challenges. The aim of this work was to develop a delivery system for intravenous radioisotope therapies to substantially moderate radiation exposures to staff and operators. A novel device (InfuShield) was designed and tested before being used clinically. The device consists of a shielded enclosure which contains the therapeutic activity and, through the hydraulic action of back-to-back syringes, allows the activity to be administered using a syringe pump external to the enclosure. This enables full access to the pump controls while simultaneously reducing dose to the operator. The system is suitable for use with all commercially available syringe pumps and does not require specific consumables, maximising both the flexibility and economy of the system. Dose rate measurements showed that at key stages in an I mIBG treatment procedure, InfuShield can reduce dose to operators by several orders of magnitude. Tests using typical syringes and infusion speeds show no significant alteration in administered flow rates (maximum of 1.2%). The InfuShield system provides a simple, safe and low cost method of radioisotope administration.

  20. Modified host cells with efflux pumps

    Dunlop, Mary J.; Keasling, Jay D.; Mukhopadhyay, Aindrila


    The present invention provides for a modified host cell comprising a heterologous expression of an efflux pump capable of transporting an organic molecule out of the host cell wherein the organic molecule at a sufficiently high concentration reduces the growth rate of or is lethal to the host cell.

  1. Study and simulation of a multi-lithology stratigraphic model under maximum erosion rate constraint; Etude et simulation d'un modele statigraphique multi-lithologique sous contrainte de taux d'erosion maximal

    Gervais, V.


    The subject of this report is the study and simulation of a model describing the infill of sedimentary basins on large scales in time and space. It simulates the evolution through time of the sediment layer in terms of geometry and rock properties. A parabolic equation is coupled to an hyperbolic equation by an input boundary condition at the top of the basin. The model also considers a unilaterality constraint on the erosion rate. In the first part of the report, the mathematical model is described and particular solutions are defined. The second part deals with the definition of numerical schemes and the simulation of the model. In the first chap-ter, finite volume numerical schemes are defined and studied. The Newton algorithm adapted to the unilateral constraint used to solve the schemes is given, followed by numerical results in terms of performance and accuracy. In the second chapter, a preconditioning strategy to solve the linear system by an iterative solver at each Newton iteration is defined, and numerical results are given. In the last part, a simplified model is considered in which a variable is decoupled from the other unknowns and satisfies a parabolic equation. A weak formulation is defined for the remaining coupled equations, for which the existence of a unique solution is obtained. The proof uses the convergence of a numerical scheme. (author)

  2. Plasma Skimming in a Spiral Groove Bearing of a Centrifugal Blood Pump.

    Murashige, Tomotaka; Sakota, Daisuke; Kosaka, Ryo; Nishida, Masahiro; Kawaguchi, Yasuo; Yamane, Takashi; Maruyama, Osamu


    Plasma skimming is a phenomenon in which discharge hematocrit is lower than feed hematocrit in microvessels. Plasma skimming has been investigated at a bearing gap in a spiral groove bearing (SGB), as this has the potential to prevent hemolysis in the SGB of a blood pump. However, it is not clear whether plasma skimming occurs in a blood pump with the SGB, because the hematocrit has not been obtained. The purpose of this study is to verify plasma skimming in an SGB of a centrifugal blood pump by developing a hematocrit measurement method in an SGB. Erythrocyte observation using a high-speed microscope and a bearing gap measurement using a laser confocal displacement meter was performed five times. In these tests, bovine blood as a working fluid was diluted with autologous plasma to adjust the hematocrit to 1.0%. A resistor was adjusted to achieve a pressure head of 100 mm Hg and a flow rate of 5.0 L/min at a rotational speed of 2800 rpm. Hematocrit on the ridge region in the SGB was measured using an image analysis based on motion image of erythrocytes, mean corpuscular volume, the measured bearing gap, and a cross-sectional area of erythrocyte. Mean hematocrit on the ridge region in the SGB was linearly reduced from 0.97 to 0.07% with the decreasing mean bearing gap from 38 to 21 μm when the rotational speed was changed from 2250 to 3000 rpm. A maximum plasma skimming efficiency of 93% was obtained with a gap of 21 μm. In conclusion, we succeeded in measuring the hematocrit on the ridge region in the SGB of the blood pump. Hematocrit decreased on the ridge region in the SGB and plasma skimming occurred with a bearing gap of less than 30 μm in the hydrodynamically levitated centrifugal blood pump.

  3. OECD Maximum Residue Limit Calculator

    With the goal of harmonizing the calculation of maximum residue limits (MRLs) across the Organisation for Economic Cooperation and Development, the OECD has developed an MRL Calculator. View the calculator.

  4. Low-power microfluidic electro-hydraulic pump (EHP).

    Lui, Clarissa; Stelick, Scott; Cady, Nathaniel; Batt, Carl


    Low-power electrolysis-based microfluidic pumps utilizing the principle of hydraulics, integrated with microfluidic channels in polydimethylsiloxane (PDMS) substrates, are presented. The electro-hydraulic pumps (EHPs), consisting of electrolytic, hydraulic and fluidic chambers, were investigated using two types of electrodes: stainless steel for larger volumes and annealed gold electrodes for smaller-scale devices. Using a hydraulic fluid chamber and a thin flexible PDMS membrane, this novel prototype successfully separates the reagent fluid from the electrolytic fluid, which is particularly important for biological and chemical applications. The hydraulic advantage of the EHP device arises from the precise control of flow rate by changing the electrolytic pressure generated, independent of the volume of the reagent chamber, mimicking the function of a hydraulic press. Since the reservoirs are pre-filled with reagents and sealed prior to testing, external fluid coupling is minimized. The stainless steel electrode EHPs were manufactured with varying chamber volume ratios (1 : 1 to 1 : 3) as a proof-of-concept, and exhibited flow rates of 1.25 to 30 microl/min with electrolysis-based actuation at 2.5 to 10 V(DC). The miniaturized gold electrode EHPs were manufactured with 3 mm diameters and 1 : 1 chamber volume ratios, and produced flow rates of 1.24 to 7.00 microl/min at 2.5 to 10 V(AC), with a higher maximum sustained pressure of 343 KPa, suggesting greater device robustness using methods compatible with microfabrication. The proposed technology is low-cost, low-power and disposable, with a high level of reproducibility, allowing for ease of fabrication and integration into existing microfluidic lab-on-a-chip and analysis systems.

  5. Quantitative assessment of haemolysis secondary to modern infusion pumps.

    Poder, T G; Boileau, J-C; Lafrenière, R; Thibault, L; Carrier, N; de Grandmont, M-J; Beauregard, P


    Although most studies have shown that little haemolysis is induced by infusion pumps, there are some notable exceptions. Only limited data are available on the actual infusion pumps that are most used in hospitals in Quebec and elsewhere, namely, the Infusomat(®) Space (peristaltic), Plum A+™ (piston) and Colleague(®) CXE (shuttle) pumps. Haemolysis and potassium levels were compared before and after the use of the three different infusion pumps. Using 135 units of packed red blood cells (RBCs) aged from 10 to 28 days, 27 measurements were taken for each pump at various flow rates (30, 60, 150, 300 and 450 ml/h) and were compared with measurements taken before using the pumps. The range of flow rates was chosen to cover those of paediatric and adult transfusions. The shuttle- and piston-type pumps resulted in low haemolysis levels. The peristaltic-type pump produced significantly more haemolysis, which worsened at low flow rates, but the absolute value of haemolysis remained within the range recommended by the regulatory agencies in North America and Europe. Approximately two-thirds of the haemolysis produced by the peristaltic-type pump seemed to be secondary to the use of an antisiphon valve (ASV) on the transfusion line recommended by the manufacturer. Potassium levels did not increase with the use of the pumps. Modern infusion pumps widely used in hospitals in Quebec and elsewhere produce non-threatening levels of haemolysis during the transfusion of packed RBCs aged from 10 to 28 days. ASVs appear to induce additional haemolysis, and we do not recommend using them for blood transfusion. © 2017 International Society of Blood Transfusion.

  6. Pulsed differential pumping system

    Antipov, G.N.; Bagautdinov, F.A.; Rybalov, S.V.


    A pulsed differential pumping system is described for extracting an electron beam from a shaping region at a pressure of 10/sup -5/ torr into a volume with a pressure of 10-100 torr. A fast valve is used with appropriate geometrical parameters to reduce the length of the outlet channel considerable while increasing its diameter. Test results are given. The pumping system has two sections which communicate one with the other and with the volume at the elevated pressure which is produced by gasdynamic nozzles.

  7. Heat pump planning handbook

    Bonin, Jürgen


    The Heat Pump Planning Handbook contains practical information and guidance on the design, planning and selection of heat pump systems, allowing engineers, designers, architects and construction specialists to compare a number of different systems and options. Including detailed descriptions of components and their functions and reflecting the current state of technology this guide contains sample tasks and solutions as well as new model calculations and planning evaluations. Also economic factors and alternative energy sources are covered, which are essential at a time of rising heat costs. T

  8. Sorption product heat pump

    Antonini, G.; Francois, O.; Gendarme, J.P.; Guilleminot, J.J.; Meunier, F.


    A continuous operating, and thus with enhanced performance, heat pump is presented. In this heat pump, the heat transfer between the hot source and the output system or network is realized through a solid adsorbent-refrigerant couple having endothermal desorption properties and exothermal adsorption or absorption properties. The sorption products are carried in a closed cycle movement between the two parts of the reactor. Each side of the reactor is assuming always the same function and the thermal inertia have to be overcome only when starting the reactor.

  9. Regenerative adsorbent heat pump

    Jones, Jack A. (Inventor)


    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  10. Geothermal Heat Pump Performance

    Boyd, Tonya L.; Lienau, Paul J.


    Geothermal heat pump systems are a promising new energy technology that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to customers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school, and commercial building applications. Information was developed on the status of electric utility marketing programs, barriers to market penetration, incentive programs, and benefits.

  11. Geothermal heat pump performance

    Boyd, Tonya L.; Lienau, Paul J.


    Geothermal heat pump systems are a promising new energy technology that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to customers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school, and commercial building applications. Information was developed on the status of electric utility marketing programs, barriers to market penetration, incentive programs, and benefits.

  12. Molecular heat pump.

    Segal, Dvira; Nitzan, Abraham


    We propose a molecular device that pumps heat against a thermal gradient. The system consists of a molecular element connecting two thermal reservoirs that are characterized by different spectral properties. The pumping action is achieved by applying an external force that periodically modulates molecular levels. This modulation affects periodic oscillations of the internal temperature of the molecule and the strength of its coupling to each reservoir resulting in a net heat flow in the desired direction. The heat flow is examined in the slow and fast modulation limits and for different modulation wave forms, thus making it possible to optimize the device performance.

  13. A microfluidic two-pump system inspired by liquid feeding in mosquitoes

    Marino, Andrew; Goad, Angela; Stremler, Mark; Socha, John; Jung, Sunghwan

    Mosquitoes feed on nectar and blood using a two-pump system in the head-a smaller cibarial pump in line with a larger a pharyngeal pump, with a valve in between. To suck, mosquitoes transport the liquid (which may be a multi-component viscous fluid, blood) through a long micro-channel, the proboscis. In the engineering realm, microfluidic devices in biomedical applications, such as lab-on-a-chip technology, necessitate implementing a robust pump design to handle clogging and increase flow control compared to a single-pump system. In this talk, we introduce a microfluidic pump design inspired by the mosquito's two-pump system. The pumping performance (flow rate) in presence of impurities (air bubbles, soft clogs) is quantified as a function of phase difference and volume expansion of the pumps, and the elasticity of the valve.

  14. Pumped storage plants. Status and perspectives

    Vennemann, Peter [RWE Power AG, Essen (Germany). Dept. for Electrical and Mechanical Engineering; Gruber, Karl Heinz; Kunsch, Andreas [VERBUND Hydro Power AG, Vienna (Austria); Haaheim, Jon Ulrik [Statkraft Energi AS, Oslo (Norway); Sistenich, Hans-Peter; Thoeni, Hans-Rudolf


    Pumped storage plants (PSP) enable the storage of energy with rated capacities of order of GW at a single site. Reservoirs allow charging and discharging times of at least hours, sometimes days or even up to several weeks. Short ramp-up times permit the participation in the secondary reserve market as a standing reserve. For bulk energy storage, PSP reach the lowest, specific costs. In the EU27 countries, Norway and Switzerland, a total of 44 GW of pumped storage capacity is installed. The utilisation of PSP strongly correlates with the amount of conventional generation capacity, rather than with topographical options. (orig.)

  15. Lunar base heat pump, phase 1

    Goldman, Jeffrey H.; Harvey, A.; Lovell, T.; Walker, David H.


    analyzed in ideal single and two-stage thermodynamic cycles. Top candidates were analyzed assuming realistic component limits and system pressure drops, and were evaluated for other considerations such as safety, environmental impact, and commercial availability. A maximum coefficient of performance (COP) of 56 percent of the Carnot ideal was achievable for a three-stage CFC-11 cycle operating under the flight conditions above. The program was completed by defining a control scheme and by researching and selecting the major components, compressor and heat exchangers, that could be used to implement the thermodynamic cycle selected. Special attention was paid to using similar technologies for the SIRF and flight heat pumps resulting in the commercially available equivalent of the flight unit. A package concept was generated for the components selected and mass and volume estimated.

  16. Calculation of Maximum Waste Heat and Recovery Rate of Liquid and Gas Fuels%液气燃料烟气的最大余热量与节能率计算研究



    The consumption of various liqui d oil and gas fuel grows rapidly in Chinese energy structure. The discharged flue's temperature is generally 160℃ ~180℃ after these fuels are combusted. This part of energy can be used as secondary energy, though whose grade is low. A lot of H elements are in the form of liquid and gas fuels, and the vapor is the flue's main ingredi-ents. In this paper, the waste heat quantity and recovery rate of 0# light diesel oil and natural gas's flue is calculated, whose tem-perature is from 180℃ to 25℃ at the condition of 1 atm. In the 0# light diesel's flue, the residual heat's proportion of the vapor's heat is about 55. 08%. In the natural gas's flue, which proportion is about 79. 41%. Moreover, the vapor's latent heat is about 3/4. Therefore, recovering the latent heat of vapor is of great significance for the heat recovery of the low temperature waste heat.%在中国能源结构中,燃油与天然气所占比例迅速上升.燃烧后排烟温度一般为160℃~180℃,仍含有较多能量,可以二次利用.本文通过对液、气体燃料中具有代表性的0号轻质柴油及天然气烟气的余热量与节能率进行计算,发现低温烟气余热中的水蒸气余热量占有很大比例,柴油烟气为55.08%,天热气烟气为79.41%.回收烟气余热,尤其是其中水蒸汽的潜热对低温烟气的热回收具有重要意义.若有效回收利用,既是对一次能源的二次利用,更符合"十三五"期间国家节能减排的相关政策要求.

  17. Modelling contaminant transport for pumping wells in riverbank filtration systems.

    Mustafa, Shaymaa; Bahar, Arifah; Aziz, Zainal Abdul; Suratman, Saim


    Analytical study of the influence of both the pumping well discharge rate and pumping time on contaminant transport and attenuation is significant for hydrological and environmental science applications. This article provides an analytical solution for investigating the influence of both pumping time and travelling time together for one-dimensional contaminant transport in riverbank filtration systems by using the Green's function approach. The basic aim of the model is to understand how the pumping time and pumping rate, which control the travelling time, can affect the contaminant concentration in riverbank filtration systems. Results of analytical solutions are compared with the results obtained using a MODFLOW numerical model. Graphically, it is found that both analytical and numerical solutions have almost the same behaviour. Additionally, the graphs indicate that any increase in the pumping rate or simulation pumping time should increase the contamination in groundwater. The results from the proposed analytical model are well matched with the data collected from a riverbank filtration site in France. After this validation, the model is then applied to the first pilot project of a riverbank filtration system conducted in Malaysia. Sensitivity analysis results highlight the importance of degradation rates of contaminants on groundwater quality, for which higher utilization rates lead to the faster consumption of pollutants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Reconciling Groundwater Storage Depletion Due to Pumping with Sustainability

    Annukka Lipponen


    Full Text Available Groundwater pumping causes depletion of groundwater storage. The rate of depletion incurred by any new well is gradually decreasing and eventually becomes zero in the long run, after induced recharge and reduction of natural discharge of groundwater combined (capture have become large enough to balance the pumping rate completely. If aquifer-wide aggregated pumping rates are comparatively large, then such a new dynamic equilibrium may not be reached and groundwater storage may become exhausted. Decisions to pump groundwater are motivated by people’s need for domestic water and by expected benefits of using water for a variety of activities. But how much finally is abstracted from an aquifer (or is considered to be an optimal aggregate abstraction rate depends on a wide range of other factors as well. Among these, the constraint imposed by the groundwater balance (preventing aquifer exhaustion has received ample attention in the professional literature. However, other constraints or considerations related to changes in groundwater level due to pumping are observed as well and in many cases they even may dominate the decisions on pumping. This paper reviews such constraints or considerations, examines how they are or may be incorporated in the decision-making process, and evaluates to what extent the resulting pumping rates and patterns create conditions that comply with principles of sustainability.

  19. An investigational study of minimum rotational pump speed to avoid retrograde flow in three centrifugal blood pumps in a pediatric extracorporeal life support model.

    Clark, Joseph B; Guan, Yulong; McCoach, Robert; Kunselman, Allen R; Myers, John L; Undar, Akif


    During extracorporeal life support with centrifugal blood pumps, retrograde pump flow may occur when the pump revolutions decrease below a critical value determined by the circuit resistance and the characteristics of the pump. We created a laboratory model to evaluate the occurrence of retrograde flow in each of three centrifugal blood pumps: the Rotaflow, the CentriMag, and the Bio-Medicus BP-50. At simulated patient pressures of 60, 80, and 100 mmHg, each pump was evaluated at speeds from 1000 to 2200 rpm and flow rates were measured. Retrograde flow occurred at low revolution speeds in all three centrifugal pumps. The Bio-Medicus pump was the least likely to demonstrate retrograde flow at low speeds, followed by the Rotaflow pump. The CentriMag pump showed the earliest transition to retrograde flow, as well as the highest degree of retrograde flow. At every pump speed evaluated, the Bio-Medicus pump delivered the highest antegrade flow and the CentriMag pump delivered the least.

  20. 46 CFR 28.815 - Bilge pumps, bilge piping, and dewatering systems.


    ... 46 Shipping 1 2010-10-01 2010-10-01 false Bilge pumps, bilge piping, and dewatering systems. 28... REQUIREMENTS FOR COMMERCIAL FISHING INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.815 Bilge pumps, bilge... fixed, self priming, powered, bilge pump, having a minimum capacity rating of 50 gallons per...

  1. High-efficiency diode-pumped femtosecond Yb:YAG ceramic laser

    Zhou, Binbin; Wei, Z.Y.; Zou, Y.W.


    A highly efficient diode-end-pumped femtosecond Yb:yttrium aluminum garnet (YAG) ceramic laser was demonstrated. Pumped by a 968 nm fiber-coupled diode laser, 1.9 W mode-locked output power at a repetition rate of 64.27 MHz was obtained with 3.5 W absorbed pump power, corresponding to a slope...

  2. 77 FR 8178 - Test Procedures for Central Air Conditioners and Heat Pumps: Public Meeting


    ...; ] DEPARTMENT OF ENERGY 10 CFR Part 430 Test Procedures for Central Air Conditioners and Heat Pumps: Public... discuss methodologies and gather comments on testing residential central air conditioners and heat pumps... residential central air conditioners and heat pumps that are single phase with rated cooling capacities less...

  3. Water pumping and analysis of flow in burrowing zoobenthos - a short overview

    Riisgård, Hans Ulrik; Larsen, Poul Scheel


    Burrowing animals maintain contact with the water above the sediment by pumping water through a tube system and therefore measurements of water pumping rate of burrowing animals is of crucial importance for the study of many processes both within and above the sea floor. This review deals...... with the measuring of water pumping and the analysis of flow generated by burrowing deposit- and filter-feeding zoobenthos in order to determine the type of pump and mechanisms involved, flow rate, pump pressure, and pumping power. The practical use of fluid mechanical principles is examined, and it is stressed...... that not only the pump pressure that a burrowing animal can apply is of interest for assessing the energy cost of pumping, but also the distribution of excess pressure along its burrow is of importance for assessing the seepage flow of oxygen-rich water into the sediment surrounding the burrow because...

  4. Pressurized Vessel Slurry Pumping

    Pound, C.R.


    This report summarizes testing of an alternate ''pressurized vessel slurry pumping'' apparatus. The principle is similar to rural domestic water systems and ''acid eggs'' used in chemical laboratories in that material is extruded by displacement with compressed air.

  5. Cold Climate Heat Pump


    12. Data set 7 – energy consumption of heat pump and furnace ................................ 22 Figure 13. Experimentally adjusted TRNSYS model...minute SCF standard cubic feet SEER seasonal energy efficiency ratio SH superheated TMY Typical Meteorological Year TRNSYS Transient Systems...Simulation Program ( TRNSYS ), to generate an experimentally adjusted, simulation heating seasonal performance. 6.4.1 Simulation Results The TRNSYS model

  6. The Osmotic Pump

    Levenspiel, Octave; de Nevers, Noel


    Describes the principle involved in an osmotic pump used to extract fresh water from the oceans and in an osmotic power plant used to generate electricity. Although shown to be thermodynamically feasible, the osmotic principle is not likely to be used commerically for these purposes in the near future. (JR)

  7. Optimization of compound gear pump



    This paper introduces the performances of compound gear pump. Based on the target of having the smallest mass per unit volume, the paper established a mathematical model of optimization, and obtained the results of optimization of the pump.

  8. RSES heat pump technician certification

    Zeiner, J.


    In 1987 the National Heat Pump certification test was developed by the Refrigeration Service Engineers Society (RSES), and in 1994, the program was more specifically named Heat Pump Service Technician Certification. This report describes the benefits of certification.

  9. Orbital Liquid Oxygen Pump Project

    National Aeronautics and Space Administration — This proposed work will develop a pump, which is based on two novel and unique design features. The first feature is a lobed pumping mechanism which operates with...

  10. 50V All-PMOS Charge Pumps Using Low-Voltage Capacitors

    Emira, Ahmed


    In this work, two high-voltage charge pumps are introduced. In order to minimize the area of the pumping capacitors, which dominates the overall area of the charge pump, high density capacitors have been utilized. Nonetheless, these high density capacitors suffer from low breakdown voltage which is not compatible with the targeted high voltage application. To circumvent the breakdown limitation, a special clocking scheme is used to limit the maximum voltage across any pumping capacitor. The two charge pump circuits were fabricated in a 0:6m CMOS technology with poly0-poly1 capacitors. The output voltage of the two charge pumps reached 42:8V and 51V while the voltage across any capacitor did not exceed the value of the input voltage. Compared to other designs reported in the literature, the proposed charge pump provides the highest output voltage which makes it more suitable for tuning MEMS devices.

  11. Maximum margin Bayesian network classifiers.

    Pernkopf, Franz; Wohlmayr, Michael; Tschiatschek, Sebastian


    We present a maximum margin parameter learning algorithm for Bayesian network classifiers using a conjugate gradient (CG) method for optimization. In contrast to previous approaches, we maintain the normalization constraints on the parameters of the Bayesian network during optimization, i.e., the probabilistic interpretation of the model is not lost. This enables us to handle missing features in discriminatively optimized Bayesian networks. In experiments, we compare the classification performance of maximum margin parameter learning to conditional likelihood and maximum likelihood learning approaches. Discriminative parameter learning significantly outperforms generative maximum likelihood estimation for naive Bayes and tree augmented naive Bayes structures on all considered data sets. Furthermore, maximizing the margin dominates the conditional likelihood approach in terms of classification performance in most cases. We provide results for a recently proposed maximum margin optimization approach based on convex relaxation. While the classification results are highly similar, our CG-based optimization is computationally up to orders of magnitude faster. Margin-optimized Bayesian network classifiers achieve classification performance comparable to support vector machines (SVMs) using fewer parameters. Moreover, we show that unanticipated missing feature values during classification can be easily processed by discriminatively optimized Bayesian network classifiers, a case where discriminative classifiers usually require mechanisms to complete unknown feature values in the data first.

  12. 407 W End-pumped Multi-segmented Nd:YAG Laser.

    Kracht, Dietmar; Wilhelm, Ralf; Frede, Maik; Dupré, Klaus; Ackermann, Lothar


    A composite crystalline Nd:YAG rod consisting of 5 segments with different dopant concentrations for high power diode end-pumping is presented. A maximum laser output power of 407 W with an optical-to-optical efficiency of 54 % was achieved by longitudinal pumping with a high power laser diode stack.

  13. Q-switched Ho:YLF laser pumped by a Tm:GdVO4 laser.

    Esser, MJD


    Full Text Available The authors have, through careful analysis of spectroscopic data, designed and demonstrated a diode-end-pumped, quasicontinuous wave Tm:GdVO4 laser operating at 1892 nm in order to pump a Q-switched Ho:YLF laser. The Ho:YLF maximum output energy...

  14. High efficient diode-pumped Tm:YAP laser at room temperature

    Yufeng Li; Baoquan Yao; Yuezhu Wang; Youlun Ju; Guangjun Zhao; Yanhua Zong; Jun Xu


    A high efficient diode-pumped Tm:YAP laser is reported. The maximum output power at 1981 nm is 5.2 W and the slope efficiency is 30%. Unpolarized absorption near 800 nm and unpolarized fluorescence spectra near 1800 nm pumped by laser diode (LD) are measured. In addition, the relationship between operation temperature and output power is discussed.

  15. Novel High Pressure Pump-on-a-Chip Technology Project

    National Aeronautics and Space Administration — HJ Science & Technology, Inc. proposes to develop a novel high pressure "pump-on-a-chip" (HPPOC) technology capable of generating high pressure and flow rate on...

  16. Future directions in 980-nm pump lasers: submarine deployment to low-cost watt-class terrestrial pumps

    Gulgazov, Vadim N.; Jackson, Gordon S.; Lascola, Kevin M.; Major, Jo S.; Parke, Ross; Richard, Tim; Rossin, Victor V.; Zhang, Kai


    . Since the failure rate allowable for an amplifier is not a function of the number of pumps employed in the amplifier, the allowable failure rate of an individual pump laser is decreasing for next-generation amplifiers. This will lead to specifications for terrestrial pumps well below 1000 FIT, and may lead to the case where high power amplifiers need laser pump reliability to approach 100 FIT. In addition, 980 nm laser diodes are now being deployed in submarine systems where failure rates lower than 100 FIT are commonly specified. It is obvious that both terrestrial and submarine markets are pushing allowable failure rates for pumps for optical amplifiers to continually decrease. A second push for improvement is in the output power of 980 nm pump modules. There exist a number of motivations for increasing the output power of pump lasers. First, each additional channel in a DWDM system requires additional power. To first order, a doubling in channel count implies a doubling in pump power. Second, larger amplifiers require multiple pumps. Higher output power from pump modules allows for fewer pumps, less complicated control systems and smaller size amplifiers. The discussion of this paper will focus on how current development progress of 980 nm laser diodes addresses these issues: better reliability and higher output powers.

  17. Efficiency assessment of a wind pumping system

    Lara, David D.; Merino, Gabriel G. [Department of Mechanization and Energy, University of Concepcion, Avenida Vicente Mendez 595, Chillan (Chile); Pavez, Boris J. [Department of Electrical Engineering, University of La Frontera, Casilla 54-D, Temuco (Chile); Tapia, Juan A. [Department of Electrical Engineering, University of Concepcion, Casilla 160-C, Concepcion (Chile)


    The combined efficiency of the components determines overall system performance in electric wind pumping systems. We evaluated a system composed of a 3 kW wind generator feeding a battery bank of 48 V/880 Ah by means of a non-controlled 6-pulse rectifier. Connected to this battery bank was a 1.5 kW inverter that generated 220 V at 50 Hz, which powers a 1.1 kW single-phase electric pump. At the University of Concepcion, Chile, energy losses in each electrical component was determined using a data collection system configured to measure electrical variables in real time. The electrical power generated by the wind generator for different wind speeds averaged 38% lower than the power curve provided by the manufacturer. Electromechanical tests performed in a lab showed the operation efficiency of the electric generator of the wind turbine averaged 80%. This information, along with the electrical power output, and the wind velocity measured during field operation allowed us to determine the rotor's power coefficient C{sub p}, which had a maximum value of 35%. For the stored energy components measured data indicated that the rectifier, the battery bank, and the inverter operated with average efficiencies of 95%, 78% and 86% respectively. The combined component efficiencies showed a maximum of 17% of the wind energy would be available for water pumping. Since a large amount of wind energy was dissipated during the energy conversion process, new configurations should be analyzed that could avoid such losses in wind pumping systems. (author)

  18. The design of an insulin pump - preliminary requirements (a technical note)

    Hawlas, Hubert J.; Lewenstein, Krzysztof


    The material presented in this paper is an attempt to lay down requirements for the planned design of an insulin pump. An insulin pump is a device for continuous dosage of insulin at a selected rate, which facilitates treatment and improves the lives of diabetic patients. This paper is a compilation of medical requirements and user suggestions of presently offered insulin pumps. It seems important to establish proper requirements for a device before starting developing any design for an insulin pump.

  19. An experimental study of the characteristics of a mock up of a centrifugal conduction magnetohydrodynamic pump

    Gorbunov, V.A.; Frolov, V.V.; Kolesnikov, Yu.B.; Kolokolov, V.Ye.; Polyakov, N.N.


    The design of a mock up of a centrifugal conduction magnetohydrodynamic (MGD) pump is described. The dependences of the pressure developed by the pump in a locked mode on the magnetic induction and the operational current are cited, along with the flow rate and pressure characteristics of the pump. The dependences of the characteristics of the pump on the dimensions of the operational zone and the conductivity of the facial walls are experimentally studied.

  20. Solar Load Voltage Tracking for Water Pumping: An Algorithm

    Kappali, M.; Udayakumar, R. Y.


    Maximum power is to be harnessed from solar photovoltaic (PV) panel to minimize the effective cost of solar energy. This is accomplished by maximum power point tracking (MPPT). There are different methods to realise MPPT. This paper proposes a simple algorithm to implement MPPT lv method in a closed loop environment for centrifugal pump driven by brushed PMDC motor. Simulation testing of the algorithm is done and the results are found to be encouraging and supportive of the proposed method MPPT lv .



    Some concepts of virtual product are discussed. The key technologies of virtual fuel-pump development are in detail analysed, which include virtual fuel-pump product modeling, intelligent simulation, distributed design environment, and virtual assembly. The virtual fuel-pump development prototype system considers requirement analysis, concept design, injection preferment analysis, detailed design, and assembly analysis.

  2. Optical pump wavelength dependence in visible-pump visible-probe spectroscopy of noble metals

    Sahota, Derek G.; Lobo, Calvin; Duch, Konrad; Dodge, J. Steven


    We have developed a femtosecond visible-pump visible-probe reflectometer with individually tunable pump and probe photon energies. The spectrometer has been used to study optically thick films of the noble metals Au and Cu over a wide variety of pump fluences and photon energies. Through comparison between experimental measurements and two-temperature model (TTM) simulations, we estimate an electron-phonon coupling constant, g, of 2.37 ±0.11 x10^16 Wm-3K-1 for Au and 1.19 ±0.13 x10^17 Wm-3K-1 for Cu, consistent with previous studies. The variation of the optical pump parameters allows a more accurate determination of the electron-phonon coupling constant. The relaxation rate, τ, of the thermally excited electrons is shown to be strongly dependent on the peak electron temperature of the excited sample, and only weakly dependent on the pump photon energy. The static dielectric constant is found to significantly underestimate the dependence of the differential reflectivity on the pump photon energy.

  3. Small Scroll Pump for Cryogenic Liquids Project

    National Aeronautics and Space Administration — The innovation is a compact, reliable, light weight, electrically driven pump capable of pumping cryogenic liquids, based on scroll pump technology. This pump will...

  4. Improving pumping system efficiency at coal plants

    Livoti, W.C.; McCandless, S.; Poltorak, R. [Baldor Electric Co. (United States)


    The industry must employ ultramodern technologies when building or upgrading power plant pumping systems thereby using fuels more efficiently. The article discusses the uses and efficiencies of positive displacement pumps, centrifugal pumps and multiple screw pumps. 1 ref., 4 figs.

  5. Maximum capacities of the 100-B water plant

    Strand, N.O.


    Increases in process water flows will be needed as the current program of increasing pile power levels continues. The future process water flows that will be required are known to be beyond the present maximum capacities of component parts of the water system. It is desirable to determine the present maximum capacities of each major component part so that plans can be mode for modifications and/or additions to the present equipment to meet future required flows. The apparent hydraulic limit of the present piles is about 68,000 gpm. This figure is based on a tube inlet pressure of 400 psi, a tube flow of 34 gpm, and 2,000 effective tubes. In this document the results of tests and calculations to determine the present maximum capacities of each major component part of the 100-B water system will be presented. Emergency steam operated pumps will not be considered as it is doubtful of year around operation of a steam driven pump could be economically justified. Some possible ways to increase the process water flows of each component part of the water system to the ultimate of 68,000 gpm are given.

  6. Synchronization of Na/K pump molecules by an oscillating electric field.

    Chen, Wei; Zhang, Zhongsheng; Huang, Feiran


    Synchronization of the Na/K pump molecules in a cell membrane was studied in frog skeletal muscle fibers using double Vaseline-gap voltage-clamp techniques. We found that the pumping rate of naturally random-paced pump molecules can be artificially synchronized by a pulsed, symmetric, oscillating membrane potential with a frequency comparable to the physiological turnover rate. The synchronized pump currents show separated outward and inward components, where the magnitude of the outward component is about three times the randomly-paced pump currents, and the magnitude-ratio of the outward to inward pump currents is close to 3:2, which reflects the stoichiometric ratio of the pump molecules. Once synchronized, the pumping rate is restricted to the field frequency, and the pump currents are mainly dependent on the field frequency, but not the field strength. In contrast to previous work, which by restraining the pumps at a presteady state succeeded in triggering the steps of the pump cycle only individually and between interruptions, here we synchronize the pumps running continuously and in a normal running mode.

  7. 44 CFR 208.12 - Maximum Pay Rate Table.


    ... reimbursement and Backfill, for the System Member's actual compensation or the actual compensation of the... OF HOMELAND SECURITY DISASTER ASSISTANCE NATIONAL URBAN SEARCH AND RESCUE RESPONSE SYSTEM General...

  8. Entrainment and maximum vapour flow rate of trays

    Van Sinderen, AH; Wijn, EF; Zanting, RWJ

    This is a report on free entrainment measurements in a small (0.20 m x 0.20 in) air-water column. An adjustable weir controlled the liquid height on a test tray. Several sieve and valve trays were studied. The results were interpreted with a two- or three-layer model of the two-phase mixture on the

  9. Nitric-glycolic flowsheet testing for maximum hydrogen generation rate

    Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)


    The Defense Waste Processing Facility (DWPF) at the Savannah River Site is developing for implementation a flowsheet with a new reductant to replace formic acid. Glycolic acid has been tested over the past several years and found to effectively replace the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the chemical generation of hydrogen and ammonia, allows purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allows for effective adjustment of the SRAT/SME rheology, and is favorable with respect to melter flammability. The objective of this work was to perform DWPF Chemical Process Cell (CPC) testing at conditions that would bound the catalytic hydrogen production for the nitric-glycolic flowsheet.


    Intisar Al-Mejibli


    Full Text Available Minimizing the number of dropped User Datagram Protocol (UDP messages in a network is regarded asa challenge by researchers. This issue represents serious problems for many protocols particularly thosethat depend on sending messages as part of their strategy, such us service discovery protocols.This paper proposes and evaluates an algorithm to predict the minimum period of time required betweentwo or more consecutive messages and suggests the minimum queue sizes for the routers, to manage thetraffic and minimise the number of dropped messages that has been caused by either congestion or queueoverflow or both together. The algorithm has been applied to the Universal Plug and Play (UPnPprotocol using ns2 simulator. It was tested when the routers were connected in two configurations; as acentralized and de centralized. The message length and bandwidth of the links among the routers weretaken in the consideration. The result shows Better improvement in number of dropped messages `amongthe routers.

  11. veteran athletes exercise at higher maximum heart rates than are ...

    questionnaire, a full medical examination and a routine. sECG. Thereafter ... activities than during stress testing in the laboratory. (P < 0.01). ... After the risks and procedures involved ..... for the first time in either rehabilitation or sporting activities. .... set were i. Results. E. 25 - 29.9), underwei increased. ;;, 24-year- pressure,.

  12. The Maximum Density of Water.

    Greenslade, Thomas B., Jr.


    Discusses a series of experiments performed by Thomas Hope in 1805 which show the temperature at which water has its maximum density. Early data cast into a modern form as well as guidelines and recent data collected from the author provide background for duplicating Hope's experiments in the classroom. (JN)

  13. Abolishing the maximum tension principle

    Dabrowski, Mariusz P


    We find the series of example theories for which the relativistic limit of maximum tension $F_{max} = c^2/4G$ represented by the entropic force can be abolished. Among them the varying constants theories, some generalized entropy models applied both for cosmological and black hole horizons as well as some generalized uncertainty principle models.

  14. Abolishing the maximum tension principle

    Mariusz P. Da̧browski


    Full Text Available We find the series of example theories for which the relativistic limit of maximum tension Fmax=c4/4G represented by the entropic force can be abolished. Among them the varying constants theories, some generalized entropy models applied both for cosmological and black hole horizons as well as some generalized uncertainty principle models.

  15. Flow Pattern Analysis and Performance Improvement of Regenerative Flow Pump Using Blade Geometry Modification

    J. Nejadrajabali


    Full Text Available Regenerative pump is a low specific speed and rotor-dynamic turbomachine capable of developing high heads at low flow rates. In this paper, a numerical study has been carried out in order to investigate the effect of blade angle on the performance of a regenerative pump. Two groups of impellers were employed. The first type has symmetric angle blades with identical inlet/outlet angles of ±10°, ±30°, and ±50° and the second group has nonsymmetric angle blades in which the inlet angle was set to 0° and six different angles of ±10°, ±30°, and ±50° were designed for the outlet of the blades. A total of 12 impellers, as well as primary radial blades impeller, were investigated in this study. The results showed that all forward blades have higher head coefficients than radial blades impeller at design flow coefficient. It was found that regenerative pumps with symmetric angle forward blades have better performance than other types. Also, it is worth mentioning that the highest head coefficient and efficiency occur at angle +10<β<+30 of symmetric angle blades. It was found that the maximum efficiency occurs at angle of +15.5° by curve fitting to the data obtained from numerical simulations for symmetric angle forward blades.

  16. 14 CFR 23.991 - Fuel pumps.


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel pumps. 23.991 Section 23.991... § 23.991 Fuel pumps. (a) Main pumps. For main pumps, the following apply: (1) For reciprocating engine installations having fuel pumps to supply fuel to the engine, at least one pump for each engine must be...


    Horton, W. Travis [Purdue University; Groll, Eckhard A. [Purdue University; Braun, James E. [Purdue University


    The primary goals of the proposed project were to develop, test, and evaluate a high performance and cost-effective vapor compression air-source heat pump for use in cold climate regions. Vapor compression heat pumps are a proven technology, and have been used for many years to meet heating requirements for buildings in residential, commercial, and industrial applications. However, in climate regions that experience very low outdoor ambient temperatures both the heating capacity and coefficient of performance (COP) of traditional air-source vapor compression heat pumps drops dramatically with a decrease in the outdoor air temperature. The efficiency of heat pumping equipment has improved substantially over the past 20 years; however, the efficiencies of the highest rated equipment on the market are approaching practical limits that cannot be surpassed without modifications to the basic cycle and possibly the use of additional hardware. In this report, three technologies to improve the efficiency of vapor compression systems are described. These are a) vapor injected compression, b) oil flooded compression and c) hybrid flow control of the evaporator. Compressor prototypes for both, oil flooded and vapor injected compression were developed by Emerson Climate Technologies. For the oil flooded compressor, the oil injection port location was optimized and an internal oil separator was added using several design iterations. After initial testing at Emerson Climate Technologies, further testing was done at Purdue University, and compressor models were developed. These models were then integrated into a system model to determine the achievable improvement of seasonal energy efficiency (SEER) for Minneapolis (Minnesota) climate. For the oil flooded compression, a 34% improvement in seasonal energy efficiency was found while a 21% improvement in seasonal energy efficiency ratio was found for the vapor injected compression. It was found that one benefit of both tested

  18. Pocket pumped image analysis

    Kotov, I.V., E-mail: [Brookhaven National Laboratory, Upton, NY 11973 (United States); O' Connor, P. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Murray, N. [Centre for Electronic Imaging, Open University, Milton Keynes, MK7 6AA (United Kingdom)


    The pocket pumping technique is used to detect small electron trap sites. These traps, if present, degrade CCD charge transfer efficiency. To reveal traps in the active area, a CCD is illuminated with a flat field and, before image is read out, accumulated charges are moved back and forth number of times in parallel direction. As charges are moved over a trap, an electron is removed from the original pocket and re-emitted in the following pocket. As process repeats one pocket gets depleted and the neighboring pocket gets excess of charges. As a result a “dipole” signal appears on the otherwise flat background level. The amplitude of the dipole signal depends on the trap pumping efficiency. This paper is focused on trap identification technique and particularly on new methods developed for this purpose. The sensor with bad segments was deliberately chosen for algorithms development and to demonstrate sensitivity and power of new methods in uncovering sensor defects.

  19. Wavy tube heat pumping

    Haldeman, C. W.


    A PVC conduit about 4'' in diameter and a little more than 40 feet long is adapted for being seated in a hole in the earth and surrounds a coaxial copper tube along its length that carries Freon between a heat pump and a distributor at the bottom. A number of wavy conducting tubes located between the central conducting tube and the wall of the conduit interconnect the distributor with a Freon distributor at the top arranged for connection to the heat pump. The wavy conducting tubing is made by passing straight soft copper tubing between a pair of like opposed meshing gears each having four convex points in space quadrature separated by four convex recesses with the radius of curvature of each point slightly less than that of each concave recess.

  20. Advanced heat pump cycle

    Groll, E.A.; Radermacher, R.


    The desorption and absorption process of a vapor compression heat pump with a solution circuit (VCHSC) proceeds at gliding temperature intervals, which can be adjusted over a wide range. In case that the gliding temperature intervals in the desorber and the absorber overlap, a modification of the VCHSC employing a desorber/absorber heat exchange (DAHX) can be introduced, which results in an extreme reduction of the pressure ratio. Although the DAHX-cycle has features of a two-stage cycle, it still requires only one solution pump, one separator and one compressor. Such a cycle for the working pair ammonia/water is built in the Energy Laboratory of the Center for Environmental Energy Engineering at the University of Maryland. The experimental results obtained with the research plant are discussed and compared to those calculated with a simulation program. The possible temperature lift between heat source and heat sink depending on the achievable COP are presented.

  1. Inertial microfluidic pump

    Kornilovitch, Pavel; Govyadinov, Alexander; Markel, David; Torniainen, Erik


    The inertial pump is powered by a microheater positioned near one end of a fluidic microchannel. As the microheater explosively boils the surrounding fluid, a vapor bubble expands and then collapses asymmetrically, resulting in net flow. Such devices become an effective means of transporting fluids at microscale. They have no moving parts and can be manufactured in large numbers using standard batch fabrication processes. In this presentation, physical principles behind pump operation are described, in particular the role of reservoirs in dissipating mechanical momentum and the expansion-collapse asymmetry. An effective one-dimensional dynamic model is formulated and solved. The model is compared with full three-dimensional CFD simulations and available experimental data. Potential applications of inertial micropumps are described.

  2. Technology assessment heat pumps

    Rudolph, R.; Purper, G. (Battelle-Institut e.V., Frankfurt am Main (Germany, F.R.))

    Technology assessment for an increased application of heat pumps is carried out in four areas: Effects in the economics area, i.e. effects on the economic goals which are defined in the Stability Law, on the goals of the power supply policy which result from the energy programme and its projections, and on the economic structure as a whole. The whole range of social problems concerning the use of heat pumps, i.e. the questions which social groups are affected, how they react, and what consequences are they expected to have on energy conservation as an object of social policy. Consequences in the governmental and administrative sectors, i.e. effects on legislation, administration and government budgets. Effects on the ecological systems; of prime interest in this context are the utilisation of environmental energy, changes in the heat balance, and emmission of pollutants.

  3. Evaluation of HL-20 roller pump and Rotaflow centrifugal pump on perfusion quality and gaseous microemboli delivery.

    Yee, Stella; Qiu, Feng; Su, Xiaowei; Rider, Alan; Kunselman, Allen R; Guan, Yulong; Undar, Akif


    The purpose of this study was to compare the HL-20 roller pump (Jostra USA, Austin, TX, USA) and Rotaflow centrifugal pump (Jostra USA) on hemodynamic energy production and gaseous microemboli (GME) delivery in a simulated neonatal cardiopulmonary bypass (CPB) circuit under nonpulsatile perfusion. This study employed a simulated model of the pediatric CPB including a Jostra HL-20 heart-lung machine (or a Rotaflow centrifugal pump), a Capiox BabyRX05 oxygenator (Terumo Corporation, Tokyo, Japan), a Capiox pediatric arterial filter (Terumo Corporation), and ¼-inch tubing. The total volume of the experimental system was 700mL (500mL for the circuit and 200mL for the pseudo neonatal patient). The hematocrit was maintained at 30% using human blood. At the beginning of each trial, a 5mL bolus of air was injected into the venous line. Both GME data and pressure values were recorded at postpump and postoxygenator sites. All the experiments were conducted under nonpulsatile perfusion at three flow rates (500, 750, and 1000mL/min) and three blood temperatures (35, 30, and 25°C). As n=6 for each setup, a total of 108 trials were done. The total number of GME increased as temperature decreased from 35°C to 25°C in the trials using the HL-20 roller pump while the opposite effect occurred when using the Rotaflow centrifugal pump. At a given temperature, total GME counts increased with increasing flow rates for both pumps. Results indicated the Rotaflow centrifugal pump delivered significantly fewer microemboli compared to the HL-20 roller pump, especially under high flow rates. Less than 10% of total microemboli were larger than 40µm in size and the majority of GME were in the 0-20µm class in all trials. Postpump total hemodynamic energy (THE) increased with increasing flow rates and decreasing temperatures in both circuits using these two pumps. The HL-20 roller pump delivered more THE than the Rotaflow centrifugal pump at all tested flow rates and temperature conditions

  4. Evaluation of reciprocating electromagnetic air pumping for portable PEMFC

    Kwon, Kilsung; Kang, Ho; Kang, Seongwon; Kim, Daejoong


    In this paper, we present a proton exchange membrane fuel cell (PEMFC) integrated with an electromagnetic (EM) air pump. The EM air pump provides the PEMFC with air by reciprocating motions of the permanent magnet attached to a flexible membrane. We performed a parametric study to decide the optimal dimensions of the reciprocating EM air pump. The effects of various operating parameters on the EM air pump were investigated with the root-mean-square (RMS) flow rate and current. A core with a higher relative permeability shows better performance. The RMS current linearly increases with the applied voltage and shows no dependence on the frequency. The RMS flow rate also increases with the voltage. The RMS flow rate per power consumption is highest at the frequency around 20 Hz and decreases as the applied voltage increases. When the reciprocating EM air pump was used to supply air to the portable PEMFC, it was found that the power density of the PEMFC increases with the applied voltage and shows the highest performance at the frequency of 10 Hz. We compared the performance of the PEMFC between the flow meter and the EM air pump used as an air supplier. About 81% of the output power using the flow meter was obtained when the EM air pump is operated at the applied voltage of 5 V. The parasitic power ratio reaches at its minimum value about 0.1 with an EM applied voltage of 0.25V.

  5. [The design of bionic left ventricular auxiliary pump].

    Jin, Henglin; Hu, Xiaobing; Du, Lei


    This paper reports a novel design of bionic left ventricular auxiliary pump, and the characteristic is that elastic diaphragm of pump driven by hydraulic, having smooth, reliable blood supply, can prevent blood clots, can use the flow sensor, pressure sensor detection showing the blood pressure and blood volume at the inlet and outlet of the pump. The pump can go with heart rate synchronization or asynchronous auxiliary by the R wave of human body's ECG. The design goal is realization of bionic throb. Through the animal experiment, the blood pressure waveforms are close to expectations, stable flow can stroke according to the set value, which prove that the pump can meet the requirement for heart disease patients for bionic left ventricular assistant.

  6. Hydrodynamics of Pumps

    Brennen, Christopher Earls


    The subject of this monograph is the fluid dynamics of liquid turbomachines, particularly pumps. Rather than attempt a general treatise on turbomachines, we shall focus attention on those special problems and design issues associated with the flow of liquid through a rotating machine. There are two characteristics of a liquid that lead to these special problems, and cause a significantly different set of concerns than would occur in, say, a gas turbine. These are the potential for cavitation ...

  7. Pioneering Heat Pump Project

    Aschliman, Dave [Indiana Inst. of Technology, Inc., Fort Wayne, IN (United States); Lubbehusen, Mike [Indiana Inst. of Technology, Inc., Fort Wayne, IN (United States)


    This project was initiated at a time when ground coupled heat pump systems in this region were limited in size and quantity. There were economic pressures with costs for natural gas and electric utilities that had many organizations considering ground coupled heat pumps; The research has added to the understanding of how ground temperatures fluctuate seasonally and how this affects the performance and operation of the heat pumps. This was done by using a series of temperature sensors buried within the middle of one of the vertical bore fields with sensors located at various depths below grade. Trending of the data showed that there is a lag in ground temperature with respect to air temperatures in the shoulder months, however as full cooling and heating season arrives, the heat rejection and heat extraction from the ground has a significant effect on the ground temps; Additionally it is better understood that while a large community geothermal bore field serving multiple buildings does provide a convenient central plant to use, it introduces complexity of not being able to easily model and predict how each building will contribute to the loads in real time. Additional controllers and programming were added to provide more insight into this real time load profile and allow for intelligent shedding of load via a dry cooler during cool nights in lieu of rejecting to the ground loop. This serves as a means to ‘condition’ the ground loop and mitigate thermal creep of the field, as is typically observed; and It has been observed when compared to traditional heating and cooling equipment, there is still a cost premium to use ground source heat pumps that is driven mostly by the cost for vertical bore holes. Horizontal loop systems are less costly to install, but do not perform as well in this climate zone for heating mode

  8. Positive displacement rotary pump

    Moody, Paul E.


    An eccentric drive rotates inside a ring that is hinged to a plate and an elastomeric curtain is wrapped around the ring and across an articulated plate. The curtain moves along a cylindrical wall inside the pump cavity to move fluid from an inlet to an outlet end of the chamber. Two or more chambers can be coupled in series or in parallel with one another.

  9. Nonazeotropic Heat Pump

    Ealker, David H.; Deming, Glenn


    Heat pump collects heat from water circulating in heat-rejection loop, raises temperature of collected heat, and transfers collected heat to water in separate pipe. Includes sealed motor/compressor with cooling coils, evaporator, and condenser, all mounted in outer housing. Gradients of temperature in evaporator and condenser increase heat-transfer efficiency of vapor-compression cycle. Intended to recover relatively-low-temperature waste heat and use it to make hot water.

  10. Nonazeotropic Heat Pump

    Ealker, David H.; Deming, Glenn


    Heat pump collects heat from water circulating in heat-rejection loop, raises temperature of collected heat, and transfers collected heat to water in separate pipe. Includes sealed motor/compressor with cooling coils, evaporator, and condenser, all mounted in outer housing. Gradients of temperature in evaporator and condenser increase heat-transfer efficiency of vapor-compression cycle. Intended to recover relatively-low-temperature waste heat and use it to make hot water.

  11. Introduction to Pump Rotordynamics


    RTO-EN-AVT-143 9 - 1 Introduction to Pump Rotordynamics Luis San Andrés Mast-Childs Tribology Professor Turbomachinery Laboratory Texas A... rotordynamics of turbomachinery, excessive vibration and instability. The acceptable performance of a turbomachine depends on the adequate design and operation...on rotordynamics . The basic equations for the modeling of linear rotor-bearing systems are given along with an example for the rotordynamics of a

  12. Electrocentrifugal pumping; Bombeo electrocentrifugo

    Rodriguez Perez, Guillermo; Medellin Otero, Hector [Instituto Mexicano del Peroleo (Mexico)


    The exploitation of isolated oil deposits, in losing their own energy, enter a phase of secondary recovery. One of the technologies of new development in Mexico is the one of electrocentrifugal pumping , which consists of introducing the motor-pump as an integral part of the production pipe down to the well bottom and pumping directly up to central complexes, from where it is sent inland. In the present paper is intended to explain what this type of secondary recovery consists of. [Spanish] La explotacion de yacimientos aislados de petroleo, al perder su energia propia, entran en una fase de recuperacion secundaria. Una de las tecnologias de nuevo desarrollo en Mexico es la de bombeo electrocentrifugo, la cual consiste en introducir la motobomba como parte integral de la tuberia de produccion hasta el fondo del pozo y bombearlo directamente hasta los complejos centrales, de donde se envia a tierra. En el presente trabajo se pretende explicar en que consiste este tipo de recuperacion secundaria.

  13. Stirling Engine Heat Pump

    Kagawa, Noboru

    Recent advances in the feasibility studies related to the Stirling engines and Stirling engine heat pumps which have been considered attractive due to their promising role in helping to solve the global environmental and energy problems,are reviewed. This article begins to describe the brief history of the Stirling engines and theoretical thermodynamic analysis of the Stirling cycle in order to understand several advantages on the Stirling engine. Furthermore,they could throw light on our question why the dream engines had not been promoted to practical applications during two hundred years. The present review shows that the Stirling engines with several unique advantages including 30 to 40% thermal efficiency and preferable exhaust characteristics,had been designed and constructed by recent tackling for the development of the advanced automobile and other applications using them. Based on the current state of art,it is being provided to push the Stirling engines combined with heat pumps based on the reversed Rankine cycle to the market. At present,however, many problems, especially for the durability, cost, and delicate engine parts must be enforced to solve. In addition,there are some possibilities which can increase the attractiveness of the Stirling engines and heat pumps. The review closes with suggestions for further research.

  14. A Magnetically Coupled Cryogenic Pump

    Hatfield, Walter; Jumper, Kevin


    Historically, cryogenic pumps used for propellant loading at Kennedy Space Center (KSC) and other NASA Centers have a bellows mechanical seal and oil bath ball bearings, both of which can be problematic and require high maintenance. Because of the extremely low temperatures, the mechanical seals are made of special materials and design, have wearing surfaces, are subject to improper installation, and commonly are a potential leak path. The ball bearings are non-precision bearings [ABEC-1 (Annular Bearing Engineering Council)] and are lubricated using LOX compatible oil. This oil is compatible with the propellant to prevent explosions, but does not have good lubricating properties. Due to the poor lubricity, it has been a goal of the KSC cryogenics community for the last 15 years to develop a magnetically coupled pump, which would eliminate these two potential issues. A number of projects have been attempted, but none of the pumps was a success. An off-the-shelf magnetically coupled pump (typically used with corrosive fluids) was procured that has been used for hypergolic service at KSC. The KSC Cryogenics Test Lab (CTL) operated the pump in cryogenic LN2 as received to determine a baseline for modifications required. The pump bushing, bearings, and thrust rings failed, and the pump would not flow liquid (this is a typical failure mode that was experienced in the previous attempts). Using the knowledge gained over the years designing and building cryogenic pumps, the CTL determined alternative materials that would be suitable for use under the pump design conditions. The CTL procured alternative materials for the bearings (bronze, aluminum bronze, and glass filled PTFE) and machined new bearing bushings, sleeves, and thrust rings. The designed clearances among the bushings, sleeves, thrust rings, case, and case cover were altered once again using experience gained from previous cryogenic pump rebuilds and designs. The alternative material parts were assembled into

  15. Maximum Genus of Strong Embeddings

    Er-ling Wei; Yan-pei Liu; Han Ren


    The strong embedding conjecture states that any 2-connected graph has a strong embedding on some surface. It implies the circuit double cover conjecture: Any 2-connected graph has a circuit double cover.Conversely, it is not true. But for a 3-regular graph, the two conjectures are equivalent. In this paper, a characterization of graphs having a strong embedding with exactly 3 faces, which is the strong embedding of maximum genus, is given. In addition, some graphs with the property are provided. More generally, an upper bound of the maximum genus of strong embeddings of a graph is presented too. Lastly, it is shown that the interpolation theorem is true to planar Halin graph.

  16. Influence of Splitter Blades on the Cavitation Performance of a Double Suction Centrifugal Pump

    Wei Yang


    Full Text Available In order to study the influence of splitter blades on double suction centrifugal pumps two impellers with and without splitter blades were investigated numerically and experimentally. Three-dimensional turbulence simulations with and without full cavitation model were applied to simulate the flow in the two pumps with different impellers. The simulation results agreed with the experiment results and the internal flows were analyzed. Both the numerical and experimental results show that by adding splitter blades the hydraulic performance and the cavitation performance of the pump are improved. The pump efficiency is increased especially at high flow rate condition. The pump high efficiency area is extended dramatically. At the same time since the splitter blades share some part of the blade loading, the pump critical NPSH value is decreased. Obvious pressure increase and velocity decrease at blade suction surface near leading edge were observed in the pump impeller with splitter blades. And the pump cavitation performance was improved consequently.

  17. D(Maximum)=P(Argmaximum)

    Remizov, Ivan D


    In this note, we represent a subdifferential of a maximum functional defined on the space of all real-valued continuous functions on a given metric compact set. For a given argument, $f$ it coincides with the set of all probability measures on the set of points maximizing $f$ on the initial compact set. This complete characterization lies in the heart of several important identities in microeconomics, such as Roy's identity, Sheppard's lemma, as well as duality theory in production and linear programming.

  18. The Testability of Maximum Magnitude

    Clements, R.; Schorlemmer, D.; Gonzalez, A.; Zoeller, G.; Schneider, M.


    Recent disasters caused by earthquakes of unexpectedly large magnitude (such as Tohoku) illustrate the need for reliable assessments of the seismic hazard. Estimates of the maximum possible magnitude M at a given fault or in a particular zone are essential parameters in probabilistic seismic hazard assessment (PSHA), but their accuracy remains untested. In this study, we discuss the testability of long-term and short-term M estimates and the limitations that arise from testing such rare events. Of considerable importance is whether or not those limitations imply a lack of testability of a useful maximum magnitude estimate, and whether this should have any influence on current PSHA methodology. We use a simple extreme value theory approach to derive a probability distribution for the expected maximum magnitude in a future time interval, and we perform a sensitivity analysis on this distribution to determine if there is a reasonable avenue available for testing M estimates as they are commonly reported today: devoid of an appropriate probability distribution of their own and estimated only for infinite time (or relatively large untestable periods). Our results imply that any attempt at testing such estimates is futile, and that the distribution is highly sensitive to M estimates only under certain optimal conditions that are rarely observed in practice. In the future we suggest that PSHA modelers be brutally honest about the uncertainty of M estimates, or must find a way to decrease its influence on the estimated hazard.

  19. Alternative Multiview Maximum Entropy Discrimination.

    Chao, Guoqing; Sun, Shiliang


    Maximum entropy discrimination (MED) is a general framework for discriminative estimation based on maximum entropy and maximum margin principles, and can produce hard-margin support vector machines under some assumptions. Recently, the multiview version of MED multiview MED (MVMED) was proposed. In this paper, we try to explore a more natural MVMED framework by assuming two separate distributions p1( Θ1) over the first-view classifier parameter Θ1 and p2( Θ2) over the second-view classifier parameter Θ2 . We name the new MVMED framework as alternative MVMED (AMVMED), which enforces the posteriors of two view margins to be equal. The proposed AMVMED is more flexible than the existing MVMED, because compared with MVMED, which optimizes one relative entropy, AMVMED assigns one relative entropy term to each of the two views, thus incorporating a tradeoff between the two views. We give the detailed solving procedure, which can be divided into two steps. The first step is solving our optimization problem without considering the equal margin posteriors from two views, and then, in the second step, we consider the equal posteriors. Experimental results on multiple real-world data sets verify the effectiveness of the AMVMED, and comparisons with MVMED are also reported.

  20. Measuring swirl at a model scale of 1:1 for vertically submersible pumps

    de Fockert, A.; Verhaart, F. I. H.; Czarnota, Z.; Rajkumar, S.


    Intakes of large pump stations are often designed with the aid of hydraulic modeling. The approach flow to pumps is tested for adverse hydraulic phenomena, such as pre-swirl, velocity variations and vortices. Most commonly, the limits for these phenomena are taken from the ANSI/HI 9.8-2012 standard - Rotodynamic Pumps for Pump Intake Design. The standard, however, does not explain how real pumps respond to swirl, uneven velocity distribution or vortices. The present joined study between Deltares and Xylem aims to bridge this gap. At the Deltares pump sump test facility, two identical pump compartments were built according to the ANSI/HI 9.8-2012 standard. In one of the compartments, a submersible, vertical column pump (Flygt PL7020) was installed, while a 1:1 scale model of that pump was installed in the other compartment. This arrangement allowed measurements of both pump performance (pump head and input power as a function of flow rate) and the model parameters (pre-rotation and vortex occurrence) for nearly identical approach flow conditions. By varying the geometry of the approach channels, the asymmetry of the flow was varied to produce various degrees of pre-swirl including values in excess of the commonly accepted limit of 5 degrees. This paper describes the measurement setup, the results of the measurements with the model pump and the measurement plan for the prototype pump.