WorldWideScience

Sample records for maximum local temperature

  1. Extreme Maximum Land Surface Temperatures.

    Science.gov (United States)

    Garratt, J. R.

    1992-09-01

    There are numerous reports in the literature of observations of land surface temperatures. Some of these, almost all made in situ, reveal maximum values in the 50°-70°C range, with a few, made in desert regions, near 80°C. Consideration of a simplified form of the surface energy balance equation, utilizing likely upper values of absorbed shortwave flux (1000 W m2) and screen air temperature (55°C), that surface temperatures in the vicinity of 90°-100°C may occur for dry, darkish soils of low thermal conductivity (0.1-0.2 W m1 K1). Numerical simulations confirm this and suggest that temperature gradients in the first few centimeters of soil may reach 0.5°-1°C mm1 under these extreme conditions. The study bears upon the intrinsic interest of identifying extreme maximum temperatures and yields interesting information regarding the comfort zone of animals (including man).

  2. Maximum vehicle cabin temperatures under different meteorological conditions

    Science.gov (United States)

    Grundstein, Andrew; Meentemeyer, Vernon; Dowd, John

    2009-05-01

    A variety of studies have documented the dangerously high temperatures that may occur within the passenger compartment (cabin) of cars under clear sky conditions, even at relatively low ambient air temperatures. Our study, however, is the first to examine cabin temperatures under variable weather conditions. It uses a unique maximum vehicle cabin temperature dataset in conjunction with directly comparable ambient air temperature, solar radiation, and cloud cover data collected from April through August 2007 in Athens, GA. Maximum cabin temperatures, ranging from 41-76°C, varied considerably depending on the weather conditions and the time of year. Clear days had the highest cabin temperatures, with average values of 68°C in the summer and 61°C in the spring. Cloudy days in both the spring and summer were on average approximately 10°C cooler. Our findings indicate that even on cloudy days with lower ambient air temperatures, vehicle cabin temperatures may reach deadly levels. Additionally, two predictive models of maximum daily vehicle cabin temperatures were developed using commonly available meteorological data. One model uses maximum ambient air temperature and average daily solar radiation while the other uses cloud cover percentage as a surrogate for solar radiation. From these models, two maximum vehicle cabin temperature indices were developed to assess the level of danger. The models and indices may be useful for forecasting hazardous conditions, promoting public awareness, and to estimate past cabin temperatures for use in forensic analyses.

  3. A Hybrid Maximum Power Point Search Method Using Temperature Measurements in Partial Shading Conditions

    Directory of Open Access Journals (Sweden)

    Mroczka Janusz

    2014-12-01

    Full Text Available Photovoltaic panels have a non-linear current-voltage characteristics to produce the maximum power at only one point called the maximum power point. In the case of the uniform illumination a single solar panel shows only one maximum power, which is also the global maximum power point. In the case an irregularly illuminated photovoltaic panel many local maxima on the power-voltage curve can be observed and only one of them is the global maximum. The proposed algorithm detects whether a solar panel is in the uniform insolation conditions. Then an appropriate strategy of tracking the maximum power point is taken using a decision algorithm. The proposed method is simulated in the environment created by the authors, which allows to stimulate photovoltaic panels in real conditions of lighting, temperature and shading.

  4. Localized temperature and chemical reaction control in nanoscale space by nanowire array.

    Science.gov (United States)

    Jin, C Yan; Li, Zhiyong; Williams, R Stanley; Lee, K-Cheol; Park, Inkyu

    2011-11-09

    We introduce a novel method for chemical reaction control with nanoscale spatial resolution based on localized heating by using a well-aligned nanowire array. Numerical and experimental analysis shows that each individual nanowire could be selectively and rapidly Joule heated for local and ultrafast temperature modulation in nanoscale space (e.g., maximum temperature gradient 2.2 K/nm at the nanowire edge; heating/cooling time chemical reactions such as polymer decomposition/cross-linking and direct and localized hydrothermal synthesis of metal oxide nanowires were demonstrated.

  5. Mid-depth temperature maximum in an estuarine lake

    Science.gov (United States)

    Stepanenko, V. M.; Repina, I. A.; Artamonov, A. Yu; Gorin, S. L.; Lykossov, V. N.; Kulyamin, D. V.

    2018-03-01

    The mid-depth temperature maximum (TeM) was measured in an estuarine Bol’shoi Vilyui Lake (Kamchatka peninsula, Russia) in summer 2015. We applied 1D k-ɛ model LAKE to the case, and found it successfully simulating the phenomenon. We argue that the main prerequisite for mid-depth TeM development is a salinity increase below the freshwater mixed layer, sharp enough in order to increase the temperature with depth not to cause convective mixing and double diffusion there. Given that this condition is satisfied, the TeM magnitude is controlled by physical factors which we identified as: radiation absorption below the mixed layer, mixed-layer temperature dynamics, vertical heat conduction and water-sediments heat exchange. In addition to these, we formulate the mechanism of temperature maximum ‘pumping’, resulting from the phase shift between diurnal cycles of mixed-layer depth and temperature maximum magnitude. Based on the LAKE model results we quantify the contribution of the above listed mechanisms and find their individual significance highly sensitive to water turbidity. Relying on physical mechanisms identified we define environmental conditions favouring the summertime TeM development in salinity-stratified lakes as: small-mixed layer depth (roughly, ~wind and cloudless weather. We exemplify the effect of mixed-layer depth on TeM by a set of selected lakes.

  6. Maximum Temperature Detection System for Integrated Circuits

    Science.gov (United States)

    Frankiewicz, Maciej; Kos, Andrzej

    2015-03-01

    The paper describes structure and measurement results of the system detecting present maximum temperature on the surface of an integrated circuit. The system consists of the set of proportional to absolute temperature sensors, temperature processing path and a digital part designed in VHDL. Analogue parts of the circuit where designed with full-custom technique. The system is a part of temperature-controlled oscillator circuit - a power management system based on dynamic frequency scaling method. The oscillator cooperates with microprocessor dedicated for thermal experiments. The whole system is implemented in UMC CMOS 0.18 μm (1.8 V) technology.

  7. Locality of Temperature

    Science.gov (United States)

    Kliesch, M.; Gogolin, C.; Kastoryano, M. J.; Riera, A.; Eisert, J.

    2014-07-01

    This work is concerned with thermal quantum states of Hamiltonians on spin- and fermionic-lattice systems with short-range interactions. We provide results leading to a local definition of temperature, thereby extending the notion of "intensivity of temperature" to interacting quantum models. More precisely, we derive a perturbation formula for thermal states. The influence of the perturbation is exactly given in terms of a generalized covariance. For this covariance, we prove exponential clustering of correlations above a universal critical temperature that upper bounds physical critical temperatures such as the Curie temperature. As a corollary, we obtain that above the critical temperature, thermal states are stable against distant Hamiltonian perturbations. Moreover, our results imply that above the critical temperature, local expectation values can be approximated efficiently in the error and the system size.

  8. Performance analysis and comparison of an Atkinson cycle coupled to variable temperature heat reservoirs under maximum power and maximum power density conditions

    International Nuclear Information System (INIS)

    Wang, P.-Y.; Hou, S.-S.

    2005-01-01

    In this paper, performance analysis and comparison based on the maximum power and maximum power density conditions have been conducted for an Atkinson cycle coupled to variable temperature heat reservoirs. The Atkinson cycle is internally reversible but externally irreversible, since there is external irreversibility of heat transfer during the processes of constant volume heat addition and constant pressure heat rejection. This study is based purely on classical thermodynamic analysis methodology. It should be especially emphasized that all the results and conclusions are based on classical thermodynamics. The power density, defined as the ratio of power output to maximum specific volume in the cycle, is taken as the optimization objective because it considers the effects of engine size as related to investment cost. The results show that an engine design based on maximum power density with constant effectiveness of the hot and cold side heat exchangers or constant inlet temperature ratio of the heat reservoirs will have smaller size but higher efficiency, compression ratio, expansion ratio and maximum temperature than one based on maximum power. From the view points of engine size and thermal efficiency, an engine design based on maximum power density is better than one based on maximum power conditions. However, due to the higher compression ratio and maximum temperature in the cycle, an engine design based on maximum power density conditions requires tougher materials for engine construction than one based on maximum power conditions

  9. Operational forecasting of daily temperatures in the Valencia Region. Part I: maximum temperatures in summer.

    Science.gov (United States)

    Gómez, I.; Estrela, M.

    2009-09-01

    Extreme temperature events have a great impact on human society. Knowledge of summer maximum temperatures is very useful for both the general public and organisations whose workers have to operate in the open, e.g. railways, roadways, tourism, etc. Moreover, summer maximum daily temperatures are considered a parameter of interest and concern since persistent heat-waves can affect areas as diverse as public health, energy consumption, etc. Thus, an accurate forecasting of these temperatures could help to predict heat-wave conditions and permit the implementation of strategies aimed at minimizing the negative effects that high temperatures have on human health. The aim of this work is to evaluate the skill of the RAMS model in determining daily maximum temperatures during summer over the Valencia Region. For this, we have used the real-time configuration of this model currently running at the CEAM Foundation. To carry out the model verification process, we have analysed not only the global behaviour of the model for the whole Valencia Region, but also its behaviour for the individual stations distributed within this area. The study has been performed for the summer forecast period of 1 June - 30 September, 2007. The results obtained are encouraging and indicate a good agreement between the observed and simulated maximum temperatures. Moreover, the model captures quite well the temperatures in the extreme heat episodes. Acknowledgement. This work was supported by "GRACCIE" (CSD2007-00067, Programa Consolider-Ingenio 2010), by the Spanish Ministerio de Educación y Ciencia, contract number CGL2005-03386/CLI, and by the Regional Government of Valencia Conselleria de Sanitat, contract "Simulación de las olas de calor e invasiones de frío y su regionalización en la Comunidad Valenciana" ("Heat wave and cold invasion simulation and their regionalization at Valencia Region"). The CEAM Foundation is supported by the Generalitat Valenciana and BANCAIXA (Valencia, Spain).

  10. Modeling maximum daily temperature using a varying coefficient regression model

    Science.gov (United States)

    Han Li; Xinwei Deng; Dong-Yum Kim; Eric P. Smith

    2014-01-01

    Relationships between stream water and air temperatures are often modeled using linear or nonlinear regression methods. Despite a strong relationship between water and air temperatures and a variety of models that are effective for data summarized on a weekly basis, such models did not yield consistently good predictions for summaries such as daily maximum temperature...

  11. Method for local temperature measurement in a nanoreactor for in situ high-resolution electron microscopy.

    Science.gov (United States)

    Vendelbo, S B; Kooyman, P J; Creemer, J F; Morana, B; Mele, L; Dona, P; Nelissen, B J; Helveg, S

    2013-10-01

    In situ high-resolution transmission electron microscopy (TEM) of solids under reactive gas conditions can be facilitated by microelectromechanical system devices called nanoreactors. These nanoreactors are windowed cells containing nanoliter volumes of gas at ambient pressures and elevated temperatures. However, due to the high spatial confinement of the reaction environment, traditional methods for measuring process parameters, such as the local temperature, are difficult to apply. To address this issue, we devise an electron energy loss spectroscopy (EELS) method that probes the local temperature of the reaction volume under inspection by the electron beam. The local gas density, as measured using quantitative EELS, is combined with the inherent relation between gas density and temperature, as described by the ideal gas law, to obtain the local temperature. Using this method we determined the temperature gradient in a nanoreactor in situ, while the average, global temperature was monitored by a traditional measurement of the electrical resistivity of the heater. The local gas temperatures had a maximum of 56 °C deviation from the global heater values under the applied conditions. The local temperatures, obtained with the proposed method, are in good agreement with predictions from an analytical model. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Influence of aliphatic amides on the temperature of maximum density of water

    International Nuclear Information System (INIS)

    Torres, Andrés Felipe; Romero, Carmen M.

    2017-01-01

    Highlights: • The addition of amides decreases the temperature of maximum density of water suggesting a disruptive effect on water structure. • The amides in aqueous solution do not follow the Despretz equation in the concentration range considered. • The temperature shift Δθ as a function of molality is represented by a second order equation. • The Despretz constants were determined considering the dilute concentration region for each amide solution. • Solute disrupting effect of amides becomes smaller as its hydrophobic character increases. - Abstract: The influence of dissolved substances on the temperature of the maximum density of water has been studied in relation to their effect on water structure as they can change the equilibrium between structured and unstructured species of water. However, most work has been performed using salts and the studies with small organic solutes such as amides are scarce. In this work, the effect of acetamide, propionamide and butyramide on the temperature of maximum density of water was determined from density measurements using a magnetic float densimeter. Densities of aqueous solutions were measured within the temperature range from T = (275.65–278.65) K at intervals of 0.50 K in the concentration range between (0.10000 and 0.80000) mol·kg −1 . The temperature of maximum density was determined from the experimental results. The effect of the three amides is to decrease the temperature of maximum density of water and the change does not follow the Despretz equation. The results are discussed in terms of solute-water interactions and the disrupting effect of amides on water structure.

  13. Effects of fasting on maximum thermogenesis in temperature-acclimated rats

    Science.gov (United States)

    Wang, L. C. H.

    1981-09-01

    To further investigate the limiting effect of substrates on maximum thermogenesis in acute cold exposure, the present study examined the prevalence of this effect at different thermogenic capabilities consequent to cold- or warm-acclimation. Male Sprague-Dawley rats (n=11) were acclimated to 6, 16 and 26‡C, in succession, their thermogenic capabilities after each acclimation temperature were measured under helium-oxygen (21% oxygen, balance helium) at -10‡C after overnight fasting or feeding. Regardless of feeding conditions, both maximum and total heat production were significantly greater in 6>16>26‡C-acclimated conditions. In the fed state, the total heat production was significantly greater than that in the fasted state at all acclimating temperatures but the maximum thermogenesis was significant greater only in the 6 and 16‡C-acclimated states. The results indicate that the limiting effect of substrates on maximum and total thermogenesis is independent of the magnitude of thermogenic capability, suggesting a substrate-dependent component in restricting the effective expression of existing aerobic metabolic capability even under severe stress.

  14. Local Times of Galactic Cosmic Ray Intensity Maximum and Minimum in the Diurnal Variation

    Directory of Open Access Journals (Sweden)

    Su Yeon Oh

    2006-06-01

    Full Text Available The Diurnal variation of galactic cosmic ray (GCR flux intensity observed by the ground Neutron Monitor (NM shows a sinusoidal pattern with the amplitude of 1sim 2 % of daily mean. We carried out a statistical study on tendencies of the local times of GCR intensity daily maximum and minimum. To test the influences of the solar activity and the location (cut-off rigidity on the distribution in the local times of maximum and minimum GCR intensity, we have examined the data of 1996 (solar minimum and 2000 (solar maximum at the low-latitude Haleakala (latitude: 20.72 N, cut-off rigidity: 12.91 GeV and the high-latitude Oulu (latitude: 65.05 N, cut-off rigidity: 0.81 GeV NM stations. The most frequent local times of the GCR intensity daily maximum and minimum come later about 2sim3 hours in the solar activity maximum year 2000 than in the solar activity minimum year 1996. Oulu NM station whose cut-off rigidity is smaller has the most frequent local times of the GCR intensity maximum and minimum later by 2sim3 hours from those of Haleakala station. This feature is more evident at the solar maximum. The phase of the daily variation in GCR is dependent upon the interplanetary magnetic field varying with the solar activity and the cut-off rigidity varying with the geographic latitude.

  15. Maximum and minimum entropy states yielding local continuity bounds

    Science.gov (United States)

    Hanson, Eric P.; Datta, Nilanjana

    2018-04-01

    Given an arbitrary quantum state (σ), we obtain an explicit construction of a state ρɛ * ( σ ) [respectively, ρ * , ɛ ( σ ) ] which has the maximum (respectively, minimum) entropy among all states which lie in a specified neighborhood (ɛ-ball) of σ. Computing the entropy of these states leads to a local strengthening of the continuity bound of the von Neumann entropy, i.e., the Audenaert-Fannes inequality. Our bound is local in the sense that it depends on the spectrum of σ. The states ρɛ * ( σ ) and ρ * , ɛ (σ) depend only on the geometry of the ɛ-ball and are in fact optimizers for a larger class of entropies. These include the Rényi entropy and the minimum- and maximum-entropies, providing explicit formulas for certain smoothed quantities. This allows us to obtain local continuity bounds for these quantities as well. In obtaining this bound, we first derive a more general result which may be of independent interest, namely, a necessary and sufficient condition under which a state maximizes a concave and Gâteaux-differentiable function in an ɛ-ball around a given state σ. Examples of such a function include the von Neumann entropy and the conditional entropy of bipartite states. Our proofs employ tools from the theory of convex optimization under non-differentiable constraints, in particular Fermat's rule, and majorization theory.

  16. Stochastic modelling of the monthly average maximum and minimum temperature patterns in India 1981-2015

    Science.gov (United States)

    Narasimha Murthy, K. V.; Saravana, R.; Vijaya Kumar, K.

    2018-04-01

    The paper investigates the stochastic modelling and forecasting of monthly average maximum and minimum temperature patterns through suitable seasonal auto regressive integrated moving average (SARIMA) model for the period 1981-2015 in India. The variations and distributions of monthly maximum and minimum temperatures are analyzed through Box plots and cumulative distribution functions. The time series plot indicates that the maximum temperature series contain sharp peaks in almost all the years, while it is not true for the minimum temperature series, so both the series are modelled separately. The possible SARIMA model has been chosen based on observing autocorrelation function (ACF), partial autocorrelation function (PACF), and inverse autocorrelation function (IACF) of the logarithmic transformed temperature series. The SARIMA (1, 0, 0) × (0, 1, 1)12 model is selected for monthly average maximum and minimum temperature series based on minimum Bayesian information criteria. The model parameters are obtained using maximum-likelihood method with the help of standard error of residuals. The adequacy of the selected model is determined using correlation diagnostic checking through ACF, PACF, IACF, and p values of Ljung-Box test statistic of residuals and using normal diagnostic checking through the kernel and normal density curves of histogram and Q-Q plot. Finally, the forecasting of monthly maximum and minimum temperature patterns of India for the next 3 years has been noticed with the help of selected model.

  17. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum

    Science.gov (United States)

    Sluijs, A.; Schouten, S.; Pagani, M.; Woltering, M.; Brinkhuis, H.; Damste, J.S.S.; Dickens, G.R.; Huber, M.; Reichart, G.-J.; Stein, R.; Matthiessen, J.; Lourens, L.J.; Pedentchouk, N.; Backman, J.; Moran, K.; Clemens, S.; Cronin, T.; Eynaud, F.; Gattacceca, J.; Jakobsson, M.; Jordan, R.; Kaminski, M.; King, J.; Koc, N.; Martinez, N.C.; McInroy, D.; Moore, T.C.; O'Regan, M.; Onodera, J.; Palike, H.; Rea, B.; Rio, D.; Sakamoto, T.; Smith, D.C.; St John, K.E.K.; Suto, I.; Suzuki, N.; Takahashi, K.; Watanabe, M. E.; Yamamoto, M.

    2006-01-01

    The Palaeocene/Eocene thermal maximum, ???55 million years ago, was a brief period of widespread, extreme climatic warming, that was associated with massive atmospheric greenhouse gas input. Although aspects of the resulting environmental changes are well documented at low latitudes, no data were available to quantify simultaneous changes in the Arctic region. Here we identify the Palaeocene/Eocene thermal maximum in a marine sedimentary sequence obtained during the Arctic Coring Expedition. We show that sea surface temperatures near the North Pole increased from ???18??C to over 23??C during this event. Such warm values imply the absence of ice and thus exclude the influence of ice-albedo feedbacks on this Arctic warming. At the same time, sea level rose while anoxic and euxinic conditions developed in the ocean's bottom waters and photic zone, respectively. Increasing temperature and sea level match expectations based on palaeoclimate model simulations, but the absolute polar temperatures that we derive before, during and after the event are more than 10??C warmer than those model-predicted. This suggests that higher-than-modern greenhouse gas concentrations must have operated in conjunction with other feedback mechanisms-perhaps polar stratospheric clouds or hurricane-induced ocean mixing-to amplify early Palaeogene polar temperatures. ?? 2006 Nature Publishing Group.

  18. Discontinuity of maximum entropy inference and quantum phase transitions

    International Nuclear Information System (INIS)

    Chen, Jianxin; Ji, Zhengfeng; Yu, Nengkun; Zeng, Bei; Li, Chi-Kwong; Poon, Yiu-Tung; Shen, Yi; Zhou, Duanlu

    2015-01-01

    In this paper, we discuss the connection between two genuinely quantum phenomena—the discontinuity of quantum maximum entropy inference and quantum phase transitions at zero temperature. It is shown that the discontinuity of the maximum entropy inference of local observable measurements signals the non-local type of transitions, where local density matrices of the ground state change smoothly at the transition point. We then propose to use the quantum conditional mutual information of the ground state as an indicator to detect the discontinuity and the non-local type of quantum phase transitions in the thermodynamic limit. (paper)

  19. Uninterrupted thermoelectric energy harvesting using temperature-sensor-based maximum power point tracking system

    International Nuclear Information System (INIS)

    Park, Jae-Do; Lee, Hohyun; Bond, Matthew

    2014-01-01

    Highlights: • Feedforward MPPT scheme for uninterrupted TEG energy harvesting is suggested. • Temperature sensors are used to avoid current measurement or source disconnection. • MPP voltage reference is generated based on OCV vs. temperature differential model. • Optimal operating condition is maintained using hysteresis controller. • Any type of power converter can be used in the proposed scheme. - Abstract: In this paper, a thermoelectric generator (TEG) energy harvesting system with a temperature-sensor-based maximum power point tracking (MPPT) method is presented. Conventional MPPT algorithms for photovoltaic cells may not be suitable for thermoelectric power generation because a significant amount of time is required for TEG systems to reach a steady state. Moreover, complexity and additional power consumption in conventional circuits and periodic disconnection of power source are not desirable for low-power energy harvesting applications. The proposed system can track the varying maximum power point (MPP) with a simple and inexpensive temperature-sensor-based circuit without instantaneous power measurement or TEG disconnection. This system uses TEG’s open circuit voltage (OCV) characteristic with respect to temperature gradient to generate a proper reference voltage signal, i.e., half of the TEG’s OCV. The power converter controller maintains the TEG output voltage at the reference level so that the maximum power can be extracted for the given temperature condition. This feedforward MPPT scheme is inherently stable and can be implemented without any complex microcontroller circuit. The proposed system has been validated analytically and experimentally, and shows a maximum power tracking error of 1.15%

  20. Geodesic acoustic eigenmode for tokamak equilibrium with maximum of local GAM frequency

    Energy Technology Data Exchange (ETDEWEB)

    Lakhin, V.P. [NRC “Kurchatov Institute”, Moscow (Russian Federation); Sorokina, E.A., E-mail: sorokina.ekaterina@gmail.com [NRC “Kurchatov Institute”, Moscow (Russian Federation); Peoples' Friendship University of Russia, Moscow (Russian Federation)

    2014-01-24

    The geodesic acoustic eigenmode for tokamak equilibrium with the maximum of local GAM frequency is found analytically in the frame of MHD model. The analysis is based on the asymptotic matching technique.

  1. Maximum Smoke Temperature in Non-Smoke Model Evacuation Region for Semi-Transverse Tunnel Fire

    OpenAIRE

    B. Lou; Y. Qiu; X. Long

    2017-01-01

    Smoke temperature distribution in non-smoke evacuation under different mechanical smoke exhaust rates of semi-transverse tunnel fire were studied by FDS numerical simulation in this paper. The effect of fire heat release rate (10MW 20MW and 30MW) and exhaust rate (from 0 to 160m3/s) on the maximum smoke temperature in non-smoke evacuation region was discussed. Results show that the maximum smoke temperature in non-smoke evacuation region decreased with smoke exhaust rate. Plug-holing was obse...

  2. Modelling the occurrence of heat waves in maximum and minimum temperatures over Spain and projections for the period 2031-60

    Science.gov (United States)

    Abaurrea, J.; Asín, J.; Cebrián, A. C.

    2018-02-01

    The occurrence of extreme heat events in maximum and minimum daily temperatures is modelled using a non-homogeneous common Poisson shock process. It is applied to five Spanish locations, representative of the most common climates over the Iberian Peninsula. The model is based on an excess over threshold approach and distinguishes three types of extreme events: only in maximum temperature, only in minimum temperature and in both of them (simultaneous events). It takes into account the dependence between the occurrence of extreme events in both temperatures and its parameters are expressed as functions of time and temperature related covariates. The fitted models allow us to characterize the occurrence of extreme heat events and to compare their evolution in the different climates during the observed period. This model is also a useful tool for obtaining local projections of the occurrence rate of extreme heat events under climate change conditions, using the future downscaled temperature trajectories generated by Earth System Models. The projections for 2031-60 under scenarios RCP4.5, RCP6.0 and RCP8.5 are obtained and analysed using the trajectories from four earth system models which have successfully passed a preliminary control analysis. Different graphical tools and summary measures of the projected daily intensities are used to quantify the climate change on a local scale. A high increase in the occurrence of extreme heat events, mainly in July and August, is projected in all the locations, all types of event and in the three scenarios, although in 2051-60 the increase is higher under RCP8.5. However, relevant differences are found between the evolution in the different climates and the types of event, with a specially high increase in the simultaneous ones.

  3. Statistical assessment of changes in extreme maximum temperatures over Saudi Arabia, 1985-2014

    Science.gov (United States)

    Raggad, Bechir

    2018-05-01

    In this study, two statistical approaches were adopted in the analysis of observed maximum temperature data collected from fifteen stations over Saudi Arabia during the period 1985-2014. In the first step, the behavior of extreme temperatures was analyzed and their changes were quantified with respect to the Expert Team on Climate Change Detection Monitoring indices. The results showed a general warming trend over most stations, in maximum temperature-related indices, during the period of analysis. In the second step, stationary and non-stationary extreme-value analyses were conducted for the temperature data. The results revealed that the non-stationary model with increasing linear trend in its location parameter outperforms the other models for two-thirds of the stations. Additionally, the 10-, 50-, and 100-year return levels were found to change with time considerably and that the maximum temperature could start to reappear in the different T-year return period for most stations. This analysis shows the importance of taking account the change over time in the estimation of return levels and therefore justifies the use of the non-stationary generalized extreme value distribution model to describe most of the data. Furthermore, these last findings are in line with the result of significant warming trends found in climate indices analyses.

  4. Future changes over the Himalayas: Maximum and minimum temperature

    Science.gov (United States)

    Dimri, A. P.; Kumar, D.; Choudhary, A.; Maharana, P.

    2018-03-01

    An assessment of the projection of minimum and maximum air temperature over the Indian Himalayan region (IHR) from the COordinated Regional Climate Downscaling EXperiment- South Asia (hereafter, CORDEX-SA) regional climate model (RCM) experiments have been carried out under two different Representative Concentration Pathway (RCP) scenarios. The major aim of this study is to assess the probable future changes in the minimum and maximum climatology and its long-term trend under different RCPs along with the elevation dependent warming over the IHR. A number of statistical analysis such as changes in mean climatology, long-term spatial trend and probability distribution function are carried out to detect the signals of changes in climate. The study also tries to quantify the uncertainties associated with different model experiments and their ensemble in space, time and for different seasons. The model experiments and their ensemble show prominent cold bias over Himalayas for present climate. However, statistically significant higher warming rate (0.23-0.52 °C/decade) for both minimum and maximum air temperature (Tmin and Tmax) is observed for all the seasons under both RCPs. The rate of warming intensifies with the increase in the radiative forcing under a range of greenhouse gas scenarios starting from RCP4.5 to RCP8.5. In addition to this, a wide range of spatial variability and disagreements in the magnitude of trend between different models describes the uncertainty associated with the model projections and scenarios. The projected rate of increase of Tmin may destabilize the snow formation at the higher altitudes in the northern and western parts of Himalayan region, while rising trend of Tmax over southern flank may effectively melt more snow cover. Such combined effect of rising trend of Tmin and Tmax may pose a potential threat to the glacial deposits. The overall trend of Diurnal temperature range (DTR) portrays increasing trend across entire area with

  5. Mechanical response of local rapid cooling by spray water on constrained steel frame structure at high temperature in fire

    Directory of Open Access Journals (Sweden)

    Xia Yunchun

    2015-01-01

    Full Text Available Locally rapid cooling of spray water had strong impact on high temperature steel structure. When temperature of beam reached 600°C and cooling rate was more than 20°C/s, the maximum axial tension could reach more than 5 times of the originally compressive force. The compressive bending moment at joint of beam-to-column changed to tensile bending moment, and the maximum bending moment could reach above 4 times as that when heated. After rapid cooling by spray water, deflection at mid-span increased slightly.

  6. New results on equatorial thermospheric winds and the midnight temperature maximum

    Directory of Open Access Journals (Sweden)

    J. Meriwether

    2008-03-01

    Full Text Available Optical observations of thermospheric winds and temperatures determined with high resolution measurements of Doppler shifts and Doppler widths of the OI 630-nm equatorial nightglow emission have been made with improved accuracy at Arequipa, Peru (16.4° S, 71.4° W with an imaging Fabry-Perot interferometer. An observing procedure previously used at Arecibo Observatory was applied to achieve increased spatial and temporal sampling of the thermospheric wind and temperature with the selection of eight azimuthal directions, equally spaced from 0 to 360°, at a zenith angle of 60°. By assuming the equivalence of longitude and local time, the data obtained using this technique is analyzed to determine the mean neutral wind speeds and mean horizontal gradients of the wind field in the zonal and meridional directions. The new temperature measurements obtained with the improved instrumental accuracy clearly show the midnight temperature maximum (MTM peak with amplitudes of 25 to 200 K in all directions observed for most nights. The horizontal wind field maps calculated from the mean winds and gradients show the MTM peak is always preceded by an equatorward wind surge lasting 1–2 h. The results also show for winter events a meridional wind abatement seen after the MTM peak. On one occasion, near the September equinox, a reversal was observed during the poleward transit of the MTM over Arequipa. Analysis inferring vertical winds from the observed convergence yielded inconsistent results, calling into question the validity of this calculation for the MTM structure at equatorial latitudes during solar minimum. Comparison of the observations with the predictions of the NCAR general circulation model indicates that the model fails to reproduce the observed amplitude by a factor of 5 or more. This is attributed in part to the lack of adequate spatial resolution in the model as the MTM phenomenon takes place within a scale of 300–500 km and ~45 min in

  7. Assessment of extreme value distributions for maximum temperature in the Mediterranean area

    Science.gov (United States)

    Beck, Alexander; Hertig, Elke; Jacobeit, Jucundus

    2015-04-01

    Extreme maximum temperatures highly affect the natural as well as the societal environment Heat stress has great effects on flora, fauna and humans and culminates in heat related morbidity and mortality. Agriculture and different industries are severely affected by extreme air temperatures. Even more under climate change conditions, it is necessary to detect potential hazards which arise from changes in the distributional parameters of extreme values, and this is especially relevant for the Mediterranean region which is characterized as a climate change hot spot. Therefore statistical approaches are developed to estimate these parameters with a focus on non-stationarities emerging in the relationship between regional climate variables and their large-scale predictors like sea level pressure, geopotential heights, atmospheric temperatures and relative humidity. Gridded maximum temperature data from the daily E-OBS dataset (Haylock et al., 2008) with a spatial resolution of 0.25° x 0.25° from January 1950 until December 2012 are the predictands for the present analyses. A s-mode principal component analysis (PCA) has been performed in order to reduce data dimension and to retain different regions of similar maximum temperature variability. The grid box with the highest PC-loading represents the corresponding principal component. A central part of the analyses is the model development for temperature extremes under the use of extreme value statistics. A combined model is derived consisting of a Generalized Pareto Distribution (GPD) model and a quantile regression (QR) model which determines the GPD location parameters. The QR model as well as the scale parameters of the GPD model are conditioned by various large-scale predictor variables. In order to account for potential non-stationarities in the predictors-temperature relationships, a special calibration and validation scheme is applied, respectively. Haylock, M. R., N. Hofstra, A. M. G. Klein Tank, E. J. Klok, P

  8. Maximum temperature accounts for annual soil CO2 efflux in temperate forests of Northern China

    Science.gov (United States)

    Zhou, Zhiyong; Xu, Meili; Kang, Fengfeng; Jianxin Sun, Osbert

    2015-01-01

    It will help understand the representation legality of soil temperature to explore the correlations of soil respiration with variant properties of soil temperature. Soil temperature at 10 cm depth was hourly logged through twelve months. Basing on the measured soil temperature, soil respiration at different temporal scales were calculated using empirical functions for temperate forests. On monthly scale, soil respiration significantly correlated with maximum, minimum, mean and accumulated effective soil temperatures. Annual soil respiration varied from 409 g C m−2 in coniferous forest to 570 g C m−2 in mixed forest and to 692 g C m−2 in broadleaved forest, and was markedly explained by mean soil temperatures of the warmest day, July and summer, separately. These three soil temperatures reflected the maximum values on diurnal, monthly and annual scales. In accordance with their higher temperatures, summer soil respiration accounted for 51% of annual soil respiration across forest types, and broadleaved forest also had higher soil organic carbon content (SOC) and soil microbial biomass carbon content (SMBC), but a lower contribution of SMBC to SOC. This added proof to the findings that maximum soil temperature may accelerate the transformation of SOC to CO2-C via stimulating activities of soil microorganisms. PMID:26179467

  9. EXTREME MAXIMUM AND MINIMUM AIR TEMPERATURE IN MEDİTERRANEAN COASTS IN TURKEY

    Directory of Open Access Journals (Sweden)

    Barbaros Gönençgil

    2016-01-01

    Full Text Available In this study, we determined extreme maximum and minimum temperatures in both summer and winter seasons at the stations in the Mediterranean coastal areas of Turkey.In the study, the data of 24 meteorological stations for the daily maximum and minimumtemperatures of the period from 1970–2010 were used. From this database, a set of four extreme temperature indices applied warm (TX90 and cold (TN10 days and warm spells (WSDI and cold spell duration (CSDI. The threshold values were calculated for each station to determine the temperatures that were above and below the seasonal norms in winter and summer. The TX90 index displays a positive statistically significant trend, while TN10 display negative nonsignificant trend. The occurrence of warm spells shows statistically significant increasing trend while the cold spells shows significantly decreasing trend over the Mediterranean coastline in Turkey.

  10. Maximum And Minimum Temperature Trends In Mexico For The Last 31 Years

    Science.gov (United States)

    Romero-Centeno, R.; Zavala-Hidalgo, J.; Allende Arandia, M. E.; Carrasco-Mijarez, N.; Calderon-Bustamante, O.

    2013-05-01

    Based on high-resolution (1') daily maps of the maximum and minimum temperatures in Mexico, an analysis of the last 31-year trends is performed. The maps were generated using all the available information from more than 5,000 stations of the Mexican Weather Service (Servicio Meteorológico Nacional, SMN) for the period 1979-2009, along with data from the North American Regional Reanalysis (NARR). The data processing procedure includes a quality control step, in order to eliminate erroneous daily data, and make use of a high-resolution digital elevation model (from GEBCO), the relationship between air temperature and elevation by means of the average environmental lapse rate, and interpolation algorithms (linear and inverse-distance weighting). Based on the monthly gridded maps for the mentioned period, the maximum and minimum temperature trends calculated by least-squares linear regression and their statistical significance are obtained and discussed.

  11. Trends in mean maximum temperature, mean minimum temperature and mean relative humidity for Lautoka, Fiji during 2003 – 2013

    Directory of Open Access Journals (Sweden)

    Syed S. Ghani

    2017-12-01

    Full Text Available The current work observes the trends in Lautoka’s temperature and relative humidity during the period 2003 – 2013, which were analyzed using the recently updated data obtained from Fiji Meteorological Services (FMS. Four elements, mean maximum temperature, mean minimum temperature along with diurnal temperature range (DTR and mean relative humidity are investigated. From 2003–2013, the annual mean temperature has been enhanced between 0.02 and 0.080C. The heating is more in minimum temperature than in maximum temperature, resulting in a decrease of diurnal temperature range. The statistically significant increase was mostly seen during the summer months of December and January. Mean Relative Humidity has also increased from 3% to 8%. The bases of abnormal climate conditions are also studied. These bases were defined with temperature or humidity anomalies in their appropriate time sequences. These established the observed findings and exhibited that climate has been becoming gradually damper and heater throughout Lautoka during this period. While we are only at an initial phase in the probable inclinations of temperature changes, ecological reactions to recent climate change are already evidently noticeable. So it is proposed that it would be easier to identify climate alteration in a small island nation like Fiji.

  12. New England observed and predicted growing season maximum stream/river temperature points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted growing season maximum stream/river temperatures in New England based on a spatial statistical...

  13. Effect of glycine, DL-alanine and DL-2-aminobutyric acid on the temperature of maximum density of water

    International Nuclear Information System (INIS)

    Romero, Carmen M.; Torres, Andres Felipe

    2015-01-01

    Highlights: • Effect of α-amino acids on the temperature of maximum density of water is presented. • The addition of α-amino acids decreases the temperature of maximum density of water. • Despretz constants suggest that the amino acids behave as water structure breakers. • Despretz constants decrease as the number of CH 2 groups of the amino acid increase. • Solute disrupting effect becomes smaller as its hydrophobic character increases. - Abstract: The effect of glycine, DL-alanine and DL-2-aminobutyric acid on the temperature of maximum density of water was determined from density measurements using a magnetic float densimeter. Densities of aqueous solutions were measured within the temperature range from T = (275.65 to 278.65) K at intervals of T = 0.50 K over the concentration range between (0.0300 and 0.1000) mol · kg −1 . A linear relationship between density and concentration was obtained for all the systems in the temperature range considered. The temperature of maximum density was determined from the experimental results. The effect of the three amino acids is to decrease the temperature of maximum density of water and the decrease is proportional to molality according to Despretz equation. The effect of the amino acids on the temperature of maximum density decreases as the number of methylene groups of the alkyl chain becomes larger. The results are discussed in terms of (solute + water) interactions and the effect of amino acids on water structure

  14. Measurement of the temperature of density maximum of water solutions using a convective flow technique

    OpenAIRE

    Cawley, M.F.; McGlynn, D.; Mooney, P.A.

    2006-01-01

    A technique is described which yields an accurate measurement of the temperature of density maximum of fluids which exhibit such anomalous behaviour. The method relies on the detection of changes in convective flow in a rectangular cavity containing the test fluid.The normal single-cell convection which occurs in the presence of a horizontal temperature gradient changes to a double cell configuration in the vicinity of the density maximum, and this transition manifests itself in changes in th...

  15. Device for determining the maximum temperature of an environment

    International Nuclear Information System (INIS)

    Cartier, Louis.

    1976-01-01

    This invention concerns a device for determining the maximum temperature of an environment. Its main characteristic is a central cylindrical rod on which can slide two identical tubes, the facing ends of which are placed end to end and the far ends are shaped to provide a sliding friction along the rod. The rod and tubes are fabricated in materials of which the linear expansion factors are different in value. The far ends are composed of tongs of which the fingers, fitted with claws, bear on the central rod. Because of this arrangement of the device the two tubes, placed end to end on being fitted, can expand under the effect of a rise in the temperature of the environment into which the device is introduced, with the result that there occurs an increase in the distance between the two far ends. This distance is maximal when the device is raised to its highest temperature. The far ends are shaped to allow the tubes to slide under the effect of expansion but to prevent sliding in the opposite direction when the device is taken back into the open air and the temperature drops to within ambient temperature. It follows that the tubes tend to return to their initial length and the ends that were placed end to end when fitted now have a gap between them. The measurement of this gap makes it possible to know the maximal temperature sought [fr

  16. Local temperature in quantum thermal states

    International Nuclear Information System (INIS)

    Garcia-Saez, Artur; Ferraro, Alessandro; Acin, Antonio

    2009-01-01

    We consider blocks of quantum spins in a chain at thermal equilibrium, focusing on their properties from a thermodynamical perspective. In a classical system the temperature behaves as an intensive magnitude, above a certain block size, regardless of the actual value of the temperature itself. However, a deviation from this behavior is expected in quantum systems. In particular, we see that under some conditions the description of the blocks as thermal states with the same global temperature as the whole chain fails. We analyze this issue by employing the quantum fidelity as a figure of merit, singling out in detail the departure from the classical behavior. As it may be expected, we see that quantum features are more prominent at low temperatures and are affected by the presence of zero-temperature quantum phase transitions. Interestingly, we show that the blocks can be considered indeed as thermal states with a high fidelity, provided an effective local temperature is properly identified. Such a result may originate from typical properties of reduced subsystems of energy-constrained Hilbert spaces. Finally, the relation between local and global temperatures is analyzed as a function of the size of the blocks and the system parameters.

  17. Local-scale analysis of temperature patterns over Poland during heatwave events

    Science.gov (United States)

    Krzyżewska, Agnieszka; Dyer, Jamie

    2018-01-01

    Heatwaves are predicted to increase in frequency, duration, and severity in the future, including over Central Europe where populations are sensitive to extreme temperature. This paper studies six recent major heatwave events over Poland from 2006 through 2015 using regional-scale simulations (10-km grid spacing, hourly frequency) from the Weather Research and Forecast (WRF) model to define local-scale 2-m temperature patterns. For this purpose, a heatwave is defined as at least three consecutive days with maximum 2-m air temperature exceeding 30 °C. The WRF simulations were validated using maximum daily 2-m temperature observations from 12 meteorological stations in select Polish cities, which were selected to have even spatial coverage across the study area. Synoptic analysis of the six study events shows that the inflow of tropical air masses from the south is the primary driver of heatwave onset and maintenance, the highest temperatures (and most vulnerable areas) occur over arable land and artificial surfaces in central and western Poland, while coastal areas in the north, mountain areas in the south, and forested and mosaic areas of smaller fields and pastures of the northwest, northeast, and southeast are less affected by prolonged periods of elevated temperatures. In general, regional differences in 2-m temperature between the hottest and coolest areas is about 2-4 °C. Large urban areas like Warsaw, or the large complex of artificial areas in the conurbation of Silesian cities, are also generally warmer than surrounding areas by roughly 2-4 °C, and even up to 6 °C, especially during the night. Additionally, hot air from the south of Poland flows through a low-lying area between two mountain ranges (Sudetes and Carpathian Mountains)—the so-called Moravian Gate—hitting densely populated urban areas (Silesian cities) and Cracow. These patterns occur only during high-pressure synoptic conditions with low cloudiness and wind and without any active fronts

  18. Trends in Mean Annual Minimum and Maximum Near Surface Temperature in Nairobi City, Kenya

    Directory of Open Access Journals (Sweden)

    George Lukoye Makokha

    2010-01-01

    Full Text Available This paper examines the long-term urban modification of mean annual conditions of near surface temperature in Nairobi City. Data from four weather stations situated in Nairobi were collected from the Kenya Meteorological Department for the period from 1966 to 1999 inclusive. The data included mean annual maximum and minimum temperatures, and was first subjected to homogeneity test before analysis. Both linear regression and Mann-Kendall rank test were used to discern the mean annual trends. Results show that the change of temperature over the thirty-four years study period is higher for minimum temperature than maximum temperature. The warming trends began earlier and are more significant at the urban stations than is the case at the sub-urban stations, an indication of the spread of urbanisation from the built-up Central Business District (CBD to the suburbs. The established significant warming trends in minimum temperature, which are likely to reach higher proportions in future, pose serious challenges on climate and urban planning of the city. In particular the effect of increased minimum temperature on human physiological comfort, building and urban design, wind circulation and air pollution needs to be incorporated in future urban planning programmes of the city.

  19. Temperature dependence of attitude sensor coalignments on the Solar Maximum Mission (SMM)

    Science.gov (United States)

    Pitone, D. S.; Eudell, A. H.; Patt, F. S.

    1990-01-01

    The temperature correlation of the relative coalignment between the fine-pointing sun sensor and fixed-head star trackers measured on the Solar Maximum Mission (SMM) is analyzed. An overview of the SMM, including mission history and configuration, is given. Possible causes of the misalignment variation are discussed, with focus placed on spacecraft bending due to solar-radiation pressure, electronic or mechanical changes in the sensors, uncertainty in the attitude solutions, and mounting-plate expansion and contraction due to thermal effects. Yaw misalignment variation from the temperature profile is assessed, and suggestions for spacecraft operations are presented, involving methods to incorporate flight measurements of the temperature-versus-alignment function and its variance in operational procedures and the spacecraft structure temperatures in the attitude telemetry record.

  20. Novel localized heating technique on centrifugal microfluidic disc with wireless temperature monitoring system.

    Science.gov (United States)

    Joseph, Karunan; Ibrahim, Fatimah; Cho, Jongman

    2015-01-01

    Recent advances in the field of centrifugal microfluidic disc suggest the need for electrical interface in the disc to perform active biomedical assays. In this paper, we have demonstrated an active application powered by the energy harvested from the rotation of the centrifugal microfluidic disc. A novel integration of power harvester disc onto centrifugal microfluidic disc to perform localized heating technique is the main idea of our paper. The power harvester disc utilizing electromagnetic induction mechanism generates electrical energy from the rotation of the disc. This contributes to the heat generation by the embedded heater on the localized heating disc. The main characteristic observed in our experiment is the heating pattern in relative to the rotation of the disc. The heating pattern is monitored wirelessly with a digital temperature sensing system also embedded on the disc. Maximum temperature achieved is 82 °C at rotational speed of 2000 RPM. The technique proves to be effective for continuous heating without the need to stop the centrifugal motion of the disc.

  1. Linear Time Local Approximation Algorithm for Maximum Stable Marriage

    Directory of Open Access Journals (Sweden)

    Zoltán Király

    2013-08-01

    Full Text Available We consider a two-sided market under incomplete preference lists with ties, where the goal is to find a maximum size stable matching. The problem is APX-hard, and a 3/2-approximation was given by McDermid [1]. This algorithm has a non-linear running time, and, more importantly needs global knowledge of all preference lists. We present a very natural, economically reasonable, local, linear time algorithm with the same ratio, using some ideas of Paluch [2]. In this algorithm every person make decisions using only their own list, and some information asked from members of these lists (as in the case of the famous algorithm of Gale and Shapley. Some consequences to the Hospitals/Residents problem are also discussed.

  2. Probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty from maximum temperature metric selection

    Science.gov (United States)

    DeWeber, Jefferson T.; Wagner, Tyler

    2018-01-01

    Predictions of the projected changes in species distributions and potential adaptation action benefits can help guide conservation actions. There is substantial uncertainty in projecting species distributions into an unknown future, however, which can undermine confidence in predictions or misdirect conservation actions if not properly considered. Recent studies have shown that the selection of alternative climate metrics describing very different climatic aspects (e.g., mean air temperature vs. mean precipitation) can be a substantial source of projection uncertainty. It is unclear, however, how much projection uncertainty might stem from selecting among highly correlated, ecologically similar climate metrics (e.g., maximum temperature in July, maximum 30‐day temperature) describing the same climatic aspect (e.g., maximum temperatures) known to limit a species’ distribution. It is also unclear how projection uncertainty might propagate into predictions of the potential benefits of adaptation actions that might lessen climate change effects. We provide probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty stemming from the selection of four maximum temperature metrics for brook trout (Salvelinus fontinalis), a cold‐water salmonid of conservation concern in the eastern United States. Projected losses in suitable stream length varied by as much as 20% among alternative maximum temperature metrics for mid‐century climate projections, which was similar to variation among three climate models. Similarly, the regional average predicted increase in brook trout occurrence probability under an adaptation action scenario of full riparian forest restoration varied by as much as .2 among metrics. Our use of Bayesian inference provides probabilistic measures of vulnerability and adaptation action benefits for individual stream reaches that properly address statistical uncertainty and can help guide conservation

  3. Probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty from maximum temperature metric selection.

    Science.gov (United States)

    DeWeber, Jefferson T; Wagner, Tyler

    2018-06-01

    Predictions of the projected changes in species distributions and potential adaptation action benefits can help guide conservation actions. There is substantial uncertainty in projecting species distributions into an unknown future, however, which can undermine confidence in predictions or misdirect conservation actions if not properly considered. Recent studies have shown that the selection of alternative climate metrics describing very different climatic aspects (e.g., mean air temperature vs. mean precipitation) can be a substantial source of projection uncertainty. It is unclear, however, how much projection uncertainty might stem from selecting among highly correlated, ecologically similar climate metrics (e.g., maximum temperature in July, maximum 30-day temperature) describing the same climatic aspect (e.g., maximum temperatures) known to limit a species' distribution. It is also unclear how projection uncertainty might propagate into predictions of the potential benefits of adaptation actions that might lessen climate change effects. We provide probabilistic measures of climate change vulnerability, adaptation action benefits, and related uncertainty stemming from the selection of four maximum temperature metrics for brook trout (Salvelinus fontinalis), a cold-water salmonid of conservation concern in the eastern United States. Projected losses in suitable stream length varied by as much as 20% among alternative maximum temperature metrics for mid-century climate projections, which was similar to variation among three climate models. Similarly, the regional average predicted increase in brook trout occurrence probability under an adaptation action scenario of full riparian forest restoration varied by as much as .2 among metrics. Our use of Bayesian inference provides probabilistic measures of vulnerability and adaptation action benefits for individual stream reaches that properly address statistical uncertainty and can help guide conservation actions. Our

  4. Novel strategies in glioblastoma surgery aim at safe, supra-maximum resection in conjunction with local therapies.

    Science.gov (United States)

    Wolbers, John G

    2014-01-01

    The biggest challenge in neuro-oncology is the treatment of glioblastoma, which exhibits poor prognosis and is increasing in incidence in an increasing aging population. Diverse treatment strategies aim at maximum cytoreduction and ensuring good quality of life. We discuss multimodal neuronavigation, supra-maximum tumor resection, and the postoperative treatment gap. Multimodal neuronavigation allows the integration of preoperative anatomic and functional data with intraoperative information. This approach includes functional magnetic resonance imaging (MRI) and diffusion tensor imaging in preplanning and ultrasound, computed tomography (CT), MRI and direct (sub)cortical stimulation during surgery. The practice of awake craniotomy decreases postoperative neurologic deficits, and an extensive supra-maximum resection appears to be feasible, even in eloquent areas of the brain. Intraoperative MRI- and fluorescence-guided surgery assist in achieving this goal of supra-maximum resection and have been the subject of an increasing number of reports. Photodynamic therapy and local chemotherapy are properly positioned to bridge the gap between surgery and chemoradiotherapy. The photosensitizer used in fluorescence-guided surgery persists in the remaining peripheral tumor extensions. Additionally, blinded randomized clinical trials showed firm evidence of extra cytoreduction by local chemotherapy in the tumor cavity. The cutting-edge promise is gene therapy although both the delivery and efficacy of the numerous transgenes remain under investigation. Issues such as the choice of (cell) vector, the choice of therapeutic transgene, the optimal route of administration, and biosafety need to be addressed in a systematic way. In this selective review, we present various evidence and promises to improve survival of glioblastoma patients by supra-maximum cytoreduction via local procedures while minimizing the risk of new neurologic deficit.

  5. Evaluation of parameters effect on the maximum fuel temperature in the core thermal and hydraulic design of HTTR

    International Nuclear Information System (INIS)

    Fujimoto, Nozomu; Maruyama, Soh; Sudo, Yukio; Fujii, Sadao; Niguma, Yoshinori.

    1988-10-01

    This report presents the results of quantitative evaluation on the effects of the dominant parameters on the maximum fuel temperature in the core thermal hydraulic design of the High Temperature Engineering Test Reactor(HTTR) of 30 MW in thermal power, 950 deg C in reactor outlet coolant temperature and 40 kg/cm 2 G in coolant pressure. The dominant parameters investigated are 1) Gap conductance. 2) Effect of eccertricity of fuel compacts in graphite sleeve. 3) Effect of spacer ribs on heat transfer coefficients. 4) Contact probability of fuel compact and graphite sleeve. 5) Validity of uniform radial power density in the fuel compacts. 6) Effect of impurity gas on gap conductance. 7) Effect of FP gas on gap conductance. The effects of these items on the maximum fuel temperature were quantitalively identified as hot spot factors. A probability of the appearance of the maximum fuel temperature was also evaluated in this report. (author)

  6. Equivalent charge source model based iterative maximum neighbor weight for sparse EEG source localization.

    Science.gov (United States)

    Xu, Peng; Tian, Yin; Lei, Xu; Hu, Xiao; Yao, Dezhong

    2008-12-01

    How to localize the neural electric activities within brain effectively and precisely from the scalp electroencephalogram (EEG) recordings is a critical issue for current study in clinical neurology and cognitive neuroscience. In this paper, based on the charge source model and the iterative re-weighted strategy, proposed is a new maximum neighbor weight based iterative sparse source imaging method, termed as CMOSS (Charge source model based Maximum neighbOr weight Sparse Solution). Different from the weight used in focal underdetermined system solver (FOCUSS) where the weight for each point in the discrete solution space is independently updated in iterations, the new designed weight for each point in each iteration is determined by the source solution of the last iteration at both the point and its neighbors. Using such a new weight, the next iteration may have a bigger chance to rectify the local source location bias existed in the previous iteration solution. The simulation studies with comparison to FOCUSS and LORETA for various source configurations were conducted on a realistic 3-shell head model, and the results confirmed the validation of CMOSS for sparse EEG source localization. Finally, CMOSS was applied to localize sources elicited in a visual stimuli experiment, and the result was consistent with those source areas involved in visual processing reported in previous studies.

  7. Large temperature variability in the southern African tropics since the Last Glacial Maximum

    NARCIS (Netherlands)

    Powers, L.A.; Johnson, T.C.; Werne, J.P.; Castañeda, I.S.; Hopmans, E.; Sinninghe Damsté, J.S.; Schouten, S.

    2005-01-01

    The role of the tropics in global climate change is actively debated, particularly in regard to the timing and magnitude of thermal and hydrological response. Continuous, high-resolution temperature records through the Last Glacial Maximum (LGM) from tropical oceans have provided much insight

  8. Local Hawking temperature for dynamical black holes

    International Nuclear Information System (INIS)

    Hayward, S A; Criscienzo, R Di; Nadalini, M; Vanzo, L; Zerbini, S

    2009-01-01

    A local Hawking temperature is derived for any future outer trapping horizon in spherical symmetry, using a Hamilton-Jacobi variant of the Parikh-Wilczek tunneling method. It is given by a dynamical surface gravity as defined geometrically. The operational meaning of the temperature is that Kodama observers just outside the horizon measure an invariantly redshifted temperature, diverging at the horizon itself. In static, asymptotically flat cases, the Hawking temperature as usually defined by the Killing vector agrees in standard cases, but generally differs by a relative redshift factor between the horizon and infinity, this being the temperature measured by static observers at infinity. Likewise, the geometrical surface gravity reduces to the Newtonian surface gravity in the Newtonian limit, while the Killing definition instead reflects measurements at infinity. This may resolve a long-standing puzzle concerning the Hawking temperature for the extremal limit of the charged stringy black hole, namely that it is the local temperature which vanishes. In general, this confirms the quasi-stationary picture of black-hole evaporation in early stages. However, the geometrical surface gravity is generally not the surface gravity of a static black hole with the same parameters. (fast track communication)

  9. The Local Maximum Clustering Method and Its Application in Microarray Gene Expression Data Analysis

    Directory of Open Access Journals (Sweden)

    Chen Yidong

    2004-01-01

    Full Text Available An unsupervised data clustering method, called the local maximum clustering (LMC method, is proposed for identifying clusters in experiment data sets based on research interest. A magnitude property is defined according to research purposes, and data sets are clustered around each local maximum of the magnitude property. By properly defining a magnitude property, this method can overcome many difficulties in microarray data clustering such as reduced projection in similarities, noises, and arbitrary gene distribution. To critically evaluate the performance of this clustering method in comparison with other methods, we designed three model data sets with known cluster distributions and applied the LMC method as well as the hierarchic clustering method, the -mean clustering method, and the self-organized map method to these model data sets. The results show that the LMC method produces the most accurate clustering results. As an example of application, we applied the method to cluster the leukemia samples reported in the microarray study of Golub et al. (1999.

  10. Evaluation of empirical relationships between extreme rainfall and daily maximum temperature in Australia

    Science.gov (United States)

    Herath, Sujeewa Malwila; Sarukkalige, Ranjan; Nguyen, Van Thanh Van

    2018-01-01

    Understanding the relationships between extreme daily and sub-daily rainfall events and their governing factors is important in order to analyse the properties of extreme rainfall events in a changing climate. Atmospheric temperature is one of the dominant climate variables which has a strong relationship with extreme rainfall events. In this study, a temperature-rainfall binning technique is used to evaluate the dependency of extreme rainfall on daily maximum temperature. The Clausius-Clapeyron (C-C) relation was found to describe the relationship between daily maximum temperature and a range of rainfall durations from 6 min up to 24 h for seven Australian weather stations, the stations being located in Adelaide, Brisbane, Canberra, Darwin, Melbourne, Perth and Sydney. The analysis shows that the rainfall - temperature scaling varies with location, temperature and rainfall duration. The Darwin Airport station shows a negative scaling relationship, while the other six stations show a positive relationship. To identify the trend in scaling relationship over time the same analysis is conducted using data covering 10 year periods. Results indicate that the dependency of extreme rainfall on temperature also varies with the analysis period. Further, this dependency shows an increasing trend for more extreme short duration rainfall and a decreasing trend for average long duration rainfall events at most stations. Seasonal variations of the scale changing trends were analysed by categorizing the summer and autumn seasons in one group and the winter and spring seasons in another group. Most of 99th percentile of 6 min, 1 h and 24 h rain durations at Perth, Melbourne and Sydney stations show increasing trend for both groups while Adelaide and Darwin show decreasing trend. Furthermore, majority of scaling trend of 50th percentile are decreasing for both groups.

  11. Quantum entanglement of localized excited states at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Caputa, Paweł [Yukawa Institute for Theoretical Physics (YITP), Kyoto University,Kyoto 606-8502 (Japan); Nordita, KTH Royal Institute of Technology and Stockholm University,Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Simón, Joan; Štikonas, Andrius [School of Mathematics and Maxwell Institute for Mathematical Sciences,University of Edinburgh,King’s Buildings, Edinburgh EH9 3FD (United Kingdom); Takayanagi, Tadashi [Yukawa Institute for Theoretical Physics (YITP), Kyoto University,Kyoto 606-8502 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU),University of Tokyo,Kashiwa, Chiba 277-8582 (Japan)

    2015-01-20

    In this work we study the time evolutions of (Renyi) entanglement entropy of locally excited states in two dimensional conformal field theories (CFTs) at finite temperature. We consider excited states created by acting with local operators on thermal states and give both field theoretic and holographic calculations. In free field CFTs, we find that the growth of Renyi entanglement entropy at finite temperature is reduced compared to the zero temperature result by a small quantity proportional to the width of the localized excitations. On the other hand, in finite temperature CFTs with classical gravity duals, we find that the entanglement entropy approaches a characteristic value at late time. This behaviour does not occur at zero temperature. We also study the mutual information between the two CFTs in the thermofield double (TFD) formulation and give physical interpretations of our results.

  12. Influence of Thread Root Radius on Maximum Local Stresses at Large Diameter Bolts under Axial Loading

    Directory of Open Access Journals (Sweden)

    Cojocaru Vasile

    2014-06-01

    Full Text Available In the thread root area of the threaded bolts submitted to axial loading occur local stresses, higher that nominal stresses calculated for the bolts. These local stresses can generate failure and can reduce the fatigue life of the parts. The paper is focused on the study of the influence of the thread root radius on the maximum local stresses. A large diameter trapezoidal bolt was subjected to a static analysis (axial loading using finite element simulation.

  13. A Brooks type theorem for the maximum local edge connectivity

    DEFF Research Database (Denmark)

    Stiebitz, Michael; Toft, Bjarne

    2018-01-01

    For a graph $G$, let $\\cn(G)$ and $\\la(G)$ denote the chromatic number of $G$ and the maximum local edge connectivity of $G$, respectively. A result of Dirac \\cite{Dirac53} implies that every graph $G$ satisfies $\\cn(G)\\leq \\la(G)+1$. In this paper we characterize the graphs $G$ for which $\\cn......(G)=\\la(G)+1$. The case $\\la(G)=3$ was already solved by Alboulker {\\em et al.\\,} \\cite{AlboukerV2016}. We show that a graph $G$ with $\\la(G)=k\\geq 4$ satisfies $\\cn(G)=k+1$ if and only if $G$ contains a block which can be obtained from copies of $K_{k+1}$ by repeated applications of the Haj\\'os join....

  14. MOnthly TEmperature DAtabase of Spain 1951-2010: MOTEDAS (2): The Correlation Decay Distance (CDD) and the spatial variability of maximum and minimum monthly temperature in Spain during (1981-2010).

    Science.gov (United States)

    Cortesi, Nicola; Peña-Angulo, Dhais; Simolo, Claudia; Stepanek, Peter; Brunetti, Michele; Gonzalez-Hidalgo, José Carlos

    2014-05-01

    spherical variogram over conterminous land of Spain, and converted on a regular 10 km2 grid (resolution similar to the mean distance between stations) to map the results. In the conterminous land of Spain the distance at which couples of stations have a common variance in temperature (both maximum Tmax, and minimum Tmin) above the selected threshold (50%, r Pearson ~0.70) on average does not exceed 400 km, with relevant spatial and temporal differences. The spatial distribution of the CDD shows a clear coastland-to-inland gradient at annual, seasonal and monthly scale, with highest spatial variability along the coastland areas and lower variability inland. The highest spatial variability coincide particularly with coastland areas surrounded by mountain chains and suggests that the orography is one of the most driving factor causing higher interstation variability. Moreover, there are some differences between the behaviour of Tmax and Tmin, being Tmin spatially more homogeneous than Tmax, but its lower CDD values indicate that night-time temperature is more variable than diurnal one. The results suggest that in general local factors affects the spatial variability of monthly Tmin more than Tmax and then higher network density would be necessary to capture the higher spatial variability highlighted for Tmin respect to Tmax. The results suggest that in general local factors affects the spatial variability of Tmin more than Tmax and then higher network density would be necessary to capture the higher spatial variability highlighted for minimum temperature respect to maximum temperature. A conservative distance for reference series could be evaluated in 200 km, that we propose for continental land of Spain and use in the development of MOTEDAS.

  15. Local chemical potential, local hardness, and dual descriptors in temperature dependent chemical reactivity theory.

    Science.gov (United States)

    Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2017-05-31

    In this work we establish a new temperature dependent procedure within the grand canonical ensemble, to avoid the Dirac delta function exhibited by some of the second order chemical reactivity descriptors based on density functional theory, at a temperature of 0 K. Through the definition of a local chemical potential designed to integrate to the global temperature dependent electronic chemical potential, the local chemical hardness is expressed in terms of the derivative of this local chemical potential with respect to the average number of electrons. For the three-ground-states ensemble model, this local hardness contains a term that is equal to the one intuitively proposed by Meneses, Tiznado, Contreras and Fuentealba, which integrates to the global hardness given by the difference in the first ionization potential, I, and the electron affinity, A, at any temperature. However, in the present approach one finds an additional temperature-dependent term that introduces changes at the local level and integrates to zero. Additionally, a τ-hard dual descriptor and a τ-soft dual descriptor given in terms of the product of the global hardness and the global softness multiplied by the dual descriptor, respectively, are derived. Since all these reactivity indices are given by expressions composed of terms that correspond to products of the global properties multiplied by the electrophilic or nucleophilic Fukui functions, they may be useful for studying and comparing equivalent sites in different chemical environments.

  16. Temperature of maximum density and excess thermodynamics of aqueous mixtures of methanol

    Energy Technology Data Exchange (ETDEWEB)

    González-Salgado, D.; Zemánková, K. [Departamento de Física Aplicada, Universidad de Vigo, Campus del Agua, Edificio Manuel Martínez-Risco, E-32004 Ourense (Spain); Noya, E. G.; Lomba, E. [Instituto de Química Física Rocasolano, CSIC, Calle Serrano 119, E-28006 Madrid (Spain)

    2016-05-14

    In this work, we present a study of representative excess thermodynamic properties of aqueous mixtures of methanol over the complete concentration range, based on extensive computer simulation calculations. In addition to test various existing united atom model potentials, we have developed a new force-field which accurately reproduces the excess thermodynamics of this system. Moreover, we have paid particular attention to the behavior of the temperature of maximum density (TMD) in dilute methanol mixtures. The presence of a temperature of maximum density is one of the essential anomalies exhibited by water. This anomalous behavior is modified in a non-monotonous fashion by the presence of fully miscible solutes that partly disrupt the hydrogen bond network of water, such as methanol (and other short chain alcohols). In order to obtain a better insight into the phenomenology of the changes in the TMD of water induced by small amounts of methanol, we have performed a new series of experimental measurements and computer simulations using various force fields. We observe that none of the force-fields tested capture the non-monotonous concentration dependence of the TMD for highly diluted methanol solutions.

  17. A binary genetic programing model for teleconnection identification between global sea surface temperature and local maximum monthly rainfall events

    Science.gov (United States)

    Danandeh Mehr, Ali; Nourani, Vahid; Hrnjica, Bahrudin; Molajou, Amir

    2017-12-01

    The effectiveness of genetic programming (GP) for solving regression problems in hydrology has been recognized in recent studies. However, its capability to solve classification problems has not been sufficiently explored so far. This study develops and applies a novel classification-forecasting model, namely Binary GP (BGP), for teleconnection studies between sea surface temperature (SST) variations and maximum monthly rainfall (MMR) events. The BGP integrates certain types of data pre-processing and post-processing methods with conventional GP engine to enhance its ability to solve both regression and classification problems simultaneously. The model was trained and tested using SST series of Black Sea, Mediterranean Sea, and Red Sea as potential predictors as well as classified MMR events at two locations in Iran as predictand. Skill of the model was measured in regard to different rainfall thresholds and SST lags and compared to that of the hybrid decision tree-association rule (DTAR) model available in the literature. The results indicated that the proposed model can identify potential teleconnection signals of surrounding seas beneficial to long-term forecasting of the occurrence of the classified MMR events.

  18. New England observed and predicted August stream/river temperature maximum daily rate of change points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted August stream/river temperature maximum negative rate of change in New England based on a...

  19. Maximum tumor diameter is not an independent prognostic factor in high-risk localized prostate cancer

    NARCIS (Netherlands)

    Oort, van I.M.; Witjes, J.A.; Kok, D.E.G.; Kiemeney, L.A.; Hulsbergen-van de Kaa, C.A.

    2008-01-01

    Previous studies suggest that maximum tumor diameter (MTD) is a predictor of recurrence in prostate cancer (PC). This study investigates the prognostic value of MTD for biochemical recurrence (BCR) in patients with PC, after radical prostatectomy (RP), with emphasis on high-risk localized prostate

  20. Online Robot Dead Reckoning Localization Using Maximum Relative Entropy Optimization With Model Constraints

    International Nuclear Information System (INIS)

    Urniezius, Renaldas

    2011-01-01

    The principle of Maximum relative Entropy optimization was analyzed for dead reckoning localization of a rigid body when observation data of two attached accelerometers was collected. Model constraints were derived from the relationships between the sensors. The experiment's results confirmed that accelerometers each axis' noise can be successfully filtered utilizing dependency between channels and the dependency between time series data. Dependency between channels was used for a priori calculation, and a posteriori distribution was derived utilizing dependency between time series data. There was revisited data of autocalibration experiment by removing the initial assumption that instantaneous rotation axis of a rigid body was known. Performance results confirmed that such an approach could be used for online dead reckoning localization.

  1. New England observed and predicted Julian day of maximum growing season stream/river temperature points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted Julian day of maximum growing season stream/river temperatures in New England based on a spatial...

  2. Does combined strength training and local vibration improve isometric maximum force? A pilot study.

    Science.gov (United States)

    Goebel, Ruben; Haddad, Monoem; Kleinöder, Heinz; Yue, Zengyuan; Heinen, Thomas; Mester, Joachim

    2017-01-01

    The aim of the study was to determine whether a combination of strength training (ST) and local vibration (LV) improved the isometric maximum force of arm flexor muscles. ST was applied to the left arm of the subjects; LV was applied to the right arm of the same subjects. The main aim was to examine the effect of LV during a dumbbell biceps curl (Scott Curl) on isometric maximum force of the opposite muscle among the same subjects. It is hypothesized, that the intervention with LV produces a greater gain in isometric force of the arm flexors than ST. Twenty-seven collegiate students participated in the study. The training load was 70% of the individual 1 RM. Four sets with 12 repetitions were performed three times per week during four weeks. The right arm of all subjects represented the vibration trained body side (VS) and the left arm served as the traditional trained body side (TTS). A significant increase of isometric maximum force in both body sides (Arms) occurred. VS, however, significantly increased isometric maximum force about 43% in contrast to 22% of the TTS. The combined intervention of ST and LC improves isometric maximum force of arm flexor muscles. III.

  3. Application of Markov chain model to daily maximum temperature for thermal comfort in Malaysia

    International Nuclear Information System (INIS)

    Nordin, Muhamad Asyraf bin Che; Hassan, Husna

    2015-01-01

    The Markov chain’s first order principle has been widely used to model various meteorological fields, for prediction purposes. In this study, a 14-year (2000-2013) data of daily maximum temperatures in Bayan Lepas were used. Earlier studies showed that the outdoor thermal comfort range based on physiologically equivalent temperature (PET) index in Malaysia is less than 34°C, thus the data obtained were classified into two state: normal state (within thermal comfort range) and hot state (above thermal comfort range). The long-run results show the probability of daily temperature exceed TCR will be only 2.2%. On the other hand, the probability daily temperature within TCR will be 97.8%

  4. People as sensors: mass media and local temperature influence climate change discussion on Twitter

    Science.gov (United States)

    Kirilenko, A.; Molodtsova, T.; Stepchenkova, S.

    2014-12-01

    We examined whether people living under significant temperature anomalies connect their sensory experiences to climate change and the role that media plays in this process. We used Twitter messages containing words "climate change" and "global warming" as the indicator of attention that public pays to the issue. Specifically, the goals were: (1) to investigate whether people immediately notice significant local weather anomalies and connect them to climate change and (2) to examine the role of mass media in this process. Over 2 million tweets were collected for a two-year period (2012 - 2013) and were assigned to 157 urban areas in the continental USA (Figure 1). Geographical locations of the tweets were identified with a geolocation resolving algorithm based the profile of the users. Daily number of tweets (tweeting rate) was computed for 157 conterminous USA urban areas and adjusted for data acquisition errors. The USHCN daily minimum and maximum temperatures were obtained for the station locations closest to the centers of the urban areas and the 1981-2010 30-year temperature mean and standard deviation were used as the climate normals. For the analysis, we computed the following indices for each day of 2012 - 2013 period: standardized temperature anomaly, absolute standardized temperature anomaly, and extreme cold and hot temperature anomalies for each urban zone. The extreme cold and hot temperature anomalies were then transformed into country-level values that represent the number of people living in extreme temperature conditions. The rate of tweeting on climate change was regressed on the time variables, number of climate change publications in the mass media, and temperature. In the majority of regression models, the mass media and temperature variables were significant at the pmedia acts as a mediator in the relationship between local weather and climate change discourse intensity. Our analysis of Twitter data confirmed that the public is able to

  5. The Hengill geothermal area, Iceland: Variation of temperature gradients deduced from the maximum depth of seismogenesis

    Science.gov (United States)

    Foulger, G. R.

    1995-04-01

    Given a uniform lithology and strain rate and a full seismic data set, the maximum depth of earthquakes may be viewed to a first order as an isotherm. These conditions are approached at the Hengill geothermal area S. Iceland, a dominantly basaltic area. The likely strain rate calculated from thermal and tectonic considerations is 10 -15 s -1, and temperature measurements from four drill sites within the area indicate average, near-surface geothermal gradients of up to 150 °C km -1 throughout the upper 2 km. The temperature at which seismic failure ceases for the strain rates likely at the Hengill geothermal area is determined by analogy with oceanic crust, and is about 650 ± 50 °C. The topographies of the top and bottom of the seismogenic layer were mapped using 617 earthquakes located highly accurately by performing a simultaneous inversion for three-dimensional structure and hypocentral parameters. The thickness of the seismogenic layer is roughly constant and about 3 km. A shallow, aseismic, low-velocity volume within the spreading plate boundary that crosses the area occurs above the top of the seismogenic layer and is interpreted as an isolated body of partial melt. The base of the seismogenic layer has a maximum depth of about 6.5 km beneath the spreading axis and deepens to about 7 km beneath a transform zone in the south of the area. Beneath the high-temperature part of the geothermal area, the maximum depth of earthquakes may be as shallow as 4 km. The geothermal gradient below drilling depths in various parts of the area ranges from 84 ± 9 °Ckm -1 within the low-temperature geothermal area of the transform zone to 138 ± 15 °Ckm -1 below the centre of the high-temperature geothermal area. Shallow maximum depths of earthquakes and therefore high average geothermal gradients tend to correlate with the intensity of the geothermal area and not with the location of the currently active spreading axis.

  6. Properties of Localized Protons in Neutron Star Matter at Finite Temperatures

    Science.gov (United States)

    Szmaglinski, A.; Kubis, S.; Wójcik, W.

    2014-02-01

    We study properties of the proton component of neutron star matter for realistic nuclear models. Vanishing of the nuclear symmetry energy implies proton-neutron separation in dense nuclear matter. Protons which form admixture tend to be localized in potential wells. Here, we extend the description of proton localization to finite temperatures. It appears that the protons are still localized at temperatures typical for hot neutron stars. That fact has important astrophysical consequences. Moreover, the temperature inclusion leads to unexpected results for the behavior of the proton localized state.

  7. Verification of surface minimum, mean, and maximum temperature forecasts in Calabria for summer 2008

    Directory of Open Access Journals (Sweden)

    S. Federico

    2011-02-01

    Full Text Available Since 2005, one-hour temperature forecasts for the Calabria region (southern Italy, modelled by the Regional Atmospheric Modeling System (RAMS, have been issued by CRATI/ISAC-CNR (Consortium for Research and Application of Innovative Technologies/Institute for Atmospheric and Climate Sciences of the National Research Council and are available online at http://meteo.crati.it/previsioni.html (every six hours. Beginning in June 2008, the horizontal resolution was enhanced to 2.5 km. In the present paper, forecast skill and accuracy are evaluated out to four days for the 2008 summer season (from 6 June to 30 September, 112 runs. For this purpose, gridded high horizontal resolution forecasts of minimum, mean, and maximum temperatures are evaluated against gridded analyses at the same horizontal resolution (2.5 km.

    Gridded analysis is based on Optimal Interpolation (OI and uses the RAMS first-day temperature forecast as the background field. Observations from 87 thermometers are used in the analysis system. The analysis error is introduced to quantify the effect of using the RAMS first-day forecast as the background field in the OI analyses and to define the forecast error unambiguously, while spatial interpolation (SI analysis is considered to quantify the statistics' sensitivity to the verifying analysis and to show the quality of the OI analyses for different background fields.

    Two case studies, the first one with a low (less than the 10th percentile root mean square error (RMSE in the OI analysis, the second with the largest RMSE of the whole period in the OI analysis, are discussed to show the forecast performance under two different conditions. Cumulative statistics are used to quantify forecast errors out to four days. Results show that maximum temperature has the largest RMSE, while minimum and mean temperature errors are similar. For the period considered

  8. Local application of zoledronate for maximum anchorage during space closure.

    Science.gov (United States)

    Ortega, Adam J A J; Campbell, Phillip M; Hinton, Robert; Naidu, Aparna; Buschang, Peter H

    2012-12-01

    Orthodontists have used various compliance-dependent physical means such as headgears and intraoral appliances to prevent anchorage loss. The aim of this study was to determine whether 1 local application of the bisphosphonate zoledronate could be used to prevent anchorage loss during extraction space closure in rats. Thirty rats had their maxillary left first molars extracted and their maxillary left second molars protracted into the extraction space with a 10-g nickel-titanium closing coil for 21 days. Fifteen control rats received a local injection of phosphate-buffered saline solution, and 15 experimental rats received 16 μg of the bisphosphonate zoledronate. Bisphosphonate was also delivered directly into the extraction site and left undisturbed for 5 minutes. Cephalograms and incremental thickness gauges were used to measure tooth movements. Tissues were analyzed by microcomputed tomography and histology. The control group demonstrated significant (P <0.05) tooth movements throughout the 21-day period. They showed significantly greater tooth movements than the experimental group beginning in the second week. The experimental group showed no significant tooth movement after the first week. The microcomputed tomography and histologic observations showed significant bone loss in the extraction sites and around the second molars of the controls. In contrast, the experimental group had bone preservation and bone fill. There was no evidence of bisphosphonate-associated osteonecrosis in any sample. A single small, locally applied dose of zoledronate provided maximum anchorage and prevented significant bone loss. Copyright © 2012 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  9. An efficient implementation of maximum likelihood identification of LTI state-space models by local gradient search

    NARCIS (Netherlands)

    Bergboer, N.H.; Verdult, V.; Verhaegen, M.H.G.

    2002-01-01

    We present a numerically efficient implementation of the nonlinear least squares and maximum likelihood identification of multivariable linear time-invariant (LTI) state-space models. This implementation is based on a local parameterization of the system and a gradient search in the resulting

  10. The maximum temperature of a thermodynamic cycle effect on weight-dimensional characteristics of the NPP energy blocks with air cooling

    International Nuclear Information System (INIS)

    Bezborodov, Yu.A.; Bubnov, V.P.; Nesterenko, V.B.

    1982-01-01

    The cycle maximum temperature effect on the properties of individual apparatuses and total NPP energy blocks characteristics has been investigated. Air, nitrogen, helium and chemically reacting system N 2 O 4 +2NO+O 2 have been considered as coolants. The conducted investigations have shown that maximum temperature of thermodynamical cycle affects considerably both the weight-dimensional characteristics of individual elements of NPP and total characteristics of NPP energy block. Energy blocks of NPP with air cooling wherein dissociating nitrogen tetroxide is used as working body, have better indexes on the majority of characteristics in comparison with blocks with air, nitrogen and helium cooling. If technical restrictions are to be taken into account (thermal resistance of metals, coolant decomposition under high temperatures, etc.) then dissociating nitrogen tetroxide should be recommended as working body and maximum cycle temperature in the range from 500 up to 600 deg C

  11. Human local and total heat losses in different temperature.

    Science.gov (United States)

    Wang, Lijuan; Yin, Hui; Di, Yuhui; Liu, Yanfeng; Liu, Jiaping

    2016-04-01

    This study investigates the effects of operative temperature on the local and total heat losses, and the relationship between the heat loss and thermal sensation. 10 local parts of head, neck, chest, abdomen, upper arm, forearm, hand, thigh, leg and foot are selected. In all these parts, convection, radiation, evaporation, respiration, conduction and diffusion heat losses are analyzed when operative temperature is 23, 28, 33 and 37 °C. The local heat losses show that the radiation and convection heat losses are mainly affected by the area of local body, and the heat loss of the thigh is the most in the ten parts. The evaporation heat loss is mainly affected by the distribution of sweat gland, and the heat loss of the chest is the most. The total heat loss of the local body shows that in low temperature, the thigh, leg and chest have much heat loss, while in high temperature, the chest, abdomen, thigh and head have great heat loss, which are useful for clothing design. The heat losses of the whole body show that as the operative temperature increases, the radiation and convection heat losses decrease, the heat losses of conduction, respiration, and diffusion are almost constant, and the evaporation heat loss increases. By comparison, the heat loss ratios of the radiation, convection and sweat evaporation, are in agreement with the previous researches. At last, the formula about the heat loss ratio of convection and radiation is derived. It's useful for thermal comfort evaluation and HVAC (heating, ventilation and air conditioning) design. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. New England observed and predicted August stream/river temperature maximum positive daily rate of change points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted August stream/river temperature maximum positive daily rate of change in New England based on a...

  13. New England observed and predicted July stream/river temperature maximum positive daily rate of change points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted July stream/river temperature maximum positive daily rate of change in New England based on a...

  14. New England observed and predicted July maximum negative stream/river temperature daily rate of change points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted July stream/river temperature maximum negative daily rate of change in New England based on a...

  15. Dynamic Performance of Maximum Power Point Trackers in TEG Systems Under Rapidly Changing Temperature Conditions

    Science.gov (United States)

    Man, E. A.; Sera, D.; Mathe, L.; Schaltz, E.; Rosendahl, L.

    2016-03-01

    Characterization of thermoelectric generators (TEG) is widely discussed and equipment has been built that can perform such analysis. One method is often used to perform such characterization: constant temperature with variable thermal power input. Maximum power point tracking (MPPT) methods for TEG systems are mostly tested under steady-state conditions for different constant input temperatures. However, for most TEG applications, the input temperature gradient changes, exposing the MPPT to variable tracking conditions. An example is the exhaust pipe on hybrid vehicles, for which, because of the intermittent operation of the internal combustion engine, the TEG and its MPPT controller are exposed to a cyclic temperature profile. Furthermore, there are no guidelines on how fast the MPPT must be under such dynamic conditions. In the work discussed in this paper, temperature gradients for TEG integrated in several applications were evaluated; the results showed temperature variation up to 5°C/s for TEG systems. Electrical characterization of a calcium-manganese oxide TEG was performed at steady-state for different input temperatures and a maximum temperature of 401°C. By using electrical data from characterization of the oxide module, a solar array simulator was emulated to perform as a TEG. A trapezoidal temperature profile with different gradients was used on the TEG simulator to evaluate the dynamic MPPT efficiency. It is known that the perturb and observe (P&O) algorithm may have difficulty accurately tracking under rapidly changing conditions. To solve this problem, a compromise must be found between the magnitude of the increment and the sampling frequency of the control algorithm. The standard P&O performance was evaluated experimentally by using different temperature gradients for different MPPT sampling frequencies, and efficiency values are provided for all cases. The results showed that a tracking speed of 2.5 Hz can be successfully implemented on a TEG

  16. Maximum surface level and temperature histories for Hanford waste tanks

    International Nuclear Information System (INIS)

    Flanagan, B.D.; Ha, N.D.; Huisingh, J.S.

    1994-01-01

    Radioactive defense waste resulting from the chemical processing of spent nuclear fuel has been accumulating at the Hanford Site since 1944. This waste is stored in underground waste-storage tanks. The Hanford Site Tank Farm Facilities Interim Safety Basis (ISB) provides a ready reference to the safety envelope for applicable tank farm facilities and installations. During preparation of the ISB, tank structural integrity concerns were identified as a key element in defining the safety envelope. These concerns, along with several deficiencies in the technical bases associated with the structural integrity issues and the corresponding operational limits/controls specified for conduct of normal tank farm operations are documented in the ISB. Consequently, a plan was initiated to upgrade the safety envelope technical bases by conducting Accelerated Safety Analyses-Phase 1 (ASA-Phase 1) sensitivity studies and additional structural evaluations. The purpose of this report is to facilitate the ASA-Phase 1 studies and future analyses of the single-shell tanks (SSTs) and double-shell tanks (DSTs) by compiling a quantitative summary of some of the past operating conditions the tanks have experienced during their existence. This report documents the available summaries of recorded maximum surface levels and maximum waste temperatures and references other sources for more specific data

  17. The thermodynamic meaning of local temperature of nonequilibrium open quantum systems

    OpenAIRE

    Ye, LvZhou; Zheng, Xiao; Yan, YiJing; Di Ventra, Massimiliano

    2016-01-01

    Measuring the local temperature of nanoscale systems out of equilibrium has emerged as a new tool to study local heating effects and other local thermal properties of systems driven by external fields. Although various experimental protocols and theoretical definitions have been proposed to determine the local temperature, the thermodynamic meaning of the measured or defined quantities remains unclear. By performing analytical and numerical analysis of bias-driven quantum dot systems both in ...

  18. Global view of F-region electron density and temperature at solar maximum

    International Nuclear Information System (INIS)

    Brace, L.H.; Theis, R.F.; Hoegy, W.R.

    1982-01-01

    Dynamics Explorer-2 is permitting the first measurements of the global structure of the F-regions at very high levels of solar activity (S>200). Selected full orbits of Langmuir probe measurements of electron temperature, T/sub e/, and density, N/sub e/, are shown to illustrate this global structure and some of the ionospheric features that are the topic of other papers in this issue. The ionospheric thermal structure is of particular interest because T/sub e/ is a sensitive indicator of the coupling of magnetospheric energy into the upper atmosphere. A comparison of these heating effects with those observed at solar minimum shows that the magnetospheric sources are more important at solar maximum, as might have been expected. Heating at the cusp, the auroral oval and the plasma-pause is generally both greater and more variable. Electron cooling rate calculations employing low latitude measurements indicate that solar extreme ultraviolet heating of the F region at solar maximum is enhanced by a factor that is greater than the increase in solar flux. Some of this enhanced electron heating arises from the increase in electron heating efficiency at the higher N/sub e/ of solar maximum, but this appears insufficient to completely resolve the discrepancy

  19. Comparative Study of Regional Estimation Methods for Daily Maximum Temperature (A Case Study of the Isfahan Province

    Directory of Open Access Journals (Sweden)

    Ghamar Fadavi

    2016-02-01

    Full Text Available Introduction: As the statistical time series are in short period and the meteorological station are not distributed well in mountainous area determining of climatic criteria are complex. Therefore, in recent years interpolation methods for establishment of continuous climatic data have been considered. Continuous daily maximum temperature data are a key factor for climate-crop modeling which is fundamental for water resources management, drought, and optimal use from climatic potentials of different regions. The main objective of this study is to evaluate different interpolation methods for estimation of regional maximum temperature in the Isfahan province. Materials and Methods: Isfahan province has about 937,105 square kilometers, between 30 degree and 43 minutes to 34 degree and 27 minutes North latitude equator line and 49 degree and 36 minutes to 55 degree and 31 minutes east longitude Greenwich. It is located in the center of Iran and it's western part extend to eastern footage of the Zagros mountain range. It should be mentioned that elevation range of meteorological stations are between 845 to 2490 in the study area. This study was done using daily maximum temperature data of 1992 and 2007 years of synoptic and climatology stations of I.R. of Iran meteorological organization (IRIMO. In order to interpolate temperature data, two years including 1992 and 2007 with different number of meteorological stations have been selected the temperature data of thirty meteorological stations (17 synoptic and 13 climatologically stations for 1992 year and fifty four meteorological stations (31 synoptic and 23 climatologically stations for 2007 year were used from Isfahan province and neighboring provinces. In order to regionalize the point data of daily maximum temperature, the interpolation methods, including inverse distance weighted (IDW, Kriging, Co-Kriging, Kriging-Regression, multiple regression and Spline were used. Therefore, for this allocated

  20. Probing Ionic Liquid Aqueous Solutions Using Temperature of Maximum Density Isotope Effects

    Directory of Open Access Journals (Sweden)

    Mohammad Tariq

    2013-03-01

    Full Text Available This work is a new development of an extensive research program that is investigating for the first time shifts in the temperature of maximum density (TMD of aqueous solutions caused by ionic liquid solutes. In the present case we have compared the shifts caused by three ionic liquid solutes with a common cation—1-ethyl-3-methylimidazolium coupled with acetate, ethylsulfate and tetracyanoborate anions—in normal and deuterated water solutions. The observed differences are discussed in terms of the nature of the corresponding anion-water interactions.

  1. Impact of soil moisture on extreme maximum temperatures in Europe

    Directory of Open Access Journals (Sweden)

    Kirien Whan

    2015-09-01

    Full Text Available Land-atmosphere interactions play an important role for hot temperature extremes in Europe. Dry soils may amplify such extremes through feedbacks with evapotranspiration. While previous observational studies generally focused on the relationship between precipitation deficits and the number of hot days, we investigate here the influence of soil moisture (SM on summer monthly maximum temperatures (TXx using water balance model-based SM estimates (driven with observations and temperature observations. Generalized extreme value distributions are fitted to TXx using SM as a covariate. We identify a negative relationship between SM and TXx, whereby a 100 mm decrease in model-based SM is associated with a 1.6 °C increase in TXx in Southern-Central and Southeastern Europe. Dry SM conditions result in a 2–4 °C increase in the 20-year return value of TXx compared to wet conditions in these two regions. In contrast with SM impacts on the number of hot days (NHD, where low and high surface-moisture conditions lead to different variability, we find a mostly linear dependency of the 20-year return value on surface-moisture conditions. We attribute this difference to the non-linear relationship between TXx and NHD that stems from the threshold-based calculation of NHD. Furthermore the employed SM data and the Standardized Precipitation Index (SPI are only weakly correlated in the investigated regions, highlighting the importance of evapotranspiration and runoff for resulting SM. Finally, in a case study for the hot 2003 summer we illustrate that if 2003 spring conditions in Southern-Central Europe had been as dry as in the more recent 2011 event, temperature extremes in summer would have been higher by about 1 °C, further enhancing the already extreme conditions which prevailed in that year.

  2. A possibility of local measurements of ion temperature in a high-temperature plasma by laser induced ionization

    International Nuclear Information System (INIS)

    Kantor, M

    2012-01-01

    A new diagnostic for local measurements of ion temperature and drift velocity in fusion plasmas is proposed in the paper. The diagnostic is based on laser induced ionization of excited hydrogen and deuterium atoms from the levels which ionization energy less than the laser photon energy. A high intensive laser beam ionizes nearly all the excited atoms in the beam region resulting in a quench of spontaneous line emission of the appropriate optical transitions. The measurements of the quenching emission have been used in the past for local measurements of hydrogen atom density in tokamak plasma. The idea of the new diagnostic is spectral resolution of the quenching emission. The measured spectrum relates directly to the velocity distribution of the excited atoms. This distribution is strongly coupled to the distribution of the hydrogen atoms at the ground state. So, the spectral resolution of quenching emission is a way of local measurements of the temperature and drift velocity of hydrogen atoms in plasma. The temperature of hydrogen atoms is well coupled to the local ion temperature as long as the mean free path of the atoms is shorter than the ion gradient length in plasma. In this case the new diagnostic can provide local measurements of ion temperature in plasma. The paper considers technical capabilities of the diagnostic, physical restrictions of its application and interpretation of the measurements.

  3. Maximum likelihood estimation-based denoising of magnetic resonance images using restricted local neighborhoods

    International Nuclear Information System (INIS)

    Rajan, Jeny; Jeurissen, Ben; Sijbers, Jan; Verhoye, Marleen; Van Audekerke, Johan

    2011-01-01

    In this paper, we propose a method to denoise magnitude magnetic resonance (MR) images, which are Rician distributed. Conventionally, maximum likelihood methods incorporate the Rice distribution to estimate the true, underlying signal from a local neighborhood within which the signal is assumed to be constant. However, if this assumption is not met, such filtering will lead to blurred edges and loss of fine structures. As a solution to this problem, we put forward the concept of restricted local neighborhoods where the true intensity for each noisy pixel is estimated from a set of preselected neighboring pixels. To this end, a reference image is created from the noisy image using a recently proposed nonlocal means algorithm. This reference image is used as a prior for further noise reduction. A scheme is developed to locally select an appropriate subset of pixels from which the underlying signal is estimated. Experimental results based on the peak signal to noise ratio, structural similarity index matrix, Bhattacharyya coefficient and mean absolute difference from synthetic and real MR images demonstrate the superior performance of the proposed method over other state-of-the-art methods.

  4. THE MAXIMUM EFFECT OF DEEP LAKES ON TEMPERATURE PROFILES – DETERMINATION OF THE GEOTHERMAL GRADIENT

    Directory of Open Access Journals (Sweden)

    Eppelbaum L. V.

    2009-07-01

    Full Text Available Understanding the climate change processes on the basis of geothermal observations in boreholes is an important and at the same time high-intricate problem. Many non-climatic effects could cause changes in ground surface temperatures. In this study we investigate the effects of deep lakes on the borehole temperature profilesobserved within or in the vicinity of the lakes. We propose a method based on utilization of Laplace equation with nonuniform boundary conditions. The proposed method makes possible to estimate the maximum effect of deep lakes (here the term "deep lake" means that long term mean annual temperature of bottom sediments can beconsidered as a constant value on the borehole temperature profiles. This method also allows one to estimate an accuracy of the determination of the geothermal gradient.

  5. Maximum likelihood approach to “informed” Sound Source Localization for Hearing Aid applications

    DEFF Research Database (Denmark)

    Farmani, Mojtaba; Pedersen, Michael Syskind; Tan, Zheng-Hua

    2015-01-01

    Most state-of-the-art Sound Source Localization (SSL) algorithms have been proposed for applications which are "uninformed'' about the target sound content; however, utilizing a wireless microphone worn by a target talker, enables recent Hearing Aid Systems (HASs) to access to an almost noise......-free sound signal of the target talker at the HAS via the wireless connection. Therefore, in this paper, we propose a maximum likelihood (ML) approach, which we call MLSSL, to estimate the Direction of Arrival (DoA) of the target signal given access to the target signal content. Compared with other "informed...

  6. Comparison of the Spatiotemporal Variability of Temperature, Precipitation, and Maximum Daily Spring Flows in Two Watersheds in Quebec Characterized by Different Land Use

    Directory of Open Access Journals (Sweden)

    Ali A. Assani

    2016-01-01

    Full Text Available We compared the spatiotemporal variability of temperatures and precipitation with that of the magnitude and timing of maximum daily spring flows in the geographically adjacent L’Assomption River (agricultural and Matawin River (forested watersheds during the period from 1932 to 2013. With regard to spatial variability, fall, winter, and spring temperatures as well as total precipitation are higher in the agricultural watershed than in the forested one. The magnitude of maximum daily spring flows is also higher in the first watershed as compared with the second, owing to substantial runoff, given that the amount of snow that gives rise to these flows is not significantly different in the two watersheds. These flows occur early in the season in the agricultural watershed because of the relatively high temperatures. With regard to temporal variability, minimum temperatures increased over time in both watersheds. Maximum temperatures in the fall only increased in the agricultural watershed. The amount of spring rain increased over time in both watersheds, whereas total precipitation increased significantly in the agricultural watershed only. However, the amount of snow decreased in the forested watershed. The magnitude of maximum daily spring flows increased over time in the forested watershed.

  7. Extended Kalman Filtering to estimate temperature and irradiation for maximum power point tracking of a photovoltaic module

    International Nuclear Information System (INIS)

    Docimo, D.J.; Ghanaatpishe, M.; Mamun, A.

    2017-01-01

    This paper develops an algorithm for estimating photovoltaic (PV) module temperature and effective irradiation level. The power output of a PV system depends directly on both of these states. Estimating the temperature and irradiation allows for improved state-based control methods while eliminating the need of additional sensors. Thermal models and irradiation estimators have been developed in the literature, but none incorporate feedback for estimation. This paper outlines an Extended Kalman Filter for temperature and irradiation estimation. These estimates are, in turn, used within a novel state-based controller that tracks the maximum power point of the PV system. Simulation results indicate this state-based controller provides up to an 8.5% increase in energy produced per day as compared to an impedance matching controller. A sensitivity analysis is provided to examine the impact state estimate errors have on the ability to find the optimal operating point of the PV system. - Highlights: • Developed a temperature and irradiation estimator for photovoltaic systems. • Designed an Extended Kalman Filter to handle model and measurement uncertainty. • Developed a state-based controller for maximum power point tracking (MPPT). • Validated combined estimator/controller algorithm for different weather conditions. • Algorithm increases energy captured up to 8.5% over traditional MPPT algorithms.

  8. Global versus local mechanisms of temperature sensing in ion channels.

    Science.gov (United States)

    Arrigoni, Cristina; Minor, Daniel L

    2018-05-01

    Ion channels turn diverse types of inputs, ranging from neurotransmitters to physical forces, into electrical signals. Channel responses to ligands generally rely on binding to discrete sensor domains that are coupled to the portion of the channel responsible for ion permeation. By contrast, sensing physical cues such as voltage, pressure, and temperature arises from more varied mechanisms. Voltage is commonly sensed by a local, domain-based strategy, whereas the predominant paradigm for pressure sensing employs a global response in channel structure to membrane tension changes. Temperature sensing has been the most challenging response to understand and whether discrete sensor domains exist for pressure and temperature has been the subject of much investigation and debate. Recent exciting advances have uncovered discrete sensor modules for pressure and temperature in force-sensitive and thermal-sensitive ion channels, respectively. In particular, characterization of bacterial voltage-gated sodium channel (BacNa V ) thermal responses has identified a coiled-coil thermosensor that controls channel function through a temperature-dependent unfolding event. This coiled-coil thermosensor blueprint recurs in other temperature sensitive ion channels and thermosensitive proteins. Together with the identification of ion channel pressure sensing domains, these examples demonstrate that "local" domain-based solutions for sensing force and temperature exist and highlight the diversity of both global and local strategies that channels use to sense physical inputs. The modular nature of these newly discovered physical signal sensors provides opportunities to engineer novel pressure-sensitive and thermosensitive proteins and raises new questions about how such modular sensors may have evolved and empowered ion channel pores with new sensibilities.

  9. Reply to Stone Et Al.: Human-Made Role in Local Temperature Extremes

    Science.gov (United States)

    Hansen, James; Sato, Makiko; Ruedy, Reto A.

    2013-01-01

    Stone et al. find that their analysis is unable to show a causal relation of local temperature anomalies, such as in Texas in 2011, with global warming. It was because of limitations in such local analyses that we reframed the problem in our report, separating the task of attribution of the causes of global warming from the task of quantifying changes in the likelihood of extreme local temperature anomalies.

  10. Recurrence quantification analysis of extremes of maximum and minimum temperature patterns for different climate scenarios in the Mesochora catchment in Central-Western Greece

    Science.gov (United States)

    Panagoulia, Dionysia; Vlahogianni, Eleni I.

    2018-06-01

    A methodological framework based on nonlinear recurrence analysis is proposed to examine the historical data evolution of extremes of maximum and minimum daily mean areal temperature patterns over time under different climate scenarios. The methodology is based on both historical data and atmospheric General Circulation Model (GCM) produced climate scenarios for the periods 1961-2000 and 2061-2100 which correspond to 1 × CO2 and 2 × CO2 scenarios. Historical data were derived from the actual daily observations coupled with atmospheric circulation patterns (CPs). The dynamics of the temperature was reconstructed in the phase-space from the time series of temperatures. The statistically comparing different temperature patterns were based on some discriminating statistics obtained by the Recurrence Quantification Analysis (RQA). Moreover, the bootstrap method of Schinkel et al. (2009) was adopted to calculate the confidence bounds of RQA parameters based on a structural preserving resampling. The overall methodology was implemented to the mountainous Mesochora catchment in Central-Western Greece. The results reveal substantial similarities between the historical maximum and minimum daily mean areal temperature statistical patterns and their confidence bounds, as well as the maximum and minimum temperature patterns in evolution under the 2 × CO2 scenario. A significant variability and non-stationary behaviour characterizes all climate series analyzed. Fundamental differences are produced from the historical and maximum 1 × CO2 scenarios, the maximum 1 × CO2 and minimum 1 × CO2 scenarios, as well as the confidence bounds for the two CO2 scenarios. The 2 × CO2 scenario reflects the strongest shifts in intensity, duration and frequency in temperature patterns. Such transitions can help the scientists and policy makers to understand the effects of extreme temperature changes on water resources, economic development, and health of ecosystems and hence to proceed to

  11. Fatigue life prediction method for contact wire using maximum local stress

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Seok; Haochuang, Li; Seok, Chang Sung; Koo, Jae Mean [Sungkyunkwan University, Suwon (Korea, Republic of); Lee, Ki Won; Kwon, Sam Young; Cho, Yong Hyeon [Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2015-01-15

    Railway contact wires supplying electricity to trains are exposed to repeated mechanical strain and stress caused by their own weight and discontinuous contact with a pantograph during train operation. Since the speed of railway transportation has increased continuously, railway industries have recently reported a number of contact wire failures caused by mechanical fatigue fractures instead of normal wear, which has been a more common failure mechanism. To secure the safety and durability of contact wires in environments with increased train speeds, a bending fatigue test on contact wire has been performed. The test equipment is too complicated to evaluate the fatigue characteristics of contact wire. Thus, the axial tension fatigue test was performed for a standard specimen, and the bending fatigue life for the contact wire structure was then predicted using the maximum local stress occurring at the top of the contact wire. Lastly, the tested bending fatigue life of the structure was compared with the fatigue life predicted by the axial tension fatigue test for verification.

  12. Fatigue life prediction method for contact wire using maximum local stress

    International Nuclear Information System (INIS)

    Kim, Yong Seok; Haochuang, Li; Seok, Chang Sung; Koo, Jae Mean; Lee, Ki Won; Kwon, Sam Young; Cho, Yong Hyeon

    2015-01-01

    Railway contact wires supplying electricity to trains are exposed to repeated mechanical strain and stress caused by their own weight and discontinuous contact with a pantograph during train operation. Since the speed of railway transportation has increased continuously, railway industries have recently reported a number of contact wire failures caused by mechanical fatigue fractures instead of normal wear, which has been a more common failure mechanism. To secure the safety and durability of contact wires in environments with increased train speeds, a bending fatigue test on contact wire has been performed. The test equipment is too complicated to evaluate the fatigue characteristics of contact wire. Thus, the axial tension fatigue test was performed for a standard specimen, and the bending fatigue life for the contact wire structure was then predicted using the maximum local stress occurring at the top of the contact wire. Lastly, the tested bending fatigue life of the structure was compared with the fatigue life predicted by the axial tension fatigue test for verification.

  13. The local structure of high-temperature superconductors

    International Nuclear Information System (INIS)

    Mustre de Leon, J.; Conradson, S.D.; Bishop, A.R.; Raistrick, I.D.

    1992-01-01

    We show how x-ray absorption fine structure (XAFS) has been successfully used in the determination of the local crystal structure of high-temperature superconductors, with advantages over traditional diffraction techniques. We review the experimental results that yielded the first evidence for an axial-oxygen-centered lattice instability connected with the superconductivity transition. The interpretation of this instability in terms of a dynamical tunneling model suggests the presence of polarons in these materials. XAFS on Tl 2 Ba 2 CuO 6 and other Tl-based superconductors indicate the presence of local instabilities in the CuO 2 planes of these materials, in addition to axial-oxygen instabilities

  14. Neoendemic ground beetles and private tree haplotypes: two independent proxies attest a moderate last glacial maximum summer temperature depression of 3-4 °C for the southern Tibetan Plateau

    Science.gov (United States)

    Schmidt, Joachim; Opgenoorth, Lars; Martens, Jochen; Miehe, Georg

    2011-07-01

    Previous findings regarding the Last Glacial Maximum LGM summer temperature depression (maxΔT in July) on the Tibetan Plateau varied over a large range (between 0 and 9 °C). Geologic proxies usually provided higher values than palynological data. Because of this wide temperature range, it was hitherto impossible to reconstruct the glacial environment of the Tibetan Plateau. Here, we present for the first time data indicating that local neoendemics of modern species groups are promising proxies for assessing the LGM temperature depression in Tibet. We used biogeographical and phylogenetic data from small, wingless edaphous ground beetles of the genus Trechus, and from private juniper tree haplotypes. The derived values of the maxΔT in July ranged between 3 and 4 °C. Our data support previous findings that were based on palynological data. At the same time, our data are spatially more specific as they are not bound to specific archives. Our study shows that the use of modern endemics enables a detailed mapping of local LGM conditions in High Asia. A prerequisite for this is an extensive biogeographical and phylogenetic exploration of the area and the inclusion of additional endemic taxa and evolutionary lines.

  15. Antibiotic resistance increases with local temperature

    Science.gov (United States)

    MacFadden, Derek R.; McGough, Sarah F.; Fisman, David; Santillana, Mauricio; Brownstein, John S.

    2018-06-01

    Bacteria that cause infections in humans can develop or acquire resistance to antibiotics commonly used against them1,2. Antimicrobial resistance (in bacteria and other microbes) causes significant morbidity worldwide, and some estimates indicate the attributable mortality could reach up to 10 million by 20502-4. Antibiotic resistance in bacteria is believed to develop largely under the selective pressure of antibiotic use; however, other factors may contribute to population level increases in antibiotic resistance1,2. We explored the role of climate (temperature) and additional factors on the distribution of antibiotic resistance across the United States, and here we show that increasing local temperature as well as population density are associated with increasing antibiotic resistance (percent resistant) in common pathogens. We found that an increase in temperature of 10 °C across regions was associated with an increases in antibiotic resistance of 4.2%, 2.2%, and 2.7% for the common pathogens Escherichia coli, Klebsiella pneumoniae and Staphylococcus aureus. The associations between temperature and antibiotic resistance in this ecological study are consistent across most classes of antibiotics and pathogens and may be strengthening over time. These findings suggest that current forecasts of the burden of antibiotic resistance could be significant underestimates in the face of a growing population and climate change4.

  16. Low-temperature localization in the transport properties of self-doped

    Indian Academy of Sciences (India)

    ... such as electron–electron, Kondo, electron–phonon and electron–magnon are found to be strongly influenced by the applied magnetic field. The results suggest that interplay between electron–electron and Kondo-like scatterings lead to the localization in the temperature dependence of resistivity at low temperature.

  17. County-Level Climate Uncertainty for Risk Assessments: Volume 4 Appendix C - Historical Maximum Near-Surface Air Temperature.

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A.; Lowry, Thomas Stephen; Jones, Shannon M; Walker, La Tonya Nicole; Roberts, Barry L; Malczynski, Leonard A.

    2017-06-01

    This report uses the CMIP5 series of climate model simulations to produce country- level uncertainty distributions for use in socioeconomic risk assessments of climate change impacts. It provides appropriate probability distributions, by month, for 169 countries and autonomous-areas on temperature, precipitation, maximum temperature, maximum wind speed, humidity, runoff, soil moisture and evaporation for the historical period (1976-2005), and for decadal time periods to 2100. It also provides historical and future distributions for the Arctic region on ice concentration, ice thickness, age of ice, and ice ridging in 15-degree longitude arc segments from the Arctic Circle to 80 degrees latitude, plus two polar semicircular regions from 80 to 90 degrees latitude. The uncertainty is meant to describe the lack of knowledge rather than imprecision in the physical simulation because the emphasis is on unfalsified risk and its use to determine potential socioeconomic impacts. The full report is contained in 27 volumes.

  18. Effects of Transverse Power Distribution on Fuel Temperature

    International Nuclear Information System (INIS)

    Jo, Daeseong; Park, Jonghark; Seo, Chul Gyo; Chae, Heetaek

    2014-01-01

    In the present study, transverse power distributions with segments of 4 and 18 are evaluated. Based on the power distribution, the fuel temperatures are evaluated with a consideration of lateral heat conduction. In the present study, the effect of the transverse power distribution on the fuel temperature is investigated. The transverse power distributions with variation of fuel segment number are evaluated. The maximum power peaking with 12 segments is higher than that with 4 segments. Based on the calculation, 6-order polynomial is generated to express the transverse power distributions. The maximum power peaking factor increases with segments. The averaged power peaking is 2.10, and the maximum power peaking with 18 segments is 2.80. With the uniform power distribution, the maximum fuel temperature is found in the middle of the fuel. As the power near the side ends of the fuel increases, the maximum fuel temperature is found near the side ends. However, the maximum fuel temperature is not found where the maximum transverse power is. This is because the high power locally released from the edge of the fuel is laterally conducted to the cladding. As a result of the present study, it can be concluded that the effect of the high power peaking at the edge of the fuel on the fuel outer wall temperature is not significant

  19. New results on the mid-latitude midnight temperature maximum

    Science.gov (United States)

    Mesquita, Rafael L. A.; Meriwether, John W.; Makela, Jonathan J.; Fisher, Daniel J.; Harding, Brian J.; Sanders, Samuel C.; Tesema, Fasil; Ridley, Aaron J.

    2018-04-01

    Fabry-Perot interferometer (FPI) measurements of thermospheric temperatures and winds show the detection and successful determination of the latitudinal distribution of the midnight temperature maximum (MTM) in the continental mid-eastern United States. These results were obtained through the operation of the five FPI observatories in the North American Thermosphere Ionosphere Observing Network (NATION) located at the Pisgah Astronomic Research Institute (PAR) (35.2° N, 82.8° W), Virginia Tech (VTI) (37.2° N, 80.4° W), Eastern Kentucky University (EKU) (37.8° N, 84.3° W), Urbana-Champaign (UAO) (40.2° N, 88.2° W), and Ann Arbor (ANN) (42.3° N, 83.8° W). A new approach for analyzing the MTM phenomenon is developed, which features the combination of a method of harmonic thermal background removal followed by a 2-D inversion algorithm to generate sequential 2-D temperature residual maps at 30 min intervals. The simultaneous study of the temperature data from these FPI stations represents a novel analysis of the MTM and its large-scale latitudinal and longitudinal structure. The major finding in examining these maps is the frequent detection of a secondary MTM peak occurring during the early evening hours, nearly 4.5 h prior to the timing of the primary MTM peak that generally appears after midnight. The analysis of these observations shows a strong night-to-night variability for this double-peaked MTM structure. A statistical study of the behavior of the MTM events was carried out to determine the extent of this variability with regard to the seasonal and latitudinal dependence. The results show the presence of the MTM peak(s) in 106 out of the 472 determinable nights (when the MTM presence, or lack thereof, can be determined with certainty in the data set) selected for analysis (22 %) out of the total of 846 nights available. The MTM feature is seen to appear slightly more often during the summer (27 %), followed by fall (22 %), winter (20 %), and spring

  20. High Power Room Temperature Terahertz Local Oscillator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to build a high-power, room temperature compact continuous wave terahertz local oscillator for driving heterodyne receivers in the 1-5 THz frequency...

  1. Local Versus Remote Contributions of Soil Moisture to Near-Surface Temperature Variability

    Science.gov (United States)

    Koster, R.; Schubert, S.; Wang, H.; Chang, Y.

    2018-01-01

    Soil moisture variations have a straightforward impact on overlying air temperatures, wetter soils can induce higher evaporative cooling of the soil and thus, locally, cooler temperatures overall. Not known, however, is the degree to which soil moisture variations can affect remote air temperatures through their impact on the atmospheric circulation. In this talk we describe a two-pronged analysis that addresses this question. In the first segment, an extensive ensemble of NASA/GSFC GEOS-5 atmospheric model simulations is analyzed statistically to isolate and quantify the contributions of various soil moisture states, both local and remote, to the variability of air temperature at a given local site. In the second segment, the relevance of the derived statistical relationships is evaluated by applying them to observations-based data. Results from the second segment suggest that the GEOS-5-based relationships do, at least to first order, hold in nature and thus may provide some skill to forecasts of air temperature at subseasonal time scales, at least in certain regions.

  2. Level set segmentation of medical images based on local region statistics and maximum a posteriori probability.

    Science.gov (United States)

    Cui, Wenchao; Wang, Yi; Lei, Tao; Fan, Yangyu; Feng, Yan

    2013-01-01

    This paper presents a variational level set method for simultaneous segmentation and bias field estimation of medical images with intensity inhomogeneity. In our model, the statistics of image intensities belonging to each different tissue in local regions are characterized by Gaussian distributions with different means and variances. According to maximum a posteriori probability (MAP) and Bayes' rule, we first derive a local objective function for image intensities in a neighborhood around each pixel. Then this local objective function is integrated with respect to the neighborhood center over the entire image domain to give a global criterion. In level set framework, this global criterion defines an energy in terms of the level set functions that represent a partition of the image domain and a bias field that accounts for the intensity inhomogeneity of the image. Therefore, image segmentation and bias field estimation are simultaneously achieved via a level set evolution process. Experimental results for synthetic and real images show desirable performances of our method.

  3. Local-scale and watershed-scale determinants of summertime urban stream temperatures

    Science.gov (United States)

    Derek B. Booth; Kristin A. Kraseski; C. Rhett. Jackson

    2014-01-01

    The influence of urbanization on the temperature of small streams is widely recognized, but these effects are confounded by the great natural variety of their contributing watersheds. To evaluate the relative importance of local-scale and watershed-scale factors on summer temperatures in urban streams, hundreds of near-instantaneous temperature measurements throughout...

  4. Nuclear Enhanced X-ray Maximum Entropy Method Used to Analyze Local Distortions in Simple Structures

    DEFF Research Database (Denmark)

    Christensen, Sebastian; Bindzus, Niels; Christensen, Mogens

    We introduce a novel method for reconstructing pseudo nuclear density distributions (NDDs): Nuclear Enhanced X-ray Maximum Entropy Method (NEXMEM). NEXMEM offers an alternative route to experimental NDDs, exploiting the superior quality of synchrotron X-ray data compared to neutron data. The method...... proposed to result from anharmonic phonon scattering or from local fluctuating dipoles on the Pb site.[1,2] No macroscopic symmetry change are associated with these effects, rendering them invisible to conventional crystallographic techniques. For this reason PbX was until recently believed to adopt...

  5. The Effects of Data Gaps on the Calculated Monthly Mean Maximum and Minimum Temperatures in the Continental United States: A Spatial and Temporal Study.

    Science.gov (United States)

    Stooksbury, David E.; Idso, Craig D.; Hubbard, Kenneth G.

    1999-05-01

    Gaps in otherwise regularly scheduled observations are often referred to as missing data. This paper explores the spatial and temporal impacts that data gaps in the recorded daily maximum and minimum temperatures have on the calculated monthly mean maximum and minimum temperatures. For this analysis 138 climate stations from the United States Historical Climatology Network Daily Temperature and Precipitation Data set were selected. The selected stations had no missing maximum or minimum temperature values during the period 1951-80. The monthly mean maximum and minimum temperatures were calculated for each station for each month. For each month 1-10 consecutive days of data from each station were randomly removed. This was performed 30 times for each simulated gap period. The spatial and temporal impact of the 1-10-day data gaps were compared. The influence of data gaps is most pronounced in the continental regions during the winter and least pronounced in the southeast during the summer. In the north central plains, 10-day data gaps during January produce a standard deviation value greater than 2°C about the `true' mean. In the southeast, 10-day data gaps in July produce a standard deviation value less than 0.5°C about the mean. The results of this study will be of value in climate variability and climate trend research as well as climate assessment and impact studies.

  6. Low-temperature localization in the transport properties of self ...

    Indian Academy of Sciences (India)

    Transport properties; scattering mechanisms; low temperature localization. 1. Introduction ... Mn4+ appears in these compounds due to the La defi- ciency, leading ... microscopy (SEM) image in figure 1 shows the size and mor- phology of the ...

  7. Temperature and flow fluctuations under local boiling in a simulated fuel subassembly

    International Nuclear Information System (INIS)

    Inujima, H.; Ogino, T.; Uotani, M.; Yamaguchi, K.

    1980-08-01

    Out-of-pile experiments were carried out with the sodium test loop SIENA in O-arai Engineering Center of PNC, and the feasibility studies had been made on the local boiling detection by use of temperature and flow fluctuations. The studies showed that the temperature fluctuation transferred the information on local boiling toward the end of the bundle, but hardly to the outlet. In addition, it was proved that the anomaly detection method, which used the algorithm of whiteness test method to the residual time series data of autoregressive model, is an effective one for detecting anomaly such as local boiling. (author)

  8. Localized-magnon states in strongly frustrated quantum spin lattices

    International Nuclear Information System (INIS)

    Richter, J.

    2005-01-01

    Recent developments concerning localized-magnon eigenstates in strongly frustrated spin lattices and their effect on the low-temperature physics of these systems in high magnetic fields are reviewed. After illustrating the construction and the properties of localized-magnon states we describe the plateau and the jump in the magnetization process caused by these states. Considering appropriate lattice deformations fitting to the localized magnons we discuss a spin-Peierls instability in high magnetic fields related to these states. Last but not least we consider the degeneracy of the localized-magnon eigenstates and the related thermodynamics in high magnetic fields. In particular, we discuss the low-temperature maximum in the isothermal entropy versus field curve and the resulting enhanced magnetocaloric effect, which allows efficient magnetic cooling from quite large temperatures down to very low ones

  9. Skin blood flow and local temperature independently modify sweat rate during passive heat stress in humans.

    Science.gov (United States)

    Wingo, Jonathan E; Low, David A; Keller, David M; Brothers, R Matthew; Shibasaki, Manabu; Crandall, Craig G

    2010-11-01

    Sweat rate (SR) is reduced in locally cooled skin, which may result from decreased temperature and/or parallel reductions in skin blood flow. The purpose of this study was to test the hypotheses that decreased skin blood flow and decreased local temperature each independently attenuate sweating. In protocols I and II, eight subjects rested supine while wearing a water-perfused suit for the control of whole body skin and internal temperatures. While 34°C water perfused the suit, four microdialysis membranes were placed in posterior forearm skin not covered by the suit to manipulate skin blood flow using vasoactive agents. Each site was instrumented for control of local temperature and measurement of local SR (capacitance hygrometry) and skin blood flow (laser-Doppler flowmetry). In protocol I, two sites received norepinephrine to reduce skin blood flow, while two sites received Ringer solution (control). All sites were maintained at 34°C. In protocol II, all sites received 28 mM sodium nitroprusside to equalize skin blood flow between sites before local cooling to 20°C (2 sites) or maintenance at 34°C (2 sites). In both protocols, individuals were then passively heated to increase core temperature ~1°C. Both decreased skin blood flow and decreased local temperature attenuated the slope of the SR to mean body temperature relationship (2.0 ± 1.2 vs. 1.0 ± 0.7 mg·cm(-2)·min(-1)·°C(-1) for the effect of decreased skin blood flow, P = 0.01; 1.2 ± 0.9 vs. 0.07 ± 0.05 mg·cm(-2)·min(-1)·°C(-1) for the effect of decreased local temperature, P = 0.02). Furthermore, local cooling delayed the onset of sweating (mean body temperature of 37.5 ± 0.4 vs. 37.6 ± 0.4°C, P = 0.03). These data demonstrate that local cooling attenuates sweating by independent effects of decreased skin blood flow and decreased local skin temperature.

  10. Spatial-temporal changes of maximum and minimum temperatures in the Wei River Basin, China: Changing patterns, causes and implications

    Science.gov (United States)

    Liu, Saiyan; Huang, Shengzhi; Xie, Yangyang; Huang, Qiang; Leng, Guoyong; Hou, Beibei; Zhang, Ying; Wei, Xiu

    2018-05-01

    Due to the important role of temperature in the global climate system and energy cycles, it is important to investigate the spatial-temporal change patterns, causes and implications of annual maximum (Tmax) and minimum (Tmin) temperatures. In this study, the Cloud model were adopted to fully and accurately analyze the changing patterns of annual Tmax and Tmin from 1958 to 2008 by quantifying their mean, uniformity, and stability in the Wei River Basin (WRB), a typical arid and semi-arid region in China. Additionally, the cross wavelet analysis was applied to explore the correlations among annual Tmax and Tmin and the yearly sunspots number, Arctic Oscillation, Pacific Decadal Oscillation, and soil moisture with an aim to determine possible causes of annual Tmax and Tmin variations. Furthermore, temperature-related impacts on vegetation cover and precipitation extremes were also examined. Results indicated that: (1) the WRB is characterized by increasing trends in annual Tmax and Tmin, with a more evident increasing trend in annual Tmin, which has a higher dispersion degree and is less uniform and stable than annual Tmax; (2) the asymmetric variations of Tmax and Tmin can be generally explained by the stronger effects of solar activity (primarily), large-scale atmospheric circulation patterns, and soil moisture on annual Tmin than on annual Tmax; and (3) increasing annual Tmax and Tmin have exerted strong influences on local precipitation extremes, in terms of their duration, intensity, and frequency in the WRB. This study presents new analyses of Tmax and Tmin in the WRB, and the findings may help guide regional agricultural production and water resources management.

  11. Correlation Dimension Estimates of Global and Local Temperature Data.

    Science.gov (United States)

    Wang, Qiang

    1995-11-01

    The author has attempted to detect the presence of low-dimensional deterministic chaos in temperature data by estimating the correlation dimension with the Hill estimate that has been recently developed by Mikosch and Wang. There is no convincing evidence of low dimensionality with either global dataset (Southern Hemisphere monthly average temperatures from 1858 to 1984) or local temperature dataset (daily minimums at Auckland, New Zealand). Any apparent reduction in the dimension estimates appears to be due large1y, if not entirely, to effects of statistical bias, but neither is it a purely random stochastic process. The dimension of the climatic attractor may be significantly larger than 10.

  12. Can human local activities worsen the rise of temperature due to Climate Change?

    Science.gov (United States)

    Mateos, E.; Santana, J.; Deeb, A.; Grünwaldt, A.; Prieto, R.

    2013-12-01

    Several studies have shown a global scale temperature rise which in consequence, have brought up the need to propose various impact scenarios for this change on the planet and its life forms. Climate changes have a direct effect on human activities. Particularly these alterations have a negative impact on economy which in turn affects the most vulnerable and marginal population on developing nations. In a recent study based on 30 years climatological observed temperature in ten Mexican watersheds, from the period between 1970 and 1999, positive trend on maximum temperature were found in all watersheds. At each watershed at least 10 climatological stations from the net operated by the National Meteorological Service (Servicio Meterologico Nacional), whose data are maintained in the CLICOM database (Computerized Climate database), were selected. The climatological stations have at least 70% valid data per decade. In eight watersheds a maximum temperature trend oscillates between +0.5 to +1 oC every 30 years with a 95% confidence level. Nonetheless, in Rio Bravo and Rio Verde watersheds the tendencies are +1.75 and +2.75 oC over 30 years. The result in these two last watersheds evinces that: 1) there are fragile systems; 2) the human activities have a strong impact in those places, and 3) a principal anthropogenic influence on temperature rise is the change in land use. Temperature rised on Jalostitlan within Rio Verde watershed

  13. A parametrization of two-dimensional turbulence based on a maximum entropy production principle with a local conservation of energy

    International Nuclear Information System (INIS)

    Chavanis, Pierre-Henri

    2014-01-01

    In the context of two-dimensional (2D) turbulence, we apply the maximum entropy production principle (MEPP) by enforcing a local conservation of energy. This leads to an equation for the vorticity distribution that conserves all the Casimirs, the energy, and that increases monotonically the mixing entropy (H-theorem). Furthermore, the equation for the coarse-grained vorticity dissipates monotonically all the generalized enstrophies. These equations may provide a parametrization of 2D turbulence. They do not generally relax towards the maximum entropy state. The vorticity current vanishes for any steady state of the 2D Euler equation. Interestingly, the equation for the coarse-grained vorticity obtained from the MEPP turns out to coincide, after some algebraic manipulations, with the one obtained with the anticipated vorticity method. This shows a connection between these two approaches when the conservation of energy is treated locally. Furthermore, the newly derived equation, which incorporates a diffusion term and a drift term, has a nice physical interpretation in terms of a selective decay principle. This sheds new light on both the MEPP and the anticipated vorticity method. (paper)

  14. A generic statistical methodology to predict the maximum pit depth of a localized corrosion process

    International Nuclear Information System (INIS)

    Jarrah, A.; Bigerelle, M.; Guillemot, G.; Najjar, D.; Iost, A.; Nianga, J.-M.

    2011-01-01

    Highlights: → We propose a methodology to predict the maximum pit depth in a corrosion process. → Generalized Lambda Distribution and the Computer Based Bootstrap Method are combined. → GLD fit a large variety of distributions both in their central and tail regions. → Minimum thickness preventing perforation can be estimated with a safety margin. → Considering its applications, this new approach can help to size industrial pieces. - Abstract: This paper outlines a new methodology to predict accurately the maximum pit depth related to a localized corrosion process. It combines two statistical methods: the Generalized Lambda Distribution (GLD), to determine a model of distribution fitting with the experimental frequency distribution of depths, and the Computer Based Bootstrap Method (CBBM), to generate simulated distributions equivalent to the experimental one. In comparison with conventionally established statistical methods that are restricted to the use of inferred distributions constrained by specific mathematical assumptions, the major advantage of the methodology presented in this paper is that both the GLD and the CBBM enable a statistical treatment of the experimental data without making any preconceived choice neither on the unknown theoretical parent underlying distribution of pit depth which characterizes the global corrosion phenomenon nor on the unknown associated theoretical extreme value distribution which characterizes the deepest pits. Considering an experimental distribution of depths of pits produced on an aluminium sample, estimations of maximum pit depth using a GLD model are compared to similar estimations based on usual Gumbel and Generalized Extreme Value (GEV) methods proposed in the corrosion engineering literature. The GLD approach is shown having smaller bias and dispersion in the estimation of the maximum pit depth than the Gumbel approach both for its realization and mean. This leads to comparing the GLD approach to the GEV one

  15. Local temperatures predict breeding phenology but do not result in breeding synchrony among a community of resident cavity-nesting birds.

    Science.gov (United States)

    Drake, Anna; Martin, Kathy

    2018-02-09

    Weather and ecological factors are known to influence breeding phenology and thus individual fitness. We predicted concordance between weather conditions and annual variation in phenology within a community of eight resident, cavity-nesting bird species over a 17-year period. We show that, although clutch initiation dates for six of our eight species are correlated with local daily maximum temperatures, this common driver does not produce a high degree of breeding synchrony due to species-specific responses to conditions during different periods of the preceding winter or spring. These "critical temperature periods" were positively associated with average lay date for each species, although the interval between critical periods and clutch initiation varied from 4-78 days. The ecological factors we examined (cavity availability and a food pulse) had an additional influence on timing in only one of our eight focal species. Our results have strong implications for understanding heterogeneous wildlife responses to climate change: divergent responses would be expected within communities where species respond to local conditions within different temporal windows, due to differing warming trends between winter and spring. Our system therefore indicates that climate change could alter relative breeding phenology among sympatric species in temperate ecosystems.

  16. Effect of in-pile degradation of the meat thermal conductivity on the maximum temperature of the plate-type U-Mo dispersion fuels

    International Nuclear Information System (INIS)

    Medvedev, Pavel G.

    2009-01-01

    Effect of in-pile degradation of thermal conductivity on the maximum temperature of the plate-type research reactor fuels has been assessed using the steady-state heat conduction equation and assuming convection cooling. It was found that due to very low meat thickness, characteristic for this type of fuel, the effect of thermal conductivity degradation on the maximum fuel temperature is minor. For example, the fuel plate featuring 0.635 mm thick meat operating at heat flux of 600 W/cm2 would experience only a 20 C temperature rise if the meat thermal conductivity degrades from 0.8 W/cm-s to 0.3 W/cm-s. While degradation of meat thermal conductivity in dispersion-type U-Mo fuel can be very substantial due to formation of interaction layer between the particles and the matrix, and development of fission gas filled porosity, this simple analysis demonstrates that this phenomenon is unlikely to significantly affect the temperature-based safety margin of the fuel during normal operation.

  17. A new global reconstruction of temperature changes at the Last Glacial Maximum

    Directory of Open Access Journals (Sweden)

    J. D. Annan

    2013-02-01

    Full Text Available Some recent compilations of proxy data both on land and ocean (MARGO Project Members, 2009; Bartlein et al., 2011; Shakun et al., 2012, have provided a new opportunity for an improved assessment of the overall climatic state of the Last Glacial Maximum. In this paper, we combine these proxy data with the ensemble of structurally diverse state of the art climate models which participated in the PMIP2 project (Braconnot et al., 2007 to generate a spatially complete reconstruction of surface air (and sea surface temperatures. We test a variety of approaches, and show that multiple linear regression performs well for this application. Our reconstruction is significantly different to and more accurate than previous approaches and we obtain an estimated global mean cooling of 4.0 ± 0.8 °C (95% CI.

  18. Non-local electrical spin injection and detection in germanium at room temperature

    Science.gov (United States)

    Rortais, F.; Vergnaud, C.; Marty, A.; Vila, L.; Attané, J.-P.; Widiez, J.; Zucchetti, C.; Bottegoni, F.; Jaffrès, H.; George, J.-M.; Jamet, M.

    2017-10-01

    Non-local carrier injection/detection schemes lie at the very foundation of information manipulation in integrated systems. This paradigm consists in controlling with an external signal the channel where charge carriers flow between a "source" and a well separated "drain." The next generation electronics may operate on the spin of carriers in addition to their charge and germanium appears as the best hosting material to develop such a platform for its compatibility with mainstream silicon technology and the predicted long electron spin lifetime at room temperature. In this letter, we demonstrate injection of pure spin currents (i.e., with no associated transport of electric charges) in germanium, combined with non-local spin detection at 10 K and room temperature. For this purpose, we used a lateral spin valve with epitaxially grown magnetic tunnel junctions as spin injector and spin detector. The non-local magnetoresistance signal is clearly visible and reaches ≈15 mΩ at room temperature. The electron spin lifetime and diffusion length are 500 ps and 1 μm, respectively, the spin injection efficiency being as high as 27%. This result paves the way for the realization of full germanium spintronic devices at room temperature.

  19. Localized temperature stability in Low Temperature Cofired Ceramics (LTCC).

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Steven Xunhu; Hsieh, Lung-Hwa.

    2012-04-01

    The base dielectrics of commercial low temperature cofired ceramics (LTCC) systems have a temperature coefficient of resonant frequency ({tau}{sub f}) in the range -50 {approx} -80 ppm/C. In this research we explored a method to realize zero or near zero {tau}{sub f} resonators by incorporating {tau}{sub f} compensating materials locally into a multilayer LTCC structure. To select composition for {tau}{sub f} adjustment, {tau}{sub f} compensating materials with different amount of titanates were formulated, synthesized, and characterized. Chemical interactions and physical compatibility between the {tau}{sub f} modifiers and the host LTCC dielectrics were investigated. Studies on stripline (SL) resonator panels with multiple compensating dielectrics revealed that: 1) compositions using SrTiO{sub 3} provide the largest {tau}{sub f} adjustment among titanates, 2) the {tau}{sub f} compensation is proportional to the amount of SrTiO{sub 3} in compensating materials, as well as the thickness of the compensating layer, and 3) the most effective {tau}{sub f} compensation is achieved when the compensating dielectric is integrated next to the SL. Using the effective dielectric constant of a heterogeneous layered dielectric structure, results from Method of Momentum (MoM) electromagnetic simulations are consistent with the experimental observations.

  20. Maximum skin hyperaemia induced by local heating: possible mechanisms.

    Science.gov (United States)

    Gooding, Kim M; Hannemann, Michael M; Tooke, John E; Clough, Geraldine F; Shore, Angela C

    2006-01-01

    Maximum skin hyperaemia (MH) induced by heating skin to > or = 42 degrees C is impaired in individuals at risk of diabetes and cardiovascular disease. Interpretation of these findings is hampered by the lack of clarity of the mechanisms involved in the attainment of MH. MH was achieved by local heating of skin to 42-43 degrees C for 30 min, and assessed by laser Doppler fluximetry. Using double-blind, randomized, placebo-controlled crossover study designs, the roles of prostaglandins were investigated by inhibiting their production with aspirin and histamine, with the H1 receptor antagonist cetirizine. The nitric oxide (NO) pathway was blocked by the NO synthase inhibitor, NG-nitro-L-arginine methyl esther (L-NAME), and enhanced by sildenafil (prevents breakdown of cGMP). MH was not altered by aspirin, cetirizine or sildenafil, but was reduced by L-NAME: median placebo 4.48 V (25th, 75th centiles: 3.71, 4.70) versus L-NAME 3.25 V (3.10, 3.80) (p = 0.008, Wilcoxon signed rank test). Inhibition of NO production (L-NAME) resulted in a more rapid reduction in hyperaemia after heating (p = 0.011), whereas hyperaemia was prolonged in the presence of sildenafil (p = 0.003). The increase in skin blood flow was largely confined to the directly heated area, suggesting that the role of heat-induced activation of the axon reflex was small. NO, but not prostaglandins, histamine or an axon reflex, contributes to the increase in blood flow on heating and NO is also a component of the resolution of MH after heating. Copyright 2006 S. Karger AG, Basel.

  1. Distribution Analysis of the Local Critical Temperature and Current Density in YBCO Coated Conductors using Low-temperature Scanning Laser and Hall Probe Microscopy

    International Nuclear Information System (INIS)

    Park, S. K.; Cho, B. R.; Park, H. Y.; Ri, H. C.

    2011-01-01

    Distribution of the local critical temperature and current density in YBCO coated conductors were analyzed using Low-temperature Scanning Laser and Hall Probe Microscopy (LTSLHPM). We prepared YBCO coated conductors of various bridge types to study the spatial distribution of the critical temperature and the current density in single and multi bridges. LTSLHPM system was modified for detailed linescan or two-dimensional scan both scanning laser and scanning Hall probe method simultaneously. We analyzed the local critical temperature of single and multi bridges from series of several linescans of scanning laser microscopy. We also investigated local current density and hysteresis curve of single bridge from experimental results of scanning Hall probe microscopy.

  2. Local and linear chemical reactivity response functions at finite temperature in density functional theory

    International Nuclear Information System (INIS)

    Franco-Pérez, Marco; Ayers, Paul W.; Gázquez, José L.; Vela, Alberto

    2015-01-01

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model

  3. Downscaling RCP8.5 daily temperatures and precipitation in Ontario using localized ensemble optimal interpolation (EnOI) and bias correction

    Science.gov (United States)

    Deng, Ziwang; Liu, Jinliang; Qiu, Xin; Zhou, Xiaolan; Zhu, Huaiping

    2017-10-01

    A novel method for daily temperature and precipitation downscaling is proposed in this study which combines the Ensemble Optimal Interpolation (EnOI) and bias correction techniques. For downscaling temperature, the day to day seasonal cycle of high resolution temperature of the NCEP climate forecast system reanalysis (CFSR) is used as background state. An enlarged ensemble of daily temperature anomaly relative to this seasonal cycle and information from global climate models (GCMs) are used to construct a gain matrix for each calendar day. Consequently, the relationship between large and local-scale processes represented by the gain matrix will change accordingly. The gain matrix contains information of realistic spatial correlation of temperature between different CFSR grid points, between CFSR grid points and GCM grid points, and between different GCM grid points. Therefore, this downscaling method keeps spatial consistency and reflects the interaction between local geographic and atmospheric conditions. Maximum and minimum temperatures are downscaled using the same method. For precipitation, because of the non-Gaussianity issue, a logarithmic transformation is used to daily total precipitation prior to conducting downscaling. Cross validation and independent data validation are used to evaluate this algorithm. Finally, data from a 29-member ensemble of phase 5 of the Coupled Model Intercomparison Project (CMIP5) GCMs are downscaled to CFSR grid points in Ontario for the period from 1981 to 2100. The results show that this method is capable of generating high resolution details without changing large scale characteristics. It results in much lower absolute errors in local scale details at most grid points than simple spatial downscaling methods. Biases in the downscaled data inherited from GCMs are corrected with a linear method for temperatures and distribution mapping for precipitation. The downscaled ensemble projects significant warming with amplitudes of 3

  4. Temperature reconstruction and volcanic eruption signal from tree-ring width and maximum latewood density over the past 304 years in the southeastern Tibetan Plateau.

    Science.gov (United States)

    Li, Mingqi; Huang, Lei; Yin, Zhi-Yong; Shao, Xuemei

    2017-11-01

    This study presents a 304-year mean July-October maximum temperature reconstruction for the southeastern Tibetan Plateau based on both tree-ring width and maximum latewood density data. The reconstruction explained 58% of the variance in July-October maximum temperature during the calibration period (1958-2005). On the decadal scale, we identified two prominent cold periods during AD 1801-1833 and 1961-2003 and two prominent warm periods during AD 1730-1800 and 1928-1960, which are consistent with other reconstructions from the nearby region. Based on the reconstructed temperature series and volcanic eruption chronology, we found that most extreme cold years were in good agreement with major volcanic eruptions, such as 1816 after the Tambora eruption in 1815. Also, clusters of volcanic eruptions probably made the 1810s the coldest decade in the past 300 years. Our results indicated that fingerprints of major volcanic eruptions can be found in the reconstructed temperature records, while the responses of regional climate to these eruption events varied in space and time in the southeastern Tibetan Plateau.

  5. Simultaneous in vivo recording of local brain temperature and electrophysiological signals with a novel neural probe

    Science.gov (United States)

    Fekete, Z.; Csernai, M.; Kocsis, K.; Horváth, Á. C.; Pongrácz, A.; Barthó, P.

    2017-06-01

    Objective. Temperature is an important factor for neural function both in normal and pathological states, nevertheless, simultaneous monitoring of local brain temperature and neuronal activity has not yet been undertaken. Approach. In our work, we propose an implantable, calibrated multimodal biosensor that facilitates the complex investigation of thermal changes in both cortical and deep brain regions, which records multiunit activity of neuronal populations in mice. The fabricated neural probe contains four electrical recording sites and a platinum temperature sensor filament integrated on the same probe shaft within a distance of 30 µm from the closest recording site. The feasibility of the simultaneous functionality is presented in in vivo studies. The probe was tested in the thalamus of anesthetized mice while manipulating the core temperature of the animals. Main results. We obtained multiunit and local field recordings along with measurement of local brain temperature with accuracy of 0.14 °C. Brain temperature generally followed core body temperature, but also showed superimposed fluctuations corresponding to epochs of increased local neural activity. With the application of higher currents, we increased the local temperature by several degrees without observable tissue damage between 34-39 °C. Significance. The proposed multifunctional tool is envisioned to broaden our knowledge on the role of the thermal modulation of neuronal activity in both cortical and deeper brain regions.

  6. Emergence of coherent localized structures in shear deformations of temperature dependent fluids

    KAUST Repository

    Katsaounis, Theodoros

    2016-11-25

    Shear localization occurs in various instances of material instability in solid mechanics and is typically associated with Hadamard-instability for an underlying model. While Hadamard instability indicates the catastrophic growth of oscillations around a mean state, it does not by itself explain the formation of coherent structures typically observed in localization. The latter is a nonlinear effect and its analysis is the main objective of this article. We consider a model that captures the main mechanisms observed in high strain-rate deformation of metals, and describes shear motions of temperature dependent non-Newtonian fluids. For a special dependence of the viscosity on the temperature, we carry out a linearized stability analysis around a base state of uniform shearing solutions, and quantitatively assess the effects of the various mechanisms affecting the problem: thermal softening, momentum diffusion and thermal diffusion. Then, we turn to the nonlinear model, and construct localized states - in the form of similarity solutions - that emerge as coherent structures in the localization process. This justifies a scenario for localization that is proposed on the basis of asymptotic analysis in \\\\cite{KT}.

  7. Emergence of coherent localized structures in shear deformations of temperature dependent fluids

    KAUST Repository

    Katsaounis, Theodoros; Olivier, Julien; Tzavaras, Athanasios

    2016-01-01

    Shear localization occurs in various instances of material instability in solid mechanics and is typically associated with Hadamard-instability for an underlying model. While Hadamard instability indicates the catastrophic growth of oscillations around a mean state, it does not by itself explain the formation of coherent structures typically observed in localization. The latter is a nonlinear effect and its analysis is the main objective of this article. We consider a model that captures the main mechanisms observed in high strain-rate deformation of metals, and describes shear motions of temperature dependent non-Newtonian fluids. For a special dependence of the viscosity on the temperature, we carry out a linearized stability analysis around a base state of uniform shearing solutions, and quantitatively assess the effects of the various mechanisms affecting the problem: thermal softening, momentum diffusion and thermal diffusion. Then, we turn to the nonlinear model, and construct localized states - in the form of similarity solutions - that emerge as coherent structures in the localization process. This justifies a scenario for localization that is proposed on the basis of asymptotic analysis in \\cite{KT}.

  8. Effect of temperature dependent properties on MHD convection of water near its density maximum in a square cavity

    International Nuclear Information System (INIS)

    Sivasankaran, S.; Hoa, C.J.

    2008-01-01

    Natural convection of water near its density maximum in the presence of magnetic field in a cavity with temperature dependent properties is studied numerically. The viscosity and thermal conductivity of the water is varied with reference temperature and calculated by cubic polynomial. The finite volume method is used to solve the governing equations. The results are presented graphically in the form of streamlines, isotherms and velocity vectors and are discussed for various combinations of reference temperature parameter, Rayleigh number, density inversion parameter and Hartmann number. It is observed that flow and temperature field are affected significantly by changing the reference temperature parameter for temperature dependent thermal conductivity and both temperature dependent viscosity and thermal conductivity cases. There is no significant effect on fluid flow and temperature distributions for temperature dependent viscosity case when changing the values of reference temperature parameter. The average heat transfer rate considering temperature-dependent viscosity are higher than considering temperature-dependent thermal conductivity and both temperature-dependent viscosity and thermal conductivity. The average Nusselt number decreases with an increase of Hartmann number. It is observed that the density inversion of water leaves strong effects on fluid flow and heat transfer due to the formation of bi-cellular structure. The heat transfer rate behaves non-linearly with density inversion parameter. The direction of external magnetic field also affect the fluid flow and heat transfer. (authors)

  9. The Morphology, Dynamics and Potential Hotspots of Land Surface Temperature at a Local Scale in Urban Areas

    Directory of Open Access Journals (Sweden)

    Jiong Wang

    2015-12-01

    Full Text Available Current characterization of the Urban Heat Island (UHI remains insufficient to support the effective mitigation and adaptation of increasing temperatures in urban areas. Planning and design strategies are restricted to the investigation of temperature anomalies at a city scale. By focusing on Land Surface Temperature of Wuhan, China, this research examines the temperature variations locally where mitigation and adaptation would be more feasible. It shows how local temperature anomalies can be identified morphologically. Technically, the MODerate-resolution Imaging Spectroradiometer satellite image products are used. They are first considered as noisy observations of the latent temperature patterns. The continuous latent patterns of the temperature are then recovered from these discrete observations by using the non-parametric Multi-Task Gaussian Process Modeling. The Multi-Scale Shape Index is then applied in the area of focus to extract the local morphological features. A triplet of shape, curvedness and temperature is formed as the criteria to extract local heat islands. The behavior of the local heat islands can thus be quantified morphologically. The places with critical deformations are identified as hotpots. The hotspots with certain yearly behavior are further associated with land surface composition to determine effective mitigation and adaptation strategies. This research can assist in the temperature and planning field on two levels: (1 the local land surface temperature patterns are characterized by decomposing the variations into fundamental deformation modes to allow a process-based understanding of the dynamics; and (2 the characterization at local scale conforms to planning and design conventions where mitigation and adaptation strategies are supposed to be more practical. The weaknesses and limitations of the study are addressed in the closing section.

  10. The relationship between the local temperature and the local heat flux within a one-dimensional semi-infinite domain of heat wave propagation

    Directory of Open Access Journals (Sweden)

    Kulish Vladimir V.

    2003-01-01

    Full Text Available The relationship between the local temperature and the local heat flux has been established for the homogeneous hyperbolic heat equation. This relationship has been written in the form of a convolution integral involving the modified Bessel functions. The scale analysis of the hyperbolic energy equation has been performed and the dimensionless criterion for the mode of energy transport, similar to the Reynolds criterion for the flow regimes, has been proposed. Finally, the integral equation, relating the local temperature and the local heat flux, has been solved numerically for those processes of surface heating whose time scale is of the order of picoseconds.

  11. Maximum likely scale estimation

    DEFF Research Database (Denmark)

    Loog, Marco; Pedersen, Kim Steenstrup; Markussen, Bo

    2005-01-01

    A maximum likelihood local scale estimation principle is presented. An actual implementation of the estimation principle uses second order moments of multiple measurements at a fixed location in the image. These measurements consist of Gaussian derivatives possibly taken at several scales and/or ...

  12. PWR clad ballooning: The effect of circumferential clad temperature variations on the burst strain/burst temperature relationship

    International Nuclear Information System (INIS)

    Barlow, P.

    1983-01-01

    By experiment, it has been shown by other workers that there is a reduction in the creep ductility of Zircaloy 4 in the α+β phase transition region. Results from single rod burst tests also show a reduction in burst strain in the α+β phase region. In this report it is shown theoretically that for single rod burst tests in the presence of circumferential temperature gradients, the temperature dependence of the mean burst strain is not determined by temperature variations in creep ductility, but is governed by the temperature sensitivity of the creep strain rate, which is shown to be a maximum in the α+β phase transition region. To demonstrate this effect, the mean clad strain at burst was calculated for creep straining at different temperature levels in the α, α+β and β phase regions. Cross-pin temperature gradients were applied which produced strain variations around the clad which were greatest in the α+β phase region. The mean strain at burst was determined using a maximum local burst strain (i.e. a creep ductility) which is independent of temperature. By assuming cross-pin temperature gradients which are typical of those observed during burst tests, then the calculated mean burst strain/burst temperature relationship gave good agreement with experiment. The calculations also show that when circumferential temperature differences are present, the calculated mean strain at burst is not sensitive to variations in the magnitude of the assumed creep ductility. This reduces the importance of the assumed burst criterion in the calculations. Hence a temperature independent creep ductility (e.g. 100% local strain) is adequate as a burst criterion for calculations under PWR LOCA conditions. (author)

  13. Temperature effect on the inter-micellar collision and maximum packaging volume fraction in water/AOT/isooctane micro-emulsions

    International Nuclear Information System (INIS)

    Guettari, Moez; Ben Naceur, Imen; Kassab, Ghazi; Tajouri, Tahar

    2016-01-01

    We have studied the viscosity behaviour of water/AOT/isooctane micro-emulsions as a function of the volume fraction of the dispersed phase over a temperature range from the (298.15 to 328.15) K. For all the studied temperature range, a sharp increase of the viscosities is observed when the droplets concentration was varied. Several equations based on hard sphere model were examined to explain the behaviours of micro-emulsions under temperature and concentration effects. According to these equations, the shape factor and the inter-particle interaction parameters were found to be dependent on temperature which is in contradiction with experimental results reported in the literature. A modified Vand equation, taking into account the inter-particle collision time, is used to interpret the results obtained. This deviation is attributed to the aggregation of the droplets which becomes important by increasing temperature. The maximum packaging volume fraction of particles Φ_d_m and the intrinsic viscosity [η] were determined according to the Krieger and Dougherty equation through the temperature range studied. These two parameters were shown to be dependent on temperature but their product was found to be constant and close to 2 as reported in theory.

  14. Comprehensive performance analyses and optimization of the irreversible thermodynamic cycle engines (TCE) under maximum power (MP) and maximum power density (MPD) conditions

    International Nuclear Information System (INIS)

    Gonca, Guven; Sahin, Bahri; Ust, Yasin; Parlak, Adnan

    2015-01-01

    This paper presents comprehensive performance analyses and comparisons for air-standard irreversible thermodynamic cycle engines (TCE) based on the power output, power density, thermal efficiency, maximum dimensionless power output (MP), maximum dimensionless power density (MPD) and maximum thermal efficiency (MEF) criteria. Internal irreversibility of the cycles occurred during the irreversible-adiabatic processes is considered by using isentropic efficiencies of compression and expansion processes. The performances of the cycles are obtained by using engine design parameters such as isentropic temperature ratio of the compression process, pressure ratio, stroke ratio, cut-off ratio, Miller cycle ratio, exhaust temperature ratio, cycle temperature ratio and cycle pressure ratio. The effects of engine design parameters on the maximum and optimal performances are investigated. - Highlights: • Performance analyses are conducted for irreversible thermodynamic cycle engines. • Comprehensive computations are performed. • Maximum and optimum performances of the engines are shown. • The effects of design parameters on performance and power density are examined. • The results obtained may be guidelines to the engine designers

  15. Determination of maximum water temperature within the spent fuel pool of Angra Nuclear Power Plant - Unit 3

    Energy Technology Data Exchange (ETDEWEB)

    Werner, F.L., E-mail: fernanda.werner@poli.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Departamento de Engenharia Nuclear; Alves, A.S.M., E-mail: asergi@eletronuclear.gov.br [Eletrobras Termonuclear (Eletronuclear), Rio de Janeiro, RJ (Brazil); Frutuoso e Melo, P.F., E-mail: frutuoso@nuclear.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    In this paper, a mathematical model for the determination of the maximum water temperature within the spent fuel pool of Angra Nuclear Power Plant – Unit 3 was developed. The model was obtained from the boundary layer analysis and the application of Navier-Stokes equation to a vertical flat plate immersed in a water flow under free convection regime. Both types of pressure loss coefficients through the flow channel were considers in the modeling, the form coefficient for fuel assemblies (FAs) and the loss due to rod friction. The resulting equations enabled the determination of a mixed water temperature below the storage racks (High Density Storage Racks) as well as the estimation of a temperature gradient through the racks. The model was applied to the authorized operation of the plant (power operation, plant outage and upset condition) and faulted conditions (loss of coolant accidents and external events). The results obtained are in agreement with Brazilian and international standards. (author)

  16. Determination of maximum water temperature within the spent fuel pool of Angra Nuclear Power Plant - Unit 3

    International Nuclear Information System (INIS)

    Werner, F.L.; Frutuoso e Melo, P.F.

    2017-01-01

    In this paper, a mathematical model for the determination of the maximum water temperature within the spent fuel pool of Angra Nuclear Power Plant – Unit 3 was developed. The model was obtained from the boundary layer analysis and the application of Navier-Stokes equation to a vertical flat plate immersed in a water flow under free convection regime. Both types of pressure loss coefficients through the flow channel were considers in the modeling, the form coefficient for fuel assemblies (FAs) and the loss due to rod friction. The resulting equations enabled the determination of a mixed water temperature below the storage racks (High Density Storage Racks) as well as the estimation of a temperature gradient through the racks. The model was applied to the authorized operation of the plant (power operation, plant outage and upset condition) and faulted conditions (loss of coolant accidents and external events). The results obtained are in agreement with Brazilian and international standards. (author)

  17. Maximum principle and convergence of central schemes based on slope limiters

    KAUST Repository

    Mehmetoglu, Orhan; Popov, Bojan

    2012-01-01

    A maximum principle and convergence of second order central schemes is proven for scalar conservation laws in dimension one. It is well known that to establish a maximum principle a nonlinear piecewise linear reconstruction is needed and a typical choice is the minmod limiter. Unfortunately, this implies that the scheme uses a first order reconstruction at local extrema. The novelty here is that we allow local nonlinear reconstructions which do not reduce to first order at local extrema and still prove maximum principle and convergence. © 2011 American Mathematical Society.

  18. The Impacts of Maximum Temperature and Climate Change to Current and Future Pollen Distribution in Skopje, Republic of Macedonia

    Directory of Open Access Journals (Sweden)

    Vladimir Kendrovski

    2012-02-01

    Full Text Available BACKGROUND. The goal of the present paper was to assess the impact of current and future burden of the ambient temperature to pollen distributions in Skopje. METHODS. In the study we have evaluated a correlation between the concentration of pollen grains in the atmosphere of Skopje and maximum temperature, during the vegetation period of 1996, 2003, 2007 and 2009 as a current burden in context of climate change. For our analysis we have selected 9 representative of each phytoallergen group (trees, grasses, weeds. The concentration of pollen grains has been monitored by a Lanzoni volumetric pollen trap. The correlation between the concentration of pollen grains in the atmosphere and selected meteorological variable from weekly monitoring has been studied with the help of linear regression and correlation coefficients. RESULTS. The prevalence of the sensibilization of standard pollen allergens in Skopje during the some period shows increasing from 16,9% in 1996 to 19,8% in 2009. We detect differences in onset of flowering, maximum and end of the length of seasons for pollen. The pollen distributions and risk increases in 3 main periods: early spring, spring and summer which are the main cause of allergies during these seasons. The largest increase of air temperature due to climate change in Skopje is expected in the summer season. CONCLUSION. The impacts of climate change by increasing of the temperature in the next decades very likely will include impacts on pollen production and differences in current pollen season. [TAF Prev Med Bull 2012; 11(1.000: 35-40

  19. Local temperature fine-tunes the timing of spring migration in birds

    DEFF Research Database (Denmark)

    Tøttrup, Anders P.; Rainio, Kalle; Coppack, Timothy

    2010-01-01

    and predict consequences of climatic change for migratory birds. In order to better understand migration phenology and adaptation in environmental changes, we here assess the scale at which weather affects timing of spring migration in passerine birds. We use three commonly used proxies of spring......-time climatic conditions: (1) vegetation "greenness" (NDVI) in Europe, (2) local spring temperatures in northern Europe, and (3) the North Atlantic Oscillation Index (NAO) as predictors of the phenology of avian migration as well as the strength of their effect on different subsets of populations...... breeding area. Local temperature was the best single predictor of phenology with the highest explanatory power achieved in combination with NAO. Furthermore, early individuals are more affected by climatic variation compared to individuals on later passage, indicating that climatic change affects subsets...

  20. Evaluation of daily maximum and minimum 2-m temperatures as simulated with the Regional Climate Model COSMO-CLM over Africa

    Directory of Open Access Journals (Sweden)

    Stefan Krähenmann

    2013-07-01

    Full Text Available The representation of the diurnal 2-m temperature cycle is challenging because of the many processes involved, particularly land-atmosphere interactions. This study examines the ability of the regional climate model COSMO-CLM (version 4.8 to capture the statistics of daily maximum and minimum 2-m temperatures (Tmin/Tmax over Africa. The simulations are carried out at two different horizontal grid-spacings (0.22° and 0.44°, and are driven by ECMWF ERA-Interim reanalyses as near-perfect lateral boundary conditions. As evaluation reference, a high-resolution gridded dataset of daily maximum and minimum temperatures (Tmin/Tmax for Africa (covering the period 2008–2010 is created using the regression-kriging-regression-kriging (RKRK algorithm. RKRK applies, among other predictors, the remotely sensed predictors land surface temperature and cloud cover to compensate for the missing information about the temperature pattern due to the low station density over Africa. This dataset allows the evaluation of temperature characteristics like the frequencies of Tmin/Tmax, the diurnal temperature range, and the 90th percentile of Tmax. Although the large-scale patterns of temperature are reproduced well, COSMO-CLM shows significant under- and overestimation of temperature at regional scales. The hemispheric summers are generally too warm and the day-to-day temperature variability is overestimated over northern and southern extra-tropical Africa. The average diurnal temperature range is underestimated by about 2°C across arid areas, yet overestimated by around 2°C over the African tropics. An evaluation based on frequency distributions shows good model performance for simulated Tmin (the simulated frequency distributions capture more than 80% of the observed ones, but less well performance for Tmax (capture below 70%. Further, over wide parts of Africa a too large fraction of daily Tmax values exceeds the observed 90th percentile of Tmax, particularly

  1. Evaluation of daily maximum and minimum 2-m temperatures as simulated with the regional climate model COSMO-CLM over Africa

    Energy Technology Data Exchange (ETDEWEB)

    Kraehenmann, Stefan; Kothe, Steffen; Ahrens, Bodo [Frankfurt Univ. (Germany). Inst. for Atmospheric and Environmental Sciences; Panitz, Hans-Juergen [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany)

    2013-10-15

    The representation of the diurnal 2-m temperature cycle is challenging because of the many processes involved, particularly land-atmosphere interactions. This study examines the ability of the regional climate model COSMO-CLM (version 4.8) to capture the statistics of daily maximum and minimum 2-m temperatures (Tmin/Tmax) over Africa. The simulations are carried out at two different horizontal grid-spacings (0.22 and 0.44 ), and are driven by ECMWF ERA-Interim reanalyses as near-perfect lateral boundary conditions. As evaluation reference, a high-resolution gridded dataset of daily maximum and minimum temperatures (Tmin/Tmax) for Africa (covering the period 2008-2010) is created using the regression-kriging-regression-kriging (RKRK) algorithm. RKRK applies, among other predictors, the remotely sensed predictors land surface temperature and cloud cover to compensate for the missing information about the temperature pattern due to the low station density over Africa. This dataset allows the evaluation of temperature characteristics like the frequencies of Tmin/Tmax, the diurnal temperature range, and the 90{sup th} percentile of Tmax. Although the large-scale patterns of temperature are reproduced well, COSMO-CLM shows significant under- and overestimation of temperature at regional scales. The hemispheric summers are generally too warm and the day-to-day temperature variability is overestimated over northern and southern extra-tropical Africa. The average diurnal temperature range is underestimated by about 2 C across arid areas, yet overestimated by around 2 C over the African tropics. An evaluation based on frequency distributions shows good model performance for simulated Tmin (the simulated frequency distributions capture more than 80% of the observed ones), but less well performance for Tmax (capture below 70%). Further, over wide parts of Africa a too large fraction of daily Tmax values exceeds the observed 90{sup th} percentile of Tmax, particularly across

  2. Fiber optic distributed temperature sensing for fire source localization

    Science.gov (United States)

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Sigrist, Markus W.; Li, Jun; Dong, Fengzhong

    2017-08-01

    A method for localizing a fire source based on a distributed temperature sensor system is proposed. Two sections of optical fibers were placed orthogonally to each other as the sensing elements. A tray of alcohol was lit to act as a fire outbreak in a cabinet with an uneven ceiling to simulate a real scene of fire. Experiments were carried out to demonstrate the feasibility of the method. Rather large fluctuations and systematic errors with respect to predicting the exact room coordinates of the fire source caused by the uneven ceiling were observed. Two mathematical methods (smoothing recorded temperature curves and finding temperature peak positions) to improve the prediction accuracy are presented, and the experimental results indicate that the fluctuation ranges and systematic errors are significantly reduced. The proposed scheme is simple and appears reliable enough to locate a fire source in large spaces.

  3. The impact of edge gradients in the pressure, density, ion temperature, and electron temperature on edge-localized modes

    International Nuclear Information System (INIS)

    Kleva, Robert G.; Guzdar, Parvez N.

    2011-01-01

    The magnitude of the energy and particle fluxes in simulations of edge-localized modes (ELMs) is determined by the edge gradients in the pressure, density, ion temperature, and electron temperature. The total edge pressure gradient is the dominant influence on ELMs by far. An increase (decrease) of merely 2% in the pressure gradient results in an increase (decrease) of more than a factor of ten in the size of the ELM bursts. At a fixed pressure gradient, the size of the ELM bursts decreases as the density gradient increases, while the size of the bursts increases as the electron temperature gradient or, especially, the ion temperature gradient increases.

  4. Temperature dependent XAFS studies of local atomic structure of the perovskite-type zirconates

    International Nuclear Information System (INIS)

    Vedrinskii, R. V.; Lemeshko, M. P.; Novakovich, A. A.; Nazarenko, E. S.; Nassif, V.; Proux, O.; Joly, Y.

    2006-01-01

    Temperature dependent preedge and extended x-ray absorption fine structure measurements at the Zr K edge for the perovskite-type zirconates PbZr 0.515 Ti 0.485 O 3 (PZT), PbZrO 3 (PZ), and BaZrO 3 are performed. To carry out a more accurate study of the weak reconstruction of the local atomic structure we employed a combination of two techniques: (i) analysis of the preedge fine structure, and (ii) analysis of the Fourier transform of the difference between χ(k) functions obtained at different temperatures. A detailed investigation of local atomic structure in the cubic phase for all the crystals is also performed. It is shown that neither the displacive nor the order-disorder model can describe correctly the changes of local atomic structure during phase transitions in PZ and PZT. A spherical model describing the local atomic structure of perovskite-type crystals suffering structural phase transitions is proposed

  5. Local- and landscape-scale land cover affects microclimate and water use in urban gardens.

    Science.gov (United States)

    Lin, Brenda B; Egerer, Monika H; Liere, Heidi; Jha, Shalene; Bichier, Peter; Philpott, Stacy M

    2018-01-01

    Urban gardens in Central California are highly vulnerable to the effects of climate change, experiencing both extended high heat periods as well as water restrictions because of severe drought conditions. This puts these critical community-based food production systems at risk as California is expected to experience increasing weather extremes. In agricultural systems, increased vegetation complexity, such as greater structure or biodiversity, can increase the resilience of food production systems from climate fluctuations. We test this theory in 15 urban gardens across California's Central Coast. Local- and landscape-scale measures of ground, vegetation, and land cover were collected in and around each garden, while climate loggers recorded temperatures in each garden in 30min increments. Multivariate analyses, using county as a random factor, show that both local- and landscape-scale factors were important. All factors were significant predictors of mean temperature. Tallest vegetation, tree/shrub species richness, grass cover, mulch cover, and landscape level agricultural cover were cooling factors; in contrast, garden size, garden age, rock cover, herbaceous species richness, and landscape level urban cover were warming factors. Results were similar for the maximum temperature analysis except that agriculture land cover and herbaceous species richness were not significant predictors of maximum temperature. Analysis of gardener watering behavior to observed temperatures shows that garden microclimate was significantly related to the number of minutes watered as well as the number of liters of water used per watering event. Thus gardeners seem to respond to garden microclimate in their watering behavior even though this behavior is most probably motivated by a range of other factors such as water regulations and time availability. This research shows that local management of ground cover and vegetation can reduce mean and maximum temperatures in gardens, and the

  6. The Hengill geothermal area, Iceland: variation of temperature gradients deduced from the maximum depth of seismogenesis

    Science.gov (United States)

    Foulger, G.R.

    1995-01-01

    Given a uniform lithology and strain rate and a full seismic data set, the maximum depth of earthquakes may be viewed to a first order as an isotherm. These conditions are approached at the Hengill geothermal area, S. Iceland, a dominantly basaltic area. The temperature at which seismic failure ceases for the strain rates likely at the Hengill geothermal area is determined by analogy with oceanic crust, and is about 650 ?? 50??C. The topographies of the top and bottom of the seismogenic layer were mapped using 617 earthquakes. The thickness of the seismogenic layer is roughly constant and about 3 km. A shallow, aseismic, low-velocity volume within the spreading plate boundary that crosses the area occurs above the top of the seismogenic layer and is interpreted as an isolated body of partial melt. The base of the seismogenic layer has a maximum depth of about 6.5 km beneath the spreading axis and deepens to about 7 km beneath a transform zone in the south of the area. -from Author

  7. On the maximum Q in feedback controlled subignited plasmas

    International Nuclear Information System (INIS)

    Anderson, D.; Hamnen, H.; Lisak, M.

    1990-01-01

    High Q operation in feedback controlled subignited fusion plasma requires the operating temperature to be close to the ignition temperature. In the present work we discuss technological and physical effects which may restrict this temperature difference. The investigation is based on a simplified, but still accurate, 0=D analytical analysis of the maximum Q of a subignited system. Particular emphasis is given to sawtooth ocsillations which complicate the interpretation of diagnostic neutron emission data into plasma temperatures and may imply an inherent lower bound on the temperature deviation from the ignition point. The estimated maximum Q is found to be marginal (Q = 10-20) from the point of view of a fusion reactor. (authors)

  8. Task plan: Temperatures in DWPF Glass Waste Storage Building

    International Nuclear Information System (INIS)

    Hardy, B.J.

    1993-01-01

    The Bechtel National, Inc. Detailed Design Instructions for Structural Design (DDI-02) requires that concrete components of the GWSB not exceed 150 degrees F for structural elements and 200 degrees F locally over a 24 hour period. In addition, the Waste Acceptance Product Specifications (WAPS) sets the maximum post cooldown temperature of the glass waste-form at 400 degrees C. Various scenarios can be postulated which result in elevated glass and concrete temperatures in the GWSB. Therefore, it is important to determine the concrete and glass temperatures during both normal and off-normal conditions. This document details specific tasks required to develop a technically defensible and verifiable methodology for determining maximum temperatures for the waste-forms and the GWSB concrete structures. All models used in this analysis will satisfy Quality Assurance requirements and be defensible to review and oversight committees

  9. Relationship between plants in Europe and surface temperatures of the Atlantic Ocean during the glacial maximum

    Energy Technology Data Exchange (ETDEWEB)

    Van Campo, M

    1984-01-01

    In Europe and North America, the deciduous forest, whether or not mixed with conifers, prevails within boundaries which coincide with the 12 and 18/sup 0/C isotherms of Ocean surface temperatures in August; within Europe this forest points to the limit of the Atlantic influence and bevels out as it is squeezed between coniferous forest to the NE (thermic boundary) and steppe to the SE (hydric boundary). During the glacial age this forest disappeared from its main European area and remained only in mountain refuges. Thus, the temperature of the eastern Atlantic surface waters, off Europe, control the nature of its vegetation. Variations in the pollen curve of pines, birches, Artemisia, Chenopodiaceae and Ephedra are accounted for by the climatic variations in southern Europe before 13,000 yr BP. It is seen that a very arid climate culminated at about 15,000 yr BP. It corresponds to the most active iceberg calving which considerably lowered the Ocean surface temperature far to the south. In spite of the increasing summer temperatures, this temperature remained as cold as it was during the glacial maximum. The result is the lowest evaporation from the Ocean hence a minimum of clouds and a minimum of rain. The end of the first phase of the deglaciation at +/- 13,000 yr BP corresponds to a warming up of the Ocean surface bringing about increased evaporation, hence rains over the continent. The evolution of the vegetation in Europe at the end of the glacial times from south of the ice sheet down to the Mediterranean, depends as much, if not more, on rains than on temperatures.

  10. Estimation of daily maximum and minimum air temperatures in urban landscapes using MODIS time series satellite data

    Science.gov (United States)

    Yoo, Cheolhee; Im, Jungho; Park, Seonyoung; Quackenbush, Lindi J.

    2018-03-01

    Urban air temperature is considered a significant variable for a variety of urban issues, and analyzing the spatial patterns of air temperature is important for urban planning and management. However, insufficient weather stations limit accurate spatial representation of temperature within a heterogeneous city. This study used a random forest machine learning approach to estimate daily maximum and minimum air temperatures (Tmax and Tmin) for two megacities with different climate characteristics: Los Angeles, USA, and Seoul, South Korea. This study used eight time-series land surface temperature (LST) data from Moderate Resolution Imaging Spectroradiometer (MODIS), with seven auxiliary variables: elevation, solar radiation, normalized difference vegetation index, latitude, longitude, aspect, and the percentage of impervious area. We found different relationships between the eight time-series LSTs with Tmax/Tmin for the two cities, and designed eight schemes with different input LST variables. The schemes were evaluated using the coefficient of determination (R2) and Root Mean Square Error (RMSE) from 10-fold cross-validation. The best schemes produced R2 of 0.850 and 0.777 and RMSE of 1.7 °C and 1.2 °C for Tmax and Tmin in Los Angeles, and R2 of 0.728 and 0.767 and RMSE of 1.1 °C and 1.2 °C for Tmax and Tmin in Seoul, respectively. LSTs obtained the day before were crucial for estimating daily urban air temperature. Estimated air temperature patterns showed that Tmax was highly dependent on the geographic factors (e.g., sea breeze, mountains) of the two cities, while Tmin showed marginally distinct temperature differences between built-up and vegetated areas in the two cities.

  11. Skin blood flow and local temperature independently modify sweat rate during passive heat stress in humans

    OpenAIRE

    Wingo, Jonathan E.; Low, David A.; Keller, David M.; Brothers, R. Matthew; Shibasaki, Manabu; Crandall, Craig G.

    2010-01-01

    Sweat rate (SR) is reduced in locally cooled skin, which may result from decreased temperature and/or parallel reductions in skin blood flow. The purpose of this study was to test the hypotheses that decreased skin blood flow and decreased local temperature each independently attenuate sweating. In protocols I and II, eight subjects rested supine while wearing a water-perfused suit for the control of whole body skin and internal temperatures. While 34°C water perfused the suit, four microdial...

  12. Paleohydrology of the Polar Urals from the Last Glacial Maximum Through the Holocene

    Science.gov (United States)

    Cowling, O.; Thomas, E.; Svendsen, J. I.; Haflidason, H.

    2017-12-01

    Paleohydrologic records provide important information concerning the past response of local hydrology to abrupt temperature changes. Arctic hydrology is particularly sensitive to temperature due to feedbacks involving sea ice and ice sheets. The most recent deglacial interval contains multiple abrupt temperature changes, which provide opportunities to study the relationship between temperature, ice sheets, and hydrology. We present a lacustrine δ2Hwax record from Bolshoye Schuchye, in the Polar Ural Mountains, spanning 24.5- 1.3 ka, and interpret hydroclimate conditions at a multi-centennial scale from the Last Glacial Maximum (LGM) through the Holocene. Bolshoye Schuchye's position beyond the reach of local glaciers during the LGM makes it a unique site, since lacustrine paleoclimate records from the Arctic rarely span this entire interval, so Bolshoye Schuchye helps to cover a gap in understanding of paleoclimate. Compound specific analysis of leaf wax hydrogen isotopes (δ2Hwax) is a hydroclimate proxy that can be used to infer moisture source area, transport history, and local aridity. Inferences based on δ2Hwax rely on mechanistic understanding of the process by which hydrogen from meteoric water is incorporated into waxes, and subsequently deposited in lake sediments. The δ2Hwax value of a sample reflects the isotopic composition of precipitation, while also incorporating fractionation that occurs between precipitation and uptake by plants, and biosynthetic fractionation during wax synthesis. Comparisons between different chain length waxes can be used to infer the isotopic composition of terrestrial and aquatic waxes, as terrestrial plants tend to produce longer chain lengths than aquatic macrophytes. The offset between terrestrial and aquatic δ2Hwax, expressed as ɛt-a, indicates differences between the precipitation used by terrestrial plants, and the lake water used by aquatic plants. Significant changes in ɛt-a can represent shifts in local aridity

  13. Temperature distribution in target tumor tissue and photothermal tissue destruction during laser immunotherapy

    Science.gov (United States)

    Doughty, Austin; Hasanjee, Aamr; Pettitt, Alex; Silk, Kegan; Liu, Hong; Chen, Wei R.; Zhou, Feifan

    2016-03-01

    Laser Immunotherapy is a novel cancer treatment modality that has seen much success in treating many different types of cancer, both in animal studies and in clinical trials. The treatment consists of the synergistic interaction between photothermal laser irradiation and the local injection of an immunoadjuvant. As a result of the therapy, the host immune system launches a systemic antitumor response. The photothermal effect induced by the laser irradiation has multiple effects at different temperature elevations which are all required for optimal response. Therefore, determining the temperature distribution in the target tumor during the laser irradiation in laser immunotherapy is crucial to facilitate the treatment of cancers. To investigate the temperature distribution in the target tumor, female Wistar Furth rats were injected with metastatic mammary tumor cells and, upon sufficient tumor growth, underwent laser irradiation and were monitored using thermocouples connected to locally-inserted needle probes and infrared thermography. From the study, we determined that the maximum central tumor temperature was higher for tumors of less volume. Additionally, we determined that the temperature near the edge of the tumor as measured with a thermocouple had a strong correlation with the maximum temperature value in the infrared camera measurement.

  14. Reconstructing temperatures in the Maritime Alps, Italy, since the Last Glacial Maximum using cosmogenic noble gas paleothermometry

    Science.gov (United States)

    Tremblay, Marissa; Spagnolo, Matteo; Ribolini, Adriano; Shuster, David

    2016-04-01

    The Gesso Valley, located in the southwestern-most, Maritime portion of the European Alps, contains an exceptionally well-preserved record of glacial advances during the late Pleistocene and Holocene. Detailed geomorphic mapping, geochronology of glacial deposits, and glacier reconstructions indicate that glaciers in this Mediterranean region responded to millennial scale climate variability differently than glaciers in the interior of the European Alps. This suggests that the Mediterranean Sea somehow modulated the climate of this region. However, since glaciers respond to changes in temperature and precipitation, both variables were potentially influenced by proximity to the Sea. To disentangle the competing effects of temperature and precipitation changes on glacier size, we are constraining past temperature variations in the Gesso Valley since the Last Glacial Maximum (LGM) using cosmogenic noble gas paleothermometry. The cosmogenic noble gases 3He and 21Ne experience diffusive loss from common minerals like quartz and feldspars at Earth surface temperatures. Cosmogenic noble gas paleothermometry utilizes this open-system behavior to quantitatively constrain thermal histories of rocks during exposure to cosmic ray particles at the Earth's surface. We will present measurements of cosmogenic 3He in quartz sampled from moraines in the Gesso Valley with LGM, Bühl stadial, and Younger Dryas ages. With these 3He measurements and experimental data quantifying the diffusion kinetics of 3He in quartz, we will provide a preliminary temperature reconstruction for the Gesso Valley since the LGM. Future work on samples from younger moraines in the valley system will be used to fill in details of the more recent temperature history.

  15. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System

    Directory of Open Access Journals (Sweden)

    Miao Sun

    2016-06-01

    Full Text Available We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges.

  16. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System.

    Science.gov (United States)

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Li, Jun; Sigrist, Markus W; Dong, Fengzhong

    2016-06-06

    We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges.

  17. Determination of hot spot factors for calculation of the maximum fuel temperatures in the core thermal and hydraulic design of HTTR

    International Nuclear Information System (INIS)

    Maruyama, Soh; Yamashita, Kiyonobu; Fujimoto, Nozomu; Murata, Isao; Shindo, Ryuichi; Sudo, Yukio

    1988-12-01

    The Japan Atomic Energy Research Institute (JAERI) has been designing the High Temperature Engineering Test Reactor (HTTR), which is 30 MW in thermal power, 950deg C in reactor outlet coolant temperature and 40 kg/cm 2 G in primary coolant pressure. This report summarizes the hot spot factors and their estimated values used in the evaluation of the maximum fuel temperature which is one of the major items in the core thermal and hydraulic design of the HTTR. The hot spot factors consist of systematic factors and random factors. They were identified and their values adopted in the thermal and hydraulic design were determined considering the features of the HTTR. (author)

  18. Impacts of projected maximum temperature extremes for C21 by an ensemble of regional climate models on cereal cropping systems in the Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    M. Ruiz-Ramos

    2011-12-01

    Full Text Available Crops growing in the Iberian Peninsula may be subjected to damagingly high temperatures during the sensitive development periods of flowering and grain filling. Such episodes are considered important hazards and farmers may take insurance to offset their impact. Increases in value and frequency of maximum temperature have been observed in the Iberian Peninsula during the 20th century, and studies on climate change indicate the possibility of further increase by the end of the 21st century. Here, impacts of current and future high temperatures on cereal cropping systems of the Iberian Peninsula are evaluated, focusing on vulnerable development periods of winter and summer crops. Climate change scenarios obtained from an ensemble of ten Regional Climate Models (multimodel ensemble combined with crop simulation models were used for this purpose and related uncertainty was estimated. Results reveal that higher extremes of maximum temperature represent a threat to summer-grown but not to winter-grown crops in the Iberian Peninsula. The study highlights the different vulnerability of crops in the two growing seasons and the need to account for changes in extreme temperatures in developing adaptations in cereal cropping systems. Finally, this work contributes to clarifying the causes of high-uncertainty impact projections from previous studies.

  19. Research on suitable heating conditions during local PWHT. Pt. 1. Influence of heating conditions on temperature distribution

    International Nuclear Information System (INIS)

    Tanaka, Jinkichi; Horii, Yukihiko; Sato, Masanobu; Murakawa, Hidekazu; Wang Jianhua

    1999-01-01

    To improve weld joint properties a heat treatment so called post weld heat treatment (PWHT) is often implemented for steel weldment. Generally, the PWHT is conducted in a furnace at a factory. But in site welds such as the girth joint of pipe, a local PWHT is applied using electric heater and so on. In the local PWHT steep temperature gradient occurs depending on the heating condition and it leads to rise of the thermal stress in addition to the welding residual stress. However, heating condition is not always defined the same in some standards. Therefore, suitable heat conditions for the local PWHT were studied supposing the power plant and so on experimentally and theoretically. Temperature distribution and thermal strains under different heating conditions were measured during the local PWHT using carbon steel pipes of 340 mm in diameter and 53 mm in wall thickness. The temperature gradient, thermal strain were also analyzed using Finite Element Method (FEM) as axis-symmetric model. Further, the influences of pipe size and heat transfer coefficient on the temperature distribution were analyzed and suitable heating source widths for various pipe sizes were proposed from the viewpoint of temperature distribution. (orig.)

  20. Task 08/41, Low temperature loop at the RA reactor, Review IV - Maximum temperature values in the samples without forced cooling; Zadatak 08/41, Niskotemperaturna petlja u reaktoru 'RA', Pregled IV - Maksimalne temperature u uzorcima bez prinudnog hladjenja

    Energy Technology Data Exchange (ETDEWEB)

    Zaric, Z [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1961-12-15

    The quantity of heat generated in the sample was calculated in the Review III. In stationary regime the heat is transferred through the air layer between the sample and the wall of the channel to the heavy water of graphite. Certain value of maximum temperature t{sub 0} is achieved in the sample. The objective of this review is determination of this temperature. [Serbo-Croat] Kolicina toplote generisana u uzorku, izracunata u pregledu III, u ravnoteznom stanju odvodi se kroz vazdusni sloj izmedju uzorka i zida kanala na tesku vodu odnosno grafit, pri cemu se u uzorku dostize izvesna maksimalna temperatura t{sub 0}. Odredjivanje ove temperature je predmet ovog pregleda.

  1. Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe

    DEFF Research Database (Denmark)

    Lenoir, Jonathan; Graae, Bente; Aarrestad, Per

    2013-01-01

    -change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine-grained thermal variability across a 2500-km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first combined plant community...... data, Ellenberg temperature indicator values, locally measured temperatures (LmT) and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within community-inferred temperatures: CiT). We...... temperature indicator values in combination with plant assemblages explained 46-72% of variation in LmT and 92-96% of variation in GiT during the growing season (June, July, August). Growing-season CiT range within 1-km(2) units peaked at 60-65°N and increased with terrain roughness, averaging 1.97 °C (SD = 0...

  2. Detection of Local Temperature Change on HTS Cables via Time-Frequency Domain Reflectometry

    Science.gov (United States)

    Bang, Su Sik; Lee, Geon Seok; Kwon, Gu-Young; Lee, Yeong Ho; Ji, Gyeong Hwan; Sohn, Songho; Park, Kijun; Shin, Yong-June

    2017-07-01

    High temperature superconducting (HTS) cables are drawing attention as transmission and distribution cables in future grid, and related researches on HTS cables have been conducted actively. As HTS cables have come to the demonstration stage, failures of cooling systems inducing quench phenomenon of the HTS cables have become significant. Several diagnosis of the HTS cables have been developed but there are still some limitations of the experimental setup. In this paper, a non-destructive diagnostic technique for the detection of the local temperature change point is proposed. Also, a simulation model of HTS cables with a local temperature change point is suggested to verify the proposed diagnosis. The performance of the diagnosis is checked by comparative analysis between the proposed simulation results and experiment results of a real-world HTS cable. It is expected that the suggested simulation model and diagnosis will contribute to the commercialization of HTS cables in the power grid.

  3. Maximum weight of greenhouse effect to global temperature variation

    International Nuclear Information System (INIS)

    Sun, Xian; Jiang, Chuangye

    2007-01-01

    Full text: The global average temperature has risen by 0.74 0 C since the late 19th century. Many studies have concluded that the observed warming in the last 50 years may be attributed to increasing concentrations of anthropogenic greenhouse gases. But some scientists have a different point of view. Global climate change is affected not only by anthropogenic activities, but also constraints in climate system natural factors. How much is the influencing weight of C02's greenhouse effects to the global temperature variation? Does global climate continue warming or decreasing in the next 20 years? They are two hot spots in global climate change. The multi-timescales analysis method - Empirical mode decomposition (EMD) is used to diagnose global annual mean air temperature dataset for land surface provided by IPCC and atmospheric content of C02 provided by the Carbon Dioxide Information Analysis Center (CDIAC) during 1881-2002. The results show that: Global temperature variation contains quasi-periodic oscillations on four timescales (3 yr, 6 yr, 20 yr and 60 yr, respectively) and a century-scale warming trend. The variance contribution of IMF1-IMF4 and trend is 17.55%, 11.34%, 6.77%, 24.15% and 40.19%, respectively. The trend and quasi-60 yr oscillation of temperature variation are the most prominent; C02's greenhouse effect on global temperature variation is mainly century-scale trend. The contribution of C02 concentration to global temperature variability is not more than 40.19%, whereas 59.81% contribution to global temperature variation is non-greenhouse effect. Therefore, it is necessary to re-study the dominant factors that induce the global climate change; It has been noticed that on the periods of 20 yr and 60 yr oscillation, the global temperature is beginning to decreased in the next 20 years. If the present C02 concentration is maintained, the greenhouse effect will be too small to countercheck the natural variation in global climate cooling in the next 20

  4. Increasing the maximum daily operation time of MNSR reactor by modifying its cooling system

    International Nuclear Information System (INIS)

    Khamis, I.; Hainoun, A.; Al Halbi, W.; Al Isa, S.

    2006-08-01

    ' considers the actual coolant flow in the sequent core channels, as well as mixing and branching regions at all exits and inlets of these channels. Using this approach, an accurate estimation of various timely core-averaged parameters such as generated power, hydraulic diameters, flow cross area... etc. for each one of the ten core channels can be made. Furthermore, distributions of coolant flow, and temperatures of fuel and coolant, including maximum fuel temperature and its location in the core can now be accurately determined. The 'Macro model' is suggested mainly for the evaluation of the MNSR core local pressure drop coefficient. In some cases where the core is considered as one control volume with an overall of average thermal hydraulic parameters, it is important to determine the core local loss factor if natural convection prevails. Simultaneous determination of the core-averaged thermal hydraulic parameters and their distributions in both axial and radial directions is made using an iterative scheme. (author)

  5. Localized saddle-point search and application to temperature-accelerated dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Yunsic; Amar, Jacques G. [Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606 (United States); Callahan, Nathan B. [Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606 (United States); Department of Physics, Indiana University, Bloomington, Indiana 47405 (United States)

    2013-03-07

    We present a method for speeding up temperature-accelerated dynamics (TAD) simulations by carrying out a localized saddle-point (LSAD) search. In this method, instead of using the entire system to determine the energy barriers of activated processes, the calculation is localized by only including a small chunk of atoms around the atoms directly involved in the transition. Using this method, we have obtained N-independent scaling for the computational cost of the saddle-point search as a function of system size N. The error arising from localization is analyzed using a variety of model systems, including a variety of activated processes on Ag(100) and Cu(100) surfaces, as well as multiatom moves in Cu radiation damage and metal heteroepitaxial growth. Our results show significantly improved performance of TAD with the LSAD method, for the case of Ag/Ag(100) annealing and Cu/Cu(100) growth, while maintaining a negligibly small error in energy barriers.

  6. The maximum allowable temperature of zircaloy-2 fuel cladding under dry storage conditions

    International Nuclear Information System (INIS)

    Mayuzumi, M.; Yoshiki, S.; Yasuda, T.; Nakatsuka, M.

    1990-09-01

    Japan plans to reprocess and reutilise the spent nuclear fuel from nuclear power generation. However, the temporary storage of spent fuel is assuming increasing importance as a means of ensuring flexibility in the nuclear fuel cycle. Our investigations of various methods of storage have shown that casks are the most suitable means of storing small quantities of spent fuel of around 500 t, and research and development are in progress to establish dry storage technology for such casks. The soundness of fuel cladding is being investigated. The most important factor in evaluating soundness in storage under inert gas as currently envisaged is creep deformation and rupture, and a number of investigations have been made of the creep behaviour of cladding. The present study was conducted on the basis of existing in-house results in collaboration with Nippon Kakunenryo Kaihatsu KK (Nippon Nuclear Fuel Department Co.), which has hot lab facilities. Tests were run on the creep deformation behaviour of irradiated cladding, and the maximum allowable temperature during dry storage was investigated. (author)

  7. Particle Swarm Optimization Based of the Maximum Photovoltaic ...

    African Journals Online (AJOL)

    Photovoltaic electricity is seen as an important source of renewable energy. The photovoltaic array is an unstable source of power since the peak power point depends on the temperature and the irradiation level. A maximum peak power point tracking is then necessary for maximum efficiency. In this work, a Particle Swarm ...

  8. Investigation on maximum transition temperature of phonon mediated superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Fusui, L; Yi, S; Yinlong, S [Physics Department, Beijing University (CN)

    1989-05-01

    Three model effective phonon spectra are proposed to get plots of {ital T}{sub {ital c}}-{omega} adn {lambda}-{omega}. It can be concluded that there is no maximum limit of {ital T}{sub {ital c}} in phonon mediated superconductivity for reasonable values of {lambda}. The importance of high frequency LO phonon is also emphasized. Some discussions on high {ital T}{sub {ital c}} are given.

  9. Low temperature features of the local structure of Sm1-xYxS

    International Nuclear Information System (INIS)

    Menushenkov, A. P.; Chernikov, R. V.; Sidorov, V. V.; Klementiev, K. V.; Alekseev, P. A.; Rybina, A. V.

    2007-01-01

    The particular features of the local electronic and local crystal structures of the mixed-valence compound Sm 1-x Y x S are studied by the XAFS spectroscopy methods in the temperature range 20-300 K for the yttrium concentration x = 0.17, 0.25, 0.33, and 0.45. The temperature behavior of the valence of Sm, as well as of the lengths and the Debye-Waller factors of the bonds Sm-S, Sm-Sm(Y), Y-S, and Y-Sm(Y), has been determined. The violation of the Vegard law has been observed. A model for the estimation of the energy width of the 4f level and of its position with respect to the Fermi level is proposed

  10. Temperature Dependence of Charge Localization in High-Mobility, Solution-Crystallized Small Molecule Semiconductors Studied by Charge Modulation Spectroscopy

    DEFF Research Database (Denmark)

    Meneau, Aurélie Y. B.; Olivier, Yoann; Backlund, Tomas

    2016-01-01

    In solution-processable small molecule semiconductors, the extent of charge carrier wavefunction localization induced by dynamic disorder can be probed spectroscopically as a function of temperature using charge modulation spectroscopy (CMS). Here, it is shown based on combined fi eld-effect tran......In solution-processable small molecule semiconductors, the extent of charge carrier wavefunction localization induced by dynamic disorder can be probed spectroscopically as a function of temperature using charge modulation spectroscopy (CMS). Here, it is shown based on combined fi eld......-effect transistor and CMS measurements as a function of temperature that in certain molecular semiconductors, such as solution-processible pentacene, charge carriers become trapped at low temperatures in environments in which the charges become highly localized on individual molecules, while in some other molecules...

  11. A measurement of the local ion temperature gradient in the PLT tokamak

    International Nuclear Information System (INIS)

    Lovberg, J.A.; Strachan, J.D.; Princeton Univ., NJ

    1989-12-01

    Local ion temperature gradients were measured at two radial positions in the PLT tokamak by counting escaping d(d,p)t protons on orbits at closely spaced intervals. A single surface barrier detector was used to make each gradient measurement, eliminating relative calibration uncertainties. The ion thermal diffusivities inferred through ion energy balance with the measured temperature gradients are within a factor of two of Chang-Hinton neoclassical values for the 3 He-minority ICRH plasmas. 12 refs., 8 figs

  12. Analyzing the electrophysiological effects of local epicardial temperature in experimental studies with isolated hearts

    International Nuclear Information System (INIS)

    Tormos, Alvaro; Millet, José; Guill, Antonio; Chorro, Francisco J; Cánoves, Joaquín; Mainar, Luis; Such, Luis; Alberola, Antonio; Trapero, Isabel; Such-Miquel, Luis

    2008-01-01

    As a result of their modulating effects upon myocardial electrophysiology, both hypo- and hyperthermia can be used to study the mechanisms that generate or sustain cardiac arrhythmias. The present study describes an original electrode developed with thick-film technology and capable of controlling regional temperature variations in the epicardium while simultaneously registering its electrical activity. In this way, it is possible to measure electrophysiological parameters of the heart at different temperatures. The results obtained with this device in a study with isolated and perfused rabbit hearts are reported. An exploration has been made of the effects of local temperature changes upon the electrophysiological parameters implicated in myocardial conduction. Likewise, an analysis has been made of the influence of local temperature upon ventricular fibrillation activation frequency. It is concluded that both regional hypo- and hyperthermia exert reversible and opposite effects upon myocardial refractoriness and conduction velocity in the altered zone. The ventricular activation wavelength determined during constant pacing at 250 ms cycles is not significantly modified, however. During ventricular fibrillation, the changes in the fibrillatory frequency do not seem to be transmitted to normal temperature zones

  13. OVII and Temperature Limits on the Local Hot Bubble

    Science.gov (United States)

    Pirtle, Robert; Petre, N.; McCammon, D.; Morgan, K.; Sauter, P.; Clavadetscher, K.; Fujimoto, R.; Hagihara, T.; Masui, K.; Mitsuda, K.; Takei, Y.; Wang, Q. D.; Yamasaki, N. Y.; Yao, Y.; Yoshino, T.

    2013-01-01

    The observed ¼-keV (ROSAT R12 band) X-ray background originates largely in a region of hot ionized gas roughly 100 pc in extent surrounding the Sun known as the Local Hot Bubble (LHB). The observed flux is quite uniform at low latitudes (|b| factors of 2 - 3. Charge exchange between highly charged ions in the Solar wind and interstellar neutral H and He moving through interplanetary space might provide a very roughly isotropic contribution about equal to the low- latitude flux (Koutroumpa et al. 2008), but cannot produce the enhancements. Correlations with the interstellar absorbing column show that some of these bright regions are apparently due to clumps of hot gas in the Galactic halo, while many of them show no correlation and must be due to extensions of the LHB (Kuntz & Snowden 2000, Bellm & Vaillancourt 2005). Global fits of simple plasma emission spectra give temperatures near 1.0 x 106 K for both LHB and halo emission, but the possibility of a substantial contamination by charge exchange could distort this result in unknown ways. Thermal excitation of O VII is strongly temperature dependent in this range, so we have tried to correlate O VII fluxes measured with Suzaku with variations in ¼-keV intensity from the ROSAT R12 band map to determine the temperature. We take eleven O VII intensity measurements from Yoshino et al. (2009), one from Masui et al. (2009), and an additional eighteen from archival Suzaku pointings and correlate these with the R12 band local and halo intensities as separated by Kunzt & Snowden (2000). The lack of detectable correlation in both cases strongly limits any O VII production by the material producing the enhancements, and upper limits to the temperatures are set. This work was supported in part by the National Science Foundation's REU program through NSF Award AST-1004881 and by NASA grant NNX09AF09G. *present address: Department of Physics, Lewis & Clark College, Portland, OR. This work was supported in part by the National

  14. Evaluation of the local temperature of conductive filaments in resistive switching materials

    International Nuclear Information System (INIS)

    Yalon, E; Cohen, S; Gavrilov, A; Ritter, D

    2012-01-01

    The resistive switching effect in metal oxides and other dielectric materials is among the leading future non-volatile memory technologies. Resistive switching is widely ascribed to the formation and rupture of conductive filaments in the oxide, which are generated by temperature-enhanced nano-scale ion migration or other thermal effects. In spite of the central role of the local filament temperature on the switching effect, as well as on the conduction and reliability physics, no measurement methods of the filament temperature are yet available. In this work, we report on a method for evaluating the conducting filament temperature, using a metal–insulator–semiconductor bipolar transistor structure. The filament temperature is obtained by analyzing the thermal excitation rate of electrons from the filament Fermi level into the conduction band of a p-type semiconductor electrode. Measurements were carried out to obtain the conductive filament temperature in hafnia at varying ambient temperatures in the range of 3–300 K. Significant Joule heating of the filament was observed across the entire measured ambient temperature range. The extracted temperatures provide physical insight into the resistive switching effect. (paper)

  15. Experimental determination of the local temperature distribution in the cladding tubes of a sodium-cooled pin bundle caused by grid spacers

    International Nuclear Information System (INIS)

    Moeller, R.; Tschoeke, H.

    1980-01-01

    The cladding tubes of reactor core elements are highly stressed structural elements. Their careful design includes the following: (a) the mathematical determination of the maximum cladding tube temperatures; (b) the determination of the maximum permissible fatigue strengths and creep strains of the materials; and (c) the safety distance between the nominal cladding tube hot spots and the permissible extreme cladding tube temperature. The maximum cladding tube temperatures occur on the top edge of the core and, due to radial power gradients, in the wrapper-wall region of a pin bundle. If grid spacers are now used for fixing the pins as in the SNR fuel elements, a careful check must be made of whether and to what degree temperature peaks in the region of the supports have an influence on the cladding tube design. Initial experimental investigations on a sodium-cooled pin bundle model of the SNR-300 fuel element were carried out to throw light on these special problems. This is reported in the following together with the results so far obtained. (U.K.)

  16. Environmental impacts on dust temperature of star-forming galaxies in the local Universe

    Science.gov (United States)

    Matsuki, Yasuhiro; Koyama, Yusei; Nakagawa, Takao; Takita, Satoshi

    2017-04-01

    We present infrared views of the environmental effects on the dust properties in star-forming (SF) galaxies at z ˜ 0, using the AKARI Far-Infrared Surveyor all-sky map and the large spectroscopic galaxy sample from Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7). We restrict the sample to those within the redshift range of 0.05 4 Å) and emission line flux ratios. We perform far-infrared (FIR) stacking analyses by splitting the SDSS SF galaxy sample according to their stellar mass, specific star formation rate (SSFRSDSS), and environment. We derive total infrared luminosity (LIR) for each subsample using the average flux densities at WIDE-S (90 μm) and WIDE-L (140 μm) bands, and then compute infrared (IR)-based SFR (SFRIR) from LIR. We find a mild decrease of IR-based SSFR (SSFRIR) amongst SF galaxies with increasing local density (˜0.1-dex level at maximum), which suggests that environmental effects do not instantly shut down the SF activity in galaxies. We also derive average dust temperature (Tdust) using the flux densities at 90 and 140 μm bands. We confirm a strong positive correlation between Tdust and SSFRIR, consistent with recent studies. The most important finding of this study is that we find a marginal trend that Tdust increases with increasing environmental galaxy density. Although the environmental trend is much milder than the SSFR-Tdust correlation, our results suggest that the environmental density may affect the dust temperature in SF galaxies, and that the physical mechanism which is responsible for this phenomenon is not necessarily specific to cluster environments because the environmental dependence of Tdust holds down to relatively low-density environments.

  17. Predicting long-term temperature increase for time-dependent SAR levels with a single short-term temperature response.

    Science.gov (United States)

    Carluccio, Giuseppe; Bruno, Mary; Collins, Christopher M

    2016-05-01

    Present a novel method for rapid prediction of temperature in vivo for a series of pulse sequences with differing levels and distributions of specific energy absorption rate (SAR). After the temperature response to a brief period of heating is characterized, a rapid estimate of temperature during a series of periods at different heating levels is made using a linear heat equation and impulse-response (IR) concepts. Here the initial characterization and long-term prediction for a complete spine exam are made with the Pennes' bioheat equation where, at first, core body temperature is allowed to increase and local perfusion is not. Then corrections through time allowing variation in local perfusion are introduced. The fast IR-based method predicted maximum temperature increase within 1% of that with a full finite difference simulation, but required less than 3.5% of the computation time. Even higher accelerations are possible depending on the time step size chosen, with loss in temporal resolution. Correction for temperature-dependent perfusion requires negligible additional time and can be adjusted to be more or less conservative than the corresponding finite difference simulation. With appropriate methods, it is possible to rapidly predict temperature increase throughout the body for actual MR examinations. © 2015 Wiley Periodicals, Inc.

  18. Methods for Prediction of Steel Temperature Curve in the Whole Process of a Localized Fire in Large Spaces

    Directory of Open Access Journals (Sweden)

    Zhang Guowei

    2014-01-01

    Full Text Available Based on a full-scale bookcase fire experiment, a fire development model is proposed for the whole process of localized fires in large-space buildings. We found that for localized fires in large-space buildings full of wooden combustible materials the fire growing phases can be simplified into a t2 fire with a 0.0346 kW/s2 fire growth coefficient. FDS technology is applied to study the smoke temperature curve for a 2 MW to 25 MW fire occurring within a large space with a height of 6 m to 12 m and a building area of 1 500 m2 to 10 000 m2 based on the proposed fire development model. Through the analysis of smoke temperature in various fire scenarios, a new approach is proposed to predict the smoke temperature curve. Meanwhile, a modified model of steel temperature development in localized fire is built. In the modified model, the localized fire source is treated as a point fire source to evaluate the flame net heat flux to steel. The steel temperature curve in the whole process of a localized fire could be accurately predicted by the above findings. These conclusions obtained in this paper could provide valuable reference to fire simulation, hazard assessment, and fire protection design.

  19. Atomic size and local order effects on the high temperature strength of binary Mg alloys

    Energy Technology Data Exchange (ETDEWEB)

    Abaspour, Saeideh, E-mail: s.abaspour78@gmail.com [ARC-Centre of Excellence for Design in Light Metals, Materials Engineering, School of Engineering, The University of Queensland, Brisbane QLD 4072 (Australia); Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland (Australia); Zambelli, Victor [ARC-Centre of Excellence for Design in Light Metals, Materials Engineering, School of Engineering, The University of Queensland, Brisbane QLD 4072 (Australia); Dargusch, Matthew [Queensland Centre for Advanced Materials Processing and Manufacturing (AMPAM), The University of Queensland (Australia); Cáceres, Carlos H. [ARC-Centre of Excellence for Design in Light Metals, Materials Engineering, School of Engineering, The University of Queensland, Brisbane QLD 4072 (Australia)

    2016-09-15

    The solid solution strengthening introduced by Ca (0.6 and 0.9 at%) and Sn 0.5–2.5 at%) was studied through tensile, compression and stress relaxation tests at room temperature, 373 K (100 °C) and 453 K (180 °C) on solution heat-treated and quenched specimens and compared with existing data for binary alloys containing Ca, Sn, Y, Gd, Nd, Zn and Al as well as for AZ91 alloy. At room temperature the solution-hardening rate introduced by Ca and Sn was much higher than that of Al, matching those of Y, Gd and Zn. Calcium also reduced the tension/compression asymmetry. At high temperature Ca effectively prevented stress relaxation, nearly matching Y, Gd and Nd. Tin was less effective, but still outperformed Al and AZ91 at low stresses. The effects at room and high temperature introduced by Ca and Sn appeared consistent with the presence of short-range order, in line with those introduced by Y, Nd, Gd and Zn. The larger than Mg atom size of Ca, Nd, Gd and Y can be expected to intensify the local order by strengthening the atomic bonds through its effects on the local electron density, accounting for their greater strengthening at high temperature. For given difference in atomic size, the effects on the local order are expected to be lesser for smaller sized atoms like Sn and Zn, hence their more subdued effects.

  20. A rapid method for measuring maximum density temperatures in water and aqueous solutions for the study of quantum zero point energy effects in these liquids

    International Nuclear Information System (INIS)

    Deeney, F A; O'Leary, J P

    2008-01-01

    The connection between quantum zero point fluctuations and a density maximum in water and in liquid He 4 has recently been established. Here we present a description of a simple and rapid method of determining the temperatures at which maximum densities in water and aqueous solutions occur. The technique is such as to allow experiments to be carried out in one session of an undergraduate laboratory thereby introducing students to the concept of quantum zero point energy

  1. A portable storage maximum thermometer

    International Nuclear Information System (INIS)

    Fayart, Gerard.

    1976-01-01

    A clinical thermometer storing the voltage corresponding to the maximum temperature in an analog memory is described. End of the measurement is shown by a lamp switch out. The measurement time is shortened by means of a low thermal inertia platinum probe. This portable thermometer is fitted with cell test and calibration system [fr

  2. Estimating Daily Maximum and Minimum Land Air Surface Temperature Using MODIS Land Surface Temperature Data and Ground Truth Data in Northern Vietnam

    Directory of Open Access Journals (Sweden)

    Phan Thanh Noi

    2016-12-01

    Full Text Available This study aims to evaluate quantitatively the land surface temperature (LST derived from MODIS (Moderate Resolution Imaging Spectroradiometer MOD11A1 and MYD11A1 Collection 5 products for daily land air surface temperature (Ta estimation over a mountainous region in northern Vietnam. The main objective is to estimate maximum and minimum Ta (Ta-max and Ta-min using both TERRA and AQUA MODIS LST products (daytime and nighttime and auxiliary data, solving the discontinuity problem of ground measurements. There exist no studies about Vietnam that have integrated both TERRA and AQUA LST of daytime and nighttime for Ta estimation (using four MODIS LST datasets. In addition, to find out which variables are the most effective to describe the differences between LST and Ta, we have tested several popular methods, such as: the Pearson correlation coefficient, stepwise, Bayesian information criterion (BIC, adjusted R-squared and the principal component analysis (PCA of 14 variables (including: LST products (four variables, NDVI, elevation, latitude, longitude, day length in hours, Julian day and four variables of the view zenith angle, and then, we applied nine models for Ta-max estimation and nine models for Ta-min estimation. The results showed that the differences between MODIS LST and ground truth temperature derived from 15 climate stations are time and regional topography dependent. The best results for Ta-max and Ta-min estimation were achieved when we combined both LST daytime and nighttime of TERRA and AQUA and data from the topography analysis.

  3. Accurate Maximum Power Tracking in Photovoltaic Systems Affected by Partial Shading

    Directory of Open Access Journals (Sweden)

    Pierluigi Guerriero

    2015-01-01

    Full Text Available A maximum power tracking algorithm exploiting operating point information gained on individual solar panels is presented. The proposed algorithm recognizes the presence of multiple local maxima in the power voltage curve of a shaded solar field and evaluates the coordinated of the absolute maximum. The effectiveness of the proposed approach is evidenced by means of circuit level simulation and experimental results. Experiments evidenced that, in comparison with a standard perturb and observe algorithm, we achieve faster convergence in normal operating conditions (when the solar field is uniformly illuminated and we accurately locate the absolute maximum power point in partial shading conditions, thus avoiding the convergence on local maxima.

  4. Density estimation by maximum quantum entropy

    International Nuclear Information System (INIS)

    Silver, R.N.; Wallstrom, T.; Martz, H.F.

    1993-01-01

    A new Bayesian method for non-parametric density estimation is proposed, based on a mathematical analogy to quantum statistical physics. The mathematical procedure is related to maximum entropy methods for inverse problems and image reconstruction. The information divergence enforces global smoothing toward default models, convexity, positivity, extensivity and normalization. The novel feature is the replacement of classical entropy by quantum entropy, so that local smoothing is enforced by constraints on differential operators. The linear response of the estimate is proportional to the covariance. The hyperparameters are estimated by type-II maximum likelihood (evidence). The method is demonstrated on textbook data sets

  5. Green Compact Temperature Evolution during Current-Activated Tip-Based Sintering (CATS of Nickel

    Directory of Open Access Journals (Sweden)

    Khaled Morsi

    2013-04-01

    Full Text Available Current-activated tip-based sintering (CATS is a novel process where spark plasma sintering conditions are applied through an electrically conducting tip on a locally controlled area on a green powder compact/bed. The localization of electric current in CATS allows for unique temporal and spatial current and temperature distributions within the tip and powder compact. In this paper, special experimental setups were used to monitor the temperature profiles in the tip and at multiple locations on the surface of nickel powder compacts. A variation in the initial green density was found to have a significant effect on the maximum temperature in the tip as well as the temperature distribution across the powder compact. In general, the lowest green density specimens displayed the best conditions for localized densification. The concept of effective current density is introduced and results are discussed in relation to the densification parameter.

  6. Localized Temperature Variations in Laser-Irradiated Composites with Embedded Fiber Bragg Grating Sensors

    OpenAIRE

    R. Brian Jenkins; Peter Joyce; Deborah Mechtel

    2017-01-01

    Fiber Bragg grating (FBG) temperature sensors are embedded in composites to detect localized temperature gradients resulting from high energy infrared laser radiation. The goal is to detect the presence of radiation on a composite structure as rapidly as possible and to identify its location, much the same way human skin senses heat. A secondary goal is to determine how a network of sensors can be optimized to detect thermal damage in laser-irradiated composite materials or structures. Initia...

  7. Maximum penetration level of distributed generation without violating voltage limits

    NARCIS (Netherlands)

    Morren, J.; Haan, de S.W.H.

    2009-01-01

    Connection of Distributed Generation (DG) units to a distribution network will result in a local voltage increase. As there will be a maximum on the allowable voltage increase, this will limit the maximum allowable penetration level of DG. By reactive power compensation (by the DG unit itself) a

  8. Modifying the baricity of local anesthetics for spinal anesthesia by temperature adjustment: model calculations.

    Science.gov (United States)

    Heller, Axel R; Zimmermann, Katrin; Seele, Kristin; Rössel, Thomas; Koch, Thea; Litz, Rainer J

    2006-08-01

    Although local anesthetics (LAs) are hyperbaric at room temperature, density drops within minutes after administration into the subarachnoid space. LAs become hypobaric and therefore may cranially ascend during spinal anesthesia in an uncontrolled manner. The authors hypothesized that temperature and density of LA solutions have a nonlinear relation that may be described by a polynomial equation, and that conversion of this equation may provide the temperature at which individual LAs are isobaric. Density of cerebrospinal fluid was measured using a vibrating tube densitometer. Temperature-dependent density data were obtained from all LAs commonly used for spinal anesthesia, at least in triplicate at 5 degrees, 20 degrees, 30 degrees, and 37 degrees C. The hypothesis was tested by fitting the obtained data into polynomial mathematical models allowing calculations of substance-specific isobaric temperatures. Cerebrospinal fluid at 37 degrees C had a density of 1.000646 +/- 0.000086 g/ml. Three groups of local anesthetics with similar temperature (T, degrees C)-dependent density (rho) characteristics were identified: articaine and mepivacaine, rho1(T) = 1.008-5.36 E-06 T2 (heavy LAs, isobaric at body temperature); L-bupivacaine, rho2(T) = 1.007-5.46 E-06 T2 (intermediate LA, less hypobaric than saline); bupivacaine, ropivacaine, prilocaine, and lidocaine, rho3(T) = 1.0063-5.0 E-06 T (light LAs, more hypobaric than saline). Isobaric temperatures (degrees C) were as follows: 5 mg/ml bupivacaine, 35.1; 5 mg/ml L-bupivacaine, 37.0; 5 mg/ml ropivacaine, 35.1; 20 mg/ml articaine, 39.4. Sophisticated measurements and mathematic models now allow calculation of the ideal injection temperature of LAs and, thus, even better control of LA distribution within the cerebrospinal fluid. The given formulae allow the adaptation on subpopulations with varying cerebrospinal fluid density.

  9. Resource specialists lead local insect community turnover associated with temperature - analysis of an 18-year full-seasonal record of moths and beetles

    DEFF Research Database (Denmark)

    Thomsen, Philip Francis; Jørgensen, Peter Søgaard; Bruun, Hans Henrik

    2016-01-01

    role of resource specialization in explaining the compositional and phenological responses of insect communities to local temperature increases. We propose that resource specialists in particular are affected by local temperature increase, leading to the distinct temperature-mediated turnover seen...... opportunity for predictions about responses of resource specialists, and long-term time series are essential in revealing these responses. Here, we investigate temperature-related changes in local insect communities, using a sampling site with more than a quarter-million records from two decades (1992...

  10. Maximum power point tracking

    International Nuclear Information System (INIS)

    Enslin, J.H.R.

    1990-01-01

    A well engineered renewable remote energy system, utilizing the principal of Maximum Power Point Tracking can be m ore cost effective, has a higher reliability and can improve the quality of life in remote areas. This paper reports that a high-efficient power electronic converter, for converting the output voltage of a solar panel, or wind generator, to the required DC battery bus voltage has been realized. The converter is controlled to track the maximum power point of the input source under varying input and output parameters. Maximum power point tracking for relative small systems is achieved by maximization of the output current in a battery charging regulator, using an optimized hill-climbing, inexpensive microprocessor based algorithm. Through practical field measurements it is shown that a minimum input source saving of 15% on 3-5 kWh/day systems can easily be achieved. A total cost saving of at least 10-15% on the capital cost of these systems are achievable for relative small rating Remote Area Power Supply systems. The advantages at larger temperature variations and larger power rated systems are much higher. Other advantages include optimal sizing and system monitor and control

  11. Maximum permissible voltage of YBCO coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Wen, J.; Lin, B.; Sheng, J.; Xu, J.; Jin, Z. [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Hong, Z., E-mail: zhiyong.hong@sjtu.edu.cn [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Wang, D.; Zhou, H.; Shen, X.; Shen, C. [Qingpu Power Supply Company, State Grid Shanghai Municipal Electric Power Company, Shanghai (China)

    2014-06-15

    Highlights: • We examine three kinds of tapes’ maximum permissible voltage. • We examine the relationship between quenching duration and maximum permissible voltage. • Continuous I{sub c} degradations under repetitive quenching where tapes reaching maximum permissible voltage. • The relationship between maximum permissible voltage and resistance, temperature. - Abstract: Superconducting fault current limiter (SFCL) could reduce short circuit currents in electrical power system. One of the most important thing in developing SFCL is to find out the maximum permissible voltage of each limiting element. The maximum permissible voltage is defined as the maximum voltage per unit length at which the YBCO coated conductors (CC) do not suffer from critical current (I{sub c}) degradation or burnout. In this research, the time of quenching process is changed and voltage is raised until the I{sub c} degradation or burnout happens. YBCO coated conductors test in the experiment are from American superconductor (AMSC) and Shanghai Jiao Tong University (SJTU). Along with the quenching duration increasing, the maximum permissible voltage of CC decreases. When quenching duration is 100 ms, the maximum permissible of SJTU CC, 12 mm AMSC CC and 4 mm AMSC CC are 0.72 V/cm, 0.52 V/cm and 1.2 V/cm respectively. Based on the results of samples, the whole length of CCs used in the design of a SFCL can be determined.

  12. Impacts of Land Cover and Seasonal Variation on Maximum Air Temperature Estimation Using MODIS Imagery

    Directory of Open Access Journals (Sweden)

    Yulin Cai

    2017-03-01

    Full Text Available Daily maximum surface air temperature (Tamax is a crucial factor for understanding complex land surface processes under rapid climate change. Remote detection of Tamax has widely relied on the empirical relationship between air temperature and land surface temperature (LST, a product derived from remote sensing. However, little is known about how such a relationship is affected by the high heterogeneity in landscapes and dynamics in seasonality. This study aims to advance our understanding of the roles of land cover and seasonal variation in the estimation of Tamax using the MODIS (Moderate Resolution Imaging Spectroradiometer LST product. We developed statistical models to link Tamax and LST in the middle and lower reaches of the Yangtze River in China for five major land-cover types (i.e., forest, shrub, water, impervious surface, cropland, and grassland and two seasons (i.e., growing season and non-growing season. Results show that the performance of modeling the Tamax-LST relationship was highly dependent on land cover and seasonal variation. Estimating Tamax over grasslands and water bodies achieved superior performance; while uncertainties were high over forested lands that contained extensive heterogeneity in species types, plant structure, and topography. We further found that all the land-cover specific models developed for the plant non-growing season outperformed the corresponding models developed for the growing season. Discrepancies in model performance mainly occurred in the vegetated areas (forest, cropland, and shrub, suggesting an important role of plant phenology in defining the statistical relationship between Tamax and LST. For impervious surfaces, the challenge of capturing the high spatial heterogeneity in urban settings using the low-resolution MODIS data made Tamax estimation a difficult task, which was especially true in the growing season.

  13. Soil moisture estimation by assimilating L-band microwave brightness temperature with geostatistics and observation localization.

    Directory of Open Access Journals (Sweden)

    Xujun Han

    Full Text Available The observation could be used to reduce the model uncertainties with data assimilation. If the observation cannot cover the whole model area due to spatial availability or instrument ability, how to do data assimilation at locations not covered by observation? Two commonly used strategies were firstly described: One is covariance localization (CL; the other is observation localization (OL. Compared with CL, OL is easy to parallelize and more efficient for large-scale analysis. This paper evaluated OL in soil moisture profile characterizations, in which the geostatistical semivariogram was used to fit the spatial correlated characteristics of synthetic L-Band microwave brightness temperature measurement. The fitted semivariogram model and the local ensemble transform Kalman filter algorithm are combined together to weight and assimilate the observations within a local region surrounding the grid cell of land surface model to be analyzed. Six scenarios were compared: 1_Obs with one nearest observation assimilated, 5_Obs with no more than five nearest local observations assimilated, and 9_Obs with no more than nine nearest local observations assimilated. The scenarios with no more than 16, 25, and 36 local observations were also compared. From the results we can conclude that more local observations involved in assimilation will improve estimations with an upper bound of 9 observations in this case. This study demonstrates the potentials of geostatistical correlation representation in OL to improve data assimilation of catchment scale soil moisture using synthetic L-band microwave brightness temperature, which cannot cover the study area fully in space due to vegetation effects.

  14. Soil moisture estimation by assimilating L-band microwave brightness temperature with geostatistics and observation localization.

    Science.gov (United States)

    Han, Xujun; Li, Xin; Rigon, Riccardo; Jin, Rui; Endrizzi, Stefano

    2015-01-01

    The observation could be used to reduce the model uncertainties with data assimilation. If the observation cannot cover the whole model area due to spatial availability or instrument ability, how to do data assimilation at locations not covered by observation? Two commonly used strategies were firstly described: One is covariance localization (CL); the other is observation localization (OL). Compared with CL, OL is easy to parallelize and more efficient for large-scale analysis. This paper evaluated OL in soil moisture profile characterizations, in which the geostatistical semivariogram was used to fit the spatial correlated characteristics of synthetic L-Band microwave brightness temperature measurement. The fitted semivariogram model and the local ensemble transform Kalman filter algorithm are combined together to weight and assimilate the observations within a local region surrounding the grid cell of land surface model to be analyzed. Six scenarios were compared: 1_Obs with one nearest observation assimilated, 5_Obs with no more than five nearest local observations assimilated, and 9_Obs with no more than nine nearest local observations assimilated. The scenarios with no more than 16, 25, and 36 local observations were also compared. From the results we can conclude that more local observations involved in assimilation will improve estimations with an upper bound of 9 observations in this case. This study demonstrates the potentials of geostatistical correlation representation in OL to improve data assimilation of catchment scale soil moisture using synthetic L-band microwave brightness temperature, which cannot cover the study area fully in space due to vegetation effects.

  15. Mild focal cerebral ischemia in the rat. The effect of local temperature on infarct size

    DEFF Research Database (Denmark)

    Hildebrandt-Eriksen, Elisabeth S; Christensen, Thomas; Diemer, Nils Henrik

    2002-01-01

    . The effect of local temperature at the occlusion site in this model was furthermore tested. Thirty-three Wistar rats were subjected to 30 min of simultaneous common carotid artery and distal middle cerebral artery occlusion or sham treatment. Animals were magnetic resonance-scanned repeatedly between day one...... and day 14 after surgery, then sacrificed, and paraffin brain sections stained. All animals scanned 24 h after reperfusion showed an area of edema in the affected cortex, which later was identified as an infarct. Animals with a temperature of 33.9 +/- 1.5 degrees C at the MCA site (hypothermic) showed...... smaller infarcts (14.4 +/- 10 mm3) than animals with normothermic local temperature (36.7 +/- 0.2 degrees C, 57.7 +/- 26.4 mm3). Infarct size was maximal on day 3 after ischemia but decreased as edema subsided. Infarct volumes from histology and magnetic resonance imaging correlated well. The model...

  16. Maximum nondiffracting propagation distance of aperture-truncated Airy beams

    Science.gov (United States)

    Chu, Xingchun; Zhao, Shanghong; Fang, Yingwu

    2018-05-01

    Airy beams have called attention of many researchers due to their non-diffracting, self-healing and transverse accelerating properties. A key issue in research of Airy beams and its applications is how to evaluate their nondiffracting propagation distance. In this paper, the critical transverse extent of physically realizable Airy beams is analyzed under the local spatial frequency methodology. The maximum nondiffracting propagation distance of aperture-truncated Airy beams is formulated and analyzed based on their local spatial frequency. The validity of the formula is verified by comparing the maximum nondiffracting propagation distance of an aperture-truncated ideal Airy beam, aperture-truncated exponentially decaying Airy beam and exponentially decaying Airy beam. Results show that the formula can be used to evaluate accurately the maximum nondiffracting propagation distance of an aperture-truncated ideal Airy beam. Therefore, it can guide us to select appropriate parameters to generate Airy beams with long nondiffracting propagation distance that have potential application in the fields of laser weapons or optical communications.

  17. Merging daily sea surface temperature data from multiple satellites using a Bayesian maximum entropy method

    Science.gov (United States)

    Tang, Shaolei; Yang, Xiaofeng; Dong, Di; Li, Ziwei

    2015-12-01

    Sea surface temperature (SST) is an important variable for understanding interactions between the ocean and the atmosphere. SST fusion is crucial for acquiring SST products of high spatial resolution and coverage. This study introduces a Bayesian maximum entropy (BME) method for blending daily SSTs from multiple satellite sensors. A new spatiotemporal covariance model of an SST field is built to integrate not only single-day SSTs but also time-adjacent SSTs. In addition, AVHRR 30-year SST climatology data are introduced as soft data at the estimation points to improve the accuracy of blended results within the BME framework. The merged SSTs, with a spatial resolution of 4 km and a temporal resolution of 24 hours, are produced in the Western Pacific Ocean region to demonstrate and evaluate the proposed methodology. Comparisons with in situ drifting buoy observations show that the merged SSTs are accurate and the bias and root-mean-square errors for the comparison are 0.15°C and 0.72°C, respectively.

  18. Optimal distribution of temperature points in μSR measurement of local field

    International Nuclear Information System (INIS)

    Pełka, R.; Zieliński, P.M.; Konieczny, P.; Wasiutyński, T.

    2013-01-01

    Three possible distributions of temperature points in the μSR measurement of local field (order parameter) are discussed. The least square method is applied to estimate the scale of the deviations of the fitted parameters from the true values. It indicates that the distribution corresponding to a uniform section of the order parameter values (uniform-in-signal) incurs the smallest errors. The distribution constructed on the basis of the zeros of the Chebyshev polynomials yields comparable uncertainties, while the uniform-in-temperature distribution turns out to be least effective incurring considerably larger errors. These findings can be useful while planning an order parameter measurement in the μSR experiment

  19. Observation of weak carrier localization in green emitting InGaN/GaN multi-quantum well structure

    Energy Technology Data Exchange (ETDEWEB)

    Mohanta, Antaryami; Wang, Shiang-Fu; Jang, Der-Jun, E-mail: djjang@mail.nsysu.edu.tw [Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (China); Young, Tai-Fa [Department of Mechanical and Electromechanical Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (China); Yeh, Ping-Hung; Ling, Dah-Chin [Department of Physics, Tamkang University, Tamsui Dist., New Taipei City 25137, Taiwan (China); Lee, Meng-En [Department of Physics, National Kaohsiung Normal University, Kaohsiung 80264, Taiwan (China)

    2015-04-14

    Green emitting InGaN/GaN multi-quantum well samples were investigated using transmission electron microscopy, photoluminescence (PL), and time-resolved photoluminescence (TRPL) spectroscopy. Weak carrier localization with characteristic energy of ∼12 meV due to an inhomogeneous distribution of In in the InGaN quantum (QW) layer is observed. The temperature dependence of the PL peak energy exhibits S-shape phenomenon and is comparatively discussed within the framework of the Varshni's empirical formula. The full width at half maximum of the PL emission band shows an increasing-decreasing-increasing behavior with increasing temperature arising from the localized states caused by potential fluctuations. The radiative life time, τ{sub r}, extracted from the TRPL profile shows ∼T{sup 3/2} dependence on temperature above 200 K, which confirms the absence of the effect of carrier localization at room temperature.

  20. Maximum power point tracker based on fuzzy logic

    International Nuclear Information System (INIS)

    Daoud, A.; Midoun, A.

    2006-01-01

    The solar energy is used as power source in photovoltaic power systems and the need for an intelligent power management system is important to obtain the maximum power from the limited solar panels. With the changing of the sun illumination due to variation of angle of incidence of sun radiation and of the temperature of the panels, Maximum Power Point Tracker (MPPT) enables optimization of solar power generation. The MPPT is a sub-system designed to extract the maximum power from a power source. In the case of solar panels power source. the maximum power point varies as a result of changes in its electrical characteristics which in turn are functions of radiation dose, temperature, ageing and other effects. The MPPT maximum the power output from panels for a given set of conditions by detecting the best working point of the power characteristic and then controls the current through the panels or the voltage across them. Many MPPT methods have been reported in literature. These techniques of MPPT can be classified into three main categories that include: lookup table methods, hill climbing methods and computational methods. The techniques vary according to the degree of sophistication, processing time and memory requirements. The perturbation and observation algorithm (hill climbing technique) is commonly used due to its ease of implementation, and relative tracking efficiency. However, it has been shown that when the insolation changes rapidly, the perturbation and observation method is slow to track the maximum power point. In recent years, the fuzzy controllers are used for maximum power point tracking. This method only requires the linguistic control rules for maximum power point, the mathematical model is not required and therefore the implementation of this control method is easy to real control system. In this paper, we we present a simple robust MPPT using fuzzy set theory where the hardware consists of the microchip's microcontroller unit control card and

  1. Simulation of the maximum yield of sugar cane at different altitudes: effect of temperature on the conversion of radiation into biomass

    International Nuclear Information System (INIS)

    Martine, J.F.; Siband, P.; Bonhomme, R.

    1999-01-01

    To minimize the production costs of sugar cane, for the diverse sites of production found in La Réunion, an improved understanding of the influence of temperature on the dry matter radiation quotient is required. Existing models simulate poorly the temperature-radiation interaction. A model of sugar cane growth has been fitted to the results from two contrasting sites (mean temperatures: 14-30 °C; total radiation: 10-25 MJ·m -2 ·d -1 ), on a ratoon crop of cv R570, under conditions of non-limiting resources. Radiation interception, aerial biomass, the fraction of millable stems, and their moisture content, were measured. The time-courses of the efficiency of radiation interception differed between sites. As a function of the sum of day-degrees, they were similar. The dry matter radiation quotient was related to temperature. The moisture content of millable stems depended on the day-degree sum. On the other hand, the leaf/stem ratio was independent of temperature. The relationships established enabled the construction of a simple model of yield potential. Applied to a set of sites representing the sugar cane growing area of La Réunion, it gave a good prediction of maximum yields. (author) [fr

  2. Simulation of temperature effect on microalgae culture in a tubular photo bioreactor for local solar irradiance

    Science.gov (United States)

    Shahriar, M.; Deb, Ujjwal Kumar; Rahman, Kazi Afzalur

    2017-06-01

    Microalgae based biofuel is now an emerging source of renewable energy alternative to the fossil fuel. This paper aims to present computational model of microalgae culture taking effect of solar irradiance and corresponding temperature in a photo bioreactor (PBR). As microalgae is a photosynthetic microorganism, so irradiance of sunlight is one of the important limiting factors for the proper growth of microalgae cells as temperature is associated with it. We consider the transient behaviour of temperature inside the photo bioreactor for a microalgae culture. The optimum range of temperature for outdoor cultivation of microalgae is about 16-35°c and out of this range the cell growth inhibits. Many correlations have already been established to investigate the heat transfer phenomena inside a tubular PBR. However, none of them are validated yet numerically by using a user defined function in a simulated model. A horizontal tubular PBR length 20.5m with radius 0.05m has taken account to investigate the temperature effect for the growth of microalgae cell. As the solar irradiance varies at any geographic latitude for a year so an empirical relation is established between local solar irradiance and temperature to simulate the effect. From our simulation, we observed that the growth of microalgae has a significant effect of temperature and the solar irradiance of our locality is suitable for the culture of microalgae.

  3. Numerical study of RF exposure and the resulting temperature rise in the foetus during a magnetic resonance procedure

    International Nuclear Information System (INIS)

    Hand, J W; Li, Y; Hajnal, J V

    2010-01-01

    Numerical simulations of specific absorption rate (SAR) and temperature changes in a 26-week pregnant woman model within typical birdcage body coils as used in 1.5 T and 3 T MRI scanners are described. Spatial distributions of SAR and the resulting spatial and temporal changes in temperature are determined using a finite difference time domain method and a finite difference bio-heat transfer solver that accounts for discrete vessels. Heat transfer from foetus to placenta via the umbilical vein and arteries as well as that across the foetal skin/amniotic fluid/uterine wall boundaries is modelled. Results suggest that for procedures compliant with IEC normal mode conditions (maternal whole-body averaged SAR MWB ≤ 2 W kg -1 (continuous or time-averaged over 6 min)), whole foetal SAR, local foetal SAR 10g and average foetal temperature are within international safety limits. For continuous RF exposure at SAR MWB = 2 W kg -1 over periods of 7.5 min or longer, a maximum local foetal temperature >38 deg. C may occur. However, assessment of the risk posed by such maximum temperatures predicted in a static model is difficult because of frequent foetal movement. Results also confirm that when SAR MWB = 2 W kg -1 , some local SAR 10g values in the mother's trunk and extremities exceed recommended limits.

  4. Anti-nutrient components of guinea grass ( Panicum maximum ...

    African Journals Online (AJOL)

    Yomi

    2012-01-31

    Jan 31, 2012 ... A true measure of forage quality is animal ... The anti-nutritional contents of a pasture could be ... nutrient factors in P. maximum; (2) assess the effect of nitrogen ..... 3. http://www.clemson.edu/Fairfield/local/news/quality.

  5. 5 CFR 581.402 - Maximum garnishment limitations.

    Science.gov (United States)

    2010-01-01

    ... PROCESSING GARNISHMENT ORDERS FOR CHILD SUPPORT AND/OR ALIMONY Consumer Credit Protection Act Restrictions..., pursuant to section 1673(b)(2) (A) and (B) of title 15 of the United States Code (the Consumer Credit... local law, the maximum part of the aggregate disposable earnings subject to garnishment to enforce any...

  6. Maximum Power Point Tracking Based on Sliding Mode Control

    Directory of Open Access Journals (Sweden)

    Nimrod Vázquez

    2015-01-01

    Full Text Available Solar panels, which have become a good choice, are used to generate and supply electricity in commercial and residential applications. This generated power starts with the solar cells, which have a complex relationship between solar irradiation, temperature, and output power. For this reason a tracking of the maximum power point is required. Traditionally, this has been made by considering just current and voltage conditions at the photovoltaic panel; however, temperature also influences the process. In this paper the voltage, current, and temperature in the PV system are considered to be a part of a sliding surface for the proposed maximum power point tracking; this means a sliding mode controller is applied. Obtained results gave a good dynamic response, as a difference from traditional schemes, which are only based on computational algorithms. A traditional algorithm based on MPPT was added in order to assure a low steady state error.

  7. Influence of fuel pin bowing on the temperature distribution in fuel pin cladding tubes in case of sodium cooling; experimental results

    International Nuclear Information System (INIS)

    Moeller, R.; Tschoeke, H.; Kolodziej, M.

    1978-09-01

    The influence of rod bowing on the local temperature distribution was measured with turbulent sodium flow in the cladding tubes of a 19-rod bundle mock-up of the SNR 300 Mark Ia fuel element. Such measurements have been carried out for the first time. The results presented in this report are part 1 of the experimental evaluation not yet completed. The major results are: 1. When a rod on the first ring gets deformed towards a neighbour on the second ring with a gap reduction from the nominal value of 100 % down to 20 %, the maximum azimuthal temperature difference of the outer rod increases by about 60 %. 2. The maximum azimuthal temperature difference of a rod on the first ring increases by a factor of 2, if it is approached by a neighbour on the same ring. 3. The reduction in cross section of a subchannel by rod bowing results only locally in distinct temperature rises, i.e. in the adjacent cladding tubes. Rods of the next but one row are no more subject to noticeable changes in temperature [de

  8. Investigation of the effect of sealed surfaces on local climate in urban areas

    Science.gov (United States)

    Weihs, Philipp; Hasel, Stefan; Mursch-Radlgruber, Erich; Gützer, Christian; Krispel, Stefan; Peyerl, Martin; Trimmel, Heidi

    2015-04-01

    Local climate is driven by the interaction between energy balance and energy transported by advected air. Short-wave and long-wave radiation are major components in this interaction. Some few studies (e.g. Santamouris et al.) showed that adjusting the grade of reflection of surfaces is an efficient way to influence temperature. The present study investigates the influence of high albedo concrete surfaces on local climate. The first step of the study consisted of experimental investigations: routine measurements of the short and longwave radiation balance, of the ground and of the air temperature and humidity at different heights above 6 different types of sealed surfaces were performed. During this measurement campaign the above mentioned components were measured over a duration of 4 months above two conventional asphalt surfaces, one conventional concrete and three newly developed concrete surfaces with increased reflectances. Measured albedo values amounted to 0.12±0.02 for the asphalt surfaces and to maximum values of 0.56 for high albedo concrete. The maximum difference in surface temperature between the asphalt surfaces and the high albedo concrete surfaces amounted to 15°C. In addition the emission constants of the different sealed surfaces were also determined and were compared to values from literature.. In a second step the urban energy balance model Envi_Met was used to simulate the surface temperature of the six surfaces. The simulated surface temperatures were compared to the measured surface temperatures and statements as to uncertainties of the model simulations were made In a third step, Envi_Met was used to simulate the local climate of an urban district in Vienna. The surface and air temperature and the SW, LW fluxes were calculated for different types of sealed surfaces. By performing calculations of thermal stress indices (UTCI, PMV), statements as to the influence of the type of sealed surface on thermal stress on humans was made.

  9. Heat Convection at the Density Maximum Point of Water

    Science.gov (United States)

    Balta, Nuri; Korganci, Nuri

    2018-01-01

    Water exhibits a maximum in density at normal pressure at around 4° degree temperature. This paper demonstrates that during cooling, at around 4 °C, the temperature remains constant for a while because of heat exchange associated with convective currents inside the water. Superficial approach implies it as a new anomaly of water, but actually it…

  10. High-temperature deformation and rupture behavior of internally-pressurized Zircaloy-4 cladding in vacuum and steam enivronments

    International Nuclear Information System (INIS)

    Chung, H.M.; Garde, A.M.; Kassner, T.F.

    1977-01-01

    The high-temperature diametral expansion and rupture behavior of Zircaloy-4 fuel-cladding tubes have been investigated in vacuum and steam environments under transient-heating conditions that are of interest in hypothetical loss-of-coolant accident situations in light-water reactors. The effects of internal pressure, heating rate, axial constraint, and localized temperature nonuniformities in the cladding on the maximum circumferential strain have been determined for burst temperatures between approximately 650 and 1350 0 C

  11. Probabilistic maximum-value wind prediction for offshore environments

    DEFF Research Database (Denmark)

    Staid, Andrea; Pinson, Pierre; Guikema, Seth D.

    2015-01-01

    statistical models to predict the full distribution of the maximum-value wind speeds in a 3 h interval. We take a detailed look at the performance of linear models, generalized additive models and multivariate adaptive regression splines models using meteorological covariates such as gust speed, wind speed......, convective available potential energy, Charnock, mean sea-level pressure and temperature, as given by the European Center for Medium-Range Weather Forecasts forecasts. The models are trained to predict the mean value of maximum wind speed, and the residuals from training the models are used to develop...... the full probabilistic distribution of maximum wind speed. Knowledge of the maximum wind speed for an offshore location within a given period can inform decision-making regarding turbine operations, planned maintenance operations and power grid scheduling in order to improve safety and reliability...

  12. Maximum-entropy networks pattern detection, network reconstruction and graph combinatorics

    CERN Document Server

    Squartini, Tiziano

    2017-01-01

    This book is an introduction to maximum-entropy models of random graphs with given topological properties and their applications. Its original contribution is the reformulation of many seemingly different problems in the study of both real networks and graph theory within the unified framework of maximum entropy. Particular emphasis is put on the detection of structural patterns in real networks, on the reconstruction of the properties of networks from partial information, and on the enumeration and sampling of graphs with given properties.  After a first introductory chapter explaining the motivation, focus, aim and message of the book, chapter 2 introduces the formal construction of maximum-entropy ensembles of graphs with local topological constraints. Chapter 3 focuses on the problem of pattern detection in real networks and provides a powerful way to disentangle nontrivial higher-order structural features from those that can be traced back to simpler local constraints. Chapter 4 focuses on the problem o...

  13. Review: Potential Strength of Fly Ash-Based Geopolymer Paste with Substitution of Local Waste Materials with High-Temperature Effect

    Science.gov (United States)

    Subekti, S.; Bayuaji, R.; Darmawan, M. S.; Husin, N. A.; Wibowo, B.; Anugraha, B.; Irawan, S.; Dibiantara, D.

    2017-11-01

    This research provided an overview of the potential fly ash based geopolymer paste for application in building construction. Geopolymer paste with various variations of fly ash substitution with local waste material and high-temperature influence exploited with the fresh and hardened condition. The local waste material which utilized for this study were sandblasting waste, carbide waste, shell powder, bagasse ash, rice husk and bottom ash. The findings of this study indicated that fly-based geopolymer paste with local waste material substitution which had high-temperature influence ash showed a similar nature of OPC binders potentially used in civil engineering applications.

  14. Maximum power point tracking for photovoltaic solar pump based on ANFIS tuning system

    Directory of Open Access Journals (Sweden)

    S. Shabaan

    2018-05-01

    Full Text Available Solar photovoltaic (PV systems are a clean and naturally replenished energy source. PV panels have a unique point which represents the maximum available power and this point depend on the environmental conditions such as temperature and irradiance. A maximum power point tracking (MPPT is therefore necessary for maximum efficiency. In this paper, a study of MPPT for PV water pumping system based on adaptive neuro-fuzzy inference system (ANFIS is discussed. A comparison between the performance of the system with and without MPPT is carried out under varying irradiation and temperature conditions. ANFIS based controller shows fast response with high efficiency at all irradiance and temperature levels making it a powerful technique for non-linear systems as PV modules. Keywords: MPPT, ANFIS, Boost converter, PMDC pump

  15. Resource specialists lead local insect community turnover associated with temperature - analysis of an 18-year full-seasonal record of moths and beetles.

    Science.gov (United States)

    Thomsen, Philip Francis; Jørgensen, Peter Søgaard; Bruun, Hans Henrik; Pedersen, Jan; Riis-Nielsen, Torben; Jonko, Krzysztof; Słowińska, Iwona; Rahbek, Carsten; Karsholt, Ole

    2016-01-01

    Insect responses to recent climate change are well documented, but the role of resource specialization in determining species vulnerability remains poorly understood. Uncovering local ecological effects of temperature change with high-quality, standardized data provides an important first opportunity for predictions about responses of resource specialists, and long-term time series are essential in revealing these responses. Here, we investigate temperature-related changes in local insect communities, using a sampling site with more than a quarter-million records from two decades (1992-2009) of full-season, quantitative light trapping of 1543 species of moths and beetles. We investigated annual as well as long-term changes in fauna composition, abundance and phenology in a climate-related context using species temperature affinities and local temperature data. Finally, we explored these local changes in the context of dietary specialization. Across both moths and beetles, temperature affinity of specialists increased through net gain of hot-dwelling species and net loss of cold-dwelling species. The climate-related composition of generalists remained constant over time. We observed an increase in species richness of both groups. Furthermore, we observed divergent phenological responses between cold- and hot-dwelling species, advancing and delaying their relative abundance, respectively. Phenological advances were particularly pronounced in cold-adapted specialists. Our results suggest an important role of resource specialization in explaining the compositional and phenological responses of insect communities to local temperature increases. We propose that resource specialists in particular are affected by local temperature increase, leading to the distinct temperature-mediated turnover seen for this group. We suggest that the observed increase in species number could have been facilitated by dissimilar utilization of an expanded growing season by cold- and hot

  16. Beat the Deviations in Estimating Maximum Power of Thermoelectric Modules

    DEFF Research Database (Denmark)

    Gao, Junling; Chen, Min

    2013-01-01

    Under a certain temperature difference, the maximum power of a thermoelectric module can be estimated by the open-circuit voltage and the short-circuit current. In practical measurement, there exist two switch modes, either from open to short or from short to open, but the two modes can give...... different estimations on the maximum power. Using TEG-127-2.8-3.5-250 and TEG-127-1.4-1.6-250 as two examples, the difference is about 10%, leading to some deviations with the temperature change. This paper analyzes such differences by means of a nonlinear numerical model of thermoelectricity, and finds out...... that the main cause is the influence of various currents on the produced electromotive potential. A simple and effective calibration method is proposed to minimize the deviations in specifying the maximum power. Experimental results validate the method with improved estimation accuracy....

  17. Steady-state, local temperature fields with turbulent sodium flow in nominal and disturbed bundle geometries with spacer grids

    International Nuclear Information System (INIS)

    Moeller, R.; Tschoeke, H.; Kolodziej, M.

    1980-12-01

    The operating reliability of nuclear reactors calls for a reliable strength analysis of the highly loaded core elements, one of its prerequisites being the reliable determination of the three-dimensional velocity and temperature fields. To verify thermohydraulics computer programs, extensive local temperature measurements in the rod claddings of the critical bundle zone were performed on a heated 19-rod bundle model with sodium flow and provided with spacer grids (P/D = 1.30; W/D = 1.19). These are the essential results obtained: Outside the spacer grids the azimuthal temperature variations of the side and corner rods are greater by approximately the factor 10 in the bundle geometry under consideration as compared to rods in the central bundle zone. The spacer grids investigated give rise to great local temperature peaks and correspondingly great temperature gradients in the axial and azimuthal directions immediately around the support points. Continuous reduction of a subchannel by rod bowing results in substantial rises of temperature which, however, are limited to the adjacent cladding tube zones. (orig.) [de

  18. Maximum production rate optimization for sulphuric acid decomposition process in tubular plug-flow reactor

    International Nuclear Information System (INIS)

    Wang, Chao; Chen, Lingen; Xia, Shaojun; Sun, Fengrui

    2016-01-01

    A sulphuric acid decomposition process in a tubular plug-flow reactor with fixed inlet flow rate and completely controllable exterior wall temperature profile and reactants pressure profile is studied in this paper by using finite-time thermodynamics. The maximum production rate of the aimed product SO 2 and the optimal exterior wall temperature profile and reactants pressure profile are obtained by using nonlinear programming method. Then the optimal reactor with the maximum production rate is compared with the reference reactor with linear exterior wall temperature profile and the optimal reactor with minimum entropy generation rate. The result shows that the production rate of SO 2 of optimal reactor with the maximum production rate has an increase of more than 7%. The optimization of temperature profile has little influence on the production rate while the optimization of reactants pressure profile can significantly increase the production rate. The results obtained may provide some guidelines for the design of real tubular reactors. - Highlights: • Sulphuric acid decomposition process in tubular plug-flow reactor is studied. • Fixed inlet flow rate and controllable temperature and pressure profiles are set. • Maximum production rate of aimed product SO 2 is obtained. • Corresponding optimal temperature and pressure profiles are derived. • Production rate of SO 2 of optimal reactor increases by 7%.

  19. Local antiferromagnetic exchange and collaborative Fermi surface as key ingredients of high temperature superconductors

    Science.gov (United States)

    Hu, Jiangping; Ding, Hong

    2012-01-01

    Cuprates, ferropnictides and ferrochalcogenides are three classes of unconventional high temperature superconductors, who share similar phase diagrams in which superconductivity develops after a magnetic order is suppressed, suggesting a strong interplay between superconductivity and magnetism, although the exact picture of this interplay remains elusive. Here we show that there is a direct bridge connecting antiferromagnetic exchange interactions determined in the parent compounds of these materials to the superconducting gap functions observed in the corresponding superconducting materials: in all high temperature superconductors, the Fermi surface topology matches the form factor of the pairing symmetry favored by local magnetic exchange interactions. We suggest that this match offers a principle guide to search for new high temperature superconductors. PMID:22536479

  20. Coordination-resolved local bond relaxation, electron binding-energy shift, and Debye temperature of Ir solid skins

    Energy Technology Data Exchange (ETDEWEB)

    Bo, Maolin [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105 (China); Wang, Yan [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105 (China); School of Information and Electronic Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201 (China); Huang, Yongli, E-mail: huangyongli@xtu.edu.cn [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105 (China); Yang, Xuexian [Department of Physics, Jishou University, Jishou, Hunan 416000 (China); Yang, Yezi [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105 (China); Li, Can [Center for Coordination Bond Engineering, School of Materials Science and Engineering, China Jiliang University, Hangzhou 330018 (China); Sun, Chang Q., E-mail: ecqsun@ntu.edu.sg [Key Laboratory of Low-Dimensional Materials and Application Technologies, Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105 (China); NOVITAS, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2014-11-30

    Highlights: • Cohesive energy of the representative bond determines the core-level shift. • XPS derives the energy level of an isolated atom and its bulk shift. • XPS derives the local bond length, bond energy, binding energy density. • Thermal XPS resolves the Debye temperature and atomic cohesive energy. - Abstract: Numerical reproduction of the measured 4f{sub 7/2} energy shift of Ir(1 0 0), (1 1 1), and (2 1 0) solid skins turns out the following: (i) the 4f{sub 7/2} level of an isolated Ir atom shifts from 56.367 eV to 60.332 eV by 3.965 eV upon bulk formation; (ii) the local energy density increases by up to 130% and the atomic cohesive energy decreases by 70% in the skin region compared with the bulk values. Numerical match to observation of the temperature dependent energy shift derives the Debye temperature that varies from 285.2 K (Surface) to 315.2 K (Bulk). We clarified that the shorter and stronger bonds between under-coordinated atoms cause local densification and quantum entrapment of electron binding energy, which perturbs the Hamiltonian and the core shifts in the skin region.

  1. Apparent molal volumes of HMT and TATD in aqueous solutions around the temperature of maximum density of water

    International Nuclear Information System (INIS)

    Clavijo Penagos, J.A.; Blanco, L.H.

    2012-01-01

    Highlights: ►V φ for HMT and TATD in aqueous solutions around the temperature of maximum density of water are reported. ► V φ is linear in m form m = 0.025 for all the aqueous solutions investigated. ► Variation of V ¯ 2 ∞ with T obeys a second grade polynomial trend. ► The solutes are classified as structure breakers according to Hepler’s criterion. - Abstract: Apparent molal volumes V φ have been determined from density measurements for several aqueous solutions of 1,3,5,7-tetraazatricyclo[3.3.1.1(3,7)]decane (HMT) and 1,3,6,8-tetraazatricyclo[4.4.1.1(3,8)]dodecane (TATD) at T = (275.15, 275.65, 276.15, 276.65, 277.15, 277.65 and 278.15) K as function of composition. The infinite dilution partial molar volumes of solutes in aqueous solution are evaluated through extrapolation. Interactions of the solutes with water are discussed in terms of the effect of the temperature on the volumetric properties and the structure of the solutes. The results are interpreted in terms of water structure-breaking or structure forming character of the solutes.

  2. Computer Aided Theragnosis Using Quantitative Ultrasound Spectroscopy and Maximum Mean Discrepancy in Locally Advanced Breast Cancer.

    Science.gov (United States)

    Gangeh, Mehrdad J; Tadayyon, Hadi; Sannachi, Lakshmanan; Sadeghi-Naini, Ali; Tran, William T; Czarnota, Gregory J

    2016-03-01

    A noninvasive computer-aided-theragnosis (CAT) system was developed for the early therapeutic cancer response assessment in patients with locally advanced breast cancer (LABC) treated with neoadjuvant chemotherapy. The proposed CAT system was based on multi-parametric quantitative ultrasound (QUS) spectroscopic methods in conjunction with advanced machine learning techniques. Specifically, a kernel-based metric named maximum mean discrepancy (MMD), a technique for learning from imbalanced data based on random undersampling, and supervised learning were investigated with response-monitoring data from LABC patients. The CAT system was tested on 56 patients using statistical significance tests and leave-one-subject-out classification techniques. Textural features using state-of-the-art local binary patterns (LBP), and gray-scale intensity features were extracted from the spectral parametric maps in the proposed CAT system. The system indicated significant differences in changes between the responding and non-responding patient populations as well as high accuracy, sensitivity, and specificity in discriminating between the two patient groups early after the start of treatment, i.e., on weeks 1 and 4 of several months of treatment. The proposed CAT system achieved an accuracy of 85%, 87%, and 90% on weeks 1, 4 and 8, respectively. The sensitivity and specificity of developed CAT system for the same times was 85%, 95%, 90% and 85%, 85%, 91%, respectively. The proposed CAT system thus establishes a noninvasive framework for monitoring cancer treatment response in tumors using clinical ultrasound imaging in conjunction with machine learning techniques. Such a framework can potentially facilitate the detection of refractory responses in patients to treatment early on during a course of therapy to enable possibly switching to more efficacious treatments.

  3. An Iterative Maximum a Posteriori Estimation of Proficiency Level to Detect Multiple Local Likelihood Maxima

    Science.gov (United States)

    Magis, David; Raiche, Gilles

    2010-01-01

    In this article the authors focus on the issue of the nonuniqueness of the maximum likelihood (ML) estimator of proficiency level in item response theory (with special attention to logistic models). The usual maximum a posteriori (MAP) method offers a good alternative within that framework; however, this article highlights some drawbacks of its…

  4. Direct writing of room temperature and zero field skyrmion lattices by a scanning local magnetic field

    KAUST Repository

    Zhang, Senfu; Zhang, Junwei; Zhang, Qiang; Barton, Craig; Neu, Volker; Zhao, Yuelei; Hou, Zhipeng; Wen, Yan; Gong, Chen; Kazakova, Olga; Wang, Wenhong; Peng, Yong; Garanin, Dmitry A.; Chudnovsky, Eugene M.; Zhang, Xixiang

    2018-01-01

    Magnetic skyrmions are topologically protected nanoscale spin textures exhibiting fascinating physical behaviors. Recent observations of room temperature skyrmions in sputtered multilayer films are an important step towards their use in ultra-low power devices. Such practical applications prefer skyrmions to be stable at zero magnetic fields and room temperature. Here, we report the creation of skyrmion lattices in Pt/Co/Ta multilayers by a scanning local field using magnetic force microscopy tips. We also show that those newly created skyrmion lattices are stable at both room temperature and zero fields. Lorentz transmission electron microscopy measurements reveal that the skyrmions in our films are of Néel-type. To gain a deeper understanding of the mechanism behind the creation of a skyrmion lattice by the scanning of local fields, we perform micromagnetic simulations and find the experimental results to be in agreement with our simulation data. This study opens another avenue for the creation of skyrmion lattices in thin films.

  5. Direct writing of room temperature and zero field skyrmion lattices by a scanning local magnetic field

    KAUST Repository

    Zhang, Senfu

    2018-03-29

    Magnetic skyrmions are topologically protected nanoscale spin textures exhibiting fascinating physical behaviors. Recent observations of room temperature skyrmions in sputtered multilayer films are an important step towards their use in ultra-low power devices. Such practical applications prefer skyrmions to be stable at zero magnetic fields and room temperature. Here, we report the creation of skyrmion lattices in Pt/Co/Ta multilayers by a scanning local field using magnetic force microscopy tips. We also show that those newly created skyrmion lattices are stable at both room temperature and zero fields. Lorentz transmission electron microscopy measurements reveal that the skyrmions in our films are of Néel-type. To gain a deeper understanding of the mechanism behind the creation of a skyrmion lattice by the scanning of local fields, we perform micromagnetic simulations and find the experimental results to be in agreement with our simulation data. This study opens another avenue for the creation of skyrmion lattices in thin films.

  6. Direct writing of room temperature and zero field skyrmion lattices by a scanning local magnetic field

    Science.gov (United States)

    Zhang, Senfu; Zhang, Junwei; Zhang, Qiang; Barton, Craig; Neu, Volker; Zhao, Yuelei; Hou, Zhipeng; Wen, Yan; Gong, Chen; Kazakova, Olga; Wang, Wenhong; Peng, Yong; Garanin, Dmitry A.; Chudnovsky, Eugene M.; Zhang, Xixiang

    2018-03-01

    Magnetic skyrmions are topologically protected nanoscale spin textures exhibiting fascinating physical behaviors. Recent observations of room temperature skyrmions in sputtered multilayer films are an important step towards their use in ultra-low power devices. Such practical applications prefer skyrmions to be stable at zero magnetic fields and room temperature. Here, we report the creation of skyrmion lattices in Pt/Co/Ta multilayers by a scanning local field using magnetic force microscopy tips. We also show that those newly created skyrmion lattices are stable at both room temperature and zero fields. Lorentz transmission electron microscopy measurements reveal that the skyrmions in our films are of Néel-type. To gain a deeper understanding of the mechanism behind the creation of a skyrmion lattice by the scanning of local fields, we perform micromagnetic simulations and find the experimental results to be in agreement with our simulation data. This study opens another avenue for the creation of skyrmion lattices in thin films.

  7. Steady-state, local temperature fields with turbulent liquid sodium flow in nominal and disturbed bundle geometries with spacer grids

    International Nuclear Information System (INIS)

    Moeller, R.; Tschoeke, H.

    1980-01-01

    The operating reliability of nuclear reactors calls for a reliable strength analysis of the highly loaded core elements, one of its prerequisites being the reliable determination of the three-dimensional velocity and temperature fields. To verify thermohydraulics computer programs, extensive local temperature measurements in the rod claddings of the critical bundle zone were performed on a heated 19-rod bundle model with sodium flow and provided with spacer grids (P/D = 1.30; W/D = 1.19). The essential results are: - Outside the spacer grids, the azimuthal temperature variations of the side and corner rods are approximately 10-fold those of rods in the central bundle zone. - The spacer grids investigated give rise to great local temperature peaks and correspondingly great temperature gradients in the axial and azimuthal directions immediately around the support points. - Continuous reduction of a subchannel by rod bowing results in substantial rises of temperature which, however, are limited to adjacent cladding tubes. (orig.)

  8. Temperature response to future urbanization and climate change

    Science.gov (United States)

    Argüeso, Daniel; Evans, Jason P.; Fita, Lluís; Bormann, Kathryn J.

    2014-04-01

    This study examines the impact of future urban expansion on local near-surface temperature for Sydney (Australia) using a future climate scenario (A2). The Weather Research and Forecasting model was used to simulate the present (1990-2009) and future (2040-2059) climates of the region at 2-km spatial resolution. The standard land use of the model was replaced with a more accurate dataset that covers the Sydney area. The future simulation incorporates the projected changes in the urban area of Sydney to account for the expected urban expansion. A comparison between areas with projected land use changes and their surroundings was conducted to evaluate how urbanization and global warming will act together and to ascertain their combined effect on the local climate. The analysis of the temperature changes revealed that future urbanization will strongly affect minimum temperature, whereas little impact was detected for maximum temperature. The minimum temperature changes will be noticeable throughout the year. However, during winter and spring these differences will be particularly large and the increases could be double the increase due to global warming alone at 2050. Results indicated that the changes were mostly due to increased heat capacity of urban structures and reduced evaporation in the city environment.

  9. Decadal trends in Red Sea maximum surface temperature

    KAUST Repository

    Chaidez, Veronica; Dreano, Denis; Agusti, Susana; Duarte, Carlos M.; Hoteit, Ibrahim

    2017-01-01

    Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed by 0.11 °C decade-1 over the last 50 years and is estimated to continue to warm by an additional 0.6 - 2.0 °C before the end of the century1. However, there is considerable variability in the rates experienced by different ocean regions, so understanding regional trends is important to inform on possible stresses for marine organisms, particularly in warm seas where organisms may be already operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. We characterized the Red Sea's thermal regimes at the basin scale, with a focus on the spatial distribution and changes over time of sea surface temperature maxima, using remotely sensed sea surface temperature data from 1982 - 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C decade-1, while the northern Red Sea is warming between 0.40 and 0.45 °C decade-1, all exceeding the global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its organisms and communities.

  10. Decadal trends in Red Sea maximum surface temperature

    KAUST Repository

    Chaidez, Veronica

    2017-08-09

    Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed by 0.11 °C decade-1 over the last 50 years and is estimated to continue to warm by an additional 0.6 - 2.0 °C before the end of the century1. However, there is considerable variability in the rates experienced by different ocean regions, so understanding regional trends is important to inform on possible stresses for marine organisms, particularly in warm seas where organisms may be already operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. We characterized the Red Sea\\'s thermal regimes at the basin scale, with a focus on the spatial distribution and changes over time of sea surface temperature maxima, using remotely sensed sea surface temperature data from 1982 - 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C decade-1, while the northern Red Sea is warming between 0.40 and 0.45 °C decade-1, all exceeding the global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its organisms and communities.

  11. Decadal trends in Red Sea maximum surface temperature.

    Science.gov (United States)

    Chaidez, V; Dreano, D; Agusti, S; Duarte, C M; Hoteit, I

    2017-08-15

    Ocean warming is a major consequence of climate change, with the surface of the ocean having warmed by 0.11 °C decade -1 over the last 50 years and is estimated to continue to warm by an additional 0.6 - 2.0 °C before the end of the century 1 . However, there is considerable variability in the rates experienced by different ocean regions, so understanding regional trends is important to inform on possible stresses for marine organisms, particularly in warm seas where organisms may be already operating in the high end of their thermal tolerance. Although the Red Sea is one of the warmest ecosystems on earth, its historical warming trends and thermal evolution remain largely understudied. We characterized the Red Sea's thermal regimes at the basin scale, with a focus on the spatial distribution and changes over time of sea surface temperature maxima, using remotely sensed sea surface temperature data from 1982 - 2015. The overall rate of warming for the Red Sea is 0.17 ± 0.07 °C decade -1 , while the northern Red Sea is warming between 0.40 and 0.45 °C decade -1 , all exceeding the global rate. Our findings show that the Red Sea is fast warming, which may in the future challenge its organisms and communities.

  12. Transition Temperatures of Thermotropic Liquid Crystals from the Local Binary Gray Level Cooccurrence Matrix

    Directory of Open Access Journals (Sweden)

    S. Sreehari Sastry

    2012-01-01

    Full Text Available This paper presents a method which combines the statistical analysis with texture structural analysis called Local Binary Gray Level Cooccurrence Matrix (LBGLCM to investigate the phase transition temperatures of thermotropic p,n-alkyloxy benzoic acid (nOBA, n=4,6,8,10 and 12 liquid crystals. Textures of the homeotropically aligned liquid crystal compounds are recorded as a function of temperature using polarizing optical microscope attached to the hot stage and high resolution camera. In this method, second-order statistical parameters (contrast, energy, homogeneity, and correlation are extracted from the LBGLCM of the textures. The changes associatedwiththe values of extracted parameters as a function of temperature are a helpful process to identify the phases and phase transition temperatures of the samples. Results obtained from this method have validity and are in good agreement with the literature.

  13. Response of surface air temperature to small-scale land clearing across latitudes

    International Nuclear Information System (INIS)

    Zhang, Mi; Wang, Wei; Lee, Xuhui; Yu, Guirui; Wang, Huimin; Han, Shijie; Yan, Junhua; Zhang, Yiping; Li, Yide; Ohta, Takeshi; Hirano, Takashi; Kim, Joon; Yoshifuji, Natsuko

    2014-01-01

    Climate models simulating continental scale deforestation suggest a warming effect of land clearing on the surface air temperature in the tropical zone and a cooling effect in the boreal zone due to different control of biogeochemical and biophysical processes. Ongoing land-use/cover changes mostly occur at local scales (hectares), and it is not clear whether the local-scale deforestation will generate temperature patterns consistent with the climate model results. Here we paired 40 and 12 flux sites with nearby weather stations in North and South America and in Eastern Asia, respectively, and quantified the temperature difference between these paired sites. Our goal was to investigate the response of the surface air temperature to local-scale (hectares) land clearing across latitudes using the surface weather stations as proxies for localized land clearing. The results show that north of 10°N, the annual mean temperature difference (open land minus forest) decreases with increasing latitude, but the temperature difference shrinks with latitude at a faster rate in the Americas [−0.079 (±0.010) °C per degree] than in Asia [−0.046 (±0.011) °C per degree]. Regression of the combined data suggests a transitional latitude of about 35.5°N that demarks deforestation warming to the south and cooling to the north. The warming in latitudes south of 35°N is associated with increase in the daily maximum temperature, with little change in the daily minimum temperature while the reverse is true in the boreal latitudes. (paper)

  14. Weak scale from the maximum entropy principle

    Science.gov (United States)

    Hamada, Yuta; Kawai, Hikaru; Kawana, Kiyoharu

    2015-03-01

    The theory of the multiverse and wormholes suggests that the parameters of the Standard Model (SM) are fixed in such a way that the radiation of the S3 universe at the final stage S_rad becomes maximum, which we call the maximum entropy principle. Although it is difficult to confirm this principle generally, for a few parameters of the SM, we can check whether S_rad actually becomes maximum at the observed values. In this paper, we regard S_rad at the final stage as a function of the weak scale (the Higgs expectation value) vh, and show that it becomes maximum around vh = {{O}} (300 GeV) when the dimensionless couplings in the SM, i.e., the Higgs self-coupling, the gauge couplings, and the Yukawa couplings are fixed. Roughly speaking, we find that the weak scale is given by vh ˜ T_{BBN}2 / (M_{pl}ye5), where ye is the Yukawa coupling of electron, T_BBN is the temperature at which the Big Bang nucleosynthesis starts, and M_pl is the Planck mass.

  15. A Maximum Radius for Habitable Planets.

    Science.gov (United States)

    Alibert, Yann

    2015-09-01

    We compute the maximum radius a planet can have in order to fulfill two constraints that are likely necessary conditions for habitability: 1- surface temperature and pressure compatible with the existence of liquid water, and 2- no ice layer at the bottom of a putative global ocean, that would prevent the operation of the geologic carbon cycle to operate. We demonstrate that, above a given radius, these two constraints cannot be met: in the Super-Earth mass range (1-12 Mearth), the overall maximum that a planet can have varies between 1.8 and 2.3 Rearth. This radius is reduced when considering planets with higher Fe/Si ratios, and taking into account irradiation effects on the structure of the gas envelope.

  16. Maximum Efficiency of Thermoelectric Heat Conversion in High-Temperature Power Devices

    Directory of Open Access Journals (Sweden)

    V. I. Khvesyuk

    2016-01-01

    Full Text Available Modern trends in development of aircraft engineering go with development of vehicles of the fifth generation. The features of aircrafts of the fifth generation are motivation to use new high-performance systems of onboard power supply. The operating temperature of the outer walls of engines is of 800–1000 K. This corresponds to radiation heat flux of 10 kW/m2 . The thermal energy including radiation of the engine wall may potentially be converted into electricity. The main objective of this paper is to analyze if it is possible to use a high efficiency thermoelectric conversion of heat into electricity. The paper considers issues such as working processes, choice of materials, and optimization of thermoelectric conversion. It presents the analysis results of operating conditions of thermoelectric generator (TEG used in advanced hightemperature power devices. A high-temperature heat source is a favorable factor for the thermoelectric conversion of heat. It is shown that for existing thermoelectric materials a theoretical conversion efficiency can reach the level of 15–20% at temperatures up to 1500 K and available values of Ioffe parameter being ZT = 2–3 (Z is figure of merit, T is temperature. To ensure temperature regime and high efficiency thermoelectric conversion simultaneously it is necessary to have a certain match between TEG power, temperature of hot and cold surfaces, and heat transfer coefficient of the cooling system. The paper discusses a concept of radiation absorber on the TEG hot surface. The analysis has demonstrated a number of potentialities for highly efficient conversion through using the TEG in high-temperature power devices. This work has been implemented under support of the Ministry of Education and Science of the Russian Federation; project No. 1145 (the programme “Organization of Research Engineering Activities”.

  17. Microprocessor-controlled step-down maximum-power-point tracker for photovoltaic systems

    Science.gov (United States)

    Mazmuder, R. K.; Haidar, S.

    1992-12-01

    An efficient maximum power point tracker (MPPT) has been developed and can be used with a photovoltaic (PV) array and a load which requires lower voltage than the PV array voltage to be operated. The MPPT makes the PV array to operate at maximum power point (MPP) under all insolation and temperature, which ensures the maximum amount of available PV power to be delivered to the load. The performance of the MPPT has been studied under different insolation levels.

  18. The last glacial maximum

    Science.gov (United States)

    Clark, P.U.; Dyke, A.S.; Shakun, J.D.; Carlson, A.E.; Clark, J.; Wohlfarth, B.; Mitrovica, J.X.; Hostetler, S.W.; McCabe, A.M.

    2009-01-01

    We used 5704 14C, 10Be, and 3He ages that span the interval from 10,000 to 50,000 years ago (10 to 50 ka) to constrain the timing of the Last Glacial Maximum (LGM) in terms of global ice-sheet and mountain-glacier extent. Growth of the ice sheets to their maximum positions occurred between 33.0 and 26.5 ka in response to climate forcing from decreases in northern summer insolation, tropical Pacific sea surface temperatures, and atmospheric CO2. Nearly all ice sheets were at their LGM positions from 26.5 ka to 19 to 20 ka, corresponding to minima in these forcings. The onset of Northern Hemisphere deglaciation 19 to 20 ka was induced by an increase in northern summer insolation, providing the source for an abrupt rise in sea level. The onset of deglaciation of the West Antarctic Ice Sheet occurred between 14 and 15 ka, consistent with evidence that this was the primary source for an abrupt rise in sea level ???14.5 ka.

  19. Maximum organic carbon limits at different melter feed rates (U)

    International Nuclear Information System (INIS)

    Choi, A.S.

    1995-01-01

    This report documents the results of a study to assess the impact of varying melter feed rates on the maximum total organic carbon (TOC) limits allowable in the DWPF melter feed. Topics discussed include: carbon content; feed rate; feed composition; melter vapor space temperature; combustion and dilution air; off-gas surges; earlier work on maximum TOC; overview of models; and the results of the work completed

  20. An analysis on local hydrogen concentration in the large dry PWR containment of Ulchin 3,4 in Korea

    International Nuclear Information System (INIS)

    Hong, S.W.; Kim, H.D.; Chung, S.H.

    1994-01-01

    The local hydrogen concentration was analyzed during two different severe accident scenarios (TMLB' and medium size LOCA) using CONTAIN code for the Ulchin 3,4 PWR containment type which is under construction in Korea. Sensitivity studies on the equivalent fraction of zirconium oxidation in the reactor vessel and the flow loss coefficient in the flow path between compartments were also carried out in order to investigate the effect of the these parameters on the local hydrogen concentration. Finally, the effect of temperature and turbulence intensity on the flame velocity was evaluated, and a sample calculation was performed by updating the model of the CONTAIN code. The calculated results show that the maximum local hydrogen concentration appears in the cavity compartment. lie hydrogen burn, however, is not likely to occur in this compartment for both scenarios due to low oxygen concentrations. Hydrogen burns are more likely to occur at the stern generator compartments for TMLB' accident and at the reactor vessel annulus compartment during medium size LOCA When the equivalent fraction of in-vessel zirconium oxidation is assumed to be 75 %, the possibility of detonation is much more increased. The change of flow loss coefficients between flow paths about 2 times affects on the magnitude of the maximum local hydrogen concentration but nearly no influence on the timing and the location of the compartment attaining the maximum local hydrogen concentration. The local hydrogen concentration in the compartments seems to be stratified after vessel failure but to be stabilized afterwards. When temperature and turbulence intensity are considered in the flame velocity model, the flame speed is much greater than the previous results, but the containment load is not increased very much. (author)

  1. Long-term adherence to a local guideline on postoperative body temperature measurement: mixed methods analysis

    NARCIS (Netherlands)

    Storm-Versloot, Marja N.; Knops, Anouk M.; Ubbink, Dirk T.; Goossens, Astrid; Legemate, Dink A.; Vermeulen, Hester

    2012-01-01

    Aim To find out whether a successful multifaceted implementation approach of a local evidence-based guideline on postoperative body temperature measurements (BTM) was persistent over time, and which factors influenced long-term adherence. Methods Mixed methods analysis. Patient records were

  2. Local land-atmosphere feedbacks limit irrigation demand

    Science.gov (United States)

    Decker, Mark; Ma, Shaoxiu; Pitman, Andy

    2017-05-01

    Irrigation is known to influence regional climate but most studies forecast and simulate irrigation with offline (i.e. land only) models. Using south eastern Australia as a test bed, we demonstrate that irrigation demand is fundamentally different between land only and land-atmosphere simulations. While irrigation only has a small impact on maximum temperature, the semi-arid environment experiences near surface moistening in coupled simulations over the irrigated regions, a feedback that is prevented in offline simulations. In land only simulations that neglect the local feedbacks, the simulated irrigation demand is 25% higher and the standard deviation of the mean irrigation rate is 60% smaller. These local-scale irrigation-driven feedbacks are not resolved in coarse-resolution climate models implying that use of these tools will overestimate irrigation demand. Future studies of irrigation demand must therefore account for the local land-atmosphere interactions by using coupled frameworks, at a spatial resolution that captures the key feedbacks.

  3. Optimisation of sea surface current retrieval using a maximum cross correlation technique on modelled sea surface temperature

    Science.gov (United States)

    Heuzé, Céline; Eriksson, Leif; Carvajal, Gisela

    2017-04-01

    Using sea surface temperature from satellite images to retrieve sea surface currents is not a new idea, but so far its operational near-real time implementation has not been possible. Validation studies are too region-specific or uncertain, due to the errors induced by the images themselves. Moreover, the sensitivity of the most common retrieval method, the maximum cross correlation, to the three parameters that have to be set is unknown. Using model outputs instead of satellite images, biases induced by this method are assessed here, for four different seas of Western Europe, and the best of nine settings and eight temporal resolutions are determined. For all regions, tracking a small 5 km pattern from the first image over a large 30 km region around its original location on a second image, separated from the first image by 6 to 9 hours returned the most accurate results. Moreover, for all regions, the problem is not inaccurate results but missing results, where the velocity is too low to be picked by the retrieval. The results are consistent both with limitations caused by ocean surface current dynamics and with the available satellite technology, indicating that automated sea surface current retrieval from sea surface temperature images is feasible now, for search and rescue operations, pollution confinement or even for more energy efficient and comfortable ship navigation.

  4. Local adaptation at the transcriptome level in brown trout: evidence from early life history temperature genomic reaction norms.

    Directory of Open Access Journals (Sweden)

    Kristian Meier

    Full Text Available Local adaptation and its underlying molecular basis has long been a key focus in evolutionary biology. There has recently been increased interest in the evolutionary role of plasticity and the molecular mechanisms underlying local adaptation. Using transcriptome analysis, we assessed differences in gene expression profiles for three brown trout (Salmo trutta populations, one resident and two anadromous, experiencing different temperature regimes in the wild. The study was based on an F2 generation raised in a common garden setting. A previous study of the F1 generation revealed different reaction norms and significantly higher QST than FST among populations for two early life-history traits. In the present study we investigated if genomic reaction norm patterns were also present at the transcriptome level. Eggs from the three populations were incubated at two temperatures (5 and 8 degrees C representing conditions encountered in the local environments. Global gene expression for fry at the stage of first feeding was analysed using a 32k cDNA microarray. The results revealed differences in gene expression between populations and temperatures and population × temperature interactions, the latter indicating locally adapted reaction norms. Moreover, the reaction norms paralleled those observed previously at early life-history traits. We identified 90 cDNA clones among the genes with an interaction effect that were differently expressed between the ecologically divergent populations. These included genes involved in immune- and stress response. We observed less plasticity in the resident as compared to the anadromous populations, possibly reflecting that the degree of environmental heterogeneity encountered by individuals throughout their life cycle will select for variable level of phenotypic plasticity at the transcriptome level. Our study demonstrates the usefulness of transcriptome approaches to identify genes with different temperature reaction

  5. Evaluating local and overall thermal comfort in buildings using thermal manikins

    Energy Technology Data Exchange (ETDEWEB)

    Foda, E.

    2012-07-01

    Evaluation methods of human thermal comfort that are based on whole-body heat balance with its surroundings may not be adequate for evaluations in non-uniform thermal conditions. Under these conditions, the human body's segments may experience a wide range of room physical parameters and the evaluation of the local (segmental) thermal comfort becomes necessary. In this work, subjective measurements of skin temperature were carried out to investigate the human body's local responses due to a step change in the room temperature; and the variability in the body's local temperatures under different indoor conditions and exposures as well as the physiological steady state local temperatures. Then, a multi-segmental model of human thermoregulation was developed based on these findings to predict the local skin temperatures of individuals' body segments with a good accuracy. The model predictability of skin temperature was verified for steady state and dynamic conditions using measured data at uniform neutral, cold and warm as well as different asymmetric thermal conditions. The model showed very good predictability with average absolute deviation ranged from 0.3-0.8 K. The model was then implemented onto the control system of the thermal manikin 'THERMINATOR' to adjust the segmental skin temperature set-points based on the indoor conditions. This new control for the manikin was experimentally validated for the prediction of local and overall thermal comfort using the equivalent temperature measure. THERMINATOR with the new control mode was then employed in the evaluation of localized floor-heating system variants towards maximum energy efficiency. This aimed at illustrating a design strategy using the thermal manikin to find the optimum geometry and surface area of a floor-heater for a single seated person. Furthermore, a psychological comfort model that is based on local skin temperature was adapted for the use with the model of human

  6. Last interglacial temperature evolution – a model inter-comparison

    Directory of Open Access Journals (Sweden)

    P. Bakker

    2013-03-01

    Full Text Available There is a growing number of proxy-based reconstructions detailing the climatic changes that occurred during the last interglacial period (LIG. This period is of special interest, because large parts of the globe were characterized by a warmer-than-present-day climate, making this period an interesting test bed for climate models in light of projected global warming. However, mainly because synchronizing the different palaeoclimatic records is difficult, there is no consensus on a global picture of LIG temperature changes. Here we present the first model inter-comparison of transient simulations covering the LIG period. By comparing the different simulations, we aim at investigating the common signal in the LIG temperature evolution, investigating the main driving forces behind it and at listing the climate feedbacks which cause the most apparent inter-model differences. The model inter-comparison shows a robust Northern Hemisphere July temperature evolution characterized by a maximum between 130–125 ka BP with temperatures 0.3 to 5.3 K above present day. A Southern Hemisphere July temperature maximum, −1.3 to 2.5 K at around 128 ka BP, is only found when changes in the greenhouse gas concentrations are included. The robustness of simulated January temperatures is large in the Southern Hemisphere and the mid-latitudes of the Northern Hemisphere. For these regions maximum January temperature anomalies of respectively −1 to 1.2 K and −0.8 to 2.1 K are simulated for the period after 121 ka BP. In both hemispheres these temperature maxima are in line with the maximum in local summer insolation. In a number of specific regions, a common temperature evolution is not found amongst the models. We show that this is related to feedbacks within the climate system which largely determine the simulated LIG temperature evolution in these regions. Firstly, in the Arctic region, changes in the summer sea-ice cover control the evolution of LIG winter

  7. Heat generation and temperature-rise in ordinary concrete due to capture of thermal neutrons

    International Nuclear Information System (INIS)

    Abdo, E.A.; Amin, E.

    1997-01-01

    The aim of this work is the evaluation of the heat generation and temperature-rise in local ordinary concrete as a biological shield due to capture of total thermal and reactor thermal neutrons. The total thermal neutron fluxes were measured and calculated. The channel number 2 of the ETRR-1 reactor was used in the measurements as a neutron source. Computer code ANISN (VAX version) and neutron multigroup cross-section library EURLiB-4 was used in the calculations. The heat generation and temperature-rise in local ordinary concrete were evaluated and calculated. The results were displayed in curves to show the distribution of thermal neutron fluxes and heat generation as well as temperature-rise with the shield thickness. The results showed that, the heat generation as well as the temperature-rise have their maximum values in the first layers of the shield thickness. 4 figs., 12 refs

  8. The local temperature and chemical potential inside a mesoscopic device driven out of equilibrium

    International Nuclear Information System (INIS)

    Wang, Pei

    2011-01-01

    In this paper we introduce a method for calculating the local temperature and chemical potential inside a mesoscopic device out of equilibrium. We show how to check the conditions of local thermal equilibrium when the whole system is out of equilibrium. In particular, we study the on-site chemical potentials inside a chain coupled to two reservoirs at a finite voltage bias. We observe in the presence of disorder a large fluctuation in on-site chemical potentials, which can be suppressed by the electron–electron interaction. By taking the average with respect to the configurations of the disorder, we recover the classical picture where the voltage drops monotonically through the resistance wire. We prove the existence of local intensive variables in a mesoscopic device which is in equilibrium or not far from equilibrium

  9. Generic maximum likely scale selection

    DEFF Research Database (Denmark)

    Pedersen, Kim Steenstrup; Loog, Marco; Markussen, Bo

    2007-01-01

    in this work is on applying this selection principle under a Brownian image model. This image model provides a simple scale invariant prior for natural images and we provide illustrative examples of the behavior of our scale estimation on such images. In these illustrative examples, estimation is based......The fundamental problem of local scale selection is addressed by means of a novel principle, which is based on maximum likelihood estimation. The principle is generally applicable to a broad variety of image models and descriptors, and provides a generic scale estimation methodology. The focus...

  10. Estimation of Land Surface Temperature through Blending MODIS and AMSR-E Data with the Bayesian Maximum Entropy Method

    Directory of Open Access Journals (Sweden)

    Xiaokang Kou

    2016-01-01

    Full Text Available Land surface temperature (LST plays a major role in the study of surface energy balances. Remote sensing techniques provide ways to monitor LST at large scales. However, due to atmospheric influences, significant missing data exist in LST products retrieved from satellite thermal infrared (TIR remotely sensed data. Although passive microwaves (PMWs are able to overcome these atmospheric influences while estimating LST, the data are constrained by low spatial resolution. In this study, to obtain complete and high-quality LST data, the Bayesian Maximum Entropy (BME method was introduced to merge 0.01° and 0.25° LSTs inversed from MODIS and AMSR-E data, respectively. The result showed that the missing LSTs in cloudy pixels were filled completely, and the availability of merged LSTs reaches 100%. Because the depths of LST and soil temperature measurements are different, before validating the merged LST, the station measurements were calibrated with an empirical equation between MODIS LST and 0~5 cm soil temperatures. The results showed that the accuracy of merged LSTs increased with the increasing quantity of utilized data, and as the availability of utilized data increased from 25.2% to 91.4%, the RMSEs of the merged data decreased from 4.53 °C to 2.31 °C. In addition, compared with the filling gap method in which MODIS LST gaps were filled with AMSR-E LST directly, the merged LSTs from the BME method showed better spatial continuity. The different penetration depths of TIR and PMWs may influence fusion performance and still require further studies.

  11. Estimation Methods for Non-Homogeneous Regression - Minimum CRPS vs Maximum Likelihood

    Science.gov (United States)

    Gebetsberger, Manuel; Messner, Jakob W.; Mayr, Georg J.; Zeileis, Achim

    2017-04-01

    Non-homogeneous regression models are widely used to statistically post-process numerical weather prediction models. Such regression models correct for errors in mean and variance and are capable to forecast a full probability distribution. In order to estimate the corresponding regression coefficients, CRPS minimization is performed in many meteorological post-processing studies since the last decade. In contrast to maximum likelihood estimation, CRPS minimization is claimed to yield more calibrated forecasts. Theoretically, both scoring rules used as an optimization score should be able to locate a similar and unknown optimum. Discrepancies might result from a wrong distributional assumption of the observed quantity. To address this theoretical concept, this study compares maximum likelihood and minimum CRPS estimation for different distributional assumptions. First, a synthetic case study shows that, for an appropriate distributional assumption, both estimation methods yield to similar regression coefficients. The log-likelihood estimator is slightly more efficient. A real world case study for surface temperature forecasts at different sites in Europe confirms these results but shows that surface temperature does not always follow the classical assumption of a Gaussian distribution. KEYWORDS: ensemble post-processing, maximum likelihood estimation, CRPS minimization, probabilistic temperature forecasting, distributional regression models

  12. Maximum total organic carbon limit for DWPF melter feed

    International Nuclear Information System (INIS)

    Choi, A.S.

    1995-01-01

    DWPF recently decided to control the potential flammability of melter off-gas by limiting the total carbon content in the melter feed and maintaining adequate conditions for combustion in the melter plenum. With this new strategy, all the LFL analyzers and associated interlocks and alarms were removed from both the primary and backup melter off-gas systems. Subsequently, D. Iverson of DWPF- T ampersand E requested that SRTC determine the maximum allowable total organic carbon (TOC) content in the melter feed which can be implemented as part of the Process Requirements for melter feed preparation (PR-S04). The maximum TOC limit thus determined in this study was about 24,000 ppm on an aqueous slurry basis. At the TOC levels below this, the peak concentration of combustible components in the quenched off-gas will not exceed 60 percent of the LFL during off-gas surges of magnitudes up to three times nominal, provided that the melter plenum temperature and the air purge rate to the BUFC are monitored and controlled above 650 degrees C and 220 lb/hr, respectively. Appropriate interlocks should discontinue the feeding when one or both of these conditions are not met. Both the magnitude and duration of an off-gas surge have a major impact on the maximum TOC limit, since they directly affect the melter plenum temperature and combustion. Although the data obtained during recent DWPF melter startup tests showed that the peak magnitude of a surge can be greater than three times nominal, the observed duration was considerably shorter, on the order of several seconds. The long surge duration assumed in this study has a greater impact on the plenum temperature than the peak magnitude, thus making the maximum TOC estimate conservative. Two models were used to make the necessary calculations to determine the TOC limit

  13. ANTENNA RADIATION NEAR THE LOCAL PLASMA FREQUENCY BY LANGMUIR WAVE EIGENMODES

    International Nuclear Information System (INIS)

    Malaspina, David M.; Cairns, Iver H.; Ergun, Robert E.

    2012-01-01

    Langmuir waves (LWs) in the solar wind are generated by electron beams associated with solar flares, interplanetary shock fronts, planetary bow shocks, and magnetic holes. In principle, LWs localized as eigenmodes of density fluctuations can emit electromagnetic (EM) radiation by an antenna mechanism near the local plasma frequency f p and twice the local plasma frequency. In this work, analytic expressions are derived for the radiated electric and magnetic fields and power generated near f p by LW eigenmodes. The EM wave power emitted near f p is predicted as a function of the eigenmode length scale L, maximum electric field, driving electron beam speed, and the ambient plasma density and temperature. The escape to a distant observer of f p radiation from a localized Langmuir eigenmode is also briefly explored as a function of the plasma conditions.

  14. Parametric optimization of thermoelectric elements footprint for maximum power generation

    DEFF Research Database (Denmark)

    Rezania, A.; Rosendahl, Lasse; Yin, Hao

    2014-01-01

    The development studies in thermoelectric generator (TEG) systems are mostly disconnected to parametric optimization of the module components. In this study, optimum footprint ratio of n- and p-type thermoelectric (TE) elements is explored to achieve maximum power generation, maximum cost......-performance, and variation of efficiency in the uni-couple over a wide range of the heat transfer coefficient on the cold junction. The three-dimensional (3D) governing equations of the thermoelectricity and the heat transfer are solved using the finite element method (FEM) for temperature dependent properties of TE...... materials. The results, which are in good agreement with the previous computational studies, show that the maximum power generation and the maximum cost-performance in the module occur at An/Ap

  15. Maximum-Entropy Inference with a Programmable Annealer

    Science.gov (United States)

    Chancellor, Nicholas; Szoke, Szilard; Vinci, Walter; Aeppli, Gabriel; Warburton, Paul A.

    2016-03-01

    Optimisation problems typically involve finding the ground state (i.e. the minimum energy configuration) of a cost function with respect to many variables. If the variables are corrupted by noise then this maximises the likelihood that the solution is correct. The maximum entropy solution on the other hand takes the form of a Boltzmann distribution over the ground and excited states of the cost function to correct for noise. Here we use a programmable annealer for the information decoding problem which we simulate as a random Ising model in a field. We show experimentally that finite temperature maximum entropy decoding can give slightly better bit-error-rates than the maximum likelihood approach, confirming that useful information can be extracted from the excited states of the annealer. Furthermore we introduce a bit-by-bit analytical method which is agnostic to the specific application and use it to show that the annealer samples from a highly Boltzmann-like distribution. Machines of this kind are therefore candidates for use in a variety of machine learning applications which exploit maximum entropy inference, including language processing and image recognition.

  16. Localized Temperature Variations in Laser-Irradiated Composites with Embedded Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    R. Brian Jenkins

    2017-01-01

    Full Text Available Fiber Bragg grating (FBG temperature sensors are embedded in composites to detect localized temperature gradients resulting from high energy infrared laser radiation. The goal is to detect the presence of radiation on a composite structure as rapidly as possible and to identify its location, much the same way human skin senses heat. A secondary goal is to determine how a network of sensors can be optimized to detect thermal damage in laser-irradiated composite materials or structures. Initial tests are conducted on polymer matrix composites reinforced with either carbon or glass fiber with a single optical fiber embedded into each specimen. As many as three sensors in each optical fiber measure the temporal and spatial thermal response of the composite to high energy radiation incident on the surface. Additional tests use a 2 × 2 × 3 array of 12 sensors embedded in a carbon fiber/epoxy composite to simultaneously measure temperature variations at locations on the composite surface and through the thickness. Results indicate that FBGs can be used to rapidly detect temperature gradients in a composite and their location, even for a direct strike of laser radiation on a sensor, when high temperatures can cause a non-uniform thermal response and FBG decay.

  17. Localized Temperature Variations in Laser-Irradiated Composites with Embedded Fiber Bragg Grating Sensors.

    Science.gov (United States)

    Jenkins, R Brian; Joyce, Peter; Mechtel, Deborah

    2017-01-27

    Fiber Bragg grating (FBG) temperature sensors are embedded in composites to detect localized temperature gradients resulting from high energy infrared laser radiation. The goal is to detect the presence of radiation on a composite structure as rapidly as possible and to identify its location, much the same way human skin senses heat. A secondary goal is to determine how a network of sensors can be optimized to detect thermal damage in laser-irradiated composite materials or structures. Initial tests are conducted on polymer matrix composites reinforced with either carbon or glass fiber with a single optical fiber embedded into each specimen. As many as three sensors in each optical fiber measure the temporal and spatial thermal response of the composite to high energy radiation incident on the surface. Additional tests use a 2 × 2 × 3 array of 12 sensors embedded in a carbon fiber/epoxy composite to simultaneously measure temperature variations at locations on the composite surface and through the thickness. Results indicate that FBGs can be used to rapidly detect temperature gradients in a composite and their location, even for a direct strike of laser radiation on a sensor, when high temperatures can cause a non-uniform thermal response and FBG decay.

  18. Controls on seasonal patterns of maximum ecosystem carbon uptake and canopy-scale photosynthetic light response: contributions from both temperature and photoperiod.

    Science.gov (United States)

    Stoy, Paul C; Trowbridge, Amy M; Bauerle, William L

    2014-02-01

    Most models of photosynthetic activity assume that temperature is the dominant control over physiological processes. Recent studies have found, however, that photoperiod is a better descriptor than temperature of the seasonal variability of photosynthetic physiology at the leaf scale. Incorporating photoperiodic control into global models consequently improves their representation of the seasonality and magnitude of atmospheric CO2 concentration. The role of photoperiod versus that of temperature in controlling the seasonal variability of photosynthetic function at the canopy scale remains unexplored. We quantified the seasonal variability of ecosystem-level light response curves using nearly 400 site years of eddy covariance data from over eighty Free Fair-Use sites in the FLUXNET database. Model parameters describing maximum canopy CO2 uptake and the initial slope of the light response curve peaked after peak temperature in about 2/3 of site years examined, emphasizing the important role of temperature in controlling seasonal photosynthetic function. Akaike's Information Criterion analyses indicated that photoperiod should be included in models of seasonal parameter variability in over 90% of the site years investigated here, demonstrating that photoperiod also plays an important role in controlling seasonal photosynthetic function. We also performed a Granger causality analysis on both gross ecosystem productivity (GEP) and GEP normalized by photosynthetic photon flux density (GEP n ). While photoperiod Granger-caused GEP and GEP n in 99 and 92% of all site years, respectively, air temperature Granger-caused GEP in a mere 32% of site years but Granger-caused GEP n in 81% of all site years. Results demonstrate that incorporating photoperiod may be a logical step toward improving models of ecosystem carbon uptake, but not at the expense of including enzyme kinetic-based temperature constraints on canopy-scale photosynthesis.

  19. Localized Multi-Model Extremes Metrics for the Fourth National Climate Assessment

    Science.gov (United States)

    Thompson, T. R.; Kunkel, K.; Stevens, L. E.; Easterling, D. R.; Biard, J.; Sun, L.

    2017-12-01

    We have performed localized analysis of scenario-based datasets for the Fourth National Climate Assessment (NCA4). These datasets include CMIP5-based Localized Constructed Analogs (LOCA) downscaled simulations at daily temporal resolution and 1/16th-degree spatial resolution. Over 45 temperature and precipitation extremes metrics have been processed using LOCA data, including threshold, percentile, and degree-days calculations. The localized analysis calculates trends in the temperature and precipitation extremes metrics for relatively small regions such as counties, metropolitan areas, climate zones, administrative areas, or economic zones. For NCA4, we are currently addressing metropolitan areas as defined by U.S. Census Bureau Metropolitan Statistical Areas. Such localized analysis provides essential information for adaptation planning at scales relevant to local planning agencies and businesses. Nearly 30 such regions have been analyzed to date. Each locale is defined by a closed polygon that is used to extract LOCA-based extremes metrics specific to the area. For each metric, single-model data at each LOCA grid location are first averaged over several 30-year historical and future periods. Then, for each metric, the spatial average across the region is calculated using model weights based on both model independence and reproducibility of current climate conditions. The range of single-model results is also captured on the same localized basis, and then combined with the weighted ensemble average for each region and each metric. For example, Boston-area cooling degree days and maximum daily temperature is shown below for RCP8.5 (red) and RCP4.5 (blue) scenarios. We also discuss inter-regional comparison of these metrics, as well as their relevance to risk analysis for adaptation planning.

  20. A technique for estimating maximum harvesting effort in a stochastic ...

    Indian Academy of Sciences (India)

    Unknown

    Estimation of maximum harvesting effort has a great impact on the ... fluctuating environment has been developed in a two-species competitive system, which shows that under realistic .... The existence and local stability properties of the equi-.

  1. Nest temperature fluctuations in a cavity nester, the southern ground-hornbill.

    Science.gov (United States)

    Combrink, L; Combrink, H J; Botha, A J; Downs, C T

    2017-05-01

    Southern ground-hornbills Bucorvus leadbeateri inhabit savanna and bushveld regions of South Africa. They nest in the austral summer, which coincides with the wet season and hottest daytime temperatures in the region. They are secondary cavity nesters and typically nest in large cavities in trees, cliffs and earth banks, but readily use artificial nest boxes. Southern ground-hornbills are listed as Endangered in South Africa, with reintroductions into suitable areas highlighted as a viable conservation intervention for the species. Nest microclimate, and the possible implications this may have for the breeding biology of southern ground-hornbills, have never been investigated. We used temperature dataloggers to record nest cavity temperature and ambient temperature for one artificial and 11 natural southern ground-hornbill tree cavity nests combined, spanning two breeding seasons. Mean hourly nest temperature, as well as mean minimum and mean maximum nest temperature, differed significantly between southern ground-hornbill nests in both breeding seasons. Mean nest temperature also differed significantly from mean ambient temperature for both seasons. Natural nest cavities provided a buffer against the ambient temperature fluctuations. The artificial nest provided little insulation against temperature extremes, being warmer and cooler than the maximum and minimum local ambient temperatures, respectively. Nest cavity temperature was not found to have an influence on the breeding success of the southern ground-hornbill groups investigated in this study. These results have potentially important implications for southern ground-hornbill conservation and artificial nest design, as they suggest that the birds can tolerate greater nest cavity temperature extremes than previously thought. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Analysis of Knock Phenomenon Induced in a Constant Volume Chamber by Local Gas Temperature Measurement and Visualization

    Science.gov (United States)

    Moriyoshi, Yasuo; Kobayashi, Shigemi; Enomoto, Yoshiteru

    Knock phenomenon in SI engines is regarded as an auto-ignition of unburned end-gas, and it has been widely examined by using rapid compression machines (RCM), shock-tubes or test engines. Recent researches point out the importance of the low temperature chemical reaction and the negative temperature coefficient (NTC). To investigate the effects, analyses of instantaneous local gas temperature, flow visualization and gaseous pressure were conducted in this study. As measurements using real engines are too difficult to analyze, the authors aimed to make measurements using a constant volume vessel under knock conditions where propagating flame exists during the induction time of auto-ignition. Adopting the two-wire thermocouple method enabled us to measure the instantaneous local gas temperature until the moment when the flame front passes by. High-speed images inside the unburned region were also recorded simultaneously using an endoscope. As a result, it was found that when knock occurs, the auto-ignition initiation time seems slightly early compared to the results without knock. This causes a higher volume ratio of unburned mixture and existence of many hot spots and stochastically leads to an initiation of knock.

  3. Defect-induced local variation of crystal phase transition temperature in metal-halide perovskites.

    Science.gov (United States)

    Dobrovolsky, Alexander; Merdasa, Aboma; Unger, Eva L; Yartsev, Arkady; Scheblykin, Ivan G

    2017-06-26

    Solution-processed organometal halide perovskites are hybrid crystalline semiconductors highly interesting for low-cost and efficient optoelectronics. Their properties are dependent on the crystal structure. Literature shows a variety of crystal phase transition temperatures and often a spread of the transition over tens of degrees Kelvin. We explain this inconsistency by demonstrating that the temperature of the tetragonal-to-orthorhombic phase transition in methylammonium lead triiodide depends on the concentration and nature of local defects. Phase transition in individual nanowires was studied by photoluminescence microspectroscopy and super-resolution imaging. We propose that upon cooling from 160 to 140 K, domains of the crystal containing fewer defects stay in the tetragonal phase longer than highly defected domains that readily transform to the high bandgap orthorhombic phase at higher temperatures. The existence of relatively pure tetragonal domains during the phase transition leads to drastic photoluminescence enhancement, which is inhomogeneously distributed across perovskite microcrystals.Understanding crystal phase transition in materials is of fundamental importance. Using luminescence spectroscopy and super-resolution imaging, Dobrovolsky et al. study the transition from the tetragonal to orthorhombic crystal phase in methylammonium lead triiodide nanowires at low temperature.

  4. Conditions for maximum isolation of stable condensate during separation in gas-condensate systems

    Energy Technology Data Exchange (ETDEWEB)

    Trivus, N.A.; Belkina, N.A.

    1969-02-01

    A thermodynamic analysis is made of the gas-liquid separation process in order to determine the relationship between conditions of maximum stable condensate separation and physico-chemical nature and composition of condensate. The analysis was made by considering the multicomponent gas-condensate fluid produced from Zyrya field as a ternary system, composed of methane, an intermediate component (propane and butane) and a heavy residue, C/sub 6+/. Composition of 5 ternary systems was calculated for a wide variation in separator conditions. At each separator pressure there is maximum condensate production at a certain temperature. This occurs because solubility of condensate components changes with temperature. Results of all calculations are shown graphically. The graphs show conditions of maximum stable condensate separation.

  5. Sensitivity of extreme precipitation to temperature: the variability of scaling factors from a regional to local perspective

    Science.gov (United States)

    Schroeer, K.; Kirchengast, G.

    2018-06-01

    Potential increases in extreme rainfall induced hazards in a warming climate have motivated studies to link precipitation intensities to temperature. Increases exceeding the Clausius-Clapeyron (CC) rate of 6-7%/°C-1 are seen in short-duration, convective, high-percentile rainfall at mid latitudes, but the rates of change cease or revert at regionally variable threshold temperatures due to moisture limitations. It is unclear, however, what these findings mean in term of the actual risk of extreme precipitation on a regional to local scale. When conditioning precipitation intensities on local temperatures, key influences on the scaling relationship such as from the annual cycle and regional weather patterns need better understanding. Here we analyze these influences, using sub-hourly to daily precipitation data from a dense network of 189 stations in south-eastern Austria. We find that the temperature sensitivities in the mountainous western region are lower than in the eastern lowlands. This is due to the different weather patterns that cause extreme precipitation in these regions. Sub-hourly and hourly intensities intensify at super-CC and CC-rates, respectively, up to temperatures of about 17 °C. However, we also find that, because of the regional and seasonal variability of the precipitation intensities, a smaller scaling factor can imply a larger absolute change in intensity. Our insights underline that temperature precipitation scaling requires careful interpretation of the intent and setting of the study. When this is considered, conditional scaling factors can help to better understand which influences control the intensification of rainfall with temperature on a regional scale.

  6. Measurement of local void fraction at elevated temperature and pressure

    International Nuclear Information System (INIS)

    Duncan, D.; Trabold, T.A.

    1993-03-01

    Significant advances have recently been made in analytical and computational methods for the prediction of local thermal-hydraulic conditions in gas/liquid two-phase flows. There is, however, a need for extensive experimental data, for the dual purposes of constitutive relation development and code qualification. There is especially true of systems involving complicated geometries and/or extreme flow conditions for which little, if any, applicable information exists in the open literature. For the tests described in the present paper, a novel electrical probe has been applied to measure the void fraction in atmospheric pressure air/water flows, and steam/water mixtures at high temperature and pressure. The data acquired in the latter experiments are compared with the results of a one-dimensional two-fluid computational analysis

  7. Localization of the Hot Spot in the Gap of Pebble Bed of Very High Temperature Gas Cooled Reactor(VHTGR)

    International Nuclear Information System (INIS)

    Lee, Sa Ya; Hong, Sung Je; Lee, Jae Young

    2010-01-01

    Pebble Bed Reactor(PBR) has been investigated intensively due to its benefits in management, but its complicated flow geometry requests reliable analytical methods. Hassan and Lee et al. have been made three dimensional computational methods. Hassan also measured local velocity fields with Particle Tracking Velocimetry(PTV), in small sized packed bed using liquid coolant, and Lee et al. measured flow field in the 2-dimensional wind tunnel with a hot wire system. In the present study, we develop the scaled up wind tunnel of pebble bed to use air as coolant in the same Reynolds number condition, as 21614, of the PBMR-250MWth. In order to measure the local surface temperature, the heating system and temperature measurement system were installed and heat transfer analogy was performed. The local surface temperature data shows that the predicted hot spots by Lee et al. at the top and bottom of the pebble by the velocity field measurement are reasonable, but the heat conduction is prior than contact effect at contact points

  8. Development of an Urban High-Resolution Air Temperature Forecast System for Local Weather Information Services Based on Statistical Downscaling

    Directory of Open Access Journals (Sweden)

    Chaeyeon Yi

    2018-04-01

    Full Text Available The Korean peninsula has complex and diverse weather phenomena, and the Korea Meteorological Administration has been working on various numerical models to produce better forecasting data. The Unified Model Local Data Assimilation and Prediction System is a limited-area working model with a horizontal resolution of 1.5 km for estimating local-scale weather forecasts on the Korean peninsula. However, in order to numerically predict the detailed temperature characteristics of the urban space, in which surface characteristics change rapidly in a small spatial area, a city temperature prediction model with higher resolution spatial decomposition capabilities is required. As an alternative to this, a building-scale temperature model was developed, and a 25 m air temperature resolution was determined for the Seoul area. The spatial information was processed using statistical methods, such as linear regression models and machine learning. By comparing the accuracy of the estimated air temperatures with observational data during the summer, the machine learning was improved. In addition, horizontal and vertical characteristics of the urban space were better represented, and the air temperature was better resolved spatially. Air temperature information can be used to manage the response to heat-waves and tropical nights in administrative districts of urban areas.

  9. Improving Estimations of Spatial Distribution of Soil Respiration Using the Bayesian Maximum Entropy Algorithm and Soil Temperature as Auxiliary Data.

    Directory of Open Access Journals (Sweden)

    Junguo Hu

    Full Text Available Soil respiration inherently shows strong spatial variability. It is difficult to obtain an accurate characterization of soil respiration with an insufficient number of monitoring points. However, it is expensive and cumbersome to deploy many sensors. To solve this problem, we proposed employing the Bayesian Maximum Entropy (BME algorithm, using soil temperature as auxiliary information, to study the spatial distribution of soil respiration. The BME algorithm used the soft data (auxiliary information effectively to improve the estimation accuracy of the spatiotemporal distribution of soil respiration. Based on the functional relationship between soil temperature and soil respiration, the BME algorithm satisfactorily integrated soil temperature data into said spatial distribution. As a means of comparison, we also applied the Ordinary Kriging (OK and Co-Kriging (Co-OK methods. The results indicated that the root mean squared errors (RMSEs and absolute values of bias for both Day 1 and Day 2 were the lowest for the BME method, thus demonstrating its higher estimation accuracy. Further, we compared the performance of the BME algorithm coupled with auxiliary information, namely soil temperature data, and the OK method without auxiliary information in the same study area for 9, 21, and 37 sampled points. The results showed that the RMSEs for the BME algorithm (0.972 and 1.193 were less than those for the OK method (1.146 and 1.539 when the number of sampled points was 9 and 37, respectively. This indicates that the former method using auxiliary information could reduce the required number of sampling points for studying spatial distribution of soil respiration. Thus, the BME algorithm, coupled with soil temperature data, can not only improve the accuracy of soil respiration spatial interpolation but can also reduce the number of sampling points.

  10. Improving Estimations of Spatial Distribution of Soil Respiration Using the Bayesian Maximum Entropy Algorithm and Soil Temperature as Auxiliary Data.

    Science.gov (United States)

    Hu, Junguo; Zhou, Jian; Zhou, Guomo; Luo, Yiqi; Xu, Xiaojun; Li, Pingheng; Liang, Junyi

    2016-01-01

    Soil respiration inherently shows strong spatial variability. It is difficult to obtain an accurate characterization of soil respiration with an insufficient number of monitoring points. However, it is expensive and cumbersome to deploy many sensors. To solve this problem, we proposed employing the Bayesian Maximum Entropy (BME) algorithm, using soil temperature as auxiliary information, to study the spatial distribution of soil respiration. The BME algorithm used the soft data (auxiliary information) effectively to improve the estimation accuracy of the spatiotemporal distribution of soil respiration. Based on the functional relationship between soil temperature and soil respiration, the BME algorithm satisfactorily integrated soil temperature data into said spatial distribution. As a means of comparison, we also applied the Ordinary Kriging (OK) and Co-Kriging (Co-OK) methods. The results indicated that the root mean squared errors (RMSEs) and absolute values of bias for both Day 1 and Day 2 were the lowest for the BME method, thus demonstrating its higher estimation accuracy. Further, we compared the performance of the BME algorithm coupled with auxiliary information, namely soil temperature data, and the OK method without auxiliary information in the same study area for 9, 21, and 37 sampled points. The results showed that the RMSEs for the BME algorithm (0.972 and 1.193) were less than those for the OK method (1.146 and 1.539) when the number of sampled points was 9 and 37, respectively. This indicates that the former method using auxiliary information could reduce the required number of sampling points for studying spatial distribution of soil respiration. Thus, the BME algorithm, coupled with soil temperature data, can not only improve the accuracy of soil respiration spatial interpolation but can also reduce the number of sampling points.

  11. Impact of local adaptation measures and regional climate change on perceived temperature

    Energy Technology Data Exchange (ETDEWEB)

    Schoetter, Robert; Grawe, David; Hoffmann, Peter; Kirschner, Peter; Heinke Schluenzen, K. [Hamburg Univ. (Germany). Meteorological Inst.; Graetz, Angelika [Deutscher Wetterdienst, Freiburg (Germany). Zentrum fuer Medizin-Meteorologische Forschung

    2013-04-15

    The perceived temperature (PT) is a measure for the quantification of human thermal comfort developed by the German Meteorological Service (DWD). In the present article, the sensitivity of PT on air temperature, water vapour pressure, wind speed, mean radiant temperature, street canyon width, and building heights is investigated. The mesoscale atmospheric model METRAS is integrated for a domain covering the city of Hamburg at 250 m horizontal resolution to calculate the meteorological input data for PT. The sensitivities of PT are determined by automatic differentiation of the basic DWD program. The sensitivities show how local adaptation measures and regional climate change can influence PT. The sensitivities also allow to estimate how accurate different input variables need to be known in order to achieve a desired accuracy in PT. The results are discussed in detail for 10 June 2007, a cloudless day with advection of warm air masses from south-east. A comparison with results obtained for different synoptic situations during summer is made. The sensitivities of PT on air temperature, water vapour pressure and mean radiant temperature are higher during warm and humid conditions than in situations with thermal comfort. The sensitivity of PT on wind speed is highest for low wind speeds. Around noon, increasing the building heights by 5 m can reduce PT up to 2.4 K due to shading effects in street canyons with aspect ratios above 0.5. After sunset, increasing the building heights by 5 m tends to moderately increase PT due to increased longwave radiation. (orig.)

  12. Parametric performance of circumferentially grooved heat pipes with homogeneous and graded-porosity slab wicks at cryogenic temperatures. [methane and ethane working fluids

    Science.gov (United States)

    Groll, M.; Pittman, R. B.; Eninger, J. E.

    1976-01-01

    A recently developed, potentially high-performance nonarterial wick was extensively tested. This slab wick has an axially varying porosity which can be tailored to match the local stress imposed on the wick. The purpose of the tests was to establish the usefulness of the graded-porosity slab wick at cryogenic temperatures between 110 and 260 K, with methane and ethane as working fluids. For comparison, a homogeneous (i.e., uniform porosity) slab wick was also tested. The tests included: maximum heat pipe performance as a function of fluid inventory, maximum performance as a function of operating temperature, maximum performance as a function of evaporator elevation, and influence of slab wick orientation on performance. The experimental data were compared with theoretical predictions obtained with the GRADE computer program.

  13. Electric-field-induced local structural phenomena in relaxor ferroelectric PbSc0.5Nb0.5O3 near the intermediate temperature T* studied by Raman spectroscopy

    International Nuclear Information System (INIS)

    Steilmann, T; Maier, B J; Bismayer, U; Mihailova, B; Gospodinov, M

    2014-01-01

    Raman spectroscopy at different temperatures and under an external electric field E was applied to PbSc 0.5 Nb 0.5 O 3 single crystals in order to gain further insights into the mesoscopic-scale coupling processes in perovskite-type (ABO 3 ) relaxor ferroelectrics. Parallel and cross-polarized Raman spectra were collected between 800–80 K with E applied along the cubic [1 0 0], [1 1 0] or [1 1 1] crystallographic directions. The analysis was focused on the field-induced changes in the temperature evolution of three low-energy phonon modes: the Pb-localized mode near 50 cm −1 , the Pb-BO 3 translation mode near 150 cm −1 , and the B-cation-localized mode near 250 cm −1 . The results show that competitive ferroelectric (FE) and antiferroelectric (AFE) coupling exists within the system of off-centred Pb 2+ cations, within the system of off-centred B-site cations as well as between off-centred Pb 2+ and B-site cations. The strong AFE-type coupling between Pb 2+ cations along the cubic body diagonal significantly influences the coupling between the B-site cations via the Pb-BO 3 mode and results in AFE-type behaviour of the ‘microscopic’ T* determined from the B-cation-localized mode near 250 cm −1 , which explains the previously reported non-trivial field dependence of the ‘macroscopic’ characteristic temperatures: the temperature of the dielectric-permittivity maximum T m , T*, and the Burns temperature T B . The comparative analysis between PbSc 0.5 Nb 0.5 O 3 and PbSc 0.5 Ta 0.5 O 3 indicates that two major displacive order parameters couple to form a relaxor state in B-site complex perovskites: the FE order associated with polar shifts of B-site cations and the AFE order associated with polar shifts of A-site cations. The latter penetrates through both polar and non-polar regions, but it is highly frustrated due to the high density of translation-symmetry faults in the chemical NaCl-type B-site order. The frustrated AFE order

  14. Influence of disorder on the superconducting critical temperature in indium-opal nanocomposites

    Science.gov (United States)

    Zakharchuk, I.; Januzaj, A.; Mikhailin, N. Yu.; Traito, K. B.; Chernyaev, A. V.; Romanov, S. G.; Safonchik, M.; Shamshur, D. V.; Lähderanta, E.

    2018-06-01

    Transport properties of bulk indium-opal and indium-porous glass superconducting nanocomposites possessing moderate and strong disorder are investigated. A strongly nonmonotonous dependence of the global critical temperature Tc versus normal state conductivity of samples is found. The maximum, which is observed at moderate disorder, has Tc higher than that of clean bulk indium. The increasing part can be explained by the Eliashberg equations with disorder and an additional mechanism of interaction between superconducting and dielectric granules. The descending part of the maximum at higher disorder can be explained by the increasing of long-range Coulomb repulsion due to diffusion of charges. Negative slope in magnetic field dependence of resistivity and a peak in the temperature dependence of resistivity, observed in the sample near the proximity to the disorder-induced superconductor-insulator transition (SIT). A large difference between the onset temperature of superconducting fluctuations, Tcon , and global critical temperature Tc is found and considered in the framework of the weak multifractal theory. Slow time-logarithmic relaxation of the resistivity between Tc and Tcon is observed, which assumes existence of the precursor state near the SIT. This unusual state is discussed in the scope of the many-body localization theory.

  15. Temperature dependence of the partially localized state in a 2D molecular nanoporous network

    Energy Technology Data Exchange (ETDEWEB)

    Piquero-Zulaica, Ignacio, E-mail: ipiquerozulaica@gmail.com [Centro de Física de Materiales (CSIC/UPV-EHU)—Materials Physics Center, Manuel Lardizabal 5, 20018 San Sebastián (Spain); Nowakowska, Sylwia [Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland); Ortega, J. Enrique [Centro de Física de Materiales (CSIC/UPV-EHU)—Materials Physics Center, Manuel Lardizabal 5, 20018 San Sebastián (Spain); Donostia International Physics Center (DIPC), Manuel Lardizabal 4, 20018 San Sebastián (Spain); Departamento Física Aplicada I, Universidad del País Vasco, 20018 San Sebastián (Spain); Stöhr, Meike [Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Gade, Lutz H. [Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg (Germany); Jung, Thomas A. [Laboratory for Micro- and Nanotechnology, Paul Scherrer Institute, 5232 Villigen (Switzerland); Lobo-Checa, Jorge, E-mail: jorge.lobo@csic.es [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, E-50009 Zaragoza (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain)

    2017-01-01

    Highlights: • A state of a 2D porous network is demonstrated to originate from the Shockley state. • The temperature evolution of both states is followed by means of ARPES. • Identical energy shifts are observed for both states, proving their common origin. - Abstract: Two-dimensional organic and metal-organic nanoporous networks can scatter surface electrons, leading to their partial localization. Such quantum states are related to intrinsic surface states of the substrate material. We further corroborate this relation by studying the thermally induced energy shifts of the electronic band stemming from coupled quantum states hosted in a metal-organic array formed by a perylene derivative on Cu(111). We observe by angle-resolved photoemission spectroscopy (ARPES), that both, the Shockley and the partially localized states, shift by the same amount to higher binding energies upon decreasing the sample temperature, providing evidence of their common origin. Our experimental approach and results further support the use of surface states for modelling these systems, which are expected to provide new insight into the physics concerning partially confined electronic states: scattering processes, potential barrier strengths, excited state lifetimes or the influence of guest molecules.

  16. Anomalous van der Waals-Casimir interactions on graphene: A concerted effect of temperature, retardation, and non-locality

    Science.gov (United States)

    Ambrosetti, Alberto; Silvestrelli, Pier Luigi

    2018-04-01

    Dispersion forces play a major role in graphene, largely influencing adhesion of adsorbate moieties and stabilization of functional multilayered structures. However, the reliable prediction of dispersion interactions on graphene up to the relevant ˜10 nm scale is an extremely challenging task: in fact, electromagnetic retardation effects and the highly non-local character of π electrons can imply sizeable qualitative variations of the interaction with respect to known pairwise approaches. Here we address both issues, determining the finite-temperature van der Waals (vdW)-Casimir interaction for point-like and extended adsorbates on graphene, explicitly accounting for the non-local dielectric permittivity. We find that temperature, retardation, and non-locality play a crucial role in determining the actual vdW scaling laws and the stability of both atomic and larger molecular adsorbates. Our results highlight the importance of these effects for a proper description of systems of current high interest, such as graphene interacting with biomolecules, and self-assembly of complex nanoscale structures. Due to the generality of our approach and the observed non-locality of other 2D materials, our results suggest non-trivial vdW interactions from hexagonal mono-layered materials from group 14 of the periodic table, to transition metal dichalcogenides.

  17. A local search heuristic for the Multi-Commodity k-splittable Maximum Flow Problem

    DEFF Research Database (Denmark)

    Gamst, Mette

    2014-01-01

    , a local search heuristic for solving the problem is proposed. The heuristic is an iterative shortest path procedure on a reduced graph combined with a local search procedure to modify certain path flows and prioritize the different commodities. The heuristic is tested on benchmark instances from...

  18. Novel methods for estimating lithium-ion battery state of energy and maximum available energy

    International Nuclear Information System (INIS)

    Zheng, Linfeng; Zhu, Jianguo; Wang, Guoxiu; He, Tingting; Wei, Yiying

    2016-01-01

    Highlights: • Study on temperature, current, aging dependencies of maximum available energy. • Study on the various factors dependencies of relationships between SOE and SOC. • A quantitative relationship between SOE and SOC is proposed for SOE estimation. • Estimate maximum available energy by means of moving-window energy-integral. • The robustness and feasibility of the proposed approaches are systematic evaluated. - Abstract: The battery state of energy (SOE) allows a direct determination of the ratio between the remaining and maximum available energy of a battery, which is critical for energy optimization and management in energy storage systems. In this paper, the ambient temperature, battery discharge/charge current rate and cell aging level dependencies of battery maximum available energy and SOE are comprehensively analyzed. An explicit quantitative relationship between SOE and state of charge (SOC) for LiMn_2O_4 battery cells is proposed for SOE estimation, and a moving-window energy-integral technique is incorporated to estimate battery maximum available energy. Experimental results show that the proposed approaches can estimate battery maximum available energy and SOE with high precision. The robustness of the proposed approaches against various operation conditions and cell aging levels is systematically evaluated.

  19. Comparison of fuzzy logic and neural network in maximum power point tracker for PV systems

    Energy Technology Data Exchange (ETDEWEB)

    Ben Salah, Chokri; Ouali, Mohamed [Research Unit on Intelligent Control, Optimization, Design and Optimization of Complex Systems (ICOS), Department of Electrical Engineering, National School of Engineers of Sfax, BP. W, 3038, Sfax (Tunisia)

    2011-01-15

    This paper proposes two methods of maximum power point tracking using a fuzzy logic and a neural network controllers for photovoltaic systems. The two maximum power point tracking controllers receive solar radiation and photovoltaic cell temperature as inputs, and estimated the optimum duty cycle corresponding to maximum power as output. The approach is validated on a 100 Wp PVP (two parallels SM50-H panel) connected to a 24 V dc load. The new method gives a good maximum power operation of any photovoltaic array under different conditions such as changing solar radiation and PV cell temperature. From the simulation and experimental results, the fuzzy logic controller can deliver more power than the neural network controller and can give more power than other different methods in literature. (author)

  20. Temperature of the Icelandic crust: Inferred from electrical conductivity, temperature surface gradient, and maximum depth of earthquakes

    Science.gov (United States)

    Björnsson, Axel

    2008-02-01

    Two different models of the structure of the Icelandic crust have been presented. One is the thin-crust model with a 10-15 km thick crust beneath the axial rift zones, with an intermediate layer of partially molten basalt at the base of the crust and on the top of an up-domed asthenosphere. The thick-crust model assumes a 40 km thick and relatively cold crust beneath central Iceland. The most important and crucial parameter to distinguish between these different models is the temperature distribution with depth. Three methods are used to estimate the temperature distribution with depth. First, the surface temperature gradient measured in shallow wells drilled outside geothermal areas. Second, the thickness of the seismogenic zone which is associated with a 750 °C isothermal surface. Third, the depth to a layer with high electrical conductivity which is associated with partially molten basalt with temperature around 1100 °C at the base of the crust. Combination of these data shows that the temperature gradient can be assumed to be nearly linear from the surface down to the base of the crust. These results are strongly in favour of the thin-crust model. The scattered deep seismic reflectors interpreted as Moho in the thick-crust model could be caused by phase transitions or reflections from melt pockets in the mantle.

  1. Surface temperature and evapotranspiration: application of local scale methods to regional scales using satellite data

    International Nuclear Information System (INIS)

    Seguin, B.; Courault, D.; Guerif, M.

    1994-01-01

    Remotely sensed surface temperatures have proven useful for monitoring evapotranspiration (ET) rates and crop water use because of their direct relationship with sensible and latent energy exchange processes. Procedures for using the thermal infrared (IR) obtained with hand-held radiometers deployed at ground level are now well established and even routine for many agricultural research and management purposes. The availability of IR from meteorological satellites at scales from 1 km (NOAA-AVHRR) to 5 km (METEOSAT) permits extension of local, ground-based approaches to larger scale crop monitoring programs. Regional observations of surface minus air temperature (i.e., the stress degree day) and remote estimates of daily ET were derived from satellite data over sites in France, the Sahel, and North Africa and summarized here. Results confirm that similar approaches can be applied at local and regional scales despite differences in pixel size and heterogeneity. This article analyzes methods for obtaining these data and outlines the potential utility of satellite data for operational use at the regional scale. (author)

  2. Study of forecasting maximum demand of electric power

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, B.C.; Hwang, Y.J. [Korea Energy Economics Institute, Euiwang (Korea, Republic of)

    1997-08-01

    As far as the past performances of power supply and demand in Korea is concerned, one of the striking phenomena is that there have been repeated periodic surpluses and shortages of power generation facilities. Precise assumption and prediction of power demands is the basic work in establishing a supply plan and carrying out the right policy since facilities investment of the power generation industry requires a tremendous amount of capital and a long construction period. The purpose of this study is to study a model for the inference and prediction of a more precise maximum demand under these backgrounds. The non-parametric model considered in this study, paying attention to meteorological factors such as temperature and humidity, does not have a simple proportionate relationship with the maximum power demand, but affects it through mutual complicated nonlinear interaction. I used the non-parametric inference technique by introducing meteorological effects without importing any literal assumption on the interaction of temperature and humidity preliminarily. According to the analysis result, it is found that the non-parametric model that introduces the number of tropical nights which shows the continuity of the meteorological effect has better prediction power than the linear model. The non- parametric model that considers both the number of tropical nights and the number of cooling days at the same time is a model for predicting maximum demand. 7 refs., 6 figs., 9 tabs.

  3. Probing the local, electronic and magnetic structure of matter under extreme conditions of temperature and pressure

    DEFF Research Database (Denmark)

    Torchio, R.; Boccato, S.; Cerantola, V.

    2016-01-01

    In this paper we present recent achievements in the field of investigation of the local, electronic and magnetic structure of the matter under extreme conditions of pressure and temperature. These results were obtained thanks to the coupling of a compact laser heating system to the energy-dispersive...

  4. Temperature Dependence of Emission Properties of Self-Assembled InGaN Quantum Dots

    International Nuclear Information System (INIS)

    Zhao Wan-Ru; Zhang Jiang-Yong; Zhang Bao-Ping; Weng Guo-En; Liang Ming-Ming; Li Zeng-Cheng; Liu Jian-Ping

    2014-01-01

    Emission properties of self-assembled green-emitting InGaN quantum dots (QDs) grown on sapphire substrates by using metal organic chemical vapor deposition are studied by temperature-dependent photoluminescence (PL) measurements. As temperature increases (15–300 K), the PL peak energy shows an anomalous V-shaped (redshift—blueshift) variation instead of an S-shaped (redshift—blueshift—redshift) variation, as observed typically in green-emitting InGaN/GaN multi-quantum wells (MQWs). The PL full width at half maximum (FWHM) also shows a V-shaped (decrease—increase) variation. The temperature dependence of the PL peak energy and FWHM of QDs are well explained by a model similar to MQWs, in which carriers transferring in localized states play an important role, while the confinement energy of localized states in the QDs is significantly larger than that in MQWs. By analyzing the integrated PL intensity, the larger confinement energy of localized states in the QDs is estimated to be 105.9 meV, which is well explained by taking into account the band-gap shrinkage and carrier thermalization with temperature. It is also found that the nonradiative combination centers in QD samples are much less than those in QW samples with the same In content

  5. Temperature dependence of magnetoresistance in lanthanum manganite ceramics

    International Nuclear Information System (INIS)

    Gubkin, M.K.; Zalesskii, A.V.; Perekalina, T.M.

    1996-01-01

    Magnetoresistivity in the La0.9Na0.1Mn0.9(V,Co)0.1O3 and LaMnO3+δ ceramics was studied. The temperature dependence of magnetoresistance in these specimens was found to differ qualitatively from that in the La0.9Na0.1MnO3 single crystal (the magnetoresistance value remains rather high throughout the measurement range below the Curie temperature), with the maximum values being about the same (20-40% in the field of 20 kOe). Previously published data on magnetization, high frequency magnetic susceptibility, and local fields at the 139La nuclei of the specimens with similar properties attest to their magnetic inhomogeneity. The computation of the conductivity of the nonuniformly ordered lanthanum manganite was performed according to the mean field theory. The calculation results allow one to interpret qualitatively various types of experimental temperature dependences of magnetoresistance

  6. Natural convection in square enclosure induced by inner circular cylinder with time-periodic pulsating temperature

    KAUST Repository

    Huang, Zhu

    2015-03-01

    The periodic unsteady natural convection flow and heat transfer in a square enclosure containing a concentric circular cylinder is numerically studied. The temperature of the inner circular cylinder fluctuates periodically with time at higher averaged value while the temperature of the enclosure keeps lower constant, and the natural convection is driven by the temperature difference. The two-dimensional natural convection is simulated with high accuracy temporal spectral method and local radial basis functions method. The Rayleigh number is studied in the range 103 ≤ Ra ≤ 106, the temperature pulsating period ranges from 0.01 to 100 and the temperature pulsating amplitudes are a = 0.5, 1.0 and 1.5. Numerical results reveal that the fluid flow and heat transfer is strongly dependent on the pulsating temperature of inner cylinder. Comparing with the steady state natural convection, the heat transfer is enhanced generally for the time-periodic unsteady natural convection, and the local maximum heat transfer rate is observed for Ra = 105 and 106. Moreover, the phenomenon of backward heat transfer is discussed quantitatively. Also, the influence of pulsating temperature on the unsteady fluid flow and heat transfer are discussed and analyzed.

  7. Detection of the relationship between peak temperature and extreme precipitation

    Science.gov (United States)

    Yu, Y.; Liu, J.; Zhiyong, Y.

    2017-12-01

    Under the background of climate change and human activities, the characteristics and pattern of precipitation have changed significantly in many regions. As the political and cultural center of China, the structure and character of precipitation in Jingjinji District has varied dramatically in recent years. In this paper, the daily precipitation data throughout the period 1960-2013 are selected for analyzing the spatial-temporal variability of precipitation. The results indicate that the frequency and intensity of precipitation presents an increasing trend. Based on the precipitation data, the maximum, minimum and mean precipitation in different temporal and spatial scales is calculated respectively. The temporal and spatial variation of temperature is obtained by using statistical methods. The relationship between temperature and precipitation in different range is analyzed. The curve relates daily precipitation extremes with local temperatures has a peak structure, increasing at the low-medium range of temperature variations but decreasing at high temperatures. The relationship between extreme precipitation is stronger in downtown than that in suburbs.

  8. Towards a frequency-dependent discrete maximum principle for the implicit Monte Carlo equations

    Energy Technology Data Exchange (ETDEWEB)

    Wollaber, Allan B [Los Alamos National Laboratory; Larsen, Edward W [Los Alamos National Laboratory; Densmore, Jeffery D [Los Alamos National Laboratory

    2010-12-15

    It has long been known that temperature solutions of the Implicit Monte Carlo (IMC) equations can exceed the external boundary temperatures, a so-called violation of the 'maximum principle.' Previous attempts at prescribing a maximum value of the time-step size {Delta}{sub t} that is sufficient to eliminate these violations have recommended a {Delta}{sub t} that is typically too small to be used in practice and that appeared to be much too conservative when compared to numerical solutions of the IMC equations for practical problems. In this paper, we derive a new estimator for the maximum time-step size that includes the spatial-grid size {Delta}{sub x}. This explicitly demonstrates that the effect of coarsening {Delta}{sub x} is to reduce the limitation on {Delta}{sub t}, which helps explain the overly conservative nature of the earlier, grid-independent results. We demonstrate that our new time-step restriction is a much more accurate means of predicting violations of the maximum principle. We discuss how the implications of the new, grid-dependent timestep restriction can impact IMC solution algorithms.

  9. Towards a frequency-dependent discrete maximum principle for the implicit Monte Carlo equations

    International Nuclear Information System (INIS)

    Wollaber, Allan B.; Larsen, Edward W.; Densmore, Jeffery D.

    2011-01-01

    It has long been known that temperature solutions of the Implicit Monte Carlo (IMC) equations can exceed the external boundary temperatures, a so-called violation of the 'maximum principle'. Previous attempts at prescribing a maximum value of the time-step size Δ t that is sufficient to eliminate these violations have recommended a Δ t that is typically too small to be used in practice and that appeared to be much too conservative when compared to numerical solutions of the IMC equations for practical problems. In this paper, we derive a new estimator for the maximum time-step size that includes the spatial-grid size Δ x . This explicitly demonstrates that the effect of coarsening Δ x is to reduce the limitation on Δ t , which helps explain the overly conservative nature of the earlier, grid-independent results. We demonstrate that our new time-step restriction is a much more accurate means of predicting violations of the maximum principle. We discuss how the implications of the new, grid-dependent time-step restriction can impact IMC solution algorithms. (author)

  10. An iterative procedure for obtaining maximum-likelihood estimates of the parameters for a mixture of normal distributions, Addendum

    Science.gov (United States)

    Peters, B. C., Jr.; Walker, H. F.

    1975-01-01

    New results and insights concerning a previously published iterative procedure for obtaining maximum-likelihood estimates of the parameters for a mixture of normal distributions were discussed. It was shown that the procedure converges locally to the consistent maximum likelihood estimate as long as a specified parameter is bounded between two limits. Bound values were given to yield optimal local convergence.

  11. Relationships between water temperatures and upstream migration, cold water refuge use, and spawning of adult bull trout from the Lostine River, Oregon, USA

    Science.gov (United States)

    Howell, P.J.; Dunham, J.B.; Sankovich, P.M.

    2010-01-01

    Understanding thermal habitat use by migratory fish has been limited by difficulties in matching fish locations with water temperatures. To describe spatial and temporal patterns of thermal habitat use by migratory adult bull trout, Salvelinus confluentus, that spawn in the Lostine River, Oregon, we employed a combination of archival temperature tags, radio tags, and thermographs. We also compared temperatures of the tagged fish to ambient water temperatures to determine if the fish were using thermal refuges. The timing and temperatures at which fish moved upstream from overwintering areas to spawning locations varied considerably among individuals. The annual maximum 7-day average daily maximum (7DADM) temperatures of tagged fish were 16-18 ??C and potentially as high as 21 ??C. Maximum 7DADM ambient water temperatures within the range of tagged fish during summer were 18-25 ??C. However, there was no evidence of the tagged fish using localized cold water refuges. Tagged fish appeared to spawn at 7DADM temperatures of 7-14 ??C. Maximum 7DADM temperatures of tagged fish and ambient temperatures at the onset of the spawning period in late August were 11-18 ??C. Water temperatures in most of the upper Lostine River used for spawning and rearing appear to be largely natural since there has been little development, whereas downstream reaches used by migratory bull trout are heavily diverted for irrigation. Although the population effects of these temperatures are unknown, summer temperatures and the higher temperatures observed for spawning fish appear to be at or above the upper range of suitability reported for the species. Published 2009. This article is a US Governmentwork and is in the public domain in the USA.

  12. From Space to the Rocky Intertidal: Using NASA MODIS Sea Surface Temperature and NOAA Water Temperature to Predict Intertidal Logger Temperature

    Directory of Open Access Journals (Sweden)

    Jessica R. P. Sutton

    2017-02-01

    Full Text Available The development of satellite-derived datasets has greatly facilitated large-scale ecological studies, as in situ observations are spatially sparse and expensive undertakings. We tested the efficacy of using satellite sea surface temperature (SST collected by NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS and local water temperature collected from NOAA buoys and onshore stations to estimate submerged intertidal mussel logger temperatures. Daily SST and local water temperatures were compared to mussel logger temperatures at five study sites located along the Oregon coastline. We found that satellite-derived SSTs and local water temperatures were similarly correlated to the submerged mussel logger temperatures. This finding suggests that satellite-derived SSTs may be used in conjunction with local water temperatures to understand the temporal and spatial variation of mussel logger temperatures. While there are limitations to using satellite-derived temperature for ecological studies, including issues with temporal and spatial resolution, our results are promising.

  13. Partial local thermal equilibrium in a low-temperature hydrogen plasma

    International Nuclear Information System (INIS)

    Hey, J.D.; Chu, C.C.; Rash, J.P.S.

    1999-01-01

    If the degree of ionisation is sufficient, competition between de-excitation by electron collisions and radiative decay determines the smallest principal quantum number (the so-called 'thermal limit') above which partial local thermodynamic equilibrium (PLTE) holds under the particular conditions of electron density and temperature. The LTE (PLTE) criteria of Wilson (JQSRT 1962;2:477-90), Griem (Phys Rev 1963;131:1170-6; Plasma Spectroscopy. New York: McGraw-Hill, 1964), Drawin (Z Physik 1969;228: 99-119), Hey (JQSRT 1976;16:69-75), and Fujimoto and McWhirter (Phys Rev A 1990;42:6588-601) are examined as regards their applicability to neutral atoms. For these purposes, we consider for simplicity an idealised, steady-state, homogeneous and primarily optically thin plasma, with some additional comments and numerical estimates on the roles of opacity and of atom-atom collisions. Particularly for atomic states of lower principal quantum number, the first two of the above criteria should be modified quite appreciably before application to neutral radiators in plasmas of low temperature, because of the profoundly different nature of the near-threshold collisional cross-sections for atoms and ions, while the most recent criterion should be applied with caution to PLTE of atoms in cold plasmas in ionisation balance. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. Impact of local symmetry breaking on the physical properties of tetrahedral liquids.

    Science.gov (United States)

    Shi, Rui; Tanaka, Hajime

    2018-02-27

    Water and silica are the most important materials with local tetrahedral symmetry. They have similar crystalline polymorphs and exhibit anomalous density maximum in the liquid state. However, water and silica also show very different characteristics. For instance, the density of water varies much more sharply than that of liquid silica near the maximum as temperature changes. More notably, silica is a very good glass-former, but water is an extremely poor one. The physical origins of these similarities and differences still remain elusive, due to the lack of a microscopic understanding of the structural ordering in these two important liquids. Here, by accessing microscopic structural information by computer simulations, we reveal that local translational symmetry breaking is responsible for the density anomalies. On the other hand, the difference in the degree of local orientational symmetry breaking between water and silica, which originates from the difference in their bonding nature, causes not only the difference in the sharpness of density anomalies, but also their distinct glass-forming abilities. Our work not only shows the crucial roles of local translational and orientational symmetry breaking in the physical properties of the two extremely important materials, water and silica, but also provides a unified scenario applicable for other tetrahedral liquids such as Si, Ge, C, BeF 2 , and GeO 2 .

  15. Maximum thermal energy density in magnetically confined plasmas

    International Nuclear Information System (INIS)

    Coppi, B.

    1977-01-01

    The consequences of the limiting value of β that follows from analyzing the onset of high temperature ballooning modes is examined in high temperature regimes where the ideal MHD approximation is not strictly valid and for finite-β configurations exhibiting the main features of those that are obtained by magnetic flux conservation. These modes are localized over periodically space intervals of a given magnetic field line and are driven by the combined effects of finite plasma pressure and the locally unfavorable magnetic curvature. The effects of finite β, insofar as they shorten the effective connection length, steepen the pressure gradient, and influence the magnetic well dug by the plasma, are studied using a model dispersion relation. 14 references

  16. Calculation of Local Stress and Fatigue Resistance due to Thermal Stratification on Pressurized Surge Line Pipe

    Science.gov (United States)

    Bandriyana, B.; Utaja

    2010-06-01

    Thermal stratification introduces thermal shock effect which results in local stress and fatique problems that must be considered in the design of nuclear power plant components. Local stress and fatique calculation were performed on the Pressurize Surge Line piping system of the Pressurize Water Reactor of the Nuclear Power Plant. Analysis was done on the operating temperature between 177 to 343° C and the operating pressure of 16 MPa (160 Bar). The stagnant and transient condition with two kinds of stratification model has been evaluated by the two dimensional finite elements method using the ANSYS program. Evaluation of fatigue resistance is developed based on the maximum local stress using the ASME standard Code formula. Maximum stress of 427 MPa occurred at the upper side of the top half of hot fluid pipe stratification model in the transient case condition. The evaluation of the fatigue resistance is performed on 500 operating cycles in the life time of 40 years and giving the usage value of 0,64 which met to the design requirement for class 1 of nuclear component. The out surge transient were the most significant case in the localized effects due to thermal stratification.

  17. Multi-temperature mixture of fluids

    Directory of Open Access Journals (Sweden)

    Ruggeri Tommaso

    2009-01-01

    Full Text Available We present a survey on some recent results concerning the different models of a mixture of compressible fluids. In particular we discuss the most realistic case of a mixture when each constituent has its own temperature (MT and we first compare the solutions of this model with the one with a unique common temperature (ST . In the case of Eulerian fluids it will be shown that the corresponding (ST differential system is a principal subsystem of the (MT one. Global behavior of smooth solutions for large time for both systems will also be discussed through the application of the Shizuta-Kawashima condition. Then we introduce the concept of the average temperature of mixture based upon the consideration that the internal energy of the mixture is the same as in the case of a single-temperature mixture. As a consequence, it is shown that the entropy of the mixture reaches a local maximum in equilibrium. Through the procedure of Maxwellian iteration a new constitutive equation for non-equilibrium temperatures of constituents is obtained in a classical limit, together with the Fick's law for the diffusion flux. Finally, to justify the Maxwellian iteration, we present for dissipative fluids a possible approach of a classical theory of mixture with multi-temperature and we prove that the differences of temperatures between the constituents imply the existence of a new dynamical pressure even if the fluids have a zero bulk viscosity.

  18. On the fluctuations of density and temperature in outer space atmosphere obtained from orbital shift of TAIYO

    International Nuclear Information System (INIS)

    Kato, Yoshio; Onishi, Nobuto; Shimizu, Osamu; Enmi, Sachiko; Hirao, Kunio.

    1976-01-01

    The temperature and density in outer space atmosphere were obtained from the change of the orbital period of the artificial satellite TAIYO which was launched on February 24, 1975, from Kagoshima. An equation to calculate atmospheric density with the characteristic values of the satellite is presented in the first part together with the observed variation of the orbital elements of TAIYO. The weekly changes of temperature and density in outer space atmosphere at the altitude of 250 km, which is the perigee of the satellite, from April 1975 to May 1976 were obtained. The relations between outer space temperature and sigma KP, F10.7, and the position of the perigee were also obtained. The outer space temperature as a function of local time is presented, and it is observed that the temperature change in relation to the local time agrees with the atmospheric model, and that the ratio of maximum or minimum temperature within a day becomes nearly 1.3. It is commented that more data will be available for the further detailed analysis because TAIYO is still orbiting normally. (Aoki, K.)

  19. Maximum power point tracking for PV systems under partial shading conditions using current sweeping

    International Nuclear Information System (INIS)

    Tsang, K.M.; Chan, W.L.

    2015-01-01

    Highlights: • A novel approach for tracking the maximum power point of photovoltaic systems. • Able to handle both the uniform insolation and partial shading conditions. • Maximum power point tracking based on current sweeping. - Abstract: Partial shading on photovoltaic (PV) arrays causes multiple peaks on the output power–voltage characteristic curve and local searching technique such as perturb and observe (P&O) method could easily fail in searching for the global maximum. Moreover, existing global searching techniques are still not very satisfactory in terms of speed and implementation complexity. In this paper, a fast global maximum power point (MPPT) tracking method which is using current sweeping for photovoltaic arrays under partial shading conditions is proposed. Unlike conventional approach, the proposed method is current based rather than voltage based. The initial maximum power point will be derived based on a current sweeping test and the maximum power point can be enhanced by a finer local search. The speed of the global search is mainly governed by the apparent time constant of the PV array and the generation of a fast current sweeping test. The fast current sweeping test can easily be realized by a DC/DC boost converter with a very fast current control loop. Experimental results are included to demonstrate the effectiveness of the proposed global searching scheme

  20. Experimental program to determine maximum temperatures for dry storage of spent fuel

    International Nuclear Information System (INIS)

    Knox, C.A.; Gilbert, E.R.; White, G.D.

    1985-02-01

    Although air is used as a cover gas in some dry storage facilities, other facilities use inert cover gases which must be monitored to assure inertness of the atmosphere. Thus qualifying air as a cover gas is attractive for the dry storage of spent fuels. At sufficiently high temperatures, air can react with spent fuel (UO 2 ) at the site of cladding breaches that formed during reactor irradiation or during dry storage. The reaction rate is temperature dependent; hence the rates can be maintained at acceptable levels if temperatures are low. Tests with spent fuel are being conducted at Pacific Northwest Laboratory (PNL) to determine the allowable temperatures for storage of spent fuel in air. Tests performed with nonirradiated UO 2 pellets indicated that moisture, surface condition, gamma radiation, gadolinia content of the fuel pellet, and temperature are important variables. Tests were then initiated on spent fuel to develop design data under simulated dry storage conditions. Tests have been conducted at 200 and 230 0 C on spent fuel in air and 275 0 C in moist nitrogen. The results for nonirradiated UO 2 and published data for irradiated fuel indicate that above 230 0 C, oxidation rates are unacceptably high for extended storage in air. The tests with spent fuel will be continued for approximately three years to enable reliable extrapolations to be made for extended storage in air and inert gases with oxidizing constituents. 6 refs., 6 figs., 3 tabs

  1. Unravelling Diurnal Asymmetry of Surface Temperature in Different Climate Zones.

    Science.gov (United States)

    Vinnarasi, R; Dhanya, C T; Chakravorty, Aniket; AghaKouchak, Amir

    2017-08-04

    Understanding the evolution of Diurnal Temperature Range (DTR), which has contradicting global and regional trends, is crucial because it influences environmental and human health. Here, we analyse the regional evolution of DTR trend over different climatic zones in India using a non-stationary approach known as the Multidimensional Ensemble Empirical Mode Decomposition (MEEMD) method, to explore the generalized influence of regional climate on DTR, if any. We report a 0.36 °C increase in overall mean of DTR till 1980, however, the rate has declined since then. Further, arid deserts and warm-temperate grasslands exhibit negative DTR trends, while the west coast and sub-tropical forest in the north-east show positive trends. This transition predominantly begins with a 0.5 °C increase from the west coast and spreads with an increase of 0.25 °C per decade. These changes are more pronounced during winter and post-monsoon, especially in the arid desert and warm-temperate grasslands, the DTR decreased up to 2 °C, where the rate of increase in minimum temperature is higher than the maximum temperature. We conclude that both maximum and minimum temperature increase in response to the global climate change, however, their rates of increase are highly local and depend on the underlying climatic zone.

  2. Maximum likelihood estimation for integrated diffusion processes

    DEFF Research Database (Denmark)

    Baltazar-Larios, Fernando; Sørensen, Michael

    We propose a method for obtaining maximum likelihood estimates of parameters in diffusion models when the data is a discrete time sample of the integral of the process, while no direct observations of the process itself are available. The data are, moreover, assumed to be contaminated...... EM-algorithm to obtain maximum likelihood estimates of the parameters in the diffusion model. As part of the algorithm, we use a recent simple method for approximate simulation of diffusion bridges. In simulation studies for the Ornstein-Uhlenbeck process and the CIR process the proposed method works...... by measurement errors. Integrated volatility is an example of this type of observations. Another example is ice-core data on oxygen isotopes used to investigate paleo-temperatures. The data can be viewed as incomplete observations of a model with a tractable likelihood function. Therefore we propose a simulated...

  3. Further studies of the stability of LiF:Mg,Cu,P (GR-200) at maximum readout temperatures between 240oC and 280oC

    International Nuclear Information System (INIS)

    Oster, L.; Horowitz, Y.S.; Horowitz, A.

    1996-01-01

    It has recently been shown that LiF:Mg,Cu,P (GR-200) can be read out to temperatures as high as 270 o C for 12 s with negligible loss in sensitivity. In the present work the long-term sensitivity of GR-200 was studied at readout temperatures between 240 o C and 280 o C. The idea was that the readout temperatures above 240 o C might initiate reaction processes which influence the sensitivity only after long-term storage. No difference was found in the behaviour of GR-200 chips with 80 accumulated readouts to 240 o C or 270 o C and after storage of up to four months. Slight losses in sensitivity of 4% for 240 o C and 10% for 270 o C are observed after 80 readouts during four months storage. However, at a maximum readout temperature of 280 o C, a 33% loss in sensitivity after 80 cycles is observed. In conclusion it is found that GR-200 can be read out at temperatures as high as 270 o C with negligible loss in sensitivity (less than 0.1% per readout following an initialisation procedure of 1 readout) and acceptable residual signal (0.6%). (author)

  4. Simulation model of ANN based maximum power point tracking controller for solar PV system

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Anil K.; Singh, Bhupal [Department of Electrical and Electronics Engineering, Ajay Kumar Garg Engineering College, Ghaziabad 201009 (India); Kaushika, N.D.; Agarwal, Niti [School of Research and Development, Bharati Vidyapeeth College of Engineering, A-4 Paschim Vihar, New Delhi 110063 (India)

    2011-02-15

    In this paper the simulation model of an artificial neural network (ANN) based maximum power point tracking controller has been developed. The controller consists of an ANN tracker and the optimal control unit. The ANN tracker estimates the voltages and currents corresponding to a maximum power delivered by solar PV (photovoltaic) array for variable cell temperature and solar radiation. The cell temperature is considered as a function of ambient air temperature, wind speed and solar radiation. The tracker is trained employing a set of 124 patterns using the back propagation algorithm. The mean square error of tracker output and target values is set to be of the order of 10{sup -5} and the successful convergent of learning process takes 1281 epochs. The accuracy of the ANN tracker has been validated by employing different test data sets. The control unit uses the estimates of the ANN tracker to adjust the duty cycle of the chopper to optimum value needed for maximum power transfer to the specified load. (author)

  5. Multiphysics and Thermal Response Models to Improve Accuracy of Local Temperature Estimation in Rat Cortex under Microwave Exposure

    Science.gov (United States)

    Kodera, Sachiko; Gomez-Tames, Jose; Hirata, Akimasa; Masuda, Hiroshi; Arima, Takuji; Watanabe, Soichi

    2017-01-01

    The rapid development of wireless technology has led to widespread concerns regarding adverse human health effects caused by exposure to electromagnetic fields. Temperature elevation in biological bodies is an important factor that can adversely affect health. A thermophysiological model is desired to quantify microwave (MW) induced temperature elevations. In this study, parameters related to thermophysiological responses for MW exposures were estimated using an electromagnetic-thermodynamics simulation technique. To the authors’ knowledge, this is the first study in which parameters related to regional cerebral blood flow in a rat model were extracted at a high degree of accuracy through experimental measurements for localized MW exposure at frequencies exceeding 6 GHz. The findings indicate that the improved modeling parameters yield computed results that match well with the measured quantities during and after exposure in rats. It is expected that the computational model will be helpful in estimating the temperature elevation in the rat brain at multiple observation points (that are difficult to measure simultaneously) and in explaining the physiological changes in the local cortex region. PMID:28358345

  6. Analysis of rainfall and temperature time series to detect long-term climatic trends and variability over semi-arid Botswana

    Science.gov (United States)

    Byakatonda, Jimmy; Parida, B. P.; Kenabatho, Piet K.; Moalafhi, D. B.

    2018-03-01

    Arid and semi-arid environments have been identified with locations prone to impacts of climate variability and change. Investigating long-term trends is one way of tracing climate change impacts. This study investigates variability through annual and seasonal meteorological time series. Possible inhomogeneities and years of intervention are analysed using four absolute homogeneity tests. Trends in the climatic variables were determined using Mann-Kendall and Sen's Slope estimator statistics. Association of El Niño Southern Oscillation (ENSO) with local climate is also investigated through multivariate analysis. Results from the study show that rainfall time series are fully homogeneous with 78.6 and 50% of the stations for maximum and minimum temperature, respectively, showing homogeneity. Trends also indicate a general decrease of 5.8, 7.4 and 18.1% in annual, summer and winter rainfall, respectively. Warming trends are observed in annual and winter temperature at 0.3 and 1.5% for maximum temperature and 1.7 and 6.5% for minimum temperature, respectively. Rainfall reported a positive correlation with Southern Oscillation Index (SOI) and at the same time negative association with Sea Surface Temperatures (SSTs). Strong relationships between SSTs and maximum temperature are observed during the El Niño and La Niña years. These study findings could facilitate planning and management of agricultural and water resources in Botswana.

  7. In-situ monitoring of internal local temperature and voltage of proton exchange membrane fuel cells.

    Science.gov (United States)

    Lee, Chi-Yuan; Fan, Wei-Yuan; Hsieh, Wei-Jung

    2010-01-01

    The distribution of temperature and voltage of a fuel cell are key factors that influence performance. Conventional sensors are normally large, and are also useful only for making external measurements of fuel cells. Centimeter-scale sensors for making invasive measurements are frequently unable to accurately measure the interior changes of a fuel cell. This work focuses mainly on fabricating flexible multi-functional microsensors (for temperature and voltage) to measure variations in the local temperature and voltage of proton exchange membrane fuel cells (PEMFC) that are based on micro-electro-mechanical systems (MEMS). The power density at 0.5 V without a sensor is 450 mW/cm(2), and that with a sensor is 426 mW/cm(2). Since the reaction area of a fuel cell with a sensor is approximately 12% smaller than that without a sensor, but the performance of the former is only 5% worse.

  8. MAXIMUM PRINCIPLE FOR SUBSONIC FLOW WITH VARIABLE ENTROPY

    Directory of Open Access Journals (Sweden)

    B. Sizykh Grigory

    2017-01-01

    Full Text Available Maximum principle for subsonic flow is fair for stationary irrotational subsonic gas flows. According to this prin- ciple, if the value of the velocity is not constant everywhere, then its maximum is achieved on the boundary and only on the boundary of the considered domain. This property is used when designing form of an aircraft with a maximum critical val- ue of the Mach number: it is believed that if the local Mach number is less than unit in the incoming flow and on the body surface, then the Mach number is less then unit in all points of flow. The known proof of maximum principle for subsonic flow is based on the assumption that in the whole considered area of the flow the pressure is a function of density. For the ideal and perfect gas (the role of diffusion is negligible, and the Mendeleev-Clapeyron law is fulfilled, the pressure is a function of density if entropy is constant in the entire considered area of the flow. Shows an example of a stationary sub- sonic irrotational flow, in which the entropy has different values on different stream lines, and the pressure is not a function of density. The application of the maximum principle for subsonic flow with respect to such a flow would be unreasonable. This example shows the relevance of the question about the place of the points of maximum value of the velocity, if the entropy is not a constant. To clarify the regularities of the location of these points, was performed the analysis of the com- plete Euler equations (without any simplifying assumptions in 3-D case. The new proof of the maximum principle for sub- sonic flow was proposed. This proof does not rely on the assumption that the pressure is a function of density. Thus, it is shown that the maximum principle for subsonic flow is true for stationary subsonic irrotational flows of ideal perfect gas with variable entropy.

  9. A preliminary assessment of temperature distributions associated with a radioactive waste vault

    International Nuclear Information System (INIS)

    Tammemagi, H.Y.

    1978-09-01

    The temperature distributions of models which simulated radioactive waste vaults were determined, using a finite difference computer code to solve the transient heat conduction equation. Input parameters to the code included thermal properties for granitic rock and heat generation decay data for wastes that would be separated from CANDU fuel if it were recycled. Due to the preliminary nature of the study, only simple models were analysed. A disc source was utilized to approximate a one-level repository. Various parameters were investigated such as depth of disc, thermal properties of rock, and long-term effects. It was shown that, for a vault at 500 m depth with an initial areal heat flux of 31 W/m 2 , a maximum temperature increase of about 80 deg C occurs at the vault level about 30 years after waste emplacement; maximum increases near the earth's surface occur after about 1000 years and are less than 1 deg C. Modelling the vault by a number of vertical waste boreholes on one horizontal level, instead of by a disc, with the gross areal heat flux again 31 W/m 2 , did not cause serious local temperature increases as long as the initial heat generation rate of each container was less than about 750 W. It was also shown that, by using the vertical dimension available in granitic plutons and constructing either multiple-level vaults or very deep boreholes, initial areal heat fluxes greater than 31 W/m 2 can be utilized without exceeding the 80 deg C maximum temperature increase anywhere in the vault. (author)

  10. Definition of the local fields of velocity, temperature and turbulent characteristics for axial stabilized fluid in arbitrary formed rod bundle assemblies

    International Nuclear Information System (INIS)

    Sedov, A.A.; Gagin, V.L.

    1995-01-01

    For the temperature fields in rod clads of experimental assemblies a good agreement have been got with use of prior calculations by subchannel code COBRA-IV-I, from results of which an additional information about δt/δX 3 distribution was taken. The method of definition the local fields of velocity, turbulent kinetic energy, temperature and eddy diffusivities for one-phase axial stabilized fluids in arbitrary formed rod bundle assemblies with invariable upward geometry was developed. According to this model the AGURA code was worked out to calculate local thermal hydraulic problems in combination with temperature fields in fuel rods and constructive elements of fuel assemblies. The method does not use any prior geometric scales and is based only on invariant local flow parameters: turbulent kinetic energy, velocity field deformation tensor and specific work of inner friction. Verification of this method by available experimental data showed a good agreement of calculation data and findings of velocity and t.k.e. fields, when the secondary flows have not a substantial influence to a balance of axial momentum and turbulent kinetic energy. (author)

  11. Infrared image monitoring of local anesthetic poisoning in rats

    Directory of Open Access Journals (Sweden)

    Angelo Manoel G. Carstens

    Full Text Available Abstract Background and objectives: To evaluate the thermographic predictive value of local anesthetic poisoning in rats that indicates the early recognition of thermal signs of intoxication and enable the immediate start of advanced life support. Methods: Wistar rats underwent intraperitoneal injection of saline and ropivacaine; they were allocated into pairs, and experiments performed at baseline and experimental times. For thermography, central and peripheral compartment were analyzed, checking the maximum and average differences of temperatures between groups. Thermographic and clinical observations were performed for each experiment, and the times in which the signs of intoxication occurred were recorded. In the thermal analysis, the thermograms corresponding to the times of interest were sought and relevant data sheets extracted for statistical analysis. Results: Basal and experimental: the display of the thermal images at times was possible. It was possible to calculate the heat transfer rate in all cases. At baseline it was possible to see the physiology of microcirculation, characterized by thermal distribution in the craniocaudal direction. It was possible to visualize the pathophysiological changes or thermal dysautonomias caused by intoxication before clinical signs occur, characterized by areas of hyper-radiation, translating autonomic nervous system pathophysiological disorders. In animals poisoned by ropivacaine, there was no statistically significant difference in heat transfer rate at the experimental time. Conclusions: The maximum temperature, medium temperature, and heat transfer rate were different from the statistical point of view between groups at the experimental time, thus confirming the systemic thermographic predictive value.

  12. Evaluation of local power distribution with fine-mesh core model for the HTTR

    International Nuclear Information System (INIS)

    Murata, Isao; Yamashita, Kiyonobu; Maruyama, So; Shindo, Ryuichi; Fujimoto, Nozomu; Sudo, Yukio; Nakata, Tetsuo.

    1991-01-01

    An evaluation method of the local power distribution was developed considering the radial and axial heterogeneity caused by fuel rods, BP rods and block end graphite for the High Temperature Engineering Test Reactor (HTTR) in Japan Atomic Energy Research Institute (JAERI). The evaluation method was verified through the analyses of critical assembly experiments. A good agreement was obtained between calculations and measurements and the difference was less than 3 % on the power distribution. This method was applied to the core design for the HTTR to evaluate the maximum fuel temperature. From these results, it was confirmed that this evaluation method has an enough accuracy and is able to predict the detailed power distribution of the HTTR. (author)

  13. The impact of temperature on mean local air age and thermal comfort in a stratum ventilated office

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Lin; Lin, Zhang; Yao, Ting [Building Energy and Environmental Technology Research Unit, School of Energy and Environment and Division of Building Science and Technology, City University of Hong Kong, Hong Kong SAR (China); Liu, Jing; Wang, Qiuwang [State Key Lab of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an, 710049 (China)

    2011-02-15

    The influence of the supply air temperature on the mean local air age and thermal comfort of a typical individual office under stratum ventilation is investigated by a numerical method, which is validated by an experiment carried out by the authors. The results show that for an office, when the supply air temperature is increased from 19 C to 21 C, the corresponding mean occupied zone temperature rises from 24.5 C to 26.5 C. The inhaled air quality for the occupant is improved when supply air temperature rises from 19 C to 21 C. Also, the thermal comfort indices (predicted mean vote or PMV, predicted percentage of dissatisfied or PPD and predicted dissatisfied or PD) fulfill the requirements of ISO 7730 and CR 175 1998. For summer cooling operation, stratum ventilation may offer a feasible solution to elevated indoor temperatures, which are recommended by several governments in East Asia. (author)

  14. Response of eddy activities to localized diabatic heating in Held-Suarez simulations

    Science.gov (United States)

    Lin, Yanluan; Zhang, Jishi; Li, Xingrui; Deng, Yi

    2018-01-01

    Widespread air pollutions, such as black carbon over East Asia in recent years, could induce a localized diabatic heating, and thus lead to localized static stability and meridional temperature gradient (MTG) changes. Although effect of static stability and MTG on eddies has been addressed by the linear baroclinic instability theory, impacts of a localized heating on mid-latitude eddy activities have not been well explored and quantified. Via a series of idealized global Held-Suarez simulations with different magnitudes of localized heating at different altitudes and latitudes, responses of mid-latitude eddy activity and circulation to these temperature perturbations are systematically investigated. Climatologically, the localized heating in the lower atmosphere induces a wave-like response of eddy activity near the mid-latitude jet stream. Over the heating region, eddy activity tends to be weakening due to the increased static stability. However, there are cyclonic anomalies over the upstream and downstream of the heating region. The zonal mean eddy activity weakens along the baroclinic zone due to reduced MTG and increased static stability. Furthermore, the response of eddy activity increased as the heating magnitude is increased and moved to higher altitudes. The influence of the heating decreases as the heating is prescribed further away from the climatological mid-latitude jet. This implies that the localized heating is most effective over the region with the maximum baroclinicity. Besides, enhanced storm track downstream of the localized heating area found here suggests that increased aerosols over East Asia might strengthen the North Pacific storm track.

  15. RF safety assessment of a bilateral four-channel transmit/receive 7 Tesla breast coil: SAR versus tissue temperature limits.

    Science.gov (United States)

    Fiedler, Thomas M; Ladd, Mark E; Bitz, Andreas K

    2017-01-01

    temperature simulations showed that temperature maximums do not correlate well with the position of the SAR maximums in all considered cases. The body models with an exponential blood perfusion increase did not exceed the temperature limit when an RF power according to the SAR limit was applied; in this case, a higher input power level by up to 73% would be allowed. The models with a constant or linear perfusion exceeded the limit for the local temperature when the local SAR limit was adhered to and would require a decrease in the input power level by up to 62%. The maximum permissible input power was determined based on SAR simulations with three newly generated body models and compared with results from temperature simulations. While SAR calculations are state-of-the-art and well defined as they are based on more or less well-known material parameters, temperature simulations depend strongly on additional material, environmental and physiological parameters. The simulations demonstrated that more consideration needs be made by the MR community in defining the parameters for temperature simulations in order to apply temperature limits instead of SAR limits in the context of MR RF safety evaluations. © 2016 American Association of Physicists in Medicine.

  16. Urban-Rural Temperature Differences in Lagos

    Directory of Open Access Journals (Sweden)

    Vincent N. Ojeh

    2016-05-01

    Full Text Available In this study, the hourly air temperature differences between City hall (urban and Okoafo (rural in Lagos, Nigeria, were calculated using one year of meteorological observations, from June 2014 to May 2015. The two sites considered for this work were carefully selected to represent their climate zones. The city core, City hall, is within the Local Climate Zone (LCZ 2 (Compact midrise while the rural location, Okoafo, falls within LCZ B (Scattered Trees in the south-western part on the outskirt of the city. This study is one of very few to investigate urban temperature conditions in Lagos, the largest city in Africa and one of the most rapidly urbanizing megacities in the world; findings show that maximum nocturnal UHI magnitudes in Lagos can exceed 7 °C during the dry season, and during the rainy season, wet soils in the rural environment supersede regional wind speed as the dominant control over UHI magnitude.

  17. In-situ Monitoring of Internal Local Temperature and Voltage of Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Chi-Yuan Lee

    2010-06-01

    Full Text Available The distribution of temperature and voltage of a fuel cell are key factors that influence performance. Conventional sensors are normally large, and are also useful only for making external measurements of fuel cells. Centimeter-scale sensors for making invasive measurements are frequently unable to accurately measure the interior changes of a fuel cell. This work focuses mainly on fabricating flexible multi-functional microsensors (for temperature and voltage to measure variations in the local temperature and voltage of proton exchange membrane fuel cells (PEMFC that are based on micro-electro-mechanical systems (MEMS. The power density at 0.5 V without a sensor is 450 mW/cm2, and that with a sensor is 426 mW/cm2. Since the reaction area of a fuel cell with a sensor is approximately 12% smaller than that without a sensor, but the performance of the former is only 5% worse.

  18. Climate Prediction Center (CPC) U.S. Daily Maximum Air Temperature Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Observational reports of daily air temperature (1200 UTC to 1200 UTC) are made by members of the NWS Automated Surface Observing Systems (ASOS) network; NWS...

  19. Venus atmosphere profile from a maximum entropy principle

    Directory of Open Access Journals (Sweden)

    L. N. Epele

    2007-10-01

    Full Text Available The variational method with constraints recently developed by Verkley and Gerkema to describe maximum-entropy atmospheric profiles is generalized to ideal gases but with temperature-dependent specific heats. In so doing, an extended and non standard potential temperature is introduced that is well suited for tackling the problem under consideration. This new formalism is successfully applied to the atmosphere of Venus. Three well defined regions emerge in this atmosphere up to a height of 100 km from the surface: the lowest one up to about 35 km is adiabatic, a transition layer located at the height of the cloud deck and finally a third region which is practically isothermal.

  20. Thermoelectric cooler concepts and the limit for maximum cooling

    International Nuclear Information System (INIS)

    Seifert, W; Hinsche, N F; Pluschke, V

    2014-01-01

    The conventional analysis of a Peltier cooler approximates the material properties as independent of temperature using a constant properties model (CPM). Alternative concepts have been published by Bian and Shakouri (2006 Appl. Phys. Lett. 89 212101), Bian (et al 2007 Phys. Rev. B 75 245208) and Snyder et al (2012 Phys. Rev. B 86 045202). While Snyder's Thomson cooler concept results from a consideration of compatibility, the method of Bian et al focuses on the redistribution of heat. Thus, both approaches are based on different principles. In this paper we compare the new concepts to CPM and we reconsider the limit for maximum cooling. The results provide a new perspective on maximum cooling. (paper)

  1. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 3 Monthly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Land Surface Temperature Databank contains monthly timescale mean, maximum, and minimum temperature for approximately 40,000 stations globally. It was...

  2. Multi-Electrode Resistivity Probe for Investigation of Local Temperature Inside Metal Shell Battery Cells via Resistivity: Experiments and Evaluation of Electrical Resistance Tomography

    Directory of Open Access Journals (Sweden)

    Xiaobin Hong

    2015-01-01

    Full Text Available Direct Current (DC electrical resistivity is a material property that is sensitive to temperature changes. In this paper, the relationship between resistivity and local temperature inside steel shell battery cells (two commercial 10 Ah and 4.5 Ah lithium-ion cells is innovatively studied by Electrical Resistance Tomography (ERT. The Schlumberger configuration in ERT is applied to divide the cell body into several blocks distributed in different levels, where the apparent resistivities are measured by multi-electrode surface probes. The investigated temperature ranges from −20 to 80 °C. Experimental results have shown that the resistivities mainly depend on temperature changes in each block of the two cells used and the function of the resistivity and temperature can be fitted to the ERT-measurement results in the logistical-plot. Subsequently, the dependence of resistivity on the state of charge (SOC is investigated, and the SOC range of 70%–100% has a remarkable impact on the resistivity at low temperatures. The proposed approach under a thermal cool down regime is demonstrated to monitor the local transient temperature.

  3. Hydrodynamic equations for electrons in graphene obtained from the maximum entropy principle

    Energy Technology Data Exchange (ETDEWEB)

    Barletti, Luigi, E-mail: luigi.barletti@unifi.it [Dipartimento di Matematica e Informatica “Ulisse Dini”, Università degli Studi di Firenze, Viale Morgagni 67/A, 50134 Firenze (Italy)

    2014-08-15

    The maximum entropy principle is applied to the formal derivation of isothermal, Euler-like equations for semiclassical fermions (electrons and holes) in graphene. After proving general mathematical properties of the equations so obtained, their asymptotic form corresponding to significant physical regimes is investigated. In particular, the diffusive regime, the Maxwell-Boltzmann regime (high temperature), the collimation regime and the degenerate gas limit (vanishing temperature) are considered.

  4. Maximum-likelihood methods for array processing based on time-frequency distributions

    Science.gov (United States)

    Zhang, Yimin; Mu, Weifeng; Amin, Moeness G.

    1999-11-01

    This paper proposes a novel time-frequency maximum likelihood (t-f ML) method for direction-of-arrival (DOA) estimation for non- stationary signals, and compares this method with conventional maximum likelihood DOA estimation techniques. Time-frequency distributions localize the signal power in the time-frequency domain, and as such enhance the effective SNR, leading to improved DOA estimation. The localization of signals with different t-f signatures permits the division of the time-frequency domain into smaller regions, each contains fewer signals than those incident on the array. The reduction of the number of signals within different time-frequency regions not only reduces the required number of sensors, but also decreases the computational load in multi- dimensional optimizations. Compared to the recently proposed time- frequency MUSIC (t-f MUSIC), the proposed t-f ML method can be applied in coherent environments, without the need to perform any type of preprocessing that is subject to both array geometry and array aperture.

  5. Coherent mesoscale eddies in the North Atlantic subtropical gyre: 3-D structure and transport with application to the salinity maximum

    Science.gov (United States)

    Amores, Angel; Melnichenko, Oleg; Maximenko, Nikolai

    2017-01-01

    The mean vertical structure and transport properties of mesoscale eddies are investigated in the North Atlantic subtropical gyre by combining historical records of Argo temperature/salinity profiles and satellite sea level anomaly data in the framework of the eddy tracking technique. The study area is characterized by a low eddy kinetic energy and sea surface salinity maximum. Although eddies have a relatively weak signal at surface (amplitudes around 3-7 cm), the eddy composites reveal a clear deep signal that penetrates down to at least 1200 m depth. The analysis also reveals that the vertical structure of the eddy composites is strongly affected by the background stratification. The horizontal patterns of temperature/salinity anomalies can be reconstructed by a linear combination of a monopole, related to the elevation/depression of the isopycnals in the eddy core, and a dipole, associated with the horizontal advection of the background gradient by the eddy rotation. A common feature of all the eddy composites reconstructed is the phase coherence between the eddy temperature/salinity and velocity anomalies in the upper ˜300 m layer, resulting in the transient eddy transports of heat and salt. As an application, a box model of the near-surface layer is used to estimate the role of mesoscale eddies in maintaining a quasi-steady state distribution of salinity in the North Atlantic subtropical salinity maximum. The results show that mesoscale eddies are able to provide between 4 and 21% of the salt flux out of the area required to compensate for the local excess of evaporation over precipitation.

  6. Approximate maximum parsimony and ancestral maximum likelihood.

    Science.gov (United States)

    Alon, Noga; Chor, Benny; Pardi, Fabio; Rapoport, Anat

    2010-01-01

    We explore the maximum parsimony (MP) and ancestral maximum likelihood (AML) criteria in phylogenetic tree reconstruction. Both problems are NP-hard, so we seek approximate solutions. We formulate the two problems as Steiner tree problems under appropriate distances. The gist of our approach is the succinct characterization of Steiner trees for a small number of leaves for the two distances. This enables the use of known Steiner tree approximation algorithms. The approach leads to a 16/9 approximation ratio for AML and asymptotically to a 1.55 approximation ratio for MP.

  7. Improved scaling of temperature-accelerated dynamics using localization

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Yunsic; Amar, Jacques G. [Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606 (United States)

    2016-07-07

    While temperature-accelerated dynamics (TAD) is a powerful method for carrying out non-equilibrium simulations of systems over extended time scales, the computational cost of serial TAD increases approximately as N{sup 3} where N is the number of atoms. In addition, although a parallel TAD method based on domain decomposition [Y. Shim et al., Phys. Rev. B 76, 205439 (2007)] has been shown to provide significantly improved scaling, the dynamics in such an approach is only approximate while the size of activated events is limited by the spatial decomposition size. Accordingly, it is of interest to develop methods to improve the scaling of serial TAD. As a first step in understanding the factors which determine the scaling behavior, we first present results for the overall scaling of serial TAD and its components, which were obtained from simulations of Ag/Ag(100) growth and Ag/Ag(100) annealing, and compare with theoretical predictions. We then discuss two methods based on localization which may be used to address two of the primary “bottlenecks” to the scaling of serial TAD with system size. By implementing both of these methods, we find that for intermediate system-sizes, the scaling is improved by almost a factor of N{sup 1/2}. Some additional possible methods to improve the scaling of TAD are also discussed.

  8. Improved scaling of temperature-accelerated dynamics using localization

    International Nuclear Information System (INIS)

    Shim, Yunsic; Amar, Jacques G.

    2016-01-01

    While temperature-accelerated dynamics (TAD) is a powerful method for carrying out non-equilibrium simulations of systems over extended time scales, the computational cost of serial TAD increases approximately as N 3 where N is the number of atoms. In addition, although a parallel TAD method based on domain decomposition [Y. Shim et al., Phys. Rev. B 76, 205439 (2007)] has been shown to provide significantly improved scaling, the dynamics in such an approach is only approximate while the size of activated events is limited by the spatial decomposition size. Accordingly, it is of interest to develop methods to improve the scaling of serial TAD. As a first step in understanding the factors which determine the scaling behavior, we first present results for the overall scaling of serial TAD and its components, which were obtained from simulations of Ag/Ag(100) growth and Ag/Ag(100) annealing, and compare with theoretical predictions. We then discuss two methods based on localization which may be used to address two of the primary “bottlenecks” to the scaling of serial TAD with system size. By implementing both of these methods, we find that for intermediate system-sizes, the scaling is improved by almost a factor of N 1/2 . Some additional possible methods to improve the scaling of TAD are also discussed.

  9. Attitude sensor alignment calibration for the solar maximum mission

    Science.gov (United States)

    Pitone, Daniel S.; Shuster, Malcolm D.

    1990-01-01

    An earlier heuristic study of the fine attitude sensors for the Solar Maximum Mission (SMM) revealed a temperature dependence of the alignment about the yaw axis of the pair of fixed-head star trackers relative to the fine pointing Sun sensor. Here, new sensor alignment algorithms which better quantify the dependence of the alignments on the temperature are developed and applied to the SMM data. Comparison with the results from the previous study reveals the limitations of the heuristic approach. In addition, some of the basic assumptions made in the prelaunch analysis of the alignments of the SMM are examined. The results of this work have important consequences for future missions with stringent attitude requirements and where misalignment variations due to variations in the temperature will be significant.

  10. Reduction of Environmental Temperature Mitigates Local Anesthetic Cytotoxicity in Bovine Articular Chondrocytes

    Directory of Open Access Journals (Sweden)

    Tarik Onur, Alexis Dang

    2014-09-01

    Full Text Available The purpose of this study was to assess whether reducing environmental temperature will lead to increased chondrocyte viability following injury from a single-dose of local anesthetic treatment. Bovine articular chondrocytes from weight bearing portions of femoral condyles were harvested and cultured. 96-well plates were seeded with 15,000 chondrocytes per well. Chondrocytes were treated with one of the following conditions: ITS Media, 1x PBS, 2% lidocaine, 0.5% bupivacaine, or 0.5% ropivacaine. Each plate was then incubated at 37°C, 23°C, or 4°C for one hour and then returned to media at 37°C. Chondrocyte viability was assessed 24 hours after treatment. Chondrocyte viability is presented as a ratio of the fluorescence of the treatment group over the average of the media group at that temperature (ratio ± SEM. At 37°C, lidocaine (0.35 ± 0.04 and bupivacaine (0.30 ± 0.05 treated chondrocytes show low cell viability when compared to the media (1.00 ± 0.03 control group (p < 0.001. Lidocaine treated chondrocytes were significantly more viable at 23°C (0.84 ± 0.08 and 4°C (0.86±0.085 than at 37°C (p < 0.001. Bupivacaine treated chondrocytes were significantly more viable at 4°C (0.660 ± 0.073 than at 37°C or 23°C (0.330 ± 0.069 (p < 0.001 and p = 0.002 respectively. Reducing the temperature from 37°C to 23°C during treatment with lidocaine increases chondrocyte viability following injury. Chondrocytes treated with bupivacaine can be rescued by reducing the temperature to 4°C.

  11. Effects of vernal equinox solar eclipse on temperature and wind direction in Switzerland

    Science.gov (United States)

    Eugster, Werner; Emmel, Carmen; Wolf, Sebastian; Buchmann, Nina; McFadden, Joseph P.; Whiteman, Charles David

    2017-12-01

    The vernal equinox total solar eclipse of 20 March 2015 produced a maximum occultation of 65.8-70.1 % over Switzerland during the morning hours (09:22 to 11:48 CET). Skies were generally clear over the Swiss Alps due to a persistent high-pressure band between the UK and Russia associated with a rather weak pressure gradient over the continent. To assess the effects of penumbral shading on near-surface meteorology across Switzerland, air temperature data measured at 10 min intervals at 184 MeteoSwiss weather stations were used. Wind speed and direction data were available from 165 of these stations. Additionally, six Swiss FluxNet eddy covariance flux (ECF) sites provided turbulent measurements at 20 Hz resolution. During maximum occultation, the temperature drop was up to 5.8 K at a mountain site where cold air can pool in a topographic depression. The bootstrapped average of the maximum temperature drops of all 184 MeteoSwiss sites during the solar eclipse was 1.51 ± 0.02 K (mean ± SE). A detailed comparison with literature values since 1834 showed a temperature decrease of 2.6 ± 1.7 K (average of all reports), with extreme values up to 11 K. On fair weather days under weak larger-scale pressure gradients, local thermo-topographic wind systems develop that are driven by small-scale pressure and temperature gradients. At one ECF site, the penumbral shading delayed the morning transition from down-valley to up-valley wind conditions. At another site, it prevented this transition from occurring at all. Data from the 165 MeteoSwiss sites measuring wind direction did not show a consistent pattern of wind direction response to the passing of the penumbral shadow. These results suggest that the local topographic setting had an important influence on the temperature drop and the wind flow patterns during the eclipse. A significant cyclonic effect of the passing penumbral shadow was found in the elevation range ≈ 1700-2700 m a. s. l., but not at lower

  12. Local clouds ionization, temperatures, electron densities and interfaces, from GHRS and IMAPS spectra of epsilon Canis Majoris

    CERN Document Server

    Gry, C; Gry, Cecile; Jenkins, Edward B.

    2001-01-01

    The composition and physical properties of several local clouds, including the Local Interstellar Cloud (LIC) in which the Sun is embedded, are derived from absorption features in the UV spectrum of the star epsilon CMa. We derive temperatures and densities for three components by combining our interpretations of the ionization balance of magnesium and the relative population of C II in an excited fine-structure level. We find that for the LIC n(e) = 0.12 +/-0.05 cm-3 and T = 7000 +/-1200 K. We derive the ionization fractions of hydrogen and discuss the ionizing processes. In particular the hydrogen and helium ionizations in the LIC are compatible with photoionization by the local EUV radiation fields from the hot stars and the cloud interface with the hot gas. We confirm the detection of high ionization species : Si III is detected in all clouds and C IV in two of them, including the LIC, suggesting the presence of ionized interfaces around the local clouds.

  13. PARTICLE SWARM OPTIMIZATION BASED OF THE MAXIMUM PHOTOVOLTAIC POWER TRACTIOQG UNDER DIFFERENT CONDITIONS

    Directory of Open Access Journals (Sweden)

    Y. Labbi

    2015-08-01

    Full Text Available Photovoltaic electricity is seen as an important source of renewable energy. The photovoltaic array is an unstable source of power since the peak power point depends on the temperature and the irradiation level. A maximum peak power point tracking is then necessary for maximum efficiency.In this work, a Particle Swarm Optimization (PSO is proposed for maximum power point tracker for photovoltaic panel, are used to generate the optimal MPP, such that solar panel maximum power is generated under different operating conditions. A photovoltaic system including a solar panel and PSO MPP tracker is modelled and simulated, it has been has been carried out which has shown the effectiveness of PSO to draw much energy and fast response against change in working conditions.

  14. Smart Control of Air Climatization System in Function on the Values of Mean Local Radiant Temperature

    Directory of Open Access Journals (Sweden)

    Giuseppe Cannistraro

    2015-08-01

    Full Text Available The hygrothermal comfort indoor conditions are defined as: those environmental conditions in which an individual exposed, expresses a state of satisfaction. These conditions cannot always be achieved anywhere in an optimal way and economically; in some cases they can be obtained only in work environments specific areas. This could be explained because of air conditioning systems designing is generally performed both on the basis of the fundamental parameters’ average values, such as temperature, velocity and relative humidity (Ta, va e φa and derived parameters such as operating temperature and mean radiant one (Top eTmr. However, in some specific cases - large open-spaces or in case of radiating surfaces - the descriptors defining indoor comfort conditions, based on average values, do not provide the optimum values required during the air conditioning systems design phase. This is largely due to the variability of real environmental parameters values compared to the average ones taken as input in the calculation. The results obtained in previous scientific papers on the thermal comfort have been the driving element of this work. It offers a simple, original and clever way of thinking about the new domotic systems for air conditioning, based on the “local mean radiant temperature.” This is a very important parameter when one wants to analyze comfort in environments characterized by the presence of radiating surfaces, as will be seen hereinafter. In order to take into account the effects of radiative exchanges in the open-space workplace, where any occupant may find themselves in different temperature and humidity conditions, this paper proposes an action on the domotic climate control, with ducts and vents air distribution placed in different zones. Comparisons were performed between the parameters values representing the punctual thermal comfort, with the Predicted Mean Vote PMV, in an environment marked by radiating surfaces (i

  15. Maximum Power Point Tracking of Photovoltaic System for Traffic Light Application

    Directory of Open Access Journals (Sweden)

    Riza Muhida

    2013-07-01

    Full Text Available Photovoltaic traffic light system is a significant application of renewable energy source. The development of the system is an alternative effort of local authority to reduce expenditure for paying fees to power supplier which the power comes from conventional energy source. Since photovoltaic (PV modules still have relatively low conversion efficiency, an alternative control of maximum power point tracking (MPPT method is applied to the traffic light system. MPPT is intended to catch up the maximum power at daytime in order to charge the battery at the maximum rate in which the power from the battery is intended to be used at night time or cloudy day. MPPT is actually a DC-DC converter that can step up or down voltage in order to achieve the maximum power using Pulse Width Modulation (PWM control. From experiment, we obtained the voltage of operation using MPPT is at 16.454 V, this value has error of 2.6%, if we compared with maximum power point voltage of PV module that is 16.9 V. Based on this result it can be said that this MPPT control works successfully to deliver the power from PV module to battery maximally.

  16. Technical basis for the reduction of the maximum temperature TGA-MS analysis of oxide samples from the 3013 destructive examination program

    International Nuclear Information System (INIS)

    Scogin, J. H.

    2016-01-01

    Thermogravimetric analysis with mass spectroscopy of the evolved gas (TGA-MS) is used to quantify the moisture content of materials in the 3013 destructive examination (3013 DE) surveillance program. Salts frequently present in the 3013 DE materials volatilize in the TGA and condense in the gas lines just outside the TGA furnace. The buildup of condensate can restrict the flow of purge gas and affect both the TGA operations and the mass spectrometer calibration. Removal of the condensed salts requires frequent maintenance and subsequent calibration runs to keep the moisture measurements by mass spectroscopy within acceptable limits, creating delays in processing samples. In this report, the feasibility of determining the total moisture from TGA-MS measurements at a lower temperature is investigated. A temperature of the TGA-MS analysis which reduces the complications caused by the condensation of volatile materials is determined. Analysis shows that an excellent prediction of the presently measured total moisture value can be made using only the data generated up to 700 °C and there is a sound physical basis for this estimate. It is recommended that the maximum temperature of the TGA-MS determination of total moisture for the 3013 DE program be reduced from 1000 °C to 700 °C. It is also suggested that cumulative moisture measurements at 550 °C and 700°C be substituted for the measured value of total moisture in the 3013 DE database. Using these raw values, any of predictions of the total moisture discussed in this report can be made.

  17. Technical basis for the reduction of the maximum temperature TGA-MS analysis of oxide samples from the 3013 destructive examination program

    Energy Technology Data Exchange (ETDEWEB)

    Scogin, J. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-24

    Thermogravimetric analysis with mass spectroscopy of the evolved gas (TGA-MS) is used to quantify the moisture content of materials in the 3013 destructive examination (3013 DE) surveillance program. Salts frequently present in the 3013 DE materials volatilize in the TGA and condense in the gas lines just outside the TGA furnace. The buildup of condensate can restrict the flow of purge gas and affect both the TGA operations and the mass spectrometer calibration. Removal of the condensed salts requires frequent maintenance and subsequent calibration runs to keep the moisture measurements by mass spectroscopy within acceptable limits, creating delays in processing samples. In this report, the feasibility of determining the total moisture from TGA-MS measurements at a lower temperature is investigated. A temperature of the TGA-MS analysis which reduces the complications caused by the condensation of volatile materials is determined. Analysis shows that an excellent prediction of the presently measured total moisture value can be made using only the data generated up to 700 °C and there is a sound physical basis for this estimate. It is recommended that the maximum temperature of the TGA-MS determination of total moisture for the 3013 DE program be reduced from 1000 °C to 700 °C. It is also suggested that cumulative moisture measurements at 550 °C and 700°C be substituted for the measured value of total moisture in the 3013 DE database. Using these raw values, any of predictions of the total moisture discussed in this report can be made.

  18. A generalized conditional heteroscedastic model for temperature downscaling

    Science.gov (United States)

    Modarres, R.; Ouarda, T. B. M. J.

    2014-11-01

    This study describes a method for deriving the time varying second order moment, or heteroscedasticity, of local daily temperature and its association to large Coupled Canadian General Circulation Models predictors. This is carried out by applying a multivariate generalized autoregressive conditional heteroscedasticity (MGARCH) approach to construct the conditional variance-covariance structure between General Circulation Models (GCMs) predictors and maximum and minimum temperature time series during 1980-2000. Two MGARCH specifications namely diagonal VECH and dynamic conditional correlation (DCC) are applied and 25 GCM predictors were selected for a bivariate temperature heteroscedastic modeling. It is observed that the conditional covariance between predictors and temperature is not very strong and mostly depends on the interaction between the random process governing temporal variation of predictors and predictants. The DCC model reveals a time varying conditional correlation between GCM predictors and temperature time series. No remarkable increasing or decreasing change is observed for correlation coefficients between GCM predictors and observed temperature during 1980-2000 while weak winter-summer seasonality is clear for both conditional covariance and correlation. Furthermore, the stationarity and nonlinearity Kwiatkowski-Phillips-Schmidt-Shin (KPSS) and Brock-Dechert-Scheinkman (BDS) tests showed that GCM predictors, temperature and their conditional correlation time series are nonlinear but stationary during 1980-2000 according to BDS and KPSS test results. However, the degree of nonlinearity of temperature time series is higher than most of the GCM predictors.

  19. Acumulación de hojarasca en un pastizal de Panicum maximum y en un sistema silvopastoril de Panicum maximum y Leucaena leucocephala Litter accumulation in a Panicum maximum grassland and in a silvopastoral system of Panicum maximum and Leucaena leucocephala

    Directory of Open Access Journals (Sweden)

    Saray Sánchez

    2007-09-01

    Full Text Available Se realizó un estudio en la Estación Experimental de Pastos y Forrajes "Indio Hatuey", Matanzas, Cuba, con el objetivo de determinar la acumulación de la hojarasca en un pastizal de Panicum maximum Jacq cv. Likoni y en un sistema silvopastoril de Panicum maximum y Leucaena leucocephala (Lam de Wit cv. Cunningham. En los pastizales de P. maximum de ambos sistemas se determinó la acumulación de la hojarasca según la técnica propuesta por Bruce y Ebershon (1982, mientras que la hojarasca de L. leucocephala acumulada en el sistema silvopastoril se determinó según Santa Regina et al. (1997. De forma general, los resultados demostraron que en ambos pastizales la guinea acumuló una menor cantidad de hojarasca durante el período junio-diciembre, etapa en la que se produce su mayor desarrollo vegetativo. En la leucaena la mayor producción de hojarasca ocurrió en el período de diciembre a enero, asociada con la caída natural de sus hojas que se produce por efecto de las temperaturas más bajas y la escasa humedad en el suelo. En el sistema silvopastoril la hojarasca de leucaena representó el mayor porcentaje de peso dentro de la producción total, con un contenido más alto de nitrógeno y de calcio que el de la hojarasca del estrato herbáceo. En la guinea la lluvia fue el factor climático que mayor correlación negativa presentó con la producción de hojarasca en ambos sistemas, y en la leucaena la mayor correlación negativa se encontró con la temperatura mínima.A study was carried out at the Experimental Station of Pastures and Forages "Indio Hatuey", Matanzas, Cuba, with the objective of determining the litter accumulation in a pastureland of Panicum maximum Jacq cv. Likoni and in a silvopastoral system of Panicum maximum and Leucaena leucocephala (Lam de Wit cv. Cunningham. In the P. maximum pasturelands of both systems the litter accumulation was determined by means of the technique proposed by Bruce and Ebershon (1982, while

  20. Thermogravimetric analysis and kinetic modeling of low-transition-temperature mixtures pretreated oil palm empty fruit bunch for possible maximum yield of pyrolysis oil.

    Science.gov (United States)

    Yiin, Chung Loong; Yusup, Suzana; Quitain, Armando T; Uemura, Yoshimitsu; Sasaki, Mitsuru; Kida, Tetsuya

    2018-05-01

    The impacts of low-transition-temperature mixtures (LTTMs) pretreatment on thermal decomposition and kinetics of empty fruit bunch (EFB) were investigated by thermogravimetric analysis. EFB was pretreated with the LTTMs under different duration of pretreatment which enabled various degrees of alteration to their structure. The TG-DTG curves showed that LTTMs pretreatment on EFB shifted the temperature and rate of decomposition to higher values. The EFB pretreated with sucrose and choline chloride-based LTTMs had attained the highest mass loss of volatile matter (78.69% and 75.71%) after 18 h of pretreatment. For monosodium glutamate-based LTTMs, the 24 h pretreated EFB had achieved the maximum mass loss (76.1%). Based on the Coats-Redfern integral method, the LTTMs pretreatment led to an increase in activation energy of the thermal decomposition of EFB from 80.00 to 82.82-94.80 kJ/mol. The activation energy was mainly affected by the demineralization and alteration in cellulose crystallinity after LTTMs pretreatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Application of an empirical model in CFD simulations to predict the local high temperature corrosion potential in biomass fired boilers

    International Nuclear Information System (INIS)

    Gruber, Thomas; Scharler, Robert; Obernberger, Ingwald

    2015-01-01

    To gain reliable data for the development of an empirical model for the prediction of the local high temperature corrosion potential in biomass fired boilers, online corrosion probe measurements have been carried out. The measurements have been performed in a specially designed fixed bed/drop tube reactor in order to simulate a superheater boiler tube under well-controlled conditions. The investigated boiler steel 13CrMo4-5 is commonly used as steel for superheater tube bundles in biomass fired boilers. Within the test runs the flue gas temperature at the corrosion probe has been varied between 625 °C and 880 °C, while the steel temperature has been varied between 450 °C and 550 °C to simulate typical current and future live steam temperatures of biomass fired steam boilers. To investigate the dependence on the flue gas velocity, variations from 2 m·s −1 to 8 m·s −1 have been considered. The empirical model developed fits the measured data sufficiently well. Therefore, the model has been applied within a Computational Fluid Dynamics (CFD) simulation of flue gas flow and heat transfer to estimate the local corrosion potential of a wood chips fired 38 MW steam boiler. Additionally to the actual state analysis two further simulations have been carried out to investigate the influence of enhanced steam temperatures and a change of the flow direction of the final superheater tube bundle from parallel to counter-flow on the local corrosion potential. - Highlights: • Online corrosion probe measurements in a fixed bed/drop tube reactor. • Development of an empirical corrosion model. • Application of the model in a CFD simulation of flow and heat transfer. • Variation of boundary conditions and their effects on the corrosion potential

  2. Investigation of heat flux processes governing the increase of groundwater temperatures beneath cities

    Science.gov (United States)

    Bayer, P.; Menberg, K.; Zhu, K.; Blum, P.

    2012-12-01

    In the subsurface of many cities there are widespread and persistent thermal anomalies. These so-called subsurface urban heat islands (UHIs), which also stimulate warming of urban aquifers, are triggered by various processes. Possible heat sources are basements of buildings, leakage of sewage systems, buried district heating networks, re-injection of cooling water and solar irradiation on paved surfaces. In the current study, the reported groundwater temperatures in several Central European cities, such as Berlin, Cologne (Germany) and Zurich (Switzerland) are compared. Available data sets are supplemented by temperature measurements and depth profiles in observation wells. Trend analyses are conducted with time series of groundwater temperatures, and three-dimensional groundwater temperature maps are provided. In all investigated cities, pronounced positive temperature anomalies are present. The distribution of groundwater temperatures appears to be spatially and temporally highly variable. Apparently, the increased heat input into the urban subsurface is controlled by very local and site-specific parameters. In the long-run, the combination of various heat sources results in an extensive temperature increase. In many cases, the maximum temperature elevation is found close to the city center. Regional groundwater temperature differences between the city center and the rural background are up to 5 °C, with local hot spots of even more pronounced anomalies. Particular heat sources, like cooling water injections or case-specific underground constructions, can cause local temperatures > 20 °C in the subsurface. Examination of the long-term variations in isotherm maps shows that temperatures have increased by about 1 °C in the city, as well as in the rural background areas over the last decades. This increase could be reproduced with trend analysis of temperature data gathered from several groundwater wells. Comparison between groundwater and air temperatures in the

  3. Oxidation of zircaloy-2 in high temperature steam

    International Nuclear Information System (INIS)

    Ikeda, Seiichi; Ito, Goro; Ohashi, Shigeo

    1975-01-01

    Oxidation tests were conducted for zircaloy-2 in steam at temperature ranging from 900 to 1300 0 C to clarify its oxidation kinetics as a nuclear fuel cladding materials in case of a loss-of-coolant accident. The influence of maximum temperature and heating rate of the specimen on its oxidation rate in steam was investigated. The changes in mechanical properties of the specimens after oxidation tests are also studied. The results obtained were summarized as follows: (1) The weight of the specimen after oxidation in steam increased two times as the time required to reach the maximum temperature increased from 1 to 10 mins. (2) The kinetics of oxidation of zircaloy-2 in steam were not affected by the difference in the surface condition before test such as chemical polishing or pre-oxidation in steam. (3) The dominant growth of oxide film on the surface of zircaloy-2 was observed at the initial stage of oxidation in steam. However, the thickness of oxygen-rich solid solution layer under the film increased gradually with the progress of oxidation and the ratio of oxygen in oxide to that in solid solution has a constant value of 8:2. (4) The breakaway took place only in the specimen subjected to 900 0 C repeated heating. This penomenon was caused by the local growth of the oxide below a crack of the oxide film resulting from the reheating of the specimen. (5) The results of bending tests showed that the deflection until fracture of the specimen was smaller for the one heated at a higher temperature even if the weight increase was of the same order of magnitude for both specimens. (6) It was concluded that the ductility of zircaloy-2 decreased remarkably at a heating temperature in excess of 1100 0 C for more than 5 min. (auth.)

  4. Phase separation temperatures of a liquid mixture: Dynamic light scattering technique

    International Nuclear Information System (INIS)

    Dangudom, K.; Wongtawatnugool, C.; Lacharojana, S.

    2010-01-01

    Light scattering intensity measurements and photon correlation spectroscopy (PCS) techniques were employed in an investigation of liquid-liquid phase separation behaviour of a mixture of cyclohexane and methanol at seven different compositions. It was found that, except for one composition (29% methanol), the temperature at which the scattering intensity was a maximum did not coincide with the one where the diffusion coefficient was a minimum, as would be for the case of a vapour-liquid system. The difference may be explained in terms of the local density fluctuation and the random walk problem responsible for the peak intensity and the minimum in the diffusion coefficient, respectively. The definition of phase separation temperature, as determined from diffusion process, was also proposed in this work.

  5. Stabilization of a magnetic island by localized heating in a tokamak with stiff temperature profile

    Science.gov (United States)

    Maget, Patrick; Widmer, Fabien; Février, Olivier; Garbet, Xavier; Lütjens, Hinrich

    2018-02-01

    In tokamaks plasmas, turbulent transport is triggered above a threshold in the temperature gradient and leads to stiff profiles. This particularity, neglected so far in the problem of magnetic island stabilization by a localized heat source, is investigated analytically in this paper. We show that the efficiency of the stabilization is deeply modified compared to the previous estimates due to the strong dependence of the turbulence level on the additional heat source amplitude inside the island.

  6. Influence of maximum water temperature on occurrence of Lahontan cutthroat trout within streams

    Science.gov (United States)

    J. Dunham; R. Schroeter; B. Rieman

    2003-01-01

    We measured water temperature at 87 sites in six streams in two different years (1998 and 1999) to test for association with the occurrence of Lahontan cutthroat trout Oncorhynchus clarki henshawi. Because laboratory studies suggest that Lahontan cutthroat trout begin to show signs of acute stress at warm (>22°C) temperatures, we focused on the...

  7. Temperature dependent evolution of the electronic and local atomic structure in the cubic colossal magnetoresistive manganite La1-xSrxMnO3

    International Nuclear Information System (INIS)

    Arenholz, Elke; Mannella, N.; Booth, C.H.; Rosenhahn, A.; Sell, B.C.; Nambu, A.; Marchesini, S.; Mun, B. S.; Yang, S.-H.; Watanabe, M.; Ibrahim, K.; Arenholz, E.; Young, A.; Guo, J.; Tomioka, Y.; Fadley, C.S.

    2007-01-01

    We have studied the temperature-dependent evolution of the electronic and local atomic structure in the cubic colossal magnetoresistive manganite La 1-x Sr x MnO 3 (x= 0.3-0.4) with core and valence level photoemission (PE), x-ray absorption spectroscopy (XAS), x-ray emission spectroscopy (XES), resonant inelastic x-ray scattering (RIXS), extended x-ray absorption fine structure (EXAFS) spectroscopy and magnetometry. As the temperature is varied across the Curie temperature T c , our PE experiments reveal a dramatic change of the electronic structure involving an increase in the Mn spin moment from ∼ 3 (micro)B to ∼ 4 (micro)B, and a modification of the local chemical environment of the other constituent atoms indicative of electron localization on the Mn atom. These effects are reversible and exhibit a slow-timescale ∼200 K-wide hysteresis centered at T c . Based upon the probing depths accessed in our PE measurements, these effects seem to survive for at least 35-50 (angstrom) inward from the surface, while other consistent signatures for this modification of the electronic structure are revealed by more bulk sensitive spectroscopies like XAS and XES/RIXS. We interpret these effects as spectroscopic fingerprints for polaron formation, consistent with the presence of local Jahn-Teller distortions of the MnO 6 octahedra around the Mn atom, as revealed by the EXAFS data. Magnetic susceptibility measurements in addition show typical signatures of ferro-magnetic clusters formation well above the Curie temperature

  8. Low-cost multi-vehicle air temperature measurements for heat load assessment in local-scale climate applications

    Science.gov (United States)

    Zuvela-Aloise, Maja; Weyss, Gernot; Aloise, Giulliano; Mifka, Boris; Löffelmann, Philemon; Hollosi, Brigitta; Nemec, Johana; Vucetic, Visnja

    2014-05-01

    In the recent years there has been a strong interest in exploring the potential of low-cost measurement devices as alternative source of meteorological monitoring data, especially in the urban areas where high-density observations become crucial for appropriate heat load assessment. One of the simple, but efficient approaches for gathering large amount of spatial data is through mobile measurement campaigns in which the sensors are attached to driving vehicles. However, non-standardized data collecting procedure, instrument quality, their response-time and design, variable device ventilation and radiation protection influence the reliability of the gathered data. We investigate what accuracy can be expected from the data collected through low-cost mobile measurements and whether the achieved quality of the data is sufficient for validation of the state-of-the-art local-scale climate models. We tested 5 types of temperature sensors and data loggers: Maxim iButton, Lascar EL-USB-2-LCD+ and Onset HOBO UX100-003 as market available devices and self-designed solar powered Arduino-based data loggers combined with the AOSONG AM2315 and Sensirion SHT21 temperature and humidity sensors. The devices were calibrated and tested in stationary mode at the Austrian Weather Service showing accuracy between 0.1°C and 0.8°C, which was mostly within the device specification range. In mobile mode, the best response-time was found for self-designed device with Arduino-based data logger and Sensirion SHT21 sensor. However, the device lacks the mechanical robustness and should be further improved for broad-range applications. We organized 4 measurement tours: two taking place in urban environment (Vienna, Austria in July 2011 and July 2013) and two in countryside with complex terrain of Mid-Adriatic islands (Hvar and Korcula, Croatia in August 2013). Measurements were taken on clear-sky, dry and hot days. We combined multiple devices attached to bicycle and cars with different

  9. The effect of dry spots on heat transfer in a locally heated liquid film moving under the action of gas flow in a channel

    Science.gov (United States)

    Zaitsev, D. V.; Tkachenko, E. M.; Bykovskaya, E. F.

    2017-11-01

    Intensive evaporation of a thin liquid film, moving in a flat micro-/minichannel under the action of gas flow is very promising for the use in cooling systems of modern semiconductor devices with localized heat sources of high intensity. In this work, using the high-speed visualization, the effect of the formation of dry spots on heat transfer in a locally heated liquid film shear-driven in a channel was investigated. It was found that the maximum intensity of heat removal from the heater is achieved in the mode, when the film flow continuity is broken. During the experiment the total area of dry spots increases with increasing heat flux and heater temperature, but when the heater reaches a certain temperature (≈100°C), the total area begins to decrease. However, the length of contact line increases with increasing heat flux and reaches a maximum in the pre-crisis regime. Intensive evaporation in the region of the contact line may explain the achievement of high heat fluxes in the shear-driven liquid film.

  10. Increasing bioenergy production on arable land: Does the regional and local climate respond? Germany as a case study

    Science.gov (United States)

    Tölle, Merja H.; Gutjahr, Oliver; Busch, Gerald; Thiele, Jan C.

    2014-03-01

    The extent and magnitude of land cover change effect on local and regional future climate during the vegetation period due to different forms of bioenergy plants are quantified for extreme temperatures and energy fluxes. Furthermore, we vary the spatial extent of plant allocation on arable land and simulate alternative availability of transpiration water to mimic both rainfed agriculture and irrigation. We perform climate simulations down to 1 km scale for 1970-1975 C20 and 2070-2075 A1B over Germany with Consortium for Small-Scale Modeling in Climate Mode. Here an impact analysis indicates a strong local influence due to land cover changes. The regional effect is decreased by two thirds of the magnitude of the local-scale impact. The changes are largest locally for irrigated poplar with decreasing maximum temperatures by 1°C in summer months and increasing specific humidity by 0.15 g kg-1. The increased evapotranspiration may result in more precipitation. The increase of surface radiative fluxes Rnet due to changes in latent and sensible heat is estimated by 5 W m-2locally. Moreover, increases in the surface latent heat flux cause strong local evaporative cooling in the summer months, whereas the associated regional cooling effect is pronounced by increases in cloud cover. The changes on a regional scale are marginal and not significant. Increasing bioenergy production on arable land may result in local temperature changes but not in substantial regional climate change in Germany. We show the effect of agricultural practices during climate transitions in spring and fall.

  11. Maximally-localized position, Euclidean path-integral, and thermodynamics in GUP quantum mechanics

    Science.gov (United States)

    Bernardo, Reginald Christian S.; Esguerra, Jose Perico H.

    2018-04-01

    In dealing with quantum mechanics at very high energies, it is essential to adapt to a quasiposition representation using the maximally-localized states because of the generalized uncertainty principle. In this paper, we look at maximally-localized states as eigenstates of the operator ξ = X + iβP that we refer to as the maximally-localized position. We calculate the overlap between maximally-localized states and show that the identity operator can be expressed in terms of the maximally-localized states. Furthermore, we show that the maximally-localized position is diagonal in momentum-space and that the maximally-localized position and its adjoint satisfy commutation and anti-commutation relations reminiscent of the harmonic oscillator commutation and anti-commutation relations. As application, we use the maximally-localized position in developing the Euclidean path-integral and introduce the compact form of the propagator for maximal localization. The free particle momentum-space propagator and the propagator for maximal localization are analytically evaluated up to quadratic-order in β. Finally, we obtain a path-integral expression for the partition function of a thermodynamic system using the maximally-localized states. The partition function of a gas of noninteracting particles is evaluated. At temperatures exceeding the Planck energy, we obtain the gas' maximum internal energy N / 2 β and recover the zero heat capacity of an ideal gas.

  12. Vapor-based interferometric measurement of local evaporation rate and interfacial temperature of evaporating droplets.

    Science.gov (United States)

    Dehaeck, Sam; Rednikov, Alexey; Colinet, Pierre

    2014-03-04

    The local evaporation rate and interfacial temperature are two quintessential characteristics for the study of evaporating droplets. Here, it is shown how one can extract these quantities by measuring the vapor concentration field around the droplet with digital holographic interferometry. As a concrete example, an evaporating freely receding pending droplet of 3M Novec HFE-7000 is analyzed at ambient conditions. The measured vapor cloud is shown to deviate significantly from a pure-diffusion regime calculation, but it compares favorably to a new boundary-layer theory accounting for a buoyancy-induced convection in the gas and the influence upon it of a thermal Marangoni flow. By integration of the measured local evaporation rate over the interface, the global evaporation rate is obtained and validated by a side-view measurement of the droplet shape. Advective effects are found to boost the global evaporation rate by a factor of 4 as compared to the diffusion-limited theory.

  13. Treponema pallidum 3-Phosphoglycerate Mutase Is a Heat-Labile Enzyme That May Limit the Maximum Growth Temperature for the Spirochete

    Science.gov (United States)

    Benoit, Stéphane; Posey, James E.; Chenoweth, Matthew R.; Gherardini, Frank C.

    2001-01-01

    In the causative agent of syphilis, Treponema pallidum, the gene encoding 3-phosphoglycerate mutase, gpm, is part of a six-gene operon (tro operon) that is regulated by the Mn-dependent repressor TroR. Since substrate-level phosphorylation via the Embden-Meyerhof pathway is the principal way to generate ATP in T. pallidum and Gpm is a key enzyme in this pathway, Mn could exert a regulatory effect on central metabolism in this bacterium. To study this, T. pallidum gpm was cloned, Gpm was purified from Escherichia coli, and antiserum against the recombinant protein was raised. Immunoblots indicated that Gpm was expressed in freshly extracted infective T. pallidum. Enzyme assays indicated that Gpm did not require Mn2+ while 2,3-diphosphoglycerate (DPG) was required for maximum activity. Consistent with these observations, Mn did not copurify with Gpm. The purified Gpm was stable for more than 4 h at 25°C, retained only 50% activity after incubation for 20 min at 34°C or 10 min at 37°C, and was completely inactive after 10 min at 42°C. The temperature effect was attenuated when 1 mM DPG was added to the assay mixture. The recombinant Gpm from pSLB2 complemented E. coli strain PL225 (gpm) and restored growth on minimal glucose medium in a temperature-dependent manner. Increasing the temperature of cultures of E. coli PL225 harboring pSLB2 from 34 to 42°C resulted in a 7- to 11-h period in which no growth occurred (compared to wild-type E. coli). These data suggest that biochemical properties of Gpm could be one contributing factor to the heat sensitivity of T. pallidum. PMID:11466272

  14. Experimentally and numerically investigating cell performance and localized characteristics for a high-temperature proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Su Ay; Ferng, Yuh Ming; Shih, Jah Ching

    2009-01-01

    This paper is to experimentally and numerically investigate the cell performance and the localized characteristics associated with a high-temperature proton exchange membrane fuel cell (PEMFC). Three experiments are carried out in order to study the performance of the PEMFC with different operating conditions and to validate the numerical simulation model. The model proposed herein is a three-dimensional (3-D) computational fluid dynamics (CFD) non-isothermal model that essentially consists of thermal-hydraulic equations and electrochemical model. The performance curves of the PEMFC predicted by the present model agree with the experimental measured data. In addition, both the experiments and the predictions precisely demonstrate the enhanced effects of inlet gas temperature and system pressure on the PEMFC performance. Based on the simulation results, the localized characteristics within a PEMFC can be reasonably captured. These parameters include the fuel gas distribution, liquid water saturation distribution, membrane conductivity distribution, temperature variation, and current density distribution etc. As the PEMFC is operated at the higher current density, the fuel gas would be insufficiently supplied to the catalyst layer, consequently causing the decline in the generation of power density. This phenomenon is so called mass transfer limitation, which can be precisely simulated by the present CFD model.

  15. Temporal evolutions of electron temperature and density with edge localized mode in the JT-60U divertor plasma

    International Nuclear Information System (INIS)

    Nakano, T; Kubo, H; Asakura, N

    2010-01-01

    From the intensity ratios of the three He I lines measured at 20 kHz, the temporal evolutions of the electron temperature and density during and after the power and the particle flow into the divertor plasma caused by edge localized modes are determined. The electron temperature increases from 70 eV to 80 eV with increasing D α intensity. Then, at the peak of D α intensity, the electron temperature starts decreasing down to 60 eV. The electron density increases from 0.1 x 10 19 m -3 to 0.3 x 10 19 m -3 with increasing D α intensity, and then starts to decrease more gradually compared with the electron temperature after the peak of D α intensity. It is interpreted that the increase of the electron temperature is ascribed to the power and the particle flow into the divertor plasma, and that the decrease of the electron temperature and the increase of the electron density are ascribed to the ionization of the recycled neutrals, which consumes the electron energy and produces electrons.

  16. Local variation of fragility and glass transition temperature of ultra-thin supported polymer films.

    Science.gov (United States)

    Hanakata, Paul Z; Douglas, Jack F; Starr, Francis W

    2012-12-28

    Despite extensive efforts, a definitive picture of the glass transition of ultra-thin polymer films has yet to emerge. The effect of film thickness h on the glass transition temperature T(g) has been widely examined, but this characterization does not account for the fragility of glass-formation, which quantifies how rapidly relaxation times vary with temperature T. Accordingly, we simulate supported polymer films of a bead-spring model and determine both T(g) and fragility, both as a function of h and film depth. We contrast changes in the relaxation dynamics with density ρ and demonstrate the limitations of the commonly invoked free-volume layer model. As opposed to bulk polymer materials, we find that the fragility and T(g) do not generally vary proportionately. Consequently, the determination of the fragility profile--both locally and for the film as a whole--is essential for the characterization of changes in film dynamics with confinement.

  17. GPU-based local interaction simulation approach for simplified temperature effect modelling in Lamb wave propagation used for damage detection

    International Nuclear Information System (INIS)

    Kijanka, P; Radecki, R; Packo, P; Staszewski, W J; Uhl, T

    2013-01-01

    Temperature has a significant effect on Lamb wave propagation. It is important to compensate for this effect when the method is considered for structural damage detection. The paper explores a newly proposed, very efficient numerical simulation tool for Lamb wave propagation modelling in aluminum plates exposed to temperature changes. A local interaction approach implemented with a parallel computing architecture and graphics cards is used for these numerical simulations. The numerical results are compared with the experimental data. The results demonstrate that the proposed approach could be used efficiently to produce a large database required for the development of various temperature compensation procedures in structural health monitoring applications. (paper)

  18. Anomalous maximum and minimum for the dissociation of a geminate pair in energetically disordered media

    Science.gov (United States)

    Govatski, J. A.; da Luz, M. G. E.; Koehler, M.

    2015-01-01

    We study the geminated pair dissociation probability φ as function of applied electric field and temperature in energetically disordered nD media. Regardless nD, for certain parameters regions φ versus the disorder degree (σ) displays anomalous minimum (maximum) at low (moderate) fields. This behavior is compatible with a transport energy which reaches a maximum and then decreases to negative values as σ increases. Our results explain the temperature dependence of the persistent photoconductivity in C60 single crystals going through order-disorder transitions. They also indicate how an energetic disorder spatial variation may contribute to higher exciton dissociation in multicomponent donor/acceptor systems.

  19. Local properties of the large-scale peaks of the CMB temperature

    Energy Technology Data Exchange (ETDEWEB)

    Marcos-Caballero, A.; Martínez-González, E.; Vielva, P., E-mail: marcos@ifca.unican.es, E-mail: martinez@ifca.unican.es, E-mail: vielva@ifca.unican.es [Instituto de Física de Cantabria, CSIC-Universidad de Cantabria, Avda. de los Castros s/n, 39005 Santander (Spain)

    2017-05-01

    In the present work, we study the largest structures of the CMB temperature measured by Planck in terms of the most prominent peaks on the sky, which, in particular, are located in the southern galactic hemisphere. Besides these large-scale features, the well-known Cold Spot anomaly is included in the analysis. All these peaks would contribute significantly to some of the CMB large-scale anomalies, as the parity and hemispherical asymmetries, the dipole modulation, the alignment between the quadrupole and the octopole, or in the case of the Cold Spot, to the non-Gaussianity of the field. The analysis of the peaks is performed by using their multipolar profiles, which characterize the local shape of the peaks in terms of the discrete Fourier transform of the azimuthal angle. In order to quantify the local anisotropy of the peaks, the distribution of the phases of the multipolar profiles is studied by using the Rayleigh random walk methodology. Finally, a direct analysis of the 2-dimensional field around the peaks is performed in order to take into account the effect of the galactic mask. The results of the analysis conclude that, once the peak amplitude and its first and second order derivatives at the centre are conditioned, the rest of the field is compatible with the standard model. In particular, it is observed that the Cold Spot anomaly is caused by the large value of curvature at the centre.

  20. Overview of Maximum Power Point Tracking Techniques for Photovoltaic Energy Production Systems

    DEFF Research Database (Denmark)

    Koutroulis, Eftichios; Blaabjerg, Frede

    2015-01-01

    A substantial growth of the installed photovoltaic systems capacity has occurred around the world during the last decade, thus enhancing the availability of electric energy in an environmentally friendly way. The maximum power point tracking technique enables maximization of the energy production...... of photovoltaic sources during stochastically varying solar irradiation and ambient temperature conditions. Thus, the overall efficiency of the photovoltaic energy production system is increased. Numerous techniques have been presented during the last decade for implementing the maximum power point tracking...... process in a photovoltaic system. This article provides an overview of the operating principles of these techniques, which are suited for either uniform or non-uniform solar irradiation conditions. The operational characteristics and implementation requirements of these maximum power point tracking...

  1. MAXIMUM POWEWR POINT TRACKING SYSTEM FOR PHOTOVOLTAIC STATION: A REVIEW

    Directory of Open Access Journals (Sweden)

    I. Elzein

    2015-01-01

    Full Text Available In recent years there has been a growing attention towards the use of renewable energy sources. Among them solar energy is one of the most promising green energy resources due to its environment sustainability and inexhaustibility. However photovoltaic systems (PhV suffer from big cost of equipment and low efficiency. Moreover, the solar cell V-I characteristic is nonlinear and varies with irradiation and temperature. In general, there is a unique point of PhV operation, called the Maximum Power Point (MPP, in which the PV system operates with maximum efficiency and produces its maximum output power. The location of the MPP is not known in advance, but can be located, either through calculation models or by search algorithms. Therefore MPPT techniques are important to maintain the PV array’s high efficiency. Many different techniques for MPPT are discussed. This review paper hopefully will serve as a convenient tool for future work in PhV power conversion.

  2. Determination of Cardinal Temperatures and Germination Respond to Different Temperature for Five Lawns Cultivars

    Directory of Open Access Journals (Sweden)

    hadi khavari

    2017-08-01

    Full Text Available Introduction: Germination of every plant species respond to temperature variation in particular way. Germination is critical stage in plant life cycle. Seed germination is a complex biological process that is influenced by various environmental and genetic factors. The effects of temperature on plant development are the basis for models used to predict the timing of germination. Estimation of the cardinal temperatures, including base, optimum, and maximum, is essential because rate of development increases between base and optimum, decreases between optimum and maximum, and ceases above the maximum and below the base temperatures. Usually, a linear increase in germination rate is associated with an increase in temperature from base temperature (Tb to an optimum. An increase of temperature from the optimum will reduce the germination rate to zero. To determine the best planting date for plants, it is necessary to find the base (Tb, optimum (To and maximum temperatures (Tc for seed germination. These are known as cardinal temperatures. Modelling of seed germination is considered an effective approach to determining cardinal temperatures for most plant species, although these methods have some limitations due to unpredictable biological changes. The results of fitting mechanical models are useful for evaluating seed quality, germination rate, germination percentage, germination uniformity and seed performance under different environmental stresses such as salinity, drought, and freezing. Regression models incorporating more parameters can produce more precise estimates. Cardinal temperature was determined using segmented and logistic models in millet varieties and seedling emergence of wheat. In the dent-like model at lower-than-optimum temperature, a linear relationship holds between temperature and germination rate. This relationship remains linear at higher-than-optimum temperatures, but with a reducing trend. With increasing temperature

  3. The localized effect of the Bi level on the valence band in the dilute bismuth GaBixAs1-x alloy

    Science.gov (United States)

    Zhao, Chuan-Zhen; Zhu, Min-Min; Wang, Jun; Wang, Sha-Sha; Lu, Ke-Qing

    2018-05-01

    The research on the temperature dependence of the band gap energy of the dilute bismuth GaBixAs1-x alloy has been done. It is found that its temperature insensitiveness is due to the enhanced localized character of the valence band state and the small decrease of the temperature coefficient for the conduction band minimum (CBM). The enhanced localized character of the valence band state is the main factor. In order to describe the localized effect of the Bi levels on the valence band, the localized energy is introduced into the Varshni's equation. It is found that the effect of the localized Bi level on the valence band becomes strong with increasing Bi content. In addition, it is found that the pressure dependence of the band gap energy of GaBixAs1-x does not seem to be influenced by the localized Bi levels. It is due to two factors. One is that the pressure dependence of the band gap energy is mainly determined by the D CBM of GaBixAs1-x. The D CBM of GaBixAs1-x is not influenced by the localized Bi levels. The other is that the small variation of the pressure coefficient for the D valence band maximum (VBM) state of GaBixAs1-x can be cancelled by the variation of the pressure coefficient for the D CBM state of GaBixAs1-x.

  4. Hierarchical Feature Extraction With Local Neural Response for Image Recognition.

    Science.gov (United States)

    Li, Hong; Wei, Yantao; Li, Luoqing; Chen, C L P

    2013-04-01

    In this paper, a hierarchical feature extraction method is proposed for image recognition. The key idea of the proposed method is to extract an effective feature, called local neural response (LNR), of the input image with nontrivial discrimination and invariance properties by alternating between local coding and maximum pooling operation. The local coding, which is carried out on the locally linear manifold, can extract the salient feature of image patches and leads to a sparse measure matrix on which maximum pooling is carried out. The maximum pooling operation builds the translation invariance into the model. We also show that other invariant properties, such as rotation and scaling, can be induced by the proposed model. In addition, a template selection algorithm is presented to reduce computational complexity and to improve the discrimination ability of the LNR. Experimental results show that our method is robust to local distortion and clutter compared with state-of-the-art algorithms.

  5. Soil and air temperatures for different habitats in Mount Rainier National Park.

    Science.gov (United States)

    Sarah E. Greene; Mark Klopsch

    1985-01-01

    This paper reports air and soil temperature data from 10 sites in Mount Rainier National Park in Washington State for 2- to 5-year periods. Data provided are monthly summaries for day and night mean air temperatures, mean minimum and maximum air temperatures, absolute minimum and maximum air temperatures, range of air temperatures, mean soil temperature, and absolute...

  6. A Maximum Principle for SDEs of Mean-Field Type

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Daniel, E-mail: danieand@math.kth.se; Djehiche, Boualem, E-mail: boualem@math.kth.se [Royal Institute of Technology, Department of Mathematics (Sweden)

    2011-06-15

    We study the optimal control of a stochastic differential equation (SDE) of mean-field type, where the coefficients are allowed to depend on some functional of the law as well as the state of the process. Moreover the cost functional is also of mean-field type, which makes the control problem time inconsistent in the sense that the Bellman optimality principle does not hold. Under the assumption of a convex action space a maximum principle of local form is derived, specifying the necessary conditions for optimality. These are also shown to be sufficient under additional assumptions. This maximum principle differs from the classical one, where the adjoint equation is a linear backward SDE, since here the adjoint equation turns out to be a linear mean-field backward SDE. As an illustration, we apply the result to the mean-variance portfolio selection problem.

  7. A Maximum Principle for SDEs of Mean-Field Type

    International Nuclear Information System (INIS)

    Andersson, Daniel; Djehiche, Boualem

    2011-01-01

    We study the optimal control of a stochastic differential equation (SDE) of mean-field type, where the coefficients are allowed to depend on some functional of the law as well as the state of the process. Moreover the cost functional is also of mean-field type, which makes the control problem time inconsistent in the sense that the Bellman optimality principle does not hold. Under the assumption of a convex action space a maximum principle of local form is derived, specifying the necessary conditions for optimality. These are also shown to be sufficient under additional assumptions. This maximum principle differs from the classical one, where the adjoint equation is a linear backward SDE, since here the adjoint equation turns out to be a linear mean-field backward SDE. As an illustration, we apply the result to the mean-variance portfolio selection problem.

  8. Localization transition in SU(3) gauge theory

    Science.gov (United States)

    Kovács, Tamás G.; Vig, Réka Á.

    2018-01-01

    We study the Anderson-like localization transition in the spectrum of the Dirac operator of quenched QCD. Above the deconfining transition we determine the temperature dependence of the mobility edge separating localized and delocalized eigenmodes in the spectrum. We show that the temperature where the mobility edge vanishes and localized modes disappear from the spectrum coincides with the critical temperature of the deconfining transition. We also identify topological charge related close to zero modes in the Dirac spectrum and show that they account for only a small fraction of localized modes, a fraction that is rapidly falling as the temperature increases.

  9. Down-conversion luminescence and its temperature-sensing properties from Er3+-doped sodium bismuth titanate ferroelectric thin films

    Science.gov (United States)

    Wang, Shanshan; Zheng, Shanshan; Zhou, Hong; Pan, Anlian; Wu, Guangheng; Liu, Jun-ming

    2015-11-01

    Here, we demonstrate outstanding temperature-sensing properties from Na0.5Bi0.49Er0.01TiO3 (NBT:Er) thin films. The perovskite phase for them is stable in the temperature range from 80 to 440 K. Interestingly, the Er doping enhances the ferroelectric polarization and introduces local dipolar, which are positive for temperature sensing. Pumped by a 488-nm laser, the NBT:Er thin films show strong green luminescence with two bands around 525 and 548 nm. The intensity ratio I 525/ I 548 can be used for temperature sensing, and the maximum sensitivity is about 2.3 × 10-3 K-1, higher than that from Er-doped silicon oxide. These suggest NBT:Er thin film is a promising candidate for temperature sensor.

  10. Bio production of red pigment by local isolate of Monascus purpureus

    International Nuclear Information System (INIS)

    Youssef, B.M.; Khalaf, M.A.; Emam, D.A.; Hazaa, M.M.; Shash, S.M.

    2009-01-01

    There is an increased interest on natural pigments to replace some currently used synthetic dyes, since the latter have been associated with toxic effects in foods. The red pigment of the fungus Monascus is widely used in all the world as food additives or pharmaceuticals. The Monascus purpureus local strain, which was isolated from dried silage sample was employed for red pigment production in submerged fermentation (Sm F) conditions. Different fermentation parameters including: incubation period, temperature, initial ph of the medium, agitation, different carbon and nitrogen sources, bio elements and type of inoculum and its age; were carried out under Sm F conditions to enhance the red pigment production. The maximum red pigment production (1.27 gI -1 ) was achieved at incubation temperature 30 C, initial ph 5.5, agitation rate 150 rpm, 2% starch and 0.4% ammonium sulphate as carbon and nitrogen sources, respectively, after 4 days when the production medium inoculated with 12 h age from seed culture inoculum. An experiment was conducted to investigate the effect of gamma irradiation on the activity of Monascus purpureus towards red pigment production. The maximum red pigment production (I.9 gI -1 ) was obtained at 0.5 kGy dose level

  11. Thermal Skin Damage During Reirradiation and Hyperthermia Is Time-Temperature Dependent

    Energy Technology Data Exchange (ETDEWEB)

    Bakker, Akke, E-mail: akke.bakker@amc.uva.nl [Department of Radiation Oncology, Academic Medical Center (AMC), Amsterdam (Netherlands); Kolff, M. Willemijn [Department of Radiation Oncology, Academic Medical Center (AMC), Amsterdam (Netherlands); Holman, Rebecca [Clinical Research Unit, Academic Medical Center (AMC), Amsterdam (Netherlands); Leeuwen, Caspar M. van; Korshuize-van Straten, Linda; Kroon-Oldenhof, Rianne de; Rasch, Coen R.N.; Tienhoven, Geertjan van; Crezee, Hans [Department of Radiation Oncology, Academic Medical Center (AMC), Amsterdam (Netherlands)

    2017-06-01

    Purpose: To investigate the relationship of thermal skin damage (TSD) to time–temperature isoeffect levels for patients with breast cancer recurrence treated with reirradiation plus hyperthermia (reRT + HT), and to investigate whether the treatment history of previous treatments (scar tissue) is a risk factor for TSD. Methods and Materials: In this observational study, temperature characteristics of hyperthermia sessions were analyzed in 262 patients with recurrent breast cancer treated in the AMC between 2010 and 2014 with reirradiation and weekly hyperthermia for 1 hour. Skin temperature was measured using a median of 42 (range, 29-82) measurement points per hyperthermia session. Results: Sixty-eight patients (26%) developed 79 sites of TSD, after the first (n=26), second (n=17), third (n=27), and fourth (n=9) hyperthermia session. Seventy percent of TSD occurred on or near scar tissue. Scar tissue reached higher temperatures than other skin tissue (0.4°C, P<.001). A total of 102 measurement points corresponded to actual TSD sites in 35 of 79 sessions in which TSD developed. Thermal skin damage sites had much higher maximum temperatures than non-TSD sites (2.8°C, P<.001). Generalized linear mixed models showed that the probability of TSD is related to temperature and thermal dose values (P<.001) and that scar tissue is more at risk (odds ratio 0.4, P<.001). Limiting the maximum temperature of a measurement point to 43.7°C would mean that the probability of observing TSD was at most 5%. Conclusion: Thermal skin damage during reRT + HT for recurrent breast cancer was related to higher local temperatures and time–temperature isoeffect levels. Scar tissue reached higher temperatures than other skin tissue, and TSD occurred at lower temperatures and thermal dose values in scar tissue compared with other skin tissue. Indeed, TSD developed often on and around scar tissue from previous surgical procedures.

  12. Tracking the global maximum power point of PV arrays under partial shading conditions

    Science.gov (United States)

    Fennich, Meryem

    This thesis presents the theoretical and simulation studies of the global maximum power point tracking (MPPT) for photovoltaic systems under partial shading. The main goal is to track the maximum power point of the photovoltaic module so that the maximum possible power can be extracted from the photovoltaic panels. When several panels are connected in series with some of them shaded partially either due to clouds or shadows from neighboring buildings, several local maxima appear in the power vs. voltage curve. A power increment based MPPT algorithm is effective in identifying the global maximum from the several local maxima. Several existing MPPT algorithms are explored and the state-of-the-art power increment method is simulated and tested for various partial shading conditions. The current-voltage and power-voltage characteristics of the PV model are studied under different partial shading conditions, along with five different cases demonstrating how the MPPT algorithm performs when shading switches from one state to another. Each case is supplemented with simulation results. The method of tracking the Global MPP is based on controlling the DC-DC converter connected to the output of the PV array. A complete system simulation including the PV array, the direct current to direct current (DC-DC) converter and the MPPT is presented and tested using MATLAB software. The simulation results show that the MPPT algorithm works very well with the buck converter, while the boost converter needs further changes and implementation.

  13. Maximum permissible dose

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    This chapter presents a historic overview of the establishment of radiation guidelines by various national and international agencies. The use of maximum permissible dose and maximum permissible body burden limits to derive working standards is discussed

  14. The GOCF/AWAP system - forecasting temperature extremes

    International Nuclear Information System (INIS)

    Fawcett, Robert; Hume, Timothy

    2010-01-01

    Gridded hourly temperature forecasts from the Bureau of Meteorology's Gridded Operational Consensus Forecasting (GOCF) system are combined in real time with the Australian Water Availability Project (AWAP) gridded daily temperature analyses to produce gridded daily maximum and minimum temperature forecasts with lead times from one to five days. These forecasts are compared against the historical record of AWAP daily temperature analyses (1911 to present), to identify regions where record or near-record temperatures are predicted to occur. This paper describes the GOCF/AWAP system, showing how the daily maximum and minimum temperature forecasts are prepared from the hourly forecasts, and how they are bias-corrected in real time using the AWAP analyses, against which they are subsequently verified. Using monthly climatologies of long-term daily mean, standard deviation and all-time highest and lowest on record, derived forecast products (for both maximum and minimum temperature) include ordinary and standardised anomalies, 'forecast - highest on record' and 'forecast - lowest on record'. Compensation for the climatological variation across the country is achieved in these last two products, which provide the necessary guidance as to whether or not record-breaking temperatures are expected, by expressing the forecast departure from the previous record in both 0 C and standard deviations.

  15. Glass temperatures in free-standing canisters

    International Nuclear Information System (INIS)

    Hardy, B.J.; Hensel, S.J.

    1993-01-01

    The waste-forms produced by the Defense Waste Processing Facility (DWPF) are subject to the requirements of the Waste Acceptance Product Specifications (WAPS). The WAPS sets the maximum post cooldown temperature of the waste-form glass at 400 degrees C. This criterion must be satisfied for the ambient conditions and heat generation rates expected for the waste-forms. As part of the work described in task plan, WSRC-RP-93-1177, Rev. 0, a computer model was used to calculate the maximum glass temperatures in free standing wasteforms for a variety of ambient temperatures and heat generation rates

  16. Cytological Characteristics of Mucose Cell and Vaginal Temperature and pH During Estrous Cycle in Local Sheep

    Directory of Open Access Journals (Sweden)

    Siti Darodjah Rasad

    2017-09-01

    Full Text Available Aim of this study was to examine the characteristics cytology of mucous cell-,temperature- and pH vagina during estrous cycle in local sheep.  31local sheep were synchronized with vaginal sponge consist of 20  mg  progesterone hormone before carried out observations of cytology of cells from the vaginal mucose through vaginal swabs, temperature and pH of the vagina.  Vaginal swabs were collected daily at 7 am for a weeks.Vaginal temperature and pH measurement is carried out twice a day, at 07.00 am and 15.00 pm for a weeks after vaginal swabs. Smears of the swab were then prepared on glass slide and they were stained with Giemsa.  Vaginal epithelial cells; Parabasal, intermediate and superficial cells were counted and their percentages during pro-estrous, estrous and di-estrous were determined. Di-estrous was characterized by the absent of superficial cells in the epithelial vagina. Pro-estrous was characterized by the increasing progressively of intermediate/superficial cells in epithelial vagina, whereas estrous was characterized by the presence of superficial/cornification cells in most epithelial vagina. Based on the dominance of superficial cell, the number of sheep identified as estrous is highest on third day, with 52%.  Observation on vaginal temperature also resulting that the highest temperature values obtained on the third day of 39,08±0.28°C.  It could be effected of the vaginal pH during the observation. Underthe influence ofestrogen, the epithelial vaginalcellssynthesizeand accumulateglycogenin large quantitiesdepositedin the lumen ofvagina. Vaginal bacteriametabolizethe glycogenformlactic acid, which causesvaginal pHis low.The pH conditions prevent from pathogenic microorganisms and fungi. Increased estrogenal so cause cell proliferation through the thickening of the epithelium lining of the vagina so that the cells differentiate.Increasing of glycogenin the superficial cells, and  ceratin cells found in the cytoplasm of

  17. Individual Module Maximum Power Point Tracking for a Thermoelectric Generator Systems

    DEFF Research Database (Denmark)

    Vadstrup, Casper; Chen, Min; Schaltz, Erik

    Thermo Electric Generator (TEG) modules are often connected in a series and/or parallel system in order to match the TEG system voltage with the load voltage. However, in order to be able to control the power production of the TEG system a DC/DC converter is inserted between the TEG system...... and the load. The DC/DC converter is under the control of a Maximum Power Point Tracker (MPPT) which insures that the TEG system produces the maximum possible power to the load. However, if the conditions, e.g. temperature, health, etc., of the TEG modules are different each TEG module will not produce its...

  18. Understanding local degradation of cycled Ni-rich cathode materials at high operating temperature for Li-ion batteries

    Science.gov (United States)

    Hwang, Sooyeon; Kim, Dong Hyun; Chung, Kyung Yoon; Chang, Wonyoung

    2014-09-01

    We utilize transmission electron microscopy in conjunction with electron energy loss spectroscopy to investigate local degradation that occurs in LixNi0.8Co0.15Al0.05O2 cathode materials (NCA) after 30 cycles with cutoff voltages of 4.3 V and 4.8 V at 55 °C. NCA has a homogeneous crystallographic structure before electrochemical reactions; however, we observed that 30 cycles of charge/discharge reactions induced inhomogeneity in the crystallographic and electronic structures and also introduced porosity particularly at surface area. These changes were more noticeable in samples cycled with higher cutoff voltage of 4.8 V. Effect of operating temperature was further examined by comparing electronic structures of oxygen of the NCA particles cycled at both room temperature and 55 °C. The working temperature has a greater impact on the NCA cathode materials at a cutoff voltage of 4.3 V that is the practical the upper limit voltage in most applications, while a cutoff voltage of 4.8 V is high enough to cause surface degradation even at room temperature.

  19. Evaluation of thermocouple fin effect in cladding surface temperature measurement during film boiling

    International Nuclear Information System (INIS)

    Tsuruta, Takaharu; Fujishiro, Toshio

    1984-01-01

    Thermocouple fin effect on surface temperature measurement of a fuel rod has been studied at elevated wall temperatures under film boiling condition in a reactivity initiated accident (RIA) situation. This paper presents an analytical equation to evaluate temperature drops caused by the thermocouple wires attached to cladding surface. The equation yielded the local temperature drop at measuring point depending on thermocouple diameter, cladding temperature, coolant flow condition and vapor film thickness. The temperature drops by the evaluating equation were shown in cases of free and forced convection conditions. The analytical results were compared with the measured data for various thermocouple sizes, and also with the estimated maximum cladding temperature based on the oxidation layer thickness in the cladding outer surface. It was concluded that the temperature drops at above 1,000 0 C in cladding temperature were around 120 and 150 0 C for 0.2 and 0.3 mm diameter Pt-Pt.Rh thermocouples, respectively, under a stagnant coolant condition. The fin effect increases with the decrease of vapor film thickness such as under forced flow cooling or at near the quenching point. (author)

  20. Finite element modeling of temperature load effects on the vibration of local modes in multi-cable structures

    Science.gov (United States)

    Treyssède, Fabien

    2018-01-01

    Understanding thermal effects on the vibration of local (cable-dominant) modes in multi-cable structures is a complicated task. The main difficulty lies in the modification by temperature change of cable tensions, which are then undetermined. This paper applies a finite element procedure to investigate the effects of thermal loads on the linear dynamics of prestressed self-weighted multi-cable structures. Provided that boundary conditions are carefully handled, the discretization of cables with nonlinear curved beam elements can properly represent the thermoelastic behavior of cables as well as their linearized dynamics. A three-step procedure that aims to replace applied pretension forces with displacement continuity conditions is used. Despite an increase in the computational cost related to beam rotational degrees of freedom, such an approach has several advantages. Nonlinear beam finite elements are usually available in commercial codes. The overall method follows a thermoelastic geometrically non-linear analysis and hereby includes the main sources of non-linearities in multi-cable structures. The effects of cable bending stiffness, which can be significant, are also naturally accounted for. The accuracy of the numerical approach is assessed thanks to an analytical model for the vibration of a single inclined cable under temperature change. Then, the effects of thermal loads are investigated for two cable bridges, highlighting how natural frequencies can be affected by temperature. Although counterintuitive, a reverse relative change of natural frequency may occur for certain local modes. This phenomenon can be explained by two distinct mechanisms, one related to the physics intrinsic to cables and the other related to the thermal deflection of the superstructure. Numerical results show that cables cannot be isolated from the rest of the structure and the importance of modeling the whole structure for a quantitative analysis of temperature effects on the

  1. Hierarchical Load Tracking Control of a Grid-Connected Solid Oxide Fuel Cell for Maximum Electrical Efficiency Operation

    Directory of Open Access Journals (Sweden)

    Yonghui Li

    2015-03-01

    Full Text Available Based on the benchmark solid oxide fuel cell (SOFC dynamic model for power system studies and the analysis of the SOFC operating conditions, the nonlinear programming (NLP optimization method was used to determine the maximum electrical efficiency of the grid-connected SOFC subject to the constraints of fuel utilization factor, stack temperature and output active power. The optimal operating conditions of the grid-connected SOFC were obtained by solving the NLP problem considering the power consumed by the air compressor. With the optimal operating conditions of the SOFC for the maximum efficiency operation obtained at different active power output levels, a hierarchical load tracking control scheme for the grid-connected SOFC was proposed to realize the maximum electrical efficiency operation with the stack temperature bounded. The hierarchical control scheme consists of a fast active power control and a slower stack temperature control. The active power control was developed by using a decentralized control method. The efficiency of the proposed hierarchical control scheme was demonstrated by case studies using the benchmark SOFC dynamic model.

  2. Relation of polymer properties and local temperature distribution in a stirred-type batch reactor using several types of impellers; Kakushu han`yo yokutsuki jugo hanno sonai ni okeru ondomura to jugobutsu bussei no kankei

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, K [Soken Chemical and Engineering Co. Ltd., Tokyo (Japan); Kaminoyama, M; Nishi, K; Kamiwano, M [Yokohama National University, Yokohama (Japan). Faculty of Engineering

    1996-07-10

    In polymerization involving a rapid exothermic reaction, it is necessary for the generated heat in this operation to be removed from the reactor by a cooling coil or jacket to control the reaction temperature. But, fluid in the reactor is gets stagnant as the reaction proceeds, because the viscosity is increasing due to monomer convection, therefore the reactor often has induced uneven temperature distribution. In this work, radical addition polymerization was carried out in a reactor using several types of impeller-paddle, anchor, helical screw and helical ribbon, Under these conditions, local temperature distribution was measured in detail using our prototype real-time and multi-point temperature measuring instrument which is able to measure simultaneously changing temperature at local positions via many thermocouples. As a result of these experiments the condition of changing local temperature and the obtained polymers were found to be related to the type of impellers. We found the high temperature areas in the reactor produced polymers composed of undesirably short chain length molecules. As the cooling condition of the reactor was found by measuring local temperature, we could also find a suitable position for the control sensor of temperature for lowering local higher temperature in the polymerization under the set value. 15 refs., 8 figs., 2 tabs.

  3. Quantifying the effects of LUCCs on local temperatures, precipitation, and wind using the WRF model.

    Science.gov (United States)

    Lian, Lishu; Li, Baofu; Chen, Yaning; Chu, Cuicui; Qin, Yanhua

    2017-09-11

    Land use/cover changes (LUCCs) are an important cause of regional climate changes, but the contribution of LUCCs to regional climate changes is not clear. In this study, the Weather Research and Forecasting (WRF) model and statistical methods were used to investigate changes in meteorologic variables in January, April, July, and October 2013 due to local LUCCs from 1990 to 2010 in southern Shandong province, China. The results indicate that the WRF model simulates temperatures in the region well, with high correlation coefficients (0.86-0.97, p wind speed and direction substantially during these four months: average wind speeds increased by 0.02 and 0.01 m/s in January and October, respectively, and decreased by 0.02 and 0.05 m/s in April and July, respectively. Overall, The LUCCs affected spring temperatures the least and summer precipitation the most.

  4. Effects of vernal equinox solar eclipse on temperature and wind direction in Switzerland

    Directory of Open Access Journals (Sweden)

    W. Eugster

    2017-12-01

    Full Text Available The vernal equinox total solar eclipse of 20 March 2015 produced a maximum occultation of 65.8–70.1 % over Switzerland during the morning hours (09:22 to 11:48 CET. Skies were generally clear over the Swiss Alps due to a persistent high-pressure band between the UK and Russia associated with a rather weak pressure gradient over the continent. To assess the effects of penumbral shading on near-surface meteorology across Switzerland, air temperature data measured at 10 min intervals at 184 MeteoSwiss weather stations were used. Wind speed and direction data were available from 165 of these stations. Additionally, six Swiss FluxNet eddy covariance flux (ECF sites provided turbulent measurements at 20 Hz resolution. During maximum occultation, the temperature drop was up to 5.8 K at a mountain site where cold air can pool in a topographic depression. The bootstrapped average of the maximum temperature drops of all 184 MeteoSwiss sites during the solar eclipse was 1.51 ± 0.02 K (mean ± SE. A detailed comparison with literature values since 1834 showed a temperature decrease of 2.6 ± 1.7 K (average of all reports, with extreme values up to 11 K. On fair weather days under weak larger-scale pressure gradients, local thermo-topographic wind systems develop that are driven by small-scale pressure and temperature gradients. At one ECF site, the penumbral shading delayed the morning transition from down-valley to up-valley wind conditions. At another site, it prevented this transition from occurring at all. Data from the 165 MeteoSwiss sites measuring wind direction did not show a consistent pattern of wind direction response to the passing of the penumbral shadow. These results suggest that the local topographic setting had an important influence on the temperature drop and the wind flow patterns during the eclipse. A significant cyclonic effect of the passing penumbral shadow was found in the elevation range

  5. Temperature Distribution in a Displacement Ventilated Room

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    The vertical temperature gradient is normally given as a linear temperature distribution between a minimum temperature close to the floor and a maximum temperature close to the ceiling. The minimum temperature can either be a constant fraction of a load dependent difference or it can be connected...

  6. On the local equilibrium condition

    International Nuclear Information System (INIS)

    Hessling, H.

    1994-11-01

    A physical system is in local equilibrium if it cannot be distinguished from a global equilibrium by ''infinitesimally localized measurements''. This should be a natural characterization of local equilibrium, but the problem is to give a precise meaning to the qualitative phrase ''infinitesimally localized measurements''. A solution is suggested in form of a Local Equilibrium Condition (LEC), which can be applied to linear relativistic quantum field theories but not directly to selfinteracting quantum fields. The concept of local temperature resulting from LEC is compared to an old approach to local temperature based on the principle of maximal entropy. It is shown that the principle of maximal entropy does not always lead to physical states if it is applied to relativistic quantum field theories. (orig.)

  7. Regional aerosol emissions and temperature response: Local and remote climate impacts of regional aerosol forcing

    Science.gov (United States)

    Lewinschal, Anna; Ekman, Annica; Hansson, Hans-Christen

    2017-04-01

    Emissions of anthropogenic aerosols vary substantially over the globe and the short atmospheric residence time of aerosols leads to a highly uneven radiative forcing distribution, both spatially and temporally. Regional aerosol radiative forcing can, nevertheless, exert a large influence on the temperature field away from the forcing region through changes in heat transport or the atmospheric or ocean circulation. Moreover, the global temperature response distribution to aerosol forcing may vary depending on the geographical location of the forcing. In other words, the climate sensitivity in one region can vary depending on the location of the forcing. The surface temperature distribution response to changes in sulphate aerosol forcing caused by sulphur dioxide (SO2) emission perturbations in four different regions is investigated using the Norwegian Earth System Model (NorESM). The four regions, Europe, North America, East and South Asia, are all regions with historically high aerosol emissions and are relevant from both an air-quality and climate policy perspective. All emission perturbations are defined relative to the year 2000 emissions provided for the Coupled Model Intercomparison Project phase 5. The global mean temperature change per unit SO2 emission change is similar for all four regions for similar magnitudes of emissions changes. However, the global temperature change per unit SO2 emission in simulations where regional SO2 emission were removed is substantially higher than that obtained in simulations where regional SO2 emissions were increased. Thus, the climate sensitivity to regional SO2 emissions perturbations depends on the magnitude of the emission perturbation in NorESM. On regional scale, on the other hand, the emission perturbations in different geographical locations lead to different regional temperature responses, both locally and in remote regions. The results from the model simulations are used to construct regional temperature potential

  8. Longitudinal and Seasonal Variations of the Electron Temperature and Density in the Low-Latitude Topside Ionosphere Observed by KOMPSAT-1

    Directory of Open Access Journals (Sweden)

    Heejun Kim

    2002-06-01

    Full Text Available The electron density and temperature in the topside ionosphere are observed by the Ionosphere Measurement Sensor (IMS onboard the KOMPSAT-1, which has the sun-synchronous orbit of the altitude of 685 km and the orbital inclination of 98deg with a descending node at 22:50LT. Observations have been analyzed to determine the seasonal variations of the electron density and temperature in the low-latitude region. Only the night-time (22:50LT behavior on magnetically quiet days (Kp < 4 has been examined. Observations show a strong longitudinal and seasonal variation. Generally, in the dip equator the density increases and the temperature decreases. In equinox the latitudinal distributions of the electron density and temperature are quite symmetric about the dip equator. However, the local maximum of the density and the local minimum of the temperature shift toward the Northern hemisphere in summer solstice but the Southern hemisphere in winter solstice. Such variations are due to the influences of field-aligned plasma transport induced by F region neutral wind. Compared with the IRI95 model, the observed electron density and temperature show significant differences from those predicted by the IRI95 model.

  9. Buckling localization in a cylindrical panel under axial compression

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Needleman, A.

    2000-01-01

    Localization of an initially periodic buckling pattern is investigated for an axially compressed elastic-plastic cylindrical panel of the type occurring between axial stiffeners on cylindrical shells. The phenomenon of buckling localization and its analogy with plastic flow localization in tensile...... test specimens is discussed in general. For the cylindrical panel, it is shown that buckling localization develops shortly after a maximum load has been attained, and this occurs for a purely elastic panel as well as for elastic-plastic panels. In a case where localization occurs after a load maximum......, but where subsequently the load starts to increase again, it is found that near the local load minimum, the buckling pattern switches back to a periodic type of pattern. The inelastic material behavior of the panel is described in terms of J(2) corner theory, which avoids the sometimes unrealistically high...

  10. The extent of permafrost in China during the local Last Glacial Maximum (LLGM)

    NARCIS (Netherlands)

    Zhao, L.; Jin, H.; Li, C.; Cui, Z.; Chang, X.; Marchenko, S.S.; Vandenberghe, J.; Zhang, T.; Luo, D.; Liu, G.; Yi, C.

    2014-01-01

    Recent investigations into relict periglacial phenomena in northern and western China and on the Qinghai-Tibet Plateau provide information for delineating the extent of permafrost in China during the Late Pleistocene. Polygonal and wedge-shaped structures indicate that, during the local Last Glacial

  11. Novel strategies in glioblastoma surgery aim at safe, super-maximum resection in conjunction with local therapies

    NARCIS (Netherlands)

    J.G. Wolbers (John)

    2014-01-01

    textabstractThe biggest challenge in neuro-oncology is the treatment of glioblastoma, which exhibits poor prognosis and is increasing in incidence in an increasing aging population. Diverse treatment strategies aim at maximum cytoreduction and ensuring good quality of life. We discuss multimodal

  12. Temperature condition in decreasing heat transfer zone for NPP steam generators

    International Nuclear Information System (INIS)

    Kudryavtsev, I.S.; Paskar', B.L.; Sudakov, A.V.

    1985-01-01

    An experimental set-up is described and the results of temperature pulsation investigation are presented for coil steam generating channel surfaces of the NPP helium and sodium cooled HTGR. The investigations are carried out at the heat flux density of 350-900 kW/m 3 , the mass rate of 350-2000 kg/(m 2 Xs), the pressUre of 15 MPa. Temperature pulsations occur due to instability of heat transfer in the near-wall region. The results show that the critical region of burnout has a local character. Pulsation dependences on operating conditions are given. The required resource for the steam generating channel may be provided by chosing the ratio of heat flux to the mass rate, the ratio being equal to 0.5 kJ/kg for the channel with the internal diameter of 19 mm, made of the 12Kh2M steel, the wall thickness of 3 mm. In this case the maximum span of temperature pulsations doesn't exceed 25-30 K

  13. Temperature Effect on Energy Demand

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Duk [Korea Energy Economics Institute, Euiwang (Korea)

    1999-03-01

    We provide various estimates of temperature effect for accommodating seasonality in energy demand, particularly natural gas demand. We exploit temperature response and monthly temperature distribution to estimate the temperature effect on natural gas demand. Both local and global smoothed temperature responses are estimated from empirical relationship between hourly temperature and hourly energy consumption data during the sample period (1990 - 1996). Monthly temperature distribution estimates are obtained by kernel density estimation from temperature dispersion within a month. We integrate temperature response and monthly temperature density over all the temperatures in the sample period to estimate temperature effect on energy demand. Then, estimates of temperature effect are compared between global and local smoothing methods. (author). 15 refs., 14 figs., 2 tabs.

  14. The numerical evaluation of maximum-likelihood estimates of the parameters for a mixture of normal distributions from partially identified samples

    Science.gov (United States)

    Walker, H. F.

    1976-01-01

    Likelihood equations determined by the two types of samples which are necessary conditions for a maximum-likelihood estimate are considered. These equations, suggest certain successive-approximations iterative procedures for obtaining maximum-likelihood estimates. These are generalized steepest ascent (deflected gradient) procedures. It is shown that, with probability 1 as N sub 0 approaches infinity (regardless of the relative sizes of N sub 0 and N sub 1, i=1,...,m), these procedures converge locally to the strongly consistent maximum-likelihood estimates whenever the step size is between 0 and 2. Furthermore, the value of the step size which yields optimal local convergence rates is bounded from below by a number which always lies between 1 and 2.

  15. Effects of the midnight temperature maximum observed in the thermosphere-ionosphere over the northeast of Brazil

    Science.gov (United States)

    Figueiredo, Cosme Alexandre O. B.; Buriti, Ricardo A.; Paulino, Igo; Meriwether, John W.; Makela, Jonathan J.; Batista, Inez S.; Barros, Diego; Medeiros, Amauri F.

    2017-08-01

    The midnight temperature maximum (MTM) has been observed in the lower thermosphere by two Fabry-Pérot interferometers (FPIs) at São João do Cariri (7.4° S, 36.5° W) and Cajazeiras (6.9° S, 38.6° W) during 2011, when the solar activity was moderate and the solar flux was between 90 and 155 SFU (1 SFU = 10-22 W m-2 Hz-1). The MTM is studied in detail using measurements of neutral temperature, wind and airglow relative intensity of OI630.0 nm (referred to as OI6300), and ionospheric parameters, such as virtual height (h'F), the peak height of the F2 region (hmF2), and critical frequency of the F region (foF2), which were measured by a Digisonde instrument (DPS) at Eusébio (3.9° S, 38.4° W; geomagnetic coordinates 7.31° S, 32.40° E for 2011). The MTM peak was observed mostly along the year, except in May, June, and August. The amplitudes of the MTM varied from 64 ± 46 K in April up to 144 ± 48 K in October. The monthly temperature average showed a phase shift in the MTM peak around 0.25 h in September to 2.5 h in December before midnight. On the other hand, in February, March, and April the MTM peak occurred around midnight. International Reference Ionosphere 2012 (IRI-2012) model was compared to the neutral temperature observations and the IRI-2012 model failed in reproducing the MTM peaks. The zonal component of neutral wind flowed eastward the whole night; regardless of the month and the magnitude of the zonal wind, it was typically within the range of 50 to 150 m s-1 during the early evening. The meridional component of the neutral wind changed its direction over the months: from November to February, the meridional wind in the early evening flowed equatorward with a magnitude between 25 and 100 m s-1; in contrast, during the winter months, the meridional wind flowed to the pole within the range of 0 to -50 m s-1. Our results indicate that the reversal (changes in equator to poleward flow) or abatement of the meridional winds is an important factor in

  16. Temperature behavior and annealing of insulated gate transistors subjected to localized lifetime control by proton implantation

    International Nuclear Information System (INIS)

    Mogro-Campero, A.; Love, R.P.; Chang, M.F.; Dyer, R.F.

    1987-01-01

    Localized lifetime control by proton implantation can result in a considerable improvement (as much as an order of magnitude or more) in the trade-off between device turn-off time and forward voltage when compared with the unlocalized method of electron irradiation. The physical mechanisms responsible for the qualitative temperature dependences are identified: MOS channel resistance for forward voltage, carrier capture cross-section for turn-off time, and generation and diffusion components of leakage current. Since no catastrophic or unrecoverable behavior is observed, normal device operation within the tested temperature range is possible. Isothermal annealing curves of turn-off time measured after annealing, and corresponding to a few hours annealing time, reveal that a constant turn-off time is reached after about an hour. The constant value increases with temperature, but is still below the unimplanted value after 4 h at 525 0 C. The turn-off time was verified to be constant even after 24 h of annealing at 200 0 C. Lifetime control by proton implantation seems to be more thermally stable than that caused by electron irradiation. (author)

  17. Land Surface Temperature Differences within Local Climate Zones, Based on Two Central European Cities

    Czech Academy of Sciences Publication Activity Database

    Geletič, Jan; Lehnert, M.; Dobrovolný, Petr

    2016-01-01

    Roč. 8, č. 10 (2016), č. článku 788. ISSN 2072-4292 R&D Projects: GA MŠk(CZ) LO1415 Grant - others:UrbanAdapt(XE) EHP-CZ02-OV-1-036-2015 Program:CZ02 Biodiverzita a ekosystémové služby / Monitorování a integrované plánování a kontrola v životním prostředí/ Adaptace na změnu klimatu Institutional support: RVO:67179843 Keywords : land surface temperature * local climate zones * ASTER * LANDSAT * analysis of variance * Prague * Brno * Czech Republic Subject RIV: EH - Ecology, Behaviour Impact factor: 3.244, year: 2016

  18. Global warming in the context of 2000 years of Australian alpine temperature and snow cover.

    Science.gov (United States)

    McGowan, Hamish; Callow, John Nikolaus; Soderholm, Joshua; McGrath, Gavan; Campbell, Micheline; Zhao, Jian-Xin

    2018-03-13

    Annual resolution reconstructions of alpine temperatures are rare, particularly for the Southern Hemisphere, while no snow cover reconstructions exist. These records are essential to place in context the impact of anthropogenic global warming against historical major natural climate events such as the Roman Warm Period (RWP), Medieval Climate Anomaly (MCA) and Little Ice Age (LIA). Here we show for a marginal alpine region of Australia using a carbon isotope speleothem reconstruction, warming over the past five decades has experienced equivalent magnitude of temperature change and snow cover decline to the RWP and MCA. The current rate of warming is unmatched for the past 2000 years and seasonal snow cover is at a minimum. On scales of several decades, mean maximum temperatures have undergone considerable change ≈ ± 0.8 °C highlighting local scale susceptibility to rapid temperature change, evidence of which is often masked in regional to hemisphere scale temperature reconstructions.

  19. Maximum repulsed magnetization of a bulk superconductor with low pulsed field

    International Nuclear Information System (INIS)

    Tsuchimoto, M.; Kamijo, H.; Fujimoto, H.

    2005-01-01

    Pulsed field magnetization of a bulk high-T c superconductor (HTS) is important technique especially for practical applications of a bulk superconducting magnet. Full magnetization is not obtained for low pulsed field and trapped field is decreased by reversed current in the HTS. The trapped field distribution by repulsed magnetization was previously reported in experiments with temperature control. In this study, repulsed magnetization technique with the low pulsed field is numerically analyzed under assumption of variable shielding current by the temperature control. The shielding current densities are discussed to obtain maximum trapped field by two times of low pulsed field magnetizations

  20. Spatial distribution of unidirectional trends in temperature and temperature extremes in Pakistan

    Science.gov (United States)

    Khan, Najeebullah; Shahid, Shamsuddin; Ismail, Tarmizi bin; Wang, Xiao-Jun

    2018-06-01

    Pakistan is one of the most vulnerable countries of the world to temperature extremes due to its predominant arid climate and geographic location in the fast temperature rising zone. Spatial distribution of the trends in annual and seasonal temperatures and temperature extremes over Pakistan has been assessed in this study. The gauge-based gridded daily temperature data of Berkeley Earth Surface Temperature (BEST) having a spatial resolution of 1° × 1° was used for the assessment of trends over the period 1960-2013 using modified Mann-Kendall test (MMK), which can discriminate the multi-decadal oscillatory variations from secular trends. The results show an increase in the annual average of daily maximum and minimum temperatures in 92 and 99% area of Pakistan respectively at 95% level of confidence. The annual temperature is increasing faster in southern high-temperature region compared to other parts of the country. The minimum temperature is rising faster (0.17-0.37 °C/decade) compared to maximum temperature (0.17-0.29 °C/decade) and therefore declination of diurnal temperature range (DTR) (- 0.15 to - 0.08 °C/decade) in some regions. The annual numbers of both hot and cold days are increasing in whole Pakistan except in the northern sub-Himalayan region. Heat waves are on the rise, especially in the hot Sindh plains and the Southern coastal region, while the cold waves are becoming lesser in the northern cold region. Obtained results contradict with the findings of previous studies on temperature trends, which indicate the need for reassessment of climatic trends in Pakistan using the MMK test to understand the anthropogenic impacts of climate change.

  1. Calculated temperature field in and around a repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    Tarandi, T.

    1983-04-01

    Temperature distribution in and around the final storage has been calculated for BWR-fuel. The results are also applicable to PWR-fuel if the amount of fuel is adjusted so that the power per canister is the same. The calculations are made with the conservative assumption of the coefficient of thermal conductivity of 0.75 W/(m degreeC) in the bentonite and 3.0 W/(m degreeC) in the rock. The amount of BWR fuel is about 1.4 ton per canister. The canisters are deposited 40 years after withdrawal from the reactor. A number of different layouts in single and two-level storages have been studied. Finally, a two-level storage has been chosen as a basis for further project work. The maximum temperature increase of 59.2 degreeC at the surface of the canister is reached about 30 years after the time of deposition. However, in this twolevel storage there will be also a second temperature peak of 58.7 degreeC about 600 years after the deposition. The highest temperature increase in the rock, 56.8 degreeC, occurs about 600 years after the deposition. At the same time as the temperature continues to sink, there is a levelling out of the local temperature differences in the storage. These differences are negligible after about 1000 years. After 100000 years the temperatue in the storage is only a few degrees centigrade above the initial rock temperature. The heat from the storage reaches the ground surface about 200 years after the deposition. The maximum heat flow, 0.28 W/m 2 , occurs about 2000 years after deposition and is considered insignificant compared for example with solar energy flow of about 100 W/m 2 . (author)

  2. The impact of heat waves on surface urban heat island and local economy in Cluj-Napoca city, Romania

    Science.gov (United States)

    Herbel, Ioana; Croitoru, Adina-Eliza; Rus, Adina Viorica; Roşca, Cristina Florina; Harpa, Gabriela Victoria; Ciupertea, Antoniu-Flavius; Rus, Ionuţ

    2017-07-01

    The association between heat waves and the urban heat island effect can increase the impact on environment and society inducing biophysical hazards. Heat stress and their associated public health problems are among the most frequent. This paper explores the heat waves impact on surface urban heat island and on the local economy loss during three heat periods in Cluj-Napoca city in the summer of 2015. The heat wave events were identified based on daily maximum temperature, and they were divided into three classes considering the intensity threshold: moderate heat waves (daily maximum temperature exceeding the 90th percentile), severe heat waves (daily maximum temperature over the 95th percentile), and extremely severe heat waves (daily maximum temperature exceeding the 98th percentile). The minimum length of an event was of minimum three consecutive days. The surface urban heat island was detected based on land surface temperature derived from Landsat 8 thermal infrared data, while the economic impact was estimated based on data on work force structure and work productivity in Cluj-Napoca derived from the data released by Eurostat, National Bank of Romania, and National Institute of Statistics. The results indicate that the intensity and spatial extension of surface urban heat island could be governed by the magnitude of the heat wave event, but due to the low number of satellite images available, we should consider this information only as preliminary results. Thermal infrared remote sensing has proven to be a very efficient method to study surface urban heat island, due to the fact that the synoptic conditions associated with heat wave events usually favor cloud free image. The resolution of the OLI_TIRS sensor provided good results for a mid-extension city, but the low revisiting time is still a drawback. The potential economic loss was calculated for the working days during heat waves and the estimated loss reached more than 2.5 mil. EUR for each heat wave day

  3. Atomic gas temperature in a nonequilibrium high-intensity discharge lamp determined from the red wing of the resonance mercury line 254 nm

    International Nuclear Information System (INIS)

    Drakakis, E.; Karabourniotis, D.

    2012-01-01

    For developing low-wattage high intensity discharge (HID) lamps, a better understanding of the relatively unexplored nonequilibrium phenomena is essential. This needs interpretation of diagnostic results by methods free from equilibrium assumptions. In this paper, the atomic temperature is determined from the simulation of a quasistatic broadened resonance line by distinguishing between atomic temperature and excitation temperature in the equation of radiative transfer. The proposed method is applied to the red wing of the resonance mercury line 254 nm emitted from a HID lamp working on ac. The experimental results show severe deviation from local thermodynamic equilibrium. More than one thousand degrees difference was obtained between atomic and electron temperatures at the maximum current phase.

  4. Atomic gas temperature in a nonequilibrium high-intensity discharge lamp determined from the red wing of the resonance mercury line 254 nm

    Energy Technology Data Exchange (ETDEWEB)

    Drakakis, E. [Technological Educational Institute, Department of Electrical Engineering, 71004 Heraklion (Greece); Karabourniotis, D. [Institute of Plasma Physics, Department of Physics, University of Crete, 71003 Heraklion (Greece)

    2012-09-01

    For developing low-wattage high intensity discharge (HID) lamps, a better understanding of the relatively unexplored nonequilibrium phenomena is essential. This needs interpretation of diagnostic results by methods free from equilibrium assumptions. In this paper, the atomic temperature is determined from the simulation of a quasistatic broadened resonance line by distinguishing between atomic temperature and excitation temperature in the equation of radiative transfer. The proposed method is applied to the red wing of the resonance mercury line 254 nm emitted from a HID lamp working on ac. The experimental results show severe deviation from local thermodynamic equilibrium. More than one thousand degrees difference was obtained between atomic and electron temperatures at the maximum current phase.

  5. Local quantum thermal susceptibility

    Science.gov (United States)

    de Pasquale, Antonella; Rossini, Davide; Fazio, Rosario; Giovannetti, Vittorio

    2016-09-01

    Thermodynamics relies on the possibility to describe systems composed of a large number of constituents in terms of few macroscopic variables. Its foundations are rooted into the paradigm of statistical mechanics, where thermal properties originate from averaging procedures which smoothen out local details. While undoubtedly successful, elegant and formally correct, this approach carries over an operational problem, namely determining the precision at which such variables are inferred, when technical/practical limitations restrict our capabilities to local probing. Here we introduce the local quantum thermal susceptibility, a quantifier for the best achievable accuracy for temperature estimation via local measurements. Our method relies on basic concepts of quantum estimation theory, providing an operative strategy to address the local thermal response of arbitrary quantum systems at equilibrium. At low temperatures, it highlights the local distinguishability of the ground state from the excited sub-manifolds, thus providing a method to locate quantum phase transitions.

  6. Design approach to local blockages

    International Nuclear Information System (INIS)

    Roychowdhury, D.G.; Govindarajan, S.; Chetal, S.C.; Bhoje, S.B.

    2000-01-01

    In LMFBR, whole core meltdown accident falls in residual risk category. Propagation of a local fault to whole core, however, needs attention. Subassembly accidents are divided into two categories, Design Basis and Beyond Design Basis accidents. Design Basis is further classified into four categories. All events affecting fuel pin performance are identified and categorised, Total Instantaneous Blockage has been identified as the envelope of all local faults and categorised as BDB event and the safety objective is to demonstrate that no damage will propagate beyond six neighbouring SA. A core catcher has been provided for retention of core debris and cooling it by natural convection. Local blockages may be active and passive. Active blockages can be detected by DND signal. For passive blockages, detection is difficult. Hence, development of a finite volume computer code based on the porous body formulation has been undertaken to define the maximum allowable defect. Experimental programmes have been undertaken to understand blockage mechanism, define maximum credible defect and the thermalhydraulic behaviour of SA with local blockages. Also an experimental programme with a totally blocked SA with a bundle of heated pins has been undertaken to understand the behaviour of the SA. (author)

  7. Colossal magnetoresistance in amino-functionalized graphene quantum dots at room temperature: manifestation of weak anti-localization and doorway to spintronics

    Science.gov (United States)

    Roy, Rajarshi; Thapa, Ranjit; Kumar, Gundam Sandeep; Mazumder, Nilesh; Sen, Dipayan; Sinthika, S.; Das, Nirmalya S.; Chattopadhyay, Kalyan K.

    2016-04-01

    In this work, we have demonstrated the signatures of localized surface distortions and disorders in functionalized graphene quantum dots (fGQD) and consequences in magneto-transport under weak field regime (~1 Tesla) at room temperature. Observed positive colossal magnetoresistance (MR) and its suppression is primarily explained by weak anti-localization phenomenon where competitive valley (inter and intra) dependent scattering takes place at room temperature under low magnetic field; analogous to low mobility disordered graphene samples. Furthermore, using ab-initio analysis we show that sub-lattice sensitive spin-polarized ground state exists in the GQD as a result of pz orbital asymmetry in GQD carbon atoms with amino functional groups. This spin polarized ground state is believed to help the weak anti-localization dependent magneto transport by generating more disorder and strain in a GQD lattice under applied magnetic field and lays the premise for future graphene quantum dot based spintronic applications.In this work, we have demonstrated the signatures of localized surface distortions and disorders in functionalized graphene quantum dots (fGQD) and consequences in magneto-transport under weak field regime (~1 Tesla) at room temperature. Observed positive colossal magnetoresistance (MR) and its suppression is primarily explained by weak anti-localization phenomenon where competitive valley (inter and intra) dependent scattering takes place at room temperature under low magnetic field; analogous to low mobility disordered graphene samples. Furthermore, using ab-initio analysis we show that sub-lattice sensitive spin-polarized ground state exists in the GQD as a result of pz orbital asymmetry in GQD carbon atoms with amino functional groups. This spin polarized ground state is believed to help the weak anti-localization dependent magneto transport by generating more disorder and strain in a GQD lattice under applied magnetic field and lays the premise for

  8. Locally Targeted Delivery of a Micron-Size Radiation Therapy Source Using Temperature-Sensitive Hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yusung, E-mail: yusung-kim@uiowa.edu [Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa (United States); Seol, Dong Rim [Department of Orthopaedic Surgery, The University of Iowa, Iowa City, Iowa (United States); Mohapatra, Sucheta [Department of Biomedical Engineering, The University of Iowa, Iowa City, Iowa (United States); Sunderland, John J. [Department of Radiology, The University of Iowa, Iowa City, Iowa (United States); Schultz, Michael K. [Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa (United States); Department of Radiology, The University of Iowa, Iowa City, Iowa (United States); Domann, Frederick E. [Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa (United States); Department of Surgery, The University of Iowa, Iowa City, Iowa (United States); Lim, Tae-Hong [Department of Biomedical Engineering, The University of Iowa, Iowa City, Iowa (United States)

    2014-04-01

    Purpose: To propose a novel radiation therapy (RT) delivery modality: locally targeted delivery of micron-size RT sources by using temperature-sensitive hydrogel (RT-GEL) as an injectable vehicle. Methods and Materials: Hydrogel is a water-like liquid at room temperature but gels at body temperature. Two US Food and Drug Administration-approved polymers were synthesized. Indium-111 (In-111) was used as the radioactive RT-GEL source. The release characteristics of In-111 from polymerized RT-GEL were evaluated. The injectability and efficacy of RT-GEL delivery to human breast tumor were tested using animal models with control datasets of RT-saline injection. As proof-of-concept studies, a total of 6 nude mice were tested by injecting 4 million tumor cells into their upper backs after a week of acclimatization. Three mice were injected with RT-GEL and 3 with RT-saline. Single-photon emission computed tomography (SPECT) and CT scans were performed on each mouse at 0, 24, and 48 h after injection. The efficacy of RT-GEL was determined by comparison with that of the control datasets by measuring kidney In-111 accumulation (mean nCi/cc), representing the distant diffusion of In-111. Results: RT-GEL was successfully injected into the tumor by using a 30-gauge needle. No difficulties due to polymerization of hydrogel during injection and intratumoral pressure were observed during RT-GEL injection. No back flow occurred for either RT-GEL or RT-saline. The residual tumor activities of In-111 were 49% at 24 h (44% at 48 h, respectively) for RT-GEL and 29% (22%, respectively) for RT-saline. Fused SPECT-CT images of RT-saline showed considerable kidney accumulation of In-111 (2886%, 261%, and 262% of RT-GEL at 0, 24, and 48 h, respectively). Conclusions: RT-GEL was successfully injected and showed much higher residual tumor activity: 170% (200%, respectively), than that of RT-saline at 24 h (48 h, respectively) after injection with a minimal accumulation of In-111 to the

  9. Influence of initial temperature and heating method in the temperature profile during alkaline dissolution of Al for the production of Mo-99

    Energy Technology Data Exchange (ETDEWEB)

    Camilo, Ruth L.; Araujo, Izilda C.; Mindrisz, Ana C.; Forbicini, Christina A.L.G. de O., E-mail: rcamilo@ipen.br, E-mail: cruzaraujo22@gmail.com, E-mail: acmindri@ipen.br, E-mail: cforbici@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Radionuclides in nuclear medicine can be used for diagnosis and therapy. The {sup 99m}Tc, son of {sup 99}Mo, is most often used in nuclear medicine as tracer element because of its favorable nuclear properties, accounting for about 80% of all diagnostic procedures in vivo. Aiming to resolve the dependency of Brazil with respect to the supply of {sup 99}Mo was created the Brazilian Multipurpose Reactor project (BMR), started in 2008, having as main objective to produce about 1000 Ci/week of {sup 99}Mo. This study is part of the project to obtain {sup 9}'9Mo by alkaline dissolution of UAl{sub x}-Al targets. The initial reaction temperature is an important parameter, since it has great influence on the value of the maximum temperature and dissolution time. According to literature, for security reasons the dissolution process must have its temperature controlled so that the maximum temperature has to be around 90 deg C. The behavior of the temperature during dissolution using three different methods of heating in order to minimize the fluctuation of temperature during dissolution, keeping its maximum value at around 90 deg C was studied. The three methods of heating chosen were: a) initial temperature of 85 deg C with continuous heating, b) heating water bath until it reaches the initial temperature (70 to 95 deg C), turning off after that, and c) external heating until it reached the starting temperature (60-95 deg C). The alkaline solution used was 3 mol.L{sup -1} NaOH{sub 3} and 2 mol.L{sup -1} NaNO{sub 3}. In the first study it was observed that after 1 minute of dissolution the solution temperature reached 100 deg C on average, up to a maximum of 109 deg C, ending with values around 95 deg C. In the second study after 3 minutes of dissolution the maximum temperature was 106 deg C and the minimum 100 deg C. In the third study the temperature rise during dissolution increased with increasing initial temperature which practically remains constant until the end

  10. High pressure and high temperature EXAFS and diffraction study of AgI

    International Nuclear Information System (INIS)

    Yoshiasa, Akira; Arima, Hiroshi; Fukui, Hiroshi; Okube, Maki; Katayama, Yoshinori; Ohtaka, Osamu

    2009-01-01

    We have determined the precise P-T phase diagram of AgI by in-situ high-pressure high-temperature synchrotron experiments. X-ray diffraction and XAFS measurements were performed up to 6.0 GPa and 1100 K using a multi-anvil high-pressure device and synchrotron radiation from SPring-8. In the disordered rock-salt phase, Ag ions occupy both octahedral and tetrahedral sites and twenty percent of Ag ions occupy the tetrahedral site as a maximum value at 2 GPa. From the viewpoint of the local structure analyses, some sudden changes are recognized near broad phase transition point. Analysis of EXAFS Debye-Waller factor is useful because the force constant can be decided directly even at high pressure and high temperature. Pressure influences greatly the effective potential and anharmonicity decreases with increasing pressure. (author)

  11. Experimental determination of a critical temperature for maximum anaerobic digester biogas production

    CSIR Research Space (South Africa)

    Sichilalu, S

    2017-08-01

    Full Text Available fission of methanogenic bacteria. The temperature was varied over time over several days and the biogas production is recorded every after 24 hours(1 day) . Based on the experiment setup, the results show a higher biogas production proportional to the rise...

  12. Leaf Dynamics of Panicum maximum under Future Climatic Changes.

    Science.gov (United States)

    Britto de Assis Prado, Carlos Henrique; Haik Guedes de Camargo-Bortolin, Lívia; Castro, Érique; Martinez, Carlos Alberto

    2016-01-01

    Panicum maximum Jacq. 'Mombaça' (C4) was grown in field conditions with sufficient water and nutrients to examine the effects of warming and elevated CO2 concentrations during the winter. Plants were exposed to either the ambient temperature and regular atmospheric CO2 (Control); elevated CO2 (600 ppm, eC); canopy warming (+2°C above regular canopy temperature, eT); or elevated CO2 and canopy warming (eC+eT). The temperatures and CO2 in the field were controlled by temperature free-air controlled enhancement (T-FACE) and mini free-air CO2 enrichment (miniFACE) facilities. The most green, expanding, and expanded leaves and the highest leaf appearance rate (LAR, leaves day(-1)) and leaf elongation rate (LER, cm day(-1)) were observed under eT. Leaf area and leaf biomass were higher in the eT and eC+eT treatments. The higher LER and LAR without significant differences in the number of senescent leaves could explain why tillers had higher foliage area and leaf biomass in the eT treatment. The eC treatment had the lowest LER and the fewest expanded and green leaves, similar to Control. The inhibitory effect of eC on foliage development in winter was indicated by the fewer green, expanded, and expanding leaves under eC+eT than eT. The stimulatory and inhibitory effects of the eT and eC treatments, respectively, on foliage raised and lowered, respectively, the foliar nitrogen concentration. The inhibition of foliage by eC was confirmed by the eC treatment having the lowest leaf/stem biomass ratio and by the change in leaf biomass-area relationships from linear or exponential growth to rectangular hyperbolic growth under eC. Besides, eC+eT had a synergist effect, speeding up leaf maturation. Therefore, with sufficient water and nutrients in winter, the inhibitory effect of elevated CO2 on foliage could be partially offset by elevated temperatures and relatively high P. maximum foliage production could be achieved under future climatic change.

  13. Optimization of the fiber laser parameters for local high-temperature impact on metal

    Science.gov (United States)

    Yatsko, Dmitrii S.; Polonik, Marina V.; Dudko, Olga V.

    2016-11-01

    This paper presents the local laser heating process of surface layer of the metal sample. The aim is to create the molten pool with the required depth by laser thermal treatment. During the heating the metal temperature at any point of the molten zone should not reach the boiling point of the main material. The laser power, exposure time and the spot size of a laser beam are selected as the variable parameters. The mathematical model for heat transfer in a semi-infinite body, applicable to finite slab, is used for preliminary theoretical estimation of acceptable parameters values of the laser thermal treatment. The optimization problem is solved by using an algorithm based on the scanning method of the search space (the zero-order method of conditional optimization). The calculated values of the parameters (the optimal set of "laser radiation power - exposure time - spot radius") are used to conduct a series of natural experiments to obtain a molten pool with the required depth. A two-stage experiment consists of: a local laser treatment of metal plate (steel) and then the examination of the microsection of the laser irradiated region. According to the experimental results, we can judge the adequacy of the ongoing calculations within the selected models.

  14. Understanding local degradation of cycled Ni-rich cathode materials at high operating temperature for Li-ion batteries

    International Nuclear Information System (INIS)

    Hwang, Sooyeon; Kim, Dong Hyun; Chung, Kyung Yoon; Chang, Wonyoung

    2014-01-01

    We utilize transmission electron microscopy in conjunction with electron energy loss spectroscopy to investigate local degradation that occurs in Li x Ni 0.8 Co 0.15 Al 0.05 O 2 cathode materials (NCA) after 30 cycles with cutoff voltages of 4.3 V and 4.8 V at 55 °C. NCA has a homogeneous crystallographic structure before electrochemical reactions; however, we observed that 30 cycles of charge/discharge reactions induced inhomogeneity in the crystallographic and electronic structures and also introduced porosity particularly at surface area. These changes were more noticeable in samples cycled with higher cutoff voltage of 4.8 V. Effect of operating temperature was further examined by comparing electronic structures of oxygen of the NCA particles cycled at both room temperature and 55 °C. The working temperature has a greater impact on the NCA cathode materials at a cutoff voltage of 4.3 V that is the practical the upper limit voltage in most applications, while a cutoff voltage of 4.8 V is high enough to cause surface degradation even at room temperature.

  15. Understanding local degradation of cycled Ni-rich cathode materials at high operating temperature for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sooyeon; Kim, Dong Hyun; Chung, Kyung Yoon; Chang, Wonyoung, E-mail: cwy@kist.re.kr [Center for Energy Convergence, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of)

    2014-09-08

    We utilize transmission electron microscopy in conjunction with electron energy loss spectroscopy to investigate local degradation that occurs in Li{sub x}Ni{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2} cathode materials (NCA) after 30 cycles with cutoff voltages of 4.3 V and 4.8 V at 55 °C. NCA has a homogeneous crystallographic structure before electrochemical reactions; however, we observed that 30 cycles of charge/discharge reactions induced inhomogeneity in the crystallographic and electronic structures and also introduced porosity particularly at surface area. These changes were more noticeable in samples cycled with higher cutoff voltage of 4.8 V. Effect of operating temperature was further examined by comparing electronic structures of oxygen of the NCA particles cycled at both room temperature and 55 °C. The working temperature has a greater impact on the NCA cathode materials at a cutoff voltage of 4.3 V that is the practical the upper limit voltage in most applications, while a cutoff voltage of 4.8 V is high enough to cause surface degradation even at room temperature.

  16. Design and Implementation of Photovoltaic Maximum Power Point Tracking Controller

    Directory of Open Access Journals (Sweden)

    Fawaz S. Abdullah

    2018-03-01

    Full Text Available  The power supplied by any solar array depends upon the environmental conditions as weather conditions (temperature and radiation intensity and the incident angle of the radiant source. The work aims to study the maximum power tracking schemes that used to compare the system performance without and with different types of controllers. The maximum power points of the solar panel under test studied and compared with two controller's types.  The first controller is the proportional- integral - derivative controller type and the second is the perturbation and observation algorithm controller. The associated converter system is a microcontroller based type, whereas the results studied and compared of greatest power point of the Photovoltaic panels under the different two controllers. The experimental tests results compared with simulation results to verify accurate performance.

  17. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1987-07-01

    After a short account of the history of experimental studies on superconductivity, the microscopic theory of superconductivity, the calculation of the control temperature and its possible maximum value are presented. An explanation of the mechanism of superconductivity in recently discovered superconducting metal oxide ceramics and the perspectives for the realization of new high-temperature superconducting materials are discussed. 56 refs, 2 figs, 3 tabs

  18. Evaluation of trends in high temperature extremes in north-western Europe in regional climate models

    International Nuclear Information System (INIS)

    Min, E; Hazeleger, W; Van Oldenborgh, G J; Sterl, A

    2013-01-01

    Projections of future changes in weather extremes on the regional and local scale depend on a realistic representation of trends in extremes in regional climate models (RCMs). We have tested this assumption for moderate high temperature extremes (the annual maximum of the daily maximum 2 m temperature, T ann.max ). Linear trends in T ann.max from historical runs of 14 RCMs driven by atmospheric reanalysis data are compared with trends in gridded station data. The ensemble of RCMs significantly underestimates the observed trends over most of the north-western European land surface. Individual models do not fare much better, with even the best performing models underestimating observed trends over large areas. We argue that the inability of RCMs to reproduce observed trends is probably not due to errors in large-scale circulation. There is also no significant correlation between the RCM T ann.max trends and trends in radiation or Bowen ratio. We conclude that care should be taken when using RCM data for adaptation decisions. (letter)

  19. An iterative procedure for obtaining maximum-likelihood estimates of the parameters for a mixture of normal distributions

    Science.gov (United States)

    Peters, B. C., Jr.; Walker, H. F.

    1978-01-01

    This paper addresses the problem of obtaining numerically maximum-likelihood estimates of the parameters for a mixture of normal distributions. In recent literature, a certain successive-approximations procedure, based on the likelihood equations, was shown empirically to be effective in numerically approximating such maximum-likelihood estimates; however, the reliability of this procedure was not established theoretically. Here, we introduce a general iterative procedure, of the generalized steepest-ascent (deflected-gradient) type, which is just the procedure known in the literature when the step-size is taken to be 1. We show that, with probability 1 as the sample size grows large, this procedure converges locally to the strongly consistent maximum-likelihood estimate whenever the step-size lies between 0 and 2. We also show that the step-size which yields optimal local convergence rates for large samples is determined in a sense by the 'separation' of the component normal densities and is bounded below by a number between 1 and 2.

  20. Simulation of the WWER-440/213 maximum credible accident at the EhNITs stand

    International Nuclear Information System (INIS)

    Blinkov, V.N.; Melikhov, O.I.; Melikhov, V.I.; Davydov, M.V.; Sokolin, A.V.; Shchepetil'nikov, Eh.Yu.

    2000-01-01

    The calculations of thermohydraulic processes through the ATHLET code for determining optimal conditions for modeling the coolant leakage at the EhNITs stand by the maximum credible accident at the NPP with WWER-440/213 reactor are presented. The diameters of the nozzle at the stand, whereby the local criterion of coincidence with the data on the NPP (by the maximum flow) and integral criterion of coincidence (by the mass and energy of the coolant, effluent during 10 s) are determined in the process of parametric calculations [ru

  1. Inference for local autocorrelations in locally stationary models.

    Science.gov (United States)

    Zhao, Zhibiao

    2015-04-01

    For non-stationary processes, the time-varying correlation structure provides useful insights into the underlying model dynamics. We study estimation and inferences for local autocorrelation process in locally stationary time series. Our constructed simultaneous confidence band can be used to address important hypothesis testing problems, such as whether the local autocorrelation process is indeed time-varying and whether the local autocorrelation is zero. In particular, our result provides an important generalization of the R function acf() to locally stationary Gaussian processes. Simulation studies and two empirical applications are developed. For the global temperature series, we find that the local autocorrelations are time-varying and have a "V" shape during 1910-1960. For the S&P 500 index, we conclude that the returns satisfy the efficient-market hypothesis whereas the magnitudes of returns show significant local autocorrelations.

  2. The Ultrachopper tip: a wound temperature study.

    Science.gov (United States)

    Barlow, William R; Pettey, Jeff; Olson, Randall J

    2013-12-01

    To determine the thermal characteristics of the Ultrachopper and its thermal properties in varied viscosurgical substances. Experimental study. Not applicable. The Ultrachopper (Alcon, Inc) tip with the Infiniti (Alcon, Inc) handpiece was attached to a thermistor and placed in a test chamber filled with either an ophthalmic viscosurgical device (OVD) or balanced salt solution (BSS). The thermistor allowed for continuous monitoring of temperature from baseline and the change that occurred over 60 seconds of continuous run time. Mean maximum temperature in each OVD exceeded 50°C over the first 25 seconds of continuous run time. The mean maximum temperature was statistically significantly higher with all OVDs (p < 0.0001) when compared with BSS. A small but statistically significant difference in mean maximum temperature was shown between Healon 5 (AMO, Inc) and Viscoat (Alcon, Inc) (p < 0.05). The linear increase in temperature was statistically significantly different with all OVDs compared with BSS (p < 0.0001). The thermal properties of the Ultrachopper tip demonstrate a heat-generating capacity that achieves published thresholds for risk for wound burn. Copyright © 2013 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  3. Estimation of paddy water temperature during crop development

    International Nuclear Information System (INIS)

    Centeno, H.G.S.; Horie, T.

    1996-01-01

    The crop meristem is in direct contact with paddy water during crop's vegetative stage. Ambient air temperature becomes an important factor in crop development only when internodes elongate sufficiently for the meristem to rise above the water surface. This does not occur until after panicle initiation. Crop growth at vegetative stage is affected more by water temperature than the most commonly measured air temperature. During transplanting in 1992 dry season, the maximum paddy water temperature was 10 deg C higher than the maximum air temperature. For rice crop models, the development of a submodel to estimate water temperature is important to account the effect of paddy water temperature on plant growth. Paddy water temperature is estimated from mean air temperature, solar radiation, and crop canopy. The parameters of the model were derived using the simplex method on data from the 1993 wet- and dry-season field experiments at IRRI

  4. Local quantum thermal susceptibility

    Science.gov (United States)

    De Pasquale, Antonella; Rossini, Davide; Fazio, Rosario; Giovannetti, Vittorio

    2016-01-01

    Thermodynamics relies on the possibility to describe systems composed of a large number of constituents in terms of few macroscopic variables. Its foundations are rooted into the paradigm of statistical mechanics, where thermal properties originate from averaging procedures which smoothen out local details. While undoubtedly successful, elegant and formally correct, this approach carries over an operational problem, namely determining the precision at which such variables are inferred, when technical/practical limitations restrict our capabilities to local probing. Here we introduce the local quantum thermal susceptibility, a quantifier for the best achievable accuracy for temperature estimation via local measurements. Our method relies on basic concepts of quantum estimation theory, providing an operative strategy to address the local thermal response of arbitrary quantum systems at equilibrium. At low temperatures, it highlights the local distinguishability of the ground state from the excited sub-manifolds, thus providing a method to locate quantum phase transitions. PMID:27681458

  5. Effect of Upper-Cycle Temperature on the Load-Biased, Strain-Temperature Response of NiTi

    Science.gov (United States)

    Padula, Santo, II; Noebe, Ronald; Bigelow, Glen; Qiu, Shipeng; Vaidyanathan, Raj; Gaydosh, Darrell; Garg, Anita

    2011-01-01

    Over the past decade, interest in shape memory alloy based actuators has increased as the primary benefits of these solid-state devices have become more apparent. However, much is still unknown about the characteristic behavior of these materials when used in actuator applications. Recently we have shown that the maximum temperature reached during thermal cycling under isobaric conditions could significantly affect the observed mechanical response of NiTi (55 wt% Ni), especially the amount of transformation strain available for actuation and thus work output. The investigation we report here extends that original work to ascertain whether further increases in the upper-cycle temperature would produce additional changes in the work output of the material, which has a stress-free austenite finish temperature of 113 C, and to determine the optimum cyclic conditions. Thus, isobaric, thermal-cycle experiments were conducted on the aforementioned alloy at various stresses from 50-300 MPa using upper-cycle temperatures of 165, 200, 230, 260, 290, 320 and 350 C. The data indicated that the amount of applied stress influenced the transformation strain, as would be expected. However, the maximum temperature reached during the thermal excursion also plays an equally significant role in determining the transformation strain, with the maximum transformation strain observed during thermal cycling to 290 C. In situ neutron diffraction at stress and temperature showed that the differences in transformation strain were mostly related to changes in martensite texture when cycling to different upper-cycle temperatures. Hence, understanding this effect is important to optimizing the operation of SMA-based actuators and could lead to new methods for processing and training shape memory alloys for optimal performance.

  6. Muonium localization in solid krypton

    International Nuclear Information System (INIS)

    Storchak, V.; Cox, S.F.J.; Brewer, J.H.; Morris, G.D.

    1995-06-01

    Muonium spin relaxation in zero, longitudinal and transverse magnetic fields has been studied in solid and liquid krypton in the temperature range from 2 K to 120 K. In the solid at low temperatures, the spin dynamics exhibit features characteristic of a magnetically dilute crystal, permitting measurements of exceptionally low muonium diffusion rates. At the lowest temperatures, a static Kubo-Toyabe relaxation function has been observed for the first time for the atomic muonium state, indicating strong interstitial localization in the Kr lattice at low temperatures; muonium is determined to be localized at the tetrahedral interstitial position. At high temperatures, muonium diffusion in solid Kr exhibits a non-classical behaviour. (author). 31 refs., 6 figs

  7. Maximum photovoltaic power tracking for the PV array using the fractional-order incremental conductance method

    International Nuclear Information System (INIS)

    Lin, Chia-Hung; Huang, Cong-Hui; Du, Yi-Chun; Chen, Jian-Liung

    2011-01-01

    Highlights: → The FOICM can shorten the tracking time less than traditional methods. → The proposed method can work under lower solar radiation including thin and heavy clouds. → The FOICM algorithm can achieve MPPT for radiation and temperature changes. → It is easy to implement in a single-chip microcontroller or embedded system. -- Abstract: This paper proposes maximum photovoltaic power tracking (MPPT) for the photovoltaic (PV) array using the fractional-order incremental conductance method (FOICM). Since the PV array has low conversion efficiency, and the output power of PV array depends on the operation environments, such as various solar radiation, environment temperature, and weather conditions. Maximum charging power can be increased to a battery using a MPPT algorithm. The energy conversion of the absorbed solar light and cell temperature is directly transferred to the semiconductor, but electricity conduction has anomalous diffusion phenomena in inhomogeneous material. FOICM can provide a dynamic mathematical model to describe non-linear characteristics. The fractional-order incremental change as dynamic variable is used to adjust the PV array voltage toward the maximum power point. For a small-scale PV conversion system, the proposed method is validated by simulation with different operation environments. Compared with traditional methods, experimental results demonstrate the short tracking time and the practicality in MPPT of PV array.

  8. Local impact of temperature and precipitation on West Nile virus infection in Culex species mosquitoes in northeast Illinois, USA

    Directory of Open Access Journals (Sweden)

    Haramis Linn

    2010-03-01

    Full Text Available Abstract Background Models of the effects of environmental factors on West Nile virus disease risk have yielded conflicting outcomes. The role of precipitation has been especially difficult to discern from existing studies, due in part to habitat and behavior characteristics of specific vector species and because of differences in the temporal and spatial scales of the published studies. We used spatial and statistical modeling techniques to analyze and forecast fine scale spatial (2000 m grid and temporal (weekly patterns of West Nile virus mosquito infection relative to changing weather conditions in the urban landscape of the greater Chicago, Illinois, region for the years from 2004 to 2008. Results Increased air temperature was the strongest temporal predictor of increased infection in Culex pipiens and Culex restuans mosquitoes, with cumulative high temperature differences being a key factor distinguishing years with higher mosquito infection and higher human illness rates from those with lower rates. Drier conditions in the spring followed by wetter conditions just prior to an increase in infection were factors in some but not all years. Overall, 80% of the weekly variation in mosquito infection was explained by prior weather conditions. Spatially, lower precipitation was the most important variable predicting stronger mosquito infection; precipitation and temperature alone could explain the pattern of spatial variability better than could other environmental variables (79% explained in the best model. Variables related to impervious surfaces and elevation differences were of modest importance in the spatial model. Conclusion Finely grained temporal and spatial patterns of precipitation and air temperature have a consistent and significant impact on the timing and location of increased mosquito infection in the northeastern Illinois study area. The use of local weather data at multiple monitoring locations and the integration of mosquito

  9. Climate Prediction Center (CPC) US daily temperature analyses

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. daily temperature analyses are maps depicting various temperature quantities utilizing daily maximum and minimum temperature data across the US. Maps are...

  10. Effect of Temperature on the Toughness of Locally Manufactured Low Alloy Steel SUP9 Used for Manufacturing Leaf Springs

    Directory of Open Access Journals (Sweden)

    Muhammad Ishaque Abro

    2011-10-01

    Full Text Available The effect of heat treatment on locally manufactured low alloy steel grade SUP9 most frequently used in making leaf springs for automobiles was studied. While for determination of toughness and hardness Charpy impact testing machine and Rockwell hardness tester were used. The cryogenic test temperatures were achieved by soaking the samples in liquid nitrogen and temperature was measured using digital thermometer capable of reading the temperature from -40-200oC. Hardening, tempering and austempering treatments were conducted using muffle furnace and salt bath furnace. After heat treatment samples were quenched in oil. The results of present work confirmed that toughness and hardness are inversely related with each other and are highly dependent on the type of heat treatment employed. Highest toughness was measured after austempering at 450oC. Effect of test temperature revealed that toughness of the samples increased significantly with decreasing temperature. DBTT (Ductile to Brittle Transition Temperature of the austempered samples was observed at -10oC, whereas, that of tempered samples could not be determined. Based on the test results authors wish to recommend the 600oC tempering temperature in place of 450oC where normally tempering is practiced in Alwin industry Karachi during manufacturing of leaf spring.

  11. Influence of Dynamic Neuromuscular Stabilization Approach on Maximum Kayak Paddling Force

    Directory of Open Access Journals (Sweden)

    Davidek Pavel

    2018-03-01

    Full Text Available The purpose of this study was to examine the effect of Dynamic Neuromuscular Stabilization (DNS exercise on maximum paddling force (PF and self-reported pain perception in the shoulder girdle area in flatwater kayakers. Twenty male flatwater kayakers from a local club (age = 21.9 ± 2.4 years, body height = 185.1 ± 7.9 cm, body mass = 83.9 ± 9.1 kg were randomly assigned to the intervention or control groups. During the 6-week study, subjects from both groups performed standard off-season training. Additionally, the intervention group engaged in a DNS-based core stabilization exercise program (quadruped exercise, side sitting exercise, sitting exercise and squat exercise after each standard training session. Using a kayak ergometer, the maximum PF stroke was measured four times during the six weeks. All subjects completed the Disabilities of the Arm, Shoulder and Hand (DASH questionnaire before and after the 6-week interval to evaluate subjective pain perception in the shoulder girdle area. Initially, no significant differences in maximum PF and the DASH questionnaire were identified between the two groups. Repeated measures analysis of variance indicated that the experimental group improved significantly compared to the control group on maximum PF (p = .004; Cohen’s d = .85, but not on the DASH questionnaire score (p = .731 during the study. Integration of DNS with traditional flatwater kayak training may significantly increase maximum PF, but may not affect pain perception to the same extent.

  12. HIgh Temperature Photocatalysis over Semiconductors

    Science.gov (United States)

    Westrich, Thomas A.

    Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a

  13. Entropy generation minimization: A practical approach for performance evaluation of temperature cascaded co-generation plants

    KAUST Repository

    Myat, Aung; Thu, Kyaw; Kim, Youngdeuk; Saha, Bidyut Baran; Ng, K. C.

    2012-01-01

    We present a practical tool that employs entropy generation minimization (EGM) approach for an in-depth performance evaluation of a co-generation plant with a temperature-cascaded concept. Co-generation plant produces useful effect production sequentially, i.e., (i) electricity from the micro-turbines, (ii) low pressure steam at 250 °C or about 8-10 bars, (iii) cooling capacity of 4 refrigeration tones (Rtons) and (iv) dehumidification of outdoor air for air conditioned space. The main objective is to configure the most efficient configuration of producing power and heat. We employed entropy generation minimization (EGM) which reflects to minimize the dissipative losses and maximize the cycle efficiency of the individual thermally activated systems. The minimization of dissipative losses or EGM is performed in two steps namely, (i) adjusting heat source temperatures for the heat-fired cycles and (ii) the use of Genetic Algorithm (GA), to seek out the sensitivity of heat transfer areas, flow rates of working fluids, inlet temperatures of heat sources and coolant, etc., over the anticipated range of operation to achieve maximum efficiency. With EGM equipped with GA, we verified that the local minimization of entropy generation individually at each of the heat-activated processes would lead to the maximum efficiency of the system. © 2012.

  14. Entropy generation minimization: A practical approach for performance evaluation of temperature cascaded co-generation plants

    KAUST Repository

    Myat, Aung

    2012-10-01

    We present a practical tool that employs entropy generation minimization (EGM) approach for an in-depth performance evaluation of a co-generation plant with a temperature-cascaded concept. Co-generation plant produces useful effect production sequentially, i.e., (i) electricity from the micro-turbines, (ii) low pressure steam at 250 °C or about 8-10 bars, (iii) cooling capacity of 4 refrigeration tones (Rtons) and (iv) dehumidification of outdoor air for air conditioned space. The main objective is to configure the most efficient configuration of producing power and heat. We employed entropy generation minimization (EGM) which reflects to minimize the dissipative losses and maximize the cycle efficiency of the individual thermally activated systems. The minimization of dissipative losses or EGM is performed in two steps namely, (i) adjusting heat source temperatures for the heat-fired cycles and (ii) the use of Genetic Algorithm (GA), to seek out the sensitivity of heat transfer areas, flow rates of working fluids, inlet temperatures of heat sources and coolant, etc., over the anticipated range of operation to achieve maximum efficiency. With EGM equipped with GA, we verified that the local minimization of entropy generation individually at each of the heat-activated processes would lead to the maximum efficiency of the system. © 2012.

  15. The discrete and localized nature of the variable emission from active regions

    Science.gov (United States)

    Arndt, Martina Belz; Habbal, Shadia Rifai; Karovska, Margarita

    1994-01-01

    Using data from the Extreme Ultraviolet (EUV) Spectroheliometer on Skylab, we study the empirical characteristics of the variable emission in active regions. These simultaneous multi-wavelength observations clearly confirm that active regions consist of a complex of loops at different temperatures. The variable emission from this complex has very well-defined properties that can be quantitatively summarized as follows: (1) It is localized predominantly around the footpoints where it occurs at discrete locations. (2) The strongest variability does not necessarily coincide with the most intense emission. (3) The fraction of the area of the footpoints, (delta n)/N, that exhibits variable emission, varies by +/- 15% as a function of time, at any of the wavelengths measured. It also varies very little from footpoint to footpoint. (4) This fractional variation is temperature dependent with a maximum around 10(exp 5) K. (5) The ratio of the intensity of the variable to the average background emission, (delta I)/(bar-I), also changes with temperature. In addition, we find that these distinctive characteristics persist even when flares occur within the active region.

  16. Kinetic and Thermodynamic Studies for the Removal of Europium Ions from Waste Solution Using Some Local Clay Minerals

    International Nuclear Information System (INIS)

    El-Kamash, A.M.; El-Masry, E.H.; El-Dessouky, M.I.

    2008-01-01

    Thermodynamic and kinetic investigations on the removal of Eu 3+ ions from aqueous waste solution using bentonite and sandstone, as local clay minerals, has been done using batch technique. The influences of ph, contact time between liquid and solid phases, initial metal ion concentration, and temperature have been evaluated. Pseudo first-order and pseudo second-order kinetic models were used to analyze the sorption rate data and the results showed that the pseudo second-order model is best correlate the kinetic data. Equilibrium isotherms were determined to assess the maximum sorption capacity of bentonite and sandstone and the equilibrium sorption data were analyzed using Freundlich, Langmuir and Dubinin-Radushkevich (D-R) isotherm models. All tested models fit the data reasonably well in terms of regression coefficients. The maximum sorption capacity of bentonite was found to be greater than that of sandstone and the mean free energy is in all cases in the range corresponding to the ion exchange type of sorption. Sorption studies were also performed at different temperatures to obtain the thermodynamic parameters of the process. The numerical value of δG degree decreases with an increase in temperature, indicating that the sorption reaction is more favorable at higher temperature. The positive values of δH degree correspond to the endothermic nature of the sorption process

  17. Afforestation in China cools local land surface temperature

    OpenAIRE

    Peng, Shu-Shi; Piao, Shilong; Zeng, Zhenzhong; Ciais, Philippe; Zhou, Liming; Li, Laurent Z. X.; Myneni, Ranga B.; Yin, Yi; Zeng, Hui

    2014-01-01

    International audience; China has the largest afforested area in the world (~62 million hectares in 2008), and these forests are carbon sinks. The climatic effect of these new forests depends on how radiant and turbulent energy fluxes over these plantations modify surface temperature. For instance, a lower albedo may cause warming, which negates the climatic benefits of carbon sequestration. Here, we used satellite measurements of land surface temperature (LST) from planted forests and adjace...

  18. Mortality impact of extreme winter temperatures

    Science.gov (United States)

    Díaz, Julio; García, Ricardo; López, César; Linares, Cristina; Tobías, Aurelio; Prieto, Luis

    2005-01-01

    During the last few years great attention has been paid to the evaluation of the impact of extreme temperatures on human health. This paper examines the effect of extreme winter temperature on mortality in Madrid for people older than 65, using ARIMA and GAM models. Data correspond to 1,815 winter days over the period 1986 1997, during which time a total of 133,000 deaths occurred. The daily maximum temperature (Tmax) was shown to be the best thermal indicator of the impact of climate on mortality. When total mortality was considered, the maximum impact occured 7 8 days after a temperature extreme; for circulatory diseases the lag was between 7 and 14 days. When respiratory causes were considered, two mortality peaks were evident at 4 5 and 11 days. When the impact of winter extreme temperatures was compared with that associated with summer extremes, it was found to occur over a longer term, and appeared to be more indirect.

  19. Reduced oxygen at high altitude limits maximum size.

    Science.gov (United States)

    Peck, L S; Chapelle, G

    2003-11-07

    The trend towards large size in marine animals with latitude, and the existence of giant marine species in polar regions have long been recognized, but remained enigmatic until a recent study showed it to be an effect of increased oxygen availability in sea water of a low temperature. The effect was apparent in data from 12 sites worldwide because of variations in water oxygen content controlled by differences in temperature and salinity. Another major physical factor affecting oxygen content in aquatic environments is reduced pressure at high altitude. Suitable data from high-altitude sites are very scarce. However, an exceptionally rich crustacean collection, which remains largely undescribed, was obtained by the British 1937 expedition from Lake Titicaca on the border between Peru and Bolivia in the Andes at an altitude of 3809 m. We show that in Lake Titicaca the maximum length of amphipods is 2-4 times smaller than other low-salinity sites (Caspian Sea and Lake Baikal).

  20. Evolutionary rescue and local adaptation under different rates of temperature increase: a combined analysis of changes in phenotype expression and genotype frequency in Paramecium microcosms.

    Science.gov (United States)

    Killeen, Joshua; Gougat-Barbera, Claire; Krenek, Sascha; Kaltz, Oliver

    2017-04-01

    Evolutionary rescue (ER) occurs when populations, which have declined due to rapid environmental change, recover through genetic adaptation. The success of this process and the evolutionary trajectory of the population strongly depend on the rate of environmental change. Here we investigated how different rates of temperature increase (from 23 to 32 °C) affect population persistence and evolutionary change in experimental microcosms of the protozoan Paramecium caudatum. Consistent with theory on ER, we found that those populations experiencing the slowest rate of temperature increase were the least likely to become extinct and tended to be the best adapted to the new temperature environment. All high-temperature populations were more tolerant to severe heat stress (35, 37 °C), indicating a common mechanism of heat protection. High-temperature populations also had superior growth rates at optimum temperatures, leading to the absence of a pattern of local adaptation to control (23 °C) and high-temperature (32 °C) environments. However, high-temperature populations had reduced growth at low temperatures (5-9 °C), causing a shift in the temperature niche. In part, the observed evolutionary change can be explained by selection from standing variation. Using mitochondrial markers, we found complete divergence between control and high-temperature populations in the frequencies of six initial founder genotypes. Our results confirm basic predictions of ER and illustrate how adaptation to an extreme local environment can produce positive as well as negative correlated responses to selection over the entire range of the ecological niche. © 2017 John Wiley & Sons Ltd.

  1. GENERALIZATION OF RAYLEIGH MAXIMUM LIKELIHOOD DESPECKLING FILTER USING QUADRILATERAL KERNELS

    Directory of Open Access Journals (Sweden)

    S. Sridevi

    2013-02-01

    Full Text Available Speckle noise is the most prevalent noise in clinical ultrasound images. It visibly looks like light and dark spots and deduce the pixel intensity as murkiest. Gazing at fetal ultrasound images, the impact of edge and local fine details are more palpable for obstetricians and gynecologists to carry out prenatal diagnosis of congenital heart disease. A robust despeckling filter has to be contrived to proficiently suppress speckle noise and simultaneously preserve the features. The proposed filter is the generalization of Rayleigh maximum likelihood filter by the exploitation of statistical tools as tuning parameters and use different shapes of quadrilateral kernels to estimate the noise free pixel from neighborhood. The performance of various filters namely Median, Kuwahura, Frost, Homogenous mask filter and Rayleigh maximum likelihood filter are compared with the proposed filter in terms PSNR and image profile. Comparatively the proposed filters surpass the conventional filters.

  2. An MEF-Based Localization Algorithm against Outliers in Wireless Sensor Networks.

    Science.gov (United States)

    Wang, Dandan; Wan, Jiangwen; Wang, Meimei; Zhang, Qiang

    2016-07-07

    Precise localization has attracted considerable interest in Wireless Sensor Networks (WSNs) localization systems. Due to the internal or external disturbance, the existence of the outliers, including both the distance outliers and the anchor outliers, severely decreases the localization accuracy. In order to eliminate both kinds of outliers simultaneously, an outlier detection method is proposed based on the maximum entropy principle and fuzzy set theory. Since not all the outliers can be detected in the detection process, the Maximum Entropy Function (MEF) method is utilized to tolerate the errors and calculate the optimal estimated locations of unknown nodes. Simulation results demonstrate that the proposed localization method remains stable while the outliers vary. Moreover, the localization accuracy is highly improved by wisely rejecting outliers.

  3. Local adaptation at the transcriptome level in brown trout: Evidence from early life history temperature genomic reaction norms

    DEFF Research Database (Denmark)

    Meier, Kristian; Hansen, Michael Møller; Normandeau, Eric

    2014-01-01

    Local adaptation and its underlying molecular basis has long been a key focus in evolutionary biology. There has recently been increased interest in the evolutionary role of plasticity and the molecular mechanisms underlying local adaptation. Using transcriptome analysis, we assessed differences....... These included genes involved in immune- and stress response. We observed less plasticity in the resident as compared to the anadromous populations, possibly reflecting that the degree of environmental heterogeneity encountered by individuals throughout their life cycle will select for variable level...... of phenotypic plasticity at the transcriptome level. Our study demonstrates the usefulness of transcriptome approaches to identify genes with different temperature reaction norms. The responses observed suggest that populations may vary in their susceptibility to climate change....

  4. Cosmic shear measurement with maximum likelihood and maximum a posteriori inference

    Science.gov (United States)

    Hall, Alex; Taylor, Andy

    2017-06-01

    We investigate the problem of noise bias in maximum likelihood and maximum a posteriori estimators for cosmic shear. We derive the leading and next-to-leading order biases and compute them in the context of galaxy ellipticity measurements, extending previous work on maximum likelihood inference for weak lensing. We show that a large part of the bias on these point estimators can be removed using information already contained in the likelihood when a galaxy model is specified, without the need for external calibration. We test these bias-corrected estimators on simulated galaxy images similar to those expected from planned space-based weak lensing surveys, with promising results. We find that the introduction of an intrinsic shape prior can help with mitigation of noise bias, such that the maximum a posteriori estimate can be made less biased than the maximum likelihood estimate. Second-order terms offer a check on the convergence of the estimators, but are largely subdominant. We show how biases propagate to shear estimates, demonstrating in our simple set-up that shear biases can be reduced by orders of magnitude and potentially to within the requirements of planned space-based surveys at mild signal-to-noise ratio. We find that second-order terms can exhibit significant cancellations at low signal-to-noise ratio when Gaussian noise is assumed, which has implications for inferring the performance of shear-measurement algorithms from simplified simulations. We discuss the viability of our point estimators as tools for lensing inference, arguing that they allow for the robust measurement of ellipticity and shear.

  5. An iterative procedure for obtaining maximum-likelihood estimates of the parameters for a mixture of normal distributions, 2

    Science.gov (United States)

    Peters, B. C., Jr.; Walker, H. F.

    1976-01-01

    The problem of obtaining numerically maximum likelihood estimates of the parameters for a mixture of normal distributions is addressed. In recent literature, a certain successive approximations procedure, based on the likelihood equations, is shown empirically to be effective in numerically approximating such maximum-likelihood estimates; however, the reliability of this procedure was not established theoretically. Here, a general iterative procedure is introduced, of the generalized steepest-ascent (deflected-gradient) type, which is just the procedure known in the literature when the step-size is taken to be 1. With probability 1 as the sample size grows large, it is shown that this procedure converges locally to the strongly consistent maximum-likelihood estimate whenever the step-size lies between 0 and 2. The step-size which yields optimal local convergence rates for large samples is determined in a sense by the separation of the component normal densities and is bounded below by a number between 1 and 2.

  6. A novel maximum power point tracking method for PV systems using fuzzy cognitive networks (FCN)

    Energy Technology Data Exchange (ETDEWEB)

    Karlis, A.D. [Electrical Machines Laboratory, Department of Electrical & amp; Computer Engineering, Democritus University of Thrace, V. Sofias 12, 67100 Xanthi (Greece); Kottas, T.L.; Boutalis, Y.S. [Automatic Control Systems Laboratory, Department of Electrical & amp; Computer Engineering, Democritus University of Thrace, V. Sofias 12, 67100 Xanthi (Greece)

    2007-03-15

    Maximum power point trackers (MPPTs) play an important role in photovoltaic (PV) power systems because they maximize the power output from a PV system for a given set of conditions, and therefore maximize the array efficiency. This paper presents a novel MPPT method based on fuzzy cognitive networks (FCN). The new method gives a good maximum power operation of any PV array under different conditions such as changing insolation and temperature. The numerical results show the effectiveness of the proposed algorithm. (author)

  7. Maximum Power Point Tracking of Photovoltaic System for Traffic Light Application

    OpenAIRE

    Muhida, Riza; Mohamad, Nor Hilmi; Legowo, Ari; Irawan, Rudi; Astuti, Winda

    2013-01-01

    Photovoltaic traffic light system is a significant application of renewable energy source. The development of the system is an alternative effort of local authority to reduce expenditure for paying fees to power supplier which the power comes from conventional energy source. Since photovoltaic (PV) modules still have relatively low conversion efficiency, an alternative control of maximum power point tracking (MPPT) method is applied to the traffic light system. MPPT is intended to catch up th...

  8. Combined analysis of steady state and transient transport by the maximum entropy method

    Energy Technology Data Exchange (ETDEWEB)

    Giannone, L.; Stroth, U; Koellermeyer, J [Association Euratom-Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); and others

    1996-04-01

    A new maximum entropy approach has been applied to analyse three types of transient transport experiments. For sawtooth propagation experiments in the ASDEX Upgrade and ECRH power modulation and power-switching experiments in the Wendelstein 7-AS Stellarator, either the time evolution of the temperature perturbation or the phase and amplitude of the modulated temperature perturbation are used as non-linear constraints to the {chi}{sub e} profile to be fitted. Simultaneously, the constraints given by the equilibrium temperature profile for steady-state power balance are fitted. In the maximum entropy formulation, the flattest {chi}{sub e} profile consistent with the constraints is found. It was found that {chi}{sub e} determined from sawtooth propagation was greater than the power balance value by a factor of five in the ASDEX Upgrade. From power modulation experiments, employing the measurements of four modulation frequencies simultaneously, the power deposition profile as well as the {chi}{sub e} profile could be determined. A comparison of the predictions of a time-independent {chi}{sub e} model and a power-dependent {chi}{sub e} model is made. The power-switching experiments show that the {chi}{sub e} profile must change within a millisecond to a new value consistent with the power balance value at the new input power. Neither power deposition broadening due to suprathermal electrons nor temperature or gradient dependences of {chi}{sub e} can explain this observation. (author).

  9. Long term forecasting of hourly electricity consumption in local areas in Denmark

    DEFF Research Database (Denmark)

    Møller Andersen, Frits; Larsen, Helge V.; Gaardestrup, R.B.

    2013-01-01

    . The model describes the entire profile of hourly consumption and is a first step towards differentiated local predictions of electricity consumption.The model is based on metering of aggregated hourly consumption at transformer stations covering selected local areas and on national statistics of hourly......Long term projections of hourly electricity consumption in local areas are important for planning of the transmission grid. In Denmark, at present the method used for grid planning is based on statistical analysis of the hour of maximum load and for each local area the maximum load is projected...... to change proportional to changes in the aggregated national electricity consumption. That is, specific local conditions are not considered. Yet, from measurements of local consumption we know that:. •consumption profiles differ between local areas,•consumption by categories of customers contribute...

  10. B-Spline potential function for maximum a-posteriori image reconstruction in fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Shilpa Dilipkumar

    2015-03-01

    Full Text Available An iterative image reconstruction technique employing B-Spline potential function in a Bayesian framework is proposed for fluorescence microscopy images. B-splines are piecewise polynomials with smooth transition, compact support and are the shortest polynomial splines. Incorporation of the B-spline potential function in the maximum-a-posteriori reconstruction technique resulted in improved contrast, enhanced resolution and substantial background reduction. The proposed technique is validated on simulated data as well as on the images acquired from fluorescence microscopes (widefield, confocal laser scanning fluorescence and super-resolution 4Pi microscopy. A comparative study of the proposed technique with the state-of-art maximum likelihood (ML and maximum-a-posteriori (MAP with quadratic potential function shows its superiority over the others. B-Spline MAP technique can find applications in several imaging modalities of fluorescence microscopy like selective plane illumination microscopy, localization microscopy and STED.

  11. Extending the temperature range of the HTR

    International Nuclear Information System (INIS)

    Balcomb, J.D.; Wagner, P.

    1975-01-01

    The operating temperature of the high temperature helium-cooled reactor can be increased in a number of ways in order to provide higher temperature nuclear heat for various industrial processes. Modifications are of two types: 1) decrease in the temperature difference between the maximum coated particle fuel temperature and the mean exit gas temperature, and 2) increased maximum coated particle temperature. Gains in the latter category are limited by fission product diffusion into the gas steam and increases greater than 100 0 K are not forseen. Increases in the former category, however, are readily made and a variety of modifications are proposed as follows: incorporation of coated particles in the fuel matrix; use of a more finely-divided fuel coolant hole geometry to increase heat transfer coefficients and reduce conduction temperature differences; large increases in the fuel matrix graphite thermal conductivity (to about 50 W/m 0 K) to reduce conduction temperature differences; and modifications to the core distribution, both radially and axially. By such means the exit gas temperature can be increased to the range of 1200 0 K to 1600 0 K. (author)

  12. Effects of the midnight temperature maximum observed in the thermosphere–ionosphere over the northeast of Brazil

    Directory of Open Access Journals (Sweden)

    C. A. O. B. Figueiredo

    2017-08-01

    Full Text Available The midnight temperature maximum (MTM has been observed in the lower thermosphere by two Fabry–Pérot interferometers (FPIs at São João do Cariri (7.4° S, 36.5° W and Cajazeiras (6.9° S, 38.6° W during 2011, when the solar activity was moderate and the solar flux was between 90 and 155 SFU (1 SFU  =  10−22 W m−2 Hz−1. The MTM is studied in detail using measurements of neutral temperature, wind and airglow relative intensity of OI630.0 nm (referred to as OI6300, and ionospheric parameters, such as virtual height (h′F, the peak height of the F2 region (hmF2, and critical frequency of the F region (foF2, which were measured by a Digisonde instrument (DPS at Eusébio (3.9° S, 38.4° W; geomagnetic coordinates 7.31° S, 32.40° E for 2011. The MTM peak was observed mostly along the year, except in May, June, and August. The amplitudes of the MTM varied from 64 ± 46 K in April up to 144 ± 48 K in October. The monthly temperature average showed a phase shift in the MTM peak around 0.25 h in September to 2.5 h in December before midnight. On the other hand, in February, March, and April the MTM peak occurred around midnight. International Reference Ionosphere 2012 (IRI-2012 model was compared to the neutral temperature observations and the IRI-2012 model failed in reproducing the MTM peaks. The zonal component of neutral wind flowed eastward the whole night; regardless of the month and the magnitude of the zonal wind, it was typically within the range of 50 to 150 m s−1 during the early evening. The meridional component of the neutral wind changed its direction over the months: from November to February, the meridional wind in the early evening flowed equatorward with a magnitude between 25 and 100 m s−1; in contrast, during the winter months, the meridional wind flowed to the pole within the range of 0 to −50 m s−1. Our results indicate that the reversal (changes

  13. Temperature distribution study in flash-annealed amorphous ribbons

    International Nuclear Information System (INIS)

    Moron, C.; Garcia, A.; Carracedo, M.T.

    2003-01-01

    Negative magnetrostrictive amorphous ribbons have been locally current annealed with currents from 1 to 8 A and annealing times from 14 ms to 200 s. In order to obtain information about the sample temperature during flash or current annealing, a study of the temperature dispersion during annealing in amorphous ribbons was made. The local temperature variation was obtained by measuring the local intensity of the infrared emission of the sample with a CCD liquid nitrogen cooled camera. A distribution of local temperature has been found in spite of the small dimension of the sample

  14. Experimental study on high cycle thermal fatigue in T-junction. Effect of local flow velocity on transfer of temperature fluctuation from fluid to structure

    International Nuclear Information System (INIS)

    Kimura, Nobuyuki; Ono, Ayako; Miyakoshi, Hiroyuki; Kamide, Hideki

    2009-01-01

    A quantitative evaluation on high cycle thermal fatigue due to temperature fluctuation in fluid is of importance for structural integrity in the reactor. It is necessary for the quantitative evaluation to investigate occurrence and propagation processes of temperature fluctuation, e.g., decay of fluctuation intensity near structures and transfer of temperature fluctuation from fluid to structures. The JSME published a guideline for evaluation of high-cycle thermal fatigue of a pipe as the JSME guideline in 2003. This JSME standard covers T-pipe junction used in LWRs operated in Japan. In the guideline, the effective heat transfer coefficients were obtained from temperature fluctuations in fluid and structure in experiments. In the previous studies, the effective heat transfer coefficients were 2 - 10 times larger than the heat transfer coefficients under steady state conditions in a straight tube. In this study, a water experiment of T-junction was performed to evaluate the transfer characteristics of temperature fluctuation from fluid to structure. In the experiment, temperatures in fluid and structure were measured simultaneously at 20 positions to obtain spatial distributions of the effective heat transfer coefficient. In addition, temperatures in structure and local velocities in fluid were measured simultaneously to evaluate the correlation between the temperature and velocity under the non-stationary fields. The large heat transfer coefficients were registered at the region where the local velocity was high. Furthermore it was found that the heat transfer coefficients were correlated with the time-averaged turbulent heat flux near the pipe wall. (author)

  15. Sizing and control of trailing edge flaps on a smart rotor for maximum power generation in low fatigue wind regimes

    DEFF Research Database (Denmark)

    Smit, Jeroen; Bernhammer, Lars O.; Navalkar, Sachin T.

    2016-01-01

    to fatigue damage have been identified. In these regions, the turbine energy output can be increased by deflecting the trailing edge (TE) flap in order to track the maximum power coefficient as a function of local, instantaneous speed ratios. For this purpose, the TE flap configuration for maximum power...... generation has been using blade element momentum theory. As a first step, the operation in non-uniform wind field conditions was analysed. Firstly, the deterministic fluctuation in local tip speed ratio due to wind shear was evaluated. The second effect is associated with time delays in adapting the rotor...

  16. Maximum on the electrical conductivity polytherm of molten TeCl4

    International Nuclear Information System (INIS)

    Salyulev, Alexander B.; Potapov, Alexei M.

    2017-01-01

    The electrical conductivity of molten TeCl 4 was measured up to 761 K, i.e. 106 degrees above the normal boiling point of the salt. For the first time it was found that TeCl 4 electrical conductivity polytherm has a maximum. It was recorded at 705 K (Κ max =0.245 Sm/cm), whereupon the conductivity decreases as the temperature rises. The activation energy of electrical conductivity was calculated.

  17. Non-invasive body temperature measurement of wild chimpanzees using fecal temperature decline.

    Science.gov (United States)

    Jensen, Siv Aina; Mundry, Roger; Nunn, Charles L; Boesch, Christophe; Leendertz, Fabian H

    2009-04-01

    New methods are required to increase our understanding of pathologic processes in wild mammals. We developed a noninvasive field method to estimate the body temperature of wild living chimpanzees habituated to humans, based on statistically fitting temperature decline of feces after defecation. The method was established with the use of control measures of human rectal temperature and subsequent changes in fecal temperature over time. The method was then applied to temperature data collected from wild chimpanzee feces. In humans, we found good correspondence between the temperature estimated by the method and the actual rectal temperature that was measured (maximum deviation 0.22 C). The method was successfully applied and the average estimated temperature of the chimpanzees was 37.2 C. This simple-to-use field method reliably estimates the body temperature of wild chimpanzees and probably also other large mammals.

  18. Apparatus Would Measure Temperatures Of Ball Bearings

    Science.gov (United States)

    Gibson, John C.; Fredricks, Thomas H.

    1995-01-01

    Rig for testing ball bearings under radial and axial loads and measuring surface temperatures undergoing development. Includes extensible thermocouples: by means of bellows as longitudinal positioners, thermocouples driven into contact with bearing balls to sense temperatures immediately after test run. Not necessary to disassemble rig or to section balls to obtain indirect indications of maximum temperatures reached. Thermocouple measurements indicate temperatures better than temperature-sensitive paints.

  19. Electricity Consumption Forecasting Scheme via Improved LSSVM with Maximum Correntropy Criterion

    Directory of Open Access Journals (Sweden)

    Jiandong Duan

    2018-02-01

    Full Text Available In recent years, with the deepening of China’s electricity sales side reform and electricity market opening up gradually, the forecasting of electricity consumption (FoEC becomes an extremely important technique for the electricity market. At present, how to forecast the electricity accurately and make an evaluation of results scientifically are still key research topics. In this paper, we propose a novel prediction scheme based on the least-square support vector machine (LSSVM model with a maximum correntropy criterion (MCC to forecast the electricity consumption (EC. Firstly, the electricity characteristics of various industries are analyzed to determine the factors that mainly affect the changes in electricity, such as the gross domestic product (GDP, temperature, and so on. Secondly, according to the statistics of the status quo of the small sample data, the LSSVM model is employed as the prediction model. In order to optimize the parameters of the LSSVM model, we further use the local similarity function MCC as the evaluation criterion. Thirdly, we employ the K-fold cross-validation and grid searching methods to improve the learning ability. In the experiments, we have used the EC data of Shaanxi Province in China to evaluate the proposed prediction scheme, and the results show that the proposed prediction scheme outperforms the method based on the traditional LSSVM model.

  20. Future changes of temperature and heat waves in Ontario, Canada

    Science.gov (United States)

    Li, Zhong; Huang, Guohe; Huang, Wendy; Lin, Qianguo; Liao, Renfei; Fan, Yurui

    2018-05-01

    Apparent changes in the temperature patterns in recent years brought many challenges to the province of Ontario, Canada. As the need for adapting to climate change challenges increases, the development of reliable climate projections becomes a crucial task. In this study, a regional climate modeling system, Providing Regional Climates for Impacts Studies (PRECIS), is used to simulate the temperature patterns in Ontario. Three PRECIS runs with a resolution of 25 km × 25 km are carried out to simulate the present (1961-1990) temperature variations. There is a good match between the simulated and observed data, which validates the performance of PRECIS in reproducing temperature changes in Ontario. Future changes of daily maximum, mean, and minimum temperatures during the period 2071-2100 are then projected under the IPCC SRES A2 and B2 emission scenarios using PRECIS. Spatial variations of annual mean temperature, mean diurnal range, and temperature seasonality are generated. Furthermore, heat waves defined based on the exceedance of local climatology and their temporal and spatial characteristics are analyzed. The results indicate that the highest temperature and the most intensive heat waves are most likely to occur at the Toronto-Windsor corridor in Southern Ontario. The Northern Ontario, in spite of the relatively low projected temperature, would be under the risk of long-lasting heat waves, and thus needs effective measures to enhance its climate resilience in the future. This study can assist the decision makers in better understanding the future temperature changes in Ontario and provide decision support for mitigating heat-related loss.

  1. Dynamic Performance of Maximum Power Point Trackers in TEG Systems Under Rapidly Changing Temperature Conditions

    DEFF Research Database (Denmark)

    Man, E. A.; Sera, D.; Mathe, L.

    2016-01-01

    of the intermittent operation of the internal combustion engine, the TEG and its MPPT controller are exposed to a cyclic temperature profile. Furthermore, there are no guidelines on how fast the MPPT must be under such dynamic conditions. In the work discussed in this paper, temperature gradients for TEG integrated...

  2. A spatiotemporal analysis of the relationship between near-surface air temperature and satellite land surface temperatures using 17 years of data from the ATSR series

    Science.gov (United States)

    Good, Elizabeth J.; Ghent, Darren J.; Bulgin, Claire E.; Remedios, John J.

    2017-09-01

    The relationship between satellite land surface temperature (LST) and ground-based observations of 2 m air temperature (T2m) is characterized in space and time using >17 years of data. The analysis uses a new monthly LST climate data record (CDR) based on the Along-Track Scanning Radiometer series, which has been produced within the European Space Agency GlobTemperature project (http://www.globtemperature.info/). Global LST-T2m differences are analyzed with respect to location, land cover, vegetation fraction, and elevation, all of which are found to be important influencing factors. LSTnight ( 10 P.M. local solar time, clear-sky only) is found to be closely coupled with minimum T2m (Tmin, all-sky) and the two temperatures generally consistent to within ±5°C (global median LSTnight-Tmin = 1.8°C, interquartile range = 3.8°C). The LSTday ( 10 A.M. local solar time, clear-sky only)-maximum T2m (Tmax, all-sky) variability is higher (global median LSTday-Tmax = -0.1°C, interquartile range = 8.1°C) because LST is strongly influenced by insolation and surface regime. Correlations for both temperature pairs are typically >0.9 outside of the tropics. The monthly global and regional anomaly time series of LST and T2m—which are completely independent data sets—compare remarkably well. The correlation between the data sets is 0.9 for the globe with 90% of the CDR anomalies falling within the T2m 95% confidence limits. The results presented in this study present a justification for increasing use of satellite LST data in climate and weather science, both as an independent variable, and to augment T2m data acquired at meteorological stations.

  3. Design and optimization of automotive thermoelectric generators for maximum fuel efficiency improvement

    International Nuclear Information System (INIS)

    Kempf, Nicholas; Zhang, Yanliang

    2016-01-01

    Highlights: • A three-dimensional automotive thermoelectric generator (TEG) model is developed. • Heat exchanger design and TEG configuration are optimized for maximum fuel efficiency increase. • Heat exchanger conductivity has a strong influence on maximum fuel efficiency increase. • TEG aspect ratio and fin height increase with heat exchanger thermal conductivity. • A 2.5% fuel efficiency increase is attainable with nanostructured half-Heusler modules. - Abstract: Automotive fuel efficiency can be increased by thermoelectric power generation using exhaust waste heat. A high-temperature thermoelectric generator (TEG) that converts engine exhaust waste heat into electricity is simulated based on a light-duty passenger vehicle with a 4-cylinder gasoline engine. Strategies to optimize TEG configuration and heat exchanger design for maximum fuel efficiency improvement are provided. Through comparison of stainless steel and silicon carbide heat exchangers, it is found that both the optimal TEG design and the maximum fuel efficiency increase are highly dependent on the thermal conductivity of the heat exchanger material. Significantly higher fuel efficiency increase can be obtained using silicon carbide heat exchangers at taller fins and a longer TEG along the exhaust flow direction when compared to stainless steel heat exchangers. Accounting for major parasitic losses, a maximum fuel efficiency increase of 2.5% is achievable using newly developed nanostructured bulk half-Heusler thermoelectric modules.

  4. Local pool boiling heat transfer on a 3 Degree inclined tube surface

    International Nuclear Information System (INIS)

    Kang, Myeong Gie

    2012-01-01

    Mechanisms of pool boiling heat transfer have been studied for a long time. Recently, it has been widely investigated in nuclear power plants for the purpose of acquiring inherent safety functions in case of no power supply. To design more efficient heat exchangers, effects of several parameters on heat transfer must be studied in detail. One of the major issues is variation in local heat transfer coefficients on a tube. Lance and Myers reported that the type of boiling liquid can change the trend of local heat transfer coefficients along the tube periphery. Lance and Myers said that as the liquid is methanol the maximum local heat transfer coefficient was observed at the tube bottom while the maximum was at the tube sides as the boiling liquid was n hexane. Corn well and Einarsson reported that the maximum local heat transfer coefficient was observed at the tube bottom, as the boiling liquid was R113. Corn well and Houston explained the reason of the difference in local heat transfer coefficients along the tube circumference with introducing effects of sliding bubbles on heat transfer. According to Gu pta et al., the maximum and the minimum local heat transfer coefficients were observed at the bottom and top regions of the tube circumference, respectively, using a tube bundle and water. Kang also reported the similar results using a single horizontal tube and water. However, the maximum heat transfer coefficient was observed at the angle of 45 deg. Sateesh et al. investigated variations in local heat transfer coefficients along a tube periphery as the inclination angle was changed. Summarizing the published results, some parts are still remaining to be investigated in detail. Although pool boiling analysis on a nearly horizontal tube is necessary for the design of the advanced power reactor plus, no previous results are published yet. Therefore, the present study is aimed to study variations in local pool boiling heat transfer coefficients for a 3 degree inclined

  5. Estimation of complete temperature fields from measured temperatures

    International Nuclear Information System (INIS)

    Clegg, S.T.; Roemer, R.B.

    1984-01-01

    In hyperthermia treatments, it is desirable to be able to predict complete tissue temperature fields from sampled temperatures taken at a few locations. This is a difficult problem in hyperthermia treatments since the tissue blood perfusion is unknown. An initial attempt to do this automatically using unconstrained optimization techniques to minimize the differences between steady state temperatures measured during a treatment and temperatures (at the same locations) predicted from treatment simulations has been previously reported. A second technique using transient temperatures following a step decrease in power has been developed. This technique, which appears to be able to better predict complete temperature fields is presented and both it and the steady state technique are applied to data from both simulated and experimental hyperthermia treatments. The results of applying the two techniques are compared for one-dimensional situations. One particularly important problem which the transient technique can solve (and the steady state technique does not seem to be able to do as well) is that of predicting the complete temperature field in situations where the true maximum and/or minimum temperatures present are not measured by the available instrumentation

  6. Liquid-solid contact measurements using a surface thermocouple temperature probe in atmospheric pool boiling water

    International Nuclear Information System (INIS)

    Lee, L.Y.W.; Chen, J.C.; Nelson, R.A.

    1984-01-01

    Objective was to apply the technique of using a microthermocouple flush-mounted at the boiling surface for the measurement of the local-surface-temperature history in film and transition boiling on high temperature surfaces. From this measurement direct liquid-solid contact in film and transition boiling regimes was observed. In pool boiling of saturated, distilled, deionized water on an aluminum-coated copper surface, the time-averaged, local-liquid-contact fraction increased with decreasing surface superheat. Average contact duration increased monotonically with decreasing surface superheat, while frequency of liquid contact reached a maximum of approx. 50 contacts/s at a surface superheat of approx. 100 K and decreased gradually to 30 contacts/s near the critical heat flux. The liquid-solid contact duration distribution was dominated by short contacts 4 ms at low surface superheats, passing through a relatively flat contact duration distribution at about 80 0 K. Results of this paper indicate that liquid-solid contacts may be the dominant mechanism for energy transfer in the transition boiling process

  7. South Local Government Area, Delta S

    African Journals Online (AJOL)

    ADOWIE PERE

    environs, Aniocha- South Local Government Area of Delta State, Nigeria was carried out with a view to determining the ... supply for physical industrial development to achieve maximum human .... the Schlumberger O' Neil software package.

  8. Local time variations of the middle atmosphere of Venus: Solar-related structures

    Science.gov (United States)

    Zasova, L.; Khatountsev, I. V.; Ignatiev, N. I.; Moroz, V. I.

    Three-dimensional fields (latitude — altitude — local time) of temperature and aerosol in the upper clouds, obtained from the Venera-15 IR spectrometry data, were studied to search for the solar-related structures. The temperature variation at the isobaric levels vs. solar longitude was presented as a superposition of the cosines with periods of 1, 1/2, 1/3 and 1/4 Venusian days. At low latitudes the diurnal tidal component reaches a maximum above 0.2 mb (92km) level. At high latitudes it dominates at P> 50 mb (68 km) in the cold collar, being roughly twice as much as the semidiurnal one and passing through the maximum of 13 K at 400 mb (57 km). The semidiurnal tidal amplitude exceeds the diurnal one below 90 km (where its maximum locates near 83 km), and also in the upper clouds, above 58 km. At low latitudes the 1/3 days component predominates at 10 - 50 mb (68-76 km). In the upper clouds, where most of the solar energy, absorbed in the middle atmosphere, deposits, all four tidal components, including wavenumbers 3 and 4, have significant amplitudes. A position of the upper boundary of the clouds depends on local time in such a way that the lowest height of the clouds is observed in the morning at all selected latitude ranges. At low latitudes the highest position of the upper boundary of the clouds (at 1218 cm -1) is found at 8 - 9 PM, whereas the lowest one is near the morning terminator. At high latitudes the lowest position of the upper boundary of the clouds shifts towards the dayside being at 10:30 AM at 75° in the cold collar and the highest one shifts to 4 PM. The zonal mean altitude of the upper boundary of the clouds decreases from 69 km at 15° to 59 km at 75°. The diurnal tidal component has the highest amplitude in the cold collar (1.5 km). At low latitudes both amplitudes, diurnal and semidiurnal, reach the values 0.8 - 1 km.

  9. Southern ocean warming, sea level and hydrological change during the Paleocene-Eocene thermal maximum

    Directory of Open Access Journals (Sweden)

    A. Sluijs

    2011-01-01

    Full Text Available A brief (~150 kyr period of widespread global average surface warming marks the transition between the Paleocene and Eocene epochs, ~56 million years ago. This so-called "Paleocene-Eocene thermal maximum" (PETM is associated with the massive injection of 13C-depleted carbon, reflected in a negative carbon isotope excursion (CIE. Biotic responses include a global abundance peak (acme of the subtropical dinoflagellate Apectodinium. Here we identify the PETM in a marine sedimentary sequence deposited on the East Tasman Plateau at Ocean Drilling Program (ODP Site 1172 and show, based on the organic paleothermometer TEX86, that southwest Pacific sea surface temperatures increased from ~26 °C to ~33°C during the PETM. Such temperatures before, during and after the PETM are >10 °C warmer than predicted by paleoclimate model simulations for this latitude. In part, this discrepancy may be explained by potential seasonal biases in the TEX86 proxy in polar oceans. Additionally, the data suggest that not only Arctic, but also Antarctic temperatures may be underestimated in simulations of ancient greenhouse climates by current generation fully coupled climate models. An early influx of abundant Apectodinium confirms that environmental change preceded the CIE on a global scale. Organic dinoflagellate cyst assemblages suggest a local decrease in the amount of river run off reaching the core site during the PETM, possibly in concert with eustatic rise. Moreover, the assemblages suggest changes in seasonality of the regional hydrological system and storm activity. Finally, significant variation in dinoflagellate cyst assemblages during the PETM indicates that southwest Pacific climates varied significantly over time scales of 103 – 104 years during this event, a finding comparable to similar studies of PETM successions from the New Jersey Shelf.

  10. Coordenadas geográficas na estimativa das temperaturas máxima e média decendiais do ar no Estado do Rio Grande do Sul Geographic coordinates in the ten-day maximum and mean air temperature estimation in the State of Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Alberto Cargnelutti Filho

    2008-12-01

    Full Text Available A partir dos dados referentes à temperatura máxima média decendial (Tx e à temperatura média decendial (Tm do ar de 41 municípios do Estado do Rio Grande do Sul, de 1945 a 1974, este trabalho teve como objetivo verificar se a Tx e a Tm podem ser estimadas em função da altitude, latitude e longitude. Para cada um dos 36 decêndios do ano, realizou-se análise de correlação e estimaram-se os parâmetros do modelo das equações de regressão linear múltipla, considerando Tx e Tm como variável dependente e altitude, latitude e longitude como variáveis independentes. Na validação dos modelos de estimativa da Tx e Tm, usou-se o coeficiente de correlação linear de Pearson, entre a Tx e a Tm estimada e a Tx e a Tm observada em dez municípios do Estado, com dados da série de observações meteorológicas de 1975 a 2004. A temperatura máxima média decendial e a temperatura média decendial podem ser estimadas por meio da altitude, latitude e longitude, em qualquer local e decêndio, no Estado do Rio Grande do Sul.The objective of this research was to estimate ten-day maximum (Tx and mean (Tm air temperature using altitude and the geographic coordinates latitude and longitude for the Rio Grande do Sul State, Brazil. Normal ten-day maximum and mean air temperature of 41 counties in the State of Rio Grande do Sul, from 1945 to 1974 were used. Correlation analysis and parameters estimate of multiple linear regression equations were performed using Tx and Tm as dependent variable and altitude, latitude and longitude as independent variables, for the 36 ten-day periods of the year. Pearson's linear correlation coefficient between estimated and observed Tx and Tm, calculated for tem counties using data of were used as independent data sets. The ten-day maximum and mean air temperature may be estimated from the altitude and the geographic coordinates latitude and longitude in the State of Rio Grande do Sul.

  11. A study of a two stage maximum power point tracking control of a photovoltaic system under partially shaded insolation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Kenji; Takano, Ichiro; Sawada, Yoshio [Kogakuin University, Tokyo 163-8677 (Japan)

    2006-11-23

    A photovoltaic (PV) array shows relatively low output power density, and has a greatly drooping current-voltage (I-V) characteristic. Therefore, maximum power point tracking (MPPT) control is used to maximize the output power of the PV array. Many papers have been reported in relation to MPPT. However, the current-power (I-P) curve sometimes shows multi-local maximum point mode under non-uniform insolation conditions. The operating point of the PV system tends to converge to a local maximum output point which is not the real maximal output point on the I-P curve. Some papers have been also reported, trying to avoid this difficulty. However, most of those control systems become rather complicated. Then, the two stage MPPT control method is proposed in this paper to realize a relatively simple control system which can track the real maximum power point even under non-uniform insolation conditions. The feasibility of this control concept is confirmed for steady insolation as well as for rapidly changing insolation by simulation study using software PSIM and LabVIEW. (author)

  12. A Modified Levenberg-Marquardt Method for Nonsmooth Equations with Finitely Many Maximum Functions

    Directory of Open Access Journals (Sweden)

    Shou-qiang Du

    2008-01-01

    Full Text Available For solving nonsmooth systems of equations, the Levenberg-Marquardt method and its variants are of particular importance because of their locally fast convergent rates. Finitely many maximum functions systems are very useful in the study of nonlinear complementarity problems, variational inequality problems, Karush-Kuhn-Tucker systems of nonlinear programming problems, and many problems in mechanics and engineering. In this paper, we present a modified Levenberg-Marquardt method for nonsmooth equations with finitely many maximum functions. Under mild assumptions, the present method is shown to be convergent Q-linearly. Some numerical results comparing the proposed method with classical reformulations indicate that the modified Levenberg-Marquardt algorithm works quite well in practice.

  13. Maximum Acceleration Recording Circuit

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1995-01-01

    Coarsely digitized maximum levels recorded in blown fuses. Circuit feeds power to accelerometer and makes nonvolatile record of maximum level to which output of accelerometer rises during measurement interval. In comparison with inertia-type single-preset-trip-point mechanical maximum-acceleration-recording devices, circuit weighs less, occupies less space, and records accelerations within narrower bands of uncertainty. In comparison with prior electronic data-acquisition systems designed for same purpose, circuit simpler, less bulky, consumes less power, costs and analysis of data recorded in magnetic or electronic memory devices. Circuit used, for example, to record accelerations to which commodities subjected during transportation on trucks.

  14. In-core failure of the instrumented BWR rod by locally induced high coolant temperature

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    1985-12-01

    In the BWR type light water loop instrumented in HBWR, a current BWR type fuel rod pre-irradiated up to 5.6 MWd/kgU was power ramped to 50 kW/m. During the ramp, the diameter of the rod was expanded significantly at the bottom end. The behaviour was different from which caused by pellet-cladding interaction (PCI). In the post-irradiation examination, the rod was found to be failed. In this paper, the cause of the failure was studied and obtained the followings. (1) The significant expansion of the rod diameter was attributed to marked oxidation of cladding outer diameter, appeared in the direction of 0 0 -180 0 degree with a shape of nodular. (2) The cladding in the place was softened by high coolant temperature. Coolant pressure, 7MPa intruded the cladding into inside chamfer void at pellet interface. (3) At the place of the significant oxidation, an instrumented transformer was existed and the coolant flow area was very little. The reduction of the coolant flow was enhanced by the bending of the cladding which was caused in pre-irradiation stage. They are considered to be a principal cause of local closure of coolant flow and resultant high temperature in the place. (author)

  15. Measurement of the temperature distribution inside the power cable using distributed temperature system

    Science.gov (United States)

    Jaros, Jakub; Liner, Andrej; Papes, Martin; Vasinek, Vladimir; Mach, Veleslav; Hruby, David; Kajnar, Tomas; Perecar, Frantisek

    2015-01-01

    Nowadays, the power cables are manufactured to fulfill the following condition - the highest allowable temperature of the cable during normal operation and the maximum allowable temperature at short circuit conditions cannot exceed the condition of the maximum allowable internal temperature. The distribution of the electric current through the conductor leads to the increase of the amplitude of electrons in the crystal lattice of the cables material. The consequence of this phenomenon is the increase of friction and the increase of collisions between particles inside the material, which causes the temperature increase of the carrying elements. The temperature increase is unwanted phenomena, because it is causing losses. In extreme cases, the long-term overload leads to the cable damaging or fire. This paper deals with the temperature distribution measurement inside the power cables using distributed temperature system. With cooperation with Kabex company, the tube containing optical fibers was installed into the center of power cables. These fibers, except telecommunications purposes, can be also used as sensors in measurements carrying out with distributed temperature system. These systems use the optical fiber as a sensor and allow the continual measurement of the temperature along the whole cable in real time with spatial resolution 1 m. DTS systems are successfully deployed in temperature measurement applications in industry areas yet. These areas include construction, drainage, hot water etc. Their advantages are low cost, resistance to electromagnetic radiation and the possibility of real time monitoring at the distance of 8 km. The location of the optical fiber in the center of the power cable allows the measurement of internal distribution of the temperature during overloading the cable. This measurement method can be also used for prediction of short-circuit and its exact location.

  16. Localization of the hot spots in a pebble bed reactor

    International Nuclear Information System (INIS)

    Chen, Leisheng; Lee, Wooram; Lee, Jaeyoung

    2016-01-01

    The pebble bed reactor (PBR) is a candidate reactor type for the very high temperature reactor (VHTR), which is one of the Generation-IV reactor types. The HTGR design concept exhibits excellent safety features due to the low power density and the large amount of graphite present in the core which gives a large thermal inertia in an accident such as loss of coolant. The conclusions are made and may contribute to a better design of a PBR core and a closer inspection of the local hot spots to avoid destruction of pebbles from happening. Thermal field of a PBR core is investigated in this study. Specifically, experiments on measuring the pebbles' surface temperature are performed. It is found that the upper pebble has an overall higher temperature profile than the other pebbles and the stagnation zone under does not increase its surface's temperature. In addition, the temperature profile of the side pebble shows a concave form and it keeps decreasing from the contact point to the vertex in the lower pebble. Lastly, the maximum temperature difference among these points is 5.83 deg. C. These findings above are validated by CFX simulations under two different turbulence models (k-e, SST) and two contact areas (diameter of 6mm and 3.5mm). By contrasting the temperature variation trends of all simulation cases, it is concluded that SST turbulence model with 20% intensity shows a better agreement with the experiment result, nevertheless, slightly deviation is also found in terms of total temperature difference and the peak appears in position 17-19 in experiments

  17. Localization of the hot spots in a pebble bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Leisheng; Lee, Wooram; Lee, Jaeyoung [Handong Global University, Pohang (Korea, Republic of)

    2016-05-15

    The pebble bed reactor (PBR) is a candidate reactor type for the very high temperature reactor (VHTR), which is one of the Generation-IV reactor types. The HTGR design concept exhibits excellent safety features due to the low power density and the large amount of graphite present in the core which gives a large thermal inertia in an accident such as loss of coolant. The conclusions are made and may contribute to a better design of a PBR core and a closer inspection of the local hot spots to avoid destruction of pebbles from happening. Thermal field of a PBR core is investigated in this study. Specifically, experiments on measuring the pebbles' surface temperature are performed. It is found that the upper pebble has an overall higher temperature profile than the other pebbles and the stagnation zone under does not increase its surface's temperature. In addition, the temperature profile of the side pebble shows a concave form and it keeps decreasing from the contact point to the vertex in the lower pebble. Lastly, the maximum temperature difference among these points is 5.83 deg. C. These findings above are validated by CFX simulations under two different turbulence models (k-e, SST) and two contact areas (diameter of 6mm and 3.5mm). By contrasting the temperature variation trends of all simulation cases, it is concluded that SST turbulence model with 20% intensity shows a better agreement with the experiment result, nevertheless, slightly deviation is also found in terms of total temperature difference and the peak appears in position 17-19 in experiments.

  18. Neutron spectra unfolding with maximum entropy and maximum likelihood

    International Nuclear Information System (INIS)

    Itoh, Shikoh; Tsunoda, Toshiharu

    1989-01-01

    A new unfolding theory has been established on the basis of the maximum entropy principle and the maximum likelihood method. This theory correctly embodies the Poisson statistics of neutron detection, and always brings a positive solution over the whole energy range. Moreover, the theory unifies both problems of overdetermined and of underdetermined. For the latter, the ambiguity in assigning a prior probability, i.e. the initial guess in the Bayesian sense, has become extinct by virtue of the principle. An approximate expression of the covariance matrix for the resultant spectra is also presented. An efficient algorithm to solve the nonlinear system, which appears in the present study, has been established. Results of computer simulation showed the effectiveness of the present theory. (author)

  19. Maximum Power from a Solar Panel

    Directory of Open Access Journals (Sweden)

    Michael Miller

    2010-01-01

    Full Text Available Solar energy has become a promising alternative to conventional fossil fuel sources. Solar panels are used to collect solar radiation and convert it into electricity. One of the techniques used to maximize the effectiveness of this energy alternative is to maximize the power output of the solar collector. In this project the maximum power is calculated by determining the voltage and the current of maximum power. These quantities are determined by finding the maximum value for the equation for power using differentiation. After the maximum values are found for each time of day, each individual quantity, voltage of maximum power, current of maximum power, and maximum power is plotted as a function of the time of day.

  20. New algorithm using only one variable measurement applied to a maximum power point tracker

    Energy Technology Data Exchange (ETDEWEB)

    Salas, V.; Olias, E.; Lazaro, A.; Barrado, A. [University Carlos III de Madrid (Spain). Dept. of Electronic Technology

    2005-05-01

    A novel algorithm for seeking the maximum power point of a photovoltaic (PV) array for any temperature and solar irradiation level, needing only the PV current value, is proposed. Satisfactory theoretical and experimental results are presented and were obtained when the algorithm was included on a 100 W 24 V PV buck converter prototype, using an inexpensive microcontroller. The load of the system used was a battery and a resistance. The main advantage of this new maximum power point tracking (MPPT), when is compared with others, is that it only uses the measurement of the photovoltaic current, I{sub PV}. (author)

  1. Temperature evolution in silver nanoparticle doped PETN composite

    Science.gov (United States)

    Kameswari, D. P. S. L.; Kiran, P. Prem

    2018-04-01

    Optical absorption and the associated spatio-temporal evolution of temperature silver nanoparticles doped energetic material composite is presented. Silver nanoparticles of radii 10 - 150 nm are doped in Penta Erythrtol Tetra Nitrate (PETN), a secondary energetic material to form the composite materials. Of all the composites the ones doped with 35 nm sized nanoparticles have shown maximum absorption at excitation wavelength of 532 nm. The spatio-temporal evolution of temperature within these composites up on excitation with ns laser pulses of energy density 0.5 J/cm2 is studied. The role of particle sizes on the temperature of composites is studied and a maximum temperature of 2200 K at the nanoparticle interface is observed for 35 nm doped PETN composite.

  2. Coolant and ambient temperature control for chillerless liquid cooled data centers

    Science.gov (United States)

    Chainer, Timothy J.; David, Milnes P.; Iyengar, Madhusudan K.; Parida, Pritish R.; Simons, Robert E.

    2016-02-02

    Cooling control methods include measuring a temperature of air provided to a plurality of nodes by an air-to-liquid heat exchanger, measuring a temperature of at least one component of the plurality of nodes and finding a maximum component temperature across all such nodes, comparing the maximum component temperature to a first and second component threshold and comparing the air temperature to a first and second air threshold, and controlling a proportion of coolant flow and a coolant flow rate to the air-to-liquid heat exchanger and the plurality of nodes based on the comparisons.

  3. Hierarchical Load Tracking Control of a Grid-connected Solid Oxide Fuel Cell for Maximum Electrical Efficiency Operation

    DEFF Research Database (Denmark)

    Li, Yonghui; Wu, Qiuwei; Zhu, Haiyu

    2015-01-01

    efficiency operation obtained at different active power output levels, a hierarchical load tracking control scheme for the grid-connected SOFC was proposed to realize the maximum electrical efficiency operation with the stack temperature bounded. The hierarchical control scheme consists of a fast active...... power control and a slower stack temperature control. The active power control was developed by using a decentralized control method. The efficiency of the proposed hierarchical control scheme was demonstrated by case studies using the benchmark SOFC dynamic model......Based on the benchmark solid oxide fuel cell (SOFC) dynamic model for power system studies and the analysis of the SOFC operating conditions, the nonlinear programming (NLP) optimization method was used to determine the maximum electrical efficiency of the grid-connected SOFC subject...

  4. The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure

    International Nuclear Information System (INIS)

    Nukiyama, S.

    1991-01-01

    The quantity of heat transmitted from a metal surface to boiling water increases as the temperature difference ΔT is increased, but after the ΔT has reached a certain limit, quantity Q decreases with further increase in ΔT. This turning point is the maximum value of heat transmitted. The existence of this point was actually observed in the experiment. Under atmospheric pressure, ΔT corresponding to the maximum value of heat transfer for water at 100 degrees C falls between 20-40 degrees C, and Q is between 1,080,000 and 1,800,000 kcal/m 2 h (i.e. between 2,000 and 3,000 kg/m 2 h, if expressed in constant evaporation rate at 100 degrees C); this figure is larger than the maximum value of heat transfer as was previously considered. In this paper the minimum value of heat transfer was obtained, and in the Q-ΔT curve for the high temperature region, the burn-out effect is discussed

  5. Weak localization in few-layer black phosphorus

    International Nuclear Information System (INIS)

    Du, Yuchen; Neal, Adam T; Zhou, Hong; Ye, Peide D

    2016-01-01

    We have conducted a comprehensive investigation into the magneto-transport properties of few-layer black phosphorus in terms of phase coherence length, phase coherence time, and mobility via weak localization measurement and Hall-effect measurement. We present magnetoresistance data showing the weak localization effect in bare p-type few-layer black phosphorus and reveal its strong dependence on temperature and carrier concentration. The measured weak localization agrees well with the Hikami–Larkin–Nagaoka model and the extracted phase coherence length of 104 nm at 350 mK, decreasing as ∼T −0.513+−0.053 with increased temperature. Weak localization measurement allows us to qualitatively probe the temperature-dependent phase coherence time τ ϕ , which is in agreement with the theory of carrier interaction in the diffusive regime. We also observe the universal conductance fluctuation phenomenon in few-layer black phosphorus within moderate magnetic field and low temperature regime. (paper)

  6. A high temperature reactor for ship propulsion

    International Nuclear Information System (INIS)

    Lobet, P.; Seigel, R.; Thompson, A.C.; Beadnell, R.M.; Beeley, P.A.

    2002-01-01

    The initial thermal hydraulic and physics design of a high temperature gas cooled reactor for ship propulsion is described. The choice of thermodynamic cycle and thermal power is made to suit the marine application. Several configurations of a Helium cooled, Graphite moderated reactor are then analysed using the WIMS and MONK codes from AEA Technology. Two geometries of fuel elements formed using micro spheres in prismatic blocks, and various arrangements of control rods and poison rods are examined. Reactivity calculations through life are made and a pattern of rod insertion to flatten the flux is proposed and analysed. Thermal hydraulic calculations are made to find maximum fuel temperature under high power with optimized flow distribution. Maximum temperature after loss of flow and temperatures in the reactor vessel are also computed. The temperatures are significantly below the known limits for the type of fuel proposed. It is concluded that the reactor can provide the required power and lifetime between refueling within likely space and weight constraints. (author)

  7. A cosmogenic 10Be chronology for the local last glacial maximum and termination in the Cordillera Oriental, southern Peruvian Andes: Implications for the tropical role in global climate

    Science.gov (United States)

    Bromley, Gordon R. M.; Schaefer, Joerg M.; Hall, Brenda L.; Rademaker, Kurt M.; Putnam, Aaron E.; Todd, Claire E.; Hegland, Matthew; Winckler, Gisela; Jackson, Margaret S.; Strand, Peter D.

    2016-09-01

    Resolving patterns of tropical climate variability during and since the last glacial maximum (LGM) is fundamental to assessing the role of the tropics in global change, both on ice-age and sub-millennial timescales. Here, we present a10Be moraine chronology from the Cordillera Carabaya (14.3°S), a sub-range of the Cordillera Oriental in southern Peru, covering the LGM and the first half of the last glacial termination. Additionally, we recalculate existing 10Be ages using a new tropical high-altitude production rate in order to put our record into broader spatial context. Our results indicate that glaciers deposited a series of moraines during marine isotope stage 2, broadly synchronous with global glacier maxima, but that maximum glacier extent may have occurred prior to stage 2. Thereafter, atmospheric warming drove widespread deglaciation of the Cordillera Carabaya. A subsequent glacier resurgence culminated at ∼16,100 yrs, followed by a second period of glacier recession. Together, the observed deglaciation corresponds to Heinrich Stadial 1 (HS1: ∼18,000-14,600 yrs), during which pluvial lakes on the adjacent Peruvian-Bolivian altiplano rose to their highest levels of the late Pleistocene as a consequence of southward displacement of the inter-tropical convergence zone and intensification of the South American summer monsoon. Deglaciation in the Cordillera Carabaya also coincided with the retreat of higher-latitude mountain glaciers in the Southern Hemisphere. Our findings suggest that HS1 was characterised by atmospheric warming and indicate that deglaciation of the southern Peruvian Andes was driven by rising temperatures, despite increased precipitation. Recalculated 10Be data from other tropical Andean sites support this model. Finally, we suggest that the broadly uniform response during the LGM and termination of the glaciers examined here involved equatorial Pacific sea-surface temperature anomalies and propose a framework for testing the viability

  8. Intelligent Maximum Power Point Tracking Using Fuzzy Logic for Solar Photovoltaic Systems Under Non-Uniform Irradiation Conditions

    OpenAIRE

    P. Selvam; S. Senthil Kumar

    2016-01-01

    Maximum Power Point Tracking (MPPT) has played a vital role to enhance the efficiency of solar photovoltaic (PV) power generation under varying atmospheric temperature and solar irradiation. However, it is hard to track the maximum power point using conventional linear controllers due to the natural inheritance of nonlinear I-V and P-V characteristics of solar PV systems. Fuzzy Logic Controller (FLC) is suitable for nonlinear system control applications and eliminating oscillations, circuit c...

  9. The nonstationary impact of local temperature changes and ENSO on extreme precipitation at the global scale

    Science.gov (United States)

    Sun, Qiaohong; Miao, Chiyuan; Qiao, Yuanyuan; Duan, Qingyun

    2017-12-01

    The El Niño-Southern Oscillation (ENSO) and local temperature are important drivers of extreme precipitation. Understanding the impact of ENSO and temperature on the risk of extreme precipitation over global land will provide a foundation for risk assessment and climate-adaptive design of infrastructure in a changing climate. In this study, nonstationary generalized extreme value distributions were used to model extreme precipitation over global land for the period 1979-2015, with ENSO indicator and temperature as covariates. Risk factors were estimated to quantify the contrast between the influence of different ENSO phases and temperature. The results show that extreme precipitation is dominated by ENSO over 22% of global land and by temperature over 26% of global land. With a warming climate, the risk of high-intensity daily extreme precipitation increases at high latitudes but decreases in tropical regions. For ENSO, large parts of North America, southern South America, and southeastern and northeastern China are shown to suffer greater risk in El Niño years, with more than double the chance of intense extreme precipitation in El Niño years compared with La Niña years. Moreover, regions with more intense precipitation are more sensitive to ENSO. Global climate models were used to investigate the changing relationship between extreme precipitation and the covariates. The risk of extreme, high-intensity precipitation increases across high latitudes of the Northern Hemisphere but decreases in middle and lower latitudes under a warming climate scenario, and will likely trigger increases in severe flooding and droughts across the globe. However, there is some uncertainties associated with the influence of ENSO on predictions of future extreme precipitation, with the spatial extent and risk varying among the different models.

  10. Recent Developments in Maximum Power Point Tracking Technologies for Photovoltaic Systems

    Directory of Open Access Journals (Sweden)

    Nevzat Onat

    2010-01-01

    Full Text Available In photovoltaic (PV system applications, it is very important to design a system for operating of the solar cells (SCs under best conditions and highest efficiency. Maximum power point (MPP varies depending on the angle of sunlight on the surface of the panel and cell temperature. Hence, the operating point of the load is not always MPP of PV system. Therefore, in order to supply reliable energy to the load, PV systems are designed to include more than the required number of modules. The solution to this problem is that switching power converters are used, that is called maximum power point tracker (MPPT. In this study, the various aspects of these algorithms have been analyzed in detail. Classifications, definitions, and basic equations of the most widely used MPPT technologies are given. Moreover, a comparison was made in the conclusion.

  11. A maximum-principle preserving finite element method for scalar conservation equations

    KAUST Repository

    Guermond, Jean-Luc; Nazarov, Murtazo

    2014-01-01

    This paper introduces a first-order viscosity method for the explicit approximation of scalar conservation equations with Lipschitz fluxes using continuous finite elements on arbitrary grids in any space dimension. Provided the lumped mass matrix is positive definite, the method is shown to satisfy the local maximum principle under a usual CFL condition. The method is independent of the cell type; for instance, the mesh can be a combination of tetrahedra, hexahedra, and prisms in three space dimensions. © 2014 Elsevier B.V.

  12. A maximum-principle preserving finite element method for scalar conservation equations

    KAUST Repository

    Guermond, Jean-Luc

    2014-04-01

    This paper introduces a first-order viscosity method for the explicit approximation of scalar conservation equations with Lipschitz fluxes using continuous finite elements on arbitrary grids in any space dimension. Provided the lumped mass matrix is positive definite, the method is shown to satisfy the local maximum principle under a usual CFL condition. The method is independent of the cell type; for instance, the mesh can be a combination of tetrahedra, hexahedra, and prisms in three space dimensions. © 2014 Elsevier B.V.

  13. Temperature and stress calculation for final disposal

    International Nuclear Information System (INIS)

    Tarandi, T.

    1979-02-01

    Temperature and stress distribution in and around the final storage facility has been calculated for three different arrangements of the tunnels: - 2 planes with 60 m vertical distance between them - 2 planes with 100 m distance and - 1 plane. The highest temperatures and stresses occur for the 2 plane alternative with distance 60 m between planes. The maximum compressive stress is in this case 24.0 MPa 140 years after the time of deposition, compared with 12.6 MPa in the 1 plane case. The maximum tensile stress exists at the surface and is in the 2 plane case 6.0 MPa 800 - 1,500 years after deposition, compared with 4.2 MPa for the 1 plane variant. An estimation of maximum tensile stresses between the tunnel planes yields a value of 1.5 MPa. The above-mentioned stresses are due to temperature distribution induced by the radioactive waste. To obtain the total stresses, initial stresses in the undisturbed rock, which vary according to location, are to be added to these stresses. (author)

  14. Future Temperatures and Precipitations in the Arid Northern-Central Chile: A Multi-Model Downscaling Approach

    Science.gov (United States)

    Souvignet, M.; Heinrich, J.

    2010-03-01

    for maximum, minimum temperature and precipitation in the research area based on four different General Circulation Models (GCMs). On the first hand, the Statistical Downscaling Model (SDSM) was used. This model is based on a multiple linear regression method and is best described as a hybrid of the stochastic weather generator and transfer function methods. One common advantage of statistical downscaling is that it ensures the maintenance of local spatial and temporal variability in generating realistic data time series. On the other hand and for comparison purposes, the Change Factor method was used. This methodology is relatively straightforward and ideal for rapid climate change assessment. The outputs of the HadCM3, CGCM3.1, GDFL-CM2 and MRI-CGCM2.3.2 A1 and B2 scenarios were downscaled with both methodologies and thereafter compared by means of several hydro-meteorological indices for a 55-years period (2045-2099). Preliminary results indicate that local temperatures are expected to rise in the region, whereas precipitations may decrease. However, minimum and maximum temperatures might increase at a faster rate at higher altitude areas. In addition, the Cordillera mountain range may encounter and longer winters with a dramatic decrease of icing days (Tmaxrate. Results indicate potential strong inter-seasonal and inter-annual perturbations in Rainfall in the region. Consequently, the Norte Chico will possibly see its streamflow strongly impacted with a resulting high variability at the seasonal and inter-annual level. A probabilistic analysis of the projections of the four GCMs provided a better representation of uncertainties linked with downscaled scenarios. Whereas maximum and minimum temperatures were accurately simulated by both downscaling methods, precipitation simulations returned weaker results. SDSM proved to have a poor ability to simulate extreme rainfall events and few conclusions could be drawn with respect to future occurrences of ENSO phenomena

  15. Is applicable thermodynamics of negative temperature for living organisms?

    Science.gov (United States)

    Atanasov, Atanas Todorov

    2017-11-01

    During organismal development the moment of sexual maturity can be characterizes by nearly maximum basal metabolic rate and body mass. Once the living organism reaches extreme values of the mass and the basal metabolic rate, it reaches near equilibrium thermodynamic steady state physiological level with maximum organismal complexity. Such thermodynamic systems that reach equilibrium steady state level at maximum mass-energy characteristics can be regarded from the prospective of thermodynamics of negative temperature. In these systems the increase of the internal and free energy is accompanied with decrease of the entropy. In our study we show the possibility the living organisms to regard as thermodynamic system with negative temperature

  16. Note: Motor-piezoelectricity coupling driven high temperature fatigue device.

    Science.gov (United States)

    Ma, Z C; Du, X J; Zhao, H W; Ma, X X; Jiang, D Y; Liu, Y; Ren, L Q

    2018-01-01

    The design and performance evaluation of a novel high temperature fatigue device simultaneously driven by servo motor and piezoelectric actuator is our focus. The device integrates monotonic and cyclic loading functions with a maximum tensile load of 1800 N, driving frequency of 50 Hz, alternating load of 95 N, and maximum service temperature of 1200 °C. Multimodal fatigue tests with arbitrary combinations of static and dynamic loads are achieved. At temperatures that range from RT to 1100 °C, the tensile and tensile-fatigue coupling mechanical behaviors of UM Co50 alloys are investigated to verify the feasibility of the device.

  17. Tensile properties of commercially pure vanadium from room temperature to 1200 degree C

    International Nuclear Information System (INIS)

    Henshall, G.A.; Torres, S.G.

    1993-12-01

    The tensile properties of vanadium are sensitive to interstitial impurity content, on grain size and strain rate. Thus, it is problematic to use published tensile data for materials potentially varying in these quantities. This investigation was undertaken to fully characterize the tensile properties of the commercially pure vanadium used at Lawrence Livermore. Both sheet and rod stock were tested in vacuum from ambient temperature to 1200C at strain rates 6.67 x 10 -5 to 6.67 x 10 -2 s -1 . The results of these experiments show that vanadium behaves in a manner typical of many bcc metals containing interstitial impurities. Local peaks in yield stress and ultimate tensile stress vs temperature curves are observed at intermediate temperatures. Serrated yielding also is observed in some temperature ranges. Changes in strain rate within the quasi-static regime have a relatively small, predictable effect. The rod and sheet stock have similar properties, except that the lower yield stress of the rod is less than that of the sheet over most of the temperature range studied. No plateau in yield strength vs temperature curve was observed for the rod. In both forms, and for all temperatures, vanadium is ductile. The elongation to failure reaches a minimum of approximately 35% at a temperature of 500C and a maximum of approximately 140% at 1200C

  18. Effects of solution temperature on localized corrosion of high nickel content stainless steels and nickel in chromated LiBr solution

    International Nuclear Information System (INIS)

    Munoz, A. Igual; Anton, J. Garcia; Guinon, J.L.; Perez Herranz, V.

    2006-01-01

    The potentiodynamic technique has been used to study the general and localized corrosion resistance of high-alloyed stainless steels (UNS N02031 and UNS R20033) and nickel (UNS N02205) at different temperatures (from 25 deg. C to 80 deg. C) in a heavy brine Lithium Bromide solution. The engineering question of concern is the compatibility of the LiBr fluid with the structural materials of refrigeration systems which use absorption technology. The results of potentiodynamic polarization studies indicate excellent corrosion resistance for stainless steels in LiBr solution at room temperature and no big differences at temperatures above 50 deg. C. In the temperature range of 25-80 deg. C, a linear relationship exists between logarithmic of corrosion rate and reciprocal of absolute temperature (Arrhenius plot). The linear plots showed that the mechanism of the corresponding passivation process is the same for the three investigated alloys, essentially due to the presence of nickel. Tests indicated that stainless steels UNS N02031 and UNS R20033 were the most suitable for use to be used in the construction of absorption units for refrigeration purposes

  19. FPGA Hardware Acceleration of a Phylogenetic Tree Reconstruction with Maximum Parsimony Algorithm

    OpenAIRE

    BLOCK, Henry; MARUYAMA, Tsutomu

    2017-01-01

    In this paper, we present an FPGA hardware implementation for a phylogenetic tree reconstruction with a maximum parsimony algorithm. We base our approach on a particular stochastic local search algorithm that uses the Progressive Neighborhood and the Indirect Calculation of Tree Lengths method. This method is widely used for the acceleration of the phylogenetic tree reconstruction algorithm in software. In our implementation, we define a tree structure and accelerate the search by parallel an...

  20. Mid-infrared response of reduced graphene oxide and its high-temperature coefficient of resistance

    Directory of Open Access Journals (Sweden)

    Haifeng Liang

    2014-10-01

    Full Text Available Much effort has been made to study the formation mechanisms of photocurrents in graphene and reduced graphene oxide films under visible and near-infrared light irradiation. A built-in field and photo-thermal electrons have been applied to explain the experiments. However, much less attention has been paid to clarifying the mid-infrared response of reduced graphene oxide films at room temperature. Thus, mid-infrared photoresponse and annealing temperature-dependent resistance experiments were carried out on reduced graphene oxide films. A maximum photocurrent of 75 μA was observed at room temperature, which was dominated by the bolometer effect, where the resistance of the films decreased as the temperature increased after they had absorbed light. The electrons localized in the defect states and the residual oxygen groups were thermally excited into the conduction band, forming a photocurrent. In addition, a temperature increase of 2 °C for the films after light irradiation for 2 minutes was observed using absorption power calculations. This work details a way to use reduced graphene oxide films that contain appropriate defects and residual oxygen groups as bolometer-sensitive materials in the mid-infrared range.