Sample records for maximum finally split

  1. An electromagnetism-like method for the maximum set splitting problem

    Kratica Jozef


    Full Text Available In this paper, an electromagnetism-like approach (EM for solving the maximum set splitting problem (MSSP is applied. Hybrid approach consisting of the movement based on the attraction-repulsion mechanisms combined with the proposed scaling technique directs EM to promising search regions. Fast implementation of the local search procedure additionally improves the efficiency of overall EM system. The performance of the proposed EM approach is evaluated on two classes of instances from the literature: minimum hitting set and Steiner triple systems. The results show, except in one case, that EM reaches optimal solutions up to 500 elements and 50000 subsets on minimum hitting set instances. It also reaches all optimal/best-known solutions for Steiner triple systems.

  2. About necessity of split-systems’ final disinfection

    Kozulya, S.


    The purpose of work consisted fin comparison of microflora, isolated from the sputum of patients, with isolates, revealed in the biofilm of split-systems, installed at the place of their residence. Identity of isolates was confirmed by the spectrum of resistance to antibiotics. For Staphylococcus aureus fagotyping was additionally applied. From the sputum of patients 103 isolates of microflora during the work were selected. From the biofilm of split-systems 27 identical isolates were selected...

  3. The final split: the regulation of anther dehiscence.

    Wilson, Zoe A; Song, Jie; Taylor, Benjamin; Yang, Caiyun


    Controlling male fertility is an important goal for plant reproduction and selective breeding. Hybrid vigour results in superior growth rates and increased yields of hybrids compared with inbred lines; however, hybrid generation is costly and time consuming. A better understanding of anther development and pollen release will provide effective mechanisms for the control of male fertility and for hybrid generation. Male sterility is associated not only with the lack of viable pollen, but also with the failure of pollen release. In such instances a failure of anther dehiscence has the advantage that viable pollen is produced, which can be used for subsequent rescue of fertility. Anther dehiscence is a multistage process involving localized cellular differentiation and degeneration, combined with changes to the structure and water status of the anther to facilitate complete opening and pollen release. After microspore release the anther endothecium undergoes expansion and deposition of ligno-cellulosic secondary thickening. The septum separating the two locules is then enzymatically lysed and undergoes a programmed cell death-like breakdown. The stomium subsequently splits as a consequence of the stresses associated with pollen swelling and anther dehydration. The physical constraints imposed by the thickening in the endothecium limit expansion, placing additional stress on the anther, so as it dehydrates it opens and the pollen is released. Jasmonic acid has been shown to be a critical signal for dehiscence, although other hormones, particularly auxin, are also involved. The key regulators and physical constraints of anther dehiscence are discussed.

  4. A Nuclear Ribosomal DNA Phylogeny of Acer Inferred with Maximum Likelihood, Splits Graphs, and Motif Analysis of 606 Sequences

    Guido W. Grimm


    Full Text Available The multi-copy internal transcribed spacer (ITS region of nuclear ribosomal DNA is widely used to infer phylogenetic relationships among closely related taxa. Here we use maximum likelihood (ML and splits graph analyses to extract phylogenetic information from ~ 600 mostly cloned ITS sequences, representing 81 species and subspecies of Acer, and both species of its sister Dipteronia. Additional analyses compared sequence motifs in Acer and several hundred Anacardiaceae, Burseraceae, Meliaceae, Rutaceae, and Sapindaceae ITS sequences in GenBank. We also assessed the effects of using smaller data sets of consensus sequences with ambiguity coding (accounting for within-species variation instead of the full (partly redundant original sequences. Neighbor-nets and bipartition networks were used to visualize conflict among character state patterns. Species clusters observed in the trees and networks largely agree with morphology-based classifications; of de Jong’s (1994 16 sections, nine are supported in neighbor-net and bipartition networks, and ten by sequence motifs and the ML tree; of his 19 series, 14 are supported in networks, motifs, and the ML tree. Most nodes had higher bootstrap support with matrices of 105 or 40 consensus sequences than with the original matrix. Within-taxon ITS divergence did not differ between diploid and polyploid Acer, and there was little evidence of differentiated parental ITS haplotypes, suggesting that concerted evolution in Acer acts rapidly.

  5. Why a splitting in the final state cannot explain the GSI-Oscillations

    Merle, Alexander


    In this paper, I give a pedagogical discussion of the GSI anomaly. Using two different formulations, namely the intuitive Quantum Field Theory language of the second quantized picture as well as the language of amplitudes, I clear up the analogies and differences between the GSI anomaly and other processes (the Double Slit experiment using photons, $e^+ e^- \\to \\mu^+ \\mu^-$ scattering, and charged pion decay). In both formulations, the conclusion is reached that the decay rate measured at GSI cannot oscillate if only Standard Model physics is involved and the initial hydrogen-like ion is no coherent superposition of more than one state (in case there is no new, yet unknown, mechanism at work). Furthermore, a discussion of the Quantum Beat phenomenon will be given, which is often assumed to be able to cause the observed oscillations. This is, however, not possible for a splitting in the final state only.

  6. Bounds on the maximum numbers of clear two-factor interactions for 2(n1+n2)-(k1+k2) fractional factorial split-plot designs

    ZI Xuemin; ZHANG Runchu; LIU Minqian


    Fractional factorial split-plot (FFSP) designs have an important value of investigation for their special structures.There are two types of factors in an FFSP design: the whole-plot (WP) factors and sub-plot (SP) factors,which can form three types of two-factor interactions:WP2fi,WS2fi and SP2fi.This paper considers FFSP designs with resolution Ⅲ or Ⅳ under the clear effects criterion.It derives the upper and lower bounds on the maximum numbers of clear WP2fis and WS2fis for FFSP designs,and gives some methods for constructing the desired FFSP designs.It further examines the performance of the construction methods.

  7. Embryo splitting

    Karl Illmensee


    Full Text Available Mammalian embryo splitting has successfully been established in farm animals. Embryo splitting is safely and efficiently used for assisted reproduction in several livestock species. In the mouse, efficient embryo splitting as well as single blastomere cloning have been developed in this animal system. In nonhuman primates embryo splitting has resulted in several pregnancies. Human embryo splitting has been reported recently. Microsurgical embryo splitting under Institutional Review Board approval has been carried out to determine its efficiency for blastocyst development. Embryo splitting at the 6–8 cell stage provided a much higher developmental efficiency compared to splitting at the 2–5 cell stage. Embryo splitting may be advantageous for providing additional embryos to be cryopreserved and for patients with low response to hormonal stimulation in assisted reproduction programs. Social and ethical issues concerning embryo splitting are included regarding ethics committee guidelines. Prognostic perspectives are presented for human embryo splitting in reproductive medicine.

  8. Vapor-liquid phase behavior of the iodine-sulfur water-splitting process : LDRD final report for FY03.

    Bradshaw, Robert W.; Larson, Richard S.; Lutz, Andrew E.


    This report summarizes the results of a one-year LDRD project that was undertaken to better understand the equilibrium behavior of the iodine-water-hydriodic acid system at elevated temperature and pressure. We attempted to extend the phase equilibrium database for this system in order to facilitate development of the iodine-sulfur water-splitting process to produce hydrogen to a commercial scale. The iodine-sulfur cycle for thermochemical splitting of water is recognized as the most efficient such process and is particularly well suited to coupling to a high-temperature source of process heat. This study intended to combine experimental measurements of vapor-liquid-liquid equilibrium and equation-of-state modeling of equilibrium solutions using Sandia's Chernkin software. Vapor-liquid equilibrium experiments were conducted to a limited extent. The Liquid Chernkin software that was developed as part of an earlier LDRD project was enhanced and applied to model the non-ideal behavior of the liquid phases.

  9. Thermochemical water-splitting cycle, bench-scale investigations, and process engineering. Final report, February 1977-December 31, 1981

    Norman, J.H.; Besenbruch, G.E.; Brown, L.C.; O' Keefe, D.R.; Allen, C.L.


    The sulfur-iodine water-splitting cycle is characterized by the following three reactions: 2H/sub 2/O + SO/sub 2/ + I/sub 2/ ..-->.. H/sub 2/SO/sub 4/ + 2HI; H/sub 2/SO/sub 4/ ..-->.. H/sub 2/O + SO/sub 2/ + 1/2 O/sub 2/; and 2HI ..-->.. H/sub 2/ + I/sub 2/. This cycle was developed at General Atomic after several critical features in the above reactions were discovered. These involved phase separations, catalytic reactions, etc. Estimates of the energy efficiency of this economically reasonable advanced state-of-the-art processing unit produced sufficiently high values (to approx.47%) to warrant cycle development effort. The DOE contract was largely directed toward the engineering development of this cycle, including a small demonstration unit (CLCD), a bench-scale unit, engineering design, and costing. The work has resulted in a design that is projected to produce H/sub 2/ at prices not yet generally competitive with fossil-fuel-produced H/sub 2/ but are projected to be favorably competitive with respect to H/sub 2/ from fossil fuels in the future.

  10. [Tablet splitting].

    Quinzler, R; Haefeli, W E


    The splitting of scored tablets provides many advantages. One benefit is to achieve dose flexibility to account for the huge interindividual differences in dose requirements for instance in paediatric and geriatric patients, which are often not covered by the available strengths in the market. Moreover, large-sized tablets can easier be swallowed if broken before swallowing and medication costs can often be reduced by splitting brands with higher strength. But not all tablets, mostly unscored tablets, are suitable for splitting. Splitting of extended release formulations can result in an overdose by uncontrolled release of the active component and degradation of the compound can occur if an enteric coating is destroyed by the splitting process. Whether tablets are suitable for splitting depends on the properties of the active component (e.g. light sensitivity), the galenics, the shape of the tablet, and the shape of the scoreline. Moreover, not all patients are informed, able, or willing to split tablets and the majority of the elderly population is not capable to break tablets. When split tablets are prescribed it is therefore important to view the shape of the tablet, to assess the patients ability and willingness to break tablets, to properly inform the patient about the appropriate way of splitting, and if necessary to suggest (and instruct) the use of a tablet splitting device.

  11. Polarized Antenna Splitting Functions

    Larkoski, Andrew J.; Peskin, Michael E.; /SLAC


    We consider parton showers based on radiation from QCD dipoles or 'antennae'. These showers are built from 2 {yields} 3 parton splitting processes. The question then arises of what functions replace the Altarelli-Parisi splitting functions in this approach. We give a detailed answer to this question, applicable to antenna showers in which partons carry definite helicity, and to both initial- and final-state emissions.

  12. Maximum principle for the optimal control of an ablation-transpiration cooling system with free final time and phase constraints

    Bing SUN; Baozhu GUO


    This paper is concerned with an optimal control problem of an ablation-transpiration cooling control system with Stefan-Signorini boundary condition.As the continuation of the authors'previous paper,the Dubovits Rii-Milyutin functional approach is again adopted in investigation of the Pontryagin's maximun principle of the system.The necessary optimality condition is presented for the problem with free final horizon and phase constraints.

  13. Splitting Ward identity

    Safari, Mahmoud [Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)


    Within the background-field framework we present a path integral derivation of the splitting Ward identity for the one-particle irreducible effective action in the presence of an infrared regulator, and make connection with earlier works on the subject. The approach is general in the sense that it does not rely on how the splitting is performed. This identity is then used to address the problem of background dependence of the effective action at an arbitrary energy scale. We next introduce the modified master equation and emphasize its role in constraining the effective action. Finally, application to general gauge theories within the geometric approach is discussed. (orig.)

  14. Splitting Descartes

    Schilhab, Theresa


    Kognition og Pædagogik vol. 48:10-18. 2003 Short description : The cognitivistic paradigm and Descartes' view of embodied knowledge. Abstract: That the philosopher Descartes separated the mind from the body is hardly news: He did it so effectively that his name is forever tied to that division....... But what exactly is Descartes' point? How does the Kartesian split hold up to recent biologically based learning theories?...


    Gregory K . Iverson


    Full Text Available The research reported in this paper is intended as a contribution to the understanding of several wellknown problems relating to the leaming of phonemic contrasts in second language (L2 phonology. The paper describes a series of ongoing studies examining what Lado (1957 hypothesized to represent maximum diffículty in second language pronunciation, narnely, a phonemic split. This is the process involved when an L2 learner must split native language (NL allophones into separate target language (TL phonemes. Two core principles of phonological theory are described and evaluated for their relevante in explaining the series of well-defined, implicationally-related stages involved in a phonemic split. Finally, the paper reports the results of an empirical study designed to test the explanatory adequacy of these principles, and concludes with a discussion of the implications of these studies for second language phonology in general.

  16. Petroleum production at Maximum Efficient Rate Naval Petroleum Reserve No. 1 (Elk Hills), Kern County, California. Final Supplemental Environmental Impact Statement


    This document provides an analysis of the potential impacts associated with the proposed action, which is continued operation of Naval Petroleum Reserve No. I (NPR-1) at the Maximum Efficient Rate (MER) as authorized by Public law 94-258, the Naval Petroleum Reserves Production Act of 1976 (Act). The document also provides a similar analysis of alternatives to the proposed action, which also involve continued operations, but under lower development scenarios and lower rates of production. NPR-1 is a large oil and gas field jointly owned and operated by the federal government and Chevron U.SA Inc. (CUSA) pursuant to a Unit Plan Contract that became effective in 1944; the government`s interest is approximately 78% and CUSA`s interest is approximately 22%. The government`s interest is under the jurisdiction of the United States Department of Energy (DOE). The facility is approximately 17,409 acres (74 square miles), and it is located in Kern County, California, about 25 miles southwest of Bakersfield and 100 miles north of Los Angeles in the south central portion of the state. The environmental analysis presented herein is a supplement to the NPR-1 Final Environmental Impact Statement of that was issued by DOE in 1979 (1979 EIS). As such, this document is a Supplemental Environmental Impact Statement (SEIS).

  17. Fundamental Materials Issues for Thermochemical H2O and CO2 Splitting: Final Report (FY08)

    Coker, Eric Nicholas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rodriguez, Mark A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ambrosini, Andrea [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stumpf, Roland Rudolph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stechel, Ellen Beth [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolverton, Chris [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering; Meredig, Bryce [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering


    Hydrogen and carbon monoxide may be produced using solar-thermal energy in two-stage reactions of water and carbon dioxide, respectively, over certain metal oxide materials. The most active materials observed experimentally for these processes are complex mixtures of ferrite and zirconia based solids, and it is not clear how far the ferrites, the zirconia, or a solid solution between the two participate in the change of oxidation state during the cycling. Identification of the key phases in the redox material that enable splitting is of paramount importance to developing a working model of the materials. A three-pronged approach was adopted here: computer modeling to determine thermodynamically favorable materials compositions, bench reactor testing to evaluate materials’ performance, and in-situ characterization of reactive materials to follow phase changes and identify the phases active for splitting. For the characterization and performance evaluation thrusts, cobalt ferrites were prepared by co-precipitation followed by annealing at 1400 °C. An in-situ X-ray diffraction capability was developed and tested, allowing phase monitoring in real time during thermochemical redox cycling. Key observations made for an un-supported cobalt ferrite include: 1) ferrite phases partially reduce to wustite upon heating to 1400 °C in helium; 2) exposing the material to air at 1100 °C causes immediate re-oxidation; 3) the re-oxidized material may be thermally reduced at 1400 °C under inert; 4) exposure of a reduced material to CO2 results in gradual re-oxidation at 1100 °C, but minimization of background O2-levels is essential; 5) even after several redox cycles, the lattice parameters of the ferrites remain constant, indicating that irreversible phase separation does not occur, at least over the first five cycles; 6) substituting chemical (hydrogen) reduction for thermal reduction resulted in formation of a CoFe metallic alloy. Materials were also

  18. Light splitting with imperfect wave plates.

    Jackson, Jarom S; Archibald, James L; Durfee, Dallin S


    We discuss the use of wave plates with arbitrary retardances, in conjunction with a linear polarizer, to split linearly polarized light into two linearly polarized beams with an arbitrary splitting fraction. We show that for non-ideal wave plates, a much broader range of splitting ratios is typically possible when a pair of wave plates, rather than a single wave plate, is used. We discuss the maximum range of splitting fractions possible with one or two wave plates as a function of the wave plate retardances, and how to align the wave plates to achieve the maximum splitting range possible when simply rotating one of the wave plates while keeping the other one fixed. We also briefly discuss an alignment-free polarization rotator constructed from a pair of half-wave plates.

  19. Maximum Fidelity

    Kinkhabwala, Ali


    The most fundamental problem in statistics is the inference of an unknown probability distribution from a finite number of samples. For a specific observed data set, answers to the following questions would be desirable: (1) Estimation: Which candidate distribution provides the best fit to the observed data?, (2) Goodness-of-fit: How concordant is this distribution with the observed data?, and (3) Uncertainty: How concordant are other candidate distributions with the observed data? A simple unified approach for univariate data that addresses these traditionally distinct statistical notions is presented called "maximum fidelity". Maximum fidelity is a strict frequentist approach that is fundamentally based on model concordance with the observed data. The fidelity statistic is a general information measure based on the coordinate-independent cumulative distribution and critical yet previously neglected symmetry considerations. An approximation for the null distribution of the fidelity allows its direct conversi...


    党发宁; 荣廷玉; 孙训方


    Splitting modulus variational principle in linear theory of solid mechanics was introduced, the principle for thin plate was derived, and splitting modulus finite element method of thin plate was established too. The distinctive feature of the splitting model is that its functional contains one or more arbitrary additional parameters, called splitting factors,so stiffness of the model can be adjusted by properly selecting the splitting factors. Examples show that splitting modulus method has high precision and the ability to conquer some illconditioned problems in usual finite elements. The cause why the new method could transform the ill-conditioned problems into well-conditioned problem, is analyzed finally.

  1. Semi-strong split domination in graphs

    Anwar Alwardi


    Full Text Available Given a graph $G = (V,E$, a dominating set $D subseteq V$ is called a semi-strong split dominating set of $G$ if $|V setminus D| geq 1$ and the maximum degree of the subgraph induced by $V setminus D$ is 1. The minimum cardinality of a semi-strong split dominating set (SSSDS of G is the semi-strong split domination number of G, denoted $gamma_{sss}(G$. In this work, we introduce the concept and prove several results regarding it.

  2. Split liver transplantation.

    Yersiz, H; Cameron, A M; Carmody, I; Zimmerman, M A; Kelly, B S; Ghobrial, R M; Farmer, D G; Busuttil, R W


    Seventy-five thousand Americans develop organ failure each year. Fifteen percent of those on the list for transplantation die while waiting. Several possible mechanisms to expand the organ pool are being pursued including the use of extended criteria donors, living donation, and split deceased donor transplants. Cadaveric organ splitting results from improved understanding of the surgical anatomy of the liver derived from Couinaud. Early efforts focused on reduced-liver transplantation (RLT) reported by both Bismuth and Broelsch in the mid-1980s. These techniques were soon modified to create both a left lateral segment graft appropriate for a pediatric recipient and a right trisegment for an appropriately sized adult. Techniques of split liver transplantation (SLT) were also modified to create living donor liver transplantation. Pichlmayr and Bismuth reported successful split liver transplantation in 1989 and Emond reported a larger series of nine split procedures in 1990. Broelsch and Busuttil described a technical modification in which the split was performed in situ at the donor institution with surgical division completed in the heart beating cadaveric donor. In situ splitting reduces cold ischemia, simplifies identification of biliary and vascular structures, and reduces reperfusion hemorrhage. However, in situ splits require specialized skills, prolonged operating room time, and increased logistical coordination at the donor institution. At UCLA over 120 in situ splits have been performed and this technique is the default when an optimal donor is available. Split liver transplantation now accounts for 10% of adult transplantations at UCLA and 40% of pediatric transplantations.

  3. Split Cord Malformations

    Yurdal Gezercan


    Full Text Available Split cord malformations are rare form of occult spinal dysraphism in children. Split cord malformations are characterized by septum that cleaves the spinal canal in sagittal plane within the single or duplicated thecal sac. Although their precise incidence is unknown, split cord malformations are exceedingly rare and represent %3.8-5 of all congenital spinal anomalies. Characteristic neurological, urological, orthopedic clinical manifestations are variable and asymptomatic course is possible. Earlier diagnosis and surgical intervention for split cord malformations is associated with better long-term fuctional outcome. For this reason, diagnostic imaging is indicated for children with associated cutaneous and orthopedic signs. Additional congenital anomalies usually to accompany the split cord malformations. Earlier diagnosis, meticuolus surgical therapy and interdisciplinary careful evaluation and follow-up should be made for good prognosis. [Cukurova Med J 2015; 40(2.000: 199-207

  4. Accuracy of tablet splitting.

    McDevitt, J T; Gurst, A H; Chen, Y


    We attempted to determine the accuracy of manually splitting hydrochlorothiazide tablets. Ninety-four healthy volunteers each split ten 25-mg hydrochlorothiazide tablets, which were then weighed using an analytical balance. Demographics, grip and pinch strength, digit circumference, and tablet-splitting experience were documented. Subjects were also surveyed regarding their willingness to pay a premium for commercially available, lower-dose tablets. Of 1752 manually split tablet portions, 41.3% deviated from ideal weight by more than 10% and 12.4% deviated by more than 20%. Gender, age, education, and tablet-splitting experience were not predictive of variability. Most subjects (96.8%) stated a preference for commercially produced, lower-dose tablets, and 77.2% were willing to pay more for them. For drugs with steep dose-response curves or narrow therapeutic windows, the differences we recorded could be clinically relevant.

  5. Coded Splitting Tree Protocols

    Sørensen, Jesper Hemming; Stefanovic, Cedomir; Popovski, Petar


    This paper presents a novel approach to multiple access control called coded splitting tree protocol. The approach builds on the known tree splitting protocols, code structure and successive interference cancellation (SIC). Several instances of the tree splitting protocol are initiated, each...... instance is terminated prematurely and subsequently iterated. The combined set of leaves from all the tree instances can then be viewed as a graph code, which is decodable using belief propagation. The main design problem is determining the order of splitting, which enables successful decoding as early...... as possible. Evaluations show that the proposed protocol provides considerable gains over the standard tree splitting protocol applying SIC. The improvement comes at the expense of an increased feedback and receiver complexity....

  6. Concentric Split Flow Filter

    Stapleton, Thomas J. (Inventor)


    A concentric split flow filter may be configured to remove odor and/or bacteria from pumped air used to collect urine and fecal waste products. For instance, filter may be designed to effectively fill the volume that was previously considered wasted surrounding the transport tube of a waste management system. The concentric split flow filter may be configured to split the air flow, with substantially half of the air flow to be treated traveling through a first bed of filter media and substantially the other half of the air flow to be treated traveling through the second bed of filter media. This split flow design reduces the air velocity by 50%. In this way, the pressure drop of filter may be reduced by as much as a factor of 4 as compare to the conventional design.

  7. Split-plot fractional designs: Is minimum aberration enough?

    Kulahci, Murat; Ramirez, Jose; Tobias, Randy


    Split-plot experiments are commonly used in industry for product and process improvement. Recent articles on designing split-plot experiments concentrate on minimum aberration as the design criterion. Minimum aberration has been criticized as a design criterion for completely randomized fractional...... factorial design and alternative criteria, such as the maximum number of clear two-factor interactions, are suggested (Wu and Hamada (2000)). The need for alternatives to minimum aberration is even more acute for split-plot designs. In a standard split-plot design, there are several types of two...... for completely randomized designs. Consequently, we provide a modified version of the maximum number of clear two-factor interactions design criterion to be used for split-plot designs....

  8. Split-plot fractional designs: Is minimum aberration enough?

    Kulahci, Murat; Ramirez, Jose; Tobias, Randy


    Split-plot experiments are commonly used in industry for product and process improvement. Recent articles on designing split-plot experiments concentrate on minimum aberration as the design criterion. Minimum aberration has been criticized as a design criterion for completely randomized fractional...... factorial design and alternative criteria, such as the maximum number of clear two-factor interactions, are suggested (Wu and Hamada (2000)). The need for alternatives to minimum aberration is even more acute for split-plot designs. In a standard split-plot design, there are several types of two...... for completely randomized designs. Consequently, we provide a modified version of the maximum number of clear two-factor interactions design criterion to be used for split-plot designs....

  9. (O)Mega Split

    Benakli, Karim; Goodsell, Mark


    We study two realisations of the Fake Split Supersymmetry Model (FSSM), the simplest model that can easily reproduce the experimental value of the Higgs mass for an arbitrarily high supersymmetry scale, as a consequence of swapping higgsinos for equivalent states, fake higgsinos, with suppressed Yukawa couplings. If the LSP is identified as the main Dark matter component, then a standard thermal history of the Universe implies upper bounds on the supersymmetry scale, which we derive. On the other hand, we show that renormalisation group running of soft masses above the supersymmetry scale barely constrains the model - in stark contrast to Split Supersymmetry - and hence we can have a "Mega Split" spectrum even with all of these assumptions and constraints, which include the requirements of a correct relic abundance, a gluino life-time compatible with Big Bang Nucleosynthesis and absence of signals in present direct detection experiments of inelastic dark matter. In an appendix we describe a related scenario, ...

  10. On Integrable Roots in Split Lie Triple Systems



    We focus on the notion of an integrable root in the framework of split Lie triple systems T with a coherent 0-root space. As a main result, it is shown that if T has all its nonzero roots integrable, then its standard embedding is a split Lie algebra having all its nonzero roots integrable. As a consequence, a local finiteness theorem for split Lie triple systems, saying that whenever all nonzero roots of T are integrable then T is locally finite, is stated. Finally, a classification theorem for split simple Lie triple systems having all its nonzero roots integrable is given.

  11. Split Malcev Algebras

    Antonio J Calderón Martín; Manuel Forero Piulestán; José M Sánchez Delgado


    We study the structure of split Malcev algebras of arbitrary dimension over an algebraically closed field of characteristic zero. We show that any such algebras is of the form $M=\\mathcal{U}+\\sum_jI_j$ with $\\mathcal{U}$ a subspace of the abelian Malcev subalgebra and any $I_j$ a well described ideal of satisfying $[I_j, I_k]=0$ if ≠ . Under certain conditions, the simplicity of is characterized and it is shown that is the direct sum of a semisimple split Lie algebra and a direct sum of simple non-Lie Malcev algebras.

  12. The Splitting Loope

    Wilkins, Jesse L. M.; Norton, Anderson


    Teaching experiments have generated several hypotheses concerning the construction of fraction schemes and operations and relationships among them. In particular, researchers have hypothesized that children's construction of splitting operations is crucial to their construction of more advanced fractions concepts (Steffe, 2002). The authors…

  13. Pendulum separatrix splitting

    Gallavotti, G; Mastropietro, V


    An exact expression for the determinant of the splitting matrix is derived: it allows us to analyze the asympotic behaviour needed to amend the large angles theorem proposed in Ann. Inst. H. Poincaré, B-60, 1, 1994. The asymptotic validity of Melnokov's formulae is proved for the class of models considered, which include polynomial perturbations.

  14. Fee splitting in ophthalmology.

    Levin, Alex V; Ganesh, Anuradha; Al-Busaidi, Ahmed


    Fee splitting and co-management are common practices in ophthalmology. These arrangements may conflict with the ethical principles governing the doctor-patient relationship, may constitute professional misconduct, and at times, may be illegal. Implications and perceptions of these practices may vary between different cultures. Full disclosure to the patient may minimize the adverse effects of conflicts of interest that arise from these practices, and may thereby allow these practices to be deemed acceptable by some cultural morays, professional guidelines, or by law. Disclosure does not necessarily relieve the physician from a potential ethical compromise. This review examines the practice of fee splitting in ophthalmology, its legal implications, the policies or guidelines governing such arrangements, and the possible ethical ramifications. A comparative view between 3 countries, Canada, the United States, and Oman, was conducted; illustrating that even in disparate cultures, there may be some universality to the application of ethical principles.

  15. Syntax for Split Preorders

    Dosen, K


    A split preorder is a preordering relation on the disjoint union of two sets, which function as source and target when one composes split preorders. The paper presents by generators and equations the category SplPre, whose arrows are the split preorders on the disjoint union of two finite ordinals. The same is done for the subcategory Gen of SplPre, whose arrows are equivalence relations, and for the category Rel, whose arrows are the binary relations between finite ordinals, and which has an isomorphic image within SplPre by a map that preserves composition, but not identity arrows. It was shown previously that SplPre and Gen have an isomorphic representation in Rel in the style of Brauer. The syntactical presentation of Gen and Rel in this paper exhibits the particular Frobenius algebra structure of Gen and the particular bialgebraic structure of Rel, the latter structure being built upon the former structure in SplPre. This points towards algebraic modelling of various categories motivated by logic, and re...

  16. Split-plot designs for robotic serial dilution assays.

    Buzas, Jeffrey S; Wager, Carrie G; Lansky, David M


    This article explores effective implementation of split-plot designs in serial dilution bioassay using robots. We show that the shortest path for a robot to fill plate wells for a split-plot design is equivalent to the shortest common supersequence problem in combinatorics. We develop an algorithm for finding the shortest common supersequence, provide an R implementation, and explore the distribution of the number of steps required to implement split-plot designs for bioassay through simulation. We also show how to construct collections of split plots that can be filled in a minimal number of steps, thereby demonstrating that split-plot designs can be implemented with nearly the same effort as strip-plot designs. Finally, we provide guidelines for modeling data that result from these designs.

  17. Split Q-balls

    Bazeia, D.; Losano, L.; Marques, M. A.; Menezes, R.


    We investigate the presence of non-topological solutions of the Q-ball type in (1 , 1) spacetime dimensions. The model engenders the global U (1) symmetry and is of the k-field type, since it contains a new term, of the fourth-order power in the derivative of the complex scalar field. It supports analytical solution of the Q-ball type which is stable quantum mechanically. The new solution engenders an interesting behavior, with the charge and energy densities unveiling a splitting profile.

  18. Depth-first search in split-by-edges trees

    Brændeland, Asbjørn


    A layerwise search in a split-by-edges tree (as defined by Br{\\ae}ndeland, 2015) of agiven graph produces a maximum independent set in exponential time. A depth-first search produces an independent set, which may or may not be a maximum, in linear time, but the worst case success rate is maybe not high enough to make it really interesting. What may make depth-first searching in split-by-edges trees interesting, though, is the pronounced oscillation of its success rate along the graph size axis.

  19. Maximum Autocorrelation Factorial Kriging

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Pedersen, John L.


    This paper describes maximum autocorrelation factor (MAF) analysis, maximum autocorrelation factorial kriging, and its application to irregularly sampled stream sediment geochemical data from South Greenland. Kriged MAF images are compared with kriged images of varimax rotated factors from...

  20. Nano-architecture and material designs for water splitting photoelectrodes.

    Chen, Hao Ming; Chen, Chih Kai; Liu, Ru-Shi; Zhang, Lei; Zhang, Jiujun; Wilkinson, David P


    This review concerns the efficient conversion of sunlight into chemical fuels through the photoelectrochemical splitting of water, which has the potential to generate sustainable hydrogen fuel. In this review, we discuss various photoelectrode materials and relative design strategies with their associated fabrication for solar water splitting. Factors affecting photoelectrochemical performance of these materials and designs are also described. The most recent progress in the research and development of new materials as well as their corresponding photoelectrodes is also summarized in this review. Finally, the research strategies and future directions for water splitting are discussed with recommendations to facilitate the further exploration of new photoelectrode materials and their associated technologies.

  1. Solar water splitting: efficiency discussion

    Juodkazyte, Jurga; Seniutinas, Gediminas; Sebeka, Benjaminas; Savickaja, Irena; Malinauskas, Tadas; Badokas, Kazimieras; Juodkazis, Kestutis; Juodkazis, Saulius


    The current state of the art in direct water splitting in photo-electrochemical cells (PECs) is presented together with: (i) a case study of water splitting using a simple solar cell with the most efficient water splitting electrodes and (ii) a detailed mechanism analysis. Detailed analysis of the energy balance and efficiency of solar hydrogen production are presented. The role of hydrogen peroxide formation as an intermediate in oxygen evolution reaction is newly revealed and explains why a...

  2. Split Quasi-adequate Semigroups

    Xiao Jiang GUO; Ting Ting PENG


    The so-called split IC quasi-adequate semigroups are in the class of idempotent-connected quasi-adequate semigroups.It is proved that an IC quasi-adequate semigroup is split if and only if it has an adequate transversal.The structure of such semigroup whose band of idempotents is regular will be particularly investigated.Our obtained results enrich those results given by McAlister and Blyth on split orthodox semigroups.

  3. Comet LINEAR Splits Further


    Third Nucleus Observed with the VLT Summary New images from the VLT show that one of the two nuclei of Comet LINEAR (C/2001 A2), now about 100 million km from the Earth, has just split into at least two pieces . The three fragments are now moving through space in nearly parallel orbits while they slowly drift apart. This comet will pass through its perihelion (nearest point to the Sun) on May 25, 2001, at a distance of about 116 million kilometres. It has brightened considerably due to the splitting of its "dirty snowball" nucleus and can now be seen with the unaided eye by observers in the southern hemisphere as a faint object in the southern constellation of Lepus (The Hare). PR Photo 18a/01 : Three nuclei of Comet LINEAR . PR Photo 18b/01 : The break-up of Comet LINEAR (false-colour). Comet LINEAR splits and brightens ESO PR Photo 18a/01 ESO PR Photo 18a/01 [Preview - JPEG: 400 x 438 pix - 55k] [Normal - JPEG: 800 x 875 pix - 136k] ESO PR Photo 18b/01 ESO PR Photo 18b/01 [Preview - JPEG: 367 x 400 pix - 112k] [Normal - JPEG: 734 x 800 pix - 272k] Caption : ESO PR Photo 18a/01 shows the three nuclei of Comet LINEAR (C/2001 A2). It is a reproduction of a 1-min exposure in red light, obtained in the early evening of May 16, 2001, with the 8.2-m VLT YEPUN (UT4) telescope at Paranal. ESO PR Photo 18b/01 shows the same image, but in a false-colour rendering for more clarity. The cometary fragment "B" (right) has split into "B1" and "B2" (separation about 1 arcsec, or 500 km) while fragment "A" (upper left) is considerably fainter. Technical information about these photos is available below. Comet LINEAR was discovered on January 3, 2001, and designated by the International Astronomical Union (IAU) as C/2001 A2 (see IAU Circular 7564 [1]). Six weeks ago, it was suddenly observed to brighten (IAUC 7605 [1]). Amateurs all over the world saw the comparatively faint comet reaching naked-eye magnitude and soon thereafter, observations with professional telescopes indicated

  4. Thermally induced photon splitting

    Elmfors, P; Elmfors, Per; Skagerstam, Bo-Sture


    We calculate thermal corrections to the non-linear QED effective action for low-energy photon interactions in a background electromagnetic field. The high-temperature expansion shows that at $T \\gg m$ the vacuum contribution is exactly cancelled to all orders in the external field except for a non-trivial two-point function contribution. The high-temperature expansion derived reveals a remarkable cancellation of infrared sensitive contributions. As a result photon-splitting in the presence of a magnetic field is suppressed in the presence of an electron-positron QED-plasma at very high temperatures. In a cold and dense plasma a similar suppression takes place. At the same time Compton scattering dominates for weak fields and the suppression is rarely important in physical situations.

  5. Leptogenesis from split fermions

    Nagatani, Yukinori; Perez, Gilad


    We present a new type of leptogenesis mechanism based on a two-scalar split-fermions framework. At high temperatures the bulk scalar vacuum expectation values (VEVs) vanish and lepton number is strongly violated. Below some temperature, T{sub c}, the scalars develop extra dimension dependent VEVs. This transition is assumed to proceed via a first order phase transition. In the broken phase the fermions are localized and lepton number violation is negligible. The lepton-bulk scalar Yukawa couplings contain sizable CP phases which induce lepton production near the interface between the two phases. We provide a qualitative estimation of the resultant baryon asymmetry which agrees with current observation. The neutrino flavor parameters are accounted for by the above model with an additional approximate U(1) symmetry.

  6. Split ring resonator resonance assisted terahertz antennas

    Galal, Hossam; Vitiello, Miriam S


    We report on the computational development of novel architectures of low impedance broadband antennas, for efficient detection of Terahertz (THz) frequency beams. The conceived Split Ring Resonator Resonance Assisted (SRR RA) antennas are based on both a capacitive and inductive scheme, exploiting a 200 Ohm and 400 Ohm impedance, respectively. Moreover, the impedance is tunable by varying the coupling parameters in the exploited geometry, allowing for better matching with the detector circuit for maximum power extraction. Our simulation results have been obtained by assuming a 1.5 THz operation frequency.

  7. Artificial photosynthesis for solar water-splitting

    Tachibana, Yasuhiro; Vayssieres, Lionel; Durrant, James R.


    Hydrogen generated from solar-driven water-splitting has the potential to be a clean, sustainable and abundant energy source. Inspired by natural photosynthesis, artificial solar water-splitting devices are now being designed and tested. Recent developments based on molecular and/or nanostructure designs have led to advances in our understanding of light-induced charge separation and subsequent catalytic water oxidation and reduction reactions. Here we review some of the recent progress towards developing artificial photosynthetic devices, together with their analogies to biological photosynthesis, including technologies that focus on the development of visible-light active hetero-nanostructures and require an understanding of the underlying interfacial carrier dynamics. Finally, we propose a vision for a future sustainable hydrogen fuel community based on artificial photosynthesis.

  8. Maximum Entropy in Drug Discovery

    Chih-Yuan Tseng


    Full Text Available Drug discovery applies multidisciplinary approaches either experimentally, computationally or both ways to identify lead compounds to treat various diseases. While conventional approaches have yielded many US Food and Drug Administration (FDA-approved drugs, researchers continue investigating and designing better approaches to increase the success rate in the discovery process. In this article, we provide an overview of the current strategies and point out where and how the method of maximum entropy has been introduced in this area. The maximum entropy principle has its root in thermodynamics, yet since Jaynes’ pioneering work in the 1950s, the maximum entropy principle has not only been used as a physics law, but also as a reasoning tool that allows us to process information in hand with the least bias. Its applicability in various disciplines has been abundantly demonstrated. We give several examples of applications of maximum entropy in different stages of drug discovery. Finally, we discuss a promising new direction in drug discovery that is likely to hinge on the ways of utilizing maximum entropy.

  9. Split-ball resonator

    Kuznetsov, Arseniy I; Fu, Yuan Hsing; Viswanathan, Vignesh; Rahmani, Mohsen; Valuckas, Vytautas; Kivshar, Yuri; Pickard, Daniel S; Lukiyanchuk, Boris


    We introduce a new concept of split-ball resonator and demonstrate a strong omnidirectional magnetic dipole response for both gold and silver spherical plasmonic nanoparticles with nanometer-scale cuts. Tunability of the magnetic dipole resonance throughout the visible spectral range is demonstrated by a change of the depth and width of the nanoscale cut. We realize this novel concept experimentally by employing the laser-induced transfer method to produce near-perfect spheres and helium ion beam milling to make cuts with the nanometer resolution. Due to high quality of the spherical particle shape, governed by strong surface tension forces during the laser transfer process, and the clean, straight side walls of the cut made by helium ion milling, magnetic resonance is observed at 600 nm in gold and at 565 nm in silver nanoparticles. Structuring arbitrary features on the surface of ideal spherical resonators with nanoscale dimensions provides new ways of engineering hybrid resonant modes and ultra-high near-f...

  10. Poincaré Map Based on Splitting Methods

    GANG Tie-Qiang; CHEN Li-Jie; MEI Feng-Xiang


    Firstly, by using the Liouville formula, we prove that the Jacobian matrix determinants of splitting methods are equal to that of the exact flow. However, for the explicit Runge-Kutta methods, there is an error term of order p + 1 for the Jacobian matrix determinants. Then, the volume evolution law of a given region in phase space is discussed for different algorithms. It is proved that splitting methods can exactly preserve the sum of Lyapunov exponents invariable. Finally, a Poincaré map and its energy distribution of the Duffing equation are computed by using the second-order splitting method and the Heun method (a second-order Runge-Kutta method). Computation illustrates that the results by splitting methods can properly represent systems' chaotic phenomena.

  11. Dynamics of a split torque helicopter transmission

    Rashidi, Majid; Krantz, Timothy

    A high reduction ratio split torque gear train has been proposed as an alternative to a planetary configuration for the final stage of a helicopter transmission. A split torque design allows a high ratio of power-to-weight for the transmission. The design studied in this work includes a pivoting beam that acts to balance thrust loads produced by the helical gear meshes in each of two parallel power paths. When the thrust loads are balanced, the torque is split evenly. A mathematical model was developed to study the dynamics of the system. The effects of time varying gear mesh stiffness, static transmission errors, and flexible bearing supports are included in the model. The model was demonstrated with a test case. Results show that although the gearbox has a symmetric configuration, the simulated dynamic behavior of the first and second compound gears are not the same. Also, results show that shaft location and mesh stiffness tuning are significant design parameters that influence the motions of the system.

  12. Maximum Autocorrelation Factorial Kriging

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Pedersen, John L.; Steenfelt, Agnete


    This paper describes maximum autocorrelation factor (MAF) analysis, maximum autocorrelation factorial kriging, and its application to irregularly sampled stream sediment geochemical data from South Greenland. Kriged MAF images are compared with kriged images of varimax rotated factors from an ordinary non-spatial factor analysis, and they are interpreted in a geological context. It is demonstrated that MAF analysis contrary to ordinary non-spatial factor analysis gives an objective discrimina...

  13. Semantic Parameters of Split Intransitivity.

    Van Valin, Jr., Robert D.


    This paper argues that split-intransitive phenomena are better explained in semantic terms. A semantic analysis is carried out in Role and Reference Grammar, which assumes the theory of verb classification proposed in Dowty 1979. (49 references) (JL)

  14. ISR split-field magnet


    The experimental apparatus used at intersection 4 around the Split-Field Magnet by the CERN-Bologna Collaboration (experiment R406). The plastic scintillator telescopes are used for precise pulse-height and time-of-flight measurements.

  15. Split NMSSM with electroweak baryogenesis

    Demidov, S.; Gorbunov, D; Kirpichnikov, D.


    In light of the Higgs boson discovery and other results of the LHC we re-consider generation of the baryon asymmetry in the split Supersymmetry model with an additional singlet superfield in the Higgs sector (non-minimal split SUSY). We find that successful baryogenesis during the first order electroweak phase transition is possible within a phenomenologically viable part of the model parameter space. We discuss several phenomenological consequences of this scenario, namely, predictions for t...

  16. Small-bubble transport and splitting dynamics in a symmetric bifurcation

    Qamar, Adnan


    Simulations of small bubbles traveling through symmetric bifurcations are conducted to garner information pertinent to gas embolotherapy, a potential cancer treatment. Gas embolotherapy procedures use intra-arterial bubbles to occlude tumor blood supply. As bubbles pass through bifurcations in the blood stream nonhomogeneous splitting and undesirable bioeffects may occur. To aid development of gas embolotherapy techniques, a volume of fluid method is used to model the splitting process of gas bubbles passing through artery and arteriole bifurcations. The model reproduces the variety of splitting behaviors observed experimentally, including the bubble reversal phenomenon. Splitting homogeneity and maximum shear stress along the vessel walls is predicted over a variety of physical parameters. Small bubbles, having initial length less than twice the vessel diameter, were found unlikely to split in the presence of gravitational asymmetry. Maximum shear stresses were found to decrease exponentially with increasing Reynolds number. Vortex-induced shearing near the bifurcation is identified as a possible mechanism for endothelial cell damage.

  17. Maximum likely scale estimation

    Loog, Marco; Pedersen, Kim Steenstrup; Markussen, Bo


    A maximum likelihood local scale estimation principle is presented. An actual implementation of the estimation principle uses second order moments of multiple measurements at a fixed location in the image. These measurements consist of Gaussian derivatives possibly taken at several scales and/or ...

  18. Split-and-merge Procedure for Image Segmentation using Bimodality Detection Approach

    Debasis Chaudhuri


    Full Text Available Image segmentation, the division of a multi-dimensional image into groups of associated pixels, is an essential step for many advanced imaging applications. Image segmentation can be performed by recursively splitting the whole image or by merging together a large number of minute regions until a specified condition is satisfied. The split-and-merge procedure of image segmentation takes an  intermediate level in an image description as the starting cutest, and thereby achieves a compromise between merging small primitive regions and recursively splitting the whole images to reach the desired final cutest. The proposed segmentation approach is a split-andmerge technique. The conventional split-and-merge algorithm is lacking in adaptability to the image semantics because of its stiff quadtree-based structure. In this paper, an automatic thresholding technique based on bimodality detection approach with non-homogeneity criterion is employed in the splitting phase of the split-and-merge segmentation scheme to directly reflect the image semantics to the image segmentation results. Since the proposed splitting technique depends upon homogeneity factor, some of the split regions may or may not split properly. There should be rechecking through merging technique between the two adjacent regions to overcome the drawback of the splitting technique. A sequential-arrange-based or a minimal spanning-tree based approach, that depends on data dimensionality of the weighted centroids of all split regions for finding the pair wise adjacent regions, is introduced. Finally, to overcome the problems caused by the splitting technique, a novel merging technique based on the density ratio of the adjacent pair regions is proposed. The algorithm has been tested on several synthetic as well as real life data and the results show the efficiency of the segmentation technique.Defence Science Journal, 2010, 60(3, pp.290-301, DOI:

  19. Maximum information photoelectron metrology

    Hockett, P; Wollenhaupt, M; Baumert, T


    Photoelectron interferograms, manifested in photoelectron angular distributions (PADs), are a high-information, coherent observable. In order to obtain the maximum information from angle-resolved photoionization experiments it is desirable to record the full, 3D, photoelectron momentum distribution. Here we apply tomographic reconstruction techniques to obtain such 3D distributions from multiphoton ionization of potassium atoms, and fully analyse the energy and angular content of the 3D data. The PADs obtained as a function of energy indicate good agreement with previous 2D data and detailed analysis [Hockett et. al., Phys. Rev. Lett. 112, 223001 (2014)] over the main spectral features, but also indicate unexpected symmetry-breaking in certain regions of momentum space, thus revealing additional continuum interferences which cannot otherwise be observed. These observations reflect the presence of additional ionization pathways and, most generally, illustrate the power of maximum information measurements of th...

  20. Solar water splitting: efficiency discussion

    Juodkazyte, Jurga; Sebeka, Benjaminas; Savickaja, Irena; Malinauskas, Tadas; Badokas, Kazimieras; Juodkazis, Kestutis; Juodkazis, Saulius


    The current state of the art in direct water splitting in photo-electrochemical cells (PECs) is presented together with: (i) a case study of water splitting using a simple solar cell with the most efficient water splitting electrodes and (ii) a detailed mechanism analysis. Detailed analysis of the energy balance and efficiency of solar hydrogen production are presented. The role of hydrogen peroxide formation as an intermediate in oxygen evolution reaction is newly revealed and explains why an oxygen evolution is not taking place at the thermodynamically expected 1.23 V potential. Solar hydrogen production with electrical-to-hydrogen conversion efficiency of 52% is demonstrated using a simple ~0.7%-efficient n-Si/Ni Schottky solar cell connected to a water electrolysis cell. This case study shows that separation of the processes of solar harvesting and electrolysis avoids photo-electrode corrosion and utilizes optimal electrodes for hydrogen and oxygen evolution reactions and achieves ~10% efficiency in light...

  1. Lattice splitting under intermittent flows

    Schläpfer, Markus


    We study the splitting of regular square lattices subject to stochastic intermittent flows. By extensive Monte Carlo simulations we reveal how the time span until the occurence of a splitting depends on various flow patterns imposed on the lattices. Increasing the flow fluctuation frequencies shortens this time span which reaches a minimum before rising again due to inertia effects incorporated in the model. The size of the largest connected component after the splitting is rather independent of the flow fluctuations but sligthly decreases with the link capacities. Our results are relevant for assessing the robustness of real-life systems, such as electric power grids with a large share of renewable energy sources including wind turbines and photovoltaic systems.

  2. On Split Lie Triple Systems

    Antonio J Calderón Martín


    We begin the study of arbitrary split Lie triple systems by focussing on those with a coherent 0-root space. We show that any such triple systems with a symmetric root system is of the form $T=\\mathcal{U}+\\sum_j I_j$ with $\\mathcal{U}$ a subspace of the 0-root space $T_0$ and any $I_j$ a well described ideal of , satisfying $[I_j,T,I_k]=0$ if $j≠ k$. Under certain conditions, it is shown that is the direct sum of the family of its minimal ideals, each one being a simple split Lie triple system, and the simplicity of is characterized. The key tool in this job is the notion of connection of roots in the framework of split Lie triple systems.

  3. Split supersymmetry in brane models

    Ignatios Antoniadis


    Type-I string theory in the presence of internal magnetic fields provides a concrete realization of split supersymmetry. To lowest order, gauginos are massless while squarks and sleptons are superheavy. For weak magnetic fields, the correct Standard Model spectrum guarantees gauge coupling unification with sin2 W = 3/8 at the com-pactification scale of GUT ≃ 2 × 1016 GeV. I discuss mechanisms for generating gaugino and higgsino masses at the TeV scale, as well as generalizations to models with split extended supersymmetry in the gauge sector.

  4. Split NMSSM with electroweak baryogenesis

    Demidov, S. V.; Gorbunov, D. S.; Kirpichnikov, D. V.


    In light of the Higgs boson discovery and other results of the LHC we re-consider generation of the baryon asymmetry in the split Supersymmetry model with an additional singlet superfield in the Higgs sector (non-minimal split SUSY). We find that successful baryogenesis during the first order electroweak phase transition is possible within a phenomenologically viable part of the model parameter space. We discuss several phenomenological consequences of this scenario, namely, predictions for the electric dipole moments of electron and neutron and collider signatures of light charginos and neutralinos.

  5. Splitting strings on integrable backgrounds

    Vicedo, Benoit


    We use integrability to construct the general classical splitting string solution on R x S{sup 3}. Namely, given any incoming string solution satisfying a necessary self-intersection property at some given instant in time, we use the integrability of the worldsheet {sigma}-model to construct the pair of outgoing strings resulting from a split. The solution for each outgoing string is expressed recursively through a sequence of dressing transformations, the parameters of which are determined by the solutions to Birkhoff factorization problems in an appropriate real form of the loop group of SL{sub 2}(C). (orig.)

  6. Split Supersymmetry in String Theory

    Antoniadis, Ignatios


    Type I string theory in the presence of internal magnetic fields provides a concrete realization of split supersymmetry. To lowest order, gauginos are massless while squarks and sleptons are superheavy. For weak magnetic fields, the correct Standard Model spectrum guarantees gauge coupling unification with \\sin^2{\\theta_W}=3/8 at the compactification scale of M_{\\rm GUT}\\simeq 2 \\times 10^{16} GeV. I discuss mechanisms for generating gaugino and higgsino masses at the TeV scale, as well as generalizations to models with split extended supersymmetry in the gauge sector.

  7. Adiabaticity and Reversibility Studies for Beam Splitting using Stable Resonances

    Franchi, A; Giovannozzi, M


    At the CERN Proton Synchrotron, a series of beam experiments proved beam splitting by crossing the one-fourth resonance. Depending on the speed at which the horizontal resonance is crossed, the splitting process is more or less adiabatic, and a different fraction of the initial beam is trapped in the islands. Experiments prove that when the trapping process is reversed and the islands merged together, the final distribution features thick tails. The beam population in such tails is correlated to the speed of the resonance crossing and to the fraction of the beam trapped in the stable islands. Experiments and possible theoretical explanations are discussed.

  8. A bi-objective model for emergency services location-allocation problem with maximum distance constraint

    Mansoureh Haj Mohammad Hosseini


    Full Text Available In this paper, a bi-objective mathematical model for emergency services location-allocation problem on a tree network considering maximum distance constraint is presented. The first objective function called centdian is a weighted mean of a minisum and a minimax criterion and the second one is a maximal covering criterion. For the solution of the bi-objective optimization problem, the problem is split in two sub problems: the selection of the best set of locations, and a demand assignment problem to evaluate each selection of locations. We propose a heuristic algorithm to characterize the efficient location point set on the network. Finally, some numerical examples are presented to illustrate the effectiveness of the proposed algorithms.

  9. Maximum Likelihood Associative Memories

    Gripon, Vincent; Rabbat, Michael


    Associative memories are structures that store data in such a way that it can later be retrieved given only a part of its content -- a sort-of error/erasure-resilience property. They are used in applications ranging from caches and memory management in CPUs to database engines. In this work we study associative memories built on the maximum likelihood principle. We derive minimum residual error rates when the data stored comes from a uniform binary source. Second, we determine the minimum amo...

  10. Maximum likely scale estimation

    Loog, Marco; Pedersen, Kim Steenstrup; Markussen, Bo


    A maximum likelihood local scale estimation principle is presented. An actual implementation of the estimation principle uses second order moments of multiple measurements at a fixed location in the image. These measurements consist of Gaussian derivatives possibly taken at several scales and....../or having different derivative orders. Although the principle is applicable to a wide variety of image models, the main focus here is on the Brownian model and its use for scale selection in natural images. Furthermore, in the examples provided, the simplifying assumption is made that the behavior...... of the measurements is completely characterized by all moments up to second order....

  11. Beam splitting on weak illumination.

    Snyder, A W; Buryak, A V; Mitchell, D J


    We demonstrate, in both two and three dimensions, how a self-guided beam in a non-Kerr medium is split into two beams on weak illumination. We also provide an elegant physical explanation that predicts the universal character of the observed phenomenon. Possible applications of our findings to guiding light with light are also discussed.

  12. Torque-Splitting Gear Drive

    Kish, J.


    Geared drive train transmits torque from input shaft in equal parts along two paths in parallel, then combines torques in single output shaft. Scheme reduces load on teeth of meshing gears while furnishing redundancy to protect against failures. Such splitting and recombination of torques common in design of turbine engines.

  13. Water splitting by cooperative catalysis

    D.G.H. Hetterscheid; J.I. van der Vlugt; B. de Bruin; J.N.H. Reek


    A mononuclear Ru complex is shown to efficiently split water into H2 and O2 in consecutive steps through a heat- and light-driven process (see picture). Thermally driven H2 formation involves the aid of a non-innocent ligand scaffold, while dioxygen is generated by initial photochemically induced re

  14. Guidelines to Develop Efficient Photocatalysts for Water Splitting

    Garcia Esparza, Angel T.


    Photocatalytic overall water splitting is the only viable solar-to-fuel conversion technology. The research discloses an investigation process wherein by dissecting the photocatalytic water splitting device, electrocatalysts, and semiconductor photocatalysts can be independently studied, developed and optimized. The assumption of perfect catalysts leads to the realization that semiconductors are the limiting factor in photocatalysis. This dissertation presents a guideline for efficient photocatalysis using semiconductor particles developed from idealized theoretical simulations. No perfect catalysts exist; then the discussion focus on the development of efficient non-noble metal electrocatalysts for hydrogen evolution from water reduction. Tungsten carbide (WC) is selective for the catalysis of hydrogen without the introduction of the reverse reaction of water formation, which is critical to achieving photocatalytic overall water splitting as demonstrated in this work. Finally, photoelectrochemistry is used to characterize thoroughly Cu-based p-type semiconductors with potential for large-scale manufacture. Artificial photosynthesis may be achieved by following the recommendations herein presented.

  15. Mild-split SUSY with flavor

    Eliaz, Latif; Gudnason, Sven Bjarke; Tsuk, Eitan


    In the framework of a gauge mediated quiver-like model, the standard model flavor texture can be naturally generated. The model - like the MSSM - has furthermore a region in parameter space where the lightest Higgs mass is fed by heavy stop loops, which in turn sets the average squark mass scale near 10-20 TeV. We perform a careful flavor analysis to check whether this type of mild-split SUSY passes all flavor constraints as easily as envisioned in the original type of split SUSY. Interestingly, it turns out to be on the border of several constraints, in particular, the branching ratio of mu -> e gamma and, if order one complex phases are assumed, also epsilon_K neutron and electron EDM. Furthermore, we consider unification as well as dark matter candidates, especially the gravitino. Finally, we provide a closed-form formula for the soft masses of matter in arbitrary representations of any of the gauge groups in a generic quiver-like model with a general messenger sector.

  16. Torque Splitting by a Concentric Face Gear Transmission

    Filler, Robert R.; Heath, Gregory F.; Slaughter, Stephen C.; Lewicki, David G.


    Tests of a 167 Kilowatt (224 Horsepower) split torque face gearbox were performed by the Boeing Company in Mesa, Arizona, while working under a Defense Advanced Research Projects Agency (DARPA) Technology Reinvestment Program (TRP). This paper provides a summary of these cooperative tests, which were jointly funded by Boeing and DARPA. Design, manufacture and testing of the scaled-power TRP proof-of-concept (POC) split torque gearbox followed preliminary evaluations of the concept performed early in the program. The split torque tests were run using 200 N-m (1767 in-lbs) torque input to each side of the transmission. During tests, two input pinions were slow rolled while in mesh with the two face gears. Two idler gears were also used in the configuration to recombine torque near the output. Resistance was applied at the output face gear to create the required loading conditions in the gear teeth. A system of weights, pulleys and cables were used in the test rig to provide both the input and output loading. Strain gages applied in the tooth root fillets provided strain indication used to determine torque splitting conditions at the input pinions. The final two pinion-two idler tests indicated 52% to 48% average torque split capabilities for the two pinions. During the same tests, a 57% to 43% average distribution of the torque being recombined to the upper face gear from the lower face gear was measured between the two idlers. The POC split torque tests demonstrated that face gears can be applied effectively in split torque rotorcraft transmissions, yielding good potential for significant weight, cost and reliability improvements over existing equipment using spiral bevel gearing.

  17. Complexity of Splits Reconstruction for Low-Degree Trees

    Gaspers, Serge; Stein, Maya; Suchan, Karol


    Given a vertex-weighted tree T, the split of an edge xy in T is min(s_x, s_y) where s_x (respectively, s_y) is the sum of all weights of vertices that are closer to x than to y (respectively, closer to y than to x) in T. Given a set of weighted vertices V and a multiset of splits S, we consider the problem of constructing a tree on V whose splits correspond to S. The problem is known to be NP-complete even when all vertices have unit weight and the maximum vertex degree of T is required to be no more than 4. We show that the problem is even strongly NP-complete when T is required to be a path. For this variant we also exhibit an algorithm that runs in polynomial time when the number of distinct vertex weights is constant. We also show that the problem is NP-complete when all vertices have unit weights and the maximum degree of T is required to be no more than 3, and even NP-complete when all vertices have unit weight and T is required to be a caterpillar with unbounded hair length and maximum degree at most 3...

  18. Maximum Entropy Fundamentals

    F. Topsøe


    Full Text Available Abstract: In its modern formulation, the Maximum Entropy Principle was promoted by E.T. Jaynes, starting in the mid-fifties. The principle dictates that one should look for a distribution, consistent with available information, which maximizes the entropy. However, this principle focuses only on distributions and it appears advantageous to bring information theoretical thinking more prominently into play by also focusing on the "observer" and on coding. This view was brought forward by the second named author in the late seventies and is the view we will follow-up on here. It leads to the consideration of a certain game, the Code Length Game and, via standard game theoretical thinking, to a principle of Game Theoretical Equilibrium. This principle is more basic than the Maximum Entropy Principle in the sense that the search for one type of optimal strategies in the Code Length Game translates directly into the search for distributions with maximum entropy. In the present paper we offer a self-contained and comprehensive treatment of fundamentals of both principles mentioned, based on a study of the Code Length Game. Though new concepts and results are presented, the reading should be instructional and accessible to a rather wide audience, at least if certain mathematical details are left aside at a rst reading. The most frequently studied instance of entropy maximization pertains to the Mean Energy Model which involves a moment constraint related to a given function, here taken to represent "energy". This type of application is very well known from the literature with hundreds of applications pertaining to several different elds and will also here serve as important illustration of the theory. But our approach reaches further, especially regarding the study of continuity properties of the entropy function, and this leads to new results which allow a discussion of models with so-called entropy loss. These results have tempted us to speculate over

  19. Regularized maximum correntropy machine

    Wang, Jim Jing-Yan


    In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.

  20. Cool covered sky-splitting spectrum-splitting FK

    Mohedano, Rubén; Chaves, Julio; Falicoff, Waqidi; Hernandez, Maikel; Sorgato, Simone [LPI, Altadena, CA, USA and Madrid (Spain); Miñano, Juan C.; Benitez, Pablo [LPI, Altadena, CA, USA and Madrid, Spain and Universidad Politécnica de Madrid (UPM), Madrid (Spain); Buljan, Marina [Universidad Politécnica de Madrid (UPM), Madrid (Spain)


    Placing a plane mirror between the primary lens and the receiver in a Fresnel Köhler (FK) concentrator gives birth to a quite different CPV system where all the high-tech components sit on a common plane, that of the primary lens panels. The idea enables not only a thinner device (a half of the original) but also a low cost 1-step manufacturing process for the optics, automatic alignment of primary and secondary lenses, and cell/wiring protection. The concept is also compatible with two different techniques to increase the module efficiency: spectrum splitting between a 3J and a BPC Silicon cell for better usage of Direct Normal Irradiance DNI, and sky splitting to harvest the energy of the diffuse radiation and higher energy production throughout the year. Simple calculations forecast the module would convert 45% of the DNI into electricity.

  1. Tantalum-based semiconductors for solar water splitting.

    Zhang, Peng; Zhang, Jijie; Gong, Jinlong


    Solar energy utilization is one of the most promising solutions for the energy crises. Among all the possible means to make use of solar energy, solar water splitting is remarkable since it can accomplish the conversion of solar energy into chemical energy. The produced hydrogen is clean and sustainable which could be used in various areas. For the past decades, numerous efforts have been put into this research area with many important achievements. Improving the overall efficiency and stability of semiconductor photocatalysts are the research focuses for the solar water splitting. Tantalum-based semiconductors, including tantalum oxide, tantalate and tantalum (oxy)nitride, are among the most important photocatalysts. Tantalum oxide has the band gap energy that is suitable for the overall solar water splitting. The more negative conduction band minimum of tantalum oxide provides photogenerated electrons with higher potential for the hydrogen generation reaction. Tantalates, with tunable compositions, show high activities owning to their layered perovskite structure. (Oxy)nitrides, especially TaON and Ta3N5, have small band gaps to respond to visible-light, whereas they can still realize overall solar water splitting with the proper positions of conduction band minimum and valence band maximum. This review describes recent progress regarding the improvement of photocatalytic activities of tantalum-based semiconductors. Basic concepts and principles of solar water splitting will be discussed in the introduction section, followed by the three main categories regarding to the different types of tantalum-based semiconductors. In each category, synthetic methodologies, influencing factors on the photocatalytic activities, strategies to enhance the efficiencies of photocatalysts and morphology control of tantalum-based materials will be discussed in detail. Future directions to further explore the research area of tantalum-based semiconductors for solar water splitting

  2. Dirac and Maxwell equations in Split Octonions

    Beradze, Revaz


    The split octonionic form of Dirac and Maxwell equations are found. In contrast with the previous attempts these equations are derived from the octonionic analyticity condition and also we use different basis of the 8-dimensional space of split octonions.

  3. Wireless transfer of power by a 35-GHz metamaterial split-ring resonator rectenna

    Maedler, Carsten; Yi, Adrian; Christopher, Jason; Hong, Mi K; Mertiri, Alket; House, Larry; Seren, Huseyin R; Zhang, Xin; Averitt, Richard; Mohanty, Pritiraj; Erramilli, Shyamsunder


    Wireless transfer of power via high frequency microwave radiation using a miniature split ring resonator rectenna is reported. RF power is converted into DC power by integrating a rectification circuit with the split ring resonator. The near-field behavior of the rectenna is investigated with microwave radiation in the frequency range between 20-40 GHz with a maximum power level of 17 dBm. The observed resonance peaks match those predicted by simulation. Polarization studies show the expected maximum in signal when the electric field is polarized along the edge of the split ring resonator with the gap and minimum for perpendicular orientation. The efficiency of the rectenna is on the order of 1% for a frequency of 37.2 GHz. By using a cascading array of 9 split ring resonators the output power was increased by a factor of 20.

  4. Split Left GC-Lpp Semigroups

    Zhen Zhen LI; Xiao Jiang GUO; Zhi Qing FU


    A left GC-lpp semigroup S is called split if the natural homomorphism γb of S onto S/γ induced by γ is split.It is proved that a left GC-lpp semigroup is split if and only if it has a left adequate transversal.In particular,a construction theorem for split left GC-lpp semigroups is established.

  5. Equalized near maximum likelihood detector


    This paper presents new detector that is used to mitigate intersymbol interference introduced by bandlimited channels. This detector is named equalized near maximum likelihood detector which combines nonlinear equalizer and near maximum likelihood detector. Simulation results show that the performance of equalized near maximum likelihood detector is better than the performance of nonlinear equalizer but worse than near maximum likelihood detector.

  6. Generalized Maximum Entropy

    Cheeseman, Peter; Stutz, John


    A long standing mystery in using Maximum Entropy (MaxEnt) is how to deal with constraints whose values are uncertain. This situation arises when constraint values are estimated from data, because of finite sample sizes. One approach to this problem, advocated by E.T. Jaynes [1], is to ignore this uncertainty, and treat the empirically observed values as exact. We refer to this as the classic MaxEnt approach. Classic MaxEnt gives point probabilities (subject to the given constraints), rather than probability densities. We develop an alternative approach that assumes that the uncertain constraint values are represented by a probability density {e.g: a Gaussian), and this uncertainty yields a MaxEnt posterior probability density. That is, the classic MaxEnt point probabilities are regarded as a multidimensional function of the given constraint values, and uncertainty on these values is transmitted through the MaxEnt function to give uncertainty over the MaXEnt probabilities. We illustrate this approach by explicitly calculating the generalized MaxEnt density for a simple but common case, then show how this can be extended numerically to the general case. This paper expands the generalized MaxEnt concept introduced in a previous paper [3].

  7. 7 CFR 51.2002 - Split shell.


    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Split shell. 51.2002 Section 51.2002 Agriculture... Standards for Grades of Filberts in the Shell 1 Definitions § 51.2002 Split shell. Split shell means a shell... of the shell, measured in the direction of the crack....

  8. Split NMSSM with electroweak baryogenesis

    Demidov, S V; Kirpichnikov, D V


    In light of the Higgs boson discovery we reconsider generation of the baryon asymmetry in the non-minimal split Supersymmetry model with an additional singlet superfield in the Higgs sector. We find that successful baryogenesis during the first order electroweak phase transition is possible within phenomenologically viable part of the model parameter space. We discuss several phenomenological consequences of this scenario, namely, predictions for the electric dipole moments of electron and neutron and collider signatures of light charginos and neutralinos.

  9. The Split Variational Inequality Problem

    Censor, Yair; Reich, Simeon


    We propose a new variational problem which we call the Split Variational Inequality Problem (SVIP). It entails finding a solution of one Variational Inequality Problem (VIP), the image of which under a given bounded linear transformation is a solution of another VIP. We construct iterative algorithms that solve such problems, under reasonable conditions, in Hilbert space and then discuss special cases, some of which are new even in Euclidean space.

  10. Torsional Split Hopkinson Bar Optimization


    pillow blocks used to mount the incident and transmitter bars are cast iron based- mounted Babbitt -lined bearing split, for 1 in. shaft diameter...Total 1 McMaster-CARR 5911k16 1" Dia, 6" long anodized aluminum shaft $15.38 8 $123.04 2 McMaster-CARR 6359k37 Cast iron base-mounted babbitt

  11. Geometrical Applications of Split Octonions

    Merab Gogberashvili


    Full Text Available It is shown that physical signals and space-time intervals modeled on split-octonion geometry naturally exhibit properties from conventional (3 + 1-theory (e.g., number of dimensions, existence of maximal velocities, Heisenberg uncertainty, and particle generations. This paper demonstrates these properties using an explicit representation of the automorphisms on split-octonions, the noncompact form of the exceptional Lie group G2. This group generates specific rotations of (3 + 4-vector parts of split octonions with three extra time-like coordinates and in infinitesimal limit imitates standard Poincare transformations. In this picture translations are represented by noncompact Lorentz-type rotations towards the extra time-like coordinates. It is shown how the G2 algebra’s chirality yields an intrinsic left-right asymmetry of a certain 3-vector (spin, as well as a parity violating effect on light emitted by a moving quantum system. Elementary particles are connected with the special elements of the algebra which nullify octonionic intervals. Then the zero-norm conditions lead to free particle Lagrangians, which allow virtual trajectories also and exhibit the appearance of spatial horizons governing by mass parameters.

  12. Testing split supersymmetry with inflation

    Craig, Nathaniel; Green, Daniel


    Split supersymmetry (SUSY) — in which SUSY is relevant to our universe but largely inaccessible at current accelerators — has become increasingly plausible given the absence of new physics at the LHC, the success of gauge coupling unification, and the observed Higgs mass. Indirect probes of split SUSY such as electric dipole moments (EDMs) and flavor violation offer hope for further evidence but are ultimately limited in their reach. Inflation offers an alternate window into SUSY through the direct production of superpartners during inflation. These particles are capable of leaving imprints in future cosmological probes of primordial non-gaussianity. Given the recent observations of BICEP2, the scale of inflation is likely high enough to probe the full range of split SUSY scenarios and therefore offers a unique advantage over low energy probes. The key observable for future experiments is equilateral non-gaussianity, which will be probed by both cosmic microwave background (CMB) and large scale structure (LSS) surveys. In the event of a detection, we forecast our ability to find evidence for superpartners through the scaling behavior in the squeezed limit of the bispectrum.

  13. Influência da forma e do processo de obtenção do entalhe na carga máxima e na energia de fratura de argamassas utilizando o método da cunha para propagação estável de trinca Influence of notch shape and preparation on the maximum load and fracture energy of mortars evaluated by the wedge splitting method for stable crack propagation

    S. Ribeiro


    Full Text Available Este trabalho mostra a influência da forma e do processo de obtenção do entalhe na estabilidade da propagação de trinca em materiais cerâmicos de microestrutura heterogênea e conseqüentemente, na carga máxima e energia de fratura quando esses materiais são submetidos ao carregamento utilizando o método da cunha. Foram preparadas argamassas com cimento Portland, areia e água, que foram moldadas, curadas a 25 ºC por 7 dias e secadas a 50 ºC por 48 h. Foram estudadas duas proporções (dosagens ou traços de areia:cimento de 3:1 e 2:1. Foram testados dois tipos de entalhe: um com perfil quadrado da ponta e outro em "V" com ângulo de 60º. Os entalhes de formato quadrado foram obtidos de duas formas: produzidos mecanicamente a partir de disco diamantado e outro na própria moldagem das amostras. Para produzir as amostras entalhadas e ranhuradas já na moldagem, foi desenvolvido um molde de PVC munido de lâminas de aço internas. A partir dos testes preliminares foram estabelecidas as condições de propagação estável da trinca. A trinca percorre um plano imaginário definido pelas ranhuras laterais da amostra. Os resultados mostraram que o entalhe que proporciona melhores condições de estabilidade de propagação de trinca é o de forma em "V", obtido durante o processo de moldagem das amostras.This paper discusses how the shape and preparation of the notch affect crack propagation in ceramic materials with heterogeneous microstructures and, as a result, the maximum load and fracture energy when these materials are subjected to loads using the wedge splitting test. Mortars were prepared with Portland cement, sand and water, which were mixed, molded, and cured at 25 ºC for seven days. After curing, the samples were dried at 55 ºC for 48 h. Two mortar compositions were prepared with proportions of sand:cement of 3:1 and 2:1. Two types of notches were tested: one with a square-tipped profile and the other V-shaped with a 60º

  14. Alternating tip splitting in directional solidification.

    Utter, B; Ragnarsson, R; Bodenschatz, E


    We report experimental results on the tip splitting dynamics of seaweed growth in directional solidification of succinonitrile alloys. Despite the random appearance of the growth, a tip splitting morphology was observed in which the tip alternately splits to the left and to the right. The tip splitting frequency f was found to be related to the growth velocity V as a power law f~V1.5. This finding is consistent with the predictions of a tip splitting model that is also presented. Small anisotropies are shown to lead to different kinds of seaweed morphologies.

  15. CounterPoint: Zeeman-split absorption lines

    Deen, Casey


    CounterPoint works in concert with MoogStokes (ascl:1308.018). It applies the Zeeman effect to the atomic lines in the region of study, splitting them into the correct number of Zeeman components and adjusting their relative intensities according to the predictions of Quantum Mechanics, and finally creates a Moog-readable line list for use with MoogStokes. CounterPoint has the ability to use VALD and HITRAN line databases for both atomic and molecular lines.

  16. Prosodic encoding of topic and focus and its influence on speech perception in split sentences of Chinese Putonghua

    WANG Bei; Caroline Féry


    This study is an investigation of the prosodic encoding of split noun sentences in Chinese Putonghua, for instance, "shu, wo mai le san ben. (Book, I buy ASP three CLAS. 'I bought three books')", in which syntactic fronting highlights the split noun. The question- and-answer paradigm was used to construct contexts where the split noun is either the topic or the focus of the sentence. Acoustic analysis of 280 split sentences read by seven speakers show that the maximum F0 of the base part is higher and the pause after the split noun is shorter in the topic condition than that in the focus condition. But the split noun itself does not differ in either F0 or duration across the two conditions. A perception experiment further shows that the difference in prosody between the two conditions is perceivable, since matched question-and-statement pairs are preferred over unmatched ones.

  17. CBM split title in Alberta

    Campbell, L.M. [EnCana Corp., Calgary, AB (Canada); Laurin, W.


    Coalbed methane (CBM) coal underlies most of central and southern Alberta. This article discussed disputes surrounding CBM ownership and split-titles. Historically, ownership of lands in Alberta implied possession and rights of all under- and overground substances. Surface estates are now typically separated from the subsurface estate, and subsurface estates are further divided either on the basis of substances or stratigraphically to create a split-title. Mineral severances are used to separate respective mineral rights among owners. While there is a relative certainty that under provincial Crown tenure CBM is included in natural gas tenure, there is currently no Canadian jurisprudence in respect of CBM entitlement on split-title private lands. Where compressed natural gas (CNG) and coal are separately held, and CBM ownership is not specifically addressed in the mineral severance, there is no Canadian law respecting CBM ownership. Resolution of ownership issues has proceeded on a case by case basis. Coal owners argue that there is a distinct interrelationship between CBM and its host coal strata. Gas owners argue that the chemical composition of CBM is identical to CNG, and that the recovery method is similar to that of CNG. Courts have historically applied the vernacular test to resolve mineral substance ownership disputes, which considers the meanings of the word coal and coalbed methane as defined by industry. The most recent and relevant application of the vernacular test were the Borys/Anderson, which effectively implemented a gas-oil interface ownership determination, which if applied to a coal grant or reservation, may lead to the conclusion that the coal strata includes CBM. It was concluded that there are 26,000 individual mineral owners in Alberta that may become involved in CBM litigation. and could become parties to litigation. refs., tabs., figs.

  18. Partitions of generalized split graphs

    Shklarsky, Oren


    We discuss matrix partition problems for graphs that admit a partition into k independent sets and ` cliques. We show that when k + ` 6 2, any matrix M has finitely many (k; `) minimal obstructions and hence all of these problems are polynomial time solvable. We provide upper bounds for the size of any (k; `) minimal obstruction when k = ` = 1 (split graphs), when k = 2; ` = 0 (bipartite graphs), and when k = 0; ` = 2 (co-bipartite graphs). When k = ` = 1, we construct an exponential size spl...

  19. Generalized Forward-Backward Splitting


    International audience; This paper introduces a generalized forward-backward splitting algorithm for finding a zero of a sum of maximal monotone operators $B + \\sum_{i=1}^{n} A_i$, where $B$ is cocoercive. It involves the computation of $B$ in an explicit (forward) step and of the parallel computation of the resolvents of the $A_i$'s in a subsequent implicit (backward) step. We prove its convergence in infinite dimension, and robustness to summable errors on the computed operators in the expl...

  20. Ti-doped hematite thin films for efficient water splitting

    Atabaev, Timur Sh.; Ajmal, Muhammad; Hong, Nguyen Hoa; Kim, Hyung-Kook; Hwang, Yoon-Hwae


    Uniform Ti-doped hematite thin films were deposited on transparent fluorine-doped tin oxide FTO coated glasses using a pulsed laser deposition method. An influence of dopant concentration on the photoelectrochemical characteristics was examined under water splitting. Photocurrent measurements indicated that 3 mol% of Ti atoms was optimal dopant concentration in hematite films produced by this method. The maximum photocurrent density of un-doped and 3 mol% Ti-doped Fe2O3 photoelectrodes was 0.67 and 1.64 mA/cm2 at 1.23 V versus RHE, respectively. The incorporation of Ti atoms into hematite photoelectrodes was found to drastically enhance the water splitting performance.

  1. Rectangular split-ring resonators with single-split and two-splits under different excitations at microwave frequencies

    S. Zahertar


    Full Text Available In this work, transmission characteristics of rectangular split-ring resonators with single-split and two-splits are analyzed at microwave frequencies. The resonators are coupled with monopole antennas for excitation. The scattering parameters of the devices are investigated under different polarizations of E and H fields. The magnetic resonances induced by E and H fields are identified and the differences in the behavior of the resonators due to orientations of the fields are explained based on simulation and experimental results. The addition of the second split of the device is investigated considering different configurations of the excitation vectors. It is demonstrated that the single-split and the two-splits resonators exhibit identical transmission characteristics for a certain excitation configuration as verified with simulations and experiments. The presented resonators can effectively function as frequency selective media for varying excitation conditions.

  2. Research on beam splitting prism in laser heterodyne interferometer

    Fu, Xiu-hua; Xiong, Shi-fu; Kou, Yang; Pan, Yong-gang; Chen, Heng; Li, Zeng-yu; Zhang, Chuan-xin


    With the rapid development of optical testing technology, laser heterodyne interferometer has been used more and more widely. As the testing precision requirements continue to increase, the technical prism is an important component of heterodyne interference. The research utilizing thin film technology to improve optical performance of interferometer has been a new focus. In the article, based on the use requirements of interferometer beam splitting prism, select Ta2O5 and SiO2 as high and low refractive index materials respectively, deposit on substrate K9. With the help of TFCalc design software and Needle method, adopting electron gun evaporation and ion assisted deposition, the beam splitting prism is prepared successfully and the ratio of transmittance and reflectance for this beam splitting prism in 500~850 nm band, incident angle 45 degree is 8:2. After repeated tests, solved the difference problem of film deposition process parameters ,controlled thickness monitoring precision effectively and finally prepared the ideal beam splitting prism which is high adhesion and stable optics properties. The film the laser induced damage threshold and it meet the requirements of heterodyne interferometer for use.

  3. Development of new flux splitting schemes. [computational fluid dynamics algorithms

    Liou, Meng-Sing; Steffen, Christopher J., Jr.


    Maximizing both accuracy and efficiency has been the primary objective in designing a numerical algorithm for computational fluid dynamics (CFD). This is especially important for solutions of complex three dimensional systems of Navier-Stokes equations which often include turbulence modeling and chemistry effects. Recently, upwind schemes have been well received for their capability in resolving discontinuities. With this in mind, presented are two new flux splitting techniques for upwind differencing. The first method is based on High-Order Polynomial Expansions (HOPE) of the mass flux vector. The second new flux splitting is based on the Advection Upwind Splitting Method (AUSM). The calculation of the hypersonic conical flow demonstrates the accuracy of the splitting in resolving the flow in the presence of strong gradients. A second series of tests involving the two dimensional inviscid flow over a NACA 0012 airfoil demonstrates the ability of the AUSM to resolve the shock discontinuity at transonic speed. A third case calculates a series of supersonic flows over a circular cylinder. Finally, the fourth case deals with tests of a two dimensional shock wave/boundary layer interaction.

  4. Circuit Parameter Analysis of Maximum Transfer Distance of Magnetic Resonance Wireless Power Transmission Systems%磁共振无线电能传输系统最大传输距离的电路参数分析



    对磁共振无线电能传输系统的最大传输距离问题进行了电路模型研究,先描述了与最大传输距离密切相关的频率分裂现象,进而定义了频率分裂方程、脊方程、谷方程,随后利用脊方程确定了系统的频率分裂临界点,频率分裂临界点对应的传输距离就是系统的最大传输距离.探讨了系统最大传输距离与系统关键参数的关系.最后,利用文献中已有的实验数据,对上述理论进行了实验验证.%Circuit analysis is employed to investigate the maximum transfer distance problem in magnetic resonance wireless power transmission systems. It is described firstly the frequency splitting phenomena that are closely related to the maximum transfer distance problem. Next, the splitting equation, the ridge equation and the trough equation are defined, and the critical splitting point is found through the ridge equation. The maximum transfer distance is uniquely determined by the critical splitting point, and the relationship between the maximum transfer distance and the key system parameters is elucidated. Finally, above theory is validated by the experimental data from the literature.

  5. Generalized Forward-Backward Splitting

    Raguet, Hugo; Peyré, Gabriel


    This paper introduces the generalized forward-backward splitting algorithm for minimizing convex functions of the form $F + \\sum_{i=1}^n G_i$, where $F$ has a Lipschitz-continuous gradient and the $G_i$'s are simple in the sense that their Moreau proximity operators are easy to compute. While the forward-backward algorithm cannot deal with more than $n = 1$ non-smooth function, our method generalizes it to the case of arbitrary $n$. Our method makes an explicit use of the regularity of $F$ in the forward step, and the proximity operators of the $G_i$'s are applied in parallel in the backward step. This allows the generalized forward backward to efficiently address an important class of convex problems. We prove its convergence in infinite dimension, and its robustness to errors on the computation of the proximity operators and of the gradient of $F$. Examples on inverse problems in imaging demonstrate the advantage of the proposed methods in comparison to other splitting algorithms.


    Chen Daohan; Liu Linzhong; Alan Gilmore


    In combination with the authors previous obsewation about the splitting of Comet Halley in March 1986, the events involving the sharp, straight feature in the antisolar direction observed in the head of Comet Halley in 1910 (such as those occurring on May 14, 25 and 31, and June 2) are rediscussed The analysis leads to the following scenario: When Comet Halley explodes and splits, a fragment jettisoned or thrown off from the nucleus will, after moving in the direction of its tail, develop into a mini-comet. Although not well developed or permanent, it has its own plasma tail and, sometimes, a dust tail. If Bobrovnikoffs definition of a secondary nucleus is assumed, then the fragment should be considered as a real secondary nucleus. It seems that the current idea of a tailward jet suggested by Sekanina and Larson is a wrong explanation for the plasma tail of a mini-comet and hence the rotation period of 52-53h for Comet Halley is doubtful

  7. The splitting of Comet Halley

    陈道汉; 刘麟仲; Alan Gilmore


    In combination with the authors’ previous observation about the splitting of Comet Halley in March 1986, the events involving the sharp, straight feature in the antisolar direction observed in the bead of Comet Halley in 1910 (such as those occurring on May 14, 25 and 31, and June 2) are rediscussed. The analysis leads to the following scenario: When Comet Halley explodes and splits, a fragment jettisoned or thrown off from the nucleus will, after moving in the direction of its tail, develop into a mini-comet. Although not well developed or permanent, it has its own plasma tail and, sometimes, a dust tail. If Bobrovnikoff’s definition of a secondary nucleus is assumed, then the fragment should be considered as a real secondary nucleus. It seems that the current idea of a tailward jet suggested by Sekanina and Larson is a wrong explanation for the plasma tail of a mini-comet and hence the rotation period of 52- 53 h for Comet Halley is doubtful.

  8. Markov branching in the vertex splitting model

    Stefansson, Sigurdur Orn


    We study a special case of the vertex splitting model which is a recent model of randomly growing trees. For any finite maximum vertex degree $D$, we find a one parameter model, with parameter $\\alpha \\in [0,1]$ which has a so--called Markov branching property. When $D=\\infty$ we find a two parameter model with an additional parameter $\\gamma \\in [0,1]$ which also has this feature. In the case $D = 3$, the model bears resemblance to Ford's $\\alpha$--model of phylogenetic trees and when $D=\\infty$ it is similar to its generalization, the $\\alpha\\gamma$--model. For $\\alpha = 0$, the model reduces to the well known model of preferential attachment. In the case $\\alpha > 0$, we prove convergence of the finite volume probability measures, generated by the growth rules, to a measure on infinite trees which is concentrated on the set of trees with a single spine. We show that the annealed Hausdorff dimension with respect to the infinite volume measure is $1/\\alpha$. When $\\gamma = 0$ the model reduces to a model of ...

  9. Touching Syllable Segmentation using Split Profile Algorithm

    L.Pratap Reddy


    Full Text Available The most challenging task of a character recognition system is associated with segmentation of individual components of the script with maximum efficiency. This process is relatively easy with regard to stroke based and standard scripts. Cursive scripts are more complex possessing a large number of overlapping and touching objects, where in the statistical behavior of the topological properties are to be studied extensively for achieving highest accuracy. Certain amount of similarity exists between unconstrained hand written text as well as South Indian scripts in terms of topology, component combinations, overlapping and merging characteristics. The concept of syllables and their formulations is an additive complexity with regard to Indian scripts. In this paper the statistical behavior of the cursive script, Telugu, is presented. The topological properties in terms of zones, component combinations, behavioural aspects of syllables are studied and adopted in the segmentation process. The statistical behaviour of cursive components are evaluated. Split Profile Algorithm is proposed while handling touching components. The proposed algorithm is evaluated on different fonts and sizes. The performance of the proposed algorithm is compared with two approaches methods viz aspect ratio and syllable width approaches.

  10. Recent Progress in Metal-Organic Frameworks for Applications in Electrocatalytic and Photocatalytic Water Splitting.

    Wang, Wei; Xu, Xiaomin; Zhou, Wei; Shao, Zongping


    The development of clean and renewable energy materials as alternatives to fossil fuels is foreseen as a potential solution to the crucial problems of environmental pollution and energy shortages. Hydrogen is an ideal energy material for the future, and water splitting using solar/electrical energy is one way to generate hydrogen. Metal-organic frameworks (MOFs) are a class of porous materials with unique properties that have received rapidly growing attention in recent years for applications in water splitting due to their remarkable design flexibility, ultra-large surface-to-volume ratios and tunable pore channels. This review focuses on recent progress in the application of MOFs in electrocatalytic and photocatalytic water splitting for hydrogen generation, including both oxygen and hydrogen evolution. It starts with the fundamentals of electrocatalytic and photocatalytic water splitting and the related factors to determine the catalytic activity. The recent progress in the exploitation of MOFs for water splitting is then summarized, and strategies for designing MOF-based catalysts for electrocatalytic and photocatalytic water splitting are presented. Finally, major challenges in the field of water splitting are highlighted, and some perspectives of MOF-based catalysts for water splitting are proposed.

  11. Maximum Multiflow in Wireless Network Coding

    Zhou, Jin-Yi; Jiang, Yong; Zheng, Hai-Tao


    In a multihop wireless network, wireless interference is crucial to the maximum multiflow (MMF) problem, which studies the maximum throughput between multiple pairs of sources and sinks. In this paper, we observe that network coding could help to decrease the impacts of wireless interference, and propose a framework to study the MMF problem for multihop wireless networks with network coding. Firstly, a network model is set up to describe the new conflict relations modified by network coding. Then, we formulate a linear programming problem to compute the maximum throughput and show its superiority over one in networks without coding. Finally, the MMF problem in wireless network coding is shown to be NP-hard and a polynomial approximation algorithm is proposed.

  12. Algebraic techniques for diagonalization of a split quaternion matrix in split quaternionic mechanics

    Jiang, Tongsong, E-mail: [Department of Mathematics, Linyi University, Linyi, Shandong 276005 (China); Department of Mathematics, Heze University, Heze, Shandong 274015 (China); Jiang, Ziwu; Zhang, Zhaozhong [Department of Mathematics, Linyi University, Linyi, Shandong 276005 (China)


    In the study of the relation between complexified classical and non-Hermitian quantum mechanics, physicists found that there are links to quaternionic and split quaternionic mechanics, and this leads to the possibility of employing algebraic techniques of split quaternions to tackle some problems in complexified classical and quantum mechanics. This paper, by means of real representation of a split quaternion matrix, studies the problem of diagonalization of a split quaternion matrix and gives algebraic techniques for diagonalization of split quaternion matrices in split quaternionic mechanics.

  13. Telugu Bigram Splitting using Consonant-based and Phrase-based Splitting

    T. Kameswara Rao


    Full Text Available Splitting is a conventional process in most of Indian languages according to their grammar rules. It is called ‘pada vicchEdanam’ (a Sanskrit term for word splitting and is widely used by most of the Indian languages. Splitting plays a key role in Machine Translation (MT particularly when the source language (SL is an Indian language. Though this splitting may not succeed completely in extracting the root words of which the compound is formed, but it shows considerable impact in Natural Language Processing (NLP as an important phase. Though there are many types of splitting, this paper considers only consonant based and phrase based splitting.

  14. Weak Scale From the Maximum Entropy Principle

    Hamada, Yuta; Kawana, Kiyoharu


    The theory of multiverse and wormholes suggests that the parameters of the Standard Model are fixed in such a way that the radiation of the $S^{3}$ universe at the final stage $S_{rad}$ becomes maximum, which we call the maximum entropy principle. Although it is difficult to confirm this principle generally, for a few parameters of the Standard Model, we can check whether $S_{rad}$ actually becomes maximum at the observed values. In this paper, we regard $S_{rad}$ at the final stage as a function of the weak scale ( the Higgs expectation value ) $v_{h}$, and show that it becomes maximum around $v_{h}={\\cal{O}}(300\\text{GeV})$ when the dimensionless couplings in the Standard Model, that is, the Higgs self coupling, the gauge couplings, and the Yukawa couplings are fixed. Roughly speaking, we find that the weak scale is given by \\begin{equation} v_{h}\\sim\\frac{T_{BBN}^{2}}{M_{pl}y_{e}^{5}},\

  15. Weak scale from the maximum entropy principle

    Hamada, Yuta; Kawai, Hikaru; Kawana, Kiyoharu


    The theory of the multiverse and wormholes suggests that the parameters of the Standard Model (SM) are fixed in such a way that the radiation of the S3 universe at the final stage S_rad becomes maximum, which we call the maximum entropy principle. Although it is difficult to confirm this principle generally, for a few parameters of the SM, we can check whether S_rad actually becomes maximum at the observed values. In this paper, we regard S_rad at the final stage as a function of the weak scale (the Higgs expectation value) vh, and show that it becomes maximum around vh = {{O}} (300 GeV) when the dimensionless couplings in the SM, i.e., the Higgs self-coupling, the gauge couplings, and the Yukawa couplings are fixed. Roughly speaking, we find that the weak scale is given by vh ˜ T_{BBN}2 / (M_{pl}ye5), where ye is the Yukawa coupling of electron, T_BBN is the temperature at which the Big Bang nucleosynthesis starts, and M_pl is the Planck mass.

  16. Salt splitting with ceramic membranes

    Kurath, D. [Pacific Northwest National Lab., Richland, WA (United States)


    The purpose of this task is to develop ceramic membrane technologies for salt splitting of radioactively contaminated sodium salt solutions. This technology has the potential to reduce the low-level waste (LLW) disposal volume, the pH and sodium hydroxide content for subsequent processing steps, the sodium content of interstitial liquid in high-level waste (HLW) sludges, and provide sodium hydroxide free of aluminum for recycle within processing plants at the DOE complex. Potential deployment sites include Hanford, Savannah River, and Idaho National Engineering Laboratory (INEL). The technical approach consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON). As the name implies, sodium ions are transported rapidly through these ceramic crystals even at room temperatures.

  17. Signature splitting in 129Ce

    LIU Ying; WU Xiao-Guang; ZHU Li-Hua; LI Guang-Sheng; HE Chuang-Ye; LI Xue-Qin; PAN Bo; HAO Xin; LI Li-Hua; WANG Zhi-Min; LI Zhong-Yu; XU Qiang


    The high spin states of 129Ce have been populated via heavy-ion fusion evaporation reaction 96Mo (37C1, 1p3n) 129Ce. The γ-γ coincidence and intensity balance used to measure the B(M1; I→I-1)/B(E2; I→I-2) (the probability ratio of the dipole and quadrupole transition) in v7/2[523] rotational band of 129Ce. And the energy splitting (Δe') has been got through the experimental Routhians. The lifetimes and quadrupole moments Qt have been extracted from the lineshape analyses using DSAM. The deformation of the v7/2[523] rotational band of 129Ce was extracted from the Qt and moment of inertia JRR.

  18. Method for carbon dioxide splitting

    Miller, James E.; Diver, Jr., Richard B.; Siegel, Nathan P.


    A method for splitting carbon dioxide via a two-step metal oxide thermochemical cycle by heating a metal oxide compound selected from an iron oxide material of the general formula A.sub.xFe.sub.3-xO.sub.4, where 0.ltoreq.x.ltoreq.1 and A is a metal selected from Mg, Cu, Zn, Ni, Co, and Mn, or a ceria oxide compound of the general formula M.sub.aCe.sub.bO.sub.c, where 0

  19. Computing Rooted and Unrooted Maximum Consistent Supertrees

    van Iersel, Leo


    A chief problem in phylogenetics and database theory is the computation of a maximum consistent tree from a set of rooted or unrooted trees. A standard input are triplets, rooted binary trees on three leaves, or quartets, unrooted binary trees on four leaves. We give exact algorithms constructing rooted and unrooted maximum consistent supertrees in time O(2^n n^5 m^2 log(m)) for a set of m triplets (quartets), each one distinctly leaf-labeled by some subset of n labels. The algorithms extend to weighted triplets (quartets). We further present fast exact algorithms for constructing rooted and unrooted maximum consistent trees in polynomial space. Finally, for a set T of m rooted or unrooted trees with maximum degree D and distinctly leaf-labeled by some subset of a set L of n labels, we compute, in O(2^{mD} n^m m^5 n^6 log(m)) time, a tree distinctly leaf-labeled by a maximum-size subset X of L that all trees in T, when restricted to X, are consistent with.

  20. Salt splitting using ceramic membranes

    Kurath, D.E. [Pacific Northwest National Lab., Richland, WA (United States)


    Many radioactive aqueous wastes in the DOE complex have high concentrations of sodium that can negatively affect waste treatment and disposal operations. Sodium can decrease the durability of waste forms such as glass and is the primary contributor to large disposal volumes. Waste treatment processes such as cesium ion exchange, sludge washing, and calcination are made less efficient and more expensive because of the high sodium concentrations. Pacific Northwest National Laboratory (PNNL) and Ceramatec Inc. (Salt Lake City UT) are developing an electrochemical salt splitting process based on inorganic ceramic sodium (Na), super-ionic conductor (NaSICON) membranes that shows promise for mitigating the impact of sodium. In this process, the waste is added to the anode compartment, and an electrical potential is applied to the cell. This drives sodium ions through the membrane, but the membrane rejects most other cations (e.g., Sr{sup +2}, Cs{sup +}). The charge balance in the anode compartment is maintained by generating H{sup +} from the electrolysis of water. The charge balance in the cathode is maintained by generating OH{sup {minus}}, either from the electrolysis of water or from oxygen and water using an oxygen cathode. The normal gaseous products of the electrolysis of water are oxygen at the anode and hydrogen at the cathode. Potentially flammable gas mixtures can be prevented by providing adequate volumes of a sweep gas, using an alternative reductant or destruction of the hydrogen as it is generated. As H{sup +} is generated in the anode compartment, the pH drops. The process may be operated with either an alkaline (pH>12) or an acidic anolyte (pH <1). The benefits of salt splitting using ceramic membranes are (1) waste volume reduction and reduced chemical procurement costs by recycling of NaOH; and (2) direct reduction of sodium in process streams, which enhances subsequent operations such as cesium ion exchange, calcination, and vitrification.

  1. Study on shear wave splitting in the aftershock region of the Yao'an earthquake in 2000

    WANG Xin-ling; LIU Jie; ZHANG Guo-min; MA Hong-sheng; WANG Hui


    After Ms=6.5 Yao'an earthquake on January 15, 2000, a large amount of aftershock waveforms were recorded by the Near Source Digital Seismic Network (NSSN) installed by Earthquake Administration of Yunnan Province in the aftershock region. It provides profuse data to systematically analyze the features of Yao'an earthquake. The crustal anisotropy is realized by shear wave splitting propagating in the upper crust. Based on the accurate aftershock relocations, the shear wave splitting parameters are determined with the cross-correlation method, and the results of different stations and regions are discussed in this paper. These conclusions are obtained as follows:firstly, the average fast directions of aftershock region are controlled by the regional stress field and parallel to the maximum horizontal compressive stress direction; secondly, the average fast directions of disparate stations and regions are different and vary with the structural settings and regional stress fields; finally, delay time value is affected by all sorts of factors, which is affinitive with the shear wave propagating medium, especially.

  2. Synthesis of Flexible Heat Exchanger Networks with Stream Splits Based on Rangers of Stream Supply Temperatures and Heat Capacity Flowrates

    李志红; 罗行; 华贵; W.Roetzel


    A new superstructure model of heat exchanger networks (HEN) with stream splits based on rangers of streams supply temperatures and heat capacity flow rates is presented. The simultaneous optimal mathematical model of flexible HEN synthesis is established too. Firstly, the streams with rangers of supply temperatures and/or the streams with the rangers of heat capacity flow rates are pretreated; Secondly, several rules are proposed to establish the superstructure model of HEN with splits and the simultaneous optimal mathematical model of flexible HEN; Thirdly, the improving genetic algorithm is applied to solve the mathematical model established at the second step effectively, and the original optimal structure of HEN based on the maximum operation limiting condition can be obtained easily; Finally, the rules of heat exchange unit merged and the heat load of heat exchanger relaxed are presented, the flexible configuration of HEN satisfied the operation condition between the upper and down bounds of supply temperature and heat capacity flow rates can be obtained based on the original optimal structure of HEN by means of these rules. A case study demonstrates the method presented in this paper is effective

  3. A hybrid splitting method for smoothing Tikhonov regularization problem

    Yu-Hua Zeng


    Full Text Available Abstract In this paper, a hybrid splitting method is proposed for solving a smoothing Tikhonov regularization problem. At each iteration, the proposed method solves three subproblems. First of all, two subproblems are solved in a parallel fashion, and the multiplier associated to these two block variables is updated in a rapid sequence. Then the third subproblem is solved in the sense of an alternative fashion with the former two subproblems. Finally, the multiplier associated to the last two block variables is updated. Global convergence of the proposed method is proven under some suitable conditions. Some numerical experiments on the discrete ill-posed problems (DIPPs show the validity and efficiency of the proposed hybrid splitting method.

  4. Mapping of Crustal Anisotropy in the New Madrid Seismic Zone with Shear Wave Splitting

    Martin, P.; Arroucau, P.; Vlahovic, G.


    Crustal anisotropy in the New Madrid seismic zone (NMSZ) is investigated by analyzing shear wave splitting measurements from local earthquake data. For the initial data set, the Center for Earthquake Research and Information (CERI) provided over 3000 events, along with 900 seismograms recorded by the Portable Array for Numerical Data Acquisition (PANDA) network. Data reduction led to a final data set of 168 and 43 useable events from the CERI and PANDA data, respectively. From this, 186 pairs of measurements were produced from the CERI data set as well as 49 from the PANDA data set, by means of the automated shear wave splitting measurement program MFAST. Results from this study identified two dominant fast polarization directions, striking NE-SW and WNW-ESE. These are interpreted to be due to stress aligned microcracks in the upper crust. The NE-SW polarization direction is consistent with the maximum horizontal stress orientation of the region and has previously been observed in the NMSZ, while the WNW-ESE polarization direction has not. Path normalized time delays from this study range from 1-33 ms/km for the CERI network data, and 2-31 ms/km for the PANDA data, giving a range of estimated differential shear wave anisotropy between 1% and 8%, with the majority of large path normalized time delays (>20 ms/km) located along the Reelfoot fault segment. The estimated differential shear wave anisotropy values from this study are higher than those previously determined in the region, and are attributed to high crack densities and high pore fluid pressures, which agree with previous results from local earthquake tomography and microseismic swarm analysis in the NMSZ.

  5. A Compact Dual Band Implantable Antenna Based on Split-Ring Resonators with Meander Line Elements

    Yunus Emre Yamac


    Full Text Available In this paper, a dual band implantable split-ring microstrip antenna which operates at MICS (Medical Implant Services and ISM (Industrial, Scientific, and Medical bands is proposed for biotelemetry applications. A miniaturized size of 9.5 mm × 9.5 mm × 1.27 mm was accomplished by using three split-ring resonators and meander lines elements on these resonators. A shorting pin appropriately placed between the patch and ground plane was used for the antenna miniaturization. In addition, three useful metallic paths between the rings provided fine frequency tuning. The proposed split-ring implantable antenna presents 23.5% and 9.3% bandwidth, -48 dB and -24 dB maximum gains, 407 W/kg and 403 W/kg maximum 1-g averaged SAR values at the respective bands. Return loss performance, radiation patterns and SAR values of the antenna design are presented in the paper.

  6. Investigation of the splitting of quark and gluon jets

    Abreu, P; Adye, T; Adzic, P; Ajinenko, I; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Andersson, P; Andreazza, A; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Bärring, O; Bates, M J; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Belous, K S; Benvenuti, Alberto C; Bérat, C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bizouard, M A; Bloch, D; Bonesini, M; Bonivento, W; Boonekamp, M; Booth, P S L; Borgland, A W; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozovic, I; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Brown, R; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerruti, C; Chabaud, V; Chapkin, M M; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Collins, P; Colomer, M; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; D'Almagne, B; Damgaard, G; Dauncey, P D; Davenport, Martyn; Da Silva, W; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Di Diodato, A; Djannati, A; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Duperrin, A; Durand, J D; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Ellert, M; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fanourakis, G K; Fassouliotis, D; Fayot, J; Feindt, Michael; Fenyuk, A; Ferrari, P; Ferrer, A; Fichet, S; Firestone, A; Fischer, P A; Flagmeyer, U; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frodesen, A G; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gaspar, M; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Ghodbane, N; Glege, F; Gokieli, R; Golob, B; Gonçalves, P; González-Caballero, I; Gopal, Gian P; Gorn, L; Górski, M; Gracco, Valerio; Grahl, J; Graziani, E; Green, C; Grefrath, A; Gris, P; Grosdidier, G; Grzelak, K; Günther, M; Guy, J; Hahn, F; Hahn, S; Haider, S; Hajduk, Z; Hallgren, A; Hamacher, K; Harris, F J; Hedberg, V; Heising, S; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, C; Juillot, P; Kapusta, F; Karafasoulis, K; Katsanevas, S; Katsoufis, E C; Keränen, R; Khokhlov, Yu A; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klapp, O; Klein, H; Kluit, P M; Knoblauch, D; Kokkinias, P; Konoplyannikov, A K; Koratzinos, M; Korcyl, K; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krumshtein, Z; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leisos, A; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Lethuillier, M; Libby, J; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Maehlum, G; Mahon, J R; Maio, A; Malek, A; Malmgren, T G M; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, F; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; McPherson, G; Medbo, J; Meroni, C; Meyer, W T; Myagkov, A; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Moreau, X; Morettini, P; Müller, H; Münich, K; Mulders, M; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Myklebust, T; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Némécek, S; Neufeld, N; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Nikolenko, M; Niss, P; Nomerotski, A; Normand, Ainsley; Nygren, A; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Orazi, G; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Paiano, S; Pain, R; Paiva, R; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Pegoraro, M; Peralta, L; Pernegger, H; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Ratoff, P N; Read, A L; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Rídky, J; Rinaudo, G; Røhne, O M; Romero, A; Ronchese, P; Rosenberg, E I; Rosinsky, P; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ruiz, A; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sampsonidis, D; Sannino, M; Schneider, H; Schwickerath, U; Schyns, M A E; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Sekulin, R L; Shellard, R C; Sheridan, A; Silvestre, R; Simonetto, F; Sissakian, A N; Skaali, T B; Smadja, G; Smirnova, O G; Smith, G R; Sokolov, A; Solovyanov, O; Sopczak, André; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stampfer, D; Stanescu, C; Stanic, S; Stapnes, Steinar; Stavitski, I; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tegenfeldt, F; Terranova, F; Thomas, J; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Todorova, S; Toet, D Z; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van der Velde, C; van Apeldoorn, G W; van Dam, P; Van Doninck, W K; Van Eldik, J; Van Lysebetten, A; Van Vulpen, I B; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Verzi, V; Vilanova, D; Vincent, P; Vitale, L; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Waldner, F; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Wlodek, T; Wolf, G; Yi, J; Yushchenko, O P; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zucchelli, G C; Zumerle, G


    The splitting processes in identified quark and gluon jets are investigated using longitudinal and transverse observables. The jets are selected from symmetric three-jet events measured in Z decays L with the {\\sc Delphi} detector in 1991-1994. Gluon jets are identified using heavy quark anti-tagging. Scaling violations in identified gluon jets are observed for the first time. The scale energy dependence of the gluon fragmentation function is found to be about two times larger than for the corresponding quark jets, consistent with the QCD expectation $C_A/C_F$. The primary splitting of gluons and quarks into subjets agrees with fragmentation models and, for specific regions of the jet resolution $y$, with NLLA calculations. The maximum of the ratio of the primary subjet splittings in quark and gluon jets is $2.77\\pm0.11\\pm0.10$. Due to non-perturbative effects, the data are below the expectation at small $y$. The transition from the perturbative to the non-perturbative domain appears at smaller $y$ for quark ...

  7. Standard Model Particles from Split Octonions

    Gogberashvili M.


    Full Text Available We model physical signals using elements of the algebra of split octonions over the field of real numbers. Elementary particles are corresponded to the special elements of the algebra that nullify octonionic norms (zero divisors. It is shown that the standard model particle spectrum naturally follows from the classification of the independent primitive zero divisors of split octonions.

  8. Standard Model Particles from Split Octonions

    Gogberashvili, Merab


    We model physical signals using elements of the algebra of split octonions over the field of real numbers. Elementary particles are corresponded to the special elements of the algebra that nullify octonionic norms (zero divisors). It is shown that the standard model particle spectrum naturally follows from the classification of the independent primitive zero divisors of split octonions.

  9. Distinguishing division algebras by finite splitting fields

    Krashen, Daniel


    This paper is concerned with the problem of determining the number of division algebras which share the same collection of finite splitting fields. As a corollary we are able to determine when two central division algebras may be distinguished by their finite splitting fields over certain fields.

  10. Transferring Goods or Splitting a Resource Pool

    Dijkstra, Jacob; Van Assen, Marcel A. L. M.


    We investigated the consequences for exchange outcomes of the violation of an assumption underlying most social psychological research on exchange. This assumption is that the negotiated direct exchange of commodities between two actors (pure exchange) can be validly represented as two actors splitting a fixed pool of resources (split pool…

  11. 2-Photon tandem device for water splitting

    Seger, Brian; Castelli, Ivano Eligio; Vesborg, Peter Christian Kjærgaard;


    Within the field Of photocatalytic water splitting there are several strategies to achieve the goal of efficient and cheap photocatalytic water splitting. This work examines one particular strategy by focusing on monolithically stacked, two-photon photoelectrochemical cells. The overall aim of th...

  12. Cheating More when the Spoils Are Split

    Wiltermuth, Scott S.


    Four experiments demonstrated that people are more likely to cheat when the benefits of doing so are split with another person, even an anonymous stranger, than when the actor alone captures all of the benefits. In three of the studies, splitting the benefits of over-reporting one's performance on a task made such over-reporting seem less…

  13. Split scheduling with uniform setup times.

    F. Schalekamp; R.A. Sitters (René); S.L. van der Ster; L. Stougie (Leen); V. Verdugo; A. van Zuylen


    htmlabstractWe study a scheduling problem in which jobs may be split into parts, where the parts of a split job may be processed simultaneously on more than one machine. Each part of a job requires a setup time, however, on the machine where the job part is processed. During setup, a

  14. Cheating More when the Spoils Are Split

    Wiltermuth, Scott S.


    Four experiments demonstrated that people are more likely to cheat when the benefits of doing so are split with another person, even an anonymous stranger, than when the actor alone captures all of the benefits. In three of the studies, splitting the benefits of over-reporting one's performance on a task made such over-reporting seem less…

  15. Water Splitting with Series-Connected Polymer Solar Cells.

    Esiner, Serkan; van Eersel, Harm; van Pruissen, Gijs W P; Turbiez, Mathieu; Wienk, Martijn M; Janssen, René A J


    We investigate light-driven electrochemical water splitting with series-connected polymer solar cells using a combined experimental and modeling approach. The expected maximum solar-to-hydrogen conversion efficiency (ηSTH) for light-driven water splitting is modeled for two, three, and four series-connected polymer solar cells. In the modeling, we assume an electrochemical water splitting potential of 1.50 V and a polymer solar cell for which the external quantum efficiency and fill factor are both 0.65. The minimum photon energy loss (Eloss), defined as the energy difference between the optical band gap (Eg) and the open-circuit voltage (Voc), is set to 0.8 eV, which we consider a realistic value for polymer solar cells. Within these approximations, two series-connected single junction cells with Eg = 1.73 eV or three series-connected cells with Eg = 1.44 eV are both expected to give an ηSTH of 6.9%. For four series-connected cells, the maximum ηSTH is slightly less at 6.2% at an optimal Eg = 1.33 eV. Water splitting was performed with series-connected polymer solar cells using polymers with different band gaps. PTPTIBDT-OD (Eg = 1.89 eV), PTB7-Th (Eg = 1.56 eV), and PDPP5T-2 (Eg = 1.44 eV) were blended with [70]PCBM as absorber layer for two, three, and four series-connected configurations, respectively, and provide ηSTH values of 4.1, 6.1, and 4.9% when using a retroreflective foil on top of the cell to enhance light absorption. The reasons for deviations with experiments are analyzed and found to be due to differences in Eg and Eloss. Light-driven electrochemical water splitting was also modeled for multijunction polymer solar cells with vertically stacked photoactive layers. Under identical assumptions, an ηSTH of 10.0% is predicted for multijunction cells.

  16. Theory of optimal blocking for fractional factorial split-plot designs

    Al Mingyao; HE Shuyuan


    The issue of optimal blocking for fractional factorial split-plot (FFSP) designs is considered under the two criteria of minimum aberration and maximum estimation capacity. The criteria of minimum secondary aberration (MSA) and maximum secondary estimation capacity (MSEC) are developed for discriminating among rival nonisomorphic blcoked FFSP designs. A general rule for identifying MSA or MSEC blocked FFSP designs through their blocked consulting designs is established.

  17. Anisotropic Spin Splitting in Step Quantum Wells

    HAO Ya-Fei; CHEN Yong-Hai; HAO Guo-Dong; WANG Zhan-Guo


    By the method of finite difference,the anisotropic spin splitting of the Alx Ga1-x As/GaAs/Aly Ga1-y As/Alx Ga1-x As step quantum wells (QWs) are theoretically investigated considering the interplay of the bulk inversion asymmetry and structure inversion asymmetry induced by step quantum well structure and external electric field.We demonstrate that the anisotropy of the total spin splitting can be controlled by the shape of the QWs and the external electric field.The interface related Rashba effect plays an important effect on the anisotropic spin splitting by influencing the magnitude of the spin splitting and the direction of electron spin.The Rashba spin splitting presents in the step quantum wells due to the interface related Rashba effect even without external electric field or magnetic field.

  18. Crushing or splitting medications: unrecognized hazards.

    Gill, Donna; Spain, Margaret; Edlund, Barbara J


    Given the high use and the cost of medications in the current economy, one way older adults may save money on prescription costs is to split some of their medications in half. However, not all oral medications can be split. Splitting inappropriate medications such as extended-release tablets can be harmful and in some instances very dangerous. In addition to splitting medications, older adults who have difficulty swallowing pills may resort to crushing the medication for ease of administration. This option is also problematic and potentially harmful if the medication is not intended to be crushed. Clinicians managing the care of older adults need to discuss medication administration, clarify the dosing schedule, and clearly indicate the route of administration. Patients should be cautioned not to split or crush a medication without checking with the health care provider or pharmacist.

  19. Photocharged BiVO4 photoanodes for improved solar water splitting

    Trześniewski, B.J.; Smith, W.A.


    Bismuth vanadate (BiVO4) is a promising semiconductor material for the production of solar fuels via photoelectrochemical water splitting, however, it suffers from substantial recombination losses that limit its performance to well below its theoretical maximum. Here we demonstrate for the first tim

  20. Null Fiber Coupler with Ultra-high Splitting Ratio of 100000:1 for All-fiber Acousto-optic Switch

    LI Tong; PENG Jiangde; LI Qun; LIU Xiaoming


    A fiber null coupler with very high splitting ratio of 100000: 1 and low excess loss of 0.1 dB is reported. The control of the maximum splitting ratio and loss of the null coupler is studied. Its switching function is experimentally demonstrated by acousto-optic modulation.

  1. Bad splits in bilateral sagittal split osteotomy: systematic review of fracture patterns.

    Steenen, S A; Becking, A G


    An unfavourable and unanticipated pattern of the mandibular sagittal split osteotomy is generally referred to as a 'bad split'. Few restorative techniques to manage the situation have been described. In this article, a classification of reported bad split pattern types is proposed and appropriate salvage procedures to manage the different types of undesired fracture are presented. A systematic review was undertaken, yielding a total of 33 studies published between 1971 and 2015. These reported a total of 458 cases of bad splits among 19,527 sagittal ramus osteotomies in 10,271 patients. The total reported incidence of bad split was 2.3% of sagittal splits. The most frequently encountered were buccal plate fractures of the proximal segment (types 1A-F) and lingual fractures of the distal segment (types 2A and 2B). Coronoid fractures (type 3) and condylar neck fractures (type 4) have seldom been reported. The various types of bad split may require different salvage approaches.

  2. Segmented holographic spectrum splitting concentrator

    Ayala, Silvana P.; Vorndran, Shelby; Wu, Yuechen; Chrysler, Benjamin; Kostuk, Raymond K.


    This paper presents a segmented parabolic concentrator employing holographic spectral filters that provide focusing and spectral bandwidth separation capability to the system. Strips of low band gap silicon photovoltaic (PV) cells are formed into a parabolic surface as shown by Holman et. al. [1]. The surface of the PV segments is covered with holographic elements formed in dichromated gelatin. The holographic elements are designed to transmit longer wavelengths to silicon cells, and to reflect short wavelength light towards a secondary collector where high-bandgap PV cells are mounted. The system can be optimized for different combinations of diffuse and direct solar illumination conditions for particular geographical locations by controlling the concentration ratio and filtering properties of the holographic elements. In addition, the reflectivity of the back contact of the silicon cells is used to increase the optical path length and light trapping. This potentially allows the use of thin film silicon for the low bandgap PV cell material. The optical design combines the focusing properties of the parabolic concentrator and the holographic element to control the concentration ratio and uniformity of the spectral distribution at the high bandgap cell location. The presentation concludes with a comparison of different spectrum splitting holographic filter materials for this application.

  3. Innovative solar thermochemical water splitting.

    Hogan, Roy E. Jr.; Siegel, Nathan P.; Evans, Lindsey R.; Moss, Timothy A.; Stuecker, John Nicholas (Robocasting Enterprises, Albuquerque, NM); Diver, Richard B., Jr.; Miller, James Edward; Allendorf, Mark D. (Sandia National Laboratories, Livermore, CA); James, Darryl L. (Texas Tech University, Lubbock, TX)


    Sandia National Laboratories (SNL) is evaluating the potential of an innovative approach for splitting water into hydrogen and oxygen using two-step thermochemical cycles. Thermochemical cycles are heat engines that utilize high-temperature heat to produce chemical work. Like their mechanical work-producing counterparts, their efficiency depends on operating temperature and on the irreversibility of their internal processes. With this in mind, we have invented innovative design concepts for two-step solar-driven thermochemical heat engines based on iron oxide and iron oxide mixed with other metal oxides (ferrites). The design concepts utilize two sets of moving beds of ferrite reactant material in close proximity and moving in opposite directions to overcome a major impediment to achieving high efficiency--thermal recuperation between solids in efficient counter-current arrangements. They also provide inherent separation of the product hydrogen and oxygen and are an excellent match with high-concentration solar flux. However, they also impose unique requirements on the ferrite reactants and materials of construction as well as an understanding of the chemical and cycle thermodynamics. In this report the Counter-Rotating-Ring Receiver/Reactor/Recuperator (CR5) solar thermochemical heat engine and its basic operating principals are described. Preliminary thermal efficiency estimates are presented and discussed. Our ferrite reactant material development activities, thermodynamic studies, test results, and prototype hardware development are also presented.

  4. Maverick Comet Splits during Dramatic Outburst


    .1 arcseconds. At the time of the observations, SW-3 was 258 million kilometres from the Earth; this angle corresponds to a projected distance of 5,100 kilometres. Moreover, on the TIMMI exposures which were performed at the far-infrared wavelength of 10 microns, yet another condensation was visible. These condensations are small clouds of gas and dust which emanate from the separate pieces of the nucleus. A careful comparison of the relative positions, as observed on different nights, clearly shows that they are slowly drifting apart. Fortunately, it turned out that another image of SW-3 had been obtained in early December by ESO astronomer Jesper Storm at the Danish 1.5-metre telescope. Due to unfavourable atmospheric conditions, the image sharpness is less good, but the central condensation is very elongated. The extension is about half of the distance between the outermost condensations as measured ten days later. This indicates that the splitting may have taken place by mid-November, or at least that the outward motion cannot have started much earlier. This also explains why this effect was not seen before. It therefore appears that the actual separation began about one month after the moment of maximum brightness and nearly two months after the perihelion passage. Still, there is little doubt that it is closely related to the processes which led to the dramatic outburst. Further observations will help to refine the description of the break-up process, but a simple explanation is that major cracks and rifts opened in the irregularly shaped icy nucleus already before perihelion as the surface temperature began to increase. Completely ``fresh'' cometary material was thereby exposed to the solar light and the evaporation rate increased quickly, releasing more gas and dust into space. In the course of this process, the rifts gradually widened until the definitive breakage occurred somewhat later. Split Comets About 30 comets have been observed to split in historical times and

  5. OECD Maximum Residue Limit Calculator

    With the goal of harmonizing the calculation of maximum residue limits (MRLs) across the Organisation for Economic Cooperation and Development, the OECD has developed an MRL Calculator. View the calculator.

  6. Maximum-entropy description of animal movement.

    Fleming, Chris H; Subaşı, Yiğit; Calabrese, Justin M


    We introduce a class of maximum-entropy states that naturally includes within it all of the major continuous-time stochastic processes that have been applied to animal movement, including Brownian motion, Ornstein-Uhlenbeck motion, integrated Ornstein-Uhlenbeck motion, a recently discovered hybrid of the previous models, and a new model that describes central-place foraging. We are also able to predict a further hierarchy of new models that will emerge as data quality improves to better resolve the underlying continuity of animal movement. Finally, we also show that Langevin equations must obey a fluctuation-dissipation theorem to generate processes that fall from this class of maximum-entropy distributions when the constraints are purely kinematic.

  7. IRS Notice 2002-8 clarifies split-dollar life insurance arrangements.

    Ledbetter, Thomas L


    Healthcare organizations that sponsor split-dollar life insurance arrangements for employees need to understand the tax treatment of such arrangements. IRS Notice 2002-8 clarifies this issue. The notice announces the IRS's intention to publish final regulations regarding the taxation of split-dollar life insurance, outlines the expected provisions to be included in the regulations, provides guidance on the value of economic benefit provided under such arrangements, and issues rules for the taxation of arrangements entered into before the publication of final rules.

  8. A Novel Split and Merge Technique for Hypertext Classification

    Saha, Suman; Murthy, C. A.; Pal, Sankar K.

    As web grows at an increasing speed, hypertext classification is becoming a necessity. While the literature on text categorization is quite mature, the issue of utilizing hypertext structure and hyperlinks has been relatively unexplored. In this paper, we introduce a novel split and merge technique for classification of hypertext documents. The splitting process is performed at the feature level by representing the hypertext features in a tensor space model. We exploit the local-structure and neighborhood recommendation encapsulated in the this representation model. The merging process is performed on multiple classifications obtained from split representation. A meta level decision system is formed by obtaining predictions of base level classifiers trained on different components of the tensor and actual category of the hypertext document. These individual predictions for each component of the tensor are subsequently combined to a final prediction using rough set based ensemble classifiers. Experimental results of classification obtained by using our method is marginally better than other existing hypertext classification techniques.

  9. Beyond the Interconnections: Split Manufacturing in RF Designs

    Yu Bi


    Full Text Available With the globalization of the integrated circuit (IC design flow of chip fabrication, intellectual property (IP piracy is becoming the main security threat. While most of the protection methods are dedicated for digital circuits, we are trying to protect radio-frequency (RF designs. For the first time, we applied the split manufacturing method in RF circuit protection. Three different implementation cases are introduced for security and design overhead tradeoffs, i.e., the removal of the top metal layer, the removal of the top two metal layers and the design obfuscation dedicated to RF circuits. We also developed a quantitative security evaluation method to measure the protection level of RF designs under split manufacturing. Finally, a simple Class AB power amplifier and a more sophisticated Class E power amplifier are used for the demonstration through which we prove that: (1 the removal of top metal layer or the top two metal layers can provide high-level protection for RF circuits with a lower request to domestic foundries; (2 the design obfuscation method provides the highest level of circuit protection, though at the cost of design overhead; and (3 split manufacturing may be more suitable for RF designs than for digital circuits, and it can effectively reduce IP piracy in untrusted off-shore foundries.

  10. Rotations in the Space of Split Octonions

    Merab Gogberashvili


    Full Text Available The geometrical application of split octonions is considered. The new representation of products of the basis units of split octonionic having David's star shape (instead of the Fano triangle is presented. It is shown that active and passive transformations of coordinates in octonionic “eight-space” are not equivalent. The group of passive transformations that leave invariant the pseudonorm of split octonions is SO(4,4, while active rotations are done by the direct product of O(3,4-boosts and real noncompact form of the exceptional group G2. In classical limit, these transformations reduce to the standard Lorentz group.

  11. Communication: Tunnelling splitting in the phosphine molecule

    Sousa-Silva, Clara; Tennyson, Jonathan; Yurchenko, Sergey N.


    Splitting due to tunnelling via the potential energy barrier has played a significant role in the study of molecular spectra since the early days of spectroscopy. The observation of the ammonia doublet led to attempts to find a phosphine analogous, but these have so far failed due to its considerably higher barrier. Full dimensional, variational nuclear motion calculations are used to predict splittings as a function of excitation energy. Simulated spectra suggest that such splittings should be observable in the near infrared via overtones of the ν2 bending mode starting with 4ν2.

  12. Level of copper in human split ejaculate.

    Skandhan, Kalanghot; Valsa, James; Sumangala, Balakrishnan; Jaya, Vasudevan


    The purpose of this study was to understand the details of splits of an ejaculate and to locate the origin of release of copper into semen. Laboratory methods routinely followed for semen analysis were carried out. Copper was estimated by employing atomic absorption spectrophotometry. First split of ejaculate showed the highest number of motile sperm, the quality of which decreased from first to third. Copper level in splits 1, 2 and 3 was 29, 23 and 22 µg%, respectively. This study concluded that copper was released from throughout the genital tract.

  13. Splitting Functions at High Transverse Momentum

    Moutafis, Rhea Penelope; CERN. Geneva. TH Department


    Among the production channels of the Higgs boson one contribution could become significant at high transverse momentum which is the radiation of a Higgs boson from another particle. This note focuses on the calculation of splitting functions and cross sections of such processes. The calculation is first carried out on the example $e\\rightarrow e\\gamma$ to illustrate the way splitting functions are calculated. Then the splitting function of $e\\rightarrow eh$ is calculated in similar fashion. This procedure can easily be generalized to processes such as $q\\rightarrow qh$ or $g\\rightarrow gh$.

  14. 2S Hyperfine splitting of muonic hydrogen

    Martynenko, A P


    Corrections of orders alpha^5, alpha^6 are calculated in the hyperfine splitting of the 2S state in the muonic hydrogen. The nuclear structure effects are taken into account in the one- and two-loop Feynman amplitudes by means of the proton electromagnetic form factors. Total numerical value of the 2S state hyperfine splitting 22.8148 meV in the (\\mu p) can be considered as reliable estimation for the corresponding experiment with the accuracy 10^{-5}. The value of the Sternheim's hyperfine splitting interval [8\\Delta E^{HFS}(2S)-\\Delta E^{HFS}(1S)] is obtained with the accuracy 10^{-6}.

  15. Tunnelling splitting in the phosphine molecule

    Sousa-Silva, Clara; Yurchenko, Sergey N


    Splitting due to tunnelling via the potential energy barrier has played a significant role in the study of molecular spectra since the early days of spectroscopy. The observation of the ammonia doublet led to attempts to find a phosphine analogous, but these have so far failed due to its considerably higher barrier. Full dimensional, variational nuclear motion calculations are used to predict splittings as a function of excitation energy. Simulated spectra suggest that such splittings should be observable in the near infrared via overtones of the $\

  16. Amplification of Cooper pair splitting current in a graphene-based Cooper pair beam splitter geometry

    Islam, SK Firoz; Saha, Arijit


    Motivated by the recent experiments [Scientific Reports 6, 23051 (2016), 10.1038/srep23051; Phys. Rev. Lett. 114, 096602 (2015), 10.1103/PhysRevLett.114.096602], we theoretically investigate Cooper pair splitting current in a graphene-based Cooper pair beam splitter geometry. By considering the graphene-based superconductor as an entangler device, instead of normal [two-dimensional (2D)] BCS superconductor, we show that the Cooper pair splitting current mediated by the crossed Andreev process is amplified compared to its normal superconductor counterpart. This amplification is attributed to the strong suppression of the local normal Andreev reflection process (arising from the Cooper pair splitting) from the graphene-based superconductor to lead via the same quantum dot, in comparison to the usual 2D superconductor. Due to the vanishing density of states at the Dirac point of undoped graphene, a doped graphene-based superconductor is considered here and it is observed that Cooper pair splitting current is very insensitive to the doping level in comparison to the usual 2D superconductor. The transport process of nonlocal spin-entangled electrons also depends on the type of pairing, i.e., whether the electron-hole pairing is onsite, intersublattice or the combination of both. The intersublattice pairing of graphene causes the maximum nonlocal Cooper pair splitting current, whereas the presence of both pairings reduces the Cooper pair splitting current.

  17. Inverse analysis of the wedge-splitting test

    Skocek, Jan; Stang, Henrik


    The amount of information which it is possible to retrieve from the wedge-splitting test is investigated. Inverse analysis is undertaken based on the analytical hinge model for various multi-linear softening curves. This showed that the commonly used bi-linear softening curve can be replaced...... by an tip to quad-linear curve, which is reflected by increased accuracy of the test simulation. Furthermore it was demonstrated that the next refinement of the softening curve leads to convergence problems due to problems with local minima. Finally, the semi-analytically obtained results are verified using...

  18. Integer Programming Model for Maximum Clique in Graph

    YUAN Xi-bo; YANG You; ZENG Xin-hai


    The maximum clique or maximum independent set of graph is a classical problem in graph theory. Combined with Boolean algebra and integer programming, two integer programming models for maximum clique problem,which improve the old results were designed in this paper. Then, the programming model for maximum independent set is a corollary of the main results. These two models can be easily applied to computer algorithm and software, and suitable for graphs of any scale. Finally the models are presented as Lingo algorithms, verified and compared by several examples.

  19. Maximum margin Bayesian network classifiers.

    Pernkopf, Franz; Wohlmayr, Michael; Tschiatschek, Sebastian


    We present a maximum margin parameter learning algorithm for Bayesian network classifiers using a conjugate gradient (CG) method for optimization. In contrast to previous approaches, we maintain the normalization constraints on the parameters of the Bayesian network during optimization, i.e., the probabilistic interpretation of the model is not lost. This enables us to handle missing features in discriminatively optimized Bayesian networks. In experiments, we compare the classification performance of maximum margin parameter learning to conditional likelihood and maximum likelihood learning approaches. Discriminative parameter learning significantly outperforms generative maximum likelihood estimation for naive Bayes and tree augmented naive Bayes structures on all considered data sets. Furthermore, maximizing the margin dominates the conditional likelihood approach in terms of classification performance in most cases. We provide results for a recently proposed maximum margin optimization approach based on convex relaxation. While the classification results are highly similar, our CG-based optimization is computationally up to orders of magnitude faster. Margin-optimized Bayesian network classifiers achieve classification performance comparable to support vector machines (SVMs) using fewer parameters. Moreover, we show that unanticipated missing feature values during classification can be easily processed by discriminatively optimized Bayesian network classifiers, a case where discriminative classifiers usually require mechanisms to complete unknown feature values in the data first.

  20. Electroweak Splitting Functions and High Energy Showering

    Chen, Junmou; Tweedie, Brock


    We derive the electroweak (EW) collinear splitting functions for the Standard Model, including the massive fermions, gauge bosons and the Higgs boson. We first present the splitting functions in the limit of unbroken SU(2)xU(1) and discuss their general features in the collinear and soft-collinear regimes. We then systematically incorporate EW symmetry breaking (EWSB), which leads to the emergence of additional "ultra-collinear" splitting phenomena and naive violations of the Goldstone-boson Equivalence Theorem. We suggest a particularly convenient choice of non-covariant gauge (dubbed "Goldstone Equivalence Gauge") that disentangles the effects of Goldstone bosons and gauge fields in the presence of EWSB, and allows trivial book-keeping of leading power corrections in the VEV. We implement a comprehensive, practical EW showering scheme based on these splitting functions using a Sudakov evolution formalism. Novel features in the implementation include a complete accounting of ultra-collinear effects, matching...

  1. Supramolecular Control over Split-Luciferase Complementation.

    Bosmans, Ralph P G; Briels, Jeroen M; Milroy, Lech-Gustav; de Greef, Tom F A; Merkx, Maarten; Brunsveld, Luc


    Supramolecular split-enzyme complementation restores enzymatic activity and allows for on-off switching. Split-luciferase fragment pairs were provided with an N-terminal FGG sequence and screened for complementation through host-guest binding to cucurbit[8]uril (Q8). Split-luciferase heterocomplex formation was induced in a Q8 concentration dependent manner, resulting in a 20-fold upregulation of luciferase activity. Supramolecular split-luciferase complementation was fully reversible, as revealed by using two types of Q8 inhibitors. Competition studies with the weak-binding FGG peptide revealed a 300-fold enhanced stability for the formation of the ternary heterocomplex compared to binding of two of the same fragments to Q8. Stochiometric binding by the potent inhibitor memantine could be used for repeated cycling of luciferase activation and deactivation in conjunction with Q8, providing a versatile module for in vitro supramolecular signaling networks.

  2. Irrational beliefs, attitudes about competition, and splitting.

    Watson, P J; Morris, R J; Miller, L


    Rational-Emotive Behavior Therapy (REBT) theoretically promotes actualization of both individualistic and social-oriented potentials. In a test of this assumption, the Belief Scale and subscales from the Survey of Personal Beliefs served as measures of what REBT presumes to be pathogenic irrationalities. These measures were correlated with the Hypercompetitive Attitude Scale (HCAS), the Personal Development Competitive Attitude Scale (PDCAS), factors from the Splitting Index, and self-esteem. Results for the HCAS and Self-Splitting supported the REBT claim about individualistic self-actualization. Mostly nonsignificant and a few counterintuitive linkages were observed for irrational beliefs with the PDCAS, Family-Splitting, and Other-Splitting, and these data suggested that REBT may be less successful in capturing the "rationality" of a social-oriented self-actualization.

  3. Split Brain Theory: Implications for Nurse Educators.

    de Meneses, Mary


    Discusses incorporating nontraditional concepts of learning in nursing education. Elements explored include the split brain theory, school design, teaching styles, teacher's role, teaching strategies, adding variety to the curriculum, and modular learning. (CT)

  4. Split-step eigenvector-following technique for exploring enthalpy landscapes at absolute zero.

    Mauro, John C; Loucks, Roger J; Balakrishnan, Jitendra


    The mapping of enthalpy landscapes is complicated by the coupling of particle position and volume coordinates. To address this issue, we have developed a new split-step eigenvector-following technique for locating minima and transition points in an enthalpy landscape at absolute zero. Each iteration is split into two steps in order to independently vary system volume and relative atomic coordinates. A separate Lagrange multiplier is used for each eigendirection in order to provide maximum flexibility in determining step sizes. This technique will be useful for mapping the enthalpy landscapes of bulk systems such as supercooled liquids and glasses.

  5. Ray splitting in paraxial optical cavities

    Puentes, G; Woerdman, J P


    We present a numerical investigation of the ray dynamics in a paraxial optical cavity when a ray splitting mechanism is present. The cavity is a conventional two-mirror stable resonator and the ray splitting is achieved by inserting an optical beam splitter perpendicular to the cavity axis. We show that depending on the position of the beam splitter the optical resonator can become unstable and the ray dynamics displays a positive Lyapunov exponent.

  6. Antenna Splitting Functions for Massive Particles

    Larkoski, Andrew J.; Peskin, Michael E.; /SLAC


    An antenna shower is a parton shower in which the basic move is a color-coherent 2 {yields} 3 parton splitting process. In this paper, we give compact forms for the spin-dependent antenna splitting functions involving massive partons of spin 0 and spin 1/2. We hope that this formalism we have presented will be useful in describing the QCD dynamics of the top quark and other heavy particles at LHC.

  7. Split-plot designs for multistage experimentation

    Kulahci, Murat; Tyssedal, John


    at the same time will be more efficient. However, there have been only a few attempts in the literature to provide an adequate and easy-to-use approach for this problem. In this paper, we present a novel methodology for constructing two-level split-plot and multistage experiments. The methodology is based...... be accommodated in each stage. Furthermore, split-plot designs for multistage experiments with good projective properties are also provided....

  8. Laser beam splitting by polarization encoding.

    Wan, Chenhao


    A scheme is proposed to design a polarization grating that splits an incident linearly polarized beam to an array of linearly polarized beams of identical intensity distribution and various azimuth angles of linear polarization. The grating is equivalent to a wave plate with space-variant azimuth angle and space-variant phase retardation. The linear polarization states of all split beams make the grating suitable for coherent beam combining architectures based on Dammann gratings.

  9. Split School of High Energy Physics 2015


    Split School of High Energy Physics 2015 (SSHEP 2015) was held at the Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture (FESB), University of Split, from September 14 to September 18, 2015. SSHEP 2015 aimed at master and PhD students who were interested in topics pertaining to High Energy Physics. SSHEP 2015 is the sixth edition of the High Energy Physics School. Previous five editions were held at the Department of Physics, University of Sarajevo, Bosnia and Herzegovina.

  10. Eficiência biológica e econômica de pasto de capim-tanzânia adubado com nitrogênio no final do verão Biological and economic efficiency of Panicum maximum fertilized with nitrogen in the end of summer

    Valéria Pacheco Batista Euclides


    Full Text Available O objetivo deste trabalho foi avaliar o ganho de peso vivo, a capacidade de suporte e a eficiência bioeconômica em pastos de Panicum maximum, cultivar Tanzânia, com aplicação de uma segunda dose de adubação nitrogenada no final do verão. Anualmente foram aplicados em cobertura: 50, 17,48, e 33,2 kg ha-1 de N, P e K, respectivamente, em novembro. A metade da área recebeu 50 kg ha-1 de N adicional em março. Os tratamentos foram pastos de capim-tanzânia com 50 e 100 kg ha-1 de N. Os piquetes foram submetidos ao pastejo rotacionado. Foram utilizados quatro animais por piquete, e animais adicionais foram colocados e removidos para manter resíduos semelhantes pós-pastejo. Não houve efeito da adubação nitrogenada sobre o ganho médio diário. No entanto, o pasto adubado com 100 kg ha-1 de N (1,8 UA ha-1 resultou em maior capacidade de suporte e maior produtividade (780 kg ha-1 por ano de PV do que o adubado com 50 kg ha-1 de N (1,5 UA ha-1 e com 690 kg ha-1 por ano de PV, em média. A eficiência da conversão do N em produto animal foi de 1,8 kg de PV por hectare para cada quilograma adicional de N aplicado. O uso da adubação nitrogenada no final do verão é uma alternativa bioeconomicamente viável para a produção sustentável de carne.The objective of the work was to estimate animal live weight gain, the pasture carrying capacity, and the bioeconomic efficiency of Panicum maximum, cultivar Tanzânia pastures, with a second application of nitrogen fertilizer in the end of summer (March. Maintenance fertilizer was 50, 17.5 and 33.2 kg ha-1 of N, P and K, respectively, applied annually in November. Besides, in half of the area, an additional 50 kg ha-1 of N was applied in March. Treatments were tanzânia pastures with two levels of nitrogen fertilization, 50 and 100 kg ha-1. The paddocks were submitted to a rotational grazing. Four steers were kept in each paddock, and additional steers were allocated and removed to assure similar

  11. The Maximum Density of Water.

    Greenslade, Thomas B., Jr.


    Discusses a series of experiments performed by Thomas Hope in 1805 which show the temperature at which water has its maximum density. Early data cast into a modern form as well as guidelines and recent data collected from the author provide background for duplicating Hope's experiments in the classroom. (JN)

  12. Abolishing the maximum tension principle

    Dabrowski, Mariusz P


    We find the series of example theories for which the relativistic limit of maximum tension $F_{max} = c^2/4G$ represented by the entropic force can be abolished. Among them the varying constants theories, some generalized entropy models applied both for cosmological and black hole horizons as well as some generalized uncertainty principle models.

  13. Abolishing the maximum tension principle

    Mariusz P. Da̧browski


    Full Text Available We find the series of example theories for which the relativistic limit of maximum tension Fmax=c4/4G represented by the entropic force can be abolished. Among them the varying constants theories, some generalized entropy models applied both for cosmological and black hole horizons as well as some generalized uncertainty principle models.


    Fahmi ben Hassen; Jijun Liu; Roland Potthast


    We study wave splitting procedures for acoustic or electromagnetic scattering problems. The idea of these procedures is to split some scattered field into a sum of fields coming from different spatial regions such that this information can be used either for inversion algorithms or for active noise control. Splitting algorithms can be based on general boundary layer potential representation or Green's representation formula. We will prove the unique decomposition of scattered wave outside the specified reference domain G and the unique decomposition of far-field pattern with respect to different reference domain G. Further, we employ the splitting technique for field reconstruction for a scatterer with two or more separate components, by combining it with the point source method for wave recovery. Using the decomposition of scattered wave as well as its far-field pattern, the wave splitting procedure proposed in this paper gives an efficient way to the computation of scattered wave near the obstacle, from which the multiple obstacles which cause the far-field pattern can be reconstructed separately. This considerably extends the range of the decomposition methods in the area of inverse scattering. Finally, we will provide numerical examples to demonstrate the feasibility of the splitting method.

  15. What can density functional theory tell us about artificial catalytic water splitting?

    Mavros, Michael G; Tsuchimochi, Takashi; Kowalczyk, Tim; McIsaac, Alexandra; Wang, Lee-Ping; Voorhis, Troy Van


    Water splitting by artificial catalysts is a critical process in the production of hydrogen gas as an alternative fuel. In this paper, we examine the essential role of theoretical calculations, with particular focus on density functional theory (DFT), in understanding the water-splitting reaction on these catalysts. First, we present an overview of DFT thermochemical calculations on water-splitting catalysts, addressing how these calculations are adapted to condensed phases and room temperature. We show how DFT-derived chemical descriptors of reactivity can be surprisingly good estimators for reactive trends in water-splitting catalysts. Using this concept, we recover trends for bulk catalysts using simple model complexes for at least the first-row transition-metal oxides. Then, using the CoPi cobalt oxide catalyst as a case study, we examine the usefulness of simulation for predicting the kinetics of water splitting. We demonstrate that the appropriate treatment of solvent effects is critical for computing accurate redox potentials with DFT, which, in turn, determine the rate-limiting steps and electrochemical overpotentials. Finally, we examine the ability of DFT to predict mechanism, using ruthenium complexes as a focal point for discussion. Our discussion is intended to provide an overview of the current strengths and weaknesses of the state-of-the-art DFT methodologies for condensed-phase molecular simulation involving transition metals and also to guide future experiments and computations toward the understanding and development of novel water-splitting catalysts.

  16. Split-phase motor running as capacitor starts motor and as capacitor run motor

    Yahaya Asizehi ENESI


    Full Text Available In this paper, the input parameters of a single phase split-phase induction motor is taken to investigate and to study the output performance characteristics of capacitor start and capacitor run induction motor. The value of these input parameters are used in the design characteristics of capacitor run and capacitor start motor with each motor connected to rated or standard capacitor in series with auxiliary winding or starting winding respectively for the normal operational condition. The magnitude of capacitor that will develop maximum torque in capacitor start motor and capacitor run motor are investigated and determined by simulation. Each of these capacitors is connected to the auxiliary winding of split-phase motor thereby transforming it into capacitor start or capacitor run motor. The starting current and starting torque of the split-phase motor (SPM, capacitor run motor (CRM and capacitor star motor (CSM are compared for their suitability in their operational performance and applications.

  17. Charge carrier separation in nanostructured TiO2 photoelectrodes for water splitting.

    Cowan, Alexander J; Leng, Wenhua; Barnes, Piers R F; Klug, David R; Durrant, James R


    There is intense interest in developing new novel nanostructured photoanodes for water splitting. It is therefore important that methods to analyze the effect of nanostructuring on water splitting yields are developed in order to rationalize the relative merits of this approach for different materials. In this study the dependence of charge separation efficiency (η(sep)) on potential during photoelectrochemical water splitting at pH 2 has been quantified in a model electrode system (nanocrystalline, mesoporous TiO2) using two independent methods. These are (i) analysis of incident photon conversion efficiency (IPCE) measurements and (ii) transient absorption (TA) spectroscopy measurements. The techniques provide good agreement with each other and show that a low maximum value of η(sep) (~0.18) is the primary cause of the low IPCE for water oxidation on these nc-TiO2 electrodes.

  18. Fisher information vs. signal-to-noise ratio for a split detector

    Knee, George C


    We study the problem of estimating the magnitude of a Gaussian beam displacement using a two pixel or 'split' detector. We calculate the maximum likelihood estimator, and compute its asymptotic mean-squared-error via the Fisher information. Although the signal-to-noise ratio is known to be simply related to the Fisher information under idealised detection, we find the two measures of precision differ markedly for a split detector. We show that a greater signal-to-noise ratio 'before' the detector leads to a greater information penalty, unless adaptive realignment is used. We find that with an initially balanced split detector, tuning the normalised difference in counts to 0.884753... gives the highest posterior Fisher information, and that this provides an improvement by at least a factor of about 2.5 over operating in the usual linear regime. We discuss the implications for weak-value amplification, a popular probabilistic signal amplification technique.

  19. Mechanically tunable photonic crystal split-beam nanocavity

    Lin, Tong; Zou, Yongchao; Zhou, Guangya; Chau, Fook Siong; Deng, Jie


    Photonic crystal split-beam nanocavities allow for ultra-sensitive optomechanical transductions but are degraded due to their relatively low optical quality factors. We report our recent work in designing a new type of one-dimensional photonic crystal split-beam nanocavity optimized for an ultra-high optical quality factor. The design is based on the combination of the deterministic method and hill-climbing algorithm. The latter is the simplest and most straightforward method of the local search algorithm, which provides the local maximum of the chosen quality factors. This split-beam nanocavity is made up of two mechanical uncoupled cantilever beams with Bragg mirrors patterned onto it and separated by a 75 nm air gap. Experimental results emphasize that the quality factor of the second order TE mode can be as high as 19,900. Additionally, one beam of the device is actuated in the lateral direction with the aid of a NEMS actuator and the quality factor maintains quite well even there's a lateral offset up to 64 nm. We also apply Fano resonance to further increase the Q-factor by constructing two interfering channels. Before tuning, the original Q-factor is 60,000; it's noteworthy that the topmost Q-factor reaches 67,000 throughout out-of-plane electrostatic force tuning. The dynamic mechanical modes of two devices is analyzed as well. Potentially promising applications, such as ultra-sensitive optomechanical torque sensor, local tuning of fano resonance, all-optical-reconfigurable filters etc, are foreseen.

  20. Urban pattern: Layout design by hierarchical domain splitting

    Yang, Yongliang


    We present a framework for generating street networks and parcel layouts. Our goal is the generation of high-quality layouts that can be used for urban planning and virtual environments. We propose a solution based on hierarchical domain splitting using two splitting types: streamline-based splitting, which splits a region along one or multiple streamlines of a cross field, and template-based splitting, which warps pre-designed templates to a region and uses the interior geometry of the template as the splitting lines. We combine these two splitting approaches into a hierarchical framework, providing automatic and interactive tools to explore the design space.

  1. Maximum Genus of Strong Embeddings

    Er-ling Wei; Yan-pei Liu; Han Ren


    The strong embedding conjecture states that any 2-connected graph has a strong embedding on some surface. It implies the circuit double cover conjecture: Any 2-connected graph has a circuit double cover.Conversely, it is not true. But for a 3-regular graph, the two conjectures are equivalent. In this paper, a characterization of graphs having a strong embedding with exactly 3 faces, which is the strong embedding of maximum genus, is given. In addition, some graphs with the property are provided. More generally, an upper bound of the maximum genus of strong embeddings of a graph is presented too. Lastly, it is shown that the interpolation theorem is true to planar Halin graph.

  2. D(Maximum)=P(Argmaximum)

    Remizov, Ivan D


    In this note, we represent a subdifferential of a maximum functional defined on the space of all real-valued continuous functions on a given metric compact set. For a given argument, $f$ it coincides with the set of all probability measures on the set of points maximizing $f$ on the initial compact set. This complete characterization lies in the heart of several important identities in microeconomics, such as Roy's identity, Sheppard's lemma, as well as duality theory in production and linear programming.

  3. Controllable valley splitting in silicon quantum devices

    Goswami, Srijit; Slinker, K. A.; Friesen, Mark; McGuire, L. M.; Truitt, J. L.; Tahan, Charles; Klein, L. J.; Chu, J. O.; Mooney, P. M.; van der Weide, D. W.; Joynt, Robert; Coppersmith, S. N.; Eriksson, Mark A.


    Silicon has many attractive properties for quantum computing, and the quantum-dot architecture is appealing because of its controllability and scalability. However, the multiple valleys in the silicon conduction band are potentially a serious source of decoherence for spin-based quantum-dot qubits. Only when a large energy splits these valleys do we obtain well-defined and long-lived spin states appropriate for quantum computing. Here, we show that the small valley splittings observed in previous experiments on Si-SiGe heterostructures result from atomic steps at the quantum-well interface. Lateral confinement in a quantum point contact limits the electron wavefunctions to several steps, and enhances the valley splitting substantially, up to 1.5meV. The combination of electrostatic and magnetic confinement produces a valley splitting larger than the spin splitting, which is controllable over a wide range. These results improve the outlook for realizing spin qubits with long coherence times in silicon-based devices.

  4. Technical Skills Required in Split Liver Transplantation.

    Liu, Huanqiu; Li, Ruijun; Fu, Jinling; He, Qianyan; Li, Ji


    The number of liver grafts obtained from a cadaver can be greatly increased with the application of split liver transplantation. In the last 10 years, pediatric waiting list mortality has been reduced significantly with the use of this form of liver transplantation, which has 2 major forms. In its most commonly used form, the liver can be transplanted into 1 adult and 1 child by splitting it into a right extended and a left lateral graft. For adult and pediatric recipients, the results of this procedure are comparable to those of whole-organ techniques. In another form, 2 hemi-grafts are obtained by splitting the liver, which can be transplanted into a medium-sized adult (the right side) and a large child/small adult (the left side). The adult liver graft pool is expanded through the process of full right/full left splitting; but it is also a critical technique when one considers the knowledge required of the potential anatomic variations and the high technical skill level needed. In this review, we provide some basic insights into the technical and anatomical aspects of these 2 forms of split liver transplantation and present an updated summary of both forms.

  5. Spin splitting in 2D monochalcogenide semiconductors

    Do, Dat T.; Mahanti, Subhendra D.; Lai, Chih Wei


    We report ab initio calculations of the spin splitting of the uppermost valence band (UVB) and the lowermost conduction band (LCB) in bulk and atomically thin GaS, GaSe, GaTe, and InSe. These layered monochalcogenides appear in four major polytypes depending on the stacking order, except for the monoclinic GaTe. Bulk and few-layer ε-and γ -type, and odd-number β-type GaS, GaSe, and InSe crystals are noncentrosymmetric. The spin splittings of the UVB and the LCB near the Γ-point in the Brillouin zone are finite, but still smaller than those in a zinc-blende semiconductor such as GaAs. On the other hand, the spin splitting is zero in centrosymmetric bulk and even-number few-layer β-type GaS, GaSe, and InSe, owing to the constraint of spatial inversion symmetry. By contrast, GaTe exhibits zero spin splitting because it is centrosymmetric down to a single layer. In these monochalcogenide semiconductors, the separation of the non-degenerate conduction and valence bands from adjacent bands results in the suppression of Elliot-Yafet spin relaxation mechanism. Therefore, the electron- and hole-spin relaxation times in these systems with zero or minimal spin splittings are expected to exceed those in GaAs when the D’yakonov-Perel’ spin relaxation mechanism is also suppressed.

  6. Fano resonance Rabi splitting of surface plasmons.

    Liu, Zhiguang; Li, Jiafang; Liu, Zhe; Li, Wuxia; Li, Junjie; Gu, Changzhi; Li, Zhi-Yuan


    Rabi splitting and Fano resonance are well-known physical phenomena in conventional quantum systems as atoms and quantum dots, arising from strong interaction between two quantum states. In recent years similar features have been observed in various nanophotonic and nanoplasmonic systems. Yet, realization of strong interaction between two or more Fano resonance states has not been accomplished either in quantum or in optical systems. Here we report the observation of Rabi splitting of two strongly coupled surface plasmon Fano resonance states in a three-dimensional plasmonic nanostructure consisting of vertical asymmetric split-ring resonators. The plasmonic system stably supports triple Fano resonance states and double Rabi splittings can occur between lower and upper pairs of the Fano resonance states. The experimental discovery agrees excellently with rigorous numerical simulations, and is well explained by an analytical three-oscillator model. The discovery of Fano resonance Rabi splitting could provide a stimulating insight to explore new fundamental physics in analogous atomic systems and could be used to significantly enhance light-matter interaction for optical sensing and detecting applications.

  7. The Testability of Maximum Magnitude

    Clements, R.; Schorlemmer, D.; Gonzalez, A.; Zoeller, G.; Schneider, M.


    Recent disasters caused by earthquakes of unexpectedly large magnitude (such as Tohoku) illustrate the need for reliable assessments of the seismic hazard. Estimates of the maximum possible magnitude M at a given fault or in a particular zone are essential parameters in probabilistic seismic hazard assessment (PSHA), but their accuracy remains untested. In this study, we discuss the testability of long-term and short-term M estimates and the limitations that arise from testing such rare events. Of considerable importance is whether or not those limitations imply a lack of testability of a useful maximum magnitude estimate, and whether this should have any influence on current PSHA methodology. We use a simple extreme value theory approach to derive a probability distribution for the expected maximum magnitude in a future time interval, and we perform a sensitivity analysis on this distribution to determine if there is a reasonable avenue available for testing M estimates as they are commonly reported today: devoid of an appropriate probability distribution of their own and estimated only for infinite time (or relatively large untestable periods). Our results imply that any attempt at testing such estimates is futile, and that the distribution is highly sensitive to M estimates only under certain optimal conditions that are rarely observed in practice. In the future we suggest that PSHA modelers be brutally honest about the uncertainty of M estimates, or must find a way to decrease its influence on the estimated hazard.

  8. Alternative Multiview Maximum Entropy Discrimination.

    Chao, Guoqing; Sun, Shiliang


    Maximum entropy discrimination (MED) is a general framework for discriminative estimation based on maximum entropy and maximum margin principles, and can produce hard-margin support vector machines under some assumptions. Recently, the multiview version of MED multiview MED (MVMED) was proposed. In this paper, we try to explore a more natural MVMED framework by assuming two separate distributions p1( Θ1) over the first-view classifier parameter Θ1 and p2( Θ2) over the second-view classifier parameter Θ2 . We name the new MVMED framework as alternative MVMED (AMVMED), which enforces the posteriors of two view margins to be equal. The proposed AMVMED is more flexible than the existing MVMED, because compared with MVMED, which optimizes one relative entropy, AMVMED assigns one relative entropy term to each of the two views, thus incorporating a tradeoff between the two views. We give the detailed solving procedure, which can be divided into two steps. The first step is solving our optimization problem without considering the equal margin posteriors from two views, and then, in the second step, we consider the equal posteriors. Experimental results on multiple real-world data sets verify the effectiveness of the AMVMED, and comparisons with MVMED are also reported.

  9. Nanonet-based hematite heteronanostructures for efficient solar water splitting.

    Lin, Yongjing; Zhou, Sa; Sheehan, Stafford W; Wang, Dunwei


    We report the highest external quantum efficiency measured on hematite (α-Fe(2)O(3)) without intentional doping in a water-splitting environment: 46% at λ = 400 nm. This result was enabled by the introduction of TiSi(2) nanonets, which are highly conductive and have suitably high surface areas. The nanonets serve a dual role as a structural support and an efficient charge collector, allowing for maximum photon-to-charge conversion. Without the addition of any oxygen-evolving catalysts, we obtained photocurrents of 1.6 and 2.7 mA/cm(2) at 1.23 and 1.53 V vs RHE, respectively. These results highlight the importance of charge transport in semiconductor-based water splitting, particularly for materials whose performance is limited by poor charge diffusion. Our design introduces material components to provide a dedicated charge-transport pathway, alleviating the reliance on the materials' intrinsic properties, and therefore has the potential to greatly broaden where and how various existing materials can be used in energy-related applications.

  10. Características do pasto de capim-tanzânia adubado com nitrogênio no final do verão Pasture characteristics of Panicum maximum cv. Tanzânia fertilized with nitrogen in the end of summer

    Valéria Pacheco Batista Euclides


    Full Text Available O objetivo deste trabalho foi avaliar a massa de forragem, os componentes morfológicos e o valor nutritivo de Panicum maximum cultivar Tanzânia, com aplicação de uma segunda dose de adubação nitrogenada em março, no final do verão. Anualmente, foram aplicados em cobertura 50, 17,5 e 33,2 kg ha-1 de N, P e K, respectivamente, em novembro. Além disso, a metade da área recebeu 50 kg ha-1 de N adicional, em março. Os tratamentos foram doses de 50 e 100 kg ha-1 de N em pastos de capim-tanzânia. Os piquetes foram subdivididos em seis e submetidos ao pastejo rotacionado. Foram avaliados a massa de forragem, os componentes morfológicos e o valor nutritivo. A aplicação adicional de N, em março, promoveu aumento nas taxas de acúmulo de matéria seca verde e de lâmina foliares, com maiores efeitos no outono. Houve acréscimos nos teores de proteína bruta e de digestibilidade in vitro da matéria orgânica da forrageira logo após a aplicação do N. A adubação com 50 kg ha-1 por ano de N foi suficiente para manter a produção de forragem estável durante três anos, sob pastejo. A aplicação de 50 kg ha-1 por ano de N adicional, em março, diminuiu a estacionalidade da produção forrageira, além de produzir forragem de maior valor nutritivo durante o outono.The objective of this work was to evaluate the forage yield, morphological components and nutritive value of Panicum maximum cv. Tanzânia, with a second application of nitrogen fertilizer in March, at the end of summer. Maintenance fertilizer was 50, 17.5 and 33.2 kg ha-1 of N, P and K, respectively, applied annually, in November. Besides, in half of the area, an additional 50 kg ha-1 of N was applied, in March. The treatments were tanzânia pasture with two levels of nitrogen fertilization, 50 and 100 kg ha-1. The paddocks were divided in six plots, and submitted to a rotational grazing. Forage yield, percentages of the morphological components and nutritive value were

  11. Ultrasonic splitting of oil-in-water emulsions

    Hald, Jens; König, Ralf; Benes, Ewald


    Standing resonant ultrasonic wave fields can be utilized for liquid–liquid separation of the dispersed particles and the fluid caused by the acoustic radiation pressure and the induced particle agglomeration or coagulation/coalescence process. For the splitting of oil-in-water emulsions...... emulsion samples have been investigated. The quality of the ultrasonic-induced particle separation/coagulation process is characterized by physical–chemical analysis of the separated oil- and water phase and by determining the change of the particle size distribution of the initial emulsion due...... of up to 24 W/cm2 into the sonication volume. The chosen resonance frequency is kept stable by automatic frequency control utilizing the maximum true power criterion. Physically and chemically well-defined low and high density pure laboratory and also industrially used cooling-lubricating oil-in-water...

  12. Inorganic photocatalysts for overall water splitting.

    Xing, Jun; Fang, Wen Qi; Zhao, Hui Jun; Yang, Hua Gui


    Photocatalytic water splitting using semiconductor photocatalysts has been considered as a "green" process for converting solar energy into hydrogen. The pioneering work on electrochemical photolysis of water at TiO(2) electrode, reported by Fujishima and Honda in 1972, ushered in the area of solar fuel. As the real ultimate solution for solar fuel-generation, overall water splitting has attracted interest from researchers for some time, and a variety of inorganic photocatalysts have been developed to meet the challenge of this dream reaction. To date, high-efficiency hydrogen production from pure water without the assistance of sacrificial reagents remains an open challenge. In this Focus Review, we aim to provide a whole picture of overall water splitting and give an outlook for future research.

  13. Harvesting split thickness costal cartilage graft

    Sunil Gaba


    Full Text Available Aim: There are few complications associated with harvesting of full thickness coastal cartilage grafts i.e., pneumothorax (0.9%, contour deformities and prolonged post-operative pain. To address these issues, authors devised special scalpel to harvest split-thickness costal cartilage grafts. Materials and Methods: Standard inframammary incision was used for harvesting rib. Incision was made directly over the desired rib. Specially designed scalpel was used to cut through the rib cartilage to the half of the thickness. The study was conducted in two parts – cadaveric and clinical. Results: There was significantly less pain and no pneumothorax in the patients in whom the split thickness graft was harvested. Wounds healed without any complication. Discussion: Thus, newly devised angulated scalpel used in the current study, showed the potential to supply the reconstructive surgeon with split thickness rib graft without risk of complications such as pneumothorax or warping contour deformities and post-operative pain.

  14. Multiple spectral splits of supernova neutrinos.

    Dasgupta, Basudeb; Dighe, Amol; Raffelt, Georg G; Smirnov, Alexei Yu


    Collective oscillations of supernova neutrinos swap the spectra f(nu(e))(E) and f(nu[over ](e))(E) with those of another flavor in certain energy intervals bounded by sharp spectral splits. This phenomenon is far more general than previously appreciated: typically one finds one or more swaps and accompanying splits in the nu and nu[over ] channels for both inverted and normal neutrino mass hierarchies. Depending on an instability condition, swaps develop around spectral crossings (energies where f(nu(e))=f(nu(x)), f(nu[over ](e))=f(nu[over ](x)) as well as E-->infinity where all fluxes vanish), and the widths of swaps are determined by the spectra and fluxes. Washout by multiangle decoherence varies across the spectrum and splits can survive as sharp spectral features.

  15. Trap split with Laguerre-Gaussian beams

    Kazemi, Seyedeh Hamideh; Mahmoud, Mohammad


    The optical trapping techniques have been extensively used in physics, biophysics, micro-chemistry, and micro-mechanics to allow trapping and manipulation of materials ranging from particles, cells, biological substances, and polymers to DNA and RNA molecules. In this Letter, we present a convenient and effective way to generate a novel phenomenon of trapping, named trap split, in a conventional four-level double-$\\Lambda$ atomic system driven by four femtosecond Laguerre-Gaussian laser pulses. We find that trap split can be always achieved when atoms are trapped by such laser pulses, as compared to Gaussian ones. This work would greatly facilitate the trapping and manipulating the particles and generation of trap split. It may also suggest the possibility of extension into new research fields, such as micro-machining and biophysics.

  16. Monitoring dyke injection and strain field evolution using shear-wave splitting.

    Kendall, J.-M.; Verdon, J. P.; Keir, D.; Baird, A.


    Magma storage and dyke injection in the shallow crust is a fundamental process in rifting and volcanic environments. The dyking will tend to align with directions of maximum compressive stress, and the associated aligned fracturing and melt migration provides a very effective means of generating seismic anisotropy. Observations of shear-wave splitting provide one of the most unambiguous indicators of such anisotropy. As such, shear-wave splitting can be used to monitor the evolving strain field in volcanic and rifting environments. Here we apply lessons learned from monitoring fracture propagation during the hydraulic stimulation of tight-gas reservoirs. In a number of experiments we observe spatial and temporal variations in shear-wave splitting magnitude and orientation. We invert shear-wave observations for fracture properties, including the tangential and normal compliance, the ratio of which is a good indicator of fluid flow and permeability. Frequency dependent affects can be also used to indicate the length scales of the causative cracks or fractures. We apply these insights to microseismic data recently acquired across the volcanically active Afar triple junction in Ethiopia. The pattern of S-wave splitting in Afar is best explained by anisotropy from deformation-related structures, with the dramatic change in splitting parameters into the rift axis from the increased density of dyke-induced faulting combined with a contribution from oriented melt pockets near volcanic centres. The results help in our understanding of the role of melt in strain accommodation in rifting and volcanic environments.

  17. Solar Water Splitting and Nitrogen Fixation with Layered Bismuth Oxyhalides.

    Li, Jie; Li, Hao; Zhan, Guangming; Zhang, Lizhi


    their migration from the bulk to the surface along the different directions, thus enabling more electrons to reach the surface for water splitting and nitrogen fixation. Simultaneously, their oxygen termination feature and the strain differences between interlayers and intralayers render the easy generation of surface oxygen vacancies (OVs) that afford Lewis-base and unsaturated-unsaturated sites for nitrogen activation. With these rationales as the guideline, we can obtain striking visible-light hydrogen- and ammonia-evolving rates without using any noble-metal cocatalysts. Then we show how to utilize IEF and OV based strategies to improve the solar water splitting and nitrogen fixation performances of bismuth oxyhalide photocatalysts. Finally, we highlight the challenges remaining in using bismuth oxyhalides for solar hydrogen and ammonia syntheses, and the prospect of further development of this research field. We believe that our mechanistic insights could serve as a blueprint for the design of more efficient solar water splitting and nitrogen fixation systems, and layered bismuth oxyhalides might open up new photocatalyst paradigm for such two solar chemical syntheses.

  18. Split-octonion Lie 3-algebra

    Jardino, Sergio


    We extend the concept of a generalized Lie 3-algebra, known to octonions $\\mathbb{O}$, to split-octonions $\\mathbb{SO}$. In order to do that, we introduce a notational device that unifies the two elements product of both of the algebras. We have also proved that $\\mathbb{SO}$ is a Malcev algebra and have recalculated known relations for the structure constants in terms of the introduced structure tensor. An application of the split Lie $3-$algebra to a Bagger and Lambert gauge theory is also discussed.

  19. Recognition of Unipolar and Generalised Split Graphs

    Colin McDiarmid


    Full Text Available A graph is unipolar if it can be partitioned into a clique and a disjoint union of cliques, and a graph is a generalised split graph if it or its complement is unipolar. A unipolar partition of a graph can be used to find efficiently the clique number, the stability number, the chromatic number, and to solve other problems that are hard for general graphs. We present an O(n2-time algorithm for recognition of n-vertex generalised split graphs, improving on previous O(n3-time algorithms.

  20. Splitting Strategy for Simulating Genetic Regulatory Networks

    Xiong You


    Full Text Available The splitting approach is developed for the numerical simulation of genetic regulatory networks with a stable steady-state structure. The numerical results of the simulation of a one-gene network, a two-gene network, and a p53-mdm2 network show that the new splitting methods constructed in this paper are remarkably more effective and more suitable for long-term computation with large steps than the traditional general-purpose Runge-Kutta methods. The new methods have no restriction on the choice of stepsize due to their infinitely large stability regions.

  1. Hyperfine splitting in lithium-like bismuth

    Lochmann, Matthias; Froemmgen, Nadja; Hammen, Michael; Will, Elisa [Universitaet Mainz (Germany); Andelkovic, Zoran; Kuehl, Thomas; Litvinov, Yuri; Winters, Danyal; Sanchez, Rodolfo [GSI Helmholtzzentrum, Darmstadt (Germany); Botermann, Benjamin; Noertershaeuser, Wilfried [Technische Universitaet Darmstadt (Germany); Bussmann, Michael [Helmholtzzentrum Dresden-Rossendorf (Germany); Dax, Andreas [CERN, Genf (Switzerland); Hannen, Volker; Joehren, Raphael; Vollbrecht, Jonas; Weinheimer, Christian [Universitaet Muenster (Germany); Geppert, Christopher [Universitaet Mainz (Germany); GSI Helmholtzzentrum, Darmstadt (Germany); Stoehlker, Thomas [GSI Helmholtzzentrum, Darmstadt (Germany); Universitaet Heidelberg (Germany); Thompson, Richard [Imperial College, London (United Kingdom); Volotka, Andrey [Technische Universitaet Dresden (Germany); Wen, Weiqiang [IMP Lanzhou (China)


    High-precision measurements of the hyperfine splitting values on Li- and H-like bismuth ions, combined with precise atomic structure calculations allow us to test QED-effects in the regime of the strongest magnetic fields that are available in the laboratory. Performing laser spectroscopy at the experimental storage ring (ESR) at GSI Darmstadt, we have now succeeded in measuring the hyperfine splitting in Li-like bismuth. Probing this transition has not been easy because of its extremely low fluorescence rate. Details about this challenging experiment will be given and the achieved experimental accuracy are presented.

  2. The transversely split gracilis twin free flaps

    Upadhyaya Divya


    Full Text Available The gracilis muscle is a Class II muscle that is often used in free tissue transfer. The muscle has multiple secondary pedicles, of which the first one is the most consistent in terms of position and calibre. Each pedicle can support a segment of the muscle thus yielding multiple small flaps from a single, long muscle. Although it has often been split longitudinally along the fascicles of its nerve for functional transfer, it has rarely been split transversely to yield multiple muscle flaps that can be used to cover multiple wounds in one patient without subjecting him/her to the morbidity of multiple donor areas .

  3. Final Report

    Chidambaram, Dev [Univ. of Nevada, Reno, NV (United States); Misra, Mano [Univ. of Utah, Salt Lake City, UT (United States); Heske, Clemens [Univ. of Nevada, Las Vegas, NV (United States)


    The objectives included: Develop high efficiency metal oxide nanotubular array photo-anodes for generating hydrogen by water splitting; Develop density functional theory to understand the effect of the morphology of the nanotubes on the photo-electrochemical (PEC) properties of the photo-anodes; Develop kinetics and formation mechanism of the metal oxide nanotubes under different synthesis conditions; Develop combinatorial approach to prepare hybrid photo-anodes having multiple hetero-atoms incorporation in a single photo anode; Improve the durability of the material; and Scale up the laboratory demonstration to production unit.

  4. Penelitian kulit belahan (split leather untuk barang kulit atau atasan sepatu

    Susilowati Susilowati


    Full Text Available The purpose of this research is to find upper leather from splitted leather with proportional ratio of impregnating agent. The raw material used were split hide, and subjected to combination tanning process, consisted of chrome, synthetic and extract mimosa tanning agent, to get crust leather, and than were impregnated with the ratio of film forming with penetrator agent and finally they were finished with top all of the treatments fulfill/conform the requirements of SII 0018-79. There is significance difference in physical testing results.

  5. Cacti with maximum Kirchhoff index

    Wang, Wen-Rui; Pan, Xiang-Feng


    The concept of resistance distance was first proposed by Klein and Randi\\'c. The Kirchhoff index $Kf(G)$ of a graph $G$ is the sum of resistance distance between all pairs of vertices in $G$. A connected graph $G$ is called a cactus if each block of $G$ is either an edge or a cycle. Let $Cat(n;t)$ be the set of connected cacti possessing $n$ vertices and $t$ cycles, where $0\\leq t \\leq \\lfloor\\frac{n-1}{2}\\rfloor$. In this paper, the maximum kirchhoff index of cacti are characterized, as well...

  6. Generic maximum likely scale selection

    Pedersen, Kim Steenstrup; Loog, Marco; Markussen, Bo


    The fundamental problem of local scale selection is addressed by means of a novel principle, which is based on maximum likelihood estimation. The principle is generally applicable to a broad variety of image models and descriptors, and provides a generic scale estimation methodology. The focus...... on second order moments of multiple measurements outputs at a fixed location. These measurements, which reflect local image structure, consist in the cases considered here of Gaussian derivatives taken at several scales and/or having different derivative orders....

  7. Preconceptual design of a salt splitting process using ceramic membranes

    Kurath, D.E.; Brooks, K.P.; Hollenberg, G.W.; Clemmer, R. [Pacific Northwest National Lab., Richland, WA (United States); Balagopal, S.; Landro, T.; Sutija, D.P. [Ceramatec, Inc., Salt Lake City, UT (United States)


    Inorganic ceramic membranes for salt splitting of radioactively contaminated sodium salt solutions are being developed for treating U. S. Department of Energy tank wastes. The process consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON) membranes. The primary NaSICON compositions being investigated are based on rare- earth ions (RE-NaSICON). Potential applications include: caustic recycling for sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes; reducing the volume of low-level wastes volume to be disposed of; adjusting pH and reducing competing cations to enhance cesium ion exchange processes; reducing sodium in high-level-waste sludges; and removing sodium from acidic wastes to facilitate calcining. These applications encompass wastes stored at the Hanford, Savannah River, and Idaho National Engineering Laboratory sites. The overall project objective is to supply a salt splitting process unit that impacts the waste treatment and disposal flowsheets and meets user requirements. The potential flowsheet impacts include improving the efficiency of the waste pretreatment processes, reducing volume, and increasing the quality of the final waste disposal forms. Meeting user requirements implies developing the technology to the point where it is available as standard equipment with predictable and reliable performance. This report presents two preconceptual designs for a full-scale salt splitting process based on the RE-NaSICON membranes to distinguish critical items for testing and to provide a vision that site users can evaluate.

  8. Interpretation of quasi-Fermi level splitting in Cu(Ga,In)Se{sub 2}-absorbers by confocally recorded spectral luminescence and numerical modeling

    Knabe, Sebastian [Institute of Physics, CvO University Oldenburg (Germany)], E-mail:; Guetay, Levent; Bauer, Gottfried H. [Institute of Physics, CvO University Oldenburg (Germany)


    Spectral room temperature photoluminescence (pl) of polycrystalline Cu(In,Ga)Se{sub 2} films (CIGSe) is evaluated with respect to optoelectronic properties and in particular for the determination of the splitting of quasi-Fermi levels (E{sub Fn} - E{sub Fp}). For lateral resolution of {<=} 1 {mu}m a confocal pl-setup is used. The depth profile of the excess carrier densities determining the rates of radiative transitions strongly govern the spectral pl-shape which has been numerically modeled with a matrix transfer formalism. In this optical approach we discriminate for wave propagation and attenuation in a multilayer system between a plane-wave ansatz and a 3D-spherical formalism, depending on excitation area large or small/similar compared to the thickness of the absorber. In both cases re-absorption of photons in energetic regimes with absorption approaches unity, from which the splitting of the quasi-Fermi levels is preferentially deduced, substantially influence the spectral luminescence signal. For heterojunctions usually located at the light entrance side of the device our evaluation with good agreement reflects (E{sub Fn} - E{sub Fp}) in the vicinity of the barrier and thus indicates the maximum achievable open circuit voltage of the finally processed diode. Departures of the spectral pl from the idealized Bose-term signalize unfavorable carrier profiles and a depth dependence of optoelectronic absorber properties.

  9. Economics and Maximum Entropy Production

    Lorenz, R. D.


    Price differentials, sales volume and profit can be seen as analogues of temperature difference, heat flow and work or entropy production in the climate system. One aspect in which economic systems exhibit more clarity than the climate is that the empirical and/or statistical mechanical tendency for systems to seek a maximum in production is very evident in economics, in that the profit motive is very clear. Noting the common link between 1/f noise, power laws and Self-Organized Criticality with Maximum Entropy Production, the power law fluctuations in security and commodity prices is not inconsistent with the analogy. There is an additional thermodynamic analogy, in that scarcity is valued. A commodity concentrated among a few traders is valued highly by the many who do not have it. The market therefore encourages via prices the spreading of those goods among a wider group, just as heat tends to diffuse, increasing entropy. I explore some empirical price-volume relationships of metals and meteorites in this context.

  10. Maximum Likelihood Analysis in the PEN Experiment

    Lehman, Martin


    The experimental determination of the π+ -->e+ ν (γ) decay branching ratio currently provides the most accurate test of lepton universality. The PEN experiment at PSI, Switzerland, aims to improve the present world average experimental precision of 3 . 3 ×10-3 to 5 ×10-4 using a stopped beam approach. During runs in 2008-10, PEN has acquired over 2 ×107 πe 2 events. The experiment includes active beam detectors (degrader, mini TPC, target), central MWPC tracking with plastic scintillator hodoscopes, and a spherical pure CsI electromagnetic shower calorimeter. The final branching ratio will be calculated using a maximum likelihood analysis. This analysis assigns each event a probability for 5 processes (π+ -->e+ ν , π+ -->μ+ ν , decay-in-flight, pile-up, and hadronic events) using Monte Carlo verified probability distribution functions of our observables (energies, times, etc). A progress report on the PEN maximum likelihood analysis will be presented. Work supported by NSF grant PHY-0970013.

  11. Doublet-Triplet Splitting and Fat Branes

    Maru, N


    We consider the doublet-triplet splitting problem in supersymmetric SU(5) grand unified theory in five dimensions where the fifth dimension is non-compact. We point out that an unnatural fine-tuning of parameters in order to obtain the light Higgs doublets is not required due to the exponential suppression of the overlap of the wave functions.

  12. Geometrical splitting and reduction of Feynman diagrams

    Davydychev, Andrei I.


    A geometrical approach to the calculation of N-point Feynman diagrams is reviewed. It is shown that the geometrical splitting yields useful connections between Feynman integrals with different momenta and masses. It is demonstrated how these results can be used to reduce the number of variables in the occurring functions.

  13. Czech, Slovak science ten years after split


    Ten years after the split of Czechoslovakia Czech and Slovak science are facing the same difficulties: shortage of money for research, poor salaries, obsolete equipment and brain drain, especially of the young, according to a feature in the Daily Lidove Noviny (1 page).

  14. Splitting up Beta’s change

    Suarez, Ronny


    In this paper we estimated IBM beta from 2000 to 2013, then using differential equation mathematical formula we split up the annual beta’s change attributed to the volatility market effect, the stock volatility effect, the correlation effect and the jointly effect of these variables.

  15. Comparing Electrochemical and Biological Water Splitting

    Rossmeisl, Jan; Dimitrievski, Kristian; Siegbahn, P.


    On the basis of density functional theory calculations, we compare the free energies of key intermediates in the water splitting reaction over transition metal oxide surfaces to those of the Mn cluster in photo system II. In spite of the very different environments in the enzyme system...

  16. Three-Rainbow Coloring of Split Graphs

    胡玉梅; 刘婷婷


    After a necessary condition is given, 3-rainbow coloring of split graphs with time complexity O(m) is obtained by constructive method. The number of corresponding colors is at most 2 or 3 more than the minimum num-ber of colors needed in a 3-rainbow coloring.

  17. Split brain: divided perception but undivided consciousness.

    Pinto, Yair; Neville, David A; Otten, Marte; Corballis, Paul M; Lamme, Victor A F; de Haan, Edward H F; Foschi, Nicoletta; Fabri, Mara


    In extensive studies with two split-brain patients we replicate the standard finding that stimuli cannot be compared across visual half-fields, indicating that each hemisphere processes information independently of the other. Yet, crucially, we show that the canonical textbook findings that a split-brain patient can only respond to stimuli in the left visual half-field with the left hand, and to stimuli in the right visual half-field with the right hand and verbally, are not universally true. Across a wide variety of tasks, split-brain patients with a complete and radiologically confirmed transection of the corpus callosum showed full awareness of presence, and well above chance-level recognition of location, orientation and identity of stimuli throughout the entire visual field, irrespective of response type (left hand, right hand, or verbally). Crucially, we used confidence ratings to assess conscious awareness. This revealed that also on high confidence trials, indicative of conscious perception, response type did not affect performance. These findings suggest that severing the cortical connections between hemispheres splits visual perception, but does not create two independent conscious perceivers within one brain.

  18. Helioseismic Solar Cycle Changes and Splitting Coefficients

    S. C. Tripathy; Kiran Jain; A. Bhatnagar


    Using the GONG data for a period over four years, we have studied the variation of frequencies and splitting coefficients with solar cycle. Frequencies and even-order coefficients are found to change significantly with rising phase of the solar cycle. We also find temporal variations in the rotation rate near the solar surface.

  19. On Split Lie Triple Systems II

    Antonio J Calderón Martín; M Forero Piulestán


    In [4] it is studied that the structure of split Lie triple systems with a coherent 0-root space, that is, satisfying $[T_0,T_0,T]=0$ and $[T_0,T_,T_0]≠ 0$ for any nonzero root and where $T_0$ denotes the 0-root space and $T_$ the -root space, by showing that any of such triple systems with a symmetric root system is of the form $T=\\mathcal{U}+\\sum_j I_j$ with $\\mathcal{U}$ a subspace of the 0-root space $T_0$ and any $I_j$ a well described ideal of , satisfying $[I_j,T,I_k]=0$ if $j≠ k$. It is also shown in [4] that under certain conditions, a split Lie triple system with a coherent 0-root space is the direct sum of the family of its minimal ideals, each one being a simple split Lie triple system, and the simplicity of is characterized. In the present paper we extend these results to arbitrary split Lie triple systems with no restrictions on their 0-root spaces.

  20. Carbon dioxide splitting in a dielectric barrier discharge plasma: a combined experimental and computational study.

    Aerts, Robby; Somers, Wesley; Bogaerts, Annemie


    Plasma technology is gaining increasing interest for the splitting of CO2 into CO and O2 . We have performed experiments to study this process in a dielectric barrier discharge (DBD) plasma with a wide range of parameters. The frequency and dielectric material did not affect the CO2 conversion and energy efficiency, but the discharge gap can have a considerable effect. The specific energy input has the most important effect on the CO2 conversion and energy efficiency. We have also presented a plasma chemistry model for CO2 splitting, which shows reasonable agreement with the experimental conversion and energy efficiency. This model is used to elucidate the critical reactions that are mostly responsible for the CO2 conversion. Finally, we have compared our results with other CO2 splitting techniques and we identified the limitations as well as the benefits and future possibilities in terms of modifications of DBD plasmas for greenhouse gas conversion in general.


    WANG Shou-dong; SHEN Yong-ming


    Two high-order splitting schemes based on the idea of the operators splitting method are given. The three-dimensional advection-diffusion equation was split into several one-dimensional equations that were solved by these two schemes, only three computational grid points were needed in each direction but the accuracy reaches the spatial fourth-order. The third scheme proposed is based on the classical ADI scheme and the accuracy of the advection term of it can reach the spatial fourth-order. Finally,two typical numerical experiments show that the solutions of these three schemes compare well with that given by the analytical solution when the Peclet number is not bigger than 5.

  2. Split-Stirling, linear-resonant, cryogenic refrigerators for detector cooling

    Lehrfeld, D.


    For the past decade, military IR systems have preferred to see cryogenic coolers provided as split units; separating the functions of compressor and cold-end for system packaging and vibration isolation reasons. A family of split-cycle coolers designed for long MTBF and in the final stages of development is the focus of the discussion. Their technological evolution, from multi-year-MTBF satellite system Stirling coolers developed in the U.S., and the UA 7011 cooler (the first all-linear, military, production cooler) developed in Holland, is explained. Two new split-cycle machines are discussed. They provided 1/4 watt and 1 watt (nominal capacity) at 80 K and 85 K respectively. These linear-resonant, free-displacer Stirling coolers are designed for thousands of hours of service-free operation. They are designed to be compatible with standard U.S. 60 element and 120/180 element detector/dewars, respectively.

  3. Dye-Sensitized Photocatalytic Water Splitting and Sacrificial Hydrogen Generation: Current Status and Future Prospects

    Pankaj Chowdhury


    Full Text Available Today, global warming and green energy are important topics of discussion for every intellectual gathering all over the world. The only sustainable solution to these problems is the use of solar energy and storing it as hydrogen fuel. Photocatalytic and photo-electrochemical water splitting and sacrificial hydrogen generation show a promise for future energy generation from renewable water and sunlight. This article mainly reviews the current research progress on photocatalytic and photo-electrochemical systems focusing on dye-sensitized overall water splitting and sacrificial hydrogen generation. An overview of significant parameters including dyes, sacrificial agents, modified photocatalysts and co-catalysts are provided. Also, the significance of statistical analysis as an effective tool for a systematic investigation of the effects of different factors and their interactions are explained. Finally, different photocatalytic reactor configurations that are currently in use for water splitting application in laboratory and large scale are discussed.

  4. Power-Split Hybrid Electric Vehicle Energy Management Based on Improved Logic Threshold Approach

    Zhumu Fu


    Full Text Available We design an improved logic threshold approach of energy management for a power-split HEV assisted by an integrated starter generator (ISG. By combining the efficiency map and the optimum torque curve of internal combustion engine (ICE with the state of charge (SOC of batteries, the improved logic threshold controller manages the ICE within its peak efficiency region at first. Then the electrical power demand is established based on the ICE energy output. On that premise, a variable logic threshold value K is defined to achieve the power distribution between the ISG and the electric motor/generator (EMG. Finally, simulation models for the power-split HEV with improved logic threshold controller are established in ADVISOR. Compared to the equally power-split HEV with the logic threshold controller, when using the improved logic threshold controller, the battery power consumption, the ICE efficiency, the fuel consumption, and the motor driving system efficiency are improved.

  5. Nondestructive relative permittivity and loss tangent measurements using a split-cylinder resonator

    Janezic, Michael Daniel

    To keep pace with the expanding wireless and electronics industries, manufacturers are developing innovative materials for improving system performance, and there is a critical need to accurately characterize the electrical properties of these new materials at microwave frequencies. To address this need, this thesis develops a nondestructive method for measuring the relative permittivity and loss tangent of dielectric substrates using a split-cylinder resonator. Three theoretical models for the split-cylinder resonator are derived using mode-matching, least-squares boundary residual, and Hankel-transform methods, from which one can calculate the relative permittivity and loss tangent of a dielectric substrate from measurements of the split-cylinder resonator's TE0np resonant frequency and quality factor. Each of these models has several advantages over previously published models. First, the accuracy of the relative permittivity measurement is increased because each model accurately models the fringing fields that extend beyond the cylindrical-cavity sections. Second, to increase the accuracy of the loss tangent measurement, each model accurately separates the conductive metal losses of the split-cylinder resonator from the dielectric losses of the substrate. Finally, in contrast to previous models for the split-cylinder resonator that use only the TE011 resonant mode, each of the new models include the higher-order TE0np resonant modes, thereby broadening the frequency range over which one can make relative permittivity and loss tangent measurements. In a comparison of the three models, the mode-matching method was found to be superior on the basis of measurement accuracy and computational speed. Relative permittivity and loss tangent measurements for several dielectric materials are performed using a split-cylinder resonator and are in good agreement with measurements made using a circular-cylindrical cavity, split-post resonator, and dielectric post resonator

  6. Objects of maximum electromagnetic chirality

    Fernandez-Corbaton, Ivan


    We introduce a definition of the electromagnetic chirality of an object and show that it has an upper bound. The upper bound is attained if and only if the object is transparent for fields of one handedness (helicity). Additionally, electromagnetic duality symmetry, i.e. helicity preservation upon scattering, turns out to be a necessary condition for reciprocal scatterers to attain the upper bound. We use these results to provide requirements for the design of such extremal scatterers. The requirements can be formulated as constraints on the polarizability tensors for dipolar scatterers or as material constitutive relations. We also outline two applications for objects of maximum electromagnetic chirality: A twofold resonantly enhanced and background free circular dichroism measurement setup, and angle independent helicity filtering glasses.

  7. Maximum mutual information regularized classification

    Wang, Jim Jing-Yan


    In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.

  8. The strong maximum principle revisited

    Pucci, Patrizia; Serrin, James

    In this paper we first present the classical maximum principle due to E. Hopf, together with an extended commentary and discussion of Hopf's paper. We emphasize the comparison technique invented by Hopf to prove this principle, which has since become a main mathematical tool for the study of second order elliptic partial differential equations and has generated an enormous number of important applications. While Hopf's principle is generally understood to apply to linear equations, it is in fact also crucial in nonlinear theories, such as those under consideration here. In particular, we shall treat and discuss recent generalizations of the strong maximum principle, and also the compact support principle, for the case of singular quasilinear elliptic differential inequalities, under generally weak assumptions on the quasilinear operators and the nonlinearities involved. Our principal interest is in necessary and sufficient conditions for the validity of both principles; in exposing and simplifying earlier proofs of corresponding results; and in extending the conclusions to wider classes of singular operators than previously considered. The results have unexpected ramifications for other problems, as will develop from the exposition, e.g. two point boundary value problems for singular quasilinear ordinary differential equations (Sections 3 and 4); the exterior Dirichlet boundary value problem (Section 5); the existence of dead cores and compact support solutions, i.e. dead cores at infinity (Section 7); Euler-Lagrange inequalities on a Riemannian manifold (Section 9); comparison and uniqueness theorems for solutions of singular quasilinear differential inequalities (Section 10). The case of p-regular elliptic inequalities is briefly considered in Section 11.

  9. Magnetic impurities in spin-split superconductors

    van Gerven Oei, W.-V.; Tanasković, D.; Žitko, R.


    Hybrid semiconductor-superconductor quantum dot devices are tunable physical realizations of quantum impurity models for a magnetic impurity in a superconducting host. The binding energy of the localized subgap Shiba states is set by the gate voltages and external magnetic field. In this work we discuss the effects of the Zeeman spin splitting, which is generically present both in the quantum dot and in the (thin-film) superconductor. The unequal g factors in semiconductor and superconductor materials result in respective Zeeman splittings of different magnitude. We consider both classical and quantum impurities. In the first case we analytically study the spectral function and the subgap states. The energy of bound states depends on the spin-splitting of the Bogoliubov quasiparticle bands as a simple rigid shift. For the case of collinear magnetization of impurity and host, the Shiba resonance of a given spin polarization remains unperturbed when it overlaps with the branch of the quasiparticle excitations of the opposite spin polarization. In the quantum case, we employ numerical renormalization group calculations to study the effect of the Zeeman field for different values of the g factors of the impurity and of the superconductor. We find that in general the critical magnetic field for the singlet-doublet transition changes nonmonotonically as a function of the superconducting gap, demonstrating the existence of two different transition mechanisms: Zeeman splitting of Shiba states or gap closure due to Zeeman splitting of Bogoliubov states. We also study how in the presence of spin-orbit coupling, modeled as an additional noncollinear component of the magnetic field at the impurity site, the Shiba resonance overlapping with the quasiparticle continuum of the opposite spin gradually broadens and then merges with the continuum.

  10. A new solar signal: Average maximum sunspot magnetic fields independent of activity cycle

    Livingston, William


    Over the past five years, 2010-2015, we have observed, in the near infrared (IR), the maximum magnetic field strengths for 4145 sunspot umbrae. Herein we distinguish field strengths from field flux. (Most solar magnetographs measure flux). Maximum field strength in umbrae is co-spatial with the position of umbral minimum brightness (Norton and Gilman, 2004). We measure field strength by the Zeeman splitting of the Fe 15648.5 A spectral line. We show that in the IR no cycle dependence on average maximum field strength (2050 G) has been found +/- 20 Gauss. A similar analysis of 17,450 spots observed by the Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory reveal the same cycle independence +/- 0.18 G., or a variance of 0.01%. This is found not to change over the ongoing 2010-2015 minimum to maximum cycle. Conclude the average maximum umbral fields on the Sun are constant with time.

  11. Effects of inertia and gravity on liquid plug splitting at a bifurcation.

    Zheng, Y; Fujioka, H; Grotberg, J C; Grotberg, J B


    Liquid plugs may form in pulmonary airways during the process of liquid instillation or removal in many clinical treatments. During inspiration the plug may split at airway bifurcations and lead to a nonuniform final liquid distribution, which can adversely affect treatment outcomes. In this paper, a combination of bench top experimental and theoretical studies is presented to study the effects of inertia and gravity on plug splitting in an airway bifurcation model to simulate the liquid distributions in large airways. The splitting ratio, Rs, is defined as the ratio of the plug volume entering the upper (gravitationally opposed) daughter tube to the lower (gravitationally favored) one. Rs is measured as a function of parent tube Reynolds number, Rep; gravitational orientations for roll angle, phi, and pitch angle, gamma; parent plug length LP; and the presence of pre-existing plug blockages in downstream daughter tubes. Results show that increasing Rep causes more homogeneous splitting. A critical Reynolds number Rec is found to exist so that when Rep water, glycerin, and LB-400X. A theoretical model based on entrance flow for the plug in the daughters is developed and predicts Rs versus Rep. The frictional pressure drop, as a part of the total pressure drop, is estimated by two fitting parameters and shows a linear relationship with Rep. The theory provides a good prediction on liquid plug splitting and well simulates the liquid distributions in the large airways of human lungs.

  12. Exact parallel maximum clique algorithm for general and protein graphs.

    Depolli, Matjaž; Konc, Janez; Rozman, Kati; Trobec, Roman; Janežič, Dušanka


    A new exact parallel maximum clique algorithm MaxCliquePara, which finds the maximum clique (the fully connected subgraph) in undirected general and protein graphs, is presented. First, a new branch and bound algorithm for finding a maximum clique on a single computer core, which builds on ideas presented in two published state of the art sequential algorithms is implemented. The new sequential MaxCliqueSeq algorithm is faster than the reference algorithms on both DIMACS benchmark graphs as well as on protein-derived product graphs used for protein structural comparisons. Next, the MaxCliqueSeq algorithm is parallelized by splitting the branch-and-bound search tree to multiple cores, resulting in MaxCliquePara algorithm. The ability to exploit all cores efficiently makes the new parallel MaxCliquePara algorithm markedly superior to other tested algorithms. On a 12-core computer, the parallelization provides up to 2 orders of magnitude faster execution on the large DIMACS benchmark graphs and up to an order of magnitude faster execution on protein product graphs. The algorithms are freely accessible on

  13. Splitting, splitting and splitting again: A brief history of the development of regional government in Indonesia since independence

    Anne Booth


    Full Text Available The paper reviews the changes in the structure and role of provincial and sub-provincial governments in Indonesia since independence. Particular attention is paid to the process of splitting both provinces and districts (kabupaten and kota into smaller units. The paper points out that this process has been going on since the 1950s, but has accelerated in the post-Soeharto era. The paper examines why the splitting of government units has occurred in some parts of the Outer Islands to a much greater extent than in Java, and also examines the implications of developments since 1999 for the capacity of local government units to deliver basic services such as health and education.

  14. On split Hopkinson pressure bar testing of rubbers

    Harrigan, John


    Split Hopkinson pressure bar (SHPB) studies of rubber materials are difficult due to their ability to undergo large deformations at low levels of stress. Analytical, numerical and experimental investigations are reported. The tests were performed using polymer bars. A key stage in this is the experimental determination of the propagation coefficient. An analytical investigation of the experimental arrangements used to ascertain the propagation coefficient is reported. A finite element (FE) simulation of longitudinal stress waves in solid, circular, polymer bars is presented also. The viscoelastic material definition employed in the FE simulations is obtained by curve fitting Prony series expansions to the experimentally derived elastic modulus. In order to assess the accuracy of the experimental arrangement, an FE model of the full viscoelastic SHPB set-up is then used to simulate tests on hyper-elastic materials with specified properties. Finally, experimental data for rubber materials at strain rates of the order of 1000 s-1 are presented.

  15. Design of Compact Photoelectrochemical Cells for Water Splitting

    Bosserez Tom


    Full Text Available Solar driven water splitting can be achieved by coupling electrolyzers with PhotoVoltaics (PV. Integration of both functions in a compact PhotoElectroChemical (PEC cell is an attractive option but presents significant scientific challenges. In this work, the design of single- and dual-compartment PEC cells for research purposes is discussed. The fabrication of separator-electrode assemblies is an important aspect, and upscaling of these architectures even to centimeter scale is not trivial. The layout of a new dual-compartment compact PEC cell with in-situ monitoring of pH, temperatures, and oxygen and hydrogen evolution for research purposes is presented. Finally, a prospect of future PEC cells for practical applications is presented.

  16. Semiclassical decay of strings with maximum angular momentum

    Iengo, R; Iengo, Roberto; Russo, Jorge G.


    A highly excited (closed or open) string state on the leading Regge trajectory can be represented by a rotating soliton solution. There is a semiclassical probability per unit cycle that this string can spontaneously break into two pieces. Here we find the resulting solutions for the outgoing two pieces, which describe two specific excited string states, and show that this semiclassical picture reproduces very accurately the features of the quantum calculation of decay in the large mass M limit. In particular, this picture prescribes the precise analytical relation of the masses M_1 and M_2 of the decay products, and indicates that the lifetime of these string states grows with the mass as T= const. a' M, in agreement with the quantum calculation. Thus, surprisingly, a string with maximum angular momentum becomes more stable for larger masses. We also point out some interesting features of the evolution after the splitting process.

  17. Split exponential track length estimator for Monte-Carlo simulations of small-animal radiation therapy

    Smekens, F.; Létang, J. M.; Noblet, C.; Chiavassa, S.; Delpon, G.; Freud, N.; Rit, S.; Sarrut, D.


    We propose the split exponential track length estimator (seTLE), a new kerma-based method combining the exponential variant of the TLE and a splitting strategy to speed up Monte Carlo (MC) dose computation for low energy photon beams. The splitting strategy is applied to both the primary and the secondary emitted photons, triggered by either the MC events generator for primaries or the photon interactions generator for secondaries. Split photons are replaced by virtual particles for fast dose calculation using the exponential TLE. Virtual particles are propagated by ray-tracing in voxelized volumes and by conventional MC navigation elsewhere. Hence, the contribution of volumes such as collimators, treatment couch and holding devices can be taken into account in the dose calculation. We evaluated and analysed the seTLE method for two realistic small animal radiotherapy treatment plans. The effect of the kerma approximation, i.e. the complete deactivation of electron transport, was investigated. The efficiency of seTLE against splitting multiplicities was also studied. A benchmark with analog MC and TLE was carried out in terms of dose convergence and efficiency. The results showed that the deactivation of electrons impacts the dose at the water/bone interface in high dose regions. The maximum and mean dose differences normalized to the dose at the isocenter were, respectively of 14% and 2% . Optimal splitting multiplicities were found to be around 300. In all situations, discrepancies in integral dose were below 0.5% and 99.8% of the voxels fulfilled a 1%/0.3 mm gamma index criterion. Efficiency gains of seTLE varied from 3.2 × 105 to 7.7 × 105 compared to analog MC and from 13 to 15 compared to conventional TLE. In conclusion, seTLE provides results similar to the TLE while increasing the efficiency by a factor between 13 and 15, which makes it particularly well-suited to typical small animal radiation therapy applications.

  18. Granulocyte transfusion experience in pediatric neutropenic fever: Splitted product can be an alternative?

    Oymak, Yesim; Ayhan, Yüce; Karapinar, Tuba Hilkay; Devrim, Ilker; Ay, Yilmaz; Sarihan, Hafize; Vergin, Canan


    The granulocyte transfusion (GTX) has been used for a long time due to uncontrolled neutropenic fever with antimicrobial agents. In some cases, the product needs to be splitted for using in the next 12 hours. The aim of this study is to evaluate the efficacy of splitted product and clinical response to GTX. In this study, 15 patients with malignancy with 19 neutropenic fever, who had received 56 GTX, were included. Seventeen of 56 GTX were splitted and used in maximum 12 hours during infections which did not respond to antibacterial and antifungal therapy in 7 days. The patients were divided in to response groups as a complete, partial and progressive. The predictive factors for response group were evaluated. GTX were well tolerated in all patients. The median granulocyte dose was 1.26 (0.38-5.22) × 10(9)/kg. Total response rate was 89.5%. The infection-related mortality rate was 10.5%. Although the granulocyte doses are the same in both of the product groups, an hour later ANC increment of primer product was higher than that of splitted product (p = 0.001). Among the products, 48.7% of primer product and 17.6% of splitted product had induced ≥ 1000/mm(3) ANC increment after an hour (p = 0.039). Granulocyte transfusion is safe and effective in controlling the febrile neutropenia attack. GTX should be applied in a short time to provide effective ANC increment. For now, main granulocyte product instead of splitted product should be preferred in case of uncontrolled neutropenic fever with antibacterial/antifungal agents.

  19. Maximum entropy production in daisyworld

    Maunu, Haley A.; Knuth, Kevin H.


    Daisyworld was first introduced in 1983 by Watson and Lovelock as a model that illustrates how life can influence a planet's climate. These models typically involve modeling a planetary surface on which black and white daisies can grow thus influencing the local surface albedo and therefore also the temperature distribution. Since then, variations of daisyworld have been applied to study problems ranging from ecological systems to global climate. Much of the interest in daisyworld models is due to the fact that they enable one to study self-regulating systems. These models are nonlinear, and as such they exhibit sensitive dependence on initial conditions, and depending on the specifics of the model they can also exhibit feedback loops, oscillations, and chaotic behavior. Many daisyworld models are thermodynamic in nature in that they rely on heat flux and temperature gradients. However, what is not well-known is whether, or even why, a daisyworld model might settle into a maximum entropy production (MEP) state. With the aim to better understand these systems, this paper will discuss what is known about the role of MEP in daisyworld models.

  20. Maximum stellar iron core mass

    F W Giacobbe


    An analytical method of estimating the mass of a stellar iron core, just prior to core collapse, is described in this paper. The method employed depends, in part, upon an estimate of the true relativistic mass increase experienced by electrons within a highly compressed iron core, just prior to core collapse, and is significantly different from a more typical Chandrasekhar mass limit approach. This technique produced a maximum stellar iron core mass value of 2.69 × 1030 kg (1.35 solar masses). This mass value is very near to the typical mass values found for neutron stars in a recent survey of actual neutron star masses. Although slightly lower and higher neutron star masses may also be found, lower mass neutron stars are believed to be formed as a result of enhanced iron core compression due to the weight of non-ferrous matter overlying the iron cores within large stars. And, higher mass neutron stars are likely to be formed as a result of fallback or accretion of additional matter after an initial collapse event involving an iron core having a mass no greater than 2.69 × 1030 kg.

  1. Maximum Matchings via Glauber Dynamics

    Jindal, Anant; Pal, Manjish


    In this paper we study the classic problem of computing a maximum cardinality matching in general graphs $G = (V, E)$. The best known algorithm for this problem till date runs in $O(m \\sqrt{n})$ time due to Micali and Vazirani \\cite{MV80}. Even for general bipartite graphs this is the best known running time (the algorithm of Karp and Hopcroft \\cite{HK73} also achieves this bound). For regular bipartite graphs one can achieve an $O(m)$ time algorithm which, following a series of papers, has been recently improved to $O(n \\log n)$ by Goel, Kapralov and Khanna (STOC 2010) \\cite{GKK10}. In this paper we present a randomized algorithm based on the Markov Chain Monte Carlo paradigm which runs in $O(m \\log^2 n)$ time, thereby obtaining a significant improvement over \\cite{MV80}. We use a Markov chain similar to the \\emph{hard-core model} for Glauber Dynamics with \\emph{fugacity} parameter $\\lambda$, which is used to sample independent sets in a graph from the Gibbs Distribution \\cite{V99}, to design a faster algori...

  2. A Regularized Algorithm for the Proximal Split Feasibility Problem

    Zhangsong Yao


    Full Text Available The proximal split feasibility problem has been studied. A regularized method has been presented for solving the proximal split feasibility problem. Strong convergence theorem is given.

  3. Photoelectrochemical water splitting: optimizing interfaces and light absorption

    Park, S.


    In this thesis several photoelectrochemical water splitting devices based on semiconductor materials were investigated. The aim was the design, characterization, and fabrication of solar-to-fuel devices which can absorb solar light and split water to produce hydrogen.

  4. 76 FR 1504 - Pipeline Safety: Establishing Maximum Allowable Operating Pressure or Maximum Operating Pressure...


    ...: Establishing Maximum Allowable Operating Pressure or Maximum Operating Pressure Using Record Evidence, and... facilities of their responsibilities, under Federal integrity management (IM) regulations, to perform... system, especially when calculating Maximum Allowable Operating Pressure (MAOP) or Maximum Operating...

  5. The maximum agreement subtree problem

    Martin, Daniel M


    Given two binary phylogenetic trees on $n$ leaves, we show that they have a common subtree on at least $O((\\log{n})^{1/2-\\epsilon})$ leaves, thus improving on the previously known bound of $O(\\log\\log n)$. To achieve this bound, we combine different special cases: when one of the trees is balanced or when one of the trees is a caterpillar, we show a lower bound of $O(\\log n)$. Another ingredient is the proof that every binary tree contains a large balanced subtree or a large caterpillar, a result that is intersting on its own. Finally, we also show that, there is an $\\alpha > 0$ such that when both the trees are balanced, they have a common subtree on at least $O(n^\\alpha)$ leaves.

  6. Evaluation of Certain Pharmaceutical Quality Attributes of Lisinopril Split Tablets

    Khairi M.S. Fahelelbom; Moawia M. M. Al-Tabakha; Nermin A. M. Eissa; Jeevani Javadi


    Tablet splitting is an accepted practice for the administration of drugs for a variety of reasons, including dose adjustment, ease of swallowing and cost savings. The purpose of this study was to evaluate the physical properties of lisinopril tablets as a result of splitting the tablets either by hand or with a splitting device. The impact of the splitting technique of lisinopril (Zestril® tablets, 20 mg) on certain physical parameters such as weight variation, friability, disintegration, dis...

  7. Solitary waves of the splitted RLW equation

    Zaki, S. I.


    A combination of the splitting method and the cubic B-spline finite elements is used to solve the non-linear regularized long wave (RLW) equation. This approach involves a Bubnov-Galerkin method with cubic B-spline finite elements so that there is continuity of the dependent variable and its first derivative throughout the solution region. Time integration of the resulting systems is effected using a Crank-Nicholson approximation. In simulations of the migration of a single solitary wave this algorithm is shown to have higher accuracy and better conservation than a recent splitting difference scheme based on cubic spline interpolation functions, for different amplitudes ranging from a very small ( ⩾0.03) to a considerably high amplitudes ( ⩽0.3). The development of an undular bore is modeled.

  8. Meshed split skin graft for extensive vitiligo

    Srinivas C


    Full Text Available A 30 year old female presented with generalized stable vitiligo involving large areas of the body. Since large areas were to be treated it was decided to do meshed split skin graft. A phototoxic blister over recipient site was induced by applying 8 MOP solution followed by exposure to UVA. The split skin graft was harvested from donor area by Padgett dermatome which was meshed by an ampligreffe to increase the size of the graft by 4 times. Significant pigmentation of the depigmented skin was seen after 5 months. This procedure helps to cover large recipient areas, when pigmented donor skin is limited with minimal risk of scarring. Phototoxic blister enables easy separation of epidermis thus saving time required for dermabrasion from recipient site.

  9. Functional Analysis of Split Airport Business Processes

    Slavko Roguljić


    Full Text Available Optimisation of business processes represents the basis ofimproving the competitiveness of the Ailport as a service pro·vider. This directly implies not only the analysis and creation ofthe model of current organisation and technological processesbut also the necessity to measure these processes in order to reorganiseand improve them. Consequently, the Split AitportAuthority considers the functional analysis of its business processesas one of the major issues. Since in April2002 the analysisand modelling were completed in all the organisational unitsof handling setvice and cargo department organisational structures,both of the organisational structure of these services, aswell as of processes of aircraft, passenger, baggage and cargohandling, this paper will analyse the implementation of ARISComputer System at Split Airport Ground Handling Process.

  10. Timelike single-logarithm-resummed splitting functions

    Albino, S.; Bolzoni, P.; Kniehl, B.A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kotikov, A.V. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Joint Inst. of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics


    We calculate the single logarithmic contributions to the quark singlet and gluon matrix of timelike splitting functions at all orders in the modified minimal-subtraction (MS) scheme. We fix two of the degrees of freedom of this matrix from the analogous results in the massive-gluon regularization scheme by using the relation between that scheme and the MS scheme. We determine this scheme transformation from the double logarithmic contributions to the timelike splitting functions and the coefficient functions of inclusive particle production in e{sup +}e{sup -} annihilation now available in both schemes. The remaining two degrees of freedom are fixed by reasonable physical assumptions. The results agree with the fixed-order results at next-to-next-to-leading order in the literature. (orig.)

  11. Solar Water Splitting Using Semiconductor Photocatalyst Powders

    Takanabe, Kazuhiro


    Solar energy conversion is essential to address the gap between energy production and increasing demand. Large scale energy generation from solar energy can only be achieved through equally large scale collection of the solar spectrum. Overall water splitting using heterogeneous photocatalysts with a single semiconductor enables the direct generation of H from photoreactors and is one of the most economical technologies for large-scale production of solar fuels. Efficient photocatalyst materials are essential to make this process feasible for future technologies. To achieve efficient photocatalysis for overall water splitting, all of the parameters involved at different time scales should be improved because the overall efficiency is obtained by the multiplication of all these fundamental efficiencies. Accumulation of knowledge ranging from solid-state physics to electrochemistry and a multidisciplinary approach to conduct various measurements are inevitable to be able to understand photocatalysis fully and to improve its efficiency.

  12. Splitting of high power, cw proton beams

    Facco, Alberto; Berkovits, Dan; Yamane, Isao


    A simple method for splitting a high power, continuous wave (cw) proton beam in two or more branches with low losses has been developed in the framework of the EURISOL (European Isotope Separation On-Line adioactive Ion Beam Facility) design study. The aim of the system is to deliver up to 4 MW of H beam to the main radioactive ion beam production target, and up to 100 kWof proton beams to three more targets, simultaneously. A three-step method is used, which includes magnetic neutralization of a fractionof the main H- beam, magnetic splitting of H- and H0, and stripping of H0 to H+. The method allowsslow raising and individual fine adjustment of the beam intensity in each branch.

  13. Modelling heterogeneous interfaces for solar water splitting

    Pham, Tuan Anh; Ping, Yuan; Galli, Giulia


    The generation of hydrogen from water and sunlight offers a promising approach for producing scalable and sustainable carbon-free energy. The key of a successful solar-to-fuel technology is the design of efficient, long-lasting and low-cost photoelectrochemical cells, which are responsible for absorbing sunlight and driving water splitting reactions. To this end, a detailed understanding and control of heterogeneous interfaces between photoabsorbers, electrolytes and catalysts present in photoelectrochemical cells is essential. Here we review recent progress and open challenges in predicting physicochemical properties of heterogeneous interfaces for solar water splitting applications using first-principles-based approaches, and highlights the key role of these calculations in interpreting increasingly complex experiments.

  14. Modelling heterogeneous interfaces for solar water splitting

    Pham, Tuan Anh; Ping, Yuan; Galli, Giulia


    The generation of hydrogen from water and sunlight others a promising approach for producing scalable and sustainable carbon-free energy. The key of a successful solar-to-fuel technology is the design of efficient, long-lasting and low-cost photoelectrochemical cells, which are responsible for absorbing sunlight and driving water splitting reactions. To this end, a detailed understanding and control of heterogeneous interfaces between photoabsorbers, electrolytes and catalysts present in photoelectrochemical cells is essential. Here we review recent progress and open challenges in predicting physicochemical properties of heterogeneous interfaces for solar water splitting applications using first-principles-based approaches, and highlights the key role of these calculations in interpreting increasingly complex experiments.

  15. Embryo splitting: a role in infertility?

    Wood, C


    Embryo splitting may be used to increase the potential fertility of couples requiring IVF. Using cattle as a model, it is possible to increase pregnancy rates from 70% per transfer of good quality in-vivo-produced embryos, to 110% by transferring the two demi-embryos resulting from the bisection of one embryo. The 30-40% greater chance of conception would reduce costs for the government, health authorities and patients, and reduce stress, time and complications for women having IVF treatment. Embryo splitting may also provide donor embryos for infertile couples that cannot conceive naturally or with IVF. The shortage of children for adoption and donor embryos may be overcome by the production of demi-embryos.

  16. The Sherpa Maximum Likelihood Estimator

    Nguyen, D.; Doe, S.; Evans, I.; Hain, R.; Primini, F.


    A primary goal for the second release of the Chandra Source Catalog (CSC) is to include X-ray sources with as few as 5 photon counts detected in stacked observations of the same field, while maintaining acceptable detection efficiency and false source rates. Aggressive source detection methods will result in detection of many false positive source candidates. Candidate detections will then be sent to a new tool, the Maximum Likelihood Estimator (MLE), to evaluate the likelihood that a detection is a real source. MLE uses the Sherpa modeling and fitting engine to fit a model of a background and source to multiple overlapping candidate source regions. A background model is calculated by simultaneously fitting the observed photon flux in multiple background regions. This model is used to determine the quality of the fit statistic for a background-only hypothesis in the potential source region. The statistic for a background-plus-source hypothesis is calculated by adding a Gaussian source model convolved with the appropriate Chandra point spread function (PSF) and simultaneously fitting the observed photon flux in each observation in the stack. Since a candidate source may be located anywhere in the field of view of each stacked observation, a different PSF must be used for each observation because of the strong spatial dependence of the Chandra PSF. The likelihood of a valid source being detected is a function of the two statistics (for background alone, and for background-plus-source). The MLE tool is an extensible Python module with potential for use by the general Chandra user.

  17. Vestige: Maximum likelihood phylogenetic footprinting

    Maxwell Peter


    Full Text Available Abstract Background Phylogenetic footprinting is the identification of functional regions of DNA by their evolutionary conservation. This is achieved by comparing orthologous regions from multiple species and identifying the DNA regions that have diverged less than neutral DNA. Vestige is a phylogenetic footprinting package built on the PyEvolve toolkit that uses probabilistic molecular evolutionary modelling to represent aspects of sequence evolution, including the conventional divergence measure employed by other footprinting approaches. In addition to measuring the divergence, Vestige allows the expansion of the definition of a phylogenetic footprint to include variation in the distribution of any molecular evolutionary processes. This is achieved by displaying the distribution of model parameters that represent partitions of molecular evolutionary substitutions. Examination of the spatial incidence of these effects across regions of the genome can identify DNA segments that differ in the nature of the evolutionary process. Results Vestige was applied to a reference dataset of the SCL locus from four species and provided clear identification of the known conserved regions in this dataset. To demonstrate the flexibility to use diverse models of molecular evolution and dissect the nature of the evolutionary process Vestige was used to footprint the Ka/Ks ratio in primate BRCA1 with a codon model of evolution. Two regions of putative adaptive evolution were identified illustrating the ability of Vestige to represent the spatial distribution of distinct molecular evolutionary processes. Conclusion Vestige provides a flexible, open platform for phylogenetic footprinting. Underpinned by the PyEvolve toolkit, Vestige provides a framework for visualising the signatures of evolutionary processes across the genome of numerous organisms simultaneously. By exploiting the maximum-likelihood statistical framework, the complex interplay between mutational

  18. Bunch Splitting Simulations for the JLEIC Ion Collider Ring

    Satogata, Todd J. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Gamage, Randika [Old Dominion Univ., Norfolk, VA (United States)


    We describe the bunch splitting strategies for the proposed JLEIC ion collider ring at Jefferson Lab. This complex requires an unprecedented 9:6832 bunch splitting, performed in several stages. We outline the problem and current results, optimized with ESME including general parameterization of 1:2 bunch splitting for JLEIC parameters.

  19. 16 CFR 802.10 - Stock dividends and splits; reorganizations.


    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Stock dividends and splits; reorganizations... INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 EXEMPTION RULES § 802.10 Stock dividends and splits; reorganizations. (a) The acquisition of voting securities pursuant to a stock split...

  20. 7 CFR 51.2731 - U.S. Spanish Splits.


    ... 7 Agriculture 2 2010-01-01 2010-01-01 false U.S. Spanish Splits. 51.2731 Section 51.2731... STANDARDS) United States Standards for Grades of Shelled Spanish Type Peanuts Grades § 51.2731 U.S. Spanish Splits. “U.S. Spanish Splits” consists of shelled Spanish type peanut kernels which are split or...

  1. Ispra Mark-10 water splitting process


    A thermochemical water splitting process, the Ispra Mark-10 chemical reaction cycle, was chosen for examining the possibility of using water to produce hydrogen on a large scale for fuel and major industrial chemical uses. The assumed energy source for the process is an HTGR (helium cooled). A process flow diagram, a material balance, and an energy balance were developed for the thermochemical reaction cycle. Principal reactions which constitute the cycle are included.

  2. Height in Splittings of Hyperbolic Groups

    Mahan Mitra


    Suppose is a hyperbolic subgroup of a hyperbolic group . Assume there exists > 0 such that the intersection of essentially distinct conjugates of is always finite. Further assume splits over with hyperbolic vertex and edge groups and the two inclusions of are quasi-isometric embeddings. Then is quasiconvex in . This answers a question of Swarup and provides a partial converse to the main theorem of [23].

  3. Continuously tunable, split-cavity gyrotrons

    Brand, G. F.; Gross, M.


    Attention is given to a gyrotron cavity configuration which is split in halves longitudinally, to allow any frequency lying between the fixed cavity resonance to be assessed by mechanically changing the separation of the two halves. Experimental results are presented which demonstrate that the rate-of-change in resonant frequency with separation is greatest if the minor axis of the cavity cross section is the one undergoing change. Excellent agreement with theory is noted for these results.

  4. Splitting neutrino masses and showering into Sky

    Fargion, D; Iacovelli, M; Lanciano, O; Oliva, P; De Lucentini, P G S; Grossi, M; De Santis, M


    Neutrino masses might be as light as a few time the atmospheric neutrino mass splitting. High Energy ZeV cosmic neutrinos (in Z-Showering model) might hit relic ones at each mass in different resonance energies in our nearby Universe. This non-degenerated density and energy must split UHE Z-boson secondaries (in Z-Burst model) leading to multi injection of UHECR nucleons within future extreme AUGER energy. Secondaries of Z-Burst as neutral gamma, below a few tens EeV are better surviving local GZK cut-off and they might explain recent Hires BL-Lac UHECR correlations at small angles. A different high energy resonance must lead to Glashow's anti-neutrino showers while hitting electrons in matter. In air, Glashow's anti-neutrino showers lead to collimated and directional air-showers offering a new Neutrino Astronomy. At greater energy around PeV, Tau escaping mountains and Earth and decaying in flight are effectively showering in air sky. These Horizontal showering is splitting by geomagnetic field in forked sha...

  5. P-wave Cooper pair splitting

    Henning Soller


    Full Text Available Background: Splitting of Cooper pairs has recently been realized experimentally for s-wave Cooper pairs. A split Cooper pair represents an entangled two-electron pair state, which has possible application in on-chip quantum computation. Likewise the spin-activity of interfaces in nanoscale tunnel junctions has been investigated theoretically and experimentally in recent years. However, the possible implications of spin-active interfaces in Cooper pair splitters so far have not been investigated.Results: We analyze the current and the cross correlation of currents in a superconductor–ferromagnet beam splitter, including spin-active scattering. Using the Hamiltonian formalism, we calculate the cumulant-generating function of charge transfer. As a first step, we discuss characteristics of the conductance for crossed Andreev reflection in superconductor–ferromagnet beam splitters with s-wave and p-wave superconductors and no spin-active scattering. In a second step, we consider spin-active scattering and show how to realize p-wave splitting using only an s-wave superconductor, through the process of spin-flipped crossed Andreev reflection. We present results for the conductance and cross correlations.Conclusion: Spin-activity of interfaces in Cooper pair splitters allows for new features in ordinary s-wave Cooper pair splitters, that can otherwise only be realized by using p-wave superconductors. In particular, it provides access to Bell states that are different from the typical spin singlet state.

  6. Transonymization as Revitalization: Old Toponyms of Split

    Katarina Lozić Knezović


    Full Text Available The paper deals with ancient toponyms of Split, a city in the centre of the Croatian region of Dalmatia. Along with numerous monuments of spiritual and material culture, toponyms are part of the two-thousand-year-old city’s historical heritage. Split in particular abounds with sources that provide valuable information concerning ancient toponyms. In terms of the study and preservation of toponymy, three basic sources are crucial: the living oral tradition, written records, and old charts — mostly cadastral plans. In addition to researching, recording, documenting, and publishing Split’s ancient place names through toponomastic, geographical, and town planning studies, toponymic heritage preservation is also implemented through the direct use of the names in everyday life. One of the ways of such revitalization of Split’s ancient place names is their transonymization into the category of chrematonyms, i.e. their secondary use as names of institutions, shops, restaurants, schools, sports associations and facilities, bars and coffee shops, cemeteries, and so on. The present paper provides a classification and etymological analysis of detoponymic chrematonyms of Split. The authors propose measures to raise public awareness of the historical information conveyed by the names and raise some issues for consideration regarding further study of transonymization as a means of revitalizing local toponymic tradition.

  7. Streamlined expressed protein ligation using split inteins.

    Vila-Perelló, Miquel; Liu, Zhihua; Shah, Neel H; Willis, John A; Idoyaga, Juliana; Muir, Tom W


    Chemically modified proteins are invaluable tools for studying the molecular details of biological processes, and they also hold great potential as new therapeutic agents. Several methods have been developed for the site-specific modification of proteins, one of the most widely used being expressed protein ligation (EPL) in which a recombinant α-thioester is ligated to an N-terminal Cys-containing peptide. Despite the widespread use of EPL, the generation and isolation of the required recombinant protein α-thioesters remain challenging. We describe here a new method for the preparation and purification of recombinant protein α-thioesters using engineered versions of naturally split DnaE inteins. This family of autoprocessing enzymes is closely related to the inteins currently used for protein α-thioester generation, but they feature faster kinetics and are split into two inactive polypeptides that need to associate to become active. Taking advantage of the strong affinity between the two split intein fragments, we devised a streamlined procedure for the purification and generation of protein α-thioesters from cell lysates and applied this strategy for the semisynthesis of a variety of proteins including an acetylated histone and a site-specifically modified monoclonal antibody.

  8. The NFL Combine 40-Yard Dash: How Important is Maximum Velocity?

    Clark, Kenneth P; Rieger, Randall H; Bruno, Richard F; Stearne, David J


    This investigation analyzed the sprint velocity profiles for athletes who completed the 40-yard (36.6m) dash at the 2016 NFL Combine. The purpose was to evaluate the relationship between maximum velocity and sprint performance, and to compare acceleration patterns for fast and slow athletes. Using freely available online sources, data were collected for body mass and sprint performance (36.6m time with split intervals at 9.1 and 18.3m). For each athlete, split times were utilized to generate modeled curves of distance vs. time, velocity vs. time, and velocity vs. distance using a mono-exponential equation. Model parameters were used to quantify acceleration patterns as the ratio of maximum velocity to maximum acceleration (vmax / amax, or τ). Linear regression was used to evaluate the relationship between maximum velocity and sprint performance for the entire sample. Additionally, athletes were categorized into fast and slow groups based on maximum velocity, with independent t-tests and effect size statistics used to evaluate between-group differences in sprint performance and acceleration patterns. Results indicated that maximum velocity was strongly correlated with sprint performance across 9.1m, 18.3m, and 36.6m (r of 0.72, 0.83, and 0.94, respectively). However, both fast and slow groups accelerated in a similar pattern relative to maximum velocity (τ = 0.768 ± 0.068s for the fast group and τ = 0.773 ± 0.070s for the slow group). We conclude that maximum velocity is of critical importance to 36.6m time, and inclusion of more maximum velocity training may be warranted for athletes preparing for the NFL Combine.

  9. Final Report

    Gurney, Kevin R


    This document constitutes the final report under DOE grant DE-FG-08ER64649. The organization of this document is as follows: first, I will review the original scope of the proposed research. Second, I will present the current draft of a paper nearing submission to Nature Climate Change on the initial results of this funded effort. Finally, I will present the last phase of the research under this grant which has supported a Ph.D. student. To that end, I will present the graduate student’s proposed research, a portion of which is completed and reflected in the paper nearing submission. This final work phase will be completed in the next 12 months. This final workphase will likely result in 1-2 additional publications and we consider the results (as exemplified by the current paper) high quality. The continuing results will acknowledge the funding provided by DOE grant DE-FG-08ER64649.

  10. Final Report

    DeTar, Carleton [P.I.


    This document constitutes the Final Report for award DE-FC02-06ER41446 as required by the Office of Science. It summarizes accomplishments and provides copies of scientific publications with significant contribution from this award.

  11. Manufacture and Test of a Small Ceramic-Insulated Nb$_{3}$Sn Split Solenoid

    Bordini, B; Rossi, L; Tommasini, D


    A small split solenoid wound with high-Jc Nb3Sn conductor, constituted by a 0.8 mm Rod Re-stack Process (RRP®) strand, was built and tested at CERN in order to study the applicability of: 1) ceramic wet glass braid insulation without epoxy impregnation of the magnet; 2) a new heat treatment devised at CERN and particularly suitable for reacting RRP® Nb3Sn strands. This paper briefly describes the solenoid and the experimental results obtained during 4.4 K and 1.9 K tests. The split solenoid consists of two coils (25 mm inner diameter, 51.1 mm outer diameter, 12.9 mm height). The coils were initially separately tested, in an iron mirror configuration, and then tested together in split solenoid configuration. In all the tests at 4.4 K the coils reached a current higher than 95 % of their short sample limits at the first quench; in split solenoid configuration the maximum field values in the coils and in the aperture were respectively 10.7 T and 12.5 T. At 1.9 K the coils had premature quenches due to self fi...

  12. Model Experiment on Integral Seismic Behavior of Reinforced Concrete Frame with Split Columns

    LI Zhongxian; JING Meng; HAO Yongchang; KANG Guyi


    Based on a series of previous studies, an experiment on the integral seismic behavior of a 1/3 scaled model of two-bay and three-story reinforced concrete frame with split columns at lower two stories is performed under cyclic loading. The original columns at lower two stories of the model frame are short columns and they are replaced by the split columns. The hysteresis curves between the horizontal cyclic load and the lateral displacement at the top of the model frame, indicate that under the cyclic loading, the model frame undergoes the process of cracking, yielding, and maximum loading before being destroyed at the ultimate load. They also indicate that the model frame has better ductility, and the ratio of the ultimate displacement to the yielding displacement, reaches 6.0. The yielding process of the model frame shows that for the frame with split columns, plastic hinges are generated at the ends of beams and then the columns begin yielding while the frame still possesses the bearing and deformation capacity. The design idea of directly changing the short column to long one in the reinforced concrete frame may be realized by replacing the short column with the split one.

  13. Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system.

    Torella, Joseph P; Gagliardi, Christopher J; Chen, Janice S; Bediako, D Kwabena; Colón, Brendan; Way, Jeffery C; Silver, Pamela A; Nocera, Daniel G


    Photovoltaic cells have considerable potential to satisfy future renewable-energy needs, but efficient and scalable methods of storing the intermittent electricity they produce are required for the large-scale implementation of solar energy. Current solar-to-fuels storage cycles based on water splitting produce hydrogen and oxygen, which are attractive fuels in principle but confront practical limitations from the current energy infrastructure that is based on liquid fuels. In this work, we report the development of a scalable, integrated bioelectrochemical system in which the bacterium Ralstonia eutropha is used to efficiently convert CO2, along with H2 and O2 produced from water splitting, into biomass and fusel alcohols. Water-splitting catalysis was performed using catalysts that are made of earth-abundant metals and enable low overpotential water splitting. In this integrated setup, equivalent solar-to-biomass yields of up to 3.2% of the thermodynamic maximum exceed that of most terrestrial plants. Moreover, engineering of R. eutropha enabled production of the fusel alcohol isopropanol at up to 216 mg/L, the highest bioelectrochemical fuel yield yet reported by >300%. This work demonstrates that catalysts of biotic and abiotic origin can be interfaced to achieve challenging chemical energy-to-fuels transformations.

  14. The structure of split regular BiHom-Lie algebras

    Calderón, Antonio J.; Sánchez, José M.


    We introduce the class of split regular BiHom-Lie algebras as the natural extension of the one of split Hom-Lie algebras and so of split Lie algebras. We show that an arbitrary split regular BiHom-Lie algebra L is of the form L = U +∑jIj with U a linear subspace of a fixed maximal abelian subalgebra H and any Ij a well described (split) ideal of L, satisfying [Ij ,Ik ] = 0 if j ≠ k. Under certain conditions, the simplicity of L is characterized and it is shown that L is the direct sum of the family of its simple ideals.

  15. Multiple beam splitting in elastic phononic crystal plates.

    Lee, Hyuk; Oh, Joo Hwan; Kim, Yoon Young


    This work presents an experimental evidence for triple beam splitting in an elastic plate with an embedded elastic phononic crystal (PC) prism and elaborates on its working mechanism. While there were reports on negative refraction and double beam splitting with PCs, no experimental evidence on the splitting of triple or more ultrasonic elastic beams through PCs has been shown yet. After the experimental results are presented in case of triple beam splitting, further analysis is carried out to explain how triple or more beams can be split depending on elastic PC prism angles. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Bilayer splitting in the electronic structure of heavily overdoped Bi(2)Sr(2)CaCu(2)O(8+delta).

    Feng, D L; Armitage, N P; Lu, D H; Damascelli, A; Hu, J P; Bogdanov, P; Lanzara, A; Ronning, F; Shen, K M; Eisaki, H; Kim, C; Shen, Z X; Shimoyama, J; Kishio, K


    The electronic structure of heavily overdoped Bi(2)Sr(2)CaCu(2)O(8+delta) is investigated by angle-resolved photoemission spectroscopy. The long-sought bilayer band splitting in this two-plane system is observed in both normal and superconducting states, which qualitatively agrees with the bilayer Hubbard model calculations. The maximum bilayer energy splitting is about 88 meV for the normal state feature, while it is only about 20 meV for the superconducting peak.

  17. Do split paediatric forearm POP casts need to be completed? A biomechanical study.

    Patel, Nimesh; Wilson, Lance; Wansbrough, Guy


    Displaced paediatric forearm fractures are most often treated by manipulation under anaesthetic, followed by the application of a circumferential Plaster of Paris (POP) splint. Some surgeons choose to split the cast in order to facilitate immediate "spreading" with minimal distress to the patient, should the distal limb become compromised. Usually however, this does not occur, and the cast is completed at a later visit to the plaster room. Time, money and inconvenience could be saved if this modification was not necessary, and the final plaster would be lighter. To establish whether the mechanical properties of a split POP are sufficient to stabilise a forearm fracture, and protect the patient from further injury. The repeatability of all tests was established on control samples before undertaking the trial. 42 standardised 8 layer POP cylinders of appropriate dimensions were fabricated, of which 21 were split longitudinally. The splints were subjected to non-destructive tests in 4-point bending (Bending), 3-Point Kinking (kinking) and torsion modes, and the load at clinically relevant end-points was recorded. These simulated the deformity at which the splint no longer provided adequate stability and alignment, or at which the wearer was no longer protected. The splints were then loaded to destruction to establish the mode of ultimate failure. The mean loads at the clinical end points for split POP splints were: 1375N in Bending, 544N in Kinking and 12 Nm in Torsion (equalling 67.3%, 70.4% and 47.4% of the equivalent values for a circumferential splints). Loads were in excess of body weight for most paediatric patients. After ultimate failure, the proportion of casts that became unstable was similar (44% of full casts and 50% of split casts). Split POP splints which have not been spread, provide adequate stabilisation and protection of paediatric forearm fractures, and do not routinely require completion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Chinese final particles and the syntax of the periphery

    Li, Boya


    This thesis attempts to motivate a syntactic analysis of final particles in Chinese. The proposal conforms essentially to the recent hypotheses on the split CP system. It suggests that Chinese final particles are heads of functional projections in the C-domain. The investigation is

  19. Chinese final particles and the syntax of the periphery

    Li, Boya


    This thesis attempts to motivate a syntactic analysis of final particles in Chinese. The proposal conforms essentially to the recent hypotheses on the split CP system. It suggests that Chinese final particles are heads of functional projections in the C-domain. The investigation is implemente

  20. SplitRFLab: A MATLAB GUI toolbox for receiver function analysis based on SplitLab

    Xu, Mijian; Huang, Hui; Huang, Zhouchuan; Wang, Liangshu


    We add new modules for receiver function (RF) analysis in SplitLab toolbox, which includes the manual RF analysis module, automatic RF analysis and related quality control modules, and H- k stacking module. The updated toolbox (named SplitRFLab toolbox), especially its automatic RF analysis module, could calculate the RFs quickly and efficiently, which is very useful in RF analysis with huge amount of seismic data. China is now conducting the ChinArray project that plans to deploy thousands of portable stations across Chinese mainland. Our SplitRFLab toolbox may obtain reliable RF results quickly at the first time, which provide essentially new constraint to the crustal and mantle structures.

  1. M-Split: A Graphical User Interface to Analyze Multilayered Anisotropy from Shear Wave Splitting

    Abgarmi, Bizhan; Ozacar, A. Arda


    Shear wave splitting analysis are commonly used to infer deep anisotropic structure. For simple cases, obtained delay times and fast-axis orientations are averaged from reliable results to define anisotropy beneath recording seismic stations. However, splitting parameters show systematic variations with back azimuth in the presence of complex anisotropy and cannot be represented by average time delay and fast axis orientation. Previous researchers had identified anisotropic complexities at different tectonic settings and applied various approaches to model them. Most commonly, such complexities are modeled by using multiple anisotropic layers with priori constraints from geologic data. In this study, a graphical user interface called M-Split is developed to easily process and model multilayered anisotropy with capabilities to properly address the inherited non-uniqueness. M-Split program runs user defined grid searches through the model parameter space for two-layer anisotropy using formulation of Silver and Savage (1994) and creates sensitivity contour plots to locate local maximas and analyze all possible models with parameter tradeoffs. In order to minimize model ambiguity and identify the robust model parameters, various misfit calculation procedures are also developed and embedded to M-Split which can be used depending on the quality of the observations and their back-azimuthal coverage. Case studies carried out to evaluate the reliability of the program using real noisy data and for this purpose stations from two different networks are utilized. First seismic network is the Kandilli Observatory and Earthquake research institute (KOERI) which includes long term running permanent stations and second network comprises seismic stations deployed temporary as part of the "Continental Dynamics-Central Anatolian Tectonics (CD-CAT)" project funded by NSF. It is also worth to note that M-Split is designed as open source program which can be modified by users for

  2. [Study on the maximum entropy principle and population genetic equilibrium].

    Zhang, Hong-Li; Zhang, Hong-Yan


    A general mathematic model of population genetic equilibrium about one locus was constructed based on the maximum entropy principle by WANG Xiao-Long et al. They proved that the maximum solve of the model was just the frequency distribution that a population reached Hardy-Weinberg genetic equilibrium. It can suggest that a population reached Hardy-Weinberg genetic equilibrium when the genotype entropy of the population reached the maximal possible value, and that the frequency distribution of the maximum entropy was equivalent to the distribution of Hardy-Weinberg equilibrium law about one locus. They further assumed that the frequency distribution of the maximum entropy was equivalent to all genetic equilibrium distributions. This is incorrect, however. The frequency distribution of the maximum entropy was only equivalent to the distribution of Hardy-Weinberg equilibrium with respect to one locus or several limited loci. The case with regard to limited loci was proved in this paper. Finally we also discussed an example where the maximum entropy principle was not the equivalent of other genetic equilibria.

  3. Transverse momentum dependent splitting functions at work: quark-to-gluon splitting

    Hentschinski, M; Kutak, K


    Using the recently obtained Pgq splitting function we extend the low x evolution equation for gluons to account for contributions originating from quark-to-gluon splitting. In order to write down a consistent equation we resum virtual corrections coming from the gluon channel and demonstrate that this implies a suitable regularization of the Pgq singularity, corresponding to a soft emitted quark. We also note that the obtained equation is in a straightforward manner generalized to a nonlinear evolution equation which takes into account effects due to the presence of high gluon densities.

  4. Basic dynamics of split Stirling refrigerators

    de Waele, A. T. A. M.; Liang, W.


    The basic features of the split Stirling refrigerator, driven by a linear compressor, are described. Friction of the compressor piston and of the regenerator, and the viscous losses due to the gas flow through the regenerator matrix are taken into account. The temperature at the cold end is an input parameter. The general equations are derived which are subsequently treated in the harmonic approximation. Examples are given of application of the relations for describing optimum-performance conditions as well as the interrelationship between cooler and heat-engine operation.

  5. Hyperfine splitting in hydrogen with form factors

    Daza, F Garcia; Nowakowski, M


    Proton structure corrections to the hyperfine splittings in hydrogen are evaluated using the Breit potential with electromagnetic form factors. In contrast to other methods, several new features emerge: the Breit potential with $q^2$-dependent form factors is just an extension of the standard Breit equation which gives the hyperfine Hamiltonian. Order $\\alpha^5$ corrections are obtained from a one-photon exchange amplitude and time-independent perturbation theory. Structure corrections to $D_{21} = 8 E^{2S}_{hfs} - E^{1S}_{hfs}$ start at order $\\alpha^6$. QED corrections are comparable to structure corrections which must be evaluated ab initio.

  6. A splitting-free vorticity redistribution method

    Kirchhart, M.; Obi, S.


    We present a splitting-free variant of the vorticity redistribution method. Spatial consistency and stability when combined with a time-stepping scheme are proven. We propose a new strategy preventing excessive growth in the number of particles while retaining the order of consistency. The novel concept of small neighbourhoods significantly reduces the method's computational cost. In numerical experiments the method showed second order convergence, one order higher than predicted by the analysis. Compared to the fast multipole code used in the velocity computation, the method is about three times faster.

  7. Streamers in air splitting into three branches

    Heijmans, L C J; van Veldhuizen, E M; Ebert, U


    We investigate the branching of positive streamers in air and present the first systematic investigation of splitting into more than two branches. We study discharges in 100 mbar artificial air that is exposed to voltage pulses of 10 kV applied to a needle electrode 160 mm above a grounded plate. By imaging the discharge with two cameras from three angles, we establish that about every 200th branching event is a branching into three. Branching into three occurs more frequently for the relatively thicker streamers. In fact, we find that the surface of the total streamer cross-sections before and after a branching event is roughly the same.

  8. Large Bandgap Semiconductors for Solar Water Splitting

    Malizia, Mauro

    water splitting devices having tandem design. The increase of the photovoltage produced by GaP under illumination was the main goal of this work. GaP has a bandgap of 2.25 eV and could in theory produce a photovoltage of approximately 1.7 V. Instead, the photovoltage produced by the semiconductor...... density generated by GaP was increased by more than 60% by electrochemical etching of the surface. The etching process produces a rough microstructured surface that increases the optical path length of the incident photons and the collection of photogenerated electrons.Furthermore, the synthesis of BiVO4...

  9. Point-focus spectral splitting solar concentrator for multiple cells concentrating photovoltaic system

    Maragliano, Carlo; Stefancich, Marco


    In this paper we present and experimentally validate a low-cost design of a spectral splitting concentrator for the efficient conversion of solar energy. The optical device consists of a dispersive prismatic lens made of polycarbonate designed to simultaneously concentrate the solar light and split it into its spectral components. With respect to our previous implementation, this device concentrates the light along two axes and generates a light pattern compatible with the dimensions of a set of concentrating photovoltaic cells while providing a higher concentration ratio. The mathematical framework and the constructive approach used for the design are presented and the device performance is simulated using ray-tracing software. We obtain spectral separation in the visible range within a 3x1 cm2 area and a maximum concentration of 210x for a single wavelength. The device is fabricated by injection molding and its performance is experimentally investigated. We measure an optical transmissivity above 90% in the...

  10. Linearity analysis of single-ended SAR ADC with split capacitive DAC

    Osipov, Dmitry; Malankin, Evgeny; Shumikhin, Vitaly


    This paper proposes the design of a 6-bit single-ended SAR ADC with a variable sampling rate at a maximum achievable speed of 50 MS/s. The SAR ADC utilizes the split capacitor array DAC with a non-conventional split-capacitor value. The influence of switches in the capacitive DAC on the ADC's non-linearity is analysed. According to the fulfilled analysis the recommendations for switches and capacitor array dimensioning are given to provide a minimum differential non-linearity (DNL). At a sampling rate of 50 MS/s, the SAR ADC achieves an ENOB of 5.4 bit at an input signal frequency of 1 MHz and consumes 1.2 mW at a 1.8 V power supply, resulting in an energy efficiency of 568 fJ/conv.-step. The SAR ADC was simulated with parasitics in a standard 180nm CMOS process.

  11. Tuning magnetic splitting of zigzag graphene nanoribbons by edge functionalization with hydroxyl groups

    Zhang, Huizhen; Yang, Haifang; Li, Lin; Fu, Huixia; Ma, Wei; Niu, Chunyao; Sun, Jiatao, E-mail: [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190 (China); Meng, Sheng; Gu, Changzhi, E-mail: [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)


    The electronic properties and relative stability of zigzag graphene nanoribbons are studied by varying the percentage of hydroxyl radicals for edge saturation using first principle calculations. The passivated structures of zigzag graphene nanoribbon have spin-polarized ground state with antiferromagnetic exchange coupling across the edge and ferromagnetic coupling along the edges. When the edges are specially passivated by hydroxyl, the potentials of spin exchange interaction across the two edges shift accordingly, resulting into a spin-semiconductor. Varying the concentration of hydroxyl groups can alter the maximum magnetization splitting. When the percentage of asymmetrically adsorbed hydroxyl reaches 50%, the magnetization splitting can reach a value as high as 275 meV due to the asymmetrical potential across the nanoribbon edges. These results would favor spintronic device applications based on zigzag graphene nanoribbons.

  12. Statistical optimization for passive scalar transport: maximum entropy production vs. maximum Kolmogorov–Sinay entropy

    M. Mihelich


    Full Text Available We derive rigorous results on the link between the principle of maximum entropy production and the principle of maximum Kolmogorov–Sinai entropy using a Markov model of the passive scalar diffusion called the Zero Range Process. We show analytically that both the entropy production and the Kolmogorov–Sinai entropy seen as functions of f admit a unique maximum denoted fmaxEP and fmaxKS. The behavior of these two maxima is explored as a function of the system disequilibrium and the system resolution N. The main result of this article is that fmaxEP and fmaxKS have the same Taylor expansion at first order in the deviation of equilibrium. We find that fmaxEP hardly depends on N whereas fmaxKS depends strongly on N. In particular, for a fixed difference of potential between the reservoirs, fmaxEP(N tends towards a non-zero value, while fmaxKS(N tends to 0 when N goes to infinity. For values of N typical of that adopted by Paltridge and climatologists (N ≈ 10 ~ 100, we show that fmaxEP and fmaxKS coincide even far from equilibrium. Finally, we show that one can find an optimal resolution N* such that fmaxEP and fmaxKS coincide, at least up to a second order parameter proportional to the non-equilibrium fluxes imposed to the boundaries. We find that the optimal resolution N* depends on the non equilibrium fluxes, so that deeper convection should be represented on finer grids. This result points to the inadequacy of using a single grid for representing convection in climate and weather models. Moreover, the application of this principle to passive scalar transport parametrization is therefore expected to provide both the value of the optimal flux, and of the optimal number of degrees of freedom (resolution to describe the system.

  13. Receiver function estimated by maximum entropy deconvolution

    吴庆举; 田小波; 张乃铃; 李卫平; 曾融生


    Maximum entropy deconvolution is presented to estimate receiver function, with the maximum entropy as the rule to determine auto-correlation and cross-correlation functions. The Toeplitz equation and Levinson algorithm are used to calculate the iterative formula of error-predicting filter, and receiver function is then estimated. During extrapolation, reflective coefficient is always less than 1, which keeps maximum entropy deconvolution stable. The maximum entropy of the data outside window increases the resolution of receiver function. Both synthetic and real seismograms show that maximum entropy deconvolution is an effective method to measure receiver function in time-domain.

  14. Final Report

    Heiselberg, Per; Brohus, Henrik; Nielsen, Peter V.

    This final report for the Hybrid Ventilation Centre at Aalborg University describes the activities and research achievement in the project period from August 2001 to August 2006. The report summarises the work performed and the results achieved with reference to articles and reports published...

  15. Modification of Leather Split by In Situ Polymerization of Acrylates

    Weixing Xu


    Full Text Available Leather split, the byproduct of leather manufacture, possesses low utility value because it has loose weave of collagen fibers and weak mechanical strengths. Herein, a practical and convenient method for increasing strengths of leather split was developed by one-step in situ polymerization. The structures and properties of polyacrylate/leather split composites were systematically investigated. The results suggested the monomers with an α-methyl and a proper straight-chain ester group, such as nBMA, can effectively modify the leather split. For leather split with a thickness of 1.6 mm, the rational processes for preparation of polyacrylate/leather split composite are that monomer and split were stirred in a drum for 4 hours for full permeation and then the split was heated in anaerobic condition at 45°C for 30 min. The tensile strength, tear strength, and elongation at break of the optimized PnBMA/split composite were 18.72 MPa, 62.73 N/mm, and 46.02%, respectively. With these mechanical properties, the split after modification can be well used as leather for making shoes, bags, gloves, and clothing.

  16. Maximum Power from a Solar Panel

    Michael Miller


    Full Text Available Solar energy has become a promising alternative to conventional fossil fuel sources. Solar panels are used to collect solar radiation and convert it into electricity. One of the techniques used to maximize the effectiveness of this energy alternative is to maximize the power output of the solar collector. In this project the maximum power is calculated by determining the voltage and the current of maximum power. These quantities are determined by finding the maximum value for the equation for power using differentiation. After the maximum values are found for each time of day, each individual quantity, voltage of maximum power, current of maximum power, and maximum power is plotted as a function of the time of day.

  17. Propane spectral resolution enhancement by the maximum entropy method

    Bonavito, N. L.; Stewart, K. P.; Hurley, E. J.; Yeh, K. C.; Inguva, R.


    The Burg algorithm for maximum entropy power spectral density estimation is applied to a time series of data obtained from a Michelson interferometer and compared with a standard FFT estimate for resolution capability. The propane transmittance spectrum was estimated by use of the FFT with a 2 to the 18th data sample interferogram, giving a maximum unapodized resolution of 0.06/cm. This estimate was then interpolated by zero filling an additional 2 to the 18th points, and the final resolution was taken to be 0.06/cm. Comparison of the maximum entropy method (MEM) estimate with the FFT was made over a 45/cm region of the spectrum for several increasing record lengths of interferogram data beginning at 2 to the 10th. It is found that over this region the MEM estimate with 2 to the 16th data samples is in close agreement with the FFT estimate using 2 to the 18th samples.

  18. Influence of maximum decking charge on intensity of blasting vibration


    Based on the character of short-time non-stationary random signal, the relationship between the maximum decking charge and energy distribution of blasting vibration signals was investigated by means of the wavelet packet method. Firstly, the characteristics of wavelet transform and wavelet packet analysis were described. Secondly, the blasting vibration signals were analyzed by wavelet packet based on software MATLAB, and the change of energy distribution curve at different frequency bands were obtained. Finally, the law of energy distribution of blasting vibration signals changing with the maximum decking charge was analyzed. The results show that with the increase of decking charge, the ratio of the energy of high frequency to total energy decreases, the dominant frequency bands of blasting vibration signals tend towards low frequency and blasting vibration does not depend on the maximum decking charge.

  19. Measurement of $k_T$ splitting scales in $W \\to l\

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Astbury, Alan; Atkinson, Markus; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagnaia, Paolo; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Sarah; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behar Harpaz, Silvia; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bittner, Bernhard; Black, Curtis; Black, James; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blocki, Jacek; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boek, Thorsten Tobias; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Bremer, Johan; Brendlinger, Kurt; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brown, Gareth; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Bugge, Lars; Bulekov, Oleg; Bundock, Aaron Colin; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christidi, Ilektra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirilli, Manuela; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Colas, Jacques; Cole, Stephen; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Courneyea, Lorraine; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Damiani, Daniel; Danielsson, Hans Olof; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Darmora, Smita; Dassoulas, James; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dinut, Florin; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Doi, Yoshikuni; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dotti, Andrea; Dova, Maria-Teresa; Doyle, Tony; Dressnandt, Nandor; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Duxfield, Robert; Dwuznik, Michal; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edson, William; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Julia; Fisher, Matthew; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Fonseca Martin, Teresa; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fowler, Andrew; Fox, Harald; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadatsch, Stefan; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gandrajula, Reddy Pratap; Gao, Yongsheng; Gaponenko, Andrei; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Göpfert, Thomas; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramstad, Eirik; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Hong, Tae Min; Hooft van Huysduynen, Loek; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Jantsch, Andreas; Janus, Michel; Jared, Richard; Jarlskog, Göran; Jeanty, Laura; Jeng, Geng-yuan; Jen-La Plante, Imai; Jennens, David; Jenni, Peter; Jeske, Carl; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Joram, Christian; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalinin, Sergey; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karagounis, Michael; Karakostas, Konstantinos; Karnevskiy, Mikhail; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Keener, Paul; Kehoe, Robert; Keil, Markus; Keller, John; Kenyon, Mike; Keoshkerian, Houry; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitamura, Takumi; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koenig, Sebastian; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Köneke, Karsten; König, Adriaan; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Krejci, Frantisek; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Mark; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lambourne, Luke; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larner, Aimee; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Lepold, Florian; Leroy, Claude; Lessard, Jean-Raphael; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Dong; Liu, Jianbei; Liu, Lulu; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Losty, Michael; Lou, XinChou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lund, Esben; Lundberg, Björn; Lundberg, Johan; Lundberg, Olof; Lund-Jensen, Bengt; Lundquist, Johan; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Mackeprang, Rasmus; Madar, Romain; Madaras, Ronald; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Magnoni, Luca; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martinez Outschoorn, Verena; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matsunaga, Hiroyuki; Matsushita, Takashi; Mättig, Peter; Mättig, Stefan; Mattravers, Carly; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazur, Michael; Mazzaferro, Luca; Mazzanti, Marcello; Mc Donald, Jeffrey; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meehan, Samuel; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Moeller, Victoria; Mohapatra, Soumya; Mohr, Wolfgang; Moles-Valls, Regina; Molfetas, Angelos; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Möser, Nicolas; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Timo; Muenstermann, Daniel; Müller, Thomas; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newcomer, Mitchel; Newman, Paul; Nguyen, Duong Hai; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Paredes Hernandez, Daniela; Park, Woochun; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pashapour, Shabnaz; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penson, Alexander; Penwell, John; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pizio, Caterina; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Quadt, Arnulf; Quarrie, David; Quayle, William; Quilty, Donnchadha; Raas, Marcel; Radeka, Veljko; Radescu, Voica; Radloff, Peter; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reinsch, Andreas; Reisinger, Ingo; Relich, Matthew; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rieck, Patrick; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Ritsch, Elmar; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Roe, Adam; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rumyantsev, Leonid; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ruzicka, Pavel; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarrazin, Bjorn; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaelicke, Andreas; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Christopher; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherwood, Peter; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snow, Steve; Snow, Joel; Snyder, Scott; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Solovyev, Victor; Soni, Nitesh; Sood, Alexander; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Staude, Arnold; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Su, Dong; Subramania, Halasya Siva; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tamsett, Matthew; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Berg, Richard; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wahrmund, Sebastian; Wakabayashi, Jun; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Michele; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Wetter, Jeffrey; Weydert, Carole; Whalen, Kathleen; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Williams, Sarah; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xu, Chao; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Liwen; Yasu, Yoshiji; Yatsenko, Elena; Ye, Jingbo; Ye, Shuwei; Yen, Andy L; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, Dantong; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zibell, Andre; Zieminska, Daria; Zimin, Nikolai; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz


    A measurement of splitting scales, as defined by the $k_T$ clustering algorithm, is presented for final states containing a W boson produced in proton--proton collisions at a centre-of-mass energy of 7 TeV. The measurement is based on the full 2010 data sample corresponding to an integrated luminosity of 36 pb$^{-1}$ which was collected using the ATLAS detector at the CERN Large Hadron Collider. Cluster splitting scales are measured in events containing W bosons decaying to electrons or muons. The measurement comprises the four hardest splitting scales in a $k_T$ cluster sequence of the hadronic activity accompanying the W boson, and ratios of these splitting scales. Backgrounds such as multi-jet and top-quark-pair production are subtracted and the results are corrected for detector effects. Predictions from various Monte Carlo event generators at particle level are compared to the data. Overall, reasonable agreement is found with all generators, but larger deviations between the predictions and the data are ...

  20. Design of a Cocoa Pod Splitting Machine

    Adetunde, I.A


    Full Text Available This study outlines the design of a very efficient, highly productive, cost- effective, ergonomic and environmentally friendly cocoa splitting machine that will be used by cocoa Farmers world - wide to increase and boost productivity and enhance the quality of coca products to the highest possible level devoid of any hazards, dangers or perils. This machine can be manufactured from locally available scraps and assembled and maintained at a relatively low cost. The knives which do the splitting are actuated by simple hydraulic mechanisms devoid any major stresses, forces or moments acting on them. These mechanisms are powered by simple low - powered lobe positive displacement or hydrostatic hydraulic pumps of power rating of 87.5 kW (65.625 Hp. The machine can be assembled and/or disassembled easily and quickly, and, therefore can be owned patronized by a group of cocoa farmers who can easily bear the low cost of maintenance of the already relative cheap machine.

  1. Dynamics of a split torque helicopter transmission

    Krantz, Timothy L.


    Split torque designs, proposed as alternatives to traditional planetary designs for helicopter main rotor transmissions, can save weight and be more reliable than traditional designs. This report presents the results of an analytical study of the system dynamics and performance of a split torque gearbox that uses a balance beam mechanism for load sharing. The Lagrange method was applied to develop a system of equations of motion. The mathematical model includes time-varying gear mesh stiffness, friction, and manufacturing errors. Cornell's method for calculating the stiffness of spur gear teeth was extended and applied to helical gears. The phenomenon of sidebands spaced at shaft frequencies about gear mesh fundamental frequencies was simulated by modeling total composite gear errors as sinusoid functions. Although the gearbox has symmetric geometry, the loads and motions of the two power paths differ. Friction must be considered to properly evaluate the balance beam mechanism. For the design studied, the balance beam is not an effective device for load sharing unless the coefficient of friction is less than 0.003. The complete system stiffness as represented by the stiffness matrix used in this analysis must be considered to precisely determine the optimal tooth indexing position.

  2. Trap split with Laguerre-Gaussian beams

    Hamideh Kazemi, Seyedeh; Ghanbari, Saeed; Mahmoudi, Mohammad


    We present a convenient and effective way to generate a novel phenomenon of trapping, named ‘trap split’, in a conventional four-level double-Λ atomic system, driven by four femtosecond Laguerre-Gaussian laser pulses. We find that trap split can always be achieved when atoms are trapped by such laser pulses, as compared to Gaussian ones. This feature is enabled by the interaction of the atomic system and the Laguerre-Gaussian laser pulses with zero intensity in the center. A further advantage of using Laguerre-Gaussian laser pulses is the insensitivity to fluctuation in the intensity of the lasers in such a way that the separation between the traps remains constant. Moreover, it is demonstrated that the suggested scheme with Laguerre-Gaussian laser pulses can form optical traps with spatial sizes that are not limited by the wavelength of the laser, and can, in principle, become smaller than the wavelength of light. This work would greatly facilitate the trapping and manipulating of particles and the generation of trap split. It may also suggest the possibility of extension into new research fields, such as micro-machining and biophysics.

  3. An Iterative Algorithm for the Split Equality and Multiple-Sets Split Equality Problem

    Luoyi Shi


    Full Text Available The multiple-sets split equality problem (MSSEP requires finding a point x∈∩i=1NCi, y∈∩j=1MQj such that Ax=By, where N and M are positive integers, {C1,C2,…,CN} and {Q1,Q2,…,QM} are closed convex subsets of Hilbert spaces H1, H2, respectively, and A:H1→H3, B:H2→H3 are two bounded linear operators. When N=M=1, the MSSEP is called the split equality problem (SEP. If  B=I, then the MSSEP and SEP reduce to the well-known multiple-sets split feasibility problem (MSSFP and split feasibility problem (SFP, respectively. One of the purposes of this paper is to introduce an iterative algorithm to solve the SEP and MSSEP in the framework of infinite-dimensional Hilbert spaces under some more mild conditions for the iterative coefficient.

  4. Non-split and split deformations of AdS_5

    Hoare, Ben


    The eta-deformation of the AdS_5 x S^5 superstring depends on a non-split r matrix for the superalgebra psu(2,2|4). Much of the investigation into this model has considered one particular choice, however there are a number of inequivalent alternatives. This is also true for the bosonic sector of the theory with su(2,2), the isometry algebra of AdS_5, admitting one split and three non-split r matrices. In this article we explore these r matrices and the corresponding geometries. We investigate their contraction limits, comment on supergravity backgrounds and demonstrate their relation to gauged-WZW deformations. We then extend the three non-split cases to AdS_5 x S^5 and compute four separate bosonic two-particle tree-level S-matrices based on inequivalent BMN-type light-cone gauges. The resulting S-matrices, while different, are related by momentum-dependent one-particle changes of basis.

  5. Final Report

    Stinis, Panos [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    This is the final report for the work conducted at the University of Minnesota (during the period 12/01/12-09/18/14) by PI Panos Stinis as part of the "Collaboratory on Mathematics for Mesoscopic Modeling of Materials" (CM4). CM4 is a multi-institution DOE-funded project whose aim is to conduct basic and applied research in the emerging field of mesoscopic modeling of materials.

  6. Solar hydrogen production on some water splitting photocatalysts

    Takata, Tsuyoshi; Hisatomi, Takashi; Domen, Kazunari


    Photocatalytic overall water splitting into H2 and O2 is expected to be a promising method for the efficient utilization of solar energy. The design of optimal photocatalyst structures is a key to efficient overall water splitting, and the development of photocatalysts which can efficiently convert large portion of visible light spectrum has been required. Recently, a series of complex perovskite type transition metal oxynitrides, LaMgxT 1-xO1+3xN2-3x, was developed as photocatalysts for direct water splitting operable at wide wavelength of visible light. In addition two-step excitation water splitting via a novel photocatalytic device termed as photocatalyst sheet was developed. This consists of two types of semiconductors (hydrogen evolution photocatalyst and oxygen evolution photocatalyst) particles embedded in a conductive layer, and showed high efficiency for overall water splitting. These recent advances in photocatalytic water splitting were introduced.

  7. Split renal function measured by triphasic helical CT

    Hackstein, Nils [Radiologische Gemeinschaftspraxis am Evangelischen Krankenhaus, Paul-Zipp-Str. 171, 35398 Giessen (Germany)]. E-mail:; Buch, Thomas [Department of Diagnostic Radiology, Klinikstr. 36, Justus-Liebig University Giessen, 35385 Giessen (Germany)]. E-mail:; Rau, Wigbert S. [Department of Diagnostic Radiology, Klinikstr. 36, Justus-Liebig University Giessen, 35385 Giessen (Germany)]. E-mail:; Weimer, Rolf [Department of Internal Medicine, Klinikstr. 36, Justus-Liebig University Giessen, 35385 Giessen (Germany)]. E-mail:; Klett, Rigobert [Clinic of Nuclear Medicine, Friedrichstr. 25, Justus-Liebig University Giessen, 35385 Giessen (Germany)]. E-mail:


    Purpose: To present a method for calculating split renal function solely from routine triphasic helical computed tomography (CT). Subjects and methods: We retrospectively included 26 adult patients who received renal scintigraphy and triphasic CT within 4 weeks in the years 2003 and 2004. All scans were performed using a standard abdominal protocol. Split renal function was calculated as relative single-kidney glomerular filtration rate (GFR) using a simplified 'two-point Patlak plot' technique. As a reference method, split renal function was determined from renal scintigraphy using the standard technique. Results: Linear correlation between the two methods was r = 0.91, split renal function (CT) = 0.0266 + 0.9573 x split renal function (scintigraphy). Conclusion: Split renal function can be measured accurately by minimally extended triphasic CT.

  8. Maximum likelihood molecular clock comb: analytic solutions.

    Chor, Benny; Khetan, Amit; Snir, Sagi


    Maximum likelihood (ML) is increasingly used as an optimality criterion for selecting evolutionary trees, but finding the global optimum is a hard computational task. Because no general analytic solution is known, numeric techniques such as hill climbing or expectation maximization (EM), are used in order to find optimal parameters for a given tree. So far, analytic solutions were derived only for the simplest model--three taxa, two state characters, under a molecular clock. Four taxa rooted trees have two topologies--the fork (two subtrees with two leaves each) and the comb (one subtree with three leaves, the other with a single leaf). In a previous work, we devised a closed form analytic solution for the ML molecular clock fork. In this work, we extend the state of the art in the area of analytic solutions ML trees to the family of all four taxa trees under the molecular clock assumption. The change from the fork topology to the comb incurs a major increase in the complexity of the underlying algebraic system and requires novel techniques and approaches. We combine the ultrametric properties of molecular clock trees with the Hadamard conjugation to derive a number of topology dependent identities. Employing these identities, we substantially simplify the system of polynomial equations. We finally use tools from algebraic geometry (e.g., Gröbner bases, ideal saturation, resultants) and employ symbolic algebra software to obtain analytic solutions for the comb. We show that in contrast to the fork, the comb has no closed form solutions (expressed by radicals in the input data). In general, four taxa trees can have multiple ML points. In contrast, we can now prove that under the molecular clock assumption, the comb has a unique (local and global) ML point. (Such uniqueness was previously shown for the fork.).

  9. The Practice of Splitting Tablets: Cost and Therapeutic Aspects

    John Bachynsky; Cheryl Wiens; Krystal Melnychuk


    Background: Tablet splitting is used in pharmacy practice to adjust the dose to be administered. It is also being advocated as a method of reducing prescription drug costs. Methods: The potential for using this practice as a cost-saving method was examined. The top 200 prescription products in Canada were evaluated for their potential for tablet splitting to reduce costs. The assessment was based on the dosage form (only tablets could be split), availability of dosages in multiples, whether t...

  10. Photon splitting in a strongly magnetized, charge-asymmetric plasma

    Chistyakov M.V.


    Full Text Available The process of the photon splitting, γ → γγ, is investigated in the presence of strongly magnetized charge-asymmetric cold plasma. The dispersion properties of photons and the new polarization selection rules are obtained in such plasma. The absorption rate of the leading photon splitting channel are calculated with taking account of the photon dispersion and wave function renormalization. In addition, a comparison of the photon splitting and the Compton scattering processes is performed.

  11. Double-peak Splitting in High-order Harmonics Generation

    WANG Yingsong; LIU Yaqing; YANG Xiaodong; XU Zhizhan


    When the intensity of the driving pulse is much higher than the saturation intensity of the media involved, the double-peak splitting in frequency domain emerges in the generated high-order harmonic spectra. The possible origins of this splitting are carefully investigated. The ionization of the gas media and the propagation effect of harmonic field are the main reason for the double-peak splitting observed.

  12. Quantum tunneling splittings from path-integral molecular dynamics

    Mátyus, Edit; Wales, David J.; Althorpe, Stuart C.


    We illustrate how path-integral molecular dynamics can be used to calculate ground-state tunnelling splittings in molecules or clusters. The method obtains the splittings from ratios of density matrix elements between the degenerate wells connected by the tunnelling. We propose a simple thermodynamic integration scheme for evaluating these elements. Numerical tests on fully dimensional malonaldehyde yield tunnelling splittings in good overall agreement with the results of diffusion Monte Carlo calculations.

  13. Split Treatment: A Measurement of Coordination Between Psychiatrists

    LoPiccolo, Charles J.; Eldon Taylor, C.; Clemence, Cheryl; Eisdorfer, Carl


    The objective of this study was to examine the adherence rates of psychiatrists with APA standards for coordination of care in split treatment. Coordination of care in split treatment is monitored from claims paid data in an academic MBHO as an ongoing quality improvement activity. For an 18-month period, 93 psychiatrists were identified with 559 patients in split treatment and were mailed a survey. Surveys were controlled for change of providers. Self-report survey results were obtained from...

  14. Conditional beam splitting attack on quantum key distribution

    Calsamiglia, John; Barnett, Stephen M.; Lütkenhaus, Norbert


    We present a novel attack on quantum key distribution based on the idea of adaptive absorption [calsam01]. The conditional beam splitting attack is shown to be much more efficient than the conventional beam spitting attack, achieving a performance similar to the, powerful but currently unfeasible, photon number splitting attack. The implementation of the conditional beam splitting attack, based solely on linear optical elements, is well within reach of current technology.

  15. Splitting methods in communication, imaging, science, and engineering

    Osher, Stanley; Yin, Wotao


    This book is about computational methods based on operator splitting. It consists of twenty-three chapters written by recognized splitting method contributors and practitioners, and covers a vast spectrum of topics and application areas, including computational mechanics, computational physics, image processing, wireless communication, nonlinear optics, and finance. Therefore, the book presents very versatile aspects of splitting methods and their applications, motivating the cross-fertilization of ideas. .

  16. Optimized design of parallel beam-splitting prism

    Peitao Zhao(赵培涛); Guohua Li(李国华)


    A large lateral shearing distance of parallel beam-splitting prism is often needed in laser modulation and polarization interference. In this letter, we present an optimized design of parallel beam-splitting prism and list some different cases in detail. The optimized design widens the use range of parallel beam-splitting prism. At the wavelength of 632.8 nm, the law that the enlargement ratio changes with the refractive index and the apex angle is verified.

  17. One-loop triple collinear splitting amplitudes in QCD

    Badger, Simon; Peraro, Tiziano


    We study the factorisation properties of one-loop scattering amplitudes in the triple collinear limit and extract the universal splitting amplitudes for processes initiated by a gluon. The splitting amplitudes are derived from the analytic Higgs plus four partons amplitudes. We present compact results for primitive helicity splitting amplitudes making use of super-symmetric decompositions. The universality of the collinear factorisation is checked numerically against the full colour six parton squared matrix elements.

  18. Theory of optimal blocking for fractional factorial split-plot designs


    [1]Box, G.E.P., Jones, S., Split-plot designs for robust product experimentation, J. Appl. Statist., 1992, 19: 3-26.[2]Mukerjee, R., Fang, K.T., Fractional factorial split-plot designs with minimum aberration and maximum estimation capacity, Statist, Sinica, 2002, 12: 885-903.[3]Huang, P., Chen, D., Voelkel, J.O., Minimum aberration two-level split-plot designs, Technometrics, 1998, 40(4):314-326.[4]Fries, A., Hunter, W.G., Minimum aberration 2k-p designs, Technometrics, 1980, 22(4): 601-608.[5]Bingham, D., Sitter, R.R., Minimum aberration two-level fractional factorial split-plot designs, Technometrics,1999, 41(1): 62-70.[6]Bingham, D., Sitter, R.R., Some theoretical results for fractional factorial split-plot designs, Ann. Statist., 1999,27 (4): 1240-1255.[7]Bingham, D., Sitter, R.R., Design issues in fractional factorial split-plot experiments, J. Quality Technology,2001, 33(1): 2-15.[8]Cheng, C.S., Steinberg, D.M., Sun, D.X., Minimum aberration and model robustness for two-level factorial designs, J. Roy. Statist. Soc., Ser. B, 1999, 61: 85-93.[9]Cheng, C.S., Mukerjee, R., Regular fractional factorial designs with minimum aberration and maximum estimation capacity, Ann. Statist., 1998, 26: 2289-2300.[10]Zhang, R., Park, D.K., Optimal blocking of two-level fractional factorial designs, J. Statist. Plann. Infer., 2000,91 (1): 107-121.[11]Ai, M., Zhang, R., Theory of minimum aberration blocked regular mixed factorial designs, J. Statist. Plann.Infer., 2004, 126(1): 305-323.[12]Ai, M., Zhang, R., Theory of optimal blocking of nonregular factorial designs, Canad. J. Statist., 2004, 32(1):57-72.[13]Tang, B., Wu, C.F.J., Characterization of minimum aberration 2n-k designs in terms of their complementary designs, Ann. Statist., 1996, 24(6): 2549-2559.[14]Suen, C.Y., Chen, H., Wu, C.F.J., Some identities on qn-m designs with application to minimum aberrations,Ann. Statist., 1997, 25(3): 1176-1188.[15]Mukerjee, R., Wu, C.F.J., Minimum aberration designs for mixed

  19. Prediction of three dimensional maximum isometric neck strength.

    Fice, Jason B; Siegmund, Gunter P; Blouin, Jean-Sébastien


    We measured maximum isometric neck strength under combinations of flexion/extension, lateral bending and axial rotation to determine whether neck strength in three dimensions (3D) can be predicted from principal axes strength. This would allow biomechanical modelers to validate their neck models across many directions using only principal axis strength data. Maximum isometric neck moments were measured in 9 male volunteers (29±9 years) for 17 directions. The 3D moments were normalized by the principal axis moments, and compared to unity for all directions tested. Finally, each subject's maximum principal axis moments were used to predict their resultant moment in the off-axis directions. Maximum moments were 30±6 N m in flexion, 32±9 N m in lateral bending, 51±11 N m in extension, and 13±5 N m in axial rotation. The normalized 3D moments were not significantly different from unity (95% confidence interval contained one), except for three directions that combined ipsilateral axial rotation and lateral bending; in these directions the normalized moments exceeded one. Predicted resultant moments compared well to the actual measured values (r2=0.88). Despite exceeding unity, the normalized moments were consistent across subjects to allow prediction of maximum 3D neck strength using principal axes neck strength.

  20. The inverse maximum dynamic flow problem

    BAGHERIAN; Mehri


    We consider the inverse maximum dynamic flow (IMDF) problem.IMDF problem can be described as: how to change the capacity vector of a dynamic network as little as possible so that a given feasible dynamic flow becomes a maximum dynamic flow.After discussing some characteristics of this problem,it is converted to a constrained minimum dynamic cut problem.Then an efficient algorithm which uses two maximum dynamic flow algorithms is proposed to solve the problem.

  1. Electrocatalytic water splitting to produce fuel hydrogen

    Yuan, Hao

    Solar energy is regarded as a promising source for clean and sustainable energy. However, it is not a continuous energy source, thus certain strategies have to be developed to effectively convert and store it. Solar-driven electrocatalytic water splitting, which converts solar energy into chemical energy for storage as fuel hydrogen, can effectively mitigate the intermittence of solar radiation. Water splitting consists of two half reactions: water oxidation and hydrogen evolution. Both reactions rely on highly effective electrocatalysts. This dissertation is an account of four detailed studies on developing highly effective low-cost electrocatalysts for both reactions, and includes a preliminary attempt at system integration to build a functional photoanode for solar-driven water oxidation. For the water oxidation reaction, we have developed an electrochemical method to immobilize a cobalt-based (Co-OXO) water oxidation catalyst on a conductive surface to promote recyclability and reusability without affecting functionality. We have also developed a method to synthesize a manganese-based (MnOx) catalytic film in situ, generating a nanoscale fibrous morphology that provides steady and excellent water oxidation performance. The new method involves two series of cyclic voltammetry (CV) over different potential ranges, followed by calcination to increase crystallinity. The research has the potential to open avenues for synthesizing and optimizing other manganese-based water oxidation catalysts. For the hydrogen evolution reaction, we have developed a new electrodeposition method to synthesize Ni/Ni(OH)2 catalysts in situ on conductive surfaces. The new method involves only two cycles of CV over a single potential range. The resulting catalytic film has a morphology of packed walnut-shaped particles. It has superior catalytic activity and good stability over long periods. We have investigated the feasibility of incorporating manganese-based water oxidation catalysts

  2. Splitting Neutrino masses and Showering into Sky

    Fargion, D.; D'Armiento, D.; Lanciano, O.; Oliva, P.; Iacobelli, M.; de Sanctis Lucentini, P. G.; Grossi, M.; de Santis, M.


    Neutrino masses might be as light as a few time the atmospheric neutrino mass splitting. The relic cosmic neutrinos may cluster in wide Dark Hot Local Group Halo. High Energy ZeV cosmic neutrinos (in Z-Showering model) might hit relic ones at each mass in different resonance energies in our nearby Universe. This non-degenerated density and energy must split UHE Z-boson secondaries (in Z-Burst model) leading to multi injection of UHECR nucleons within future extreme AUGER energy. Secondaries of Z-Burst as neutral gamma, below a few tens EeV are better surviving local GZK cut-off and they might explain recent Hires BL-Lac UHECR correlations at small angles. A different high energy resonance must lead to Glashow's anti-neutrino showers while hitting electrons in matter. In water and ice it leads to isotropic light explosions. In air, Glashow's anti-neutrino showers lead to collimated and directional air-showers offering a new Neutrino Astronomy. Because of neutrino flavor mixing, astrophysical energetic tau neutrino above tens GeV must arise over atmospheric background. At TeV range is difficult to disentangle tau neutrinos from other atmospheric flavors. At greater energy around PeV, Tau escaping mountains and Earth and decaying in flight are effectively showering in air sky. These Horizontal showering is splitting by geomagnetic field in forked shapes. Such air-showers secondaries release amplified and beamed gamma bursts (like observed TGF), made also by muon and electron pair bundles, with their accompanying rich Cherenkov flashes. Also planet's largest (Saturn, Jupiter) atmosphere limbs offer an ideal screen for UHE GZK and Z-burst tau neutrino, because their largest sizes. Titan thick atmosphere and small radius are optimal for discovering up-going resonant Glashow resonant anti-neutrino electron showers. Detection from Earth of Tau, anti-Tau, anti-electron neutrino induced Air-showers by twin Magic Telescopes on top mountains, or space based detection on

  3. Shear wave splitting and subcontinental mantle deformation

    Silver, Paul G.; Chan, W. Winston


    We have made measurements of shear wave splitting in the phases SKS and SKKS at 21 broadband stations in North America, South America, Europe, Asia, and Africa. Measurements are made using a retrieval scheme that yields the azimuth of the fast polarization direction ϕ and delay time δt of the split shear wave plus uncertainties. Detectable anisotropy was found at most stations, suggesting that it is a general feature of the subcontinental mantle. Delay times range from 0.65 s to 1.70 s and average about 1 s. Somewhat surprisingly, the largest delay time is found in the 2.7 b.y.-old Western Superior Province of the Canadian Shield. The splitting observations are interpreted in terms of the strain-induced lattice preferred orientation of mantle minerals, especially olivine. We consider three hypotheses concerning the origin of the continental anisotropy: (1) strain associated with absolute plate motion, as in the oceanic upper mantle, (2) crustal stress, and (3) the past and present internal deformation of the subcontinental upper mantle by tectonic episodes. It is found that the last hypothesis is the most successful, namely that the most recent significant episode of internal deformation appears to be the best predictor of ϕ. For stable continental regions, this is interpreted as "fossil" anisotropy, whereas for presently active regions, such as Alaska, the anisotropy reflects present-day tectonic activity. In the stable portion of North America there is a good correlation between delay time and lithospheric thickness; this is consistent with the anisotropy being localized in the subcontinental lithosphere and suggests that intrinsic anisotropy is approximately constant. The acceptance of this hypothesis has several implications for subcontinental mantle deformation. First, it argues for coherent deformation of the continental lithosphere (crust and mantle) during orogenies. This implies that the anisotropic portion of the lithosphere was present since the

  4. Maximum permissible voltage of YBCO coated conductors

    Wen, J.; Lin, B.; Sheng, J.; Xu, J.; Jin, Z. [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Hong, Z., E-mail: [Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai (China); Wang, D.; Zhou, H.; Shen, X.; Shen, C. [Qingpu Power Supply Company, State Grid Shanghai Municipal Electric Power Company, Shanghai (China)


    Highlights: • We examine three kinds of tapes’ maximum permissible voltage. • We examine the relationship between quenching duration and maximum permissible voltage. • Continuous I{sub c} degradations under repetitive quenching where tapes reaching maximum permissible voltage. • The relationship between maximum permissible voltage and resistance, temperature. - Abstract: Superconducting fault current limiter (SFCL) could reduce short circuit currents in electrical power system. One of the most important thing in developing SFCL is to find out the maximum permissible voltage of each limiting element. The maximum permissible voltage is defined as the maximum voltage per unit length at which the YBCO coated conductors (CC) do not suffer from critical current (I{sub c}) degradation or burnout. In this research, the time of quenching process is changed and voltage is raised until the I{sub c} degradation or burnout happens. YBCO coated conductors test in the experiment are from American superconductor (AMSC) and Shanghai Jiao Tong University (SJTU). Along with the quenching duration increasing, the maximum permissible voltage of CC decreases. When quenching duration is 100 ms, the maximum permissible of SJTU CC, 12 mm AMSC CC and 4 mm AMSC CC are 0.72 V/cm, 0.52 V/cm and 1.2 V/cm respectively. Based on the results of samples, the whole length of CCs used in the design of a SFCL can be determined.

  5. Final Report

    R Paul Drake


    OAK-B135 This is the final report from the project Hydrodynamics by High-Energy-Density Plasma Flow and Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications. This project supported a group at the University of Michigan in the invention, design, performance, and analysis of experiments using high-energy-density research facilities. The experiments explored compressible nonlinear hydrodynamics, in particular at decelerating interfaces, and the radiation hydrodynamics of strong shock waves. It has application to supernovae, astrophysical jets, shock-cloud interactions, and radiative shock waves.

  6. Final report

    Jarillo-Herrero, Pablo [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)


    This is the final report of our research program on electronic transport experiments on Topological Insulator (TI) devices, funded by the DOE Office of Basic Energy Sciences. TIbased electronic devices are attractive as platforms for spintronic applications, and for detection of emergent properties such as Majorana excitations , electron-hole condensates , and the topological magneto-electric effect . Most theoretical proposals envision geometries consisting of a planar TI device integrated with materials of distinctly different physical phases (such as ferromagnets and superconductors). Experimental realization of physics tied to the surface states is a challenge due to the ubiquitous presence of bulk carriers in most TI compounds as well as degradation during device fabrication.

  7. A Frequency Splitting Method For CFM Imaging

    Udesen, Jesper; Gran, Fredrik; Jensen, Jørgen Arendt


    of narrow band pulses as in conventional CFM imaging. By appropriate filtration, the returned signals are divided into a number of narrow band signals which are approximately disjoint. After clutter filtering the velocities are found from each frequency band using a conventional autocorrelation estimator......The performance of conventional CFM imaging will often be degraded due to the relatively low number of pulses (4-10) used for each velocity estimate. To circumvent this problem we propose a new method using frequency splitting (FS). The FS method uses broad band chirps as excitation pulses instead...... estimator. In the simulation, the relative mean standard deviation of the velocity estimates over the vessel was 2.43% when using the FD method and the relative mean absolute bias was 1.84%. For the reference 8 oscillation pulse, the relative mean standard deviation over the vessel was 4...

  8. [Splitting of tablets: small pieces a risk].

    Picksak, Gesine; Stichtenoth, Dirk O


    For economic reasons physicians prescribe more and more multiunit tablets. Splitting of multiunit tablets depends on the physical-chemical properties of the agents, the galenic of the dosage form, the size and contour of the tablet and the shape of the score. Tablets with one or more scores are prepared to be divided for a single/multiple dose. How easily and exact a tablet can be divided depends heavily on the physical shape, its size and the outfit of the score. The fragments have to fulfil the requirements according to the European Pharmacopoeia: Uniformity of multiunit tablets. Since exact dosing is guaranteed only if tablets are divided properly, information and guidance of the patients by the physician and pharmacist is of critical importance.




    A matrix splitting method is presented for minimizing a quadratic programming (QP)problem, and a general algorithm is designed to solve the QP problem and generates a sequence of iterative points. We prove that the sequence generated by the algorithm converges to the optimal solution and has an R-linear rate of convergence if the QP problem is strictly convex and nondegenerate, and that every accumulation point of the sequence generated by the general algorithm is a KKT point of the original problem under the hypothesis that the value of the objective function is bounded below on the constrained region, and that the sequence converges to a KKT point if the problem is nondegenerate and the constrained region is bounded.

  10. Gauge Unification from Split Supersymmetric String Models

    Kokorelis, Christos


    We discuss the unification of gauge coupling constants in non-supersymmetric open string vacua that possess the properties of Split Supersymmetry, namely the Standard Model with Higgsinos at low energies and where the Standard model spectrum is always accompanied by right handed neutrinos. These vacua achieve partial unification of two out of three (namely SU(3)$_c$, SU(2), U(1)) running gauge couplings, possess massive gauginos and light Higgsinos at low energies and also satisfy $sin^2\\theta_w (M_s) = 3/8$. These vacua are based on four dimensional orbifold $Z_3 \\times Z_3$ compactifications of string IIA orientifolds with D6-branes intersecting at angles, where the (four dimensional) chiral fermions of the Standard Model appear as opens strings streching between the intersections of seven dimensional objects the so called D6-branes.

  11. AP stars with resolved Zeeman split lines

    Mathys, G.


    High-resolution, high SNR observations of a sample of sharp-lined A stars and of Ap stars showing resolved Zeeman split lines are presented. The Fe II lines 6147.7 A and 6149.2 A unexpectedly appear to be asymmetric in all stars where they are resolved. The blue component of the 6149.2 line, which is a Zeeman doublet, is deeper and narrower than its red component. For line 6147.7, whose Zeeman pattern does not differ much from a quadruplet, the red components are deeper than the blue ones. It is shown that a partial Paschen-Back effect can account for these properties. The potential implications of this finding for studies of magnetic Ap stars are discussed.

  12. Non-Uniformity and Generalised Sacks Splitting

    COOPER S.Barry; LI Ang Sheng


    We show that there do not exist computable functions f1(e, i), f2 (e, i), g1(e, i), g2(e, i) such that for all e, i ∈ω,(1) (Wf1(e,i) - Wf2(e,i)) ≤T (We - Wi);(2) (Wg1(e,i) - Wg2(e,i))≤T (We - Wi);(3) (We - Wi) ≤T (Wf1(e,i) - Wf2(e,i)) (Wg1(e,i) - Wg2(e,i));(4) (We - Wi) T (Wf1(e,i) - Wf2(e,i)) unless (We - Wi) ≤T ; and (5) (We - Wi) T (Wg1(e,i) - Wg2(e,i)) unless (We - Wi) ≤T .It follows that the splitting theorems of Sacks and Cooper cannot be combined uniformly.

  13. Miniaturized Planar Split-Ring Resonator Antenna

    Kim, Oleksiy S.; Breinbjerg, Olav


    A miniaturized planar antenna based on a broadside-coupled split ring resonator excited by an arc-shaped dipole is presented. The excitation dipole acts as a small tuning capacitor in series with a parallel RLC circuit represented by the SRR. The antenna resonance frequency and dimensions...... a essentially determined by the SRR, while by varying the dipole arm length the input resistance is changed in a wide range, thus matching the antenna to a feed line and compensating for simulation and manufacturing inaccuracies. No additional matching network is required. Theoretically, there is no limit...... on how small this antenna can be. In practice, the lower bound is set by losses in utilized materials and manufacturing inaccuracies. As an example, an antenna of ka=0.09 was designed, fabricated and tested. Although the initially fabricated antenna prototype had the input impedance of 43 ohms...

  14. Intersectional Gene Expression in Zebrafish Using the Split KalTA4 System.

    Almeida, Rafael Gois; Lyons, David Anthony


    In this study, we describe the adaptation of the split Gal4 system for zebrafish. The Gal4-UAS system is widely used for expression of genes-of-interest by crossing driver lines expressing the transcription factor Gal4 (under the control of the promoter of interest) with reporter lines where upstream activating sequence (UAS) repeats (recognized by Gal4) drive expression of the genes-of-interest. In the Split Gal4 system, hemi-drivers separately encode the DNA-binding domain (DBD) and the activation domain (AD) of Gal4. When encoded under two different promoters, only those cells in the intersection of the promoters' expression pattern and in which both promoters are active reconstitute a functional Gal4 and activate expression from a UAS-driven transgene. We split the zebrafish-optimized version of Gal4, KalTA4, and generated a hemi-driver encoding the KalTA4 DBD and a hemi-driver encoding KalTA4's AD. We show that split KalTA4 domains can assemble in vivo and transactivate a UAS reporter transgene and that each hemi-driver alone cannot transactivate the reporter. Also, transactivation can happen in several cell types, with similar efficiency to intact KalTA4. Finally, in transient mosaic expression assays, we show that when hemi-drivers are preceded by two distinct promoters, they restrict the expression of an UAS-driven reporter from a broader pattern (sox10) to its constituent smaller neuronal pattern. The Split KalTA4 system should be useful for expression of genes-of-interest in an intersectional manner, allowing for more refined manipulations of cell populations in zebrafish.

  15. Tuning Photoluminescence Energy and Fine Structure Splitting in Single Quantum Dots by Uniaxial Stress

    DOU Xiu-Ming; SUN Bao-Quan; WANG Bao-Rui; MA Shan-Shan; ZHOU Rong; HUANG She-Song; NI Hai-Qiao; NIU Zhi-Chuan


    @@ We report a photoluminescence (PL) energy red-shift of single quantum dots(QDs)by applying an in-plane compressive uniaxial stress along the[110]direction at a liquid nitrogen temperature.Uniaxial stress has an effect not only on the confinement potential in the growth direction which results in the PL shift,but also on the cylindrical symmetry of QDs which can be reflected by the change of the full width at half maximum of PL peak.This implies that uniaxial stress has an important role in tuning PL energy and fine structure splitting of QDs.

  16. Hsp27gene in Drosophila ananassae subgroup was split by a recently acquired intron



    InDrosophila , heat shock protein 27 (Hsp27) is a critical single-copy intron-free nuclear gene involved in the defense responseagainst fungi and bacteria, and is a regulator of adult lifespan. In the present study, 33 homologousHsp27nucleotide sequencesfrom differentDrosophilaspecies were amplified by PCR and reverse transcription PCR, and the phylogenetic relationshipswere analysed using neighbour-joining, maximum-likelihood and Bayesian methods. The phylogenetic topologies from anal-ysis with different algorithms were similar, suggesting that theHsp27gene was split by a recently acquired intron during theevolution of theDrosophila ananassaesubgroup

  17. Thin-film superconducting resonator tunable to the ground-state hyperfine splitting of $^{87}$Rb

    Kim, Z; Hoffman, J E; Grover, J A; Voigt, K D; Cooper, B K; Ballard, C J; Palmer, B S; Hafezi, M; Taylor, J M; Anderson, J R; Dragt, A J; Lobb, C J; Orozco, L A; Rolston, S L; Wellstood, F C


    We describe a thin-film superconducting Nb microwave resonator, tunable to within 0.3 ppm of the hyperfine splitting of $^{87}$Rb at $f_{Rb}=6.834683$ GHz. We coarsely tuned the resonator using electron-beam lithography, decreasing the resonance frequency from 6.8637 GHz to 6.8278 GHz. For \\emph{in situ} fine tuning at 15 mK, the resonator inductance was varied using a piezoelectric stage to move a superconducting pin above the resonator. We found a maximum frequency shift of about 8.7 kHz per 60-nm piezoelectric step and a tuning range of 18 MHz.

  18. Bad splits in bilateral sagittal split osteotomy: systematic review and meta-analysis of reported risk factors.

    Steenen, S A; van Wijk, A J; Becking, A G


    An unfavourable and unanticipated pattern of the bilateral sagittal split osteotomy (BSSO) is generally referred to as a 'bad split'. Patient factors predictive of a bad split reported in the literature are controversial. Suggested risk factors are reviewed in this article. A systematic review was undertaken, yielding a total of 30 studies published between 1971 and 2015 reporting the incidence of bad split and patient age, and/or surgical technique employed, and/or the presence of third molars. These included 22 retrospective cohort studies, six prospective cohort studies, one matched-pair analysis, and one case series. Spearman's rank correlation showed a statistically significant but weak correlation between increasing average age and increasing occurrence of bad splits in 18 studies (ρ=0.229; Pbad split among the different splitting techniques. A meta-analysis pooling the effect sizes of seven cohort studies showed no significant difference in the incidence of bad split between cohorts of patients with third molars present and concomitantly removed during surgery, and patients in whom third molars were removed at least 6 months preoperatively (odds ratio 1.16, 95% confidence interval 0.73-1.85, Z=0.64, P=0.52). In summary, there is no robust evidence to date to show that any risk factor influences the incidence of bad split.

  19. Bad split during bilateral sagittal split osteotomy of the mandible with separators: a retrospective study of 427 patients.

    Mensink, Gertjan; Verweij, Jop P; Frank, Michael D; Eelco Bergsma, J; Richard van Merkesteyn, J P


    An unfavourable fracture, known as a bad split, is a common operative complication in bilateral sagittal split osteotomy (BSSO). The reported incidence ranges from 0.5 to 5.5%/site. Since 1994 we have used sagittal splitters and separators instead of chisels for BSSO in our clinic in an attempt to prevent postoperative hypoaesthesia. Theoretically an increased percentage of bad splits could be expected with this technique. In this retrospective study we aimed to find out the incidence of bad splits associated with BSSO done with splitters and separators. We also assessed the risk factors for bad splits. The study group comprised 427 consecutive patients among whom the incidence of bad splits was 2.0%/site, which is well within the reported range. The only predictive factor for a bad split was the removal of third molars at the same time as BSSO. There was no significant association between bad splits and age, sex, class of occlusion, or the experience of the surgeon. We think that doing a BSSO with splitters and separators instead of chisels does not increase the risk of a bad split, and is therefore safe with predictable results.

  20. Circular permutation prediction reveals a viable backbone disconnection for split proteins: an approach in identifying a new functional split intein.

    Yun-Tzai Lee

    Full Text Available Split-protein systems have emerged as a powerful tool for detecting biomolecular interactions and reporting biological reactions. However, reliable methods for identifying viable split sites are still unavailable. In this study, we demonstrated the feasibility that valid circular permutation (CP sites in proteins have the potential to act as split sites and that CP prediction can be used to search for internal permissive sites for creating new split proteins. Using a protein ligase, intein, as a model, CP predictor facilitated the creation of circular permutants in which backbone opening imposes the least detrimental effects on intein folding. We screened a series of predicted intein CPs and identified stable and native-fold CPs. When the valid CP sites were introduced as split sites, there was a reduction in folding enthalpy caused by the new backbone opening; however, the coincident loss in entropy was sufficient to be compensated, yielding a favorable free energy for self-association. Since split intein is exploited in protein semi-synthesis, we tested the related protein trans-splicing (PTS activities of the corresponding split inteins. Notably, a novel functional split intein composed of the N-terminal 36 residues combined with the remaining C-terminal fragment was identified. Its PTS activity was shown to be better than current reported two-piece intein with a short N-terminal segment. Thus, the incorporation of in silico CP prediction facilitated the design of split intein as well as circular permutants.

  1. Local Analysis, Cardinality, and Split Trick of Quasi-biorthogonal Frame Wavelets

    Zhi Hua ZHANG


    The notion of quasi-biorthogonal frame wavelets is a generalization of the notion of orthogonal wavelets. A quasi-biorthogonal frame wavelet with the cardinality r consists of r pairs of functions.In this paper we first analyze the local property of the quasi-biorthogonal frame wavelet and show that its each pair of functions generates reconstruction formulas of the corresponding subspaces. Next we show that the lower bound of its cardinalities depends on a pair of dual frame multiresolution analyses deriving it. Finally, we present a split trick and show that any quasi-biorthogonal frame wavelet can be split into a new quasi-biorthogonal frame wavelet with an arbitrarily large cardinality. For generality,we work in the setting of matrix dilations.

  2. Generalised maximum entropy and heterogeneous technologies

    Oude Lansink, A.G.J.M.


    Generalised maximum entropy methods are used to estimate a dual model of production on panel data of Dutch cash crop farms over the period 1970-1992. The generalised maximum entropy approach allows a coherent system of input demand and output supply equations to be estimated for each farm in the sam

  3. 20 CFR 229.48 - Family maximum.


    ... month on one person's earnings record is limited. This limited amount is called the family maximum. The family maximum used to adjust the social security overall minimum rate is based on the employee's Overall..., when any of the persons entitled to benefits on the insured individual's compensation would, except...

  4. The maximum rotation of a galactic disc

    Bottema, R


    The observed stellar velocity dispersions of galactic discs show that the maximum rotation of a disc is on average 63% of the observed maximum rotation. This criterion can, however, not be applied to small or low surface brightness (LSB) galaxies because such systems show, in general, a continuously

  5. Duality of Maximum Entropy and Minimum Divergence

    Shinto Eguchi


    Full Text Available We discuss a special class of generalized divergence measures by the use of generator functions. Any divergence measure in the class is separated into the difference between cross and diagonal entropy. The diagonal entropy measure in the class associates with a model of maximum entropy distributions; the divergence measure leads to statistical estimation via minimization, for arbitrarily giving a statistical model. The dualistic relationship between the maximum entropy model and the minimum divergence estimation is explored in the framework of information geometry. The model of maximum entropy distributions is characterized to be totally geodesic with respect to the linear connection associated with the divergence. A natural extension for the classical theory for the maximum likelihood method under the maximum entropy model in terms of the Boltzmann-Gibbs-Shannon entropy is given. We discuss the duality in detail for Tsallis entropy as a typical example.

  6. Versatile protein tagging in cells with split fluorescent protein

    Kamiyama, Daichi; Sekine, Sayaka; Barsi-Rhyne, Benjamin; Hu, Jeffrey; Chen, Baohui; Gilbert, Luke A.; Ishikawa, Hiroaki; Leonetti, Manuel D.; Marshall, Wallace F.; Weissman, Jonathan S.; Huang, Bo


    In addition to the popular method of fluorescent protein fusion, live cell protein imaging has now seen more and more application of epitope tags. The small size of these tags may reduce functional perturbation and enable signal amplification. To address their background issue, we adapt self-complementing split fluorescent proteins as epitope tags for live cell protein labelling. The two tags, GFP11 and sfCherry11 are derived from the eleventh β-strand of super-folder GFP and sfCherry, respectively. The small size of FP11-tags enables a cost-effective and scalable way to insert them into endogenous genomic loci via CRISPR-mediated homology-directed repair. Tandem arrangement FP11-tags allows proportional enhancement of fluorescence signal in tracking intraflagellar transport particles, or reduction of photobleaching for live microtubule imaging. Finally, we show the utility of tandem GFP11-tag in scaffolding protein oligomerization. These experiments illustrate the versatility of FP11-tag as a labelling tool as well as a multimerization-control tool for both imaging and non-imaging applications. PMID:26988139

  7. The 3600 hp split-torque helicopter transmission

    White, G.


    Final design details of a helicopter transmission that is powered by GE twin T 700 engines each rated at 1800 hp are presented. It is demonstrated that in comparison with conventional helicopter transmission arrangements the split torque design offers: weight reduction of 15%; reduction in drive train losses of 9%; and improved reliability resulting from redundant drive paths between the two engines and the main shaft. The transmission fits within the NASA LeRC 3000 hp Test Stand and accepts the existing positions for engine inputs, main shaft, connecting drive shafts, and the cradle attachment points. One necessary change to the test stand involved gear trains of different ratio in the tail drive gearbox. Progressive uprating of engine input power from 3600 to 4500 hp twin engine rating is allowed for in the design. In this way the test transmission will provide a base for several years of analytical, research, and component development effort targeted at improving the performance and reliability of helicopter transmission.

  8. Versatile protein tagging in cells with split fluorescent protein.

    Kamiyama, Daichi; Sekine, Sayaka; Barsi-Rhyne, Benjamin; Hu, Jeffrey; Chen, Baohui; Gilbert, Luke A; Ishikawa, Hiroaki; Leonetti, Manuel D; Marshall, Wallace F; Weissman, Jonathan S; Huang, Bo


    In addition to the popular method of fluorescent protein fusion, live cell protein imaging has now seen more and more application of epitope tags. The small size of these tags may reduce functional perturbation and enable signal amplification. To address their background issue, we adapt self-complementing split fluorescent proteins as epitope tags for live cell protein labelling. The two tags, GFP11 and sfCherry11 are derived from the eleventh β-strand of super-folder GFP and sfCherry, respectively. The small size of FP11-tags enables a cost-effective and scalable way to insert them into endogenous genomic loci via CRISPR-mediated homology-directed repair. Tandem arrangement FP11-tags allows proportional enhancement of fluorescence signal in tracking intraflagellar transport particles, or reduction of photobleaching for live microtubule imaging. Finally, we show the utility of tandem GFP11-tag in scaffolding protein oligomerization. These experiments illustrate the versatility of FP11-tag as a labelling tool as well as a multimerization-control tool for both imaging and non-imaging applications.

  9. Split diversity in constrained conservation prioritization using integer linear programming.

    Chernomor, Olga; Minh, Bui Quang; Forest, Félix; Klaere, Steffen; Ingram, Travis; Henzinger, Monika; von Haeseler, Arndt


    Phylogenetic diversity (PD) is a measure of biodiversity based on the evolutionary history of species. Here, we discuss several optimization problems related to the use of PD, and the more general measure split diversity (SD), in conservation prioritization.Depending on the conservation goal and the information available about species, one can construct optimization routines that incorporate various conservation constraints. We demonstrate how this information can be used to select sets of species for conservation action. Specifically, we discuss the use of species' geographic distributions, the choice of candidates under economic pressure, and the use of predator-prey interactions between the species in a community to define viability constraints.Despite such optimization problems falling into the area of NP hard problems, it is possible to solve them in a reasonable amount of time using integer programming. We apply integer linear programming to a variety of models for conservation prioritization that incorporate the SD measure.We exemplarily show the results for two data sets: the Cape region of South Africa and a Caribbean coral reef community. Finally, we provide user-friendly software at

  10. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30.

    Jia, Jieyang; Seitz, Linsey C; Benck, Jesse D; Huo, Yijie; Chen, Yusi; Ng, Jia Wei Desmond; Bilir, Taner; Harris, James S; Jaramillo, Thomas F


    Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive, it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date, to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell, which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage.

  11. Stable quantum dot photoelectrolysis cell for unassisted visible light solar water splitting.

    Yang, Hong Bin; Miao, Jianwei; Hung, Sung-Fu; Huo, Fengwei; Chen, Hao Ming; Liu, Bin


    Sunlight is an ideal source of energy, and converting sunlight into chemical fuels, mimicking what nature does, has attracted significant attention in the past decade. In terms of solar energy conversion into chemical fuels, solar water splitting for hydrogen production is one of the most attractive renewable energy technologies, and this achievement would satisfy our increasing demand for carbon-neutral sustainable energy. Here, we report corrosion-resistant, nanocomposite photoelectrodes for spontaneous overall solar water splitting, consisting of a CdS quantum dot (QD) modified TiO2 photoanode and a CdSe QD modified NiO photocathode, where cadmium chalcogenide QDs are protected by a ZnS passivation layer and gas evolution cocatalysts. The optimized device exhibited a maximum efficiency of 0.17%, comparable to that of natural photosynthesis with excellent photostability under visible light illumination. Our device shows spontaneous overall water splitting in a nonsacrificial environment under visible light illumination (λ > 400 nm) through mimicking nature's "Z-scheme" process. The results here also provide a conceptual layout to improve the efficiency of solar-to-fuel conversion, which is solely based on facile, scalable solution-phase techniques.

  12. Design of mechanically-tunable photonic crystal split-beam nanocavity.

    Lin, Tong; Tian, Feng; Shi, Peng; Chau, Fook Siong; Zhou, Guangya; Tang, Xiaosong; Deng, Jie


    Photonic crystal split-beam nanocavities allow for ultra-sensitive optomechanical transductions but are degraded due to their relatively low optical quality factors. We have proposed and experimentally demonstrated a new type of one-dimensional photonic crystal split-beam nanocavity optimized for an ultra-high optical-quality factor. The design is based on the combination of the deterministic method and hill-climbing algorithm. The latter is the simplest and most straightforward method of the local search algorithm that provides the local maximum of the chosen quality factors. This split-beam nanocavity is made up of two mechanical uncoupled cantilever beams with Bragg mirrors patterned onto it and separated by a 75-nm air gap. Experimental results emphasize that the quality factor of the second-order TE mode can be as high as 1.99×10(4). Additionally, one beam of the device is actuated in the lateral direction with the aid of a NEMS actuator, and the quality factor maintains quite well even if there is a lateral offset up to 64 nm. Potentially promising applications, such as sensitive optomechanical torque sensor, local tuning of Fano resonance, all-optical-reconfigurable filters, etc., are foreseen.

  13. An X-ray split- and delay-unit for the European XFEL

    Roling, Sebastian; Siemer, Bjoern; Woestmann, Michael; Wahlert, Frank; Zacharias, Helmut [Physikalisches Institut WWU Muenster, Wilhelm-Klemm Strasse 10 48149 Muenster (Germany)


    For the European XFEL an X-ray split- and delay-unit (autocorrelator) is built covering photon energies from 8 keV up to 20 keV. The autocorrelator will enable jitter-free X-ray pump/X-ray probe experiments as well as sequential diffractive imaging. Further a direct measurement of the temporal coherence properties will be possible by making use of a linear autocorrelation. The set-up is based on geometric wave-front beam-splitting, which has successfully been applied at an autocorrelator that was built for FLASH. The X-ray FEL pulses will be split by a sharp edge of a silicon substrate coated with Mo/B4C multi-layers. Both partial beams will then pass variable delay lines. For different wavelength the angle of the multilayer-mirrors will be adjusted in order to match the reflection condition. According to this alignment the path-lengths of the beam will differ as a function of the wavelength. This results in maximum delays from {+-}4 ps at 20 keV up to {+-}30 ps at 8 keV.

  14. Photoelectrochemical water splitting on nanoporous GaN thin films for energy conversion under visible light

    Cao, Dezhong; Xiao, Hongdi; Fang, Jiacheng; Liu, Jianqiang; Gao, Qingxue; Liu, Xiangdong; Ma, Jin


    Nanoporous (NP) GaN thin films, which were fabricated by an electrochemical etching method at different voltages, were used as photoelectrodes during photoelectrochemical (PEC) water splitting in 1 M oxalic acid solution. Upon illumination at a power density of 100 mW cm‑2 (AM 1.5), water splitting is observed in NP GaN thin films, presumably resulting from the valence band edge which is more positive than the redox potential of the oxidizing species. In comparison with NP GaN film fabricated at 8 V, NP GaN obtained at 18 V shows nearly twofold enhancement in photocurrent with the maximum photo-to-hydrogen conversion efficiency of 1.05% at ~0 V (versus Ag/AgCl). This enhancement could be explained with (i) the increase of surface area and surface states, and (ii) the decrease of resistances and carrier concentration in the NP GaN thin films. High stability of the NP GaN thin films during the PEC water splitting further confirms that the NP GaN thin film could be applied to the design of efficient solar cells and solar fuel devices.

  15. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%

    Jia, Jieyang; Seitz, Linsey C.; Benck, Jesse D.; Huo, Yijie; Chen, Yusi; Ng, Jia Wei Desmond; Bilir, Taner; Harris, James S.; Jaramillo, Thomas F.


    Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive, it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date, to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell, which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage.

  16. Operator splitting for two-dimensional incompressible fluid equations

    Holden, Helge; Karper, Trygve K


    We analyze splitting algorithms for a class of two-dimensional fluid equations, which includes the incompressible Navier-Stokes equations and the surface quasi-geostrophic equation. Our main result is that the Godunov and Strang splitting methods converge with the expected rates provided the initial data are sufficiently regular.

  17. Pulse splitting in nonlinear media with anisotropic dispersion properties

    Bergé, L.; Juul Rasmussen, J.; Schmidt, M.R.


    to a singularity in the transverse plane. Instead, the pulse spreads out along the direction of negative dispersion and splits up into small-scale cells, which may undergo further splitting events. The analytical results are supported by direct numerical solutions of the three dimensional cubic Schrodinger...

  18. Towards Highly Efficient Bias-Free Solar Water Splitting

    Abdi, F.F.


    Solar water splitting has attracted significant attention due to its potential of converting solar to chemical energy. It uses semiconductor to convert sunlight into electron-hole pairs, which then split water into hydrogen and oxygen. The hydrogen can be used as a renewable fuel, or it can serve as

  19. 26 CFR 1.482-6 - Profit split method.


    ...) of this section. (B) Comparability. The first step of the residual profit split relies on market... market returns for the routine contributions. The second step of the residual profit split, however, may... reduced to the extent that the allocation of profits in the second step does not rely on market benchmarks...

  20. Towards Highly Efficient Bias-Free Solar Water Splitting

    Abdi, F.F.


    Solar water splitting has attracted significant attention due to its potential of converting solar to chemical energy. It uses semiconductor to convert sunlight into electron-hole pairs, which then split water into hydrogen and oxygen. The hydrogen can be used as a renewable fuel, or it can serve as

  1. The Almost Split Sequences for Trivial Extensions of Hereditary Algebras

    Zhang Yu-lin; Yao Hai-lou


    Let A be a basic hereditary artin algebra and R=AnQ be the trivial extension of A by its minimal injective cogenerator Q. We construct some right (left) almost split morphisms and irreducible morphisms in modR through the correspond-ing morphisms in modA. Furthermore, we can determine its almost split sequences in modR.

  2. Time bucket length and lot-splitting approach

    Riezebos, J


    The effect of time bucket length on the choice of a lot-splitting approach is studied. Due to the continuing pressure to reduce throughput times and increase efficiency, managers apply various measures, such as lot splitting and cycle time reduction programmes, that change the length of the time buc

  3. Split-liver transplantation : An underused resource in liver transplantation

    Rogiers, Xavier; Sieders, Egbert


    Split-liver transplantation is an efficient tool to increase the number of liver grafts available for transplantation. More than 15 years after its introduction only the classical splitting technique has reached broad application. Consequently children are benefiting most from this possibility. Full

  4. Photocatalytic Water-Splitting Reaction from Catalytic and Kinetic Perspectives

    Hisatomi, Takashi


    Abstract: Some particulate semiconductors loaded with nanoparticulate catalysts exhibit photocatalytic activity for the water-splitting reaction. The photocatalysis is distinct from the thermal catalysis because photocatalysis involves photophysical processes in particulate semiconductors. This review article presents a brief introduction to photocatalysis, followed by kinetic aspects of the photocatalytic water-splitting reaction.Graphical Abstract: [Figure not available: see fulltext.

  5. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting.

    Hisatomi, Takashi; Kubota, Jun; Domen, Kazunari


    Photocatalytic and photoelectrochemical water splitting under irradiation by sunlight has received much attention for production of renewable hydrogen from water on a large scale. Many challenges still remain in improving energy conversion efficiency, such as utilizing longer-wavelength photons for hydrogen production, enhancing the reaction efficiency at any given wavelength, and increasing the lifetime of the semiconductor materials. This introductory review covers the fundamental aspects of photocatalytic and photoelectrochemical water splitting. Controlling the semiconducting properties of photocatalysts and photoelectrode materials is the primary concern in developing materials for solar water splitting, because they determine how much photoexcitation occurs in a semiconductor under solar illumination and how many photoexcited carriers reach the surface where water splitting takes place. Given a specific semiconductor material, surface modifications are important not only to activate the semiconductor for water splitting but also to facilitate charge separation and to upgrade the stability of the material under photoexcitation. In addition, reducing resistance loss and forming p-n junction have a significant impact on the efficiency of photoelectrochemical water splitting. Correct evaluation of the photocatalytic and photoelectrochemical activity for water splitting is becoming more important in enabling an accurate comparison of a number of studies based on different systems. In the latter part, recent advances in the water splitting reaction under visible light will be presented with a focus on non-oxide semiconductor materials to give an overview of the various problems and solutions.

  6. Evaluation of Certain Pharmaceutical Quality Attributes of Lisinopril Split Tablets

    Khairi M. S. Fahelelbom


    Full Text Available Tablet splitting is an accepted practice for the administration of drugs for a variety of reasons, including dose adjustment, ease of swallowing and cost savings. The purpose of this study was to evaluate the physical properties of lisinopril tablets as a result of splitting the tablets either by hand or with a splitting device. The impact of the splitting technique of lisinopril (Zestril® tablets, 20 mg on certain physical parameters such as weight variation, friability, disintegration, dissolution and drug content were studied. Splitting the tablets either by hand or with a splitter resulted in a minute but statistically significant average weight loss of <0.25% of the tablet to the surrounding environment. The variability in the weight of the hand-split tablet halves was more pronounced (37 out of 40 tablet halves varied by more than 10% from the mean weight than when using the tablet splitter (3 out of 40 tablet halves. The dissolution and drug content of the hand-split tablets were therefore affected because of weight differences. However, the pharmacopoeia requirements for friability and disintegration time were met. Hand splitting of tablets can result in an inaccurate dose and may present clinical safety issues, especially for drugs with a narrow therapeutic window in which large fluctuations in drug concentrations are undesirable. It is recommended to use tablets with the exact desired dose, but if this is not an option, then a tablet splitter could be used.

  7. Final Report

    Dr. Meng Tao


    The objective of this DOE SAI project is to demonstrate the feasibility of electrodeposited and solution-doped transparent conducting oxides (TCOs) such as zinc oxide with resistivity in the mid-10{sup -4} {Omega}-cm range. The target application is an 'on-top' TCO which can be deposited on semiconductors in thin-film and future solar cells including amorphous silicon, copper indium gallium selenide and emerging solar cells. There is no solution-prepared on-top TCO currently used in commercial solar cells. This project, if successful, will fill this gap. Our technical objectives include electrodeposited TCOs with (1) resistivity in the mid-10{sup -4} {Omega}-cm range, (2) post-deposition annealing below 300 C and (3) no-vacuum processing or low-vacuum processing. All the three research objectives listed above have been accomplished in the 14-month period from July 1, 2009 through September 30, 2010. The most noticeable accomplishments of this project are (1) identification of a terawatt-scale dopant for zinc oxide, i.e. yttrium, whose known reserve is enough for 60 peak terawatts of thin-film solar cells; (2) demonstration of a record-low resistivity, 6.3 x 10{sup -5} {Omega}-cm, in solution-deposited zinc oxide with an abundant dopant; and (3) the record-low resistivity was accomplished with a maximum process temperature of 300 C and without vacuum annealing. Industrial applications of the new yttrium-doped zinc oxide are being pursued, including (1) green deposition of yttrium-doped zinc oxide to reduce water consumption during deposition and (2) search for an industrial partner to develop an electrochemical tool for large-area uniform deposition of yttrium-doped zinc oxide.

  8. Efficient numerical simulation of ocean hydrodynamics by a splitting procedure

    Hans Berntsen


    Full Text Available A splitting algorithm for fast and slow modes of ocean hydrodynamics is presented. The purpose of the splitting is to reduce the large amount of computational work needed for simulating long real-time periods. The essential point of the splitting is that the external gravity wave terms are extracted from the fully three-dimensional equations of horizontal motion, allowing the reduced equations to be integrated with a larger time step than the original model. The fast external gravity waves are traced by a depth integrated system which is weakly coupled to the reduced three-dimensional momentum equations. The split model shows a radical decrease in computational time and the accuracy is of the same order as in the non-split case.

  9. A study on springback of bending linear flow split profiles

    Mahajan, P.; Taplick, C.; Özel, M.; Groche, P.


    The bending of linear flow split profiles made up of high strength materials involves high bending loads leading to high springback and geometrical defects. In addition, the linear flow split profiles are made stronger due to the high plastic deformation applied by the process itself. The bending method proposed in this paper combines the linear flow splitting process with a movable bending tool. The aim of the research was to investigate the effect of superimposed stresses exerted by the linear flow splitting process on bending load and springback of the profile by using a finite element model. The latter was validated by means of experimental results. The results show that the bending loads and the springback were reduced by increasing the superposition of stress applied by the linear flow splitting process. The reduction in the bending loads leads to a reduction in the cross-sectional distortion. Furthermore, the springback was compensated by controlling the amount of superimposed stress.

  10. Maximum likelihood estimation for cytogenetic dose-response curves

    Frome, E.L; DuFrain, R.J.


    In vitro dose-response curves are used to describe the relation between the yield of dicentric chromosome aberrations and radiation dose for human lymphocytes. The dicentric yields follow the Poisson distribution, and the expected yield depends on both the magnitude and the temporal distribution of the dose for low LET radiation. A general dose-response model that describes this relation has been obtained by Kellerer and Rossi using the theory of dual radiation action. The yield of elementary lesions is kappa(..gamma..d + g(t, tau)d/sup 2/), where t is the time and d is dose. The coefficient of the d/sup 2/ term is determined by the recovery function and the temporal mode of irradiation. Two special cases of practical interest are split-dose and continuous exposure experiments, and the resulting models are intrinsically nonlinear in the parameters. A general purpose maximum likelihood estimation procedure is described and illustrated with numerical examples from both experimental designs. Poisson regression analysis is used for estimation, hypothesis testing, and regression diagnostics. Results are discussed in the context of exposure assessment procedures for both acute and chronic human radiation exposure.

  11. New downshifted maximum in stimulated electromagnetic emission spectra

    Sergeev, Evgeny; Grach, Savely

    A new spectral maximum in spectra of stimulated electromagnetic emission of the ionosphere (SEE, [1]) was detected in experiments at the SURA facility in 2008 for the pump frequencies f0 4.4-4.5 MHz, most stably for f0 = 4.3 MHz, the lowest possible pump frequency at the SURA facility. The new maximum is situated at frequency shifts ∆f -6 kHz from the pump wave frequency f0 , ∆f = fSEE - f0 , somewhat closer to the f0 than the well known [2,3] Downshifted Maximum in the SEE spectrum at ∆f -9 kHz. The detection and detailed study of the new feature (which we tentatively called the New Downshifted Maximum, NDM) became possible due to high frequency resolution in spectral analysis. The following properties of the NDM are established. (i) The NDM appears in the SEE spectra simultaneously with the DM and UM features after the pump turn on (recall that the less intensive Upshifted Maximum, UM, is situated at ∆f +(6-8) kHz [2,3]). The NDM can't be attributed to 1 DM [4] or Narrow Continuum Maximum (NCM, 2 [5]) SEE features, as well as to splitted DM near gyroharmonics [2]. (ii) The NDM is observed as prominent feature for maximum pump power of the SURA facility P ≈ 120 MW ERP, for which the DM is almost covered by the Broad Continuum SEE feature [2,3]. For P ˜ 30-60 MW ERP the DM and NDM have comparable intensities. For the lesser pump power the DM prevails in the SEE spectrum, while the NDM becomes invisible being covered by the thermal Narrow Continuum feature [2]. (iii) The NDM is exactly symmetrical for the UM relatively to f0 when the former one is observed, although the UM frequency offset increases up to ∆fUM ≈ +9 kHz with a decrease of the pump power up to P ≈ 4 MW ERP. The DM formation in the SEE spectrum is attributed to a three-wave interaction between the upper and lower hybrid waves in the ionosphere, and the lower hybrid frequency ( 7 kHz) determines the frequency offset of the DM high frequency flank [2,6]. The detection of the NDM with

  12. Final Report

    Webb, Robert C. [Texas A& M University; Kamon, Teruki [Texas A& M University; Toback, David [Texas A& M University; Safonov, Alexei [Texas A& M University; Dutta, Bhaskar [Texas A& M University; Dimitri, Nanopoulos [Texas A& M University; Pope, Christopher [Texas A& M University; White, James [Texas A& M University


    Overview The High Energy Physics Group at Texas A&M University is submitting this final report for our grant number DE-FG02-95ER40917. This grant has supported our wide range of research activities for over a decade. The reports contained here summarize the latest work done by our research team. Task A (Collider Physics Program): CMS & CDF Profs. T. Kamon, A. Safonov, and D. Toback co-lead the Texas A&M (TAMU) collider program focusing on CDF and CMS experiments. Task D: Particle Physics Theory Our particle physics theory task is the combined effort of Profs. B. Dutta, D. Nanopoulos, and C. Pope. Task E (Underground Physics): LUX & NEXT Profs. R. Webb and J. White(deceased) lead the Xenon-based underground research program consisting of two main thrusts: the first, participation in the LUX two-phase xenon dark matter search experiment and the second, detector R&D primarily aimed at developing future detectors for underground physics (e.g. NEXT and LZ).

  13. Triadic conceptual structure of the maximum entropy approach to evolution.

    Herrmann-Pillath, Carsten; Salthe, Stanley N


    Many problems in evolutionary theory are cast in dyadic terms, such as the polar oppositions of organism and environment. We argue that a triadic conceptual structure offers an alternative perspective under which the information generating role of evolution as a physical process can be analyzed, and propose a new diagrammatic approach. Peirce's natural philosophy was deeply influenced by his reception of both Darwin's theory and thermodynamics. Thus, we elaborate on a new synthesis which puts together his theory of signs and modern Maximum Entropy approaches to evolution in a process discourse. Following recent contributions to the naturalization of Peircean semiosis, pointing towards 'physiosemiosis' or 'pansemiosis', we show that triadic structures involve the conjunction of three different kinds of causality, efficient, formal and final. In this, we accommodate the state-centered thermodynamic framework to a process approach. We apply this on Ulanowicz's analysis of autocatalytic cycles as primordial patterns of life. This paves the way for a semiotic view of thermodynamics which is built on the idea that Peircean interpretants are systems of physical inference devices evolving under natural selection. In this view, the principles of Maximum Entropy, Maximum Power, and Maximum Entropy Production work together to drive the emergence of information carrying structures, which at the same time maximize information capacity as well as the gradients of energy flows, such that ultimately, contrary to Schrödinger's seminal contribution, the evolutionary process is seen to be a physical expression of the Second Law.

  14. A dual method for maximum entropy restoration

    Smith, C. B.


    A simple iterative dual algorithm for maximum entropy image restoration is presented. The dual algorithm involves fewer parameters than conventional minimization in the image space. Minicomputer test results for Fourier synthesis with inadequate phantom data are given.

  15. Maximum Throughput in Multiple-Antenna Systems

    Zamani, Mahdi


    The point-to-point multiple-antenna channel is investigated in uncorrelated block fading environment with Rayleigh distribution. The maximum throughput and maximum expected-rate of this channel are derived under the assumption that the transmitter is oblivious to the channel state information (CSI), however, the receiver has perfect CSI. First, we prove that in multiple-input single-output (MISO) channels, the optimum transmission strategy maximizing the throughput is to use all available antennas and perform equal power allocation with uncorrelated signals. Furthermore, to increase the expected-rate, multi-layer coding is applied. Analogously, we establish that sending uncorrelated signals and performing equal power allocation across all available antennas at each layer is optimum. A closed form expression for the maximum continuous-layer expected-rate of MISO channels is also obtained. Moreover, we investigate multiple-input multiple-output (MIMO) channels, and formulate the maximum throughput in the asympt...

  16. Photoemission spectromicroscopy with MAXIMUM at Wisconsin

    Ng, W.; Ray-Chaudhuri, A.K.; Cole, R.K.; Wallace, J.; Crossley, S.; Crossley, D.; Chen, G.; Green, M.; Guo, J.; Hansen, R.W.C.; Cerrina, F.; Margaritondo, G. (Dept. of Electrical Engineering, Dept. of Physics and Synchrotron Radiation Center, Univ. of Wisconsin, Madison (USA)); Underwood, J.H.; Korthright, J.; Perera, R.C.C. (Center for X-ray Optics, Accelerator and Fusion Research Div., Lawrence Berkeley Lab., CA (USA))


    We describe the development of the scanning photoemission spectromicroscope MAXIMUM at the Wisoncsin Synchrotron Radiation Center, which uses radiation from a 30-period undulator. The article includes a discussion of the first tests after the initial commissioning. (orig.).

  17. Maximum-likelihood method in quantum estimation

    Paris, M G A; Sacchi, M F


    The maximum-likelihood method for quantum estimation is reviewed and applied to the reconstruction of density matrix of spin and radiation as well as to the determination of several parameters of interest in quantum optics.

  18. Maximum Correntropy Unscented Kalman Filter for Spacecraft Relative State Estimation.

    Liu, Xi; Qu, Hua; Zhao, Jihong; Yue, Pengcheng; Wang, Meng


    A new algorithm called maximum correntropy unscented Kalman filter (MCUKF) is proposed and applied to relative state estimation in space communication networks. As is well known, the unscented Kalman filter (UKF) provides an efficient tool to solve the non-linear state estimate problem. However, the UKF usually plays well in Gaussian noises. Its performance may deteriorate substantially in the presence of non-Gaussian noises, especially when the measurements are disturbed by some heavy-tailed impulsive noises. By making use of the maximum correntropy criterion (MCC), the proposed algorithm can enhance the robustness of UKF against impulsive noises. In the MCUKF, the unscented transformation (UT) is applied to obtain a predicted state estimation and covariance matrix, and a nonlinear regression method with the MCC cost is then used to reformulate the measurement information. Finally, the UT is adopted to the measurement equation to obtain the filter state and covariance matrix. Illustrative examples demonstrate the superior performance of the new algorithm.

  19. Descent Assisted Split Habitat Lunar Lander Concept

    Mazanek, Daniel D.; Goodliff, Kandyce; Cornelius, David M.


    The Descent Assisted Split Habitat (DASH) lunar lander concept utilizes a disposable braking stage for descent and a minimally sized pressurized volume for crew transport to and from the lunar surface. The lander can also be configured to perform autonomous cargo missions. Although a braking-stage approach represents a significantly different operational concept compared with a traditional two-stage lander, the DASH lander offers many important benefits. These benefits include improved crew egress/ingress and large-cargo unloading; excellent surface visibility during landing; elimination of the need for deep-throttling descent engines; potentially reduced plume-surface interactions and lower vertical touchdown velocity; and reduced lander gross mass through efficient mass staging and volume segmentation. This paper documents the conceptual study on various aspects of the design, including development of sortie and outpost lander configurations and a mission concept of operations; the initial descent trajectory design; the initial spacecraft sizing estimates and subsystem design; and the identification of technology needs

  20. Field-Split Preconditioned Inexact Newton Algorithms

    Liu, Lulu


    The multiplicative Schwarz preconditioned inexact Newton (MSPIN) algorithm is presented as a complement to additive Schwarz preconditioned inexact Newton (ASPIN). At an algebraic level, ASPIN and MSPIN are variants of the same strategy to improve the convergence of systems with unbalanced nonlinearities; however, they have natural complementarity in practice. MSPIN is naturally based on partitioning of degrees of freedom in a nonlinear PDE system by field type rather than by subdomain, where a modest factor of concurrency can be sacrificed for physically motivated convergence robustness. ASPIN, originally introduced for decompositions into subdomains, is natural for high concurrency and reduction of global synchronization. We consider both types of inexact Newton algorithms in the field-split context, and we augment the classical convergence theory of ASPIN for the multiplicative case. Numerical experiments show that MSPIN can be significantly more robust than Newton methods based on global linearizations, and that MSPIN can be more robust than ASPIN and maintain fast convergence even for challenging problems, such as high Reynolds number Navier--Stokes equations.

  1. Image Segmentation Using Two Step Splitting Function

    Gopal Kumar Jha


    Full Text Available Image processing and computer vision is widely using Level Set Method (LSM. In conventional level set formulation, irregularities are developed during evolution of level set function, which cause numerical errors and eventually destroy the stability of the evolution. Therefore a numerical remedy called re-initialization is typically applied periodically to replace the degraded level set function. However re –initialization raises serious problem that is when and how it should be performed and also affects numerical accuracy in an undesirable way. To overcome this drawback of re-initialization process, a new variation level set formulation called Distance regularization level set evolution (DRLSE is introduced in which the regularity of the level set function is internally maintained during the level set evolution. DRLSE allows more general and effective initialization of the level set function. But DRLSE uses relatively large number of steps to ensure efficient numerical accuracy. Here in this thesis we are implementing faster and equally efficient computation technique called two step splitting method (TSSM. TSSM is physio-chemical reaction diffusion equation in which firstly LSE equation get iterated and then regularize the level set function from the first step to ensure the stability and hence re-initialization is completely eliminated from LSE which also satisfy DRLSE.

  2. Split-Field Magnet facility upgraded


    The Split Field Magnet (SFM) was the largest spectrometer for particles from beam-beam collisions in the ISR. It could determine particle momenta in a large solid angle, but was designed mainly for the analysis of forward travelling particles.As the magnet was working on the ISR circulating beams, its magnetic field had to be such as to restore the correct proton orbit.The SFM, therefore, produced zero field at the crossing point and fields of opposite signs upstream and downstream of it and was completed by 2 large and 2 small compensator magnets. The gradient effects were corrected by magnetic channels equipped with movable flaps. The useful magnetic field volume was 28 m3, the induction in the median plane 1.14 T, the gap heigth 1.1 m, the length 10.5 m, the weight about 1000 ton. Concerning the detectors, the SFM was the first massive application of multiwire proportional chambers (about 70000 wires) which filled the main and the large compensator magnets. In 1976 an improved programme was started with tw...

  3. Magnetic Splitting of Molecular Lines in Sunspot

    Berdyugina, S. V.; Frutiger, C.; Solanki, S. K.

    A study of molecular lines in sunspots is of particular interest because of their high temperature and pressure sensitivity. Many of them are also magnetically sensitive, but this was not yet widely investigated. With high-resolution, high signal-to-noise Fourier spectroscopy in four Stokes parameters now available, the use of molecular lines for studying the structure of sunspots brings real gains. One is the extension of spot models, including magnetic field, up to layers, where atomic lines suffer from NLTE effects but molecules can still be treated in the LTE approximation. Equally important is the fact that since molecular lines are extremely temperature sensitive they can be used to probe the thermal and magnetic structure of the coolest parts of sunspots. We present calculations of splitting and the Stokes parameters for a number of molecular lines in the visible and near-infrared regions. Our first selections are the green system of MgH A2Π-X2σ and the TiO triplet α, γ' and γ systems as the most studied band systems in the sunspot spectrum. The calculations involve different regimes of the molecular Zeeman effect, up to the complete Paschen-Back effect for individual lines. We look for molecular lines which can be used along with atomic lines to derive magnetic, thermal and dynamic properties of the umbra.

  4. Total Variation Deconvolution using Split Bregman

    Pascal Getreuer


    Full Text Available Deblurring is the inverse problem of restoring an image that has been blurred and possibly corrupted with noise. Deconvolution refers to the case where the blur to be removed is linear and shift-invariant so it may be expressed as a convolution of the image with a point spread function. Convolution corresponds in the Fourier domain to multiplication, and deconvolution is essentially Fourier division. The challenge is that since the multipliers are often small for high frequencies, direct division is unstable and plagued by noise present in the input image. Effective deconvolution requires a balance between frequency recovery and noise suppression. Total variation (TV regularization is a successful technique for achieving this balance in deblurring problems. It was originally developed for image denoising by Rudin, Osher, and Fatemi and then applied to deconvolution by Rudin and Osher. In this article, we discuss TV-regularized deconvolution with Gaussian noise and its efficient solution using the split Bregman algorithm of Goldstein and Osher. We show a straightforward extension for Laplace or Poisson noise and develop empirical estimates for the optimal value of the regularization parameter λ.

  5. The maximum entropy technique. System's statistical description

    Belashev, B Z


    The maximum entropy technique (MENT) is applied for searching the distribution functions of physical values. MENT takes into consideration the demand of maximum entropy, the characteristics of the system and the connection conditions, naturally. It is allowed to apply MENT for statistical description of closed and open systems. The examples in which MENT had been used for the description of the equilibrium and nonequilibrium states and the states far from the thermodynamical equilibrium are considered

  6. 19 CFR 114.23 - Maximum period.


    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Maximum period. 114.23 Section 114.23 Customs... CARNETS Processing of Carnets § 114.23 Maximum period. (a) A.T.A. carnet. No A.T.A. carnet with a period of validity exceeding 1 year from date of issue shall be accepted. This period of validity cannot be...

  7. Maximum-Likelihood Detection Of Noncoherent CPM

    Divsalar, Dariush; Simon, Marvin K.


    Simplified detectors proposed for use in maximum-likelihood-sequence detection of symbols in alphabet of size M transmitted by uncoded, full-response continuous phase modulation over radio channel with additive white Gaussian noise. Structures of receivers derived from particular interpretation of maximum-likelihood metrics. Receivers include front ends, structures of which depends only on M, analogous to those in receivers of coherent CPM. Parts of receivers following front ends have structures, complexity of which would depend on N.


    Pandya A M


    Full Text Available Sexual identification from the skeletal parts has medico legal and anthropological importance. Present study aims to obtain values of maximum femoral length and to evaluate its possible usefulness in determining correct sexual identification. Study sample consisted of 184 dry, normal, adult, human femora (136 male & 48 female from skeletal collections of Anatomy department, M. P. Shah Medical College, Jamnagar, Gujarat. Maximum length of femur was considered as maximum vertical distance between upper end of head of femur and the lowest point on femoral condyle, measured with the osteometric board. Mean Values obtained were, 451.81 and 417.48 for right male and female, and 453.35 and 420.44 for left male and female respectively. Higher value in male was statistically highly significant (P< 0.001 on both sides. Demarking point (D.P. analysis of the data showed that right femora with maximum length more than 476.70 were definitely male and less than 379.99 were definitely female; while for left bones, femora with maximum length more than 484.49 were definitely male and less than 385.73 were definitely female. Maximum length identified 13.43% of right male femora, 4.35% of right female femora, 7.25% of left male femora and 8% of left female femora. [National J of Med Res 2011; 1(2.000: 67-70


    Goran Dimitrić


    Full Text Available It is possible to analyse swimming results from more aspects. One of the common analysis is how swimming time in some, standardised sectors affects on final result. During swimming in 50m swimming disciplines in short course pools (25meters, lenght of the pool is divided in followed sectors: surface breakpoint positions & times after start, start time 15m, split time 20m, surface breakpoint positions & times after turn, split time 35m, split time 35m, split time 35m and final time. Confirming, affects of swimming time in some sectors on final result, it is possible to find difference bettwen good and bad swimmers. This analyse was managed on swimming results from European short course swimming championships - Szczecin 2011, Poland.

  10. A new class of photo-catalytic materials and a novel principle for efficient water splitting under infrared and visible light - MgB2 as unexpected example

    Kravets, V G


    Water splitting is unanimously recognized as environment friendly, potentially low cost and renewable energy solution based on the future hydrogen economy. Especially appealing is photo-catalytic water splitting whereby a suitably chosen catalyst dramatically improves efficiency of the hydrogen production driven by direct sunlight and allows it to happen even at zero driving potential. Here, we suggest a new class of stable photo-catalysts and the corresponding principle for catalytic water splitting in which infrared and visible light play the main role in producing the photocurrent and hydrogen. The new class of catalysts based on ionic binary metals with layered graphite-like structures which effectively absorb visible and infrared light facilitating the reaction of water splitting, suppress the inverse reaction of ion recombination by separating ions due to internal electric fields existing near alternating layers, provide the sites for ion trapping of both polarities, and finally deliver the electrons an...

  11. Enhanced Valley Splitting for Quantum Electronics in Silicon

    Saraiva, Andre


    Silicon is a placid environment for quantum degrees of freedom with long spin and valley coherence times. A natural drawback is that the same features that protect the quantum state from its environment also hamper its control with external fields. Indeed, engineered nanostructures typically lead to sub-meV splittings between valley states, hindering the implementation of both spin and valley based quantum devices. We will discuss the microscopic theory of valley splitting, presenting three schemes to control valleys on a scale higher than 1 meV: a) in a quantum well, the adoption of a barrier constituted of a layered heterostructure might lead to constructive reflection if the layer thicknesses match the electron wavelength, in analogy with a Bragg mirror; b) the disparity between the high valley splitting in a impurity donor potential and the low splitting in a Si/Insulator interface may be harnessed controlling the tunneling between these two states, so that the valley splitting may be controlled digitally; c) intrinsic Tamm/Shockley interface states might strongly hybridize with conduction states, leading to a much enhanced valley splitting, and its contribution to the 2DEG ground state may be experimentally identified. We argue that this effect is responsible for the enhanced splitting in Si/BOX interfaces.

  12. FY07 LDRD Final Report Precision, Split Beam, Chirped-Pulse, Seed Laser Technology

    Dawson, J W; Messerly, M J; Phan, H H; Crane, J K; Beach, R J; Siders, C W; Barty, C J


    The goal of this LDRD ER was to develop a robust and reliable technology to seed high-energy laser systems with chirped pulses that can be amplified to kilo-Joule energies and recompressed to sub-picosecond pulse widths creating extremely high peak powers suitable for petawatt class physics experiments. This LDRD project focused on the development of optical fiber laser technologies compatible with the current long pulse National Ignition Facility (NIF) seed laser. New technologies developed under this project include, high stability mode-locked fiber lasers, fiber based techniques for reduction of compressed pulse pedestals and prepulses, new compact stretchers based on chirped fiber Bragg gratings (CFBGs), new techniques for manipulation of chirped pulses prior to amplification and new high-energy fiber amplifiers. This project was highly successful and met virtually all of its goals. The National Ignition Campaign has found the results of this work to be very helpful. The LDRD developed system is being employed in experiments to engineer the Advanced Radiographic Capability (ARC) front end and the fully engineered version of the ARC Front End will employ much of the technology and techniques developed here.


    Five soil sample splitting methods (riffle splitting, paper cone riffle splitting, fractional shoveling, coning and quartering, and grab sampling) were evaluated with synthetic samples to verify Pierre Gy sampling theory expectations. Individually prepared samples consisting of l...

  14. To Split or Not to Split, That Is the Question in Some Shallow Water Equations

    Martínez, Vicente


    In this paper we analyze the use of time splitting techniques for solving shallow water equation. We discuss some properties that these schemes should satisfy so that interactions between the source term and the shock waves are controlled. This paper shows that these schemes must be well balanced in the meaning expressed by Greenberg and Leroux [5]. More speci?cally, we analyze in what cases it is enough to verify an Approximate C-property and in which cases it is required to verify an Exact C-property (see [1], [2]). We also include some numerical tests in order to justify our reasoning.

  15. A Split-Path Schema-Based RFID Data Storage Model in Supply Chain Management

    Jianfeng Zhang


    Full Text Available In modern supply chain management systems, Radio Frequency IDentification (RFID technology has become an indispensable sensor technology and massive RFID data sets are expected to become commonplace. More and more space and time are needed to store and process such huge amounts of RFID data, and there is an increasing realization that the existing approaches cannot satisfy the requirements of RFID data management. In this paper, we present a split-path schema-based RFID data storage model. With a data separation mechanism, the massive RFID data produced in supply chain management systems can be stored and processed more efficiently. Then a tree structure-based path splitting approach is proposed to intelligently and automatically split the movement paths of products . Furthermore, based on the proposed new storage model, we design the relational schema to store the path information and time information of tags, and some typical query templates and SQL statements are defined. Finally, we conduct various experiments to measure the effect and performance of our model and demonstrate that it performs significantly better than the baseline approach in both the data expression and path-oriented RFID data query performance.

  16. [Optimized protocols for interphase FISH analysis of imprints and sections using split signal probes].

    Pelluard-Nehme, F; Dupont, T; Turmo, M; Merlio, J-P; Belaud-Rotureau, M-A


    Fluorescent in situ hybridization (FISH) analysis is a molecular technique allowing the detection of recurrent translocations in cancer. Several hybridization protocols were assayed in order to evaluate their performances for interphase FISH analysis of histological sections and imprints using split probes. Adult and foetal lymphoid tissues were selected. Touch imprints of fresh (EF) or frozen (EC) tissues, sections (CF) and isolated nuclei (NI) of formol-fixed paraffin-embedded tissues were performed. The cut-off values of the IGH, IGlambda, BCL-2, BCL-6, CCND1 and MYC DNA FISH split signal probes were calculated for adult reactive lymph nodes on the different histological preparations (EC, CF, CC, NI) and on several tissues for the IGH and BCL-6 probes. In reactive lymph nodes, the cut-off values of the probes were between 3 and 13% and found independent of the preparation type. Conversely, slight but significant variations of the cut-off level were observed when different foetal control tissues were assayed with the same probe set. Finally, this study provided optimized-protocols for FISH analysis of either fresh/frozen imprints or formalin-fixed paraffin-embedded sections using split signal DNA probes.

  17. Evolution of a split RNA polymerase as a versatile biosensor platform.

    Pu, Jinyue; Zinkus-Boltz, Julia; Dickinson, Bryan C


    Biosensors that transduce target chemical and biochemical inputs into genetic outputs are essential for bioengineering and synthetic biology. Current biosensor design strategies are often limited by a low signal-to-noise ratio, the extensive optimization required for each new input, and poor performance in mammalian cells. Here we report the development of a proximity-dependent split RNA polymerase (RNAP) as a general platform for biosensor engineering. After discovering that interactions between fused proteins modulate the assembly of a split T7 RNAP, we optimized the split RNAP components for protein-protein interaction detection by phage-assisted continuous evolution (PACE). We then applied the resulting activity-responsive RNAP (AR) system to create biosensors that can be activated by light and small molecules, demonstrating the 'plug-and-play' nature of the platform. Finally, we validated that ARs can interrogate multidimensional protein-protein interactions and trigger RNA nanostructure production, protein synthesis, and gene knockdown in mammalian systems, illustrating the versatility of ARs in synthetic biology applications.

  18. Predictive-model-based dynamic coordination control strategy for power-split hybrid electric bus

    Zeng, Xiaohua; Yang, Nannan; Wang, Junnian; Song, Dafeng; Zhang, Nong; Shang, Mingli; Liu, Jianxin


    Parameter-matching methods and optimal control strategies of the top-selling hybrid electric vehicle (HEV), namely, power-split HEV, are widely studied. In particular, extant research on control strategy focuses on the steady-state energy management strategy to obtain better fuel economy. However, given that multi-power sources are highly coupled in power-split HEVs and influence one another during mode shifting, conducting research on dynamic coordination control strategy (DCCS) to achieve riding comfort is also important. This paper proposes a predictive-model-based DCCS. First, the dynamic model of the objective power-split HEV is built and the mode shifting process is analyzed based on the developed model to determine the reason for the system shock generated. Engine torque estimation algorithm is then designed according to the principle of the nonlinear observer, and the prediction model of the degree of shock is established based on the theory of model predictive control. Finally, the DCCS with adaptation for a complex driving cycle is realized by combining the feedback control and the predictive model. The presented DCCS is validated on the co-simulation platform of AMESim and Simulink. Results show that the shock during mode shifting is well controlled, thereby improving riding comfort.

  19. Nonlinear Fracture Mechanics and Plasticity of the Split Cylinder Test

    Olesen, John Forbes; Østergaard, Lennart; Stang, Henrik


    demonstrates the influence of varying geometry or constitutive properties. For a split cylinder test in load control it is shown how the ultimate load is either plasticity dominated or fracture mechanics dominated. The transition between the two modes is related to changes in geometry or constitutive......The split cylinder testis subjected to an analysis combining nonlinear fracture mechanics and plasticity. The fictitious crack model is applied for the analysis of splitting tensile fracture, and the Mohr-Coulomb yield criterion is adopted for modelling the compressive crushing/sliding failure. Two...

  20. Information Theoretic Authentication and Secrecy Codes in the Splitting Model

    Huber, Michael


    In the splitting model, information theoretic authentication codes allow non-deterministic encoding, that is, several messages can be used to communicate a particular plaintext. Certain applications require that the aspect of secrecy should hold simultaneously. Ogata-Kurosawa-Stinson-Saido (2004) have constructed optimal splitting authentication codes achieving perfect secrecy for the special case when the number of keys equals the number of messages. In this paper, we establish a construction method for optimal splitting authentication codes with perfect secrecy in the more general case when the number of keys may differ from the number of messages. To the best knowledge, this is the first result of this type.

  1. Degeneracy and Split of Defect States in Photonic Crystals

    黄晓琴; 崔一平


    One-dimensional photonic crystals with two or more structural defects are studied. We observed an interesting characteristic of transmission band structure of photonic crystals with defects using the transmission-matrixmethod simulation. The transmission states in the wide photonic band gap caused by defects revealdegeneracy and split in certain conditions. Every split state is contributed by coupling of all defects in a photonic crystal.Using the tight-binding method, we obtain an approximate analytic expression for the split frequency of photonic crystals with two structural defects.

  2. Split-Plot Designs with Mirror Image Pairs as Subplots

    Tyssedal, John; Kulahci, Murat; Bisgaard, Soren


    In this article we investigate two-level split-plot designs where the sub-plots consist of only two mirror image trials. Assuming third and higher order interactions negligible, we show that these designs divide the estimated effects into two orthogonal sub-spaces, separating sub-plot main effects...... and sub-plot by whole-plot interactions from the rest. Further we show how to construct split-plot designs of projectivity P≥3. We also introduce a new class of split-plot designs with mirror image pairs constructed from non-geometric Plackett–Burman designs. The design properties of such designs are very...

  3. SiC MOSFETs based split output half bridge inverter

    Li, Helong; Munk-Nielsen, Stig; Beczkowski, Szymon


    Body diode of SiC MOSFETs has a relatively high forward voltage drop and still experiences reverse recovery phenomenon. Half bridge with split output aims to decouple both the body diode and junction capacitance of SiC MOSFETs, therefore achieving a reduced switching loss in a bridge configuration....... This paper makes the current commutation mechanism and efficiency analysis of half bridge with split output based on SiC MOSFETs. Current commutation process analysis is illustrated together with LTspice simulation and afterwards, verified by the experimental results of a double pulse test circuit with split...

  4. Thermoelectric-induced unitary Cooper pair splitting efficiency

    Cao, Zhan; Fang, Tie-Feng [Center for Interdisciplinary Studies and Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Li, Lin [Department of Physics, Southern University of Science and Technology of China, Shenzhen 518005 (China); Luo, Hong-Gang [Center for Interdisciplinary Studies and Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Beijing Computational Science Research Center, Beijing 100084 (China)


    Thermoelectric effect is exploited to optimize the Cooper pair splitting efficiency in a Y-shaped junction, which consists of two normal leads coupled to an s-wave superconductor via double noninteracting quantum dots. Here, utilizing temperature difference rather than bias voltage between the two normal leads, and tuning the two dot levels such that the transmittance of elastic cotunneling process is particle-hole symmetric, we find current flowing through the normal leads are totally contributed from the splitting of Cooper pairs emitted from the superconductor. Such a unitary splitting efficiency is significantly better than the efficiencies obtained in experiments so far.

  5. Hollow core anti-resonant fibres with split cladding

    Huang, Xiaosheng; Qi, Wenliang; Ho, Daryl; Luan, Feng; Yong, Ken-Tye; Yoo, Seongwoo


    A split cladding fibers (SCF) is proposed as an additional design to the anti-resonant type fiber. The introduced split cladding helps to reduce the fabrication distortion. We use numerical simulations to compare the Kagome fibers (KFs) and the proposed split cladding fibers (SCFs) over two normalized transmission bands. It reveals that SCFs are able to maintain the desired round shape of silica cladding walls, hence improving the confinement loss (CL) compared to the KF. Fabrication of the SCF is demonstrated by the stack-and-draw technique. The near filed mode patterns are measured to prove the feasibility of this fiber design.

  6. Eigenmode Splitting in all Hydrogenated Amorphous Silicon Nitride Coupled Microcavity

    ZHANG Xian-Gao; HUANG Xin-Fan; CHEN Kun-Ji; QIAN Bo; CHEN San; DING Hong-Lin; LIU Sui; WANG Xiang; XU Jun; LI Wei


    Hydrogenated amorphous silicon nitride based coupled optical microcavity is investigated theoretically and experimentally. The theoretical calculation of the transmittance spectra of optical microcavity with one cavity and coupled microcavity with two-cavity is performed.The optical eigenmode splitting for coupled microcavity is found due to the interaction between the neighbouring localized cavities.Experimentally,the coupled cavity samples are prepared by plasma enhanced chemical vapour deposition and characterized by photoluminescence measurements.It is found that the photoluminescence peak wavelength agrees well with the cavity mode in the calculated transmittance spectra.This eigenmode splitting is analogous to the electron state energy splitting in diatom molecules.

  7. Behaviour of Hexagon Split Ring Resonators and Left-Handed Metamaterials

    ZHANG Fu-Li; ZHAO Qian; LIU Ya-Hong; LUO Chun-Rong; ZHAO Xiao-Peng


    We used a rectangular waveguide system to measure the X-band (8-12 GHz) transmission of hexagon split ring resonators (SRRs) alone and the left-handed metamaterials (LHMs) consisting of hexagon SRR array and wire array. The experimental results show that for an individual SRR, the resonance frequency increases with the azimuthal gap, but decreases with the radial gap. For two identical SRRs, the resonance peak has a shift because of the electromagnetic interaction, and the resonance frequency and the strength decrease with the separation distance. Finally, we demonstrate the left-handed effect of the LHMs.

  8. The maximum rotation of a galactic disc

    Bottema, R


    The observed stellar velocity dispersions of galactic discs show that the maximum rotation of a disc is on average 63% of the observed maximum rotation. This criterion can, however, not be applied to small or low surface brightness (LSB) galaxies because such systems show, in general, a continuously rising rotation curve until the outermost measured radial position. That is why a general relation has been derived, giving the maximum rotation for a disc depending on the luminosity, surface brightness, and colour of the disc. As a physical basis of this relation serves an adopted fixed mass-to-light ratio as a function of colour. That functionality is consistent with results from population synthesis models and its absolute value is determined from the observed stellar velocity dispersions. The derived maximum disc rotation is compared with a number of observed maximum rotations, clearly demonstrating the need for appreciable amounts of dark matter in the disc region and even more so for LSB galaxies. Matters h...

  9. Maximum permissible voltage of YBCO coated conductors

    Wen, J.; Lin, B.; Sheng, J.; Xu, J.; Jin, Z.; Hong, Z.; Wang, D.; Zhou, H.; Shen, X.; Shen, C.


    Superconducting fault current limiter (SFCL) could reduce short circuit currents in electrical power system. One of the most important thing in developing SFCL is to find out the maximum permissible voltage of each limiting element. The maximum permissible voltage is defined as the maximum voltage per unit length at which the YBCO coated conductors (CC) do not suffer from critical current (Ic) degradation or burnout. In this research, the time of quenching process is changed and voltage is raised until the Ic degradation or burnout happens. YBCO coated conductors test in the experiment are from American superconductor (AMSC) and Shanghai Jiao Tong University (SJTU). Along with the quenching duration increasing, the maximum permissible voltage of CC decreases. When quenching duration is 100 ms, the maximum permissible of SJTU CC, 12 mm AMSC CC and 4 mm AMSC CC are 0.72 V/cm, 0.52 V/cm and 1.2 V/cm respectively. Based on the results of samples, the whole length of CCs used in the design of a SFCL can be determined.

  10. Maximum magnitude earthquakes induced by fluid injection

    McGarr, Arthur F.


    Analysis of numerous case histories of earthquake sequences induced by fluid injection at depth reveals that the maximum magnitude appears to be limited according to the total volume of fluid injected. Similarly, the maximum seismic moment seems to have an upper bound proportional to the total volume of injected fluid. Activities involving fluid injection include (1) hydraulic fracturing of shale formations or coal seams to extract gas and oil, (2) disposal of wastewater from these gas and oil activities by injection into deep aquifers, and (3) the development of enhanced geothermal systems by injecting water into hot, low-permeability rock. Of these three operations, wastewater disposal is observed to be associated with the largest earthquakes, with maximum magnitudes sometimes exceeding 5. To estimate the maximum earthquake that could be induced by a given fluid injection project, the rock mass is assumed to be fully saturated, brittle, to respond to injection with a sequence of earthquakes localized to the region weakened by the pore pressure increase of the injection operation and to have a Gutenberg-Richter magnitude distribution with a b value of 1. If these assumptions correctly describe the circumstances of the largest earthquake, then the maximum seismic moment is limited to the volume of injected liquid times the modulus of rigidity. Observations from the available case histories of earthquakes induced by fluid injection are consistent with this bound on seismic moment. In view of the uncertainties in this analysis, however, this should not be regarded as an absolute physical limit.

  11. Maximum magnitude earthquakes induced by fluid injection

    McGarr, A.


    Analysis of numerous case histories of earthquake sequences induced by fluid injection at depth reveals that the maximum magnitude appears to be limited according to the total volume of fluid injected. Similarly, the maximum seismic moment seems to have an upper bound proportional to the total volume of injected fluid. Activities involving fluid injection include (1) hydraulic fracturing of shale formations or coal seams to extract gas and oil, (2) disposal of wastewater from these gas and oil activities by injection into deep aquifers, and (3) the development of enhanced geothermal systems by injecting water into hot, low-permeability rock. Of these three operations, wastewater disposal is observed to be associated with the largest earthquakes, with maximum magnitudes sometimes exceeding 5. To estimate the maximum earthquake that could be induced by a given fluid injection project, the rock mass is assumed to be fully saturated, brittle, to respond to injection with a sequence of earthquakes localized to the region weakened by the pore pressure increase of the injection operation and to have a Gutenberg-Richter magnitude distribution with a b value of 1. If these assumptions correctly describe the circumstances of the largest earthquake, then the maximum seismic moment is limited to the volume of injected liquid times the modulus of rigidity. Observations from the available case histories of earthquakes induced by fluid injection are consistent with this bound on seismic moment. In view of the uncertainties in this analysis, however, this should not be regarded as an absolute physical limit.

  12. Bearing splitting and near-surface source ranging in the direct zone of deep water

    Wu, Jun-Nan; Zhou, Shi-Hong; Peng, Zhao-Hui; Zhang, Yan; Zhang, Ren-He


    Sound multipath propagation is very important for target localization and identification in different acoustical zones of deep water. In order to distinguish the multipath characteristics in deep water, the Northwest Pacific Acoustic Experiment was conducted in 2015. A low-frequency horizontal line array towed at the depth of around 150 m on a receiving ship was used to receive the noise radiated by the source ship. During this experiment, a bearing-splitting phenomenon in the direct zone was observed through conventional beamforming of the horizontal line array within the frequency band 160 Hz-360 Hz. In this paper, this phenomenon is explained based on ray theory. In principle, the received signal in the direct zone of deep water arrives from two general paths including a direct one and bottom bounced one, which vary considerably in arrival angles. The split bearings correspond to the contributions of these two paths. The bearing-splitting phenomenon is demonstrated by numerical simulations of the bearing-time records and experimental results, and they are well consistent with each other. Then a near-surface source ranging approach based on the arrival angles of direct path and bottom bounced path in the direct zone is presented as an application of bearing splitting and is verified by experimental results. Finally, the applicability of the proposed ranging approach for an underwater source within several hundred meters in depth in the direct zone is also analyzed and demonstrated by simulations. Project supported by the Program of One Hundred Talented People of the Chinese Academy of Sciences and the National Natural Science Foundation of China (Grant Nos. 11434012 and 41561144006).

  13. Light induced oxidative water splitting in photosynthesis: energetics, kinetics and mechanism.

    Renger, Gernot


    The essential steps of photosynthetic water splitting take place in Photosystem II (PSII) and comprise three different reaction sequences: (i) light induced formation of the radical pair P680(+)Q(A)(-), (ii) P680(+) driven oxidative water splitting into O(2) and four protons, and (iii) two step plastoquinone reduction to plastoquinol by Q(A)(-). This mini-review briefly summarizes our state of knowledge on energetics, kinetics and mechanism of oxidative water splitting. Essential features of the two types of reactions involved are described: (a) P680(+) reduction by the redox active tyrosine Y(z) and (b) sequence of oxidation steps induced by Y(z)(ox) in the water-oxidizing complex (WOC). The rate of the former reaction is limited by the non-adiabatic electron transfer (NET) step and the multi-phase kinetics shown to originate from a sequence of relaxation processes. In marked contrast, the rate of the stepwise oxidation by Y(z)(ox) of the WOC up to the redox level S(3) is not limited by NET but by trigger reactions which probably comprise proton shifts and/or conformational changes. The overall rate of the final reaction sequence leading to formation and release of O(2) is assumed to be limited by the electron transfer step from the S(3) state of WOC to Y(z)(ox) due to involvement of an endergonic redox equilibrium. Currently discussed controversial ideas on possible pathways are briefly outlined. Several crucial points of the mechanism of oxidative water splitting, like O-O bond formation, role of local proton shift(s), details of hydrogen bonding, are still not clarified and remain a challenging topic of future research.

  14. Training Concept, Evolution Time, and the Maximum Entropy Production Principle

    Alexey Bezryadin


    Full Text Available The maximum entropy production principle (MEPP is a type of entropy optimization which demands that complex non-equilibrium systems should organize such that the rate of the entropy production is maximized. Our take on this principle is that to prove or disprove the validity of the MEPP and to test the scope of its applicability, it is necessary to conduct experiments in which the entropy produced per unit time is measured with a high precision. Thus we study electric-field-induced self-assembly in suspensions of carbon nanotubes and realize precise measurements of the entropy production rate (EPR. As a strong voltage is applied the suspended nanotubes merge together into a conducting cloud which produces Joule heat and, correspondingly, produces entropy. We introduce two types of EPR, which have qualitatively different significance: global EPR (g-EPR and the entropy production rate of the dissipative cloud itself (DC-EPR. The following results are obtained: (1 As the system reaches the maximum of the DC-EPR, it becomes stable because the applied voltage acts as a stabilizing thermodynamic potential; (2 We discover metastable states characterized by high, near-maximum values of the DC-EPR. Under certain conditions, such efficient entropy-producing regimes can only be achieved if the system is allowed to initially evolve under mildly non-equilibrium conditions, namely at a reduced voltage; (3 Without such a “training” period the system typically is not able to reach the allowed maximum of the DC-EPR if the bias is high; (4 We observe that the DC-EPR maximum is achieved within a time, Te, the evolution time, which scales as a power-law function of the applied voltage; (5 Finally, we present a clear example in which the g-EPR theoretical maximum can never be achieved. Yet, under a wide range of conditions, the system can self-organize and achieve a dissipative regime in which the DC-EPR equals its theoretical maximum.

  15. Flagged uniform particle splitting for variance reduction in proton and carbon ion track-structure simulations

    Ramos-Méndez, José; Schuemann, Jan; Incerti, Sebastien; Paganetti, Harald; Schulte, Reinhard; Faddegon, Bruce


    Flagged uniform particle splitting was implemented with two methods to improve the computational efficiency of Monte Carlo track structure simulations with TOPAS-nBio by enhancing the production of secondary electrons in ionization events. In method 1 the Geant4 kernel was modified. In method 2 Geant4 was not modified. In both methods a unique flag number assigned to each new split electron was inherited by its progeny, permitting reclassification of the split events as if produced by independent histories. Computational efficiency and accuracy were evaluated for simulations of 0.5-20 MeV protons and 1-20 MeV u-1 carbon ions for three endpoints: (1) mean of the ionization cluster size distribution, (2) mean number of DNA single-strand breaks (SSBs) and double-strand breaks (DSBs) classified with DBSCAN, and (3) mean number of SSBs and DSBs classified with a geometry-based algorithm. For endpoint (1), simulation efficiency was 3 times lower when splitting electrons generated by direct ionization events of primary particles than when splitting electrons generated by the first ionization events of secondary electrons. The latter technique was selected for further investigation. The following results are for method 2, with relative efficiencies about 4.5 times lower for method 1. For endpoint (1), relative efficiency at 128 split electrons approached maximum, increasing with energy from 47.2  ±  0.2 to 66.9  ±  0.2 for protons, decreasing with energy from 51.3  ±  0.4 to 41.7  ±  0.2 for carbon. For endpoint (2), relative efficiency increased with energy, from 20.7  ±  0.1 to 50.2  ±  0.3 for protons, 15.6  ±  0.1 to 20.2  ±  0.1 for carbon. For endpoint (3) relative efficiency increased with energy, from 31.0  ±  0.2 to 58.2  ±  0.4 for protons, 23.9  ±  0.1 to 26.2  ±  0.2 for carbon. Simulation results with and without splitting agreed within 1% (2 standard

  16. A guiding oblique osteotomy cut to prevent bad split in sagittal split ramus osteotomy: a technical note

    Gururaj Arakeri


    Full Text Available Aim: To present a simple technical modification of a medial osteotomy cut which prevents its misdirection and overcomes various anatomical variations as well as technical problems. Methods: The medial osteotomy cut is modified in the posterior half at an angle of 15°-20° following novel landmarks. Results: The proposed cut exclusively directs the splitting forces downwards to create a favorable lingual fracture, preventing the possibility of an upwards split which would cause a coronoid or condylar fracture. Conclusion: This modification has proven to be successful to date without encountering the complications of a bad split or nerve damage.

  17. The Wiener maximum quadratic assignment problem

    Cela, Eranda; Woeginger, Gerhard J


    We investigate a special case of the maximum quadratic assignment problem where one matrix is a product matrix and the other matrix is the distance matrix of a one-dimensional point set. We show that this special case, which we call the Wiener maximum quadratic assignment problem, is NP-hard in the ordinary sense and solvable in pseudo-polynomial time. Our approach also yields a polynomial time solution for the following problem from chemical graph theory: Find a tree that maximizes the Wiener index among all trees with a prescribed degree sequence. This settles an open problem from the literature.

  18. Maximum confidence measurements via probabilistic quantum cloning

    Zhang Wen-Hai; Yu Long-Bao; Cao Zhuo-Liang; Ye Liu


    Probabilistic quantum cloning (PQC) cannot copy a set of linearly dependent quantum states.In this paper,we show that if incorrect copies are allowed to be produced,linearly dependent quantum states may also be cloned by the PQC.By exploiting this kind of PQC to clone a special set of three linearly dependent quantum states,we derive the upper bound of the maximum confidence measure of a set.An explicit transformation of the maximum confidence measure is presented.

  19. Maximum floodflows in the conterminous United States

    Crippen, John R.; Bue, Conrad D.


    Peak floodflows from thousands of observation sites within the conterminous United States were studied to provide a guide for estimating potential maximum floodflows. Data were selected from 883 sites with drainage areas of less than 10,000 square miles (25,900 square kilometers) and were grouped into regional sets. Outstanding floods for each region were plotted on graphs, and envelope curves were computed that offer reasonable limits for estimates of maximum floods. The curves indicate that floods may occur that are two to three times greater than those known for most streams.

  20. Revealing the Maximum Strength in Nanotwinned Copper

    Lu, L.; Chen, X.; Huang, Xiaoxu


    The strength of polycrystalline materials increases with decreasing grain size. Below a critical size, smaller grains might lead to softening, as suggested by atomistic simulations. The strongest size should arise at a transition in deformation mechanism from lattice dislocation activities to grain...... boundary–related processes. We investigated the maximum strength of nanotwinned copper samples with different twin thicknesses. We found that the strength increases with decreasing twin thickness, reaching a maximum at 15 nanometers, followed by a softening at smaller values that is accompanied by enhanced...

  1. The Maximum Resource Bin Packing Problem

    Boyar, J.; Epstein, L.; Favrholdt, L.M.


    Usually, for bin packing problems, we try to minimize the number of bins used or in the case of the dual bin packing problem, maximize the number or total size of accepted items. This paper presents results for the opposite problems, where we would like to maximize the number of bins used...... algorithms, First-Fit-Increasing and First-Fit-Decreasing for the maximum resource variant of classical bin packing. For the on-line variant, we define maximum resource variants of classical and dual bin packing. For dual bin packing, no on-line algorithm is competitive. For classical bin packing, we find...

  2. Maximum entropy analysis of EGRET data

    Pohl, M.; Strong, A.W.


    EGRET data are usually analysed on the basis of the Maximum-Likelihood method \\cite{ma96} in a search for point sources in excess to a model for the background radiation (e.g. \\cite{hu97}). This method depends strongly on the quality of the background model, and thus may have high systematic unce...... uncertainties in region of strong and uncertain background like the Galactic Center region. Here we show images of such regions obtained by the quantified Maximum-Entropy method. We also discuss a possible further use of MEM in the analysis of problematic regions of the sky....

  3. Revealing the Maximum Strength in Nanotwinned Copper

    Lu, L.; Chen, X.; Huang, Xiaoxu


    The strength of polycrystalline materials increases with decreasing grain size. Below a critical size, smaller grains might lead to softening, as suggested by atomistic simulations. The strongest size should arise at a transition in deformation mechanism from lattice dislocation activities to grain...... boundary–related processes. We investigated the maximum strength of nanotwinned copper samples with different twin thicknesses. We found that the strength increases with decreasing twin thickness, reaching a maximum at 15 nanometers, followed by a softening at smaller values that is accompanied by enhanced...

  4. Maximum phytoplankton concentrations in the sea

    Jackson, G.A.; Kiørboe, Thomas


    A simplification of plankton dynamics using coagulation theory provides predictions of the maximum algal concentration sustainable in aquatic systems. These predictions have previously been tested successfully against results from iron fertilization experiments. We extend the test to data collected...... in the North Atlantic as part of the Bermuda Atlantic Time Series program as well as data collected off Southern California as part of the Southern California Bight Study program. The observed maximum particulate organic carbon and volumetric particle concentrations are consistent with the predictions...

  5. Fat Branes, Orbifolds and Doublet-Triplet Splitting

    Haba, N; Haba, Naoyuki; Maru, Nobuhito


    A simple higher dimensional mechanism of the doublet-triplet splitting is presented in a five dimensional supersymmetric SU(5) GUT on S^1/Z_2. The splitting of multiplets is realized by a VEV of the adjoint chiral superfield which breaks SU(5) gauge symmetry. Depending on the sign of the VEV, zero mode Higgs doublets and triplets are localized on the either side of the fixed points. The mass splitting is realized due to the difference of magnitudes of the overlap with a brane localized or a bulk singlet field. No unnatural fine-tuning of parameters is needed. The proton stability is ensured by locality {em without symmetries}. As well as a conventional mass splitting solution, it is shown that the weak scale Higgs triplet is consistent with the proton stability. This result might provide an alternative signature of GUT in future collider experiments.

  6. Opportunistic splitting for scheduling using a score-based approach

    Rashid, Faraan


    We consider the problem of scheduling a user in a multi-user wireless environment in a distributed manner. The opportunistic splitting algorithm is applied to find the best group of users without reporting the channel state information to the centralized scheduler. The users find the best among themselves while requiring just a ternary feedback from the common receiver at the end of each mini-slot. The original splitting algorithm is modified to handle users with asymmetric channel conditions. We use a score-based approach with the splitting algorithm to introduce time and throughput fairness while exploiting the multi-user diversity of the network. Analytical and simulation results are given to show that the modified score-based splitting algorithm works well as a fair scheduling scheme with good spectral efficiency and reduced feedback. © 2012 IEEE.

  7. Field Monitoring Protocol. Mini-Split Heat Pumps

    Christensen, Dane [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fang, Xia [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tomerlin, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Winkler, Jon [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hancock, E. [Mountain Energy Partnership, Longmont, CO (United States)


    This Building America program report provides a detailed method for accurately measuring and monitoring performance of a residential mini-split heat pump, which will be used in high-performance retrofit applications.

  8. Recent Progress in Energy-Driven Water Splitting.

    Tee, Si Yin; Win, Khin Yin; Teo, Wee Siang; Koh, Leng-Duei; Liu, Shuhua; Teng, Choon Peng; Han, Ming-Yong


    Hydrogen is readily obtained from renewable and non-renewable resources via water splitting by using thermal, electrical, photonic and biochemical energy. The major hydrogen production is generated from thermal energy through steam reforming/gasification of fossil fuel. As the commonly used non-renewable resources will be depleted in the long run, there is great demand to utilize renewable energy resources for hydrogen production. Most of the renewable resources may be used to produce electricity for driving water splitting while challenges remain to improve cost-effectiveness. As the most abundant energy resource, the direct conversion of solar energy to hydrogen is considered the most sustainable energy production method without causing pollutions to the environment. In overall, this review briefly summarizes thermolytic, electrolytic, photolytic and biolytic water splitting. It highlights photonic and electrical driven water splitting together with photovoltaic-integrated solar-driven water electrolysis.

  9. Mini-Split Heat Pumps Multifamily Retrofit Feasibility Study

    Dentz, J.; Podorson, D.; Varshney, K.


    Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programs are discussed in detail.

  10. Vacuum photon splitting in Lorentz-violating quantum electrodynamics.

    Kostelecký, V Alan; Pickering, Austin G M


    Radiative corrections arising from Lorentz violation in the fermion sector induce a nonzero amplitude for vacuum photon splitting. At one loop, the on-shell amplitude acquires both CPT-even and CPT-odd contributions forbidden in conventional electrodynamics.

  11. Point-splitting regularization of composite operators and anomalies

    Novotny, J


    The point-splitting regularization technique for composite operators is discussed in connection with anomaly calculation. We present a pedagogical and self-contained review of the topic with an emphasis on the technical details. We also develop simple algebraic tools to handle the path ordered exponential insertions used within the covariant and non-covariant version of the point-splitting method. The method is then applied to the calculation of the chiral, vector, trace, translation and Lorentz anomalies within diverse versions of the point-splitting regularization and a connection between the results is described. As an alternative to the standard approach we use the idea of deformed point-split transformation and corresponding Ward-Takahashi identities rather than an application of the equation of motion, which seems to save the complexity of the calculations.

  12. Geometrical tuning of nanoscale split-ring resonators

    Jeppesen, Claus; Kristensen, Anders; Xiao, Sanshui;


    We investigate the capacitance tuning of nanoscale split-ring resonators. An LC-model predicts a simple dependence of resonance frequency on slit aspect ratio. Experimental and numerical data follow the predictions of the LC-model....

  13. Effect of Repeated Food Morsel Splitting on Jaw Muscle Control

    A, Kumar; Svensson, Krister G; Baad-Hansen, Lene


    Mastication is a complex motor task often initiated by splitting of the food morsel between the anterior teeth. Training of complex motor tasks has consistently been shown to trigger neuroplastic changes in corticomotor control and optimization of muscle function. It is not known if training...... and repeated food morsel splitting lead to changes in jaw muscle function. Objective: To investigate if repeated splitting of food morsels in participants with natural dentition changes the force and jaw muscle electromyographic (EMG) activity. Methods: Twenty healthy volunteers (mean age = 26.2 ± 3.9 years......) participated in a single one-hour session divided into six series. Each series consisted of ten trials of a standardized behavioral task (total of 60 trials). The behavioral task was to hold and split a food morsel (8 mm, 180 mg placebo tablet) placed on a bite force transducer with the anterior teeth...

  14. Klein and Conformal Superspaces, Split Algebras and Spinor Orbits

    Fioresi, Rita; Marrani, Alessio


    We discuss $\\mathcal{N}=1$ Klein and Klein-Conformal superspaces in $D=(2,2)$ space-time dimensions, realizing them in terms of their functor of points over the split composition algebra $\\mathbb{C}_{s}$. We exploit the observation that certain split form of orthogonal groups can be realized in terms of matrix groups over split composition algebras; this leads to a natural interpretation of the the sections of the spinor bundle in the critical split dimensions $D=4$, $6$ and $10$ as $\\mathbb{C}_{s}^{2}$, $\\mathbb{H}_{s}^{2}$ and $\\mathbb{O}_{s}^{2}$, respectively. Within this approach, we also analyze the non-trivial spinor orbit stratification that is relevant in our construction since it affects the Klein-Conformal superspace structure.

  15. Performance Models for Split-execution Computing Systems

    Humble, Travis S [ORNL; McCaskey, Alex [ORNL; Schrock, Jonathan [ORNL; Seddiqi, Hadayat [ORNL; Britt, Keith A [ORNL; Imam, Neena [ORNL


    Split-execution computing leverages the capabilities of multiple computational models to solve problems, but splitting program execution across different computational models incurs costs associated with the translation between domains. We analyze the performance of a split-execution computing system developed from conventional and quantum processing units (QPUs) by using behavioral models that track resource usage. We focus on asymmetric processing models built using conventional CPUs and a family of special-purpose QPUs that employ quantum computing principles. Our performance models account for the translation of a classical optimization problem into the physical representation required by the quantum processor while also accounting for hardware limitations and conventional processor speed and memory. We conclude that the bottleneck in this split-execution computing system lies at the quantum-classical interface and that the primary time cost is independent of quantum processor behavior.

  16. The Effect of Immigration on Population Structures of Split

    Sanja Klempić


    Full Text Available The paper analyses the development of the total population of Split in the period from 1857 to 2001, with emphasis on the effect of immigration (in-migration on the age-gender, educational and economic structure and on the structure of households. Until the Second World War, Split increased its population relatively slowly. However, the acceleration of industrialisation and the development of tercial activities after WWII created needs for more labour, which was the reason for intensive immigration, especially during the 1960s and 1970s. Immigration had an effect on the growth of the number of inhabitants, but it also influenced the age-gender, educational and economic structure and the structure of households. The author describes the influence of immigration on the demographic structure of Split on the basis of field research conducted in Split in May 2002.

  17. Higgs, Binos and Gluinos: Split Susy Within Reach

    Alves, Daniele S M; Wacker, Jay G


    Recent evidence from the LHC for the Higgs boson with mass between 142 GeV < m_h < 147GeV points to PeV-scale Split Supersymmetry. This article explores the consequences of a Higgs mass in this range and possible discovery modes for Split Susy. Moderate lifetime gluinos, with decay lengths in the 25 microns to 10 years range, are its imminent smoking gun signature. The 7 TeV LHC will be sensitive to the moderately lived gluinos and trilepton signatures from direct electroweakino production. Moreover, the dark matter abundance may be obtained from annihilation through an s-channel Higgs resonance, with the LSP almost purely bino and mass m_chi = 70 GeV. The Higgs resonance region of Split Susy has visible signatures in dark matter direct and indirect detection and electric dipole moment experiments. If the anomalies go away, the majority of Split Susy parameter space will be excluded.

  18. Vacuum Photon Splitting in Lorentz-Violating Quantum Electrodynamics

    Kostelecky, V A; Kostelecky, Alan; Pickering, Austin


    Radiative corrections arising from Lorentz violation in the fermion sector induce a nonzero amplitude for vacuum photon splitting. At one loop, the on-shell amplitude acquires both CPT-even and CPT-odd contributions forbidden in conventional electrodynamics.

  19. RSW Node Centered Coarse Grid w/ Split Walls

    National Aeronautics and Space Administration — This tarball contains a AFLR3 stream grid (b8.ugrid), surface grid, info file, mapbc file, as well as 2 images showing the way the walls were split Grids made by...

  20. The Unstabilized Amalgamation of Heegaard Splittings along Disconnected Surfaces

    Xutao GAO; Qilong GUO


    Let M be a 3-manifold,F={F1,F2,…,Fn} be a collection of essential closed surfaces in M (for any i,j ∈ {1,…,n},ifi≠ j,Fi is not parallel to Fj and Fi∩Fj =(O)) and (O)0M be a collection of components of (O)M.Suppose M-∪Fi∈F Fi × (-1,1) contains k components M1,M2,…,Mk.If each Mi has a Heegaard splitting Vi∪si Wi with d(Si) > 4(g(M1) +… + g(Mk)),then any minimal Heegaard splitting of M relative to (O)0M is obtained by doing amalgamations and self-amalgamations from minimal Heegaard splittings or (O)-stabilization of minimal Heegaard splittings of M1,M2,…,Mk.

  1. Helicopter transmission arrangements with split-torque gear trains

    White, G.


    As an alternative to component development, the case for improved drive-train configuration is argued. In particular, the use of torque-splitting gear trains is proposed as a practicable means of improving the effectiveness of helicopter main gearboxes.

  2. Effect of grain splitting on biology and development of ...

    Effect of grain splitting on biology and development of Callosobruchus Maculatus ... Data on oviposition, adult eclosion and weights of emergent adults were ... for C. maculatus at F1, F2 and F3 generations on spilt compared to whole grains.

  3. RSW Node Centered Coarse Grid w/ Split Walls Modified

    National Aeronautics and Space Administration — Dr. Chwalowski, We just generated a modified version of the coarse node centered grid with split walls. Here the red and green sections you highlighted in the email...

  4. About the splitting field for rational valued characters

    Ion Armeanu


    Full Text Available The problem of finding the splitting field for group characters is very old and important (see [4], Chapter 9. The most part of the papers on this subject are concerned with all irreducible characters of a group under certain conditions. It seems more difficult to obtain minimal splitting fields for only one character without strong conditions about the group. In this case, naturally,the number theoretical methods play an essential role. This paper concerns to prove that under certain circumstances if a rational character of a group has Q(21/2,i as splitting field, then Q(i or even Q(21/2 are splitting fields too.

  5. Latarjet procedure using subscapularis split approach offers better rotational endurance than partial tenotomy for anterior shoulder instability.

    Ersen, Ali; Birisik, Fevzi; Ozben, Hakan; Atalar, Ata Can; Sahinkaya, Turker; Seyahi, Aksel; Demirhan, Mehmet


    Latarjet, which is a coracoid bone block procedure, is an effective treatment for anterior shoulder instability with glenoid bone loss. During this reconstructive procedure the subscapularis may be tenotomized or be split to expose the glenoid neck. The aim of this study was to assess the effect of subscapularis management on functional outcomes and internal and external rotation durability and strength. Hypothesis is that the subscapularis split approach will result in better functional results and superior internal rotation strength and endurance. The study included 48 patients [median age 30 (range 16-69); 42 males, 6 females], who underwent a modified Latarjet procedure for anterior shoulder instability. There were 20 patients in the subscapularis tenotomy group and 28 patients in the subscapularis split group. The groups were compared isokinetically using a computerized dynamometer for internal and external rotation durability and strength. At the latest follow-up, the patients were evaluated with the American Shoulder and Elbow Surgeons (ASES) and ROWE scores for functional outcomes. At a median follow-up period of 25 (range 12-73) months after the Latarjet procedure, the internal rotation durability was significantly higher in the split group (p = 0.045). However, a statistically significant difference could not be found for internal and external rotational strengths (n.s.). There was also no significant difference between the final ASES and ROWE scores (n.s.). Although both approaches offer promising results, the subscapularis split approach appears to provide better internal rotation durability compared to subscapularis tenotomy. Therefore, the subscapularis split approach may be more preferable for the management of the subscapularis muscle during Latarjet procedure. Retrospective cohort study, Level III.

  6. Isoscalar-isovector mass splittings in excited mesons

    Geiger, P


    Mass splittings between the isovector and isoscalar members of meson nonets arise in part from hadronic loop diagrams which violate the Okubo-Zweig-Iizuka rule. Using a model for these loop processes which works qualitatively well in the established nonets, I tabulate predictions for the splittings and associated isoscalar mixing angles in the remaining nonets below about 2.5 GeV, and explain some of their systematic features. The results for excited vector mesons compare favorably with experiment.

  7. Operator splitting for the KdV equation

    Holden, Helge; Risebro, Nils Henrik; Tao, Terence


    We provide a new analytical approach to operator splitting for equations of the type $u_t=Au+B(u)$ where $A$ is a linear operator and $B$ is quadratic. A particular example is the Korteweg-de Vries (KdV) equation $u_t-u u_x+u_{xxx}=0$. We show that the Godunov and Strang splitting methods converge with the expected rates if the initial data are sufficiently regular.

  8. Visualization of the sequence of a couple splitting outside shop


    Visualization of tracks of couple walking together before splitting and one goes into shop the other waits outside. The visualization represents the sequence described in figure 7 in the publication 'Taking the temperature of pedestrian movement in public spaces'......Visualization of tracks of couple walking together before splitting and one goes into shop the other waits outside. The visualization represents the sequence described in figure 7 in the publication 'Taking the temperature of pedestrian movement in public spaces'...

  9. Exploring various flux vector splittings for the magnetohydrodynamic system

    Balsara, Dinshaw S.; Montecinos, Gino I.; Toro, Eleuterio F.


    In this paper we explore flux vector splittings for the MHD system of equations. Our approach follows the strategy that was initially put forward in Toro and Vázquez-Cendón (2012) [55]. We split the flux vector into an advected sub-system and a pressure sub-system. The eigenvalues and eigenvectors of the split sub-systems are then studied for physical suitability. Not all flux vector splittings for MHD yield physically meaningful results. We find one that is completely useless, another that is only marginally useful and one that should work well in all regimes where the MHD equations are used. Unfortunately, this successful flux vector splitting turns out to be different from the Zha-Bilgen flux vector splitting. The eigenvalues and eigenvectors of this favorable FVS are explored in great detail in this paper. The pressure sub-system holds the key to finding a successful flux vector splitting. The eigenstructure of the successful flux vector splitting for MHD is thoroughly explored and orthonormalized left and right eigenvectors are explicitly catalogued. We present a novel approach to the solution of the Riemann problem formed by the pressure sub-system for the MHD equations. Once the pressure sub-system is solved, the advection sub-system follows naturally. Our method also works very well for the Euler system. Our FVS successfully captures isolated, stationary contact discontinuities in MHD. However, we explain why any FVS for MHD is not adept at capturing isolated, stationary Alfvenic discontinuities. Several stringent one-dimensional Riemann problems are presented to show that the method works successfully and can effectively capture the full panoply of wave structures that arise in MHD. This includes compound waves and switch-on and switch-off shocks that arise because of the non-convex nature of the MHD system.

  10. Endoscopic classification of representations of quasi-split unitary groups

    Mok, Chung Pang


    In this paper the author establishes the endoscopic classification of tempered representations of quasi-split unitary groups over local fields, and the endoscopic classification of the discrete automorphic spectrum of quasi-split unitary groups over global number fields. The method is analogous to the work of Arthur on orthogonal and symplectic groups, based on the theory of endoscopy and the comparison of trace formulas on unitary groups and general linear groups.

  11. QED corrections to the Altarelli-Parisi splitting functions

    Florian, Daniel de [Universidad de Buenos Aires, Departamento de Fisica and IFIBA, FCEyN, Capital Federal (Argentina); UNSAM, International Center for Advanced Studies (ICAS), Buenos Aires (Argentina); Sborlini, German F.R.; Rodrigo, German [Universitat de Valencia - Consejo Superior de Investigaciones Cientificas, Instituto de Fisica Corpuscular, Paterna, Valencia (Spain)


    We discuss the combined effect of QED and QCD corrections to the evolution of parton distributions. We extend the available knowledge of the Altarelli-Parisi splitting functions to one order higher in QED, and we provide explicit expressions for the splitting kernels up to O(α α{sub S}). The results presented in this article allow one to perform a parton distribution function analysis reaching full NLO QCD-QED combined precision. (orig.)

  12. Splitting the wavefunctions of two particles in two boxes

    Van Enk, S J


    I consider two identical quantum particles in two boxes. We can split each box, and thereby the wavefunction of each particle, into two parts. When two half boxes are interchanged and combined with the other halves, where do the two particles end up? I solve this problem for two identical bosons and for two identical fermions. The solution can be used to define a measurement that yields some information about the relative phase between the two parts of a split wavefunction.

  13. Tree-level split helicity amplitudes in ambitwistor space

    Chen, Bin; Wu, Jun-Bao


    We study all tree-level split helicity gluon amplitudes by using the recently proposed Britto-Cachazo-Feng-Witten recursion relation and Hodges diagrams in ambitwistor space. We pick out the contributing diagrams and find that all of them can be divided into triangles in a suitable way. We give the explicit expressions for all of these amplitudes. As an example, we reproduce the six-gluon split next-to-maximally-helicity-violating amplitudes in momentum space.

  14. Complex split-cord malformation associated with situs inversus totalis

    Deepak Agrawal


    Full Text Available Although meningoceles are known to be associated with split cord malformations, the association of dextrocardia is extremely rare. The authors report a case of a 15 day male child who had an atretic meningocele in the lumbosacral region along with dextrocardia and a split cord malformation with a posterior spur. This importance of preoperative MRI for proper management of such patients is highlighted in this report.

  15. A Modified Halpern's Iterative Scheme for Solving Split Feasibility Problems

    Jitsupa Deepho


    Full Text Available The purpose of this paper is to introduce and study a modified Halpern’s iterative scheme for solving the split feasibility problem (SFP in the setting of infinite-dimensional Hilbert spaces. Under suitable conditions a strong convergence theorem is established. The main result presented in this paper improves and extends some recent results done by Xu (Iterative methods for the split feasibility problem in infinite-dimensional Hilbert space, Inverse Problem 26 (2010 105018 and some others.

  16. Key Issues in Vowel Based Splitting of Telugu Bigrams

    Kameswara Rao; Prasad, Dr. T. V


    Splitting of compound Telugu words into its components or root words is one of the important, tedious and yet inaccurate tasks of Natural Language Processing (NLP). Except in few special cases, at least one vowel is necessarily involved in Telugu conjunctions. In the result, vowels are often repeated as they are or are converted into other vowels or consonants. This paper describes issues involved in vowel based splitting of a Telugu bigram into proper root words using Telugu grammar conjunct...

  17. Compensation of Dipolar-Exciton Spin Splitting in Magnetic Field

    Gorbunov, A. V.; Timofeev, V. B.


    Magnetoluminescence of spatially indirect dipolar excitons collected in 25 nm GaAs/AlGaAs single quantum well within a lateral potential trap has been studied in perpendicular magnetic field in Faraday geometry. The paramagnetic spin splitting of the luminescence line of the heavy-hole excitons in the trap centre is completely compensated at magnetic fields below critical value, around 2 Tesla. The effect of spin-splitting compensation is caused by the exchange interaction in dense exciton Bo...

  18. Circadian Regulation of Cortisol Release in Behaviorally Split Golden Hamsters


    The master circadian clock located within the hypothalamic suprachiasmatic nucleus (SCN) is necessary for the circadian rhythm of glucocorticoid (GC) release. The pathways by which the SCN sustains rhythmic GC release remain unclear. We studied the circadian regulation of cortisol release in the behaviorally split golden hamster, in which the single bout of circadian locomotor activity splits into two bouts approximately12 h apart after exposing the animals to constant light conditions. We sh...




    Numerical study on tunneling splitting in biaxial spin systems is done by performing diagonalization of the Hamilton operator.It is found that the calculated energy splitting agrees quantitatively with theoretical prediction of instanton method.Our result shows that both the instanton method and the large spin limit work well for the total spin around 10.By including the fourth-order term in Hamiltonian,experimental observation can be re-covered quantitatively.

  20. On Invariant Decompositions, Dominated Splittings and Sectional-Hyperbolicity

    Araujo, Vitor; Salgado, Luciana


    We obtain sufficient conditions for an invariant splitting over a compact invariant subset of a $C^1$ flow $X_t$ to be dominated. For a $C^1$ flow $X_t$ on a compact manifold $M$ and a compact invariant subset $\\Lambda$, with a continuous and $DX_t$-invariant splitting $E\\oplus F$ of the tangent bundle $T_\\Lambda M$ over $\\Lambda$, we consider the relation between weak forms of hyperbolicity along each subbundle and domination.

  1. Mitigation of maximum world oil production: Shortage scenarios

    Hirsch, Robert L. [Management Information Services, Inc., 723 Fords Landing Way, Alexandria, VA 22314 (United States)


    A framework is developed for planning the mitigation of the oil shortages that will be caused by world oil production reaching a maximum and going into decline. To estimate potential economic impacts, a reasonable relationship between percent decline in world oil supply and percent decline in world GDP was determined to be roughly 1:1. As a limiting case for decline rates, giant fields were examined. Actual oil production from Europe and North America indicated significant periods of relatively flat oil production (plateaus). However, before entering its plateau period, North American oil production went through a sharp peak and steep decline. Examination of a number of future world oil production forecasts showed multi-year rollover/roll-down periods, which represent pseudoplateaus. Consideration of resource nationalism posits an Oil Exporter Withholding Scenario, which could potentially overwhelm all other considerations. Three scenarios for mitigation planning resulted from this analysis: (1) A Best Case, where maximum world oil production is followed by a multi-year plateau before the onset of a monatomic decline rate of 2-5% per year; (2) A Middling Case, where world oil production reaches a maximum, after which it drops into a long-term, 2-5% monotonic annual decline; and finally (3) A Worst Case, where the sharp peak of the Middling Case is degraded by oil exporter withholding, leading to world oil shortages growing potentially more rapidly than 2-5% per year, creating the most dire world economic impacts. (author)

  2. Recent developments in solar H2 generation from water splitting

    Sivaraman Rajaambal; Kumarsrinivasan Sivaranjani; Chinnakonda S Gopinath


    Hydrogen production from water and sunlight through photocatalysis could become one of the channels, in the not-so-distant future, to meet a part of ever growing energy demands. However, accomplishing solar water splitting through semiconductor particulate photocatalysis seems to be the ‘Holy Grail’ problem of science. In the present mini-review, some of the critical strategies of semiconductor photocatalysis are focused with the aim of enumerating underlying critical factors such as visible light harvesting, charge carrier separation, conduction and their utilization that determine the quantum efficiency. We attempted to bring out the essential requirements expected in a material for facile water splitting by explaining important and new designs contributed in the last decade. The newly emerged designs in semiconductor architecture employing nanoscience towards meeting the critical factors of facile photocatalysis are elucidated. The importance of band gap engineering is emphasized to utilize potential wide band gap semiconductors. Assistance of metal nanostructures and quantum dots to semiconductors attains vital importance as they are exuberant visible light harvesters and charge carrier amplifiers. Benevolent use of quantum dots in solar water splitting and photoelectrochemical water splitting provides scope to revolutionize the quantum efficiency by its multiple exciton generation features. A list of drawbacks and issues that hamper the much needed breakthrough in photocatalysis of water splitting is provided to invite attention to address them and move towards sustainable water splitting.

  3. Hydrogen Production from Semiconductor-based Photocatalysis via Water Splitting

    Jeffrey C. S. Wu


    Full Text Available Hydrogen is the ideal fuel for the future because it is clean, energy efficient, and abundant in nature. While various technologies can be used to generate hydrogen, only some of them can be considered environmentally friendly. Recently, solar hydrogen generated via photocatalytic water splitting has attracted tremendous attention and has been extensively studied because of its great potential for low-cost and clean hydrogen production. This paper gives a comprehensive review of the development of photocatalytic water splitting for generating hydrogen, particularly under visible-light irradiation. The topics covered include an introduction of hydrogen production technologies, a review of photocatalytic water splitting over titania and non-titania based photocatalysts, a discussion of the types of photocatalytic water-splitting approaches, and a conclusion for the current challenges and future prospects of photocatalytic water splitting. Based on the literatures reported here, the development of highly stable visible–light-active photocatalytic materials, and the design of efficient, low-cost photoreactor systems are the key for the advancement of solar-hydrogen production via photocatalytic water splitting in the future.

  4. Analysis of Photovoltaic Maximum Power Point Trackers

    Veerachary, Mummadi

    The photovoltaic generator exhibits a non-linear i-v characteristic and its maximum power point (MPP) varies with solar insolation. An intermediate switch-mode dc-dc converter is required to extract maximum power from the photovoltaic array. In this paper buck, boost and buck-boost topologies are considered and a detailed mathematical analysis, both for continuous and discontinuous inductor current operation, is given for MPP operation. The conditions on the connected load values and duty ratio are derived for achieving the satisfactory maximum power point operation. Further, it is shown that certain load values, falling out of the optimal range, will drive the operating point away from the true maximum power point. Detailed comparison of various topologies for MPPT is given. Selection of the converter topology for a given loading is discussed. Detailed discussion on circuit-oriented model development is given and then MPPT effectiveness of various converter systems is verified through simulations. Proposed theory and analysis is validated through experimental investigations.

  5. On maximum cycle packings in polyhedral graphs

    Peter Recht


    Full Text Available This paper addresses upper and lower bounds for the cardinality of a maximum vertex-/edge-disjoint cycle packing in a polyhedral graph G. Bounds on the cardinality of such packings are provided, that depend on the size, the order or the number of faces of G, respectively. Polyhedral graphs are constructed, that attain these bounds.

  6. Hard graphs for the maximum clique problem

    Hoede, Cornelis


    The maximum clique problem is one of the NP-complete problems. There are graphs for which a reduction technique exists that transforms the problem for these graphs into one for graphs with specific properties in polynomial time. The resulting graphs do not grow exponentially in order and number. Gra

  7. Maximum Likelihood Estimation of Search Costs

    J.L. Moraga-Gonzalez (José Luis); M.R. Wildenbeest (Matthijs)


    textabstractIn a recent paper Hong and Shum (forthcoming) present a structural methodology to estimate search cost distributions. We extend their approach to the case of oligopoly and present a maximum likelihood estimate of the search cost distribution. We apply our method to a data set of online p

  8. Global characterization of the Holocene Thermal Maximum

    Renssen, H.; Seppä, H.; Crosta, X.; Goosse, H.; Roche, D.M.V.A.P.


    We analyze the global variations in the timing and magnitude of the Holocene Thermal Maximum (HTM) and their dependence on various forcings in transient simulations covering the last 9000 years (9 ka), performed with a global atmosphere-ocean-vegetation model. In these experiments, we consider the i

  9. Instance Optimality of the Adaptive Maximum Strategy

    L. Diening; C. Kreuzer; R. Stevenson


    In this paper, we prove that the standard adaptive finite element method with a (modified) maximum marking strategy is instance optimal for the total error, being the square root of the squared energy error plus the squared oscillation. This result will be derived in the model setting of Poisson’s e

  10. Maximum phonation time: variability and reliability.

    Speyer, Renée; Bogaardt, Hans C A; Passos, Valéria Lima; Roodenburg, Nel P H D; Zumach, Anne; Heijnen, Mariëlle A M; Baijens, Laura W J; Fleskens, Stijn J H M; Brunings, Jan W


    The objective of the study was to determine maximum phonation time reliability as a function of the number of trials, days, and raters in dysphonic and control subjects. Two groups of adult subjects participated in this reliability study: a group of outpatients with functional or organic dysphonia versus a group of healthy control subjects matched by age and gender. Over a period of maximally 6 weeks, three video recordings were made of five subjects' maximum phonation time trials. A panel of five experts were responsible for all measurements, including a repeated measurement of the subjects' first recordings. Patients showed significantly shorter maximum phonation times compared with healthy controls (on average, 6.6 seconds shorter). The averaged interclass correlation coefficient (ICC) over all raters per trial for the first day was 0.998. The averaged reliability coefficient per rater and per trial for repeated measurements of the first day's data was 0.997, indicating high intrarater reliability. The mean reliability coefficient per day for one trial was 0.939. When using five trials, the reliability increased to 0.987. The reliability over five trials for a single day was 0.836; for 2 days, 0.911; and for 3 days, 0.935. To conclude, the maximum phonation time has proven to be a highly reliable measure in voice assessment. A single rater is sufficient to provide highly reliable measurements.

  11. Maximum Phonation Time: Variability and Reliability

    R. Speyer; H.C.A. Bogaardt; V.L. Passos; N.P.H.D. Roodenburg; A. Zumach; M.A.M. Heijnen; L.W.J. Baijens; S.J.H.M. Fleskens; J.W. Brunings


    The objective of the study was to determine maximum phonation time reliability as a function of the number of trials, days, and raters in dysphonic and control subjects. Two groups of adult subjects participated in this reliability study: a group of outpatients with functional or organic dysphonia v

  12. Maximum likelihood estimation of fractionally cointegrated systems

    Lasak, Katarzyna

    In this paper we consider a fractionally cointegrated error correction model and investigate asymptotic properties of the maximum likelihood (ML) estimators of the matrix of the cointe- gration relations, the degree of fractional cointegration, the matrix of the speed of adjustment...

  13. Maximum likelihood estimation for integrated diffusion processes

    Baltazar-Larios, Fernando; Sørensen, Michael

    EM-algorithm to obtain maximum likelihood estimates of the parameters in the diffusion model. As part of the algorithm, we use a recent simple method for approximate simulation of diffusion bridges. In simulation studies for the Ornstein-Uhlenbeck process and the CIR process the proposed method works...

  14. Maximum gain of Yagi-Uda arrays

    Bojsen, J.H.; Schjær-Jacobsen, Hans; Nilsson, E.


    Numerical optimisation techniques have been used to find the maximum gain of some specific parasitic arrays. The gain of an array of infinitely thin, equispaced dipoles loaded with arbitrary reactances has been optimised. The results show that standard travelling-wave design methods are not optimum....... Yagi–Uda arrays with equal and unequal spacing have also been optimised with experimental verification....

  15. Optimizing cellulase mixtures for maximum rate and extent of hydrolysis. Final report

    Walker, L.P.; Wilson, D.B. [Cornell Univ., Ithaca, NY (United States)


    Pure Thomomonospora fusca and Trichoderma reesei cellulases and their mixtures were studied to determine the optimal set of cellulases for biomass hydrolysis. The objective was to reduce the cost of cellulase in order to help lower the overall processing cost of the enzymatic conversion of biomass cellulose to sugars, which can then be fermented into fuels and other energy-intensive chemicals. No cellulase mixture was obtained that was much better than the best commercially available preparations. However, the study has greatly increased knowledge of T. fusca cellulases, synergism, and cellulose binding, and provide evidence that future work will produce cellulases with higher activity in degrading crystalline cellulose. T. fusca cellulases may have good industrial potential because: (1) they are compatible with industrial processes that operate at elevated temperatures; (2) they retain 90% of their activity under neutral or basic conditions, which provides a great deal of flexibility in reactor design and operation; and (3) tools are now available to change specific amino acid residues in their catalytic domains and to assess how these changes influence catalysis. 74 refs.

  16. Splitting parameter yield (SPY): A program for semiautomatic analysis of shear-wave splitting

    Zaccarelli, Lucia; Bianco, Francesca; Zaccarelli, Riccardo


    SPY is a Matlab algorithm that analyzes seismic waveforms in a semiautomatic way, providing estimates of the two observables of the anisotropy: the shear-wave splitting parameters. We chose to exploit those computational processes that require less intervention by the user, gaining objectivity and reliability as a result. The algorithm joins the covariance matrix and the cross-correlation techniques, and all the computation steps are interspersed by several automatic checks intended to verify the reliability of the yields. The resulting semiautomation generates two new advantages in the field of anisotropy studies: handling a huge amount of data at the same time, and comparing different yields. From this perspective, SPY has been developed in the Matlab environment, which is widespread, versatile, and user-friendly. Our intention is to provide the scientific community with a new monitoring tool for tracking the temporal variations of the crustal stress field.

  17. New class of photocatalytic materials and a novel principle for efficient water splitting under infrared and visible light: MgB2 as unexpected example.

    Kravets, V G; Grigorenko, A N


    Water splitting is unanimously recognized as environment friendly, potentially low cost and renewable energy solution based on the future hydrogen economy. Especially appealing is photocatalytic water splitting whereby a suitably chosen catalyst dramatically improves efficiency of the hydrogen production driven by direct sunlight and allows it to happen even at zero driving potential. Here, we suggest a new class of stable photocatalysts and the corresponding principle for catalytic water splitting in which infrared and visible light play the main role in producing the photocurrent and hydrogen. The new class of catalysts - ionic or covalent binary metals with layered graphite-like structures - effectively absorb visible and infrared light facilitating the reaction of water splitting, suppress the inverse reaction of ion recombination by separating ions due to internal electric fields existing near alternating layers, provide the sites for ion trapping of both polarities, and finally deliver the electrons and holes required to generate hydrogen and oxygen gases. As an example, we demonstrate conversion efficiency of ~27% at bias voltage Vbias = 0.5V for magnesium diboride working as a catalyst for photoinduced water splitting. We discuss its advantages over some existing materials and propose the underlying mechanism of photocatalytic water splitting by binary layered metals.

  18. An autoinhibited coiled-coil design strategy for split-protein protease sensors.

    Shekhawat, Sujan S; Porter, Jason R; Sriprasad, Akshay; Ghosh, Indraneel


    Proteases are widely studied as they are integral players in cell-cycle control and apoptosis. We report a new approach for the design of a family of genetically encoded turn-on protease biosensors. In our design, an autoinhibited coiled-coil switch is turned on upon proteolytic cleavage, which results in the complementation of split-protein reporters. Utilizing this new autoinhibition design paradigm, we present the rational construction and optimization of three generations of protease biosensors, with the final design providing a 1000-fold increase in bioluminescent signal upon addition of the TEV protease. We demonstrate the generality of the approach utilizing two different split-protein reporters, firefly luciferase and beta-lactamase, while also testing our design in the context of a therapeutically relevant protease, caspase-3. Finally, we present a dual protease sensor geometry that allows for the use of these turn-on sensors as potential AND logic gates. Thus, these studies potentially provide a new method for the design and implementation of genetically encoded turn-on protease sensors while also providing a general autoinhibited coiled-coil strategy for controlling the activity of fragmented proteins.

  19. Load Sharing Multiobjective Optimization Design of a Split Torque Helicopter Transmission

    Chenxi Fu


    Full Text Available Split torque designs can offer significant advantages over the traditional planetary designs for helicopter transmissions. However, it has two unique properties, gap and phase differences, which result in the risk of unequal load sharing. Various methods have been proposed to eliminate the effect of gap and promote load sharing to a certain extent. In this paper, system design parameters will be optimized to change the phase difference, thereby further improving load sharing. A nonlinear dynamic model is established to measure the load sharing with dynamic mesh forces quantitatively. Afterwards, a multiobjective optimization of a reference split torque design is conducted with the promoting of load sharing property, lightweight, and safety considered as the objectives. The load sharing property, which is measured by load sharing coefficient, is evaluated under multiple operating conditions with dynamic analysis method. To solve the multiobjective model with NSGA-II, an improvement is done to overcome the problem of time consuming. Finally, a satisfied optimal solution is picked up as the final design from the Pareto optimal front, which achieves improvements in all the three objectives compared with the reference design.

  20. Model Selection Through Sparse Maximum Likelihood Estimation

    Banerjee, Onureena; D'Aspremont, Alexandre


    We consider the problem of estimating the parameters of a Gaussian or binary distribution in such a way that the resulting undirected graphical model is sparse. Our approach is to solve a maximum likelihood problem with an added l_1-norm penalty term. The problem as formulated is convex but the memory requirements and complexity of existing interior point methods are prohibitive for problems with more than tens of nodes. We present two new algorithms for solving problems with at least a thousand nodes in the Gaussian case. Our first algorithm uses block coordinate descent, and can be interpreted as recursive l_1-norm penalized regression. Our second algorithm, based on Nesterov's first order method, yields a complexity estimate with a better dependence on problem size than existing interior point methods. Using a log determinant relaxation of the log partition function (Wainwright & Jordan (2006)), we show that these same algorithms can be used to solve an approximate sparse maximum likelihood problem for...

  1. Pareto versus lognormal: a maximum entropy test.

    Bee, Marco; Riccaboni, Massimo; Schiavo, Stefano


    It is commonly found that distributions that seem to be lognormal over a broad range change to a power-law (Pareto) distribution for the last few percentiles. The distributions of many physical, natural, and social events (earthquake size, species abundance, income and wealth, as well as file, city, and firm sizes) display this structure. We present a test for the occurrence of power-law tails in statistical distributions based on maximum entropy. This methodology allows one to identify the true data-generating processes even in the case when it is neither lognormal nor Pareto. The maximum entropy approach is then compared with other widely used methods and applied to different levels of aggregation of complex systems. Our results provide support for the theory that distributions with lognormal body and Pareto tail can be generated as mixtures of lognormally distributed units.

  2. Maximum Variance Hashing via Column Generation

    Lei Luo


    item search. Recently, a number of data-dependent methods have been developed, reflecting the great potential of learning for hashing. Inspired by the classic nonlinear dimensionality reduction algorithm—maximum variance unfolding, we propose a novel unsupervised hashing method, named maximum variance hashing, in this work. The idea is to maximize the total variance of the hash codes while preserving the local structure of the training data. To solve the derived optimization problem, we propose a column generation algorithm, which directly learns the binary-valued hash functions. We then extend it using anchor graphs to reduce the computational cost. Experiments on large-scale image datasets demonstrate that the proposed method outperforms state-of-the-art hashing methods in many cases.

  3. The Maximum Resource Bin Packing Problem

    Boyar, J.; Epstein, L.; Favrholdt, L.M.


    algorithms, First-Fit-Increasing and First-Fit-Decreasing for the maximum resource variant of classical bin packing. For the on-line variant, we define maximum resource variants of classical and dual bin packing. For dual bin packing, no on-line algorithm is competitive. For classical bin packing, we find......Usually, for bin packing problems, we try to minimize the number of bins used or in the case of the dual bin packing problem, maximize the number or total size of accepted items. This paper presents results for the opposite problems, where we would like to maximize the number of bins used...... the competitive ratio of various natural algorithms. We study the general versions of the problems as well as the parameterized versions where there is an upper bound of on the item sizes, for some integer k....

  4. Nonparametric Maximum Entropy Estimation on Information Diagrams

    Martin, Elliot A; Meinke, Alexander; Děchtěrenko, Filip; Davidsen, Jörn


    Maximum entropy estimation is of broad interest for inferring properties of systems across many different disciplines. In this work, we significantly extend a technique we previously introduced for estimating the maximum entropy of a set of random discrete variables when conditioning on bivariate mutual informations and univariate entropies. Specifically, we show how to apply the concept to continuous random variables and vastly expand the types of information-theoretic quantities one can condition on. This allows us to establish a number of significant advantages of our approach over existing ones. Not only does our method perform favorably in the undersampled regime, where existing methods fail, but it also can be dramatically less computationally expensive as the cardinality of the variables increases. In addition, we propose a nonparametric formulation of connected informations and give an illustrative example showing how this agrees with the existing parametric formulation in cases of interest. We furthe...

  5. Zipf's law, power laws and maximum entropy

    Visser, Matt


    Zipf's law, and power laws in general, have attracted and continue to attract considerable attention in a wide variety of disciplines—from astronomy to demographics to software structure to economics to linguistics to zoology, and even warfare. A recent model of random group formation (RGF) attempts a general explanation of such phenomena based on Jaynes' notion of maximum entropy applied to a particular choice of cost function. In the present paper I argue that the specific cost function used in the RGF model is in fact unnecessarily complicated, and that power laws can be obtained in a much simpler way by applying maximum entropy ideas directly to the Shannon entropy subject only to a single constraint: that the average of the logarithm of the observable quantity is specified.

  6. Zipf's law, power laws, and maximum entropy

    Visser, Matt


    Zipf's law, and power laws in general, have attracted and continue to attract considerable attention in a wide variety of disciplines - from astronomy to demographics to economics to linguistics to zoology, and even warfare. A recent model of random group formation [RGF] attempts a general explanation of such phenomena based on Jaynes' notion of maximum entropy applied to a particular choice of cost function. In the present article I argue that the cost function used in the RGF model is in fact unnecessarily complicated, and that power laws can be obtained in a much simpler way by applying maximum entropy ideas directly to the Shannon entropy subject only to a single constraint: that the average of the logarithm of the observable quantity is specified.

  7. Regions of constrained maximum likelihood parameter identifiability

    Lee, C.-H.; Herget, C. J.


    This paper considers the parameter identification problem of general discrete-time, nonlinear, multiple-input/multiple-output dynamic systems with Gaussian-white distributed measurement errors. Knowledge of the system parameterization is assumed to be known. Regions of constrained maximum likelihood (CML) parameter identifiability are established. A computation procedure employing interval arithmetic is proposed for finding explicit regions of parameter identifiability for the case of linear systems. It is shown that if the vector of true parameters is locally CML identifiable, then with probability one, the vector of true parameters is a unique maximal point of the maximum likelihood function in the region of parameter identifiability and the CML estimation sequence will converge to the true parameters.

  8. A Maximum Radius for Habitable Planets.

    Alibert, Yann


    We compute the maximum radius a planet can have in order to fulfill two constraints that are likely necessary conditions for habitability: 1- surface temperature and pressure compatible with the existence of liquid water, and 2- no ice layer at the bottom of a putative global ocean, that would prevent the operation of the geologic carbon cycle to operate. We demonstrate that, above a given radius, these two constraints cannot be met: in the Super-Earth mass range (1-12 Mearth), the overall maximum that a planet can have varies between 1.8 and 2.3 Rearth. This radius is reduced when considering planets with higher Fe/Si ratios, and taking into account irradiation effects on the structure of the gas envelope.

  9. Maximum Profit Configurations of Commercial Engines

    Yiran Chen


    An investigation of commercial engines with finite capacity low- and high-price economic subsystems and a generalized commodity transfer law [n ∝ Δ (P m)] in commodity flow processes, in which effects of the price elasticities of supply and demand are introduced, is presented in this paper. Optimal cycle configurations of commercial engines for maximum profit are obtained by applying optimal control theory. In some special cases, the eventual state—market equilibrium—is solely determined by t...

  10. A stochastic maximum principle via Malliavin calculus

    Øksendal, Bernt; Zhou, Xun Yu; Meyer-Brandis, Thilo


    This paper considers a controlled It\\^o-L\\'evy process where the information available to the controller is possibly less than the overall information. All the system coefficients and the objective performance functional are allowed to be random, possibly non-Markovian. Malliavin calculus is employed to derive a maximum principle for the optimal control of such a system where the adjoint process is explicitly expressed.

  11. Tissue radiation response with maximum Tsallis entropy.

    Sotolongo-Grau, O; Rodríguez-Pérez, D; Antoranz, J C; Sotolongo-Costa, Oscar


    The expression of survival factors for radiation damaged cells is currently based on probabilistic assumptions and experimentally fitted for each tumor, radiation, and conditions. Here, we show how the simplest of these radiobiological models can be derived from the maximum entropy principle of the classical Boltzmann-Gibbs expression. We extend this derivation using the Tsallis entropy and a cutoff hypothesis, motivated by clinical observations. The obtained expression shows a remarkable agreement with the experimental data found in the literature.

  12. Maximum Estrada Index of Bicyclic Graphs

    Wang, Long; Wang, Yi


    Let $G$ be a simple graph of order $n$, let $\\lambda_1(G),\\lambda_2(G),...,\\lambda_n(G)$ be the eigenvalues of the adjacency matrix of $G$. The Esrada index of $G$ is defined as $EE(G)=\\sum_{i=1}^{n}e^{\\lambda_i(G)}$. In this paper we determine the unique graph with maximum Estrada index among bicyclic graphs with fixed order.

  13. Maximum privacy without coherence, zero-error

    Leung, Debbie; Yu, Nengkun


    We study the possible difference between the quantum and the private capacities of a quantum channel in the zero-error setting. For a family of channels introduced by Leung et al. [Phys. Rev. Lett. 113, 030512 (2014)], we demonstrate an extreme difference: the zero-error quantum capacity is zero, whereas the zero-error private capacity is maximum given the quantum output dimension.

  14. Automatic maximum entropy spectral reconstruction in NMR.

    Mobli, Mehdi; Maciejewski, Mark W; Gryk, Michael R; Hoch, Jeffrey C


    Developments in superconducting magnets, cryogenic probes, isotope labeling strategies, and sophisticated pulse sequences together have enabled the application, in principle, of high-resolution NMR spectroscopy to biomolecular systems approaching 1 megadalton. In practice, however, conventional approaches to NMR that utilize the fast Fourier transform, which require data collected at uniform time intervals, result in prohibitively lengthy data collection times in order to achieve the full resolution afforded by high field magnets. A variety of approaches that involve nonuniform sampling have been proposed, each utilizing a non-Fourier method of spectrum analysis. A very general non-Fourier method that is capable of utilizing data collected using any of the proposed nonuniform sampling strategies is maximum entropy reconstruction. A limiting factor in the adoption of maximum entropy reconstruction in NMR has been the need to specify non-intuitive parameters. Here we describe a fully automated system for maximum entropy reconstruction that requires no user-specified parameters. A web-accessible script generator provides the user interface to the system.

  15. Maximum entropy analysis of cosmic ray composition

    Nosek, Dalibor; Vícha, Jakub; Trávníček, Petr; Nosková, Jana


    We focus on the primary composition of cosmic rays with the highest energies that cause extensive air showers in the Earth's atmosphere. A way of examining the two lowest order moments of the sample distribution of the depth of shower maximum is presented. The aim is to show that useful information about the composition of the primary beam can be inferred with limited knowledge we have about processes underlying these observations. In order to describe how the moments of the depth of shower maximum depend on the type of primary particles and their energies, we utilize a superposition model. Using the principle of maximum entropy, we are able to determine what trends in the primary composition are consistent with the input data, while relying on a limited amount of information from shower physics. Some capabilities and limitations of the proposed method are discussed. In order to achieve a realistic description of the primary mass composition, we pay special attention to the choice of the parameters of the sup...

  16. A Maximum Resonant Set of Polyomino Graphs

    Zhang Heping


    Full Text Available A polyomino graph P is a connected finite subgraph of the infinite plane grid such that each finite face is surrounded by a regular square of side length one and each edge belongs to at least one square. A dimer covering of P corresponds to a perfect matching. Different dimer coverings can interact via an alternating cycle (or square with respect to them. A set of disjoint squares of P is a resonant set if P has a perfect matching M so that each one of those squares is M-alternating. In this paper, we show that if K is a maximum resonant set of P, then P − K has a unique perfect matching. We further prove that the maximum forcing number of a polyomino graph is equal to the cardinality of a maximum resonant set. This confirms a conjecture of Xu et al. [26]. We also show that if K is a maximal alternating set of P, then P − K has a unique perfect matching.

  17. The maximum rate of mammal evolution

    Evans, Alistair R.; Jones, David; Boyer, Alison G.; Brown, James H.; Costa, Daniel P.; Ernest, S. K. Morgan; Fitzgerald, Erich M. G.; Fortelius, Mikael; Gittleman, John L.; Hamilton, Marcus J.; Harding, Larisa E.; Lintulaakso, Kari; Lyons, S. Kathleen; Okie, Jordan G.; Saarinen, Juha J.; Sibly, Richard M.; Smith, Felisa A.; Stephens, Patrick R.; Theodor, Jessica M.; Uhen, Mark D.


    How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years, during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000-fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous-Paleogene (K-Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes.

  18. Minimal Length, Friedmann Equations and Maximum Density

    Awad, Adel


    Inspired by Jacobson's thermodynamic approach[gr-qc/9504004], Cai et al [hep-th/0501055,hep-th/0609128] have shown the emergence of Friedmann equations from the first law of thermodynamics. We extend Akbar--Cai derivation [hep-th/0609128] of Friedmann equations to accommodate a general entropy-area law. Studying the resulted Friedmann equations using a specific entropy-area law, which is motivated by the generalized uncertainty principle (GUP), reveals the existence of a maximum energy density closed to Planck density. Allowing for a general continuous pressure $p(\\rho,a)$ leads to bounded curvature invariants and a general nonsingular evolution. In this case, the maximum energy density is reached in a finite time and there is no cosmological evolution beyond this point which leaves the big bang singularity inaccessible from a spacetime prospective. The existence of maximum energy density and a general nonsingular evolution is independent of the equation of state and the spacial curvature $k$. As an example w...

  19. Maximum saliency bias in binocular fusion

    Lu, Yuhao; Stafford, Tom; Fox, Charles


    Subjective experience at any instant consists of a single ("unitary"), coherent interpretation of sense data rather than a "Bayesian blur" of alternatives. However, computation of Bayes-optimal actions has no role for unitary perception, instead being required to integrate over every possible action-percept pair to maximise expected utility. So what is the role of unitary coherent percepts, and how are they computed? Recent work provided objective evidence for non-Bayes-optimal, unitary coherent, perception and action in humans; and further suggested that the percept selected is not the maximum a posteriori percept but is instead affected by utility. The present study uses a binocular fusion task first to reproduce the same effect in a new domain, and second, to test multiple hypotheses about exactly how utility may affect the percept. After accounting for high experimental noise, it finds that both Bayes optimality (maximise expected utility) and the previously proposed maximum-utility hypothesis are outperformed in fitting the data by a modified maximum-salience hypothesis, using unsigned utility magnitudes in place of signed utilities in the bias function.

  20. The maximum rate of mammal evolution

    Evans, Alistair R.; Jones, David; Boyer, Alison G.; Brown, James H.; Costa, Daniel P.; Ernest, S. K. Morgan; Fitzgerald, Erich M. G.; Fortelius, Mikael; Gittleman, John L.; Hamilton, Marcus J.; Harding, Larisa E.; Lintulaakso, Kari; Lyons, S. Kathleen; Okie, Jordan G.; Saarinen, Juha J.; Sibly, Richard M.; Smith, Felisa A.; Stephens, Patrick R.; Theodor, Jessica M.; Uhen, Mark D.


    How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years, during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000-fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous–Paleogene (K–Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes. PMID:22308461