WorldWideScience

Sample records for maximum dynamic pressure

  1. Dynamic surface tension measurements of ionic surfactants using maximum bubble pressure tensiometry

    Science.gov (United States)

    Ortiz, Camilla U.; Moreno, Norman; Sharma, Vivek

    Dynamic surface tension refers to the time dependent variation in surface tension, and is intimately linked with the rate of mass transfer of a surfactant from liquid sub-phase to the interface. The diffusion- or adsorption-limited kinetics of mass transfer to interfaces is said to impact the so-called foamability and the Gibbs-Marangoni elasticity of surfaces. Dynamic surface tension measurements carried out with conventional methods like pendant drop analysis, Wilhelmy plate, etc. are limited in their temporal resolution (>50 ms). In this study, we describe design and application of maximum bubble pressure tensiometry for the measurement of dynamic surface tension effects at extremely short (1-50 ms) timescales. Using experiments and theory, we discuss the overall adsorption kinetics of charged surfactants, paying special attention to the influence of added salt on dynamic surface tension.

  2. Mechanical solution of the maximum point of dynamic abutment pressure under deep long-wall working face

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, F.; Ma, Q. [Shandong University of Science and Technology, Tai' an (China). College of Resource and Environmental Engineering

    2002-06-01

    The paper studies the dynamic relationship between abutment pressure and overburden collapse precess with advancing of working face. The result shows that the abutment pressure reaches its maximum value when the working face dimension is 1.27 times of the mining depth. This result confirms the statistical result from the strata movement surveys that overburden reaches its full movement stage when extracting dimension reaches 1.2 1.4 times of the mining depth. 12 refs., 2 figs.

  3. Dynamical maximum entropy approach to flocking.

    Science.gov (United States)

    Cavagna, Andrea; Giardina, Irene; Ginelli, Francesco; Mora, Thierry; Piovani, Duccio; Tavarone, Raffaele; Walczak, Aleksandra M

    2014-04-01

    We derive a new method to infer from data the out-of-equilibrium alignment dynamics of collectively moving animal groups, by considering the maximum entropy model distribution consistent with temporal and spatial correlations of flight direction. When bird neighborhoods evolve rapidly, this dynamical inference correctly learns the parameters of the model, while a static one relying only on the spatial correlations fails. When neighbors change slowly and the detailed balance is satisfied, we recover the static procedure. We demonstrate the validity of the method on simulated data. The approach is applicable to other systems of active matter.

  4. 49 CFR 195.406 - Maximum operating pressure.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Maximum operating pressure. 195.406 Section 195.406 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... HAZARDOUS LIQUIDS BY PIPELINE Operation and Maintenance § 195.406 Maximum operating pressure. (a) Except for...

  5. 49 CFR 192.623 - Maximum and minimum allowable operating pressure; Low-pressure distribution systems.

    Science.gov (United States)

    2010-10-01

    ... distribution systems. (a) No person may operate a low-pressure distribution system at a pressure high enough to...) No person may operate a low pressure distribution system at a pressure lower than the minimum... 49 Transportation 3 2010-10-01 2010-10-01 false Maximum and minimum allowable operating pressure...

  6. Effect of Training Frequency on Maximum Expiratory Pressure

    Science.gov (United States)

    Anand, Supraja; El-Bashiti, Nour; Sapienza, Christine

    2012-01-01

    Purpose: To determine the effects of expiratory muscle strength training (EMST) frequency on maximum expiratory pressure (MEP). Method: We assigned 12 healthy participants to 2 groups of training frequency (3 days per week and 5 days per week). They completed a 4-week training program on an EMST trainer (Aspire Products, LLC). MEP was the primary…

  7. 49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.

    Science.gov (United States)

    2010-10-01

    ... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage, unless...

  8. Standard values of maximum tongue pressure taken using newly developed disposable tongue pressure measurement device.

    Science.gov (United States)

    Utanohara, Yuri; Hayashi, Ryo; Yoshikawa, Mineka; Yoshida, Mitsuyoshi; Tsuga, Kazuhiro; Akagawa, Yasumasa

    2008-09-01

    It is clinically important to evaluate tongue function in terms of rehabilitation of swallowing and eating ability. We have developed a disposable tongue pressure measurement device designed for clinical use. In this study we used this device to determine standard values of maximum tongue pressure in adult Japanese. Eight hundred fifty-three subjects (408 male, 445 female; 20-79 years) were selected for this study. All participants had no history of dysphagia and maintained occlusal contact in the premolar and molar regions with their own teeth. A balloon-type disposable oral probe was used to measure tongue pressure by asking subjects to compress it onto the palate for 7 s with maximum voluntary effort. Values were recorded three times for each subject, and the mean values were defined as maximum tongue pressure. Although maximum tongue pressure was higher for males than for females in the 20-49-year age groups, there was no significant difference between males and females in the 50-79-year age groups. The maximum tongue pressure of the seventies age group was significantly lower than that of the twenties to fifties age groups. It may be concluded that maximum tongue pressures were reduced with primary aging. Males may become weaker with age at a faster rate than females; however, further decreases in strength were in parallel for male and female subjects.

  9. Approximation for maximum pressure calculation in containment of PWR reactors

    International Nuclear Information System (INIS)

    Souza, A.L. de

    1989-01-01

    A correlation was developed to estimate the maximum pressure of dry containment of PWR following a Loss-of-Coolant Accident - LOCA. The expression proposed is a function of the total energy released to the containment by the primary circuit, of the free volume of the containment building and of the total surface are of the heat-conducting structures. The results show good agreement with those present in Final Safety Analysis Report - FSAR of several PWR's plants. The errors are in the order of ± 12%. (author) [pt

  10. Radiation pressure acceleration: The factors limiting maximum attainable ion energy

    Energy Technology Data Exchange (ETDEWEB)

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Bulanov, S. V. [KPSI, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215 (Japan); A. M. Prokhorov Institute of General Physics RAS, Moscow 119991 (Russian Federation); Esirkepov, T. Zh.; Kando, M. [KPSI, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215 (Japan); Pegoraro, F. [Physics Department, University of Pisa and Istituto Nazionale di Ottica, CNR, Pisa 56127 (Italy); Leemans, W. P. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Physics Department, University of California, Berkeley, California 94720 (United States)

    2016-05-15

    Radiation pressure acceleration (RPA) is a highly efficient mechanism of laser-driven ion acceleration, with near complete transfer of the laser energy to the ions in the relativistic regime. However, there is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. The tightly focused laser pulses have group velocities smaller than the vacuum light speed, and, since they offer the high intensity needed for the RPA regime, it is plausible that group velocity effects would manifest themselves in the experiments involving tightly focused pulses and thin foils. However, in this case, finite spot size effects are important, and another limiting factor, the transverse expansion of the target, may dominate over the group velocity effect. As the laser pulse diffracts after passing the focus, the target expands accordingly due to the transverse intensity profile of the laser. Due to this expansion, the areal density of the target decreases, making it transparent for radiation and effectively terminating the acceleration. The off-normal incidence of the laser on the target, due either to the experimental setup, or to the deformation of the target, will also lead to establishing a limit on maximum ion energy.

  11. Dynamic Pressure Microphones

    Science.gov (United States)

    Werner, E.

    In 1876, Alexander Graham Bell described his first telephone with a microphone using magnetic induction to convert the voice input into an electric output signal. The basic principle led to a variety of designs optimized for different needs, from hearing impaired users to singers or broadcast announcers. From the various sound pressure versions, only the moving coil design is still in mass production for speech and music application.

  12. Maximum respiratory pressure measuring system : calibration and evaluation of uncertainty

    NARCIS (Netherlands)

    Ferreira, J.L.; Pereira, N.C.; Oliveira Júnior, M.; Vasconcelos, F.H.; Parreira, V.F.; Tierra-Criollo, C.J.

    2010-01-01

    The objective of this paper is to present a methodology for the evaluation of uncertainties in the measurements results obtained during the calibration of a digital manovacuometer prototype (DM) with a load cell sensor pressure device incorporated. Calibration curves were obtained for both pressure

  13. Measurement of the surface tension by the method of maximum gas bubble pressure

    International Nuclear Information System (INIS)

    Dugne, Jean

    1971-01-01

    A gas bubble method for measuring surface tension was studied. Theoretical investigations demonstrated that the maximum pressure can be represented by the envelope of a certain family of curves and that the physical nature of the capillary tube imposes an upper limit to its useful radius. With a given tube and a specified liquid, the dynamic evolution of the gas bubble depends only upon the variation of the mass of gas contained with time; this fact may restrict the choice of tubes. The use of one single tube requires important corrections. Computer treatment of the problem led to some accurate equations for calculating γ. Schroedinger equations and Sudgen's table are examined. The choice of tubes, the necessary corrections, density measurement, and the accuracy attainable are discussed. Experiments conducted with water and mercury using the sessile drop method and continuous recording of the pressure verified the theoretical ideas. (author) [fr

  14. 49 CFR 192.619 - Maximum allowable operating pressure: Steel or plastic pipelines.

    Science.gov (United States)

    2010-10-01

    ... plastic pipelines. 192.619 Section 192.619 Transportation Other Regulations Relating to Transportation... Operations § 192.619 Maximum allowable operating pressure: Steel or plastic pipelines. (a) No person may operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating...

  15. Pressure transmission area and maximum pressure transmission of different thermoplastic resin denture base materials under impact load.

    Science.gov (United States)

    Nasution, Hubban; Kamonkhantikul, Krid; Arksornnukit, Mansuang; Takahashi, Hidekazu

    2018-01-01

    The purposes of the present study were to examine the pressure transmission area and maximum pressure transmission of thermoplastic resin denture base materials under an impact load, and to evaluate the modulus of elasticity and nanohardness of thermoplastic resin denture base. Three injection-molded thermoplastic resin denture base materials [polycarbonate (Basis PC), ethylene propylene (Duraflex), and polyamide (Valplast)] and one conventional heat-polymerized acrylic resin (PMMA, SR Triplex Hot) denture base, all with a mandibular first molar acrylic resin denture tooth set in were evaluated (n=6). Pressure transmission area and maximum pressure transmission of the specimens under an impact load were observed by using pressure-sensitive sheets. The modulus of elasticity and nanohardness of each denture base (n=10) were measured on 15×15×15×3mm 3 specimen by using an ultramicroindentation system. The pressure transmission area, modulus of elasticity, and nanohardness data were statistically analyzed with 1-way ANOVA, followed by Tamhane or Tukey HSD post hoc test (α=.05). The maximum pressure transmission data were statistically analyzed with Kruskal-Wallis H test, followed by Mann-Whitney U test (α=.05). Polymethyl methacrylate showed significantly larger pressure transmission area and higher maximum pressure transmission than the other groups (Pelasticity and nanohardness among the four types of denture bases (Pelasticity and nanohardness of each type of denture base were demonstrated. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  16. The role of pressure anisotropy on the maximum mass of cold ...

    Indian Academy of Sciences (India)

    ,. Pune 411 007, India. 3 ... red-shift and mass increase in the presence of anisotropic pressures; numerical values are generated which are in ... that anisotropy may also change the limiting values of the maximum mass of com- pact stars.

  17. Application of the maximum entropy method to dynamical fermion simulations

    Science.gov (United States)

    Clowser, Jonathan

    This thesis presents results for spectral functions extracted from imaginary-time correlation functions obtained from Monte Carlo simulations using the Maximum Entropy Method (MEM). The advantages this method are (i) no a priori assumptions or parametrisations of the spectral function are needed, (ii) a unique solution exists and (iii) the statistical significance of the resulting image can be quantitatively analysed. The Gross Neveu model in d = 3 spacetime dimensions (GNM3) is a particularly interesting model to study with the MEM because at T = 0 it has a broken phase with a rich spectrum of mesonic bound states and a symmetric phase where there are resonances. Results for the elementary fermion, the Goldstone boson (pion), the sigma, the massive pseudoscalar meson and the symmetric phase resonances are presented. UKQCD Nf = 2 dynamical QCD data is also studied with MEM. Results are compared to those found from the quenched approximation, where the effects of quark loops in the QCD vacuum are neglected, to search for sea-quark effects in the extracted spectral functions. Information has been extract from the difficult axial spatial and scalar as well as the pseudoscalar, vector and axial temporal channels. An estimate for the non-singlet scalar mass in the chiral limit is given which is in agreement with the experimental value of Mao = 985 MeV.

  18. Fuzzy control of pressurizer dynamic process

    International Nuclear Information System (INIS)

    Ming Zhedong; Zhao Fuyu

    2006-01-01

    Considering the characteristics of pressurizer dynamic process, the fuzzy control system that takes the advantages of both fuzzy controller and PID controller is designed for the dynamic process in pressurizer. The simulation results illustrate this type of composite control system is with better qualities than those of single fuzzy controller and single PID controller. (authors)

  19. Leaf Dynamics of Panicum maximum under Future Climatic Changes.

    Science.gov (United States)

    Britto de Assis Prado, Carlos Henrique; Haik Guedes de Camargo-Bortolin, Lívia; Castro, Érique; Martinez, Carlos Alberto

    2016-01-01

    Panicum maximum Jacq. 'Mombaça' (C4) was grown in field conditions with sufficient water and nutrients to examine the effects of warming and elevated CO2 concentrations during the winter. Plants were exposed to either the ambient temperature and regular atmospheric CO2 (Control); elevated CO2 (600 ppm, eC); canopy warming (+2°C above regular canopy temperature, eT); or elevated CO2 and canopy warming (eC+eT). The temperatures and CO2 in the field were controlled by temperature free-air controlled enhancement (T-FACE) and mini free-air CO2 enrichment (miniFACE) facilities. The most green, expanding, and expanded leaves and the highest leaf appearance rate (LAR, leaves day(-1)) and leaf elongation rate (LER, cm day(-1)) were observed under eT. Leaf area and leaf biomass were higher in the eT and eC+eT treatments. The higher LER and LAR without significant differences in the number of senescent leaves could explain why tillers had higher foliage area and leaf biomass in the eT treatment. The eC treatment had the lowest LER and the fewest expanded and green leaves, similar to Control. The inhibitory effect of eC on foliage development in winter was indicated by the fewer green, expanded, and expanding leaves under eC+eT than eT. The stimulatory and inhibitory effects of the eT and eC treatments, respectively, on foliage raised and lowered, respectively, the foliar nitrogen concentration. The inhibition of foliage by eC was confirmed by the eC treatment having the lowest leaf/stem biomass ratio and by the change in leaf biomass-area relationships from linear or exponential growth to rectangular hyperbolic growth under eC. Besides, eC+eT had a synergist effect, speeding up leaf maturation. Therefore, with sufficient water and nutrients in winter, the inhibitory effect of elevated CO2 on foliage could be partially offset by elevated temperatures and relatively high P. maximum foliage production could be achieved under future climatic change.

  20. Induced topological pressure for topological dynamical systems

    International Nuclear Information System (INIS)

    Xing, Zhitao; Chen, Ercai

    2015-01-01

    In this paper, inspired by the article [J. Jaerisch et al., Stochastics Dyn. 14, 1350016, pp. 1-30 (2014)], we introduce the induced topological pressure for a topological dynamical system. In particular, we prove a variational principle for the induced topological pressure

  1. Dynamic pressure measures for long pipeline leak detection

    Energy Technology Data Exchange (ETDEWEB)

    Likun Wang; Hongchao Wang; Min Xiong; Bin Xu; Dongjie Tan; Hengzhang Zhou [PetroChina Pipeline Company, Langfang (China). R and D Center

    2009-07-01

    Pipeline leak detection method based on dynamic pressure is studied. The feature of dynamic pressure which is generated by the leakage of pipeline is analyzed. The dynamic pressure method is compared with the static pressure method for the advantages and disadvantages in pipeline leak detection. The dynamic pressure signal is suitable for pipeline leak detection for quick-change of pipeline internal pressure. Field tests show that the dynamic pressure method detects pipeline leak rapidly and precisely. (author)

  2. Critical Assessment of the Surface Tension determined by the Maximum Pressure Bubble Method

    OpenAIRE

    Benedetto, Franco Emmanuel; Zolotucho, Hector; Prado, Miguel Oscar

    2015-01-01

    The main factors that influence the value of surface tension of a liquid measured with the Maximum Pressure Bubble Method are critically evaluated. We present experimental results showing the effect of capillary diameter, capillary depth, bubble spheroidicity and liquid density at room temperature. We show that the decrease of bubble spheroidicity due to increase of capillary immersion depth is not sufficient to explain the deviations found in the measured surface tension values. Thus, we pro...

  3. Pressurizer /Auxiliary Spray Piping Stress Analysis For Determination Of Lead Shielding Maximum Allow Able Load

    International Nuclear Information System (INIS)

    Setjo, Renaningsih

    2000-01-01

    Piping stress analysis for PZR/Auxiliary Spray Lines Nuclear Power Plant AV Unit I(PWR Type) has been carried out. The purpose of this analysis is to establish a maximum allowable load that is permitted at the time of need by placing lead shielding on the piping system on class 1 pipe, Pressurizer/Auxiliary Spray Lines (PZR/Aux.) Reactor Coolant Loop 1 and 4 for NPP AV Unit one in the mode 5 and 6 during outage. This analysis is intended to reduce the maximum amount of radiation dose for the operator during ISI ( In service Inspection) period.The result shown that the maximum allowable loads for 4 inches lines for PZR/Auxiliary Spray Lines is 123 lbs/feet

  4. Pressure dependence of dynamical heterogeneity in water

    International Nuclear Information System (INIS)

    Teboul, Victor

    2008-01-01

    Using molecular dynamics simulations we investigate the effect of pressure on the dynamical heterogeneity in water. We show that the effect of a pressure variation in water is qualitatively different from the effect of a temperature variation on the dynamical heterogeneity in the liquid. We observe a strong decrease of the aggregation of molecules of low mobility together with a decrease of the characteristic time associated with this aggregation. However, the aggregation of the most mobile molecules and the characteristic time of this aggregation are only slightly affected. In accordance with this result, the non-Gaussian parameter shows an important decrease with pressure while the characteristic time t* of the non-Gaussian parameter is only slightly affected. These results highlight then the importance of pressure variation investigations in low temperature liquids on approach to the glass transition

  5. Dynamism or Disorder at High Pressures?

    Science.gov (United States)

    Angel, R. J.; Bismayer, U.; Marshall, W. G.

    2002-12-01

    Phase transitions in minerals at elevated temperatures typically involve dynamics as a natural consequence of the increase in thermal energy available to the system. Classic examples include quartz, cristobalite, and carbonates in which the high-temperature, high symmetry phase is dynamically disordered. This disorder has important thermodynamic consequences, including displacement and curvature of phase boundaries (e.g. calcite-aragonite). In other minerals such as clinopyroxenes and anorthite feldspar, the dynamic behaviour is restricted to the neighbourhood of the phase transition. The fundamental question is whether increasing pressure generally suppresses such dynamic behaviour (as in anorthite; Angel, 1988), or not. In the latter case it must be included in thermodynamic models of high-pressure phase equilibria and seismological modelling of the mantle; the potential dynamics and softening in stishovite may provide the critical observational constraint on the presence or otherwise of free silica in the lower mantle. We have continued to use the lead phosphate as a prototype ferroelastic in which to understand dynamic behaviour, simply because its dynamics and transition behaviour is far better characterised than any mineral. Furthermore, the phase transition is at a pressure where experimental difficulties do not dominate the experimental results. Our previous neutron diffraction study (Angel et al., 2001) revealed that some disorder, either dynamic or static, is retained in the high-symmetry, high-pressure phase just above the phase transition. New neutron diffraction data on the pure material now suggests that this disorder slowly decreases with increasing pressure until at twice the transition pressure it is ordered. Further data for doped material provides insights into the nature of this disorder. Angel (1988) Amer. Mineral. 73:1114. Angel et al (2001) J PhysC 13: 5353.

  6. Fiber-Optic Pressure Sensor With Dynamic Demodulation Developed

    Science.gov (United States)

    Lekki, John D.

    2002-01-01

    Researchers at the NASA Glenn Research Center developed in-house a method to detect pressure fluctuations using a fiber-optic sensor and dynamic signal processing. This work was in support of the Intelligent Systems Controls and Operations project under NASA's Information Technology Base Research Program. We constructed an optical pressure sensor by attaching a fiber-optic Bragg grating to a flexible membrane and then adhering the membrane to one end of a small cylinder. The other end of the cylinder was left open and exposed to pressure variations from a pulsed air jet. These pressure variations flexed the membrane, inducing a strain in the fiber-optic grating. This strain was read out optically with a dynamic spectrometer to record changes in the wavelength of light reflected from the grating. The dynamic spectrometer was built in-house to detect very small wavelength shifts induced by the pressure fluctuations. The spectrometer is an unbalanced interferometer specifically designed for maximum sensitivity to wavelength shifts. An optimum pathlength difference, which was determined empirically, resulted in a 14-percent sensitivity improvement over theoretically predicted path-length differences. This difference is suspected to be from uncertainty about the spectral power difference of the signal reflected from the Bragg grating. The figure shows the output of the dynamic spectrometer as the sensor was exposed to a nominally 2-kPa peak-to-peak square-wave pressure fluctuation. Good tracking, sensitivity, and signal-to-noise ratios are evident even though the sensor was constructed as a proof-of-concept and was not optimized in any way. Therefore the fiber-optic Bragg grating, which is normally considered a good candidate as a strain or temperature sensor, also has been shown to be a good candidate for a dynamic pressure sensor.

  7. Fluid Dynamics of Pressurized, Entrained Coal Gasifiers

    International Nuclear Information System (INIS)

    1997-01-01

    Pressurized, entrained gasification is a promising new technology for the clean and efficient combustion of coal. Its principle is to operate a coal gasifier at a high inlet gas velocity to increase the inflow of reactants, and at an elevated pressure to raise the overall efficiency of the process. Unfortunately, because of the extraordinary difficulties involved in performing measurements in hot, pressurized, high-velocity pilot plants, its fluid dynamics are largely unknown. Thus the designer cannot predict with certainty crucial phenomena like erosion, heat transfer and solid capture. In this context, we are conducting a study of the fluid dynamics of Pressurized Entrained Coal Gasifiers (PECGs). The idea is to simulate the flows in generic industrial PECGs using dimensional similitude. To this end, we employ a unique entrained gas-solid flow facility with the flexibility to recycle--rather than discard--gases other than air. By matching five dimensionless parameters, suspensions in mixtures of helium, carbon dioxide and sulfur hexafluoride simulate the effects of pressure and scale-upon the fluid dynamics of PECGs. Because it operates under cold, atmospheric conditions, the laboratory facility is ideal for detailed measurements

  8. Simplified Methodology to Estimate the Maximum Liquid Helium (LHe) Cryostat Pressure from a Vacuum Jacket Failure

    Science.gov (United States)

    Ungar, Eugene K.; Richards, W. Lance

    2015-01-01

    The aircraft-based Stratospheric Observatory for Infrared Astronomy (SOFIA) is a platform for multiple infrared astronomical observation experiments. These experiments carry sensors cooled to liquid helium temperatures. The liquid helium supply is contained in large (i.e., 10 liters or more) vacuum-insulated dewars. Should the dewar vacuum insulation fail, the inrushing air will condense and freeze on the dewar wall, resulting in a large heat flux on the dewar's contents. The heat flux results in a rise in pressure and the actuation of the dewar pressure relief system. A previous NASA Engineering and Safety Center (NESC) assessment provided recommendations for the wall heat flux that would be expected from a loss of vacuum and detailed an appropriate method to use in calculating the maximum pressure that would occur in a loss of vacuum event. This method involved building a detailed supercritical helium compressible flow thermal/fluid model of the vent stack and exercising the model over the appropriate range of parameters. The experimenters designing science instruments for SOFIA are not experts in compressible supercritical flows and do not generally have access to the thermal/fluid modeling packages that are required to build detailed models of the vent stacks. Therefore, the SOFIA Program engaged the NESC to develop a simplified methodology to estimate the maximum pressure in a liquid helium dewar after the loss of vacuum insulation. The method would allow the university-based science instrument development teams to conservatively determine the cryostat's vent neck sizing during preliminary design of new SOFIA Science Instruments. This report details the development of the simplified method, the method itself, and the limits of its applicability. The simplified methodology provides an estimate of the dewar pressure after a loss of vacuum insulation that can be used for the initial design of the liquid helium dewar vent stacks. However, since it is not an exact

  9. Rate maximum calculation of Dpa in CNA-II pressure vessel

    International Nuclear Information System (INIS)

    Mascitti, J. A

    2012-01-01

    The maximum dpa rate was calculated for the reactor in the following state: fresh fuel, no Xenon, a Boron concentration of 15.3 ppm, critical state, its control rods in the criticality position, hot, at full power (2160 MW). It was determined that the maximum dpa rate under such conditions is 3.54(2)x10 12 s -1 and it is located in the positions corresponding to θ=210 o in the azimuthal direction, and z=20 cm and -60 cm respectively in the axial direction, considering the calculation mesh centered at half height of the fuel element (FE) active length. The dpa rate spectrum was determined as well as the contribution to it for 4 energy groups: a thermal group, two epithermal groups and a fast one. The maximum dpa rate considering the photo-neutrons production from (γ, n) reaction in the heavy water of coolant and moderator was 3.93(4)x10 12 s -1 that is 11% greater than the obtained without photo-neutrons. This verified significant difference between both cases, suggest that photo-neutrons in large heavy water reactors such as CNA-II should not be ignored. The maximum DPA rate in the first mm of the reactor pressure vessel was calculated too and it was obtained a value of 4.22(6)x10 12 s -1 . It should be added that the calculation was carried out with the reactor complete accurate model, with no approximations in spatial or energy variables. Each value has, between parentheses, a percentage relative error representing the statistical uncertainty due to the probabilistic Monte Carlo method used to estimate it. More representative values may be obtained with this method if equilibrium burn-up distribution is used (author)

  10. Dynamics of explosively imploded pressurized tubes

    Science.gov (United States)

    Szirti, Daniel; Loiseau, Jason; Higgins, Andrew; Tanguay, Vincent

    2011-04-01

    The detonation of an explosive layer surrounding a pressurized thin-walled tube causes the formation of a virtual piston that drives a precursor shock wave ahead of the detonation, generating very high temperatures and pressures in the gas contained within the tube. Such a device can be used as the driver for a high energy density shock tube or hypervelocity gas gun. The dynamics of the precursor shock wave were investigated for different tube sizes and initial fill pressures. Shock velocity and standoff distance were found to decrease with increasing fill pressure, mainly due to radial expansion of the tube. Adding a tamper can reduce this effect, but may increase jetting. A simple analytical model based on acoustic wave interactions was developed to calculate pump tube expansion and the resulting effect on the shock velocity and standoff distance. Results from this model agree quite well with experimental data.

  11. Dynamic performance of maximum power point tracking circuits using sinusoidal extremum seeking control for photovoltaic generation

    Science.gov (United States)

    Leyva, R.; Artillan, P.; Cabal, C.; Estibals, B.; Alonso, C.

    2011-04-01

    The article studies the dynamic performance of a family of maximum power point tracking circuits used for photovoltaic generation. It revisits the sinusoidal extremum seeking control (ESC) technique which can be considered as a particular subgroup of the Perturb and Observe algorithms. The sinusoidal ESC technique consists of adding a small sinusoidal disturbance to the input and processing the perturbed output to drive the operating point at its maximum. The output processing involves a synchronous multiplication and a filtering stage. The filter instance determines the dynamic performance of the MPPT based on sinusoidal ESC principle. The approach uses the well-known root-locus method to give insight about damping degree and settlement time of maximum-seeking waveforms. This article shows the transient waveforms in three different filter instances to illustrate the approach. Finally, an experimental prototype corroborates the dynamic analysis.

  12. High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors

    Science.gov (United States)

    Okojie, Robert S.; Meredith, Roger D.; Chang, Clarence T.; Savrun, Ender

    2014-01-01

    Un-cooled, MEMS-based silicon carbide (SiC) static pressure sensors were used for the first time to measure pressure perturbations at temperatures as high as 600 C during laboratory characterization, and subsequently evaluated in a combustor rig operated under various engine conditions to extract the frequencies that are associated with thermoacoustic instabilities. One SiC sensor was placed directly in the flow stream of the combustor rig while a benchmark commercial water-cooled piezoceramic dynamic pressure transducer was co-located axially but kept some distance away from the hot flow stream. In the combustor rig test, the SiC sensor detected thermoacoustic instabilities across a range of engine operating conditions, amplitude magnitude as low as 0.5 psi at 585 C, in good agreement with the benchmark piezoceramic sensor. The SiC sensor experienced low signal to noise ratio at higher temperature, primarily due to the fact that it was a static sensor with low sensitivity.

  13. The Influence of Pressure Distribution on the Maximum Values of Stress in FEM Analysis of Plain Bearings

    Directory of Open Access Journals (Sweden)

    Vasile Cojocaru

    2016-12-01

    Full Text Available Several methods can be used in the FEM studies to apply the loads on a plain bearing. The paper presents a comparative analysis of maximum stress obtained for three loading scenarios: resultant force applied on the shaft – bearing assembly, variable pressure with sinusoidal distribution applied on the bearing surface, variable pressure with parabolic distribution applied on the bearing surface.

  14. Quasi-dynamic pressure and temperature

    International Nuclear Information System (INIS)

    Zaug, J M.; Farber, D L; Blosch, L L; Craig, I M; Hansen, D W; Aracne-Ruddle, C M; Shuh, D K

    1998-01-01

    The phase transformation of(beta)-HMX ( and lt; 0.5% RDX) to the(delta) phase has been studied for over twenty years and more recently with an optically sensitive second harmonic generation technique. Shock studies of the plastic binder composites of HMX have indicated that the transition is perhaps irreversible, a result that concurs with the static pressure results published by F. Goetz et al.[l] in 1978. However the stability field favors the(beta) polymorph over(delta) as pressure is increased (up to 5.4 GPa) along any sensible isotherm. In this experiment strict control of pressure and temperature is maintained while x-ray and optical diagnostics are applied to monitor the conformational dynamics of HMX. Unlike the temperature induced(beta) - and gt;(delta) transition, the pressure induced is heterogeneous in nature. The room pressure and temperature(delta) - and gt;(beta) transition is not immediate although it seems to occur over tens of hours. Transition points and kinetics are path dependent and so this paper describes our work in progress

  15. Research on pipeline leak detection method based on pressure and dynamic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Likun; Xiong, Min; Zhao, Jinyun; Wang, Hongchao; Xu, Bin; Yu, DongLiang; Sun, Yi; Cai, Yongjun [RnD center of PetroChina Pipeline Company, Langfang, Hebei, (China)

    2010-07-01

    Pipeline leakages are very frequent and need to be detected as fast as possible to avoid safety and environment issues. Many leakage detection processes have been developed. Acoustic wave methods based on static pressure and dynamic pressure are both used for pipeline leakage detection. This study investigated a new pipeline leak detection method based on joint pressure and dynamic pressure. A dynamic pressure transmitter was designed based on a piezoelectric dynamic pressure sensor. The study showed that the dynamic pressure signal should be used for pipeline leak detection with a quick-change in pipeline internal pressure, while the static pressure signal provides better results with a slow-change of pipeline internal pressure. The in-field results showed that the location error of dynamic pressure is reduced to 80 m with a leakage ratio of 0.6 % pipeline throughput.

  16. Relationship between Maximum Principle and Dynamic Programming for Stochastic Recursive Optimal Control Problems and Applications

    Directory of Open Access Journals (Sweden)

    Jingtao Shi

    2013-01-01

    Full Text Available This paper is concerned with the relationship between maximum principle and dynamic programming for stochastic recursive optimal control problems. Under certain differentiability conditions, relations among the adjoint processes, the generalized Hamiltonian function, and the value function are given. A linear quadratic recursive utility portfolio optimization problem in the financial engineering is discussed as an explicitly illustrated example of the main result.

  17. Maximum Likelihood Dynamic Factor Modeling for Arbitrary "N" and "T" Using SEM

    Science.gov (United States)

    Voelkle, Manuel C.; Oud, Johan H. L.; von Oertzen, Timo; Lindenberger, Ulman

    2012-01-01

    This article has 3 objectives that build on each other. First, we demonstrate how to obtain maximum likelihood estimates for dynamic factor models (the direct autoregressive factor score model) with arbitrary "T" and "N" by means of structural equation modeling (SEM) and compare the approach to existing methods. Second, we go beyond standard time…

  18. [Effect of maximum blood pressure fluctuation on prognosis of patients with acute ischemic stroke within 24 hours after hospital admission].

    Science.gov (United States)

    Wang, H; Tang, Y; Zhang, Y; Xu, K; Zhao, J B

    2018-05-10

    Objective: To investigate the relationship between the maximum blood pressure fluctuation within 24 hours after admission and the prognosis at discharge. Methods: The patients with ischemic stroke admitted in Department of Neurology of the First Affiliated Hospital of Harbin Medical University within 24 hours after onset were consecutively selected from April 2016 to March 2017. The patients were grouped according to the diagnostic criteria of hypertension. Ambulatory blood pressure of the patients within 24 hours after admission were measured with bedside monitors and baseline data were collected. The patients were scored by NIHSS at discharge. The relationships between the maximum values of systolic blood pressure (SBP) or diastolic blood pressure (DBP) and the prognosis at discharge were analyzed. Results: A total of 521 patients with acute ischemic stroke were enrolled. They were divided into normal blood pressure group (82 cases) and hypertension group(439 cases). In normal blood pressure group, the maximum values of SBP and DBP were all in normal distribution ( P >0.05). The maximum value of SBP fluctuation was set at 146.6 mmHg. After adjustment for potential confounders, the OR for poor prognosis at discharge in patients with SBP fluctuation ≥146.6 mmHg was 2.669 (95 %CI : 0.594-11.992) compared with those with SBP fluctuation blood pressure at admission, the maximum values of SBP and DBP within 24 hours after admission had no relationship with prognosis at discharge. In acute ischemic stroke patients with hypertension at admission, the maximum values of SBP and DBP within 24 hours after admission were associated with poor prognosis at discharge.

  19. Relationship between maximum dynamic force of inferior members and body balance in strength training apprentices

    Directory of Open Access Journals (Sweden)

    Ariane Martins

    2010-08-01

    Full Text Available The relationship between force and balance show controversy results and has directimplications in exercise prescription practice. The objective was to investigate the relationshipbetween maximum dynamic force (MDF of inferior limbs and the static and dynamic balances.Participated in the study 60 individuals, with 18 to 24 years old, strength training apprentices.The MDF was available by mean the One Maximum Repetition (1MR in “leg press” and “kneeextension” and motor testes to available of static and dynamic balances. The correlation testsand multiple linear regression were applied. The force and balance variables showed correlationin females (p=0.038. The corporal mass and static balance showed correlation for the males(p=0.045. The explication capacity at MDF and practices time were small: 13% for staticbalance in males, 18% and 17%, respectively, for static and dynamic balance in females. Inconclusion: the MDF of inferior limbs showed low predictive capacity for performance in staticand dynamic balances, especially for males.

  20. Maximum Expected Wall Heat Flux and Maximum Pressure After Sudden Loss of Vacuum Insulation on the Stratospheric Observatory for Infrared Astronomy (SOFIA) Liquid Helium (LHe) Dewars

    Science.gov (United States)

    Ungar, Eugene K.

    2014-01-01

    The aircraft-based Stratospheric Observatory for Infrared Astronomy (SOFIA) is a platform for multiple infrared observation experiments. The experiments carry sensors cooled to liquid helium (LHe) temperatures. A question arose regarding the heat input and peak pressure that would result from a sudden loss of the dewar vacuum insulation. Owing to concerns about the adequacy of dewar pressure relief in the event of a sudden loss of the dewar vacuum insulation, the SOFIA Program engaged the NASA Engineering and Safety Center (NESC). This report summarizes and assesses the experiments that have been performed to measure the heat flux into LHe dewars following a sudden vacuum insulation failure, describes the physical limits of heat input to the dewar, and provides an NESC recommendation for the wall heat flux that should be used to assess the sudden loss of vacuum insulation case. This report also assesses the methodology used by the SOFIA Program to predict the maximum pressure that would occur following a loss of vacuum event.

  1. Influence of Dynamic Neuromuscular Stabilization Approach on Maximum Kayak Paddling Force

    Directory of Open Access Journals (Sweden)

    Davidek Pavel

    2018-03-01

    Full Text Available The purpose of this study was to examine the effect of Dynamic Neuromuscular Stabilization (DNS exercise on maximum paddling force (PF and self-reported pain perception in the shoulder girdle area in flatwater kayakers. Twenty male flatwater kayakers from a local club (age = 21.9 ± 2.4 years, body height = 185.1 ± 7.9 cm, body mass = 83.9 ± 9.1 kg were randomly assigned to the intervention or control groups. During the 6-week study, subjects from both groups performed standard off-season training. Additionally, the intervention group engaged in a DNS-based core stabilization exercise program (quadruped exercise, side sitting exercise, sitting exercise and squat exercise after each standard training session. Using a kayak ergometer, the maximum PF stroke was measured four times during the six weeks. All subjects completed the Disabilities of the Arm, Shoulder and Hand (DASH questionnaire before and after the 6-week interval to evaluate subjective pain perception in the shoulder girdle area. Initially, no significant differences in maximum PF and the DASH questionnaire were identified between the two groups. Repeated measures analysis of variance indicated that the experimental group improved significantly compared to the control group on maximum PF (p = .004; Cohen’s d = .85, but not on the DASH questionnaire score (p = .731 during the study. Integration of DNS with traditional flatwater kayak training may significantly increase maximum PF, but may not affect pain perception to the same extent.

  2. Effect of Ovality on Maximum External Pressure of Helically Coiled Steam Generator Tubes with a Rectangular Wear

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dong In; Lim, Eun Mo; Huh, Nam Su [Seoul National Univ. of Science and Technology, Seoul (Korea, Republic of); Choi, Shin Beom; Yu, Je Yong; Kim, Ji Ho; Choi, Suhn [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    A structural integrity of steam generator tubes of nuclear power plants is one of crucial parameters for safe operation of nuclear power plants. Thus, many studies have been made to provide engineering methods to assess integrity of defective tubes of commercial nuclear power plants considering its operating environments and defect characteristics. As described above, the geometric and operating conditions of steam generator tubes in integral reactor are significantly different from those of commercial reactor. Therefore, the structural integrity assessment of defective tubes of integral reactor taking into account its own operating conditions and geometric characteristics, i. e., external pressure and helically coiled shape, should be made to demonstrate compliance with the current design criteria. Also, ovality is very specific characteristics of the helically coiled tube because it is occurred during the coiling processes. The wear, occurring from FIV (Flow Induced Vibration) and so on, is main degradation of steam generator tube. In the present study, maximum external pressure of helically coiled steam generator tube with wear is predicted based on the detailed 3-dimensional finite element analysis. As for shape of wear defect, the rectangular shape is considered. In particular, the effect of ovality on the maximum external pressure of helically coiled tubes with rectangular shaped wear is investigated. In the present work, the maximum external pressure of helically coiled steam generator tube with rectangular shaped wear is investigated via detailed 3-D FE analyses. In order to cover a practical range of geometries for defective tube, the variables affecting the maximum external pressure were systematically varied. In particular, the effect of tube ovality on the maximum external pressure is evaluated. It is expected that the present results can be used as a technical backgrounds for establishing a practical structural integrity assessment guideline of

  3. Perspective: Maximum caliber is a general variational principle for dynamical systems.

    Science.gov (United States)

    Dixit, Purushottam D; Wagoner, Jason; Weistuch, Corey; Pressé, Steve; Ghosh, Kingshuk; Dill, Ken A

    2018-01-07

    We review here Maximum Caliber (Max Cal), a general variational principle for inferring distributions of paths in dynamical processes and networks. Max Cal is to dynamical trajectories what the principle of maximum entropy is to equilibrium states or stationary populations. In Max Cal, you maximize a path entropy over all possible pathways, subject to dynamical constraints, in order to predict relative path weights. Many well-known relationships of non-equilibrium statistical physics-such as the Green-Kubo fluctuation-dissipation relations, Onsager's reciprocal relations, and Prigogine's minimum entropy production-are limited to near-equilibrium processes. Max Cal is more general. While it can readily derive these results under those limits, Max Cal is also applicable far from equilibrium. We give examples of Max Cal as a method of inference about trajectory distributions from limited data, finding reaction coordinates in bio-molecular simulations, and modeling the complex dynamics of non-thermal systems such as gene regulatory networks or the collective firing of neurons. We also survey its basis in principle and some limitations.

  4. Perspective: Maximum caliber is a general variational principle for dynamical systems

    Science.gov (United States)

    Dixit, Purushottam D.; Wagoner, Jason; Weistuch, Corey; Pressé, Steve; Ghosh, Kingshuk; Dill, Ken A.

    2018-01-01

    We review here Maximum Caliber (Max Cal), a general variational principle for inferring distributions of paths in dynamical processes and networks. Max Cal is to dynamical trajectories what the principle of maximum entropy is to equilibrium states or stationary populations. In Max Cal, you maximize a path entropy over all possible pathways, subject to dynamical constraints, in order to predict relative path weights. Many well-known relationships of non-equilibrium statistical physics—such as the Green-Kubo fluctuation-dissipation relations, Onsager's reciprocal relations, and Prigogine's minimum entropy production—are limited to near-equilibrium processes. Max Cal is more general. While it can readily derive these results under those limits, Max Cal is also applicable far from equilibrium. We give examples of Max Cal as a method of inference about trajectory distributions from limited data, finding reaction coordinates in bio-molecular simulations, and modeling the complex dynamics of non-thermal systems such as gene regulatory networks or the collective firing of neurons. We also survey its basis in principle and some limitations.

  5. Earthquake related dynamic groundwater pressure changes observed at the Kamaishi Mine

    International Nuclear Information System (INIS)

    Sasaki, Shunji; Yasuike, Shinji; Komada, Hiroya; Kobayashi, Yoshimasa; Kawamura, Makoto; Aoki, Kazuhiro

    1999-01-01

    From 342 seismic records observed at the Kamaishi Mine form 1990 to 1998, a total of 92 data whose acceleration is greater than 1 gal or ground water pressure is greater than 1 kPa were selected and dynamic ground water pressure changes associated with earthquakes were studied. The results obtained are as follows: (1) A total of 27 earthquakes accompanied by static ground water pressure changes were observed. Earthquake-related static ground water pressure changes are smaller than 1/10 of the annual range of ground water pressure changes. There is also a tendency that the ground water pressure changes recovers to its original trend in several weeks after earthquakes. (2) Dynamic ground water pressure changes associated with earthquakes occur when P-waves arrive. However, the largest dynamic ground water pressure changes occur on S-wave part arrivals where the amplitude of seismic wave is the largest. A positive correlation is recognized between the maximum value of velocity wave form and that of dynamic ground water pressure changes. (3) The characteristic of dynamic change in ground water pressure due to earthquakes can be explained qualitatively by mechanism in which the P-wave converted from an incident SV wave propagates along the borehole. (author)

  6. Dynamic elastic moduli of rocks under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Schock, R N [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    Elastic moduli are determined as a function of confining pressure to 10 kb on rocks in which Plowshare shots are to be fired. Numerical simulation codes require accurate information on the mechanical response of the rock medium to various stress levels in order to predict cavity dimensions. The theoretical treatment of small strains in an elastic medium relates the propagation velocity of compressional and shear waves to the elastic moduli. Velocity measurements can provide, as unique code input data, the rigidity modulus, Poisson' ratio and the shear wave velocity, as well as providing checks on independent determinations of the other moduli. Velocities are determined using pulsed electro-mechanical transducers and measuring the time-of-flight in the rock specimen. A resonant frequency of 1 MHz is used to insure that the wavelength exceeds the average grain dimension and is subject to bulk rock properties. Data obtained on a variety of rock types are presented and analyzed. These data are discussed in terms of their relationship to moduli measured by static methods as well as the effect of anisotropy, porosity, and fractures. In general, fractured rocks with incipient cracks show large increases in velocity and moduli in the first 1 to 2 kb of compression as a result of the closing of these voids. After this, the velocities increase much more slowly. Dynamic moduli for these rocks are often 10% higher than corresponding static moduli at low pressure, but this difference decreases as the voids are closed until the moduli agree within experimental error. The discrepancy at low pressure is a result of the elastic energy in the wave pulse being propagated around cracks, with little effect on propagation velocity averaged over the entire specimen. (author)

  7. CFD modeling of the IRIS pressurizer dynamic

    International Nuclear Information System (INIS)

    Sanz, Ronny R.; Montesinos, Maria E.; Garcia, Carlos; Bueno, Elizabeth D.; Mazaira, Leorlen R.; Bezerra, Jair L.; Lira, Carlos A.B. Oliveira

    2015-01-01

    Integral layout of nuclear reactor IRIS makes possible the elimination of the spray system, which is usually used to mitigate in-surge transient and also help to Boron homogenization. The study of transients with deficiencies in the Boron homogenization in this technology is very important, because they can cause disturbances in the reactor power and insert a strong reactivity in the core. The detailed knowledge of the behavior of multiphase multicomponent flows is challenging due to the complex phenomena and interactions at the interface. In this context, the CFD modeling is employed in the design of equipment in the nuclear industry as it allows predicting accidents or predicting their performance in dissimilar applications. The aim of the present research is to model the IRIS pressurizer's dynamic using the commercial CFD code CFX. A symmetric tri dimensional model equivalent to 1/8 of the total geometry was adopted to reduce mesh size and minimize processing time. The model considers the coexistence of four phases and also takes into account the heat losses. The relationships for interfacial mass, energy, and momentum transport are programmed and incorporated into CFX. Moreover, two subdomains and several additional variables are defined to monitoring the boron dilution sequences and condensation-evaporation rates in different control volumes. For transient states a non - equilibrium stratification in the pressurizer is considered. This paper discusses the model developed and the behavior of the system for representative transients sequences. The results of analyzed transients of IRIS can be applied to the design of pressurizer internal structures and components. (author)

  8. Dynamic elastic moduli of rocks under pressure

    International Nuclear Information System (INIS)

    Schock, R.N.

    1970-01-01

    Elastic moduli are determined as a function of confining pressure to 10 kb on rocks in which Plowshare shots are to be fired. Numerical simulation codes require accurate information on the mechanical response of the rock medium to various stress levels in order to predict cavity dimensions. The theoretical treatment of small strains in an elastic medium relates the propagation velocity of compressional and shear waves to the elastic moduli. Velocity measurements can provide, as unique code input data, the rigidity modulus, Poisson' ratio and the shear wave velocity, as well as providing checks on independent determinations of the other moduli. Velocities are determined using pulsed electro-mechanical transducers and measuring the time-of-flight in the rock specimen. A resonant frequency of 1 MHz is used to insure that the wavelength exceeds the average grain dimension and is subject to bulk rock properties. Data obtained on a variety of rock types are presented and analyzed. These data are discussed in terms of their relationship to moduli measured by static methods as well as the effect of anisotropy, porosity, and fractures. In general, fractured rocks with incipient cracks show large increases in velocity and moduli in the first 1 to 2 kb of compression as a result of the closing of these voids. After this, the velocities increase much more slowly. Dynamic moduli for these rocks are often 10% higher than corresponding static moduli at low pressure, but this difference decreases as the voids are closed until the moduli agree within experimental error. The discrepancy at low pressure is a result of the elastic energy in the wave pulse being propagated around cracks, with little effect on propagation velocity averaged over the entire specimen. (author)

  9. CFD modeling of the IRIS pressurizer dynamic

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, Ronny R.; Montesinos, Maria E.; Garcia, Carlos; Bueno, Elizabeth D.; Mazaira, Leorlen R., E-mail: rsanz@instec.cu, E-mail: mmontesi@instec.cu, E-mail: cgh@instec.cu, E-mail: leored1984@gmail.com [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Bezerra, Jair L.; Lira, Carlos A.B. Oliveira, E-mail: jair.lima@ufpe.br, E-mail: cabol@ufpe.br [Universida Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2015-07-01

    Integral layout of nuclear reactor IRIS makes possible the elimination of the spray system, which is usually used to mitigate in-surge transient and also help to Boron homogenization. The study of transients with deficiencies in the Boron homogenization in this technology is very important, because they can cause disturbances in the reactor power and insert a strong reactivity in the core. The detailed knowledge of the behavior of multiphase multicomponent flows is challenging due to the complex phenomena and interactions at the interface. In this context, the CFD modeling is employed in the design of equipment in the nuclear industry as it allows predicting accidents or predicting their performance in dissimilar applications. The aim of the present research is to model the IRIS pressurizer's dynamic using the commercial CFD code CFX. A symmetric tri dimensional model equivalent to 1/8 of the total geometry was adopted to reduce mesh size and minimize processing time. The model considers the coexistence of four phases and also takes into account the heat losses. The relationships for interfacial mass, energy, and momentum transport are programmed and incorporated into CFX. Moreover, two subdomains and several additional variables are defined to monitoring the boron dilution sequences and condensation-evaporation rates in different control volumes. For transient states a non - equilibrium stratification in the pressurizer is considered. This paper discusses the model developed and the behavior of the system for representative transients sequences. The results of analyzed transients of IRIS can be applied to the design of pressurizer internal structures and components. (author)

  10. Fundamental characteristics and simplified evaluation method of dynamic earth pressure

    International Nuclear Information System (INIS)

    Nukui, Y.; Inagaki, Y.; Ohmiya, Y.

    1989-01-01

    In Japan, a method is commonly used in the evaluation of dynamic earth pressure acting on the underground walls of a deeply embedded nuclear reactor building. However, since this method was developed on the basis of the limit state of soil supported by retaining walls, the behavior of dynamic earth pressure acting on the embedded part of a nuclear reactor building may differ from the estimated by this method. This paper examines the fundamental characteristics of dynamic earth pressure through dynamic soil-structure interaction analysis. A simplified method to evaluate dynamic earth pressure for the design of underground walls of a nuclear reactor building is described. The dynamic earth pressure is fluctuating earth pressure during earthquake

  11. Study on Droplet Size and Velocity Distributions of a Pressure Swirl Atomizer Based on the Maximum Entropy Formalism

    Directory of Open Access Journals (Sweden)

    Kai Yan

    2015-01-01

    Full Text Available A predictive model for droplet size and velocity distributions of a pressure swirl atomizer has been proposed based on the maximum entropy formalism (MEF. The constraint conditions of the MEF model include the conservation laws of mass, momentum, and energy. The effects of liquid swirling strength, Weber number, gas-to-liquid axial velocity ratio and gas-to-liquid density ratio on the droplet size and velocity distributions of a pressure swirl atomizer are investigated. Results show that model based on maximum entropy formalism works well to predict droplet size and velocity distributions under different spray conditions. Liquid swirling strength, Weber number, gas-to-liquid axial velocity ratio and gas-to-liquid density ratio have different effects on droplet size and velocity distributions of a pressure swirl atomizer.

  12. [Annual blood pressure dynamics and weather sensitivity in women].

    Science.gov (United States)

    Varlamova, N G; Zenchenko, T A; Boyko, E R

    To study the annual cycle of blood pressure (BP) and weather sensitivity in normotensive women aged 20-59 years. The same group of 25 non-smoking women who had been living in the European North of Russia (62° N, 51° E) almost since their birth and were engaged in moderate-intensity mental labor was daily examined. During a year, there were 11823 blood pressure measurements using the Korotkoff technique; heart rate was calculated by palpation. These meteorological parameters were taken at the websites: http://meteo.infospace.ru and ftp://ftp.ngdc.noaa.gov/stp/geomagnetic_data/indices/kp_ap. The statistical significance of differences in the indicators was determined using the Fisher's test and the Newman-Keuls test. The study used a correlation analysis with the calculation of the Spearman's rank correlation coefficient. The maximum systolic and diastolic BP values were revealed in February and January, respectively. The minimum values of systolic BP were detected in July; those of diastolic BP were in August. An individual-based analysis of sensitivity to environmental variations showed that about 88% of the women responded to atmospheric temperature; nearly 44% did to geomagnetic activity; almost 24% were sensitive to relative air humidity, and about 16% of the women were to atmospheric pressure. The dynamics of systolic and diastolic BP in the annual cycle of women depends on meteorological factors and suggests that there is a change in the priorities of its control in different periods of a year.

  13. Short-time maximum entropy method analysis of molecular dynamics simulation: Unimolecular decomposition of formic acid

    Science.gov (United States)

    Takahashi, Osamu; Nomura, Tetsuo; Tabayashi, Kiyohiko; Yamasaki, Katsuyoshi

    2008-07-01

    We performed spectral analysis by using the maximum entropy method instead of the traditional Fourier transform technique to investigate the short-time behavior in molecular systems, such as the energy transfer between vibrational modes and chemical reactions. This procedure was applied to direct ab initio molecular dynamics calculations for the decomposition of formic acid. More reactive trajectories of dehydrolation than those of decarboxylation were obtained for Z-formic acid, which was consistent with the prediction of previous theoretical and experimental studies. Short-time maximum entropy method analyses were performed for typical reactive and non-reactive trajectories. Spectrograms of a reactive trajectory were obtained; these clearly showed the reactant, transient, and product regions, especially for the dehydrolation path.

  14. Dynamic Programming and Error Estimates for Stochastic Control Problems with Maximum Cost

    International Nuclear Information System (INIS)

    Bokanowski, Olivier; Picarelli, Athena; Zidani, Hasnaa

    2015-01-01

    This work is concerned with stochastic optimal control for a running maximum cost. A direct approach based on dynamic programming techniques is studied leading to the characterization of the value function as the unique viscosity solution of a second order Hamilton–Jacobi–Bellman (HJB) equation with an oblique derivative boundary condition. A general numerical scheme is proposed and a convergence result is provided. Error estimates are obtained for the semi-Lagrangian scheme. These results can apply to the case of lookback options in finance. Moreover, optimal control problems with maximum cost arise in the characterization of the reachable sets for a system of controlled stochastic differential equations. Some numerical simulations on examples of reachable analysis are included to illustrate our approach

  15. Dynamic Programming and Error Estimates for Stochastic Control Problems with Maximum Cost

    Energy Technology Data Exchange (ETDEWEB)

    Bokanowski, Olivier, E-mail: boka@math.jussieu.fr [Laboratoire Jacques-Louis Lions, Université Paris-Diderot (Paris 7) UFR de Mathématiques - Bât. Sophie Germain (France); Picarelli, Athena, E-mail: athena.picarelli@inria.fr [Projet Commands, INRIA Saclay & ENSTA ParisTech (France); Zidani, Hasnaa, E-mail: hasnaa.zidani@ensta.fr [Unité de Mathématiques appliquées (UMA), ENSTA ParisTech (France)

    2015-02-15

    This work is concerned with stochastic optimal control for a running maximum cost. A direct approach based on dynamic programming techniques is studied leading to the characterization of the value function as the unique viscosity solution of a second order Hamilton–Jacobi–Bellman (HJB) equation with an oblique derivative boundary condition. A general numerical scheme is proposed and a convergence result is provided. Error estimates are obtained for the semi-Lagrangian scheme. These results can apply to the case of lookback options in finance. Moreover, optimal control problems with maximum cost arise in the characterization of the reachable sets for a system of controlled stochastic differential equations. Some numerical simulations on examples of reachable analysis are included to illustrate our approach.

  16. Maximum a posteriori reconstruction of the Patlak parametric image from sinograms in dynamic PET

    International Nuclear Information System (INIS)

    Wang Guobao; Fu Lin; Qi Jinyi

    2008-01-01

    Parametric imaging using the Patlak graphical method has been widely used to analyze dynamic PET data. Conventionally a Patlak parametric image is generated by reconstructing a sequence of dynamic images first and then performing Patlak graphical analysis on the time-activity curves pixel-by-pixel. However, because it is rather difficult to model the noise distribution in reconstructed images, the spatially variant noise correlation is simply ignored in the Patlak analysis, which leads to sub-optimal results. In this paper we present a Bayesian method for reconstructing Patlak parametric images directly from raw sinogram data by incorporating the Patlak plot model into the image reconstruction procedure. A preconditioned conjugate gradient algorithm is used to find the maximum a posteriori solution. The proposed direct method is statistically more efficient than the conventional indirect approach because the Poisson noise distribution in PET data can be accurately modeled in the direct reconstruction. The computation cost of the direct method is similar to reconstruction time of two dynamic frames. Therefore, when more than two dynamic frames are used in the Patlak analysis, the direct method is faster than the conventional indirect approach. We conduct computer simulations to validate the proposed direct method. Comparisons with the conventional indirect approach show that the proposed method results in a more accurate estimate of the parametric image. The proposed method has been applied to dynamic fully 3D PET data from a microPET scanner

  17. Maximum Entropy Approach in Dynamic Contrast-Enhanced Magnetic Resonance Imaging.

    Science.gov (United States)

    Farsani, Zahra Amini; Schmid, Volker J

    2017-01-01

    In the estimation of physiological kinetic parameters from Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) data, the determination of the arterial input function (AIF) plays a key role. This paper proposes a Bayesian method to estimate the physiological parameters of DCE-MRI along with the AIF in situations, where no measurement of the AIF is available. In the proposed algorithm, the maximum entropy method (MEM) is combined with the maximum a posterior approach (MAP). To this end, MEM is used to specify a prior probability distribution of the unknown AIF. The ability of this method to estimate the AIF is validated using the Kullback-Leibler divergence. Subsequently, the kinetic parameters can be estimated with MAP. The proposed algorithm is evaluated with a data set from a breast cancer MRI study. The application shows that the AIF can reliably be determined from the DCE-MRI data using MEM. Kinetic parameters can be estimated subsequently. The maximum entropy method is a powerful tool to reconstructing images from many types of data. This method is useful for generating the probability distribution based on given information. The proposed method gives an alternative way to assess the input function from the existing data. The proposed method allows a good fit of the data and therefore a better estimation of the kinetic parameters. In the end, this allows for a more reliable use of DCE-MRI. Schattauer GmbH.

  18. Predicting the Maximum Dynamic Strength in Bench Press: The High Precision of the Bar Velocity Approach.

    Science.gov (United States)

    Loturco, Irineu; Kobal, Ronaldo; Moraes, José E; Kitamura, Katia; Cal Abad, César C; Pereira, Lucas A; Nakamura, Fábio Y

    2017-04-01

    Loturco, I, Kobal, R, Moraes, JE, Kitamura, K, Cal Abad, CC, Pereira, LA, and Nakamura, FY. Predicting the maximum dynamic strength in bench press: the high precision of the bar velocity approach. J Strength Cond Res 31(4): 1127-1131, 2017-The aim of this study was to determine the force-velocity relationship and test the possibility of determining the 1 repetition maximum (1RM) in "free weight" and Smith machine bench presses. Thirty-six male top-level athletes from 3 different sports were submitted to a standardized 1RM bench press assessment (free weight or Smith machine, in randomized order), following standard procedures encompassing lifts performed at 40-100% of 1RM. The mean propulsive velocity (MPV) was measured in all attempts. A linear regression was performed to establish the relationships between bar velocities and 1RM percentages. The actual and predicted 1RM for each exercise were compared using a paired t-test. Although the Smith machine 1RM was higher (10% difference) than the free weight 1RM, in both cases the actual and predicted values did not differ. In addition, the linear relationship between MPV and percentage of 1RM (coefficient of determination ≥95%) allow determination of training intensity based on the bar velocity. The linear relationships between the MPVs and the relative percentages of 1RM throughout the entire range of loads enable coaches to use the MPV to accurately monitor their athletes on a daily basis and accurately determine their actual 1RM without the need to perform standard maximum dynamic strength assessments.

  19. High performance monolithic power management system with dynamic maximum power point tracking for microbial fuel cells.

    Science.gov (United States)

    Erbay, Celal; Carreon-Bautista, Salvador; Sanchez-Sinencio, Edgar; Han, Arum

    2014-12-02

    Microbial fuel cell (MFC) that can directly generate electricity from organic waste or biomass is a promising renewable and clean technology. However, low power and low voltage output of MFCs typically do not allow directly operating most electrical applications, whether it is supplementing electricity to wastewater treatment plants or for powering autonomous wireless sensor networks. Power management systems (PMSs) can overcome this limitation by boosting the MFC output voltage and managing the power for maximum efficiency. We present a monolithic low-power-consuming PMS integrated circuit (IC) chip capable of dynamic maximum power point tracking (MPPT) to maximize the extracted power from MFCs, regardless of the power and voltage fluctuations from MFCs over time. The proposed PMS continuously detects the maximum power point (MPP) of the MFC and matches the load impedance of the PMS for maximum efficiency. The system also operates autonomously by directly drawing power from the MFC itself without any external power. The overall system efficiency, defined as the ratio between input energy from the MFC and output energy stored into the supercapacitor of the PMS, was 30%. As a demonstration, the PMS connected to a 240 mL two-chamber MFC (generating 0.4 V and 512 μW at MPP) successfully powered a wireless temperature sensor that requires a voltage of 2.5 V and consumes power of 85 mW each time it transmit the sensor data, and successfully transmitted a sensor reading every 7.5 min. The PMS also efficiently managed the power output of a lower-power producing MFC, demonstrating that the PMS works efficiently at various MFC power output level.

  20. Thermodynamics, maximum power, and the dynamics of preferential river flow structures at the continental scale

    Directory of Open Access Journals (Sweden)

    A. Kleidon

    2013-01-01

    Full Text Available The organization of drainage basins shows some reproducible phenomena, as exemplified by self-similar fractal river network structures and typical scaling laws, and these have been related to energetic optimization principles, such as minimization of stream power, minimum energy expenditure or maximum "access". Here we describe the organization and dynamics of drainage systems using thermodynamics, focusing on the generation, dissipation and transfer of free energy associated with river flow and sediment transport. We argue that the organization of drainage basins reflects the fundamental tendency of natural systems to deplete driving gradients as fast as possible through the maximization of free energy generation, thereby accelerating the dynamics of the system. This effectively results in the maximization of sediment export to deplete topographic gradients as fast as possible and potentially involves large-scale feedbacks to continental uplift. We illustrate this thermodynamic description with a set of three highly simplified models related to water and sediment flow and describe the mechanisms and feedbacks involved in the evolution and dynamics of the associated structures. We close by discussing how this thermodynamic perspective is consistent with previous approaches and the implications that such a thermodynamic description has for the understanding and prediction of sub-grid scale organization of drainage systems and preferential flow structures in general.

  1. Influence of bronchial diameter change on the airflow dynamics based on a pressure-controlled ventilation system.

    Science.gov (United States)

    Ren, Shuai; Cai, Maolin; Shi, Yan; Xu, Weiqing; Zhang, Xiaohua Douglas

    2018-03-01

    Bronchial diameter is a key parameter that affects the respiratory treatment of mechanically ventilated patients. In this paper, to reveal the influence of bronchial diameter on the airflow dynamics of pressure-controlled mechanically ventilated patients, a new respiratory system model is presented that combines multigeneration airways with lungs. Furthermore, experiments and simulation studies to verify the model are performed. Finally, through the simulation study, it can be determined that in airway generations 2 to 7, when the diameter is reduced to half of the original value, the maximum air pressure (maximum air pressure in lungs) decreases by nearly 16%, the maximum flow decreases by nearly 30%, and the total airway pressure loss (sum of each generation pressure drop) is more than 5 times the original value. Moreover, in airway generations 8 to 16, with increasing diameter, the maximum air pressure, maximum flow, and total airway pressure loss remain almost constant. When the diameter is reduced to half of the original value, the maximum air pressure decreases by 3%, the maximum flow decreases by nearly 5%, and the total airway pressure loss increases by 200%. The study creates a foundation for improvement in respiratory disease diagnosis and treatment. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Evaluating CO2 and CH4 dynamics of Alaskan ecosystems during the Holocene Thermal Maximum

    Science.gov (United States)

    He, Yujie; Jones, Miriam C.; Zhuang, Qianlai; Bochicchio, Christopher; Felzer, B. S.; Mason, Erik; Yu, Zicheng

    2014-01-01

    The Arctic has experienced much greater warming than the global average in recent decades due to polar amplification. Warming has induced ecological changes that have impacted climate carbon-cycle feedbacks, making it important to understand the climate and vegetation controls on carbon (C) dynamics. Here we used the Holocene Thermal Maximum (HTM, 11–9 ka BP, 1 ka BP = 1000 cal yr before present) in Alaska as a case study to examine how ecosystem Cdynamics responded to the past warming climate using an integrated approach of combining paleoecological reconstructions and ecosystem modeling. Our paleoecological synthesis showed expansion of deciduous broadleaf forest (dominated by Populus) into tundra and the establishment of boreal evergreen needleleaf and mixed forest during the second half of the HTM under a warmer- and wetter-than-before climate, coincident with the occurrence of the highest net primary productivity, cumulative net ecosystem productivity, soil C accumulation and CH4 emissions. These series of ecological and biogeochemical shifts mirrored the solar insolation and subsequent temperature and precipitation patterns during HTM, indicating the importance of climate controls on C dynamics. Our simulated regional estimate of CH4 emission rates from Alaska during the HTM ranged from 3.5 to 6.4 Tg CH4 yr−1 and highest annual NPP of 470 Tg C yr−1, significantly higher than previously reported modern estimates. Our results show that the differences in static vegetation distribution maps used in simulations of different time slices have greater influence on modeled C dynamics than climatic fields within each time slice, highlighting the importance of incorporating vegetation community dynamics and their responses to climatic conditions in long-term biogeochemical modeling.

  3. Dynamics of coarse particulate matter in the turbidity maximum zone of the Gironde Estuary

    Science.gov (United States)

    Fuentes-Cid, Ana; Etcheber, Henri; Schmidt, Sabine; Abril, Gwenaël; De-Oliveira, Eric; Lepage, Mario; Sottolichio, Aldo

    2014-01-01

    There is a lack of studies devoted to coarse particulate matter (CPM) in estuaries, although this fraction can disturb activities that filter large volumes of water, such as industrial or fishery activities. In the macrotidal and highly-turbid Gironde Estuary, a monthly sampling of CPM was performed in 2011 and 2013 at two stations in the Turbidity Maximum Zone (TMZ) to understand its seasonal, tidal and hydrological dynamics. Regardless of the season and station, low quantities of CPM (few g m-3) were observed in comparison with suspended particulate matter (several 103 g m-3). The highest concentrations were consistently recorded in bottom waters and at the upstream station. Whereas there is no clear link between the CPM present in the column water and spring or neap tides, an increase in the CPM size has been identified at the two stations after a flood event, fact potentially critical regarding filtering functioning of estuarine activities.

  4. Thermodynamic and Dynamic Causes of Pluvial Conditions During the Last Glacial Maximum in Western North America

    Science.gov (United States)

    Morrill, Carrie; Lowry, Daniel P.; Hoell, Andrew

    2018-01-01

    During the last glacial period, precipitation minus evaporation increased across the currently arid western United States. These pluvial conditions have been commonly explained for decades by a southward deflection of the jet stream by the Laurentide Ice Sheet. Here analysis of state-of-the-art coupled climate models shows that effects of the Laurentide Ice Sheet on the mean circulation were more important than storm track changes in generating wet conditions. Namely, strong cooling by the ice sheet significantly reduced humidity over land, increasing moisture advection in the westerlies due to steepened humidity gradients. Additionally, the removal of moisture from the atmosphere by mass divergence associated with the subtropical high was diminished at the Last Glacial Maximum compared to present. These same dynamic and thermodynamic factors, working in the opposite direction, are projected to cause regional drying in western North America under increased greenhouse gas concentrations, indicating continuity from past to future in the mechanisms altering hydroclimate.

  5. An understanding of human dynamics in urban subway traffic from the Maximum Entropy Principle

    Science.gov (United States)

    Yong, Nuo; Ni, Shunjiang; Shen, Shifei; Ji, Xuewei

    2016-08-01

    We studied the distribution of entry time interval in Beijing subway traffic by analyzing the smart card transaction data, and then deduced the probability distribution function of entry time interval based on the Maximum Entropy Principle. Both theoretical derivation and data statistics indicated that the entry time interval obeys power-law distribution with an exponential cutoff. In addition, we pointed out the constraint conditions for the distribution form and discussed how the constraints affect the distribution function. It is speculated that for bursts and heavy tails in human dynamics, when the fitted power exponent is less than 1.0, it cannot be a pure power-law distribution, but with an exponential cutoff, which may be ignored in the previous studies.

  6. Social networks, leisure activities and maximum tongue pressure: cross-sectional associations in the Nagasaki Islands Study.

    Science.gov (United States)

    Nagayoshi, Mako; Higashi, Miho; Takamura, Noboru; Tamai, Mami; Koyamatsu, Jun; Yamanashi, Hirotomo; Kadota, Koichiro; Sato, Shimpei; Kawashiri, Shin-Ya; Koyama, Zenya; Saito, Toshiyuki; Maeda, Takahiro

    2017-12-06

    Social environment is often associated with health outcomes, but epidemiological evidence for its effect on oral frailty, a potential risk factor for aspiration, is sparse. This study aimed to assess the association between social environment and tongue pressure, as an important measure of oral function. The study focused on family structure, social networks both with and beyond neighbours, and participation in leisure activities. A population-based cross-sectional study. Annual health check-ups in a rural community in Japan. A total of 1982 participants, all over 40 years old. Anyone with missing data for the main outcome (n=14) was excluded. Tongue pressure was measured three times, and the maximum tongue pressure was used for analysis. A multivariable adjusted regression model was used to calculate parameter estimates (B) for tongue pressure. Having a social network involving neighbours (B=2.43, P=0.0001) and taking part in leisure activities (B=1.58, P=0.005) were independently associated with higher tongue pressure, but there was no link with social networks beyond neighbours (B=0.23, P=0.77). Sex-specific analyses showed that for men, having a partner was associated with higher tongue pressure, independent of the number of people in the household (B=2.26, P=0.01), but there was no association among women (B=-0.24, P=0.72; P-interaction=0.059). Having a social network involving neighbours and taking part in leisure activities were independently associated with higher tongue pressure. Marital status may be an important factor in higher tongue pressure in men. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. Dynamic Performance of Maximum Power Point Trackers in TEG Systems Under Rapidly Changing Temperature Conditions

    Science.gov (United States)

    Man, E. A.; Sera, D.; Mathe, L.; Schaltz, E.; Rosendahl, L.

    2016-03-01

    Characterization of thermoelectric generators (TEG) is widely discussed and equipment has been built that can perform such analysis. One method is often used to perform such characterization: constant temperature with variable thermal power input. Maximum power point tracking (MPPT) methods for TEG systems are mostly tested under steady-state conditions for different constant input temperatures. However, for most TEG applications, the input temperature gradient changes, exposing the MPPT to variable tracking conditions. An example is the exhaust pipe on hybrid vehicles, for which, because of the intermittent operation of the internal combustion engine, the TEG and its MPPT controller are exposed to a cyclic temperature profile. Furthermore, there are no guidelines on how fast the MPPT must be under such dynamic conditions. In the work discussed in this paper, temperature gradients for TEG integrated in several applications were evaluated; the results showed temperature variation up to 5°C/s for TEG systems. Electrical characterization of a calcium-manganese oxide TEG was performed at steady-state for different input temperatures and a maximum temperature of 401°C. By using electrical data from characterization of the oxide module, a solar array simulator was emulated to perform as a TEG. A trapezoidal temperature profile with different gradients was used on the TEG simulator to evaluate the dynamic MPPT efficiency. It is known that the perturb and observe (P&O) algorithm may have difficulty accurately tracking under rapidly changing conditions. To solve this problem, a compromise must be found between the magnitude of the increment and the sampling frequency of the control algorithm. The standard P&O performance was evaluated experimentally by using different temperature gradients for different MPPT sampling frequencies, and efficiency values are provided for all cases. The results showed that a tracking speed of 2.5 Hz can be successfully implemented on a TEG

  8. Well posedness and maximum entropy approximation for the dynamics of quantitative traits

    KAUST Repository

    Boďová , Katarí na; Haskovec, Jan; Markowich, Peter A.

    2017-01-01

    We study the Fokker–Planck equation derived in the large system limit of the Markovian process describing the dynamics of quantitative traits. The Fokker–Planck equation is posed on a bounded domain and its transport and diffusion coefficients vanish on the domain’s boundary. We first argue that, despite this degeneracy, the standard no-flux boundary condition is valid. We derive the weak formulation of the problem and prove the existence and uniqueness of its solutions by constructing the corresponding contraction semigroup on a suitable function space. Then, we prove that for the parameter regime with high enough mutation rate the problem exhibits a positive spectral gap, which implies exponential convergence to equilibrium.Next, we provide a simple derivation of the so-called Dynamic Maximum Entropy (DynMaxEnt) method for approximation of observables (moments) of the Fokker–Planck solution, which can be interpreted as a nonlinear Galerkin approximation. The limited applicability of the DynMaxEnt method inspires us to introduce its modified version that is valid for the whole range of admissible parameters. Finally, we present several numerical experiments to demonstrate the performance of both the original and modified DynMaxEnt methods. We observe that in the parameter regimes where both methods are valid, the modified one exhibits slightly better approximation properties compared to the original one.

  9. Well posedness and maximum entropy approximation for the dynamics of quantitative traits

    KAUST Repository

    Boďová, Katarína

    2017-11-06

    We study the Fokker–Planck equation derived in the large system limit of the Markovian process describing the dynamics of quantitative traits. The Fokker–Planck equation is posed on a bounded domain and its transport and diffusion coefficients vanish on the domain’s boundary. We first argue that, despite this degeneracy, the standard no-flux boundary condition is valid. We derive the weak formulation of the problem and prove the existence and uniqueness of its solutions by constructing the corresponding contraction semigroup on a suitable function space. Then, we prove that for the parameter regime with high enough mutation rate the problem exhibits a positive spectral gap, which implies exponential convergence to equilibrium.Next, we provide a simple derivation of the so-called Dynamic Maximum Entropy (DynMaxEnt) method for approximation of observables (moments) of the Fokker–Planck solution, which can be interpreted as a nonlinear Galerkin approximation. The limited applicability of the DynMaxEnt method inspires us to introduce its modified version that is valid for the whole range of admissible parameters. Finally, we present several numerical experiments to demonstrate the performance of both the original and modified DynMaxEnt methods. We observe that in the parameter regimes where both methods are valid, the modified one exhibits slightly better approximation properties compared to the original one.

  10. Maximum magnitude of injection-induced earthquakes: A criterion to assess the influence of pressure migration along faults

    Science.gov (United States)

    Norbeck, Jack H.; Horne, Roland N.

    2018-05-01

    The maximum expected earthquake magnitude is an important parameter in seismic hazard and risk analysis because of its strong influence on ground motion. In the context of injection-induced seismicity, the processes that control how large an earthquake will grow may be influenced by operational factors under engineering control as well as natural tectonic factors. Determining the relative influence of these effects on maximum magnitude will impact the design and implementation of induced seismicity management strategies. In this work, we apply a numerical model that considers the coupled interactions of fluid flow in faulted porous media and quasidynamic elasticity to investigate the earthquake nucleation, rupture, and arrest processes for cases of induced seismicity. We find that under certain conditions, earthquake ruptures are confined to a pressurized region along the fault with a length-scale that is set by injection operations. However, earthquakes are sometimes able to propagate as sustained ruptures outside of the zone that experienced a pressure perturbation. We propose a faulting criterion that depends primarily on the state of stress and the earthquake stress drop to characterize the transition between pressure-constrained and runaway rupture behavior.

  11. THE GENERALIZED MAXIMUM LIKELIHOOD METHOD APPLIED TO HIGH PRESSURE PHASE EQUILIBRIUM

    Directory of Open Access Journals (Sweden)

    Lúcio CARDOZO-FILHO

    1997-12-01

    Full Text Available The generalized maximum likelihood method was used to determine binary interaction parameters between carbon dioxide and components of orange essential oil. Vapor-liquid equilibrium was modeled with Peng-Robinson and Soave-Redlich-Kwong equations, using a methodology proposed in 1979 by Asselineau, Bogdanic and Vidal. Experimental vapor-liquid equilibrium data on binary mixtures formed with carbon dioxide and compounds usually found in orange essential oil were used to test the model. These systems were chosen to demonstrate that the maximum likelihood method produces binary interaction parameters for cubic equations of state capable of satisfactorily describing phase equilibrium, even for a binary such as ethanol/CO2. Results corroborate that the Peng-Robinson, as well as the Soave-Redlich-Kwong, equation can be used to describe phase equilibrium for the following systems: components of essential oil of orange/CO2.Foi empregado o método da máxima verossimilhança generalizado para determinação de parâmetros de interação binária entre os componentes do óleo essencial de laranja e dióxido de carbono. Foram usados dados experimentais de equilíbrio líquido-vapor de misturas binárias de dióxido de carbono e componentes do óleo essencial de laranja. O equilíbrio líquido-vapor foi modelado com as equações de Peng-Robinson e de Soave-Redlich-Kwong usando a metodologia proposta em 1979 por Asselineau, Bogdanic e Vidal. A escolha destes sistemas teve como objetivo demonstrar que o método da máxima verosimilhança produz parâmetros de interação binária, para equações cúbicas de estado capazes de descrever satisfatoriamente até mesmo o equilíbrio para o binário etanol/CO2. Os resultados comprovam que tanto a equação de Peng-Robinson quanto a de Soave-Redlich-Kwong podem ser empregadas para descrever o equilíbrio de fases para o sistemas: componentes do óleo essencial de laranja/CO2.

  12. An overview of the dynamic calibration of piezoelectric pressure transducers

    Science.gov (United States)

    Theodoro, F. R. F.; Reis, M. L. C. C.; d’ Souto, C.

    2018-03-01

    Dynamic calibration is a research area that is still under development and is of great interest to aerospace and automotive industries. This study discusses some concepts regarding dynamic measurements of pressure quantities and presents an overview of dynamic calibration of pressure transducers. Studies conducted by the Institute of Aeronautics and Space focusing on research regarding piezoelectric pressure transducer calibration in shock tube are presented. We employed the Guide to the Expression of Uncertainty and a Monte Carlo Method in the methodology. The results show that both device and methodology employed are adequate to calibrate the piezoelectric sensor.

  13. Outcome of TVT operations in women with low maximum urethral closure pressure.

    Science.gov (United States)

    Moe, Kjartan; Schiøtz, Hjalmar A; Kulseng-Hanssen, Sigurd

    2017-06-01

    (i) To establish whether low maximal urethral closure pressure (MUCP) is associated with a poorer prognosis after TVT-surgery, and if so to establish an MUCP cut-off value for poor outcome. (ii) To characterize the population with a low MUCP. Retrospective analysis of data from 6,646 women with stress/mixed urinary incontinence included in the Norwegian Female Incontinence Registry. Postoperative subjective (degree of satisfaction), objective (leakage on stress test) and composite cure according to preoperative MUCP were analyzed in unadjusted and adjusted analysis. Preoperative variables were compared between women having a low or normal MUCP. Non-parametric tests were used on continuous variables and χ 2 tests on categorical variables. Logistic regression was used for the adjusted analysis. Level of significance: P 20 cm H 2 O. In adjusted analysis MUCP ≤20 cm H 2 O was associated with neither objective, subjective, nor composite failure. Women with MUCP TVT-surgery compared to women with MUCP >20 cm H 2 O after adjusting for preoperative variables. Neurourol. Urodynam. 36:1320-1324, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Studies of the pressure dependence of the charge density distribution in cerium phosphide by the maximum-entropy method

    CERN Document Server

    Ishimatsu, N; Takata, M; Nishibori, E; Sakata, M; Hayashi, J; Shirotani, I; Shimomura, O

    2002-01-01

    The physical properties relating to 4f electrons in cerium phosphide, especially the temperature dependence and the isomorphous transition that occurs at around 10 GPa, were studied by means of x-ray powder diffraction and charge density distribution maps derived by the maximum-entropy method. The compressibility of CeP was exactly determined using a helium pressure medium and the anomaly that indicated the isomorphous transition was observed in the compressibility. We also discuss the anisotropic charge density distribution of Ce ions and its temperature dependence.

  15. Aortic and peripheral blood pressure during isometric and dynamic exercise

    NARCIS (Netherlands)

    Blum, V.; Carrière, E.G.J.; Kolsters, W.; Mosterd, W.L.; Schiereck, P.; Wesseling, K.H.

    1997-01-01

    The purpose of this study was to compare aortic blood pressure (AOR) to peripheral measurements by the Riva-Rocci/Korotkov (RRK) and Finapres continuous finger pressure (FIN) methods during dynamic and static exercise. A tip manometer was introduced in the ascending aorta after coronary angiography

  16. Dynamic lift measurements on a FX79W151A airfoil via pressure distribution on the wind tunnel walls

    Energy Technology Data Exchange (ETDEWEB)

    Wolken-Moehlmann, Gerrit [ForWind - Center for Wind Energy Research, University of Oldenburg (Germany); Knebel, Pascal [ForWind - Center for Wind Energy Research, University of Oldenburg (Germany); Barth, Stephan [ECN Wind Energy, Energy research Centre of the (Netherlands); Peinke, Joachim [ForWind - Center for Wind Energy Research, University of Oldenburg (Germany)

    2007-07-15

    We report on an experimental setup for measurements of dynamic stall for airfoils via the pressure distribution over wind tunnel walls. This measuring technique, hitherto used for lift measurements under static conditions, is also an adequate method for dynamic conditions until stall occurs. A step motor is used, allowing for sinusoidal as well as non-sinusoidal and stochastic pitching to simulate fast fluctuating flow conditions. Measurements with sinusoidal pitching and constant angular velocities were done and show dynamic stall characteristics. Under dynamic stall conditions, maximum lift coefficients were up to 80% higher than the maximum for static lift.

  17. Dynamic pressure sensitivity determination with Mach number method

    Science.gov (United States)

    Sarraf, Christophe; Damion, Jean-Pierre

    2018-05-01

    Measurements of pressure in fast transient conditions are often performed even if the dynamic characteristic of the transducer are not traceable to international standards. Moreover, the question of a primary standard in dynamic pressure is still open, especially for gaseous applications. The question is to improve dynamic standards in order to respond to expressed industrial needs. In this paper, the method proposed in the EMRP IND09 ‘Dynamic’ project, which can be called the ‘ideal shock tube method’, is compared with the ‘collective standard method’ currently used in the Laboratoire de Métrologie Dynamique (LNE/ENSAM). The input is a step of pressure generated by a shock tube. The transducer is a piezoelectric pressure sensor. With the ‘ideal shock tube method’ the sensitivity of a pressure sensor is first determined dynamically. This method requires a shock tube implemented with piezoelectric shock wave detectors. The measurement of the Mach number in the tube allows an evaluation of the incident pressure amplitude of a step using a theoretical 1D model of the shock tube. Heat transfer, other actual effects and effects of the shock tube imperfections are not taken into account. The amplitude of the pressure step is then used to determine the sensitivity in dynamic conditions. The second method uses a frequency bandwidth comparison to determine pressure at frequencies from quasi-static conditions, traceable to static pressure standards, to higher frequencies (up to 10 kHz). The measurand is also a step of pressure generated by a supposed ideal shock tube or a fast-opening device. The results are provided as a transfer function with an uncertainty budget assigned to a frequency range, also deliverable frequency by frequency. The largest uncertainty in the bandwidth of comparison is used to trace the final pressure step level measured in dynamic conditions, owing that this pressure is not measurable in a steady state on a shock tube. A reference

  18. Dynamic active earth pressure on retaining structures

    Indian Academy of Sciences (India)

    This theory is based on a pseudo- static forced-based approach ... large enough to induce a limit or failure state in the soil, and hence full mobilization of earth pressure is ... The base of the soil layer is excited by a harmonic excitation to simu-.

  19. Dynamical reconstruction of the global ocean state during the Last Glacial Maximum

    Science.gov (United States)

    Kurahashi-Nakamura, Takasumi; Paul, André; Losch, Martin

    2017-04-01

    The global ocean state for the modern age and for the Last Glacial Maximum (LGM) was dynamically reconstructed with a sophisticated data assimilation technique. A substantial amount of data including global seawater temperature, salinity (only for the modern estimate), and the isotopic composition of oxygen and carbon (only in the Atlantic for the LGM) were integrated into an ocean general circulation model with the help of the adjoint method, thereby the model was optimized to reconstruct plausible continuous fields of tracers, overturning circulation and water mass distribution. The adjoint-based LGM state estimation of this study represents the state of the art in terms of the length of forward model runs, the number of observations assimilated, and the model domain. Compared to the modern state, the reconstructed continuous sea-surface temperature field for the LGM shows a global-mean cooling of 2.2 K, and the reconstructed LGM ocean has a more vigorous Atlantic meridional overturning circulation, shallower North Atlantic Deep Water (NADW) equivalent, stronger stratification, and more saline deep water.

  20. The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure

    International Nuclear Information System (INIS)

    Nukiyama, S.

    1991-01-01

    The quantity of heat transmitted from a metal surface to boiling water increases as the temperature difference ΔT is increased, but after the ΔT has reached a certain limit, quantity Q decreases with further increase in ΔT. This turning point is the maximum value of heat transmitted. The existence of this point was actually observed in the experiment. Under atmospheric pressure, ΔT corresponding to the maximum value of heat transfer for water at 100 degrees C falls between 20-40 degrees C, and Q is between 1,080,000 and 1,800,000 kcal/m 2 h (i.e. between 2,000 and 3,000 kg/m 2 h, if expressed in constant evaporation rate at 100 degrees C); this figure is larger than the maximum value of heat transfer as was previously considered. In this paper the minimum value of heat transfer was obtained, and in the Q-ΔT curve for the high temperature region, the burn-out effect is discussed

  1. Using pressure square-like wave to measure the dynamic characteristics of piezoelectric pressure sensor

    International Nuclear Information System (INIS)

    Han, L-L; Tsung, T-T; Chen, L-C; Chang Ho; Jwo, C-S

    2005-01-01

    Piezoelectric pressure sensors are commonly used to measuring the dynamic characteristics in a hydraulic system. The dynamic measurements require a pressure sensor which has a high response rate. In this paper, we proposed use of a pressure square wave to excite the piezoelectric pressure sensor. Experimental frequencies are 0.5, 1.0, 1.5, and 2.0 kHz at 10, 15, 20 bar, respectively. Results show that the waveform of time-domain and frequencydomain response are quite different under above testing conditions. The higher the frequencies tested, the faster the pressure-rise speeds obtained. Similarly, the higher the testing pressure, the shorter the rise time attained

  2. Osmosis-Based Pressure Generation: Dynamics and Application

    Science.gov (United States)

    Li, Suyi; Billeh, Yazan N.; Wang, K. W.; Mayer, Michael

    2014-01-01

    This paper describes osmotically-driven pressure generation in a membrane-bound compartment while taking into account volume expansion, solute dilution, surface area to volume ratio, membrane hydraulic permeability, and changes in osmotic gradient, bulk modulus, and degree of membrane fouling. The emphasis lies on the dynamics of pressure generation; these dynamics have not previously been described in detail. Experimental results are compared to and supported by numerical simulations, which we make accessible as an open source tool. This approach reveals unintuitive results about the quantitative dependence of the speed of pressure generation on the relevant and interdependent parameters that will be encountered in most osmotically-driven pressure generators. For instance, restricting the volume expansion of a compartment allows it to generate its first 5 kPa of pressure seven times faster than without a restraint. In addition, this dynamics study shows that plants are near-ideal osmotic pressure generators, as they are composed of many small compartments with large surface area to volume ratios and strong cell wall reinforcements. Finally, we demonstrate two applications of an osmosis-based pressure generator: actuation of a soft robot and continuous volume delivery over long periods of time. Both applications do not need an external power source but rather take advantage of the energy released upon watering the pressure generators. PMID:24614529

  3. Osmosis-based pressure generation: dynamics and application.

    Science.gov (United States)

    Bruhn, Brandon R; Schroeder, Thomas B H; Li, Suyi; Billeh, Yazan N; Wang, K W; Mayer, Michael

    2014-01-01

    This paper describes osmotically-driven pressure generation in a membrane-bound compartment while taking into account volume expansion, solute dilution, surface area to volume ratio, membrane hydraulic permeability, and changes in osmotic gradient, bulk modulus, and degree of membrane fouling. The emphasis lies on the dynamics of pressure generation; these dynamics have not previously been described in detail. Experimental results are compared to and supported by numerical simulations, which we make accessible as an open source tool. This approach reveals unintuitive results about the quantitative dependence of the speed of pressure generation on the relevant and interdependent parameters that will be encountered in most osmotically-driven pressure generators. For instance, restricting the volume expansion of a compartment allows it to generate its first 5 kPa of pressure seven times faster than without a restraint. In addition, this dynamics study shows that plants are near-ideal osmotic pressure generators, as they are composed of many small compartments with large surface area to volume ratios and strong cell wall reinforcements. Finally, we demonstrate two applications of an osmosis-based pressure generator: actuation of a soft robot and continuous volume delivery over long periods of time. Both applications do not need an external power source but rather take advantage of the energy released upon watering the pressure generators.

  4. Osmosis-based pressure generation: dynamics and application.

    Directory of Open Access Journals (Sweden)

    Brandon R Bruhn

    Full Text Available This paper describes osmotically-driven pressure generation in a membrane-bound compartment while taking into account volume expansion, solute dilution, surface area to volume ratio, membrane hydraulic permeability, and changes in osmotic gradient, bulk modulus, and degree of membrane fouling. The emphasis lies on the dynamics of pressure generation; these dynamics have not previously been described in detail. Experimental results are compared to and supported by numerical simulations, which we make accessible as an open source tool. This approach reveals unintuitive results about the quantitative dependence of the speed of pressure generation on the relevant and interdependent parameters that will be encountered in most osmotically-driven pressure generators. For instance, restricting the volume expansion of a compartment allows it to generate its first 5 kPa of pressure seven times faster than without a restraint. In addition, this dynamics study shows that plants are near-ideal osmotic pressure generators, as they are composed of many small compartments with large surface area to volume ratios and strong cell wall reinforcements. Finally, we demonstrate two applications of an osmosis-based pressure generator: actuation of a soft robot and continuous volume delivery over long periods of time. Both applications do not need an external power source but rather take advantage of the energy released upon watering the pressure generators.

  5. Dynamics of inner ear pressure change caused by intracranial pressure manipulation in the guinea pig

    NARCIS (Netherlands)

    Thalen, EO; Wit, HP; Segenhout, JM; Albers, FWJ

    Previous studies have shown that pressure changes in the cerebrospinal fluid compartment are transmitted to the inner ear. The main route for pressure transfer is the cochlear aqueduct, about which little is known with regard to its dynamic properties. In the present study, sudden intracranial

  6. Ultrafast Dynamic Pressure Sensors Based on Graphene Hybrid Structure.

    Science.gov (United States)

    Liu, Shanbiao; Wu, Xing; Zhang, Dongdong; Guo, Congwei; Wang, Peng; Hu, Weida; Li, Xinming; Zhou, Xiaofeng; Xu, Hejun; Luo, Chen; Zhang, Jian; Chu, Junhao

    2017-07-19

    Mechanical flexible electronic skin has been focused on sensing various physical parameters, such as pressure and temperature. The studies of material design and array-accessible devices are the building blocks of strain sensors for subtle pressure sensing. Here, we report a new and facile preparation of a graphene hybrid structure with an ultrafast dynamic pressure response. Graphene oxide nanosheets are used as a surfactant to prevent graphene restacking in aqueous solution. This graphene hybrid structure exhibits a frequency-independent pressure resistive sensing property. Exceeding natural skin, such pressure sensors, can provide transient responses from static up to 10 000 Hz dynamic frequencies. Integrated by the controlling system, the array-accessible sensors can manipulate a robot arm and self-rectify the temperature of a heating blanket. This may pave a path toward the future application of graphene-based wearable electronics.

  7. Hydrogen molecules inside fullerene C70: quantum dynamics, energetics, maximum occupancy, and comparison with C60.

    Science.gov (United States)

    Sebastianelli, Francesco; Xu, Minzhong; Bacić, Zlatko; Lawler, Ronald; Turro, Nicholas J

    2010-07-21

    Recent synthesis of the endohedral complexes of C(70) and its open-cage derivative with one and two H(2) molecules has opened the path for experimental and theoretical investigations of the unique dynamic, spectroscopic, and other properties of systems with multiple hydrogen molecules confined inside a nanoscale cavity. Here we report a rigorous theoretical study of the dynamics of the coupled translational and rotational motions of H(2) molecules in C(70) and C(60), which are highly quantum mechanical. Diffusion Monte Carlo (DMC) calculations were performed for up to three para-H(2) (p-H(2)) molecules encapsulated in C(70) and for one and two p-H(2) molecules inside C(60). These calculations provide a quantitative description of the ground-state properties, energetics, and the translation-rotation (T-R) zero-point energies (ZPEs) of the nanoconfined p-H(2) molecules and of the spatial distribution of two p-H(2) molecules in the cavity of C(70). The energy of the global minimum on the intermolecular potential energy surface (PES) is negative for one and two H(2) molecules in C(70) but has a high positive value when the third H(2) is added, implying that at most two H(2) molecules can be stabilized inside C(70). By the same criterion, in the case of C(60), only the endohedral complex with one H(2) molecule is energetically stable. Our results are consistent with the fact that recently both (H(2))(n)@C(70) (n = 1, 2) and H(2)@C(60) were prepared, but not (H(2))(3)@C(70) or (H(2))(2)@C(60). The ZPE of the coupled T-R motions, from the DMC calculations, grows rapidly with the number of caged p-H(2) molecules and is a significant fraction of the well depth of the intermolecular PES, 11% in the case of p-H(2)@C(70) and 52% for (p-H(2))(2)@C(70). Consequently, the T-R ZPE represents a major component of the energetics of the encapsulated H(2) molecules. The inclusion of the ZPE nearly doubles the energy by which (p-H(2))(3)@C(70) is destabilized and increases by 66% the

  8. Influence of dynamic vegetation on climate change and terrestrial carbon storage in the Last Glacial Maximum

    Science.gov (United States)

    O'ishi, R.; Abe-Ouchi, A.

    2013-07-01

    When the climate is reconstructed from paleoevidence, it shows that the Last Glacial Maximum (LGM, ca. 21 000 yr ago) is cold and dry compared to the present-day. Reconstruction also shows that compared to today, the vegetation of the LGM is less active and the distribution of vegetation was drastically different, due to cold temperature, dryness, and a lower level of atmospheric CO2 concentration (185 ppm compared to a preindustrial level of 285 ppm). In the present paper, we investigate the influence of vegetation change on the climate of the LGM by using a coupled atmosphere-ocean-vegetation general circulation model (AOVGCM, the MIROC-LPJ). The MIROC-LPJ is different from earlier studies in the introduction of a bias correction method in individual running GCM experiments. We examined four GCM experiments (LGM and preindustrial, with and without vegetation feedback) and quantified the strength of the vegetation feedback during the LGM. The result shows that global-averaged cooling during the LGM is amplified by +13.5 % due to the introduction of vegetation feedback. This is mainly caused by the increase of land surface albedo due to the expansion of tundra in northern high latitudes and the desertification in northern middle latitudes around 30° N to 60° N. We also investigated how this change in climate affected the total terrestrial carbon storage by using offline Lund-Potsdam-Jena dynamic global vegetation model (LPJ-DGVM). Our result shows that the total terrestrial carbon storage was reduced by 597 PgC during the LGM, which corresponds to the emission of 282 ppm atmospheric CO2. In the LGM experiments, the global carbon distribution is generally the same whether the vegetation feedback to the atmosphere is included or not. However, the inclusion of vegetation feedback causes substantial terrestrial carbon storage change, especially in explaining the lowering of atmospheric CO2 during the LGM.

  9. Influence of dynamic vegetation on climate change and terrestrial carbon storage in the Last Glacial Maximum

    Directory of Open Access Journals (Sweden)

    R. O'ishi

    2013-07-01

    Full Text Available When the climate is reconstructed from paleoevidence, it shows that the Last Glacial Maximum (LGM, ca. 21 000 yr ago is cold and dry compared to the present-day. Reconstruction also shows that compared to today, the vegetation of the LGM is less active and the distribution of vegetation was drastically different, due to cold temperature, dryness, and a lower level of atmospheric CO2 concentration (185 ppm compared to a preindustrial level of 285 ppm. In the present paper, we investigate the influence of vegetation change on the climate of the LGM by using a coupled atmosphere-ocean-vegetation general circulation model (AOVGCM, the MIROC-LPJ. The MIROC-LPJ is different from earlier studies in the introduction of a bias correction method in individual running GCM experiments. We examined four GCM experiments (LGM and preindustrial, with and without vegetation feedback and quantified the strength of the vegetation feedback during the LGM. The result shows that global-averaged cooling during the LGM is amplified by +13.5 % due to the introduction of vegetation feedback. This is mainly caused by the increase of land surface albedo due to the expansion of tundra in northern high latitudes and the desertification in northern middle latitudes around 30° N to 60° N. We also investigated how this change in climate affected the total terrestrial carbon storage by using offline Lund-Potsdam-Jena dynamic global vegetation model (LPJ-DGVM. Our result shows that the total terrestrial carbon storage was reduced by 597 PgC during the LGM, which corresponds to the emission of 282 ppm atmospheric CO2. In the LGM experiments, the global carbon distribution is generally the same whether the vegetation feedback to the atmosphere is included or not. However, the inclusion of vegetation feedback causes substantial terrestrial carbon storage change, especially in explaining the lowering of atmospheric CO2 during the LGM.

  10. Numerical estimates of the maximum sustainable pore pressure in anticline formations using the tensor based concept of pore pressure-stress coupling

    Directory of Open Access Journals (Sweden)

    Andreas Eckert

    2015-02-01

    Full Text Available The advanced tensor based concept of pore pressure-stress coupling is used to provide pre-injection analytical estimates of the maximum sustainable pore pressure change, ΔPc, for fluid injection scenarios into generic anticline geometries. The heterogeneous stress distribution for different prevailing stress regimes in combination with the Young's modulus (E contrast between the injection layer and the cap rock and the interbedding friction coefficient, μ, may result in large spatial and directional differences of ΔPc. A single value characterizing the cap rock as for horizontal layered injection scenarios is not obtained. It is observed that a higher Young's modulus in the cap rock and/or a weak mechanical coupling between layers amplifies the maximum and minimum ΔPc values in the valley and limb, respectively. These differences in ΔPc imposed by E and μ are further amplified by different stress regimes. The more compressional the stress regime is, the larger the differences between the maximum and minimum ΔPc values become. The results of this study show that, in general compressional stress regimes yield the largest magnitudes of ΔPc and extensional stress regimes provide the lowest values of ΔPc for anticline formations. Yet this conclusion has to be considered with care when folded anticline layers are characterized by flexural slip and the friction coefficient between layers is low, i.e. μ = 0.1. For such cases of weak mechanical coupling, ΔPc magnitudes may range from 0 MPa to 27 MPa, indicating imminent risk of fault reactivation in the cap rock.

  11. Magnetosheath dynamic pressure enhancements: occurrence and typical properties

    Directory of Open Access Journals (Sweden)

    M. O. Archer

    2013-02-01

    Full Text Available The first comprehensive statistical study of large-amplitude (> 100% transient enhancements of the magnetosheath dynamic pressure reveals events of up to ~ 15 times the ambient dynamic pressure with durations up to 3 min and an average duration of around 30 s, predominantly downstream of the quasi-parallel shock. The dynamic pressure transients are most often dominated by velocity increases along with a small fractional increase in the density, though the velocity is generally only deflected by a few degrees. Superposed wavelet transforms of the magnetic field show that, whilst most enhancements exhibit changes in the magnetosheath magnetic field, the majority are not associated with changes in the Interplanetary Magnetic Field (IMF. However, there is a minority of enhancements that do appear to be associated with solar wind discontinuities which cannot be explained simply by random events. In general, it is found that during periods of magnetosheath dynamic pressure enhancements the IMF is steadier than usual. This suggests that a stable foreshock and hence foreshock structures or processes may be important in the generation of the majority of magnetosheath dynamic pressure enhancements.

  12. Dynamics of intrarenal pressures and glomerular filtration rate after acetazolamide

    DEFF Research Database (Denmark)

    Leyssac, P P; Karlsen, F M; Skøtt, O

    1991-01-01

    -EDTA and lithium. Proximal tubular pressure (Pprox) increased initially by 1.7 +/- 0.1 mmHg after ACZ, causing a decrease in the hydrostatic pressure difference across the glomerular membrane (delta P). EDC increased, and then RBF, glomerular capillary pressure (Pgc), Pprox, and star vessel pressures (Psv) dropped......The dynamics of intrarenal pressures, early distal tubular fluid conductivity (EDC), and renal flood flow (RBF) were studied in rats given acetazolamide (ACZ), an inhibitor of proximal reabsorption. Glomerular filtration rate (GFR) and end-proximal flow were estimated by clearances of 51Cr...... as a result of afferent vasoconstriction. Pprox decreased less than Pgc, resulting in a further decrease in delta P, which after 25-30 s reached a constant level 3-4 mmHg below control. After a transient increase the pressures declined to a new steady state, in which Pprox was equal to control, Pgc...

  13. Measurement of Dynamic Urethral Pressures with a High Resolution Manometry System in Continent and Incontinent Women

    Science.gov (United States)

    Kirby, Anna C; Tan-Kim, Jasmine; Nager, Charles W.

    2015-01-01

    Objectives Female stress urinary incontinence (SUI) is caused by urethral dysfunction during dynamic conditions, but current technology has limitations in measuring urethral pressures under dynamic conditions. An 8-French high resolution manometry catheter (HRM) currently in clinical use in gastroenterology may accurately measure urethral pressures under dynamic conditions because it has a 25ms response rate and circumferential pressure sensors along the length of the catheter (ManoScan® ESO, Given Imaging). We evaluated the concordance, repeatability, and tolerability of this catheter. Methods We measured resting, cough, and strain maximum urethral closure pressures (MUCPs) using HRM and measured resting MUCPs with water perfusion side-hole catheter urethral pressure profilometry (UPP) in 37 continent and 28 stress incontinent subjects. Maneuvers were repeated after moving the HRM catheter along the urethral length to evaluate whether results depend on catheter positioning. Visual analog pain scores evaluated the comfort of HRM compared to UPP. Results The correlation coefficient for resting MUCPs measured by HRM vs. UPP was high (r = 0.79, prest, cough, and strain with HRM: r= 0.92, 0.89, and 0.89. Mean MUCPs (rest, cough, strain) were higher in continent than incontinent subjects (all p continent subjects during cough and strain maneuvers compared to rest. Conclusions This preliminary study shows that HRM is concordant with standard technology, repeatable, and well tolerated in the urethra. Incontinent women have more impairment of their urethral closure pressures during cough and strain than continent women. PMID:25185595

  14. Pressure Dynamic Characteristics of Pressure Controlled Ventilation System of a Lung Simulator

    Directory of Open Access Journals (Sweden)

    Yan Shi

    2014-01-01

    Full Text Available Mechanical ventilation is an important life support treatment of critically ill patients, and air pressure dynamics of human lung affect ventilation treatment effects. In this paper, in order to obtain the influences of seven key parameters of mechanical ventilation system on the pressure dynamics of human lung, firstly, mechanical ventilation system was considered as a pure pneumatic system, and then its mathematical model was set up. Furthermore, to verify the mathematical model, a prototype mechanical ventilation system of a lung simulator was proposed for experimental study. Last, simulation and experimental studies on the air flow dynamic of the mechanical ventilation system were done, and then the pressure dynamic characteristics of the mechanical system were obtained. The study can be referred to in the pulmonary diagnostics, treatment, and design of various medical devices or diagnostic systems.

  15. Pressure Dynamic Characteristics of Pressure Controlled Ventilation System of a Lung Simulator

    Science.gov (United States)

    Shi, Yan; Ren, Shuai; Cai, Maolin; Xu, Weiqing; Deng, Qiyou

    2014-01-01

    Mechanical ventilation is an important life support treatment of critically ill patients, and air pressure dynamics of human lung affect ventilation treatment effects. In this paper, in order to obtain the influences of seven key parameters of mechanical ventilation system on the pressure dynamics of human lung, firstly, mechanical ventilation system was considered as a pure pneumatic system, and then its mathematical model was set up. Furthermore, to verify the mathematical model, a prototype mechanical ventilation system of a lung simulator was proposed for experimental study. Last, simulation and experimental studies on the air flow dynamic of the mechanical ventilation system were done, and then the pressure dynamic characteristics of the mechanical system were obtained. The study can be referred to in the pulmonary diagnostics, treatment, and design of various medical devices or diagnostic systems. PMID:25197318

  16. Pressure dynamic characteristics of pressure controlled ventilation system of a lung simulator.

    Science.gov (United States)

    Shi, Yan; Ren, Shuai; Cai, Maolin; Xu, Weiqing; Deng, Qiyou

    2014-01-01

    Mechanical ventilation is an important life support treatment of critically ill patients, and air pressure dynamics of human lung affect ventilation treatment effects. In this paper, in order to obtain the influences of seven key parameters of mechanical ventilation system on the pressure dynamics of human lung, firstly, mechanical ventilation system was considered as a pure pneumatic system, and then its mathematical model was set up. Furthermore, to verify the mathematical model, a prototype mechanical ventilation system of a lung simulator was proposed for experimental study. Last, simulation and experimental studies on the air flow dynamic of the mechanical ventilation system were done, and then the pressure dynamic characteristics of the mechanical system were obtained. The study can be referred to in the pulmonary diagnostics, treatment, and design of various medical devices or diagnostic systems.

  17. Maximum home blood pressure is a useful indicator of diabetic nephropathy in patients with type 2 diabetes mellitus: KAMOGAWA-HBP study.

    Science.gov (United States)

    Oyabu, Chikako; Ushigome, Emi; Matsumoto, Shinobu; Tanaka, Toru; Hasegawa, Goji; Nakamura, Naoto; Ohnishi, Masayoshi; Tsunoda, Sei; Ushigome, Hidetaka; Yokota, Isao; Tanaka, Muhei; Asano, Mai; Yamazaki, Masahiro; Fukui, Michiaki

    2017-11-01

    Maximum home systolic blood pressure has been shown to predict target organ damage. We aimed to clarify the association between maximum home systolic blood pressure and urine albumin to creatinine ratio, an indicator of early-phase diabetic nephropathy in patients with type 2 diabetes. In 1040 patients, we assessed the relationship of mean or maximum home systolic blood pressure and urine albumin to creatinine ratio, and compared the area under the receiver operating characteristic curve of mean or maximum home systolic blood pressure for diabetic nephropathy (urine albumin to creatinine ratio ⩾30 mg/g Cr). Multivariate linear regression analyses indicated that mean morning systolic blood pressure ( β = 0.010, p blood pressure ( β = 0.008, p blood pressure was 0.667 (0.634-0.700; p blood pressure, as well as mean home systolic blood pressure, was significantly associated with diabetic nephropathy in patients with type 2 diabetes.

  18. An investigation on effects of amputee's physiological parameters on maximum pressure developed at the prosthetic socket interface using artificial neural network.

    Science.gov (United States)

    Nayak, Chitresh; Singh, Amit; Chaudhary, Himanshu; Unune, Deepak Rajendra

    2017-10-23

    Technological advances in prosthetics have attracted the curiosity of researchers in monitoring design and developments of the sockets to sustain maximum pressure without any soft tissue damage, skin breakdown, and painful sores. Numerous studies have been reported in the area of pressure measurement at the limb/socket interface, though, the relation between amputee's physiological parameters and the pressure developed at the limb/socket interface is still not studied. Therefore, the purpose of this work is to investigate the effects of patient-specific physiological parameters viz. height, weight, and stump length on the pressure development at the transtibial prosthetic limb/socket interface. Initially, the pressure values at the limb/socket interface were clinically measured during stance and walking conditions for different patients using strain gauges placed at critical locations of the stump. The measured maximum pressure data related to patient's physiological parameters was used to develop an artificial neural network (ANN) model. The effects of physiological parameters on the pressure development at the limb/socket interface were examined using the ANN model. The analyzed results indicated that the weight and stump length significantly affects the maximum pressure values. The outcomes of this work could be an important platform for the design and development of patient-specific prosthetic socket which can endure the maximum pressure conditions at stance and ambulation conditions.

  19. Dynamic tire pressure sensor for measuring ground vibration.

    Science.gov (United States)

    Wang, Qi; McDaniel, James Gregory; Wang, Ming L

    2012-11-07

    This work presents a convenient and non-contact acoustic sensing approach for measuring ground vibration. This approach, which uses an instantaneous dynamic tire pressure sensor (DTPS), possesses the capability to replace the accelerometer or directional microphone currently being used for inspecting pavement conditions. By measuring dynamic pressure changes inside the tire, ground vibration can be amplified and isolated from environmental noise. In this work, verifications of the DTPS concept of sensing inside the tire have been carried out. In addition, comparisons between a DTPS, ground-mounted accelerometer, and directional microphone are made. A data analysis algorithm has been developed and optimized to reconstruct ground acceleration from DTPS data. Numerical and experimental studies of this DTPS reveal a strong potential for measuring ground vibration caused by a moving vehicle. A calibration of transfer function between dynamic tire pressure change and ground acceleration may be needed for different tire system or for more accurate application.

  20. Temperature-insensitive fiber Bragg grating dynamic pressure sensing system.

    Science.gov (United States)

    Guo, Tuan; Zhao, Qida; Zhang, Hao; Zhang, Chunshu; Huang, Guiling; Xue, Lifang; Dong, Xiaoyi

    2006-08-01

    Temperature-insensitive dynamic pressure measurement using a single fiber Bragg grating (FBG) based on reflection spectrum bandwidth modulation and optical power detection is proposed. A specifically designed double-hole cantilever beam is used to provide a pressure-induced axial strain gradient along the sensing FBG and is also used to modulate the reflection bandwidth of the grating. The bandwidth modulation is immune to spatially uniform temperature effects, and the pressure can be unambiguously determined by measuring the reflected optical power, avoiding the complex wavelength interrogation system. The system acquisition time is up to 85 Hz for dynamic pressure measurement, and the thermal fluctuation is kept less than 1.2% full-scale for a temperature range of -10 degrees C to 80 degrees C.

  1. Connectivity dynamics since the Last Glacial Maximum in the northern Andes: a pollen-driven framework to assess potential migration

    NARCIS (Netherlands)

    Flantua, S.G.A.; Hooghiemstra, H.; van Boxel, J.H.; Cabrera, M.; González-Carranza, Z.; González-Arango, C.; Stevens, W.D.; Montiel, O.M.; Raven, P.H.

    2014-01-01

    We provide an innovative pollen-driven connectivity framework of the dynamic altitudinal distribution of North Andean biomes since the Last Glacial Maximum (LGM). Altitudinally changing biome distributions reconstructed from a pollen record from Lake La Cocha (2780 m) are assessed in terms of their

  2. On the pressure evolution of dynamic properties of supercooled liquids

    Energy Technology Data Exchange (ETDEWEB)

    Drozd-Rzoska, Aleksandra; Rzoska, Sylwester J [Institute of Physics, Silesian University, ulica Uniwersytecka 4, 40-007 Katowice (Poland); Roland, C Michael [Naval Research Laboratory, Chemistry Division, Code 6120, Washington, DC 20375-5342 (United States); Imre, Attila R [KFKI Atomic Energy Research Institute, 1525 Budapest, POB 49 (Hungary)

    2008-06-18

    A pressure counterpart of the Vogel-Fulcher-Tammann (VFT) equation for representing the evolution of dielectric relaxation times or related dynamic properties is discussed: {tau}(P) = {tau}{sub 0}{sup P}exp[D{sub P}{delta}P(P{sub 0}-{delta}P)], where {delta}P = P-P{sub SL}, P{sub 0} is the ideal glass pressure estimation, D{sub P} is the pressure fragility strength coefficient, and the prefactor {tau}{sub 0}{sup P} is related to the relaxation time at the stability limit (P{sub SL}) in the negative pressure domain. The discussion is extended to the Avramov model (AvM) relation {tau}(T,P) = {tau}{sub 0}exp[{epsilon}(T{sub g}(P)/T){sup D}], supplemented with a modified Simon-Glatzel-type equation for the pressure dependence of the glass temperature (T{sub g}(P)), enabling an insight into the negative pressure region. A recently postulated (Dyre 2006 Rev. Mod. Phys. 78 953) comparison between the VFT and the AvM-type descriptions is examined, for both the temperature and the pressure paths. Finally, we address the question 'Does fragility depend on pressure?' from the title of Paluch M et al (2001 J. Chem. Phys. 114 8048) and propose a pressure counterpart for the 'Angell plot'.

  3. Roller pressure algometry as a new tool for assessing dynamic pressure sensitivity in migraine

    DEFF Research Database (Denmark)

    Guerrero-Peral, Ángel L.; Ruíz, Marina; Barón, Johanna

    2018-01-01

    from 500 to 5300 g. Each roller was moved at a speed of 0.5 cm/sec over a 60 mm horizontal line covering the temporalis muscle. The dynamic pain threshold (the pressure level of the first painful roller) and pain elicited during the pain threshold (roller evoked pain) were determined. Static pressure...... pain thresholds were assessed over the temporalis muscle, C5/C6 joint, second metacarpal, and tibialis anterior. Results Side-to-side consistency between dynamic pain threshold (rs = 0.769, p ... was slightly stronger in chronic migraine. Pain during dynamic pain threshold was negatively associated with widespread pressure pain thresholds (-0.336 

  4. Normalized Dynamic Blood Pressure Parameters - Additional Marker of Hypertension Risk

    Czech Academy of Sciences Publication Activity Database

    Jurák, Pavel; Halámek, Josef; Vondra, Vlastimil; Leinveber, P.; Fráňa, P.; Plachý, M.; Souček, M.; Kára, T.

    2008-01-01

    Roč. 6, č. 1 (2008), s. 103 ISSN 1556-7451. [World Congress on Heart Disease /14./. 26.07.2008-29.07.2008, Toronto] Institutional research plan: CEZ:AV0Z20650511 Keywords : hypertension * vessel compliance * blood pressure * dynamic parameters Subject RIV: FA - Cardiovascular Disease s incl. Cardiotharic Surgery

  5. Adaptive wave filtering for dynamic positioning of marine vessels using maximum likelihood identification: Theory and experiments

    Digital Repository Service at National Institute of Oceanography (India)

    Hassani, V.; Sorensen, A.J.; Pascoal, A.M.

    This paper addresses a filtering problem that arises in the design of dynamic positioning systems for ships and offshore rigs subjected to the influence of sea waves. The dynamic model of the vessel captures explicitly the sea state as an uncertain...

  6. Dynamics of non-stationary processes that follow the maximum of the Rényi entropy principle.

    Science.gov (United States)

    Shalymov, Dmitry S; Fradkov, Alexander L

    2016-01-01

    We propose dynamics equations which describe the behaviour of non-stationary processes that follow the maximum Rényi entropy principle. The equations are derived on the basis of the speed-gradient principle originated in the control theory. The maximum of the Rényi entropy principle is analysed for discrete and continuous cases, and both a discrete random variable and probability density function (PDF) are used. We consider mass conservation and energy conservation constraints and demonstrate the uniqueness of the limit distribution and asymptotic convergence of the PDF for both cases. The coincidence of the limit distribution of the proposed equations with the Rényi distribution is examined.

  7. Computational Fluid Dynamics Analysis of High Injection Pressure Blended Biodiesel

    Science.gov (United States)

    Khalid, Amir; Jaat, Norrizam; Faisal Hushim, Mohd; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari

    2017-08-01

    Biodiesel have great potential for substitution with petrol fuel for the purpose of achieving clean energy production and emission reduction. Among the methods that can control the combustion properties, controlling of the fuel injection conditions is one of the successful methods. The purpose of this study is to investigate the effect of high injection pressure of biodiesel blends on spray characteristics using Computational Fluid Dynamics (CFD). Injection pressure was observed at 220 MPa, 250 MPa and 280 MPa. The ambient temperature was kept held at 1050 K and ambient pressure 8 MPa in order to simulate the effect of boost pressure or turbo charger during combustion process. Computational Fluid Dynamics were used to investigate the spray characteristics of biodiesel blends such as spray penetration length, spray angle and mixture formation of fuel-air mixing. The results shows that increases of injection pressure, wider spray angle is produced by biodiesel blends and diesel fuel. The injection pressure strongly affects the mixture formation, characteristics of fuel spray, longer spray penetration length thus promotes the fuel and air mixing.

  8. Separation of Stochastic and Deterministic Information from Seismological Time Series with Nonlinear Dynamics and Maximum Entropy Methods

    International Nuclear Information System (INIS)

    Gutierrez, Rafael M.; Useche, Gina M.; Buitrago, Elias

    2007-01-01

    We present a procedure developed to detect stochastic and deterministic information contained in empirical time series, useful to characterize and make models of different aspects of complex phenomena represented by such data. This procedure is applied to a seismological time series to obtain new information to study and understand geological phenomena. We use concepts and methods from nonlinear dynamics and maximum entropy. The mentioned method allows an optimal analysis of the available information

  9. Studying pressure denaturation of a protein by molecular dynamics simulations.

    Science.gov (United States)

    Sarupria, Sapna; Ghosh, Tuhin; García, Angel E; Garde, Shekhar

    2010-05-15

    Many globular proteins unfold when subjected to several kilobars of hydrostatic pressure. This "unfolding-up-on-squeezing" is counter-intuitive in that one expects mechanical compression of proteins with increasing pressure. Molecular simulations have the potential to provide fundamental understanding of pressure effects on proteins. However, the slow kinetics of unfolding, especially at high pressures, eliminates the possibility of its direct observation by molecular dynamics (MD) simulations. Motivated by experimental results-that pressure denatured states are water-swollen, and theoretical results-that water transfer into hydrophobic contacts becomes favorable with increasing pressure, we employ a water insertion method to generate unfolded states of the protein Staphylococcal Nuclease (Snase). Structural characteristics of these unfolded states-their water-swollen nature, retention of secondary structure, and overall compactness-mimic those observed in experiments. Using conformations of folded and unfolded states, we calculate their partial molar volumes in MD simulations and estimate the pressure-dependent free energy of unfolding. The volume of unfolding of Snase is negative (approximately -60 mL/mol at 1 bar) and is relatively insensitive to pressure, leading to its unfolding in the pressure range of 1500-2000 bars. Interestingly, once the protein is sufficiently water swollen, the partial molar volume of the protein appears to be insensitive to further conformational expansion or unfolding. Specifically, water-swollen structures with relatively low radii of gyration have partial molar volume that are similar to that of significantly more unfolded states. We find that the compressibility change on unfolding is negligible, consistent with experiments. We also analyze hydration shell fluctuations to comment on the hydration contributions to protein compressibility. Our study demonstrates the utility of molecular simulations in estimating volumetric properties

  10. A novel polarization demodulation method using polarization beam splitter (PBS) for dynamic pressure sensor

    Science.gov (United States)

    Su, Yang; Zhou, Hua; Wang, Yiming; Shen, Huiping

    2018-03-01

    In this paper we propose a new design to demodulate polarization properties induced by pressure using a PBS (polarization beam splitter), which is different with traditional polarimeter based on the 4-detector polarization measurement approach. The theoretical model is established by Muller matrix method. Experimental results confirm the validity of our analysis. Proportional relationships and linear fit are found between output signal and applied pressure. A maximum sensitivity of 0.092182 mv/mv is experimentally achieved and the frequency response exhibits a <0.14 dB variation across the measurement bandwidth. The sensitivity dependence on incident SOP (state of polarization) is investigated. The simple and all-fiber configuration, low-cost and high speed potential make it promising for fiber-based dynamic pressure sensing.

  11. Dynamic Optimization of a Polymer Flooding Process Based on Implicit Discrete Maximum Principle

    Directory of Open Access Journals (Sweden)

    Yang Lei

    2012-01-01

    Full Text Available Polymer flooding is one of the most important technologies for enhanced oil recovery (EOR. In this paper, an optimal control model of distributed parameter systems (DPSs for polymer injection strategies is established, which involves the performance index as maximum of the profit, the governing equations as the fluid flow equations of polymer flooding, and some inequality constraints as polymer concentration and injection amount limitation. The optimal control model is discretized by full implicit finite-difference method. To cope with the discrete optimal control problem (OCP, the necessary conditions for optimality are obtained through application of the calculus of variations and Pontryagin’s discrete maximum principle. A modified gradient method with new adjoint construction is proposed for the computation of optimal injection strategies. The numerical results of an example illustrate the effectiveness of the proposed method.

  12. Optimal control and optimal trajectories of regional macroeconomic dynamics based on the Pontryagin maximum principle

    Science.gov (United States)

    Bulgakov, V. K.; Strigunov, V. V.

    2009-05-01

    The Pontryagin maximum principle is used to prove a theorem concerning optimal control in regional macroeconomics. A boundary value problem for optimal trajectories of the state and adjoint variables is formulated, and optimal curves are analyzed. An algorithm is proposed for solving the boundary value problem of optimal control. The performance of the algorithm is demonstrated by computing an optimal control and the corresponding optimal trajectories.

  13. A study of dynamic foot pressure measurement in diabetic patients

    Directory of Open Access Journals (Sweden)

    Milka D Madhale

    2017-01-01

    Full Text Available Introduction: Diabetic foot ulcer is a major source of morbidity and a leading cause of hospitalization. It is estimated that approximately 20% of hospital admissions among patients with diabetes mellitus are due to diabetic foot ulcer. It can lead to infection, gangrene, amputation, and even death if appropriate care is not provided. Overall, the lower limb amputation in diabetic patients is 15 times higher than in non-diabetics. In the majority of cases, the cause for the foot ulcer is the altered architecture of the foot due to neuropathy resulting in abnormal pressure points on the soles. Purpose: The aim of this study is to develop low cost, lightweight foot pressure scanner and check its reliability and validity which can help to prevent foot ulceration. Design/Methodology/Approach: In the present study, a low cost, lightweight foot pressure scanner is developed, and dynamic plantar pressures in a group of 110 Indian patients with diabetes with or without neuropathy and foot ulcers are measured. Practical Implications: If these pressure points can be detected, ulcers can be prevented by providing offloading footwear. Originality/Value: Differences are found in dynamic foot pressures in different study groups, namely, diabetic patients, patients with diabetic peripheral neuropathy, patients with foot ulcers, and nondiabetics. The differences are significant (P < 0.01, which showed the validity of the tool. Reliability and consistency of the tool was checked by test–retest method. Paper Type: Original Research work. Conclusion: Based on the results of the present study, it is concluded that the scanner is successfully developed and it can measure foot pressures. It is a novel device to proactively monitor foot health in diabetics in an effort to prevent and reduce diabetic foot complications.

  14. Dynamic fracture characterization of a pressure vessel steel

    International Nuclear Information System (INIS)

    Schmitt, W.; Boehme, W.; Klemm, W.; Memhard, D.; Winkler, S.

    1991-01-01

    Dynamic events are characterized by time and space-dependent stress and strain fields caused by wave or inertia effect. The dynamic effect at cracks may be originated from the rapid loading rate or impact loading of a structure containing a stationary crack or the time-dependent stress and strain fields of a propagating or arresting crack itself. Dynamic effects complicate the analysis of crack tip stress and strain fields, and usually considerable experimental effort and numerical technique are required. High loading rate influences the deformation and yield behavior and also the fracture toughness of materials. In order to know the propagation and arrest behavior of cracks, a heat of a German reactor pressure vessel steel was investigated, and the dynamic J-resistance curves were evaluated with large three-point bending specimens by impact loading, moreover, the crack propagation energy at large crack extension was determined with wide tension plates. The material tested was a ferritic pressure vessel steel, ASTM A 508 Cl 2. The dynamic J-resistance curves and numerical simulation and fractographic examination, and crack propagation energy are reported. (K.I.)

  15. Dynamic Performance of Maximum Power Point Trackers in TEG Systems Under Rapidly Changing Temperature Conditions

    DEFF Research Database (Denmark)

    Man, E. A.; Sera, D.; Mathe, L.

    2016-01-01

    of the intermittent operation of the internal combustion engine, the TEG and its MPPT controller are exposed to a cyclic temperature profile. Furthermore, there are no guidelines on how fast the MPPT must be under such dynamic conditions. In the work discussed in this paper, temperature gradients for TEG integrated...

  16. Pressure effects on dynamics behavior of multiwall boron nitride nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Talebian, Taha [Faculty of Engineering, Neyshabur Branch, Islamic Azad University, Neyshabur (Iran, Islamic Republic of)

    2016-01-15

    The dynamic behavior of Multiwall boron nitride nanotubes (MWBNNTs) is investigated by employing multiple elastic shells model. The influences of van der Waals interactions on layers are shown as nonlinear functions of the interlayer distance of MWBNNTs. Governing equations are solved by using the developed finite element method and by employing time history diagrams. The radial wave speed from the outermost layer to the innermost layer is computed. The effects of geometrical factors such as diameter-to-thickness ratio on dynamic behavior of MWBNNTs are determined. The magnification aspects of MWBNNTs are computed, and the effects of surrounding pressures on wave speed and magnification aspect of MWBNNTs are discussed.

  17. Validation of the dynamic model for a pressurized water reactor

    International Nuclear Information System (INIS)

    Zwingelstein, Gilles.

    1979-01-01

    Dynamic model validation is a necessary procedure to assure that the developed empirical or physical models are satisfactorily representing the dynamic behavior of the actual plant during normal or abnormal transients. For small transients, physical models which represent isolated core, isolated steam generator and the overall pressurized water reactor are described. Using data collected during the step power changes that occured during the startup procedures, comparisons of experimental and actual transients are given at 30% and 100% of full power. The agreement between the transients derived from the model and those recorded on the plant indicates that the developed models are well suited for use for functional or control studies

  18. A whole-body mathematical model for intracranial pressure dynamics.

    Science.gov (United States)

    Lakin, William D; Stevens, Scott A; Tranmer, Bruce I; Penar, Paul L

    2003-04-01

    Most attempts to study intracranial pressure using lumped-parameter models have adopted the classical "Kellie-Monro Doctrine," which considers the intracranial space to be a closed system that is confined within the nearly-rigid skull, conserves mass, and has equal inflow and outflow. The present work revokes this Doctrine and develops a mathematical model for the dynamics of intracranial pressures, volumes, and flows that embeds the intracranial system in extensive whole-body physiology. The new model consistently introduces compartments representing the tissues and vasculature of the extradural portions of the body, including both the thoracic region and the lower extremities. In addition to vascular connections, a spinal-subarachnoid cerebrospinal fluid (CSF) compartment bridges intracranial and extracranial physiology allowing explict buffering of intracranial pressure fluctuations by the spinal theca. The model contains cerebrovascular autoregulation, regulation of systemic vascular pressures by the sympathetic nervous system, regulation of CSF production in the choroid plexus, a lymphatic system, colloid osmotic pressure effects, and realistic descriptions of cardiac output. To validate the model in situations involving normal physiology, the model's response to a realistic pulsatile cardiac output is examined. A well-known experimentally-derived intracranial pressure-volume relationship is recovered by using the model to simulate CSF infusion tests, and the effect on cerebral blood flow of a change in body position is also examined. Cardiac arrest and hemorrhagic shock are simulated to demonstrate the predictive capabilities of the model in pathological conditions.

  19. Modeling beam-front dynamics at low gas pressures

    International Nuclear Information System (INIS)

    Briggs, R.J.; Yu, S.

    1982-01-01

    The dynamics of space charge neutralization at the front of an intense self-focused electron beam pulse exhibits important differences in different gas pressure regimes. At very low pressures, the beam front is in the so-called ion-focused regime (IFR) where all secondary electrons are expelled from the beam region by the radial electric field without causing significant additional ionization. We estimate the upper pressure boundary of this regime by considering the distance scale length for cascade (avalanche) ionization. Data from the FX-25 diode experiments indicate a critical transition pressure (P/sub c/) that agrees with this estimate and with its scaling among various gas types. Normal mobility-limited treatments (local conductivity models) of the secondary electrons at the beam front are not justified until the gas pressure is 10 to 50 times higher than P/sub c/, due to runaway of these secondary electrons in the strong space-charge electric field at the lower pressures. The main conclusion of this study is that a non-local phase space (Boltzmann) treatment of the secondary electrons is required to accurately describe these different beam front regimes and the transitions between them; such a code model is currently under development

  20. Maximum Bandwidth Enhancement of Current Mirror using Series-Resistor and Dynamic Body Bias Technique

    Directory of Open Access Journals (Sweden)

    V. Niranjan

    2014-09-01

    Full Text Available This paper introduces a new approach for enhancing the bandwidth of a low voltage CMOS current mirror. The proposed approach is based on utilizing body effect in a MOS transistor by connecting its gate and bulk terminals together for signal input. This results in boosting the effective transconductance of MOS transistor along with reduction of the threshold voltage. The proposed approach does not affect the DC gain of the current mirror. We demonstrate that the proposed approach features compatibility with widely used series-resistor technique for enhancing the current mirror bandwidth and both techniques have been employed simultaneously for maximum bandwidth enhancement. An important consequence of using both techniques simultaneously is the reduction of the series-resistor value for achieving the same bandwidth. This reduction in value is very attractive because a smaller resistor results in smaller chip area and less noise. PSpice simulation results using 180 nm CMOS technology from TSMC are included to prove the unique results. The proposed current mirror operates at 1Volt consuming only 102 µW and maximum bandwidth extension ratio of 1.85 has been obtained using the proposed approach. Simulation results are in good agreement with analytical predictions.

  1. PPOOLEX experiments on dynamic loading with pressure feedback

    International Nuclear Information System (INIS)

    Puustinen, M.; Laine, J.; Raesaenen, A.

    2011-01-01

    This report summarizes the results of the dynamic loading experiments (DYN series) carried out with the scaled down, two compartment PPOOLEX test facility designed and constructed at LUT. Steam was blown into the dry well compartment and from there through the DN200 vertical blowdown pipe to the condensation pool filled with sub-cooled water. The main purpose of the experiments was to study dynamic loads caused by different condensation modes. Particularly, the effect of counterpressure on loads due to pressure oscillations induced by chugging was of interest. Before the experiments the condensation pool was filled with isothermal water so that the blowdown pipe outlet was submerged by 1.03-1.11 m. The initial temperature of the pool water varied from 11 deg. C to 63 deg. C, the steam flow rate from 290 g/s to 1220 g/s and the temperature of incoming steam from 132 deg. C to 182 deg. C. Non-condensables were pushed from the dry well into the gas space of the wet well with a short discharge of steam before the recorded period of the experiments. As a result of this procedure, the system pressure was at an elevated level in the beginning of the actual experiments. An increased counterpressure was used in the last experiment of the series. The diminishing effect of increased system pressure on chugging intensity and on measured loads is evident from the results of the last experiment. The highest pressure pulses both inside the blowdown pipe and in the condensation pool were about half of those measured with a lower system pressure but otherwise with similar test parameters. The experiments on dynamic loading gave expected results. The loads experienced by pool structures depended strongly on the steam mass flow rate, pool water temperature and system pressure. The DYN experiments indicated that chugging and condensation within the blowdown pipe cause significant dynamic loads in case of strongly sub-cooled pool water. The level of pool water temperature is decisive

  2. PPOOLEX experiments on dynamic loading with pressure feedback

    Energy Technology Data Exchange (ETDEWEB)

    Puustinen, M.; Laine, J.; Raesaenen, A. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2011-01-15

    This report summarizes the results of the dynamic loading experiments (DYN series) carried out with the scaled down, two compartment PPOOLEX test facility designed and constructed at LUT. Steam was blown into the dry well compartment and from there through the DN200 vertical blowdown pipe to the condensation pool filled with sub-cooled water. The main purpose of the experiments was to study dynamic loads caused by different condensation modes. Particularly, the effect of counterpressure on loads due to pressure oscillations induced by chugging was of interest. Before the experiments the condensation pool was filled with isothermal water so that the blowdown pipe outlet was submerged by 1.03-1.11 m. The initial temperature of the pool water varied from 11 deg. C to 63 deg. C, the steam flow rate from 290 g/s to 1220 g/s and the temperature of incoming steam from 132 deg. C to 182 deg. C. Non-condensables were pushed from the dry well into the gas space of the wet well with a short discharge of steam before the recorded period of the experiments. As a result of this procedure, the system pressure was at an elevated level in the beginning of the actual experiments. An increased counterpressure was used in the last experiment of the series. The diminishing effect of increased system pressure on chugging intensity and on measured loads is evident from the results of the last experiment. The highest pressure pulses both inside the blowdown pipe and in the condensation pool were about half of those measured with a lower system pressure but otherwise with similar test parameters. The experiments on dynamic loading gave expected results. The loads experienced by pool structures depended strongly on the steam mass flow rate, pool water temperature and system pressure. The DYN experiments indicated that chugging and condensation within the blowdown pipe cause significant dynamic loads in case of strongly sub-cooled pool water. The level of pool water temperature is decisive

  3. Competitive Pressure: Competitive Dynamics as Reactions to Multiple Rivals

    OpenAIRE

    Zucchini, Leon; Kretschmer, Tobias

    2011-01-01

    Competitive dynamics research has focused primarily on interactions between dyads of firms. Drawing on the awareness-motivation-capability framework and strategic group theory we extend this by proposing that firms’ actions are influenced by perceived competitive pressure resulting from actions by several rivals. We predict that firms’ action magnitude is influenced by the total number of rival actions accumulating in the market, and that this effect is moderated by strategic group membership...

  4. Optimization study of pressure-swing distillation for the separation process of a maximum-boiling azeotropic system of water-ethylenediamine

    Energy Technology Data Exchange (ETDEWEB)

    Fulgueras, Alyssa Marie; Poudel, Jeeban; Kim, Dong Sun; Cho, Jungho [Kongju National University, Cheonan (Korea, Republic of)

    2016-01-15

    The separation of ethylenediamine (EDA) from aqueous solution is a challenging problem because its mixture forms an azeotrope. Pressure-swing distillation (PSD) as a method of separating azeotropic mixture were investigated. For a maximum-boiling azeotropic system, pressure change does not greatly affect the azeotropic composition of the system. However, the feasibility of using PSD was still analyzed through process simulation. Experimental vapor liquid equilibrium data of water-EDA system was studied to predict the suitability of thermodynamic model to be applied. This study performed an optimization of design parameters for each distillation column. Different combinations of operating pressures for the low- and high-pressure columns were used for each PSD simulation case. After the most efficient operating pressures were identified, two column configurations, low-high (LP+HP) and high-low (HP+ LP) pressure column configuration, were further compared. Heat integration was applied to PSD system to reduce low and high temperature utility consumption.

  5. Optimization study of pressure-swing distillation for the separation process of a maximum-boiling azeotropic system of water-ethylenediamine

    International Nuclear Information System (INIS)

    Fulgueras, Alyssa Marie; Poudel, Jeeban; Kim, Dong Sun; Cho, Jungho

    2016-01-01

    The separation of ethylenediamine (EDA) from aqueous solution is a challenging problem because its mixture forms an azeotrope. Pressure-swing distillation (PSD) as a method of separating azeotropic mixture were investigated. For a maximum-boiling azeotropic system, pressure change does not greatly affect the azeotropic composition of the system. However, the feasibility of using PSD was still analyzed through process simulation. Experimental vapor liquid equilibrium data of water-EDA system was studied to predict the suitability of thermodynamic model to be applied. This study performed an optimization of design parameters for each distillation column. Different combinations of operating pressures for the low- and high-pressure columns were used for each PSD simulation case. After the most efficient operating pressures were identified, two column configurations, low-high (LP+HP) and high-low (HP+ LP) pressure column configuration, were further compared. Heat integration was applied to PSD system to reduce low and high temperature utility consumption.

  6. Solar wind dynamic pressure variations and transient magnetospheric signatures

    International Nuclear Information System (INIS)

    Sibeck, D.G.; Baumjohann, W.

    1989-01-01

    Contrary to the prevailing popular view, we find some transient ground events with bipolar north-south signatures are related to variations in solar wind dynamic pressure and not necessarily to magnetic merging. We present simultaneous solar wind plasma observations for two previously reported transient ground events observed at dayside auroral latitudes. During the first event, originally reported by Lanzerotti et al. [1987], conjugate ground magnetometers recorded north-south magetic field deflections in the east-west and vertical directions. The second event was reported by Todd et al. [1986], we noted ground rader observations indicating strong northward then southward ionospheric flows. The events were associated with the postulated signatures of patchy, sporadic, merging of magnetosheath and magnetospheric magnetic field lines at the dayside magnetospause, known as flux transfer events. Conversely, we demonstrate that the event reported by Lanzerotti et al. was accompanied by a sharp increase in solar wind dynamic pressure, a magnetospheric compression, and a consequent ringing of the magnetospheric magnetic field. The event reported by Todd et al. was associated with a brief but sharp increase in the solar wind dynamic pressure. copyright American Geophysical Union 1989

  7. Analytical solution for dynamic pressurization of viscoelastic fluids

    International Nuclear Information System (INIS)

    Hashemabadi, S.H.; Etemad, S.Gh.; Thibault, J.; Golkar Naranji, M.R.

    2003-01-01

    The flow of simplified Phan-Thien-Tanner model fluid between parallel plates is studied analytically for the case where the upper plate moves at constant velocity. Two forms of the stress coefficient, linear and exponential, are used in the constitutive equation. For the linear stress coefficient, the dimensionless pressure gradient, the velocity profile and the product of friction factor and Reynolds number are obtained for a wide range of flow rate, Deborah number and elongational parameter. The results indicate the strong effects of the viscoelastic parameter on the velocity profile, the extremum of the velocity, and the friction factor. A correlation for the maximum pressure rise in single screw extruders is proposed. For the exponential stress coefficient, only velocity profiles were obtained and compared with velocity profiles obtained with the linear stress coefficient

  8. Analysis of the flight dynamics of the Solar Maximum Mission (SMM) off-sun scientific pointing

    Science.gov (United States)

    Pitone, D. S.; Klein, J. R.; Twambly, B. J.

    1990-01-01

    Algorithms are presented which were created and implemented by the Goddard Space Flight Center's (GSFC's) Solar Maximum Mission (SMM) attitude operations team to support large-angle spacecraft pointing at scientific objectives. The mission objective of the post-repair SMM satellite was to study solar phenomena. However, because the scientific instruments, such as the Coronagraph/Polarimeter (CP) and the Hard X-ray Burst Spectrometer (HXRBS), were able to view objects other than the Sun, attitude operations support for attitude pointing at large angles from the nominal solar-pointing attitudes was required. Subsequently, attitude support for SMM was provided for scientific objectives such as Comet Halley, Supernova 1987A, Cygnus X-1, and the Crab Nebula. In addition, the analysis was extended to include the reverse problem, computing the right ascension and declination of a body given the off-Sun angles. This analysis led to the computation of the orbits of seven new solar comets seen in the field-of-view (FOV) of the CP. The activities necessary to meet these large-angle attitude-pointing sequences, such as slew sequence planning, viewing-period prediction, and tracking-bias computation are described. Analysis is presented for the computation of maneuvers and pointing parameters relative to the SMM-unique, Sun-centered reference frame. Finally, science data and independent attitude solutions are used to evaluate the larg-angle pointing performance.

  9. Ecological dynamics of age selective harvesting of fish population: Maximum sustainable yield and its control strategy

    International Nuclear Information System (INIS)

    Jana, Debaldev; Agrawal, Rashmi; Upadhyay, Ranjit Kumar; Samanta, G.P.

    2016-01-01

    Highlights: • Age-selective harvesting of prey and predator are considered by multi-delayed prey-predator system. • System experiences stable coexistence to oscillatory mode and vice versa via Hopf-bifurcation depending upon the parametric restrictions. • MSY, bionomic equilibrium and optimal harvesting policy are also depending upon the age-selection of prey and predator. • All the analytic results are delay dependent. • Numerical examples support the analytical findings. - Abstract: Life history of ecological resource management and empirical studies are increasingly documenting the impact of selective harvesting process on the evolutionary stable strategy of both aquatic and terrestrial ecosystems. In the present study, the interaction between population and their independent and combined selective harvesting are framed by a multi-delayed prey-predator system. Depending upon the age selection strategy, system experiences stable coexistence to oscillatory mode and vice versa via Hopf-bifurcation. Economic evolution of the system which is mainly featured by maximum sustainable yield (MSY), bionomic equilibrium and optimal harvesting vary largely with the commensurate age selections of both population because equilibrium population abundance becomes age-selection dependent. Our study indicates that balance between harvesting delays and harvesting intensities should be maintained for better ecosystem management. Numerical examples support the analytical findings.

  10. Method for making a dynamic pressure sensor and a pressure sensor made according to the method

    Science.gov (United States)

    Zuckerwar, Allan J. (Inventor); Robbins, William E. (Inventor); Robins, Glenn M. (Inventor)

    1994-01-01

    A method for providing a perfectly flat top with a sharp edge on a dynamic pressure sensor using a cup-shaped stretched membrane as a sensing element is described. First, metal is deposited on the membrane and surrounding areas. Next, the side wall of the pressure sensor with the deposited metal is machined to a predetermined size. Finally, deposited metal is removed from the top of the membrane in small steps, by machining or lapping while the pressure sensor is mounted in a jig or the wall of a test object, until the true top surface of the membrane appears. A thin indicator layer having a color contrasting with the color of the membrane may be applied to the top of the membrane before metal is deposited to facilitate the determination of when to stop metal removal from the top surface of the membrane.

  11. Identification of Random Dynamic Force Using an Improved Maximum Entropy Regularization Combined with a Novel Conjugate Gradient

    Directory of Open Access Journals (Sweden)

    ChunPing Ren

    2017-01-01

    Full Text Available We propose a novel mathematical algorithm to offer a solution for the inverse random dynamic force identification in practical engineering. Dealing with the random dynamic force identification problem using the proposed algorithm, an improved maximum entropy (IME regularization technique is transformed into an unconstrained optimization problem, and a novel conjugate gradient (NCG method was applied to solve the objective function, which was abbreviated as IME-NCG algorithm. The result of IME-NCG algorithm is compared with that of ME, ME-CG, ME-NCG, and IME-CG algorithm; it is found that IME-NCG algorithm is available for identifying the random dynamic force due to smaller root mean-square-error (RMSE, lower restoration time, and fewer iterative steps. Example of engineering application shows that L-curve method is introduced which is better than Generalized Cross Validation (GCV method and is applied to select regularization parameter; thus the proposed algorithm can be helpful to alleviate the ill-conditioned problem in identification of dynamic force and to acquire an optimal solution of inverse problem in practical engineering.

  12. Dynamic osseous scintigraphy in the knee hyper-pressure syndromes

    International Nuclear Information System (INIS)

    Laurin, J.; Jau, P.; Ferro, L.; Fouque, M.

    1997-01-01

    This retrospective study of 49 patients, carrying an internal mono-compartmental algic syndrome of the knee, determines the place of the dynamical osseous scintigraphy in three times: in comparison with the pan-goniometry (for 42 of them), in the diagnosis of the hyper-pressure syndrome and in the evaluation of its severity. The vascularization is augmented in 10 patients and the sanguinary pool in 14. Forty eight internal compartments exhibit a tracer hyper-fixation at late times. These anomalies have been classified according to their tibial or condylar localization and intensity, than compared with the pan-goniometric values of the deviation, which in case of a varus, entail an over-pressure risk. These comparisons show a good correlation between the hyper-fixation in the sub-chondral band of the internal tibial plateau and a syndrome of hyper-pressure by deviation in varus, whether this hyper-fixation was moderated and isolated or severe or associated to a condylar image; the intensity of the fixation indicates the severity. The tibial fixation intensity is always superior to that of the rest of compartment, what is essential for the differential diagnosis in case of a simple, without hyper-pressure, arthritis, or other pathology. From this exploration stem 8 osteotomies and 1 prosthesis

  13. The unsaturated flow in porous media with dynamic capillary pressure

    Science.gov (United States)

    Milišić, Josipa-Pina

    2018-05-01

    In this paper we consider a degenerate pseudoparabolic equation for the wetting saturation of an unsaturated two-phase flow in porous media with dynamic capillary pressure-saturation relationship where the relaxation parameter depends on the saturation. Following the approach given in [13] the existence of a weak solution is proved using Galerkin approximation and regularization techniques. A priori estimates needed for passing to the limit when the regularization parameter goes to zero are obtained by using appropriate test-functions, motivated by the fact that considered PDE allows a natural generalization of the classical Kullback entropy. Finally, a special care was given in obtaining an estimate of the mixed-derivative term by combining the information from the capillary pressure with the obtained a priori estimates on the saturation.

  14. Dynamic isolation technologies in negative pressure isolation wards

    CERN Document Server

    Xu, Zhonglin

    2017-01-01

    This book presents novel design principles and technologies for dynamic isolation based on experimental studies. These approaches have now become the local standard in Beijing and are currently being promoted for use nationwide. Further, the book provides details of measures and guidelines for the design process. Departing from the traditional understanding that isolation wards should be designed with high negative pressure, airtight doors and fresh air, it establishes the basis for designing biological clean rooms, including isolation wards, using a simple and convenient scientific approach. This book is intended for designers, engineers, researchers, hospital management staff and graduate students in heating ventilation air conditioning (HVAC), air cleaning technologies and related areas.

  15. Maximum inspiratory pressure as a clinically meaningful trial endpoint for neuromuscular diseases: A comprehensive review of the literature

    NARCIS (Netherlands)

    B. Schoser; Fong, E. (Edward); Geberhiwot, T. (Tarekegn); Hughes, D. (Derralynn); Kissel, J.T. (John T.); Madathil, S.C. (Shyam C.); Orlikowski, D. (David); Polkey, M.I. (Michael I.); M. Roberts (Mark); H.A.W.M. Tiddens (Harm); Young, P. (Peter)

    2017-01-01

    textabstractRespiratory muscle strength is a proven predictor of long-term outcome of neuromuscular disease (NMD), including amyotrophic lateral sclerosis, Duchenne muscular dystrophy, and spinal muscular atrophy. Maximal inspiratory pressure (MIP), a sensitive measure of respiratory muscle

  16. Constant pressure and temperature discrete-time Langevin molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Grønbech-Jensen, Niels [Department of Mechanical and Aerospace Engineering, University of California, Davis, California 95616 (United States); Department of Mathematics, University of California, Davis, California 95616 (United States); Farago, Oded [Department of Biomedical Engineering, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel); Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Be' er Sheva 84105 (Israel)

    2014-11-21

    We present a new and improved method for simultaneous control of temperature and pressure in molecular dynamics simulations with periodic boundary conditions. The thermostat-barostat equations are built on our previously developed stochastic thermostat, which has been shown to provide correct statistical configurational sampling for any time step that yields stable trajectories. Here, we extend the method and develop a set of discrete-time equations of motion for both particle dynamics and system volume in order to seek pressure control that is insensitive to the choice of the numerical time step. The resulting method is simple, practical, and efficient. The method is demonstrated through direct numerical simulations of two characteristic model systems—a one-dimensional particle chain for which exact statistical results can be obtained and used as benchmarks, and a three-dimensional system of Lennard-Jones interacting particles simulated in both solid and liquid phases. The results, which are compared against the method of Kolb and Dünweg [J. Chem. Phys. 111, 4453 (1999)], show that the new method behaves according to the objective, namely that acquired statistical averages and fluctuations of configurational measures are accurate and robust against the chosen time step applied to the simulation.

  17. Dynamic loads on reactor vessel components by low pressure waves

    International Nuclear Information System (INIS)

    Benkert, J.; Mika, C.; Stegemann, D.; Valero, M.

    1978-01-01

    Starting from the conservation theorems for mass and impulses the code DRUWE has been developed enabling the calculation of dynamic loads of the reactor shell on the basis of simplified assumptions for the first period shortly after rupture. According to the RSK-guidelines it can be assumed that the whole weld size is opened within 15 msec. This time-dependent opening of the fractured plane can be taken into account in the computer program. The calculation is composed in a way that for a reactor shell devided into cross and angle sections the local, chronological pressure and strength curves, the total dynamic load as well as the moments acting on the fastenings of the reactor shell can be calculated. As input data only geometrical details concerning the concept of the pressure vessel and its components as well as the effective subcooling of the fluid are needed. By means of several parameters the program can be operated in a way that the results are available in form of listings or diagrams, respectively, but also as card pile for further examinations, e.g. strength analysis. (orig./RW) [de

  18. Theoretical Analysis of Penalized Maximum-Likelihood Patlak Parametric Image Reconstruction in Dynamic PET for Lesion Detection.

    Science.gov (United States)

    Yang, Li; Wang, Guobao; Qi, Jinyi

    2016-04-01

    Detecting cancerous lesions is a major clinical application of emission tomography. In a previous work, we studied penalized maximum-likelihood (PML) image reconstruction for lesion detection in static PET. Here we extend our theoretical analysis of static PET reconstruction to dynamic PET. We study both the conventional indirect reconstruction and direct reconstruction for Patlak parametric image estimation. In indirect reconstruction, Patlak parametric images are generated by first reconstructing a sequence of dynamic PET images, and then performing Patlak analysis on the time activity curves (TACs) pixel-by-pixel. In direct reconstruction, Patlak parametric images are estimated directly from raw sinogram data by incorporating the Patlak model into the image reconstruction procedure. PML reconstruction is used in both the indirect and direct reconstruction methods. We use a channelized Hotelling observer (CHO) to assess lesion detectability in Patlak parametric images. Simplified expressions for evaluating the lesion detectability have been derived and applied to the selection of the regularization parameter value to maximize detection performance. The proposed method is validated using computer-based Monte Carlo simulations. Good agreements between the theoretical predictions and the Monte Carlo results are observed. Both theoretical predictions and Monte Carlo simulation results show the benefit of the indirect and direct methods under optimized regularization parameters in dynamic PET reconstruction for lesion detection, when compared with the conventional static PET reconstruction.

  19. MEMS pressure sensor with maximum performances by using novel back-side direct-exposure concept featuring through glass vias

    Science.gov (United States)

    Mukhopadhyay, B.; Fritz, M.; Mackowiak, P.; Vu, T. C.; Ehrmann, O.; Lang, K.-D.; Ngo, H.-D.

    2013-05-01

    Design, simulation, fabrication, and characterization of novel MEMS pressure sensors with new back-side-direct-exposure packaging concept are presented. The sensor design is optimized for harsh environments e.g. space, military, offshore and medical applications. Unbreakable connection between the active side of the Si-sensor and the protecting glass capping was realized by anodic bonding using a thin layer of metal. To avoid signal corruption of the measured pressure caused by an encapsulation system, the media has direct contact to the backside of the Si membrane and can deflect it.

  20. The effectiveness of combining inspiratory muscle training with manual therapy and a therapeutic exercise program on maximum inspiratory pressure in adults with asthma: a randomized clinical trial.

    Science.gov (United States)

    López-de-Uralde-Villanueva, Ibai; Candelas-Fernández, Pablo; de-Diego-Cano, Beatriz; Mínguez-Calzada, Orcález; Del Corral, Tamara

    2018-06-01

    The objective of this study was to evaluate whether the addition of manual therapy and therapeutic exercise protocol to inspiratory muscle training was more effective in improving maximum inspiratory pressure than inspiratory muscle training in isolation. This is a single-blinded, randomized controlled trial. In total, 43 patients with asthma were included in this study. The patients were allocated into one of the two groups: (1) inspiratory muscle training ( n = 21; 20-minute session) or (2) inspiratory muscle training (20-minute session) combined with a program of manual therapy (15-minute session) and therapeutic exercise (15-minute session; n = 22). All participants received 12 sessions, two days/week, for six weeks and performed the domiciliary exercises protocol. The main measures such as maximum inspiratory pressure, spirometric measures, forward head posture, and thoracic kyphosis were recorded at baseline and after the treatment. For the per-protocol analysis, between-group differences at post-intervention were observed in maximum inspiratory pressure (19.77 cmH 2 O (11.49-28.04), P < .05; F = 22.436; P < .001; η 2 p  = 0.371) and forward head posture (-1.25 cm (-2.32 to -0.19), P < .05; F = 5.662; P = .022; η 2 p  = 0.13). The intention-to-treat analysis showed the same pattern of findings. The inspiratory muscle training combined with a manual therapy and therapeutic exercise program is more effective than its application in isolation for producing short-term maximum inspiratory pressure and forward head posture improvements in patients with asthma.

  1. Error Propagation Dynamics of PIV-based Pressure Field Calculations: How well does the pressure Poisson solver perform inherently?

    Science.gov (United States)

    Pan, Zhao; Whitehead, Jared; Thomson, Scott; Truscott, Tadd

    2016-08-01

    Obtaining pressure field data from particle image velocimetry (PIV) is an attractive technique in fluid dynamics due to its noninvasive nature. The application of this technique generally involves integrating the pressure gradient or solving the pressure Poisson equation using a velocity field measured with PIV. However, very little research has been done to investigate the dynamics of error propagation from PIV-based velocity measurements to the pressure field calculation. Rather than measure the error through experiment, we investigate the dynamics of the error propagation by examining the Poisson equation directly. We analytically quantify the error bound in the pressure field, and are able to illustrate the mathematical roots of why and how the Poisson equation based pressure calculation propagates error from the PIV data. The results show that the error depends on the shape and type of boundary conditions, the dimensions of the flow domain, and the flow type.

  2. Error propagation dynamics of PIV-based pressure field calculations: How well does the pressure Poisson solver perform inherently?

    International Nuclear Information System (INIS)

    Pan, Zhao; Thomson, Scott; Whitehead, Jared; Truscott, Tadd

    2016-01-01

    Obtaining pressure field data from particle image velocimetry (PIV) is an attractive technique in fluid dynamics due to its noninvasive nature. The application of this technique generally involves integrating the pressure gradient or solving the pressure Poisson equation using a velocity field measured with PIV. However, very little research has been done to investigate the dynamics of error propagation from PIV-based velocity measurements to the pressure field calculation. Rather than measure the error through experiment, we investigate the dynamics of the error propagation by examining the Poisson equation directly. We analytically quantify the error bound in the pressure field, and are able to illustrate the mathematical roots of why and how the Poisson equation based pressure calculation propagates error from the PIV data. The results show that the error depends on the shape and type of boundary conditions, the dimensions of the flow domain, and the flow type. (paper)

  3. Error Propagation Dynamics of PIV-based Pressure Field Calculations: How well does the pressure Poisson solver perform inherently?

    Science.gov (United States)

    Pan, Zhao; Whitehead, Jared; Thomson, Scott; Truscott, Tadd

    2016-01-01

    Obtaining pressure field data from particle image velocimetry (PIV) is an attractive technique in fluid dynamics due to its noninvasive nature. The application of this technique generally involves integrating the pressure gradient or solving the pressure Poisson equation using a velocity field measured with PIV. However, very little research has been done to investigate the dynamics of error propagation from PIV-based velocity measurements to the pressure field calculation. Rather than measure the error through experiment, we investigate the dynamics of the error propagation by examining the Poisson equation directly. We analytically quantify the error bound in the pressure field, and are able to illustrate the mathematical roots of why and how the Poisson equation based pressure calculation propagates error from the PIV data. The results show that the error depends on the shape and type of boundary conditions, the dimensions of the flow domain, and the flow type. PMID:27499587

  4. The collapsing of multigroup cross sections in optimization problems solved by means of the Pontryagin maximum principle in nuclear reactor dynamics

    International Nuclear Information System (INIS)

    Anton, V.

    1979-12-01

    The collapsing formulae for the optimization problems solved by means of the Pontryagin maximum principle in nuclear reactor dynamics are presented. A comparison with the corresponding formulae of the static case is given too. (author)

  5. A Maximum Power Point Tracking Control Method of a Photovoltaic Power Generator with Consideration of Dynamic Characteristics of Solar Cells

    Science.gov (United States)

    Watanabe, Takashi; Yoshida, Toshiya; Ohniwa, Katsumi

    This paper discusses a new control strategy for photovoltaic power generation systems with consideration of dynamic characteristics of the photovoltaic cells. The controller estimates internal currents of an equivalent circuit for the cells. This estimated, or the virtual current and the actual voltage of the cells are fed to a conventional Maximum-Power-Point-Tracking (MPPT) controller. Consequently, this MPPT controller still tracks the optimum point even though it is so designed that the seeking speed of the operating point is extremely high. This system may suit for applications, which are installed in rapidly changeable insolation and temperature-conditions e.g. automobiles, trains, and airplanes. The proposed method is verified by experiment with a combination of this estimating function and the modified Boehringer's MPPT algorithm.

  6. Appropriateness of dynamical systems for the comparison of different embedding methods via calculation of the maximum Lyapunov exponent

    International Nuclear Information System (INIS)

    Franchi, M; Ricci, L

    2014-01-01

    The embedding of time series provides a valuable, and sometimes indispensable, tool in order to analyze the dynamical properties of a chaotic system. To this purpose, the choice of the embedding dimension and lag is decisive. The scientific literature describes several methods for selecting the most appropriate parameter pairs. Unfortunately, no conclusive criterion to decide which method – and thus which embedding pair – is the best has been so far devised. A widely employed quantity to compare different methods is the maximum Lyapunov exponent (MLE) because, for chaotic systems that have explicit analytic representations, MLE can be numerically evaluated independently of the embedding dimension and lag. Within this framework, we investigated the dependence on the calculated MLE on the embedding dimension and lag in the case of three dynamical systems that are also widespreadly used as reference systems, namely the Lorenz, Rössler and Mackey-Glass attractors. By also taking into account the statistical fluctuations of the calculated MLE, we propose a new method to assess which systems provide suitable test benches for the comparison of different embedding methods via MLE calculation. For example we found that, despite of its popularity in this scientific context, the Rössler attractor is not a reliable workbench to test the validity of an embedding method

  7. Dynamic Leg Exercise Improves Tolerance to Lower Body Negative Pressure

    Science.gov (United States)

    Watenpaugh, D. E.; Ballard, R. E.; Stout, M. S.; Murthy, G.; Whalen, R. T.; Hargens, A. R.

    1994-01-01

    These results clearly demonstrate that dynamic leg exercise against the footward force produced by LBNP substantially improves tolerance to LBNP, and that even cyclic ankle flexion without load bearing also increases tolerance. This exercise-induced increase of tolerance was actually an underestimate, because subjects who completed the tolerance test while exercising could have continued for longer periods. Exercise probably increases LBNP tolerance by multiple mechanisms. Tolerance was increased in part by skeletal muscle pumping venous blood from the legs. Rosenhamer and Linnarsson and Rosenhamer also deduced this for subjects cycling during centrifugation, although no measurements of leg volume were made in those studies: they found that male subjects cycling at 98 W could endure 3 Gz centrifugation longer than when they remained relaxed during centrifugation. Skeletal muscle pumping helps maintain cardiac filling pressure by opposing gravity-, centrifugation-, or LBNP-induced accumulation of blood and extravascular fluid in the legs.

  8. Radiation Belt Transport Driven by Solar Wind Dynamic Pressure Fluctuations

    Science.gov (United States)

    Kress, B. T.; Hudson, M. K.; Ukhorskiy, A. Y.; Mueller, H.

    2012-12-01

    The creation of the Earth's outer zone radiation belts is attributed to earthward transport and adiabatic acceleration of electrons by drift-resonant interactions with electromagnetic fluctuations in the magnetosphere. Three types of radial transport driven by solar wind dynamic pressure fluctuations that have been identified are: (1) radial diffusion [Falthammer, 1965], (2) significant changes in the phase space density radial profile due to a single or few ULF drift-resonant interactions [Ukhorskiy et al., 2006; Degeling et al., 2008], and (3) shock associated injections of radiation belt electrons occurring in less than a drift period [Li et al., 1993]. A progress report will be given on work to fully characterize different forms of radial transport and their effect on the Earth's radiation belts. The work is being carried out by computing test-particle trajectories in electric and magnetic fields from a simple analytic ULF field model and from global MHD simulations of the magnetosphere. Degeling, A. W., L. G. Ozeke, R. Rankin, I. R. Mann, and K. Kabin (2008), Drift resonant generation of peaked relativistic electron distributions by Pc 5 ULF waves, textit{J. Geophys. Res., 113}, A02208, doi:10.1029/2007JA012411. Fälthammar, C.-G. (1965), Effects of Time-Dependent Electric Fields on Geomagnetically Trapped Radiation, J. Geophys. Res., 70(11), 2503-2516, doi:10.1029/JZ070i011p02503. Li, X., I. Roth, M. Temerin, J. R. Wygant, M. K. Hudson, and J. B. Blake (1993), Simulation of the prompt energization and transport of radiation belt particles during the March 24, 1991 SSC, textit{Geophys. Res. Lett., 20}(22), 2423-2426, doi:10.1029/93GL02701. Ukhorskiy, A. Y., B. J. Anderson, K. Takahashi, and N. A. Tsyganenko (2006), Impact of ULF oscillations in solar wind dynamic pressure on the outer radiation belt electrons, textit{Geophys. Res. Lett., 33}(6), L06111, doi:10.1029/2005GL024380.

  9. Dynamic pressure as a measure of gas turbine engine (GTE) performance

    International Nuclear Information System (INIS)

    Rinaldi, G; Stiharu, I; Packirisamy, M; Nerguizian, V; Landry, R Jr; Raskin, J-P

    2010-01-01

    Utilizing in situ dynamic pressure measurement is a promising novel approach with applications for both control and condition monitoring of gas turbine-based propulsion systems. The dynamic pressure created by rotating components within the engine presents a unique opportunity for controlling the operation of the engine and for evaluating the condition of a specific component through interpretation of the dynamic pressure signal. Preliminary bench-top experiments are conducted with dc axial fans for measuring fan RPM, blade condition, surge and dynamic temperature variation. Also, a method, based on standing wave physics, is presented for measuring the dynamic temperature simultaneously with the dynamic pressure. These tests are implemented in order to demonstrate the versatility of dynamic pressure-based diagnostics for monitoring several different parameters, and two physical quantities, dynamic pressure and dynamic temperature, with a single sensor. In this work, the development of a dynamic pressure sensor based on micro-electro-mechanical system technology for in situ gas turbine engine condition monitoring is presented. The dynamic pressure sensor performance is evaluated on two different gas turbine engines, one having a fan and the other without

  10. Damage of plates due to impact, dynamic pressure and explosive loads

    Directory of Open Access Journals (Sweden)

    Norman Jones

    Full Text Available It is the purpose of this article to present design equations which can be used to predict the damage of ductile plating when subjected to mass impact, dynamic pressure or impulsive loadings. The external loadings are sufficiently severe to produce inelastic material behaviour and produce finite transverse displacement, or geometry change, effects. The damage is characterised as the final or permanent transverse displacement of a plate. The theoretical method predicts values for the maximum permanent transverse displacements which agree reasonably well with the corresponding experimental results generated on aluminium alloy circular, square and rectangular plates. Thus, the equations presented in this article are valuable for preliminary design purposes and for forensic studies, while the experimental data can be used for validating numerical schemes.

  11. Modeling the Effect of Fluid-Structure Interaction on the Impact Dynamics of Pressurized Tank Cars

    Science.gov (United States)

    2009-11-13

    This paper presents a computational framework that : analyzes the effect of fluid-structure interaction (FSI) on the : impact dynamics of pressurized commodity tank cars using the : nonlinear dynamic finite element code ABAQUS/Explicit. : There exist...

  12. The canonical equation of adaptive dynamics for life histories: from fitness-returns to selection gradients and Pontryagin's maximum principle.

    Science.gov (United States)

    Metz, Johan A Jacob; Staňková, Kateřina; Johansson, Jacob

    2016-03-01

    This paper should be read as addendum to Dieckmann et al. (J Theor Biol 241:370-389, 2006) and Parvinen et al. (J Math Biol 67: 509-533, 2013). Our goal is, using little more than high-school calculus, to (1) exhibit the form of the canonical equation of adaptive dynamics for classical life history problems, where the examples in Dieckmann et al. (J Theor Biol 241:370-389, 2006) and Parvinen et al. (J Math Biol 67: 509-533, 2013) are chosen such that they avoid a number of the problems that one gets in this most relevant of applications, (2) derive the fitness gradient occurring in the CE from simple fitness return arguments, (3) show explicitly that setting said fitness gradient equal to zero results in the classical marginal value principle from evolutionary ecology, (4) show that the latter in turn is equivalent to Pontryagin's maximum principle, a well known equivalence that however in the literature is given either ex cathedra or is proven with more advanced tools, (5) connect the classical optimisation arguments of life history theory a little better to real biology (Mendelian populations with separate sexes subject to an environmental feedback loop), (6) make a minor improvement to the form of the CE for the examples in Dieckmann et al. and Parvinen et al.

  13. Molecular Dynamics Simulations of Liquid Phosphorus at High Temperature and Pressure

    International Nuclear Information System (INIS)

    Wu Yanning; Zhao Gang; Liu Changsong; Zhu Zhengang

    2008-01-01

    By performing ab initio molecular dynamics simulations, we have investigated the microstructure, dynamical and electronic properties of liquid phosphorus (P) under high temperature and pressure. In our simulations, the calculated coordination number (CN) changes discontinuously with density, and seems to increase rapidly after liquid P is compressed to 2.5 g/cm 3 . Under compression, liquid P shows the first-order liquid-liquid phase transition from the molecular liquid composed of the tetrahedral P 4 molecules to complex polymeric form with three-dimensional network structure, accompanied by the nonmetal to metal transition of the electronic structure. The order parameters Q 6 and Q 4 are sensitive to the microstructural change of liquid P. By calculating diffusion coefficients, we show the dynamical anomaly of liquid P by compression. At lower temperatures, a maximum exists at the diffusion coefficients as a function of density; at higher temperatures, the anomalous behavior is weakened. The excess entropy shows the same phenomena as the diffusion coefficients. By analysis of the angle distribution functions and angular limited triplet correlation functions, we can clearly find that the Peierls distortion in polymeric form of liquid P is reduced by further compression

  14. Measurement of dynamic urethral pressures with a high-resolution manometry system in continent and incontinent women.

    Science.gov (United States)

    Kirby, Anna C; Tan-Kim, Jasmine; Nager, Charles W

    2015-01-01

    Female stress urinary incontinence is caused by urethral dysfunction during dynamic conditions, but current technology has limitations in measuring urethral pressures under these conditions. An 8-French high-resolution manometry (HRM) catheter currently in clinical use in gastroenterology may accurately measure urethral pressures under dynamic conditions because it has a 25-millisecond response rate and circumferential pressure sensors along the length of the catheter (ManoScan ESO; Given Imaging, Yoqneam, Israel). We evaluated the concordance, repeatability, and tolerability of this catheter. We measured resting, cough, and strain maximum urethral closure pressures (MUCPs) using HRM and measured resting MUCPs with water-perfusion side-hole catheter urethral pressure profilometry (UPP) in 37 continent and 28 stress-incontinent subjects. Maneuvers were repeated after moving the HRM catheter along the urethral length to evaluate whether results depend on catheter positioning. Visual analog pain scores evaluated the comfort of HRM compared to UPP. The correlation coefficient for resting MUCPs measured by HRM versus UPP was high (r = 0.79, P rest, cough, and strain with HRM: r = 0.92, 0.89, and 0.89. Mean MUCPs (rest, cough, and strain) were higher in continent than in incontinent subjects (all P continent subjects during cough and strain maneuvers compared to rest. This preliminary study shows that HRM is concordant with standard technology, repeatable, and well tolerated in the urethra. Incontinent women have more impairment of their urethral closure pressures during cough and strain than continent women.

  15. 3-D subduction dynamics in the western Pacific: Mantle pressure, plate kinematics, and dynamic topography.

    Science.gov (United States)

    Holt, A. F.; Royden, L.; Becker, T. W.; Faccenna, C.

    2017-12-01

    While it is well established that the slab pull of negatively buoyant oceanic plates is the primary driving force of plate tectonics, the dynamic "details" of subduction have proved difficult to pin down. We use the Philippine Sea Plate region of the western Pacific as a site to explore links between kinematic observables (e.g. topography and plate motions) and the dynamics of the subduction system (e.g. mantle flow, mantle pressure). To first order, the Philippine Sea Plate can be considered to be the central plate of a double slab system containing two slabs that dip in the same direction, to the west. This subduction configuration presents the opportunity to explore subduction dynamics in a setting where two closely spaced slabs interact via subduction-induced mantle flow and stresses transmitted through the intervening plate. We use a 3-D numerical approach (e.g. Holt et al., 2017), augmented by semi-analytical models (e.g. Jagoutz et al., 2017), to develop relationships between dynamic processes and kinematic properties, including plate velocities, lithospheric stress state, slab dip angles, and topography. When combined with subduction zone observables, this allows us to isolate the first order dynamic processes that are in operation in the Philippine Sea Plate region. Our results suggest that positive pressure build-up occurs in the asthenosphere between the two slabs (Izu-Bonin-Mariana and Ryukyu-Nankai), and that this is responsible for producing much of the observed kinematic variability in the region, including the steep dip of the Pacific slab at the Izu-Bonin-Mariana trench, as compared to the flat dip of the Pacific slab north of Japan. We then extend our understanding of the role of asthenospheric pressure to examine the forces responsible for the plate kinematics and dynamic topography of the entire Western Pacific subduction margin(s). References:Holt, A. F., Royden, L. H., Becker, T. W., 2017. Geophys. J. Int., 209, 250-265Jagoutz, O., Royden, L

  16. The numerical simulation of the WWER-440/V-213 reactor pressure vessel internals response to maximum hypothetical large break loss of coolant accident

    International Nuclear Information System (INIS)

    Hermansky, P.; Krajcovic, M.

    2012-01-01

    The reactor internals are designed to ensure cooling of the fuel, to ensure the movement of emergency control assemblies under all operating conditions including accidents and facilitate removal of the fuel and of the internals following an accident This paper presents results of the numerical simulation of the WWER-440/V213 reactor vessel internals dynamic response to maximum hypothetical Large-Break Loss of Coolant Accident. The purpose of this analysis is to determine the reactor vessel internals response due to rapid depressurization and to prove no such deformations occur in the reactor vessel internals which would prevent timely and proper activation of the emergency control assemblies. (Authors)

  17. Effect of error in crack length measurement on maximum load fracture toughness of Zr-2.5Nb pressure tube material

    International Nuclear Information System (INIS)

    Bind, A.K.; Sunil, Saurav; Singh, R.N.; Chakravartty, J.K.

    2016-03-01

    Recently it was found that maximum load toughness (J max ) for Zr-2.5Nb pressure tube material was practically unaffected by error in Δ a . To check the sensitivity of the J max to error in Δ a measurement, the J max was calculated assuming no crack growth up to the maximum load (P max ) for as received and hydrogen charged Zr-2.5Nb pressure tube material. For load up to the P max , the J values calculated assuming no crack growth (J NC ) were slightly higher than that calculated based on Δ a measured using DCPD technique (JDCPD). In general, error in the J calculation found to be increased exponentially with Δ a . The error in J max calculation was increased with an increase in Δ a and a decrease in J max . Based on deformation theory of J, an analytic criterion was developed to check the insensitivity of the J max to error in Δ a . There was very good linear relation was found between the J max calculated based on Δ a measured using DCPD technique and the J max calculated assuming no crack growth. This relation will be very useful to calculate J max without measuring the crack growth during fracture test especially for irradiated material. (author)

  18. Waves of change - the dynamics of institutional pressures

    NARCIS (Netherlands)

    Klein Woolthuis, R.J.A.; Taminiau, Yvette

    2017-01-01

    This article coins additional explanations for organizations’ room for agency and institutional change by bringing all institutional and competitive pressures back into institutional theory, and by introducing theory on how the interaction between these pressures leads to novelty, contradictions,

  19. How diffusivity, thermocline and incident light intensity modulate the dynamics of deep chlorophyll maximum in Tyrrhenian Sea.

    Directory of Open Access Journals (Sweden)

    Davide Valenti

    Full Text Available During the last few years theoretical works have shed new light and proposed new hypotheses on the mechanisms which regulate the spatio-temporal behaviour of phytoplankton communities in marine pelagic ecosystems. Despite this, relevant physical and biological issues, such as effects of the time-dependent mixing in the upper layer, competition between groups, and dynamics of non-stationary deep chlorophyll maxima, are still open questions. In this work, we analyze the spatio-temporal behaviour of five phytoplankton populations in a real marine ecosystem by using a one-dimensional reaction-diffusion-taxis model. The study is performed, taking into account the seasonal variations of environmental variables, such as light intensity, thickness of upper mixed layer and profiles of vertical turbulent diffusivity, obtained starting from experimental findings. Theoretical distributions of phytoplankton cell concentration was converted in chlorophyll concentration, and compared with the experimental profiles measured in a site of the Tyrrhenian Sea at four different times (seasons of the year, during four different oceanographic cruises. As a result we find a good agreement between theoretical and experimental distributions of chlorophyll concentration. In particular, theoretical results reveal that the seasonal changes of environmental variables play a key role in the phytoplankton distribution and determine the properties of the deep chlorophyll maximum. This study could be extended to other marine ecosystems to predict future changes in the phytoplankton biomass due to global warming, in view of devising strategies to prevent the decline of the primary production and the consequent decrease of fish species.

  20. Modeling and simulation of pressurizer dynamic process in PWR nuclear power plant

    International Nuclear Information System (INIS)

    Ma Jin; Liu Changliang; Li Shu'na

    2010-01-01

    By analysis of the actual operating characteristics of pressurizer in pressurized water reactor (PWR) nuclear power plant and based on some reasonable simplification and basic assumptions, the quality and energy conservation equations about pressurizer' s steam zone and the liquid zone are set up. The purpose of this paper is to build a pressurizer model of two imbalance districts. Water level and pressure control system of pressurizer is formed though model encapsulation. Dynamic simulation curves of main parameters are also shown. At last, comparisons between the theoretical analysis and simulation results show that the pressurizer model of two imbalance districts is reasonable. (authors)

  1. High protein flexibility and reduced hydration water dynamics are key pressure adaptive strategies in prokaryotes

    KAUST Repository

    Martinez, N.

    2016-09-06

    Water and protein dynamics on a nanometer scale were measured by quasi-elastic neutron scattering in the piezophile archaeon Thermococcus barophilus and the closely related pressure-sensitive Thermococcus kodakarensis, at 0.1 and 40 MPa. We show that cells of the pressure sensitive organism exhibit higher intrinsic stability. Both the hydration water dynamics and the fast protein and lipid dynamics are reduced under pressure. In contrast, the proteome of T. barophilus is more pressure sensitive than that of T. kodakarensis. The diffusion coefficient of hydration water is reduced, while the fast protein and lipid dynamics are slightly enhanced with increasing pressure. These findings show that the coupling between hydration water and cellular constituents might not be simply a master-slave relationship. We propose that the high flexibility of the T. barophilus proteome associated with reduced hydration water may be the keys to the molecular adaptation of the cells to high hydrostatic pressure.

  2. High protein flexibility and reduced hydration water dynamics are key pressure adaptive strategies in prokaryotes

    KAUST Repository

    Martinez, N.; Michoud, Gregoire; Cario, A.; Ollivier, J.; Franzetti, B.; Jebbar, M.; Oger, P.; Peters, J.

    2016-01-01

    Water and protein dynamics on a nanometer scale were measured by quasi-elastic neutron scattering in the piezophile archaeon Thermococcus barophilus and the closely related pressure-sensitive Thermococcus kodakarensis, at 0.1 and 40 MPa. We show that cells of the pressure sensitive organism exhibit higher intrinsic stability. Both the hydration water dynamics and the fast protein and lipid dynamics are reduced under pressure. In contrast, the proteome of T. barophilus is more pressure sensitive than that of T. kodakarensis. The diffusion coefficient of hydration water is reduced, while the fast protein and lipid dynamics are slightly enhanced with increasing pressure. These findings show that the coupling between hydration water and cellular constituents might not be simply a master-slave relationship. We propose that the high flexibility of the T. barophilus proteome associated with reduced hydration water may be the keys to the molecular adaptation of the cells to high hydrostatic pressure.

  3. Assessment of deep dynamic mechanical sensitivity in individuals with tension-type headache: The dynamic pressure algometry.

    Science.gov (United States)

    Palacios-Ceña, M; Wang, K; Castaldo, M; Guerrero-Peral, Á; Caminero, A B; Fernández-de-Las-Peñas, C; Arendt-Nielsen, L

    2017-09-01

    To explore the validity of dynamic pressure algometry for evaluating deep dynamic mechanical sensitivity by assessing its association with headache features and widespread pressure sensitivity in tension-type headache (TTH). One hundred and eighty-eight subjects with TTH (70% women) participated. Deep dynamic sensitivity was assessed with a dynamic pressure algometry set (Aalborg University, Denmark © ) consisting of 11 different rollers including fixed levels from 500 g to 5300 g. Each roller was moved at a speed of 0.5 cm/s over a 60-mm horizontal line covering the temporalis muscle. Dynamic pain threshold (DPT-level of the first painful roller) was determined and pain intensity during DPT was rated on a numerical pain rate scale (NPRS, 0-10). Headache clinical features were collected on a headache diary. As gold standard, static pressure pain thresholds (PPT) were assessed over temporalis, C5/C6 joint, second metacarpal, and tibialis anterior muscle. Side-to-side consistency between DPT (r = 0.843, p  r > 0.656, all p headaches supporting that deep dynamic pressure sensitivity within the trigeminal area is consistent with widespread pressure sensitivity. Assessing deep static and dynamic somatic tissue pain sensitivity may provide new opportunities for differentiated diagnostics and possibly a new tool for assessing treatment effects. The current study found that dynamic pressure algometry in the temporalis muscle was associated with widespread pressure pain sensitivity in individuals with tension-type headache. The association was independent of the frequency of headaches. Assessing deep static and dynamic somatic tissue pain sensitivity may provide new opportunities for differentiated diagnostics and possibly a tool for assessing treatment effects. © 2017 European Pain Federation - EFIC®.

  4. Analysis of the dynamic response of a double rupture disc assembly to simulated sodium-water reaction pressure pulses

    International Nuclear Information System (INIS)

    Leonard, J.R.

    1980-03-01

    A series of double rupture disc experiments were conducted in 1979 to evaluate the dynamic response characteristics of this pressure relief apparatus. The tests were performed in a facility with water simulating sodium and rising pressure pulses representative of the pressure increase resulting from a water/steam leak from a steam generator into sodium in the intermediate heat transport system of a breeder reactor power plant. Maximum source pressures ranged in magnitude from 50 psi to 800 psi. Dynamic response characteristics of each of the two rupture discs were similar to those observed in larger scale sodium-water experiments conducted in the Series I and Series II Large Leak Test Program at the Energy Technology Engineering Center. The SRI double rupture disc dynamic behavior was found to be consistent and amendable to modelling in the TRANSWRAP II computer code. A series of correlations which represent rupture disc buckling parameters were developed for use in the TRANSWRAP II code. The semi-empirical modeling of the rupture discs in the TRANSWRAP II code showed very good agreement with the experimental results

  5. Effects of Abrupt Variations of Solar Wind Dynamic Pressure on the High-Latitude Ionosphere

    Directory of Open Access Journals (Sweden)

    Igino Coco

    2011-01-01

    Full Text Available We show the results of a statistical study on the effects in the high-latitude ionosphere of abrupt variations of solar wind dynamic pressure, using Super Dual Auroral Radar Network (SuperDARN data in both hemispheres. We find that, during periods of quiet ionospheric conditions, the amount of radar backscatter increases when a variation in the dynamic pressure occurs, both positive (increase of the pressure and negative (decrease of the pressure. We also investigate the behaviour of the Cross-Polar Cap Potential (CPCP during pressure variations and show preliminary results.

  6. The dynamic behavior of pressure during purge process in the anode of a PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Jun; Pei, Pucheng; Wang, Ying [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)

    2006-11-22

    A one-dimensional mathematic computational fluid dynamics model of a proton exchange membrane (PEM) fuel cell is presented in this paper to simulate the transient behavior of hydrogen pressure in the flow field during a typical dynamic process-the purge process. This model accounts for the mechanism of pressure wave transmission in the channels by employing the characteristic line method. A unique parameter-pressure swing, which represents the top value of pressure variation at certain point in the channel during the purge process, is brought up and studied as well as the pressure drop. The pressure distribution along the channel and the pressure drop during the purge process for different operating pressures, lengths of purge time, stoichiometric ratios and current densities are studied. The results indicate that the distributed pressure, pressure drop and pressure swing all increase with the increment of operating pressure. With a high operating pressure a second-falling stage can be seen in the pressure drop profile while with a relatively low operating pressure, a homogeneous distribution of pressure swing can be attained. A long purge time will provide enough time to show the whole part of the pressure drop curve, while only a part of the curve can be attained if a short purge time is adopted, but a relatively uniform distribution of pressure swing will show up at the moment. Compared with the condition of stoichiometric ratio 1, the pressure drop curve decreases more sharply after the top value and the pressure swing displays a more uniform distribution when the ratio is set beyond 1. Different current densities have no apparent influence on the pressure drop and the pressure swing during this transient process. All the distribution rules of related parameters deducted from this study will be helpful for optimizing the purging strategies on vehicles. (author)

  7. Dynamic analysis of crack growth and arrest in a pressure vessel subjected to thermal and pressure loading

    International Nuclear Information System (INIS)

    Brickstad, B.

    1984-01-01

    Predictions of crack arrest behaviour are performed for a cracked reactor pressure vessel under both thermal and pressure loading. The object is to compare static and dynamic calculations. The dynamic calculations are made using an explicit finite element technique where crack growth is simulated by gradual nodal release. Three different load cases and the effect of different velocity dependence on the crack propagation toughness are studied. It is found that for the analysed cases the static analysis is slightly conservative, thus justifying its use for these problems. (orig.)

  8. Self-pressurization analysis of the natural circulation integral nuclear reactor using a new dynamic model

    Directory of Open Access Journals (Sweden)

    Ali Farsoon Pilehvar

    2018-06-01

    Full Text Available Self-pressurization analysis of the natural circulation integral nuclear reactor through a new dynamic model is studied. Unlike conventional pressurized water reactors, this reactor type controls the system pressure using saturated coolant water in the steam dome at the top of the pressure vessel. Self-pressurization model is developed based on conservation of mass, volume, and energy by predicting the condensation that occurs in the steam dome and the flashing inside the chimney using the partial differential equation. A simple but functional model is adopted for the steam generator. The obtained results indicate that the variable measurement is consistent with design data and that this new model is able to predict the dynamics of the reactor in different situations. It is revealed that flashing and condensation power are in direct relation with the stability of the system pressure, without which pressure convergence cannot be established. Keywords: Condensation Power, Flashing Phenomenon, Natural Circulation, Self-Pressurization, Small Modular Reactor

  9. Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France): Observations from field and MODIS satellite data

    Science.gov (United States)

    Doxaran, David; Froidefond, Jean-Marie; Castaing, Patrice; Babin, Marcel

    2009-02-01

    Over a 1-year period, field and satellite measurements of surface water turbidity were combined in order to study the dynamics of the turbidity maximum zone (TM) in a macrotidal estuary (the Gironde, France). Four fixed platforms equipped with turbidity sensors calibrated to give the suspended particulate matter (SPM) concentration provided continuous information in the upper estuary. Full resolution data recorded by the moderate resolution imaging spectroradiometer (MODIS) sensors onboard the Terra and Aqua satellite platforms provided information in the central and lower estuary twice a day (depending on cloud cover). Field data were used to validate a recently developed SPM quantification algorithm applied to the MODIS 'surface reflectance' product. The algorithm is based on a relationship between the SPM concentration and a reflectance ratio of MODIS bands 2 (near-infrared) and 1 (red). Based on 62 and 75 match-ups identified in 2005 with MODIS Terra and Aqua data, the relative uncertainty of the algorithm applied to these sensors was found to be 22 and 18%, respectively. Field measurements showed the tidal variations of turbidity in the upper estuary, while monthly-averaged MODIS satellite data complemented by field data allowed observing the monthly movements of the TM in the whole estuary. The trapping of fine sediments occurred in the upper estuary during the period of low river flow. This resulted in the formation of a highly concentrated TM during a 4-month period. With increasing river flow, the TM moved rapidly to the central estuary. A part of the TM detached, moved progressively in the lower estuary and was finally either massively exported to the ocean during peak floods or temporary trapped (settled) on intertidal mudflats. The massive export to the ocean was apparently the result of combined favorable environmental conditions: presence of fluid mud near the mouth, high river flow, high tides and limited wind speeds. The mean SPM concentration

  10. Dynamic analysis of an axially moving beam subject to inner pressure using finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Hongliang; Qiu, Ming; Liao, Zhenqiang [Nanjing University of Science and Technology, Nanjing (China)

    2017-06-15

    A dynamic model of an axially moving flexible beam subject to an inner pressure is present. The coupling principle between a flexible beam and inner pressure is analyzed first, and the potential energy of the inner pressure due to the beam bending is derived using the principle of virtual work. A 1D hollow beam element contain inner pressure is established. The finite element method and Lagrange’s equation are used to derive the motion equations of the axially moving system. The dynamic responses are analyzed by Newmark-β time integration method. Based on the computed dynamic responses, the effects of inner pressure on beam dynamics are discussed. Some interesting phenomenon is observed.

  11. Lattice dynamics, elasticity and magnetic abnormality in ordered crystalline alloys Fe3Pt at high pressures

    Science.gov (United States)

    Cheng, Tai-min; Yu, Guo-Liang; Su, Yong; Ge, Chong-Yuan; Zhang, Xin-Xin; Zhu, Lin; Li, Lin

    2018-05-01

    The ordered crystalline Invar alloy Fe3Pt is in a special magnetic critical state, under which the lattice dynamic stability of the system is extremely sensitive to external pressures. We studied the pressure dependence of enthalpy and magnetism of Fe3Pt in different crystalline alloys by using the first-principles projector augmented-wave method based on the density functional theory. Results show that the P4/mbm structure is the ground state structure and is more stable relative to other structures at pressures below 18.54 GPa. The total magnetic moments of L12, I4/mmm and DO22 structures decrease rapidly with pressure and oscillate near the ferromagnetic collapse critical pressure. At the pressure of 43 GPa, the ferrimagnetic property in DO22 structure becomes apparently strengthened and its volume increases rapidly. The lattice dynamics calculation for L12 structures at high pressures shows that the spontaneous magnetization of the system in ferromagnetic states induces the softening of the transverse acoustic phonon TA1 (M), and there exists a strong spontaneous volume magnetostriction at pressures below 26.95 GPa. Especially, the lattice dynamics stability is sensitive to pressure, in the pressure range between the ferromagnetic collapse critical pressure (41.9 GPa) and the magnetism completely disappearing pressure (57.25 GPa), and near the pressure of phase transition from L12 to P4/mbm structure (27.27 GPa). Moreover, the instability of magnetic structure leads to a prominent elastic modulus oscillation, and the spin polarizability of electrons near the Fermi level is very sensitive to pressures in that the pressure range. The pressure induces the stability of the phonon spectra of the system at pressures above 57.25 GPa.

  12. Comparison of pressure perception of static and dynamic two point ...

    African Journals Online (AJOL)

    ... the right and left index finger (p<0.05). Conclusion: Age and gender did not affect the perception of static and dynamic two point discrimination while the limb side (left or right) affected the perception of static and dynamic two point discrimination. The index finger is also more sensitive to moving rather static sensations.

  13. Dimensionless study on dynamics of pressure controlled mechanical ventilation system

    International Nuclear Information System (INIS)

    Shi, Yan; Niu, Jinglong; Cai, Maolin; Xu, Weiqing

    2015-01-01

    Dynamics of mechanical ventilation system can be referred in pulmonary diagnostics and treatments. In this paper, to conveniently grasp the essential characteristics of mechanical ventilation system, a dimensionless model of mechanical ventilation system is presented. For the validation of the mathematical model, a prototype mechanical ventilation system of a lung simulator is proposed. Through the simulation and experimental studies on the dimensionless dynamics of the mechanical ventilation system, firstly, the mathematical model is proved to be authentic and reliable. Secondly, the dimensionless dynamics of the mechanical ventilation system are obtained. Last, the influences of key parameters on the dimensionless dynamics of the mechanical ventilation system are illustrated. The study provides a novel method to study the dynamic of mechanical ventilation system, which can be referred in the respiratory diagnostics and treatment.

  14. Dimensionless study on dynamics of pressure controlled mechanical ventilation system

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yan; Niu, Jinglong; Cai, Maolin; Xu, Weiqing [Beihang University, Beijing (Korea, Republic of)

    2015-02-15

    Dynamics of mechanical ventilation system can be referred in pulmonary diagnostics and treatments. In this paper, to conveniently grasp the essential characteristics of mechanical ventilation system, a dimensionless model of mechanical ventilation system is presented. For the validation of the mathematical model, a prototype mechanical ventilation system of a lung simulator is proposed. Through the simulation and experimental studies on the dimensionless dynamics of the mechanical ventilation system, firstly, the mathematical model is proved to be authentic and reliable. Secondly, the dimensionless dynamics of the mechanical ventilation system are obtained. Last, the influences of key parameters on the dimensionless dynamics of the mechanical ventilation system are illustrated. The study provides a novel method to study the dynamic of mechanical ventilation system, which can be referred in the respiratory diagnostics and treatment.

  15. Porous media fracturing dynamics: stepwise crack advancement and fluid pressure oscillations

    Science.gov (United States)

    Cao, Toan D.; Hussain, Fazle; Schrefler, Bernhard A.

    2018-02-01

    We present new results explaining why fracturing in saturated porous media is not smooth and continuous but is a distinct stepwise process concomitant with fluid pressure oscillations. All exact solutions and almost all numerical models yield smooth fracture advancement and fluid pressure evolution, while recent experimental results, mainly from the oil industry, observation from geophysics and a very few numerical results for the quasi-static case indeed reveal the stepwise phenomenon. We summarize first these new experiments and these few numerical solutions for the quasi-static case. Both mechanical loading and pressure driven fractures are considered because their behaviours differ in the direction of the pressure jumps. Then we explore stepwise crack tip advancement and pressure fluctuations in dynamic fracturing with a hydro-mechanical model of porous media based on the Hybrid Mixture Theory. Full dynamic analyses of examples dealing with both hydraulic fracturing and mechanical loading are presented. The stepwise fracture advancement is confirmed in the dynamic setting as well as in the pressure fluctuations, but there are substantial differences in the frequency contents of the pressure waves in the two loading cases. Comparison between the quasi-static and fully dynamic solutions reveals that the dynamic response gives much more information such as the type of pressure oscillations and related frequencies and should be applied whenever there is a doubt about inertia forces playing a role - the case in most fracturing events. In the absence of direct relevant dynamic tests on saturated media some experimental results on dynamic fracture in dry materials, a fast hydraulic fracturing test and observations from geophysics confirm qualitatively the obtained results such as the type of pressure oscillations and the substantial difference in the behaviour under the two loading cases.

  16. Vortex, ULF wave and Aurora Observation after Solar Wind Dynamic Pressure Change

    Science.gov (United States)

    Shi, Q.

    2017-12-01

    Here we will summarize our recent study and show some new results on the Magnetosphere and Ionosphere Response to Dynamic Pressure Change/disturbances in the Solar Wind and foreshock regions. We study the step function type solar wind dynamic pressure change (increase/decrease) interaction with the magnetosphere using THEMIS satellites at both dayside and nightside in different geocentric distances. Vortices generated by the dynamic pressure change passing along the magnetopause are found and compared with model predictions. ULF waves and vortices are excited in the dayside and nightside plasma sheet when dynamic pressure change hit the magnetotail. The related ionospheric responses, such as aurora and TCVs, are also investigated. We compare Global MHD simulations with the observations. We will also show some new results that dayside magnetospheric FLRs might be caused by foreshock structures.Shi, Q. Q. et al. (2013), THEMIS observations of ULF wave excitation in the nightside plasma sheet during sudden impulse events, J. Geophys. Res. Space Physics, 118, doi:10.1029/2012JA017984. Shi, Q. Q. et al. (2014), Solar wind pressure pulse-driven magnetospheric vortices and their global consequences, J. Geophys. Res. Space Physics, 119, doi:10.1002/2013JA019551. Tian, A.M. et al.(2016), Dayside magnetospheric and ionospheric responses to solar wind pressure increase: Multispacecraft and ground observations, J. Geophys. Res., 121, doi:10.1002/2016JA022459. Shen, X.C. et al.(2015), Magnetospheric ULF waves with increasing amplitude related to solar wind dynamic pressure changes: THEMIS observations, J. Geophys. Res., 120, doi:10.1002/2014JA020913Zhao, H. Y. et al. (2016), Magnetospheric vortices and their global effect after a solar wind dynamic pressure decrease, J. Geophys. Res. Space Physics, 121, doi:10.1002/2015JA021646. Shen, X. C., et al. (2017), Dayside magnetospheric ULF wave frequency modulated by a solar wind dynamic pressure negative impulse, J. Geophys. Res

  17. Future pulsed magnetic field applications in dynamic high pressure research

    International Nuclear Information System (INIS)

    Fowler, C.M.; Caird, R.S.; Hawke, R.S.; Burgess, T.J.

    1977-01-01

    The generation of large pressures by magnetic fields to obtain equation of state information is of fairly recent origin. Magnetic fields used in compression experiments produce an almost isentropic sample compression. Axial magnetic field compression is discussed together with a few results chosen to show both advantages and limitations of the method. Magnetic compression with azimuthal fields is then considered. Although there are several potential pitfalls, the possibilities are encouraging for obtaining very large pressures. Next, improved diagnostic techniques are considered. An x-ray ''streaking camera'' is proposed for volume measurements and a more detailed discussion is given on the use of the shift of the ruby fluorescence lines for pressure measurements. Finally, some additional flux compression magnetic field sources are discussed briefly. 5 figures, 2 tables

  18. Comparison of Iterative Methods for Computing the Pressure Field in a Dynamic Network Model

    DEFF Research Database (Denmark)

    Mogensen, Kristian; Stenby, Erling Halfdan; Banerjee, Srilekha

    1999-01-01

    In dynamic network models, the pressure map (the pressure in the pores) must be evaluated at each time step. This calculation involves the solution of a large number of nonlinear algebraic systems of equations and accounts for more than 80 of the total CPU-time. Each nonlinear system requires...

  19. Gas and heat dynamics of a micro-scaled atmospheric pressure plasma reference jet

    International Nuclear Information System (INIS)

    Kelly, Seán; Golda, Judith; Schulz-von der Gathen, Volker; Turner, Miles M

    2015-01-01

    Gas and heat dynamics of the ‘Cooperation on Science and Technology (COST) Reference Microplasma Jet’ (COST-jet), a European lead reference device for low temperature atmospheric pressure plasma application, are investigated. Of particular interest to many biomedical application scenarios, the temperature characteristics of a surface impacted by the jet are revealed. Schlieren imaging, thermocouple measurements, infrared thermal imaging and numerical modelling are employed. Temperature spatial profiles in the gas domain reveal heating primarily of the helium fraction of the gas mixture. Thermocouple and model temporal data show a bounded exponential temperature growth described by a single characteristic time parameter to reach  ∼63% or (1-1/e) fraction of the temperature increase. Peak temperatures occurred in the gas domain where the carrier jet exits the COST-jet, with values ranging from ambient temperatures to in excess of 100 °C in ‘α-mode’ operation. In a horizontal orientation of the COST-jet a curved trajectory of the helium effluent at low gas flows results from buoyant forces. Gas mixture profiles reveal significant containment of the helium concentrations for a surface placed in close proximity to the COST-jet. Surface heating of a quartz plate follows a similar bounded exponential temporal temperature growth as device heating. Spatial profiles of surface heating are found to correlate strongly to the impacting effluent where peak temperatures occur in regions of maximum surface helium concentration. (paper)

  20. Gas and heat dynamics of a micro-scaled atmospheric pressure plasma reference jet

    Science.gov (United States)

    Kelly, Seán; Golda, Judith; Turner, Miles M.; Schulz-von der Gathen, Volker

    2015-11-01

    Gas and heat dynamics of the ‘Cooperation on Science and Technology (COST) Reference Microplasma Jet’ (COST-jet), a European lead reference device for low temperature atmospheric pressure plasma application, are investigated. Of particular interest to many biomedical application scenarios, the temperature characteristics of a surface impacted by the jet are revealed. Schlieren imaging, thermocouple measurements, infrared thermal imaging and numerical modelling are employed. Temperature spatial profiles in the gas domain reveal heating primarily of the helium fraction of the gas mixture. Thermocouple and model temporal data show a bounded exponential temperature growth described by a single characteristic time parameter to reach  ∼63% or (1-1/e) fraction of the temperature increase. Peak temperatures occurred in the gas domain where the carrier jet exits the COST-jet, with values ranging from ambient temperatures to in excess of 100 °C in ‘α-mode’ operation. In a horizontal orientation of the COST-jet a curved trajectory of the helium effluent at low gas flows results from buoyant forces. Gas mixture profiles reveal significant containment of the helium concentrations for a surface placed in close proximity to the COST-jet. Surface heating of a quartz plate follows a similar bounded exponential temporal temperature growth as device heating. Spatial profiles of surface heating are found to correlate strongly to the impacting effluent where peak temperatures occur in regions of maximum surface helium concentration.

  1. Changes in Land Surface Water Dynamics since the 1990s and Relation to Population Pressure

    Science.gov (United States)

    Prigent, C.; Papa, F.; Aires, F.; Jimenez, C.; Rossow, W. B.; Matthews, E.

    2012-01-01

    We developed a remote sensing approach based on multi-satellite observations, which provides an unprecedented estimate of monthly distribution and area of land-surface open water over the whole globe. Results for 1993 to 2007 exhibit a large seasonal and inter-annual variability of the inundation extent with an overall decline in global average maximum inundated area of 6% during the fifteen-year period, primarily in tropical and subtropical South America and South Asia. The largest declines of open water are found where large increases in population have occurred over the last two decades, suggesting a global scale effect of human activities on continental surface freshwater: denser population can impact local hydrology by reducing freshwater extent, by draining marshes and wetlands, and by increasing water withdrawals. Citation: Prigent, C., F. Papa, F. Aires, C. Jimenez, W. B. Rossow, and E. Matthews (2012), Changes in land surface water dynamics since the 1990s and relation to population pressure, in section 4, insisting on the potential applications of the wetland dataset.

  2. Dynamic plantar pressure proles of South African university students ...

    African Journals Online (AJOL)

    Background. Footscan technology allows for assessment of injury risk and walking mechanics, yet there is a dearth of normative data pertaining to the normal, injury-free foot in a South African (SA) context. Objective. To generate normative tables from plantar pressure prole data gathered from students at an SA university.

  3. Tracking a Solar Wind Dynamic Pressure Pulses' Impact Through the Magnetosphere Using the Heliophysics System Observatory

    Science.gov (United States)

    Vidal-Luengo, S.; Moldwin, M.

    2017-12-01

    During northward Interplanetary Magnetic Field (IMF) Bz conditions, the magnetosphere acts as a closed "cavity" and reacts to solar wind dynamic pressure pulses more simply than during southward IMF conditions. Effects of solar wind dynamic pressure have been observed as geomagnetic lobe compressions depending on the characteristics of the pressure pulse and the spacecraft location. One of the most important aspects of this study is the incorporation of simultaneous observations by different missions, such as WIND, CLUSTER, THEMIS, MMS, Van Allen Probes and GOES as well as magnetometer ground stations that allow us to map the magnetosphere response at different locations during the propagation of a pressure pulse. In this study we used the SYM-H as an indicator of dynamic pressure pulses occurrence from 2007 to 2016. The selection criteria for events are: (1) the increase in the index must be bigger than 10 [nT] and (2) the rise time must be in less than 5 minutes. Additionally, the events must occur under northward IMF and at the same time at least one spacecraft has to be located in the magnetosphere nightside. Using this methodology we found 66 pressure pulse events for analysis. Most of them can be classified as step function pressure pulses or as sudden impulses (increase followed immediately by a decrease of the dynamic pressure). Under these two categories the results show some systematic signatures depending of the location of the spacecraft. For both kind of pressure pulse signatures, compressions are observed on the dayside. However, on the nightside compressions and/or South-then-North magnetic signatures can be observed for step function like pressure pulses, meanwhile for the sudden impulse kind of pressure pulses the magnetospheric response seems to be less global and more dependent on the local conditions.

  4. Dynamic of vapor bubble growth in fields of variable pressure

    International Nuclear Information System (INIS)

    Pedroso, H.K.

    1982-01-01

    A mathematical model for the description of the growth from an initial nucleus of a vapor bubble imersed in liquid, subjected to a loss of pressure is presented. The model is important for analysing LOCA (Loss of Coolant Acident) in P.W.R. type reactors. Several simplifications were made in the phenomenum governing equations. With such simplifications the heat diffusion equation became the determining factor for the bubble growth, and the problem was reduced to solve the heat diffusion equation for semi infinite solid whose surface temperature is a well known function of time (it is supposed that the surface temperature is equal to the saturation temperature of the liquid at the system pressure at a given moment). The model results in an analytical expression for the bubble radius as a function of time. Comparisons with experimental data and previous models were made, with reasonable agreement. (author) [pt

  5. Dynamic surface-pressure instrumentation for rods in parallel flow

    International Nuclear Information System (INIS)

    Mulcahy, T.M.; Lawrence, W.

    1979-01-01

    Methods employed and experience gained in measuring random fluid boundary layer pressures on the surface of a small diameter cylindrical rod subject to dense, nonhomogeneous, turbulent, parallel flow in a relatively noise-contaminated flow loop are described. Emphasis is placed on identification of instrumentation problems; description of transducer construction, mounting, and waterproofing; and the pretest calibration required to achieve instrumentation capable of reliable data acquisition

  6. The role of the dynamic pressure in stationary heat conduction of a rarefied polyatomic gas

    Energy Technology Data Exchange (ETDEWEB)

    Arima, Takashi, E-mail: arima@kanagawa-u.ac.jp [Department of Mechanical Engineering, Faculty of Engineering, Kanagawa University, Yokohama 221-8686 (Japan); Barbera, Elvira, E-mail: ebarbera@unime.it [Department of Mathematics and Computer Science, University of Messina, V.le F. D' Alcontres 31, 98166 Messina (Italy); Brini, Francesca, E-mail: francesca.brini@unibo.it [Department of Mathematics, University of Bologna, via Saragozza 8, 40123 Bologna (Italy); Sugiyama, Masaru, E-mail: sugiyama@nitech.ac.jp [Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan)

    2014-07-18

    The effect of the dynamic pressure (non-equilibrium pressure) on stationary heat conduction in a rarefied polyatomic gas at rest is elucidated by the theory of extended thermodynamics. It is shown that this effect is observable in a non-polytropic gas. Numerical studies are presented for a para-hydrogen gas as a typical example. - Highlights: • Heat transfer problem in polyatomic rarefied gases is studied in different domains. • Non-zero dynamic pressure is predicted in non-polytropic gases. • The effect of dynamic pressure can be observed indirectly in an experiment. • The case of para-hydrogen is analyzed as an example. • Navier–Stokes, Fourier, and Extended Thermodynamics predictions are compared.

  7. AUTOMATIC DETECTION ALGORITHM OF DYNAMIC PRESSURE PULSES IN THE SOLAR WIND

    International Nuclear Information System (INIS)

    Zuo, Pingbing; Feng, Xueshang; Wang, Yi; Xie, Yanqiong; Li, Huijun; Xu, Xiaojun

    2015-01-01

    Dynamic pressure pulses (DPPs) in the solar wind are a significant phenomenon closely related to the solar-terrestrial connection and physical processes of solar wind dynamics. In order to automatically identify DPPs from solar wind measurements, we develop a procedure with a three-step detection algorithm that is able to rapidly select DPPs from the plasma data stream and simultaneously define the transition region where large dynamic pressure variations occur and demarcate the upstream and downstream region by selecting the relatively quiet status before and after the abrupt change in dynamic pressure. To demonstrate the usefulness, efficiency, and accuracy of this procedure, we have applied it to the Wind observations from 1996 to 2008 by successfully obtaining the DPPs. The procedure can also be applied to other solar wind spacecraft observation data sets with different time resolutions

  8. Design Considerations for Remote High-Speed Pressure Measurements of Dynamic Combustion Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Straub, D.L.; Ferguson, D.H.; Rohrssen, Robert (West Virginia University, Morgantown, WV); Perez, Eduardo (West Virginia University, Morgantown, WV)

    2007-01-01

    As gas turbine combustion systems evolve to achieve ultra-low emission targets, monitoring and controlling dynamic combustion processes becomes increasingly important. These dynamic processes may include flame extinction, combustion-driven instabilities, or other dynamic combustion phenomena. Pressure sensors can be incorporated into the combustor liner design, but this approach is complicated by the harsh operating environment. One practical solution involves locating the sensor in a more remote location, such as outside the pressure casing. The sensor can be connected to the measurement point by small diameter tubing. Although this is a practical approach, the dynamics of the tubing can introduce significant errors into the pressure measurement. This paper addresses measurement errors associated with semi-infinite coil remote sensing setups and proposes an approach to improve the accuracy of these types of measurements.

  9. Implications of Dynamic Pressure Transducer Mounting Variations on Measurements in Pyrotechnic Test Apparatus

    Science.gov (United States)

    Dibbern, Andreas; Crisafulli, Jeffrey; Hagopia, Michael; McDougle, Stephen H.; Saulsberry, Regor L.

    2009-01-01

    Accurate dynamic pressure measurements are often difficult to make within small pyrotechnic devices, and transducer mounting difficulties can cause data anomalies that lead to erroneous conclusions. Delayed initial pressure response followed by data ringing has been observed when using miniaturized pressure transducer mounting adapters required to interface transducers to small test chambers. This delayed pressure response and ringing, combined with a high data acquisition rate, has complicated data analysis. This paper compares the output signal characteristics from different pressure transducer mounting options, where the passage distance from the transducer face to the pyrotechnic chamber is varied in length and diameter. By analyzing the data and understating the associated system dynamics, a more realistic understanding of the actual dynamic pressure variations is achieved. Three pressure transducer mounting configurations (elongated, standard, and face/flush mount) were simultaneously tested using NASA standard initiators in closed volume pressure bombs. This paper also presents results of these pressure transducer mounting configurations as a result of a larger NASA Engineering and Safety Center pyrovalve test project. Results from these tests indicate the improved performance of using face/flush mounted pressure transducers in this application. This type of mounting improved initial pressure measurement response time by approximately 19 s over standard adapter mounting, eliminating most of the lag time; provided a near step-function type initial pressure increase; and greatly reduced data ringing in high data acquisition rate systems. The paper goes on to discuss other issues associated with the firing and instrumentation that are important for the tester to understand.

  10. Pressure Regulators as Valves for Saving Compressed Air and their Influence on System Dynamics

    Directory of Open Access Journals (Sweden)

    Dvořák Lukáš

    2015-01-01

    Full Text Available Pressure regulators in the field of pneumatic mechanisms can be used as valves for saving compressed air. For example it can be used to reduce the pressure when the piston rod is retracting unloaded and thus it is possible to save some energy. However the problem is that saving valve can significantly affect the dynamics of the pneumatic system. The lower pressure in the piston rod chamber causes extension of time for retraction of the piston rod. This article compare the air consumption experimentally determined and calculated, measured curves of pressure in cylinder chambers and piston speed when saving valve is set up differently.

  11. Pressure Regulators as Valves for Saving Compressed Air and their Influence on System Dynamics

    Science.gov (United States)

    Dvořák, Lukáš; Fojtášek, Kamil

    2015-05-01

    Pressure regulators in the field of pneumatic mechanisms can be used as valves for saving compressed air. For example it can be used to reduce the pressure when the piston rod is retracting unloaded and thus it is possible to save some energy. However the problem is that saving valve can significantly affect the dynamics of the pneumatic system. The lower pressure in the piston rod chamber causes extension of time for retraction of the piston rod. This article compare the air consumption experimentally determined and calculated, measured curves of pressure in cylinder chambers and piston speed when saving valve is set up differently.

  12. Coil Springs Layer Used to Support a Car Vertical Dynamics Simulator and to Reduce the Maximum Actuation Force

    Directory of Open Access Journals (Sweden)

    Dan N. Dumitriu

    2015-09-01

    Full Text Available A Danaher Thomson linear actuator with ball screw drive and a realtime control system are used here to induce vertical displacements under the driver/user seat of an in-house dynamic car simulator. In order to better support the car simulator and to dynamically protect the actuator’s ball screw drive, a layer of coil springs is used to support the whole simulator chassis. More precisely, one coil spring is placed vertically under each corner of the rectangular chassis. The paper presents the choice of the appropriate coil springs, so that to minimize as much as possible the ball screw drive task of generating linear motions, corresponding to the vertical displacements and accelerations encountered by a driver during a real ride. For this application, coil springs with lower spring constant are more suited to reduce the forces in the ball screw drive and thus to increase the ball screw drive life expectancy.

  13. Modeling Encapsulated Microbubble Dynamics at High Pressure Amplitudes

    Science.gov (United States)

    Heyse, Jan F.; Bose, Sanjeeb; Iaccarino, Gianluca

    2017-11-01

    Encapsulated microbubbles are commonly used in ultrasound contrast imaging and are of growing interest in therapeutic applications where local cavitation creates temporary perforations in cell membranes allowing for enhanced drug delivery. Clinically used microbubbles are encapsulated by a shell commonly consisting of protein, polymer, or phospholipid; the response of these bubbles to externally imposed ultrasound waves is sensitive to the compressibility of the encapsulating shell. Existing models approximate the shell compressibility via an effective surface tension (Marmottant et al. 2005). We present simulations of microbubbles subjected to high amplitude ultrasound waves (on the order of 106 Pa) and compare the results with the experimental measurements of Helfield et al. (2016). Analysis of critical points (corresponding to maximum and minimum expansion) in the governing Rayleigh-Plesset equation is used to make estimates of the parameters used to characterize the effective surface tension of the encapsulating shell. Stanford Graduate Fellowship.

  14. Blood pressure dynamics during exercise rehabilitation in heart failure patients.

    Science.gov (United States)

    Hecht, Idan; Arad, Michael; Freimark, Dov; Klempfner, Robert

    2017-05-01

    Background Patients suffering from heart failure (HF) may demonstrate an abnormal blood pressure response to exercise (ABPRE), which may revert to a normal one following medical treatment. It is assumed that this change correlates positively with prognosis and functional aspects. The aim of this study was to characterize patients with ABPRE and assess ABPRE normalization and the correlation with clinical and functional outcomes. Methods In the study, 651 patients with HF who underwent cardiac rehabilitation (CR) were examined. Patients who presented an ABPRE during stress testing were identified and divided into those who corrected their initial ABPRE following CR and those who did not. Results Pre-rehabilitation ABPRE was present in 27% of patients, 68% of whom normalized their ABPRE following CR. Two parameters were independently predictive of failure to normalize the blood pressure response: female gender (odds ratio (OR) 3.5; 95% confidence interval (CI) 1.4-9.0) and decreased systolic function (OR 3.2; 95% CI 1.0-9.4). Patients with hypertrophic cardiomyopathy demonstrated higher rates of ABPRE normalization than patients with other causes of HF (93% vs. 62%, respectively, P = 0.03). The research population exhibited an average improvement in exercise capacity (4.7 to 6.4 metabolic equivalents (METS), P failure to correct the ABPRE, while patients with hypertrophic cardiomyopathy demonstrated exceptionally high rates of normalization.

  15. Pressure dependence of excited-state charge-carrier dynamics in organolead tribromide perovskites

    Science.gov (United States)

    Liu, X. C.; Han, J. H.; Zhao, H. F.; Yan, H. C.; Shi, Y.; Jin, M. X.; Liu, C. L.; Ding, D. J.

    2018-05-01

    Excited-state charge-carrier dynamics governs the performance of organometal trihalide perovskites (OTPs) and is strongly influenced by the crystal structure. Characterizing the excited-state charge-carrier dynamics in OTPs under high pressure is imperative for providing crucial insights into structure-property relations. Here, we conduct in situ high-pressure femtosecond transient absorption spectroscopy experiments to study the excited-state carrier dynamics of CH3NH3PbBr3 (MAPbBr3) under hydrostatic pressure. The results indicate that compression is an effective approach to modulate the carrier dynamics of MAPbBr3. Across each pressure-induced phase, carrier relaxation, phonon scattering, and Auger recombination present different pressure-dependent properties under compression. Responsiveness is attributed to the pressure-induced variation in the lattice structure, which also changes the electronic band structure. Specifically, simultaneous prolongation of carrier relaxation and Auger recombination is achieved in the ambient phase, which is very valuable for excess energy harvesting. Our discussion provides clues for optimizing the photovoltaic performance of OTPs.

  16. Dynamic Pressure Gradient Model of Axial Piston Pump and Parameters Optimization

    Directory of Open Access Journals (Sweden)

    Shi Jian

    2014-01-01

    Full Text Available The unsteady pressure gradient can cause flow noise in prepressure rising of piston pump, and the fluid shock comes up due to the large pressure difference of the piston chamber and discharge port in valve plate. The flow fluctuation control is the optimization objective in previous study, which cannot ensure the steady pressure gradient. Our study is to stabilize the pressure gradient in prepressure rising and control the pressure of piston chamber approaching to the pressure in discharge port after prepressure rising. The models for nonoil shock and dynamic pressure of piston chamber in prepressure rising are established. The parameters of prepressure rising angle, cross angle, wrap angle of V-groove, vertex angle of V-groove, and opening angle of V-groove were optimized, based on which the pressure of the piston chamber approached the pressure in discharge port after prepressure rising, and the pressure gradient is more steady compared to the original parameters. The max pressure gradient decreased by 70.8% and the flow fluctuation declined by 21.4%, which showed the effectivness of optimization.

  17. Dynamic Culturing of Cartilage Tissue: The Significance of Hydrostatic Pressure

    Science.gov (United States)

    Pereira, Ana L.; Duarte, Ana R.C.; Frias, Ana M.; Pedro, Adriano J.; Oliveira, João T.; Sousa, Rui A.; Reis, Rui L.

    2012-01-01

    Human articular cartilage functions under a wide range of mechanical loads in synovial joints, where hydrostatic pressure (HP) is the prevalent actuating force. We hypothesized that the formation of engineered cartilage can be augmented by applying such physiologic stimuli to chondrogenic cells or stem cells, cultured in hydrogels, using custom-designed HP bioreactors. To test this hypothesis, we investigated the effects of distinct HP regimens on cartilage formation in vitro by either human nasal chondrocytes (HNCs) or human adipose stem cells (hASCs) encapsulated in gellan gum (GG) hydrogels. To this end, we varied the frequency of low HP, by applying pulsatile hydrostatic pressure or a steady hydrostatic pressure load to HNC-GG constructs over a period of 3 weeks, and evaluated their effects on cartilage tissue-engineering outcomes. HNCs (10×106 cells/mL) were encapsulated in GG hydrogels (1.5%) and cultured in a chondrogenic medium under three regimens for 3 weeks: (1) 0.4 MPa Pulsatile HP; (2) 0.4 MPa Steady HP; and (3) Static. Subsequently, we applied the pulsatile regimen to hASC-GG constructs and varied the amplitude of loading, by generating both low (0.4 MPa) and physiologic (5 MPa) HP levels. hASCs (10×106 cells/mL) were encapsulated in GG hydrogels (1.5%) and cultured in a chondrogenic medium under three regimens for 4 weeks: (1) 0.4 MPa Pulsatile HP; (2) 5 MPa Pulsatile HP; and (3) Static. In the HNC study, the best tissue development was achieved by the pulsatile HP regimen, whereas in the hASC study, greater chondrogenic differentiation and matrix deposition were obtained for physiologic loading, as evidenced by gene expression of aggrecan, collagen type II, and sox-9; metachromatic staining of cartilage extracellular matrix; and immunolocalization of collagens. We thus propose that both HNCs and hASCs detect and respond to physical forces, thus resembling joint loading, by enhancing cartilage tissue development in a frequency- and

  18. Variation of Pore Water Pressure in Tailing Sand under Dynamic Loading

    Directory of Open Access Journals (Sweden)

    Jia-xu Jin

    2018-01-01

    Full Text Available Intense vibration affects the pore water pressure in a tailing dam, with the tendency to induce dam liquefaction. In this study, experiments were performed wherein model tailing dams were completely liquefied by sustained horizontal dynamic loading to determine the effects of the vibration frequency, vibration amplitude, and tailing density on the pore water pressure. The results revealed four stages in the increase of the tailing pore water pressure under dynamic loading, namely, a slow increase, a rapid increase, inducement of structural failure, and inducement of complete liquefaction. A lower frequency and smaller amplitude of the vibration were found to increase the time required to achieve a given pore water pressure in dense tailings. Under the effect of these three factors—vibration frequency and amplitude and tailing density—the tailing liquefaction time varied nonlinearly with the height from the base of the tailing dam, with an initial decrease followed by an increase. The pore pressure that induced structural failure also gradually decreased with increasing height. The increase in the tailing pore pressure could be described by an S-shaped model. A complementary multivariate nonlinear equation was also derived for predicting the tailing pore water pressure under dynamic loading.

  19. Error Propagation dynamics: from PIV-based pressure reconstruction to vorticity field calculation

    Science.gov (United States)

    Pan, Zhao; Whitehead, Jared; Richards, Geordie; Truscott, Tadd; USU Team; BYU Team

    2017-11-01

    Noninvasive data from velocimetry experiments (e.g., PIV) have been used to calculate vorticity and pressure fields. However, the noise, error, or uncertainties in the PIV measurements would eventually propagate to the calculated pressure or vorticity field through reconstruction schemes. Despite the vast applications of pressure and/or vorticity field calculated from PIV measurements, studies on the error propagation from the velocity field to the reconstructed fields (PIV-pressure and PIV-vorticity are few. In the current study, we break down the inherent connections between PIV-based pressure reconstruction and PIV-based vorticity calculation. The similar error propagation dynamics, which involve competition between physical properties of the flow and numerical errors from reconstruction schemes, are found in both PIV-pressure and PIV-vorticity reconstructions.

  20. Lattice dynamics of fcc helium at high pressure

    International Nuclear Information System (INIS)

    Eckert, J.; Thomlinson, W.; Shirane, G.

    1977-01-01

    The neutron-inelastic-scattering technique was used to measure the phonon dispersion relations in a high-density crystal of fcc He at 38 K. The crystal was grown at a pressure of 4.93 kbar and a temperature of 38.5 K in a high-pressure sample holder. Its lattice parameter was determined to be 3.915 +- 0.002 A, equivalent to a molar volume of 9.03 cm 3 /mol. The measured dispersion curves were found to be in good agreement with a recent calculation by Goldman using the first-order self-consistent phonon theory without short-range correlation functions. The strong anharmonic effects observed in earlier measurements on the crystals of 21 cm 3 /mol were found to be much less prominent in this He crystal. The magnitude of the multiphonon interference effects on the one-phonon intensities is shown to be less than half of that observed in the low-density crystals. Thermodynamic analysis of the data yielded THETA/sup M//sub D/ = 154 K which indicates that the ratio of mean amplitude of vibration to the nearest-neighbor distance is 8.6%, as opposed to nearly 30% for the lowest-density He crystals. The dependence of the phonon energies on volume is discussed with reference to the earlier work of Traylor et al. on an fcc crystal at 11.7 cm 3 /mol. Limited measurements were also made at 22 K to determine the temperature dependence of the phonon energies. Unusually large isochoric temperature shifts of as much as 15% for some phonons close to the zone center were found over the range of 22--38 K

  1. Dynamic modeling method of the bolted joint with uneven distribution of joint surface pressure

    Science.gov (United States)

    Li, Shichao; Gao, Hongli; Liu, Qi; Liu, Bokai

    2018-03-01

    The dynamic characteristics of the bolted joints have a significant influence on the dynamic characteristics of the machine tool. Therefore, establishing a reasonable bolted joint dynamics model is helpful to improve the accuracy of machine tool dynamics model. Because the pressure distribution on the joint surface is uneven under the concentrated force of bolts, a dynamic modeling method based on the uneven pressure distribution of the joint surface is presented in this paper to improve the dynamic modeling accuracy of the machine tool. The analytic formulas between the normal, tangential stiffness per unit area and the surface pressure on the joint surface can be deduced based on the Hertz contact theory, and the pressure distribution on the joint surface can be obtained by the finite element software. Futhermore, the normal and tangential stiffness distribution on the joint surface can be obtained by the analytic formula and the pressure distribution on the joint surface, and assigning it into the finite element model of the joint. Qualitatively compared the theoretical mode shapes and the experimental mode shapes, as well as quantitatively compared the theoretical modal frequencies and the experimental modal frequencies. The comparison results show that the relative error between the first four-order theoretical modal frequencies and the first four-order experimental modal frequencies is 0.2% to 4.2%. Besides, the first four-order theoretical mode shapes and the first four-order experimental mode shapes are similar and one-to-one correspondence. Therefore, the validity of the theoretical model is verified. The dynamic modeling method proposed in this paper can provide a theoretical basis for the accurate dynamic modeling of the bolted joint in machine tools.

  2. Current glaciation of the Chikhachev ridge (South-Eastern Altai and its dynamics after maximum of the Little Ice Age

    Directory of Open Access Journals (Sweden)

    D. A. Ganyushkin

    2016-01-01

    Full Text Available Glaciation of the Chikhachev ridge (South-Eastern Altai remains poorly known: field observations were not performed since the mid-twentieth century, available schemes and estimates of the glaciation and its scale made on the basis of remote sensing cover only a part of the glaciers, reconstructions of the Little Ice Age (LIA glaciations are absent. This research was based on interpretation of the satellite images: Landsat-4 (1989, Landsat-7 (2001, and Spot-5 (2011, as well as with the use of data of the field season of 2015. Characteristics of glaciations of the Chikhachev ridge as the whole and of its individual centers (Talduair massif, Mongun-Taiga-Minor massif, and southern part of the Chikhachev ridge were determined for the first time. Recent glaciation is represented by 7 glaciers with their total area of 1.12 km2 in the Talduair massif, by 5 glaciers with total area of 0.75 km2 in the Mongun-Taiga-Minor massif, and by 85 glaciers with total area of 29 km2 in the southern part of the Chikhachev ridge. Since the LIA maximum, areas of glaciers decreased by 61% in the Talduair massif, by 74% in the Mongun-Taiga-Minor massif, by 56% in the southern part of the Chikhachev ridge with simultaneous lifting of the firn line by 50 m, 65 m, and 70 m, respectively.The largest rates of the glacier contractions were determined for the period 1989–2011. Different mechanisms of the glacier retreats were shown by the example of the glacier complexes Burgastyn-Gol (one-sided retreat and disintegration and the Grigorjev glacier (gradual retreat of the tongue. Retreat of the Grigorjev glacier has been reconstructed for the period from the LIA maximum until 2015. Average rate of the retreat increased from 1,6 m/year in 1957–1989 up to 11,3 m/year in 2011–2015. The present-day scales of the glaciers and rates of their retreating do not significantly differ from estimations made by other researchers for the nearest centers of glaciation of the

  3. Patellofemoral Pressure Changes After Static and Dynamic Medial Patellofemoral Ligament Reconstructions.

    Science.gov (United States)

    Rood, Akkie; Hannink, Gerjon; Lenting, Anke; Groenen, Karlijn; Koëter, Sander; Verdonschot, Nico; van Kampen, Albert

    2015-10-01

    Reconstructing the medial patellofemoral ligament (MPFL) has become a key procedure for stabilizing the patella. Different techniques to reconstruct the MPFL have been described: static techniques in which the graft is fixed rigidly to the bone or dynamic techniques with soft tissue fixation. Static MPFL reconstruction is most commonly used. However, dynamic reconstruction deforms more easily and presumably functions more like the native MPFL. The aim of the study was to evaluate the effect of the different MPFL fixation techniques on patellofemoral pressures compared with the native situation. The hypothesis was that dynamic reconstruction would result in patellofemoral pressures closer to those generated in an intact knee. Controlled laboratory study. Seven fresh-frozen knee specimens were tested in an in vitro knee joint loading apparatus. Tekscan pressure-sensitive films fixed to the retropatellar cartilage measured mean patellofemoral and peak pressures, contact area, and location of the center of force (COF) at fixed flexion angles from 0° to 110°. Four different conditions were tested: intact, dynamic, partial dynamic, and static MPFL reconstruction. Data were analyzed using linear mixed models. Static MPFL reconstruction resulted in higher peak and mean pressures from 60° to 110° of flexion (P .05). The COF in the static reconstruction group moved more medially on the patella from 50° to 110° of flexion compared with the other conditions. The contact area showed no significant differences between the test conditions. After static MPFL reconstruction, the patellofemoral pressures in flexion angles from 60° to 110° were 3 to 5 times higher than those in the intact situation. The pressures after dynamic MPFL reconstruction were similar as compared with those in the intact situation, and therefore, dynamic MPFL reconstruction could be a safer option than static reconstruction for stabilizing the patella. This study showed that static MPFL reconstruction

  4. Self adaptive internal combustion engine control for hydrogen mixtures based on piezoelectric dynamic cylinder pressure transducers

    International Nuclear Information System (INIS)

    Courteau, R.; Bose, T.K.

    2004-01-01

    Piezoelectric transducers offer an effective, non-intrusive way to monitor dynamic cylinder pressure in internal combustion engines. Devices dedicated to this purpose are appearing on the market, often in the form of spark plugs with embedded piezo elements. Dynamic cylinder pressure is typically used to provide diagnostic functions, or to help map an engine after it is designed. With the advent of powerful signal processor chips, it is now possible to embed enough computing power in the engine controller to perform auto tuning based on the signals provided by such transducers. Such functionality is very useful if the fuel characteristics vary between fill ups, as is often the case with alternative fuels. We propose here an algorithm for self-adaptive tuning based on a Kalman filter operating on a few selected metrics of the dynamic pressure curve. (author)

  5. Pressure-modulation dynamic attenuated-total-reflectance (ATR) FT-IR spectroscopy

    Science.gov (United States)

    Marcott, C.; Story, G. M.; Noda, I.; Bibby, A.; Manning, C. J.

    1998-06-01

    A single-reflectance attenuated-total-reflectance (ATR) accessory with a diamond internal-reflection element was modified by the addition of a piezoelectric transducer. Initial dynamic pressure-modulation experiments have been performed in the sample compartment of a step-scanning FT-IR spectrometer. A sinusoidal pressure modulation applied to samples of isotactic polypropylene and linear low density polyethylene resulted in dynamic responses which appear to be similar to those observed in previous dynamic 2D IR experiments. Preliminary pressure-modulation dynamic ATR results are also reported for a styrene-butadiene-styrene triblock copolymer. The new method has the advantages that a much wider variety of sample types and geometries can be studied and less sample preparation is required. Dynamic 2D IR experiments carried out by ATR no longer require thin films of large area and sufficient strength to withstand the dynamic strain applied by a rheometer. The ability to obtain dynamic IR spectroscopic information from a wider variety of sample types and thicknesses would greatly expand the amount of useful information that could be extracted from normally complicated, highly overlapped IR spectra.

  6. Dynamic Increase Factors for High Performance Concrete in Compression using Split Hopkinson Pressure Bar

    DEFF Research Database (Denmark)

    Riisgaard, Benjamin; Ngo, Tuan; Mendis, Priyan

    2007-01-01

    This paper provides dynamic increase factors (DIF) in compression for two different High Performance Concretes (HPC), 100 MPa and 160 MPa, respectively. In the experimental investigation 2 different Split Hopkinson Pressure Bars are used in order to test over a wide range of strain rates, 100 sec1...... to 700 sec-1. The results are compared with the CEB Model Code and the Spilt Hopkinson Pressure Bar technique is briefly de-scribed....

  7. Molecular dynamics simulations of the melting curve of NiAl alloy under pressure

    OpenAIRE

    Wenjin Zhang; Yufeng Peng; Zhongli Liu

    2014-01-01

    The melting curve of B2-NiAl alloy under pressure has been investigated using molecular dynamics technique and the embedded atom method (EAM) potential. The melting temperatures were determined with two approaches, the one-phase and the two-phase methods. The first one simulates a homogeneous melting, while the second one involves a heterogeneous melting of materials. Both approaches reduce the superheating effectively and their results are close to each other at the applied pressures. By fit...

  8. Numerical modeling of dynamics of heart rate and arterial pressure during passive orthostatic test

    Science.gov (United States)

    Ishbulatov, Yu. M.; Kiselev, A. R.; Karavaev, A. S.

    2018-04-01

    A model of human cardiovascular system is proposed to describe the main heart rhythm, influence of autonomous regulation on frequency and strength of heart contractions and resistance of arterial vessels; process of formation of arterial pressure during systolic and diastolic phases; influence of respiration; synchronization between loops of autonomous regulation. The proposed model is used to simulate the dynamics of heart rate and arterial pressure during passive transition from supine to upright position. Results of mathematical modeling are compared to original experimental data.

  9. Self adaptive internal combustion engine control for hydrogen mixtures based on piezoelectric dynamic cylinder pressure transducers

    Energy Technology Data Exchange (ETDEWEB)

    Courteau, R.; Bose, T. K. [Universite du Quebec a Trois-Rivieres, Hydrogen Research Institute, Trois-Rivieres, PQ (Canada)

    2004-07-01

    An algorithm for self-adaptive tuning of an internal combustion engine is proposed, based on a Kalman filter operating on a few selected metrics of the dynamic pressure curve. Piezoelectric transducers are devices to monitor dynamic cylinder pressure; spark plugs with embedded piezo elements are now available to provide diagnostic engine functions. Such transducers are also capable of providing signals to the engine controller to perform auto tuning, a function that is considered very useful particularly in vehicles using alternative fuels whose characteristics frequently show variations between fill-ups. 2 refs., 2 figs.

  10. On the dynamics of a subnanosecond breakdown in nitrogen below atmospheric pressures

    Energy Technology Data Exchange (ETDEWEB)

    Shklyaev, V. A., E-mail: shklyaev@to.hcei.tsc.ru, E-mail: beh@loi.hcei.tsc.ru [Laboratory of Theoretical Physics, Institute of High Current Electronics, Russian Academy of Sciences, 2/3 Akademichesky Ave., 634055 Tomsk (Russian Federation); Institute of High Technology Physics, National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050 Tomsk (Russian Federation); Baksht, E. Kh., E-mail: shklyaev@to.hcei.tsc.ru, E-mail: beh@loi.hcei.tsc.ru; Tarasenko, V. F. [Laboratory of Optical Radiations, Institute of High Current Electronics, Russian Academy of Sciences, 2/3 Akademichesky Ave., 634055 Tomsk (Russian Federation); Belomyttsev, S. Ya.; Grishkov, A. A. [Laboratory of Theoretical Physics, Institute of High Current Electronics, Russian Academy of Sciences, 2/3 Akademichesky Ave., 634055 Tomsk (Russian Federation); Burachenko, A. G. [Laboratory of Optical Radiations, Institute of High Current Electronics, Russian Academy of Sciences, 2/3 Akademichesky Ave., 634055 Tomsk (Russian Federation); Laboratory of Low Temperature Plasma, Tomsk State University, 36 Lenin Ave., 634050 Tomsk (Russian Federation)

    2015-12-07

    The dynamics of a breakdown in a gas-filled diode with a highly inhomogeneous electric field was studied in experiments at a time resolution of ∼100 ps and in numerical simulation by the 2D axisymmetric particle-in-cell (PIC) code XOOPIC. The diode was filled with nitrogen at pressures of up to 100 Torr. The dynamics of the electric field distribution in the diode during the breakdown was analyzed, and the factors that limit the pulse duration of the runaway electron beam current at different pressures were determined.

  11. Full-scale Mark II CRT program: dynamic response evaluation test of pressure transducers

    International Nuclear Information System (INIS)

    Kukita, Yutaka; Namatame, Ken; Takeshita, Isao; Shiba, Masayoshi

    1982-12-01

    A dynamic response evaluation test of pressure transducers was conducted in support of the JAERI Full-Scale Mark II CRT (Containment Response Test) Program. The test results indicated that certain of the cavity-type transducers used in the early blowdown test had undesirable response characteristics. The transducer mounting scheme was modified to avoid trapping of air bubbles in the pressure transmission tubing attached to the transducers. The dynamic response of the modified transducers was acceptable within the frequency range of 200 Hz. (author)

  12. Fluid-structure interaction dynamic simulation of spring-loaded pressure relief valves under seismic wave

    Science.gov (United States)

    Lv, Dongwei; Zhang, Jian; Yu, Xinhai

    2018-05-01

    In this paper, a fluid-structure interaction dynamic simulation method of spring-loaded pressure relief valve was established. The dynamic performances of the fluid regions and the stress and strain of the structure regions were calculated at the same time by accurately setting up the contact pairs between the solid parts and the coupling surfaces between the fluid regions and the structure regions. A two way fluid-structure interaction dynamic simulation of a simplified pressure relief valve model was carried out. The influence of vertical sinusoidal seismic waves on the performance of the pressure relief valve was preliminarily investigated by loading sine waves. Under vertical seismic waves, the pressure relief valve will flutter, and the reseating pressure was affected by the amplitude and frequency of the seismic waves. This simulation method of the pressure relief valve under vertical seismic waves can provide effective means for investigating the seismic performances of the valves, and make up for the shortcomings of the experiment.

  13. Experimental research on dynamic mechanical properties of PZT ceramic under hydrostatic pressure

    International Nuclear Information System (INIS)

    Wang, S.; Liu, K.X.

    2011-01-01

    Highlights: → We developed an experimental device to examine dynamic mechanical properties of PZT. → Ductile behavior of PZT was seen when hydrostatic pressure was involved. → Compressive strength was shown sensitive to hydrostatic pressure and strain-rate. → A failure criterion was suggested to explain the failure behavior of PZT. - Abstract: An experimental technique for initially applied hydrostatic pressure in specimens subjected to axial impact has been developed to study the dynamic mechanical properties of materials. The technique was employed for the purpose of examining the dynamic mechanical properties of lead zirconate titanate (PZT) at zero to 15 MPa hydrostatic pressures. Experimental results unambiguously exhibit the ductile behavior of PZT when hydrostatic pressure is involved. The compressive strength is demonstrated sensitive to the initial hydrostatic pressure and the strain-rate. The fracture modes are analyzed by means of scanning electron microscopy (SEM). Moreover, a failure criterion based on Mohr-Coulomb failure theory is suggested to explain the brittle and ductile failure of PZT.

  14. Effect of high pressure on the relaxation dynamics of glass-forming liquids

    Energy Technology Data Exchange (ETDEWEB)

    Paluch, M; Grzybowska, K; Grzybowski, A [Institute of Physics, Silesian University, ulica Uniwersytecka 4, 40-007 Katowice (Poland)

    2007-05-23

    A glass is usually formed by cooling a liquid at a rate sufficient to avoid crystallization. In the vicinity of the glass transition the structural relaxation time increases with lowering temperature in a non-Arrhenius fashion and the structural relaxation function reveals a non-Debye behaviour. However, liquid can be also vitrified by keeping it at a constant temperature and increasing the pressure. This pressure-induced transition to the glassy state is also accompanied by dramatic changes in the relaxation dynamics. Herein we discuss the behaviour of the structural relaxation times of glass-forming liquids and polymer melts under high pressure.

  15. Effect of high pressure on the relaxation dynamics of glass-forming liquids

    International Nuclear Information System (INIS)

    Paluch, M; Grzybowska, K; Grzybowski, A

    2007-01-01

    A glass is usually formed by cooling a liquid at a rate sufficient to avoid crystallization. In the vicinity of the glass transition the structural relaxation time increases with lowering temperature in a non-Arrhenius fashion and the structural relaxation function reveals a non-Debye behaviour. However, liquid can be also vitrified by keeping it at a constant temperature and increasing the pressure. This pressure-induced transition to the glassy state is also accompanied by dramatic changes in the relaxation dynamics. Herein we discuss the behaviour of the structural relaxation times of glass-forming liquids and polymer melts under high pressure

  16. Dynamic analysis of solid propellant grains subjected to ignition pressurization loading

    Science.gov (United States)

    Chyuan, Shiang-Woei

    2003-11-01

    Traditionally, the transient analysis of solid propellant grains subjected to ignition pressurization loading was not considered, and quasi-elastic-static analysis was widely adopted for structural integrity because the analytical task gets simplified. But it does not mean that the dynamic effect is not useful and could be neglected arbitrarily, and this effect usually plays a very important role for some critical design. In order to simulate the dynamic response for solid rocket motor, a transient finite element model, accompanied by concepts of time-temperature shift principle, reduced integration and thermorheologically simple material assumption, was used. For studying the dynamic response, diverse ignition pressurization loading cases were used and investigated in the present paper. Results show that the dynamic effect is important for structural integrity of solid propellant grains under ignition pressurization loading. Comparing the effective stress of transient analysis and of quasi-elastic-static analysis, one can see that there is an obvious difference between them because of the dynamic effect. From the work of quasi-elastic-static and transient analyses, the dynamic analysis highlighted several areas of interest and a more accurate and reasonable result could be obtained for the engineer.

  17. Dynamic stall characterization using modal analysis of phase-averaged pressure distributions

    Science.gov (United States)

    Harms, Tanner; Nikoueeyan, Pourya; Naughton, Jonathan

    2017-11-01

    Dynamic stall characterization by means of surface pressure measurements can simplify the time and cost associated with experimental investigation of unsteady airfoil aerodynamics. A unique test capability has been developed at University of Wyoming over the past few years that allows for time and cost efficient measurement of dynamic stall. A variety of rotorcraft and wind turbine airfoils have been tested under a variety of pitch oscillation conditions resulting in a range of dynamic stall behavior. Formation, development and separation of different flow structures are responsible for the complex aerodynamic loading behavior experienced during dynamic stall. These structures have unique signatures on the pressure distribution over the airfoil. This work investigates the statistical behavior of phase-averaged pressure distribution for different types of dynamic stall by means of modal analysis. The use of different modes to identify specific flow structures is being investigated. The use of these modes for different types of dynamic stall can provide a new approach for understanding and categorizing these flows. This work uses airfoil data acquired under Army contract W911W60160C-0021, DOE Grant DE-SC0001261, and a gift from BP Alternative Energy North America, Inc.

  18. Dynamic calibration of piezoelectric transducers for ballistic high-pressure measurement

    Directory of Open Access Journals (Sweden)

    Elkarous Lamine

    2016-01-01

    Full Text Available The development of a dynamic calibration standard for high-amplitude pressure piezoelectric transducers implies the implementation of a system which can provide reference pressure values with known characteristics and uncertainty. The reference pressure must be issued by a sensor, as a part of a measuring chain, with a guaranteed traceability to an international standard. However, this operation has not been completely addressed yet until today and is still calling further investigations. In this paper, we introduce an experimental study carried out in order to contribute to current efforts for the establishment of a reference dynamic calibration method. A suitable practical calibration method based on the calculation of the reference pressure by measurement of the displacement of the piston in contact with an oil-filled cylindrical chamber is presented. This measurement was achieved thanks to a high speed camera and an accelerometer. Both measurements are then compared. In the first way, pressure was generated by impacting the piston with a free falling weight and, in the second way, with strikers of known weights and accelerated to the impact velocities with an air gun. The aim of the experimental setup is to work out a system which may generate known hydraulic pressure pulses with high-accuracy and known uncertainty. Moreover, physical models were also introduced to consolidate the experimental study. The change of striker’s velocities and masses allows tuning the reference pressure pulses with different shapes and, therefore, permits to sweep a wide range of magnitudes and frequencies.

  19. The dynamic pressure measurements of the nuclear reactor coolant for condition-based maintenance of the reactor

    International Nuclear Information System (INIS)

    Es-Saheb, M.H.H.

    1990-01-01

    The condition-based maintenance of the nuclear reactor, by monitoring and measuring the instantaneous dynamic pressure distribution of the coolant (water) impact on the solid surfaces of the reactor during operation is presented. The behaviour of water domes (jets) produced by underwater explosions of small changes of P.E.T.N. at various depths in two different size cylindrical containers, which simulate the nuclear reactor, is investigated. Water surface domes (jets) from the underwater explosions are photographed. Depending on the depth of the charge, curved and flat top jets of up to 455 mm diameter and impact speeds of up to 70 m/sec. are observed. The instabilities in the dome surfaces are observed and the instantaneous profiles are analysed. It is found that, in all cases tested, the maximum pressure takes place at the center of the jet and could reach up to 3.0 times the on-dimensional impact pressure value. The use of their measurements, as online monitoring for condition-based maintenance and design-out maintenance is discussed. 18 refs

  20. Miniaturized Dynamic Pressure Sensor Arrays with Sub-Millimeter (mm) Spacing for Cross-Flow Transition Measurements, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Interdisciplinary Consulting Corporation (IC2) and in partnership with the University of Florida (UF) propose a microfabricated, dynamic piezoelectric pressure...

  1. Miniaturized Dynamic Pressure Sensor Arrays with Sub-Millimeter (mm) Spacing for Cross-Flow Transition Measurements, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Interdisciplinary Consulting Corporation (IC2) and in partnership with the University of Florida (UF) propose a microfabricated, dynamic piezoelectric pressure...

  2. Statistical Characteristics of Solar Wind Dynamic Pressure Enhancements During Geomagnetic Storms

    Directory of Open Access Journals (Sweden)

    C.-R. Choi

    2008-06-01

    Full Text Available Solar wind dynamic pressure enhancements are known to cause various types of disturbances to the magnetosphere. In particular, dynamic pressure enhancements may affect the evolution of magnetic storms when they occur during storm times. In this paper, we have investigated the statistical significance and features of dynamic pressure enhancements during magnetic storm times. For the investigation, we have used a total of 91 geomagnetic storms for 2001-2003, for which the Dst minimum (Dst_min is below -50 nT. Also, we have imposed a set of selection criteria for a pressure enhancement to be considered an event: The main selection criterion is that the pressure increases by ≥50% or ≥3nPa within 30 min and remains to be elevated for 10 min or longer. For our statistical analysis, we define the storm time to be the interval from the main Dst decrease, through Dst_min, to the point where the Dst index recovers by 50%. Our main results are summarized as follows. (i ~81% of the studied storms indicate at least one event of pressure enhancements. When averaged over all the 91 storms, the occurrence rate is 4.5 pressure enhancement events per storm and 0.15 pressure enhancement events per hour. (ii The occurrence rate of the pressure enhancements is about three times higher for CME-driven storm times than for CIR-driven storm times. (iii Only 21.1% of the pressure enhancements show a clear association with an interplanetary shock. (iv A large number of the pressure enhancement events are accompanied with a simultaneous change of IMF By and/or Bz: For example, 73.5% of the pressure enhancement events are associated with an IMF change of either |∆Bz|>2nT or |∆By|>2nT. This last finding suggests that one should consider possible interplay effects between the simultaneous pressure and IMF changes in many situations.

  3. Generalization of the Bogoliubov-Zubarev Theorem for Dynamic Pressure to the Case of Compressibility

    Science.gov (United States)

    Rudoi, Yu. G.

    2018-01-01

    We present the motivation, formulation, and modified proof of the Bogoliubov-Zubarev theorem connecting the pressure of a dynamical object with its energy within the framework of a classical description and obtain a generalization of this theorem to the case of dynamical compressibility. In both cases, we introduce the volume of the object into consideration using a singular addition to the Hamiltonian function of the physical object, which allows using the concept of the Bogoliubov quasiaverage explicitly already on a dynamical level of description. We also discuss the relation to the same result known as the Hellmann-Feynman theorem in the framework of the quantum description of a physical object.

  4. Effects of maximum dynamic exercise on electrocardiograms Efectos del ejercicio dinámico máximo sobre electrocardiograma

    Directory of Open Access Journals (Sweden)

    J. Ponce

    2010-09-01

    Full Text Available

     

    The effects of maximal dynamic exercise (sprint has been studied on the ECG of 100 greyhound who run in programmed 350 m races. Two ECG were taken in each animal: one before the race and the other after the effort. After the race there is a significant increase of the voltage in the waves P, R and T in DII, DIII and aVF, and the T waves are symetrical in 96% of the subjets. The highest voltage and duration of the P wawes represent the efficacy of the atrial function on the maintenance of the cardiac output. The increase of the amplitude of the R and T waves would be a consequence of the systolic volumen increase and the establishment of transitory myocardial ischemia. The average heart rate increases in 21.740"30.109 b.p.m., beeing the difference significant. When we analyse the ECG after exercise with the resting ECG in relation with age, weight, sex, category and rank we deduce that the differences arent related with those groups, except to the heart rate and age, observing that the capacity in increasing it decreases with age.
    KEY WORDS: Oxygen deficit, anaerobic capacity, performance, validity, fitness.

    Se han estudiado los efectos del ejercicio dinámico máximo (sprint sobre el ECG en 100 galgos greyhound que participaban en carreras programadas de 350 m. Se realizaron dos ECG en cada animal: uno antes de la carrera y otro postesfuerzo. Después de la carrera hay un aumento significativo del voltaje de las ondas P, R y T en DII, DIII y aVF, y las ondas T son simétricas en el 96% de los sujetos. El mayor voltaje y duración de las ondas P representan la eficacia de la función auricular para el mantenimiento del volumen minuto. El incremento de la amplitud de las ondas R y T sería consecuencia del aumento del volumen sistólico y de la instauración de isquemia miocárdica relativa transitoria. La

  5. The dynamic relaxation method in the structural analysis of concrete pressure vessels

    International Nuclear Information System (INIS)

    Davidson, I.; Assis Bastos, M.R. de; Camargo, P.B. de.

    1977-01-01

    The dynamic relaxation method, applied to 3 dimensional concrete structures, especially pressure vessels, is demonstrated. It utilizes the finite difference method and allows the growth of cracks to be followed up to the point of vessel rupture. A FORTRAN IV program is developed, which can also be utilized, with the necessary modifications, for other structure calculations [pt

  6. Supercooled dynamics of glass-forming liquids and polymers under hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Roland, C M [Naval Research Laboratory, Chemistry Division, Code 6120, Washington, DC 20375-5342 (United States); Hensel-Bielowka, S [Institute of Physics, Silesian University, ul. Uniwersytecka 4, 40-007 Katowice (Poland); Paluch, M [Institute of Physics, Silesian University, ul. Uniwersytecka 4, 40-007 Katowice (Poland); Casalini, R [Naval Research Laboratory, Chemistry Division, Code 6120, Washington, DC 20375-5342 (United States); Chemistry Department, George Mason University, Fairfax, VA 22030 (United States)

    2005-06-01

    An intriguing problem in condensed matter physics is understanding the glass transition, in particular the dynamics in the equilibrium liquid close to vitrification. Recent advances have been made by using hydrostatic pressure as an experimental variable. These results are reviewed, with an emphasis in the insight provided into the mechanisms underlying the relaxation properties of glass-forming liquids and polymers.

  7. Pressure-area isotherm of a lipid monolayer from molecular dynamics simulations

    NARCIS (Netherlands)

    Baoukina, Svetlana; Monticelli, Luca; Marrink, Siewert J.; Tieleman, D. Peter

    2007-01-01

    We calculated the pressure-area isotherm of a dipalmitoyl-phosphatidylcholine (DPPC) lipid monolayer from molecular dynamics simulations using a coarse-grained molecular model. We characterized the monolayer structure, geometry, and phases directly from the simulations and compared the calculated

  8. Interactions of Delta Shock Waves for Zero-Pressure Gas Dynamics with Energy Conservation Law

    OpenAIRE

    Wei Cai; Yanyan Zhang

    2016-01-01

    We study the interactions of delta shock waves and vacuum states for the system of conservation laws of mass, momentum, and energy in zero-pressure gas dynamics. The Riemann problems with initial data of three piecewise constant states are solved case by case, and four different configurations of Riemann solutions are constructed. Furthermore, the numerical simulations completely coinciding with theoretical analysis are shown.

  9. Communication: Dynamical and structural analyses of solid hydrogen under vapor pressure

    Energy Technology Data Exchange (ETDEWEB)

    Hyeon-Deuk, Kim, E-mail: kim@kuchem.kyoto-u.ac.jp [Department of Chemistry, Kyoto University, Kyoto 606-8502 (Japan); Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Ando, Koji [Department of Chemistry, Kyoto University, Kyoto 606-8502 (Japan)

    2015-11-07

    Nuclear quantum effects play a dominant role in determining the phase diagram of H{sub 2}. With a recently developed quantum molecular dynamics simulation method, we examine dynamical and structural characters of solid H{sub 2} under vapor pressure, demonstrating the difference from liquid and high-pressure solid H{sub 2}. While stable hexagonal close-packed lattice structures are reproduced with reasonable lattice phonon frequencies, the most stable adjacent configuration exhibits a zigzag structure, in contrast with the T-shape liquid configuration. The periodic angular distributions of H{sub 2} molecules indicate that molecules are not a completely free rotor in the vapor-pressure solid reflecting asymmetric potentials from surrounding molecules on adjacent lattice sites. Discrete jumps of librational and H–H vibrational frequencies as well as H–H bond length caused by structural rearrangements under vapor pressure effectively discriminate the liquid and solid phases. The obtained dynamical and structural information of the vapor-pressure H{sub 2} solid will be useful in monitoring thermodynamic states of condensed hydrogens.

  10. High-resolution dynamic pressure sensor array based on piezo-phototronic effect tuned photoluminescence imaging.

    Science.gov (United States)

    Peng, Mingzeng; Li, Zhou; Liu, Caihong; Zheng, Qiang; Shi, Xieqing; Song, Ming; Zhang, Yang; Du, Shiyu; Zhai, Junyi; Wang, Zhong Lin

    2015-03-24

    A high-resolution dynamic tactile/pressure display is indispensable to the comprehensive perception of force/mechanical stimulations such as electronic skin, biomechanical imaging/analysis, or personalized signatures. Here, we present a dynamic pressure sensor array based on pressure/strain tuned photoluminescence imaging without the need for electricity. Each sensor is a nanopillar that consists of InGaN/GaN multiple quantum wells. Its photoluminescence intensity can be modulated dramatically and linearly by small strain (0-0.15%) owing to the piezo-phototronic effect. The sensor array has a high pixel density of 6350 dpi and exceptional small standard deviation of photoluminescence. High-quality tactile/pressure sensing distribution can be real-time recorded by parallel photoluminescence imaging without any cross-talk. The sensor array can be inexpensively fabricated over large areas by semiconductor product lines. The proposed dynamic all-optical pressure imaging with excellent resolution, high sensitivity, good uniformity, and ultrafast response time offers a suitable way for smart sensing, micro/nano-opto-electromechanical systems.

  11. Experimental investigation of dynamic compression and spallation of Cerium at pressures up to 6 GPa

    Science.gov (United States)

    Zubareva, A. N.; Kolesnikov, S. A.; Utkin, A. V.

    2014-05-01

    In this study the experiments on one-dimensional dynamic compression of Cerium (Ce) samples to pressures of 0.5 to 6 GPa using various types of explosively driven generators were conducted. VISAR laser velocimeter was used to obtain Ce free surface velocity profiles. The isentropic compression wave was registered for γ-phase of Ce at pressures lower than 0.76 GPa that corresponds to γ-α phase transition pressure in Ce. Shock rarefaction waves were also registered in several experiments. Both observations were the result of the anomalous compressibility of γ-phase of Ce. On the basis of our experimental results the compression isentrope of Ce γ-phase was constructed. Its comparison with volumetric compression curves allowed to estimate the magnitude of shear stress at dynamic compression conditions for Ce. Spall strength measurements were also conducted for several samples. They showed a strong dependence of the spall strength of Ce on the strain rate.

  12. Experimental investigation of dynamic compression and spallation of cerium at pressures up to 6 GPa

    International Nuclear Information System (INIS)

    Zubareva, A N; Kolesnikov, S A; Utkin, A V

    2014-01-01

    In this study the experiments on one-dimensional dynamic compression of Cerium (Ce) samples to pressures of 0.5 to 6 GPa using various types of explosively driven generators were conducted. VISAR laser velocimeter was used to obtain Ce free surface velocity profiles. The isentropic compression wave was registered for γ-phase of Ce at pressures lower than 0.76 GPa that corresponds to γ-α phase transition pressure in Ce. Shock rarefaction waves were also registered in several experiments. Both observations were the result of the anomalous compressibility of γ-phase of Ce. On the basis of our experimental results the compression isentrope of Ce γ-phase was constructed. Its comparison with volumetric compression curves allowed to estimate the magnitude of shear stress at dynamic compression conditions for Ce. Spall strength measurements were also conducted for several samples. They showed a strong dependence of the spall strength of Ce on the strain rate.

  13. Fracture dynamics of a propagating crack in a pressurized ductile cylinder

    International Nuclear Information System (INIS)

    Emery, A.F.; Love, W.J.; Kobayashi, A.S.

    1977-01-01

    A suddenly-introduced axial through-crack in the wall of a pipe pressurized by hot water is allowed to propagate according to Weiss' notch-strength theory of ductile static fracture. The dynamic-fracture criterion used enabled the authors to obtain a unique comparison of the results of ductile-fracture with those of brittle-fracture in a fracturing A533B steel pipe. Since the pipe cross-sectional area is likely to increase with large flap motions under ductile tearing, a large deformation shell-finite-difference-dynamic-code which includes rotary inertia was used in this analysis. The uniaxial-stress-strain curve of A533B steel was approximated by a bilinear-stress-strain where Von-Mises yield criterion and associated flow rule were used in the elastic-plastic analysis. The fluid pressure was assumed constant and thus pipe flaps are only lightly loaded by pressure in this analysis. (Auth.)

  14. Leak detection method for long pipeline based on dynamic pressure and wavelet analysis

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bin; Wang, Likun; Wang, Hongchao; Xiong, Min; Yu, Dongliang; Tan, Dongjie [RnD center of PetroChina Pipeline Company, Langfang, Hebei, (China)

    2010-07-01

    Leaks appear frequently in pipelines, raising the possibility of safety issues. The detection of pipeline leakage is very important for the pipeline industry. This paper investigated a leak detection method on a long pipeline using a dynamic pressure sensor. A new leakage system is proposed based on the measurements obtained from this dynamic pressure sensor. The data were analyzed using the wavelet transformation method. First, the signal provided by the pressure sensor its denoised and then leaks are detected from the presence of singularities in the signal. Field tests were carried out on a product oil pipeline of 94 km length. The in-field test results showed that the minimum ratio of detectable leakage is 0.6 % of throughput and the location error is below 300 m. The response time is less than 120 seconds. This new system has been applied in 5000 km pipelines in China and is proving its efficiency in detecting leak points.

  15. High-pressure microscopy for tracking dynamic properties of molecular machines.

    Science.gov (United States)

    Nishiyama, Masayoshi

    2017-12-01

    High-pressure microscopy is one of the powerful techniques to visualize the effects of hydrostatic pressures on research targets. It could be used for monitoring the pressure-induced changes in the structure and function of molecular machines in vitro and in vivo. This review focuses on the dynamic properties of the assemblies and machines, analyzed by means of high-pressure microscopy measurement. We developed a high-pressure microscope that is optimized both for the best image formation and for the stability to hydrostatic pressure up to 150 MPa. Application of pressure could change polymerization and depolymerization processes of the microtubule cytoskeleton, suggesting a modulation of the intermolecular interaction between tubulin molecules. A novel motility assay demonstrated that high hydrostatic pressure induces counterclockwise (CCW) to clockwise (CW) reversals of the Escherichia coli flagellar motor. The present techniques could be extended to study how molecular machines in complicated systems respond to mechanical stimuli. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Modeling the dynamic response of pressures in a distributed helium refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, John Carl [Illinois Inst. of Technology, Chicago, IL (United States)

    1997-12-01

    A mathematical model is created of the dynamic response of pressures caused by flow inputs to an existing distributed helium refrigeration system. The dynamic system studied consists of the suction and discharge pressure headers and compressor portions of the refrigeration system used to cool the superconducting magnets of the Tevatron accelerator at the Fermi National Accelerator Laboratory. The modeling method involves identifying the system from data recorded during a series of controlled tests, with effort made to detect locational differences in pressure response around the four mile accelerator circumference. A review of the fluid mechanics associated with the system indicates linear time invariant models are suitable for the identification, particularly since the governing equations of one dimensional fluid flow are approximated by linear differential equations. An outline of the experimental design and the data acquisition system are given, followed by a detailed description of the modeling, which utilized the Matlab programming language and associated System Identification Toolbox. Two representations of the system are presented. One, a black box model, provides a multi-input, multi-output description assembled from the results of single input step function testing. This description indicates definite variation in pressure response with distance from the flow input location, and also suggests subtle differences in response with the input location itself. A second system representation is proposed which details the relation between continuous flow changes and pressure response, and provides explanation of a previously unappreciated pressure feedback internal to the system.

  17. Modeling the dynamic response of pressures in a distributed helium refrigeration system

    International Nuclear Information System (INIS)

    Brubaker, J.C.

    1997-12-01

    A mathematical model is created of the dynamic response of pressures caused by flow inputs to an existing distributed helium refrigeration system. The dynamic system studied consists of the suction and discharge pressure headers and compressor portions of the refrigeration system used to cool the superconducting magnets of the Tevatron accelerator at the Fermi National Accelerator Laboratory. The modeling method involves identifying the system from data recorded during a series of controlled tests, with effort made to detect locational differences in pressure response around the four mile accelerator circumference. A review of the fluid mechanics associated with the system indicates linear time invariant models are suitable for the identification, particularly since the governing equations of one dimensional fluid flow are approximated by linear differential equations. An outline of the experimental design and the data acquisition system are given, followed by a detailed description of the modeling, which utilized the Matlab programming language and associated System Identification Toolbox. Two representations of the system are presented. One, a black box model, provides a multi-input, multi-output description assembled from the results of single input step function testing. This description indicates definite variation in pressure response with distance from the flow input location, and also suggests subtle differences in response with the input location itself. A second system representation is proposed which details the relation between continuous flow changes and pressure response, and provides explanation of a previously unappreciated pressure feedback internal to the system

  18. Dynamic pressure sensor calibration techniques offering expanded bandwidth with increased resolution

    Science.gov (United States)

    Wisniewiski, David

    2015-03-01

    Advancements in the aerospace, defense and energy markets are being made possible by increasingly more sophisticated systems and sub-systems which rely upon critical information to be conveyed from the physical environment being monitored through ever more specialized, extreme environment sensing components. One sensing parameter of particular interest is dynamic pressure measurement. Crossing the boundary of all three markets (i.e. aerospace, defense and energy) is dynamic pressure sensing which is used in research and development of gas turbine technology, and subsequently embedded into a control loop used for long-term monitoring. Applications include quantifying the effects of aircraft boundary layer ingestion into the engine inlet to provide a reliable and robust design. Another application includes optimization of combustor dynamics by "listening" to the acoustic signature so that fuel-to-air mixture can be adjusted in real-time to provide cost operating efficiencies and reduced NOx emissions. With the vast majority of pressure sensors supplied today being calibrated either statically or "quasi" statically, the dynamic response characterization of the frequency dependent sensitivity (i.e. transfer function) of the pressure sensor is noticeably absent. The shock tube has been shown to be an efficient vehicle to provide frequency response of pressure sensors from extremely high frequencies down to 500 Hz. Recent development activity has lowered this starting frequency; thereby augmenting the calibration bandwidth with increased frequency resolution so that as the pressure sensor is used in an actual test application, more understanding of the physical measurement can be ascertained by the end-user.

  19. A Multi-Point Method Considering the Maximum Power Point Tracking Dynamic Process for Aerodynamic Optimization of Variable-Speed Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Zhiqiang Yang

    2016-05-01

    Full Text Available Due to the dynamic process of maximum power point tracking (MPPT caused by turbulence and large rotor inertia, variable-speed wind turbines (VSWTs cannot maintain the optimal tip speed ratio (TSR from cut-in wind speed up to the rated speed. Therefore, in order to increase the total captured wind energy, the existing aerodynamic design for VSWT blades, which only focuses on performance improvement at a single TSR, needs to be improved to a multi-point design. In this paper, based on a closed-loop system of VSWTs, including turbulent wind, rotor, drive train and MPPT controller, the distribution of operational TSR and its description based on inflow wind energy are investigated. Moreover, a multi-point method considering the MPPT dynamic process for the aerodynamic optimization of VSWT blades is proposed. In the proposed method, the distribution of operational TSR is obtained through a dynamic simulation of the closed-loop system under a specific turbulent wind, and accordingly the multiple design TSRs and the corresponding weighting coefficients in the objective function are determined. Finally, using the blade of a National Renewable Energy Laboratory (NREL 1.5 MW wind turbine as the baseline, the proposed method is compared with the conventional single-point optimization method using the commercial software Bladed. Simulation results verify the effectiveness of the proposed method.

  20. New system for measuring and controlling the maximum pressing pressure in the holes of the mould: ISOPRESS; Nuevo sistema para la medida y control de la presion maxima de prensado en los alveolos del molde: ISOPRESS

    Energy Technology Data Exchange (ETDEWEB)

    Poyatos, A.; Bonaque, R.; Mallol, G.; Boix, J.

    2012-07-01

    The organization MACER, in collaboration with the Institute of Ceramic Technology, has developed the system ISOPRESS, an integrated control device that permits to equal automatically the maximum pressure applied on the powder contained in each of the holes of the mould. This system consists of a set of pressure transducers which are located in the isostatic punches of the mould itself. With them it is possible to register in real-time the evolution of the measured pressure of the oil contained in the compensation chamber of each punch. All the transducers are connected to a data acquisition system which transfers the pressure values to a PC which performs the signal processing to obtain the pressure maximum value reached during a pressing cycle, in each one of the holes. The system is completed with a control software especially developed, that permits to regulate individually the height of the first fall of each inferior punch to guarantee the uniformity of the pressure applied in all the holes. ISOPRESS, by assuring the constancy of the bulk density of all the pieces processed, guarantees a unique piece size and minimize production problems associated to the variability of the bulk density of the pieces. (Author)

  1. Fracture dynamics of a propagating crack in a pressurized ductile cylinder

    International Nuclear Information System (INIS)

    Emery, A.F.; Love, W.J.; Kobayashi, A.S.

    1977-01-01

    A suddenly-introduced axial through-crack in the wall of a pipe pressurized by hot water is allowed to propagate according to Weiss' notch-strength theory of ductile static fracture. For this somewhat ductile material of A533B steel, Weiss' criterion was extended of dynamic fracture without modification. This dynamic-fracture criterion enabled a unique comparison to be obtained for the results of ductile-fracture with those of brittle-fracture in a fracturing A533B steel pipe. Since the pipe cross-sectional area is likely to increase with large flap motions under ductile tearing, a large deformation-shell-finite-difference-dynamic-code which includes rotary inertia was used in this analysis. The uniaxial-stress-strain curve of A533B steel was approximated by a bilinear stress-strain where Von-Misses yield criterion and associated flow rule were used in the elastic-plastic analysis. The fluid pressure was assumed constant and thus pipe flaps are only lightly loaded by pressure in this analysis. In previous publications, the authors have compared their preliminary results for the shell motion obtained through their model for a fracturing pipe with those of Kanninen, et al., and Freund, et al., to evaluate the effects of pressure loading on the crack flaps and the differences between small and large deflection results. In this paper, the differences in crack-propagation behavior of a fracturing pipe composed of the same A533B but subjected to a brittle or a ductile-fracture criterion are discussed. An important conclusion in fracture dynamics derived from analyses is that a smoothly-varying crack velocity will require a non-unique crack-velocity-versus-dynamic-fracture-parameter-relation while a unique and smoothly-varying crack-velocity-versus-dynamic-fracture-parameter-relation will demand an intermittently-propagating crack

  2. The dynamic pressure response to rapid dilatation of the resting urethra in healthy women

    DEFF Research Database (Denmark)

    Bagi, P; Thind, P; Colstrup, H

    1993-01-01

    beta e-t/tau beta, where Pequ, P alpha and P beta are constants, and tau alpha and tau beta are time constants; this equation has previously been demonstrated to describe the pressure decay following dilatation. On the basis of a theoretical model the elastic and viscous constants for the urethral......The urethral pressure response to a sudden forced dilatation was studied at the bladder neck, in the high-pressure zone and in the distal urethra in ten healthy female volunteers. The pressure response was fitted with a double exponential function of the form Pt = Pequ + P alpha e-t/tau alpha + P...... a detailed assessment of static and dynamic urethral responses to dilatation which can be applied as an experimental simulation of urine ingression, and is therefore presumed to be of value in the evaluation of normal and pathological urethral sphincter function....

  3. Novel threshold pressure sensors based on nonlinear dynamics of MEMS resonators

    Science.gov (United States)

    Hasan, Mohammad H.; Alsaleem, Fadi M.; Ouakad, Hassen M.

    2018-06-01

    Triggering an alarm in a car for low air-pressure in the tire or tripping an HVAC compressor if the refrigerant pressure is lower than a threshold value are examples for applications where measuring the amount of pressure is not as important as determining if the pressure has exceeded a threshold value for an action to occur. Unfortunately, current technology still relies on analog pressure sensors to perform this functionality by adding a complex interface (extra circuitry, controllers, and/or decision units). In this paper, we demonstrate two new smart tunable-threshold pressure switch concepts that can reduce the complexity of a threshold pressure sensor. The first concept is based on the nonlinear subharmonic resonance of a straight double cantilever microbeam with a proof mass and the other concept is based on the snap-through bi-stability of a clamped-clamped MEMS shallow arch. In both designs, the sensor operation concept is simple. Any actuation performed at a certain pressure lower than a threshold value will activate a nonlinear dynamic behavior (subharmonic resonance or snap-through bi-stability) yielding a large output that would be interpreted as a logic value of ONE, or ON. Once the pressure exceeds the threshold value, the nonlinear response ceases to exist, yielding a small output that would be interpreted as a logic value of ZERO, or OFF. A lumped, single degree of freedom model for the double cantilever beam, that is validated using experimental data, and a continuous beam model for the arch beam, are used to simulate the operation range of the proposed sensors by identifying the relationship between the excitation signal and the critical cut-off pressure.

  4. Pressure-based high-order TVD methodology for dynamic stall control

    Science.gov (United States)

    Yang, H. Q.; Przekwas, A. J.

    1992-01-01

    The quantitative prediction of the dynamics of separating unsteady flows, such as dynamic stall, is of crucial importance. This six-month SBIR Phase 1 study has developed several new pressure-based methodologies for solving 3D Navier-Stokes equations in both stationary and moving (body-comforting) coordinates. The present pressure-based algorithm is equally efficient for low speed incompressible flows and high speed compressible flows. The discretization of convective terms by the presently developed high-order TVD schemes requires no artificial dissipation and can properly resolve the concentrated vortices in the wing-body with minimum numerical diffusion. It is demonstrated that the proposed Newton's iteration technique not only increases the convergence rate but also strongly couples the iteration between pressure and velocities. The proposed hyperbolization of the pressure correction equation is shown to increase the solver's efficiency. The above proposed methodologies were implemented in an existing CFD code, REFLEQS. The modified code was used to simulate both static and dynamic stalls on two- and three-dimensional wing-body configurations. Three-dimensional effect and flow physics are discussed.

  5. Large dynamic range pressure sensor based on two semicircle-holes microstructured fiber.

    Science.gov (United States)

    Liu, Zhengyong; Htein, Lin; Lee, Kang-Kuen; Lau, Kin-Tak; Tam, Hwa-Yaw

    2018-01-08

    This paper presents a sensitive and large dynamic range pressure sensor based on a novel birefringence microstructured optical fiber (MOF) deployed in a Sagnac interferometer configuration. The MOF has two large semicircle holes in the cladding and a rectangular strut with germanium-doped core in the center. The fiber structure permits surrounding pressure to induce large effective index difference between the two polarized modes. The calculated and measured group birefringence of the fiber are 1.49 × 10 -4 , 1.23 × 10 -4 , respectively, at the wavelength of 1550 nm. Experimental results shown that the pressure sensitivity of the sensor varied from 45,000 pm/MPa to 50,000 pm/MPa, and minimum detectable pressure of 80 Pa and dynamic range of better than 116 dB could be achieved with the novel fiber sensor. The proposed sensor could be used in harsh environment and is an ideal candidate for downhole applications where high pressure measurement at elevated temperature up to 250 °C is needed.

  6. Equations of states for an ionic liquid under high pressure: A molecular dynamics simulation study

    International Nuclear Information System (INIS)

    Ribeiro, Mauro C.C.; Pádua, Agílio A.H.; Gomes, Margarida F.C.

    2014-01-01

    Highlights: • We compare different equation of states, EoS, for an ionic liquid under high pressure. • Molecular dynamics, MD, simulations have been used to evaluate the best EoS. • MD simulations show that a group contribution model can be extrapolated to P ∼ 1.0 GPa. • A perturbed hard-sphere EoS also fits the densities calculated by MD simulations. - Abstract: The high-pressure dependence of density given by empirical equation of states (EoS) for the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate (or triflate), [C 4 C 1 im][TfO], is compared with results obtained by molecular dynamics (MD) simulations. Two EoS proposed for [C 4 C 1 im][TfO] in the pressure range of tens of MPa, which give very different densities when extrapolated to pressures beyond the original experiments, are compared with a group contribution model (GCM). The MD simulations provide support that one of the empirical EoS and the GCM is valid in the pressure range of hundreds of MPa. As an alternative to these EoS that are based on modified Tait equations, it is shown that a perturbed hard-sphere EoS based on the Carnahan–Starling–van der Waals equation also fits the densities calculated by MD simulations of [C 4 C 1 im][TfO] up to ∼1.0 GPa

  7. Dynamics of Passive Lateral Pressure in Granular Mass during Discontinual Movement of Retaining Structure

    Czech Academy of Sciences Publication Activity Database

    Koudelka, Petr; Valach, Jaroslav

    2006-01-01

    Roč. 10, I (2006), s. 271-276 ISSN 1335-2393. [ICE Experimental stress analysis 2006. Červený Kláštor, xx.06.2006] R&D Projects: GA ČR(CZ) GA103/05/2130; GA AV ČR(CZ) IAA2071302 Institutional research plan: CEZ:AV0Z2071913; CEZ:AV0Z20710524 Keywords : dynamics of passive lateral (earth) pressure * rotation about the top * retaining structure * history of both pressure component Subject RIV: JM - Building Engineering

  8. A model to simulate the dynamic of a PWR pressurizer using the CSMP program

    International Nuclear Information System (INIS)

    Woiski, E.R.

    1981-01-01

    A mathematical model has been developed to simulate the dynamic behavior of a PWR pressurizer using the CSMP program. A two-control-volume formulation non-equilibrium model has been used for this purpose. Thermodynamic states are obtained after each integration cycle. The code was tested against experimental results of Shippingport and NPD (Nuclear Power Demonstration Plant) pressurizers. It was also tested against available data from Angra I and Angra II/III safety analysis report. Despite the model simplicity, the lack of important data and the low reliability or the experimental curves, the calculated and experimental results compared well. (Author) [pt

  9. Introduction of the bubble rise dynamic model into the ALMOD 3 code pressurizer

    International Nuclear Information System (INIS)

    Madeira, A.A.; Camargo, C.T.M.

    1985-01-01

    A new evaporation model for the ALMOD 3 code pressurizer is implemented in order to estimate more accurately the water level behaviour and its influence in the pressure transient for very fast depressurization cases. For the inclusion of the bubble rise dynamic model it was necessary to consider a two-phase mixture in the water volume. The modifications don't require additional input data and virtually had not modified the processing time. The results and processing time for the original and the new models are presented. (F.E.) [pt

  10. Prosthetics socket that incorporates an air splint system focusing on dynamic interface pressure.

    Science.gov (United States)

    Razak, Nasrul Anuar Abd; Osman, Noor Azuan Abu; Gholizadeh, Hossein; Ali, Sadeeq

    2014-08-01

    The interface pressure between the residual limb and prosthetic socket has a significant effect on an amputee's satisfaction and comfort. This paper presents the design and performance of a new prosthetic socket that uses an air splint system. The air splint prosthetic socket system was implemented by combining the air splint with a pressure sensor that the transhumeral user controls through the use of a microcontroller. The modular construction of the system developed allows the FSR pressure sensors that are placed inside the air splint socket to determine the required size and fitting for the socket used. Fifteen transhumeral amputees participated in the study. The subject's dynamic pressure on the socket that's applied while wearing the air splint systems was recorded using F-socket transducers and microcontroller analysis. The values collected by the F-socket sensor for the air splint prosthetic socket system were determined accordingly by comparing the dynamic pressure applied using statically socket. The pressure volume of the air splint fluctuated and was recorded at an average of 38 kPa (2.5) to 41 kPa (1.3) over three hours. The air splint socket might reduce the pressure within the interface of residual limb. This is particularly important during the daily life activities and may reduce the pain and discomfort at the residual limb in comparison to the static socket. The potential development of an auto-adjusted socket that uses an air splint system as the prosthetic socket will be of interest to researchers involved in rehabilitation engineering, prosthetics and orthotics.

  11. Dynamic compressive properties obtained from a split Hopkinson pressure bar test of Boryeong shale

    Science.gov (United States)

    Kang, Minju; Cho, Jung-Woo; Kim, Yang Gon; Park, Jaeyeong; Jeong, Myeong-Sik; Lee, Sunghak

    2016-09-01

    Dynamic compressive properties of a Boryeong shale were evaluated by using a split Hopkinson pressure bar, and were compared with those of a Hwangdeung granite which is a typical hard rock. The results indicated that the dynamic compressive loading reduced the resistance to fracture. The dynamic compressive strength was lower in the shale than in the granite, and was raised with increasing strain rate by microcracking effect as well as strain rate strengthening effect. Since the number of microcracked fragments increased with increasing strain rate in the shale having laminated weakness planes, the shale showed the better fragmentation performance than the granite at high strain rates. The effect of transversely isotropic plane on compressive strength decreased with increasing strain rate, which was desirable for increasing the fragmentation performance. Thus, the shale can be more reliably applied to industrial areas requiring good fragmentation performance as the striking speed of drilling or hydraulic fracturing machines increased. The present dynamic compressive test effectively evaluated the fragmentation performance as well as compressive strength and strain energy density by controlling the air pressure, and provided an important idea on which rock was more readily fragmented under dynamically processing conditions such as high-speed drilling and blasting.

  12. Transient simulations of the carbon and nitrogen dynamics in northern peatlands: from the Last Glacial Maximum to the 21st century

    Directory of Open Access Journals (Sweden)

    R. Spahni

    2013-06-01

    Full Text Available The development of northern high-latitude peatlands played an important role in the carbon (C balance of the land biosphere since the Last Glacial Maximum (LGM. At present, carbon storage in northern peatlands is substantial and estimated to be 500 ± 100 Pg C (1 Pg C = 1015 g C. Here, we develop and apply a peatland module embedded in a dynamic global vegetation and land surface process model (LPX-Bern 1.0. The peatland module features a dynamic nitrogen cycle, a dynamic C transfer between peatland acrotelm (upper oxic layer and catotelm (deep anoxic layer, hydrology- and temperature-dependent respiration rates, and peatland specific plant functional types. Nitrogen limitation down-regulates average modern net primary productivity over peatlands by about half. Decadal acrotelm-to-catotelm C fluxes vary between −20 and +50 g C m−2 yr−1 over the Holocene. Key model parameters are calibrated with reconstructed peat accumulation rates from peat-core data. The model reproduces the major features of the peat core data and of the observation-based modern circumpolar soil carbon distribution. Results from a set of simulations for possible evolutions of northern peat development and areal extent show that soil C stocks in modern peatlands increased by 365–550 Pg C since the LGM, of which 175–272 Pg C accumulated between 11 and 5 kyr BP. Furthermore, our simulations suggest a persistent C sequestration rate of 35–50 Pg C per 1000 yr in present-day peatlands under current climate conditions, and that this C sink could either sustain or turn towards a source by 2100 AD depending on climate trajectories as projected for different representative greenhouse gas concentration pathways.

  13. Dynamics of a Pipeline under the Action of Internal Shock Pressure

    Science.gov (United States)

    Il'gamov, M. A.

    2017-11-01

    The static and dynamic bending of a pipeline in the vertical plane under the action of its own weight is considered with regard to the interaction of the internal pressure with the curvature of the axial line and the axisymmetric deformation. The pressure consists of a constant and timevarying parts and is assumed to be uniformly distributed over the entire span between the supports. The pipeline reaction to the stepwise increase in the pressure is analyzed in the case where it is possible to determine the exact solution of the problem. The initial stage of bending determined by the smallness of elastic forces as compared to the inertial forces is introduced into the consideration. At this stage, the solution is sought in the form of power series and the law of pressure variation can be arbitrary. This solution provides initial conditions for determining the further process. The duration of the inertial stage is compared with the times of sharp changes of the pressure and the shock waves in fluids. The structure parameters are determined in the case where the shock pressure is accepted only by the inertial forces in the pipeline.

  14. Safety of 5 MW district heating reactor (DHR) and hydraulic dynamic pressure drive control rods

    International Nuclear Information System (INIS)

    Wu Yuanqiang; Wang Dazhong

    1991-11-01

    The principles and movement characteristic of the hydraulic dynamic pressure drive for control rods in 5 MW district heating reactor are described with stress on analysis of its effects on reactor safety features. The drive is different from electric-magnetic drive for PWR or hydraulic drive for BWR. The drive cylinder is driven by dynamic pressure. In the new drive system, the reactor coolant (water) used as actuating medium is pressed by pump, then injected into a step cylinder which is set in the reactor core. The cylinder will move step by step by controlling flow, then the cylinder drives the neutron absorber and controls nuclear reaction. The drive is characterized by simplicity in structure, high reliability, inherent safety, reduction in reactor height, economy, etc

  15. Effect of the dynamic pressure on the shock wave structure in a rarefied polyatomic gas

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Shigeru, E-mail: taniguchi@stat.nitech.ac.jp; Sugiyama, Masaru, E-mail: sugiyama@nitech.ac.jp [Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Arima, Takashi, E-mail: tks@stat.nitech.ac.jp [Center for Social Contribution and Collaboration, Nagoya Institute of Technology, Nagoya 466-8555 (Japan); Ruggeri, Tommaso, E-mail: tommaso.ruggeri@unibo.it [Department of Mathematics and Research Center of Applied Mathematics (CIRAM), University of Bologna, Bologna (Italy)

    2014-01-15

    We study the shock wave structure in a rarefied polyatomic gas based on a simplified model of extended thermodynamics in which the dissipation is due only to the dynamic pressure. In this case the differential system is very simple because it is a variant of Euler system with a new scalar equation for the dynamic pressure [T. Arima, S. Taniguchi, T. Ruggeri, and M. Sugiyama, Phys. Lett. A 376, 2799–2803 (2012)]. It is shown that this theory is able to describe the three types of the shock wave structure observed in experiments: the nearly symmetric shock wave structure (Type A, small Mach number), the asymmetric structure (Type B, moderate Mach number), and the structure composed of thin and thick layers (Type C, large Mach number)

  16. Bifurcation and Nonlinear Dynamic Analysis of Externally Pressurized Double Air Films Bearing System

    Directory of Open Access Journals (Sweden)

    Cheng-Chi Wang

    2014-01-01

    Full Text Available This paper studies the chaotic and nonlinear dynamic behaviors of a rigid rotor supported by externally pressurized double air films (EPDAF bearing system. A hybrid numerical method combining the differential transformation method and the finite difference method is used to calculate pressure distribution of EPDAF bearing system and bifurcation phenomenon of rotor center orbits. The results obtained for the orbits of the rotor center are in good agreement with those obtained using the traditional finite difference approach. The results presented summarize the changes which take place in the dynamic behavior of the EPDAF bearing system as the rotor mass and bearing number are increased and therefore provide a useful guideline for the bearing system.

  17. Interactions of Delta Shock Waves for Zero-Pressure Gas Dynamics with Energy Conservation Law

    Directory of Open Access Journals (Sweden)

    Wei Cai

    2016-01-01

    Full Text Available We study the interactions of delta shock waves and vacuum states for the system of conservation laws of mass, momentum, and energy in zero-pressure gas dynamics. The Riemann problems with initial data of three piecewise constant states are solved case by case, and four different configurations of Riemann solutions are constructed. Furthermore, the numerical simulations completely coinciding with theoretical analysis are shown.

  18. A total pressure-saturation formulation of two-phase flow incorporating dynamic effects in the capillary-pressure-saturation relationship

    Energy Technology Data Exchange (ETDEWEB)

    Dahle, H K; Celia, M A; Hassanizadeh, S M; Karlsen, K H

    2002-07-01

    New theories suggest that the relationship between capillary pressure and saturation should be enhanced by a dynamic term that is proportional to the time rate of change of saturation. This so-called dynamic capillary pressure formulation is supported by laboratory experiments, and can be included in various forms of the governing equations for two-phase flow in porous media. An extended model of two-phase flow in porous media may be developed based on fractional flow curves and a total pressure - saturation description that includes the dynamic capillary pressure terms. A dimensionless form of the resulting equation set provides an ideal tool to study the relative importance of the dynamic capillary pressure effect. This equation provides a rich set of mathematical research questions, and numerical solutions to the equation provide insights into the behavior of two-phase immiscible flow. For typical two-phase flow systems, dynamic capillary pressure acts to retard infiltration fronts, with responses dependent on system parameters including boundary conditions. Recent theoretical work suggests that the traditional algebraic relationship between capillary pressure and saturation may be inadequate. Instead, a so-called dynamic capillary pressure formulation is needed, where capillary pressure is defined as a thermodynamic variable, and the difference between phase pressures is only equal to the capillary pressure at equilibrium. Under dynamic conditions, the disequilibrium between phase-pressure differences and the capillary pressure is taken to be proportional to the time rate of change of saturation. A recent study by Hassanizadeh et al. presents experimental evidence, culled from the literature, to support this claim. Numerical simulations using dynamic pore-scale network models and upscaling also support the claim. Hassanizadeh et al. also presented numerical solutions for an enhanced version of Richards' equation that included the dynamic terms. A preliminary

  19. Dynamic behaviour of high-pressure natural-gas flow in pipelines

    International Nuclear Information System (INIS)

    Gato, L.M.C.; Henriques, J.C.C.

    2005-01-01

    The aim of the present study is the numerical modelling of the dynamic behaviour of high-pressure natural-gas flow in pipelines. The numerical simulation was performed by solving the conservation equations, for one-dimensional compressible flow, using the Runge-Kutta discontinuous Galerkin method, with third-order approximation in space and time. The boundary conditions were imposed using a new weak formulation based on the characteristic variables. The occurrence of pressure oscillations in natural-gas pipelines was studied as a result of the compression wave originated by the rapid closure of downstream shut-off valves. The effect of the partial reflection of pressure waves was also analyzed in the transition between pipes of different cross-sectional areas

  20. Dynamic behaviour of high-pressure natural-gas flow in pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Gato, L.M.C. [Department of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)]. E-mail: lgato@mail.ist.utl.pt; Henriques, J.C.C. [Department of Mechanical Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)]. E-mail: jcch@mail.ist.utl.pt

    2005-10-01

    The aim of the present study is the numerical modelling of the dynamic behaviour of high-pressure natural-gas flow in pipelines. The numerical simulation was performed by solving the conservation equations, for one-dimensional compressible flow, using the Runge-Kutta discontinuous Galerkin method, with third-order approximation in space and time. The boundary conditions were imposed using a new weak formulation based on the characteristic variables. The occurrence of pressure oscillations in natural-gas pipelines was studied as a result of the compression wave originated by the rapid closure of downstream shut-off valves. The effect of the partial reflection of pressure waves was also analyzed in the transition between pipes of different cross-sectional areas.

  1. Study of the high-pressure helium phase diagram using molecular dynamics

    International Nuclear Information System (INIS)

    Koci, L; Ahuja, R; Belonoshko, A B; Johansson, B

    2007-01-01

    The rich occurrence of helium and hydrogen in space makes their properties highly interesting. By means of molecular dynamics (MD), we have examined two interatomic potentials for 4 He. Both potentials are demonstrated to reproduce high-pressure solid and liquid equation of state (EOS) data. The EOS, solid-solid transitions and melting at high pressures (P) were studied using a two-phase method. The Buckingham potential shows a good agreement with theoretical and experimental EOS, but does not reproduce experimental melting data. The Aziz potential shows a perfect match with theoretical melting data. We conclude that there is a stable body-centred-cubic (bcc) phase for 4 He at temperatures (T) above 340 K and pressures above 22 GPa for the Buckingham potential, whereas no bcc phase is found for the Aziz potential in the applied PT range

  2. Dynamics of ZnO laser produced plasma in high pressure argon

    International Nuclear Information System (INIS)

    Kaydashev, V.E.; Lunney, J.G.

    2011-01-01

    Pulsed laser deposition of ZnO in high pressure gas offers a route for the catalyst-free preparation of ZnO nanorods less than 10 nm in diameter. This paper describes the results of some experiments to investigate the laser plume dynamics in the high gas pressure (5 x 10 3 -10 4 Pa) regime used for PLD of ZnO nanorods. In this regime the ablation plume is strongly coupled to the gas and the plume expansion is brought to a halt within about 1 cm from the target. A 248 nm excimer laser was used to ablate a ceramic ZnO target in various pressures of argon. Time- and space-resolved UV/vis emission spectroscopy and Langmuir probe measurements were used to diagnose the plasma and follow the plume dynamics. By measuring the spatial profiles of Zn I and Zn II spectral lines it was possible to follow the propagation of the external and internal shock waves associated with the interaction of the ablation plume with the gas. The Langmuir probe measurements showed that the electron density was 10 9 -10 10 cm -3 and the electron temperature was several eV. At these conditions the ionization equilibrium is described by the collisional-radiative model. The plume dynamics was also studied for ZnO targets doped with elements which are lighter (Mg), comparable to (Ga), and heavier (Er) than Zn, to see if there is any elemental segregation in the plume.

  3. High hydrostatic pressure specifically affects molecular dynamics and shape of low-density lipoprotein particles

    Science.gov (United States)

    Golub, M.; Lehofer, B.; Martinez, N.; Ollivier, J.; Kohlbrecher, J.; Prassl, R.; Peters, J.

    2017-04-01

    Lipid composition of human low-density lipoprotein (LDL) and its physicochemical characteristics are relevant for proper functioning of lipid transport in the blood circulation. To explore dynamical and structural features of LDL particles with either a normal or a triglyceride-rich lipid composition we combined coherent and incoherent neutron scattering methods. The investigations were carried out under high hydrostatic pressure (HHP), which is a versatile tool to study the physicochemical behavior of biomolecules in solution at a molecular level. Within both neutron techniques we applied HHP to probe the shape and degree of freedom of the possible motions (within the time windows of 15 and 100 ps) and consequently the flexibility of LDL particles. We found that HHP does not change the types of motion in LDL, but influences the portion of motions participating. Contrary to our assumption that lipoprotein particles, like membranes, are highly sensitive to pressure we determined that LDL copes surprisingly well with high pressure conditions, although the lipid composition, particularly the triglyceride content of the particles, impacts the molecular dynamics and shape arrangement of LDL under pressure.

  4. Chaotic dynamic characteristics of pressure fluctuation signals in hydro-turbine

    Energy Technology Data Exchange (ETDEWEB)

    Su, Wen Tao; An, Shi [School of Management, Harbin Institute of Technology, Harbin (China); Li, Xiao Bin; Lan, Chao Feng; Li, Feng Chen [School of Energy Science and Engineering, Harbin Institute of Technology, Harbin (China); Wang, Jian Sheng [Ministry of Education of China, Tianjin (China)

    2016-11-15

    The pressure fluctuation characteristics in a Francis hydro-turbine running at partial flow conditions were studied based on the chaotic dynamic methods. Firstly, the experimental data of pressure fluctuations in the draft tube at various flow conditions was de-noised using lifting wavelet transformation, then, for the de-noised signals, their spectrum distribution on the frequency domain, the energy variation and the energy partition accounting for the total energy was calculated. Hereby, for the flow conditions ranging from no cavitation to severe cavitation, the chaos dynamic features of fluctuation signals were analyzed, including the temporal-frequency distribution, phase trajectory, Lyapunov exponent and Poincaré map etc. It is revealed that, the main energy of pressure fluctuations in the draft tube locates at low-frequency region. As the cavitation grows, the amplitude of power spectrum at frequency domain becomes larger. For all the flow conditions, all the maximal Lyapunov exponents are larger than zero, and they increase with the cavitation level. Therefore, it is believed that there indeed exist the chaotic attractors in the pressure fluctuation signals for a hydro-turbine.

  5. Effect of dynamic high pressure homogenization on the aggregation state of soy protein.

    Science.gov (United States)

    Keerati-U-Rai, Maneephan; Corredig, Milena

    2009-05-13

    Although soy proteins are often employed as functional ingredients in oil-water emulsions, very little is known about the aggregation state of the proteins in solution and whether any changes occur to soy protein dispersions during homogenization. The effect of dynamic high pressure homogenization on the aggregation state of the proteins was investigated using microdifferential scanning calorimetry and high performance size exclusion chromatography coupled with multiangle laser light scattering. Soy protein isolates as well as glycinin and beta-conglycinin fractions were prepared from defatted soy flakes and redispersed in 50 mM sodium phosphate buffer at pH 7.4. The dispersions were then subjected to homogenization at two different pressures, 26 and 65 MPa. The results demonstrated that dynamic high pressure homogenization causes changes in the supramolecular structure of the soy proteins. Both beta-conglycinin and glycinin samples had an increased temperature of denaturation after homogenization. The chromatographic elution profile showed a reduction in the aggregate concentration with homogenization pressure for beta-conglycinin and an increase in the size of the soluble aggregates for glycinin and soy protein isolate.

  6. High-frequency dynamics of the glass former dibutylphthalate under pressure

    International Nuclear Information System (INIS)

    Mermet, A.; Krisch, M.; Duval, E.; Polian, A.

    2002-01-01

    The high-frequency dynamics of a fragile molecular glass former (dibutylphthalate) was studied through inelastic x-ray scattering (IXS), as a function of pressure and temperature. The mesoscopic structural arrest associated with the glass transition process was tracked by following upon cooling the inelastic excitations at fixed Q points in the dispersion curves, at ambient pressure and 2 kbar. The application of pressure to this system induces an offset between the macroscopic glass transition temperature T g and the mesoscopic glass transition temperature, as determined from IXS. The concomitant fragility decrease of dibutylphthalate under pressure unveils that the stronger the glass former is, the more its mesoscopic dynamics differ from the macroscopic regime. This trend is interpreted as the signature of a nanoscopic inhomogeneous elastic network. Further aspects of this system are obtained when studying the temperature dependence of its nonergodicity factor f Q (T). The chemical specificity of the molecule is suggested to be responsible for the nonobservation of a critical temperature T c in dibutylphthalate up to ∼300 K

  7. Implications for anomalous mantle pressure and dynamic topography from lithospheric stress patterns in the North Atlantic Realm

    Science.gov (United States)

    Schiffer, Christian; Nielsen, Søren Bom

    2016-08-01

    With convergent plate boundaries at some distance, the sources of the lithospheric stress field of the North Atlantic Realm are mainly mantle tractions at the base of the lithosphere, lithospheric density structure and topography. Given this, we estimate horizontal deviatoric stresses using a well-established thin sheet model in a global finite element representation. We adjust the lithospheric thickness and the sub-lithospheric pressure iteratively, comparing modelled in plane stress with the observations of the World Stress Map. We find that an anomalous mantle pressure associated with the Iceland and Azores melt anomalies, as well as topography are able to explain the general pattern of the principle horizontal stress directions. The Iceland melt anomaly overprints the classic ridge push perpendicular to the Mid Atlantic ridge and affects the conjugate passive margins in East Greenland more than in western Scandinavia. The dynamic support of topography shows a distinct maximum of c. 1000 m in Iceland and amounts <150 m along the coast of south-western Norway and 250-350 m along the coast of East Greenland. Considering that large areas of the North Atlantic Realm have been estimated to be sub-aerial during the time of break-up, two components of dynamic topography seem to have affected the area: a short-lived, which affected a wider area along the rift system and quickly dissipated after break-up, and a more durable in the close vicinity of Iceland. This is consistent with the appearance of a buoyancy anomaly at the base of the North Atlantic lithosphere at or slightly before continental breakup, relatively fast dissipation of the fringes of this, and continued melt generation below Iceland.

  8. Dynamic knock detection and quantification in a spark ignition engine by means of a pressure based method

    International Nuclear Information System (INIS)

    Galloni, Enzo

    2012-01-01

    Highlights: ► Experimental data have been analyzed by a pressure based method. ► Knock intensity level depends on a threshold varying with the engine operating point. ► A dynamic method is proposed to overcome the definition of a predetermined threshold. ► The knock intensity of each operating point is quantified by a dimensionless index. ► The knock limited spark advance can be detected by means of this index. - Abstract: In spark ignition engines, knock onset limits the maximum spark advance. An inaccurate identification of this limit penalises the fuel conversion efficiency. Thus it is very important to define a knock detection method able to assess the knock intensity of an engine operating point. Usually, in engine development, knock event is evaluated by analysing the in-cylinder pressure trace. Data are filtered and processed in order to obtain some indices correlated to the knock intensity, then the calculated value is compared to a predetermined threshold. The calibration of this threshold is complex and difficult; statistical approach should be used, but often empirical values are considered. In this paper a method that dynamically calculates the knock threshold necessary to determine the knock event is proposed. The purpose is to resolve cycle by cycle the knock intensity related to an individual engine cycle without setting a predetermined threshold. The method has been applied to an extensive set of experimental data relative to a gasoline spark-ignition engine. Results are correlated to those obtained considering a traditional method, where a statistical approach has been used to detect knock.

  9. On discharge from poppet valves: effects of pressure and system dynamics

    Science.gov (United States)

    Winroth, P. M.; Ford, C. L.; Alfredsson, P. H.

    2018-02-01

    Simplified flow models are commonly used to design and optimize internal combustion engine systems. The exhaust valves and ports are modelled as straight pipe flows with a corresponding discharge coefficient. The discharge coefficient is usually determined from steady-flow experiments at low pressure ratios and at fixed valve lifts. The inherent assumptions are that the flow through the valve is insensitive to the pressure ratio and may be considered as quasi-steady. The present study challenges these two assumptions through experiments at varying pressure ratios and by comparing measurements of the discharge coefficient obtained under steady and dynamic conditions. Steady flow experiments were performed in a flow bench, whereas the dynamic measurements were performed on a pressurized, 2 l, fixed volume cylinder with one or two moving valves. In the latter experiments an initial pressure (in the range 300-500 kPa) was established whereafter the valve(s) was opened with a lift profile corresponding to different equivalent engine speeds (in the range 800-1350 rpm). The experiments were only concerned with the blowdown phase, i.e. the initial part of the exhaustion process since no piston was simulated. The results show that the process is neither pressure-ratio independent nor quasi-steady. A measure of the "steadiness" has been defined, relating the relative change in the open flow area of the valve to the relative change of flow conditions in the cylinder, a measure that indicates if the process can be regarded as quasi-steady or not.

  10. Automated processing of dynamic properties of intraventricular pressure by computer program and electronic circuit.

    Science.gov (United States)

    Adler, D; Mahler, Y

    1980-04-01

    A procedure for automatic detection and digital processing of the maximum first derivative of the intraventricular pressure (dp/dtmax), time to dp/dtmax(t - dp/dt) and beat-to-beat intervals have been developed. The procedure integrates simple electronic circuits with a short program using a simple algorithm for the detection of the points of interest. The tasks of differentiating the pressure signal and detecting the onset of contraction were done by electronics, while the tasks of finding the values of dp/dtmax, t - dp/dt, beat-to-beat intervals and all computations needed were done by software. Software/hardware 'trade off' considerations and the accuracy and reliability of the system are discussed.

  11. Dynamic High Pressure Study of Chemistry and Physics of Molecular Materials

    Science.gov (United States)

    Jezowski, Sebastian Ryszard

    Both temperature and pressure control and influence the packing of molecules in crystalline phases. Our molecular simulations indicate that at ambient pressure, the cubic polymorph of tetracyanoethylene, TCNE, is the energetically stable form up to ˜ 160 K. The observed transition from the cubic to the monoclinic polymorph occurs however only at temperatures above ˜ 318 K due to the large transition barrier. The temperature-induced phase transition in TCNE studied with high-resolution IR spectroscopy is explained in terms of the increased vibrational entropy in the crystals of the monoclinic polymorph. Based upon the inverted design of the Merril-Bassett Diamond Anvil Cell, an improved, second generation dynamic Diamond Anvil Cell was developed. Based on the fluorescence of ruby crystals, we were able to demonstrate that the pressure variation range can be further increased at least up to 7 kbar and that the dynamic pressure compression of up to 1400 GPa/s can be achieved. A new class of mechanophoric system, bis-anthracene, BA, and its photoisomer, PI, is shown to respond reversibly to a mild, static pressure induced by a Diamond Anvil Cell as well as to shear deformation based on absorption spectroscopic measurements. The forward reaction occurs upon illumination with light while the back-reaction may be accelerated upon heating or mechanical stress, coupled to a rehybridization on four equivalent carbon atoms. It is an intriguing result as high pressure stabilizes the photodimerized species in related systems. Our molecular volume simulations ruled out significant differences in the volumes between bis-anthracene and its photoisomer. Kinetic absorption measurements at several different pressures reveal a negative volume of activation in the exothermic back-reaction at room temperature. Through a series of temperature-dependent kinetic measurements it is shown that the barrier of activation for the back-reaction is reduced by more than an order of magnitude at

  12. Effects of Tightening Torque on Dynamic Characteristics of Low Pressure Rotors Connected by a Spline Coupling

    Institute of Scientific and Technical Information of China (English)

    Chen Xi; Liao M ingfu; Li Quankun

    2017-01-01

    A rotor dynamic model is built up for investigating the effects of tightening torque on dynamic character-istics of low pressure rotors connected by a spline coupling .The experimental rotor system is established using a fluted disk and a speed sensor which is applied in an actual aero engine for speed measurement .Through simulating calculation and experiments ,the effects of tightening torque on the dynamic characteristics of the rotor system con-nected by a spline coupling including critical speeds ,vibration modes and unbalance responses are analyzed .The results show that when increasing the tightening torque ,the first two critical speeds and the amplitudes of unbal-ance response gradually increase in varying degrees while the vibration modes are essentially unchanged .In addi-tion ,changing axial and circumferential positions of the mass unbalance can lead to various amplitudes of unbalance response and even the rates of change .

  13. Electron dynamics and plasma jet formation in a helium atmospheric pressure dielectric barrier discharge jet

    Energy Technology Data Exchange (ETDEWEB)

    Algwari, Q. Th. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, University Road, Belfast, Northern Ireland BT7 1NN (United Kingdom); Electronic Department, College of Electronics Engineering, Mosul University, Mosul 41002 (Iraq); O' Connell, D. [Centre for Plasma Physics, School of Maths and Physics, Queen' s University Belfast, University Road, Belfast, Northern Ireland BT7 1NN (United Kingdom); York Plasma Institute, Department of Physics, University of York, York YO10 5DD (United Kingdom)

    2011-09-19

    The excitation dynamics within the main plasma production region and the plasma jets of a kHz atmospheric pressure dielectric barrier discharge (DBD) jet operated in helium was investigated. Within the dielectric tube, the plasma ignites as a streamer-type discharge. Plasma jets are emitted from both the powered and grounded electrode end; their dynamics are compared and contrasted. Ignition of these jets are quite different; the jet emitted from the powered electrode is ignited with a slight time delay to plasma ignition inside the dielectric tube, while breakdown of the jet at the grounded electrode end is from charging of the dielectric and is therefore dependent on plasma production and transport within the dielectric tube. Present streamer theories can explain these dynamics.

  14. Molecular dynamics simulations of the melting curve of NiAl alloy under pressure

    International Nuclear Information System (INIS)

    Zhang, Wenjin; Peng, Yufeng; Liu, Zhongli

    2014-01-01

    The melting curve of B2-NiAl alloy under pressure has been investigated using molecular dynamics technique and the embedded atom method (EAM) potential. The melting temperatures were determined with two approaches, the one-phase and the two-phase methods. The first one simulates a homogeneous melting, while the second one involves a heterogeneous melting of materials. Both approaches reduce the superheating effectively and their results are close to each other at the applied pressures. By fitting the well-known Simon equation to our melting data, we yielded the melting curves for NiAl: 1783(1 + P/9.801) 0.298 (one-phase approach), 1850(1 + P/12.806) 0.357 (two-phase approach). The good agreement of the resulting equation of states and the zero-pressure melting point (calc., 1850 ± 25 K, exp., 1911 K) with experiment proved the correctness of these results. These melting data complemented the absence of experimental high-pressure melting of NiAl. To check the transferability of this EAM potential, we have also predicted the melting curves of pure nickel and pure aluminum. Results show the calculated melting point of Nickel agrees well with experiment at zero pressure, while the melting point of aluminum is slightly higher than experiment

  15. [Spasticity and dynamic plantar pressure distribution measurements in hemiplegic spastic children].

    Science.gov (United States)

    Femery, V; Moretto, P; Renaut, H; Thévenon, A

    2001-02-01

    The aim of this study was to analyse the plantar pressure distribution in nine hemiplegic spastic children to illustrate the dynamic alteration during stance phase linked spasticity grade. The graduation of the lower limbs muscle tone related to the Aschworth spasticity scale enabled us to identify two groups of hemiplegics subjects. The groups Asch 1 and Asch 3 have respectively presented a low and a strong spasticity. The peak pressures during consecutive gait cycles were determined under the feet of 30 healthy subjects and two cerebral palsy groups using a wearable footprint analysis system. A statistical study showed a similarity between the two disabled groups. Peak pressures under the midfoot were significantly higher compared to the control group. While the plantar pressure distribution profile was specific for each group under all other anatomical structures. The significant alterations were observed under the forefoot and hallux. Spasticity modifies the foot contact to ground and leads to a specific plantar pressure distribution profile linked to the spasticity grade. The equinovarus with clawed toes deformity due to higher spasticity seems to be an important factor in terminal stance phase perturbations. However spastic hemiplegic subjects seem to adopt a gait pattern in agreement with stability optimization criteria.

  16. Structure and dynamics of water confined in a graphene nanochannel under gigapascal high pressure: dependence of friction on pressure and confinement.

    Science.gov (United States)

    Yang, Lei; Guo, Yanjie; Diao, Dongfeng

    2017-05-31

    Recently, water flow confined in nanochannels has become an interesting topic due to its unique properties and potential applications in nanofluidic devices. The trapped water is predicted to experience high pressure in the gigapascal regime. Theoretical and experimental studies have reported various novel structures of the confined water under high pressure. However, the role of this high pressure on the dynamic properties of water has not been elucidated to date. In the present study, the structure evolution and interfacial friction behavior of water constrained in a graphene nanochannel were investigated via molecular dynamics simulations. Transitions of the confined water to different ice phases at room temperature were observed in the presence of lateral pressure at the gigapascal level. The friction coefficient at the water/graphene interface was found to be dependent on the lateral pressure and nanochannel height. Further theoretical analyses indicate that the pressure dependence of friction is related to the pressure-induced change in the structure of water and the confinement dependence results from the variation in the water/graphene interaction energy barrier. These findings provide a basic understanding of the dynamics of the nanoconfined water, which is crucial in both fundamental and applied science.

  17. Dynamic association between intraocular pressure and spontaneous pulsations of retinal veins.

    Science.gov (United States)

    Golzan, S Mojtaba; Graham, Stuart L; Leaney, John; Avolio, Alberto

    2011-01-01

    The amplitude of spontaneous retinal venous pulsations (SRVP) is known to be affected by intraocular pressure (IOP), retinal venous pressure, and intracranial pressure (ICP). This study characterized SRVPs adjacent to the disc and quantified changes in the amplitude of these pulsations during IOP manipulation in normal subjects. The study included 12 subjects (40 ± 15, 4 females, 8 males). Baseline IOP (range 10-25 mmHg) was measured and SRVP recorded using the dynamic retinal vessel analyzer (DVA). IOP was lowered using aproclonidine 0.5% and measured every 15 min, followed by dynamic recording of SRVP. Two subjects were also tested with timolol 0.5%, and three were treated with a placebo drop. Mean amplitude of SRVP was determined within each sample at the same site. Blood pressure and heart rate were tracked continuously. Amplitude of SRVP decreased in all subjects with reduction of IOP with aproclonidine and timolol. Mean SRVP amplitude was 8.5 ± 6 μm at baseline and reduced to 2.5 ± 1.8 μm after 45 min (p blood pressure, and heart rate did not change significantly from the baseline. Analysis of waveforms showed a slight phase shift only (150 ± 78.5 ms, p = 0.93) between disc veins and adjacent retinal vein. SRVPs in the peripapillary retina have similar waveform characteristics to those at the disc. SRVP amplitudes are reduced by manipulation of IOP downwards with pharmacological intervention. The relationship was consistent in all individuals tested for two classes of drugs and was independent of BP or heart rate changes.

  18. Calibration of the maximum carboxylation velocity (Vcmax using data mining techniques and ecophysiological data from the Brazilian semiarid region, for use in Dynamic Global Vegetation Models

    Directory of Open Access Journals (Sweden)

    L. F. C. Rezende

    Full Text Available Abstract The semiarid region of northeastern Brazil, the Caatinga, is extremely important due to its biodiversity and endemism. Measurements of plant physiology are crucial to the calibration of Dynamic Global Vegetation Models (DGVMs that are currently used to simulate the responses of vegetation in face of global changes. In a field work realized in an area of preserved Caatinga forest located in Petrolina, Pernambuco, measurements of carbon assimilation (in response to light and CO2 were performed on 11 individuals of Poincianella microphylla, a native species that is abundant in this region. These data were used to calibrate the maximum carboxylation velocity (Vcmax used in the INLAND model. The calibration techniques used were Multiple Linear Regression (MLR, and data mining techniques as the Classification And Regression Tree (CART and K-MEANS. The results were compared to the UNCALIBRATED model. It was found that simulated Gross Primary Productivity (GPP reached 72% of observed GPP when using the calibrated Vcmax values, whereas the UNCALIBRATED approach accounted for 42% of observed GPP. Thus, this work shows the benefits of calibrating DGVMs using field ecophysiological measurements, especially in areas where field data is scarce or non-existent, such as in the Caatinga.

  19. Integration of piezo-capacitive and piezo-electric nanoweb based pressure sensors for imaging of static and dynamic pressure distribution.

    Science.gov (United States)

    Jeong, Y J; Oh, T I; Woo, E J; Kim, K J

    2017-07-01

    Recently, highly flexible and soft pressure distribution imaging sensor is in great demand for tactile sensing, gait analysis, ubiquitous life-care based on activity recognition, and therapeutics. In this study, we integrate the piezo-capacitive and piezo-electric nanowebs with the conductive fabric sheets for detecting static and dynamic pressure distributions on a large sensing area. Electrical impedance tomography (EIT) and electric source imaging are applied for reconstructing pressure distribution images from measured current-voltage data on the boundary of the hybrid fabric sensor. We evaluated the piezo-capacitive nanoweb sensor, piezo-electric nanoweb sensor, and hybrid fabric sensor. The results show the feasibility of static and dynamic pressure distribution imaging from the boundary measurements of the fabric sensors.

  20. [Intracranial pressure monitoring and CSF dynamics in patients with neurological disorders: indications and practical considerations].

    Science.gov (United States)

    Poca, M; Sahuquillo, J

    2001-01-01

    The study of cerebrospinal fluid (CSF) dynamics is central to the diagnosis of adult chronic hydrocephalus (ACH). At present, many neurology and neurosurgery departments use one or more tests to guide diagnosis of this syndrome and to predict patient response to shunting. In specialised centres, the study of CSF dynamics is combined with continuous intracranial pressure (ICP) monitoring. Determination of several variables of CSF dynamics and definitions of qualitative and quantitative characteristics of ICP can be used to establish whether the hydrocephalus is active, compensated or arrested. CSF dynamics and ICP monitoring can also be used to check the correct functioning of the shunt and can be of use in the clinical management of patients with pseudotumor cerebri. Moreover, ICP monitoring is used to guide the treatment of several acute neurological processes. The aim of this review is to describe the fundamentals of CSF dynamics studies and the bases of continuous ICP monitoring. The advantages and disadvantages of several hydrodynamic tests that can be performed by lumbar puncture, as well as the normal and abnormal characteristics of an ICP recording, are discussed.

  1. Natural Circulation High Pressure Loop Dynamics Around Operating Point, Tests and Modelling With Retran 02

    International Nuclear Information System (INIS)

    Masriera, N.A; Doval, A.S; Mazufri, C.M

    2000-01-01

    The Natural Circulation High Pressure Loop (CAPCN) reproduces in scale all the one-dimensional thermal-hydraulic phenomena occurring in the primary loop of CAREM-25 reactor.It plays an important role in the qualification process of calculating computer codes.This facility demanded to develop several technological solutions in order to achieve the measuring and control quality required by that process.This engineering and experimental development allowed completing the first stage of dynamic tests during 1998.The trends of recorded data were systematically evaluated in terms of the deviations of main variables in response to different perturbations.By this analysis a group of eight transients was selected, providing a Minimum Representative Set (MRS) of dynamic tests, allowing the evaluation of all dynamic phenomena.Each of these transients was simulated with RETRAN-02, using a spreadsheet to facilitate the consistent elaboration and modification of input files.Comparing measured data and computer simulations, it may be concluded that it is possible to reproduce the dynamic response of all the transients with a level of approximation quite homogeneous and generally acceptable.It is possible to identify the detailed physical models that fit better the dynamic phenomena, and which of the limitations of RETRAN code are more relevant

  2. On the dynamic response of pressure transmission lines in the research of helium-charged free piston Stirling engines

    Science.gov (United States)

    Miller, Eric L.; Dudenhoefer, James E.

    1989-01-01

    The signal distortion inherent to pressure transmission lines in free-piston Stirling engine research is discussed. Based on results from classical analysis, guidelines are formulated to describe the dynamic response properties of a volume-terminated transmission tube for applications involving the helium-charged free-piston Stirling engines. The underdamped flow regime is described, the primary resonance frequency is derived, and the pressure phase and amplitude distortion are discussed. The scope and limitation of the dynamic response analysis are considered.

  3. Quasi-dynamic pressure and temperature initiated βδ solid phase transitions in HMX

    Science.gov (United States)

    Zaug, Joseph M.; Farber, Daniel L.; Craig, Ian M.; Blosch, Laura L.; Shuh, David K.; Hansen, Donald W.; Aracne-Ruddle, Chantel M.

    2000-04-01

    The phase transformation of β-HMX (>0.5% RDX) to δ phase has been studied for over twenty years and more recently with an high-contrast optical second harmonic generation technique. Shock studies of the plastic binder composites of HMX have indicated that the transition is perhaps irreversible, a result that concurs with the static pressure results published by F. Goetz et al. [1] in 1978. However, the stability field favors the β polymorph over δ as pressure is increased (up to 5.4 GPa) along any thermodynamically reasonable isotherm. In this experiment, strict control of pressure and temperature is maintained while x-ray and optical diagnostics are applied to monitor the conformational dynamics of HMX. Unlike the temperature induced β→δ transition, the pressure induced is heterogeneous in nature. The 1 bar 25 °C δ→β transition is not immediate, occuring over tens of hours. Transition points and kinetics are path dependent and consequently this paper describes our work in progress.

  4. Analysis of blood pressure dynamics in male and female rats using the continuous wavelet transform

    International Nuclear Information System (INIS)

    Pavlov, A N; Anisimov, A A; Matasova, E G; Semyachkina-Glushkovskaya, O V; Kurths, J

    2009-01-01

    We study gender-related particularities in cardiovascular responses to stress and nitric oxide (NO) deficiency in rats using HR, mean arterial pressure (MAP) and a proposed wavelet-based approach. Blood pressure dynamics is analyzed: (1) under control conditions, (2) during immobilization stress and recovery and (3) during nitric oxide blockade by N G -nitro-L-arginine-methyl ester (L-NAME). We show that cardiovascular sensitivity to stress and NO deficiency depends upon gender. Actually, in females the chronotropic effect of stress is more pronounced, while the pressor effect is weakened compared with males. We conclude that females demonstrate more favorable patterns of cardiovascular responses to stress and more effective NO control of cardiovascular activity than males

  5. Polarization and Segregation through Conformity Pressure and Voluntary Migration: Simulation Analysis of Co-Evolutionary Dynamics

    Directory of Open Access Journals (Sweden)

    Dai Zusai

    2017-11-01

    Full Text Available While conformity pressures people to assimilate in a community, an individual occasionally migrates among communities when the individual feels discomfort. These two factors cause segregation and cultural diversity within communities in the society. By embedding a migration dynamic into Kuran and Sandholm’s model (2008 of preference evolution, we build an agent-based model to see how the variance of preferences in the entire society quantitatively changes over time. We find from the Monte-Carlo simulations that, while preferences assimilate within a community, self-selected migrations enlarge the diversity of preferences over communities in the society. We further study how the arrival rate of migration opportunities and the degree of conformity pressures affect the variance of preferences.

  6. Porphyry-Copper Ore Shells Form at Stable Pressure-Temperature Fronts Within Dynamic Fluid Plumes

    Science.gov (United States)

    Weis, P.; Driesner, T.; Heinrich, C. A.

    2012-12-01

    Porphyry-type ore deposits are major resources of copper and gold, precipitated from fluids expelled by crustal magma chambers. The metals are typically concentrated in confined ore shells within vertically extensive vein networks, formed through hydraulic fracturing of rock by ascending fluids. Numerical modeling shows that dynamic permeability responses to magmatic fluid expulsion can stabilize a front of metal precipitation at the boundary between lithostatically pressured up-flow of hot magmatic fluids and hydrostatically pressured convection of cooler meteoric fluids. The balance between focused heat advection and lateral cooling controls the most important economic characteristics, including size, shape, and ore grade. This self-sustaining process may extend to epithermal gold deposits, venting at active volcanoes, and regions with the potential for geothermal energy production.

  7. Development of plant dynamic analysis code for integrated self-pressurized water reactor (ISPDYN), and comparative study of pressure control methods

    International Nuclear Information System (INIS)

    Kusunoki, Tsuyoshi; Yokomura, Takeyoshi; Nabeshima, Kunihiko; Shimazaki, Junya; Shinohara, Yoshikuni.

    1988-01-01

    This report describes the development of plant dynamic analysis code (ISPDYN) for integrated self-pressurized water reactor, and comparative study of pressure control methods with this code. ISPDYN is developed for integrated self-pressurized water reactor, one of the trial design by JAERI. In the transient responses, the calculated results by ISPDYN are in good agreement with the DRUCK calculations. In addition, this report presents some sensitivity studies for selected cases. Computing time of this code is very short so as about one fifth of real time. The comparative study of self-pressurized system with forced-pressurized system by this code, for rapid load decrease and increase cases, has provided useful informations. (author)

  8. Magnetosheath waves under very low solar wind dynamic pressure: Wind/Geotail observations

    Directory of Open Access Journals (Sweden)

    C. J. Farrugia

    2005-06-01

    Full Text Available The expanded bow shock on and around "the day the solar wind almost disappeared" (11 May 1999 allowed the Geotail spacecraft to make a practically uninterrupted 54-h-long magnetosheath pass near dusk (16:30-21:11 magnetic local time at a radial distance of 24 to 30 RE (Earth radii. During most of this period, interplanetary parameters varied gradually and in such a way as to give rise to two extreme magnetosheath structures, one dominated by magnetohydrodynamic (MHD effects and the other by gas dynamic effects. We focus attention on unusual features of electromagnetic ion wave activity in the former magnetosheath state, and compare these features with those in the latter. Magnetic fluctuations in the gas dynamic magnetosheath were dominated by compressional mirror mode waves, and left- and right-hand polarized electromagnetic ion cyclotron (EIC waves transverse to the background field. In contrast, the MHD magnetosheath, lasting for over one day, was devoid of mirror oscillations and permeated instead by EIC waves of weak intensity. The weak wave intensity is related to the prevailing low solar wind dynamic pressures. Left-hand polarized EIC waves were replaced by bursts of right-hand polarized waves, which remained for many hours the only ion wave activity present. This activity occurred when the magnetosheath proton temperature anisotropy (= $T_{p, perp}/T_{p, parallel}{-}1$ became negative. This was because the weakened bow shock exposed the magnetosheath directly to the (negative temperature anisotropy of the solar wind. Unlike the normal case studied in the literature, these right-hand waves were not by-products of left-hand polarized waves but derived their energy source directly from the magnetosheath temperature anisotropy. Brief entries into the

  9. Magnetosheath waves under very low solar wind dynamic pressure: Wind/Geotail observations

    Directory of Open Access Journals (Sweden)

    C. J. Farrugia

    2005-06-01

    Full Text Available The expanded bow shock on and around "the day the solar wind almost disappeared" (11 May 1999 allowed the Geotail spacecraft to make a practically uninterrupted 54-h-long magnetosheath pass near dusk (16:30-21:11 magnetic local time at a radial distance of 24 to 30 RE (Earth radii. During most of this period, interplanetary parameters varied gradually and in such a way as to give rise to two extreme magnetosheath structures, one dominated by magnetohydrodynamic (MHD effects and the other by gas dynamic effects. We focus attention on unusual features of electromagnetic ion wave activity in the former magnetosheath state, and compare these features with those in the latter. Magnetic fluctuations in the gas dynamic magnetosheath were dominated by compressional mirror mode waves, and left- and right-hand polarized electromagnetic ion cyclotron (EIC waves transverse to the background field. In contrast, the MHD magnetosheath, lasting for over one day, was devoid of mirror oscillations and permeated instead by EIC waves of weak intensity. The weak wave intensity is related to the prevailing low solar wind dynamic pressures. Left-hand polarized EIC waves were replaced by bursts of right-hand polarized waves, which remained for many hours the only ion wave activity present. This activity occurred when the magnetosheath proton temperature anisotropy (= became negative. This was because the weakened bow shock exposed the magnetosheath directly to the (negative temperature anisotropy of the solar wind. Unlike the normal case studied in the literature, these right-hand waves were not by-products of left-hand polarized waves but derived their energy source directly from the magnetosheath temperature anisotropy. Brief entries into the low latitude boundary layer (LLBL and duskside magnetosphere occurred under such inflated conditions that the magnetospheric magnetic pressure was insufficient to maintain pressure balance. In these crossings, the inner edge of

  10. Evaluation of Vapor Pressure Estimation Methods for Use in Simulating the Dynamic of Atmospheric Organic Aerosols

    Directory of Open Access Journals (Sweden)

    A. J. Komkoua Mbienda

    2013-01-01

    Lee and Kesler (LK, and Ambrose-Walton (AW methods for estimating vapor pressures ( are tested against experimental data for a set of volatile organic compounds (VOC. required to determine gas-particle partitioning of such organic compounds is used as a parameter for simulating the dynamic of atmospheric aerosols. Here, we use the structure-property relationships of VOC to estimate . The accuracy of each of the aforementioned methods is also assessed for each class of compounds (hydrocarbons, monofunctionalized, difunctionalized, and tri- and more functionalized volatile organic species. It is found that the best method for each VOC depends on its functionality.

  11. Role of secondary emission on discharge dynamics in an atmospheric pressure dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Tay, W. H.; Kausik, S. S.; Yap, S. L.; Wong, C. S., E-mail: cswong@um.edu.my [Plasma Technology Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2014-04-15

    The discharge dynamics in an atmospheric pressure dielectric barrier discharge (DBD) is studied in a DBD reactor consisting of a pair of stainless steel parallel plate electrodes. The DBD discharge has been generated by a 50 Hz ac high voltage power source. The high-speed intensified charge coupled device camera is used to capture the images of filaments occurring in the discharge gap. It is observed that frequent synchronous breakdown of micro discharges occurs across the discharge gap in the case of negative current pulse. The experimental results reveal that secondary emissions from the dielectric surface play a key role in the synchronous breakdown of plasma filaments.

  12. Computational Fluid Dynamics Simulation of Combustion Instability in Solid Rocket Motor : Implementation of Pressure Coupled Response Function

    OpenAIRE

    S. Saha; D. Chakraborty

    2016-01-01

    Combustion instability in solid propellant rocket motor is numerically simulated by implementing propellant response function with quasi steady homogeneous one dimensional formulation. The convolution integral of propellant response with pressure history is implemented through a user defined function in commercial computational fluid dynamics software. The methodology is validated against literature reported motor test and other simulation results. Computed amplitude of pressure fluctuations ...

  13. Renal blood flow regulation and arterial pressure fluctuations: a case study in nonlinear dynamics

    DEFF Research Database (Denmark)

    Holstein-Rathlou, N H; Marsh, D J

    1994-01-01

    in which the kidney is obliged to operate. Were it not for renal blood flow autoregulation, it would be difficult to regulate renal excretory processes so as to maintain whole body variables within narrow bounds. Autoregulation is the noise filter on which other renal processes depend for maintaining...... a relatively noise-free environment in which to work. Because of the time-varying nature of the blood pressure, we have concentrated in this review on the now substantial body of work on the dynamics of renal blood flow regulation and the underlying mechanisms. Renal vascular control mechanisms are not simply....... The significance of deterministic chaos in the context of renal blood flow regulation is that the system regulating blood flow undergoes a physical change to a different dynamical state, and because the change is deterministic, there is every expectation that the critical change will yield itself to experimental...

  14. A dynamic climate and ecosystem state during the Paleocene-Eocene Thermal Maximum: inferences from dinoflagellate cyst assemblages on the New Jersey Shelf

    Directory of Open Access Journals (Sweden)

    A. Sluijs

    2009-08-01

    Full Text Available Late Paleocene and Early Eocene climates and ecosystems underwent significant change during several transient global warming phases, associated with rapidly increasing atmospheric carbon concentrations, of which the Paleocene-Eocene Thermal Maximum (PETM; ~55.5 Ma is best studied. While biotic response to the PETM as a whole (~170 kyrs has been relatively well documented, variations during the PETM have been neglected. Here we present organic dinoflagellate cyst (dinocyst distribution patterns across two stratigraphically expanded PETM sections from the New Jersey Shelf, Bass River and Wilson Lake. Many previously studied sites show a uniform abundance of the thermophilic and presumably heterotrophic taxon Apectodinium that spans the entire carbon isotope excursion (CIE of the PETM. In contrast, the New Jersey sections show large variations in abundances of many taxa during the PETM, including the new species Florentinia reichartii that we formally propose. We infer paleoecological preferences of taxa that show temporal abundance peaks, both qualitative and absolute quantitative, from empirical as well as statistical information, i.e., principle (PCA and canonical correspondence analyses (CCA. In the CCAs, we combine the dinocyst data with previously published environmental proxy data from these locations, such as TEX86 paleothermometry, magnetic susceptibility and sedimentary size fraction. The combined information supports previous inferences that sea level rose during the PETM, but also indicates a (regional increase in fresh-water runoff that started ~10 kyr after the onset of the CIE, and perhaps precession-paced cycles in sea surface productivity. The highly variable dinocyst assemblages of the PETM contrast with rather stable Upper Paleocene assemblages, which suggests that carbon input caused a dynamic climate state, at least regionally.

  15. Dynamic mechanical properties and anisotropy of synthetic shales with different clay minerals under confining pressure

    Science.gov (United States)

    Gong, Fei; Di, Bangrang; Wei, Jianxin; Ding, Pinbo; Shuai, Da

    2018-03-01

    The presence of clay minerals can alter the elastic behaviour of reservoir rocks significantly as the type of clay minerals, their volume and distribution, and their orientation control the shale's intrinsic anisotropic behaviours. Clay minerals are the most abundant materials in shale, and it has been proven extremely difficult to measure the elastic properties of natural shale by means of a single variable (in this case, the type of clay minerals), due to the influences of multiple factors, including water, TOC content and complex mineral compositions. We used quartz, clay (kaolinite, illite and smectite), carbonate and kerogen extract as the primary materials to construct synthetic shale with different clay minerals. Ultrasonic experiments were conducted to investigate the anisotropy of velocity and mechanical properties in dry synthetic and natural shale as a function of confining pressure. Velocities in synthetic shale are sensitive to the type of clay minerals, possibly due to the different structures of the clay minerals. The velocities increase with confining pressure and show higher rate of velocity increase at low pressures, and P-wave velocity is usually more sensitive than S-wave velocity to confining pressure according to our results. Similarly, the dynamic Young's modulus and Poisson's ratio increase with applied pressure, and the results also reveal that E11 is always larger than E33 and ν31 is smaller than ν12. Velocity and mechanical anisotropy decrease with increasing stress, and are sensitive to stress and the type of clay minerals. However, the changes of mechanical anisotropy with applied stress are larger compared with the velocity anisotropy, indicating that mechanical properties are more sensitive to the change of rock properties.

  16. Dynamic target high pressure control of a VRF system for heating energy savings

    International Nuclear Information System (INIS)

    Yun, Geun Young; Lee, Je Hyeon; Kim, Inhan

    2017-01-01

    Highlights: • We developed the dynamic target high pressure control of a VRF system. • We created the VRF control model using the EnergyPlus runtime language. • Multicalorimeter experimental results indicate that the energy efficiency improved by 21%. • EnergyPlus simulations demonstrate that the annual heating energy consumption was lowered by 22%. - Abstract: Variable refrigerant flow (VRF) systems are widely used because of their ability to provide individualized comfort control with energy-saving potential. This study develops load responsive high pressure control of a VRF system with the aim of reducing the heating energy consumption of a VRF system under part load conditions. The developed control consists of two parts: one part that determines the level of heating load, and the other that assigns a target high pressure based on the level of heating load. In this way, the compressor speed can be accurately matched to heating load, which improves the energy performance of the VRF system. A series of multicalorimeter experiments revealed that the heating capacity of the VRF system varied by 45% by modulating the target high pressure and that its efficiency was enhanced by 21% by changing the high pressure from 30 kgf/cm"2 to 25 kgf/cm"2. To evaluate the annual heating energy performance of the VRF system with the developed control, a custom computer code was developed to implement the developed control using a programming language called EnergyPlus Runtime Language. Simulation outcomes showed that the annual heating energy consumption of a medium-size office building was reduced by 22% when the developed control was applied.

  17. Observation of a New High-Pressure Solid Phase in Dynamically Compressed Aluminum

    Science.gov (United States)

    Polsin, D. N.

    2017-10-01

    Aluminum is ideal for testing theoretical first-principles calculations because of the relative simplicity of its atomic structure. Density functional theory (DFT) calculations predict that Al transforms from an ambient-pressure, face-centered-cubic (fcc) crystal to the hexagonal close-packed (hcp) and body-centered-cubic (bcc) structures as it is compressed. Laser-driven experiments performed at the University of Rochester's Laboratory for Laser Energetics and the National Ignition Facility (NIF) ramp compressed Al samples to pressures up to 540 GPa without melting. Nanosecond in-situ x-ray diffraction was used to directly measure the crystal structure at pressures where the solid-solid phase transformations of Al are predicted to occur. Laser velocimetry provided the pressure in the Al. Our results show clear evidence of the fcc-hcp and hpc-bcc transformations at 216 +/- 9 GPa and 321 +/- 12 GPa, respectively. This is the first experimental in-situ observation of the bcc phase in compressed Al and a confirmation of the fcc-hcp transition previously observed under static compression at 217 GPa. The observations indicate these solid-solid phase transitions occur on the order of tens of nanoseconds time scales. In the fcc-hcp transition we find the original texture of the sample is preserved; however, the hcp-bcc transition diminishes that texture producing a structure that is more polycrystalline. The importance of this dynamic is discussed. The NIF results are the first demonstration of x-ray diffraction measurements at two different pressures in a single laser shot. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  18. High Pressure Sensing and Dynamics Using High Speed Fiber Bragg Grating Interrogation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, G. [LANL; Sandberg, R. L. [LANL; Lalone, B. M. [NSTec; Marshall, B. R. [NSTec; Grover, M. [NSTec; Stevens, G. D. [NSTec; Udd, E. [Columbia Gorge Research

    2014-06-01

    Fiber Bragg gratings (FBGs) are developing into useful sensing tools for measuring high pressure dynamics in extreme environments under shock loading conditions. Approaches using traditional diode array coupled FBG interrogation systems are often limited to readout speeds in the sub-MHz range. For shock wave physics, required detection speeds approaching 100 MHz are desired. We explore the use of two types of FBG sensing systems that are aimed at applying this technology as embedded high pressure probes for transient shock events. Both approaches measure time resolved spectral shifts in the return light from short (few mm long) uniform FBGs at 1550 nm. In the first approach, we use a fiber coupled spectrometer to demultiplex spectral channels into an array (up to 12) of single element InGaAs photoreceivers. By monitoring the detectors during a shock impact event with high speed recording, we are able to track the pressure induced spectral shifting in FBG down to a time resolution of 20 ns. In the second approach, developed at the Special Technologies Lab, a coherent mode-locked fiber laser is used to illuminate the FBG sensor. After the sensor, wavelength-to-time mapping is accomplished with a chromatic dispersive element, and entire spectra are sampled using a single detector at the modelocked laser repetition rate of 50 MHz. By sampling with a 12 GHz InGaAs detector, direct wavelength mapping in time is recorded, and the pressure induced FBG spectral shift is sampled at 50 MHz. Here, the sensing systems are used to monitor the spectral shifts of FBGs that are immersed into liquid water and shock compressed using explosives. In this configuration, the gratings survive to pressures approaching 50 kbar. We describe both approaches and present the measured spectral shifts from the shock experiments.

  19. High pressure sensing and dynamics using high speed fiber Bragg grating interrogation systems

    Science.gov (United States)

    Rodriguez, G.; Sandberg, R. L.; Lalone, B. M.; Marshall, B. R.; Grover, M.; Stevens, G.; Udd, E.

    2014-06-01

    Fiber Bragg gratings (FBGs) are developing into useful sensing tools for measuring high pressure dynamics in extreme environments under shock loading conditions. Approaches using traditional diode array coupled FBG interrogation systems are often limited to readout speeds in the sub-MHz range. For shock wave physics, required detection speeds approaching 100 MHz are desired. We explore the use of two types of FBG sensing systems that are aimed at applying this technology as embedded high pressure probes for transient shock events. Both approaches measure time resolved spectral shifts in the return light from short (few mm long) uniform FBGs at 1550 nm. In the first approach, we use a fiber coupled spectrometer to demultiplex spectral channels into an array (up to 12) of single element InGaAs photoreceivers. By monitoring the detectors during a shock impact event with high speed recording, we are able to track the pressure induced spectral shifting in FBG down to a time resolution of 20 ns. In the second approach, developed at the Special Technologies Lab, a coherent mode-locked fiber laser is used to illuminate the FBG sensor. After the sensor, wavelength-to-time mapping is accomplished with a chromatic dispersive element, and entire spectra are sampled using a single detector at the modelocked laser repetition rate of 50 MHz. By sampling with a 12 GHz InGaAs detector, direct wavelength mapping in time is recorded, and the pressure induced FBG spectral shift is sampled at 50 MHz. Here, the sensing systems are used to monitor the spectral shifts of FBGs that are immersed into liquid water and shock compressed using explosives. In this configuration, the gratings survive to pressures approaching 50 kbar. We describe both approaches and present the measured spectral shifts from the shock experiments.

  20. Dynamic Stability of the Rate, State, Temperature, and Pore Pressure Friction Model at a Rock Interface

    Science.gov (United States)

    Sinha, Nitish; Singh, Arun K.; Singh, Trilok N.

    2018-05-01

    In this article, we study numerically the dynamic stability of the rate, state, temperature, and pore pressure friction (RSTPF) model at a rock interface using standard spring-mass sliding system. This particular friction model is a basically modified form of the previously studied friction model namely the rate, state, and temperature friction (RSTF). The RSTPF takes into account the role of thermal pressurization including dilatancy and permeability of the pore fluid due to shear heating at the slip interface. The linear stability analysis shows that the critical stiffness, at which the sliding becomes stable to unstable or vice versa, increases with the coefficient of thermal pressurization. Critical stiffness, on the other hand, remains constant for small values of either dilatancy factor or hydraulic diffusivity, but the same decreases as their values are increased further from dilatancy factor (˜ 10^{ - 4} ) and hydraulic diffusivity (˜ 10^{ - 9} {m}2 {s}^{ - 1} ) . Moreover, steady-state friction is independent of the coefficient of thermal pressurization, hydraulic diffusivity, and dilatancy factor. The proposed model is also used for predicting time of failure of a creeping interface of a rock slope under the constant gravitational force. It is observed that time of failure decreases with increase in coefficient of thermal pressurization and hydraulic diffusivity, but the dilatancy factor delays the failure of the rock fault under the condition of heat accumulation at the creeping interface. Moreover, stiffness of the rock-mass also stabilizes the failure process of the interface as the strain energy due to the gravitational force accumulates in the rock-mass before it transfers to the sliding interface. Practical implications of the present study are also discussed.

  1. Final Report DE-FG02-00ER54583: 'Physics of Atmospheric Pressure Glow Discharges' and 'Nanoparticle Nucleation and Dynamics in Low-Pressure Plasmas'

    International Nuclear Information System (INIS)

    Kortshagen, Uwe; Heberlein, Joachim; Girshick, Steven L.

    2009-01-01

    This project was funded over two periods of three years each, with an additional year of no-cost extension. Research in the first funding period focused on the physics of uniform atmospheric pressure glow discharges, the second funding period was devoted to the study of the dynamics of nanometer-sized particles in plasmas.

  2. Design and Computational Fluid Dynamics Optimization of the Tube End Effector for Reactor Pressure Vessel Head Type VVER-1000

    International Nuclear Information System (INIS)

    Novosel, D.

    2006-01-01

    In this paper is presented development and optimization of the tube end effector design which should consist of 4 ultrasonic transducers, 4 Eddy Current's transducers and Radiation Proof Dot Camera. Basically, designing was conducted by main input requests, such as: inner diameter of a tested reactor pressure vessel head penetration tube, dimensions of a transducers and maximum allowable vertical movement of a manipulator connection rod in order to cover all inner tube surface. As is obvious, for ultrasonic testing should be provided the thin layer of liquid material (in our case water was chosen) which is necessary to make physical contact between transducer surface and investigated inner tube surface. By help of Computational Fluid Dynamics, determined were parameters of geometry, as the most important factor of transducer housing, hydraulically parameters for water supply and primary drain together implemented into this housing, movement of the end effectors (vertical and cylindrical) and finally, necessary equipment which has to provide all hydraulically and pneumatic requirements. As the cylindrical surface of the inner tube diameter was liquefied and contact between transducer housing and tested tube wasn't ideally covered, water leakage could occur in downstream direction. To reduce water leakage, which is highly contaminated, developed was second water drain by diffuser assembly which is driven by Venturi pipe, commercially called vacuum generator. Using the Computational Fluid Dynamic, obtained was optimized geometry of diffuser control volume with the highest efficiency, in other words, unobstructed fluid flux. Afterwards, the end effectors system was synchronized to the existing operable system for NDT methods all invented and designed by INETEC. (author)

  3. Modelling the Dynamic Interaction Power System Lamp - Application to High Pressure Mercury Gas Discharge Lamps

    Directory of Open Access Journals (Sweden)

    ZIANE, M.

    2007-11-01

    Full Text Available The aim of this paper is to study the dynamic behaviour of a plant constituted by an electrical power system and a gas discharge lamp, this latter, increasingly used in street lighting, remains a nonlinear load element. Various approaches are used to represent it, one is the approximation of the discharge represented by a hot "channel", which verifies the assumption of local thermodynamic equilibrium [LTE] or the polynomial form of the conductance variation. A calculation procedure, based on "channel" approximation of the high pressure mercury (HPM gas-discharge lamp, is developed to determine the physical and electric magnitudes, which characterize the dynamic behavior of the couple "lamp-electrical power system". The evolution of the lamp properties when principal parameters of the discharge (pressure of mercury, voltage supply, frequency are varying were studied and analyzed. We show the concordance between simulation, calculations and measurements for electric, energetic or irradiative characteristics. The model reproduces well the evolution of properties of the supply when principal parameters of the discharge vary.

  4. Effect of Dynamic Pressure on the Performance of Thermoacoustic Refrigerator with Aluminium (Al) Resonator

    Science.gov (United States)

    Arya, Bheemsha; Nayak, B. Ramesh; Shivakumara, N. V.

    2018-04-01

    In practice the refrigerants are being used in the conventional refrigeration system to get the required cooling effect. These refrigerants produce Chlorofluorocarbons (CFCs) and Hydro chlorofluorocarbons (HCFCs) which are highly harmful to the environment, particularly depleting of ozone layers resulting in green house emissions. In order to overcome these effects, the research needs to be focused on the development of an ecofriendly refrigeration system. The thermoacoustic refrigeration system is one among such system where the sound waves are used to compress and expand the gas particles. This study focuses on the effect of dynamic pressure on the thermoacoustic refrigerator made of aluminium with overall length of 748.82 mm, and the entire inner surface of the resonator tube was coated with 2mm thickness of polyurethane to minimize the heat losses to the atmosphere. Experiments were conducted with different stack geometries i.e. parallel plates having 0.119 mm thick with spacing between the plates maintained at 0.358 mm, 1mm diameter pipes, 2mm diameter pipes and 4 mm diameter pipes. Experiments were also conducted with different drive ratios of 0.6%, 1% and 1.6% for a constant dynamic pressure of 2 bar and 10 bar for helium and air as working medium. The results were plotted with the help of graphs, the variation of coefficient of performance (COP) and the relative coefficient of performance (COPR) for the above said conditions were calculated.

  5. Accurate and efficient integration for molecular dynamics simulations at constant temperature and pressure

    Science.gov (United States)

    Lippert, Ross A.; Predescu, Cristian; Ierardi, Douglas J.; Mackenzie, Kenneth M.; Eastwood, Michael P.; Dror, Ron O.; Shaw, David E.

    2013-10-01

    In molecular dynamics simulations, control over temperature and pressure is typically achieved by augmenting the original system with additional dynamical variables to create a thermostat and a barostat, respectively. These variables generally evolve on timescales much longer than those of particle motion, but typical integrator implementations update the additional variables along with the particle positions and momenta at each time step. We present a framework that replaces the traditional integration procedure with separate barostat, thermostat, and Newtonian particle motion updates, allowing thermostat and barostat updates to be applied infrequently. Such infrequent updates provide a particularly substantial performance advantage for simulations parallelized across many computer processors, because thermostat and barostat updates typically require communication among all processors. Infrequent updates can also improve accuracy by alleviating certain sources of error associated with limited-precision arithmetic. In addition, separating the barostat, thermostat, and particle motion update steps reduces certain truncation errors, bringing the time-average pressure closer to its target value. Finally, this framework, which we have implemented on both general-purpose and special-purpose hardware, reduces software complexity and improves software modularity.

  6. Dynamic characteristics of laser Doppler flowmetry signals obtained in response to a local and progressive pressure applied on diabetic and healthy subjects

    Science.gov (United States)

    Humeau, Anne; Koitka, Audrey; Abraham, Pierre; Saumet, Jean-Louis; L'Huillier, Jean-Pierre

    2004-09-01

    In the biomedical field, the laser Doppler flowmetry (LDF) technique is a non-invasive method to monitor skin perfusion. On the skin of healthy humans, LDF signals present a significant transient increase in response to a local and progressive pressure application. This vasodilatory reflex response may have important implications for cutaneous pathologies involved in various neurological diseases and in the pathophysiology of decubitus ulcers. The present work analyses the dynamic characteristics of these signals on young type 1 diabetic patients, and on healthy age-matched subjects. To obtain accurate dynamic characteristic values, a de-noising wavelet-based algorithm is first applied to LDF signals. All the de-noised signals are then normalised to the same value. The blood flow peak and the time to reach this peak are then calculated on each computed signal. The results show that a large vasodilation is present on signals of healthy subjects. The mean peak occurs at a pressure of 3.2 kPa approximately. However, a vasodilation of limited amplitude appears on type 1 diabetic patients. The maximum value is visualised, on the average, when the pressure is 1.1 kPa. The inability for diabetic patients to increase largely their cutaneous blood flow may bring explanations to foot ulcers.

  7. The effect of a dynamic PCL brace on patellofemoral compartment pressures in PCL-and PCL/PLC-deficient knees.

    Science.gov (United States)

    Welch, Tyler; Keller, Thomas; Maldonado, Ruben; Metzger, Melodie; Mohr, Karen; Kvitne, Ronald

    2017-12-01

    The natural history of posterior cruciate ligament (PCL) deficiency includes the development of arthrosis in the patellofemoral joint (PFJ). The purpose of this biomechanical study was to evaluate the hypothesis that dynamic bracing reduces PFJ pressures in PCL- and combined PCL/posterolateral corner (PLC)-deficient knees. Controlled Laboratory Study. Eight fresh frozen cadaveric knees with intact cruciate and collateral ligaments were included. PFJ pressures and force were measured using a pressure mapping system via a lateral arthrotomy at knee flexion angles of 30°, 60°, 90°, and 120° in intact, PCL-deficient, and PCL/PLC-deficient knees under a combined quadriceps/hamstrings load of 400 N/200 N. Testing was then repeated in PCL- and PCL/PLC-deficient knees after application of a dynamic PCL brace. Application of a dynamic PCL brace led to a reduction in peak PFJ pressures in PCL-deficient knees. In addition, the brace led to a significant reduction in peak pressures in PCL/PLC-deficient knees at 60°, 90°, and 120° of flexion. Application of the dynamic brace also led to a reduction in total PFJ force across all flexion angles for both PCL- and PCL/PLC-deficient knees. Dynamic bracing reduces PFJ pressures in PCL- and combined PCL/PLC-deficient knees, particularly at high degrees of knee flexion.

  8. Peer pressure is a double-edged sword in vaccination dynamics

    Science.gov (United States)

    Wu, Zhi-Xi; Zhang, Hai-Feng

    2013-10-01

    Whether or not to change behavior depends not only on the personal success of each individual, but also on the success and/or behavior of others. Using this as motivation, we incorporate the impact of peer pressure into a susceptible-vaccinated-infected-recovered (SVIR) epidemiological model, where the propensity to adopt a particular vaccination strategy depends both on individual success as well as on the strategies of neighbors. We show that plugging into the peer pressure is a double-edged sword, which, on the one hand, strongly promotes vaccination when its cost is below a critical value, but, on the other hand, it can also strongly impede it if the critical value is exceeded. We explain this by revealing a facilitated cluster formation process that is induced by the peer pressure. Due to this, the vaccinated individuals are inclined to cluster together and therefore become unable to efficiently inhibit the spread of the infectious disease if the vaccination is costly. If vaccination is cheap, however, they reinforce each other in using it. Our results are robust to variations of the SVIR dynamics on different population structures.

  9. Osmotic pressure and virial coefficients of star and comb polymer solutions: dissipative particle dynamics.

    Science.gov (United States)

    Wang, Tzu-Yu; Fang, Che-Ming; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2009-03-28

    The effects of macromolecular architecture on the osmotic pressure pi and virial coefficients (B(2) and B(3)) of star and comb polymers in good solvents are studied by dissipative particle dynamics simulations for both dilute and semiconcentrated regimes. The dependence of the osmotic pressure on polymer concentration is directly calculated by considering two reservoirs separated by a semipermeable, fictitious membrane. Our simulation results show that the ratios A(n+1) identical with B(n+1)/R(g)(3n) are essentially constant and A(2) and A(3) are arm number (f) dependent, where R(g) is zero-density radius of gyration. The value of dimensionless virial ratio g = A(3)/A(2)(2) increases with arm number of stars whereas it is essentially arm number independent for comb polymers. In semiconcentrated regime the scaling relation between osmotic pressure and volume fraction, pi proportional to phi(lambda), still holds for both star and comb polymers. For comb polymers, the exponent lambda is close to lambda(*) (approximately = 2.73 for linear chains) and is independent of the arm number. However, for star polymers, the exponent lambda deviates from lambda(*) and actually grows with increasing the arm number. This may be attributed to the significant ternary interactions near the star core in the many-arm systems.

  10. Estimating thermodynamic properties by molecular dynamics simulations: The properties of fluids at high pressures and temperatures

    International Nuclear Information System (INIS)

    Fraser, D.G.; Refson, K.

    1992-01-01

    The molecular dynamics calculations reported above give calculated P-V-T properties for H 2 O up to 1500 K and 100 GPa, which agree remarkably well with the available experimental data. We also observe the phase transition to a crystalline, orientationally disordered cubic ice structure. No account was taken of molecular flexibility in these calculations nor of potential dissociation at high pressures as suggested by Hamman (1981). However, we note that the closest next-nearest-neighbour O-H approach remains significantly greater than the TIP4P fixed O-H bond length within the water molecule for all pressures studied. The equation of state proposed here should be useful for estimating the properties of H 2 O at up to 1500 K and 100 G Pa (1 Mbar) and is much easier to use in practice than modified Redlich Kwong equations. Extension of these methods to the studies of other fluids and of fluid mixtures at high temperatures and pressures will require good potential models for the species involved, and this is likely to involve a combination of good ab initio work and semiempirical modelling. Once developed, these models should allow robust predictions of thermodynamic properties beyond the range of the experimental data on the basis of fundamental molecular information

  11. Measurement of Vehicle-Bridge-Interaction force using dynamic tire pressure monitoring

    Science.gov (United States)

    Chen, Zhao; Xie, Zhipeng; Zhang, Jian

    2018-05-01

    The Vehicle-Bridge-Interaction (VBI) force, i.e., the normal contact force of a tire, is a key component in the VBI mechanism. The VBI force measurement can facilitate experimental studies of the VBI as well as input-output bridge structural identification. This paper introduces an innovative method for calculating the interaction force by using dynamic tire pressure monitoring. The core idea of the proposed method combines the ideal gas law and a basic force model to build a relationship between the tire pressure and the VBI force. Then, unknown model parameters are identified by the Extended Kalman Filter using calibration data. A signal filter based on the wavelet analysis is applied to preprocess the effect that the tire rotation has on the pressure data. Two laboratory tests were conducted to check the proposed method's validity. The effects of different road irregularities, loads and forward velocities were studied. Under the current experiment setting, the proposed method was robust to different road irregularities, and the increase in load and velocity benefited the performance of the proposed method. A high-speed test further supported the use of this method in rapid bridge tests. Limitations of the derived theories and experiment were also discussed.

  12. Computational fluid dynamic simulation of pressurizer safety valve loop seal purge phenomena in nuclear power plants

    International Nuclear Information System (INIS)

    Park, Jong Woon

    2012-01-01

    In Korean 3 Loop plants a water loop seal pipe is installed containing condensed water upstream of a pressurizer safety valve to protect the valve disk from the hot steam environment. The loop seal water purge time is a key parameter in safety analyses for overpressure transients, because it delays valve opening. The loop seal purge time is uncertain to measure by test and thus 3-dimensional realistic computational fluid dynamics (CFD) model is developed in this paper to predict the seal water purge time before full opening of the valve which is driven by steam after water purge. The CFD model for a typical pressurizer safety valve with a loop seal pipe is developed using the computer code of ANSYS CFX 11. Steady-state simulations are performed for full discharge of steam at the valve full opening. Transient simulations are performed for the loop seal dynamics and to estimate the loop seal purge time. A sudden pressure drop higher than 2,000 psia at the tip of the upper nozzle ring is expected from the steady-state calculation. Through the transient simulation, almost loop seal water is discharged within 1.2 second through the narrow opening between the disk and the nozzle of the valve. It can be expected that the valve fully opens at least before 1.2 second because constant valve opening is assumed in this CFX simulation, which is conservative because the valve opens fully before the loop seal water is completely discharged. The predicted loop seal purge time is compared with previous correlation. (orig.)

  13. Computational fluid dynamic simulation of pressurizer safety valve loop seal purge phenomena in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Woon [Dongguk Univ., Gyeongju (Korea, Republic of). Nuclear and Energy Engineering Dept.

    2012-11-15

    In Korean 3 Loop plants a water loop seal pipe is installed containing condensed water upstream of a pressurizer safety valve to protect the valve disk from the hot steam environment. The loop seal water purge time is a key parameter in safety analyses for overpressure transients, because it delays valve opening. The loop seal purge time is uncertain to measure by test and thus 3-dimensional realistic computational fluid dynamics (CFD) model is developed in this paper to predict the seal water purge time before full opening of the valve which is driven by steam after water purge. The CFD model for a typical pressurizer safety valve with a loop seal pipe is developed using the computer code of ANSYS CFX 11. Steady-state simulations are performed for full discharge of steam at the valve full opening. Transient simulations are performed for the loop seal dynamics and to estimate the loop seal purge time. A sudden pressure drop higher than 2,000 psia at the tip of the upper nozzle ring is expected from the steady-state calculation. Through the transient simulation, almost loop seal water is discharged within 1.2 second through the narrow opening between the disk and the nozzle of the valve. It can be expected that the valve fully opens at least before 1.2 second because constant valve opening is assumed in this CFX simulation, which is conservative because the valve opens fully before the loop seal water is completely discharged. The predicted loop seal purge time is compared with previous correlation. (orig.)

  14. A novel method for calculating the dynamic capillary force and correcting the pressure error in micro-tube experiment.

    Science.gov (United States)

    Wang, Shuoliang; Liu, Pengcheng; Zhao, Hui; Zhang, Yuan

    2017-11-29

    Micro-tube experiment has been implemented to understand the mechanisms of governing microcosmic fluid percolation and is extensively used in both fields of micro electromechanical engineering and petroleum engineering. The measured pressure difference across the microtube is not equal to the actual pressure difference across the microtube. Taking into account the additional pressure losses between the outlet of the micro tube and the outlet of the entire setup, we propose a new method for predicting the dynamic capillary pressure using the Level-set method. We first demonstrate it is a reliable method for describing microscopic flow by comparing the micro-model flow-test results against the predicted results using the Level-set method. In the proposed approach, Level-set method is applied to predict the pressure distribution along the microtube when the fluids flow along the microtube at a given flow rate; the microtube used in the calculation has the same size as the one used in the experiment. From the simulation results, the pressure difference across a curved interface (i.e., dynamic capillary pressure) can be directly obtained. We also show that dynamic capillary force should be properly evaluated in the micro-tube experiment in order to obtain the actual pressure difference across the microtube.

  15. A data base and analysis program for shuttle main engine dynamic pressure measurements. Appendix B: Data base plots for SSME tests 901-290 through 901-414

    Science.gov (United States)

    Coffin, T.

    1986-01-01

    A dynamic pressure data base and data base management system developed to characterize the Space Shuttle Main Engine (SSME) dynamic pressure environment is described. The data base represents dynamic pressure measurements obtained during single engine hot firing tesets of the SSME. Software is provided to permit statistical evaluation of selected measurements under specified operating conditions. An interpolation scheme is also included to estimate spectral trends with SSME power level. Flow dynamic environments in high performance rocket engines are discussed.

  16. A data base and analysis program for shuttle main engine dynamic pressure measurements. Appendix C: Data base plots for SSME tests 902-214 through 902-314

    Science.gov (United States)

    Coffin, T.

    1986-01-01

    A dynamic pressure data base and data base management system developed to characterize the Space Shuttle Main Engine (SSME) dynamic pressure environment is reported. The data base represents dynamic pressure measurements obtained during single engine hot firing tests of the SSME. Software is provided to permit statistical evaluation of selected measurements under specified operating conditions. An interpolation scheme is included to estimate spectral trends with SSME power level. Flow Dynamic Environments in High Performance Rocket Engines are described.

  17. Random perturbations of arterial blood pressure for the assessment of dynamic cerebral autoregulation

    International Nuclear Information System (INIS)

    Katsogridakis, Emmanuel; Panerai, Ronney B; Bush, Glen; Fan, Lingke; Birch, Anthony A; Simpson, David M; Allen, Robert; Potter, John F

    2012-01-01

    The assessment of cerebral autoregulation (CA) relies mostly on methods that modulate arterial blood pressure (ABP). Despite advances, the gold standard of assessment remains elusive and clinical practicality is limited. We investigate a novel approach of assessing CA, consisting of the intermittent application of thigh cuffs using square wave sequences. Our aim was to increase ABP variability whilst minimizing volunteer discomfort, thus improving assessment acceptability. Two random square wave sequences and two maximum pressure settings (80 and 150 mmHg) were used, corresponding to four manoeuvres that were conducted in random order after a baseline recording. The intermittent application of thigh cuffs resulted in an amplitude dependent increase in ABP (p = 0.001) and cerebral blood flow velocity (CBFV) variability (p = 0.026) compared to baseline. No statistically significant differences in mean heart rate or heart rate variability were observed (p = 0.108 and p = 0.350, respectively), suggesting that no significant sympathetic response was elicited. No significant differences in the CBFV step response were observed, suggesting no distortion of autoregulatory parameters resulted from the use of thigh cuffs. We conclude that pseudorandom binary sequences are an effective and safe alternative for increasing ABP variability. This new approach shows great promise as a tool for the robust assessment of CA. (paper)

  18. Structural phase transition and failure of nanographite sheets under high pressure: a molecular dynamics study

    International Nuclear Information System (INIS)

    Zhang Bin; Liang Yongcheng; Sun Huiyu

    2007-01-01

    Nanographite sheets under high compressive stresses at ambient temperature have been investigated through molecular dynamics simulations using the Tersoff-Brenner potential. Nanographite undergoes a soft to hard phase transition at a certain compressive stress, about 15 GPa. With increasing compressions, the bonding structures of nanographite are changed, interlayer sp 3 -bonds are formed, and nanographite transforms into a superhard carbon phase (SCP). Further compressions lead to the instabilities of the SCP. Although the detailed lattice structure of the SCP remains elusive, its compressive strength can approach 150 GPa, comparable to that of diamond. The maximum failure stresses of nanographite sheets are sensitive to the inter-and intra-layer interstices. Our results may explain paradoxical experimental results in the available literature

  19. Probabilistic modelling of the high-pressure arc cathode spot displacement dynamic

    CERN Document Server

    Coulombe, S

    2003-01-01

    A probabilistic modelling approach for the study of the cathode spot displacement dynamic in high-pressure arc systems is developed in an attempt to interpret the observed voltage fluctuations. The general framework of the model allows to define simple, probabilistic displacement rules, the so-called cathode spot dynamic rules, for various possible surface states (un-arced metal, arced, contaminated) and to study the resulting dynamic of the cathode spot displacements over one or several arc passages. The displacements of the type-A cathode spot (macro-spot) in a magnetically rotating arc using concentric electrodes made up of either clean or contaminated metal surfaces is considered. Experimental observations for this system revealed a 1/f sup - sup t sup i sup l sup d sup e sup 1 signature in the frequency power spectrum (FPS) of the arc voltage for anchoring arc conditions on the cathode (e.g. clean metal surface), while it shows a 'white noise' signature for conditions favouring a smooth movement (e.g. ox...

  20. Separation Dynamics of Controlled Internal Flow in an Adverse Pressure Gradient

    Science.gov (United States)

    Peterson, C. J.; Vukasinovic, B.; Glezer, A.

    2017-11-01

    The effects of fluidic actuation on the dynamic evolution of aggressive internal flow separation is investigated at speeds up to M = 0.4 within a constant-width diffuser branching off of a primary flow duct. It is shown that a spanwise array of fluidic actuators upstream of the separation actively controls the flow constriction (and losses) within the diffuser and consequently the local pressure gradient at its entrance. The effectiveness of the actuation, as may be measured by the increased flow rate that is diverted through the diffuser, scales with its flow rate coefficient. In the presence of actuation (0.7% mass fraction), the mass flow rate in the primary duct increases by 10% while the fraction of the diverted mass flow rate in the diffuser increases by more than 45%. The flow dynamics near separation in the absence and presence of actuation are characterized using high speed particle image velocimetry and analyzed using proper orthogonal and spectral decompositions. In particular, the spectral contents of the incipient boundary layer separation are compared in the absence and presence of actuation with emphasis on the changes in local dynamics near separation as the characteristic cross stream scale of the boundary layer increases with separation delay.

  1. Dynamic modeling and explicit/multi-parametric MPC control of pressure swing adsorption systems

    KAUST Repository

    Khajuria, Harish

    2011-01-01

    Pressure swing adsorption (PSA) is a flexible, albeit complex gas separation system. Due to its inherent nonlinear nature and discontinuous operation, the design of a model based PSA controller, especially with varying operating conditions, is a challenging task. This work focuses on the design of an explicit/multi-parametric model predictive controller for a PSA system. Based on a system involving four adsorbent beds separating 70% H2, 30% CH4 mixture into high purity hydrogen, the key controller objective is to fast track H2 purity to a set point value of 99.99%. To perform this task, a rigorous and systematic framework is employed. First, a high fidelity detailed dynamic model is built to represent the system\\'s real operation, and understand its dynamic behavior. The model is then used to derive appropriate linear models by applying suitable system identification techniques. For the reduced models, a model predictive control (MPC) step is formulated, where latest developments in multi-parametric programming and control are applied to derive a novel explicit MPC controller. To test the performance of the designed controller, closed loop simulations are performed where the dynamic model is used as the virtual plant. Comparison studies of the derived explicit MPC controller are also performed with conventional PID controllers. © 2010 Elsevier Ltd. All rights reserved.

  2. Effects of a solar wind dynamic pressure increase in the magnetosphere and in the ionosphere

    Directory of Open Access Journals (Sweden)

    L. Juusola

    2010-10-01

    Full Text Available On 17 July 2005, an earthward bound north-south oriented magnetic cloud and its sheath were observed by the ACE, SoHO, and Wind solar wind monitors. A steplike increase of the solar wind dynamic pressure during northward interplanetary magnetic field conditions was related to the leading edge of the sheath. A timing analysis between the three spacecraft revealed that this front was not aligned with the GSE y-axis, but had a normal (−0.58,0.82,0. Hence, the first contact with the magnetosphere occurred on the dawnside rather than at the subsolar point. Fortunately, Cluster, Double Star 1, and Geotail happened to be distributed close to the magnetopause in this region, which made it possible to closely monitor the motion of the magnetopause. After the pressure front had impacted the magnetosphere, the magnetopause was perceived first to move inward and then immediately to correct the overshoot by slightly expanding again such that it ended up between the Cluster constellation with Double Star 1 inside the magnetosphere and Geotail in the magnetosheath. Coinciding with the inward and subsequent outward motion, the ground-based magnetic field at low latitudes was observed to first strengthen and then weaken. As the magnetopause position stabilised, so did the ground-based magnetic field intensity, settling at a level slightly higher than before the pressure increase. Altogether the magnetopause was moving for about 15 min after its first contact with the front. The high latitude ionospheric signature consisted of two parts: a shorter (few minutes and less intense preliminary part comprised a decrease of AL and a negative variation of PC. A longer (about ten minutes and more intense main part of the signature comprised an increase of AU and a positive variation of PC. Measurements from several ground-based magnetometer networks (210 MM CPMN, CANMOS, CARISMA, GIMA, IMAGE, MACCS, SuperMAG, THEMIS, TGO were used to obtain information on the

  3. Cardiovascular fluid dynamics. Methods for flow and pressure field analysis from magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ebbers, T.

    2001-01-01

    Cardiovascular blood flow is highly complex and incompletely understood. Blood flow patterns are expected to influence the opening and closing of normal and prosthetic heart valves, the efficiency of cardiac filling and ejection, and the resistance to thrombus formation within the heart. Conventional diagnostic techniques are poorly suited to the study of the three-dimensional (3D) blood flow patterns in the heart chambers and large vessels. Noninvasive methods have also been inadequate in studying intracardiac pressure differences, which are the driving force of flow and are critical in the evaluation of many cardiovascular abnormalities. This thesis focuses on the development of non-invasive methods for analysis of 3D cardiovascular blood flow. Simultaneous study of cardiovascular fluid dynamics allowed knowledge exchange across the two disciplines, facilitating the development process and broadening the applicability of the methods. A time-resolved 3D phase-contrast Magnetic Resonance Imaging (MRI) technique was used to acquire the velocity vector field in a 3D volume encompassing the entire heart or a large vessel. Cardiovascular blood flow patterns were visualized by use of particle traces, which revealed, for instance, vortical flow patterns in the left atrium. By applying the Navier-Stokes equation along a user-defined line in the 3D velocity vector field, the relative pressure could be obtained as an excellent supplement to the flow pattern visualization. Using a delineation of the blood pool, the time-varying 3D relative pressure field in the human left ventricle was obtained from the velocity field by use of the pressure Poisson equation. A delineation of the heart muscle, a task that is almost impossible to perform on 3D MRI either automatically or manually, was also achieved by usage of particle traces. This segmentation allows automatic calculation of the 3D relative pressure field, as well as calculation of well-established parameters such as

  4. Cardiovascular fluid dynamics. Methods for flow and pressure field analysis from magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ebbers, T

    2001-05-01

    Cardiovascular blood flow is highly complex and incompletely understood. Blood flow patterns are expected to influence the opening and closing of normal and prosthetic heart valves, the efficiency of cardiac filling and ejection, and the resistance to thrombus formation within the heart. Conventional diagnostic techniques are poorly suited to the study of the three-dimensional (3D) blood flow patterns in the heart chambers and large vessels. Noninvasive methods have also been inadequate in studying intracardiac pressure differences, which are the driving force of flow and are critical in the evaluation of many cardiovascular abnormalities. This thesis focuses on the development of non-invasive methods for analysis of 3D cardiovascular blood flow. Simultaneous study of cardiovascular fluid dynamics allowed knowledge exchange across the two disciplines, facilitating the development process and broadening the applicability of the methods. A time-resolved 3D phase-contrast Magnetic Resonance Imaging (MRI) technique was used to acquire the velocity vector field in a 3D volume encompassing the entire heart or a large vessel. Cardiovascular blood flow patterns were visualized by use of particle traces, which revealed, for instance, vortical flow patterns in the left atrium. By applying the Navier-Stokes equation along a user-defined line in the 3D velocity vector field, the relative pressure could be obtained as an excellent supplement to the flow pattern visualization. Using a delineation of the blood pool, the time-varying 3D relative pressure field in the human left ventricle was obtained from the velocity field by use of the pressure Poisson equation. A delineation of the heart muscle, a task that is almost impossible to perform on 3D MRI either automatically or manually, was also achieved by usage of particle traces. This segmentation allows automatic calculation of the 3D relative pressure field, as well as calculation of well-established parameters such as

  5. Synthesis of microparticles with complex compositions in a xenon high-pressure chamber (550 bar) under irradiation by braking radiation with a maximum energy of 10 MeV

    International Nuclear Information System (INIS)

    Didyk, A.Yu.; Gul'bekyan, G.G.; Myshinskiy, G.V.; Sabel'nikov, A.V.

    2016-01-01

    Natural xenon at a pressure of 550 bar in a high pressure chamber (XeHPC) was irradiated during 2,59 · 10 5 s by bremsstrahlung with a maximum energy of 10 MeV at the electron accelerator MT-25 microtron with an electron beam intensity of 20–22μA. The final electron fluence was 4.74 · 10 19 electrons. The growth of pressure versus temperature during the stationary exposure mode grew at first up to 620 bar and then dropped to 550 bar. After opening of the XeHPC both of the internal chambers with all the structures, but without gas, were measured using a γ-germanium detector (Canberra) during 15 h each for measurement of the background and short-lived isotopes. During a visual inspection of the interior surfaces of the XeHPC inner assembly, a visible coating of substantial thickness and greenish-yellowish color was observed. The research carried out by scanning electron microscopy (SEM) and X-ray micro-probe analysis (XMPA) allowed us to determine the elemental composition of synthesized particles. [ru

  6. Probabilistic modelling of the high-pressure arc cathode spot displacement dynamic

    International Nuclear Information System (INIS)

    Coulombe, Sylvain

    2003-01-01

    A probabilistic modelling approach for the study of the cathode spot displacement dynamic in high-pressure arc systems is developed in an attempt to interpret the observed voltage fluctuations. The general framework of the model allows to define simple, probabilistic displacement rules, the so-called cathode spot dynamic rules, for various possible surface states (un-arced metal, arced, contaminated) and to study the resulting dynamic of the cathode spot displacements over one or several arc passages. The displacements of the type-A cathode spot (macro-spot) in a magnetically rotating arc using concentric electrodes made up of either clean or contaminated metal surfaces is considered. Experimental observations for this system revealed a 1/f -tilde1 signature in the frequency power spectrum (FPS) of the arc voltage for anchoring arc conditions on the cathode (e.g. clean metal surface), while it shows a 'white noise' signature for conditions favouring a smooth movement (e.g. oxide-contaminated cathode surface). Through an appropriate choice of the local probabilistic displacement rules, the model is able to correctly represent the dynamic behaviours of the type-A cathode spot, including the FPS for the arc elongation (i.e. voltage) and the arc erosion trace formation. The model illustrates that the cathode spot displacements between re-strikes can be seen as a diffusion process with a diffusion constant which depends on the surface structure. A physical interpretation for the jumping probability associated with the re-strike event is given in terms of the electron emission processes across dielectric contaminants present on the cathode surface

  7. Dynamics of pollutant indicators during flood events in a small river under strong anthropogenic pressures

    Science.gov (United States)

    Brion, Natacha; Carbonnel, Vincent; Elskens, Marc; Claeys, Philippe; Verbanck, Michel A.

    2017-04-01

    In densely populated regions, human activities profoundly modify natural water circulation as well as water quality, with increased hydrological risks (floods, droughts,…) and chemical hazards (untreated sewage releases, industrial pollution,…) as consequence. In order to assess water and pollutants dynamics and their mass-balance in strongly modified river system, it is important to take into account high flow events as a significant fraction of water and pollutants loads may occur during these short events which are generally underrepresented in classical mass balance studies. A good example of strongly modified river systems is the Zenne river in and around the city of Brussels (Belgium).The Zenne River (Belgium) is a rather small but dynamic rain fed river (about 10 m3/s in average) that is under the influence of strong contrasting anthropogenic pressures along its stretch. While the upstream part of its basin is rather characterized by agricultural land-use, urban and industrial areas dominate the downstream part. In particular, the city of Brussels (1.1M inhabitants) discharges in the Zenne River amounts of wastewater that are large compared to the natural riverine flow. In order to assess water and pollutants dynamics and their mass-balance in the Zenne hydrographic network, we followed water flows and concentrations of several water quality tracers during several flood episodes with an hourly frequency and at different locations along the stretch of the River. These parameters were chosen as indicators of a whole range of pollutions and anthropogenic activities. Knowledge of the high-frequency pollutants dynamics during floods is required for establishing accurate mass-balances of these elements. We thus report here the dynamics of selected parameters during entire flood events, from the baseline to the decreasing phase and at hourly frequency. Dynamics at contrasting locations, in agricultural or urban environments are compared. In particular, the

  8. Geosynchronous magnetic field responses to fast solar wind dynamic pressure enhancements: MHD field model

    Directory of Open Access Journals (Sweden)

    T. R. Sun

    2012-08-01

    Full Text Available We performed global MHD simulations of the geosynchronous magnetic field in response to fast solar wind dynamic pressure (Pd enhancements. Taking three Pd enhancement events in 2000 as examples, we found that the main features of the total field B and the dominant component Bz can be efficiently predicted by the MHD model. The predicted B and Bz varies with local time, with the highest level near noon and a slightly lower level around mid-night. However, it is more challenging to accurately predict the responses of the smaller component at the geosynchronous orbit (i.e., Bx and By. In contrast, the limitations of T01 model in predicting responses to fast Pd enhancements are presented.

  9. Molecular dynamics simulation of ZnO wurtzite phase under high and low pressures and temperatures

    Science.gov (United States)

    Chergui, Y.; Aouaroun, T.; Hadley, M. J.; Belkada, R.; Chemam, R.; Mekki, D. E.

    2017-11-01

    Isothermal and isobaric ensembles behaviours of ZnO wurtzite phase have been investigated, by parallel molecular dynamics method and using Buckingham potential, which contains long-range Coulomb, repulsive exponential, and attractive dispersion terms. To conduct our calculations, we have used dl_poly 4 software, under which the method is implemented. We have examined the influence of the temperature and pressure on molar volume in the ranges of 300-3000 K and 0-200 GPa. Isothermal-isobaric relationships, fluctuations, standard error, equilibrium time, molar volume and its variation versus time are predicted and analyzed. Our results are close to available experimental data and theoretical results.

  10. Molecular Dynamics Simulation of Water Nanodroplets on Silica Surfaces at High Air Pressures

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Jaffe, Richard Lawrence; Walther, Jens Honore

    2010-01-01

    e.g., nanobubbles. In the present work we study the role of air on the wetting of hydrophilic systems. We conduct molecular dynamics simulations of a water nanodroplet on an amorphous silica surface at different air pressures. The interaction potentials describing the silica, water, and air......Silicon dioxides-water systems are abundant in nature and play fundamental roles in a diversity of novel science and engineering applications. Although extensive research has been devoted to study the nature of the interaction between silica and water a complete understanding of the system has...... perform extensive simulations of the water- air equilibrium and calibrate the water-air interaction to match the experimental solubility of N2 and O2 in water. For the silica-water system we calibrate the water-silica interaction to match the experimental contact angle of 27º. We subsequently study...

  11. Population dynamics and in vitro antibody pressure of porcine parvovirus indicate a decrease in variability.

    Science.gov (United States)

    Streck, André Felipe; Homeier, Timo; Foerster, Tessa; Truyen, Uwe

    2013-09-01

    To estimate the impact of porcine parvovirus (PPV) vaccines on the emergence of new phenotypes, the population dynamic history of the virus was calculated using the Bayesian Markov chain Monte Carlo method with a Bayesian skyline coalescent model. Additionally, an in vitro model was performed with consecutive passages of the 'Challenge' strain (a virulent field strain) and NADL2 strain (a vaccine strain) in a PK-15 cell line supplemented with polyclonal antibodies raised against the vaccine strain. A decrease in genetic diversity was observed in the presence of antibodies in vitro or after vaccination (as estimated by the in silico model). We hypothesized that the antibodies induced a selective pressure that may reduce the incidence of neutral selection, which should play a major role in the emergence of new mutations. In this scenario, vaccine failures and non-vaccinated populations (e.g. wild boars) may have an important impact in the emergence of new phenotypes.

  12. Computational Fluid Dynamic Pressure Drop Estimation of Flow between Parallel Plates

    Energy Technology Data Exchange (ETDEWEB)

    Son, Hyung Min; Yang, Soo Hyung; Park, Jong Hark [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Many pool type reactors have forced downward flows inside the core during normal operation; there is a chance of flow inversion when transients occur. During this phase, the flow undergo transition between turbulent and laminar regions where drastic changes take place in terms of momentum and heat transfer, and the decrease in safety margin is usually observed. Additionally, for high Prandtl number fluids such as water, an effect of the velocity profile inside the channel on the temperature distribution is more pronounced over the low Prandtl number ones. This makes the checking of its pressure drop estimation accuracy less important, assuming the code verification is complete. With an advent of powerful computer hardware, engineering applications of computational fluid dynamics (CFD) methods have become quite common these days. Especially for a fully-turbulent and single phase convective heat transfer, the predictability of the commercial codes has matured enough so that many well-known companies adopt those to accelerate a product development cycle and to realize an increased profitability. In contrast to the above, the transition models for the CFD code are still under development, and the most of the models show limited generality and prediction accuracy. Unlike the system codes, the CFD codes estimate the pressure drop from the velocity profile which is obtained by solving momentum conservation equations, and the resulting friction factor can be a representative parameter for a constant cross section channel flow. In addition, the flow inside a rectangular channel with a high span to gap ratio can be approximated by flow inside parallel plates. The computational fluid dynamics simulation on the flow between parallel plates showed reasonable prediction capability for the laminar and the turbulent regime.

  13. Dynamic genetic linkage of intermediate blood pressure phenotypes during postural adaptations in a founder population

    Science.gov (United States)

    Arenas, I. A.; Tremblay, J.; Deslauriers, B.; Sandoval, J.; Šeda, O.; Gaudet, D.; Merlo, E.; Kotchen, T.; Cowley, A. W.

    2013-01-01

    Blood pressure (BP) is a dynamic phenotype that varies rapidly to adjust to changing environmental conditions. Standing upright is a recent evolutionary trait, and genetic factors that influence postural adaptations may contribute to BP variability. We studied the effect of posture on the genetics of BP and intermediate BP phenotypes. We included 384 sib-pairs in 64 sib-ships from families ascertained by early-onset hypertension and dyslipidemia. Blood pressure, three hemodynamic and seven neuroendocrine intermediate BP phenotypes were measured with subjects lying supine and standing upright. The effect of posture on estimates of heritability and genetic covariance was investigated in full pedigrees. Linkage was conducted on 196 candidate genes by sib-pair analyses, and empirical estimates of significance were obtained. A permutation algorithm was implemented to study the postural effect on linkage. ADRA1A, APO, CAST, CORIN, CRHR1, EDNRB, FGF2, GC, GJA1, KCNB2, MMP3, NPY, NR3C2, PLN, TGFBR2, TNFRSF6, and TRHR showed evidence of linkage with any phenotype in the supine position and not upon standing, whereas AKR1B1, CD36, EDNRA, F5, MMP9, PKD2, PON1, PPARG, PPARGC1A, PRKCA, and RET were specifically linked to standing phenotypes. Genetic profiling was undertaken to show genetic interactions among intermediate BP phenotypes and genes specific to each posture. When investigators perform genetic studies exclusively on a single posture, important genetic components of BP are missed. Supine and standing BPs have distinct genetic signatures. Standardized maneuvers influence the results of genetic investigations into BP, thus reflecting its dynamic regulation. PMID:23269701

  14. STRONG SOLAR WIND DYNAMIC PRESSURE PULSES: INTERPLANETARY SOURCES AND THEIR IMPACTS ON GEOSYNCHRONOUS MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    Zuo, Pingbing; Feng, Xueshang; Wang, Yi; Xie, Yanqiong; Xu, Xiaojun

    2015-01-01

    In this investigation, we first present a statistical result of the interplanetary sources of very strong solar wind dynamic pressure pulses (DPPs) detected by WIND during solar cycle 23. It is found that the vast majority of strong DPPs reside within solar wind disturbances. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears to be no systematic investigations on the response of GMFs to negative DPPs. Here, we study both the decompression effects of very strong negative DPPs and the compression from strong positive DPPs on GMFs at different magnetic local time sectors. In response to the decompression of strong negative DPPs, GMFs on the dayside near dawn and near dusk on the nightside, are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of the events when GOES is located at the midnight sector, the GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that under certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Here, we find that a stronger pressure enhancement may have a higher probability of producing the exceptional depression of GMF at the midnight region. Statistically, both the decompression effect of strong negative DPPs and the compression effect of strong positive DPPs depend on the magnetic local time, which are stronger at the noon sector

  15. Repeatability and Reproducibility of Intraocular Pressure and Dynamic Corneal Response Parameters Assessed by the Corvis ST

    Directory of Open Access Journals (Sweden)

    Bernardo T. Lopes

    2017-01-01

    Full Text Available Purpose. To assess the repeatability and reproducibility of dynamic corneal response parameters measured by the Corvis ST (Oculus, Wetzlar, Germany. Methods. One eye randomly selected from 32 healthy volunteers was examined by the Corvis ST. Three different devices were used in an alternated random order for taking three measurements at each device in each subject. Standard intraocular pressure (IOP, the biomechanical-compensated IOP (bIOP, and DCR parameters were evaluated. The within-subject standard deviation (ζw and coefficient of variation (CV were assessed. Results. Regarding pressure indices, the ζw was below 1 mmHg for repeatability (0.98 for IOP and 0.89 for bIOP and the CV was 6.6% for IOP and 6.1% for bIOP. For reproducibility, the ζw was around 1 mmHg (1.12 for IOP and 1.05 for bIOP and the CV was 7.6% for IOP and 7.1% for bIOP. Most of DCR indices presented CV for repeatability below 4%. For reproducibility, the CV of most of the indices were below 6%. The deformation amplitude (DA ratio in 1 mm and integrated radius were below 4% (1.2% and 3.8%, resp.. Conclusions. The Corvis ST showed good precision (repeatability and reproducibility for IOP measurements and for DCR in healthy eyes.

  16. STRONG SOLAR WIND DYNAMIC PRESSURE PULSES: INTERPLANETARY SOURCES AND THEIR IMPACTS ON GEOSYNCHRONOUS MAGNETIC FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Pingbing; Feng, Xueshang; Wang, Yi [SIGMA Weather Group, State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing (China); Xie, Yanqiong [College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing (China); Xu, Xiaojun, E-mail: pbzuo@spaceweather.ac.cn, E-mail: fengx@spaceweather.ac.cn [Space Science Institute, Macau University of Science and Technology, Macao (China)

    2015-10-20

    In this investigation, we first present a statistical result of the interplanetary sources of very strong solar wind dynamic pressure pulses (DPPs) detected by WIND during solar cycle 23. It is found that the vast majority of strong DPPs reside within solar wind disturbances. Although the variabilities of geosynchronous magnetic fields (GMFs) due to the impact of positive DPPs have been well established, there appears to be no systematic investigations on the response of GMFs to negative DPPs. Here, we study both the decompression effects of very strong negative DPPs and the compression from strong positive DPPs on GMFs at different magnetic local time sectors. In response to the decompression of strong negative DPPs, GMFs on the dayside near dawn and near dusk on the nightside, are generally depressed. But near the midnight region, the responses of GMF are very diverse, being either positive or negative. For part of the events when GOES is located at the midnight sector, the GMF is found to abnormally increase as the result of magnetospheric decompression caused by negative DPPs. It is known that under certain conditions magnetic depression of nightside GMFs can be caused by the impact of positive DPPs. Here, we find that a stronger pressure enhancement may have a higher probability of producing the exceptional depression of GMF at the midnight region. Statistically, both the decompression effect of strong negative DPPs and the compression effect of strong positive DPPs depend on the magnetic local time, which are stronger at the noon sector.

  17. Ultrafast dynamics in CeTe{sub 3} near the pressure-induced charge-density-wave transition

    Energy Technology Data Exchange (ETDEWEB)

    Tauch, Jonas; Obergfell, Manuel [Department of Physics and Center for Applied Photonics, University of Konstanz (Germany); Schaefer, Hanjo [Department of Physics and Center for Applied Photonics, University of Konstanz (Germany); Institute of Physics, Ilmenau University of Technology (Germany); Demsar, Jure [Department of Physics and Center for Applied Photonics, University of Konstanz (Germany); Institute of Physics, Ilmenau University of Technology (Germany); Institute of Physics, Johannes Gutenberg-University Mainz (Germany); Giraldo, Paula; Fisher, Ian R. [Geballe Laboratory for Advanced Materials and Department of Applied Physics, Stanford University (United States); Pashkin, Alexej [Department of Physics and Center for Applied Photonics, University of Konstanz (Germany); Helmholtz-Zentrum Dresden-Rossendorf (Germany)

    2015-07-01

    Femtosecond pump-probe spectroscopy is an efficient tool for studying ultrafast dynamics in strongly correlated electronic systems, in particular, compounds with a charge-density-wave (CDW) order. Application of external pressure often leads to a suppression of a CDW state due to an impairment of the Fermi surface nesting. We combine time-resolved optical spectroscopy and diamond anvil cell technology to study electron and lattice dynamics in tri-telluride compound CeTe{sub 3}. Around pressures of 4 GPa we observe a gradual vanishing of the relaxation process related to the recombination of the photoexcited quasiparticles. The coherent oscillations of the phonon modes coupled to the CDW order parameter demonstrate even more dramatic suppression with increasing pressure. These observations clearly indicate a transition into the metallic state of CeTe{sub 3} induced by the external pressure.

  18. Effects of the van der Waals Force on the Dynamics Performance for a Micro Resonant Pressure Sensor

    Directory of Open Access Journals (Sweden)

    Lizhong Xu

    2016-01-01

    Full Text Available The micro resonant pressure sensor outputs the frequency signals where the distortion does not take place in a long distance transmission. As the dimensions of the sensor decrease, the effects of the van der Waals forces should be considered. Here, a coupled dynamic model of the micro resonant pressure sensor is proposed and its coupled dynamic equation is given in which the van der Waals force is considered. By the equation, the effects of the van der Waals force on the natural frequencies and vibration amplitudes of the micro resonant pressure sensor are investigated. Results show that the natural frequency and the vibrating amplitudes of the micro resonant pressure sensor are affected significantly by van der Waals force for a small clearance between the film and the base plate, a small initial tension stress of the film, and some other conditions.

  19. Flux transfer events at the dayside magnetopause: Transient reconnection or magnetosheath dynamic pressure pulses?

    International Nuclear Information System (INIS)

    Lockwood, M.

    1991-01-01

    The suggestion is discussed that characteristic particle and field signatures at the dayside magnetopause, termed flux transfer events, are, in at least some cases, due to transient solar wind and/or magnetosheath dynamic pressure increases, rather than time-dependent magnetic reconnection. It is found that most individual cases of FTEs observed by a single spacecraft can, at least qualitatively, be explained by the pressure pulse model, provided a few rather unsatisfactory features of the predictions are explained in terms of measurement uncertainties. The most notable exceptions to this are some two-regime observations made by two satellites simultaneously, one on either side of the magnetopause. However, this configuration has not been frequently achieved for sufficient time, such observations are rare, and the relevant tests are still not conclusive. The strongest evidence that FTEs are produced by magnetic reconnection is the dependence of their occurence on the north-south component of the interplanetary magnetic field (IMF) or of the magnetosheath field. The pressure pulse model provides an explanation for this dependence in the case of magnetosheath FTEs, but does not apply to magnetosphere FTEs. The only surveys of magnetosphere FTEs have not employed the simultaneous IMF, but have shown that their occurence is strongly dependent on the north-south component of the magnetosheath field, as observed earlier/later on the same magnetopause crossing. This paper employs statistics on the variability of the IMF orientation to investigate the effects of IMF changes between the times of the magnetosheath and FTE observations. It is shown that the previously published results are consistent with magnetospheric FTEs being entirely absent when the magentosheath field is northward

  20. IN-CYLINDER MASS FLOW ESTIMATION AND MANIFOLD PRESSURE DYNAMICS FOR STATE PREDICTION IN SI ENGINES

    Directory of Open Access Journals (Sweden)

    Wojnar Sławomir

    2014-06-01

    Full Text Available The aim of this paper is to present a simple model of the intake manifold dynamics of a spark ignition (SI engine and its possible application for estimation and control purposes. We focus on pressure dynamics, which may be regarded as the foundation for estimating future states and for designing model predictive control strategies suitable for maintaining the desired air fuel ratio (AFR. The flow rate measured at the inlet of the intake manifold and the in-cylinder flow estimation are considered as parts of the proposed model. In-cylinder flow estimation is crucial for engine control, where an accurate amount of aspired air forms the basis for computing the manipulated variables. The solutions presented here are based on the mean value engine model (MVEM approach, using the speed-density method. The proposed in-cylinder flow estimation method is compared to measured values in an experimental setting, while one-step-ahead prediction is illustrated using simulation results.

  1. Dynamic airway pressure-time curve profile (Stress Index): a systematic review.

    Science.gov (United States)

    Terragni, Pierpaolo; Bussone, Guido; Mascia, Luciana

    2016-01-01

    The assessment of respiratory mechanics at the bedside is necessary in order to identify the most protective ventilatory strategy. Indeed in the last 20 years, adverse effects of positive ventilation to the lung structures have led to a reappraisal of the objectives of mechanical ventilation. The ventilator setting requires repeated readjustment over the period of mechanical ventilation dependency and careful respiratory monitoring to minimize the risks, preventing further injury and permitting the lung and airways healing. Among the different methods that have been proposed and validated, the analysis of dynamic P-t curve (named Stress Index, SI) represents an adequate tool available at the bedside, repeatable and, therefore, able to identify the amount of overdistension occurring in the daily clinical practice, when modifying positive end-expiratory pressure. In this review we will analyze the evidence that supports respiratory mechanics assessment at the bedside and the application of the dynamic P/t curve profile (SI) to optimize protective ventilation in patients with acute respiratory failure.

  2. Experimental and Numerical Evaluation of Rock Dynamic Test with Split-Hopkinson Pressure Bar

    Directory of Open Access Journals (Sweden)

    Kang Peng

    2017-01-01

    Full Text Available Feasibility of rock dynamic properties by split-Hopkinson pressure bar (SHPB was experimentally and numerically evaluated with ANSYS/LS-DYNA. The effects of different diameters, different loading rates, and different propagation distances on wave dispersion of input bars in SHPB with rectangle and half-sine wave loadings were analyzed. The results show that the dispersion effect on the diameter of input bar, loading rate, and propagation distance under half-sine waveform loading is ignorable compared with the rectangle wave loading. Moreover, the degrees of stress uniformity under rectangle and half-sine input wave loadings are compared in SHPB tests, and the time required for stress uniformity is calculated under different above-mentioned loadings. It is confirmed that the stress uniformity can be realized more easily using the half-sine pulse loading compared to the rectangle pulse loading, and this has significant advantages in the dynamic test of rock-like materials. Finally, the Holmquist-Johnson-Concrete constitutive model is introduced to simulate the failure mechanism and failure and fragmentation characteristics of rock under different strain rates. And the numerical results agree with that obtained from the experiment, which confirms the effectiveness of the model and the method.

  3. Dynamic aerofracture or hydrofracture of dense granular packing: pressure and viscosity control of the fracture patterns

    Science.gov (United States)

    Niebling, Michael J.; Toussaint, Renaud; Flekkøy, Eirik G.; Jørgen Måløy, Knut

    2013-04-01

    Stress induced by fluid or gases can cause diverse materials to break and fracture. Such hydraulic fractures are a natural and common phenomenon in the field of volcanism and are artificially initiated to enhance the recovery of natural gas and mineral oil by fracturing the reservoir rock with pressurized fluids. A procedure also known as fracking. Recently a new perspective on hydrofractures was added with the storage of supercritical CO2. In this respect two scenarios are considered. First it is one option to inject CO2 into existing hydrofractures, and second the injection of the CO2 can create additional fractures. The typical components for such fractures are a porous material and a compressible gas. The dynamics of such fractures and displacement patterns are simulated and studied in a rectangular Hele-Shaw cell filled with a dense but permeable two-dimensional granular layer. The model used, mixing highly deformable solid and fluid components, can simulate sedimentation problems [1,2], as well as hydrofracture or aerofracture ones. The emerging displacement patterns and fractures variate according to the properties of the injected fluid or gas and the characteristics of the granular phase [3]. The physics behind these variations is discussed and explained. The role of the fluid viscosity and system size shows to lead to a transition from fracturing to compaction, depending on the dynamics of convection versus diffusion of overpressure. The dependence of the obtained patterns on the injection pressure is also explored [4]. References: [1] Niebling, M.J., E.G. Flekkøy, K.J. Måløy, R. Toussaint, Sedimentation instabilities: impact of the fluid compressibility and viscosity, Phys. Rev. E 82, 051302, 2010. doi: 10.1103/PhysRevE.82.051302 [2] Niebling, M.J., E.G. Flekkøy, K.J. Måløy, R. Toussaint, Mixing of a granular layer falling through a fluid, Phys. Rev. E 82, 011301 (2010) doi: 10.1103/PhysRevE.82.011301 [3] Niebling, M., R. Toussaint, E.G. Flekk

  4. Influence of cerebrovascular resistance on the dynamic relationship between blood pressure and cerebral blood flow in humans.

    Science.gov (United States)

    Smirl, J D; Tzeng, Y C; Monteleone, B J; Ainslie, P N

    2014-06-15

    We examined the hypothesis that changes in the cerebrovascular resistance index (CVRi), independent of blood pressure (BP), will influence the dynamic relationship between BP and cerebral blood flow in humans. We altered CVRi with (via controlled hyperventilation) and without [via indomethacin (INDO, 1.2 mg/kg)] changes in PaCO2. Sixteen subjects (12 men, 27 ± 7 yr) were tested on two occasions (INDO and hypocapnia) separated by >48 h. Each test incorporated seated rest (5 min), followed by squat-stand maneuvers to increase BP variability and improve assessment of the pressure-flow dynamics using linear transfer function analysis (TFA). Beat-to-beat BP, middle cerebral artery velocity (MCAv), posterior cerebral artery velocity (PCAv), and end-tidal Pco2 were monitored. Dynamic pressure-flow relations were quantified using TFA between BP and MCAv/PCAv in the very low and low frequencies through the driven squat-stand maneuvers at 0.05 and 0.10 Hz. MCAv and PCAv reductions by INDO and hypocapnia were well matched, and CVRi was comparably elevated (P flow dynamics. These findings are consistent with the concept of CVRi being a key factor that should be considered in the correct interpretation of cerebral pressure-flow dynamics as indexed using TFA metrics. Copyright © 2014 the American Physiological Society.

  5. Effect of high hydrostatic pressure and high dynamic pressure on stability and rheological properties of model oil-in-water emulsions

    Science.gov (United States)

    Bigikocin, Erman; Mert, Behic; Alpas, Hami

    2011-09-01

    Both static and dynamic high pressure applications provide interesting modifications in food structures which lead to new product formulations. In this study, the effects of two different treatments, high hydrostatic pressure (HHP) and high dynamic pressure (HDP), on oil-in-water emulsions were identified and compared. Microfluidization was selected from among the HDP homogenization techniques. The performance of each process was analyzed in terms of rheological modifications and emulsion stability improvements compared with the coarse emulsions. The stability of the emulsions was determined comparatively by using an analytical photo-centrifuge device employing novel analysis technology. Whey protein isolate (WPI) in combination with a food polysaccharide (xanthan gum, guar gum or locust bean gum) were used as emulsifying and stabilizing ingredients. The effective disruption of oil droplets and the degradation of polysaccharides by the shear forces under high pressure in HDP microfluidization yielded finer emulsions with lower viscosities, leading to distinctive improvements in emulsion stability. On the other hand, improvements in stability obtained with HHP treatment were due to the thickening of the emulsions mainly induced by protein unfolding. The corresponding increases in viscosity were intensified in emulsion formulations containing higher oil content. Apart from these, HHP treatment was found to be relatively more contributive to the enhancements in viscoelastic properties.

  6. A data base and analysis program for shuttle main engine dynamic pressure measurements. Appendix F: Data base plots for SSME tests 750-120 through 750-200

    Science.gov (United States)

    Coffin, T.

    1986-01-01

    A dynamic pressure data base and data base management system developed to characterize the Space Shuttle Main Engine (SSME) dynamic pressure environment is presented. The data base represents dynamic pressure measurements obtained during single engine hot firing tests of the SSME. Software is provided to permit statistical evaluation of selected measurements under specified operating conditions. An interpolation scheme is also included to estimate spectral trends with SSME power level.

  7. Effect of fuel assembly mechanical design changes on dynamic response of reactor pressure vessel system under extreme loadings

    International Nuclear Information System (INIS)

    Bhandari, D.R.; Hankinson, M.F.

    1993-01-01

    This paper presents the results of a study to assess the effect of fuel assembly mechanical design changes on the dynamic response of a pressurized water reactor vessel and reactor internals under Loss-Of-Coolant Accident (LOCA) conditions. The results of this study show that the dynamic response of the reactor vessel internals and the core under extreme loadings, such as LOCA, is very sensitive to fuel assembly mechanical design changes. (author)

  8. Stereofractographic investigation of static start and dynamic jump of a fatigue crack in pressure vessel steel

    International Nuclear Information System (INIS)

    Stepanenko, V.A.; Shtukaturova, A.S.; Yasnij, P.V.; AN Ukrainskoj SSR, Kiev. Inst. Problem Prochnosti)

    1983-01-01

    Results of investigaytion have been discussed ipto the effect of certain temperature-force factors on regularities in the formation of stretch zones during the crack initiation static and transition zones at crack jumps in the process of cyclic loading. The 15Kh2NMFA pressure vessel steel has been investigated. The steel fracture toughnesKub(Ic) has been determined testing s the specimens for excentric stretching or a bending through an angle. It has been shown that transition zones in a front of fatique cracks at the jump beginning and end are formed through the shift mechanism owing to the material separation along the maximum failure zone contour, i.e. along the plastic zone contour in a crack vertex. This is the mait difference of regularities in the formation of the transition zones during fatique crack jumps from stretching zones formed through the break-away mechanism of crack vertex bluntness during its static move. It is noted that a final conclusion on the mechanism of transition zone formation during fartique crack jumps allows one to perform systematic investigation into the plastic zone configuration in a fatique crack verteX and stereofractographic measurement of two identically conjugate jump surfaces on opposite fractures of the same samples

  9. The dynamics of suspended particulate matter (SPM) and chlorophyll- a from intratidal to annual time scales in a coastal turbidity maximum

    NARCIS (Netherlands)

    van der Hout, C.M.; Witbaard, R.; Bergman, M.J.N.; Duineveld, G.C.A.; Rozemeijer, M.J.C.; Gerkema, T.

    2017-01-01

    The analysis of 1.8 years of data gives an understanding of the response to varying forcing of suspended particulate matter (SPM) and chlorophyll-a (CHL-a) in a coastal turbidity maximum zone (TMZ). Both temporal and vertical concentration variations in the near-bed layer (0–2 m) in the shallow (11

  10. The dynamics of suspended particulate matter (SPM) and chlorophyll-a from intratidal to annual time scales in a coastal turbidity maximum

    NARCIS (Netherlands)

    Hout, van der C.M.; Witbaard, R.; Bergman, M.J.N.; Duineveld, G.C.A.; Rozemeijer, M.J.C.; Gerkema, T.

    2017-01-01

    The analysis of 1.8. years of data gives an understanding of the response to varying forcing of suspended particulate matter (SPM) and chlorophyll-a (CHL-a) in a coastal turbidity maximum zone (TMZ). Both temporal and vertical concentration variations in the near-bed layer (0-2. m) in the shallow

  11. [Dynamic changes of the relationships between economic growth and environmental pressure in Gansu Province: a structural decomposition analysis].

    Science.gov (United States)

    Zhang, Zi-Long; Chen, Xing-Peng; Yang, Jing; Xue, Bing; Li, Yong-Jin

    2010-02-01

    Based on the ideology of macro environmental economics, a function of environmental pressure represented by pollutant emission was built, and the relative importance of the driving factors in the dynamic changes of the relationships between economic growth and environmental pressure in Gansu Province in 1990 - 2005 was analyzed by using structural decomposition analysis (SDA) model combining with 'refined Laspeyres' method. In the study period, the environmental pressure in the Province was mainly caused by the emission of waste gases and solids in the process of economic growth, and showed a rapid increasing trend at the late stage of the period. Population factor had less impact on the increase of this environmental pressure, while economic growth factor had obvious impact on it. Technological progress did mitigate, but could not offset the impact of economic growth factor, and the impacts of economic growth and technological factors on the environmental pressure differed with the kinds of pollutants.

  12. Molecular dynamics simulations of disjoining pressure effects in ultra-thin water films on a metal surface

    Science.gov (United States)

    Hu, Han; Sun, Ying

    2013-11-01

    Disjoining pressure, the excess pressure in an ultra-thin liquid film as a result of van der Waals interactions, is important in lubrication, wetting, flow boiling, and thin film evaporation. The classic theory of disjoining pressure is developed for simple monoatomic liquids. However, real world applications often utilize water, a polar liquid, for which fundamental understanding of disjoining pressure is lacking. In the present study, molecular dynamics (MD) simulations are used to gain insights into the effect of disjoining pressure in a water thin film. Our MD models were firstly validated against Derjaguin's experiments on gold-gold interactions across a water film and then verified against disjoining pressure in an argon thin film using the Lennard-Jones potential. Next, a water thin film adsorbed on a gold surface was simulated to examine the change of vapor pressure with film thickness. The results agree well with the classic theory of disjoining pressure, which implies that the polar nature of water molecules does not play an important role. Finally, the effects of disjoining pressure on thin film evaporation in nanoporous membrane and on bubble nucleation are discussed.

  13. Comparison of ionospheric convection and the transpolar potential before and after solar wind dynamic pressure fronts: implications for magnetospheric reconnection

    Science.gov (United States)

    Boudouridis, A.; Zesta, E.; Lyons, L. R.; Kim, H.-J.; Lummerzheim, D.; Wiltberger, M.; Weygand, J. M.; Ruohoniemi, J. M.; Ridley, A. J.

    2012-04-01

    The solar wind dynamic pressure, both through its steady state value and through its variations, plays an important role in the determination of the state of the terrestrial magnetosphere and ionosphere, its effects being only secondary to those of the Interplanetary Magnetic Field (IMF). Recent studies have demonstrated the significant effect solar wind dynamic pressure enhancements have on ionospheric convection and the transpolar potential. Further studies have shown a strong response of the polar cap boundary and thus the open flux content of the magnetosphere. These studies clearly illustrate the strong coupling of solar wind dynamic pressure fronts to the terrestrial magnetosphere-ionosphere system. We present statistical studies of the response of Super Dual Auroral Radar Network (SuperDARN) flows, and Assimilative Mapping of Ionospheric Electrodynamics (AMIE) transpolar potentials to sudden enhancements in solar wind dynamic pressure. The SuperDARN results show that the convection is enhanced within both the dayside and nightside ionosphere. The dayside response is more clear and immediate, while the response on the nightside is slower and more evident for low IMF By values. AMIE results show that the overall convection, represented by the transpolar potential, has a strong response immediately after an increase in pressure, with magnitude and duration modulated by the background IMF Bz conditions. We compare the location of the SuperDARN convection enhancements with the location and motion of the polar cap boundary, as determined by POLAR Ultra-Violet Imager (UVI) images and runs of the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic model for specific events. We find that the boundary exhibits a poleward motion after the increase in dynamic pressure. The enhanced ionospheric flows and the poleward motion of the boundary on the nightside are both signatures of enhanced tail reconnection, a conclusion that is reinforced by the observation of the

  14. A dynamic failure evaluation of a simplified digital control system of a nuclear power plant pressurizer

    International Nuclear Information System (INIS)

    Pinto, J.M.O.; Melo, P.F. Frutuoso e; Saldanha, P.L.C.

    2010-01-01

    Given the increasing use of digital systems in nuclear power plants, a specific approach to reliability and risk analysis has been required. The digital system reflects many interactions between hardware, software, process variables, and human actions. At the same time, the software, does not have a reliability approach as well-defined as the one existing for the other physical components of the system. Then, its reliability analysis is still under development due to difficulties arising from the complexity, flexibility and interactions present in such systems.The traditional approach of using fault trees is static and does not approach the dynamic interactions in such systems, such as delays in capture and processing information, memory, logic loops, system states, etc. It is necessary to find a reliability methodology that takes into account these issues without violating the existing requirements concerning safety analysis, such as: ability to distinguish between common-cause failures, availability of relevant information to users, like minimal cut sets, and failure probabilities as long as the possibility of incorporating the results into existing probabilistic safety assessments (PSA).One approach is to trace all the possible errors of the digital system through dynamic methodologies. The DFM (Dynamic Flow-graph Methodology) is one of the methodologies that better meets the requirements for modeling dynamic systems. It discretizes the most relevant variables of the analyzed system in states that reflect their behavior, sets the logic that connects them through decision tables and finally performs a system analysis, aiming, for example, the root causes (prime implicants) of a given top event of failure. Three aspects have been addressed, the modeling of the system itself, the incorporation of results to probabilistic safety analyses and identification of software failures.To illustrate the DFM, a simplified digital control system of a typical PWR pressurizer

  15. Effects of atmospheric pressure dynamics on abdominal aortic aneurysm rupture onset.

    Science.gov (United States)

    Opacic, Dragan; Ilic, Nikola; Sladojevic, Milos; Schönleitner, Patrick; Markovic, Dragan; Kostic, Dusan; Davidovic, Lazar

    2018-02-01

    The effect of atmospheric pressure (AP) on the onset of abdominal aorta aneurysm rupture (RAAA) remains an unanswered question. We have investigated the seasonal variation and the effect of AP dynamics on RAAA by analysing the largest series of intraoperatively confirmed RAAA. To realize this study we have performed a retrospective analysis of 546 patients with RAAA, operated within 503 days at the Clinic for vascular and endovascular surgery CCS between 1.1.2003 and 31.12.2012. AP data for Belgrade city were obtained from meteorological yearbooks published by the Republic Hydrometeorological Service of Serbia measured at the hydrometeorological station "Belgrade Observatory". Only patients with a residence within the extended Belgrade region, exposed to the similar AP values, were included in the analysis of the AP effect on RAAA. RAAA were observed more frequently during winter and autumn months but without significant difference in comparison to other seasons. Months with higher AP values were associated with a higher RAAA rate (p = 0.0008, R2 = 0.665). A similar trend was observed for the monthly AP variability (p = 0.0311, R2 = 0.374). Average AP values did not differ between days with and without RAAA. However, during the three and seven days periods preceding RAAA AP variability parameters were greater and AP was rising. Although these pressure differences are very small, higher AP values over longer periods of time as well as greater variability are associated with RAAA. The exact mechanism behind this association remains unclear. The postulation that low AP may precipitate RAAA based on the Laplace law should be discarded.

  16. Computational fluid dynamics (CFD) round robin benchmark for a pressurized water reactor (PWR) rod bundle

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Shin K., E-mail: paengki1@tamu.edu; Hassan, Yassin A.

    2016-05-15

    Highlights: • The capabilities of steady RANS models were directly assessed for full axial scale experiment. • The importance of mesh and conjugate heat transfer was reaffirmed. • The rod inner-surface temperature was directly compared. • The steady RANS calculations showed a limitation in the prediction of circumferential distribution of the rod surface temperature. - Abstract: This study examined the capabilities and limitations of steady Reynolds-Averaged Navier–Stokes (RANS) approach for pressurized water reactor (PWR) rod bundle problems, based on the round robin benchmark of computational fluid dynamics (CFD) codes against the NESTOR experiment for a 5 × 5 rod bundle with typical split-type mixing vane grids (MVGs). The round robin exercise against the high-fidelity, broad-range (covering multi-spans and entire lateral domain) NESTOR experimental data for both the flow field and the rod temperatures enabled us to obtain important insights into CFD prediction and validation for the split-type MVG PWR rod bundle problem. It was found that the steady RANS turbulence models with wall function could reasonably predict two key variables for a rod bundle problem – grid span pressure loss and the rod surface temperature – once mesh (type, resolution, and configuration) was suitable and conjugate heat transfer was properly considered. However, they over-predicted the magnitude of the circumferential variation of the rod surface temperature and could not capture its peak azimuthal locations for a central rod in the wake of the MVG. These discrepancies in the rod surface temperature were probably because the steady RANS approach could not capture unsteady, large-scale cross-flow fluctuations and qualitative cross-flow pattern change due to the laterally confined test section. Based on this benchmarking study, lessons and recommendations about experimental methods as well as CFD methods were also provided for the future research.

  17. Features of energetic particle radial profiles inferred from geosynchronous responses to solar wind dynamic pressure enhancements

    Directory of Open Access Journals (Sweden)

    Y. Shi

    2009-02-01

    Full Text Available Determination of the radial profile of phase space density of relativistic electrons at constant adiabatic invariants is crucial for identifying the source for them within the outer radiation belt. The commonly used method is to convert flux observed at fixed energy to phase space density at constant first, second and third adiabatic invariants, which requires an empirical global magnetic field model and thus might produce some uncertainties in the final results. From a different perspective, in this paper we indirectly infer the shape of the radial profile of phase space density of relativistic electrons near the geosynchronous region by statistically examining the geosynchronous energetic flux response to 128 solar wind dynamic pressure enhancements during the years 2000 to 2003. We thus avoid the disadvantage of using empirical magnetic field models. Our results show that the flux response is species and energy dependent. For protons and low-energy electrons, the primary response to magnetospheric compression is an increase in flux at geosynchronous orbit. For relativistic electrons, the dominant response is a decrease in flux, which implies that the phase space density decreases toward increasing radial distance at geosynchronous orbit and leads to a local peak inside of geosynchronous orbit. The flux response of protons and non-relativistic electrons could result from a phase density that increases toward increasing radial distance, but this cannot be determined for sure due to the particle energization associated with pressure enhancements. Our results for relativistic electrons are consistent with previous results obtained using magnetic field models, thus providing additional confirmation that these results are correct and indicating that they are not the result of errors in their selected magnetic field model.

  18. Atmospheric pressure plasma jets : properties of plasma bullets and the dynamics of the interaction with dielectric surfaces

    NARCIS (Netherlands)

    Sobota, A.; Slikboer, E.; Guaitella, O.Y.N.

    2015-01-01

    Cold atmospheric pressure plasma jets, although mostly researched for applications in surface treatment, are rarely investigated in the presence of a surface. This paper presents the properties of plasma bullets formed in the capillary as well as the dynamics of the propagation of the plasma on

  19. Analysis of the dynamic behaviour of the low-pressure emergency core cooling system tank at Paks NPP

    International Nuclear Information System (INIS)

    1999-01-01

    The low pressure emergency core cooling system tanks (LP ECCS) at WWER-440/V213 units have unique worm-shaped geometry. Analytical and experimental investigations were performed to make an adequate basis for seismic assessment of the worm-shaped tank. The full scale dynamic tests results are presented in comparison with shaking table model experiments and analytical studies. (author)

  20. Analysis of the dynamic behaviour of the low pressure emergency core cooling system tank at Paks NPP

    International Nuclear Information System (INIS)

    Tamas, K.

    2001-01-01

    The low pressure emergency core cooling system tanks (LP ECCS) at WWER-440/V213 units have unique worm-shaped geometry. Analytical and experimental investigations were performed to make an adequate basis for seismic assessment of the worm-shaped tank. The full scale dynamic tests results are presented in comparison with shaking table model experiments and analytical studies. (author)

  1. Molecular-dynamic simulations of the thermophysical properties of hexanitrohexaazaisowurtzitane single crystal at high pressures and temperatures

    Science.gov (United States)

    Kozlova, S. A.; Gubin, S. A.; Maklashova, I. V.; Selezenev, A. A.

    2017-11-01

    Molecular dynamic simulations of isothermal compression parameters are performed for a hexanitrohexaazaisowurtzitane single crystal (C6H6O12N12) using a modified ReaxFF-log reactive force field. It is shown that the pressure-compression ratio curve for a single C6H6O12N12 crystal at constant temperature T = 300 K in pressure range P = 0.05-40 GPa is in satisfactory agreement with experimental compression isotherms obtained for a single C6H6O12N12 crystal. Hugoniot molecular-dynamic simulations of the shock-wave hydrostatic compression of a single C6H6O12N12 crystal are performed. Along with Hugoniot temperature-pressure curves, calculated shock-wave pressure-compression ratios for a single C6H6O12N12 crystal are obtained for a wide pressure range of P = 1-40 GPa. It is established that the percussive adiabat obtained for a single C6H6O12N12 crystal is in a good agreement with the experimental data. All calculations are performed using a LAMMPS molecular dynamics simulation software package that provides a ReaxFF-lg reactive force field to support the approach.

  2. Surface conductivity dependent dynamic behaviour of an ultrafine atmospheric pressure plasma jet for microscale surface processing

    Energy Technology Data Exchange (ETDEWEB)

    Abuzairi, Tomy [Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561 (Japan); Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424 (Indonesia); Okada, Mitsuru [Department of Engineering, Shizuoka University, Hamamatsu 432-8561 (Japan); Bhattacharjee, Sudeep [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India); Nagatsu, Masaaki, E-mail: nagatsu.masaaki@shizuoka.ac.jp [Graduate School of Science and Technology, Shizuoka University, Hamamatsu 432-8561 (Japan); Department of Engineering, Shizuoka University, Hamamatsu 432-8561 (Japan); Research Institute of Electronics, Shizuoka University, Hamamatsu 432-8561 (Japan)

    2016-12-30

    Highlights: • Spatio-temporal behaviors of capillary APPJs are studied for various substrates. • Plasma irradiation area depended on the substrate conductivity and permittivity. • Surface irradiation area was significantly broadened in polymer-like substrate. • Effect of applying a substrate bias on the APPJ irradiation area was investigated. - Abstract: An experimental study on the dynamic behaviour of microcapillary atmospheric pressure plasma jets (APPJs) with 5 μm tip size for surfaces of different conductivity is reported. Electrical and spatio-temporal characteristics of the APPJs are monitored using high voltage probe, current monitor and high speed intensified charge couple device camera. From these experimental results, we presented a simple model to understand the electrical discharge characteristics of the capillary APPJs with double electrodes, and estimated the velocity of the ionization fronts in the jet and the electron density to be 3.5–4.2 km/s and 2–7 × 10{sup 17} m{sup −3}. By analyzing the dynamics of the microcapillary APPJs for different substrate materials, it was found that the surface irradiation area strongly depended on the substrate conductivity and permittivity, especially in the case of polymer-like substrate, surface irradiation area was significantly broadened probably due to the repelling behaviour of the plasma jets from the accumulated electrical charges on the polymer surface. The effect of applying a substrate bias in the range from −900 V to +900 V on the plasma irradiation onto the substrates was also investigated. From the knowledge of the present results, it is helpful for choosing the substrate materials for microscale surface modification.

  3. Surface conductivity dependent dynamic behaviour of an ultrafine atmospheric pressure plasma jet for microscale surface processing

    International Nuclear Information System (INIS)

    Abuzairi, Tomy; Okada, Mitsuru; Bhattacharjee, Sudeep; Nagatsu, Masaaki

    2016-01-01

    Highlights: • Spatio-temporal behaviors of capillary APPJs are studied for various substrates. • Plasma irradiation area depended on the substrate conductivity and permittivity. • Surface irradiation area was significantly broadened in polymer-like substrate. • Effect of applying a substrate bias on the APPJ irradiation area was investigated. - Abstract: An experimental study on the dynamic behaviour of microcapillary atmospheric pressure plasma jets (APPJs) with 5 μm tip size for surfaces of different conductivity is reported. Electrical and spatio-temporal characteristics of the APPJs are monitored using high voltage probe, current monitor and high speed intensified charge couple device camera. From these experimental results, we presented a simple model to understand the electrical discharge characteristics of the capillary APPJs with double electrodes, and estimated the velocity of the ionization fronts in the jet and the electron density to be 3.5–4.2 km/s and 2–7 × 10"1"7 m"−"3. By analyzing the dynamics of the microcapillary APPJs for different substrate materials, it was found that the surface irradiation area strongly depended on the substrate conductivity and permittivity, especially in the case of polymer-like substrate, surface irradiation area was significantly broadened probably due to the repelling behaviour of the plasma jets from the accumulated electrical charges on the polymer surface. The effect of applying a substrate bias in the range from −900 V to +900 V on the plasma irradiation onto the substrates was also investigated. From the knowledge of the present results, it is helpful for choosing the substrate materials for microscale surface modification.

  4. Quantifying response to intracranial pressure normalization in idiopathic intracranial hypertension via dynamic neuroimaging.

    Science.gov (United States)

    Lublinsky, Svetlana; Kesler, Anat; Friedman, Alon; Horev, Anat; Shelef, Ilan

    2018-04-01

    Idiopathic intracranial hypertension (IIH) is characterized by elevated intracranial pressure without a clear cause. To investigate dynamic imaging findings in IIH and their relation to mechanisms underlying intracranial pressure normalization. Prospective. Eighteen IIH patients and 30 healthy controls. T 1 -weighted, venography, fluid attenuation inversion recovery, and apparent diffusion coefficients were acquired on 1.5T scanner. The dural sinus was measured before and after lumbar puncture (LP). The degree of sinus occlusion was evaluated, based on 95% confidence intervals of controls. We studied a number of neuroimaging biomarkers associated with IIH (sinus occlusion; optic nerve; distribution of cerebrospinal fluid into the subarachnoid space, sulci and lateral ventricles (LVs); Meckel's caves; arachnoid granulation; pituitary and choroid plexus), before and after LP, using a set of specially developed quantification techniques. Relationships among various biomarkers were investigated (Pearson correlation coefficient) and linked to long-term disease outcomes (logistic regression). The t-test and the Wilcoxon rank test were used to compare between controls and before and after LP data. As a result of LP, the following were found to be in good accordance with the opening pressure: relative compression of cerebrospinal fluid (R = -0.857, P < 0.001) and brain volumes (R = -0.576, P = 0.012), LV expansion (R = 0.772, P < 0.001) and venous volume (R = 0.696, P = 0.001), enlargement of the pituitary (R = 0.640, P = 0.023), and shrinkage of subarachnoid space (R = -0.887, P < 0.001). The only parameter that had an impact on long-term prognosis was cross-sectional size of supplemental drainage veins after LP (sensitivity of 92%, specificity of 20%, and area under the curve of 0.845, P < 0.001). We present an approach for quantitative characterization of the intracranial venous system and its implementation as a diagnostic assistance

  5. The dynamics crossover region in phenol- and cresol-phthalein-dimethylethers under different conditions of pressure and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Casalini, Riccardo [Naval Research Laboratory, Chemistry Division, Code 6120, Washington, DC 20375-5342 (United States); Paluch, Marian [Naval Research Laboratory, Chemistry Division, Code 6120, Washington, DC 20375-5342 (United States); Roland, C Michael [Naval Research Laboratory, Chemistry Division, Code 6120, Washington, DC 20375-5342 (United States)

    2003-03-26

    Dielectric relaxation times over a broad range of temperature and pressure for the glass former phenolphthalein-dimethylether (PDE) reveal a change of dynamics at a characteristic relaxation time {tau}{sub B}. The value of {tau}{sub B} was found to be largely insensitive to the particular combination of pressure and temperature of the measurement. Data for a second glass former, cresol-phthalein-dimethylether, having a molecular structure very close to that of PDE, were also analysed. In this case, {tau}{sub B} is much smaller, so the change of dynamics could not be observed in the elevated pressure experiments. The PDE data were in good agreement with the Adam-Gibbs model near T{sub g} ({tau} > {tau}{sub B}), while deviating for {tau} < {tau}{sub B}. Finally, a possible connection between the observed T{sub B} and theoretical models is presented.

  6. High Resolution and Large Dynamic Range Resonant Pressure Sensor Based on Q-Factor Measurement

    Science.gov (United States)

    Gutierrez, Roman C. (Inventor); Stell, Christopher B. (Inventor); Tang, Tony K. (Inventor); Vorperian, Vatche (Inventor); Wilcox, Jaroslava (Inventor); Shcheglov, Kirill (Inventor); Kaiser, William J. (Inventor)

    2000-01-01

    A pressure sensor has a high degree of accuracy over a wide range of pressures. Using a pressure sensor relying upon resonant oscillations to determine pressure, a driving circuit drives such a pressure sensor at resonance and tracks resonant frequency and amplitude shifts with changes in pressure. Pressure changes affect the Q-factor of the resonating portion of the pressure sensor. Such Q-factor changes are detected by the driving/sensing circuit which in turn tracks the changes in resonant frequency to maintain the pressure sensor at resonance. Changes in the Q-factor are reflected in changes of amplitude of the resonating pressure sensor. In response, upon sensing the changes in the amplitude, the driving circuit changes the force or strength of the electrostatic driving signal to maintain the resonator at constant amplitude. The amplitude of the driving signals become a direct measure of the changes in pressure as the operating characteristics of the resonator give rise to a linear response curve for the amplitude of the driving signal. Pressure change resolution is on the order of 10(exp -6) torr over a range spanning from 7,600 torr to 10(exp -6) torr. No temperature compensation for the pressure sensor of the present invention is foreseen. Power requirements for the pressure sensor are generally minimal due to the low-loss mechanical design of the resonating pressure sensor and the simple control electronics.

  7. Determination of the optimum pressure for neutron yield with d2, in the PF facility dena

    International Nuclear Information System (INIS)

    Siahpoush, V.; Khorram, C.; Sobhanian, S.; Hamzeh Fafreshi, M. A.

    2003-01-01

    Using physical model, which describes the dynamics of plasma in the Filipov type plasma focus, we have simulated the pinch current for different voltages and pressures. The results show that for a specific voltage, there is an optimum pressure for which the pinch current has maximum value. A comparison between the simulated and the experimental data from dena shows that the maximum values of pinch current are obtained at the same pressure for which the maximum neutron yield is observed

  8. Approximate maximum parsimony and ancestral maximum likelihood.

    Science.gov (United States)

    Alon, Noga; Chor, Benny; Pardi, Fabio; Rapoport, Anat

    2010-01-01

    We explore the maximum parsimony (MP) and ancestral maximum likelihood (AML) criteria in phylogenetic tree reconstruction. Both problems are NP-hard, so we seek approximate solutions. We formulate the two problems as Steiner tree problems under appropriate distances. The gist of our approach is the succinct characterization of Steiner trees for a small number of leaves for the two distances. This enables the use of known Steiner tree approximation algorithms. The approach leads to a 16/9 approximation ratio for AML and asymptotically to a 1.55 approximation ratio for MP.

  9. Dynamic pressure probe response tests for robust measurements in periodic flows close to probe resonating frequency

    Science.gov (United States)

    Ceyhun Şahin, Fatma; Schiffmann, Jürg

    2018-02-01

    A single-hole probe was designed to measure steady and periodic flows with high fluctuation amplitudes and with minimal flow intrusion. Because of its high aspect ratio, estimations showed that the probe resonates at a frequency two orders of magnitude lower than the fast response sensor cut-off frequencies. The high fluctuation amplitudes cause a non-linear behavior of the probe and available models are neither adequate for a quantitative estimation of the resonating frequencies nor for predicting the system damping. Instead, a non-linear data correction procedure based on individual transfer functions defined for each harmonic contribution is introduced for pneumatic probes that allows to extend their operating range beyond the resonating frequencies and linear dynamics. This data correction procedure was assessed on a miniature single-hole probe of 0.35 mm inner diameter which was designed to measure flow speed and direction. For the reliable use of such a probe in periodic flows, its frequency response was reproduced with a siren disk, which allows exciting the probe up to 10 kHz with peak-to-peak amplitudes ranging between 20%-170% of the absolute mean pressure. The effect of the probe interior design on the phase lag and amplitude distortion in periodic flow measurements was investigated on probes with similar inner diameters and different lengths or similar aspect ratios (L/D) and different total interior volumes. The results suggest that while the tube length consistently sets the resonance frequency, the internal total volume affects the non-linear dynamic response in terms of varying gain functions. A detailed analysis of the introduced calibration methodology shows that the goodness of the reconstructed data compared to the reference data is above 75% for fundamental frequencies up to twice the probe resonance frequency. The results clearly suggest that the introduced procedure is adequate to capture non-linear pneumatic probe dynamics and to

  10. Continuous estimates of dynamic cerebral autoregulation: influence of non-invasive arterial blood pressure measurements

    International Nuclear Information System (INIS)

    Panerai, R B; Smith, S M; Rathbone, W E; Samani, N J; Sammons, E L; Bentley, S; Potter, J F

    2008-01-01

    Temporal variability of parameters which describe dynamic cerebral autoregulation (CA), usually quantified by the short-term relationship between arterial blood pressure (BP) and cerebral blood flow velocity (CBFV), could result from continuous adjustments in physiological regulatory mechanisms or could be the result of artefacts in methods of measurement, such as the use of non-invasive measurements of BP in the finger. In 27 subjects (61 ± 11 years old) undergoing coronary artery angioplasty, BP was continuously recorded at rest with the Finapres device and in the ascending aorta (Millar catheter, BP AO ), together with bilateral transcranial Doppler ultrasound in the middle cerebral artery, surface ECG and transcutaneous CO 2 . Dynamic CA was expressed by the autoregulation index (ARI), ranging from 0 (absence of CA) to 9 (best CA). Time-varying, continuous estimates of ARI (ARI(t)) were obtained with an autoregressive moving-average (ARMA) model applied to a 60 s sliding data window. No significant differences were observed in the accuracy and precision of ARI(t) between estimates derived from the Finapres and BP AO . Highly significant correlations were obtained between ARI(t) estimates from the right and left middle cerebral artery (MCA) (Finapres r = 0.60 ± 0.20; BP AO r = 0.56 ± 0.22) and also between the ARI(t) estimates from the Finapres and BP AO (right MCA r = 0.70 ± 0.22; left MCA r = 0.74 ± 0.22). Surrogate data showed that ARI(t) was highly sensitive to the presence of noise in the CBFV signal, with both the bias and dispersion of estimates increasing for lower values of ARI(t). This effect could explain the sudden drops of ARI(t) to zero as reported previously. Simulated sudden changes in ARI(t) can be detected by the Finapres, but the bias and variability of estimates also increase for lower values of ARI. In summary, the Finapres does not distort time-varying estimates of dynamic CA obtained with a sliding window combined with an ARMA model

  11. Maximum permissible dose

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    This chapter presents a historic overview of the establishment of radiation guidelines by various national and international agencies. The use of maximum permissible dose and maximum permissible body burden limits to derive working standards is discussed

  12. Magnetosphere and ionosphere response to a positive-negative pulse pair of solar wind dynamic pressure

    Science.gov (United States)

    Tian, A.; Degeling, A. W.

    2017-12-01

    Simulations and observations had shown that single positive/negative solar wind dynamic pressure pulse would excite geomagnetic impulsive events along with ionosphere and/or magnetosphere vortices which are connected by field aligned currents(FACs). In this work, a large scale ( 9min) magnetic hole event in solar wind provided us with the opportunity to study the effects of positive-negative pulse pair (△p/p 1) on the magnetosphere and ionosphere. During the magnetic hole event, two traveling convection vortices (TCVs, anti-sunward) first in anticlockwise then in clockwise rotation were detected by geomagnetic stations located along the 10:30MLT meridian. At the same time, another pair of ionospheric vortices azimuthally seen up to 3 MLT first in clockwise then in counter-clockwise rotation were also appeared in the afternoon sector( 14MLT) and centered at 75 MLAT without obvious tailward propagation feature. The duskside vortices were also confirmed in SuperDARN radar data. We simulated the process of magnetosphere struck by a positive-negative pulse pair and it shows that a pair of reversed flow vortices in the magnetosphere equatorial plane appeared which may provide FACs for the vortices observed in ionosphere. Dawn dusk asymmetry of the vortices as well as the global geomagnetism perturbation characteristics were also discussed.

  13. Prediction of the dynamic response of complex transmission line systems for unsteady pressure measurements

    International Nuclear Information System (INIS)

    Antonini, C; Persico, G; Rowe, A L

    2008-01-01

    Among the measurement and control systems of gas turbine engines, a recent new issue is the possibility of performing unsteady pressure measurements to detect flow anomalies in an engine or to evaluate loads on aerodynamic surfaces. A possible answer to this demand could be extending the use of well known and widely used transmission line systems, which have been applied so far to steady monitoring, to unsteady measurements thanks to proper dynamic modeling and compensation. Despite the huge number of models existing in the literature, a novel method has been developed, which is at the same time easy-to-handle, flexible and capable of reproducing the actual physics of the problem. Furthermore, the new model is able to deal with arbitrary complex networks of lines and cavities, and thus its applicability is not limited to series-connected systems. The main objectives of this paper are to show the derivation of the model, its validation against experimental tests and example of its applicability

  14. Self: an adaptive pressure arising from self-organization, chaotic dynamics, and neural Darwinism.

    Science.gov (United States)

    Bruzzo, Angela Alessia; Vimal, Ram Lakhan Pandey

    2007-12-01

    In this article, we establish a model to delineate the emergence of "self" in the brain making recourse to the theory of chaos. Self is considered as the subjective experience of a subject. As essential ingredients of subjective experiences, our model includes wakefulness, re-entry, attention, memory, and proto-experiences. The stability as stated by chaos theory can potentially describe the non-linear function of "self" as sensitive to initial conditions and can characterize it as underlying order from apparently random signals. Self-similarity is discussed as a latent menace of a pathological confusion between "self" and "others". Our test hypothesis is that (1) consciousness might have emerged and evolved from a primordial potential or proto-experience in matter, such as the physical attractions and repulsions experienced by electrons, and (2) "self" arises from chaotic dynamics, self-organization and selective mechanisms during ontogenesis, while emerging post-ontogenically as an adaptive pressure driven by both volume and synaptic-neural transmission and influencing the functional connectivity of neural nets (structure).

  15. Distribution of Side Abutment Stress in Roadway Subjected to Dynamic Pressure and Its Engineering Application

    Directory of Open Access Journals (Sweden)

    Yao Qiangling

    2015-01-01

    Full Text Available The borehole stress-meter was employed in this study to investigate the distribution of the side abutment stress in roadway subjected to dynamic pressure. The results demonstrate that the side abutment stress of the mining roadway reaches a peak value when the distance to the gob is 8 m and the distribution curve of the side abutment stress can be divided into three zones: stress rising zone, stress stabilizing zone, and stress decreasing zone. Further numerical investigation was carried out to study the effect of the coal mass strength, coal seam depth, immediate roof strength, and thickness on the distribution of the side abutment stress. Based on the research results, we determined the reasonable position of the mining roadway and the optimal width of the barrier pillar. The engineering application demonstrates that the retention of the barrier pillar with a width of 5 m along the gob as the haulage roadway for the next panel is feasible, which delivers favorable technological and economic benefits.

  16. Maximum Water Hammer Sensitivity Analysis

    OpenAIRE

    Jalil Emadi; Abbas Solemani

    2011-01-01

    Pressure waves and Water Hammer occur in a pumping system when valves are closed or opened suddenly or in the case of sudden failure of pumps. Determination of maximum water hammer is considered one of the most important technical and economical items of which engineers and designers of pumping stations and conveyance pipelines should take care. Hammer Software is a recent application used to simulate water hammer. The present study focuses on determining significance of ...

  17. Estimation of maximum pressure in small containments of PWR reactors due to loss of coolant accident in primary circuit; Estimativa da pressao maxima em contencoes de reatores PWR de pequeno porte devido a um acidente de perda de refrigerante no circuito primario

    Energy Technology Data Exchange (ETDEWEB)

    Mendes Neto, Teofilo [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil); Moreira, Joao Manoel Losada [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), SP (Brazil)

    2000-07-01

    This work studies the problem of containment pressurization after a LOCA in reactors with small containment free volumes. The relationship between the reactor power and the containment free volume is described with the ratio between the volumes of the primary circuit and of the containment. The maximum pressure in a containment, following a LOCA, obtained after a correlation based on large containment PWR, is around 185 psia for a primary circuit and containment volumes ratio of 0.025. For the same problem, calculations with the CONTEMPT-LT code produced a maximum pressure of 162 psia. The behavior of the temperature after a LOCA to the containment, as a function of the ratio between the primary circuit and containment volume, is such that it increases reaching asymptotically to a maximum; differently, the pressure increases almost linearly with the ratio of volumes. (author)

  18. Maximum home systolic blood pressure is a useful indicator of arterial stiffness in patients with type 2 diabetes mellitus: post hoc analysis of a cross-sectional multicenter study.

    Science.gov (United States)

    Ushigome, Emi; Fukui, Michiaki; Hamaguchi, Masahide; Tanaka, Toru; Atsuta, Haruhiko; Mogami, Shin-ichi; Tsunoda, Sei; Yamazaki, Masahiro; Hasegawa, Goji; Nakamura, Naoto

    2014-09-01

    Maximum (max) home systolic blood pressure (HSBP) as well as mean HSBP or HSBP variability was reported to increase the predictive value of target organ damage. Yet, the association between max HSBP and target organ damage in patients with type 2 diabetes has never been reported. The aim of this study was to investigate the association between max HSBP and pulse wave velocity (PWV), a marker of arterial stiffness which in turn is a marker of target organ damage, in patients with type 2 diabetes. We assessed the relationship of mean HSBP or max HSBP to PWV, and compared area under the receiver-operating characteristic curve (AUC) of mean HSBP or max HSBP for arterial stiffness in 758 patients with type 2 diabetes. In the univariate analyses, age, duration of diabetes mellitus, body mass index, mean clinic systolic blood pressure (SBP), mean HSBP and max HSBP were associated with PWV. Multivariate linear regression analyses indicated that mean morning SBP (β=0.156, P=0.001) or max morning SBP (β=0.146, P=0.001) were significantly associated with PWV. AUC (95% CI) for arterial stiffness, defined as PWV equal to or more than 1800 cm per second, in mean morning SBP and max morning SBP were 0.622 (0.582-0.662; P<0.001) and 0.631 (0.591-0.670; P<0.001), respectively. Our findings implicate that max HSBP as well as mean HSBP was significantly associated with arterial stiffness in patients with type 2 diabetes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Resolving the Role of the Dynamic Pressure in the Burial, Exposure, Scour, and Mobility of Underwater Munitions

    Science.gov (United States)

    Gilooly, S.; Foster, D. L.

    2017-12-01

    In nearshore environments, the motion of munitions results from a mixture of sediment transport conditions including sheet flow, scour, bedform migration, and momentary liquefaction. Incipient motion can be caused by disruptive shear stresses and pressure gradients. Foster et al. (2006) incorporated both processes into a single parameter, indicating incipient motion as a function of the bed state. This research looks to evaluate the role of the pressure gradient in positional state changes such as burial, exposure, and mobility. In the case of munitions, this may include pressure gradients induced by vortex shedding or the passing wave. Pressure-mapped model munitions are being developed to measure the orientation, rotation, and surface pressure of the munitions during threshold events leading to a new positional state. These munitions will be deployed in inner surf zone and estuary environments along with acoustic Doppler velocimeters (ADVs), pore water pressure sensors, a laser grid, and a pencil beam sonar with an azimuth drive. The additional instruments allow for near bed and far field water column and sediment bed sampling. Currently preliminary assessments of various pressure sensors and munition designs are underway. Two pressure sensors were selected; the thin FlexiForce A201 sensors will be used to indicate munition rolling during threshold events and diaphragm sensors will be used to understand changes in surrounding pore water pressure as the munition begins to bury/unbury. Both sensors are expected to give quantitative measurements of dynamic pressure gradients in the flow field surrounding the munition. Resolving the role of this process will give insight to an improved incipient motion parameter and allow for better munition motion predictions.

  20. In situ pore-pressure evolution during dynamic CPT measurements in soft sediments of the western Baltic Sea

    Science.gov (United States)

    Seifert, Annedore; Stegmann, Sylvia; Mörz, Tobias; Lange, Matthias; Wever, Thomas; Kopf, Achim

    2008-08-01

    We present in situ strength and pore-pressure measurements from 57 dynamic cone penetration tests in sediments of Mecklenburg ( n = 51), Eckernförde ( n = 2) and Gelting ( n = 4) bays, western Baltic Sea, characterised by thick mud layers and partially free microbial gas resulting from the degradation of organic material. In Mecklenburg and Eckernförde bays, sediment sampling by nine gravity cores served sedimentological characterisation, analyses of geotechnical properties, and laboratory shear tests. At selected localities, high-resolution echo-sounder profiles were acquired. Our aim was to deploy a dynamic cone penetrometer (CPT) to infer sediment shear strength and cohesion of the sea bottom as a function of fluid saturation. The results show very variable changes in pore pressure and sediment strength during the CPT deployments. The majority of the CPT measurements ( n = 54) show initially negative pore-pressure values during penetration, and a delayed response towards positive pressures thereafter. This so-called type B pore-pressure signal was recorded in all three bays, and is typically found in soft muds with high water contents and undrained shear strengths of 1.6-6.4 kPa. The type B signal is further affected by displacement of sediment and fluid upon penetration of the lance, skin effects during dynamic profiling, enhanced consolidation and strength of individual horizons, the presence of free gas, and a dilatory response of the sediment. In Mecklenburg Bay, the remaining small number of CPT measurements ( n = 3) show a well-defined peak in both pore pressure and cone resistance during penetration, i.e. an initial marked increase which is followed by exponential pore-pressure decay during dissipation. This so-called type A pore-pressure signal is associated with normally consolidated mud, with indurated clay layers showing significantly higher undrained shear strength (up to 19 kPa). In Eckernförde and Gelting bays pore-pressure response type B is

  1. Experimental evidence of high pressure decoupling between charge transport and structural dynamics in a protic ionic glass-former.

    Science.gov (United States)

    Wojnarowska, Z; Rams-Baron, M; Knapik-Kowalczuk, J; Połatyńska, A; Pochylski, M; Gapinski, J; Patkowski, A; Wlodarczyk, P; Paluch, M

    2017-08-01

    In this paper the relaxation dynamics of ionic glass-former acebutolol hydrochloride (ACB-HCl) is studied as a function of temperature and pressure by using dynamic light scattering and broadband dielectric spectroscopy. These unique experimental data provide the first direct evidence that the decoupling between the charge transport and structural relaxation exists in proton conductors over a wide T-P thermodynamic space, with the time scale of structural relaxation being constant at the liquid-glass transition (τ α  = 1000 s). We demonstrate that the enhanced proton transport, being a combination of intermolecular H + hopping between cation and anion as well as tautomerization process within amide moiety of ACB molecule, results in a breakdown of the Stokes-Einstein relation at ambient and elevated pressure with the fractional exponent k being pressure dependent. The dT g /dP coefficient, stretching exponent β KWW and dynamic modulus E a /ΔV # were found to be the same regardless of the relaxation processes studied. This is in contrast to the apparent activation volume parameter that is different when charge transport and structural dynamics are considered. These experimental results together with theoretical considerations create new ideas to design efficient proton conductors for potential electrochemical applications.

  2. Effect of temperature and density fluctuations on the spatially heterogeneous dynamics of glass-forming Van der Waals liquids under high pressure.

    Science.gov (United States)

    Koperwas, K; Grzybowski, A; Grzybowska, K; Wojnarowska, Z; Sokolov, A P; Paluch, M

    2013-09-20

    In this Letter, we show how temperature and density fluctuations affect the spatially heterogeneous dynamics at ambient and elevated pressures. By using high-pressure experimental data for van der Waals liquids, we examine contributions of the temperature and density fluctuations to the dynamics heterogeneity. We show that the dynamic heterogeneity decreases significantly with increasing pressure at a constant structural relaxation time (isochronal condition), while the broadening of the relaxation spectrum remains constant. This observation questions the relationship between spectral broadening and dynamic heterogeneity.

  3. Measurement of canine pancreatic perfusion using dynamic computed tomography: Influence of input-output vessels on deconvolution and maximum slope methods

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, Miori, E-mail: miori@mx6.et.tiki.ne.jp [Department of Clinical Veterinary Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada-cho, Obihiro 080-8555 (Japan); Tsuji, Yoshihisa, E-mail: y.tsuji@extra.ocn.ne.jp [Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoinkawara-cho 54, Sakyo-ku 606-8507 (Japan); Katabami, Nana; Shimizu, Junichiro; Lee, Ki-Ja [Department of Clinical Veterinary Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada-cho, Obihiro 080-8555 (Japan); Iwasaki, Toshiroh [Department of Veterinary Internal Medicine, Tokyo University of Agriculture and Technology, Saiwai-cho, 3-5-8, Fuchu 183-8509 (Japan); Miyake, Yoh-Ichi [Department of Clinical Veterinary Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada-cho, Obihiro 080-8555 (Japan); Yazumi, Shujiro [Digestive Disease Center, Kitano Hospital, 2-4-20 Ougi-machi, Kita-ku, Osaka 530-8480 (Japan); Chiba, Tsutomu [Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Shogoinkawara-cho 54, Sakyo-ku 606-8507 (Japan); Yamada, Kazutaka, E-mail: kyamada@obihiro.ac.jp [Department of Clinical Veterinary Science, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-11 Inada-cho, Obihiro 080-8555 (Japan)

    2011-01-15

    Objective: We investigated whether the prerequisite of the maximum slope and deconvolution methods are satisfied in pancreatic perfusion CT and whether the measured parameters between these algorithms are correlated. Methods: We examined nine beagles injected with iohexol (200 mgI kg{sup -1}) at 5.0 ml s{sup -1}. The abdominal aorta and splenic and celiac arteries were selected as the input arteries and the splenic vein, the output veins. For the maximum slope method, we determined the arterial contrast volume of each artery by measuring the area under the curve (AUC) and compared the peak enhancement time in the pancreas with the contrast appearance time in the splenic vein. For the deconvolution method, the artery-to-vein collection rate of contrast medium was calculated. We calculated the pancreatic tissue blood flow (TBF), tissue blood volume (TBV), and mean transit time (MTT) using both algorithms and investigated their correlation based on vessel selection. Results: The artery AUC significantly decreased as it neared the pancreas (P < 0.01). In all cases, the peak time of the pancreas (11.5 {+-} 1.6) was shorter than the appearance time (14.1 {+-} 1.6) in the splenic vein. The splenic artery-vein combination exhibited the highest collection rate (91.1%) and was the only combination that was significantly correlated between TBF, TBV, and MTT in both algorithms. Conclusion: Selection of a vessel nearest to the pancreas is considered as a more appropriate prerequisite. Therefore, vessel selection is important in comparison of the semi-quantitative parameters obtained by different algorithms.

  4. Measurement of canine pancreatic perfusion using dynamic computed tomography: Influence of input-output vessels on deconvolution and maximum slope methods

    International Nuclear Information System (INIS)

    Kishimoto, Miori; Tsuji, Yoshihisa; Katabami, Nana; Shimizu, Junichiro; Lee, Ki-Ja; Iwasaki, Toshiroh; Miyake, Yoh-Ichi; Yazumi, Shujiro; Chiba, Tsutomu; Yamada, Kazutaka

    2011-01-01

    Objective: We investigated whether the prerequisite of the maximum slope and deconvolution methods are satisfied in pancreatic perfusion CT and whether the measured parameters between these algorithms are correlated. Methods: We examined nine beagles injected with iohexol (200 mgI kg -1 ) at 5.0 ml s -1 . The abdominal aorta and splenic and celiac arteries were selected as the input arteries and the splenic vein, the output veins. For the maximum slope method, we determined the arterial contrast volume of each artery by measuring the area under the curve (AUC) and compared the peak enhancement time in the pancreas with the contrast appearance time in the splenic vein. For the deconvolution method, the artery-to-vein collection rate of contrast medium was calculated. We calculated the pancreatic tissue blood flow (TBF), tissue blood volume (TBV), and mean transit time (MTT) using both algorithms and investigated their correlation based on vessel selection. Results: The artery AUC significantly decreased as it neared the pancreas (P < 0.01). In all cases, the peak time of the pancreas (11.5 ± 1.6) was shorter than the appearance time (14.1 ± 1.6) in the splenic vein. The splenic artery-vein combination exhibited the highest collection rate (91.1%) and was the only combination that was significantly correlated between TBF, TBV, and MTT in both algorithms. Conclusion: Selection of a vessel nearest to the pancreas is considered as a more appropriate prerequisite. Therefore, vessel selection is important in comparison of the semi-quantitative parameters obtained by different algorithms.

  5. Intraocular pressure and ocular pulse amplitude using dynamic contour tonometry and contact lens tonometry.

    Science.gov (United States)

    Hoffmann, Esther M; Grus, Franz-H; Pfeiffer, Norbert

    2004-03-23

    The new Ocular Dynamic Contour Tonometer (DCT), investigational device supplied by SMT (Swiss Microtechnology AG, Switzerland) allows simultaneous recording of intraocular pressure (IOP) and ocular pulse amplitude (OPA). It was the aim of this study to compare the IOP results of this new device with Goldmann tonometry. Furthermore, IOP and OPA measured with the new slitlamp-mounted DCT were compared to the IOP and OPA measured with the hand-held SmartLens,a gonioscopic contact lens tonometer (ODC Ophthalmic Development Company AG, Switzerland). Nineteen healthy subjects were included in this study. IOP was determined by three consecutive measurements with each of the DCT, SmartLens, and Goldmann tonometer. Furthermore, OPA was measured three times consecutively by DCT and SmartLens. No difference (P = 0.09) was found between the IOP values by means of DCT (mean: 16.6 mm Hg, median: 15.33 mm Hg, SD: +/- 4.04 mm Hg) and Goldmann tonometry (mean: 16.17 mm Hg, median: 15.33 mm Hg, SD: +/- 4.03 mm Hg). The IOP values of SmartLens (mean: 20.25 mm Hg, median: 19.00 mm Hg, SD: +/- 4.96 mm Hg) were significantly higher (P = 0.0008) both from Goldmann tonometry and DCT. The OPA values of the DCT (mean: 3.08 mm Hg, SD: +/- 0.92 mm Hg) were significantly lower (P = 0.0003) than those obtained by SmartLens (mean: 3.92 mm Hg, SD: +/- 0.83 mm Hg). DCT was equivalent to Goldmann applanation tonometry in measurement of IOP in a small group of normal subjects. In contrast, SmartLens (contact lens tonometry) gave IOP readings that were significantly higher compared with Goldmann applanation tonometer readings. Both devices, DCT and SmartLens provide the measurement of OPA which could be helpful e.g. for the management of glaucoma.

  6. A Modified Split Hopkinson Pressure Bar Approach for Mimicking Dynamic Oscillatory Stress Fluctuations During Earthquake Rupture

    Science.gov (United States)

    Braunagel, M. J.; Griffith, W. A.

    2017-12-01

    Past experimental work has demonstrated that rock failure at high strain rates occurs by fragmentation rather than discrete fracture and is accompanied by a dramatic increase in rock strength. However, these observations are difficult to reconcile with the assertion that pulverized rocks in fault zones are the product of impulsive stresses during the passage of earthquake ruptures, as the distance from the principal slip zones of some pulverized rock is too great to exceed fragmentation transition. One potential explanation to this paradox that has been suggested is that repeated loading over the course of multiple earthquake ruptures may gradually reduce the pulverization threshold, in terms of both strain rate and strength. We propose that oscillatory loading during a single earthquake rupture may further lower these pulverization thresholds, and that traditional dynamic experimental approaches, such as the Split Hopkinson Pressure Bar (SHPB) wherein load is applied as a single, smooth, sinusoidal compressive wave, may not reflect natural loading conditions. To investigate the effects of oscillatory compressive loading expected during earthquake rupture propagation, we develop a controlled cyclic loading model on a SHPB apparatus utilizing two striker bars connected by an elastic spring. Unlike traditional SHPB experiments that utilize a gas gun to fire a projectile bar and generate a single compressive wave on impact with the incident bar, our modified striker bar assembly oscillates while moving down the gun barrel and generates two separate compressive pulses separated by a lag time. By modeling the modified assembly as a mass-spring-mass assembly accelerating due to the force of the released gas, we can predict the compression time of the spring upon impact and therefore the time delay between the generation of the first and second compressive waves. This allows us to predictably control load cycles with durations of only a few hundred microseconds. Initial

  7. Semi-supervised detection of intracranial pressure alarms using waveform dynamics

    International Nuclear Information System (INIS)

    Scalzo, Fabien; Hu, Xiao

    2013-01-01

    Patient monitoring systems in intensive care units (ICU) are usually set to trigger alarms when abnormal values are detected. Alarms are generated by threshold-crossing rules that lead to high false alarm rates. This is a recognized issue that causes alarm fatigue, waste of human resources, and increased patient risks. Recently developed smart alarm models require alarms to be validated by experts during the training phase. The manual annotation process involved is time-consuming and virtually impossible to achieve for the thousands of alarms recorded in the ICU every week. To tackle this problem, we investigate in this study if the use of semi-supervised learning methods, that can naturally integrate unlabeled data samples in the model, can be used to improve the accuracy of the alarm detection. As a proof of concept, the detection system is evaluated on intracranial pressure (ICP) signal alarms. Specific morphological and trending features are extracted from the ICP signal waveform to capture the dynamic of the signal prior to alarms. This study is based on a comprehensive dataset of 4791 manually labeled alarms recorded from 108 neurosurgical patients. A comparative analysis is provided between kernel spectral regression (SR-KDA) and support vector machine (SVM) both modified for the semi-supervised setting. Results obtained during the experimental evaluations indicate that the two models can significantly reduce false alarms using unlabeled samples; especially in the presence of a restrained number of labeled examples. At a true alarm recognition rate of 99%, the false alarm reduction rates improved from 9% (supervised) to 27% (semi-supervised) for SR-KDA, and from 3% (supervised) to 16% (semi-supervised) for SVM. (paper)

  8. The dynamics of suspended particulate matter (SPM) and chlorophyll-a from intratidal to annual time scales in a coastal turbidity maximum

    Science.gov (United States)

    van der Hout, C. M.; Witbaard, R.; Bergman, M. J. N.; Duineveld, G. C. A.; Rozemeijer, M. J. C.; Gerkema, T.

    2017-09-01

    The analysis of 1.8 years of data gives an understanding of the response to varying forcing of suspended particulate matter (SPM) and chlorophyll-a (CHL-a) in a coastal turbidity maximum zone (TMZ). Both temporal and vertical concentration variations in the near-bed layer (0-2 m) in the shallow (11 m deep) coastal zone at 1 km off the Dutch coast are shown. Temporal variations in the concentration of both parameters are found on tidal and seasonal scales, and a marked response to episodic events (e.g. storms). The seasonal cycle in the near-bed CHL-a concentration is determined by the spring bloom. The role of the wave climate as the primary forcing in the SPM seasonal cycle is discussed. The tidal current provides a background signal, generated predominantly by local resuspension and settling and a minor role is for advection in the cross-shore and the alongshore direction. We tested the logarithmic Rouse profile to the vertical profiles of both the SPM and the CHL-a data, with respectively 84% and only 2% success. The resulting large percentage of low Rouse numbers for the SPM profiles suggest a mixed suspension is dominant in the TMZ, i.e. surface SPM concentrations are in the same order of magnitude as near-bed concentrations.

  9. Brine flow up a borehole caused by pressure perturbation from CO2 storage: Static and dynamic evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Birkholzer, J.T.; Nicot, J.-P.; Oldenburg, C.M.; Zhou, Q.; Kraemer, S.; Bandilla, K.W.

    2011-05-01

    Industrial-scale storage of CO{sub 2} in saline sedimentary basins will cause zones of elevated pressure, larger than the CO{sub 2} plume itself. If permeable conduits (e.g., leaking wells) exist between the injection reservoir and overlying shallow aquifers, brine could be pushed upwards along these conduits and mix with groundwater resources. This paper discusses the potential for such brine leakage to occur in temperature- and salinity-stratified systems. Using static mass-balance calculations as well as dynamic well flow simulations, we evaluate the minimum reservoir pressure that would generate continuous migration of brine up a leaking wellbore into a freshwater aquifer. Since the brine invading the well is denser than the initial fluid in the wellbore, continuous flow only occurs if the pressure perturbation in the reservoir is large enough to overcome the increased fluid column weight after full invasion of brine into the well. If the threshold pressure is exceeded, brine flow rates are dependent on various hydraulic (and other) properties, in particular the effective permeability of the wellbore and the magnitude of pressure increase. If brine flow occurs outside of the well casing, e.g., in a permeable fracture zone between the well cement and the formation, the fluid/solute transfer between the migrating fluid and the surrounding rock units can strongly retard brine flow. At the same time, the threshold pressure for continuous flow to occur decreases compared to a case with no fluid/solute transfer.

  10. Molecular Dynamics of Equilibrium and Pressure-Driven Transport Properties of Water through LTA-Type Zeolites

    KAUST Repository

    Turgman-Cohen, Salomon; Araque, Juan C.; Hoek, Eric M. V.; Escobedo, Fernando A.

    2013-01-01

    We consider an atomistic model to investigate the flux of water through thin Linde type A (LTA) zeolite membranes with differing surface chemistries. Using molecular dynamics, we have studied the flow of water under hydrostatic pressure through a fully hydrated LTA zeolite film (∼2.5 nm thick) capped with hydrophilic and hydrophobic moieties. Pressure drops in the 50-400 MPa range were applied across the membrane, and the flux of water was monitored for at least 15 ns of simulation time. For hydrophilic membranes, water molecules adsorb at the zeolite surface, creating a highly structured fluid layer. For hydrophobic membranes, a depletion of water molecules occurs near the water/zeolite interface. For both types of membranes, the water structure is independent of the pressure drop established in the system and the flux through the membranes is lower than that observed for the bulk zeolitic material; the latter allows an estimation of surface barrier effects to pressure-driven water transport. Mechanistically, it is observed that (i) bottlenecks form at the windows of the zeolite structure, preventing the free flow of water through the porous membrane, (ii) water molecules do not move through a cage in a single-file fashion but rather exhibit a broad range of residence times and pronounced mixing, and (iii) a periodic buildup of a pressure difference between inlet and outlet cages takes place which leads to the preferential flow of water molecules toward the low-pressure cages. © 2013 American Chemical Society.

  11. Molecular Dynamics of Equilibrium and Pressure-Driven Transport Properties of Water through LTA-Type Zeolites

    KAUST Repository

    Turgman-Cohen, Salomon

    2013-10-08

    We consider an atomistic model to investigate the flux of water through thin Linde type A (LTA) zeolite membranes with differing surface chemistries. Using molecular dynamics, we have studied the flow of water under hydrostatic pressure through a fully hydrated LTA zeolite film (∼2.5 nm thick) capped with hydrophilic and hydrophobic moieties. Pressure drops in the 50-400 MPa range were applied across the membrane, and the flux of water was monitored for at least 15 ns of simulation time. For hydrophilic membranes, water molecules adsorb at the zeolite surface, creating a highly structured fluid layer. For hydrophobic membranes, a depletion of water molecules occurs near the water/zeolite interface. For both types of membranes, the water structure is independent of the pressure drop established in the system and the flux through the membranes is lower than that observed for the bulk zeolitic material; the latter allows an estimation of surface barrier effects to pressure-driven water transport. Mechanistically, it is observed that (i) bottlenecks form at the windows of the zeolite structure, preventing the free flow of water through the porous membrane, (ii) water molecules do not move through a cage in a single-file fashion but rather exhibit a broad range of residence times and pronounced mixing, and (iii) a periodic buildup of a pressure difference between inlet and outlet cages takes place which leads to the preferential flow of water molecules toward the low-pressure cages. © 2013 American Chemical Society.

  12. Pressure effects on martensitic transformation under quenching process in a molecular dynamics model of NiAl alloy

    International Nuclear Information System (INIS)

    Kazanc, S.; Ozgen, S.; Adiguzel, O.

    2003-01-01

    The solid-solid phase transitions in NiAl alloys occur by the temperature changes and application of a pressure on the system. Both types of transitions are called martensitic transformation and have displacive and thermoelastic characters. Pressure effects on thermoelastic transformation in Ni 62.5 Al 37.5 alloy model have been studied by means of molecular dynamics method proposed by Parrinello-Rahman. Interaction forces between atoms in the model system were calculated by Lennard-Jones potential energy function. Thermodynamics and structural analysis of the martensitic transformations under hydrostatic pressure during the quenching processes have been performed. The simulation runs have been carried out in different hydrostatic pressures changing from zero to 40.65 GPa during the quenching process of the model alloy. At the zero and nonzero pressures, the system with B2-type ordered structure undergoes the product phase with L1 0 -type ordered structure by Bain distortion in the first step of martensitic transformation under the quenching process. The increase in hydrostatic pressure causes decrease in the formation time of the product phase, and twin-like lattice distortion is observed in low temperature L1 0 phase

  13. Study of spatiotemporal dynamics of a nanosecond atmospheric-pressure dielectric barrier discharge in millimeter-long air gaps

    Energy Technology Data Exchange (ETDEWEB)

    Malashin, M. V.; Moshkunkov, S. I.; Khomich, V. Yu.; Shershunova, E. A., E-mail: eshershunova@gmail.com [Russian Academy of Sciences, Institute for Electrophysics and Electric Power (Russian Federation)

    2017-02-15

    The spatiotemporal dynamics of a nanosecond atmospheric-pressure dielectric barrier discharge in 1- to 3-mm-long air gaps was studied experimentally. By using a segmented electrode, data on the time evolution of the discharge in different regions of the discharge gap were obtained. The uniformity of the discharge over the cross section is estimated by analyzing the spatial distribution of its glow.

  14. Runout distance and dynamic pressure of pyroclastic density currents: Evidence from 18 May 1980 blast surge of Mount St. Helens

    Science.gov (United States)

    Gardner, J. E.; Andrews, B. J.

    2016-12-01

    Pyroclastic density currents (flows and surges) are one of the most deadly hazards associated with volcanic eruptions. Understanding what controls how far such currents will travel, and how their dynamic pressure evolves, could help mitigate their hazards. The distance a ground hugging, pyroclastic density current travels is partly limited by when it reverses buoyancy and lifts off into the atmosphere. The 1980 blast surge of Mount St. Helens offers an example of a current seen to lift off. Before lofting, it had traveled up to 20 km and leveled more than 600 km3 of thick forest (the blowdown zone). The outer edge of the devastated area - where burned trees that were left standing (the singe zone) - is where the surge is thought to have lifted off. We recently examined deposits in the outer parts of the blowdown and in the singe zone at 32 sites. The important finding is that the laterally moving surge travelled into the singe zone, and hence the change in tree damage does not mark the run out distance of the ground hugging surge. Eyewitness accounts and impacts on trees and vehicles reveal that the surge consisted of a fast, dilute "overcurrent" and a slower "undercurrent", where most of the mass (and heat) was retained. Reasonable estimates for flow density and velocity show that dynamic pressure of the surge (i.e., its ability to topple trees) peaked near the base of the overcurrent. We propose that when the overcurrent began to lift off, the height of peak dynamic pressure rose above the trees and stopped toppling them. The slower undercurrent continued forward, burning trees but it lacked the dynamic pressure needed to topple them. Grain-size variations argue that it slowed from 30 m/s when it entered the singe zone to 3 m/s at the far end. Buoyancy reversal and liftoff are thus not preserved in the deposits where the surge lofted upwards.

  15. Nonlinear response of a post-tensioned concrete structure to static and dynamic internal-pressure loads

    International Nuclear Information System (INIS)

    Butler, T.A.; Bennett, J.G.

    1981-01-01

    A nonlinear finite element model of a nuclear power plant containment building was developed to determine its ultimate pressure capability under quasistatic and impulsive dynamic loads. The ADINA finite element computer code was used to develop the model because of its capability to handle concrete cracking and crushing. Results indicate that, even though excessive concrete cracking occurs, failure is ultimately caused by rupture of post-tensioning tendons

  16. The Effects of Solar Wind Dynamic Pressure Changes on the Substorm Auroras and Energetic Electron Injections on 24 August 2005

    Science.gov (United States)

    Li, L. Y.; Wang, Z. Q.

    2018-01-01

    After the passage of an interplanetary (IP) shock at 06:13 UT on 24 August 2005, the enhancement (>6 nPa) of solar wind dynamic pressure and the southward turning of interplanetary magnetic field (IMF) cause the earthward movement of dayside magnetopause and the drift loss of energetic particles near geosynchronous orbit. The persistent electron drift loss makes the geosynchronous satellites cannot observe the substorm electron injection phenomenon during the two substorm expansion phases (06:57-07:39 UT) on that day. Behind the IP shock, the fluctuations ( 0.5-3 nPa) of solar wind dynamic pressure not only alter the dayside auroral brightness but also cause the entire auroral oval to swing in the day-night direction. However, there is no Pi2 pulsation in the nightside auroral oval during the substorm growth phase from 06:13 to 06:57 UT. During the subsequent two substorm expansion phases, the substorm expansion activities cause the nightside aurora oval brightening from substorm onset site to higher latitudes, and meanwhile, the enhancement (decline) of solar wind dynamic pressure makes the nightside auroral oval move toward the magnetic equator (the magnetic pole). These observations demonstrate that solar wind dynamic pressure changes and substorm expansion activities can jointly control the luminosity and location of the nightside auroral oval when the internal and external disturbances occur simultaneously. During the impact of a strong IP shock, the earthward movement of dayside magnetopause probably causes the disappearance of the substorm electron injections near geosynchronous orbit.

  17. Measurement correction method for force sensor used in dynamic pressure calibration based on artificial neural network optimized by genetic algorithm

    Science.gov (United States)

    Gu, Tingwei; Kong, Deren; Shang, Fei; Chen, Jing

    2017-12-01

    We present an optimization algorithm to obtain low-uncertainty dynamic pressure measurements from a force-transducer-based device. In this paper, the advantages and disadvantages of the methods that are commonly used to measure the propellant powder gas pressure, the applicable scope of dynamic pressure calibration devices, and the shortcomings of the traditional comparison calibration method based on the drop-weight device are firstly analysed in detail. Then, a dynamic calibration method for measuring pressure using a force sensor based on a drop-weight device is introduced. This method can effectively save time when many pressure sensors are calibrated simultaneously and extend the life of expensive reference sensors. However, the force sensor is installed between the drop-weight and the hammerhead by transition pieces through the connection mode of bolt fastening, which causes adverse effects such as additional pretightening and inertia forces. To solve these effects, the influence mechanisms of the pretightening force, the inertia force and other influence factors on the force measurement are theoretically analysed. Then a measurement correction method for the force measurement is proposed based on an artificial neural network optimized by a genetic algorithm. The training and testing data sets are obtained from calibration tests, and the selection criteria for the key parameters of the correction model is discussed. The evaluation results for the test data show that the correction model can effectively improve the force measurement accuracy of the force sensor. Compared with the traditional high-accuracy comparison calibration method, the percentage difference of the impact-force-based measurement is less than 0.6% and the relative uncertainty of the corrected force value is 1.95%, which can meet the requirements of engineering applications.

  18. Viscosity of high-pressure ice VI and evolution and dynamics of Ganymede

    International Nuclear Information System (INIS)

    Poirier, J.P.; Sotin, C.; Peyronneau, J.

    1981-01-01

    The viscosity of high pressure ice VI has been measured at room temperature and pressures of 1.1 to 1.2 GPa giving a value of approximately equal to 10 14 P which suggests that solid state convection might have taken place during the early evolution of Ganymede, thus preventing melting and differentiation. Measurements were carried out in a sapphire anvil cell using fine particles to visualize the flow of ice down the radial pressure gradient. (U.K.)

  19. Elasto-dynamic analysis of a gear pump-Part IV: Improvement in the pressure distribution modelling

    Science.gov (United States)

    Mucchi, E.; Dalpiaz, G.; Fernàndez del Rincòn, A.

    2015-01-01

    This work concerns external gear pumps for automotive applications, which operate at high speed and low pressure. In previous works of the authors (Part I and II, [1,2]), a non-linear lumped-parameter kineto-elastodynamic model for the prediction of the dynamic behaviour of external gear pumps was presented. It takes into account the most important phenomena involved in the operation of this kind of machine. The two main sources of noise and vibration are considered: pressure pulsation and gear meshing. The model has been used in order to foresee the influence of working conditions and design modifications on vibration generation. The model experimental validation is a difficult task. Thus, Part III proposes a novel methodology for the validation carried out by the comparison of simulations and experimental results concerning forces and moments: it deals with the external and inertial components acting on the gears, estimated by the model, and the reactions and inertial components on the pump casing and the test plate, obtained by measurements. The validation is carried out by comparing the level of the time synchronous average in the time domain and the waterfall maps in the frequency domain, with particular attention to identify system resonances. The validation results are satisfactory global, but discrepancies are still present. Moreover, the assessed model has been properly modified for the application to a new virtual pump prototype with helical gears in order to foresee gear accelerations and dynamic forces. Part IV is focused on improvements in the modelling and analysis of the phenomena bound to the pressure distribution around the gears in order to achieve results closer to the measured values. As a matter of fact, the simulation results have shown that a variable meshing stiffness has a notable contribution on the dynamic behaviour of the pump but this is not as important as the pressure phenomena. As a consequence, the original model was modified with

  20. Modeling the evolution of the Laurentide Ice Sheet from MIS 3 to the Last Glacial Maximum: an approach using sea level modeling and ice flow dynamics

    Science.gov (United States)

    Weisenberg, J.; Pico, T.; Birch, L.; Mitrovica, J. X.

    2017-12-01

    The history of the Laurentide Ice Sheet since the Last Glacial Maximum ( 26 ka; LGM) is constrained by geological evidence of ice margin retreat in addition to relative sea-level (RSL) records in both the near and far field. Nonetheless, few observations exist constraining the ice sheet's extent across the glacial build-up phase preceding the LGM. Recent work correcting RSL records along the U.S. mid-Atlantic dated to mid-MIS 3 (50-35 ka) for glacial-isostatic adjustment (GIA) infer that the Laurentide Ice Sheet grew by more than three-fold in the 15 ky leading into the LGM. Here we test the plausibility of a late and extremely rapid glaciation by driving a high-resolution ice sheet model, based on a nonlinear diffusion equation for the ice thickness. We initialize this model at 44 ka with the mid-MIS 3 ice sheet configuration proposed by Pico et al. (2017), GIA-corrected basal topography, and mass balance representative of mid-MIS 3 conditions. These simulations predict rapid growth of the eastern Laurentide Ice Sheet, with rates consistent with achieving LGM ice volumes within 15 ky. We use these simulations to refine the initial ice configuration and present an improved and higher resolution model for North American ice cover during mid-MIS 3. In addition we show that assumptions of ice loads during the glacial phase, and the associated reconstructions of GIA-corrected basal topography, produce a bias that can underpredict ice growth rates in the late stages of the glaciation, which has important consequences for our understanding of the speed limit for ice growth on glacial timescales.

  1. Quantitative Imaging of Turbulent Mixing Dynamics in High-Pressure Fuel Injection to Enable Predictive Simulations of Engine Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Jonathan H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Pickett, Lyle M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Bisson, Scott E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Remote Sensing and Energetic Materials Dept.; Patterson, Brian D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). combustion Chemistry Dept.; Ruggles, Adam J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Skeen, Scott A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Manin, Julien Luc [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Huang, Erxiong [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Reacting Flows Dept.; Cicone, Dave J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.; Sphicas, Panos [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Engine Combustion Dept.

    2015-09-01

    In this LDRD project, we developed a capability for quantitative high - speed imaging measurements of high - pressure fuel injection dynamics to advance understanding of turbulent mixing in transcritical flows, ignition, and flame stabilization mechanisms, and to provide e ssential validation data for developing predictive tools for engine combustion simulations. Advanced, fuel - efficient engine technologies rely on fuel injection into a high - pressure, high - temperature environment for mixture preparation and com bustion. Howe ver, the dynamics of fuel injection are not well understood and pose significant experimental and modeling challenges. To address the need for quantitative high - speed measurements, we developed a Nd:YAG laser that provides a 5ms burst of pulses at 100 kHz o n a robust mobile platform . Using this laser, we demonstrated s patially and temporally resolved Rayleigh scattering imaging and particle image velocimetry measurements of turbulent mixing in high - pressure gas - phase flows and vaporizing sprays . Quantitativ e interpretation of high - pressure measurements was advanced by reducing and correcting interferences and imaging artifacts.

  2. Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics

    Science.gov (United States)

    Makarieva, A. M.; Gorshkov, V. G.; Sheil, D.; Nobre, A. D.; Li, B.-L.

    2013-01-01

    Phase transitions of atmospheric water play a ubiquitous role in the Earth's climate system, but their direct impact on atmospheric dynamics has escaped wide attention. Here we examine and advance a theory as to how condensation influences atmospheric pressure through the mass removal of water from the gas phase with a simultaneous account of the latent heat release. Building from fundamental physical principles we show that condensation is associated with a decline in air pressure in the lower atmosphere. This decline occurs up to a certain height, which ranges from 3 to 4 km for surface temperatures from 10 to 30 °C. We then estimate the horizontal pressure differences associated with water vapor condensation and find that these are comparable in magnitude with the pressure differences driving observed circulation patterns. The water vapor delivered to the atmosphere via evaporation represents a store of potential energy available to accelerate air and thus drive winds. Our estimates suggest that the global mean power at which this potential energy is released by condensation is around one per cent of the global solar power - this is similar to the known stationary dissipative power of general atmospheric circulation. We conclude that condensation and evaporation merit attention as major, if previously overlooked, factors in driving atmospheric dynamics.

  3. Circular dichroism and site-directed spin labeling reveal structural and dynamical features of high-pressure states of myoglobin

    Science.gov (United States)

    Lerch, Michael T.; Horwitz, Joseph; McCoy, John; Hubbell, Wayne L.

    2013-01-01

    Excited states of proteins may play important roles in function, yet are difficult to study spectroscopically because of their sparse population. High hydrostatic pressure increases the equilibrium population of excited states, enabling their characterization [Akasaka K (2003) Biochemistry 42:10875–85]. High-pressure site-directed spin-labeling EPR (SDSL-EPR) was developed recently to map the site-specific structure and dynamics of excited states populated by pressure. To monitor global secondary structure content by circular dichroism (CD) at high pressure, a modified optical cell using a custom MgF2 window with a reduced aperture is introduced. Here, a combination of SDSL-EPR and CD is used to map reversible structural transitions in holomyoglobin and apomyoglobin (apoMb) as a function of applied pressure up to 2 kbar. CD shows that the high-pressure excited state of apoMb at pH 6 has helical content identical to that of native apoMb, but reversible changes reflecting the appearance of a conformational ensemble are observed by SDSL-EPR, suggesting a helical topology that fluctuates slowly on the EPR time scale. Although the high-pressure state of apoMb at pH 6 has been referred to as a molten globule, the data presented here reveal significant differences from the well-characterized pH 4.1 molten globule of apoMb. Pressure-populated states of both holomyoglobin and apoMb at pH 4.1 have significantly less helical structure, and for the latter, that may correspond to a transient folding intermediate. PMID:24248390

  4. Maximum phytoplankton concentrations in the sea

    DEFF Research Database (Denmark)

    Jackson, G.A.; Kiørboe, Thomas

    2008-01-01

    A simplification of plankton dynamics using coagulation theory provides predictions of the maximum algal concentration sustainable in aquatic systems. These predictions have previously been tested successfully against results from iron fertilization experiments. We extend the test to data collect...

  5. Intraocular pressure and ocular pulse amplitude using dynamic contour tonometry and contact lens tonometry

    Directory of Open Access Journals (Sweden)

    Grus Franz-H

    2004-03-01

    Full Text Available Abstract Background The new Ocular Dynamic Contour Tonometer (DCT, investigational device supplied by SMT (Swiss Microtechnology AG, Switzerland allows simultaneous recording of intraocular pressure (IOP and ocular pulse amplitude (OPA. It was the aim of this study to compare the IOP results of this new device with Goldmann tonometry. Furthermore, IOP and OPA measured with the new slitlamp-mounted DCT were compared to the IOP and OPA measured with the hand-held SmartLens®, a gonioscopic contact lens tonometer (ODC Ophthalmic Development Company AG, Switzerland. Methods Nineteen healthy subjects were included in this study. IOP was determined by three consecutive measurements with each of the DCT, SmartLens®, and Goldmann tonometer. Furthermore, OPA was measured three times consecutively by DCT and SmartLens®. Results No difference (P = 0.09 was found between the IOP values by means of DCT (mean: 16.6 mm Hg, median: 15.33 mm Hg, SD: +/- 4.04 mm Hg and Goldmann tonometry (mean: 16.17 mm Hg, median: 15.33 mm Hg, SD: +/- 4.03 mm Hg. The IOP values of SmartLens® (mean: 20.25 mm Hg, median: 19.00 mm Hg, SD: +/- 4.96 mm Hg were significantly higher (P = 0.0008 both from Goldmann tonometry and DCT. The OPA values of the DCT (mean: 3.08 mm Hg, SD: +/- 0.92 mm Hg were significantly lower (P = 0.0003 than those obtained by SmartLens® (mean: 3.92 mm Hg, SD: +/- 0.83 mm Hg. Conclusions DCT was equivalent to Goldmann applanation tonometry in measurement of IOP in a small group of normal subjects. In contrast, SmartLens® (contact lens tonometry gave IOP readings that were significantly higher compared with Goldmann applanation tonometer readings. Both devices, DCT and SmartLens® provide the measurement of OPA which could be helpful e.g. for the management of glaucoma.

  6. Structural stability, dynamical stability, thermoelectric properties, and elastic properties of GeTe at high pressure

    Science.gov (United States)

    Kagdada, Hardik L.; Jha, Prafulla K.; Śpiewak, Piotr; Kurzydłowski, Krzysztof J.

    2018-04-01

    The stability of GeTe in rhombohedral (R 3 m ), face centred cubic (F m 3 m ), and simple cubic (P m 3 m ) phases has been studied using density functional perturbation theory. The rhombohedral phase of GeTe is dynamically stable at 0 GPa, while F m 3 m and P m 3 m phases are stable at 3.1 and 33 GPa, respectively. The pressure-dependent phonon modes are observed in F m 3 m and P m 3 m phases at Γ and M points, respectively. The electronic and the thermoelectric properties have been investigated for the stable phases of GeTe. The electronic band gap for rhombohedral and F m 3 m phases of GeTe has been observed as 0.66 and 0.17 eV, respectively, while the P m 3 m phase shows metallic behavior. We have used the Boltzmann transport equation under a rigid band approximation and constant relaxation time approximation as implemented in boltztrap code for the calculation of thermoelectric properties of GeTe. The metallic behavior of P m 3 m phase gives a very low value of Seebeck coefficient compared to the other two phases as a function of temperature and the chemical potential μ. It is observed that the rhombohedral phase of GeTe exhibits higher thermoelectric performance. Due to the metallic nature of P m 3 m phase, negligible thermoelectric performance is observed compared to R 3 m and F m 3 m -GeTe. The calculated lattice thermal conductivities are low for F m 3 m -GeTe and high for R 3 m -GeTe. At the relatively higher temperature of 1350 K, the figure of merit ZT is found to be 0.7 for rhombohedral GeTe. The elastic constants satisfy the Born stability criteria for all three phases. The rhombohedral and F m 3 m phases exhibits brittleness and the P m 3 m phase shows ductile nature.

  7. Neutron scattering studies of the dynamics of biological systems as a function of hydration, temperature and pressure

    International Nuclear Information System (INIS)

    Trapp, Marcus

    2010-01-01

    Incoherent elastic and quasi-elastic neutron scattering were used to measure membrane and protein dynamics in the nano- to picosecond time and Angstrom length scale. The hydration dependent dynamics of DMPC model membranes was studied using elastic and quasi-elastic neutron scattering. The elastic experiments showed a clear shift of the temperature of the main phase transition to higher temperatures with decreasing hydration level. The performed quasi-elastic measurements demonstrated nicely the influence, hydration has on the diffusive motions of the head lipid groups. Different models are necessary to fit the Q-dependence of the elastic incoherent structure factor and show therefore the reduced mobility as a result of reduced water content. In addition to temperature, pressure as a second thermodynamic variable was used to explore dynamics of DMPC membranes. The ordering introduced by applying pressure has similar effect to decreased hydration, therefore both approaches are complementary. Covering three orders of magnitude in observation time, the dynamics of native AChE and its complexed counterpart in presence of Huperzin A was investigated in the range from 1 ns to 100 ps. The mean square displacements obtained from the elastic data allowed the determination of activation energies and gave evidence that a hierarchy of motions contributes to the enzymatic activity. Diffusion constants and residence times were extracted from the quasi-elastic broadening. (author) [fr

  8. Max Launch Abort System (MLAS) Pad Abort Test Vehicle (PATV) II Attitude Control System (ACS) Integration and Pressurization Subsystem Dynamic Random Vibration Analysis

    Science.gov (United States)

    Ekrami, Yasamin; Cook, Joseph S.

    2011-01-01

    In order to mitigate catastrophic failures on future generation space vehicles, engineers at the National Aeronautics and Space Administration have begun to integrate a novel crew abort systems that could pull a crew module away in case of an emergency at the launch pad or during ascent. The Max Launch Abort System (MLAS) is a recent test vehicle that was designed as an alternative to the baseline Orion Launch Abort System (LAS) to demonstrate the performance of a "tower-less" LAS configuration under abort conditions. The MLAS II test vehicle will execute a propulsive coast stabilization maneuver during abort to control the vehicles trajectory and thrust. To accomplish this, the spacecraft will integrate an Attitude Control System (ACS) with eight hypergolic monomethyl hydrazine liquid propulsion engines that are capable of operating in a quick pulsing mode. Two main elements of the ACS include a propellant distribution subsystem and a pressurization subsystem to regulate the flow of pressurized gas to the propellant tanks and the engines. The CAD assembly of the Attitude Control System (ACS) was configured and integrated into the Launch Abort Vehicle (LAV) design. A dynamic random vibration analysis was conducted on the Main Propulsion System (MPS) helium pressurization panels to assess the response of the panel and its components under increased gravitational acceleration loads during flight. The results indicated that the panels fundamental and natural frequencies were farther from the maximum Acceleration Spectral Density (ASD) vibrations which were in the range of 150-300 Hz. These values will direct how the components will be packaged in the vehicle to reduce the effects high gravitational loads.

  9. Dynamic Characteristics of Mechanical Ventilation System of Double Lungs with Bi-Level Positive Airway Pressure Model

    Directory of Open Access Journals (Sweden)

    Dongkai Shen

    2016-01-01

    Full Text Available In recent studies on the dynamic characteristics of ventilation system, it was considered that human had only one lung, and the coupling effect of double lungs on the air flow can not be illustrated, which has been in regard to be vital to life support of patients. In this article, to illustrate coupling effect of double lungs on flow dynamics of mechanical ventilation system, a mathematical model of a mechanical ventilation system, which consists of double lungs and a bi-level positive airway pressure (BIPAP controlled ventilator, was proposed. To verify the mathematical model, a prototype of BIPAP system with a double-lung simulators and a BIPAP ventilator was set up for experimental study. Lastly, the study on the influences of key parameters of BIPAP system on dynamic characteristics was carried out. The study can be referred to in the development of research on BIPAP ventilation treatment and real respiratory diagnostics.

  10. Direct Numerical Simulations of Dynamic Drainage and Imbibition to Investigate Capillary Pressure-Saturation-Interfacial Area Relation

    Science.gov (United States)

    Konangi, S.; Palakurthi, N. K.; Karadimitriou, N.; Comer, K.; Ghia, U.

    2017-12-01

    We present results of pore-scale direct numerical simulations (DNS) of drainage and imbibition in a quasi-two-dimensional (40µm thickness) porous medium with a randomly distributed packing of cylindrical obstructions. The Navier-Stokes (NS) equations are solved in the pore space on an Eulerian mesh using the open-source finite-volume computational fluid dynamics (CFD) code, OpenFOAM. The Volume-of-Fluid (VOF) method is employed to track the evolution of the fluid-fluid interface; a static contact angle is used to account for wall adhesion. From the DNS data, we focus on the macroscopic capillary pressure-saturation (Pc-Sw) relation, which is known to be hysteretic, i.e., this relation is flow process (such as drainage, imbibition and scanning curves) and history dependent. In order to overcome the problem of hysteresis, extended theories of multiphase flow hypothesized that the inclusion of specific interfacial area as a state variable will result in a unique relation between capillary pressure, saturation and interfacial area (Pc-Sw-awn). We study the role of specific interfacial area on hysteresis in the macroscopic Pc-Sw relation under non-equilibrium (dynamic) conditions. Under dynamic conditions, capillary pressure depends on the rate of change of the wetting phase saturation, and the dynamic Pc-Sw relation includes the changes caused by viscous effects. Simulations of drainage and imbibition are performed for two capillary numbers by controlling the flow rate of the non-wetting (polydimenthlysiloxane oil) and wetting (water) fluids. From these simulations, the Pc-Sw curves will be estimated; the Pc-S-awn surface will be constructed to determine whether the data points from drainage and imbibition processes fall on a unique surface under transient conditions. Different macroscopic capillary pressure definitions based on phase-averaged pressures and interfacial area will be evaluated. Understanding macroscopic capillary pressure definitions and the uniqueness

  11. 76 FR 1504 - Pipeline Safety: Establishing Maximum Allowable Operating Pressure or Maximum Operating Pressure...

    Science.gov (United States)

    2011-01-10

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration [Docket No... Mitigation AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA); DOT. ACTION: Notice... system. To that end, the Hazardous Liquid and Gas Transmission Pipeline Integrity Management (IM...

  12. Quantifying dynamic changes in plantar pressure gradient in diabetics with peripheral neuropathy

    Directory of Open Access Journals (Sweden)

    Chi-Wen Lung

    2016-07-01

    Full Text Available Diabetic foot ulcers remain one of the most serious complications of diabetes. Peak plantar pressure (PPP and peak pressure gradient (PPG during walking have been shown to be associated with the development of diabetic foot ulcers. To gain further insight into the mechanical etiology of diabetic foot ulcers, examination of the pressure gradient angle (PGA has been recently proposed. The PGA quantifies directional variation or orientation of the pressure gradient during walking, and provides a measure of whether pressure gradient patterns are concentrated or dispersed along the plantar surface. We hypothesized that diabetics at risk of foot ulceration would have smaller PGA in key plantar regions, suggesting less movement of the pressure gradient over time. A total of 27 participants were studied, including 19 diabetics with peripheral neuropathy and 8 non-diabetic control subjects. A foot pressure measurement system was used to measure plantar pressures during walking. PPP, PPG and PGA were calculated for four foot regions - 1st toe (T1, 1st metatarsal head (M1, 2nd metatarsal head (M2, and heel (HL. Consistent with prior studies, PPP and PPG were significantly larger in the diabetic group compared to non-diabetic controls in the T1 and M1 regions, but not M2 or HL. For example, PPP was 165% (P=0.02 and PPG was 214% (P<0.001 larger in T1. PGA was found to be significantly smaller in the diabetic group in T1 (46%, P=0.04, suggesting a more concentrated pressure gradient pattern under the toe. The proposed PGA may improve our understanding of the role of pressure gradient on the risk of diabetic foot ulcers.

  13. Maximum Acceleration Recording Circuit

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1995-01-01

    Coarsely digitized maximum levels recorded in blown fuses. Circuit feeds power to accelerometer and makes nonvolatile record of maximum level to which output of accelerometer rises during measurement interval. In comparison with inertia-type single-preset-trip-point mechanical maximum-acceleration-recording devices, circuit weighs less, occupies less space, and records accelerations within narrower bands of uncertainty. In comparison with prior electronic data-acquisition systems designed for same purpose, circuit simpler, less bulky, consumes less power, costs and analysis of data recorded in magnetic or electronic memory devices. Circuit used, for example, to record accelerations to which commodities subjected during transportation on trucks.

  14. On the Validity of Continuum Computational Fluid Dynamics Approach Under Very Low-Pressure Plasma Spray Conditions

    Science.gov (United States)

    Ivchenko, Dmitrii; Zhang, Tao; Mariaux, Gilles; Vardelle, Armelle; Goutier, Simon; Itina, Tatiana E.

    2018-01-01

    Plasma spray physical vapor deposition aims to substantially evaporate powders in order to produce coatings with various microstructures. This is achieved by powder vapor condensation onto the substrate and/or by deposition of fine melted powder particles and nanoclusters. The deposition process typically operates at pressures ranging between 10 and 200 Pa. In addition to the experimental works, numerical simulations are performed to better understand the process and optimize the experimental conditions. However, the combination of high temperatures and low pressure with shock waves initiated by supersonic expansion of the hot gas in the low-pressure medium makes doubtful the applicability of the continuum approach for the simulation of such a process. This work investigates (1) effects of the pressure dependence of thermodynamic and transport properties on computational fluid dynamics (CFD) predictions and (2) the validity of the continuum approach for thermal plasma flow simulation under very low-pressure conditions. The study compares the flow fields predicted with a continuum approach using CFD software with those obtained by a kinetic-based approach using a direct simulation Monte Carlo method (DSMC). It also shows how the presence of high gradients can contribute to prediction errors for typical PS-PVD conditions.

  15. Pronounced low-frequency vibrational thermal transport in C60 fullerite realized through pressure-dependent molecular dynamics simulations

    Science.gov (United States)

    Giri, Ashutosh; Hopkins, Patrick E.

    2017-12-01

    Fullerene condensed-matter solids can possess thermal conductivities below their minimum glassy limit while theorized to be stiffer than diamond when crystallized under pressure. These seemingly disparate extremes in thermal and mechanical properties raise questions into the pressure dependence on the thermal conductivity of C60 fullerite crystals, and how the spectral contributions to vibrational thermal conductivity changes under applied pressure. To answer these questions, we investigate the effect of strain on the thermal conductivity of C60 fullerite crystals via pressure-dependent molecular dynamics simulations under the Green-Kubo formalism. We show that the thermal conductivity increases rapidly with compressive strain, which demonstrates a power-law relationship similar to their stress-strain relationship for the C60 crystals. Calculations of the density of states for the crystals under compressive strains reveal that the librational modes characteristic in the unstrained case are diminished due to densification of the molecular crystal. Over a large compression range (0-20 GPa), the Leibfried-Schlömann equation is shown to adequately describe the pressure dependence of thermal conductivity, suggesting that low-frequency intermolecular vibrations dictate heat flow in the C60 crystals. A spectral decomposition of the thermal conductivity supports this hypothesis.

  16. Three-dimensional dynamic hip contact area and pressure distribution during activities of daily living.

    Science.gov (United States)

    Yoshida, H; Faust, A; Wilckens, J; Kitagawa, M; Fetto, J; Chao, Edmund Y-S

    2006-01-01

    Estimation of the hip joint contact area and pressure distribution during activities of daily living is important in predicting joint degeneration mechanism, prosthetic implant wear, providing biomechanical rationales for preoperative planning and postoperative rehabilitation. These biomechanical data were estimated utilizing a generic hip model, the Discrete Element Analysis technique, and the in vivo hip joint contact force data. The three-dimensional joint potential contact area was obtained from the anteroposterior radiograph of a subject and the actual joint contact area and pressure distribution in eight activities of daily living were calculated. During fast, normal, and slow walking, the peak pressure of moderate magnitude was located at the lateral roof of the acetabulum during mid-stance. In standing up and sitting down, and during knee bending, the peak pressures were located at the edge of the posterior horn and the magnitude of the peak pressure during sitting down was 2.8 times that of normal walking. The peak pressure was found at the lateral roof in climbing up stairs which was higher than that in going down stairs. These results can be used to rationalize rehabilitation protocols, functional restrictions after complex acetabular reconstructions, and prosthetic component wear and fatigue test set up. The same model and analysis can provide further insight to soft tissue loading and pathology such as labral injury. When the pressure distribution on the acetabulum is inverted onto the femoral head, prediction of subchondral bone collapse associated with avascular necrosis can be achieved with improved accuracy.

  17. Effect of water phase transition on dynamic ruptures with thermal pressurization: Numerical simulations with changes in physical properties of water

    Science.gov (United States)

    Urata, Yumi; Kuge, Keiko; Kase, Yuko

    2015-02-01

    Phase transitions of pore water have never been considered in dynamic rupture simulations with thermal pressurization (TP), although they may control TP. From numerical simulations of dynamic rupture propagation including TP, in the absence of any water phase transition process, we predict that frictional heating and TP are likely to change liquid pore water into supercritical water for a strike-slip fault under depth-dependent stress. This phase transition causes changes of a few orders of magnitude in viscosity, compressibility, and thermal expansion among physical properties of water, thus affecting the diffusion of pore pressure. Accordingly, we perform numerical simulations of dynamic ruptures with TP, considering physical properties that vary with the pressure and temperature of pore water on a fault. To observe the effects of the phase transition, we assume uniform initial stress and no fault-normal variations in fluid density and viscosity. The results suggest that the varying physical properties decrease the total slip in cases with high stress at depth and small shear zone thickness. When fault-normal variations in fluid density and viscosity are included in the diffusion equation, they activate TP much earlier than the phase transition. As a consequence, the total slip becomes greater than that in the case with constant physical properties, eradicating the phase transition effect. Varying physical properties do not affect the rupture velocity, irrespective of the fault-normal variations. Thus, the phase transition of pore water has little effect on dynamic ruptures. Fault-normal variations in fluid density and viscosity may play a more significant role.

  18. Froude number fractions to increase walking pattern dynamic similarities: application to plantar pressure study in healthy subjects.

    Science.gov (United States)

    Moretto, P; Bisiaux, M; Lafortune, M A

    2007-01-01

    The purpose of this study was to determine if using similar walking velocities obtained from fractions of the Froude number (N(Fr)) and leg length can lead to kinematic and kinetic similarities and lower variability. Fifteen male subjects walked on a treadmill at 0.83 (VS(1)) and 1.16ms(-1) (VS(2)) and then at two similar velocities (V(Sim27) and V(Sim37)) determined from two fractions of the N(Fr) (0.27 and 0.37) so that the average group velocity remained unchanged in both conditions (VS(1)=V (Sim27)andVS(2)=V (Sim37)). N(Fr) can theoretically be used to determine walking velocities proportional to leg lengths and to establish dynamic similarities between subjects. This study represents the first attempt at using this approach to examine plantar pressure. The ankle and knee joint angles were studied in the sagittal plane and the plantar pressure distribution was assessed with an in-shoe measurement device. The similarity ratios were computed from anthropometric parameters and plantar pressure peaks. Dynamically similar conditions caused a 25% reduction in leg joint angles variation and a 10% significant decrease in dimensionless pressure peak variability on average of five footprint locations. It also lead to heel and under-midfoot pressure peaks proportional to body mass and to an increase in the number of under-forefoot plantar pressure peaks proportional to body mass and/or leg length. The use of walking velocities derived from N(Fr) allows kinematic and plantar pressure similarities between subjects to be observed and leads to a lower inter-subject variability. In-shoe pressure measurements have proven to be valuable for the understanding of lower extremity function. Set walking velocities used for clinical assessment mask the effects of body size and individual gait mechanics. The anthropometric scaling of walking velocities (fraction of N(Fr)) should improve identification of unique walking strategies and pathological foot functions.

  19. Maximum Quantum Entropy Method

    OpenAIRE

    Sim, Jae-Hoon; Han, Myung Joon

    2018-01-01

    Maximum entropy method for analytic continuation is extended by introducing quantum relative entropy. This new method is formulated in terms of matrix-valued functions and therefore invariant under arbitrary unitary transformation of input matrix. As a result, the continuation of off-diagonal elements becomes straightforward. Without introducing any further ambiguity, the Bayesian probabilistic interpretation is maintained just as in the conventional maximum entropy method. The applications o...

  20. Maximum power demand cost

    International Nuclear Information System (INIS)

    Biondi, L.

    1998-01-01

    The charging for a service is a supplier's remuneration for the expenses incurred in providing it. There are currently two charges for electricity: consumption and maximum demand. While no problem arises about the former, the issue is more complicated for the latter and the analysis in this article tends to show that the annual charge for maximum demand arbitrarily discriminates among consumer groups, to the disadvantage of some [it

  1. A dynamic analysis of crack propagation and arrest of pressurized thermal shock experiments (PTSE)

    International Nuclear Information System (INIS)

    Brickstad, B.; Nilsson, F.

    1984-01-01

    The PTS-experiments performed at ORNL are dynamically analysed by aid ot a two-dimensional FEM-code with capability of simulating rapid crack growth.It is found that both a quasistatic and a dynamic treatment agree well with the experimentally obtained crack arrest lengths. (author)

  2. Study of Pressure Drop in Fixed Bed Reactor Using a Computational Fluid Dynamics (CFD Code

    Directory of Open Access Journals (Sweden)

    Soroush Ahmadi

    2018-04-01

    Full Text Available Pressure drops of water and critical steam flowing in the fixed bed of mono-sized spheres are studied using SolidWorks 2017 Flow Simulation CFD code. The effects of the type of bed formation, flow velocity, density, and pebble size are evaluated. A new equation is concluded from the data, which is able to estimate pressure drop of a packed bed for high particle Reynolds number, from 15,000 to 1,000,000.

  3. Use of dynamic CT in acute respiratory distress syndrome (ARDS) with comparison of positive and negative pressure ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Helm, Emma; Babyn, Paul [Hospital for Sick Children, Department of Diagnostic Imaging, Toronto (Canada); Talakoub, Omid; Alirezaie, Javad [Ryerson University, Department of Electrical and Computer Engineering, Toronto, ON (Canada); Grasso, Francesco; Engelberts, Doreen; Kavanagh, Brian P. [Hospital for Sick Children and the University of Toronto, Departments of Anesthesia and Critical Care Medicine and the Program in Pulmonary and Experimental Medicine, Toronto (Canada)

    2009-01-15

    Negative pressure ventilation via an external device ('iron lung') has the potential to provide better oxygenation with reduced barotrauma in patients with ARDS. This study was designed to see if oxygenation differences between positive and negative ventilation could be explained by CT. Six anaesthetized rabbits had ARDS induced by repeated saline lavage. Rabbits were ventilated with positive pressure ventilation (PPV) and negative pressure ventilation (NPV) in turn. Dynamic CT images were acquired over the respiratory cycle. A computer-aided method was used to segment the lung and calculate the range of CT densities within each slice. Volumes of ventilated lung and atelectatic lung were measured over the respiratory cycle. NPV was associated with an increased percentage of ventilated lung and decreased percentage of atelectatic lung. The most significant differences in ventilation and atelectasis were seen at mid-inspiration and mid-expiration (ventilated lung NPV=61%, ventilated lung PPV=47%, p<0.001; atelectatic lung NPV=10%, atelectatic lung PPV 19%, p<0.001). Aeration differences were not significant at end-inspiration. Dynamic CT can show differences in lung aeration between positive and negative ventilation in ARDS. These differences would not be appreciated if only static breath-hold CT was used. (orig.)

  4. Molecular Structural Transformation of 2:1 Clay Minerals by a Constant-Pressure Molecular Dynamics Simulation Method

    International Nuclear Information System (INIS)

    Wang, J.; Gutierre, M.S.

    2010-01-01

    This paper presents results of a molecular dynamics simulation study of dehydrated 2:1 clay minerals using the Parrinello-Rahman constant-pressure molecular dynamics method. The method is capable of simulating a system under the most general applied stress conditions by considering the changes of MD cell size and shape. Given the advantage of the method, it is the major goal of the paper to investigate the influence of imposed cell boundary conditions on the molecular structural transformation of 2:1 clay minerals under different normal pressures. Simulation results show that the degrees of freedom of the simulation cell (i.e., whether the cell size or shape change is allowed) determines the final equilibrated crystal structure of clay minerals. Both the MD method and the static method have successfully revealed unforeseen structural transformations of clay minerals upon relaxation under different normal pressures. It is found that large shear distortions of clay minerals occur when full allowance is given to the cell size and shape change. A complete elimination of the interlayer spacing is observed in a static simulation. However, when only the cell size change is allowed, interlayer spacing is retained, but large internal shear stresses also exist.

  5. On the dynamic fracture toughness and crack tip strain behavior of nuclear pressure vessel steel: Application of electromagnetic force

    International Nuclear Information System (INIS)

    Yagawa, G.; Yoshimura, S.

    1986-01-01

    This paper is concerned with the application of the electromagnetic force to the determination of the dynamic fracture toughness of materials. Taken is an edge-cracked specimen which carries a transient electric current and is simply supported in a steady magnetic field. As a result of their interaction, the dynamic electromagnetic force occurs in the whole body of the specimen, which is then deformed to fracture in the opening mode of cracking. Using the electric potential and the J-R curve methods to determine the dynamic crack initiation point in the experiment, together with the finite element method to calculate the extended J-integral with the effects of the electromagnetic force and inertia, the dynamic fracture toughness values of nuclear pressure vessel steel A508 class 3 are evaluated over a wide temperature range from lower to upper shelves. The strain distribution near the crack tip in the dynamic process of fracture is also obtained by applying a computer picture processing. (orig.)

  6. Dynamics of diffusive bubble growth and pressure recovery in a bubbly rhyolitic melt embedded in an elastic solid

    Science.gov (United States)

    Chouet, Bernard A.; Dawson, Phillip B.; Nakano, Masaru

    2006-01-01

    We present a model of gas exsolution and bubble expansion in a melt supersaturated in response to a sudden pressure drop. In our model, the melt contains a suspension of gas bubbles of identical sizes and is encased in a penny-shaped crack embedded in an elastic solid. The suspension is modeled as a three-dimensional lattice of spherical cells with slight overlap, where each elementary cell consists of a gas bubble surrounded by a shell of volatile-rich melt. The melt is then subjected to a step drop in pressure, which induces gas exsolution and bubble expansion, resulting in the compression of the melt and volumetric expansion of the crack. The dynamics of diffusion-driven bubble growth and volumetric crack expansion span 9 decades in time. The model demonstrates that the speed of the crack response depends strongly on volatile diffusivity in the melt and bubble number density and is markedly sensitive to the ratio of crack thickness to crack radius and initial bubble radius but is relatively insensitive to melt viscosity. The net drop in gas concentration in the melt after pressure recovery represents only a small fraction of the initial concentration prior to the drop, suggesting the melt may undergo numerous pressure transients before becoming significantly depleted of gases. The magnitude of pressure and volume recovery in the crack depends sensitively on the size of the input-pressure transient, becoming relatively larger for smaller-size transients in a melt containing bubbles with initial radii less than 10-5 m. Amplification of the input transient may be large enough to disrupt the crack wall and induce brittle failure in the rock matrix surrounding the crack. Our results provide additional basis for the interpretation of volume changes in the magma conduit under Popocatépetl Volcano during Vulcanian degassing bursts in its eruptive activity in April–May 2000.

  7. Dependence of O{sub 2} diffusion dynamics on pressure and temperature in silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Iovino, G., E-mail: giuseppe.iovino@unipa.it; Agnello, S., E-mail: simonpietro.agnello@unipa.it; Gelardi, F. M., E-mail: franco.gelardi@unipa.it [University of Palermo, Department of Physics and Chemistry (Italy)

    2013-10-15

    An experimental study of the molecular O{sub 2} diffusion process in high purity non-porous silica nanoparticles having 50 m{sup 2}/g BET specific surface and 20 nm average radius was carried out in the temperature range from 127 to 177 Degree-Sign C at O{sub 2} pressure in the range from 0.2 to 66 bar. The study was performed by measuring the volume average interstitial O{sub 2} concentration by a Raman and photoluminescence technique using a 1,064 nm excitation laser to detect the singlet to triplet emission at 1,272 nm of the molecular oxygen in silica. A dependence of the diffusion kinetics on the O{sub 2} absolute pressure, in addition to temperature dependence, was found. The kinetics can be fit by the solution of Fick's diffusion equation using an effective diffusion coefficient related to temperature and O{sub 2} external pressure. The fit results have evidenced that the temperature and pressure dependencies can be disentangled and that the pressure effects are more pronounced at lower temperatures. An Arrhenius temperature law is determined for the effective diffusion coefficient and the activation energy and pre-exponential factor are found in the explored experimental range. The reported findings have not been evidenced previously in the studies in bulk silica and could probably be originated by the reduced spatial extension of the considered system.

  8. A new role for reduction in pressure drop in cyclones using computational fluid dynamics techniques

    Directory of Open Access Journals (Sweden)

    D. Noriler

    2004-01-01

    Full Text Available In this work a new mechanical device to improve the gas flow in cyclones by pressure drop reduction is presented and discussed. This behavior occurs due to the effects of introducing swirling breakdown phenomenon at the inlet of the vortex finder tube. The device consists of a tube with two gas inlets in an appositive spiral flux that produces a sudden reduction in the tangential velocity peak responsible for practically 80 % of the pressure drop in cyclones. In turn, peak reduction causes a decrease in pressure drop by a breakdown of the swirling, and because of this the solid particles tend to move faster toward the wall , increasing collection efficiency. As a result of this phenomenon the overall performance of cyclones is improved. Numerical simulations with 3-D, transient, asymmetric and anisotropic turbulence closure by differential Reynolds stress for Lapple and Stairmand standard geometries of 0.3 m in diameter, show a reduction in pressure drop of 20 % and a shift of the tangential velocity peak toward the wall. All numerical experiments were carried out with a commercial CFD code showing numerical stability and good convergence rates with high-order interpolation schemes, SIMPLEC pressure-velocity coupling and other numerical features.

  9. Temperature and Pressure Dependences of the Elastic Properties of Tantalum Single Crystals Under Tensile Loading: A Molecular Dynamics Study

    Science.gov (United States)

    Li, Wei-bing; Li, Kang; Fan, Kan-qi; Zhang, Da-xing; Wang, Wei-dong

    2018-04-01

    Atomistic simulations are capable of providing insights into physical mechanisms responsible for mechanical properties of the transition metal of Tantalum (Ta). By using molecular dynamics (MD) method, temperature and pressure dependences of the elastic properties of Ta single crystals are investigated through tensile loading. First of all, a comparative study between two types of embedded-atom method (EAM) potentials is made in term of the elastic properties of Ta single crystals. The results show that Ravelo-EAM (Physical Review B, 2013, 88: 134101) potential behaves well at different hydrostatic pressures. Then, the MD simulation results based on the Ravelo-EAM potential show that Ta will experience a body-centered-cubic (BCC) to face-centered-cubic (FCC) phase transition before fracture under tensile loading at 1 K temperature, and model size and strain rate have no obvious effects on tensile behaviors of Ta. Next, from the simulation results at the system temperature from 1 to 1500 K, it can be derived that the elastic modulus of E 100 linearly decrease with the increasing temperature, while the yielding stress decrease with conforming a quadratic polynomial formula. Finally, the pressure dependence of the elastic properties is performed from 0 to 140 GPa and the observations show that the elastic modulus increases with the increasing pressure overall.

  10. Effects of ambient pressure on dynamics of near-nozzle diesel sprays studied by ultrafast x-radiography

    International Nuclear Information System (INIS)

    Cheong, S. K.; Liu, J.; Shu, D.; Wang, J.; Powell, C. F.; Experimental Facilities Division

    2004-01-01

    A time-resolved x-radiographic technique has been employed for measuring the fuel distribution close to a single-hole nozzle fitted in a high-pressure diesel injector. Using a monochromatic synchrotron x-ray beam, it is possible to perform quantitative x-ray absorption measurements and obtain two-dimensional projections of the mass of the fuel spray. We have completed a series of spray measurements in the optically dense, near-nozzle region (ml 15 mm from the nozzle orifice) under ambient pressures of 1, 2, and 5.2 bar Nd2 and 1 bar SFd6 at room temperature with injection pressures of 500 and 1000 bar. The focus of the measurements is on the dynamical behaviors of the fuel jets with an emphasis on their penetration in the near-nozzle region. Careful analysis of the time-resolved, x-radiographic data revealed that the spray penetration in this near-nozzle region was not significantly affected by the limited change of the ambient pressure. In addition, well-defined features of the spray, such as the leading and trailing edges, and fluctuations of fuel mass density in the spray body, allowed us to calculate the leading, trailing, and internal speeds of the sprays

  11. Dynamics of epidemic spreading with vaccination: Impact of social pressure and engagement

    Science.gov (United States)

    Pires, Marcelo A.; Crokidakis, Nuno

    2017-02-01

    In this work we consider a model of epidemic spreading coupled with an opinion dynamics in a fully-connected population. Regarding the opinion dynamics, the individuals may be in two distinct states, namely in favor or against a vaccination campaign. Individuals against the vaccination follow a standard SIS model, whereas the pro-vaccine individuals can also be in a third compartment, namely Vaccinated. In addition, the opinions change according to the majority-rule dynamics in groups with three individuals. We also consider that the vaccine can give permanent or temporary immunization to the individuals. By means of analytical calculations and computer simulations, we show that the opinion dynamics can drastically affect the disease propagation, and that the engagement of the pro-vaccine individuals can be crucial for stopping the epidemic spreading. The full numerical code for simulating the model is available from the authors' webpage.

  12. Dynamic high pressure induced strong and weak hydrogen bonds enhanced by pre-resonance stimulated Raman scattering in liquid water.

    Science.gov (United States)

    Wang, Shenghan; Fang, Wenhui; Li, Fabing; Gong, Nan; Li, Zhanlong; Li, Zuowei; Sun, Chenglin; Men, Zhiwei

    2017-12-11

    355 nm pulsed laser is employed to excite pre-resonance forward stimulated Raman scattering (FSRS) of liquid water at ambient temperature. Due to the shockwave induced dynamic high pressure, the obtained Raman spectra begin to exhibit double peaks distribution at 3318 and 3373 cm -1 with the input energy of 17 mJ,which correspond with OH stretching vibration with strong and weak hydrogen (H) bonds. With laser energy rising from 17 to 27 mJ, the Stokes line at 3318 cm -1 shifts to 3255 and 3230 cm -1 because of the high pressure being enlarged. When the energy is up to 32 mJ, only 3373 cm -1 peak exists. The strong and weak H bond exhibit quite different energy dependent behaviors.

  13. Surrounding rock abutment pressure distribution and thickness effect of dynamic catastrophic in fully mechanized sublevel mining stope

    Energy Technology Data Exchange (ETDEWEB)

    Xie, G.; Yang, K.; Chang, J.; Wang, L. [Anhui University of Science and Technology, Huainan (China)

    2006-12-15

    Numerical simulation was carried out to analyse the distribution of surrounding rock stress with coal seams of different thickness (3.0, 5.4, 8.0, 12.0 m) based on engineering geology and exploitation technology of the 151(3) fully mechanized sublevel caving face in Xieqiao colliery. The research indicates that the variation of abutment pressure has obvious difference in coal seams of different thickness. The effect of abutment pressure distribution in seams of different thickness on coal-methane outbursts was analysed. With an increase in thickness of the caving seam, the research illustrates that the elastic energy resilience is reduced and the capability of resisting damage and deformation is strengthened in coal around the stope. The results show that fully mechanized sublevel caving slows down dynamic catastrophes. 7 refs., 4 figs.

  14. Pressure and cooling rate effect on polyhedron clusters in Cu-Al alloy by using molecular dynamics simulation

    Science.gov (United States)

    Celik, Fatih Ahmet

    2014-10-01

    In this study, the microstructural evolution of crystal-type and icosahedral (icos)-type polyhedrons in Cu-50 at%Al alloy based on the embedded atom method (EAM) model is studied at two cooling rates under normal and high pressures by using the molecular dynamics (MD) simulation method. The cluster-type index method (CTIM) which describes icos and defective icos polyhedrons and the new cluster-type index method (CTIM-2) which describes crystal-type polyhedrons have been used to perform polyhedron analysis in the model alloy system. The results of our simulations demonstrate that the effects of the cooling rate and pressure play an important role in the numbers of polyhedrons and their structures in the system.

  15. Pressure and cooling rate effect on polyhedron clusters in Cu–Al alloy by using molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Celik, Fatih Ahmet, E-mail: facelik@beu.edu.tr

    2014-10-01

    In this study, the microstructural evolution of crystal-type and icosahedral (icos)-type polyhedrons in Cu–50 at%Al alloy based on the embedded atom method (EAM) model is studied at two cooling rates under normal and high pressures by using the molecular dynamics (MD) simulation method. The cluster-type index method (CTIM) which describes icos and defective icos polyhedrons and the new cluster-type index method (CTIM-2) which describes crystal-type polyhedrons have been used to perform polyhedron analysis in the model alloy system. The results of our simulations demonstrate that the effects of the cooling rate and pressure play an important role in the numbers of polyhedrons and their structures in the system.

  16. Coherent pulse interrogation system for fiber Bragg grating sensing of strain and pressure in dynamic extremes of materials.

    Science.gov (United States)

    Rodriguez, George; Jaime, Marcelo; Balakirev, Fedor; Mielke, Chuck H; Azad, Abul; Marshall, Bruce; La Lone, Brandon M; Henson, Bryan; Smilowitz, Laura

    2015-06-01

    A 100 MHz fiber Bragg grating (FBG) interrogation system is described and applied to strain and pressure sensing. The approach relies on coherent pulse illumination of the FBG sensor with a broadband short pulse from a femtosecond modelocked erbium fiber laser. After interrogation of the FBG sensor, a long multi-kilometer run of single mode fiber is used for chromatic dispersion to temporally stretch the spectral components of the reflected pulse from the FBG sensor. Dynamic strain or pressure induced spectral shifts in the FBG sensor are detected as a pulsed time domain waveform shift after encoding by the chromatic dispersive line. Signals are recorded using a single 35 GHz photodetector and a 50 G Samples per second, 25 GHz bandwidth, digitizing oscilloscope. Application of this approach to high-speed strain sensing in magnetic materials in pulsed magnetic fields to ~150 T is demonstrated. The FBG wavelength shifts are used to study magnetic field driven magnetostriction effects in LaCoO3. A sub-microsecond temporal shift in the FBG sensor wavelength attached to the sample under first order phase change appears as a fractional length change (strain: ΔL/L-4) in the material. A second application used FBG sensing of pressure dynamics to nearly 2 GPa in the thermal ignition of the high explosive PBX-9501 is also demonstrated. Both applications demonstrate the use of this FBG interrogation system in dynamical extreme conditions that would otherwise not be possible using traditional FBG interrogation approaches that are deemed too slow to resolve such events.

  17. Modeling Study of the Geospace System Response to the Solar Wind Dynamic Pressure Enhancement on 17 March 2015

    Science.gov (United States)

    Ozturk, D. S.; Zou, S.; Ridley, A. J.; Slavin, J. A.

    2018-04-01

    The global magnetosphere-ionosphere-thermosphere system is intrinsically coupled and susceptible to external drivers such as solar wind dynamic pressure enhancements. In order to understand the large-scale dynamic processes in the magnetosphere-ionosphere-thermosphere system due to the compression from the solar wind, the 17 March 2015 sudden commencement was studied in detail using global numerical models. This storm was one of the most geoeffective events of the solar cycle 24 with a minimum Dst of -222 nT. The Wind spacecraft recorded a 10-nPa increment in the solar wind dynamic pressure, while the interplanetary magnetic field BZ became further northward. The University of Michigan Block-Adaptive-Tree Solar wind Roe-type Upwind Scheme global magnetohydrodynamic code was utilized to study the generation and propagation of perturbations associated with the compression of the magnetosphere system. In addition, the high-resolution electric potential and auroral power output from the magnetohydrodynamic model was used to drive the global ionosphere-thermosphere model to investigate the ionosphere-thermosphere system response to pressure enhancement. During the compression, the electric potentials and convection patterns in the polar ionosphere were significantly altered when the preliminary impulse and main impulse field-aligned currents moved from dayside to nightside. As a result of enhanced frictional heating, plasma and neutral temperatures increased at the locations where the flow speeds were enhanced, whereas the electron density dropped at these locations. In particular, the region between the preliminary impulse and main impulse field-aligned currents experienced the most significant heating with 1000-K ion temperature increase and 20-K neutral temperature increase within 2 min. Comparison of the simulation results with the Poker Flat Incoherent Scatter Radar observations showed reasonable agreements despite underestimated magnitudes.

  18. Ab initio molecular dynamics study of pressure-induced phase transition in ZnS

    International Nuclear Information System (INIS)

    Martinez, Israel; Durandurdu, Murat

    2006-01-01

    The pressure-induced phase transition in zinc sulfide is studied using a constant-pressure ab initio technique. The reversible phase transition from the zinc-blende structure to a rock-salt structure is successfully reproduced through the simulations. The transformation mechanism at the atomistic level is characterized and found to be due to a monoclinic modification of the simulation cell, similar to that obtained in SiC. This observation supports the universal transition state of high-pressure zinc-blende to rock-salt transition in semiconductor compounds. We also study the role of stress deviations on the transformation mechanism and find that the system follows the same transition pathway under nonhydrostatic compressions as well

  19. Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High-T and Dynamic Gas Pressure in Harsh Environments

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Hai [Clemson Univ., SC (United States); Tsai, Hai-Lung [Missouri Univ. of Science and Technology, Rolla, MO (United States); Dong, Junhang [Univ. of Cincinnati, OH (United States)

    2014-09-30

    This is the final report for the program “Micro-Structured Sapphire Fiber Sensors for Simultaneous Measurements of High Temperature and Dynamic Gas Pressure in Harsh Environments”, funded by NETL, and performed by Missouri University of Science and Technology, Clemson University and University of Cincinnati from October 1, 2009 to September 30, 2014. Securing a sustainable energy economy by developing affordable and clean energy from coal and other fossil fuels is a central element to the mission of The U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL). To further this mission, NETL funds research and development of novel sensor technologies that can function under the extreme operating conditions often found in advanced power systems. The main objective of this research program is to conduct fundamental and applied research that will lead to successful development and demonstration of robust, multiplexed, microstructured silica and single-crystal sapphire fiber sensors to be deployed into the hot zones of advanced power and fuel systems for simultaneous measurements of high temperature and gas pressure. The specific objectives of this research program include: 1) Design, fabrication and demonstration of multiplexed, robust silica and sapphire fiber temperature and dynamic gas pressure sensors that can survive and maintain fully operational in high-temperature harsh environments. 2) Development and demonstration of a novel method to demodulate the multiplexed interferograms for simultaneous measurements of temperature and gas pressure in harsh environments. 3) Development and demonstration of novel sapphire fiber cladding and low numerical aperture (NA) excitation techniques to assure high signal integrity and sensor robustness.

  20. Study of the effect of composition and construction of material on sub-bandage pressure during dynamic loading of a limb in vitro.

    Science.gov (United States)

    Kumar, Bipin; Das, Apurba; Alagirusamy, R

    2013-01-01

    Internal stress in a compression bandage wrapped over a limb in vitro is expected to reduce over time because of fatigue which may occur due to repetitive and prolonged variations in the extension of the bandage during posture change and exercise. This phenomenon may cause significant variation in the sub-bandage pressure over time. To examine the effect of composition and construction of material on the sub-bandage pressure variation over time in the dynamic state of a limb in the laboratory. Yarns comprising fibers of polyester, viscose, cotton and elastomeric yarn were used to prepare different knitted bandage samples having varying thread densities in the structure. A leg-segment prototype was used for the measurement of the interface pressure over a mannequin limb to analyse different bandages under similar dynamic conditions. The pressure drop in the dynamic state of the mannequin limb was greater than that in the static state. The mean pressure drop in 2 h in the dynamic state was greater by >30% for bandages made of pure cotton or viscose yarns than for bandages having elastomeric yarns in their structure. At the same applied tension, increasing the number of yarns per unit length in the bandage structure resulted in a smaller drop in pressure in the dynamic mode. Elastomeric yarn improves the elasticity and fatigue resistance of the bandage. Therefore, these yarns should be used in bandages to obtain sustained compression effects under dynamic conditions.

  1. Determination of time constants of reactor pressure and temperature sensors: the dynamic data system method

    International Nuclear Information System (INIS)

    Wu, S.M.; Hsu, M.C.; Chow, M.C.

    1979-01-01

    A new modeling technique is introduced for on-line sensor time constant identification, both for the resistance temperature detector (RTD) and for the pressure sensor using power plant operational data. The sensor's time constant is estimated from a real characteristic root of the fitted autoregressive moving average model. The RTD's time constant values were identified to be 8.4 s, with a standard deviation of 1.2 s. The pressure sensor time constant was identified to be 28.6 ms, with a standard deviation of 3.5 ms

  2. Mechanical properties of reactor pressure vessel steels studied by static and dynamic torsion tests

    International Nuclear Information System (INIS)

    Munier, A.; Maamouri, M.; Schaller, R.; Mercier, O.

    1993-01-01

    Internal friction measurements and torsional plastic deformation tests have been performed in reactor pressure vessel steels (unirradiated, irradiated and irradiated/annealed specimens). The results of these experiments have been interpreted with help of transmission electron microscopy observations (conventional and in situ). It is shown how the interactions between screw dislocations and obstacles (Peierls valleys, impurities and precipitates) could explain the low temperature hardening and the irradiation embrittlement of ferritic steels. In addition, it appears that the nondestructive internal friction technique could be used advantageously to follow the evolution of the material properties under irradiation, as for instance the irradiation embrittlement of the reactor pressure vessel steels. (orig.)

  3. Nonlinear dynamic response analysis in piping system for a loss of coolant accident in primary loop of pressurized water reactor

    International Nuclear Information System (INIS)

    Zhang Xiwen; He Feng; Hao Pengfei; Wang Xuefang

    2000-01-01

    Based on the elaborate force and moment analysis with characteristics method and control-volume integrating method for the piping system of primary loop under pressurized water reactor' loss of coolant accident (LOCA) conditions, the nonlinear dynamic response of this system is calculated by the updated Lagrangian formulation (ADINA code). The piping system and virtual underpinning are specially processed, the move displacement of the broken pipe with time is accurately acquired, which is very important and useful for the design of piping system and virtual underpinning

  4. Ab initio molecular dynamics simulation of structural transformation in zinc blende GaN under high pressure

    International Nuclear Information System (INIS)

    Xiao, H.Y.; Gao, Fei; Zu, X.T.; Weber, W.J.

    2010-01-01

    High-pressure induced zinc blende to rocksalt phase transition in GaN has been investigated by ab initio molecular dynamics method to characterize the transformation mechanism at the atomic level. It was shown that at 100 GPa GaN passes through tetragonal and monoclinic states before rocksalt structure is formed. The transformation mechanism is consistent with that for other zinc blende semiconductors obtained from the same method. Detailed structural analysis showed that there is no bond breaking involved in the phase transition.

  5. Quantum molecular dynamics simulations of the thermophysical properties of shocked liquid ammonia for pressures up to 1.3 TPa.

    Science.gov (United States)

    Li, Dafang; Zhang, Ping; Yan, Jun

    2013-10-07

    We investigate via quantum molecular-dynamics simulations the thermophysical properties of shocked liquid ammonia up to the pressure 1.3 TPa and temperature 120,000 K. The principal Hugoniot is predicted from the wide-range equation of state, which agrees well with the available experimental measurements up to 64 GPa. Our systematic study of the structural properties demonstrates that the liquid ammonia undergoes a gradual phase transition along the Hugoniot. At about 4800 K, the system transforms into a metallic, complex mixture state consisting of NH3, N2, H2, N, and H. Furthermore, we discuss the implications for the interiors of Uranus and Neptune.

  6. Numerical investigations of two-phase flow with dynamic capillary pressure in porous media via a moving mesh method

    Science.gov (United States)

    Zhang, Hong; Zegeling, Paul Andries

    2017-09-01

    Motivated by observations of saturation overshoot, this paper investigates numerical modeling of two-phase flow in porous media incorporating dynamic capillary pressure. The effects of the dynamic capillary coefficient, the infiltrating flux rate and the initial and boundary values are systematically studied using a traveling wave ansatz and efficient numerical methods. The traveling wave solutions may exhibit monotonic, non-monotonic or plateau-shaped behavior. Special attention is paid to the non-monotonic profiles. The traveling wave results are confirmed by numerically solving the partial differential equation using an accurate adaptive moving mesh solver. Comparisons between the computed solutions using the Brooks-Corey model and the laboratory measurements of saturation overshoot verify the effectiveness of our approach.

  7. Maximum likely scale estimation

    DEFF Research Database (Denmark)

    Loog, Marco; Pedersen, Kim Steenstrup; Markussen, Bo

    2005-01-01

    A maximum likelihood local scale estimation principle is presented. An actual implementation of the estimation principle uses second order moments of multiple measurements at a fixed location in the image. These measurements consist of Gaussian derivatives possibly taken at several scales and/or ...

  8. Robust Maximum Association Estimators

    NARCIS (Netherlands)

    A. Alfons (Andreas); C. Croux (Christophe); P. Filzmoser (Peter)

    2017-01-01

    textabstractThe maximum association between two multivariate variables X and Y is defined as the maximal value that a bivariate association measure between one-dimensional projections αX and αY can attain. Taking the Pearson correlation as projection index results in the first canonical correlation

  9. Dynamic Pressure of Liquid Mercury Target During 800-MeV Proton Thermal Shock Tests

    International Nuclear Information System (INIS)

    Allison, S.W.; Andriulli, J.B.; Cates, M.R.; Earl, D.D.; Haines, J.R.; Morrissey, F.X.; Tsai, C.C.; Wender, S.

    2000-01-01

    Described here are efforts to diagnose transient pressures generated by a short-pulse (about 0.5 microseconds) high intensity proton (∼ 2 * 10 14 per pulse) beam. Proton energy is 800-MeV. The tests were performed at the Los Alamos Neutron Science Center - Weapons Neutron Research (LANSCE-WNR). Such capability is required for understanding target interaction for the Spallation Neutron Source project as described previously at this conference.1-4 The main approach to effect the pressure measurements utilized the deflection of a diaphragm in intimate contact with the mercury. There are a wide variety of diaphragm-deflection methods used in scientific and industrial applications. Many deflection-sensing approaches are typically used, including, for instance, capacitive and optical fiber techniques. It was found, however, that conventional pressure measurement using commercial pressure gages with electrical leads was not possible due to the intense nuclear radiation environment. Earlier work with a fiber optic strain gauge demonstrated the viability of using fiber optics for this environment

  10. Nonlinear transient dynamic response of pressure relief valves for a negative containment system

    International Nuclear Information System (INIS)

    Aziz, T.S.; Duff, C.G.; Tang, J.H.K.

    1979-01-01

    The response of the piston for the postulated simultaneous effect of pressure and an earthquake is obtained for different parameters and accident conditions. Response quantities such as accelerations, displacements, rotations, diaphragm forces as well as opening time during a design basis earthquake are obtained. The results of the different analyses, as related to the functional operability of the valves, are evaluated and discussed. (orig.)

  11. Ab initio molecular dynamics study of temperature and pressure-dependent infrared dielectric functions of liquid methanol

    Directory of Open Access Journals (Sweden)

    C. C. Wang

    2017-03-01

    Full Text Available The temperature and pressure-dependent dielectric functions of liquids are of great importance to the thermal radiation transfer and the diagnosis and control of fuel combustion. In this work, we apply the state-of-the-art ab initio molecular dynamics (AIMD method to calculate the infrared dielectric functions of liquid methanol at 183–573 K and 0.1–160 MPa in the spectral range 10−4000 cm−1, and study the temperature and pressure effects on the dielectric functions. The AIMD approach is validated by the Infrared Variable Angle Spectroscopic Ellipsometry (IR-VASE experimental measurements at 298 K and 0.1 MPa, and the proposed IR-VASE method is verified by comparison with paper data of distilled water. The results of the AIMD approach agrees well with the experimental values of IR-VASE. The experimental and theoretical analyses indicate that the temperature and pressure exert a noticeable influence on the infrared dielectric functions of liquid methanol. As temperature increases, the average molecular dipole moment decreases. The amplitudes of dominant absorption peaks reduce to almost one half as temperature increases from 183 to 333 K at 0.1 MPa and from 273 to 573 K at 160 MPa. The absorption peaks below 1500 cm–1 show a redshift, while those centered around 3200 cm–1 show a blueshift. Moreover, larger average dipole moments are observed as pressure increases. The amplitudes of dominant absorption peaks increase to almost two times as pressure increases from 1 to 160 MPa at 373 K.

  12. Pilot study assessment of dynamic vascular changes in breast cancer with near-infrared tomography from prospectively targeted manipulations of inspired end-tidal partial pressure of oxygen and carbon dioxide.

    Science.gov (United States)

    Jiang, Shudong; Pogue, Brian W; Michaelsen, Kelly E; Jermyn, Michael; Mastanduno, Michael A; Frazee, Tracy E; Kaufman, Peter A; Paulsen, Keith D

    2013-07-01

    The dynamic vascular changes in the breast resulting from manipulation of both inspired end-tidal partial pressure of oxygen and carbon dioxide were imaged using a 30 s per frame frequency-domain near-infrared spectral (NIRS) tomography system. By analyzing the images from five subjects with asymptomatic mammography under different inspired gas stimulation sequences, the mixture that maximized tissue vascular and oxygenation changes was established. These results indicate maximum changes in deoxy-hemoglobin, oxygen saturation, and total hemoglobin of 21, 9, and 3%, respectively. Using this inspired gas manipulation sequence, an individual case study of a subject with locally advanced breast cancer undergoing neoadjuvant chemotherapy (NAC) was analyzed. Dynamic NIRS imaging was performed at different time points during treatment. The maximum tumor dynamic changes in deoxy-hemoglobin increased from less than 7% at cycle 1, day 5 (C1, D5) to 17% at (C1, D28), which indicated a complete response to NAC early during treatment and was subsequently confirmed pathologically at the time of surgery.

  13. Thermodynamic properties by equation of state and from Ab initio molecular dynamics of liquid potassium under pressure

    Science.gov (United States)

    Li, Huaming; Tian, Yanting; Sun, Yongli; Li, Mo; Nonequilibrium materials; physics Team; Computational materials science Team

    In this work, we apply a general equation of state of liquid and Ab initio molecular-dynamics method to study thermodynamic properties in liquid potassium under high pressure. Isothermal bulk modulus and molar volume of molten sodium are calculated within good precision as compared with the experimental data. The calculated internal energy data and the calculated values of isobaric heat capacity of molten potassium show the minimum along the isothermal lines as the previous result obtained in liquid sodium. The expressions for acoustical parameter and nonlinearity parameter are obtained based on thermodynamic relations from the equation of state. Both parameters for liquid potassium are calculated under high pressure along the isothermal lines by using the available thermodynamic data and numeric derivations. Furthermore, Ab initio molecular-dynamics simulations are used to calculate some thermodynamic properties of liquid potassium along the isothermal lines. Scientific Research Starting Foundation from Taiyuan university of Technology, Shanxi Provincial government (``100-talents program''), China Scholarship Council and National Natural Science Foundation of China (NSFC) under Grant No. 51602213.

  14. Development of a sub-scale dynamics model for pressure relaxation of multi-material cells in Lagrangian hydrodynamics

    Directory of Open Access Journals (Sweden)

    Canfield T.R.

    2011-01-01

    Full Text Available We have extended the Sub-Scale Dynamics (SSD closure model for multi-fluid computational cells. Volume exchange between two materials is based on the interface area and a notional interface translation velocity, which is derived from a linearized Riemann solution. We have extended the model to cells with any number of materials, computing pressure-difference-driven volume and energy exchange as the algebraic sum of pairwise interactions. In multiple dimensions, we rely on interface reconstruction to provide interface areas and orientations, and centroids of material polygons. In order to prevent unphysically large or unmanageably small material volumes, we have used a flux-corrected transport (FCT approach to limit the pressure-driven part of the volume exchange. We describe the implementation of this model in two dimensions in the FLAG hydrodynamics code. We also report on Lagrangian test calculations, comparing them with others made using a mixed-zone closure model due to Tipton, and with corresponding calculations made with only single-material cells. We find that in some cases, the SSD model more accurately predicts the state of material in mixed cells. By comparing the algebraic forms of both models, we identify similar dependencies on state and dynamical variables, and propose explanations for the apparent higher fidelity of the SSD model.

  15. Dynamic plantar pressure distribution, strength capacity and postural control after Lisfranc fracture-dislocation

    DEFF Research Database (Denmark)

    Mehlhorn, Alexander T; Walther, Markus; Yilmaz, Tayfun

    2017-01-01

    of life. 17 consecutive patients suffering from a Lisfranc fracture dislocation were registered, underwent open reduction and internal fixation and were followed-up for 50.5±25.7months (Mean±SDM). Biomechanical analysis of muscle strength capacities, postural control and plantar pressure distribution......Substantial progress has been made in the operative treatment of Lisfranc fractures, however, the prognosis remains poor. We hypothesized that Lisfranc injuries change the postural control and muscle strength of the lower limb. Both are suggested to correlate with the clinical outcome and quality...... correlated well with clinical outcome. Altered postural control was evident by a significant reduction in unilateral stance time, from which we calculated a strong correlation between stance time and the isokinetic strength measurement. Plantar pressure measurements revealed a significant reduction in peak...

  16. Dynamic simulation in the process of pressurized denitration based on oxy-fuel combustion

    Science.gov (United States)

    Huang, Qiang; Zhou, Dong

    2018-02-01

    Oxy-fuel combustion is considered as one of the most promising technologies for capturing CO2 from coal-fired power plants. It will greatly reduce the cost of gas purification if we remove NOx in the process of compression, which is the characteristic of oxy-combustion. In this paper, simulation of denitration process of oxy-fuel combustion flue gas was realized by the Aspen Plus software, systematically analyzed the effect of temperature, pressure, initial concentration of O2 and NO in the denitration process. Results show that the increasing of pressure, initial concentration of O2, initial concentration of NO and the decrease of temperature are all beneficial to the denitration process.

  17. Contralateral limb during total contact casting. A dynamic pressure and thermometric analysis.

    Science.gov (United States)

    Armstrong, D G; Liswood, P J; Todd, W F

    1995-12-01

    The authors draw attention to the importance of evaluation of the contralateral limb when treating unilateral sequelae secondary to distal symmetrical polyneuropathy. Plantar pressure measurements of the contralateral limb during total contact casting are reviewed. The results of thermometric evaluation before and after initiation of repetitive stress were reviewed. The results suggest that the patient walking in a total contact cast may experience a reduced focal pressure on the contralateral limb when compared with uncasted walking and three-point walking with crutches. Dermal thermometry may be a highly sensitive tool in evaluating even mild increases in repetitive stress. To explain this decrease in contralateral stress, the authors examine the features inherent to the total contact cast and propose the concept of proprioceptive stability.

  18. Small specimen measurements of dynamic fracture toughness of heavy section steels for nuclear pressure vessel

    International Nuclear Information System (INIS)

    Tanaka, Y.; Iwadate, T.; Suzuki, K.

    1987-01-01

    This study presents the dynamic fracture toughness properties (KId) of 12 heats of RPV steels measured using small specimens and analysed based on the current research. The correlation between the KId test and other engineering small specimen tests such as Charpy test and drop weight test are also discussed and a method to predict the KId value is presented. (orig./HP)

  19. Dynamic modeling and explicit/multi-parametric MPC control of pressure swing adsorption systems

    KAUST Repository

    Khajuria, Harish; Pistikopoulos, Efstratios N.

    2011-01-01

    objective is to fast track H2 purity to a set point value of 99.99%. To perform this task, a rigorous and systematic framework is employed. First, a high fidelity detailed dynamic model is built to represent the system's real operation, and understand its

  20. Molecular dynamics simulations of water on a hydrophilic silica surface at high air pressures

    DEFF Research Database (Denmark)

    Zambrano, H.A.; Walther, Jens Honore; Jaffe, R.L.

    2014-01-01

    Wepresent a force field forMolecular Dynamics (MD) simulations ofwater and air in contactwith an amorphous silica surface. We calibrate the interactions of each species present in the systemusing dedicated criteria such as the contact angle of a water droplet on a silica surface, and the solubility...

  1. Continuous positive airway pressure alters cranial blood flow and cerebrospinal fluid dynamics at the craniovertebral junction

    Directory of Open Access Journals (Sweden)

    Theresia I. Yiallourou

    2015-09-01

    Conclusion: Application of CPAP via a full-fitted mask at 15 cm H2O was found to have a significant effect on intracranial venous outflow and spinal CSF flow at the C2 vertebral level in healthy adult-age awake volunteers. CPAP can be used to non-invasively provoke changes in intracranial and CSF flow dynamics.

  2. Patellofemoral pressure changes after static and dynamic medial patellofemoral ligament reconstructions

    NARCIS (Netherlands)

    Rood, A.; Hannink, G.; Lenting, A.; Groenen, K.; Koëter, S.; Verdonschot, Nicolaas Jacobus Joseph; van Kampen, A.

    2015-01-01

    Background: Reconstructing the medial patellofemoral ligament (MPFL) has become a key procedure for stabilizing the patella. Different techniques to reconstruct the MPFL have been described: static techniques in which the graft is fixed rigidly to the bone or dynamic techniques with soft tissue

  3. Patellofemoral Pressure Changes After Static and Dynamic Medial Patellofemoral Ligament Reconstructions

    NARCIS (Netherlands)

    Rood, A.; Hannink, G.; Lenting, A.; Groenen, K.; Koeter, S.; Verdonschot, N.J.; Kampen, A. van

    2015-01-01

    BACKGROUND: Reconstructing the medial patellofemoral ligament (MPFL) has become a key procedure for stabilizing the patella. Different techniques to reconstruct the MPFL have been described: static techniques in which the graft is fixed rigidly to the bone or dynamic techniques with soft tissue

  4. Dynamic cerebral autoregulation to induced blood pressure changes in human experimental and clinical sepsis

    DEFF Research Database (Denmark)

    Berg, Ronan M G; Plovsing, Ronni R; Bailey, Damian M

    2016-01-01

    (-1) ; P = 0·91 versus baseline; P = 0·14 versus LPS]. While our findings support the concept that dynamic cerebral autoregulation is enhanced during the very early stages of sepsis, they remain inconclusive with regard to more advanced stages of disease, because thigh-cuff deflation failed to induce...... (Ps...

  5. Computational fluid dynamic analysis of a closure head penetration in a pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, D.R.; Schwirian, R.E. [Westinghouse Electric Corp., Pittsburgh, PA (United States)

    1995-09-01

    ALLOY 600 has been used typically for penetrations through the closure head in pressurized water reactors because of its thermal compatibility with carbon steel, superior resistance to chloride attack and higher strength than the austenitic stainless steels. Recent plant operating experience with this alloy has indicated that this material may be susceptible to degradation. One of the major parameters relating to degradation of the head penetrations are the operational temperatures and stress levels in the penetration.

  6. Computational Fluid Dynamic Simulation of Single Bubble Growth under High-Pressure Pool Boiling Conditions

    Directory of Open Access Journals (Sweden)

    Janani Murallidharan

    2016-08-01

    Full Text Available Component-scale modeling of boiling is predominantly based on the Eulerian–Eulerian two-fluid approach. Within this framework, wall boiling is accounted for via the Rensselaer Polytechnic Institute (RPI model and, within this model, the bubble is characterized using three main parameters: departure diameter (D, nucleation site density (N, and departure frequency (f. Typically, the magnitudes of these three parameters are obtained from empirical correlations. However, in recent years, efforts have been directed toward mechanistic modeling of the boiling process. Of the three parameters mentioned above, the departure diameter (D is least affected by the intrinsic uncertainties of the nucleate boiling process. This feature, along with its prominence within the RPI boiling model, has made it the primary candidate for mechanistic modeling ventures. Mechanistic modeling of D is mostly carried out through solving of force balance equations on the bubble. Forces incorporated in these equations are formulated as functions of the radius of the bubble and have been developed for, and applied to, low-pressure conditions only. Conversely, for high-pressure conditions, no mechanistic information is available regarding the growth rates of bubbles and the forces acting on them. In this study, we use direct numerical simulation coupled with an interface tracking method to simulate bubble growth under high (up to 45 bar pressure, to obtain the kind of mechanistic information required for an RPI-type approach. In this study, we compare the resulting bubble growth rate curves with predictions made with existing experimental data.

  7. Effect of inhomogeneities on streamer propagation: II. Streamer dynamics in high pressure humid air with bubbles

    International Nuclear Information System (INIS)

    Babaeva, Natalia Yu; Kushner, Mark J

    2009-01-01

    The branching of electric discharge streamers in atmospheric pressure air, dense gases and liquids is a common occurrence whose origins are likely found with many causes, both deterministic and stochastic. One mechanism for streamer branching may be inhomogeneities in the path of a streamer which either divert the streamer (typically a region of lower ionization) or produce a new branch (a region of higher ionization). The propagation and branching of streamers in liquids is likely aided by low density inhomogeneities, bubbles; however, modeling of streamers in liquids is made difficult by the lack of transport coefficients. As a first step towards understanding the propagation and branching of streamers in liquids, we investigated the consequences of random inhomogeneities in the form of low pressure bubbles on the propagation of streamers in high pressure humid air. By virtue of their lower density, bubbles have larger E/N (electric field/gas number density) than the ambient gas with larger rates of ionization. The intersection of a streamer with a bubble will focus the plasma into the bubble by virtue of that higher rate of ionization but the details of the interaction depend on the relative sizes of the bubble and streamer. When a streamer intersects a field of bubbles, the large E/N in the bubble avalanches seed electrons produced by photoionization from the streamer. Each bubble then launches both a negative and positive going streamer that may link with those from adjacent bubbles or the original streamer. The total process then appears as streamer branching.

  8. Maximum power point tracking

    International Nuclear Information System (INIS)

    Enslin, J.H.R.

    1990-01-01

    A well engineered renewable remote energy system, utilizing the principal of Maximum Power Point Tracking can be m ore cost effective, has a higher reliability and can improve the quality of life in remote areas. This paper reports that a high-efficient power electronic converter, for converting the output voltage of a solar panel, or wind generator, to the required DC battery bus voltage has been realized. The converter is controlled to track the maximum power point of the input source under varying input and output parameters. Maximum power point tracking for relative small systems is achieved by maximization of the output current in a battery charging regulator, using an optimized hill-climbing, inexpensive microprocessor based algorithm. Through practical field measurements it is shown that a minimum input source saving of 15% on 3-5 kWh/day systems can easily be achieved. A total cost saving of at least 10-15% on the capital cost of these systems are achievable for relative small rating Remote Area Power Supply systems. The advantages at larger temperature variations and larger power rated systems are much higher. Other advantages include optimal sizing and system monitor and control

  9. The effect of a microscale fracture on dynamic capillary pressure of two-phase flow in porous media

    Science.gov (United States)

    Tang, Mingming; Lu, Shuangfang; Zhan, Hongbin; Wenqjie, Guo; Ma, Huifang

    2018-03-01

    Dynamic capillary pressure (DCP) effects, which is vital for predicting multiphase flow behavior in porous media, refers to the injection rate dependence capillary pressure observed during non-equilibrium displacement experiments. However, a clear picture of the effects of microscale fractures on DCP remains elusive. This study quantified the effects of microscale fractures on DCP and simulated pore-scale force and saturation change in fractured porous media using the multiphase lattice Boltzmann method (LBM). Eighteen simulation cases were carried out to calculate DCP as a function of wetting phase saturation. The effects of viscosity ratio and fracture orientation, aperture and length on DCP and DCP coefficient τ were investigated, where τ refers to the ratio of the difference of DCP and static capillary pressure (SCP) over the rate of wetting-phase saturation change versus time. Significant differences in τ values were observed between unfractured and fractured porous media. The τ values of fractured porous media were 1.1  × 104 Pa ms to 5.68 × 105 Pa ms, which were one or two orders of magnitude lower than those of unfractured porous media with a value of 4 × 106 Pa. ms. A horizontal fracture had greater effects on DCP and τ than a vertical fracture, given the same fracture aperture and length. This study suggested that a microscale fracture might result in large magnitude changes in DCP for two-phase flow.

  10. Influence of surrounding gas, composition and pressure on plasma plume dynamics of nanosecond pulsed laser-induced aluminum plasmas

    Directory of Open Access Journals (Sweden)

    Mahmoud S. Dawood

    2015-10-01

    Full Text Available In this article, we present a comprehensive study of the plume dynamics of plasmas generated by laser ablation of an aluminum target. The effect of both ambient gas composition (helium, nitrogen or argon and pressure (from ∼5 × 10−7 Torr up to atmosphere is studied. The time- and space- resolved observation of the plasma plume are performed from spectrally integrated images using an intensified Charge Coupled Device (iCCD camera. The iCCD images show that the ambient gas does not significantly influence the plume as long as the gas pressure is lower than 20 Torr and the time delay below 300 ns. However, for pressures higher than 20 Torr, the effect of the ambient gas becomes important, the shortest plasma plume length being observed when the gas mass species is highest. On the other hand, space- and time- resolved emission spectroscopy of aluminum ions at λ = 281.6 nm are used to determine the Time-Of-Flight (TOF profiles. The effect of the ambient gas on the TOF profiles and therefore on the propagation velocity of Al ions is discussed. A correlation between the plasma plume expansion velocity deduced from the iCCD images and that estimated from the TOF profiles is presented. The observed differences are attributed mainly to the different physical mechanisms governing the two diagnostic techniques.

  11. A first principles study of phase stability, bonding, electronic and lattice dynamical properties of beryllium chalcogenides at high pressure

    International Nuclear Information System (INIS)

    Dabhi, Shweta; Mankad, Venu; Jha, Prafulla K.

    2014-01-01

    Highlights: • First principles calculations are performed for BeS, BeSe and BeTe in B3, B8 and B1 phases. • They are indirect wide band gap semiconductors stable in B3 phase at ambient condition. • Phonon calculations at ambient and high pressure are reported. • The NiAs phase is dynamically stable at high pressure. - Abstract: The present paper reports a detailed and systematic theoretical study of structural, mechanical, electronic, vibrational and thermodynamical properties of three beryllium chalcogenides BeS, BeSe and BeTe in zinc blende, NiAs and rock salt phases by performing ab initio calculations based on density-functional theory. The calculated value of lattice constants and bulk modulus are compared with the available experimental and other theoretical data and found to agree reasonably well. These compounds are indirect wide band gap semiconductors with a partially ionic contribution in all considered three phases. The zinc blende phase of these chalcogenides is found stable at ambient condition and phase transition from zinc blende to NiAs structure is found to occur. The bulk modulus, its pressure derivative, anisotropic factor, Poission’s ratio, Young’s modulus for these are also calculated and discussed. The phonon dispersion curves of these beryllium chalcogenides in zinc blende phase depict their dynamical stability in this phase at ambient condition. We have also estimated the temperature variation of specific heat at constant volume, entropy and Debye temperature for these compounds in zinc blende phase. The variation of lattice-specific heat with temperature obeys the classical Dulong–Petit’s law at high temperature, while at low-temperature it obeys the Debye’s T 3 law

  12. Inverse relations in the patterns of muscle and center of pressure dynamics during standing still and movement postures.

    Science.gov (United States)

    Morrison, S; Hong, S L; Newell, K M

    2007-08-01

    The aim of this study was to investigate the postural center of pressure (COP) and surface muscle (EMG) dynamics of young adult participants under conditions where they were required to voluntarily produce random and regular sway motions in contrast to that of standing still. Frequency, amplitude and regularity measures of the COP excursion and EMG activity were assessed, as were measures of the coupling relations between the COP and EMG outputs. The results demonstrated that, even when standing still, there was a high degree of regularity in the COP output, with little difference in the modal frequency dynamics between standing still and preferred motion. Only during random conditions was a significantly greater degree of irregularity observed in the COP measures. The random-like movements were also characterized by a decrease in the level of synchrony between COP motion on the anterior-posterior (AP) and medio-lateral (ML) axes. In contrast, at muscle level, the random task resulted in the highest level of regularity (decreased ApEn) for the EMG output for soleus and tibialis anterior. The ability of individuals to produce a random motion was achieved through the decoupling of the COP motion in each dimension. This decoupling strategy was reflected by increased regularity of the EMG output as opposed to any significant change in the synchrony in the firing patterns of the muscles examined. Increased regularity across the individual muscles was accompanied by increased irregularity in COP dynamics, which can be characterized as a complexity tradeoff. Collectively, these findings support the view that the dynamics of muscle firing patterns does not necessarily map directly to the dynamics at the movement task level and vice versa.

  13. Kinetics and dynamics of nanosecond streamer discharge in atmospheric-pressure gas bubble suspended in distilled water under saturated vapor pressure conditions

    KAUST Repository

    Sharma, Ashish

    2016-09-08

    We perform computational studies of nanosecond streamer discharges generated in helium bubbles immersed in distilled water under atmospheric pressure conditions. The model takes into account the presence of water vapor in the gas bubble for an accurate description of the discharge kinetics. We find that the dynamic characteristics of the streamer discharge are different at low and high positive trigger voltages with the axial streamer evolution dominant for low voltages and a surface hugging mode favored for high voltages. We also find a substantial difference in initiation, transition and evolution stages of discharge for positive and negative trigger voltages with the volumetric distribution of species in the streamer channel much more uniform for negative trigger voltages on account of the presence of multiple streamers. We observe that the presence of water vapor does not affect the breakdown voltage even for oversaturated conditions but significantly influences the composition of dominant species in the trail of the streamer as well as the flux of the dominant species on the bubble surface. © 2016 IOP Publishing Ltd.

  14. Effects of nasal positive expiratory pressure on dynamic hyperinflation and 6-minute walk test in patients with COPD.

    Science.gov (United States)

    Wibmer, Thomas; Rüdiger, Stefan; Heitner, Claudia; Kropf-Sanchen, Cornelia; Blanta, Ioanna; Stoiber, Kathrin M; Rottbauer, Wolfgang; Schumann, Christian

    2014-05-01

    Dynamic hyperinflation is an important target in the treatment of COPD. There is increasing evidence that positive expiratory pressure (PEP) could reduce dynamic hyperinflation during exercise. PEP application through a nasal mask and a flow resistance device might have the potential to be used during daily physical activities as an auxiliary strategy of ventilatory assistance. The aim of this study was to determine the effects of nasal PEP on lung volumes during physical exercise in patients with COPD. Twenty subjects (mean ± SD age 69.4 ± 6.4 years) with stable mild-to-severe COPD were randomized to undergo physical exercise with nasal PEP breathing, followed by physical exercise with habitual breathing, or vice versa. Physical exercise was induced by a standard 6-min walk test (6 MWT) protocol. PEP was applied by means of a silicone nasal mask loaded with a fixed-orifice flow resistor. Body plethysmography was performed immediately pre-exercise and post-exercise. Differences in mean pre- to post-exercise changes in total lung capacity (-0.63 ± 0.80 L, P = .002), functional residual capacity (-0.48 ± 0.86 L, P = .021), residual volume (-0.56 ± 0.75 L, P = .004), S(pO2) (-1.7 ± 3.4%, P = .041), and 6 MWT distance (-30.8 ± 30.0 m, P = .001) were statistically significant between the experimental and the control interventions. The use of flow-dependent expiratory pressure, applied with a nasal mask and a PEP device, might promote significant reduction of dynamic hyperinflation during walking exercise. Further studies are warranted addressing improvements in endurance performance under regular application of nasal PEP during physical activities.

  15. Structural criteria for extreme dynamic internal pressure loadings of vessels and closure heads

    International Nuclear Information System (INIS)

    Bitner, J.L.

    1985-01-01

    The criteria protect against tensile plastic instability and local ductile rupture failure modes. To minimize the number of critical areas that may need more rigorous analytical methods, a screening criterion for limiting the membrane, bending and local stresses is defined. The stresses for this criterion are calculated from either simple and economical elastic dynamic or equivalent static methods. For the critical areas that remain, a strain-based criterion for strains derived from dynamic, inelastic methods is given. To assure that the criteria are properly applied, guidelines are outlined for controlling methods for deriving stresses and strains, for selecting appropriate material properties and for addressing specific dominating parameters that affect the validity of the analysis. The application of the criteria to a complex liquid metal fast breeder reactor vessel and closure head and the subsequent experimental verification of the results by several scale model experiments are summarized. (orig./HP)

  16. Modelling the Dynamic Interaction Power System Lamp - Application to High Pressure Mercury Gas Discharge Lamps

    OpenAIRE

    ZIANE, M.; MEDLES, K.; ADJOUDJ, M.; MILOUA, F.; DAMELINCOURT, J. J.; TILMATINE, A.

    2007-01-01

    The aim of this paper is to study the dynamic behaviour of a plant constituted by an electrical power system and a gas discharge lamp, this latter, increasingly used in street lighting, remains a nonlinear load element. Various approaches are used to represent it, one is the approximation of the discharge represented by a hot "channel", which verifies the assumption of local thermodynamic equilibrium [LTE] or the polynomial form of the conductance variation. A calculation procedure, based on ...

  17. Dynamical 'in situ' observation of biological samples using variable pressure scanning electron microscope

    International Nuclear Information System (INIS)

    Nedela, V

    2008-01-01

    Possibilities of 'in-situ' observation of non-conductive biological samples free of charging artefacts in dynamically changed surrounding conditions are the topic of this work. The observed biological sample, the tongue of a rat, was placed on a cooled Peltier stage. We studied the visibility of topographical structure depending on transition between liquid and gas state of water in the specimen chamber of VP SEM.

  18. Dynamical "in situ" observation of biological samples using variable pressure scanning electron microscope

    Czech Academy of Sciences Publication Activity Database

    Neděla, Vilém

    2008-01-01

    Roč. 126, - (2008), 012046:1-4 ISSN 1742-6588. [Electron Microscopy and Analysis Group Conference 2007 (EMAG 2007). Glasgow, 03.09.2007-07.09.2007] R&D Projects: GA ČR(CZ) GA102/05/0886; GA AV ČR KJB200650602 Institutional research plan: CEZ:AV0Z20650511 Keywords : biological sample * VP-SEM * dynamical experiments Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  19. Dynamic behaviour of dc double anode plasma torch at atmospheric pressure

    International Nuclear Information System (INIS)

    Tu, X; Cheron, B G; Yan, J H; Cen, K F

    2007-01-01

    An original dc double anode plasma torch which provides a long-time and highly stable atmospheric plasma jet has been devised for the purpose of hazardous waste treatment. The arc fluctuations and dynamic behaviour of the argon and argon-nitrogen plasma jets under different operating conditions have been investigated by means of classical tools, such as the statistic method, fast Fourier transform (FFT) and correlation analysis. In our experiments, the takeover mode is identified as the fluctuation characteristic of the argon plasma jet while the restrike mode is typical in the argon-nitrogen plasma dynamic behaviour. In the case of pure argon, the FFT and correlation calculation results of electrical signals exhibit the only characteristic frequency of 150 Hz, which originates from the torch power and is independent of any change in the operating conditions. It indicates that the nature of fluctuations in an argon plasma jet is mainly induced by the undulation of the tri-phase rectified power supply. In contrast, besides the same low frequency bulk fluctuation, the dynamic behaviour of the argon-nitrogen plasma jet at high frequency (4.1 kHz) is ascribed to the rapid motion of both arc roots on the anode surface. In addition, it is found that each arc root attachment is rather diffused than located at a fixed position on the anode wall in the argon plasma jet, while constricted arc roots occur when nitrogen is added into argon as the plasma working gas

  20. Dynamics of carbon sources supporting burial in seagrass sediments under increasing anthropogenic pressure

    KAUST Repository

    Mazarrasa, Inés

    2017-03-15

    Seagrass meadows are strong coastal carbon sinks of autochthonous and allochthonous carbon. The aim of this study was to assess the effect of coastal anthropogenic pressure on the variability of carbon sources in seagrass carbon sinks during the last 150 yr. We did so by examining the composition of the sediment organic carbon (Corg) stocks by measuring the δ13Corg signature and C : N ratio in 210Pb dated sediments of 11 Posidonia oceanica seagrass meadows around the Balearic Islands (Spain, Western Mediterranean) under different levels of human pressure. On average, the top meter sediment carbon deposits were mainly (59% ± 12%) composed by P. oceanica derived carbon whereas seston contribution was generally lower (41% ± 8%). The contribution of P. oceanica to the total sediment carbon stock was the highest (∼ 80%) in the most pristine sites whereas the sestonic contribution was the highest (∼ 40–80%) in the meadows located in areas under moderate to very high human pressure. Furthermore, an increase in the contribution of sestonic carbon and a decrease in that of seagrass derived carbon toward present was observed in most of the meadows examined, coincident with the onset of the tourism industry development and coastal urbanization in the region. Our results demonstrate a general increase of total carbon accumulation rate in P. oceanica sediments during the last century, mainly driven by the increase in sestonic Corg carbon burial, which may have important implications in the long-term carbon sink capacity of the seagrass meadows in the region examined.

  1. Low-pressure dynamics of a natural-circulation two-phase flow loop

    International Nuclear Information System (INIS)

    Manera, A.; Kruijf, W.J.M. de; Hartmann, H.; Mudde, R.F.; Hagen, T.H.J.J. van der

    2001-01-01

    Flashing induced oscillations in a natural circulation loop are studied as function of heating power and inlet subcooling in symmetrical and asymmetrical power conditions. To unveil the effects of power/velocity asymmetries on the two-phase flow stability at low power and low pressure conditions different signals at several locations in the loop are recorded. In particular a Laser Doppler Anemometry set-up is used to measure the velocity simultaneously in two parallel channels and a wire-mesh sensor is used to measure the 2D void fraction distribution in a section of the ascendant part of the loop. (orig.)

  2. Dynamic tuning by hydrostatic pressure of magnetocaloric properties to Ericsson like cycles

    Science.gov (United States)

    Gaztañaga, P.; Sacanell, J.; Leyva, A. G.; Quintero, M.

    2018-03-01

    A method to increase the relative cooling power to be used in Ericsson like refrigeration cycles is presented. The technique is based in the modification of the magnetic properties by the application of hydrostatic pressure on magnetic samples. The main advantage is to reach larger values of the magnetic entropy change in a wider temperature region (the so-called "table like" behavior). The study was carried out in a manganite belonging to the family of La0.625-yNdyCa0.375MnO3, and some conclusions were compared with the expected behavior in other materials extracted from literature.

  3. Vitreous Anorthite (CaAl2Si2O8) at High Pressure: A First-Principles Molecular Dynamics Study

    Science.gov (United States)

    Ghosh, D. B.; Karki, B. B.

    2017-12-01

    Due to the high abundance of silicates and aluminosilicates inside the earth, their corresponding melts are likely to be one of the key transport agents in the chemical and thermal evolution of our planet and therefore, have long been the subject of investigations. Experimentally, in-situ melt properties of these materials, particularly at high pressure-temperature conditions are extremely difficult to constrain and the corresponding glass phases are considered as analogs. This, however, prohibits one-to-one comparison between the properties of silicate melt and its corresponding glass. With the aim to enable such comparison, we investigate the equation of state and structural properties of CaAl2Si2O8 glass at 300 K as a function of pressure up to 160 GPa from first principles molecular dynamics simulation results. Our results show that at ambient pressure: (i) Si's remain mostly (> 95%) under tetrahedral oxygen surroundings, (ii) unlike anorthite crystal, presence of high coordination (> 4) Al's with 30% abundance, (iii) and significant presence of both non bridging (8%) and triply (17%) coordinated oxygen. In the 0-10 GPa interval, mainly topological changes occur in the Si-O (also Al-O to some extent) surroundings in the cold compressed case in comparison to smooth increase in the average bond distance and coordination in the hot compressed case. Further compression results in gradual increases in: mean coordination, proportion of O-triclusters and increasing appearance of tetrahedral oxgyens, with Si-O (Al-O) reaching 6 (6.5) and O-T > 3 (T=Si and Al) at the highest compression. Due to the absence of kinetic barrier, the hot compressed glasses consistently produce greater densities and higher coordination numbers than the cold compression cases. Decompressed glasses show irreversible compaction along with retention of high coordination species when decompressed from > 10 GPa and degree of irreversibility depends on the peak pressure of decompression. These

  4. [The predictive value of dynamic arterial elastance in arterial pressure response after norepinephrine dosage reduction in patients with septic shock].

    Science.gov (United States)

    Liang, F M; Yang, T; Dong, L; Hui, J J; Yan, J

    2017-05-01

    Objective: To assess whether dynamic arterial elastance(Ea(dyn))can be used to predict the reduction of arterial pressure after decreasing norepinephrine (NE) dosage in patients with septic shock. Methods: A prospective observational cohort study was conducted. Thirty-two patients with septic shock and mechanical ventilationwere enrolledfrom January 2014 to December 2015 in ICU of Wuxi People's Hospital of Nanjing Medical University. Hemodynamic parameters were recorded by pulse contour cardiac output(PiCCO)monitoring technology before and after decreasing norepinephrine dosage. Ea(dyn) was defined as the ratio of pulse pressure variation (PPV) to stroke volume variation (SVV). Mean arterial pressure(MAP) variation was calculated after decreasing the dose of NE. Response was defined as a ≥15% decrease of MAP. AUC was plotted to assess the value of Ea(dyn) in predicting MAP response. Results: A total of 32 patients were enrolled in our study, with 13 responding to NE dose decrease where as the other 19 did not. Ea(dyn) was lower in responders than in nonresponders (0.77±0.13 vs 1.09±0.31, P blood pressure variation, diastolic blood pressure variation, systemic vascular resistance variation and MAP variation( r =0.621, P =0.000; r =0.735, P =0.000; r =0.756, P =0.000; r =0.568, P =0.000 respectively). However, stoke volume variation, baseline level of systemic vascular resistance and NE baseline dose were not correlated with Ea(dyn) baseline value( r =0.264, P =0.076; r =0.078, P =0.545; r =0.002, P =0.987 respectively). Ea(dyn)≤0.97 predicted a decrease of MAP when decreasing NE dose, with an area under the receiver-operating characteristic curve of 0.85.The sensitivity was 100.0% and specificity was 73.7%. Conclusions: In septic shock patients treated with NE, Ea(dyn) is an index to predict the decrease of arterial pressure in response to NE dose reduction.

  5. Maximum entropy methods

    International Nuclear Information System (INIS)

    Ponman, T.J.

    1984-01-01

    For some years now two different expressions have been in use for maximum entropy image restoration and there has been some controversy over which one is appropriate for a given problem. Here two further entropies are presented and it is argued that there is no single correct algorithm. The properties of the four different methods are compared using simple 1D simulations with a view to showing how they can be used together to gain as much information as possible about the original object. (orig.)

  6. The break-up dynamics of liquid threads revealed by laser radiation pressure and optocapillarity

    Science.gov (United States)

    Petit, Julien; Robert de Saint Vincent, Matthieu; Rivière, David; Kellay, Hamid; Delville, Jean-Pierre

    2014-09-01

    We show how optocapillary stresses and optical radiation pressure effects in two-phase liquids open the way for investigating the difficult problem of liquid thread breakup at small scales when surfactants are present at the interface or when the roughness of the interface becomes significant. Using thermocapillary stresses driven by light to pinch a surfactant-laden microjet, we observe deviations from the expected visco-capillary law governed by a balance between viscosity and interfacial tension. We suggest that these deviations are due to time varying interfacial tension resulting from the surfactant depletion at the neck pinching location, and we experimentally confirm this mechanism. The second case is representative of the physics of nanojets. Considering a near critical liquid-liquid interface, where the roughness of the interfaces may be tuned, we use the radiation pressure of a laser wave to produce stable fluctuating liquid columns and study their breakup. We show how pinching crosses over from the visco-capillary to a fluctuation dominated regime and describe this new regime. These experiments exemplify how optofluidics can reveal new physics of fluids.

  7. Low temperature spin dynamics and high pressure effects in frustrated pyrochlores

    Science.gov (United States)

    Mirebeau, Isabelle

    2008-03-01

    Frustrated pyrochlores R2M2O7, where R^3+ is a rare earth and M^4+ a transition or sp metal ion, show a large variety of exotic magnetic states due to the geometrical frustration of the pyrochlore lattice, consisting of corner sharing tetrahedra for both R and M ions. Neutron scattering allows one to measure their magnetic ground state as well as the spin fluctuations, in a microscopic way. An applied pressure may change the subtle energy balance between magnetic interactions, inducing new magnetic states. In this talk, I will review recent neutron results on Terbium pyrochlores, investigated by high pressure neutron diffraction and inelastic neutron scattering. Tb2M2O7 pyrochlores show respectively a spin liquid state for M=Ti [1], an ordered spin ice state for M= Sn [2], and a spin glass state with chemical order for M=Mo [3]. In Tb2Ti2O7 spin liquid, where only Tb^3+ ions are magnetic, an applied pressure induces long range antiferromagnetic order due to a small distortion of the lattice and magneto elastic coupling [4]. In Tb2Sn2O7, the substitution of Ti^4+ by the bigger Sn^4+ ion expands the lattice, inducing a long range ordered ferromagnetic state, with the local structure of a spin ice [2] and unconventional spin fluctuations [2,5]. The local ground state and excited crystal field states of the Tb^3+ ion were recently investigated by inelastic neutron scattering in both compounds [6]. Tb2Mo2O7, where Mo^4+ ions are also magnetic, shows an even more rich behaviour, due to the complex interaction between frustrated Tb and Mo lattices, having respectively localized and itinerant magnetism. In Tb2Mo2O7 spin glass, the lattice expansion induced by Tb/La substitution yields an ordered ferromagnetic state, which transforms back to spin glass under applied pressure [7]. New data about the spin fluctuations in these compounds, as measured by inelastic neutron scattering, will be presented. The talk will be dedicated to the memory of Igor Goncharenko, a renowned

  8. MXLKID: a maximum likelihood parameter identifier

    International Nuclear Information System (INIS)

    Gavel, D.T.

    1980-07-01

    MXLKID (MaXimum LiKelihood IDentifier) is a computer program designed to identify unknown parameters in a nonlinear dynamic system. Using noisy measurement data from the system, the maximum likelihood identifier computes a likelihood function (LF). Identification of system parameters is accomplished by maximizing the LF with respect to the parameters. The main body of this report briefly summarizes the maximum likelihood technique and gives instructions and examples for running the MXLKID program. MXLKID is implemented LRLTRAN on the CDC7600 computer at LLNL. A detailed mathematical description of the algorithm is given in the appendices. 24 figures, 6 tables

  9. The last glacial maximum

    Science.gov (United States)

    Clark, P.U.; Dyke, A.S.; Shakun, J.D.; Carlson, A.E.; Clark, J.; Wohlfarth, B.; Mitrovica, J.X.; Hostetler, S.W.; McCabe, A.M.

    2009-01-01

    We used 5704 14C, 10Be, and 3He ages that span the interval from 10,000 to 50,000 years ago (10 to 50 ka) to constrain the timing of the Last Glacial Maximum (LGM) in terms of global ice-sheet and mountain-glacier extent. Growth of the ice sheets to their maximum positions occurred between 33.0 and 26.5 ka in response to climate forcing from decreases in northern summer insolation, tropical Pacific sea surface temperatures, and atmospheric CO2. Nearly all ice sheets were at their LGM positions from 26.5 ka to 19 to 20 ka, corresponding to minima in these forcings. The onset of Northern Hemisphere deglaciation 19 to 20 ka was induced by an increase in northern summer insolation, providing the source for an abrupt rise in sea level. The onset of deglaciation of the West Antarctic Ice Sheet occurred between 14 and 15 ka, consistent with evidence that this was the primary source for an abrupt rise in sea level ???14.5 ka.

  10. A study on implementation of dynamic safety system in programmable logic controller for pressurized water reactor

    International Nuclear Information System (INIS)

    Kim, Ung Soo

    1997-02-01

    The dynamic safety system (DSS) is a computer based reactor protection system that has dynamic self-testing feature and fail-safe nature inherently. The inherent dynamic self-testing feature and fail-safe design provide a high level of reliability and low spurious trip rate. We can also reduce the time and human efforts to maintain the system by virtue of those features. Therefore, the application of the DSS to PWR has many advantages. The DSS has been applied only to advanced gas-cooled reactor (AGR) in the UK. In order to apply the DSS for PWR, the DSS has to be modified because there exist many differences between PWR and AGR for which the DSS was tested and installed. These differences are trip algorithms, monitored parameters, trip logics, and other conditions. In this study, the DSS algorithm is modified for PWR first. The modified DSS has several new features : 1) The modified DSS tests and processes time-dependent parameters, while the original DSS does not. 2) It has flexibility for handling several types of voting logic but the original DSS handles the only one type of voting - 2 out of 4 coincidence logic. Then, in this study, the modified DSS is implemented in programmable logic controller (PLC) using the ladder logic. Finally, the modified DSS is tested in two ways in this work : 1) The manual test is performed using direct input through the human computer interface (HCI) system. 2) The scenario based test is performed using input from the FISA-2/WS simulator. From the test results, it is shown that the modified DSS operates correctly in all conditions

  11. Material properties for reactor pressure vessels and containment shells under dynamic loading

    International Nuclear Information System (INIS)

    Albertini, C.

    1997-01-01

    The effects of high strain rate, dynamic biaxial loading and deformation mode (tension, shear) on the mechanical properties of AISI 316 austenitic stainless steel in as-received and pre-damaged (creep, LCF) conditions are reported. This research was conducted to assess the performances of the containment shell of fast breeder reactors. The results of this research have been utilized to prepare similar investigations for SA 537 Class 1 ferritic steel used for the containment shell of LWR. The first results of these investigations are reported. A programme to study the mechanical properties of plain concrete with real size aggregate at high strain rate is described. (orig.)

  12. Analysis of the fluid-structure dynamic interaction of reactor pressure vessel internals during blowdown

    International Nuclear Information System (INIS)

    Schlechtendahl, E.G.; Krieg, R.; Schumann, U.

    1977-01-01

    The loadings on reactor internal structures (in particular the core barrel) induced during a PWR-blowdown must not result in excessive stresses and strains. The deformations are strongly influenced by the coupling of fluid and structure dynamics and it is necessary, therefore, to develop and apply new coupled analysis tools. In this paper a survey is given over work currently in progress in the Nuclear Research Center Karlsruhe and the Los Alamos Scientific Laboratory which aim towards 'best estimate codes'. The new methods will be verified by means of the HDR-blowdown tests and other experiments. The results of several scoping calculations are presented and illustrated by movie films. (orig.) [de

  13. Validation of the dynamics of SDS and RRS flux, flow, pressure and temperature signals using noise analysis technique

    International Nuclear Information System (INIS)

    Glockler, O.; Cooke, D.F.; Tulett, M.V.

    1995-01-01

    In 1992, a program was initiated to establish reactor noise analysis as a practical tool for plant performance monitoring and system diagnostics in Ontario Hydro's CANDU reactors. Since then, various CANDU-specific noise analysis applications have been developed and validated. The noise-based statistical techniques are being successfully applied as powerful troubleshooting and diagnostic tools to a wide variety of actual operational I and C problems. Critical plant components, instrumentation and processes are monitored on a regular basis, and their dynamic characteristics are verified on-power. Recent applications of noise analysis include (1) validating the dynamics of in-core flux detectors (ICFDS) and ion chambers, (2) estimating the prompt fraction ICFDs in noise measurements at full power and in power rundown tests, (3) identifying the cause of excessive signal fluctuations in certain flux detectors, (4) validating the dynamic coupling between liquid zone control signals, (5) detecting and monitoring mechanical vibrations of detector tubes, reactivity devices and fuel channels induced by moderator/coolant flow, (6) estimating the dynamics and response time of RTD temperature signals, (7) isolating the cause of RTD signal anomalies, (8) investigating the source of abnormal flow signal behaviour, (9) estimating the overall response time of flow and pressure signals, (1 0) detecting coolant boiling in fully instrumented fuel channels, (1 1) monitoring moderator circulation via temperature noise, and (12) predicting the performance of shut-off rods. Some of these applications are performed on an as needed basis. The noise analysis program, in the Pickering-B station alone, has saved Ontario Hydro millions of dollars during its first three years. The results of the noise analysis program have been also reviewed by the regulator (Atomic Energy Control Board of Canada) with favorable results. The AECB have expressed interest in Ontario Hydro further exploiting the

  14. Intraocular pressure dynamics with prostaglandin analogs: a clinical application of water-drinking test

    Directory of Open Access Journals (Sweden)

    Özyol P

    2016-07-01

    Full Text Available Pelin Özyol,1 Erhan Özyol,1 Ercan Baldemir2 1Ophthalmology Department, 2Biostatistics Department, Faculty of Medicine, Mugla Sitki Kocman University, Mugla, Turkey Aim: To evaluate the clinical applicability of the water-drinking test in treatment-naive primary open-angle glaucoma patients. Methods: Twenty newly diagnosed primary open-angle glaucoma patients and 20 healthy controls were enrolled in this prospective study. The water-drinking test was performed at baseline and 6 weeks and 3 months after prostaglandin analog treatment. Peak and fluctuation of intraocular pressure (IOP measurements obtained with the water-drinking test during follow-up were analyzed. Analysis of variance for repeated measures and paired and unpaired t-tests were used for statistical analysis. Results: The mean baseline IOP values in patients with primary open-angle glaucoma were 25.1±4.6 mmHg before prostaglandin analog treatment, 19.8±3.7 mmHg at week 6, and 17.9±2.2 mmHg at month 3 after treatment. The difference in mean baseline IOP of the water-drinking tests was statistically significant (P<0.001. At 6 weeks of prostaglandin analog treatment, two patients had high peak and fluctuation of IOP measurements despite a reduction in baseline IOP. After modifying treatment, patients had lower peak and fluctuation of IOP values at month 3 of the study. Conclusion: Peak and fluctuation of IOP in response to the water-drinking test were lower with prostaglandin analogs compared with before medication. The water-drinking test can represent an additional benefit in the management of glaucoma patients, especially by detecting higher peak and fluctuation of IOP values despite a reduced mean IOP. Therefore, it could be helpful as a supplementary method in monitoring IOP in the clinical practice. Keywords: glaucoma, intraocular pressure, water-drinking test, prostaglandin analog, intra­ocular pressure fluctuation

  15. Maximum Entropy Fundamentals

    Directory of Open Access Journals (Sweden)

    F. Topsøe

    2001-09-01

    Full Text Available Abstract: In its modern formulation, the Maximum Entropy Principle was promoted by E.T. Jaynes, starting in the mid-fifties. The principle dictates that one should look for a distribution, consistent with available information, which maximizes the entropy. However, this principle focuses only on distributions and it appears advantageous to bring information theoretical thinking more prominently into play by also focusing on the "observer" and on coding. This view was brought forward by the second named author in the late seventies and is the view we will follow-up on here. It leads to the consideration of a certain game, the Code Length Game and, via standard game theoretical thinking, to a principle of Game Theoretical Equilibrium. This principle is more basic than the Maximum Entropy Principle in the sense that the search for one type of optimal strategies in the Code Length Game translates directly into the search for distributions with maximum entropy. In the present paper we offer a self-contained and comprehensive treatment of fundamentals of both principles mentioned, based on a study of the Code Length Game. Though new concepts and results are presented, the reading should be instructional and accessible to a rather wide audience, at least if certain mathematical details are left aside at a rst reading. The most frequently studied instance of entropy maximization pertains to the Mean Energy Model which involves a moment constraint related to a given function, here taken to represent "energy". This type of application is very well known from the literature with hundreds of applications pertaining to several different elds and will also here serve as important illustration of the theory. But our approach reaches further, especially regarding the study of continuity properties of the entropy function, and this leads to new results which allow a discussion of models with so-called entropy loss. These results have tempted us to speculate over

  16. Response margins investigation of piping dynamic analyses using the independent support motion method and PVRC [Pressure Vessel Research Committee] damping

    International Nuclear Information System (INIS)

    Bezler, P.; Wang, Y.K.; Reich, M.

    1988-03-01

    An evaluation of Independent Support Motion (ISM) response spectrum methods of analysis coupled with the Pressure Vessel Research Committee (PVRC) recommendation for damping, to compute the dynamic component of the seismic response of piping systems, was completed. Response estimates for five piping/structural systems were developed using fourteen variants of the ISM response spectrum method, the Uniform Support Motions response spectrum method and the ISM time history analysis method, all based on the PVRC recommendations for damping. The ISM/PVRC calculational procedures were found to exhibit orderly characteristics with levels of conservatism comparable to those obtained with the ISM/uniform damping procedures. Using the ISM/PVRC response spectrum method with absolute combination between group contributions provided consistently conservative results while using the ISM/PVRC response spectrum method with square root sum of squares combination between group contributions provided estimates of response which were deemed to be acceptable

  17. Probable maximum flood control

    International Nuclear Information System (INIS)

    DeGabriele, C.E.; Wu, C.L.

    1991-11-01

    This study proposes preliminary design concepts to protect the waste-handling facilities and all shaft and ramp entries to the underground from the probable maximum flood (PMF) in the current design configuration for the proposed Nevada Nuclear Waste Storage Investigation (NNWSI) repository protection provisions were furnished by the United States Bureau of Reclamation (USSR) or developed from USSR data. Proposed flood protection provisions include site grading, drainage channels, and diversion dikes. Figures are provided to show these proposed flood protection provisions at each area investigated. These areas are the central surface facilities (including the waste-handling building and waste treatment building), tuff ramp portal, waste ramp portal, men-and-materials shaft, emplacement exhaust shaft, and exploratory shafts facility

  18. Introduction to maximum entropy

    International Nuclear Information System (INIS)

    Sivia, D.S.

    1988-01-01

    The maximum entropy (MaxEnt) principle has been successfully used in image reconstruction in a wide variety of fields. We review the need for such methods in data analysis and show, by use of a very simple example, why MaxEnt is to be preferred over other regularizing functions. This leads to a more general interpretation of the MaxEnt method, and its use is illustrated with several different examples. Practical difficulties with non-linear problems still remain, this being highlighted by the notorious phase problem in crystallography. We conclude with an example from neutron scattering, using data from a filter difference spectrometer to contrast MaxEnt with a conventional deconvolution. 12 refs., 8 figs., 1 tab

  19. Solar maximum observatory

    International Nuclear Information System (INIS)

    Rust, D.M.

    1984-01-01

    The successful retrieval and repair of the Solar Maximum Mission (SMM) satellite by Shuttle astronauts in April 1984 permitted continuance of solar flare observations that began in 1980. The SMM carries a soft X ray polychromator, gamma ray, UV and hard X ray imag