Sample records for maximum cylinder pressure

  1. Pressure cylinders under fire condition

    Jan Hora


    Full Text Available The presence of pressure cylinders under fire conditions significantly increases the risk rate for the intervening persons. It is considerably problematic to predict the pressure cylinders behaviour during heat exposition, its destruction progress and possible following explosion of the produced air–gas mixture because pressure cylinders and its environment generate a highly complicated dynamic system during an uncontrolled destruction. The large scale tests carried out by the Pilsen Fire and Rescue Department and the Rapid Response Unit of the Czech Republic Police in October 2012 and in May 2014 in the Military area Brdy and in the area of the former Lachema factory in Kaznějov had several objectives, namely, to record, qualify and quantify some of the aspects of an uncontrolled heat destruction procedure of an exposed pressure cylinder in an enclosed space and to qualify and describe the process of a controlled destruction of a pressure cylinder by shooting through it including basic tactical concepts. The article describes the experiments that were carried out.

  2. Detection of cylinder pressure in diesel engines using cylinder head vibration and time series methods


    This paper investigates the vibration characteristics of diesel engine cylinder heads by means of the time series method.With the concept of "Assumed System", the vibration transfer function of real cylinder head structures is established using the autoregressive-moving average models (ARMA models) of cylinder head surface vibration signals.Then this transfer function is successfully used to reconstruct the gas pressure trace inside the cylinder from measured cylinder head vibration signals.This offers an effective means for diesel engine cylinder pressure detection and condition monitoring.


    Boonthum Wongchai


    Full Text Available Cylinder pressure is one of the main parameters of diesel engine combustion affecting several changes in exhaust gas emission composition and amount as well as engine useful power, specifically when alternative fuels are used. One among other alternative fuels for diesel engine is hydrogen that can be used as fumigated reagent with air prior to intake to engine in order to substitute the main fossil diesel. In this study, experimental investigation was accomplished using a single cylinder diesel engine for agriculture running on different ratios of hydrogen-to-diesel. Cylinder pressure traces corresponding to the crank angle positions were indicated and analyzed for maximum cylinder pressure and their coefficient of variation. The regression analysis is used to find the correlations between hydrogen percentage and the maximum cylinder pressure as well as its coefficient of variation. When higher hydrogen percentages were added, the combustion shifted toward later crank angles with the maximum cylinder pressure decreased and eminent effects at higher load and speed. The plots of hydrogen percentage against the coefficient of variation of the maximum cylinder pressure (COVPmax show the increase in variation of maximum cylinder pressure when the hydrogen percentage increased for all conditions tested. Gaseous hydrogen fumigated prior to intake to the engine reduced maximum cylinder pressure from the combustion while increasing the values of COVPmax. The maximum pressure-hydrogen percentage correlations and the COVPmax-hydrogen percentage correlations show better curve fittings by second order (n = 2 correlation compared to the first order (n = 1 correlation for all the test conditions.

  4. Controlling a negative loaded hydraulic cylinder using pressure feedback

    Hansen, M.R.; Andersen, T.O.


    showing that without extra measures such a system will be unstable in a substantial part of the cylinder stroke. The stability criterion is expressed in hard quantities: Cylinder volumes, cylinder area ratio and overcenter valve pilot area ratio. A pressure feed back scheme that has as target to maintain...

  5. 76 FR 1504 - Pipeline Safety: Establishing Maximum Allowable Operating Pressure or Maximum Operating Pressure...


    ...: Establishing Maximum Allowable Operating Pressure or Maximum Operating Pressure Using Record Evidence, and... facilities of their responsibilities, under Federal integrity management (IM) regulations, to perform... system, especially when calculating Maximum Allowable Operating Pressure (MAOP) or Maximum Operating...

  6. 76 FR 38697 - High Pressure Steel Cylinders From China


    ..., 2011 (76 FR 28807). The conference was held in Washington, DC, on June 1, 2011, and all persons who... COMMISSION High Pressure Steel Cylinders From China Determinations On the basis of the record \\1\\ developed... injured by reason of imports from China of high pressure steel cylinders, provided for in subheading...

  7. 77 FR 37712 - High Pressure Steel Cylinders From China


    ... Commission, Washington, DC, and by publishing the notice in the Federal Register on January 23, 2012 (77 FR... COMMISSION High Pressure Steel Cylinders From China Determinations On the basis of the record \\1\\ developed... imports of high pressure steel cylinders from China, provided for in subheading 7311.00.00 of...

  8. Elastic-plastic Transition of Transversely Isotropic Thick-walled Rotating Cylinder under Internal Pressure

    Sanjeev Sharma


    Full Text Available Elastic-plastic stresses for a transversely isotropic thick-walled rotating cylinder under internal pressure have been obtained by using Seth’s transition theory. It has been observed that a thick-walled circular cylinder made of isotropic material yields at the internal surface at a high pressure as compared to cylinder made of transversely isotropic material. With the increase in angular speed, much less pressure is required for initial yielding at the internal surface for transversely isotropic material as compared to isotropic material. For fullyplastic state, circumferential stress is maximum at the external surface. Thick-walled circular cylinder made of transversely isotropic material requires high percentage increase in pressure to become fully plastic as compared to isotropic cylinder. Therefore, circular cylinder made of transversely isotropic material is on the safer side of the design as compared to cylinder made of  isotropic material.Defence Science Journal, 2009, 59(3, pp.260-264, DOI:

  9. 76 FR 77964 - High Pressure Steel Cylinders From the People's Republic of China: Preliminary Determination of...


    ...'' or ``affiliated persons'': (A) Members of a family, including brothers and sisters (whether by the... International Trade Administration High Pressure Steel Cylinders From the People's Republic of China... Commerce (``Department'') preliminarily determines that high pressure steel cylinders (``steel cylinders...

  10. UF{sub 6} pressure excursions during cylinder heating

    Brown, P.G. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)


    As liquid UF{sub 6} inside a cylinder changes from a liquid to a solid, it forms a porous solid which occupies approximately the same volume as that of the liquid before cooling. Simultaneously as the liquid cools, UF{sub 6} vapor in the cylinder ullage above the liquid desublimes on the upper region of the inner cylinder wall. This solid is a dense, glass-like material which can accumulate to a significant thickness. The thickness of the solid coating on the upper cylinder wall and directly behind the cylinder valve area will vary depending on the conditions during the cooling stage. The amount of time lapsed between UF{sub 6} solidification and UF{sub 6} liquefaction can also affect the UF{sub 6} coating. This is due to the daily ambient heat cycle causing the coating to sublime from the cylinder wall to cooler areas, thus decreasing the thickness. Structural weakening of the dense UF{sub 6} layer also occurs due to cylinder transport vibration and thermal expansion. During cylinder heating, the UF{sub 6} nearest the cylinder wall will liquefy first. As the solid coating behind the cylinder valve begins to liquefy, it results in increased pressure depending upon the available volume for expansion. At the Paducah Gaseous Diffusion Plant (PGDP) during the liquefaction of the UF{sub 6} in cylinders in the UF{sub 6} feed and sampling autoclaves, this pressure increase has resulted in the activation of the systems rupture discs which are rated at 100 pounds per square inch differential.

  11. Controlling a negative loaded hydraulic cylinder using pressure feedback

    Hansen, M.R.; Andersen, T.O.


    the high pass filtered pressure gradient equal tozero is introduced. It yields lead compensation with a markedly improved performance. The sizing of the filter is described taking into account the bandwidth of the directional control valve. The suggested control scheme is implemented and examined......This paper is concerned with the inherent oscillatory nature of pressure compensated velocity control of a hydraulic cylinder subjected to a negative load and suspended by means of an over-center valve. Initially, a linearized stability analysis of such a hydraulic circuit is carried out clearly...... showing that without extra measures such a system will be unstable in a substantial part of the cylinder stroke. The stability criterion is expressed in hard quantities: Cylinder volumes, cylinder area ratio and overcenter valve pilot area ratio. A pressure feed back scheme that has as target to maintain...

  12. Cylinder Imbalance Detection of Six Cylinder DI Diesel Engine Using Pressure Variation



    Full Text Available In this research paper a simplified methodology is presented to detect cylinder imbalance in operating sixcylinder DI diesel engine. The detailed torsional vibration analysis helps to find vibratory frequencies, mode shapes, and vibratory stresses to provide constraints on critical speed in operating engine. The crank shaft is considered to be a rigid body so that the variation of the angular speed could be directly correlated to the cylinder pressure. Actuallythe variation of crank shaft speed has a complex function being influence by torsional stiffness of crank shaft, the mass moment of inertia of reciprocating and rotating masses and the average speed and load on the engine. The information carried by the harmonic order permits to established correlation between measurement and average gaspressure of the engine and to detect torque imbalance and identify faulty cylinder. In this work the detail pressure variation study is carried out on operating six cylinder engine of type SL90 Engine-SL8800TA model manufactured by Kirloskar Oil Engine Pune.

  13. Analysis of Static Pressure in Area between Back Plate and Cylinder of a Carding Machine with CFD

    HAN Xian-guo; SUN Peng-zi; ZHAO Ye-ping


    To analyze static pressure between back plate and cylinder in an A186 carding machine, a fluid model is established. The model takes into account static pressure of airflow near back plate with the numerical simulation method of Computational Fluid Dynamics (CFD) in FLUENT software. The result of the simulation in the model shows that static pressure in this area quickly increases to its maximum then rapidly decreases to a lower fixed value from inlet to outlet along a zone between back plate and cylinder. Both rotating speeds of the cylinder and the taker-in affect static pressure from the inlet to the outlet, of which the cylinder rotating speed has more influence than that of taker-in.. Numerical simulations reveal that static pressure on surface of back plate are in good agreement with the former result of experimental analysis.

  14. Circular cylinders and pressure vessels stress analysis and design

    Vullo, Vincenzo


    This book provides comprehensive coverage of stress and strain analysis of circular cylinders and pressure vessels, one of the classic topics of machine design theory and methodology. Whereas other books offer only a partial treatment of the subject and frequently consider stress analysis solely in the elastic field, Circular Cylinders and Pressure Vessels broadens the design horizons, analyzing theoretically what happens at pressures that stress the material beyond its yield point and at thermal loads that give rise to creep. The consideration of both traditional and advanced topics ensures that the book will be of value for a broad spectrum of readers, including students in postgraduate, and doctoral programs and established researchers and design engineers. The relations provided will serve as a sound basis for the design of products that are safe, technologically sophisticated, and compliant with standards and codes and for the development of innovative applications.

  15. Effect of Backpacking and Internal Pressurization on Stresses Transmitted to Buried Cylinders.

    Various aspects of the behavior of buried cylinders associated with backpacking , internal pressurization, and slippage at the interface are...considered. Parametric curves are presented for horizontally and vertically buried cylinders with and without backpacking . Four configurations of statically...loaded, horizontally buried cylinders were considered: no backpacking , rectangular backpacking placed above the cylinder, backpacking placed around

  16. Modelingflywheel-Speed Variations Based on Cylinder Pressure

    Nilsson, Magnus


    Combustion supervision by evaluating flywheel speed variations is a common approach in the automotive industry. This often involves preliminary measurements. An adequate model for simulating flywheel speed can assist to avoid some of these preliminary measurements. A physical nonlinear model for simulating flywheel speed based on cylinder pressure information is investigated in this work. Measurements were conducted at Scania in a test bed and on a chassis dynamometer. The model was implemen...

  17. Piston cylinder cell for high pressure ultrasonic pulse echo measurements

    Kepa, M. W.; Ridley, C. J.; Kamenev, K. V.; Huxley, A. D.


    Ultrasonic techniques such as pulse echo, vibrating reed, or resonant ultrasound spectroscopy are powerful probes not only for studying elasticity but also for investigating electronic and magnetic properties. Here, we report on the design of a high pressure ultrasonic pulse echo apparatus, based on a piston cylinder cell, with a simplified electronic setup that operates with a single coaxial cable and requires sample lengths of mm only. The design allows simultaneous measurements of ultrasonic velocities and attenuation coefficients up to a pressure of 1.5 GPa. We illustrate the performance of the cell by probing the phase diagram of a single crystal of the ferromagnetic superconductor UGe2.

  18. Influence and Utilisation of Pressure Propagation in Pipelines for Secondary Controlled Discrete Displacement Cylinders

    Hansen, Rico Hjerm; Hansen, Anders Hedegaard; Andersen, Torben Ole


    Efficient discrete force control of cylinders may be realised by having multi-chambered cylinders, where the pressure of the chambers are shifted between fixed pressure levels of a secondary controlled system. However, the pressure shifting on a volume where the dynamics of pressure propagation i...

  19. Influence and Utilisation of Pressure Propagation in Pipelines for Secondary Controlled Discrete Displacement Cylinders

    Hansen, Rico Hjerm; Hansen, Anders Hedegaard; Andersen, Torben Ole


    Efficient discrete force control of cylinders may be realised by having multi-chambered cylinders, where the pressure of the chambers are shifted between fixed pressure levels of a secondary controlled system. However, the pressure shifting on a volume where the dynamics of pressure propagation...

  20. Reduction of Erosion Wear of Mean Pressure Cylinder of Steam Turbines Operating Beyond Critical Parameters

    V. P. Kascheev


    Full Text Available The paper considers problems leading to erosion wear of flowing part of a mean pressure turbine cylinder operating beyond critical parameters. Explanation of erosion wear of flowing part of a mean pressure turbine cylinder which is proved in practice and recommendations for wear reduction are given in the paper

  1. Dynamic surface pressure measurements on a square cylinder with pressure sensitive paint

    McGraw, C.M.; Khalil, G.; Callis, J.B. [University of Washington, Department of Chemistry, Seattle, WA (United States); Bell, J.H. [Ames Research Center, National Aeronautics and Space Administration, Moffett Field, CA (United States)


    The dynamic and static surface pressure on a square cylinder during vortex shedding was measured with pressure sensitive paints (PSPs) at three angles of incidence and a Reynolds number of 8.9 x 10{sup 4}. Oscillations in the phosphorescence intensity of the PSP that occurred at the vortex shedding frequency were observed. From these phosphorescent oscillations, the time-dependent changes in pressure distribution were calculated. This work extends PSP's useful range to dynamic systems where oscillating pressure changes are on the order of 230 Pa and occur at frequencies in the range of 95-125 Hz. (orig.)

  2. Harmonic components of cylinder pressure variation and their characteristics for combustion noise in internal combustion engines

    Lee, S.R.; Miyamoto, Noboru; Murayama, Tadashi


    Combustion noise is a serious problem in internal combustion engines, especially diesel engines. Although the cylinder pressure variation is easily visible tool to evaluate the combustion noise and thermal efficiency, the exciting force in engine combustion noise has not been completely determined. Cylinder pressure variation for different combustion behaviors and their harmonic components were calculated and an attempt was made to correlate the various components. It was found that the logarithmic harmonic components of cylinder pressure variations, the cylinder pressure level (CPL) can be described by a function with four variables, the values of cylinder pressure variation. The results of this paper is summarized as follows: 1) A relationship was established between CPL and four characteristic values describing the cylinder pressure and variation diagram. 2) Harmonic components of cylinder pressure variations are described by a linear function with four variables and four characteristic values. 3) In this case, the coefficients of the four variables depend solely on the order of engine revolutions and are independent of combustion behavior and engine operating conditions. (13 figs, 7 refs)

  3. Safety estimation of high-pressure hydraulic cylinder using FSI method

    KIM J.H.; HAN S.M.; KIM Y.J.


    Hydraulic cylinder is a primary component of the hydraulic valve systems.The numerical study of hydraulic cylinder to evaluate the stress analysis,the life assessment and the performance of operation characteristics in hydraulic cylinder were described.The calculation of safety factor,fatigue life,piston chamber pressure,rod chamber pressure and the change of velocity of piston with flow time after the beginning of hydraulic cylinder were incorporated.Numerical analysis was performed using the commercial CFD code,ANSYS with unsteady,dynamic mesh model,two-way FSI (fluid-struc-ture interaction)method and k-εturbulent model.The internal pressure in hydraulic cylinder through stress analysis show higher than those of the yield strength.

  4. 49 CFR 195.406 - Maximum operating pressure.


    ... 49 Transportation 3 2010-10-01 2010-10-01 false Maximum operating pressure. 195.406 Section 195... HAZARDOUS LIQUIDS BY PIPELINE Operation and Maintenance § 195.406 Maximum operating pressure. (a) Except for surge pressures and other variations from normal operations, no operator may operate a pipeline at a...

  5. Simulation of Utilisation of Pressure Propagation for Increased Efficiency of Secondary Controlled Discrete Displacement Cylinders

    Hansen, Rico Hjerm; Hansen, Anders Hedegaard; Andersen, Torben Ole


    A key component of upcoming secondary controlled fluid-power systems for e.g. wave energy is the implementation of discrete force control of cylinders by discrete variation of the cylinder displacement. However, as the discrete control is implemented by shifting between fixed system pressures in ...

  6. Digital signal processing of cylinder pressure data for combustion diagnostics of HCCI engine

    Kumar Maurya, Rakesh; Pal, Dev Datt; Kumar Agarwal, Avinash


    Diagnosis of combustion is necessary for the estimation of the combustion quality, and control of combustion timing in advanced combustion concepts like HCCI. Combustion diagnostics is often performed using digital processing of pressure signals measured using piezoelectric sensor installed in the combustion chamber of the engine. Four-step pressure signal processing consisting of (i) absolute pressure correction, (ii) phasing w.r.t. crank angle, (iii) cycle averaging and (iv) smoothening is used to get cylinder pressure data from the engine experiments, which is further analyzed to get information about combustion characteristics. This study focuses on various aspect of signal processing (cycle averaging and smoothing) of in-cylinder pressure signal from a HCCI engine acquired using a piezoelectric pressure sensor. Experimental investigations are conducted on a HCCI combustion engine operating at different engine speed/load/air-fuel ratio conditions. The cylinder pressure history of 3000 consecutive engine cycles is acquired for analysis using piezoelectric pressure sensor. This study determines the optimum number of engine cycles to be acquired for reasonably good pressure signals based on standard deviation of in-cylinder pressure, rate of pressure rise and rate of heat release signals. Different signal smoothening methods (using various digital filters) are also analyzed and their results are compared. This study also presents effect of signal processing methods on pressure, pressure rise rate and rate of heat release curves at different engine operating conditions.

  7. 76 FR 33213 - High Pressure Steel Cylinders from the People's Republic of China: Initiation of Antidumping Duty...


    ... information regarding the actual usage rates of Chinese producers to produce steel cylinders. However... investigation are high pressure steel cylinders manufactured to UN-ISO-9809-1 and 2 specifications and...

  8. Numerical simulation and experiment on split tungsten carbide cylinder of high pressure apparatus.

    Yang, Yunfei; Li, Mingzhe; Liu, Zhiwei; Wang, Bolong


    A new high pressure device with a split cylinder was investigated on the basis of the belt-type apparatus. The belt-type die is subjected to excessive tangential tensile stress and the tungsten carbide cylinder is easily damaged in the running process. Taking into account the operating conditions and material properties of the tungsten carbide cylinder, it is divided into 6 blocks to eliminate the tangential tensile stress. We studied two forms of the split type: radial split and tangential split. Simulation results indicate that the split cylinder has more uniform stress distribution and smaller equivalent stress compared with the belt-type cylinder. The inner wall of the tangential split cylinder is in the situation that compressive stress is distributed in the axial, radial, and tangential directions. It is similar to the condition of hydrostatic pressure, and it is the best condition for tungsten carbide materials. The experimental results also verify that the tangential split die can bear the highest chamber pressure. Therefore, the tangential split structure can increase the pressure bearing capacity significantly.


    Shi Xiaoping; Zhu Yin


    In order to balance the contradiction between the demand of high precision and that of short time interval of model computing for the power plant simulator, a set of simulated mathematical models are constructed. The model describes the cylinder wall temperature located at four key positions of the high pressure cylinder. The simulated model is confirmed to be not only simple but also precise via comparison between the simulated results and the autoptic data of a power plant.

  10. Engine cylinder pressure reconstruction using crank kinematics and recurrently-trained neural networks

    Bennett, C.; Dunne, J. F.; Trimby, S.; Richardson, D.


    A recurrent non-linear autoregressive with exogenous input (NARX) neural network is proposed, and a suitable fully-recurrent training methodology is adapted and tuned, for reconstructing cylinder pressure in multi-cylinder IC engines using measured crank kinematics. This type of indirect sensing is important for cost effective closed-loop combustion control and for On-Board Diagnostics. The challenge addressed is to accurately predict cylinder pressure traces within the cycle under generalisation conditions: i.e. using data not previously seen by the network during training. This involves direct construction and calibration of a suitable inverse crank dynamic model, which owing to singular behaviour at top-dead-centre (TDC), has proved difficult via physical model construction, calibration, and inversion. The NARX architecture is specialised and adapted to cylinder pressure reconstruction, using a fully-recurrent training methodology which is needed because the alternatives are too slow and unreliable for practical network training on production engines. The fully-recurrent Robust Adaptive Gradient Descent (RAGD) algorithm, is tuned initially using synthesised crank kinematics, and then tested on real engine data to assess the reconstruction capability. Real data is obtained from a 1.125 l, 3-cylinder, in-line, direct injection spark ignition (DISI) engine involving synchronised measurements of crank kinematics and cylinder pressure across a range of steady-state speed and load conditions. The paper shows that a RAGD-trained NARX network using both crank velocity and crank acceleration as input information, provides fast and robust training. By using the optimum epoch identified during RAGD training, acceptably accurate cylinder pressures, and especially accurate location-of-peak-pressure, can be reconstructed robustly under generalisation conditions, making it the most practical NARX configuration and recurrent training methodology for use on production engines.

  11. Analysis of pressure distributions on combinations of cylinders due to the effect of wind loading

    Ghosh, Kapil; Saha, Anup; Islam, Md. Quamrul; Ali, Mohammad


    With the rapid growth of population, design and construction of taller buildings are being emphasized now-a-days. Especially the design of the group of tall buildings is economic to take care of the housing problem of the huge population. As buildings become taller, effect of wind on them also increases. In this research work, experiments have been conducted to investigate the wind effect on a combination of pentagonal and hexagonal cylinders. The test was conducted in an open circuit wind tunnel at a Reynolds number of Re = 4.22 × 104 based on the face width of the cylinder across the flow direction in a uniform flow velocity of 13.5 m/s. A pentagonal cylinder was placed in the upstream and another two hexagonal cylinders were in the downstream. The transverse and longitudinal spacing between the cylinders were varied and the surface static pressures at the different locations of the cylinders were measured with the help of inclined multi-manometers. From the measured values of surface static pressures, pressure coefficients were calculated. Due to the non-dimensional analysis, the results may be applied directly for engineering problems regarding wind loads around a group of skyscrapers, chimneys, towers, oil rigs or marine structures.

  12. Simulation of Utilisation of Pressure Propagation for Increased Efficiency of Secondary Controlled Discrete Displacement Cylinders

    Hansen, Rico Hjerm; Hansen, Anders Hedegaard; Andersen, Torben Ole


    in multiple cylinder chambers using on/off valves, the energy efficiency of the performed shifts is essential for the total system efficiency. However, pressure shifting on a volume, where the dynamics of pressure propagation in the pipelines is negligible have been proved to have an unavoidable minimum loss...... due to the compressibility of the fluid. This paper performs a simulation study, showing that an improved energy efficient shift may be implemented by utilising the pressure propagation in the line between valve and cylinder chamber....

  13. AWWA C303-17 concrete pressure pipe, bar-wrapped, steel-cylinder type


    This standard describes the manufacture of concrete pressure pipe, reinforced with a steel cylinder that is helically wrapped with mild steel bar reinforcement, in sizes ranging from 10 in. through 72 in. (250 mm through 1,830 mm), inclusive, and for working pressures up to 400 psi (2,760 kPa).

  14. Determination Of The Maximum Explosion Pressure And The Maximum Rate Of Pressure Rise During Explosion Of Wood Dust Clouds

    Kuracina Richard


    Full Text Available The article deals with the measurement of maximum explosion pressure and the maximum rate of exposure pressure rise of wood dust cloud. The measurements were carried out according to STN EN 14034-1+A1:2011 Determination of explosion characteristics of dust clouds. Part 1: Determination of the maximum explosion pressure pmax of dust clouds and the maximum rate of explosion pressure rise according to STN EN 14034-2+A1:2012 Determination of explosion characteristics of dust clouds - Part 2: Determination of the maximum rate of explosion pressure rise (dp/dtmax of dust clouds. The wood dust cloud in the chamber is achieved mechanically. The testing of explosions of wood dust clouds showed that the maximum value of the pressure was reached at the concentrations of 450 g / m3 and its value is 7.95 bar. The fastest increase of pressure was observed at the concentrations of 450 g / m3 and its value was 68 bar / s.

  15. Elastic Solution of a Constrained FG Short Cylinder Under Axially Variable Pressure

    Arefi, Mohammad; Mohammad-Rezaei Bidgoli, Elyas


    Elastic analysis of a functionally graded thick cylinder under longitudinally variable mechanical loadings is studied in the present paper. The modulus of elasticity is graded along the thickness direction based on the power law function. The cylinder is subjected to variable pressure along the longitudinal direction. First order shear deformation theory is employed for description of a two dimensional displacement field. This is due to fully constrained boundary conditions of the cylinder. An analytical approach was proposed for solution of non homogenous system of differential equations and derivation of homogenous and particular solutions. This approach has capability to model different types of loading (constant, linear and other types) along the longitudinal direction. The effect of different constant and variable loads is considered on the elastic results of FG cylinder.

  16. Subsonic pressure distributions around a solid model of an inflatable decelerator attached to the base of an ogive-cylinder

    Sawyer, J. W.


    A wind-tunnel investigation was conducted at free-stream Mach numbers from 0.20 to 1.00 and corresponding Reynolds numbers, based on maximum afterbody diameter, from 2.25 x one million to 6.90 x one million on a solid model of an attached inflatable decelerator (AID) connected to the base of an ogive-cylinder. Tests were conducted to obtain ram-air and surface pressure distributions about the AID. AID shapes derived for subsonic deployment are dependent on the pressure distributions used in their derivation, and the different shapes obtained are dependent on the Mach number for which the design is made. The resulting pressure distributions were used in a design program to obtain new shapes which were compared with the original pressure-distribution shape.

  17. Stability of pressurized long inelastic cylinders under radial transverse loads

    Karamanos, S. A.


    In the present paper, the structural capacity of relatively thick inelastic steel cylindrical tubes under external or internal pressure and concentrated radial loads is investigated, through a rigorous finite element analysis, as well as using a simplified analytical model. For zero pressure, the tubes exhibit inelastic cross-sectional deformation and are capable of dissipating a significant amount of plastic energy. The energy absorption capacity, as well as the ultimate transverse load, are reduced in the presence of external pressure. The effects of internal pressure are also examined. Results are reported in the form of load-deflection curves for different pressure levels. In addition, collapse envelops showing the interaction of pressure versus radial transverse loads are presented. The conclusions of this study are important for the structural integrity of cylindrical steel tubulars for pipeline and other offshore applications.

  18. Estimation of trapped mass by in-cylinder pressure resonance in HCCI engines

    Luján, José Manuel; Guardiola, Carlos; Pla, Benjamín; Bares, Pau


    High pressure gradients at homogeneous charge compression ignition (HCCI) engines heavily excite the pressure resonance. The pressure resonant frequency depends on speed of sound in the cylinder, and thus on the bulk gas temperature. Present paper profits this relation estimating the trapped mass inside the cylinder. In contrast to other estimation methods in the literature, the presented method is based on the trace of the in-cylinder pressure during the cycle; therefore, it permits a cycle-to-cycle mass estimation, and avoids errors associated with other assumptions, such as heat transfer during compression or initial temperature of the in-cylinder gases. The proposed strategy only needs the pressure signal, a volume estimation and a composition assumption to obtain several trapped mass estimates during one cycle. These estimates can be later combined for providing an error estimate of the measurement, with the assumption of negligible blow-by. The method is demonstrated in two HCCI engines of different size, showing good performance in steady operation and presenting great potential to control transient operation.


    LIU Wen


    According to the inverse solution of elasticity mechanics, a stress function is constructed which meets the space biharmonic equation, this stress functions is about cubic function pressure on the inner and outer surfaces of cylinder. When borderline condition that is predigested according to the Saint-Venant's theory is joined, an equation suit is constructed which meets both the biharmonic equations and the boundary conditions. Furthermore, its analytic solution is deduced with Matlab.When this theory is applied to hydraulic bulging rollers, the experimental results inosculate with the theoretic calculation. Simultaneously, the limit along the axis invariable direction is given and the model building of hollow cylinder and for the analytic solution of hollow cylinder with randomly uneven pressure.

  20. The Change of Printouts' Quality Depending on Pressure of a Blanket Cylinder Against an Impression Cylinder and a Plate Cylinder in Offset Machine

    Jurkiewicz Agnieszka


    Full Text Available According to lots of books, the pressure in offset printing affects the optical density and the quality of printouts. One of the quality parameters is a tone value increase. An advantage of our research method is obtaining printing effects for different pressures on one printout, thus meaning for identical printing conditions. We obtained the same printing conditions through using different amounts of underlay sheets fixed to the blanket cylinder, under a blanket. The pressure was increased from optimal settings - in accordance with the machine manufacturer’s recommendation. The test printouts were printed using Adast Dominant 515, on a coated and an uncoated paper. The optical density value was measured on the tone value scale from 10% to 100% stepping regularly by 10%. For this scale the tone value increase was computed. The research shows that for both types of paper the optical density and the tone value increase changes not very much above the optimal pressure recommended by the machine manufacturer. A difference in the optical density and in the tone value increase is bigger for coated paper than for uncoated paper. Changes in these two parameters are negligible in places where used form 0 to 4 underlay sheets and are quite significant in the place where 5 underlay sheets were.

  1. Virtual Cylinder Pressure Sensor for Transient Operation in Heavy-Duty Engines

    Kulah, S.; Donkers, T.; Willems, F.


    Cylinder pressure-based combustion control is widely introduced for passenger cars. Benefits include enhanced emission robustness to fuel quality variation, reduced fuel consumption due to more accurate (multi-pulse) fuel injection, and minimized after treatment size.In addition, it enables the intr

  2. Virtual Cylinder Pressure Sensor for Transient Operation in Heavy-Duty Engines

    Kulah, S.; Donkers, T.; Willems, F.


    Cylinder pressure-based combustion control is widely introduced for passenger cars. Benefits include enhanced emission robustness to fuel quality variation, reduced fuel consumption due to more accurate (multi-pulse) fuel injection, and minimized after treatment size.In addition, it enables the

  3. A new control valve with a push rod for intermediate-pressure cylinders of steam turbines

    Zaryankin, A. E.; Arianov, S. V.; Paramonov, A. N.; Gotovtsev, A. M.; Storozhuk, S. K.


    We describe a new design of a control valve for intermediate-pressure cylinders with a perforated cup and a push rod that ensures smaller loss under rated operating conditions and features better reliability. Model tests were carried out to check the main design solutions.

  4. Heat Transfer and Pressure Drop Data for Circular Cylinders in Ducts and Various Arrangements


    cities - and Constant Spacing iii Scinch, Duct - ~-^ - - -r =• -~ - -- - - - - 37;, Single, Cylinder’ and Three- Cylinders in line" with Yard...heating coils surrounded by .a 3/Scinch thicis shell of ^anslte, .an asbest -cs-cemens material; oo’CiSlstljig of 35 per cent Portland cement .and lä per...gradients did, not permit very accurate de-* teraiinationä--&t low flois veio- cities because of ihseösitivity af She fee generalization of the, pressure

  5. New Analysis for The FGM Thick Cylinders Under Combined Pressure and Temperature Loading

    K. Abrinia


    Full Text Available An analytical solution for computing the radial and circumferential stresses in a FGM thick cylindrical vessel under the influence of internal pressure and temperature is presented in this paper. It has been assumed that the modulus of elasticity and thermal coefficient of expansion were varying through thickness of the FGM material according to a power law relationship. Nevertheless the value of the Poisson ratio was taken as constant throughout the material. In the analysis presented here the effect of non-homogeneity in FGM thick cylinder was implemented by choosing a dimensionless parameter, named β, which could be assigned an arbitrary value affecting the stresses in the cylinder. Using Maple 9.5, distribution of stresses in radial and circumferential directions for FGM cylinders under the influence of internal pressure and temperature gradient were obtained. Graphs of variations of stress versus radius of the cylinder were plotted for different values of β. Cases of pressure, temperature and combined loadings were considered separately. It was concluded that by changing the value of β, the properties of FGM could be so modified that the lowest stress levels were reached. The stresses which were produced in FGM and homogeneous material with the same boundary conditions were compared to obtain the optimum value of β.

  6. 49 CFR 192.623 - Maximum and minimum allowable operating pressure; Low-pressure distribution systems.


    ... distribution systems. (a) No person may operate a low-pressure distribution system at a pressure high enough to...) No person may operate a low pressure distribution system at a pressure lower than the minimum... 49 Transportation 3 2010-10-01 2010-10-01 false Maximum and minimum allowable operating...

  7. 49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.


    ... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage,...

  8. Exact and numerical elastodynamic solutions for thick-walled functionally graded cylinders subjected to pressure shocks

    Shariyat, M., E-mail: [Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Pardis Street, Molla-Sadra Avenue, Vanak Square, P.O. Box: 19395-1999, Tehran 19991 43344 (Iran, Islamic Republic of); Nikkhah, M.; Kazemi, R. [Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Pardis Street, Molla-Sadra Avenue, Vanak Square, P.O. Box: 19395-1999, Tehran 19991 43344 (Iran, Islamic Republic of)


    In the present paper, analytical and numerical elastodynamic solutions are developed for long thick-walled functionally graded cylinders subjected to arbitrary dynamic and shock pressures. Both transient dynamic response and elastic wave propagation characteristics are studied in these non-homogeneous structures. Variations of the material properties across the thickness are described according to both polynomial and power law functions. A numerically consistent transfinite element formulation is presented for both functions whereas the exact solution is presented for the power law function. The FGM cylinder is not divided into isotropic sub-cylinders. An approach associated with dividing the dynamic radial displacement expression into quasi-static and dynamic parts and expansion of the transient wave functions in terms of a series of the eigenfunctions is employed to propose the exact solution. Results are obtained for various exponents of the functions of the material properties distributions, various radius ratios, and various dynamic and shock loads.

  9. Relating surface pressure to Lagrangian wake topology around a circular cylinder in cross flow

    Rockwood, Matthew; Green, Melissa


    The tracks of Lagrangian saddles, identified as non-parallel intersections of positive and negative-time finite-time Lyapunov exponent (FTLE) ridges, have been shown to indicate the timing of von Karman vortex shedding in the wake of bluff bodies. The saddles are difficult to track in real-time, however, since future flow field data is needed for the computation of the FTLE fields. In order to detect the topological changes without direct access to the FTLE, the saddle dynamics are correlated to measurable surface quantities on a circular cylinder in cross flow. The Lagrangian saddle found upstream of a forming and subsequently shedding vortex has been shown to accelerate away from the cylinder surface as the vortex sheds. In previous numerical results at Re = 150 , this acceleration coincides with the peak in lift force over the cylinder, and also with a minimum in the static pressure at a location slightly upstream of the mean separation location. In the current work, this result is compared with experimental data at Re = O (10 , 000) . Successful validation would provide a strategy for locating sensitive regions on the cylinder surface where vortex shedding could be detected using simple pressure transducers. This work was supported by the Air Force Office of Scientific Research under AFOSR Award No. FA9550-14-1-0210.

  10. Smart Onboard Inspection of High Pressure Gas Fuel Cylinders

    Beshears, D.L.; Starbuck, J.M.


    The use of natural gas as an alternative fuel in automotive applications is not widespread primarily because of the high cost and durability of the composite storage tanks. Tanks manufactured using carbon fiber are desirable in weight critical passenger vehicles because of the low density of carbon fiber. The high strength of carbon fiber also translates to a weight reduction because thinner wall designs are possible to withstand the internal pressure loads. However, carbon fiber composites are prone to impact damage that over the life of the storage tank may lead to an unsafe condition for the vehicle operator. A technique that potentially may be a reliable indication of developing hazardous conditions in composite fuel tanks is imbedded fiber optics. The applicability of this technique to onboard inspection is discussed and results from preliminary lab testing indicate that fiber optic sensors can reliably detect impact damage.

  11. Study of maximum pressure for composite hepta-tubular powders

    M. C. Gupta


    Full Text Available In this paper the expressions for maximum pressure occurring positions in the case of composite hepta-tubular powers used in conventional guns and the corresponding conditions have been derived under certain conditions, viz., the value of n, the ratio of specific heats, has been assumed to be the same for both the charges and the covolume corrections have not been neglected.

  12. Compressive Sensing Based Machine Learning Strategy For Characterizing The Flow Around A Cylinder With Limited Pressure Measurements

    Bright, Ido; Lin, Guang; Kutz, Nathan


    Compressive sensing is used to determine the flow characteristics around a cylinder (Reynolds number and pressure/flow field) from a sparse number of pressure measurements on the cylinder. Using a supervised machine learning strategy, library elements encoding the dimensionally reduced dynamics are computed for various Reynolds numbers. Convex L1 optimization is then used with a limited number of pressure measurements on the cylinder to reconstruct, or decode, the full pressure field and the resulting flow field around the cylinder. Aside from the highly turbulent regime (large Reynolds number) where only the Reynolds number can be identified, accurate reconstruction of the pressure field and Reynolds number is achieved. The proposed data-driven strategy thus achieves encoding of the fluid dynamics using the L2 norm, and robust decoding (flow field reconstruction) using the sparsity promoting L1 norm.

  13. Ionic wind generation by a wire-cylinder-plate corona discharge in air at atmospheric pressure

    Colas, Dorian,; Ferret, Antoine; Pai, David,; Lacoste, Deanna,; Laux, C.


    International audience; A wire-cylinder-plate electrode configuration is presented to generate ionic wind with a dc corona discharge in air at atmospheric pressure. The objective of the work is to maximize the power supplied to the flow in order to increase acceleration while avoiding breakdown. Thus, the proposed experimental setup addresses the problem of decoupling the mechanism of ion generation from that of ion acceleration. Using a wire-plate configuration as a reference, we have focuse...

  14. In situ pressure calibration for piston cylinder cells via ruby fluorescence with fiber optics.

    Koyama-Nakazawa, Kazuko; Koeda, Masahito; Hedo, Masato; Uwatoko, Yoshiya


    A fiber-optic measurement technique is developed for estimating the pressure inside a piston cylinder cell up to approximately 4 GPa, based on the pressure-induced R1 fluorescence line shift of ruby (ruby scale). Ruby scale and a conventional technique (calibration on phase transitions of bismuth) were simultaneously applied to the cell filled with a pressure transmitting medium of isopropyl alcohol. The pressure readings of the two methods were consistent with each other, and no pressure gradient was observed. The ruby scale has the advantages of real time estimation and easy installation in a small space. Because of these advantages, three fibers were simultaneously introduced in the sample space at the same time, and pressure distribution was measured for Fluorinert (FC70:FC77=1:1), Daphne oil 7373, and Fomblin oil (YHVAC 13014).

  15. Maximum bubble pressure rheology of low molecular mass organogels.

    Fei, Pengzhan; Wood, Steven J; Chen, Yan; Cavicchi, Kevin A


    Maximum bubble pressure rheology is used to characterize organogels of 0.25 wt % 12-hydroxystearic acid (12-HSA) in mineral oil, 3 wt % (1,3:2,4) dibenzylidene sorbitol (DBS) in poly(ethylene glycol), and 1 wt % 1,3:2,4-bis(3,4-dimethylbenzylidene) sorbitol (DMDBS) in poly(ethylene glycol). The maximum pressure required to inflate a bubble at the end of capillary inserted in a gel is measured. This pressure is related to the gel modulus in the case of elastic cavitation and the gel modulus and toughness in the case of irreversible fracture. The 12-HSA/mineral oil gels are used to demonstrate that this is a facile technique useful for studying time-dependent gel formation and aging and the thermal transition from a gel to a solution. Comparison is made to both qualitative gel tilting measurements and quantitative oscillatory shear rheology to highlight the utility of this measurement and its complementary nature to oscillatory shear rheology. The DBS and DMDBS demonstrate the generality of this measurement to measure gel transition temperatures.

  16. Intelligent Detector of Internal Combustion Engine Cylinder Pressure and Sensitivity Temperature Coefficient Compensation

    Beirong Zheng


    Full Text Available The detecting device based on mechanical mechanism is far from the measurement of internal combustion engine cylinder explosion and compression pressure. This pressure detection is under the environment of pulsed gas (over 500 times per one minute and mechanical impactive vibration. Piezoresistive detection with silicon on insulator (SOI strain gauges to pressure seems to be a good solution to meet such special applications. In this work, separation by implanted oxygen (SIMOX wafer was used to fabricate the high temperature pressure sensor chip. For high accuracy and wide temperature range application, this paper also presents a novel pressure sensitivity temperature coefficient (TCS compensation method, using integrated constant current network. A quantitative compensation formula is introduced in mathematics. During experiments, the absolute value of the compensated TCS is easy to be 10 × 10−6/°C~100 × 10−6/°C by individual adjustment and calibration of each device’s temperature compensation. Therefore, the feasibility and practicability of this technology are tested. Again, the disadvantages are discussed after the research of the experiment data and the improvement methods are also given in the designing period. This technology exhibits the great potential practical value of internal combustion engine cylinder pressure with volume manufacturing.

  17. The Effect of Water Injection on the Control of In-Cylinder Pressure and Enhanced Power Output in a Four-Stroke Spark-Ignition Engine

    Mingrui Wei


    Full Text Available This paper presents the results for liquid water injection (WI into a cylinder during the compression and expansion strokes of an internal combustion engine (ICE, with the aim of achieving an optimal in-cylinder pressure and improving power output using CFD simulation. Employing WI during the compression stroke at 80° of crank angle (CA before top dead centre (bTDC resulted in the reduction of compression work due to a reduction in peak compression pressure by a margin of about 2%. The decreased peak compression pressure also yielded the benefit of a decrease in NOx emission by a margin of 34% as well as the prevention of detonation. Using WI during the expansion stroke (after top dead centre–aTDC revealed two stages of the in-cylinder pressure: the first stage involved a decrease in pressure by heat absorption, and the second stage involved an increase in the pressure as a result of an increase in the steam volume via expansion. For the case of water addition (WA 3.0% and a water temperature of 100 °C, the percentage decrease of in-cylinder pressure was 2.7% during the first stage and a 2.5% pressure increase during the second stage. Water injection helped in reducing the energy losses resulting from the transfer of heat to the walls and exhaust gases. At 180° CA aTDC, the exhaust gas temperature decreased by 42 K, 89 K, and 136 K for WA 1.0, WA 2.0, and WA 3.0, respectively. Increasing the WI temperature to 200 °C resulted in a decrease of the in-cylinder pressure by 1.0% during the first stage, with an increase of approximately 4.0% in the second stage. The use of WI in both compression and expansion strokes resulted in a maximum increase of in-cylinder pressure of about 7%, demonstrating the potential of higher power output.

  18. Numerical simulation and optimization of Al alloy cylinder body by low pressure die casting

    Mi Guofa


    Full Text Available Shrinkage defects can be formed easily at Critical location during low pressure die casting (LPDC of aluminum alloy cylinder body. It has harmful effect on the products. Mold fi lling and solidifi cation process of a cylinder body was simulated by using of Z-CAST software. The casting method was improved based on the simulation results. In order to create effective feeding passage, the structure of casting was modifi ed by changing the location of strengthening ribs at the bottom, without causing any adverse effect on the part’s performance. Inserting copper billet at suitable location of the die is a valid way to create suitable solidifi cation sequence that is benefi cial to the feeding. Using these methods, the shrinkage defect was completely eliminated at the critical location.

  19. Unified solution of limit loads of thick wall cylinder subject to external pressure considering strain softening

    CHEN Changfu; XIAO Shujun; YANG Yu


    Based on the unified strength theory [1],a unified strength criterion for strain softening materials,such as concrete or rock,was derived,and the elastic and plastic limit loads of a thick-walled cylinder made of these materials subject to external pressure were also given.In addition,the influence of some factors on the limit loads of such cylinders as the ratio of the external radius to intemal radius,rb/ra,the coefficient b,which reflects the effect of medium principal stress and the normal stress of the relevant surface on the material destroy degree,the ratio of tensile strength to compressed strength of the material,α,and the damage variable β were discussed in detail.Some examples were given and some meaningful results were obtained.

  20. Numerical simulation and optimization of Al alloy cylinder body by low pressure die casting

    Mi Guofa; Liu Yanlei; Zhao Hengtao; Fu Hengzhi


    Shrinkage defects can be formed easily at critical location during low pressure die casting(LPDC)of aluminum alloy cylinder body.It has harmful effect on the products.Mold filling and solidification process of a cylinder body was simulated by using of Z-CAST software.The casting method was Improved based on the simulation results.In order to create eriective feeding passage,the structure of casting was modified by changing the location of strengthening ribs at the bottom,without causing any adverse effect on the part's performance.Inserting copper billet at suitable Iocation of the die is a valid way to create suitable solidification sequence that is beneficial to the feeding.Using these methods.the shrinkage defect was completely eliminated at the critical location.

  1. Radiation Pressure Acceleration: the factors limiting maximum attainable ion energy

    Bulanov, S S; Schroeder, C B; Bulanov, S V; Esirkepov, T Zh; Kando, M; Pegoraro, F; Leemans, W P


    Radiation pressure acceleration (RPA) is a highly efficient mechanism of laser-driven ion acceleration, with with near complete transfer of the laser energy to the ions in the relativistic regime. However, there is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. The tightly focused laser pulses have group velocities smaller than the vacuum light speed, and, since they offer the high intensity needed for the RPA regime, it is plausible that group velocity effects would manifest themselves in the experiments involving tightly focused pulses and thin foils. However, in this case, finite spot size effects are important, and another limiting factor, the transverse expansion of the target, may dominate over the group velocity effect. As the laser pulse diffracts after passing the focus, the target expands accordingly due to the transverse intensity profile of the laser. Due to this expansion, the areal density of the target decreases, making it trans...

  2. Transportation-cyber-physical-systems-oriented engine cylinder pressure estimation using high gain observer

    Li, Yong-Fu; Xiao-Pei, Kou; Zheng, Tai-Xiong; Li, Yin-Guo


    In transportation cyber-physical-systems (T-CPS), vehicle-to-vehicle (V2V) communications play an important role in the coordination between individual vehicles as well as between vehicles and the roadside infrastructures, and engine cylinder pressure is significant for engine diagnosis on-line and torque control within the information exchange process under V2V communications. However, the parametric uncertainties caused from measurement noise in T-CPS lead to the dynamic performance deterioration of the engine cylinder pressure estimation. Considering the high accuracy requirement under V2V communications, a high gain observer based on the engine dynamic model is designed to improve the accuracy of pressure estimation. Then, the analyses about convergence, converge speed and stability of the corresponding error model are conducted using the Laplace and Lyapunov method. Finally, results from combination of Simulink with GT-Power based numerical experiments and comparisons demonstrate the effectiveness of the proposed approach with respect to robustness and accuracy. Project supported by the National Natural Science Foundation of China (Grant No. 61304197), the Scientific and Technological Talents of Chongqing, China (Grant No. cstc2014kjrc-qnrc30002), the Key Project of Application and Development of Chongqing, China (Grant No. cstc2014yykfB40001), the Natural Science Funds of Chongqing, China (Grant No. cstc2014jcyjA60003), and the Doctoral Start-up Funds of Chongqing University of Posts and Telecommunications, China (Grant No. A2012-26).

  3. 46 CFR 52.01-55 - Increase in maximum allowable working pressure.


    ... 46 Shipping 2 2010-10-01 2010-10-01 false Increase in maximum allowable working pressure. 52.01-55... POWER BOILERS General Requirements § 52.01-55 Increase in maximum allowable working pressure. (a) When the maximum allowable working pressure of a boiler has been established, an increase in the pressure...

  4. Effect of Diesel Engine Converted to Sequential Port Injection Compressed Natural Gas Engine on the Cylinder Pressure vs Crank Angle in Variation Engine Speeds

    Semin; Abdul R. Ismail; Rosli A. Bakar


    The diesel engine converted to compressed natural gas (CNG) engine effect is lower in performance. Problem statement: The hypothesis is that the lower performance of CNG engine is caused by the effect of lower in engine cylinder pressure. Are the CNG engine is lower cylinder pressure than diesel engine? This research is conducted to investigate the cylinder pressure of CNG engine as a new engine compared to diesel engine as a baseline engine. Approach: The research approach in this study is b...

  5. Collapse Pressure Analysis of Transversely Isotropic Thick-Walled Cylinder Using Lebesgue Strain Measure and Transition Theory

    A. K. Aggarwal


    Full Text Available The objective of this paper is to provide guidance for the design of the thick-walled cylinder made up of transversely isotropic material so that collapse of cylinder due to influence of internal and external pressure can be avoided. The concept of transition theory based on Lebesgue strain measure has been used to simplify the constitutive equations. Results have been analyzed theoretically and discussed numerically. From this analysis, it has been concluded that, under the influence of internal and external pressure, circular cylinder made up of transversely isotropic material (beryl is on the safer side of the design as compared to the cylinders made up of isotropic material (steel. This is because of the reason that percentage increase in effective pressure required for initial yielding to become fully plastic is high for beryl as compared to steel which leads to the idea of “stress saving” that reduces the possibility of collapse of thick-walled cylinder due to internal and external pressure.

  6. Two dimensional analysis of low pressure flows in the annulus region between two concentric cylinders.

    Al-Kouz, Wael; Alshare, Aiman; Alkhalidi, Ammar; Kiwan, Suhil


    A numerical simulation of the steady two-dimensional laminar natural convection heat transfer for the gaseous low-pressure flows in the annulus region between two concentric horizontal cylinders is carried out. This type of flow occurs in "evacuated" solar collectors and in the receivers of the solar parabolic trough collectors. A finite volume code is used to solve the coupled set of governing equations. Boussinesq approximation is utilized to model the buoyancy effect. A correlation for the thermal conductivity ratio (k r = k eff/k) in terms of Knudsen number and the modified Rayleigh number is proposed for Prandtl number (Pr = 0.701). It is found that as Knudsen number increases then the thermal conductivity ratio decreases for a given Rayleigh number. Also, it is shown that the thermal conductivity ratio k r increases as Rayleigh number increases. It appears that there is no consistent trend for varying the dimensionless gap spacing between the inner and the outer cylinder ([Formula: see text]) on the thermal conductivity ratio (k r) for the considered spacing range.

  7. Maximum Pressure Evaluation during Expulsion of Entrapped Air from Pressurized Pipelines

    Diana Maria Bucur


    Full Text Available Pressurized pipeline systems may have a wide operating regime. This paper presents the experimental analysis of the transient flow in a horizontal pipe containing an air pocket, which allows the ventilation of the air after the pressurization of the hydraulic system, through an orifice placed at the downstream end. The measurements are made on a laboratory set-up, for different supply pressures and various geometries of water column length, air pocket and expulsion orifice diameter. Dimensional analysis is carried out in order to determine a relation between the parameters influencing the maximum pressure value. A two equations model is obtained and a criterion is established for their use. The equations are validated with experimental data from the present laboratory set-up and with other data available in the literature. The results presented as non-dimensional quantities variations show a good agreement with the previous experimental and analytical researches.

  8. Analytical solution for the pseudoelastic response of a shape memory alloy thick-walled cylinder under internal pressure

    Tabesh, M.; Liu, B.; Boyd, J. G.; Lagoudas, D. C.


    Analytical solutions are derived for the isothermal pseudoelastic response of a shape memory alloy (SMA) thick-walled cylinder subjected to internal pressure. The Tresca transformation criterion and linear hardening are used. Equations are given for the radial and circumferential stresses, transformation strains and radial displacement at various steps of loading and unloading. A structural pressure-temperature phase diagram is provided for the cylinder, analogous to the stress-temperature phase diagram of SMA materials. Pressurization of an initially 100% austenitic cylinder causes the martensite to initially form at the inner radius. For a relatively thin-walled cylinder the transformation front reaches the outer radius before the transformation has completed at the inner radius, whereas for a thick-walled cylinder the transformation completes at the inner radius while there is still an outer ring of 100% austenite. For a given OD/ID ratio, a critical temperature is derived that stipulates which of these two cases occurs. An analytical result is provided for the pressure that will cause the transformation to complete at the inner radius. During unloading, the reverse transformation can start at either the inner or the outer surface of the cylinder and can propagate outward and then reverse its direction and propagate back to the inner surface. The effect of martensitic transformation on the structural yield strength due to plasticity is also investigated and it is shown that the pressure required to initiate yielding can be substantially decreased or increased depending on the temperature and the state of transformation achieved, even though the yield stress of the material is independent of temperature. Finally, the effectiveness of the Tresca transformation criterion to derive closed-form solutions for this problem is demonstrated by comparing with finite element solutions using the von Mises theory.

  9. New methodology for in-cylinder pressure analysis in direct injection diesel engines—application to combustion noise

    Payri, F.; Broatch, A.; Tormos, B.; Marant, V.


    The objective of this paper is to present a new methodology for the analysis of in-cylinder pressure in direct injection (DI) diesel engines. Indeed, for some applications, the traditional study of total pressure is shown to be insufficient and the proposed technique is intended to be an alternative and more efficient tool, since it may provide a better understanding of the physical mechanisms. The main idea is to decompose the in-cylinder pressure evolution according to three phenomena taking place during diesel engine operation: pseudo-motored, combustion and resonance excitation. In order to validate this new method, it is applied to combustion noise analysis. Actually, the combustion process in DI diesel engines may be considered as an important source of noise, and the traditional approach is mainly based on the interpretation of objective overall spectral levels of both in-cylinder pressure and radiated noise, obtained from Fourier analysis. However, this approach has been shown unable to describe all the relevant aspects of the problem, whereas the results obtained from the proposed decomposition technique exhibit a fair qualitative correlation between in-cylinder pressure and combustion noise issues. Further development of this approach could provide a useful tool for the development of optimal injection strategies fulfilling not only performance considerations but also sound quality requirements for combustion noise in DI diesel engines.

  10. Estimation of cycle-resolved in-cylinder pressure and air-fuel ratio using spark plug ionization current sensing

    Lee, B.; Guezennec, Y.G.; Rizzoni, G. [Ohio State University, Columbus, OH (United States). Center for Automotive Research and Intelligent Transportation


    In recent years, several new sensor technologies have been developed and implemented within automotive industries due to the increasing requirements for improved engine performance and emission reduction. It requires detailed and specified knowledge of the combustion process inside the engine cylinder along with a sophisticated technique in engine diagnostics and control. During the last few years, the ionization current signal detection has been the emerging technology in the new sensor developments, in which the spark plug is used as a combustion probe, to improve the performance and emissions of an automobile engine. In this paper, a novel methodology will be presented which allows the cycle-resolved as well as the meanvalue estimation of the air-fuel ratio and in-cylinder pressure based on the ionization current signal measurements. The implementation details of this methodology as well as extensive results will be presented for a wide range of air-fuel ratios. The main advantage of this new approach to process the ionization signal is its strong potential for real-time estimation of the air-fuel ratio and combustion diagnostics of individual cylinders and engine cycles. All the complex physics during the actual events (combustion process, ion generation, engine dynamics, etc.) are automatically self-extracted by this technique from acquired data in an initial off-line mapping phase. Once this has been performed, the air-fuel ratio and in-cylinder pressure can easily be estimated for each individual cylinder and combustion event in real-time with few computational requirements. Hence, this methodology has a high potential for the real-time combustion diagnostics and engine control based on the air-fuel ratio and in-cylinder pressure, while eliminating the requirements for installing expensive air-fuel ratio and in-cylinder pressure sensors. The results indicate that estimation of the cycle-resolved air-fuel ratio and in-cylinder pressure is reasonably accurate

  11. 49 CFR 180.212 - Repair of seamless DOT 3-series specification cylinders and seamless UN pressure receptacles.


    ... TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS CONTINUING QUALIFICATION AND MAINTENANCE OF PACKAGINGS Qualification, Maintenance and Use of Cylinders § 180.212 Repair of seamless DOT 3-series specification... pressure receptacle unless— (i) The repair facility holds an approval issued under the provisions in §...

  12. 77 FR 27079 - High Pressure Steel Cylinders From China Notice of Commission Determination To Conduct a Portion...


    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION High Pressure Steel Cylinders From China Notice of Commission Determination To Conduct a Portion... to conduct a portion of its hearing in the above-captioned investigation scheduled for May 1, 2012...

  13. Influences of Casting Pressure Conditions on the Quality and Properties of a Magnesium Cylinder Head Cover Die Casting

    Wenhui LIU; Yangai LIU; Shoumei XIONG; Baicheng LIU; Y. Matsumoto; M. Murakami


    Casting pressure conditions have great influences on the casting defects, such as gas porosity, shrinkage porosity and gas holes. A Mg cylinder head cover die casting was used to experimentally study the influences of casting pressure,the loading time and the piston position of pressure intensification on the variation of pressure and the quality of casting. The results show that casting pressure, the loading time and the piston position of pressure intensification have great influences on the pressure variations in the mold, the quality and performance of casting. The external quality, the density and the tensile strength of casting were improved with the increase of casting pressure and the piston position of pressure intensification and the decrease of the loading time of pressure intensification.

  14. Limit analysis of viscoplastic thick-walled cylinder and spherical shell under internal pressure using a strain gradient plasticity theory


    Plastic limit load of viscoplastic thick-walled cylinder and spherical shell subjected to internal pressure is investigated analytically using a strain gradient plastic-itv theory. As a result, the current solutions can capture the size effect at the micron scale. Numerical results show that the smaller the inner radius of the cylinder or spherical shell, the more significant the scale effects. Results also show that the size effect is more evident with increasing strain or strain-rate sensitivity index. The classical plastic-based solutions of the same problems are shown to be a special case of the present solution.

  15. Heat transfer and pressure distributions on hemisphere-cylinders in methane-air combustion products at Mach 7

    Weinstein, I.


    Heat-transfer and pressure distributions were measured over the surfaces of three hemisphere-cylinder models tested at a nominal Mach number of 7 in the Langley 8-foot high-temperature structures tunnel which uses methane-air products of combustion as a test medium. The results showed that the heat-transfer and pressure distributions over the surface of the models were in good agreement with experimental data obtained in air and also with theoretical predictions.

  16. Analytical solution for spatially axisymmetric problem of thick-walled cylinder subjected to different linearly varying pressures along the axis and uniform pressures at two ends


    To our best knowledge,in the open literature,there is no analytical solution of thick-walled cylinder subjected to uniform pressures at two ends and different inner-and outer-surface pressures that are constant circumferentially but vary linearly at different rates along the axis.We now present such a solution.After repeated trials,we have finally succeeded in finding a necessary new displacement function.Based on A.E.H.Love method,the stress,displacement and volume strain formulas are derived by using the new displacement function.The present results include the Lamé’s formulas as special cases.Furthermore,the results obtained here can be applied to not only the thick-walled cylinders subjected to uniform pressures on the inner and outer surface of the thick-walled cylinder,respectively,but also the cylinders subjected to uniform pressures at two ends and dif- ferent inner-and outer-surface pressures that are constant circumferentially but vary linearly at different rates along the axis,respectively.Finally we give a numerical example to compare our exact method with the approximate method.

  17. Pressure Control for a Hydraulic Cylinder Based on a Self-Tuning PID Controller Optimized by a Hybrid Optimization Algorithm

    Ru Wang


    Full Text Available In order to improve the performance of the hydraulic support electro-hydraulic control system test platform, a self-tuning proportion integration differentiation (PID controller is proposed to imitate the actual pressure of the hydraulic support. To avoid the premature convergence and to improve the convergence velocity for tuning PID parameters, the PID controller is optimized with a hybrid optimization algorithm integrated with the particle swarm algorithm (PSO and genetic algorithm (GA. A selection probability and an adaptive cross probability are introduced into the PSO to enhance the diversity of particles. The proportional overflow valve is installed to control the pressure of the pillar cylinder. The data of the control voltage of the proportional relief valve amplifier and pillar pressure are collected to acquire the system transfer function. Several simulations with different methods are performed on the hydraulic cylinder pressure system. The results demonstrate that the hybrid algorithm for a PID controller has comparatively better global search ability and faster convergence velocity on the pressure control of the hydraulic cylinder. Finally, an experiment is conducted to verify the validity of the proposed method.

  18. The role of pressure anisotropy on the maximum mass of cold compact stars

    Karmakar, S.; Mukherjee, S.; Sharma, R.; Maharaj, S.D.


    We study the physical features of a class of exact solutions for cold compact anisotropic stars. The effect of pressure anisotropy on the maximum mass and surface redshift is analysed in the Vaidya-Tikekar model. It is shown that maximum compactness, redshift and mass increase in the presence of anisotropic pressures; numerical values are generated which are in agreement with observation.


    WANG Yan; CUI Hai-qing; YANG Yuan-jian; GUO Jun-hui; LI Nan


    In this article, the governing equations for the unsteady flow of viscoelastic fluid in the eccentric annulus with the inner cylinder reciprocating axially and the expression of the pressure distribution on the wall of the inner cylinder of the annulus are established and derived, respectively, under the bipolar coordinate system.The equations and the expression are solved and calculated numerically using the finite difference method, respectively.The curves of the pressure distribution on the wall of the inner cylinder of the aqueous solution of Hydrolyzed Polyacrylamide (HPAM) are plotted and the influences of annular eccentricity, stroke, and stroke frequency on the pressure distribution are analyzed.

  20. On the Law of Equal Pressure Maximum%等压最大值定律



    This paper states the law of equal pressure maximum, including: the law of gas temperature T's equal pressure maximum; the law of gas volume X's equal pressure maximum; the law of gas cubage V's equal pressure maximum; the law of unit gas volume X's equal pressure maximum.%阐述了等压最大值定律,包括:(1)瓦斯温度T等压最大值定律,(2)瓦斯量N等压最大值定律,(3)瓦斯容积V等压最大值定律,(4)单位容积瓦斯量x等压最大值定律4种.

  1. 49 CFR 192.619 - Maximum allowable operating pressure: Steel or plastic pipelines.


    ... operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating... design pressure of the weakest element in the segment, determined in accordance with subparts C and D of... K of this part, if any variable necessary to determine the design pressure under the design...

  2. EC Hidraulic Drive Cylinder Relief Vlave Test

    Wu, J.; /Fermilab


    This engineering note documents the testing of the set pressure of the EC hydraulic drive cylinder relief valve. The purpose of the relief valve is to provide a safety measure in the event that oil becomes trapped in the rod side of the cylinder and pressure is applied to the cap side. The note includes an explanation of the procedure used and a summary of the result of the testing done on February 14, 1991 by Gary Trotter. The result was that the cylinder relief valve relieved at the correct set pressure of 10,500 psig. The basic concern is for the protection of the cylinder. The pump is capable of providing up to 10,500 psi of pressure to either side of the cylinder. The cylinder is rated for 10,500 psi. Under normal operating conditions, the valves would be open, and the pumping pressure would automatically flow oil into one side, and remove oil from the other side. If, however, the valve for the other side was closed, so that oil could not be removed, then the pressure would build in that side. If the rod side is pressurized to the maximum pump pressure of 10,500 psi, the cross sectional area ratio of 2.29 results in a pressure of approximately 4600 psi in the cap side, which is well under the rated pressure. If, however, the cap side is pressurized to 10,500 psi, the cross sectional area would produce a pressure of approximately 24,000 psi in the rod side, which could damage the cylinder. Therefore, the pressure on the rod side must be limited to the rated pressure of 10,500 psi. In reality, the maximum operating force on the piston would be under 11,000 Ibs., which would result in the maximum cylinder pressure being under 8000 psi to the rod side, and under 3500 psi to the cap side. Therefore, the relief is only needed as a safety precaution in the case that oil becomes trapped.

  3. Effective reduction of in-cylinder peak pressures in Homogeneous Charge Compression Ignition Engine – A computational study

    T. Karthikeya Sharma


    Full Text Available HCCI mode of combustion is known for simultaneous reduction of NOx and PM emissions besides yielding low specific fuel consumption. The nature of volumetric combustion of HCCI engine leads to the development of high peak pressures inside the combustion chamber. This high peak pressures may damage the engine, limiting the HCCI engine life period and thus demands sturdy designs. In this study an attempt is made to analyze computationally the effect of induction swirl in reducing the peak pressures of a HCCI engine under various operating parameters. For the study, specifications of a single cylinder 1.6 L, reentrant piston bowl diesel engine are chosen. For the computational analysis ECFM-3Z model of STARCD is considered. This model is suitable to analyze the combustion processes in SI and CI engines. As HCCI engine is a hybrid version of SI and CI engines, ECFM-3Z model with necessary modifications is used to analyze the peak pressures inside the combustion chamber. The ECFM-3Z model for HCCI mode of combustion is validated with the existing literature to make sure that the results obtaining are accurate. Numerical experiments are performed to study the effect of compression ratio, equivalence ratio, exhaust gas recirculation and boost pressure under different swirl ratios in reducing the in-cylinder peak pressures. The results showed that swirl ratio has a considerable impact in limiting the peak pressures of HCCI engine. The analysis resulted in achieving about 21% reduction in peak pressures are achieved when a swirl ratio of 4 with 30% EGR is adopted when compared to a swirl ratio of 1 with 0% EGR. The study revealed that out of the four operating parameters selected, lower compression ratios, higher EGR concentrations, lower equivalence ratios, lower boost pressures and higher swirl ratios are favorable in reducing the peak pressures.

  4. Comparing in Cylinder Pressure Modelling of a DI Diesel Engine Fuelled on Alternative Fuel Using Two Tabulated Chemistry Approaches.

    Ngayihi Abbe, Claude Valery; Nzengwa, Robert; Danwe, Raidandi


    The present work presents the comparative simulation of a diesel engine fuelled on diesel fuel and biodiesel fuel. Two models, based on tabulated chemistry, were implemented for the simulation purpose and results were compared with experimental data obtained from a single cylinder diesel engine. The first model is a single zone model based on the Krieger and Bormann combustion model while the second model is a two-zone model based on Olikara and Bormann combustion model. It was shown that both models can predict well the engine's in-cylinder pressure as well as its overall performances. The second model showed a better accuracy than the first, while the first model was easier to implement and faster to compute. It was found that the first method was better suited for real time engine control and monitoring while the second one was better suited for engine design and emission prediction.

  5. Combustion noise level assessment in direct injection Diesel engines by means of in-cylinder pressure components

    Torregrosa, A. J.; Broatch, A.; Martín, J.; Monelletta, L.


    The low consumption achievable with Diesel engines and the subsequent reduction of CO2 emissions, together with the new technologies allowing to meet present and future legislation for pollutant emission reduction, make them attractive from an environmental viewpoint. However, current and future Diesel concepts are intrinsically noisy, and thus in the past few years, combustion noise was considered as an additional factor in engine development alongside performance, emissions and driveability. Otherwise, due to this negative issue intrinsic to Diesel combustion, end-users could be reluctant to drive Diesel-powered vehicles and their potential for environment preservation could thus be lost or underused. Evaluation procedures are then required, both for noise level and sound quality, that may be integrated into the global engine development process, avoiding the need to resort to long and expensive acoustic tests. In this paper, such a procedure, based on the noise source diagnostic through the definition of suitable components extracted from in-cylinder pressure, is proposed and validated. An innovative decomposition of the in-cylinder pressure signal is used to obtain such components, so that features associated with the excitation inside the cylinder may be properly identified. These combustion components, significant of the rate of heat release in the cylinder and the resonance in the combustion chamber, may be correlated with the overall noise level. A prediction of the radiated engine noise level more accurate than that obtained from the classical 'block attenuation' approach is achieved, while combustion process features related to the resulting noise level can be identified and thus corrective actions may be proposed.

  6. The role of pressure anisotropy on the maximum mass of cold compact stars

    Karmakar, S.; Mukherjee, S.; Sharma, R.; Maharaj, S. D.


    We study the physical features of a class of exact solutions for cold compact anisotropic stars. The effect of pressure anisotropy on the maximum mass and surface red-shift is analysed in the Vaidya--Tikekar model. It is shown that maximum compactness, red-shift and mass increase in the presence of anisotropic pressures; numerical values are generated which are in agreement with observation.

  7. The role of pressure anisotropy on the maximum mass of cold compact stars

    S Karmakar; S Mukherjee; S Sharma; S D Maharaj


    We study the physical features of a class of exact solutions for cold compact anisotropic stars. The effect of pressure anisotropy on the maximum mass and surface red-shift is analysed in the Vaidya–Tikekar model. It is shown that maximum compactness, red-shift and mass increase in the presence of anisotropic pressures; numerical values are generated which are in agreement with observation.

  8. 77 FR 37377 - High Pressure Steel Cylinders From the People's Republic of China: Antidumping Duty Order


    ... excluded from the investigation are acetylene cylinders, with or without internal porous mass, and... estimated amount by which the normal value exceeds the U.S. price as indicated in the chart below. These... the merchandise exceeds the export price (or constructed export price) of the merchandise for...

  9. Gas adsorption and desorption effects on high pressure small volume cylinders and their relevance to atmospheric trace gas analysis

    Satar, Ece; Nyfeler, Peter; Pascale, Céline; Niederhauser, Bernhard; Leuenberger, Markus


    Long term atmospheric monitoring of trace gases requires great attention to precision and accuracy of the measurement setups. For globally integrated and well established greenhouse gas observation networks, the World Meteorological Organization (WMO) has set recommended compatibility goals within the framework of its Global Atmosphere Watch (GAW) Programme [1]. To achieve these challenging limits, the measurement systems are regularly calibrated with standard gases of known composition. Therefore, the stability of the primary and secondary gas standards over time is an essential issue. Past studies have explained the small instabilities in high pressure standard gas cylinders through leakage, diffusion, regulator effects, gravimetric fractionation and surface processes [2, 3]. The latter include adsorption/desorption, which are functions of temperature, pressure and surface properties. For high pressure standard gas mixtures used in atmospheric trace gas analysis, there exists only a limited amount of data and few attempts to quantify the surface processes [4, 5]. Specifically, we have designed a high pressure measurement chamber to investigate trace gases and their affinity for adsorption on different surfaces over various temperature and pressure ranges. Here, we focus on measurements of CO2, CH4 and CO using a cavity ring down spectroscopy analyzer and quantify the concentration changes due to adsorption/desorption. In this study, the first results from these prototype cylinders of steel and aluminum will be presented. References [1] World Meteorological Organization (WMO), Global Atmosphere Watch.(GAW): Report No. 229, 18th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques (GGMT-2015), 2016. [2] Keeling, R. F., Manning, A. C., Paplawsky, W. J., and Cox, A. C.: On the long-term stability of reference gases for atmospheric O2 /N2 and CO2 measurements, Tellus B, 59, 10.3402/tellusb.v59i1.16964, 2007. [3

  10. Stress intensity factors and crack opening areas for axial through cracks in hollow cylinders under internal pressure loading

    Ehlers, R.


    For a linear-elastic cylinder with an axial through crack subject to internal pressure loading, stress intensity factors and crack opening areas were calculated by the finite element method. Wall thickness and crack length were varied for constant mean radius of the cylinder, thus varying the shell parameter lambda with 2.5 cylinder, are discussed.

  11. Estimation of the maximum contraction velocity of the urinary bladder from pressure and flow throughout micturition.

    R. van Mastrigt (Ron)


    textabstractThe contractility of the urinary bladder can be adequately described in terms of the parameters P0 (isometric pressure) and Vmax (maximum contraction velocity). In about 12% of urodynamic evaluations of patients these clinically relevant parameters can be calculated from pressure and flo


    Zdeněk CÁB1


    Full Text Available Financial crisis in the years 2008 to 2013 had a negative effects also in a state administration, and as well in a purchase, renewing and services of technical means of fire protection. Under the terms of School educational and vocational establishment of the Fire and Rescue Service of the Czech republic (FRS CR, center in Frydek - Mistek, this condition was fully displayed at the FRS CR at the state of composite pressure cylinders (PCs, that are from the point of view of operation of the breathing apparatuses, and other technical means such as bags, sealing means, means for works on water, that are inevitable for their operability. In this article prolongation of an operation life of PCs is described, on the basis of supplementary nondestructive acoustic emission testing (AT, that is a part of hydraulic pressure test. In conclusion it is written the state of PCs after the operation life having been prolonged and before their final decommissioning.

  13. Computation of Flow in a Circular Cylinder Driven by Coaxial Screw Rotation and an Opposing Pressure Gradient.

    Cotrell, David L.; Pearlstein, Arne J.


    We report computations of the velocity field for flows driven by rotation of a screw in a circular cylinder with an applied opposing pressure gradient. Use of a helical coordinate system in a frame rotating with the screw reduces the flow calculation to a steady one, which is taken to be fully-developed in the helical direction. The full incompressible Navier-Stokes equations in primitive-variables form are solved numerically using a finite-element method employing quadrilateral elements with quadratic velocity and linear pressure interpolation. A consistent penalty method is used to satisfy incompressibility. The screw cross-section is rectangular. The effect of screw clearance and other geometric parameters on the velocity field will be discussed for low and intermediate Reynolds numbers and compared to the Stokes flow case.

  14. Delamination of Composite Cylinders

    Davies, Peter; Carlsson, Leif A.

    The delamination resistance of filament wound glass/epoxy cylinders has been characterized for a range of winding angles and fracture mode ratios using beam fracture specimens. The results reveal that the delamination fracture resistance increases with increasing winding angle and mode II (shear) fraction (GΠ/G). It was also found that interlaced fiber bundles in the filament wound cylinder wall acted as effective crack arresters in mode I loading. To examine the sensitivity of delamina-tion damage on the strength of the cylinders, external pressure tests were performed on filament-wound glass/epoxy composite cylinders with artificial defects and impact damage. The results revealed that the cylinder strength was insensitive to the presence of single delaminations but impact damage caused reductions in failure pressure. The insensitivity of the failure pressure to a single delamination is attributed to the absence of buckling of the delaminated sublaminates before the cylinder wall collapsed. The impacted cylinders contained multiple delaminations, which caused local reduction in the compressive load capability and reduction in failure pressure. The response of glass/epoxy cylinders was compared to impacted carbon reinforced cylinders. Carbon/epoxy is more sensitive to damage but retains higher implosion resistance while carbon/PEEK shows the opposite trend.


    Proietti, Silvia; Dragos, Laurian; Somani, Bhaskar K; Butticè, Salvatore; Talso, Michele; Emiliani, Esteban; Baghdadi, Mohammed; Giusti, Guido; Traxer, Olivier


    To evaluate in vitro the maximum pressure generated in an artificial kidney model when people of different levels of strengths used various irrigation systems. Fifteen people were enrolled and divided in 3 groups based on their strengths. Individual strength was evaluated according to the maximum pressure each participant was able to achieve using an Encore™ Inflator. The irrigation systems evaluated were: T-FlowTM Dual Port, HilineTM, continuous flow single action pumping system (SAPSTM) with the system close and open, Irri-flo IITM, a simple 60-ml syringe and PeditrolTM . Each irrigation system was connected to URF-V2 ureteroscope, which was inserted into an artificial kidney model. Each participant was asked to produce the maximum pressure possible with every irrigation device. Pressure was measured with the working channel (WC) empty, with a laser fiber and a basket inside. The highest pressure was achieved with the 60 ml-syringe system and the lowest with SAPS continuous version system (with continuous irrigation open), compared to the other irrigation devices (p< 0.0001). Irrespective of the irrigation system, there was a significant difference in the pressure between the WC empty and when occupied with the laser fiber or the basket inside it (p<0.0001). The stratification between the groups showed that the most powerful group could produce the highest pressure in the kidney model with all the irrigation devices in almost any situation. The exception to this was the T-Flow system, which was the only device where no statistical differences were detected among these groups. The use of irrigation systems can often generate excessive pressure in an artificial kidney model, especially with an unoccupied WC of the ureteroscope. Depending on the strength of force applied, very high pressure can be generated by most irrigation devices irrespective of whether the scope is occupied or not.

  16. Experimental analysis of the structure attenuation characteristics on engine noise by pseudo cylinder pressure excitation; Giji tonaiatsu kashin ni yoru engine kozo no soon tokusei hyoka

    Ozawa, H.; Nakada, T. [Isuzu Advanced Engineering Center, Tokyo (Japan)


    The engine structure attenuation has been experimentally analyzed by the newly developed in-cylinder excitation system. It can reproduce the complete cylinder pressure in non-running engine conditions by adopting the hydraulic and the piezoelectric actuator. The structure attenuation measured in this system has a good coincidence with the ones measured in actually engine operating conditions, meanwhile the current method, which applied only high frequency components as the excitation pressure, was shown to have the unsatisfied agreement. As a result, the proposed system has been concluded to be very useful to estimate the engine noise characteristics in non-running conditions. 4 refs., 11 figs., 1 tab.

  17. 40 CFR 147.1803 - Existing Class I and III wells authorized by rule-maximum injection pressure.


    ... authorized by rule-maximum injection pressure. 147.1803 Section 147.1803 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) STATE, TRIBAL, AND EPA-ADMINISTERED...—maximum injection pressure. The owner or operator shall limit injection pressure to the lesser of: (a) A...

  18. Simulation of a wire-cylinder-plate positive corona discharge in nitrogen gas at atmospheric pressure

    Martins, Alexandre A. [Institute for Plasmas and Nuclear Fusion and Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)


    In this work, we are going to perform a simulation of a wire-cylinder-plate positive corona discharge in nitrogen gas, and compare our results with already published experimental results in air for the same structure. We have chosen to simulate this innovative geometry because it has been established experimentally that it can generate a thrust per unit electrode length transmitted to the gas of up to 0.35 N/m and is also able to induce an ion wind top velocity in the range of 8-9 m/s in air. In our model, the used ion source is a small diameter wire, which generates a positive corona discharge in nitrogen gas directed to the ground electrode, after which the generated positive ions are further accelerated in the acceleration channel between the ground and cathode. By applying the fluid dynamic and electrostatic theories, all hydrodynamic and electrostatic forces that act on the considered geometries will be computed in an attempt to theoretically confirm the generated ion wind profile and also the thrust per unit electrode length. These results are important to establish the validity of this simulation tool for the future study and development of this effect for practical purposes.

  19. Simulation of a wire-cylinder-plate positive corona discharge in nitrogen gas at atmospheric pressure

    Martins, Alexandre A


    In this work we are going to perform a simulation of a wire-cylinder-plate positive corona discharge in nitrogen gas, and compare our results with already published experimental results in air for the same structure. We have chosen to simulate this innovative geometry because it has been established experimentally that it can generate a thrust per unit electrode length transmitted to the gas of up to 0.35 N/m and is also able to induce an ion wind top velocity in the range of 8-9 m/s in air. In our model, the used ion source is a small diameter wire, which generates a positive corona discharge in nitrogen gas directed to the ground electrode, after which the generated positive ions are further accelerated in the acceleration channel between the ground and cathode. By applying the fluid dynamic and electrostatic theories all hydrodynamic and electrostatic forces that act on the considered geometries will be computed in an attempt to theoretically confirm the generated ion wind profile and also the thrust per u...

  20. Buckling of Thin Pressurized Cylinders Under Pure Bending or Axial Compression: Rocket Launcher Applications

    Da Silva, Andre; Limam, Ali; Lorioux, Fabien; Radulovic, Serge; Taponier, Vincent; Leudiere, Vincent


    The results of an experimental study on the buckling of thin cylindrical shells (R/t = 450, 675, 1350) subjected to combined loads are presented here. The aim of the present study is to improve the design of shells in the aerospace industry, which mainly uses the NASA SP8007 rule, established in the late 1960s. Two load cases are examined: combined internal pressure and bending; and combined internal pressure and compression. The tests point out the two main flaws of the NASA SP8007. First, it is obviously over- conservative for low values of internal pressure, which has been widely acknowledged. Then, the experiments show the effect of plasticity for higher internal pressures, which is not well accounted for in the SP8007 design rule, and leads to a drop in the load-bearing capacity of the structure.

  1. Estimation of the in-cylinder air/fuel ratio of an internal combustion engine by the use of pressure sensors

    Tunestaal, Per


    This thesis investigates the use of cylinder pressure measurements for estimation of the in-cylinder air/fuel ratio in a spark ignited internal combustion engine. An estimation model which uses the net heat release profile for estimating the cylinder air/fuel ratio of a spark ignition engine is developed. The net heat release profile is computed from the cylinder pressure trace and quantifies the conversion of chemical energy of the reactants in the charge into thermal energy. The net heat release profile does not take heat- or mass transfer into account. Cycle-averaged air/fuel ratio estimates over a range of engine speeds and loads show an RMS error of 4.1% compared to measurements in the exhaust. A thermochemical model of the combustion process in an internal combustion engine is developed. It uses a simple chemical combustion reaction, polynominal fits of internal energy as function of temperature, and the first law of thermodynamics to derive a relationship between measured cylinder pressure and the progress of the combustion process. Simplifying assumptions are made to arrive at an equation which relates the net heat release to the cylinder pressure. Two methods for estimating the sensor offset of a cylinder pressure transducer are developed. Both methods fit the pressure data during the pre-combustion phase of the compression stroke to a polytropic curve. The first method assumes a known polytropic exponent, and the other estimates the polytropic exponent. The first method results in a linear least-squares problem, and the second method results in a nonlinear least-squares problem. The nonlinear least-squares problem is solved by separating out the nonlinear dependence and solving the single-variable minimization problem. For this, a finite difference Newton method is derived. Using this method, the cost of solving the nonlinear least-squares problem is only slightly higher than solving the linear least-squares problem. Both methods show good statistical

  2. Effect of Dialysis on Maximum Inspiratory and Expiratory Pressures in End Stage Renal Disease Patients


    Background: Muscle weakness especially weakness of the respiratory muscles is a complication of chronic kidney disease. The cause of muscle weakness is the accumulation of excessive amounts of urea and other toxins. The aim of this study was to assess the effect of hemodialysis on respiratory muscle strength by measuring maximum inspiratory (PI max) and expiratory pressure (PE max). Materials and Methods: A cross sectional study was carried out on 31 patients with chronic kidney disease at Mo...

  3. Comparison between experiments and predictions based on maximum entropy for sprays from a pressure atomizer

    Li, X.; Chin, L. P.; Tankin, R. S.; Jackson, T.; Stutrud, J.; Switzer, G.


    Measurements were made of the droplet size and velocity distributions in a hollow cone spray from a pressure atomizer using a phase/Doppler particle analyzer. The maximum entropy principle is used to predict these distributions. The constraints imposed in this model involve conversation of mass, momentum, and energy. Estimates of the source terms associated with these constraints are made based on physical reasoning. Agreement between the measurements and the predictions is very good.


    杨立栋; 董俊华; 高炳军


    Lateral nozzle of cylinder or lateral tee piping is widely used in nuclear, electric, petroleum and chemical industries. The cylinder or the piping may suffer plastic accumulation, namely ratcheting, due to fluid pressure together with seismic load and thermal expansion. Extensive and quantitative ratcheting investigation is necessary to detemine the ratcheting boundary for the safety of the structure. As the phenomenological cyclic plastic constitutive models have made a great progress in the last two decades, some investigators have taken advantage of the advanced model to evaluate the ratcheting of simple structure of pressure vessels and piping.However, few literature studied ratcheting and ratcheting boundary of complicated strctures such as lateral nozzle of cylinder or lateral tee piping.In this paper, ratcheting of pressurized lateral nozzle of cylinder made of 20# carbon steel was experimentally studied with a multiaxial fatigue testing system and a self-designed in-plane bending apparatus for lateral nozzle structure. The specimen, pressurized by a pumping station with adjustable pressure, was simply supported on a stiff beam, and pulled in a pulsatile way by the servo-hydraulic testing machine to simulate the in-plane cyclic bending. Ratcheting strains were acquired by multi-channel strain processors with strain gauges.The cyclic loading and the strain acquirement were controlled and processed simutaneously by a computer.Ratcheting strains were detected around the acute angle region of the structure. It was found that ratcheting mainly occured in the direction of the first principle strain, which is directed to the intersecting weld. The maximum ratcheting strain occured at the nozzle side of the acute angle region in the symmetrical plane for the structue. Ratcheting boundaries of gauged points were experimentally determined by step pressure loading. Numerical ratcheting analysis of structure was accomplished by secondary development of ANSYS with four

  5. Evaluating piezo-electric transducer response to thermal shock from in-cylinder pressure data

    Rosseel, E.; Sierens, R.; Baert, R.S.G.


    One of the major effects limiting the accuracy of piezo-electric transducers for performing in-cyclinder pressure measurements is their sensitivity to the cyclic thermal loading effects of the intermittent combustion process. This paper compares 5 different methods for evaluating the effect of this


    段成红; 吴祥; 罗翔鹏


    本文主要采用有限元法分析复合气瓶的爆破,按最大应力准则和最大应变准则预测爆破压力,并与《DOT CFFC》标准规定的最小爆破压力进行比较,计算误差百分比,由误差百分比分析得出,按最大应变准则预测爆破压力较为接近最小爆破压力,对工程实践有较大的指导意义.%In this paper, the bursting of composite cylinders is analyzed with the finite element method. The burst pressure is predicted according to the maximum stress criterion and the maximum strain criterion. The predicted results are compared with the minimum burst pressure regulated by the DOT CFFC standard, and the percentage error is calculated. By analyzing the percentage error, it can be concluded that the burst pressure predicted with maximum strain criterion is more approximate to the minimum burst pressure. The finite element analysis results in this paper are conducive to the engineering practice.

  7. Shock wave reflection induced detonation (SWRID) under high pressure and temperature condition in closed cylinder

    Wang, Z.; Qi, Y.; Liu, H.; Zhang, P.; He, X.; Wang, J.


    Super-knock is one of the major obstacles for improving power density in advanced internal combustion engines (ICE). This work studied the mechanism of super-knock initiation using a rapid compression machine that simulated conditions relevant to ICEs and provided excellent optical accessibility. Based on the high-speed images and pressure traces of the stoichiometric iso-octane/oxygen/nitrogen combustion under high-temperature and high-pressure conditions, it was observed that detonation was first initiated in the near-wall region as a result of shock wave reflection. Before detonation was initiated, the speed of the combustion wave front was less than that of the Chapman-Jouguet (C-J) detonation speed (around 1840 m/s). In the immediate vicinity of the initiation, the detonation speed was much higher than that of the C-J detonation.

  8. 浅谈复合式高低压缸液力端在四缸试压泵中的应用%On Application of Compound High and Low Pressure Cylinder Hydraulic Side in the Four Cylinder Hydraulic Test Pump



    复合式高低压缸液力端,是将泵体上两平行的复合缸分别与一根大小直径的阶梯柱塞配合,形成大流量低压缸和小流量高压缸,解决了现有四缸往复式试压泵存在的问题。%Compound high and low pressure cylinder hydraulic side means to match the two parallel composite cylinder on the pump body, respectively with ladder plunger with big diameter on one side and small diameter on the other side, forming large flow low pressure cylinder and small flow high pressure cylinder, which has solved the existing problems of four cylinder reciprocating hydraulic test pump.

  9. Variation in Sitting Pressure Distribution and Location of the Points of Maximum Pressure with Rotation of the Pelvis, Gender and Body Characteristics

    Moes, C.C.M.


    The pressure distribution and the location of the points of maximum pressure, usually below the ischial tuberosities, was measured for subjects sitting on a flat, hard and horizontal support, and varying angle of the rotation of the pelvis. The pressure data were analyzed for force- and pressure-rel

  10. 78 FR 55679 - High Pressure Steel Cylinders From the People's Republic of China; Rescission of the 2011-2013...


    ... steel cylinders from the PRC.\\1\\ In response, on July 1, 2013, Beijing Tianhai Industry Co., Ltd... Administrative Review, 78 FR 33061 (June 3, 2013) (``Opportunity Notice''). \\2\\ June 30, 2013, is the deadline... steel cylinders covered by the investigation have a water capacity up to 450 liters, and a gas...

  11. Vortex noise from nonrotating cylinders and airfoils

    Schlinker, R. H.; Amiet, R. K.; Fink, M. R.


    An experimental study of vortex-shedding noise was conducted in an acoustic research tunnel over a Reynolds-number range applicable to full-scale helicopter tail-rotor blades. Two-dimensional tapered-chord nonrotating models were tested to simulate the effect of spanwise frequency variation on the vortex-shedding mechanism. Both a tapered circular cylinder and tapered airfoils were investigated. The results were compared with data for constant-diameter cylinder and constant-chord airfoil models also tested during this study. Far-field noise, surface pressure fluctuations, and spanwise correlation lengths were measured for each configuration. Vortex-shedding noise for tapered cylinders and airfoils was found to contain many narrowband-random peaks which occurred within a range of frequencies corresponding to a predictable Strouhal number referenced to the maximum and minimum chord. The noise was observed to depend on surface roughness and Reynolds number.

  12. Tandem Cylinder Noise Predictions

    Lockhard, David P.; Khorrami, Mehdi R.; CHoudhari, Meelan M.; Hutcheson, Florence V.; Brooks, Thomas F.; Stead, Daniel J.


    In an effort to better understand landing-gear noise sources, we have been examining a simplified configuration that still maintains some of the salient features of landing-gear flow fields. In particular, tandem cylinders have been studied because they model a variety of component level interactions. The present effort is directed at the case of two identical cylinders spatially separated in the streamwise direction by 3.7 diameters. Experimental measurements from the Basic Aerodynamic Research Tunnel (BART) and Quiet Flow Facility (QFF) at NASA Langley Research Center (LaRC) have provided steady surface pressures, detailed off-surface measurements of the flow field using Particle Image Velocimetry (PIV), hot-wire measurements in the wake of the rear cylinder, unsteady surface pressure data, and the radiated noise. The experiments were conducted at a Reynolds number of 166 105 based on the cylinder diameter. A trip was used on the upstream cylinder to insure a fully turbulent shedding process and simulate the effects of a high Reynolds number flow. The parallel computational effort uses the three-dimensional Navier-Stokes solver CFL3D with a hybrid, zonal turbulence model that turns off the turbulence production term everywhere except in a narrow ring surrounding solid surfaces. The current calculations further explore the influence of the grid resolution and spanwise extent on the flow and associated radiated noise. Extensive comparisons with the experimental data are used to assess the ability of the computations to simulate the details of the flow. The results show that the pressure fluctuations on the upstream cylinder, caused by vortex shedding, are smaller than those generated on the downstream cylinder by wake interaction. Consequently, the downstream cylinder dominates the noise radiation, producing an overall directivity pattern that is similar to that of an isolated cylinder. Only calculations based on the full length of the model span were able to

  13. Plastic Deformation and Rupture of Ring-Stiffened Cylinders under Localized Pressure Pulse Loading

    Michelle S. Hoo Fatt


    Full Text Available An analytical solution for the dynamic plastic deformation of a ring-stiffened cylindrical shell subject to high intensity pressure pulse loading is presented. By using an analogy between a cylindrical shell that undergoes large plastic deformation and a rigid-plastic string resting on a rigid-plastic foundation, one derives closed-form solutions for the transient and final deflection profiles and fracture initiation of the shell. Discrete masses' and springs are used to describe the ring stiffeners in the stiffened shell. The problem of finding the transient deflection profile of the central bay is reduced to solving an inhomogeneous wave equation with inhomogeneous boundary conditions using the method of eigenfunction expansion. The overall deflection profile consists of both global (stiffener and local (bay components. This division of the shell deflection profile reveals a complex interplay between the motions of the stiffener and the bay. Furthermore, a parametric study on a ring-stiffened shell damaged by a succession of underwater explosions shows that the string-on-foundation model with ring stiffeners described by lumped masses and springs is a promising method of analyzing the structure.


    ZHU Ruilin


    Autofrettage is used to introduce advantageous residual stresses into wall of a cylinder and to even distributions of total stresses. Basic theory on autofrettage has been functioning for several decades. It is necessary to reveal profound relations between parameters in the theory. Therefore, based on the 3rd strength theory, δei/δy, δei/δy, δei′/δy, δei′/δy and their relations, as well as p/δy, are studied under ideal conditions, where δei/δy is equivalent stress of total stresses at elastoplastic juncture/yield strength, δei/δy is equivalent stress of total stresses at inside surface/yield strength, δei′/δy is equivalent stress of residual stresses at elastoplastic juncture/yield strength, δei′/δy is equivalent stress of residual stresses at inside surface/yield strength, p/δy is load-bearing capacity of an autofrettaged cylinder/yield strength. Theoretical study on the parameters results in noticeable results and laws. The main idea is: to satisfy |δei′|=δy, the relation between kj and k is , where k is outside/inside radius ratio of a cylinder, kj is ratio of elastoplastic juncture radius to inside radius of a cylinder; when the plastic region covers the whole wall of a cylinder, for compressive yield not to occur after removing autofrettage pressure, the ultimate k is k=2.218 46, with k=2.218 46, a cylinder's ultimate load-bearing capacity equals its entire yield pressure, or =lnk; when kj≤=1.648 72, no matter how great k is, compressive yield never occurs after removing pa; the maximum and optimum load-bearing capacity of an autofrettaged cylinder is just two times the loading which an unautofrettaged cylinder can bear elastically, or , thus the limit of the load-bearing capacity of an autofrettaged cylinder is also just 2 times that of an unautofrettaged cylinder.

  15. Simplified Methodology to Estimate the Maximum Liquid Helium (LHe) Cryostat Pressure from a Vacuum Jacket Failure

    Ungar, Eugene K.; Richards, W. Lance


    The aircraft-based Stratospheric Observatory for Infrared Astronomy (SOFIA) is a platform for multiple infrared astronomical observation experiments. These experiments carry sensors cooled to liquid helium temperatures. The liquid helium supply is contained in large (i.e., 10 liters or more) vacuum-insulated dewars. Should the dewar vacuum insulation fail, the inrushing air will condense and freeze on the dewar wall, resulting in a large heat flux on the dewar's contents. The heat flux results in a rise in pressure and the actuation of the dewar pressure relief system. A previous NASA Engineering and Safety Center (NESC) assessment provided recommendations for the wall heat flux that would be expected from a loss of vacuum and detailed an appropriate method to use in calculating the maximum pressure that would occur in a loss of vacuum event. This method involved building a detailed supercritical helium compressible flow thermal/fluid model of the vent stack and exercising the model over the appropriate range of parameters. The experimenters designing science instruments for SOFIA are not experts in compressible supercritical flows and do not generally have access to the thermal/fluid modeling packages that are required to build detailed models of the vent stacks. Therefore, the SOFIA Program engaged the NESC to develop a simplified methodology to estimate the maximum pressure in a liquid helium dewar after the loss of vacuum insulation. The method would allow the university-based science instrument development teams to conservatively determine the cryostat's vent neck sizing during preliminary design of new SOFIA Science Instruments. This report details the development of the simplified method, the method itself, and the limits of its applicability. The simplified methodology provides an estimate of the dewar pressure after a loss of vacuum insulation that can be used for the initial design of the liquid helium dewar vent stacks. However, since it is not an exact

  16. Variation in Sitting Pressure Distribution and Location of the Points of Maximum Pressure with Rotation of the Pelvis, Gender and Body Characteristics

    Moes, C.C.M.


    The pressure distribution and the location of the points of maximum pressure, usually below the ischial tuberosities, was measured for subjects sitting on a flat, hard and horizontal support, and varying angle of the rotation of the pelvis. The pressure data were analyzed for force- and

  17. Effects of diaphragmatic control on the assessment of sniff nasal inspiratory pressure and maximum relaxation rate

    Benício, Kadja; Dias, Fernando A. L.; Gualdi, Lucien P.; Aliverti, Andrea; Resqueti, Vanessa R.; Fregonezi, Guilherme A. F.


    OBJECTIVE: To assess the influence of diaphragmatic activation control (diaphC) on Sniff Nasal-Inspiratory Pressure (SNIP) and Maximum Relaxation Rate of inspiratory muscles (MRR) in healthy subjects. METHOD: Twenty subjects (9 male; age: 23 (SD=2.9) years; BMI: 23.8 (SD=3) kg/m2; FEV1/FVC: 0.9 (SD=0.1)] performed 5 sniff maneuvers in two different moments: with or without instruction on diaphC. Before the first maneuver, a brief explanation was given to the subjects on how to perform the sniff test. For sniff test with diaphC, subjects were instructed to perform intense diaphragm activation. The best SNIP and MRR values were used for analysis. MRR was calculated as the ratio of first derivative of pressure over time (dP/dtmax) and were normalized by dividing it by peak pressure (SNIP) from the same maneuver. RESULTS: SNIP values were significantly different in maneuvers with and without diaphC [without diaphC: -100 (SD=27.1) cmH2O/ with diaphC: -72.8 (SD=22.3) cmH2O; p<0.0001], normalized MRR values were not statistically different [without diaphC: -9.7 (SD=2.6); with diaphC: -8.9 (SD=1.5); p=0.19]. Without diaphC, 40% of the sample did not reach the appropriate sniff criteria found in the literature. CONCLUSION: Diaphragmatic control performed during SNIP test influences obtained inspiratory pressure, being lower when diaphC is performed. However, there was no influence on normalized MRR. PMID:26578254

  18. Development of Maximum Bubble Pressure Method for Surface Tension Measurement of High Viscosity Molten Silicate

    Takeda, Osamu; Iwamoto, Hirone; Sakashita, Ryota; Iseki, Chiaki; Zhu, Hongmin


    A surface tension measurement method based on the maximum bubble pressure (MBP) method was developed in order to precisely determine the surface tension of molten silicates in this study. Specifically, the influence of viscosity on surface tension measurements was quantified, and the criteria for accurate measurement were investigated. It was found that the MBP apparently increased with an increase in viscosity. This was because extra pressure was required for the flowing liquid inside the capillary due to viscous resistance. It was also expected that the extra pressure would decrease by decreasing the fluid velocity. For silicone oil with a viscosity of 1000 \\hbox {mPa}{\\cdot }\\hbox {s}, the error on the MBP could be decreased to +1.7 % by increasing the bubble detachment time to 300 \\hbox {s}. However, the error was still over 1 % even when the bubble detachment time was increased to 600 \\hbox {s}. Therefore, a true value of the MBP was determined by using a curve-fitting technique with a simple relaxation function, and that was succeeded for silicone oil at 1000 \\hbox {mPa}{\\cdot } \\hbox {s} of viscosity. Furthermore, for silicone oil with a viscosity as high as 10 000 \\hbox {mPa}{\\cdot }\\hbox {s}, the apparent MBP approached a true value by interrupting the gas introduction during the pressure rising period and by re-introducing the gas at a slow flow rate. Based on the fundamental investigation at room temperature, the surface tension of the \\hbox {SiO}2-40 \\hbox {mol}%\\hbox {Na}2\\hbox {O} and \\hbox {SiO}2-50 \\hbox {mol}%\\hbox {Na}2\\hbox {O} melts was determined at a high temperature. The obtained value was slightly lower than the literature values, which might be due to the influence of viscosity on surface tension measurements being removed in this study.

  19. Incorporating in-cylinder pressure data to predict NO{sub x} emissions from spark-ignition engines fueled with landfill gas/hydrogen mixtures

    Kornbluth, Kurt; McCaffrey, Zach; Erickson, Paul A. [Department of Mechanical and Aerospace Engineering, University of California, One Shields Avenue, Davis, CA 95616 (United States)


    A 0.745 L 2-cylinder spark-ignition engine was operated with compressed natural gas and with simulated landfill gas (60% CH{sub 4} and 40% CO{sub 2} by volume) containing hydrogen concentrations of 0, 30%, 40%, and 50% (by volume of the CH{sub 4} in the fuel) at constant rpm. This empirical data was compared with predictions from three existing semi-empirical engine models, using a first-law-based finite heat release model to correlate measured in-cylinder pressure data and burn rate for each fuel mixture. Of the three models only a two zone model incorporating thermal and prompt NO{sub x} came within 25% of predicting the measured NO{sub x} emissions. (author)

  20. The Influence of Pressure Distribution on the Maximum Values of Stress in FEM Analysis of Plain Bearings

    Vasile Cojocaru


    Full Text Available Several methods can be used in the FEM studies to apply the loads on a plain bearing. The paper presents a comparative analysis of maximum stress obtained for three loading scenarios: resultant force applied on the shaft – bearing assembly, variable pressure with sinusoidal distribution applied on the bearing surface, variable pressure with parabolic distribution applied on the bearing surface.

  1. Wake flow behind two side-by-side square cylinders

    Yen, Shun C., E-mail: [Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, Keelung 202, Taiwan (China); Liu, Jung H. [Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, Keelung 202, Taiwan (China)


    This study investigates the flow structures, form drag coefficients and vortex-shedding characteristics behind a single-square cylinder and two side-by-side cylinders in an open-loop wind tunnel. The Reynolds number (Re) and gap ratio (g*) are 2262 < Re < 28,000 and 0 {<=} g* {<=} 12, respectively. The flow patterns around the square cylinders are determined using the smoke-wire scheme. Experimental results indicate that the flow structures behind two side-by-side square cylinders are classified into three modes -single mode, gap-flow mode and couple vortex-shedding. The gap-flow mode displays anti-phase vortex shedding induced from the interference between the two square cylinders. However, the couple vortex-shedding mode exhibits in-phase vortex shedding that is caused by the independent flow behavior behind each square cylinder. The surface-pressure profile, form drag coefficient for each square cylinder (C{sub D}-bar) and vortex-shedding frequency were measured and calculated using a pressure transducer and a hot-wire anemometer. For two side-by-side cylinder configurations, the maximum C{sub D}-bar of 2.24 occurs in the single mode, while the minimum C{sub D}-bar of 1.68 occurs in the gap-flow mode. Additionally, the C{sub D}-bar in the coupled vortex-shedding mode is intermediate and approximately equal to that of a single (isolated) square cylinder. Moreover, the single mode has the highest Strouhal number (St) and the gap-flow mode has the lowest St.

  2. 数字式气体活塞压力计的活塞系统设计%Piston-Cylinder Assembly Design of the Digital Piston Pressure Gauge

    王丽; 盛晓岩


    The piston-cylinder assembly design method of digital piston pressure gauge is introduced. The design principle, material selection and design of critical dimension are introduced in detail. The result is certified by the performance index of the piston-cylinder assembly and digital piston pressure gauge. Theoretical basis is provided for the rapid development of digital piston pressure gauge.%介绍了数字式气体活塞压力计的关键部件——活塞系统的设计方法,详细阐述了活塞系统的设计原则、材料的选择以及关键尺寸的设计,并通过了活塞系统性能指标和数字式活塞压力计性能指标的验证,为数字式活塞压力计技术的迅速发展提供了理论依据.

  3. A New Method for Simultaneous Determination of the TDC Offset and the Pressure Offset in Fired Cylinders of an Internal Combustion Engine

    Urban Žvar Baškovič


    Full Text Available An innovative computationally efficient method for the simultaneous determination of top dead centre (TDC offset and pressure offset is presented. It is based on characteristic deviations of the rate of heat release (ROHR that are specific for both offsets in compression phase and expansion phase after the end of combustion. These characteristic deviations of the ROHR are derived from first principles and they were also confirmed through manual shifts of the pressure trace. The ROHR is calculated based on the first law of thermodynamics using an in-cylinder pressure trace, engine geometrical parameters and operating point specific parameters. The method can be applied in off-line analyses using an averaged pressure trace or in on-line analyses using a single pressure trace. In both application areas the method simultaneously determines the TDC position and the pressure offset within a single processing of the pressure trace, whereas a second refinement step can be performed for obtaining more accurate results as correction factors are determined more accurately using nearly converged input data. Innovative analytic basis of the method allows for significant reduction of the computational times compared to the existing methods for the simultaneous determination of TDC offset and pressure offset in fired conditions. The method was validated on a heavy-duty and a light-duty diesel engine.

  4. Analysis and Improved Dsign on Failure of High-pressure Cylinder Block in High Pressure Compressor%压缩机高压缸体失效分析与设计改进


    Abstrast: High-pressure cylinder occurred Cracks ,the Cracks start at the bottom of valve chambers transition section .From fi-nite element stress calculation, the bottom thickness of valve chamber in the high -pressure broken cylinder is not enough , and the passage section of valve chamber is also not enough , so the design of valve chamber is improved ,after improvement,Cracks to high-pressure cylinder have not occurred anymore .%  高压压缩机高压缸阀座底部截面过度处裂纹,通过有限元应力分析,发现压缩机高压气缸阀腔底径厚度不够,阀腔底径偏小,由此对阀腔底径厚度和阀腔底径进行了设计改进,改进后的气缸未再开裂。

  5. Maximum tsunami height prediction using pressure gauge data by a Gaussian process at Owase in the Kii Peninsula, Japan

    Igarashi, Yasuhiko; Hori, Takane; Murata, Shin; Sato, Kenichiro; Baba, Toshitaka; Okada, Masato


    We constructed a model to predict the maximum tsunami height by a Gaussian process (GP) that uses pressure gauge data from the Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET) in the Nankai trough. We found a greatly improved generalization error of the maximum tsunami height by our prediction model. The error is about one third of that by a previous method, which tends to make larger predictions, especially for large tsunami heights (>10 m). These results indicate that GP enables us to get a more accurate prediction of tsunami height by using pressure gauge data.

  6. Improving Efficiency, Extending the Maximum Load Limit and Characterizing the Control-related Problems Associated with Higher Loads in a 6-Cylinder Heavy-duty Natural gas Engine

    Kaiadi, Mehrzad; Tunestål, Per; Johansson, Bengt


    High EGR rates combined with turbocharging has been identified as a promising way to increase the maximum load and efficiency of heavy duty spark ignition Natural Gas engines. With stoichiometric conditions a three way catalyst can be used which means that regulated emissions can be kept at very low levels. Most of the heavy duty NG engines are diesel engines which are converted for SI operation. These engine's components are in common with the diesel-engine which put limits on higher exh...

  7. Investigation of the effects of pressure gradient, temperature and wall temperature ratio on the stagnation point heat transfer for circular cylinders and gas turbine vanes

    Nagamatsu, H. T.; Duffy, R. E.


    Low and high pressure shock tubes were designed and constructed for the purpose of obtaining heat transfer data over a temperature range of 390 to 2500 K, pressures of 0.3 to 42 atm, and Mach numbers of 0.15 to 1.5 with and without pressure gradient. A square test section with adjustable top and bottom walls was constructed to produce the favorable and adverse pressure gradient over the flat plate with heat gages. A water cooled gas turbine nozzle cascade which is attached to the high pressure shock tube was obtained to measuse the heat flux over pressure and suction surfaces. Thin-film platinum heat gages with a response time of a few microseconds were developed and used to measure the heat flux for laminar, transition, and turbulent boundary layers. The laminar boundary heat flux on the shock tube wall agreed with Mirel's flat plate theory. Stagnation point heat transfer for circular cylinders at low temperature compared with the theoretical prediction, but for a gas temperature of 922 K the heat fluxes were higher than the predicted values. Preliminary flat plate heat transfer data were measured for laminar, transition, and turbulent boundary layers with and without pressure gradients for free-stream temperatures of 350 to 2575 K and flow Mach numbers of 0.11 to 1.9. The experimental heat flux data were correlated with the laminar and turbulent theories and the agreement was good at low temperatures which was not the case for higher temperatures.

  8. Maximum Expected Wall Heat Flux and Maximum Pressure After Sudden Loss of Vacuum Insulation on the Stratospheric Observatory for Infrared Astronomy (SOFIA) Liquid Helium (LHe) Dewars

    Ungar, Eugene K.


    The aircraft-based Stratospheric Observatory for Infrared Astronomy (SOFIA) is a platform for multiple infrared observation experiments. The experiments carry sensors cooled to liquid helium (LHe) temperatures. A question arose regarding the heat input and peak pressure that would result from a sudden loss of the dewar vacuum insulation. Owing to concerns about the adequacy of dewar pressure relief in the event of a sudden loss of the dewar vacuum insulation, the SOFIA Program engaged the NASA Engineering and Safety Center (NESC). This report summarizes and assesses the experiments that have been performed to measure the heat flux into LHe dewars following a sudden vacuum insulation failure, describes the physical limits of heat input to the dewar, and provides an NESC recommendation for the wall heat flux that should be used to assess the sudden loss of vacuum insulation case. This report also assesses the methodology used by the SOFIA Program to predict the maximum pressure that would occur following a loss of vacuum event.

  9. Effect of Ovality on Maximum External Pressure of Helically Coiled Steam Generator Tubes with a Rectangular Wear

    Shin, Dong In; Lim, Eun Mo; Huh, Nam Su [Seoul National Univ. of Science and Technology, Seoul (Korea, Republic of); Choi, Shin Beom; Yu, Je Yong; Kim, Ji Ho; Choi, Suhn [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    A structural integrity of steam generator tubes of nuclear power plants is one of crucial parameters for safe operation of nuclear power plants. Thus, many studies have been made to provide engineering methods to assess integrity of defective tubes of commercial nuclear power plants considering its operating environments and defect characteristics. As described above, the geometric and operating conditions of steam generator tubes in integral reactor are significantly different from those of commercial reactor. Therefore, the structural integrity assessment of defective tubes of integral reactor taking into account its own operating conditions and geometric characteristics, i. e., external pressure and helically coiled shape, should be made to demonstrate compliance with the current design criteria. Also, ovality is very specific characteristics of the helically coiled tube because it is occurred during the coiling processes. The wear, occurring from FIV (Flow Induced Vibration) and so on, is main degradation of steam generator tube. In the present study, maximum external pressure of helically coiled steam generator tube with wear is predicted based on the detailed 3-dimensional finite element analysis. As for shape of wear defect, the rectangular shape is considered. In particular, the effect of ovality on the maximum external pressure of helically coiled tubes with rectangular shaped wear is investigated. In the present work, the maximum external pressure of helically coiled steam generator tube with rectangular shaped wear is investigated via detailed 3-D FE analyses. In order to cover a practical range of geometries for defective tube, the variables affecting the maximum external pressure were systematically varied. In particular, the effect of tube ovality on the maximum external pressure is evaluated. It is expected that the present results can be used as a technical backgrounds for establishing a practical structural integrity assessment guideline of

  10. Study on Droplet Size and Velocity Distributions of a Pressure Swirl Atomizer Based on the Maximum Entropy Formalism

    Kai Yan


    Full Text Available A predictive model for droplet size and velocity distributions of a pressure swirl atomizer has been proposed based on the maximum entropy formalism (MEF. The constraint conditions of the MEF model include the conservation laws of mass, momentum, and energy. The effects of liquid swirling strength, Weber number, gas-to-liquid axial velocity ratio and gas-to-liquid density ratio on the droplet size and velocity distributions of a pressure swirl atomizer are investigated. Results show that model based on maximum entropy formalism works well to predict droplet size and velocity distributions under different spray conditions. Liquid swirling strength, Weber number, gas-to-liquid axial velocity ratio and gas-to-liquid density ratio have different effects on droplet size and velocity distributions of a pressure swirl atomizer.

  11. Energy Loss, Velocity Distribution, and Temperature Distribution for a Baffled Cylinder Model, Special Report

    Brevoort, Maurice J.


    In the design of a cowling a certain pressure drop across the cylinders of a radial air-cooled engine is made available. Baffles are designed to make use of this available pressure drop for cooling. The problem of cooling an air-cooled engine cylinder has been treated, for the most part, from considerations of a large heat-transfer coefficient. The knowledge of the precise cylinder characteristics that give a maximum heat-transfer coefficient should be the first consideration. The next problem is to distribute this ability to cool so that the cylinder cools uniformly. This report takes up the problem of the design of a baffle for a model cylinder. A study has been made of the important principles involved in the operation of a baffle for an engine cylinder and shows that the cooling can be improved 20% by using a correctly designed baffle. Such a gain is as effective in cooling the cylinder with the improved baffle as a 65% increase in pressure drop across the standard baffle and fin tips.

  12. Design and Analysis of Cylinder and Cylinder head of 4-stroke SI Engine for weight reduction

    Ravindra R. Navthar


    Full Text Available The present paper deals with design of cylinder & cylinder head with air cooling system for 4 strokes 4 cylinder SI engine. The main objective of design is to reduce weight to power ratio & will result in producing high specific power. The authors have proposed preliminary design cylinder & cylinder head of a horizontallyopposed SI engine, which develops 120 BHP and posses the maximum rotational speed of 6000rpm. Four stroke opposed engine is inherently well balanced due to opposite location of moving masses and also it provides efficient air cooling. For the requirement of weight reduction the material selected for design of cylinder and cylinder head is Aluminum alloy that is LM-13. The cylinder bore coating using NIKASIL coating was done to improve strength of cylinder with minimum weight..

  13. Reconstruction of Full-Field Wall Pressure Fluctuations on a Flat Plate in the Wake of a Step Cylinder: Applications of Linear Stochastic Estimation (LSE)

    Peng, Di; Chen, Yujia; Wang, Shaofei; Liu, Yingzheng; Wang, Weizhe


    Previous studies have shown that it is possible to reconstruct the full flow field based on time-resolved measurements at discrete locations using linear stochastic estimation (LSE). The objective of this study is to develop and apply this technique to wall pressure fluctuation measurements in low speed flows. Time-resolved wall pressure fluctuations on a flat plate in the wake of a step cylinder at low speed (V PSP). The microphone arrays are arranged properly to capture the dominant features in the flow field at 10 kHz. The PSP is excited using a continuous UV-LED, and the luminescent signal is recorded by a high-speed camera at 2 kHz. The microphone data at discrete locations are used to reconstruct the full-field wall pressure fluctuations based on LSE. The PSP results serve as basis for improvement of the LSE scheme and also for validation of the reconstructed pressure field. Other data processing techniques including proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) are also used for analyzing the unsteady flow features. This LSE technique has great potential in real-time flow diagnostics and control.


    肖文刚; 王嵘; 乔仁海


    本文对碳纤维复合材料圆筒受外压载荷的结构设计方法进行了研究.运用有限元法和公式法求解了临界压力,并进行了试验验证.结果表明,碳纤维复合材料圆筒受外压作用的主要失效型式为失稳破坏,有限元法和公式法的计算结果与试验结果一致.%A general design methodology was presented for CFRP cylinder for deep ocean applications under external hydrostatic pressure. The formula method and FEA were comparable with the experimental results.

  15. Electrohydrodynamic force produced by a wire-to-cylinder dc corona discharge in air at atmospheric pressure

    Moreau, Eric; Benard, Nicolas; Lan-Sun-Luk, Jean-Daniel; Chabriat, Jean-Pierre


    Wire-to-cylinder corona discharges are studied to better understand the electrohydrodynamic (EHD) phenomena that govern the performances of electric propulsion systems. First, theory associated with EHD thrusters is presented in order to be compared with experimental results. Secondly, direct thrust measurements are carried out to optimize the electrical and geometrical parameters of such devices. The main results are as follows: (1) the discharge current I is proportional to the square root of the grounded electrode diameter and to 1/d2 where d is the electrode gap; (2) for d ⩽ 20 mm, the mobility of negative ions is higher than that of positive ions while the mobility of both ions is equal for higher gaps; (3) therefore, for gap ⩾30 mm, positive and negative coronas results in the same current-to-thrust conversion; (4) the current-to-thrust conversion is equal to 33 N A-1 per centimetre of gap, and it is proportional to the gap; (5) the thruster effectiveness θ increases with \\sqrt d , decreases with the square root of thrust and reaches about 15 N kW-1 for d = 40 mm (6) the force computed from experimental velocity profiles is overestimated compared with the values measured with a balance, showing that this method cannot be used for thrust determination.

  16. Attempt of lean burn of a 4 cycle gasoline engine by the aid of low pressure air assisted in-cylinder injection; Tonai kuki nenryo funsha ni yoru lean burn no kokoromi

    Hatakeyama, S.; Kondo, M.; Sekiya, Y.; Murayama, T. [Hokkaido Automotive Engineering College, Hokkaido (Japan)


    Comparable performance and exhaust emission with conventional carburetor was obtained by a low Pressure air assisted in-cylinder injection system. And lean burn of idling and light load operation till A/F=70 was realized by installing a spark Plug and a reed type injection nozzle in a divided combustion chambaer of a 4 cycle gasoline engine. 2 refs., 10 figs.

  17. Polyatomic gases with dynamic pressure: Maximum entropy principle and shock structure

    Pavić-Čolić, Milana; Simić, Srboljub


    This paper is concerned with the analysis of polyatomic gases within the framework of kinetic theory. Internal degrees of freedom are modeled using a single continuous variable corresponding to the molecular internal energy. Non-equilibrium velocity distribution function, compatible with macroscopic field variables, is constructed using the maximum entropy principle. A proper collision cross section is constructed which obeys the micro-reversibility requirement. The source term and entropy production rate are determined in the form which generalizes the results obtained within the framework of extended thermodynamics. They can be adapted to appropriate physical situations due to the presence of parameters. They are also compared with the results obtained using BGK approximation. For the proposed model the shock structure problem is thoroughly analyzed.




    Full Text Available The generalized maximum likelihood method was used to determine binary interaction parameters between carbon dioxide and components of orange essential oil. Vapor-liquid equilibrium was modeled with Peng-Robinson and Soave-Redlich-Kwong equations, using a methodology proposed in 1979 by Asselineau, Bogdanic and Vidal. Experimental vapor-liquid equilibrium data on binary mixtures formed with carbon dioxide and compounds usually found in orange essential oil were used to test the model. These systems were chosen to demonstrate that the maximum likelihood method produces binary interaction parameters for cubic equations of state capable of satisfactorily describing phase equilibrium, even for a binary such as ethanol/CO2. Results corroborate that the Peng-Robinson, as well as the Soave-Redlich-Kwong, equation can be used to describe phase equilibrium for the following systems: components of essential oil of orange/CO2.Foi empregado o método da máxima verossimilhança generalizado para determinação de parâmetros de interação binária entre os componentes do óleo essencial de laranja e dióxido de carbono. Foram usados dados experimentais de equilíbrio líquido-vapor de misturas binárias de dióxido de carbono e componentes do óleo essencial de laranja. O equilíbrio líquido-vapor foi modelado com as equações de Peng-Robinson e de Soave-Redlich-Kwong usando a metodologia proposta em 1979 por Asselineau, Bogdanic e Vidal. A escolha destes sistemas teve como objetivo demonstrar que o método da máxima verosimilhança produz parâmetros de interação binária, para equações cúbicas de estado capazes de descrever satisfatoriamente até mesmo o equilíbrio para o binário etanol/CO2. Os resultados comprovam que tanto a equação de Peng-Robinson quanto a de Soave-Redlich-Kwong podem ser empregadas para descrever o equilíbrio de fases para o sistemas: componentes do óleo essencial de laranja/CO2.

  19. Experimental studies on temperature rise within a hydrogen cylinder during refueling

    Liu, Yan-Lei; Zhao, Yong-Zhi; Zhao, Lei; Li, Xiang; Chen, Hong-gang; Zheng, Jin-Yang [Institute of Process Equipment, Zhejiang University, Hangzhou 310027 (China); Zhang, Li-Fang; Zhao, Hui; Sheng, Run-Hua; Xie, Tian; Hu, Dong-Hao [Beijing Feichi Lvneng Power Sources Corporation, Beijing 100094 (China)


    In this research, experiments were performed to investigate the thermal behaviors such as temperature rise and distributions inside 35 MPa, 150 L hydrogen storage cylinders during its refueling. The main factors affecting the temperature rise in the fast fill process such as the mass filling rate and initial pressure in the cylinder were considered. The experimental results show that the mass filling rate is a constant when the ratio of the pressure in the tank to the cylinder is higher than 1.7, and the mass filling rate decreases when the ratio is lower than 1.7; the temperature inside the cylinder increases nonlinearly in the filling process and the maximum value of temperature rise at the interface of the cylinder exists in the caudal region; the temperature rise reaches a larger value with a lower initial pressure in the cylinder or a higher mass filling rate. Furthermore, the limit of mass filling rate in the case of different ambient temperature was obtained. (author)

  20. The effects of cactus inspired spines on the aerodynamics of a cylinder

    Levy, Benjamin; Liu, Yingzheng


    The effect of cactus-like spines on the topology and the dynamics of the flow past a stationary or pivoted cylinder are experimentally studied. The experiments are performed either in a water channel or a wind tunnel at low to moderate Reynolds number (390-12 500). The instantaneous velocity field is recorded using TR-PIV and investigated for three different configurations: no spines, short spines (0.1D) and long spines (0.2D). The results show how the spines are able to slow the flow past the cylinder and then increase the recirculation area by up to 128% while the maximum fluctuating kinetic energy intensity is decreased by up to 35%. Moreover, the spines have a significant effect on the vortex shedding and the dynamic pressure at the surface of the cylinder, thus significantly reducing both the amplitude and the frequency at which a pivoted cylinder oscillates.

  1. Cylinder pressure based knock control for analysis of knock control applications and automatic ignition angle applications; Zylinderdruckbasierte Klopfregelung zur Bewertung von Klopfregelungsapplikationen und automatisierten Zuendwinkelapplikationen

    Kempf, S.; Goebels, J.; Sloboda, R. [Robert Bosch GmbH, Schwieberdingen (Germany)


    Today, knock control is part of the modern standard engine management system. The trend towards higher performance, lower fuel consumption and legal limitation of emissions makes it necessary to reliably detect knocking combustions at all operating conditions during the entire service life of the vehicle. Ranges in which the knock control needs to be limited or even deactivated due to detection problems can no longer be accepted. In order to ensure this detection quality, it must be made possible to be able to evaluate independently and comprehensibly the quality of the knock control calibration. The development started out from an analog evaluation strategy for the assessment of knock sensor signals and has now reached the digital signal analysis with freely programmable digital filters and a parallel evaluation of up to three frequency ranges in the BOSCH engine management system. The use of the BOSCH Knock-Intensity-Detector 2 (KID2) and the KC-tool chain offers an efficient and productive calibration. In order to be able to perform a quality assessment that is independent of the KC-tool chain, a Matlab based tool was developed. On the one hand, this tool allows a knock-controlled engine operation based on cylinder-pressure while the knock control based on structure-borne signal is disabled and on the other hand it is capable of assessing the current knock control with an additionally enabled and calibrated knock control which is based on structure-borne signal. This assessment can be used to verify a current calibration or e. g. to assess the influence by component variations on the structure borne signal based knock detection. Furthermore, a base was thus provided to perform an automated ignition angle calibration. For this, the cylinder-pressure curve is sampled and by determining the 50% mass fraction burned or the knock limit, the optimum ignition timing will be determined. The approach to this optimum ignition timing is not done manually but automated

  2. Fire exposure of empty 30B cylinders

    Ziehlke, K.T. [MJB Technical Associates, Inc., Knoxville, TN (United States)


    Cylinders for UF{sub 6} handling, transport, and storage are designed and built as unfired pressure vessels under ASME Boiler and Pressure Vessel Code criteria and standards. They are normally filled and emptied while UF{sub 6} is in its liquid phase. Transport cylinders such as the Model 30B are designed for service at 200 psi and 250{degrees}F, to sustain the process conditions which prevail during filling or emptying operations. While in transport, however, at ambient temperature the UF{sub 6} is solid, and the cylinder interior is well below atmospheric pressure. When the cylinders contain isotopically enriched product (above 1.0 percent U-235), they are transported in protective overpacks which function to guard the cylinders and their contents against thermal or mechanical damage in the event of possible transport accidents. Two bare Model 30B cylinders were accidentally exposed to a storage warehouse fire in which a considerable amount of damage was sustained by stored materials and the building structure, as well as by the cylinder valves and valve protectors. The cylinders were about six years old, and had been cleaned, inspected, hydrotested, and re-certified for service, but were still empty at the time of the fire. The privately-owned cylinders were transferred to DOE for testing and evaluation of the fire damage.

  3. 一体式电液复合制动系统轮缸压力的精细调节%Wheel cylinder pressure fine regulation for integrated electro-hydraulic brake system

    刘杨; 孙泽昌; 邹小琼; 王猛


    Wheel cylinder pressure fine regulation was studied for electro‐hydraulic brake system with an integrated master cylinder .Pressure regulation process and system structural characteristics were analyzed .The impact of brake disc gap on pressure regulation was studied ,pressure control dividing point of non‐linear and linear region was determined ,using the ladder method and interpolation table method to estimate cylinder pressure ,also the impact of w heel cylinder piston hysteresis characteris‐tics on linear region was considered ,and then the segmented‐ladder‐lookup fine regulation strategy was developed .Hardware in the loop simulation bench was built using xPC target to verify the pres‐sure regulation performance by sine target pressure test and comparisons of single increase‐decrease interpolation table strategy and the proposed one .Test results show that the wheel cylinder pressure could keep up with the target curve ,and the proposed system structure and pressure regulation meth‐od could meet the pressure control requirements .%针对基于一体式主缸的电液复合制动系统,进行了轮缸压力的精细调节研究,分析了一体式复合制动系统轮缸压力调节过程及其结构特点。探讨了制动间隙对盘式制动器轮缸压力调节的影响,确定了轮缸压力控制的非线性区及线性区,采用阶梯估算和基本插值数表的方法对轮缸压力进行估计,并考虑了线性区轮缸活塞运动迟滞特性对插值数表的影响,综合上述因素制定了分段阶梯查表的轮缸压力精细调节策略。采用xPC target搭建了硬件在环仿真台架,进行了正弦曲线跟随和与单一增/减压数表法的对比试验。试验结果表明:轮缸压力能够实时跟随目标曲线变化,所提出的结构及控制方法能够满足轮缸压力精细调节的控制需求。

  4. Creep crack growth analysis using C{sub t}-parameter for internal circumferential and external axial surface cracks in a pressurized cylinder

    Tun, Nwe Ni; Yang, Hee Seung; Yu, Jong Min; Yoon, Kee Bong [Dept. of Mechanical Engineering, Chung Ang University, Seoul (Korea, Republic of)


    Creep crack growth at elevated temperatures is a critical consideration in estimating the remaining life of high temperature structural components and in deciding their inspection interval. In this study, creep crack growth analyses for external radial-axial and internal radial-circumferential surface cracks in a pressurized cylinder were conducted by an analytical method. The effect of crack depth and crack length on the variations in Ct and remaining life predictions were investigated for surface cracks with various initial aspect ratios. It was observed that the remaining life of an internal radial-circumferential surface crack was approximately 53 times longer than that of an external radial-axial surface crack for the same crack size and loading conditions with 316 stainless steel material. It was also observed that the variations in remaining life, crack propagations, and the Ct values were considerably sensitive to the crack location and crack depth. Convergence of crack aspect ratio was not observed when the crack depth ratio was increased. Since the method is independent of material properties and location of the crack geometries, it can be extended to various material properties and various locations of the surface crack geometries.

  5. Curing A Large Composite Cylinder Without An Autoclave

    Frazer, Robert E.


    Proposed technique provides application of heat and pressure to cure fiber-wound composite cylinder too large to fit in autoclave. Tube wound around cylinder applies pressure. Blanket distributes pressure. Pressure expels gas bubbles from material. Heat applied by conventional methods.

  6. Exploring the Utilization of Low-Pressure, Piston-Cylinder Experiments to Determine the Bulk Compositions of Finite, Precious Materials

    Vander Kaaden, K. E.; McCubbin, F. M.; Harrington, A. D.


    Determining the bulk composition of precious materials with a finite mass (e.g., meteorite samples) is extremely important in the fields of Earth and Planetary Science. From meteorite studies we are able to place constraints on large scale planetary processes like global differentiation and subsequent volcanism, as well as smaller scale processes like crystallization in a magma chamber or sedimentary compaction at the surface. However, with meteorite samples in particular, far too often we are limited by how precious the sample is as well as its limited mass. In this study, we have utilized aliquots of samples previously studied for toxicological hazards, including both the fresh samples (lunar mare basalt NWA 4734, lunar regolith breccia NWA 7611, martian basalt Tissint, martian regolith breccia NWA 7034, a vestian basalt Berthoud, a vestian regolith breccia NWA 2060, and a terrestrial mid-ocean ridge basalt (MORB)), and those that underwent iron leaching (Tissint, NWA 7034, NWA 4734, MORB). With these small masses of material, we performed low pressure (approx. 0.75 GPa), high temperature (greater than 1600 degrees Celsius) melting experiments. Each sample was analyzed using a JEOL 8530F electron microprobe to determine the bulk composition of the materials that were previously examined. When available, the results of our microprobe data were compared with bulk rock compositions in the literature. The results of this study show that with this technique, only approx. 50 mg of sample is required to accurately determine the bulk composition of the materials of interest.

  7. 49 CFR 178.38 - Specification 3B seamless steel cylinders.


    ... cylinders welded or formed by spinning is, under no condition, to be less than two times the minimum wall...-pressure parts, and only to the tops and bottoms of cylinders having a service pressure of 500 psig or less... wall thickness. (m) Leakage test. All spun cylinders and plugged cylinders must be tested for leakage...

  8. CO2压缩机高压缸振值高原因分析及处理%Analysis and treatment of CO2 compressor high pressure cylinder vibration value high

    皮亿蛟; 李辉; 粟升


    The paper briefly describes high pressure cylinder appears problem of high vibration value in production process of Tarim large chemical fertilizer urea plant of CO2 compressor K101. It also analyses these problems, after taking measures to overhaul, solved problem of high vibration value of high pressure cylinder, which could provide reference to operation and problem handling of similar equipment.%简述了塔里木大化肥尿素装置CO2压缩机K101在生产过程中出现的高压缸振值高问题,针对问题进行了分析,经采取措施检修后解决了高压缸振值高的问题,可为同类设备的生产运行、问题的处理提供参考。


    Pham A. H.


    Full Text Available The article looks at the current state of energy in Vietnam and the selection of new Russian steam turbines for operation in combined gas-steam plant in Vietnam. The calculated results of thermal performance scheme 3x1 with combined gas-steam plant 1090 MW based on the Russian steam turbines K-330-240-2 and on the steam turbines TS2A40 Mitsubishi (station PhuMy-1, Vietnam. It also looks at the influence of the efficiency of high-pressure cylinders of Russian steam turbine K-330-240-2 on the efficiency and power of a gas-steam plant 3x1 with 1090 MW, increasing the efficiency of high-pressure cylinder of steam turbine through the use of honeycomb seals in flow part

  10. An investigation on effects of amputee's physiological parameters on maximum pressure developed at the prosthetic socket interface using artificial neural network.

    Nayak, Chitresh; Singh, Amit; Chaudhary, Himanshu; Unune, Deepak Rajendra


    Technological advances in prosthetics have attracted the curiosity of researchers in monitoring design and developments of the sockets to sustain maximum pressure without any soft tissue damage, skin breakdown, and painful sores. Numerous studies have been reported in the area of pressure measurement at the limb/socket interface, though, the relation between amputee's physiological parameters and the pressure developed at the limb/socket interface is still not studied. Therefore, the purpose of this work is to investigate the effects of patient-specific physiological parameters viz. height, weight, and stump length on the pressure development at the transtibial prosthetic limb/socket interface. Initially, the pressure values at the limb/socket interface were clinically measured during stance and walking conditions for different patients using strain gauges placed at critical locations of the stump. The measured maximum pressure data related to patient's physiological parameters was used to develop an artificial neural network (ANN) model. The effects of physiological parameters on the pressure development at the limb/socket interface were examined using the ANN model. The analyzed results indicated that the weight and stump length significantly affects the maximum pressure values. The outcomes of this work could be an important platform for the design and development of patient-specific prosthetic socket which can endure the maximum pressure conditions at stance and ambulation conditions.

  11. Performance Characteristics and Analysis of 4-Stroke Single Cylinder Diesel Engine Blend With 50% of Honne Oil at Various Fuel Injection Pressures

    R. Bhaskar Reddy


    Full Text Available In future demand for fossil fuels and environmental effects, a number of renewable sources of energy have been studied in worldwide. An attempt is made to apt of vegetable oil for diesel engine operation, without any change in its old construction. One of the important factors which influence the performance and emission characteristics of D.I diesel engine is fuel injection pressure. In this project honne oil has to be investigated in a constant speed, on D.I diesel engine with different fuel injection pressures. The scope of the project is to investigate the effect of injection pressures on a blend of 50% honne oil with 50% diesel and compare with pure diesel on performance and emission characteristics of the diesel engine. Two tested fuels were used during experiments like 100 % diesel and a blend of 50% honne oil mixing in the diesel. The performance tests were conducted at constant speed with variable loads. From experiment results it was found that with honne oil- diesel blend the performance of the engine is better compared with diesel. The break thermal efficiency and mechanical efficiencies were found to be maximum at 200 bar injection pressure with both honne oil- diesel blend, compared with 180 bar and 220 bar. The brake specific fuel consumption was to be minimum at 220bar compared with 180 bar and 200 bar. Hydro carbon emissions of honne oil-diesel operation were less than the diesel fuel mode at all fuel injection pressures.


    Mahmood Husain Ali


    Full Text Available In this paper, numerical solution is presented for the steady state, two dimensional natural convection heat transfer from two parallel horizontal cylinders enclosed by circular cylinder. The inner cylinders are heated and maintained at constant surface temperature, while the outer cylinder is cooled at constant surface temperature. Boundary fitted coordinate system is used to solve governing equations. The vorticity-stream function and energy equations is solved using explicit finite deference method and stream function equation solved by successive iteration method. (20Deferent cases are studied cover rang of Rayleigh number from (1,000 to (25,000 based on the inner cylinder diameter. These cases study the effect of the  varying inner cylinders position horizontally and vertically within outer cylinder on the heat transfer and buoyancy that causes the flow. Outputs are displayed in terms of streamline, isothermal contours and local and average Nusselt number. The results showed that the position of the inner cylinders highly affects the heat transfer and flow movements in the gap. At low Rayleigh numbers the average Nusselt number increases with increase of horizontal distance between inner cylinders but the state is reversed at high Rayleigh numbers, while the average Nusselt number is increases with inner cylinder moving down at all Rayleigh numbers. The optimal position of inner cylinders for maximum and minimum heat transfer is located at each Rayleigh number so can be employed in isolation process or cooling process.

  13. Base Stress of the Opened Bottom Cylinder Structures

    刘建起; 孟晓娟


    The base stress of the opened bottom cylinder structure differs greatly from that of the structure with a closed bottom. By investigating the inner soil pressure on the cylinder wall and the base stress of the cylinder base, which were obtained from the model experiments, the interactions among the filler inside the cylinder,subsoil and cylinder are analyzed. The adjusting mechanism of frictional resistance between the inner filler and the wall of the cylinder during the overturning of the cylinder is discussed. Based on the experimental study, a method for calculating the base stress of the opened bottom cylinder structure is proposed. Meanwhile, the formulas for calculating the effective anti-overturning ratio of the opened bottom cylinder are derived.

  14. Experimental study of noise emitted by circular cylinders with large roughness

    Alomar, Antoni; Angland, David; Zhang, Xin; Molin, Nicolas


    The aerodynamic noise generated by high Reynolds number flow around a bluff body with large surface roughness was investigated. This is a relevant problem in many applications, in particular aircraft landing gear noise. A circular cylinder in cross-flow and a zero-pressure-gradient turbulent boundary layer with various types of roughness was tested in a series of wind tunnel experiments. It has been shown that distributed roughness covering a circular cylinder affects the spectra over the entire frequency range. Roughness noise is dominant at high frequencies, and the peak frequency is well described by Howe's roughness noise model when scaled with the maximum outer velocity. There are differences between hemispherical and cylindrical roughness elements for both the circular cylinder and the zero-pressure-gradient turbulent boundary layer cases, indicating a dependence on roughness shape, not described by the considered roughness noise models. Cylindrical roughness generates higher noise levels at the highest frequencies, especially for the zero-pressure-gradient turbulent boundary layer case. Cable-type roughness aligned with the mean flow does not generate roughness noise, and its spectrum has been found to collapse with the smooth cylinder at medium and high frequencies. At low and medium frequencies the noise spectra have the same features as the smooth cylinder, but with higher shedding peak levels and fall-off levels, despite the decrease in spanwise correlation length. Roughness induces early separation, and thus a shift of the spectra to lower frequencies.

  15. Final report on EURAMET.QM-S6/1195: Bilateral comparison of liquefied hydrocarbon mixtures in constant pressure (piston) cylinders

    Brown, Andrew S.; Downey, Michael L.; Milton, Martin J. T.; van der Veen, Adriaan M. H.; Zalewska, Ewelina T.; Li, Jianrong


    Traceable liquid hydrocarbon mixtures are required in order to underpin measurements of the composition and other physical properties of LPG (liquefied petroleum gas) and LNG (liquefied natural gas), thus meeting the needs of an increasingly large European industrial market. The development of traceable liquid hydrocarbon standards by National Measurement Institutes (NMIs) was still at a relatively early stage at the time this comparison was proposed in 2011. NPL and VSL, who were the only NMIs active in this area, had developed methods for the preparation and analysis of such standards in constant pressure (piston) cylinders, but neither laboratory had Calibration and Measurement Capabilities (CMCs) for these mixtures. This report presents the results of EURAMET 1195, the first comparison of liquid hydrocarbon mixtures between NMIs, which assessed the preparation and analytical capabilities of NPL and VSL for these mixtures. The comparison operated between August 2011 and January 2012. Each laboratory prepared a liquid hydrocarbon standard with nominally the same composition and these standards were exchanged for analysis. The results of the comparison show a good agreement between the laboratories' results and the comparison reference values for the six components with amount fractions greater than 1.0 cmol/mol (propane, propene, iso-butene, n-butane, iso-butane and 1-butene). Measurement of the three components with lower amount fractions (1,3-butadiene, iso-pentane and n-pentane) proved more challenging. In all but one case, the differences from the comparison reference values for these three components were greater than the expanded measurement uncertainty. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database The final report has been peer-reviewed and approved for publication by EURAMET, according to the provisions of the CIPM Mutual

  16. Two interacting cylinders in cross flow

    Alam, Md. Mahbub; Meyer, J. P.


    Cylindrical structures in a group are frequently seen on land and in the ocean. Mutual flow interaction between the structures makes the wake very excited or tranquil depending on the spacing between the structures. The excited wake-enhancing forces in some cases cause a catastrophic failure of the structures. This paper presents results of an experimental investigation of Strouhal number (St), time-mean, and fluctuating forces on, and flow structures around, two identical circular cylinders at stagger angle α = 0 °-180 ° and gap-spacing ratio T/D=0.1-5, where T is the gap width between the cylinders, and D is the diameter of a cylinder. While forces were measured using a load cell, St was from spectral analysis of fluctuating pressures measured on the side surfaces of the cylinders. A flow visualization test was conducted to observe flow structures around the cylinders. Based on forces, St, and flow structures, 19 distinct flow categories in the ranges of α and T/D investigated are observed, including one quadristable flow, three kinds of tristable flows, and four kinds of bistable flows. The quadristable, tristable, and bistable flows ensue from instabilities of the gap flow, shear layers, vortices, separation bubbles, and wakes, engendering a strong jump or drop in forces and St of the cylinders. The two cylinders interact with each other in six different mechanisms, namely interaction between boundary layer and cylinder, shear layer or wake and cylinder, shear layer and shear layer, vortex and cylinder, vortex and shear layer, and vortex and vortex. While the interaction between vortex and cylinder results in a very high fluctuating drag, that between vortex and shear layer results in a high fluctuating lift. On the other hand, the interaction between shear layer or wake and cylinder weakens mean and fluctuating forces and flow unsteadiness. A mutual discussion of forces, St, and flow structures is presented in this paper.

  17. Evaluation of the scattered pressure due to infinite rigid cylinders, infinite elastic cylindrical shells, and rigid spheres in the presence of an ambient noise field

    Honeycutt, Rebecca L.; Johnson, Steven J.


    The sound scattering due to an ambient noise field, approximated by a squared cosine function, is considered for infinite rigid and elastic cylinders and rigid spheres. For the cylinders, it is assumed that the acoustic wave front is parallel to the axis of the cylinder (informally incident). For this assumption, a closed form expression for the scattered sound field-to-incident ambient noise field (signal-to-noise) ratio is obtained not only for the cosine squared directivity, but for any arbitrary directivity which can be expressed in terms of a Fourier series. For the sphere, it is assumed that the noise is circumferentially symmetric which leads to a closed form expression for the signal-to-noise ratio due to a cosine squared directivity.

  18. 不同弹体对高压气瓶的撞击性能分析%Impact characteristics of different projectiles on the high-pressure gas cylinder

    岳应娟; 刘备; 秦忠宝; 陈飞


    The process of shrapnel impacting the high‐pressure gas cylinder was simulated using the ANSYS/LS‐DYNA .The critical velocity and kinetic energy of bullets penetrating through the high‐pressure gas cylinder at different nose shapes ,projectile masses and contact areas were obtained .The factors influencing bullet impacting characteristics were analyzed .Results show that the nose shape of bullet does not greatly affect the penetrating kinetic energy ;as the bullet mass increases ,the pene‐trating velocity gradually decreases and the needed penetrating kinetic energy gradually increases at the same contact area for the gas cylinder ;the larger the bullet contacts with the gas cylinder ,the greater the needed penetrating kinetic energy .%运用ANSYS/LS‐DYNA软件对弹体撞击高压气瓶的过程进行数值模拟,得到弹头形状、子弹质量和接触面积不同时子弹穿透高压气瓶的临界速度和临界动能,分析了不同因素对子弹撞击性能的影响。结果表明,弹头形状对穿透动能的影响不大;在接触面积相同的情况下,随着子弹质量的增加,其穿透瓶体的速度逐渐降低,而所需的穿透动能逐渐增大;子弹与瓶体接触面积越大,需要的穿透动能越大。

  19. Radiation levels on empty cylinders containing heel material

    Shockley, C.W. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)


    Empty UF{sub 6} cylinders containing heel material were found to emit radiation levels in excess of 200 mr/hr, the maximum amount stated in ORO-651. The radiation levels were as high as 335 mr/hr for thick wall (48X and 48Y) cylinders and 1050 mr/hr for thin wall (48G and 48H) cylinders. The high readings were found only on the bottom of the cylinders. These radiation levels exceeded the maximum levels established in DOT 49 CFR, Part 173.441 for shipment of cylinders. Holding periods of four weeks for thick-wall cylinders and ten weeks for thin-wall cylinders were established to allow the radiation levels to decay prior to shipment.

  20. Optimization study of pressure-swing distillation for the separation process of a maximum-boiling azeotropic system of water-ethylenediamine

    Fulgueras, Alyssa Marie; Poudel, Jeeban; Kim, Dong Sun; Cho, Jungho [Kongju National University, Cheonan (Korea, Republic of)


    The separation of ethylenediamine (EDA) from aqueous solution is a challenging problem because its mixture forms an azeotrope. Pressure-swing distillation (PSD) as a method of separating azeotropic mixture were investigated. For a maximum-boiling azeotropic system, pressure change does not greatly affect the azeotropic composition of the system. However, the feasibility of using PSD was still analyzed through process simulation. Experimental vapor liquid equilibrium data of water-EDA system was studied to predict the suitability of thermodynamic model to be applied. This study performed an optimization of design parameters for each distillation column. Different combinations of operating pressures for the low- and high-pressure columns were used for each PSD simulation case. After the most efficient operating pressures were identified, two column configurations, low-high (LP+HP) and high-low (HP+ LP) pressure column configuration, were further compared. Heat integration was applied to PSD system to reduce low and high temperature utility consumption.

  1. Pareter Study of Some Key Structures for Cylinder Head

    张儒华; 左正兴; 曹丽亚; 廖日东


    Using the method of the pareter study, some important dimensions of the cylinder head of an internal-combustion engine are analyzed. Under the mechanical load, the variational rules of the von Mises maximum stress on cylinder head are obtained, which are influenced by the thickness of the floor plate, head plate, jobbing sheet, standing partition board, and side plate of inlet port and exhaust port. A hypothesis is verified that there is an ideal matching point ong those above-mentioned main pareters. The quantificational proportion relations, between these key structural pareters and von Mises maximum stress of cylinder head, can provide a good help for the cylinder head's structural design.

  2. The Preignition and Autoignition Oxidation of Alternatives to Petroleum Derived JP-8 and their Surrogate Components in a Pressurized Flow Reactor and Single Cylinder Research Engine


    designs such as HCCI engines , where ignition relies on the chemistry of the fuel. An initial mixture of 59.4% n-decane/40.6% iso-octane was...Octane Oxidation for HCCI Engines . Fuel, Vol. 85, 2593-2604. Koert, D. N., N. P. Cernansky. (1992). A Flow Reactor for the Study of...Reactor and Single Cylinder Research Engine A Thesis Submitted to the Faculty of Drexel University by Matthew S. Kurman in partial

  3. A Research on Cylinder Pressure Sensor as an Alternative for the Camshaft and Crankshaft Position Sensors of Engine%关于缸压传感器替代发动机凸轮轴和曲轴位置传感器的研究

    王金力; 杨福源; 欧阳明高; 黄颖; 方成; 杨学青


    For developing cylinder pressure-based engine combustion state control system, by using a set of piezo-resistance type of cylinder pressure sensors with glow-plug function and building a cylinder pressure prediction model, the techniques of cylinder identification and phase and speed estimations of engine are analyzed on a high-pressure common-rail diesel engine to investigate the feasibility of substituting the camshaft and crankshaft signals with cylinder pressure signal. The results show that cylinder pressure sensor can be used to identify cylinder instead of camshaft and crankshaft position sensors, and the models built for the phase and rotational speed estimations of engine have relatively high accuracy.%为开发基于缸压的发动机燃烧控制系统,在一台高压共轨柴油机上,利用一组兼有电热塞功能的压阻型缸压传感器,通过构建缸压预测模型,分析了发动机的气缸识别、相位估计和转速估计方法,探讨了用缸压信号替代凸轮轴和曲轴信号的可行性。结果表明,缸压传感器可以替代凸轮轴和曲轴位置传感器进行判缸,所建的发动机相位和转速估计模型具有较高的精度。

  4. Cylinder monitoring program

    Alderson, J.H. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)


    Cylinders containing depleted uranium hexafluoride (UF{sub 6}) in storage at the Department of Energy (DOE) gaseous diffusion plants, managed by Martin Marietta Energy Systems, Inc., are being evaluated to determine their expected storage life. Cylinders evaluated recently have been in storage service for 30 to 40 years. In the present environment, the remaining life for these storage cylinders is estimated to be 30 years or greater. The group of cylinders involved in recent tests will continue to be monitored on a periodic basis, and other storage cylinders will be observed as on a statistical sample population. The program has been extended to all types of large capacity UF{sub 6} cylinders.

  5. 组合式增压液压缸在立车横梁卸荷中的应用%The Application of Combined Pressurized Hydraulic Cylinder Using in Vertical Lathe Beams Unloading



    应用组合式增压液压缸对重型双柱立车横梁进行卸荷,使刀架50%的重量作用在横梁卸荷梁上,以减小横梁导轨的比压及变形,从而保证机床几何精度检验G5项规定要求。%A combined pressurized hydraulic cylinder is used to unload heavy-duty double column vertical lathe beams. In that way, 50%weight will act on unloading beams, in order to reduce the beam rails the pressure and de-formation. All these can guarantee geometric tests matching for machines G5 entry requirements.

  6. Maximum inspiratory pressure as a clinically meaningful trial endpoint for neuromuscular diseases: A comprehensive review of the literature

    B. Schoser; Fong, E. (Edward); Geberhiwot, T. (Tarekegn); Hughes, D. (Derralynn); Kissel, J.T. (John T.); Madathil, S.C. (Shyam C.); Orlikowski, D. (David); Polkey, M.I. (Michael I.); M. Roberts (Mark); H.A.W.M. Tiddens (Harm); Young, P. (Peter)


    textabstractRespiratory muscle strength is a proven predictor of long-term outcome of neuromuscular disease (NMD), including amyotrophic lateral sclerosis, Duchenne muscular dystrophy, and spinal muscular atrophy. Maximal inspiratory pressure (MIP), a sensitive measure of respiratory muscle

  7. 49 CFR 178.36 - Specification 3A and 3AX seamless steel cylinders.


    ... these defects. The thickness of the bottoms of cylinders welded or formed by spinning is, under no... the attachment of neckrings and footrings which are non-pressure parts and only to the tops and... test. All spun cylinders and plugged cylinders must be tested for leakage by gas or air pressure after...

  8. 49 CFR 178.37 - Specification 3AA and 3AAX seamless steel cylinders.


    ... cylinders welded or formed by spinning is, under no condition, to be less than two times the minimum wall... which are non-pressure parts, and only to the tops and bottoms of cylinders having a service pressure of... required, without cracking, to 6 times the wall thickness of the cylinder. (m) Leakage test. All spun...

  9. Associated rules between microstructure characterization parameters and contact characteristic parameters of two cylinders

    周炜; 唐进元; 何艳飞; 廖东日


    The contact strength calculation of two curved rough surfaces is a forefront issue of Hertz contact theory and method. Associated rules between rough surface characterization parameters(correlation length, and root mean square deviation) and contact characteristic parameters(contact area, maximum contact pressure, contact number, and contact width) of two rough cylinders are mainly studied. The contact model of rough cylinders is deduced based on GW model. As there is no analytical solution for the pressure distribution equation, an approximate iterative solution method for the pressure distribution is adopted. Furthermore, the quantitative relationships among the correlation length, the root mean square deviation, the asperity radius of curvature and the asperity density are also obtained based on a numerical simulation method. The maximum contact pressure and the contact number decrease with the increase of correlation length, while the contact width and the contact area are on the contrary. The contact width increases with the increase of root mean square deviation while the maximum contact pressure, the contact area and the contact number decrease.

  10. Magnetohydrodynamic Flow Between Concentric Rotating Porous Cylinders

    S. N. Dube


    Full Text Available An attempt has been made to study the steady laminar flow of a incompressible electrically conducting fluid between infinitely long concentric rotating porous cylinders under the influence of radial magnetic field. A solution has been obtained under the assumption of uniform conditions along the axis of the cylinders. The cylinders being porous, a hyperbolic radial velocity distribution has been superimposed over the circumferential velocity produced due to rotation. There is a Bernoulli type pressure variation in the radial in the direction. When the inner cylinder is at rest the shearing stress at it and the torque transmitted to it decrease as R (=v/Sub/1y/Sub1/v= v/Sub2y/Sub2/v increases and the magnetic parameter lambda (=4sigma mue/sube/sup2A/Sup2/Mue will further decrease them.

  11. Approximation by Cylinder Surfaces

    Randrup, Thomas


    We present a new method for approximation of a given surface by a cylinder surface. It is a constructive geometric method, leading to a monorail representation of the cylinder surface. By use of a weighted Gaussian image of the given surface, we determine a projection plane. In the orthogonal...

  12. MEMS pressure sensor with maximum performances by using novel back-side direct-exposure concept featuring through glass vias

    Mukhopadhyay, B.; Fritz, M.; Mackowiak, P.; Vu, T. C.; Ehrmann, O.; Lang, K.-D.; Ngo, H.-D.


    Design, simulation, fabrication, and characterization of novel MEMS pressure sensors with new back-side-direct-exposure packaging concept are presented. The sensor design is optimized for harsh environments e.g. space, military, offshore and medical applications. Unbreakable connection between the active side of the Si-sensor and the protecting glass capping was realized by anodic bonding using a thin layer of metal. To avoid signal corruption of the measured pressure caused by an encapsulation system, the media has direct contact to the backside of the Si membrane and can deflect it.


    余志壮; 宋正华; 董光能; 谢友柏


    Objective To investigate the changes to the strike extent of piston to cylinder after engine supercharge design. Methods The lubrication model between the skirt of piston and liner is established by means of piston dynamics, combined with the hydrodynamic lubrication equation. Optimized numerical analysis method is employed in solving the dynamics and lubrication equations. The analyses about piston strike under two combustion gas pressures are performed. Results The peak values of maximum eccentricity under supercharge condition are much greater than under non-supercharge condition, which means a stronger impulsion of piston to cylinder wall and a greater possibility of scuffing. The horizontal velocities of piston in supercharge condition are larger, which illuminate the more unstable motion state. Conclusion The analysis gives a new conclusion. Combustion gas pressure plays an important role in the piston strike motion. Influences of supercharge should be taken into account so that the traditional product test items can be improved.

  14. Dynamic responses in hollow concrete cylinders under hazardous thermal loads

    Huang, C.L.D.; Ahmed, G.N. (Kansas State Univ., Manhattan, KS (United States). Dept. of Mechanical Engineering)


    Prediction of the structural integrity of high temperature nuclear reactors under hostile thermal environments is of considerable concern in safety assessments of reactors. A mathematical model, simulating the coupled heat and mass transfer in concrete structures exposed to extremely high temperatures, has been developed and numerically solved. With the prediction of the pore pressure, temperature, and moisture redistribution, the effect of various rates of thermal loads on the concrete response is investigated. The rate of moisture clog penetration into the concrete cylinder and hence the locations of the maximum pore pressure peaks developed under different rates of the severe thermal loads are determined. Thus, the possibilities of concrete spallings occurring under these conditions are studied and predicted. (author).

  15. Low Pressure Flame Blowoff from the Forward Stagnation Region of a Blunt-Nosed Cast PMMA Cylinder in Axial Mixed Convective Flow

    Marcum, J. W.; Rachow, P.; Ferkul, P. V.; Olson, S. L.


    Low-pressure blowoff experiments were conducted with a stagnation flame stabilized on the forward tip of cast PMMA rods in a vertical wind tunnel. Pressure, forced flow velocity, gravity, and ambient oxygen concentration were varied. Stagnation flame blowoff is determined from a time-stamped video recording of the test. The blowoff pressure is determined from test section pressure transducer data that is synchronized with the time stamp. The forced flow velocity is also determined from the choked flow orifice pressure. Most of the tests were performed in normal gravity, but a handful of microgravity tests were also conducted to determine the influence of buoyant flow velocity on the blowoff limits. The blowoff limits are found to have a linear dependence between the partial pressure of oxygen and the total pressure, regardless of forced flow velocity and gravity level. The flow velocity (forced and/or buoyant) affects the blowoff pressure through the critical Damkohler number residence time, which dictates the partial pressure of oxygen at blowoff. This is because the critical stretch rate increases linearly with increasing pressure at low pressure (sub-atmospheric pressures) since a second-order overall reaction rate with two-body reactions dominates in this pressure range.

  16. Design of face-hobbed spiral bevel gears with reduced maximum tooth contact pressure and transmission errors

    Vilmos Simon


    The aim of this study is to define optimal tooth modifications,introduced by appropriately chosen head-cutter geometry and machine tool setting,to simultaneously minimize tooth contact pressure and angular displacement error of the driven gear (transmission error) of face-hobbed spiral bevel gears.As a result of these modifications,the gear pair becomes mismatched,and a point contact replaces the theoretical line contact.In the applied loaded tooth contact analysis it is assumed that the point contact under load is spreading over a surface along the whole or part of the “potential” contact line.A computer program was developed to implement the formulation provided above.By using this program the influence of tooth modifications introduced by the variation in machine tool settings and in head cutter data on load and pressure distributions,transmission errors,and fillet stresses is investigated and discussed.The correlation between the ease-off obtained by pinion tooth modifications and the corresponding tooth contact pressure distribution is investigated and the obtained results are presented.

  17. Washing water treatment process for UF{sub 6} cylinder by adjusting evaporation technology in a low temperature and low pressure

    Kim, Ki-tae; Ju, Young-jong; Cho, Nam-chan [KEPCO Nuclear Fuel Co., Daejeon (Korea, Republic of); Kim, Yun-kwan; Jin, Chang-suk [Jeontech CO., Suwon (Korea, Republic of)


    The liquid waste is treated in this procedure; 1) Add NaOH to the liquid waste and filter the mixture with a screen. 2) Screened residue is dried and then stored in a uranium storage. 3) liquid part is moved to a storage tank and radioactivity is measured in the liquid. 5) If the concentration of radioactivity is lower than corresponding regulation limit, the liquid moved to a reaction tank and evaporated with additional low concentration HF in 105℃. 6) Radioactivity of distillate is measured and the value is lower than regulation, it is treated with a thermal decomposition process and discharged to the atmosphere in gas state. 7) Solid waste produced in the evaporation step is managed as solid nuclear waste. The treatment procedure mentioned above has disadvantageous points, producing large amount of solid waste as well as, high energy and chemical consumption. In this study, liquid waste from a real scaled cylinder wash process is applied to evaporation system to confirm feasibility of the application of evaporation and, to reduce waste production and energy consumption. Liquid radioactive wastewater from a real scaled UF6 cylinder wash process was applied to evaporation treatment system. Radioactive concentration in gross alpha was removed 99.9% in the evaporation system. And the concentration in distillate was lower than the discharge regulation. Removal of U-235 was 99.9% in the process. And 15 other kinds of radionuclides in the raw wastewater were removed completely. Secondary waste production of the evaporation system is 15g/L.

  18. Numerical simulation of design for cylinder wall considering of scavenging efficiency

    Sasaki, S.; Ezumi, T.; Satoh, K. [Dept. of Mechanical Eng., Shibaura Inst. of Tech., Tokyo (Japan)


    The transformation of the cylinder is examined and analyzed the pressure and the temperature by means of the numerical analysis under the change of the scavenging efficiency. The change of the scavenging efficiency makes the temperature and the pressure change. The combustion temperature of the 2-cycle internal combustion engine that a lot of fuels may burn in the cylinder when the scavenging efficiency goes up. According to the scavenging efficiency, the temperature and the pressure is getting high. So the cylinder is transformed under the high temperature and the high pressure. The authors simulated the change of the temperature and the pressure in the cylinder. When the cylinder is designed, the engineer must know the change of the state in the cylinder. Then the change of the scavenging efficiency was simulated and examined. At the same time, the NO gas generated. The authors examined the transformation of the cylinder and simulated the NO generation. (orig.)

  19. Antennas on circular cylinders

    Knudsen, H. L.


    antenna in a circular cylinder. By a procedure similar to the one used by Silver and Saunders, expressions have been derived for the field radiated from an arbitrary surface current distribution on a cylinder surface coaxial with a perfectly conducting cylinder. The cases where the space between the two...... cylindrical surfaces have the sane characteristic constants and different constants are treated separately. Extensive numerical computations of the field radiated from the slot antennas described here are being carried out, but no numerical results are yet available...

  20. Experimental investigation of the generation mechanism of aerodynamic noise. 2nd Report. On correlation between surface pressure fluctuation and aerodynamic sound radiated from a circular cylinder; Kurikion no hassei kiko ni kansuru jikken kaiseki. 2. Hyomen atsuryoku hendo to kurikion no sogo sokan ni tsuite

    Iida, A.; Kato, C.; Otaguro, T. [Hitachi, Ltd., Tokyo (Japan); Fujita, H. [Nihon University, Tokyo (Japan). College of Science and Technology


    The mechanism of aerodynamic sound generation from a circular cylinder is investigated experimentally using coherence functions between surface pressure fluctuation and radiated sound at Reynolds numbers from 10{sup 4} to 1.4 {times} 10{sup 5}. The correlation between the surface pressure fluctuation and the radiated sound at the fundamental frequency is good, indicating the strong contribution of ordered structures to aerodynamic sound generation. The characteristic length of ordered structure Lc is estimated using the integral scale of the spanwise coherence function of surface pressure fluctuations. The sound pressure is calculated using a modified Curle`s equation, with the characteristic length and measured surface pressure fluctuations. The predicted spectra of radiated sound are in good agreement with those actually measured up to five times the fundamental frequency. This result shows that Lc, is useful for estimating the character of radiated sound from a circular cylinder. 16 refs., 13 figs., 2 tabs.

  1. Approximation by Cylinder Surfaces

    Randrup, Thomas


    We present a new method for approximation of a given surface by a cylinder surface. It is a constructive geometric method, leading to a monorail representation of the cylinder surface. By use of a weighted Gaussian image of the given surface, we determine a projection plane. In the orthogonal...... projection of the surface onto this plane, a reference curve is determined by use of methods for thinning of binary images. Finally, the cylinder surface is constructed as follows: the directrix of the cylinder surface is determined by a least squares method minimizing the distance to the points...... in the projection within a tolerance given by the reference curve, and the rulings are lines perpendicular to the projection plane. Application of the method in ship design is given....

  2. Flow interaction between a streamwise oscillating cylinder and a downstream stationary cylinder

    Xu, S. J.; Gan, L.; Zhou, Y.


    In this paper, we present some experimental results about the physical effects of a cylinder's streamwise oscillation motion on a downstream one in a tandem arrangement. The upstream cylinder undergoes a controlled simple harmonic oscillation at amplitudes A/ d = 0.2-0.8, where d is the cylinder diameter, and the frequency ratio of f_e/f_s = 0-3.0, where f_e is the cylinder oscillation frequency and f_s is the natural frequency of vortex shedding from a single stationary cylinder. Under these conditions, the vortex shedding is locked to the controlled oscillation motion. Flow visualisation using the planar laser-induced fluorescence and qualitative measurements using hot-wire anemometry reveal three distinct flow regimes behind the downstream cylinder. For f_e/f_s > (f_e/f_s)_c, where (f_e/f_s)_c is a critical frequency ratio which depends on A/ d and Reynolds number Re, a so-called SA-mode occurs. The upstream oscillating cylinder generates binary vortices symmetrically arranged about the centreline, each containing a pair of counter-rotating vortices, and the downstream cylinder sheds vortices alternately at 0.5f_e. For 0.7-1.0 < f_e/f_s < (f_e/f_s)_c a complex vortex street that consists of two outer rows of vortices generated by the oscillating cylinder and two inner rows of vortices shed from the downstream stationary cylinder, which is referred to as AA-mode. For 0.3-0.6 < f_e/f_s< 0.8-1.0, one single staggered vortex street (A-mode) is observed. It is also found that, when f_e/f_s is near unity, the streamwise interaction of the two cylinders gives rise to the most energetic wake in the cross-stream direction, in terms of its maximum width, and the wake is AA-mode-like. The effects of other parameters such as the spacing between the two cylinders, Re and A/ d on the flow pattern are also discussed in details. The observations are further compared to the stationary tandem cylinder cases.

  3. Design of a single cylinder optical access to the combustion engine Scania D12

    Fuchs, Juergen


    In this work a maximum optical access to a diesel engine is developed. The combustion-process in the engine should be representative to the one in a standard engine, so the geometry of the combustion chamber is modified as little as possible. A Scania single cylinder, 2-litre engine was subjected to modifications allowing the optical access. Solutions to these problems are obtained by using the method of Product-Development, mainly based on the literature by Prof Dr.-Ing. Birkhofer at the Technical University of Darmstadt, Germany. An optical engine design of the Bowditch type was the chosen main working principle. This engine contains an extended cylinder, partly made of glass, a glass piston-crown and a mirror placed inside the extended piston. The laser sheet is led into the combustion chamber through the glass part of the cylinder, then gets reflected inside the combustion chamber and is led through the glass piston crown and via the mirror out of the engine. A redesign of the valve-train, using extended push-rods, is necessary. The demand to examine the combustion at Top-Dead-Centre (TDC) and the necessity of supporting the glass, give the reasons to do work on the cylinder head. This in return brings sealing problems, which have been solved. Another problem that occurs with that type of engine is that is has to run without oil-lubrication. Piston rings made of Rylon are used to solve this problem. A special feature of the engine that has been constructed here is that the inner surface of the glass may be cleaned without removing the cylinder head. This is obtained by a construction with a movable cylinder. In cleaning-state the cylinder is driven up and down together with the piston, while the head is supported by an outer structure. When running the engine, the cylinder is fixed to the structure. Furthermore this report contains the necessary calculations and integrity assessments on the critical parts of the construction. All calculations, except the

  4. CFD Simulation of In-Cylinder Flow on Different Piston Bowl Geometries in a DI Diesel Engine

    S. K. Gugulothu


    Full Text Available The combustion process in the diesel engine should be controlled to avoid both excessive maximum cylinder pressure and an excessive rate of pressure rise, in terms of crank angle. At the same time, the process should be so rapid that substantially all the fuel is burned early in the expansion stroke. In this direction, piston configuration plays a crucial role. Four configurations i.e., flat, inclined, central bowl, and inclined offset bowl piston have been studied. This study is concerned with the CFD analysis has been carried out on two valve four stroke diesel engine to analyze the in-cylinder air motion during suction stroke, pressure and temperature variation inside the cylinder during the compression stroke for various configurations. The engine specifications are considered from the literature. For numerical analysis, Ansys15 CFD software has been used, for meshing polyhedral trimmed cells were adopted. In-cylinder flows were analyzed by solving mass, momentum and energy equation. From this study, it is concluded that analysis has been carried out for each crank angle degree during suction and compression stroke for all the piston configurations, tumble ratio varies mainly with crank angle position. At the end of the compression stroke fuel is injected and the performance of different piston bowls are analyzed.

  5. Numerical simulation of low-Reynolds number flows past two tandem cylinders of different diameters

    Yong-tao WANG


    Full Text Available The flow past two tandem circular cylinders of different diameters was simulated using the ?nite volume method. The diameter of the downstream main cylinder (D was kept constant, and the diameter of the upstream control cylinder (d varied from 0.1D to D. The studied Reynolds numbers based on the diameter of the downstream main cylinder were 100 and 150. The gap between the control cylinder and the main cylinder (G ranged from 0.1D to 4D. It is concluded that the gap-to-diameter ratio (G/D and the diameter ratio between the two cylinders (d/D have important effects on the drag and lift coef?cients, pressure distributions around the cylinders, vortex shedding frequencies from the two cylinders, and ?ow characteristics.

  6. 49 CFR 178.45 - Specification 3T seamless steel cylinder.


    ...) Type, size, and service pressure. A DOT 3T cylinder is a seamless steel cylinder with a minimum water... eliminate these defects provided the minimum wall thickness is maintained. (5) Welding or brazing on a cylinder is not permitted. (d) Wall thickness. The minimum wall thickness must be such that the wall...

  7. 49 CFR 178.50 - Specification 4B welded or brazed steel cylinders.


    ... and a service pressure of at least 150 but not over 500 psig. Cylinders closed in by spinning process..., and valve protection rings to the tops and bottoms of cylinders by welding or brazing is authorized... permanently in any of the following locations on the cylinder: (1) On shoulders and top heads when they are...

  8. 49 CFR 178.59 - Specification 8 steel cylinders with porous fillings for acetylene.


    ... 49 Transportation 2 2010-10-01 2010-10-01 false Specification 8 steel cylinders with porous fillings for acetylene. 178.59 Section 178.59 Transportation Other Regulations Relating to Transportation... cylinders with porous fillings for acetylene. (a) Type and service pressure. A DOT 8 cylinder is a...

  9. 49 CFR 178.60 - Specification 8AL steel cylinders with porous fillings for acetylene.


    ... 49 Transportation 2 2010-10-01 2010-10-01 false Specification 8AL steel cylinders with porous fillings for acetylene. 178.60 Section 178.60 Transportation Other Regulations Relating to Transportation... cylinders with porous fillings for acetylene. (a) Type and service pressure. A DOT 8AL cylinder is...


    of accurately determining the velocity of a fluid and its rate of change . Static pressure variations across the top and bottom of the cylinder...instrument is highly feasible for determining velocity and its rate of change . (Author)

  11. 利用缸压信息的柴油机并联混合动力控制%Study on the control of diesel parallel hybrid power system with in-cylinder pressure information


    In order to optimize the control of diesel parallel hybrid power system, an self-developed combustion state analysis unit was used to collect every cylinder's in⁃cylinder pressure of a 2.5 L common rail diesel engine, and calculate indicated mean effective pressure, pumping mean effective pressure, and peak cylinder pressure, etc. With these indicators, the engine control unit may preestimate effective torque outputted by the engine and control the torque in a closed loop. A parallel hybrid power system was set up using this engine, an automated clutch, an ISG motor and an ultra⁃capacitor, so as to improve the transient performance of former engine and make it more e⁃conomical. Experimental results on the engine pedestal proves that the torque preestimation and closed⁃loop control work well, and there's a good potential for the reduction of fuel consumption and pollutant emissions. Under an e⁃quivalent NEDC cycle, when compared to the original diesel engine, the hybrid power system was able to reduce a⁃bout 15.2% NOxemission and 9.5% soot emission while fuel consumption was also 11.9% lower.%  为了优化柴油机并联混合动力控制,使用自主的燃烧状态分析单元,对一台2.5 L高压共轨柴油机各缸缸内压力进行采集,并计算出平均指示压力、平均泵气压力和最大缸压等燃烧状态指标;发动机控制单元使用这些指标预估发动机输出的有效扭矩并进行扭矩闭环控制;利用该发动机、自动离合器、超级电容和ISG电机构建了并联式混合动力系统,用以改善原机的动力性和经济性.在发动机台架上的实验结果表明,扭矩预估和扭矩闭环控制效果良好;使用ISG电机快速起动改善了起动阶段的排放和经济性;在等效NEDC工况下,并联混合动力系统比原单一动力发动机油耗下降11.9%,NOx排放下降15.2%,碳烟排放下降9.5%.

  12. Refinement of Out of Circularity and Thickness Measurements of a Cylinder for Finite Element Analysis


    deviations from a perfectly round shape and plate thickness variations of a cylinder that is subjected to external pressure are known to have a...thickness variations of a cylinder that is subjected to external pressure are known to have a significant effect on the collapse strength. Non-linear...and plate thickness variations of a cylinder subjected to external pressure are known to have a significant effect on the collapse strength. When

  13. Mathematic modelling of circular cylinder deformation under inner grouwth

    A. V. Siasiev


    Full Text Available A task on the intensive deformed state (IDS of a viscoelastic declivous cylinder, which is grown under the action of inner pressure, is considered. The process of continuous increase takes a place on an internal radius so, that a radius and pressure change on set to the given law. The special case of linear law of creeping is considered, and also numeral results are presented as the graphs of temporal dependence of tensions and moving for different points of cylinder.

  14. Analysis of Causes for Blocking at Inlet of Low Pressure Cylinder of Turbine Ammonia Refrigerating Machine and Countermeasures%透平氨冰机低压缸入口堵塞的原因分析及措施

    张学信; 胡继卫


    In connection with the phenomenon of filter pressure difference increase at inlet of low pressure cylinder and primary separator of the ammonia refrigerating machine unit,the causes are analyzed and relevant measures are taken.The actual operation results show that the measures taken effectively eliminate unfavorable factors affecting safe production of the unit,ensuring the safe,stable and long period operation of the unit.%针对氨冰机组出现的一段分离器和低压缸入口过滤器压差增大的现象,分析其原因并采取了相应的措施。实际运行结果表明,采取的措施有效消除了影响装置安全生产的不利因素,保证了机组安全稳定长周期运行。


    Wang Gang


    The flowfield structure and their aerodynamiccharacteristics over an ogive cylinder were studied by means offlow visualization and surface pressure measurement in a watertunnel and a wind tunnel. The existence of multi asymmetricvortices over long slender bodies was experimentally con-firmed at large angles of attack and in the subcritical Reynoldsnumber range. The spatial 3 -D characteristics of the multivortices system were analyzed and a physical model was devel-oped. The topological structure of different patterns in crossflow plane was studied and the mechanism governing the for-mation of asymmetric vortices and multi-vortices was dis-cussed from the viewpoint of stability of the topological struc-ture. It was concluded that the maximum in the sectional sideforce distribution curve are not caused by the shedding ofhigher position vortex, but by the cross-over to the symmetricplane of the lower-position vortex.

  16. An update on corrosion monitoring in cylinder storage yards

    Henson, H.M.; Newman, V.S.; Frazier, J.L. [Oak Ridge K-25 Site, TN (United States)


    Depleted uranium, from US uranium isotope enrichment activities, is stored in the form of solid uranium hexafluoride (UF{sub 6}) in A285 and A516 steel cylinders designed and manufactured to ASME Boiler and Pressure Vessel Code criteria. In general, storage facilities are open areas adjacent to the enrichment plants where the cylinders are exposed to weather. This paper describes the Oak Ridge program to determine the general corrosion behavior of UF{sub 6} cylinders, to determine cylinder yard conditions which are likely to affect long term storage of this material, and to assess cylinder storage yards against these criteria. This program is targeted at conditions specific to the Oak Ridge cylinder yards. Based on (a) determination of the current cylinder yard conditions, (b) determination of rusting behavior in regions of the cylinders showing accelerated attack, (c) monitoring of corrosion rates through periodic measurement of test coupons placed within the cylinder yards, and (d) establishment of a computer base to incorporate and retain these data, the technical division is working with the enrichment sites to implement an upgraded system for storage of this material until such time as it is used or converted.

  17. Hard sphere packings within cylinders.

    Fu, Lin; Steinhardt, William; Zhao, Hao; Socolar, Joshua E S; Charbonneau, Patrick


    Arrangements of identical hard spheres confined to a cylinder with hard walls have been used to model experimental systems, such as fullerenes in nanotubes and colloidal wire assembly. Finding the densest configurations, called close packings, of hard spheres of diameter σ in a cylinder of diameter D is a purely geometric problem that grows increasingly complex as D/σ increases, and little is thus known about the regime for D > 2.873σ. In this work, we extend the identification of close packings up to D = 4.00σ by adapting Torquato-Jiao's adaptive-shrinking-cell formulation and sequential-linear-programming (SLP) technique. We identify 17 new structures, almost all of them chiral. Beyond D ≈ 2.85σ, most of the structures consist of an outer shell and an inner core that compete for being close packed. In some cases, the shell adopts its own maximum density configuration, and the stacking of core spheres within it is quasiperiodic. In other cases, an interplay between the two components is observed, which may result in simple periodic structures. In yet other cases, the very distinction between the core and shell vanishes, resulting in more exotic packing geometries, including some that are three-dimensional extensions of structures obtained from packing hard disks in a circle.

  18. Rotating cylinder drag balance with application to riblets

    Hall, T.; Joseph, D.


    Experimental results are reported and discussed for a rotating cylinder drag balance designed to predict drag reduction by surfaces like riblets. The apparatus functions by measuring the torque applied to the inner cylinder by a fluid, such as water, that is set in motion by the controlled rotation of the outer cylinder. The instrument was validated by calibration for laminar flow and comparison of turbulent flow results to the those of G. I. Taylor. The ability to predict drag reduction was demonstrated by testing 114 m symmetric sawtooth riblets, which gave a maximum reduction of about 5% and an overall drag reduction range of 5cylinder surface and to use cylinders for which the curvature of the flow is minimized.

  19. Experimental investigation of generation mechanism of aerodynamic noise. 1st Report. On a coherent structure of surface pressure fluctuation on a circular cylinder; Kurikion no hassei kiko ni kansuru jikken kaiseki. 1. Enchu hyomen atsuryoku hendo no kukan kozo ni tsuite

    Iida, A.; Kato, C.; Takano, Y. [Hitachi, Ltd., Tokyo (Japan); Fujita, H. [Tokyo Institute of Technology, Tokyo (Japan)


    Spanwise coherent structure of surface pressure fluctuation on a circular cylinder is studied experimentally in order to obtain quantitative information for understanding the generation mechanism of aerodynamic sound from the cylinder at Reynolds numbers between 5{times}10{sup 3} and 1.4{times}10{sup 5}. Span wise distribution of the coherence function between surface pressures is kept as high as up to several diameters for the frequency components of the so-called orderly structure, or the Karman vortex shedding frequency and its harmonics, while the coherence function for the turbulent frequency component decays rapidly span wise to half-diameter. Span wise coherence function of the surface pressure is calculated as an exponential function of span wise spacing and Reynolds number. The correlation length of the flow structure is found to be inversely proportional to Re{sup 1/2}. 18 refs., 13 figs., 1 tab.

  20. Unsteady pressure measurement around circular cylinder in hypersonic flows using fast response PSP%快响应PSP技术用于高超声速圆柱绕流的非定常压力测量

    向星居; 熊红亮; 袁明磊; 于靖波; 陈柳生; 王智栋


    surfaces.It is durable enough to withstand the aerodynamic forces.With the development of porous PSP,there has been a need for accurate characterization of the response time of PSP.Dynamic calibration methods have been developed to meet this need.Response time of PSP was measured from a step change of pressure created by solenoid valve and pulsating jet. Two dynamic calibration devices were developed to test the response time of PSP.For unsteady calibration the paint was sprayed onto 20 mm × 20 mm aluminum plates.Photo multiplier tube (PMT)was used as the light detector,which is the most critical component in the dynamic cali-bration device.Several fast response PSP was developed and tested.The typical response time of PSP is 0.2ms.The static calibration system was used to get the relation between the pressure and luminescence intensity.PSP samples were installed in a pressure chamber in which both the pres-sure and temperature can be set.The sample was excited by UV light and its photoluminescence was detected by a CCD digital camera.The experiment was conducted at different pressures and temperatures.After data processing,the relationship between the luminescence intensity and pressure can be obtained.To demonstrate the capability of PSP for pressure measurements in hy-personic wind tunnel,a cylinder mounted on a flat plate was tested in a Mach 5 hypersonic wind tunnel.The experiment was conducted in the blow down hypersonic wind tunnel FD-03 of China Academy of Aerospace Aerodynamics (CAAA).The diameter of circular cylinder is 25mm.The pressure on the plate surface was measured by several pressure taps simultaneously.The temper-ature of the model was detected by a Pt100 temperature sensor in real time.A 200-mm-diameter observation window on the ceiling was used as the optical access.Two 450W xenon lamps with bandpass filter (365±10 nm)were used for excitation light.The emission from the PSP was de-tected by photron high-speed camera SA5 with 12-bit intensity

  1. Rolling Cylinder Phase 1

    Margheritini, Lucia; Taraborrelli, Valeria Taraborrelli

    Margheritini and Valeria Taraborrelli( with a total of 3 day visit from the developers. Laboratory tests in irregular waves will be performed by Lucia Margheritini. The report is aimed at the first stage testing of the Rolling Cylinder wave energy device. This phase includes...

  2. Prediction of External Corrosion for Steel Cylinders--2007 Report

    Schmoyer, Richard L [ORNL


    , top or bottom row storage positions, etc. These models are then used to compute projections of numbers of cylinders expected to fail various minimum wall thickness criteria. The minimum wall thickness criteria are as follows. For thin-wall cylinders: 0 (breach), 62.5, and 250 mils. For thick-wall cylinders: 0, 62.5, and 500 mils. For 30A cylinders: 0, 62.5, and 100 mils. Each of these criteria triplets are based respectively on (1) loss of DUF{sub 6} (breaching), (2) safe handling and stacking operations, and (3) ANSI N14.1 standards for off-site transport and contents transfer. This report complements and extends previous editions of the cylinder corrosion report by Lyon (1995, 1996, 1997, 1998, 2000), by Schmoyer and Lyon (2001, 2002, 2003), and by Schmoyer (2004). These reports are based on UT data collected in FY03 and before. In this report UT data collected after FY03 but before FY07 is combined with the earlier data, and all of the UT data is inventoried chronologically and by the various functional groups. The UT data is then used to fit models of maximum pit depth and minimum wall thickness, statistical outliers are investigated, and the fitted models are used to extrapolate minimum thickness estimates into the future and in turn to compute projections of numbers of cylinders expected to fail various thickness criteria. A model evaluation is performed comparing UT measurements made after FY05 with model-fitted projections based only on data collected in FY05 and before. As in previous reports, the projections depend on the treatment of outliers.




    Suppose there are two electricity testers, A and B(Figure A) . And a metal cylinder C which is almost closed (called Faraday Cylinder)is fixed to tester B, making both tester B and cylinder C charged. As a result, the aluminium foil on tester B opens.

  4. Prediction of External Corrosion for Steel Cylinders--2004 Report

    Schmoyer, RLS


    Depleted uranium hexafluoride (UF{sub 6}) is stored in over 60,000 steel cylinders at the East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee, at the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky, and at the Portsmouth Gaseous Diffusion Plant (PORTS) in Portsmouth, Ohio. The cylinders range in age from 4 to 53 years. Although when new the cylinders had wall thicknesses specified to within manufacturing tolerances, over the years corrosion has reduced their actual wall thicknesses. The UF{sub 6} Cylinder Project is managed by the United States Department of Energy (DOE) to safely maintain the UF{sub 6} and the cylinders containing it. This report documents activities that address UF{sub 6} Cylinder Project requirements and actions involving forecasting cylinder wall thicknesses. These requirements are delineated in the System Requirements Document (LMES 1997a), and the actions needed to fulfill them are specified in the System Engineering Management Plan (LMES 1997b). The report documents cylinder wall thickness projections based on models fit to ultrasonic thickness (UT) measurement data. UT data is collected at various locations on randomly sampled cylinders. For each cylinder sampled, the minimum UT measurement approximates the actual minimum thickness of the cylinder. Projections of numbers of cylinders expected to fail various thickness criteria are computed from corrosion models relating minimum wall thickness to cylinder age, initial thickness estimates, and cylinder subpopulations defined in terms of plant site, yard, top or bottom storage positions, nominal thickness, etc. In this report, UT data collected during FY03 is combined with UT data collected in earlier years (FY94-FY02), and all of the data is inventoried chronologically and by various subpopulations. The UT data is used to fit models of maximum pit depth and minimum thickness, and the fitted models are used to extrapolate minimum thickness estimates into the future and in

  5. Critical point drying: contamination in transitional fluid supply cylinders.

    Hoagland, K D; Rosowski, J R; Cohen, A L


    We call attention to the occurrence of an oily residue in the CPD bomb after critical point drying, as well as the presence of rust, dirt, and an oily residue in CO2 and Freon supply cylinders. Bottled gas is often tested for purity once after manufacturing and then is pumped and stored, perhaps several times, before the consumer's cylinders are filled. The cylinders may be in use for over 40 years, and may never be chemically cleaned, although they are hydrostatically pressure tested every five years, with the date of each test stamped on the cylinder. To the bottled gas industry we recommend regular inspection of tanks for bottom contamination, and vacuum and chemical cleaning when contamination is found. To users of bottled gas for critical point drying, we recommend becoming aware of the procedures of cylinder inspection, cleaning, and circulation among users. We suggest reporting to the gas supplier any contamination produced by inadvertently backfilling the supply cylinder. Although a common awareness of the problem of supply cylinder residues should lead to failures, the best assurance of clean, oil-free, dry liquid CO2 and other transitional fluids may be in the development of in-line filters which would remove particles, oil and moisture between the supply cylinder and the CPD bomb. We also suggest the use of gas grades higher than commercial, such as welding anhydrous (CO2) or specialty gases.

  6. Dropwise Condensation on Hydrophobic Cylinders

    Park, Kyoo-Chul; Hoang, Michelle; McManus, Brendan; Aizenberg, Joanna


    In this work, we studied the effect of the diameter of horizontal hydrophobic cylinders on droplet growth. We postulate that the concentration gradient created by natural convection around a horizontal circular cylinder is related to the droplet growth on the cylinder by condensation. We derive a simple scaling law of droplet growth and compare it with experimental results. The predicted negative exponent of drop diameter (d) as a function of cylinder diameter (D) at different time points is similar to the general trend of experimental data. Further, this effect of cylinder diameter on droplet growth is observed to be stronger than the supersaturation conditions created by different surface temperatures.

  7. Supercritical flows past a square cylinder with rounded corners

    Cao, Yong; Tamura, Tetsuro


    Large-eddy simulations were used to investigate the supercritical aerodynamics of a square cylinder with rounded corners in comparison with those in the subcritical regime. First, the numerical methods, especially the dynamic mixed model, were validated on the basis of their prediction of supercritical flows past a circular cylinder. Then, the supercritical flows past a rounded-corner square cylinder were simulated and systematically clarified. Strong Reynolds number (Re) effects existed in the forces and local pressures as Re increased from o(104) to o(106). Changeover of flow patterns occurred as Re increased. At the supercritical Re, the free stream overall flowed along the cross sections of the cylinder, separated from the leeward corners and generated Karman vortices behind the cylinder. This pattern resulted in a much smaller recirculation region behind the cylinder compared with the subcritical flow. At the micro level, the flow experienced laminar separation and flow reattachment near the frontal corners, followed by the spatial development of turbulent boundary layers (TBLs) on the side faces and turbulent separation near the leeward corners. The feedback by large-scale primary vortex shedding and the small-scale turbulent motions in the high-frequency region with a slope of -5/3 were detected in the TBL. Their interaction affected the spanwise correlations of wall pressure fluctuations. The TBL on the side face differed from the zero-pressure-gradient flat-plate one; it was subjected to pressure gradients varying in space and time.

  8. 49 CFR 173.302 - Filling of cylinders with nonliquefied (permanent) compressed gases.


    ... accordance with the requirements of ISO 11621 (IBR, see § 171.7 or this subchapter). Each DOT cylinder must... standard of cleanliness. (4) The pressure in each cylinder may not exceed 3000 psig at 21 °C (70 °F). (c..., 3E, 3HT, and 39 cylinders, and UN pressure receptacles ISO 9809-1, ISO 9809-2, ISO 9809-3 and...

  9. Small plastic piston-cylinder cell for pulsed magnetic field studies at cryogenic temperatures

    Coniglio, William A.; Graf, David E.; Tozer, Stanley W.


    A plastic piston-cylinder cell based on a thick wall test-tube has been designed for pulsed magnetic field studies. The small 12.7 mm diameter and overall height of 19.3 mm allow the cell to freely rotate in a cryostat with a diameter of 21.5 mm. Electrical leads, coax cable or microstrip transmission lines can be introduced into the pressure chamber for a variety of measurements such as electrical transport, de Haas-van Alphen, Shubnikov-de Haas and Hall effect. A fiber optic has been introduced for the purpose of calibrating the pressure via a ruby manometer. The fiber optic opens up additional experimental techniques such as photoluminescence, photoconductivity and, with use of a special fiber with a Bragg grating, magnetostriction and thermal expansion. Maximum pressures of 0.35 GPa at room temperature have been obtained.

  10. Mechanisms of active control for noise inside a vibrating cylinder

    Lester, Harold C.; Fuller, Chris R.


    The active control of propeller-induced noise fields inside a flexible cylinder is studied with attention given to the noise reduction mechanisms inherent in the present coupled acoustic shell model. The active noise control model consists of an infinitely long aluminum cylinder with a radius of 0.4 m and a thickness of 0.001 m. Pressure maps are shown when the two external sources are driven in-phase at a frequency corresponding to Omega = 0.22.

  11. Flow past rotating and stationary circular cylinders near a plane screen. II - Characteristics of flow past a stationary cylinder

    Kovalenko, V. M.; Byehkov, N. M.; Kisel, G. A.; Dikovskaia, N. D.


    Measurements have been made of pressure distributions and pulsations in a cross flow past a circular cylinder placed near a plane screen of finite length. The experiments reported here have been carried out under low turbulence conditions over a range of Reynolds numbers that includes the critical values. The boundary layer separation points and the evolution of the front critical point and other characteristic zones with the distance to the screen are determined. The components of the aerodynamic force acting on the cylinder and the Strouhal number are calculated on the basis of the predominant pulsation frequencies on the cylinder.

  12. Experimental investigation of turbulent flow past four grooved and smooth cylinders in an in-line square arrangement

    Ladjedel O.


    Full Text Available An experimental study of turbulent flow past four cylinders in square arrangement with a space ratio of (T/D = P/D = 2.88 is performed. The investigation focuses on effects of Reynolds number and the shape of cylinders on the force and pressure coefficients of the cylinders. Two cases are investigated: four smooth cylinders (case1 and four grooved cylinders (case2. The cylinders are equipped with two grooves placed on the external surface at 90° and 270° degrees. The pressure distributions along the tubes (22 circumferential pressure taping were determined for a variation of the azimuthal angle from 0 to 360deg. The drag and lift forces are measured using the TE 44 balance. The results show a bistable flow often exists behind the downstream cylinders is observed. By rising the Reynolds number the pressure coefficient increases in the absolute value.

  13. Internal voltage in a conducting closed hollow cylinder with an attached end plate subjected to a direct lightning strike

    Ong, M M; Anderson, R A


    The interior voltage of a large metal can with thick walls struck directly by lightning was estimated using diffusion theory, aperture slot voltage theory, and experimental data. The hollow cylinder is closed at both ends. One end has a cap that is welded to the cylinder wall making a continuous electrical interface. The other end consists of a circular plate that is pressed into the cylinder wall and held under pressure with a threaded ring. From our experience with coupling measurements, this joint will be a weak link. It will allow more current to leak into the interior than from diffusion through the walls. Because the joint was designed for mechanical purposes, the electrical properties, such as continuity around the circumference, are not well controlled. Therefore, it is difficult to determine a single voltage attributed to this joint design with varying electrical characteristics. Instead, we will make a best effort of bounding the problem using both analytical calculations and data from tests of similar structures. The calculated internal cylinder voltage subjected to an extreme lightning strike from current diffusing through the wall is 19 volts. We estimate that the press-fit end plate will increase this voltage by a factor of about two to ten. The internal voltage is expected to be between 40 and 200 volts. This uncertainty can be reduced by making coupling and high-current measurements on a number of cans or by redesigning the cap to include electrical contacts. However, given that the critical components inside the cylinder are insulated to at least 3.5 kV, improving the joint design is unnecessary. The safety factor using the worst-case maximum interior voltage is 18 and is sufficient. A higher safety margin can be achieved by keeping the joint clean and under pressure.


    The report describes an aluminum cylinder in which dental instruments could be sterilized under emergency field conditions and at the same time be...protected against corrosion. The procedure involves loading the cylinder with dental instruments, flushing it with ethylene oxide-Freon gas, closing it...and then immersing it in boiling water for l hour. In preliminary experiments with a prototype of the sterilizing cylinder, dental instruments were


    ZOU Lin; LIN Yu-feng


    A large eddy simulation of cross-flow around a sinusoidal wavy cylinder at Re=3000 was performed and the load cell measurement was introduced for the validation test. The mean flow field and the near wake flow structures were presented and compared with those for a circular cylinder at the same Reynolds number. The mean drag coefficient for the wavy cylinder is smaller than that for a corresponding circular cylinder due to the formation of a longer wake vortex generated by the wavy cylinder. The fluctuating lift coefficient of the wavy cylinder is also greatly reduced. This kind of wavy surface leads to the formation of 3-D free shear layers which are more stable than purely 2-D free shear layers. Such free shear layers only roll up into mature vortices at further downstream position and significantly modify the near wake structures and the pressure distributions around the wavy cylinder. Moreover, the simulations in laminar flow condition were also performed to investigate the effect of Reynolds number on force reduction control.

  16. Wave Diffraction from A Vertical Cylinder with Two Uniform Columns and Porous Outer Wall

    TFNG Rin; HAN Ling; LI Yucheng


    Based on a linear model of the pressure difference between two sides of a porous wall and the fluid velocity inside it, an analytic solution is established for wave diffraction from a cylinder with an outer porous column and an inner solid column. Numerical experiments are carried out to examine the effects of the wave force on a porous tow-column cylinder and the wave elevations outside and inside the cylinder due to the porous character of the outer column and the ratio between the radii of the inner and outer columns. The numerical results show that the increase in the coefficient of porosity of the outer column of a double column cylinder will reduce the wave elevation around the cylinder and the wave load on it. The radius of the inner column does not affect too much the wave elevation around the cylinder and the total force on the cylinder.

  17. Maximum Fidelity

    Kinkhabwala, Ali


    The most fundamental problem in statistics is the inference of an unknown probability distribution from a finite number of samples. For a specific observed data set, answers to the following questions would be desirable: (1) Estimation: Which candidate distribution provides the best fit to the observed data?, (2) Goodness-of-fit: How concordant is this distribution with the observed data?, and (3) Uncertainty: How concordant are other candidate distributions with the observed data? A simple unified approach for univariate data that addresses these traditionally distinct statistical notions is presented called "maximum fidelity". Maximum fidelity is a strict frequentist approach that is fundamentally based on model concordance with the observed data. The fidelity statistic is a general information measure based on the coordinate-independent cumulative distribution and critical yet previously neglected symmetry considerations. An approximation for the null distribution of the fidelity allows its direct conversi...

  18. Acoustic band gaps in two-dimensional square arrays of semi-hollow circular cylinders

    T.; Kim


    Concave surfaces focus sound while convex surfaces disperse sound. It is therefore interesting to know if it is possible to make use of these two opposite characteristics to enhance the band gap performance of periodic arrays of solid cylinders in air. In this paper, the band gap characteristics of a 2-D square array of semi-hollow circular cylinders embedded in air are investigated, both experimentally and theoretically. In comparison with the types of inclusion studied by previous researchers, a semi-hollow circular cylinder is unique in the sense that it has concave inner surfaces and convex outer surfaces. The finite difference time domain (FDTD) method is employed to study the propagation behavior of sound across the new phononic crystal of finite extent, and the influences of sample size and inclusion orientation on band gap characteristics are quantified in order to obtain the maximum band gap. For reference, the band gap behaviors of solid circular cylinder/air and hollow circular cylinder/air systems are considered and compared with those of semi-hollow circular cylinder/air systems. In addition to semi-hollow circular cylinders, other inclusion topologies such as semi-hollow triangular and square cylinders are also investigated. To validate the theoretical predictions, experimental measurements on square arrays of hollow Al cylinders in air and semi-hollow Al cylinders in air are carried out. The results demonstrate that the semi-hollow circular cylinder/air system has the best overall band gap performance.

  19. Speed-variable Switched Differential Pump System for Direct Operation of Hydraulic Cylinders

    Schmidt, Lasse; Roemer, Daniel Beck; Pedersen, Henrik Clemmensen;


    Efforts to overcome the inherent loss of energy due to throttling in valve driven hydraulic systems are many, and various approaches have been proposed by research communities as well as the industry. Recently, a so-called speed-variable differential pump was proposed for direct drive of hydraulic...... differential cylinders. The main idea was here to utilize an electric rotary drive, with the shaft interconnected to two antiparallel fixed displacement gear pumps, to actuate a differential cylinder. With the design carried out such that the area ratio of the cylinder matches the displacement ratio of the two...... gear pumps, the throttling losses are confined to cross port leakage in the cylinder and leakage of the pumps. However, it turns out that the volumetric pump losses and the pressure dynamics of the cylinder and connecting pipes may cause pressure increase- or decrease in the cylinder chambers, which...

  20. Pressure-tension test for assessing fatigue in concrete

    Soleimani, Sayed M.; Boyd, Andrew J.; Komar, Andrew J. K.


    In a pressure-tension test, a cylindrical concrete specimen is inserted into a cylindrical steel jacket, with a rubber ``O'' ring seal at each end to prevent gas leakage. Gas pressure is then applied to the curved surface of the concrete cylinder, leaving the ends free. As the gas pressure is increased, the specimen eventually fractures across a single plane transverse to the axis of the cylinder. The gas pressure at fracture may then be considered as the tensile strength of the concrete. In this study, the pressure-tension test is used to study fatigue in concrete. A total of 22 standard concrete cylinders (100 mm × 200 mm) were tested. Both dry and wet specimens have been studied. Low-cycle loading, which involves the application of a few load cycles at high stress levels - such as a concrete structure under earthquake load - has been used in this study. It was found that the concrete specimens in a low-cycle loading fail after only a few cycles of loading and interestingly at a stress level lower than the maximum value applied in the cyclic loading. In addition, non-destructive testing (NDT) was performed to determine the progressive damage due to tensile load in concrete cylinders using Ultrasonic Pulse Velocity (UPV). It was found that UPV can be used to evaluate the damage in concrete even after the application of a very low-level of tensile stress - as low as 10% of its tensile strength.

  1. Rolling Cylinder Phase 1bis

    Margheritini, Lucia

    Cylinder Phase 1: proof of concept and first optimization”, DCE report 115, ISSN 1901-726X, and it is recommended that the two are consulted together as they were firstly agreed to be in one document. The present report aims at estimate the efficiency of the Rolling Cylinder long model (previously...

  2. Natural convection from circular cylinders

    Boetcher, Sandra K S


    This book presents a concise, yet thorough, reference for all heat transfer coefficient correlations and data for all types of cylinders: vertical, horizontal, and inclined. This book covers all natural convection heat transfer laws for vertical and inclined cylinders and is an excellent resource for engineers working in the area of heat transfer engineering.

  3. Approximation of Surfaces by Cylinders

    Randrup, Thomas


    We present a new method for approximation of a given surface by a cylinder surface. It is a constructive geometric method, leading to a monorail representation of the cylinder surface. By use of a weighted Gaussian image of the given surface, we determine a projection plane. In the orthogonal...

  4. Flow characteristics of the two tandem wavy cylinders and drag reduction phe-nomenon

    邹琳; 郭丛波; 熊灿


    This paper presents an extensive numerical study of 3-D laminar flow around two wavy cylinders in the tandem arrangement for spacing ratios (L/Dm ) ranging from 1.5 to 5.5 at a low Reynolds number of 100. The investigation focuses on the effects of spacing ratio (L/Dm ) and wavy surface on the 3-D near wake flow patterns, the force and pressure coefficients and the vortex shedding frequency for the two tandem wavy cylinders. Flows around the two tandem circular cylinders are also obtained for comparison. With the spacing ratio in the range of L/Dm=1.5-5.5 , unlike two tandem circular cylinders, the wavy cylinders in the tandem arrangement do not have the wake interference behaviour of three basic types. The vortex shedding behind the upstream wavy cylinder occurs at a further downstream position as compared with that of the upstream circular cylinder. This leads to the weakening of the effect of the vibration of the cylinders as well as a distinct drag reduction. The effects of the drag reduction and the control of the vibration of the two wavy cylinders in tandem become more and more evident when L/Dm³4.0, with a distinct vortex shedding in the upstream cylinder regime for the two circular cylinders in tandem.

  5. Adaptive Robust Tracking Control of Pressure Trajectory Based on Kalman Filter

    CAO Jian; ZHU Xiaocong; TAO Guoliang; YAO Bin


    When adaptive robust control(ARC) strategy based on backstepping design is applied in pneumatic servo control, accurate pressure tracking in motion is especially necessary for both force and position trajectories tracking of rodless pneumatic cylinders, and therefore an adaptive robust pressure controller is developed in this paper to improve the tracking accuracy of pressure trajectory in the chamber when the pneumatic cylinder is moving. In the proposed adaptive robust pressure controller, off-line fitting of the orifice area and on-line parameter estimation of the flow coefficient are utilized to have improved model compensation, and meanwhile robust feedback and Kalman filter are used to have strong robustness against uncertain nonlinearities, parameter fluctuations and noise. Research results demonstrate that the adaptive robust pressure controller could not only track various pressure trajectories accurately even when the pneumatic cylinder is moving, but also obtain very smooth control input, which indicates the effectiveness of adaptive model compensation. Especially when a step pressure trajectory is tracked under the condition of the movement of a rodless pneumatic cylinder, maximum tracking error of ARC is 4.46 kPa and average tracking error is 0.99 kPa, and steady-state error of ARC could achieve 0.84 kPa, which is very close to the measurement accuracy of pressure transducer.

  6. Flow and flow-induced vibration of a square array of cylinders in steady currents

    Zhao, Ming [School of Computing, Engineering and Mathematics, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751 (Australia); Cheng, Liang; An, Hongwei; Tong, Feifei, E-mail: [School of Civil, Environmental and Mining Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia)


    Flow and flow-induced vibration of a square array of cylinders are investigated by two-dimensional numerical simulations. Flow past 36 cylinders in an inline arranged square array and 33 cylinders in a staggered arranged square array is firstly simulated, for Re = 100 and the spacing ratios of L/D = 1.5, 2, 3, 4, 5. Only one vortex street is observed in the wake of the cylinder array when the spacing ratio is 1.5 in the inline arrangement and 1.5 and 2 in the staggered arrangement, indicating that the critical spacing ratio for the single-vortex street mode in the staggered arrangement is higher than that in the inline arrangement. The vortex shedding from the cylinders is suppressed at L/D = 3 for both inline and staggered arrangements. Vortex shedding from each individual cylinder is observed when L/D = 4. Flow-induced vibration of 36 cylinders in an inline square arrangement is studied for a constant Reynolds number of 100, two spacing ratios of 2 and 5, a constant mass ratio of 2.5 and a wide range of reduced velocities. It is found that for a spacing ratio of 2, the vibration of the cylinders in the four downstream columns does not start until the reduced velocity exceeds 4.5. The vibration of the cylinders progresses downstream with increasing reduced velocity. For a spacing ratio of 5, the vibrations of the cylinders in the most upstream column are similar to that of a single cylinder. The vibration amplitudes of the downstream cylinders peak at higher reduced velocities than that of a single cylinder. The maximum possible response amplitudes occur at the most downstream cylinders. (paper)

  7. Integrated hydraulic cooler and return rail in camless cylinder head

    Marriott, Craig D [Clawson, MI; Neal, Timothy L [Ortonville, MI; Swain, Jeff L [Flushing, MI; Raimao, Miguel A [Colorado Springs, CO


    An engine assembly may include a cylinder head defining an engine coolant reservoir, a pressurized fluid supply, a valve actuation assembly, and a hydraulic fluid reservoir. The valve actuation assembly may be in fluid communication with the pressurized fluid supply and may include a valve member displaceable by a force applied by the pressurized fluid supply. The hydraulic fluid reservoir may be in fluid communication with the valve actuation assembly and in a heat exchange relation to the engine coolant reservoir.

  8. Analysis of aerodynamic noise generated from inclined circular cylinder

    Haramoto, Yasutake; Yasuda, Shouji; Matsuzaki, Kazuyoshi; Munekata, Mizue; Ohba, Hideki


    Making clear the generation mechanism of fluid dynamic noise is essential to reduce noise deriving from turbomachinery. The analysis of the aerodynamic noise generated from circular cylinder is carried out numerically and experimentally in a low noise wind tunnel. In this study, aerodynamic sound radiated from a circular cylinder in uniform flow is predicted numerically by the following two step method. First, the three-dimensional unsteady incompressible Navier-Stokes equation is solved using the high order accurate upwind scheme. Next, the sound pressure level at the observed point is calculated from the fluctuating surface pressure on the cylinder, based on modified Lighthill-Curl’s equation. It is worth to note that the noise generated from the model is reduced rapidly when it is inclined against the mean flow. In other words, the peak level of the radiated noise decreases rapidly with inclination of the circular cylinder. The simulated SPL for the inclined circular cylinder is compared with the measured value, and good agreement is obtained for the peak spectrum frequency of the sound pressure level and tendency of noise reduction. So we expect that the change of flow structures makes reduction of the aerodynamic noise from the inclined models.

  9. Performance and combustion analysis of Mahua biodiesel on a single cylinder compression ignition engine using electronic fuel injection system

    Gunasekaran Anandkumar


    Full Text Available In this investigation, experiment is carried out on a 1500 rpm constant speed single cylinder Diesel engine. The test is carried out with Neat diesel, neat biodiesel, and blend B20. The engine considered was run with electronic fuel injection system supported by common rail direct injection to obtain high atomization and effective air utilization inside the combustion chamber. The performance of the engine in terms of break thermal efficiency and brake specific energy consumption was found and compared. The B20 blend shows 1.11% decrease in break thermal efficiency and 3.35% increase in brake specific energy consumption than diesel. The combustion characteristics found are in-cylinder pressure, rate of pressure rise, and heat release rate and compared for peak pressure load to understand the nature of combustion process. For each fuel test run, the maximum peak pressure is observed at part load condition. The rate of change of pressure and heat release rate of diesel is high compared to pure biodiesel and B20 blend. The diffusion combustion is observed to be predominant in case of B100 than B20 and Neat diesel.

  10. Prediction of External Corrosion for Steel Cylinders 2003 Report

    Schmoyer, RLS


    Depleted uranium hexafluoride (UF{sub 6}) is stored in over 60,000 steel cylinders at the East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee, at the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky, and at the Portsmouth Gaseous Diffusion Plant (PORTS) in Portsmouth, Ohio. The cylinders range in age from six to 52 years. Although when new the cylinders had wall thicknesses specified to within manufacturing tolerances, over the years corrosion has reduced their actual wall thicknesses. The UF{sub 6} Cylinder Project is managed by the United States Department of Energy (DOE) to safely maintain the UF{sub 6} and the cylinders containing it. The requirements of the Project are delineated in the System Requirements Document (LMES 1997a), and the actions needed to fulfill those requirements are specified in the System Engineering Management Plan (LMES 1997b). This report documents activities that address requirements and actions involving forecasting cylinder wall thicknesses. Wall thickness forecasts are based on models fit to ultrasonic thickness (UT) measurement data. First, UT data collected during FY02 is combined with UT data collected in earlier years (FY92-FY01), and all of the data is inventoried chronologically and by various subpopulations. Next, the data is used to model either maximum pit depth or minimum thickness as a function of cylinder age, subpopulation (e.g., PGDP G-yard, bottom-row cylinders), and initial thickness estimates. The fitted models are then used to extrapolate minimum thickness estimates into the future and to compute estimates of numbers of cylinders expected to fail various thickness criteria. A model evaluation is performed comparing UT measurements made in FY02 with model-fitted projections based only on data collected before FY02. The FY02 UT data, entered into the corrosion model database and not available for the previous edition of this report (Schmoyer and Lyon 2002), consists of thickness measurements of 48

  11. Vertical force acting on partly submerged spindly cylinders

    Xinbin Zhang


    Full Text Available When an object is placed on a water surface, the air-water interface deforms and a meniscus arises due to surface tension effects, which in turn produces a lift force or drag force on the partly submerged object. This study aims to investigate the underlying mechanism of the vertical force acting on spindly cylinders in contact with a water surface. A simplified 2-D model is presented, and the profile of the curved air-water interface and the vertical force are computed using a numerical method. A parametric study is performed to determine the effects of the cylinder center distance, inclined angle, static contact angle, and radius on the vertical force. Several key conclusions are derived from the study: (1 Although the lift force increases with the cylinder center distance, cylinders with smaller center distances can penetrate deeper below the water surface before sinking, thereby obtaining a larger maximum lift force; (2 An increase in the inclined angle reduces the lift force, which can enable the lower cylinders fall more deeply before sinking; (3 While the effect of static contact angle is limited for angles greater than 90°, hydrophobicity allows cylinders to obtain a larger lift force and load capacity on water; (4 The lift force increases rapidly with cylinder radius, but an increase in radius also increases the overall size and weight of cylinders and decreases the proportion of the surface tension force. These findings may prove helpful in the design of supporting legs of biologically-inspired miniature aquatic devices, such as water strider robots.




    Full Text Available Multilayer pressure vessel is designed to work under high-pressure condition. This paper introduces the stress analysis and the burst pressure calculation of a two-layer shrink fitted pressure vessel. In the shrink-fitting problems, considering long hollow cylinders, the plane strain hypothesis can be regarded as more natural. Generally hoops stress distribution is non-linear and sharply reduced toward the outer surface. By shrink fitting concentric shells towards the inner shells are placed in residual compression so that the initial compressive hoop stress must be relieved by internal pressure before hoop tensile stress are developed. Therefore the maximum hoop stress will be reduced, resulting more burst pressure. The analytical results of stress distribution and burst pressure is calculated and validated by ANSYS Workbench results.

  13. Experimental Study on Local Scour Around A Large Circular Cylinder Under Irregular Waves

    周益人; 陈国平


    A series of physical model tests are conducted for local scour around a circular cylinder of a relatively large diameter (0.15 < D/L < 0.5) under the action of irregular waves. The laws of change of the topography around the cylinder are systematically studied. The effects of wave height, wave period, water depth, sediment grain size and cylinder diameter are taken into account. The mechanism of formation of the topography around the cylinder is analyzed. A detailed analysis is given to bed sediment grain size, and it is considered that the depth of scour around the cylinder under wave action is not inversely proportional to the sediment grain diameter. On such a basis, an equation is proposed for calculation of the maximum depth of scour around a cylinder as well as its position under the action of irregular waves.

  14. Partial molar volume of L-Valine in water under high pressure

    Sawamura, Seiji


    Partial molar volume of L-valine in water was estimated up to 400 MPa from pressure coefficient of the solubility of the solute and molar volume of solid valine. The former was measured in a previous paper and the latter was measured in this article using a piston-cylinder typed cell. The partial molar volume increased with pressure and a maximum was observed around 250 MPa. It was compared with other amino acids.

  15. Lift and Drag on Cylinder of Octagonal Cross-Section in a Turbulent Stream

    Md. Jomir Hossain


    Full Text Available An experimental investigation of surface static pressure distributions on octagonal cylinder in uniform and turbulent flows was carried out. The study was performed on both the single cylinder and the group of two cylinders, two cylinders were used, one was at the upstream side, and the other was at the downstream side of the flow. They were placed centrally along the flow direction. The inter-spacing space between the two cylinders was varied at 1D, 2D, 3D, 4D, 5D, 6D, 7D and 8D, where D is the width of the cylinder across the flow direction. The pressure coefficients were calculated from the measured values of the surface static pressure distribution on the cylinder. Then the drag and lift coefficients were obtained from the pressure coefficients by the numerical integration method. It was observed that at various angles of attack, the values of the lift coefficients and drag coefficients were insignificant compared to those for a sharp-edged square cylinder. The strength of the vortex shedding was shown to be reduced as the intensity of the incident turbulence was increased. Measurements of drag at various angles of attack (0° to 40° showed that with increase in turbulence level the minimum drag occurred at smaller values of angle of attack.

  16. Three-Dimensional, Laminar Flow Past a Short, Surface-Mounted Cylinder

    Liakos, Anastasios; Malamataris, Nikolaos


    The topology and evolution of three-dimensional flow past a cylinder of slenderness ratio SR = 1 mounted in a wind tunnel is examined for 0 . 1 segmented to upper and lower parts, whereas the topology of the flow on the solid boundaries remains unaltered. Pressure distributions show that pressure, the key physical parameter in the flow, decreases everywhere except immediately upstream from the cylinder. In addition, creation of critical points from saddle-node-type bifurcations occur when the streamwise component of the pressure gradient changes sign. Finally, at Re = 325 , an additional horseshoe vorrtex is formed at the wake of the cylinder

  17. New system for measuring and controlling the maximum pressing pressure in the holes of the mould: ISOPRESS; Nuevo sistema para la medida y control de la presion maxima de prensado en los alveolos del molde: ISOPRESS

    Poyatos, A.; Bonaque, R.; Mallol, G.; Boix, J.


    The organization MACER, in collaboration with the Institute of Ceramic Technology, has developed the system ISOPRESS, an integrated control device that permits to equal automatically the maximum pressure applied on the powder contained in each of the holes of the mould. This system consists of a set of pressure transducers which are located in the isostatic punches of the mould itself. With them it is possible to register in real-time the evolution of the measured pressure of the oil contained in the compensation chamber of each punch. All the transducers are connected to a data acquisition system which transfers the pressure values to a PC which performs the signal processing to obtain the pressure maximum value reached during a pressing cycle, in each one of the holes. The system is completed with a control software especially developed, that permits to regulate individually the height of the first fall of each inferior punch to guarantee the uniformity of the pressure applied in all the holes. ISOPRESS, by assuring the constancy of the bulk density of all the pieces processed, guarantees a unique piece size and minimize production problems associated to the variability of the bulk density of the pieces. (Author)

  18. Estudio de la variación del acabado superficial del cilindro en función de la presión de diseño en los hidromotores de pistones radiales. // Cylinder superficial finish variation study in function of design pressure in radial pistons hydromotors.

    G. Morejón Vizcaino


    Full Text Available En este artículo se realiza un estudio teórico de la tendencia del comportamiento de la rugosidad superficial en los cilindrosde los motores hidráulicos tipo estrella para mantener constante la eficiencia volumétrica ante un incremento de la presiónde trabajo. Con el objetivo de determinar la tendencia de como influye la presión de diseño en la tecnología de construccióndel motor. La tendencia moderna es construir hidromotores con presión de diseño elevada para alcanzar altas densidades depotencia, para este empeño se utiliza la ley de Poiseuille para establecer el modelo de fuga entre cilindro y pistón. Elmodelo de la holgura se establece a partir de suponer lineal el comportamiento descrito en la literatura consultada, seobtienen resultados de rugosidad del cilindro contra presión para mantener la eficiencia volumétrica constante. Quedademostrado que el ensayo, para inferir los valores necesarios para el cálculo a realizar, se realiza sobre un cilindro similar alcilindro del motor.Palabras claves: Eficiencia volumétrica, algoritmo, motores hidráulicos, acabado superficial, fugas.____________________________________________________________________________Abstract.In this article is carried out a theoretical study of the tendency of superficial ruggedness behavior in cylinders of hydraulicmotors (star type to maintain constant the volumetric efficiency when is applied an increment of working pressure withthe objective of determining the tendency of how the design pressure influences in the motor construction technology.Since the modern tendency is to build hydromotors with risen design pressure in order to reach high power densities, forthis engagement the law of Poiseuille is used to establish the fugue pattern between cylinder and piston.The looseness model is stated starting from supposing lineal the behavior described in the consulted literature, results of thecylinder ruggedness against pressure are obtained to maintain

  19. Scalar cylinder-plate and cylinder-cylinder Casimir interaction in higher dimensional spacetime

    Teo, L P


    We study the cylinder-plate and the cylinder-cylinder Casimir interaction in the $(D+1)$-dimensional Minkowski spacetime due to the vacuum fluctuations of massless scalar fields. Different combinations of Dirichlet (D) and Neumann (N) boundary conditions are imposed on the two interacting objects. For the cylinder-cylinder interaction, we consider the case where one cylinder is inside the other, and the case where the two cylinders are outside each other. By computing the transition matrices of the objects and the translation matrices that relate different coordinate systems, the explicit formulas for the Casimir interaction energies are derived. Using perturbation technique, we compute the small separation asymptotic expansions of the Casimir interaction energies up to the next-to-leading order terms. The leading terms coincide with the respective results obtained using proximity force approximation, which is of order $d^{-D+1/2}$, where $d$ is the distance between the two objects. The results on the next-to...

  20. 潜艇耐压艇体纵筋加强锥—柱结合壳结构行为的分析%Structural behavior of longitudinal-stiffened cone-cylinder shell combination in submarine pressure hull

    白雪飞; 郭日修


    In order to investigate the structural behaviors of longitudinal-stiffened cone-cylinder shell combination, a computation model is designed. Stress distributions of convex and concave cone-cylinder joint section of the computation model are analyzed by finite element method. The results of analysis show that the longitudinals destroy not only meridional and circumferential continuity but also axi-symmetry of the shell combination. Due to sudden changes of stress distribution, lots of stress concentrations appear in shells plating at the ends of longitudinals and around the joint section of cone and cylinder. Meanwhile, longitudinals add many welds on cone-cylinder jointed zone.The stress distribution of the joint zone becomes worse and the risk of fatigue increases.It can be concluded that the structure behavior of longitudinal-stiffened cone-cylinder shell combination is bad; the longitudinal stiffeners can not be used at the cone-cylinder joint zone of large-diving-depth submarine built of high strength steel with σs/σb approaching to 1.%为考察“纵筋加强锥—柱结合壳”的力学行为,设计了“纵筋加强锥—柱结合壳”作为计算模型,运用有限元方法分析了该模型凸/凹结合部母线方向和圆周方向应力分布.纵筋在纵向和环向均破坏了结构的连续性,在环向还破坏了结构的轴对称性,在纵筋端部(纵向)和纵筋与纵筋之间(环向)的壳板上产生了应力突变和很多应力集中点;此外,在锥—柱结合部增加了许多纵向焊缝,锥—柱结合部应力环境十分恶劣.这种结构形式增大了艇体出现疲劳破坏的危险性.在采用高强度钢(屈强比接近1)的大潜深潜艇的锥—柱结合部不能采用“纵筋加强”结构形式.

  1. Approximation of Surfaces by Cylinders

    Randrup, Thomas


    We present a new method for approximation of a given surface by a cylinder surface. It is a constructive geometric method, leading to a monorail representation of the cylinder surface. By use of a weighted Gaussian image of the given surface, we determine a projection plane. In the orthogonal...... projection of the surface onto this plane, a reference curve is determined by use of methods for thinning of binary images. Finally, the cylinder surface is constructed as follows: the directrix of the cylinder surface is determined by a least squares method minimizing the distance to the points...... in the projection within a tolerance given by the reference curve, and the rulings are lines perpendicular to the projection plane. Application of the method in ship design is given....

  2. Analysis of Aerodynamic Noise Generated from Inclined Circular Cylinder

    YasutakeHaramoto; ShoujiYasuda; 等


    Making clear the generation mechanism of fluid dynamic noise is essential to reduce noise deriving from turbomachinery.The analysis of the aerodynamic noise generated from circular cylinder is carried out numerically and experimentally in a low noise wind this study,aerodynamic sound radiated from a circular cylinder in uniform flow is predicted numericaslly by the following two step method,First,the three-dimensional unsteady incompressible Navier-Stokes equation is solved using the high order accurate upwind scheme.Next.the sound pressure level at the observed point is calculated from the fluctuating surface pressure on the cylinder.based on modified Lighthill-Curl's equation.It is worth to note that the noise generated from the model is reduced rapidly when it is inclined against the mean flow.In other works,the Peak level of the radiated noise decreases apidly with inclination of the circular cylinder.The simulated SPL for the inclined circular cylinder is compared with the measured value .and good agreement is obtained for the peak spectrum fequency of the sound pressue level and tendency of noise reduction,So we expect that the change of flow structures makes reduction of the aerodynamic noise from the inclined models.

  3. Optimization Study on a Single-cylinder Compressed Air Engine

    YU Qihui; CAI Maolin; SHI Yan; XU Qiyue


    The current research of compressed air engine (CAE) mainly focused on simulations and system integrations. However, energy efficiency and output torque of the CAE is limited, which restricts its application and popularization. In this paper, the working principles of CAE are briefly introduced. To set a foundation for the study on the optimization of the CAE, the basic mathematical model of working processes is set up. A pressure-compensated valve which can reduce the inertia force of the valve is proposed. To verify the mathematical model, the prototype with the newly designed pressure-compensated intake valve is built and the experiment is carried out, simulation and experimental results of the CAE are conducted, and pressures inside the cylinder and output torque of the CAE are obtained. Orthogonal design and grey relation analysis are utilized to optimize structural parameters. The experimental and optimized results show that, first of all, pressure inside the cylinder has the same changing tendency in both simulation curve and experimental curve. Secondly, the highest average output torque is obtained at the highest intake pressure and the lowest rotate speed. Thirdly, the optimization of the single-cylinder CAE can improve the working efficiency from an original 21.95% to 50.1%, an overall increase of 28.15%, and the average output torque increases also increases from 22.047 5 N • m to 22.439 N • m. This research designs a single-cylinder CAE with pressure-compensated intake valve, and proposes a structural parameters design method which improves the single-cylinder CAE performance.

  4. [Guide values for heart rate and blood pressure with reference to 20, 40, 60 und 80% of maximum exertion considering age, sex and body mass in non-trained individuals].

    Strasser, Barbara; Schwarz, Joachim; Haber, Paul; Schobersberger, Wolfgang


    Aim of this study was to evaluate reliable guide values for heart rate (HF) and blood pressure (RR) with reference to defined sub maximum exertion considering age, gender and body mass. One hundred and eighteen healthy but non-trained subjects (38 women, 80 men) were included in the study. For interpretation, finally facts of 28 women and 59 men were used. We found gender differences for HF and RR. Further, we noted significant correlations between HF and age as well as between RR and body mass at all exercise levels. We established formulas for gender-specific calculation of reliable guide values for HF and RR on sub maximum exercise levels.

  5. Negative pressure in shear thickening band of a dilatant fluid

    Nagahiro, Shin-ichiro


    We perform experiments and numerical simulations to investigate spatial distribution of pressure in a sheared dilatant fluid of the Taylor-Couette flow under a constant external shear stress. In a certain range of shear stress, the flow undergoes the shear thickening oscillation around 20 Hz. The pressure measurement during the oscillation at the wall of the outer cylinder indicates that a localized negative pressure region rotates around the axis with the flow. The maximum negative pressure is close to the Laplace pressure of the grain radius and nearly independent of the applied shear stress. Simulations of a phenomenological model reveal that the thickened region is dominated by a negative pressure band, which extends along the tensile direction in the flow. Such shear thickening with negative pressure contradicts a naive picture of jamming mechanism, where thickening is expected in the compressing direction with the positive pressure.

  6. Assembly for electrical conductivity measurements in the piston cylinder device

    Watson, Heather Christine [Dublin, CA; Roberts, Jeffrey James [Livermore, CA


    An assembly apparatus for measurement of electrical conductivity or other properties of a sample in a piston cylinder device wherein pressure and heat are applied to the sample by the piston cylinder device. The assembly apparatus includes a body, a first electrode in the body, the first electrode operatively connected to the sample, a first electrical conductor connected to the first electrode, a washer constructed of a hard conducting material, the washer surrounding the first electrical conductor in the body, a second electrode in the body, the second electrode operatively connected to the sample, and a second electrical conductor connected to the second electrode.

  7. Wave Loads on Cylinders

    Burcharth, H. F.; Frigaard, Peter


    Wave loads may be defined as time varying forces on a body resulting from the wave induced flow fields which surrounds the body in whole or in part. Such unsteady fluid forces are the net result of pressure and shear forces integrated over the instantaneous wetted area.......Wave loads may be defined as time varying forces on a body resulting from the wave induced flow fields which surrounds the body in whole or in part. Such unsteady fluid forces are the net result of pressure and shear forces integrated over the instantaneous wetted area....

  8. Experimental Investigation of Scattering from Randomly Rough Plastic Cylinders


    fluid, here following the form from Morse and Ingard [20] and Skudrzyk [21]. First, the adiabatic equation of state relating the pressure, p, and...wavelength, we get the standard relation between the particle velocity and the pressure u = -VP. (2.6) Rayleigh [19] and Morse and Ingard [20] derive the...the internal and scattered fields, Rayleigh [191 and Morse and Ingard [20] solve for the scattered field from an infinitely long circular cylinder by

  9. Composite reinforced metallic cylinder for? high-speed rotation

    Pradhan, Sahadev, , Dr.


    The objective of the present study is to design and development of the composite reinforced thin metallic cylinder to increase the peripheral speed significantly and thereby? improve the separation performance in a centrifugal gas separation processes through? proper optimization of the internal parameters. According to Dirac equation (Cohen? (1951)), the maximum separative work for a centrifugal gas separation process increase? with 4th power of the peripheral speed. Therefore, it has been intended to reinforce the? metallic cylinder with composites (carbon fibers: T-700 and T- 1000 grade with suitable? epoxy resin) to increase the stiffness and hoop stress so that the peripheral speed can? be increased significantly, and thereby enhance the separative output. Here, we have developed the mathematical model to investigate the elastic stresses of? a laminated cylinder subjected to mechanical, thermal and thermo-mechanical loading? A detailed analysis is carried out to underline the basic hypothesis of each formulation? Further, we evaluate the steady state creep response of the rotating cylinder and analyze? the stresses and strain rates in the cylinder.

  10. Flow around a semicircular cylinder with passive flow control mechanisms

    Hamed, A. M.; Vega, J.; Liu, B.; Chamorro, L. P.


    Wind tunnel experiments were performed to study the effect of passive flow control strategies on the wake and drag of a semicircular cylinder of infinite aspect ratio. High-resolution planar particle image velocimetry was used to obtain flow statistics around the semicircular cylinder at Reynolds number Re≈ 3.2× 10^4 based on the cylinder diameter. The control mechanisms under consideration include rigid flaps of various lengths placed at the edges of the structure and a small slot along the symmetry plane of the cylinder. Mean velocity fields reveal the distinctive effects of each passive mechanism on the flow, such as velocity recovery, size of the recirculation bubble and location of the reattachment point. The distributions of turbulence kinetic energy and kinematic shear stress show the modulation of each passive control mechanism on the wake, including the onset and location of the maximum turbulence levels. Instantaneous and mean fields of swirling strength further highlight the role of the passive mechanisms in the vortex dynamics. Drag coefficient for the various cases was estimated indirectly from the flow measurements using a momentum balance. This approach shows that long flaps and slot were able to reduce drag with respect to the base case. The rigid flaps with length coincident with the diameter of the cylinder offered the best performance with drag reduction of ˜25%.

  11. 46 CFR 197.462 - Pressure vessels and pressure piping.


    ... 46 Shipping 7 2010-10-01 2010-10-01 false Pressure vessels and pressure piping. 197.462 Section... Diving Equipment § 197.462 Pressure vessels and pressure piping. (a) The diving supervisor shall ensure that each pressure vessel, including each volume tank, cylinder and PVHO, and each pressure...

  12. Mathematic Model and Analytic Solution for a Cylinder Subject to Exponential Function

    LIU Wen; SHAN Rui


    Hollow cylinders are widely used in spacecraft, rockets, weapons, metallurgy, materials, and mechanical manufacturing industries, and so on, hydraulic bulging roll cylinder and hydraulic press work all belong to hollow cylinders. However, up till now, the solution of the cylinder subjected to the pressures in the three-dimensional space is still at the stage of the analytical solution to the normal pressure or the approximate solution to the variable pressure by numerical method. The analytical solution to the variable pressure of the cylinder has not yet made any breakthrough in theory and can not meet accurate theoretical analysis and calculation requirements of the cylindrical in Engineering. In view of their importance, the precision calculation and theoretical analysis are required to investigate on engineering. A stress function which meets both the biharmonic equations and boundary conditions is constructed in the three-dimensional space. Furthermore, the analytic solution of a hollow cylinder subjected to exponential function distributed variable pressure on its inner and outer surfaces is deduced. By controlling the pressure subject to exponential function distributed variable pressure in the hydraulic bulging roller without any rolling load, using a static tester to record the strain supported hydraulic bulging roll, and comparing with the theoretical calculation, the experimental test result has a higher degree of agreement with the theoretical calculation. Simultaneously, the famous Lamè solution can be deduced when given the unlimited length of cylinder along the axis. The analytic solution paves the way for the mathematic building and solution of hollow cylinder with randomly uneven pressure.

  13. Heat of detonation, the cylinder test, and performance munitions

    Akst, I.B.


    Heats of detonation of CHNO explosives correlate well with copper cylinder test expansion data. The detonation products/calorimetry data can be used to estimate performance in the cylinder test, in munitions, and for new molecules or mixtures of explosives before these are made. Confidence in the accuracy of the performance estimates is presently limited by large deviations of a few materials from the regression predictions; but these same deviations, as in the insensitive explosive DINGU and the low carbon systems, appear to be sources of information useful for detonation and explosives research. The performance correlations are functions more of the detonation products and thermochemical energy than they are of the familiar parameters of detonation pressure and velocity, and the predictions are closer to a regression line on average than are those provided by CJ calculations. The prediction computations are simple but the measurements (detonation calorimetry/products and cylinder experiments) are not. 17 refs., 5 tabs.

  14. Hydrogen Bubbles as a Visualization Tool for Cylinder Shedding

    Sigurdson, Lorenz; Gilbert, Stuart


    We examine the behavior of hydrogen bubbles formed by electrolysis of water on a 2.54 mm cylindrical electrode in a water tunnel. The Reynolds Number based on cylinder diameter varies from 400 to 1100, and tunnel velocities range from 17 to 50 cm/s. At the lowest velocity buoyancy is a strong effect which inhibits accurate flow tracking by the bubbles. This effect largely disappears by 25 cm/s. As the tunnel velocity increases, bubble size decreases, reflected light for photography is reduced, and bubbles begin to track the von Karman vortex street vortex cores near the cylinder. The vortex cores have a sufficiently low pressure to capture the bubbles. Vortex street wavelength is seen to discretely increase as vortices proceed downstream. The location of this scale-change becomes nearer the cylinder as Re increases. Voids of bubbles occur in continuous linear downstream segments originating near the cylinder. They seem to be due to vortex modification in the wake similar to what other cylinder shedding researchers have found.

  15. Blower Cooling of Finned Cylinders

    Schey, Oscar W; Ellerbrock, Herman H , Jr


    Several electrically heated finned steel cylinders enclosed in jackets were cooled by air from a blower. The effect of the air conditions and fin dimensions on the average surface heat-transfer coefficient q and the power required to force the air around the cylinders were determined. Tests were conducted at air velocities between the fins from 10 to 130 miles per hour and at specific weights of the air varying from 0.046 to 0.074 pound per cubic foot. The fin dimensions of the cylinders covered a range in pitches from 0.057 to 0.25 inch average fin thicknesses from 0.035 to 0.04 inch, and fin widths from 0.67 to 1.22 inches.

  16. Condition of composite hoop-wrapped aluminium and steel cylinders removed from NGV service

    Gambone, L.R.; Liss, W.E.


    Natural gas vehicle (NGV) cylinders are intended to provide a service life of up to 20 years without the need to perform periodic retesting. The NGV service life of certain metal-lined hoop-wrapped cylinders is approaching 15 years. Assessing the amount of degradation which has occurred to the fibre reinforced plastic (FRP) wrap and the metal liners of these cylinders in required to verify the design conditions specified in NGV cylinder standards. A total of 83 composite hoop-wrapped cylinders (65 aluminum-lined and 18 steel-lined) were examined after up to 8 years in NGV service in North America. The cylinders were nondestructively evaluated using a combination of eddy current inspection of the metal liner, acoustic emission testing of the FRP wrap and, in some cases, hydrostatic proof testing. Only minor flaws were found on the inner and outer surfaces of the metal liners. Varying degrees of FRP wrap damage were found to have occurred in service. Thirty five of the 83 cylinders were tested to destruction using either hydraulic pressure cycling to determine th remaining life associated with refueling, or hydrostatic burst testing to measure the residual pressure retaining capacity of the cylinders. It was found that the condition of the FRP wrap, not the liner, is the life limiting factor in NGV service. Hydrostatic testing was found to be inadequate for the detection of flaws both in the metal liner and the FRP wrap. Acoustic emission test results indicated that absolute measurements can be ambiguous and do not necessarily correlate with the structural integrity of the cylinder. In general, the results indicated that the design conditions specified in NGV standards for composite hoop-wrapped cylinders are adequate, providing that improvements to the installation and protection practices involving composite wrapped cylinders are implemented in the appropriate installation codes, and that a regular program of periodic visual inspection is applied. (orig.)

  17. Filament winding cylinders. I - Process model

    Lee, Soo-Yong; Springer, George S.


    A model was developed which describes the filament winding process of composite cylinders. The model relates the significant process variables such as winding speed, fiber tension, and applied temperature to the thermal, chemical and mechanical behavior of the composite cylinder and the mandrel. Based on the model, a user friendly code was written which can be used to calculate (1) the temperature in the cylinder and the mandrel, (2) the degree of cure and viscosity in the cylinder, (3) the fiber tensions and fiber positions, (4) the stresses and strains in the cylinder and in the mandrel, and (5) the void diameters in the cylinder.

  18. Cooling of two smooth cylinders in row by a slot jet of air with low turbulence

    Gori, F. [Department of Mechanical Engineering, University of Rome ' Tor Vergata' , Via Politecnico 1, 00133 Rome (Italy)]. E-mail:; Petracci, I. [Department of Mechanical Engineering, University of Rome ' Tor Vergata' , Via Politecnico 1, 00133 Rome (Italy); Tedesco, V. [Department of Mechanical Engineering, University of Rome ' Tor Vergata' , Via Politecnico 1, 00133 Rome (Italy)


    According to the current literature on the cooling of two cylinders in row, by a uniform flow of air, the first cylinder is always a heat transfer promoter versus the second one. The aim of the present paper is to summarize the state of art of the literature on the cooling of two cylinders in row by a slot jet of air. Additional experiments are carried on in order to investigate the possible application of jet cooling to heat transfer apparatuses, including electronics, in order to study the positions of the two cylinders in row which realize the same heat transfer on each cylinder. In the experiments a slot jet of air with low turbulence is employed with a slot height, S, equal to the impinged cylinder diameter, D, i.e. D/S = 1.0. The first cylinder is set at two distances H from the slot exit, H/S = 4 and 6, while the distance of the second cylinder from the first one, L, is variable from L/S = 2-11. The Reynolds number, Re, defined with the cylinder diameter D, spans in the range Re = 11,000-22,200. If the first cylinder is set at the dimensionless distance from the slot exit which realizes the maximum mean heat transfer on the first cylinder, i.e. H/S = 6, the second one has generally a lower mean Nusselt number. The only exception is when the second cylinder is set at the dimensionless distance L/S = 4 and the Reynolds number is at the maximum value experimented, i.e. Re = 22,200. If the first cylinder is set at the dimensionless distance H/S = 4 the mean Nusselt number on the second cylinder is greater if its distance from the first one is in the range L/S = 3.5-7 for Re = 14,300-22,200. The first cylinder acts as a heat transfer promoter, as happens in uniform flow, only for Re = 22,200.


    Dominique Jeulin


    Full Text Available The percolation threshold ρc of Boolean models of cylinders with their axis parallel to a given direction is studied by means of simulations. An efficient method of construction of percolating connected components was developed, and is applied to one or two scales Boolean model, in order to simulate the presence of aggregates. The invariance of the percolation threshold with respect to affine transformations in the common direction of the axis of cylinders is approximately satisfied on simulations. The prediction of the model (ρc close to 0.16 is consistent with experimental measurements on plasma spray coatings, which motivated this study.

  20. Simplified method for the design of cylinder water walls for passive solar heating

    van der Mersch, P.L.; Burns, P.J.; Winn, C.B.


    A cylinder water wall (CWW) system is considered. The design method allows for direct-gain space above and between the cylinders, which none of the current known design methods include. The design method consists of using design curves, and is oriented to the architectural community. At most, a four-function calculator is necessary. It requires knowing the room dimensions and the room UA and thermal capacitance. Two cylinder sizes and four cylinder spacings may be considered. The method permits determining the size of the glazing, how many cylinders of a given size are required and what spacing is necessary to maintain a desired average minimum, overall average and average maximum temperature in the room. An overview is given of how the design method was developed, as well as a description of how it is applied.

  1. Poiseuille flow past a nanoscale cylinder in a slit channel: Lubrication theory versus molecular dynamics analysis

    Rahmani, Amir M; Jupiterwala, Mehlam; Colosqui, Carlos E


    Plane Poiseuille flow past a nanoscale cylinder that is arbitrarily confined (i.e., symmetrically or asymmetrically confined) in a slit channel is studied via hydrodynamic lubrication theory and molecular dynamics simulations, considering cases where the cylinder remains static or undergoes thermal motion. Lubrication theory predictions for the drag force and volumetric flow rate are in close agreement with molecular dynamics simulations of flows having molecularly thin lubrication gaps, despite the presence of significant structural forces induced by the crystalline structure of the modeled solid. While the maximum drag force is observed in symmetric confinement, i.e., when the cylinder is equidistant from both channel walls, the drag decays significantly as the cylinder moves away from the channel centerline and approaches a wall. Hence, significant reductions in the mean drag force on the cylinder and hydraulic resistance of the channel can be observed when thermal motion induces random off-center displace...

  2. The Twente turbulent Taylor–Couette (T3C) facility: Strongly turbulent (multiphase) flow between two independently rotating cylinders

    Gils, Dennis P.M.; Bruggert, Gert-Wim; Lathrop, Daniel P.; Sun, Chao; Lohse, Detlef


    A new turbulent Taylor–Couette system consisting of two independently rotating cylinders has been constructed. The gap between the cylinders has a height of 0.927 m, an inner radius of 0.200 m, and a variable outer radius (from 0.279 to 0.220 m). The maximum angular rotation rates of the inner and o

  3. Numerical analysis of two and three dimensional buoyancy driven water-exit of a circular cylinder

    Moshari Shahab


    Full Text Available With the development of the technology of underwater moving bodies, the need for developing the knowledge of surface effect interaction of free surface and underwater moving bodies is increased. Hence, the two-phase flow is a subject which is interesting for many researchers all around the world. In this paper, the non-linear free surface deformations which occur during the water-exit of a circular cylinder due to its buoyancy are solved using finite volume discretization based code, and using Volume of Fluid (VOF scheme for solving two phase flow. Dynamic mesh model is used to simulate dynamic motion of the cylinder. In addition, the effect of cylinder mass in presence of an external force is studied. Moreover, the oblique exit and entry of a circular cylinder with two exit angles is simulated. At last, water-exit of a circular cylinder in six degrees of freedom is simulated in 3D using parallel processing. The simulation errors of present work (using VOF method for maximum velocity and height of a circular cylinder are less than the corresponding errors of level set method reported by previous researchers. Oblique exit shows interesting results; formation of waves caused by exit of the cylinder, wave motion in horizontal direction and the air trapped between the waves are observable. In 3D simulation the visualization of water motion on the top surface of the cylinder and the free surface breaking on the front and back faces of the 3D cylinder at the exit phase are observed which cannot be seen in 2D simulation. Comparing the results, 3D simulation shows better agreement with experimental data, specially in the maximum height position of the cylinder.

  4. Estimation of the combustion-related noise transfer matrix of a multi-cylinder diesel engine

    Lee, Moohyung; Bolton, J. Stuart; Suh, Sanghoon


    In the present paper, a procedure for estimating an engine-platform-dependent transfer matrix that relates in-cylinder pressures to radiated noise resulting from processes associated with the combustion process is described. A knowledge of that transfer matrix allows the combustion-related component of the noise radiated by a diesel engine to be estimated from a knowledge of cylinder pressure signals. The procedure makes use of multi-input/multi-output (MIMO) system modeling concepts in conjunction with cross-spectral measurements. To date, the empirical prediction of diesel engine combustion noise has usually been achieved by combining a cylinder pressure with a single, smooth structural attenuation function (e.g., the Lucas combustion noise meter) regardless of the specifications of the engine. In comparison, the procedure described in the present work provides the structural attenuation characteristics of a particular engine in the form of a transfer matrix, thus allowing accurate prediction by accounting fully for inter-cylinder correlation, cylinder-to-cylinder variation and the detailed characteristics of an engine structure. The procedure was applied to a six-cylinder diesel engine, and the various aspects of the new procedure are described.

  5. The impulsive motion of a small cylinder at an interface

    Vella, Dominic; Li, Jie


    We study the unsteady motion caused by an impulse acting at time t =0 on a small cylinder floating horizontally at a liquid-gas interface. This is a model for the impact of a cylinder onto a liquid surface after the initial splash. Following the impulse, the motion of the cylinder is determined by its weight per unit length (pulling it into the bulk liquid) and resistance from the liquid, which acts to keep the cylinder at the interface. The range of cylinder radii r and impact speeds U considered is such that the resistance from the liquid comes from both the interfacial tension and hydrodynamic pressures. We use two theoretical approaches to investigate this problem. In the first, we apply the arbitrary Lagrangian Eulerian (ALE) method developed by Li et al. ["An arbitrary Lagrangian Eulerian method for moving-boundary problems and its application to jumping over water," J. Comput. Phys. 208, 289 (2005)] to compute the fluid flow caused by the impulse and the (coupled) motion of the cylinder. We show that at early times the interfacial deformation is given by a family of shapes parametrized by r /t2/3. We also find that for a given density and radius there is a critical impulse speed below which the cylinder is captured by the interface and floats but above which it pierces the interface and sinks. Our second theoretical approach is a simplified one in which we assume that the interface is in equilibrium and derive an ordinary differential equation for the motion of the cylinder. Solving this we again find the existence of a critical impulse speed for sinking giving us some quantitative understanding of the results from the ALE simulations. Finally, we compare our theoretical predictions with the results of experiments for cylinder impacts by Vella and Metcalfe ["Surface tension dominated impact," Phys. Fluids 19, 072108 (2007)]. This comparison suggests that the influence of contact line effects, neglected here, may be important in the transition from floating

  6. On certain geodesic conjugacies of flat cylinders



    We prove $C^0$-conjugacy rigidity of any flat cylinder among two different classes of metrics on the cylinder, namely among the class of rotationally symmetric metrics and among the class of metrics without conjugate points.

  7. Anisotropic Poisson Processes of Cylinders

    Spiess, Malte


    Main characteristics of stationary anisotropic Poisson processes of cylinders (dilated k-dimensional flats) in d-dimensional Euclidean space are studied. Explicit formulae for the capacity functional, the covariance function, the contact distribution function, the volume fraction, and the intensity of the surface area measure are given which can be used directly in applications.

  8. Natural convective heat transfer from square cylinder

    Novomestský, Marcel; Smatanová, Helena; Kapjor, Andrej


    This article is concerned with natural convective heat transfer from square cylinder mounted on a plane adiabatic base, the cylinders having an exposed cylinder surface according to different horizontal angle. The cylinder receives heat from a radiating heater which results in a buoyant flow. There are many industrial applications, including refrigeration, ventilation and the cooling of electrical components, for which the present study may be applicable

  9. 基于格子波兹曼方法研究颗粒对缸套-活塞环油膜压力的影响%Influences of solid particles on oil film pressure in cylinder-piston ring based on lattice-Boltzmann method

    韩海燕; 张优云; 王凯


    Most liquid lubricating systems are inevitably supplied with lubricant containing contaminant particles. It is certain that some of these particles are suspended in the oil, that is, the size of the solid particle is smaller than the oil film thickness. In this paper, the effects of the suspended particles on the oil film pressure of cylinder-piston ring were mainly studied. In recent years, the lattice Boltzmann method (LBM) has been developed as an alternative to the conventional CFD (Computational Fluid Dynamics) methods. Unlike conventional numerical schemes based on discretization of macroscopic equations, the LBM is based on the statistical physics and describes the microscopic picture of particles movement in an extremely simplified way, but at the macroscopic level it gives a correct average description of the motion. It has been widely used to simulate the two-phase flow. The paper is aimed to study the influence of solid particles on the oil film pressure of piston ring based on L. The lubricate oil with suspended particles was regarded as the two-phase flow. The movement of the lubricate oil with solid particles is described with kinetic equations of distribution function of particles. A discrete Lattice-Boltzmann model of cylinder-piston ring was built in the domain of piston ring lubrication from the perspective of flow field. The implementation of boundary conditions for LBM is very important and has great effect on the accuracy and the stability of method. The bounce-back scheme was used in fluid-solid boundary and wall boundary treatment. The Reynolds boundary condition in the Lattice-Boltzmann Method was developed for the cracked oil film. By programming simulation, the influence of solid particles on the oil film pressure of piston ring was studied by researching the flow of the lubricant with solid particles based on LBM. The effect of particle location, shape and number on the oil film pressure of piston ring at certain crank angle was analyzed

  10. Correlation of Cooling Data from an Air-Cooled Cylinder and Several Multicylinder Engines

    Pinkel, Benjamin; Ellerbrock, Herman H , Jr


    The theory of engine-cylinder cooling developed in a previous report was further substantiated by data obtained on a cylinder from a Wright r-1820-g engine. Equations are presented for the average head and barrel temperatures of this cylinder as functions of the engine and the cooling conditions. These equations are utilized to calculate the variation in cylinder temperature with altitude for level flight and climb. A method is presented for correlating average head and barrel temperatures and temperatures at individual points on the head and the barrel obtained on the test stand and in flight. The method is applied to the correlation and the comparison of data obtained on a number of service engines. Data are presented showing the variation of cylinder temperature with time when the power and the cooling pressure drop are suddenly changed.

  11. Comparison of aerodynamic noise from three nose-cylinder combinations

    Guenther, R. A.; Reding, M. P.


    Results of experiments with three different cylinder and blunted nose combinations are discussed. Combinations include smooth cylinder with single 15 deg cone, smooth cylinder with double cone of 25 and 10 deg, and longitudinally corrugated cylinder with similar double cone.

  12. TDC Offset Estimation from Motored Cylinder Pressure Data based on Heat Release Shaping Estimation du décalage de PMH à partir de données de pression de cylindre moteur basées sur la conformation de libération de chaleur

    Tunestål P.


    Full Text Available Finding the correct Top Dead Center (TDC offset for an internal combustion engine is harder than it seems. This study introduces a novel method to find the TDC offset based on the simple assumption that the heat loss power through the combustion chamber walls is constant for motored cycles in a narrow Crank Angle interval around TDC. The proposed method uses nonlinear least squares optimization to find the combination of specific heat ratio and TDC offset that makes the heat loss power as constant as possible. An important subproblem is to determine the peak pressure location with high accuracy. Fitting a third order Fourier series to the motored cylinder pressure allows the pressure maximum to be estimated with a standard deviation of 0.005° Crank Angle (CA and it can also be used instead of the measured pressure to reduce the uncertainty of the TDC estimate by approximately 50%. The standard deviation of a single-cycle TDC estimate is approximately 0.025° CA when using a crank resolution of 0.2° CA for the measurements. The bias of the TDC estimate is in the 0-0.02° CA range both when comparing to measurements with a TDC sensor and with simulated motored cycles. The method can be used both for calibration and on-board diagnostics purposes e.g. during cranking, fuel cut-off or engine switch-off. The third order Fourier series fit comes with a significant computational penalty but since it is only applied very intermittently this does not have to be a serious issue. La détermination du décalage de Point Mort Haut (PMH correct d’un moteur à combustion interne est plus difficile qu’il n’y paraît. Cette étude introduit une nouvelle méthode destinée à déterminer le décalage de PMH sur la base de la simple supposition que la puissance de perte de chaleur à travers les parois de la chambre de combustion soit constante pour des cycles moteur selon un intervalle d’angle de bras de manivelle étroit autour du PMH. La m

  13. Wake-induced vibrations in Tandem Cylinders

    Mysa, Ravi Chaithanya; Jaiman, Rajeev Kumar


    The upstream cylinder is fixed in the tandem cylinders arrangement. The downstream cylinder is placed at a distance of four diameters from the upstream cylinder in the free stream direction and is mounted on a spring. The dynamic response of the downstream cylinder is studied at Reynolds number of 10,000. The transverse displacement amplitude of the downstream cylinder is larger compared to that of single cylinder in the post-lock-in region. The transverse dynamic response of the downstream cylinder in the post-lock-in region is characterized by a dominant low frequency component compared to shed frequency, which is nearer to the structural natural frequency. The interaction of upstream wake with the downstream cylinder is carefully analyzed to understand the introduction of low frequency component in the transverse load along with the shed frequency. We found that the stagnation point moves in proportional to the velocity of the cylinder and is in-phase with the velocity. The low frequency component in the stagnation point movement on the downstream cylinder is sustained by the interaction of upstream wake. The frequencies in the movement of the stagnation point is reflected in the transverse load resulting in large deformation of the cylinder. The authors wish to acknowledge support from A*STAR- SERC and Singapore Maritime Institute.

  14. Non-Newtonian flow between concentric cylinders calculated from thermophysical properties obtained from simulations

    Narayan, A.P. [Univ. of Colorado, Boulder, CO (United States); Rainwater, J.C. [National Institute of Standards and Technology, Boulder, CO (United States); Hanley, H.J.M. [Univ. of Colorado, Boulder, CO (United States)]|[National Institute of Standards and Technology, Boulder, CO (United States)


    A study of the Weissenberg effect (rod climbing in a stirred system) based on nonequilibrium molecular dynamics (NEMD) is reported. Simulation results from a soft-sphere fluid are used to obtain a self-consistent free-surface profile of the fluid of finite compressibility undergoing Couette flow between concentric cylinders. A numerical procedure is then applied to calculate the height profile for a hypothetical fluid with thermophysical properties of the soft-sphere liquid and of a dense colloidal suspension. The height profile calculated is identified with shear thickening and the forms of the viscometric functions. The maximum climb occurs between the cylinders rather than at the inner cylinder.

  15. Material properties of Ni-Cr-Al alloy and design of a 4 GPa class non-magnetic high-pressure cell

    Uwatoko, Y; Ueda, K; Uchida, A; Kosaka, M; Mori, N; Matsumoto, T


    The Ni-Cr-Al Russian alloy was prepared. Its magnetic and mechanical properties were better than those of MP35N alloy. We fabricated the a piston-cylinder-type hybrid high-pressure cell using the Ni-Cr-Al alloy. It has been found that the maximum working pressure can be repeatedly raised to 3.5 GPa at T = 2 K without any difficulties.

  16. Evaluation of Inner Soil Pressure Acting on Opened Bottom Cylindrical Structure

    刘建起; 孟晓娟


    An opened bottom cylinder is a large-diameter cylinder placed on a rubber base or embedded in a soil foundation.The settlement of such a cylinder differs greatly from that of a closed bottom cylinder and so does the distribution of inner soil pressure over the opened bottom cylindrical structure. Through investigation of the settlement and the inner soil pressure on the opened bottom cylinder by model experiments, the interactions among the filler inside the cylinder, subsoil and cylinder are analyzed. The adjusting mechanism of friction resistance between the inner filler and the wall of the cylinder during overturning of the cylinder is discussed. Based on the experimental study, a method for calculating the inner soil pressure on the cylindrical structure under axisymmetric loading or non- axisymmetric (with lateral) loading is proposed in this paper. Meanwhile, the effective anti-overturning ratio of the opened bottom cylinder is derived.

  17. Prediction of External Corrosion for Steel Cylinders--2002 Report

    Schmoyer, RLS


    criteria, respectively. In general, these criteria are based on an area of wall thinning. However, the minimum thickness predicted in this report is essentially for a point--an area of about 0.01 square inches--because the thickness measurements on which the predictions are based are essentially for points. For thicknesses criteria greater than zero, conclusions based on minimum point thicknesses are conservative. Because of the interaction of UF{sub 6}, with atmospheric moisture and steel, a point breach would deteriorate in a year to one-inch diameter hole (DNFSB 1995), however, and so small area approximations should be close for the breach criteria. The most recently collected data, entered into the corrosion model database and not available for the previous report (Schmoyer and Lyon 2001), consists of evaluations of wall loss of 48 inch thin-wall cylinders: 301 cylinders at Paducah, 101 at ETTP, and 139 at Portsmouth; 14 thick-wall cylinders at Portsmouth; and 99 model 30A cylinders at Paducah. However, because of missing values, repeated measures on the same cylinders, outliers, and other data problems, however, not all of these measurements are necessarily used in the corrosion analysis. In several cases, difficulty with the data is also due to a mathematical approach to cylinder corrosion modeling that is used in this report, in Schmoyer and Lyon (2001), and in earlier reports by Lyon. Therefore, an alternative approach is also considered in this report. In previous reports, minimum wall thicknesses have been modeled indirectly through separate models of initial thickness and maximum pit depth. In order to estimate minimum wall thicknesses, the initial thickness and maximum pit depth models are combined using mathematics that assumes independence of the statistical distributions of the initial thicknesses and maximum pit depths. Initial thicknesses are modeled from wall thickness maxima measured at relatively uncorroded wall areas of each cylinder. Maximum pit

  18. Development of multi-frequency ESR system for high-pressure measurements up to 2.5 GPa.

    Sakurai, T; Fujimoto, K; Matsui, R; Kawasaki, K; Okubo, S; Ohta, H; Matsubayashi, K; Uwatoko, Y; Tanaka, H


    A new piston-cylinder pressure cell for electron spin resonance (ESR) has been developed. The pressure cell consists of a double-layer hybrid-type cylinder with internal components made of the ZrO2-based ceramics. It can generate a pressure of 2 GPa repeatedly and reaches a maximum pressure of around 2.5 GPa. A high-pressure ESR system using a cryogen-free superconducting magnet up 10T has also been developed for this hybrid-type pressure cell. The frequency region is from 50 GHz to 400 GHz. This is the first time a pressure above 2 GPa has been achieved in multi-frequency ESR system using a piston-cylinder pressure cell. We demonstrate its potential by showing the results of the high-pressure ESR of the S=1 system with the single ion anisotropy NiSnCl6·6H2O and the S=1/2 quantum spin system CsCuCl3. We performed ESR measurements of these systems above 2 GPa successfully. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Generalized Bistability in Origami Cylinders

    Reid, Austin; Adda-Bedia, Mokhtar; Lechenault, Frederic

    Origami folded cylinders (origami bellows) have found increasingly sophisticated applications in space flight, medicine, and even experimental nuclear physics. In spite of this interest, a general understanding of the dynamics of an origami folded cylinder has been elusive. By solving the fully constrained behavior of a periodic fundamental origami cell defined by unit vectors, we have found an analytic solution for all possible rigid-face states accessible from a cylindrical Miura-ori pattern. Although an idealized bellows has two rigid-face configurations over a well-defined region, a physical device, limited by nonzero material thickness and forced to balance hinge with plate-bending energy, often cannot stably maintain a stowed configuration. We have identified and measured the parameters which control this emergent bistability, and have demonstrated the ability to fabricate bellows with tunable deployability.

  20. Cylinder components properties, applications, materials


    Owing to the ever-increasing requirements to be met by gasoline and diesel engines in terms of CO2 reduction, emission behavior, weight, and service life, a comprehensive understanding of combustion engine components is essential today. It is no longer possible for professionals in automotive engineering to manage without the corresponding expertise, whether they work in the field of design, development, testing, or maintenance. This technical book provides in-depth answers to questions about design, production, and machining of cylinder components. In this second edition, every section has been revised and expanded to include the latest developments in the combustion engine. Content Piston rings Piston pins and piston pin circlips Bearings Connecting rods Crankcase and cylinder liners Target audience Engineers in the field of engine development and maintenanceLecturers and students in the areas of mechanical engineering, engine technology, and vehicle constructionAnyone interested in technology Publisher MAH...

  1. Compressibility effects on the flow past a rotating cylinder

    Teymourtash, A. R.; Salimipour, S. E.


    In this paper, laminar flow past a rotating circular cylinder placed in a compressible uniform stream is investigated via a two-dimensional numerical simulation and the compressibility effects due to the combination of the free-stream and cylinder rotation on the flow pattern such as forming, shedding, and removing of vortices and also the lift and drag coefficients are studied. The numerical simulation of the flow is based on the discretization of convective fluxes of the unsteady Navier-Stokes equations by second-order Roe's scheme and an explicit finite volume method. Because of the importance of the time dependent parameters in the solution, the second-order time accurate is applied by a dual time stepping approach. In order to validate the operation of a computer program, some results are compared with previous experimental and numerical data. The results of this study show that the effects due to flow compressibility such as normal shock wave caused the interesting variations on the flow around the cylinder even at a free-stream with a low Mach number. At incompressible flow around the rotating cylinder, increasing the speed ratio, α (ratio of the surface speed to free-stream velocity), causes the ongoing increase in the lift coefficient, but in compressible flow for each free-stream Mach number, increasing the speed ratio results in obtaining a limited lift coefficient (a maximum mean lift coefficient). In addition, results from the compressible flow indicate that by increasing the free-stream Mach number, the maximum mean lift coefficient is decreased, while the mean drag coefficient is increased. It is also found that by increasing the Reynolds number at low Mach numbers, the maximum mean lift coefficient and critical speed ratio are decreased and the mean drag coefficient and Strouhal number are increased. However at the higher Mach numbers, these parameters become independent of the Reynolds number.

  2. Counting Polyominoes on Twisted Cylinders

    Barequet, Gill; Moffie, Micha; Ribó, Ares; Rote, Günter


    International audience; We improve the lower bounds on Klarner's constant, which describes the exponential growth rate of the number of polyominoes (connected subsets of grid squares) with a given number of squares. We achieve this by analyzing polyominoes on a different surface, a so-called $\\textit{twisted cylinder}$ by the transfer matrix method. A bijective representation of the "states'' of partial solutions is crucial for allowing a compact representation of the successive iteration vec...

  3. Acoustic band gaps in two-dimensional square arrays of semi-hollow circular cylinders

    LU TianJian; GAO GuoQin; MA ShouLin; JIN Feng; T.Kim


    Concave surfaces focus sound while convex surfaces disperse sound. It is therefore interesting to know if it is possible to make use of these two opposite characteristics to enhance the band gap per-formance of periodic arrays of solid cylinders in air. In this paper, the band gap characteristics of a 2-D square array of semi-hollow circular cylinders embedded in air are investigated, both experimentally and theoretically. In comparison with the types of inclusion studied by previous researchers, a semi-hollow circular cylinder is unique in the sense that it has concave inner surfaces and convex outer surfaces. The finite difference time domain (FDTD) method is employed to study the propagation behavior of sound across the new phononic crystal of finite extent, and the influences of sample size and inclusion orientation on band gap characteristics are quantified in order to obtain the maximum band gap. For reference, the band gap behaviors of solid circular cylinder/air and hollow circular cyl-inder/air systems are considered and compared with those of semi-hollow circular cylinder/air systems. In addition to semi-hollow circular cylinders, other inclusion topologies such as semi-hollow triangular and square cylinders are also investigated. To validate the theoretical predictions, experimental meas-urements on square arrays of hollow AI cylinders in air and semi-hollow AI cylinders in air are carried out. The results demonstrate that the semi-hollow circular cylinder/air system has the best overall band gap performance.

  4. A Numerical and Experimental Study of a Shock-Accelerated Heavy Gas Cylinder

    Zoldi, Cindy Anne [State Univ. of New York (SUNY), Stony Brook, NY (United States)


    In this thesis we study the evolution of an SF6 gas cylinder surrounded by air when accelerated by a planar Mach 1.2 shock wave. Vorticity generated by the interaction of the shock wave's pressure gradient with the density gradient at the air/SF6 interface drives the evolution of the cylinder into a vortex pair

  5. Axisymmetric instability of the Poiseuille-Couette flow between concentric cylinders at high Reynolds numbers

    Savenkov, I. V.


    For the pressure-driven flow in an annular channel with a wall moving in the axial direction, its linear instability with respect to axisymmetric perturbations at high Reynolds numbers is investigated within the framework of the triple-deck theory. When the gap between the cylinders is sufficiently small (as compared to the radii of the cylinders), it is shown that the perturbations can split into two wave packets, the first of which grows faster and moves at a higher velocity.

  6. In-cylinder Flow Characterisation of Heavy Duty Diesel Engines Using Combustion Image Velocimetry

    Dembinski, Henrik


    In-cylinder flow in diesel engines has a large impact on combustion and emission formation. In this work, the flow is characterised with a new measurement method called combustion image velocimetry (CIV). This technique is used to explain how airflow introduced during induction affects soot emissions and interacts with injection pressures up to 2500 bar. The CIV measurements enable flow analysis during the combustion and post-oxidation phases. The flow velocities inside the cylinder of a heav...

  7. 考虑非线性因素的气缸盖刚强度分析与评估%Analysis and Evaluation of Strength and Stiffness for Cylinder Head Based on Non-linear Factors

    徐岩; 田小飞; 王艳霞


    The strength and deformation of cylinder head under different conditions were researched, the three-dimensional solid model of cylinder head-gasket-liner-block composites was built and finally mesh generation and simulation analysis were carried out. The non-linear factor of cylinder head and gasket contact, as well as that of gasket material, was taken into consideration in the calculatioa Based on the mechanical intensity calculation of normal conditions, the intensifying potentials of cylinder head were analyzed under the condition that the maximum cylinder pressure increased to 18 Mpa and 20 Mpa respectively. The stress distribution of largely concerned sites and the deformation of cylinder head fire surface were analyzed before and after strengthening.%对不同工况下气缸盖的强度和变形情况进行了研究,建立了气缸盖—气缸垫—气缸套—机体的组合体三堆实体模型,进行了网格划分及仿真分析.考虑了气缸盖与气缸垫之间接触非线性因素以及气缸垫的材料非线性因素对气缸盖刚强度的影响,在进行正常工况机械强度计算的基础上,缸内最高燃烧压力增加为18 MPa和20 MPa工况下,对气缸盖的强化潜力进行了对比分析,分析了强化前后工程中比较关注部位的应力分布以及气缸盖底板火力面的变形分布情况.




    Full Text Available The discharged oil from hydraulic cylinder, during its operation, is highly restricted by the small sized outlets. As a result, a back pressure builds up and the piston motion, therefore, is slowed down; the system pump has to do additional work to overcome this hydraulic resistance so as to preserve the required speed. In this study the possibility of improvement of the actuation speed of the hydraulic cylinders was investigated and analysed. Both a four-port cylinder and a resized-ports cylinder were proposed as fast cylinders. FLUENT 6.3 was used for the simulation of the oil flow field of the hydraulic cylinders. Results showed that relation between discharge flow and the outlets diameters is best described by a power law having coefficients partially depending on the system pressure. It had also shown that for any given total outlet area, the actuation speed of the single outlet cylinders is always higher than that of the double outlets cylinders. In one case where the total outlet area is 3.93E-05m2, the actuation speed of the single outlet cylinder is 21% higher than that of the double outlets cylinder; whereas, when doubling the total outlet area the different is reduced to just 6% . Resizing the outlet for small ports was more efficient than using multi-outlets; while for a large ports it shows no significant difference to use either one outlet port or multi-outlets. Both the solutions of resizing or ports addition need special valve to be fit to the cylinder so that the cylinder could be effectively operated under the control of the proportional valve.

  9. Fire testing of bare uranium hexafluoride cylinders

    Pryor, W.A. [PAI Corp., Oak Rige, TN (United States)


    In 1965, the Oak Ridge Gaseous Diffusion Plant (ORGDP), now the K-25 Site, conducted a series of tests in which bare cylinders of uranium hexafluoride (UF{sub 6}) were exposed to engulfing oil fires for the US Atomic Energy Commission (AEC), now the US Department of Energy (DOE). The tests are described and the results, conclusions, and observations are presented. Two each of the following types of cylinders were tested: 3.5-in.-diam {times} 7.5-in.-long cylinders of Monel (Harshaw), 5.0-in.-diam {times} 30-in.-long cylinders of Monel, and 8-in.-diam {times} 48-in.-long cylinders of nickel. The cylinders were filled approximately to the standard UF{sub 6} fill limits of 5, 55, and 250 lb, respectively, with a U-235 content of 0.22%. The 5-in.- and 8-in.-diam cylinders were tested individually with and without their metal valve covers. For the 3.5-in.-diam Harshaw cylinders and the 5.0-in.-diam cylinder without a valve cover the valves failed and UF{sub 6} was released. The remaining cylinders ruptured explosively in time intervals ranging from about 8.5 to 11 min.

  10. Fire testing of bare uranium hexafluoride cylinders

    Pryor, W.A. [PAI Corp., Oak Ridge, TN (United States)


    In 1965, the Oak Ridge Gaseous Diffusion Plant (ORGDP), now the K-25 Site, conducted a series of tests in which bare cylinders of uranium hexafluoride (UF{sub 6}) were exposed to engulfing oil fires for the US Atomic Energy Commission (AEC), now the US Department of Energy (DOE). The tests are described and the results, conclusions, and observations are presented. Two each of the following types of cylinders were tested: 3.5-in.-diam {times} 7.5-in.-long cylinders of Monel (Harshaw), 5.0-in.-diam {times} x 30-in.-long cylinders of Monel, and 8-in.-diam {times} 48-in.-long cylinders of nickel. The cylinders were filled approximately to the standard UF{sub 6} fill limits of 5, 55, and 250 lb, respectively, with a U-235 content of 0.22%. The 5-in.- and 8-in.-diam cylinders were tested individually with and without their metal valve covers. For the 3.5-in.-diam Harshaw cylinders and the 5.0-in.-diam cylinder without a valve cover, the valves failed and UF{sub 6} was released. The remaining 6 cylinders ruptured explosively in time intervals ranging from about 8.5 to 11 min.

  11. MPPT of Magnus Wind System with DC Servo Drive for the Cylinders and Boost Converter

    Maro Jinbo


    Full Text Available This paper presents an algorithm MPPT (Maximum Power Point Tracking for a Magnus wind system with a DC servo drive system (DC drive and BLDC motor to rotate the turbine cylinders. The optimal cylinders rotation is the one to deliver the maximum power extracted from the wind tracked by fixed and adaptive step HCC (Hill Climbing Control acting on the servo drive. The proposed wind system consists of a PMSG (Permanent Magnet Synchronous Generator, a three-phase diode rectifier, a DC/DC (boost converter, and a resistive load. Furthermore, the boost converter acts with the fixed step HCC algorithm to track the maximum power operating point. Therefore, the MPPT for a Magnus wind system requires both tracking for the optimal cylinder speed and the optimal generator speed.

  12. Numerical Investigation on Slot air Jet impingement Heat Transfer between Horizontal Concentric Circular Cylinders

    Arash Azimi


    Full Text Available Numerical study has been carried out for slot air jet impingement cooling of horizontal concentric circular cylinders. The slot air jet is situated at the symmetry line of a horizontal cylinder along the gravity vector and impinges to the bottom of the outer cylinder which is designated as θ=0°. The outer cylinder is partially opened at the top with width of W=30mm and is kept at constant temperature T= 62°C. Inner cylinder which is a part of the slot jet structure is chosen to be insulated. The effects of jet Reynolds number in the range of 100≤ Rej ≤1000 and the ratio of spacing between nozzle and outer cylinder surface to the jet width for H=4.2 and H=12.5 on the local and average Nusselt numbers are examined. In the numerical study, FLUENT CFD package is used and validated by comparing the results with the experimental data at the same Reynolds number. It is observed that the maximum Nusselt number occurs at the stagnation point at (θ=0° and the local heat transfer coefficient decrease on the circumference of the cylinder with increase of θ as a result of thermal boundary layer thickness growth. Also results show that the local and average heat transfer coefficients are raised by increasing the jet Reynolds number and by decreasing the nozzle-to-surface spacing.

  13. A Generic Model Based Tracking Controller for Hydraulic Valve-Cylinder Drives

    Hansen, Anders Hedegaard; Schmidt, Lasse; Pedersen, Henrik Clemmensen


    , and are therefore constrained to utilize only measurements of the piston position, the valve spool position, the transmission line pressures and the supply pressure, as feedbacks. The control structures are generally targeting a high bandwidth of the controlled cylinder drive and accurate tracking ability...

  14. Fabrication and efficiency evaluation of a hybrid NiCrAl pressure cell up to 4 GPa.

    Fujiwara, Naoki; Matsumoto, Takehiko; Koyama-Nakazawa, Kazuko; Hisada, Akihiko; Uwatoko, Yoshiya


    A hybrid NiCrAl pressure cell was fabricated to measure magnetic quantities under high pressure above 3 GPa. A pressure of 4.0 GPa was achieved and the pressure cell was found to be reusable even after a pressurizing trial up to 4.0 GPa. Pressure was monitored using (63)Cu nuclear quadrupole resonance of Cu(2)O and ruby fluorescence. The pressure efficiency of a fresh cell was maintained at 96%, and no appreciable deformation was observed at pressures below 3 GPa; on the other hand, the efficiency after pressurizing trials decreased gradually and reached 75% at 4 GPa accompanied by a maximum expansion inside the cylinder of 2%.

  15. Fatigue Tests with Densit Cylinders - D4

    Ellegaard, Peter

    This report contains descriptions and results of a series of fatigue tests performed during the autumn of 2005 at the Stuctural Research Laboratory, Aalborg University. Cylinders with a diameter of 45 mm and a height of 90 mm were used as test specimens; the material was Densit Ducorit D4. Four...... cylinders were tested statically under compression and the rest of the cylinders (30) were tested under fatigue conditions with a load varying sinusoidally....

  16. Rarita-Schwinger Type operators on Cylinders


    Here we define Rarita-Schwinger operators on cylinders and construct their fundamental solutions. Further the fundamental solutions to the cylindrical Rarita-Schwinger type operators are achieved by applying translation groups. In turn, a Borel-Pompeiu Formula, Cauchy Integral Formula and a Cauchy Transform are presented for the cylinders. Moreover we show a construction of a number of conformally inequivalent spinor bundles on these cylinders. Again we construct Rarita-Schwinger operators an...

  17. Cylindricity Error Measuring and Evaluating for Engine Cylinder Bore in Manufacturing Procedure

    Qiang Chen


    Full Text Available On-line measuring device of cylindricity error is designed based on two-point method error separation technique (EST, which can separate spindle rotation error from measuring error. According to the principle of measuring device, the mathematical model of the minimum zone method for cylindricity error evaluating is established. Optimized parameters of objective function decrease to four from six by assuming that c is equal to zero and h is equal to one. Initial values of optimized parameters are obtained from least square method and final values are acquired by the genetic algorithm. The ideal axis of cylinder is fitted in MATLAB. Compared to the error results of the least square method, the minimum circumscribed cylinder method, and the maximum inscribed cylinder method, the error result of the minimum zone method conforms to the theory of error evaluation. The results indicate that the method can meet the requirement of engine cylinder bore cylindricity error measuring and evaluating.

  18. Cylinder valve packing nut studies

    Blue, S.C. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)


    The design, manufacture, and use of cylinder valve packing nuts have been studied to improve their resistance to failure from stress corrosion cracking. Stress frozen photoelastic models have been analyzed to measure the stress concentrations at observed points of failure. The load effects induced by assembly torque and thermal expansion of stem packing were observed by strain gaging nuts. The effects of finishing operations and heat treatment were studied by the strain gage hole boring and X-ray methods. Modifications of manufacturing and operation practices are reducing the frequency of stress corrosion failures.

  19. Quantum Mechanics on the cylinder

    González, J A; Tosiek, J


    A new approach to deformation quantization on the cylinder considered as phase space is presented. The method is based on the standard Moyal formalism for R^2 adapted to (S^1 x R) by the Weil--Brezin--Zak transformation. The results are compared with other solutions of this problem presented by Kasperkovitz and Peev (Ann. Phys. vol. 230, 21 (1994)0 and by Plebanski and collaborators (Acta Phys. Pol. vol. B 31}, 561 (2000)). The equivalence of these three methods is proved.


    SUN Ren; CHWANG Allen T.


    The nonlinear hydrodynamic interaction between a floating elliptic cylinder and a vibrating circular cylinder immersed in an infinite fluid was investigated. By taking the added masses of the two-cylinder system into account, the dynamical equations of motion were formulated from the Lagrange equations of motion. The dynamical behaviors of these two cylinders were analyzed numerically for some typical situations, and the results show that the presence of a vibrating circular cylinder has a significant influence on the planar motion of a floating elliptic cylinder. The hydrodynamic interaction between them results in complicated nonlinear behaviors of the floating cylinder. It is found that oscillatory motion of the elliptic cylinder takes place in response to the vibrating mode of the circular one.

  1. Natural Gas Vehicle Cylinder Safety, Training and Inspection Project

    Hank Seiff


    Under the auspices of the National Energy Technology Laboratory and the US Department of Energy, the Clean Vehicle Education Foundation conducted a three-year program to increase the understanding of the safe and proper use and maintenance of vehicular compressed natural gas (CNG) fuel systems. High-pressure fuel systems require periodic inspection and maintenance to insure safe and proper operation. The project addressed the needs of CNG fuel containers (cylinders) and associated high-pressure fuel system components related to existing law, codes and standards (C&S), available training and inspection programs, and assured coordination among vehicle users, public safety officials, fueling station operators and training providers. The program included a public and industry awareness campaign, establishment and administration of a cylinder inspector certification training scholarship program, evaluation of current safety training and testing practices, monitoring and investigation of CNG vehicle incidents, evaluation of a cylinder recertification program and the migration of CNG vehicle safety knowledge to the nascent hydrogen vehicle community.

  2. Inner cylinder of the CMS vacuum tank.

    Patrice Loïez


    The vacuum tank of the CMS magnet system consists of inner and outer stainless-steel cylinders and houses the superconducting coil. The inner cylinder contains all the barrel sub-detectors, which it supports via a system of horizontal rails. The cylinder is pictured here in the vertical position on a yellow platform mounted on the ferris-wheel support structure. This will allow it to be pivoted and inserted into the outer cylinder already attached to the innermost ring of the barrel yoke.

  3. Overseas shipments of 48Y cylinders

    Tanaka, R.T.; Furlan, A.S. [Cameco Corp., Port Hope, Ontario (Canada)


    This paper describes experiences with two incidents of overseas shipments of uranium hexafluoride (UF{sub 6}) cylinders. The first incident involved nine empty UF{sub 6} cylinders in enclosed sea containers. Three UF{sub 6} cylinders broke free from their tie-downs and damaged and contaminated several sea containers. This paper describes briefly how decontamination was carried out. The second incident involved a shipment of 14 full UF{sub 6} cylinders. Although the incident did not cause an accident, the potential hazard was significant. The investigation of the cause of the near accident is recounted. Recommendations to alleviate future similar incidents for both cases are presented.

  4. Optimization and improvement of Halbach cylinder design

    Bjørk, Rasmus; Bahl, Christian Robert Haffenden; Smith, Anders;


    that this parameter was optimal for long Halbach cylinders with small rex. Using the previously mentioned additional blocks of magnets can improve the parameter by as much as 15% as well as improve the homogeneity of the field in the cylinder bore. ©2008 American Institute of Physics......In this paper we describe the results of a parameter survey of a 16 segmented Halbach cylinder in three dimensions in which the parameters internal radius, rin, external radius, rex, and length, L, have been varied. Optimal values of rex and L were found for a Halbach cylinder with the least...

  5. Development of Advanced In-Cylinder Components and Tribological Systems for Low Heat Rejection Diesel Engines

    Yonushonis, T. M.; Wiczynski, P. D.; Myers, M. R.; Anderson, D. D.; McDonald, A. C.; Weber, H. G.; Richardson, D. E.; Stafford, R. J.; Naylor, M. G.


    In-cylinder components and tribological system concepts were designed, fabricated and tested at conditions anticipated for a 55% thermal efficiency heavy duty diesel engine for the year 2000 and beyond. A Cummins L10 single cylinder research engine was used to evaluate a spherical joint piston and connecting rod with 19.3 MPa (2800 psi) peak cylinder pressure capability, a thermal fatigue resistant insulated cylinder head, radial combustion seal cylinder liners, a highly compliant steel top compression ring, a variable geometry turbocharger, and a microwave heated particulate trap. Components successfully demonstrated in the final test included spherical joint connecting rod with a fiber reinforced piston, high conformability steel top rings with wear resistant coatings, ceramic exhaust ports with strategic oil cooling and radial combustion seal cylinder liner with cooling jacket transfer fins. A Cummins 6B diesel was used to develop the analytical methods, materials, manufacturing technology and engine components for lighter weight diesel engines without sacrificing performance or durability. A 6B diesel engine was built and tested to calibrate analytical models for the aluminum cylinder head and aluminum block.

  6. A comparative analysis on the shed vortices from the wake of finned, foam-wrapped cylinders

    Khashehchi, Morteza; Ashtiani Abdi, Iman; Hooman, Kamel


    The wake characteristics behind a finned and a foam-wrapped circular cylinder has been compared in a study (Khashehchi et al 2014 Exp. Therm. Fluid Sci. 52 328-38) done by the Authors. In this paper, the shed vortices from the wake of the same cylinders have been studied. Shedding in a bluff body has an important effect on increasing the pressure drop downstream of the object. Here, we have used particle image velocimetry to investigate the detached vortices from the wake behind a foam-wrapped and a finned cylinder. The standard case of cross-flow over a bare cylinder, i.e. no surface extension, has also been tested as a benchmark. The experiments have been performed for Reynolds numbers 2000 based on the mean air velocity and the cylinder’s outer diameter. To identify the features of each aforementioned case, linear stochastic estimation has been applied to the velocity fields. Results show that unlike the fin, adding foam to the cylinder surface increases the size of detached vortices and amplifies the core strength. Moreover, foam-wrapped cylinder in contrast to the finned one produces strong three-dimensionality. Interestingly, finned cylinder’s results show less three-dimensionality compared to the bare cylinder.

  7. Life Prediction on a T700 Carbon Fiber Reinforced Cylinder with Limited Accelerated Life Testing Data

    Ma Xiaobing


    Full Text Available An accelerated life testing investigation was conducted on a composite cylinder that consists of aluminum alloy and T700 carbon fiber. The ultimate failure stress predictions of cylinders were obtained by the mixing rule and verified by the blasting static pressure method. Based on the stress prediction of cylinder under working conditions, the constant stress accelerated life test of the cylinder was designed. However, the failure data cannot be sufficiently obtained by the accelerated life test due to the time limitation. Therefore, most of the data presented to be high censored in high stress level and zero-failure data in low stress level. When using the traditional method for rupture life prediction, the results showed to be of lower confidence. In this study, the consistency of failure mechanism for carbon fiber and cylinder was analyzed firstly. According to the analysis result, the statistical test information of carbon fiber could be utilized for the accelerated model constitution. Then, rupture life prediction method for cylinder was proposed based on the accelerated life test data and carbon fiber test data. In this way, the life prediction accuracy of cylinder could be improved obviously, and the results showed that the accuracy of this method increased by 35%.

  8. Electromagnetoelastic behaviors of functionally graded piezoelectric solid cylinder and sphere

    H.L.Dai; Y.M.Fu; J.H.Yang


    Analytical studies on electromagnetoelasticbehaviors are presented for the functionally graded pie-zoelectric material (FGPM) solid cylinder and sphereplaced in a uniform magnetic field and subjected tothe external pressure and electric loading.When themechanical,electric and magnetic properties of thematerial obey an identical power law in the radial direc-tion,the exact displacements,stresses,electric potentialsand perturbations of magnetic field vector in the FGPMsolid cylinder and sphere are obtained by using the infin-itesimal theory of electromagnetoelasticity.Numericalexamples also show the significant influence of materialinhomogeneity.It is interesting to note that selecting aspecific value of inhomogeneity parameter β can opti-mize the electromagnetoelastic responses,which willbe of particular importance in modern engineering designs.

  9. Flow control behind a circular cylinder via a porous cylinder in deep water

    Akilli H.


    Full Text Available In this present work, the effects of surrounding outer porous cylinder on vortex structure downstream of a circular inner cylinder are investigated experimentally in deep water flow. The porosity of outer cylinder were selected as β = 0.4, 0.5, 0.6, 0.65, 0.7, 0.75, 0.8 and 0.85. Porosity is defined as the ratio of the gap area on the body to the whole body surface area. The ratio of outer cylinder diameter to inner cylinder diameter, Do/Di was selected as 2.0, i.e. the inner cylinder diameter is Di = 30 mm where the outer cylinder diameter is Do = 60 mm. All experiments were carried out above a platform. The water height between the base of the platform and the free surface was adjusted as 340 mm. Free stream velocity is U = 156 mm/s, which corresponds to the Reynolds number of Rei = 5,000 based on the inner cylinder diameter. It has been observed that the outer porous cylinders have influence on the attenuation of vortex shedding in the wake region for all porosities. The turbulent intensity of the flow is reduced at least 45% by the presence of outer porous cylinder compared to the bare cylinder case. The porosities β = 0.4 and 0.5 are most suitable cases to control the flow downstream of the circular cylinder.

  10. Background-oriented schlieren imaging of flow around a circular cylinder at low Mach numbers

    Stadler, Hannes; Bauknecht, André; Siegrist, Silvan; Flesch, Robert; Wolf, C. Christian; van Hinsberg, Nils; Jacobs, Markus


    The background-oriented schlieren (BOS) imaging method has, for the first time, been applied in the investigation of the flow around a circular cylinder at low Mach numbers (Mnumbers of 0.1× 10^6 ≤ Re ≤ 6.0× 10^6. Even at ambient pressure and the lowest Reynolds number investigated, density gradients associated with the flow around the cylinder were recorded. The signal-to-noise ratio of the evaluated gradient field improved with increasing stagnation pressure. The separation point could easily be identified with this non-intrusive measurement technique and corresponds well to simultaneous surface pressure measurements. The resulting displacement field is in principle of qualitative nature as the observation angle was parallel to the cylinder axis only in a single point of the recorded images. However, it has been possible to integrate the density field along the surface of the cylinder by successive imaging at incremental angular positions around the cylinder. This density distribution has been found to agree well with the pressure measurements and with potential theory where appropriate.

  11. Large eddy simulation of the subcritical flow over a V grooved circular cylinder

    Alonzo-García, A. [Instituto Politécnico Nacional, SEPI-ESIME Zacatenco, U.P. Adolfo López Mateos Edif. 5, 3er. Piso, LABINTHAP, Av. Instituto Politénicno Nacional s/n, Col. Lindavista, C.P. 07738, México D.F., México (Mexico); Gutiérrez-Torres, C. del C., E-mail: [Instituto Politécnico Nacional, SEPI-ESIME Zacatenco, U.P. Adolfo López Mateos Edif. 5, 3er. Piso, LABINTHAP, Av. Instituto Politénicno Nacional s/n, Col. Lindavista, C.P. 07738, México D.F., México (Mexico); Jiménez-Bernal, J.A. [Instituto Politécnico Nacional, SEPI-ESIME Zacatenco, U.P. Adolfo López Mateos Edif. 5, 3er. Piso, LABINTHAP, Av. Instituto Politénicno Nacional s/n, Col. Lindavista, C.P. 07738, México D.F., México (Mexico); and others


    Highlights: • We compared numerically the turbulent flow over a smooth circular cylinder and a V grooved cylinder in the subcritical regime. • Turbulence intensities in both streamwise and normal direction suffered attenuations. • The swirls structures on grooves peaks seemed to have a cyclic behavior. • The evolution of the flow inside grooves showed that swirls structures located in peaks suffered elongations in the normal direction. • The secondary vortex structures formed in the grooved cylinder near wake were smaller in comparison of the smooth cylinder flow. - Abstract: In this paper, a comparative numerical study of the subcritical flow over a smooth cylinder and a cylinder with V grooves (Re = 140,000) is presented. The implemented technique was the Large Eddy Simulation (LES), which according to Kolmogorov's theory, resolves directly the most energetic largest eddies and models the smallest and considered universal high frequency ones. The Navier-Stokes (N-S) equations were solved using the commercial software ANSYS FLUENT V.12.1, which applied the finite volume method (FVM) to discretize these equations in their unsteady and incompressible forms. The grid densities were 2.6 million cells and 13.5 million cells for the smooth and V grooved cylinder, respectively. Both meshes were composed of structured hexahedral cells and close to the wall of the cylinders, additional refinements were employed in order to obtain y{sup +<5} values. All cases were simulated during at least 15 vortex shedding cycles with the aim of obtaining significant statistical data. Results: showed that for both cases (smooth and V grooved cylinder flow), the numerical code was capable of reproducing the most important physical quantities of the subcritical regime. Velocity distribution and turbulence intensity in the flow direction suffered a slight attenuation along the wake, as a consequence of grooves perturbation, which also caused an increase in the pressure

  12. Position Control of an Over‐Actuated Direct Hydraulic Cylinder Drive

    Schmidt, Lasse; Grønkjær, Morten; Pedersen, Henrik Clemmensen


    This paper considers the analysis and control strategy for a novel direct hydraulic cylinder drive, that is overactuated in the sense that it has more inputs than sensible outputs. Efforts to overcome the inherent loss of energy due to th+rottling in valve driven hydraulic drives are many......, and various approaches have been proposed by research communities as well as the industry. Recently, a so-called Speed-variable Switched Differential Pump was proposed for direct drive of hydraulic differential cylinders. The main idea with this drive is to utilize an electric rotary drive with the shaft...... the ability to bleed off flow from the transmission lines to achieve reasonable pressure levels. This design renders the drive over-actuated as the line pressures and the cylinder piston motion cannot be controlled independently, due to the pressure difference being motion generating. In order to achieve...

  13. Decomposition of dimethyl sulfide in a wire-cylinder pulse corona reactor

    Jian-tao YANG; Yao SHI; Jie CHEN; Qing-fa SU; Da-hui WANG; Jing CAO


    Decomposition of dimethyl sulfide (DMS) in air was investigated experimentally by using a wire-cylinder dielectric barrier discharge (DBD) reactor at room temperature and atmospheric pressure. A new type of high pulse voltage source with a thyratron switch and a Blumlein pulse-forming network (BPFN) was adopted in our experiments. The maximum power output of the pulse voltage source and the maximum peak voltage were 1 kW and 100 kV, respectively. The important parameters affecting odor decomposition, including peak voltage, pulse frequency, gas flow rate, initial concentration, and humidity, which influenced the removal efficiency, were investigated. The results showed that DMS could be treated effectively and almost a 100% removal efficiency was achieved at the conditions with an initial concentration of 832 mg/m3 and a gas flow rate of 1000 ml/min. Humidity boosts the removal efficiency and improves the energy yield (EY) greatly. The EY of 832 mg/m3 DMS was 2.87 mg/kJ when the relative humidity was above 30%. In the case of DMS removal, the ozone and nitrogen oxides were observed in the exhaust gas. The carbon and sulfur elements of DMS were mainly converted to carbon dioxide, carbon monoxide and sulfur dioxide. Moreover, sulfur was discovered in the reactor. According to the results, the optimization design for the reactor and the matching of high pulse voltage source can be reckoned.

  14. Flow around a slotted circular cylinder at various angles of attack

    Gao, Dong-Lai; Chen, Wen-Li; Li, Hui; Hu, Hui


    We experimentally investigated the flow characteristics around a circular cylinder with a slot at different angles of attack. The experimental campaign was performed in a wind tunnel at the Reynolds number of Re = 2.67 × 104. The cylindrical test model was manufactured with a slot at the slot width S = 0.075 D ( D is the diameter of the cylinder). The angle of attack α was varied from 0° to 90°. In addition to measuring the pressure distributions around the cylinder surface, a digital particle image velocimetry (PIV) system was employed to quantify the wake flow characteristics behind the baseline cylinder (i.e., baseline case of the cylinder without slot) and slotted cylinder at various angles of attack. Measurement results suggested that at low angles of attack, the passive jet flow generated by the slot would work as an effective control scheme to modify the wake flow characteristics and contribute to reducing the drag and suppressing the fluctuating lift. The flip-flop phenomenon was also identified and discussed with the slot at 0° angle of attack. As the angle of attack α became 45°, the effects of the slot were found to be minimal. When the angle of attack α of the slot approached 90°, the self-organized boundary layer suction and blowing were realized. As a result, the flow separations on both sides of the test model were found to be notably delayed, the wake width behind the slotted cylinder was decreased and the vortex formation length was greatly shrunk, in comparison with the baseline case. Instantaneous pressure measurement results revealed that the pressure difference between the two slot ends and the periodically fluctuating pressure distributions would cause the alternative boundary layer suction and blowing at α = 90°.

  15. Flow film boiling heat transfer for subcooled liquids flowing upward perpendicular to single horizontal cylinders

    Liu, Q.S. [Kobe Univ. of Mercantile Marine, Dept. of Nuclear Engineering (Japan); Shiotsu, M. [Kyoto Univ., Dept. of Energy Sci. and Tech. (Japan); Sakurai, A. [Kyoto Univ. (Japan)


    The knowledge of flow film boiling heat transfer on a horizontal cylinder in various liquids flowing upward perpendicular to the cylinder is important as the database for the safety evaluation of the accidents such as rapid power burst and pressure reduction in the nuclear power plants. Flow film boiling heat transfer from single horizontal cylinders in water and Freon-113 flowing upward perpendicular to the cylinder under subcooled conditions was measured under wide experimental conditions. The flow velocities ranged from 0 to 1 m/s, the system pressures ranged from 100 to 500 kPa, and the surface superheats were raised up to 800 K for water and 400 K for Freon-113, respectively. Platinum horizontal cylinders with diameters ranging from 0.7 to 5 mm were used as the test heaters. The test heater was heated by direct electric current. The experimental data of film boiling heat transfer coefficients show that they increase with the increase of flow velocity, liquid subcooling, system pressure and with the decrease of cylinder diameter. Based on the experimental data, a correlation for subcooled flow film boiling heat transfer including the effects of liquid subcooling and radiation was presented, which can describe the experimental data obtained within 20% for the flow velocities below 0.7 m/s, and within -30% to +20% for the higher flow velocities. The correlation also predicted well the data by Shigechi (1983), Motte and Bromley (1957), and Sankaran and Witte (1990) obtained for the larger diameter cylinders and higher flow velocities in various liquids at the pressures of near atmospheric. The Shigechi's data were in the range from about -20% to +15%, the data of Motte and Bromley were about 30%,and the data of Sankaran and Witte were within +20 % of the curves given by the corresponding predicted values. (authors)


    CHEN Ai-jun; ZENG Wen-ji


    The equation of stress intensity factors(SIF) of internally pressurized thickwalled cylinder was used as the reference case. SIF equation of rotating thick-walled cylinder containing a radial crack along the internal bore was presented in weight function method. The weight function formulas were worked out and can be used for all kinds of depth of cracks, rotating speed, material, size of thick-walled cylinder to calculate the stress intensity factors. The results indicated the validity and effectiveness of these formulas. Meanwhile, the rules of the stress intensity factors in rotating thick-walled cylinder with the change of crack depths and the ratio of outer radius to inner radius were studied. The studies are valuable to engineering application.

  17. Numerical study on ring bubble dynamics in a narrow cylinder with a compliant coating

    Farhangmehr, V; Shervani-Tabar, M T [Department of Mechanical Engineering, University of Tabriz, Tabriz (Iran, Islamic Republic of); Parvizi, R [Department of Cardiac Surgery, Shahid Madani Heart Hospital, Tabriz (Iran, Islamic Republic of); Ohl, S W [Institute of High Performance Computing, 1 Fusinopolis Way, #16-16 Connexis, Singapore 138632 (Singapore); Khoo, B C, E-mail: [Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260 (Singapore)


    In this paper, the ring bubble contraction inside a narrow vertical rigid cylinder with a compliant coating filled with water is studied numerically. To simulate ring bubble dynamics numerically, in addition to computing the pressure and velocity fields of the surrounding fluid, an axisymmetric boundary integral equation approach is adopted alongside a finite difference method. The compliant boundary is modeled as a membrane with a spring foundation. During the ring bubble contraction and under the attraction of the cylinder wall due to the Bjerknes force, a horizontal ring jet is initiated and develops towards the cylinder wall. The numerical results represent the effects of the cylinder radius and two compliant coating characteristics, including its mass per unit area and the spring constant, on the ring bubble behavior. This investigation is motivated by the possibility of utilizing the ring jet in therapeutic cardiovascular applications. (paper)

  18. Pulsatile Flow through Annular Space Bounded by Outer Porous Cylinder and an Inner Cylinder of Permeable Material

    Rashidi, M. M.; Keimanesh, M.; Rajvanshi, S. C.; Wasu, S.


    This study investigates the problem of pulsatile flow of an incompressible Newtonian fluid through annular space bounded by an outer porous cylinder and an inner cylinder of permeable material. The coupled flow has been analyzed by solving Navier-Stokes equations in the free fluid region and Darcy's equation in the porous region. Beaver-Joseph slip-condition has been used at the free fluid-permeable medium interface. The similarity transformation for the governing equations gives a system of nonlinear ordinary differential equations which are analytically solved by the homotopy analysis method (HAM). The analytical solutions have been obtained in the form of a series. An admissible interval for the convergence of the series solutions has been indicated. Graphical results are presented to show the influence of different parameters on velocity profiles, pressure drop, and skin friction. Comparison between the solutions obtained by the HAM and the numerical solution shows good agreement.

  19. Reluctance Machine for a Hollow Cylinder Flywheel

    Magnus Hedlund


    Full Text Available A hollow cylinder flywheel rotor with a novel outer rotor switched reluctance machine (SRM mounted on the interior rim is presented, with measurements, numerical analysis and analytical models. Practical experiences from the construction process are also discussed. The flywheel rotor does not have a shaft and spokes and is predicted to store 181 Wh / kg at ultimate tensile strength (UTS according to simulations. The novel SRM is an axial flux machine, chosen due to its robustness and tolerance for high strain. The computed maximum tip speed of the motor at UTS is 1050 m / s . A small-scale proof-of-concept electric machine prototype has been constructed, and the machine inductance has been estimated from measurements of voltage and current and compared against results from analytical models and finite element analysis (FEA. The prototype measurements were used to simulate operation during maximal speed for a comparison towards other high-speed electric machines, in terms of tip speed and power. The mechanical design of the flywheel was performed with an analytical formulation assuming planar stress in concentric shells of orthotropic (unidirectionally circumferentially wound carbon composites. The analytical approach was verified with 3D FEA in terms of stress and strain.

  20. The boiling Twente Taylor-Couette (BTTC) facility: Temperature controlled turbulent flow between independently rotating, coaxial cylinders

    Huisman, Sander G; Bruggert, Gert-Wim H; Lohse, Detlef; Sun, Chao


    A new Taylor-Couette system has been designed and constructed with precise temperature control. Two concentric independently rotating cylinders are able to rotate at maximum rates of $f_i = \\pm20$ Hz for the inner cylinder and $f_o = \\pm10$ Hz for the outer cylinder. The inner cylinder has an outside radius of $r_i = 75$ mm, and the outer cylinder has an inside radius of $r_o = 105$ mm, resulting in a gap of $d=30$ mm. The height of the gap $L =549$ mm, giving a volume of $V=9.3$l. The geometric parameters are $\\eta = r_i/r_o = 0.714$ and $\\Gamma = L/d = 18.3$. With water as working fluid at room temperature the Reynolds numbers that can be achieved are $\\text{Re}_i = \\omega_i r_i (r_o-r_i)/\

  1. Lattice Boltzmann simulation on liquid flow and mass transport in a bioreactor with cylinder bundle for hydrogen production

    Liao, Qiang; Yang, Yan-Xia; Zhu, Xun; Wang, Hong; Ding, Yu-Dong


    The lattice Boltzmann method is adopted to simulate hydrodynamics and mass transfer accompanying with biochemical reaction in a channel with cylinder bundle, which is the scenario of biohydrogen production by photosynthetic bacteria in the biofilm attached on the surface of cylinder bundle in photobioreactor. The effects of cylinder spacing, Reynolds number and cylinder arrangement are investigated. The numerical results reveal that highest glucose concentration and the lowest hydrogen concentration are obtained at the front of the first row cylinders for all cases. The staggered arrangement leads to an increment in average drag coefficient, Sherwood number and consumption efficiency of substrate under a given condition, and the increment in Sherwood number reaches up to 30 %, while that in drag coefficient is around 1 %, moreover, the increment in consumption efficiency reaches the maximum value of 12 %. The results indicate that the staggered arrangement is beneficial to the mass transfer and biochemical reaction.

  2. Numerical simulation and global linear stability analysis of low-Re flow past a heated circular cylinder

    Zhang, Wei


    We perform two-dimensional unsteady Navier-Stokes simulation and global linear stability analysis of flow past a heated circular cylinder to investigate the effect of aided buoyancy on the stabilization of the flow. The Reynolds number of the incoming flow is fixed at 100, and the Richardson number characterizing the buoyancy is varied from 0.00 (buoyancy-free case) to 0.10 at which the flow is still unsteady. We investigate the effect of aided buoyancy in stabilizing the wake flow, identify the temporal and spatial characteristics of the growth of the perturbation, and quantify the contributions from various terms comprising the perturbed kinetic energy budget. Numerical results reveal that the increasing Ri decreases the fluctuation magnitude of the characteristic quantities monotonically, and the momentum deficit in the wake flow decays rapidly so that the flow velocity recovers to that of the free-stream; the strain on the wake flow is reduced in the region where the perturbation is the most greatly amplified. Global stability analysis shows that the temporal growth rate of the perturbation decreases monotonically with Ri, reflecting the stabilization of the flow due to aided buoyancy. The perturbation grows most significantly in the free shear layer separated from the cylinder. As Ri increases, the location of maximum perturbation growth moves closer to the cylinder and the perturbation decays more rapidly in the far wake. The introduction of the aided buoyancy alters the base flow, and destabilizes the near wake shear layer mainly through the strain-induced transfer term and the pressure term of the perturbed kinetic energy, whereas the flow is stabilized in the far wake as the strain is alleviated. © 2016 Elsevier Ltd. All rights reserved.




    Full Text Available An experimental study was conducted on a four stroke single cylinder compression ignition engine to determine the performance, combustion and exhaust emission characteristics under different injection timings. The different injection angles chosen were 16°, 18° and 21° and the fuel chosen was standard diesel. The experimental results showed that brake thermal efficiency for the advanced as well as the retarded injection timing was lesser than that for the normal injection timing (18° BTDC. In terms of BSFC, retarded andadvanced injection timings compared to the original injection timing gave negative results for all engine loads. When compared to the results of original injection timing (18° BTDC, NOx and CO2 emissions decreased, and unburned HC and CO emissions increased for the retarded injection timings (16° BTDC at the all test conditions. On the other hand, with the advanced injection timings (21° BTDC, HC and CO emissions decreased, and NOx and CO2 emissions increased. A prediction of the combustion process was generated under the operating conditions in CFD. The CFD modeling results are generated to predict the combustion characteristic of maximum cylinder pressure. These results are then compared with the experimental results and validated. The CFD results show that there is a good correlation with the experimental results.

  4. A Convenient Storage Rack for Graduated Cylinders

    Love, Brian


    An attempt is made to find a solution to the occasional problem of a need for storing large numbers of graduated cylinders in many teaching and research laboratories. A design, which involves the creation of a series of parallel channels that are used to suspend inverted graduated cylinders by their bases, is proposed.

  5. Optimization and improvement of Halbach cylinder design

    Bjørk, R; Smith, A; Pryds, N


    In this paper we describe the results of a parameter survey of a 16 segmented Halbach cylinder in three dimensions in which the parameters internal radius, $r_{\\mathrm{\\scriptsize{in}}}$, external radius, $r_{\\mathrm{\\scriptsize{ex}}}$, and length, $L$, have been varied. Optimal values of $r_{\\mathrm{\\scriptsize{ex}}}$ and $L$ were found for a Halbach cylinder with the least possible volume of magnets with a given mean flux density in the cylinder bore. The volume of the cylinder bore could also be significantly increase by only slightly increasing the volume of the magnets, for a fixed mean flux density. Placing additional blocks of magnets on the end faces of the Halbach cylinder also improved the mean flux density in the cylinder bore, especially so for short Halbach cylinders with large $r_{\\mathrm{\\scriptsize{ex}}}$. Moreover magnetic cooling as an application for Halbach cylinders was considered. A magnetic cooling quality parameter, $\\Lambda_{\\mathrm{cool}}$, was introduced and results showed that this...

  6. The efficiency and the demagnetization field of a general Halbach cylinder

    Bjørk, Rasmus; Smith, Anders; Bahl, C.R.H.


    The maximum magnetic efficiency of a general multipole Halbach cylinder of order p is found as function of p. The efficiency is shown to decrease for increasing absolute value of p. The optimal ratio between the inner and outer radius, i.e. the ratio resulting in the most efficient design, is also...... found as function of p and is shown to tend towards smaller and smaller magnet sizes. Finally, the demagnetizing field in a general p-Halbach cylinder is calculated, and it is shown that demagnetization is largest either at cos2pφ=1 or cos2pφ=-1. For the common case of a p=1 Halbach cylinder the maximum...

  7. Slow light and band gaps in metallodielectric cylinder arrays.

    Shainline, Jeffrey M; Xu, Jimmy


    We consider two-dimensional three-component photonic crystals wherein one component is modeled as a drude-dispersive metal. It is found that the dispersion relation of light in this environment depends critically on the configuration of the metallic and dielectric components. In particular, for the case of an incident electromagnetic wave with electric field vector parallel to the axis of the cylinders it is shown that the presence of dielectric shells covering the metallic cylinders leads to a closing of the structural band gap with increased filling factor, as would be expected for a purely dielectric photonic crystal. For the same polarization, the photonic band structure of an array of metallic shell cylinders with dielectric cores do not show the closing of the structural band gap with increased filling factor of the metallic component. In this geometry, the photonic band structure contains bands with very small values of group velocity with some bands having a maximum of group velocity as small as .05c.

  8. Analysis of Common Problems in the Design of Gas Cylinders%气瓶设计常见问题分析

    陈祖志; 薄柯; 续宏毅


    In this paper the common problems in design of gas cylinder are analyzed and summarized as follows: 1) the contents of design document were imcomplete; 2) both design attribute and appraisal attribute were not defined clearly; 3) the same design with series parameters was lack of standardization; 4) the guarantee value of material strength was not used standardly; 5) the minimum of burst pressure was calculated unscientifically; 6) the maximum of filling weight of cryogenic insulated cylinders was calculated without merit; 7) Valve selection was performed not based on codes and standards; 8) material selection of reinforced layer of fiber-wrapped cylinder was conducted not according to safety technical specifications. The problems mentioned above are analyzed and the corresponding suggestions are given, which could provide references for design of cylinders and document appraisal.%本文对目前气瓶设计存在的常见问题进行了总结归纳,归纳出的问题主要有设计文件内容不完善、设计属性和鉴定属性定义不明确、“同一设计、系列参数”设计不规范以及材料强度保证值取值、最小爆破压力计算、低温绝热气瓶最大充装量计算、阀门设计、纤维缠绕气瓶缠绕层选材几个方面,对每个方面的问题均作了剖析,并提出了解决问题的建议,可以为气瓶设计和设计文件鉴定工作提供参考。

  9. Experimental investigations of a single cylinder genset engine with common rail fuel injection system

    Gupta Paras


    Full Text Available Performance and emissions characteristics of compression ignition (CI engines are strongly dependent on quality of fuel injection. In an attempt to improve engine combustion, engine performance and reduce the exhaust emissions from a single cylinder constant speed genset engine, a common rail direct injection (CRDI fuel injection system was deployed and its injection timings were optimized. Results showed that 34°CA BTDC start of injection (SOI timings result in lowest brake specific fuel consumption (BSFC and smoke opacity. Advanced injection timings showed higher cylinder peak pressure, pressure rise rate, and heat release rate due to relatively longer ignition delay experienced.

  10. Quantum walk on a cylinder

    Bru, Luis A; Di Molfetta, Giuseppe; Pérez, Armando; Roldán, Eugenio; Silva, Fernando


    We consider the 2D alternate quantum walk on a cylinder. We concentrate on the study of the motion along the open dimension, in the spirit of looking at the closed coordinate as a small or "hidden" extra dimension. If one starts from localized initial conditions on the lattice, the dynamics of the quantum walk that is obtained after tracing out the small dimension shows the contribution of several components, which can be understood from the study of the dispersion relations for this problem. In fact, these components originate from the contribution of the possible values of the quasi-momentum in the closed dimension. In the continuous space-time limit, the different components manifest as a set of Dirac equations, with each quasi-momentum providing the value of the corresponding mass. We briefly discuss the possible link of these ideas to the simulation of high energy physical theories that include extra dimensions.

  11. Validation of NIS 500 MPa hydraulic pressure measurement

    Eltawil Alaaeldin A.


    Full Text Available 500 MPa pressure is considered as the common maximum pressure in most of the National Metrology Institutes worldwide; however, validation of the uncertainty in that range required a lot of work. NIS when recognized on, 2008 guaranteed big uncertainty value above 200 MPa due to the absence of international comparison at that time. This paper summarizes the results of a validation of 500 MPa range of hydraulic gauge pressure measurements carried out at NIS. The study covers the calibration through direct comparison and through using of a pressure sensor. The paper summarized the technical work carried out at the results of measurements and the effect of these results on NIS Calibration Measurements Capability. The validation also includes the comparison between the obtained results and pervious calibration of the same piston-cylinder assembly that calibrated against the NIST primary standard.

  12. 某缸体铝合金金属型低压铸造工艺研究%Study on Low Pressure Die Casting Process of A356 Aluminum Alloy Cylinder

    王狂飞; 王凯; 王有超; 米国发


    利用ViewCast软件对低压金属型铝合金A356铸造过程进行了计算机模拟,预测了产生缩孔、缩松缺陷的位置.通过计算机模拟以及对铸件表面缺陷进行分析,提出了生产工艺方案,铸造出了满足质量要求的铸件.所铸的铸件表面质量好、无缩松等铸造缺陷.这为铝合金金属型低压铸造模具设计及工艺研究提供了有价值的参考.%The low pressure die casting process of A356 aluminum alloy was simulated by ViewCast software, and the location of the shrinkage defects was forecasted. The producing process was proposed by computer simulating and analyzing the surface defect of the aluminum alloy castings. Regular castings were produced, the surface quality was obviously improved and no defects such as shrinkage were found. It provides the valuable reference for the research of low pressure die casting process and mold design of aluminum alloy permanent mold.

  13. Cylinder wake influence on the tonal noise and aerodynamic characteristics of a NACA0018 airfoil

    Takagi, Y.; Fujisawa, N.; Nakano, T.; Nashimoto, A.


    The influence of cylinder wake on discrete tonal noise and aerodynamic characteristics of a NACA0018 airfoil is studied experimentally in a uniform flow at a moderate Reynolds number. The experiments are carried out by measuring sound pressure levels and spectrum, separation and the reattachment points, pressure distribution, fluid forces, mean-flow and turbulence characteristics around the airfoil with and without the cylinder wake. Present results indicate that the tonal noise from the airfoil is suppressed by the influence of the cylinder wake and the aerodynamic characteristics are improved in comparison with the case without the cylinder wake. These are mainly due to the separation control of boundary layers over the airfoil caused by the wake-induced transition, which is observed by surface flow visualization with liquid- crystal coating. The PIV measurements of the flow field around the airfoil confirm that highly turbulent velocity fluctuation of the cylinder wake induces the transition of the boundary layers and produces an attached boundary layer over the airfoil. Then, the vortex shedding phenomenon near the trailing edge of pressure surface is removed by the influence of the wake and results in the suppression of tonal noise.

  14. Experiment on smooth, circular cylinders in cross-flow in the critical Reynolds number regime

    Miau, J.J.; Tsai, H.W.; Lin, Y.J.; Tu, J.K.; Fang, C.H.; Chen, M.C. [National Cheng Kung University, Department of Aeronautics and Astronautics, Tainan (China)


    Experiments were conducted for 2D circular cylinders at Reynolds numbers in the range of 1.73 x 10{sup 5}-5.86 x 10{sup 5}. In the experiment, two circular cylinder models made of acrylic and stainless steel, respectively, were employed, which have similar dimensions but different surface roughness. Particular attention was paid to the unsteady flow behaviors inferred by the signals obtained from the pressure taps on the cylinder models and by a hot-wire probe in the near-wake region. At Reynolds numbers pertaining to the initial transition from the subcritical to the critical regimes, pronounced pressure fluctuations were measured on the surfaces of both cylinder models, which were attributed to the excursion of unsteady flow separation over a large circumferential region. At the Reynolds numbers almost reaching the one-bubble state, it was noted that the development of separation bubble might switch from one side to the other with time. Wavelet analysis of the pressure signals measured simultaneously at {theta} = {+-}90 further revealed that when no separation bubble was developed, the instantaneous vortex-shedding frequencies could be clearly resolved, about 0.2, in terms of the Strouhal number. The results of oil-film flow visualization on the stainless steel cylinder of the one-bubble and two-bubble states showed that the flow reattachment region downstream of a separation bubble appeared not uniform along the span of the model. Thus, the three dimensionality was quite evident. (orig.)

  15. Characterization of Unsteady Flow Structures Around Tandem Cylinders for Component Interaction Studies in Airframe Noise

    Jenkins, Luther N.; Khorrami, Mehdi R.; Choudhari, Meelan M.; McGinley, Catherine B.


    A joint computational and experimental study has been performed at NASA Langley Research Center to investigate the unsteady flow generated by the components of an aircraft landing gear system. Because the flow field surrounding a full landing gear is so complex, the study was conducted on a simplified geometry consisting of two cylinders in tandem arrangement to isolate and characterize the pertinent flow phenomena. This paper focuses on the experimental effort where surface pressures, 2-D Particle Image Velocimetry, and hot-wire anemometry were used to document the flow interaction around the two cylinders at a Reynolds Number of 1.66 x 10(exp 5), based on cylinder diameter, and cylinder spacing-todiameter ratios, L/D, of 1.435 and 3.70. Transition strips were applied to the forward cylinder to produce a turbulent boundary layer upstream of the flow separation. For these flow conditions and L/D ratios, surface pressures on both the forward and rear cylinders show the effects of L/D on flow symmetry, base pressure, and the location of flow separation and attachment. Mean velocities and instantaneous vorticity obtained from the PIV data are used to examine the flow structure between and aft of the cylinders. Shedding frequencies and spectra obtained using hot-wire anemometry are presented. These results are compared with unsteady, Reynolds-Averaged Navier-Stokes (URANS) computations for the same configuration in a companion paper by Khorrami, Choudhari, Jenkins, and McGinley (2005). The experimental dataset produced in this study provides information to better understand the mechanisms associated with component interaction noise, develop and validate time-accurate computer methods used to calculate the unsteady flow field, and assist in modeling of the radiated noise from landing gears.

  16. Stokes flow past a swarm of porous circular cylinders with Happel and Kuwabara boundary conditions

    Satya Deo


    The problem of creeping flow past a swarm of porous circular cylinders with Happel and Kuwabara boundary conditions is investigated. The Brinkman equation for the flow inside the porous cylinder and the Stokes equation outside the porous cylinder in their stream function formulations are used. The force experienced by each porous circular cylinder in a cell is evaluated. Explicit expressions of stream functions are obtained for both the inside and outside flow fields. The earlier results reported by Happel and Kuwabara for flow past a solid cylinder in Happel’s and Kuwabara’s cell model, have been deduced. Analytical expressions for the velocity components, pressure, vorticity and stress- tensor are also obtained.

  17. Study on flow of power-law fluid through an infinite array of circular cylinders with immersed boundary-lattice Boltzmann method

    Wang Ye-Long


    Full Text Available A direct forcing method for the simulation of particulate flows based on immersed boundary-lattice Boltzmann method is used to study the flow of power-law fluid through an infinite array of circular cylinders with cylinder separations of 20a (a is the cylinder radius with laminar shedding behind cylinders. Time averaged drag coefficient, maximum of lift coefficient and Strouhal number are given out with the power-law index in the range of 0.4 ≤ n ≤ 1.8 and Re in the range of 50 ≤ Re ≤ 140.

  18. Influence of the Geometry of Beveled Edges on the Stress-Strain State of Hydraulic Cylinders

    Buyalich, G. B.; Anuchin, A. V.; Serikov, K. P.


    The studies were carried out to determine the influence of forms obtained when preparing edges for welding a cylinder for hydraulic legs; the maximum stresses were defined at the location of weld roots, depending on variable parameters. The stress-strain states were calculated using finite element method.

  19. Gas adsorption and desorption effects on cylinders and their importance for long-term gas records

    M. C. Leuenberger


    Full Text Available It is well known that gases adsorb on many surfaces, in particular metal surfaces. There are two main forms responsible for these effects (i physisorption and (ii chemisorption. Physisorption is associated with lower binding energies in the order of 1–10 kJ mol−1 compared to chemisorption ranging from 100 to 1000 kJ mol−1. Furthermore, chemisorption forms only monolayers, contrasting physisorption that can form multilayer adsorption. The reverse process is called desorption and follows similar mathematical laws, however, it can be influenced by hysteresis effects. In the present experiment we investigated the adsorption/desorption phenomena on three steel and three aluminium cylinders containing compressed air in our laboratory and under controlled conditions in a climate chamber, respectively. We proved the pressure effect on physisorption for CO2, CH4 and H2O by decanting one steel and two aluminium cylinders completely. The CO2 results for both cylinders are in excellent agreement with the pressure dependence of a monolayer adsorption model. However, adsorption on aluminium (2 and H2O was about 10 times less than on steel (2 amounts adsorbed (5.8 × 1019 CO2 molecules corresponds to about the five-fold monolayer adsorption indicating that the effective surface exposed for adsorption is significantly larger than the geometric surface area. Adsorption/desorption effects were minimal for CH4 and for CO. However, the latter dependence requires further attention since it was only studied on one aluminium cylinder with a very low mole fraction. In the climate chamber the cylinders were exposed to temperatures between −10 and +50 °C to determine the corresponding temperature coefficients of adsorption. Again, we found distinctly different values for CO2 ranging from 0.0014 to 0.0184 ppm °C−1 for steel cylinders and −0.0002 to −0.0003 ppm °C−1 for aluminium cylinders. The reversed temperature dependence for aluminium cylinders

  20. Numerical investigation of flow-induced rotary oscillation of circular cylinder with rigid splitter plate

    Lu, Lin; Guo, Xiao-ling; Tang, Guo-qiang; Liu, Ming-ming; Chen, Chuan-qi; Xie, Zhi-hua


    Numerical results of fluid flow over a rotationally oscillating circular cylinder with splitter plate are presented here. Different from the previous examinations with freely rotatable assembly, the fluid and structure interactions are treated as a coupled dynamic system by fully considering the structural inertia, stiffness, and damping. The hydrodynamic characteristics are examined in terms of reduced velocity Ur at a relatively low Reynolds number Re = 100 for different plate lengths of L/D = 0.5, 1.0, and 1.5, where Ur = U/(Dfn), Re = UD/υ and fn = (κ/J)0.5/2π with U the free stream velocity, D the diameter of the circular cylinder, υ the fluid kinematic viscosity, fn the natural frequency, J the inertial moment, κ the torsional stiffness, and L the plate length. Contrast to the freely rotating cylinder/plate body, that is, in the limit of κ → 0 or Ur →∞, remarkable rotary oscillation is observed at relatively low reduced velocities. For the typical case with L/D = 1.0, the maximum amplitude may reach five times that at the highest reduced velocity of Ur = 15.0 considered in this work. At the critical reduced velocity Ur = 4.2, notable hydrodynamic jumps are identified for the rotation amplitude, response frequency, mean drag coefficient, lift amplitude, and vortex shedding frequency. Moreover, the phase angle between the fluid moment and rotary oscillation abruptly changes from 0 to π at Ur = 6.5. Due to the combined effect of fluid moment, rotation response, and phase difference, the natural frequency of the rotating body varies in flow, leading to a wide regime of lock-in/synchronization (Ur ≥4.2, for L/D = 1.0). The phenomenon of rotation bifurcation, i.e., the equilibrium position of the rotary oscillation deflects to a position which is not parallel to the free stream, is found to only occur at higher reduced velocities. The longer splitter plate has the lower critical reduced velocity. The occurrence of bifurcation is attributed to the

  1. Maximum Autocorrelation Factorial Kriging

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Pedersen, John L.


    This paper describes maximum autocorrelation factor (MAF) analysis, maximum autocorrelation factorial kriging, and its application to irregularly sampled stream sediment geochemical data from South Greenland. Kriged MAF images are compared with kriged images of varimax rotated factors from...

  2. Vortex-induced vibrations of a square cylinder under linear shear flow

    Sun, Wenjuan; Zhou, Dai; Tu, Jiahuang; Han, Zhaolong


    This paper investigates the numerical vortex-induced vibration (VIV) of a square cylinder which is connected to a 2-DOF mass-spring system and is immersed in the planar shear flow by employing a characteristic-based split (CBS) finite element method (FEM). The reduced mass of the square cylinder is M r = 2, while the reduced velocity, U r, is changed from 3 to 12 with an increment of ΔU r = 1. The effects of some key parameters on the cylinder dynamic responses, vibrating frequencies, the flow patterns as well as the energy transferred between the fluid and cylinder are revealed. In this study, the key parameters are selected as follows: shear ratio (k = 0, 0.05 and 0.1) and Reynolds numbers (Re = 80 and 160). Numerical results demonstrate that the X-Y trajectories of the cylinder mainly appear as a symmetrical figure ‘8’ in uniform flow (k = 0) and an unsymmetrical figure ‘8’ and ‘O’ in shear flows (k = 0.05 and 0.1). The maximum oscillation amplitudes of the square cylinder in both the inline and transverse directions have distinct characteristics compared to that of a circular cylinder. Two kinds of flow patterns, ‘2S’ and ‘P + S’, are mainly observed under the shear flow. Also, the mean values of the energy of the cylinder system increase with the reduced velocity, while the root mean square (rms) of the energy reaches its peak value at reduced velocity U r = 5.


    SHA Yong; WANG Yong-xue


    This article presents the results of a numerical simulation on the vortex induced vibration of various finned cylinders at low Reynolds number. The non-dimensional, incompressible Navier-Stokes equations and continuity equation were adopted to simulate the fluid around the cylinder. The cylinder (with or without fins) in fluid flow was approximated as a mass-spring system. The fluid-body interaction of the cylinder with fins and uniform flow was numerically simulated by applying the displacement and stress iterative computation on the fluid-body interfaces. Both vortex structures and response amplitudes of cylinders with various arrangements of fins were analyzed and discussed. The remarkable decrease of response amplitude for the additions of Triangle60 fins and Quadrangle45 fins was found to be comparable with that of bare cylinder. However, the additions of Triangle00 fins and Quadrangle00 fins enhance the response amplitude greatly. Despite the assumption of two-dimensional laminar flow, the present study can give a good insight into the phenomena of cylinders with various arrangements of fins.

  4. Experimental investigation on free convection from a horizontal cylinder located above an adiabatic surface

    Yazdani, S.; Ashjaee, M. [Tehran Univ., Tehran (Iran, Islamic Republic of). Dept. of Mechanical Engineering; Yousefi, T. [Razi Univ., Kermanshah (Iran, Islamic Republic of). Dept. of Mechanical Engineering


    Natural convection heat transfer from a horizontal isothermal cylinder located above an adiabatic surface is encountered in many technological applications, including heating, ventilating and air conditioning systems. Therefore, an understanding of how a ceiling can influence free convection heat transfer from a heated cylinder is important. This study investigated the local and average free convection heat transfer from a horizontal surface at different cylinder-to-surface spacing (L/D) and Rayleigh number experimentally using a Mach-Zehnder interferometer. Experiments were carried out using Mach-Zehnder interferometer at Rayleigh numbers in the range between 500 and 15000. The effect of the Rayleigh number and spacing from the adiabatic bottom surface on both local and the average Nusselt numbers around the cylinder were investigated. The experimental data showed that the average Nusselt number decreased to a minimum and then increased to a maximum as L/D increased. The maximum in average Nusselt number moved closer to the cylinder's surface as the Rayleigh number increased. 26 refs., 8 figs.

  5. Speed-variable Switched Differential Pump System for Direct Operation of Hydraulic Cylinders

    Schmidt, Lasse; Roemer, Daniel Beck; Pedersen, Henrik Clemmensen


    proportional valves, this design allows to control the lower chamber pressure levels, throttling excess compression flow to tank. The resulting design introduces additional losses due to throttling of excess compression flow, but also improves the dynamic properties of the system significantly. The proposed...... differential cylinders. The main idea was here to utilize an electric rotary drive, with the shaft interconnected to two antiparallel fixed displacement gear pumps, to actuate a differential cylinder. With the design carried out such that the area ratio of the cylinder matches the displacement ratio of the two...... may seriously influence the dynamics and hence the performance during operation. This paper presents an analysis of these properties, and a redesign of the hydraulic system concept is proposed. Here the area- and displacement ratios are deliberately mismatched, causing inherent pressure build...

  6. Inflation of polymer melts into elliptic and circular cylinders

    Rasmussen, Henrik Koblitz; Christensen, Jens Horslund; Gøttsche, Søren


    of the inflating membrane is detected by fibreoptic sensors positioned in the cylinder. The pressure difference across the inflating membrane is measured as well. Measurements were performed on a polyisobutylene melt. As the deformation in this device is highly non-uniform, the response of the material is modelled...... by a finite element method (the 3D Lagrangian integral method). Here, the non-linear properties are modelled with a constitutive equation of the Factorised K-BKZ type, using a potential function F(u')), where u') represents the potential function from the Doi-Edwards reptation theory. The linear viscoelastic...




    In the present paper,the unsteady,viscous,incompressible and 2-D flow around two side-by-side circular cylinders was simulated using a Cartesian-staggered grid finite volume based method.A great-source term technique was employed to identify the solid bodies (cylinders) located in the flow field and boundary conditions were enforced by applying the ghost-cell technique.Finally,the characteristics of the flow around two side-by-side cylinders were comprehensively obtained through several computational simulations.The computational simulations were performed for different transverse gap ratios (1.5≤T/D≤4) in laminar (Re =100,200 ) and turbulent (Re =104) regimes,where T and D are the distance between the centers of cylinders and the diameter of cylinders,respectively.The Reynolds number is based on the diameter of cylinders,D.The pressure field and vorticity distributions along with the associated streamlines and the time histories of hydrodynamic forces were also calculated and analyzed for different gap ratios.Generally,different flow patterns were observed as the gap ratio and Reynolds number varied.Accordingly,the hydrodynamic forces showed irregular variations for small gaps while they took a regular pattern at higher spacing ratios.

  8. RANS-VOF Solver for Solitary Wave Run-up on A Circular Cylinder

    曹洪建; 万德成


    Simulation of solitary wave run-up on a vertical circular cylinder is carried out in a viscous numerical wave tank developed based on the open source codes OpenFOAM. An incompressible two-phase flow solver naoe-FOAM-SJTU is used to solve the Reynolds-Averaged Navier–Stokes (RANS) equations with the SST k-wturbulence model. The PISO algorithm is utilized for the pressure-velocity coupling. The air-water interface is captured via Volume of Fluid (VOF) technique. The present numerical model is validated by simulating the solitary wave run-up and reflected against a vertical wall, and solitary wave run-up on a vertical circular cylinder. Comparisons between numerical results and available experimental data show satisfactory agreement. Furthermore, simulations are carried out to study the solitary wave run-up on the cylinder with different incident wave height H and different cylinder radius a. The relationships of the wave run-up height with the incident wave height H, cylinder radius a are analyzed. The evolutions of the scattering free surface and vortex shedding are also presented to give a better understanding of the process of nonlinear wave-cylinder interaction.

  9. Reflection of a strong magnetic-gas-dynamic shock wave from an elliptical cylinder

    Gorbachev, L.P.; Sokolov, V.B.


    A study is made of a strong, plane shock wave with uniform parameters propagating in a gas with infinite electric conductivity when a homogeneous magnetic field is present tangential to the leading edge of the shock wave when the wave encounters an elliptical cylinder which is stationary in the direction of propagation of the shock wave. The generatrix of the cylinder is parallel to the magnetic field, and the shock wave moves along one of the semiaxes of the ellipse in the perpendicular cross section of the cylinder. Expressions are derived for the flow parameters of the gas beyond the reflected shock wave, ignoring the viscosity and heat conductivity of the gas and assuming the Hall effect to be slight. As t ..-->.. infinity steady supersonic flow is established around the cylinder and the velocity D of the reflected shock wave with respect to the cylinder drops toward zero. A graph shows the results of calculation of the pressure on the surface of the cylinder. 7 references, 1 figure.

  10. Expansion of Metallic Cylinders under Explosive Loading

    M.S. Bola


    Full Text Available The behaviour of expanding metallic cylinders under explosive loading was studied. Using ultra high speed photography, the expansion characteristics of aluminium and copper metallic cylinders have been evaluated with different c/m ratio, and by changing the nature of high explosive. The results obtained are comparable to those predicted by the Gurney's energy and momentum balance equations. A cylinder test has been established for comparative to the metal by octol, TNT, PEK-1, baratol and composition B are calculated. The results are in close agreement with those calculated by Kury et al.

  11. An experimental study on the effects of high-pressure and multiple injection strategies on DI diesel engine emissions

    Yang, Seung Yeon


    An experimental study on effects of high-pressure injections in conjunction with split fuel injections were conducted on an AVL single cylinder DI diesel engine. Various injection schemes were studied through the use of an electronically controlled, common rail injection system capable of injection pressures up to 200 MPa and a maximum of six injections per combustion event. Up to 100 MPa of the fuel injection pressure, the higher injection pressures create faster combustion rates that result in the higher in-cylinder gas temperatures as compared to conventional low-pressure fuel injection systems. When applying high-pressure injections, particulate emission reductions of up to 50% were observed with no change in hydrocarbon emissions, reductions of CO emissions and only slightly higher NOx emissions. Over 100 MPa, on the other hand, the higher injection pressures still reduced up to almost zero-level of particulate emission, at the same time that the NO emission is reduced greatly. Under these high-pressure injection conditions, strong correlations between soot and CO emissions were observed, which compete for the oxidizing OH species. Multiple or split high-pressure injections also investigated as a means to decrease particulate emissions. As a result, a four-split injection strategy resulted in a 55% reduction in particulates and with little or no penalty on NOx emissions. The high pressure split injection strategy with EGR was more effective in reducing particulate and CO emissions simultaneously. Copyright © 2013 SAE International and Copyright © 2013 TSAE.


    Quan Long; Neubert T; Helduser S


    To control the position of differential cylinder closed loop without using any throttle elements, a new idea that two speed variable pumps are used to compensate the non-symmetric flow of differential cylinder is carried out.According to the leaking property of the system, a speed offset principle is also proposed to eliminate the cavitation and tension caused by the leakage and condensation of oil, which makes the system be in the same state as a valve controlled circuit.This principle is explained theoretically and experimentally.Further the relationship that the pressures in cylinder chambers change with load and leakage, and the relationship between biasing speed and pre-load pressures in cylinder chambers are established.The research has proved that the new system has similar technique features as those of controlled with servo valves, but due to the elimination of all the throttle lose the efficiency of system can be improved greatly.

  13. Analysis, Predictive Modeling and Hoisted Object Impact Control in Hydro-cylinder Stage- Switching

    S. V. Kobyzev


    Full Text Available The paper considers a problem of dynamic impact of hoisting mechanisms, which are based on the multistage hydro-cylinders, on the hoisted object. Hydro-cylinders have high specific characteristics, but there are also some drawbacks. One of them is an impact at the beginning and at the end of hoist and in switching the stages. And in case of switching the stages under certain conditions the impact in nature can be a high impact impulse. The paper explores the impacts at the beginning of hoist and when switching the stages.Numerical modeling is assumed to be a method of study. To build a mathematical model the following factors have been considered: geometrical cylinder parameters, hydraulic liquid compressibility, and friction between cylinder elements. Elasticity of ground, elasticity of rod, and elasticity of cylinder walls have been ignored.The modeling results allowed us to reveal a hydraulic nature of the stage-switching impact, introduce a formula to estimate the impact impulse value, show the friction effect on the impact impulse value and give a proposal to use a counter-pressure chamber to eliminate the stage-switching impact. An expression for the optimal counter-pressure is presented.The results obtained can find application in designing the new and upgrading the existing hoisting multistage hydro-cylinder mechanisms to increase a hoisting speed and simultaneously eliminate the impact on hoisted object.Compared to existing papers in the field concerned, this one concentrates on revealing a specific hydraulic nature of the stage-switching impact, without regard to dynamics and elasticity of the hoisting mechanism parts other than the cylinder itself.The achieved results find confirmation when compared to the numerical and field data published by other authors.

  14. Numerical investigation of tandem-cylinder aerodynamic noise and its control with application to airframe noise

    Eltaweel, Ahmed

    Prediction and reduction of airframe noise are critically important to the development of quieter civil transport aircraft. The key to noise reduction is a full understanding of the underlying noise source mechanisms. In this study, tandem cylinders in cross-flow as an idealization of a complex aircraft landing gear configuration are considered to investigate the noise generation and its reduction by flow control using single dielectric barrier discharge plasma actuators. The flow over tandem cylinders at ReD = 22, 000 with and without plasma actuation is computed using large-eddy simulation. The plasma effect is modeled as a body force obtained from a semi-empirical model. The flow statistics and surface pressure frequency spectra show excellent agreement with previous experimental measurements. For acoustic calculations, a boundary-element method is implemented to solve the convected Lighthill equation. The solution method is validated in a number of benchmark problems including flows over a cylinder, a rod-airfoil configuration, and a sphere. With validated flow field and acoustic solver, acoustic analysis is performed for the tandem-cylinder configuration to extend the experimental results and understand the mechanisms of noise generation and its control. Without flow control, the acoustic field is dominated by the interaction between the downstream cylinder and the upstream wake. Through suppression of vortex shedding from the upstream cylinder, the interaction noise is reduced drastically by the plasma flow control, and the vortex-shedding noise from the downstream cylinder becomes equally important. At a free-stream Mach number of 0.2, the peak sound pressure level is reduced by approximately 16 dB. This suggests the viability of plasma actuation for active control of airframe noise. The numerical investigation is extended to the noise from a realistic landing gear experimental model. Coarse-mesh computations are performed, and preliminary results are

  15. Theory of interacting dislocations on cylinders.

    Amir, Ariel; Paulose, Jayson; Nelson, David R


    We study the mechanics and statistical physics of dislocations interacting on cylinders, motivated by the elongation of rod-shaped bacterial cell walls and cylindrical assemblies of colloidal particles subject to external stresses. The interaction energy and forces between dislocations are solved analytically, and analyzed asymptotically. The results of continuum elastic theory agree well with numerical simulations on finite lattices even for relatively small systems. Isolated dislocations on a cylinder act like grain boundaries. With colloidal crystals in mind, we show that saddle points are created by a Peach-Koehler force on the dislocations in the circumferential direction, causing dislocation pairs to unbind. The thermal nucleation rate of dislocation unbinding is calculated, for an arbitrary mobility tensor and external stress, including the case of a twist-induced Peach-Koehler force along the cylinder axis. Surprisingly rich phenomena arise for dislocations on cylinders, despite their vanishing Gaussian curvature.

  16. Suppression of Brazier Effect in Multilayered Cylinders

    Hiroyuki Shima


    Full Text Available When a straight hollow tube having circular cross-section is bent uniformly into an arc, the cross-section tends to ovalize or flatten due to the in-plane stresses induced by bending; this ovalization phenomenon is called the Brazier effect. The present paper is aimed at theoretical formulation of the Brazier effect observed in multilayered cylinders, in which a set of thin hollow cylinders are stacked concentrically about the common axis. The results indicate that mechanical couplings between stacked cylinders are found to yield pronounced suppression of the cross-sectional ovalization. Numerical computations have been performed to measure the degree of suppression in a quantitative manner and to explore how it is affected by the variations in the bending curvature, the number of stacked cylinders, and the interlayer coupling strength.

  17. Finite Element Analysis of 4-Cylinder Diesel Crankshaft

    Jian Meng


    Full Text Available The stress analysis and modal analysis of a 4-cylinder crankshaft are discussed using finite element method in this paper. Three-dimension models of 480 diesel engine crankshaft and crankthrow were created using Pro/ENGINEER software The finite element analysis (FEM software ANSYS was used to analyse the vibration modal and the distortion and stress status of the crankthrow.The maximum deformation, maximum stress point and dangerous areas are found by the stress analysis of crankthrow. The relationship between the frequency and the vibration modal is explained by the modal analysis of crankshaft. The results would provide a valuable theoretical foundation for the optimization and improvement of engine design.

  18. Numerical simulation of tandem-cylinder noise-reduction using plasma-based flow control

    Wang, Meng; Eltaweel, Ahmed; Thomas, Flint; Kozlov, Alexey; Kim, Dongjoo


    The noise of low-Mach-number flow over tandem cylinders at ReD = 22 , 000 and its reduction using plasma actuators are simulated numerically to confirm and extend earlier experimental results. The numerical approach is based on large-eddy simulation for the turbulent flow field, a semi-empirical plasma actuation model, and Lighthill's theory for acoustic calculation. Excellent agreement between LES and experimental results is obtained for both the baseline flow and flow with plasma control in terms of wake velocity profiles, turbulence intensity, and frequency spectra of pressure fluctuations on the downstream cylinder. The validated flow-field results allow an accurate acoustic analysis based on Lighthill's equation, which is solved using a boundary-element method. The effectiveness of plasma actuators for reducing noise is demonstrated. In the baseline flow, the acoustic field is dominated by the interaction of the downstream cylinder with the upstream wake. With flow control the interaction noise is reduced drastically through suppression of vortex shedding from the upstream cylinder, and the vortex-shedding noise from the downstream cylinder becomes dominant. The peak sound pressure level is reduced by approximately 15 dB. Supported by NASA Cooperative Agreement NNX07AO09A.

  19. Sub-wavelength resonances in polygonal metamaterial cylinders

    Arslanagic, Samel; Breinbjerg, Olav


    It has been shown that the sub-wavelength resonances of circular MTM cylinders also occur for polygonal MTM cylinders. This is the case for lossless and non-dispersive cylinders as well as lossy and dispersive cylinders. The sub-wavelength resonances are thus not limited to structures of canonical...

  20. Dynamic Fracture Simulations of Explosively Loaded Cylinders

    Arthur, Carly W. [Univ. of California, Davis, CA (United States). Dept. of Civil and Environmental Engineering; Goto, D. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    This report documents the modeling results of high explosive experiments investigating dynamic fracture of steel (AerMet® 100 alloy) cylinders. The experiments were conducted at Lawrence Livermore National Laboratory (LLNL) during 2007 to 2008 [10]. A principal objective of this study was to gain an understanding of dynamic material failure through the analysis of hydrodynamic computer code simulations. Two-dimensional and three-dimensional computational cylinder models were analyzed using the ALE3D multi-physics computer code.

  1. W-76 PBX 9501 cylinder tests

    Hill, L.G.; Catanach, R.A.


    Five 1-inch diameter cylinder tests were fired in support of the W-76 high explosive surveillance program. Three of the tests used baseline material, and two used stockpile return material. The diagnostics were electrical pins to measure detonation velocity and a streak camera to measure wall motion. The data was analyzed for cylinder energy, Gurney energy, and detonation velocity. The results of all three measures were consistent for all five tests, to within the experimental accuracy.

  2. Study of Multi-Cylinder Engine Manifolds


    were developed so that mnifolds for any number of cylinders could be analyzed for max- I= zm volumetrie efficiency. Eletricaleebanioal analoCies can be...deceleration of the air& The vibrations are almot Identical to thse In single cylinder intake pipes. The mmi- a= volumetrie efficiency bould be...pipe 14 in. total volume 7- In- 3 area of pipew 0.86 in 2 Table I gives the actual and calculated speeds for peak volumetri efficiencies for a sIngle

  3. Combustion, performance and emissions characteristics of a newly developed CRDI single cylinder diesel engine

    Avinash Kumar Agarwal; Paras Gupta; Atul Dhar


    For improving engine performance, combustion and controlling emissions from compression ignition (CI) engines, common rail direct injection (CRDI) technology offers limitless possibilities by controlling fuel injection parameters such as fuel injection pressure, start of injection (SOI) timing, rate of fuel injection and injection duration. CRDI systems available commercially are quite complex and use a large number of sensors, hardware and analytical circuits, which make them very expensive and unfeasible for cheaper single cylinder engines, typically used in agricultural sector and decentralized power sector. This paper covers experimental investigations of a simpler version of CRDI system developed for a constant-speed, single-cylinder engine. Modifications in the cylinder head for accommodating solenoid injector, designing injector driver circuit and development of high pressure stage controls were some of the engine modification and development tasks undertaken. SOI timing is an important parameter for improving engine's combustion characteristics. SOI timings were varied between 25° and 40° BTDC for investigating engine's performance, emissions and combustion characteristics. Advanced fuel injections showed higher heat release rate (HRR), cylinder pressure and rate of pressure rise (RoPR) because of relatively longer ignition delay experienced. Lowest brake specific fuel consumption (BSFC) was obtained for 34° CA BTDC SOI. Reduction in engine out emissions except NOx was observed for advanced fuel injection timings for this newly developed CRDI system.

  4. Study of the noise characteristics of a six-cylinder diesel engine

    Tung, V.T.C.; Crocker, M.J.


    This paper presents some of the results of a study of the noise emitted by a Cummins NTC-350 turbo-charged diesel engine. The relationships between engine noise and speed, load, temperature and cylinder pressure and its derivatives were examined. The results were compared with previous engine noise findings and predictions.




    Increased thermal efficiency, savings in the fuel consumption and the possibility to burn low quality fuels conducted to an intense development of marine engines in past 20 years, this progress being emphasized by the increased combustion pressures and better combustion properties. These improvements represent a continuous challenge for lubricating oil manufacturers: the rise in combustion temperatures and pressures is making difficult to preserve the oil film in critical area...

  6. Statistical analyses of a screen cylinder wake

    Mohd Azmi, Azlin; Zhou, Tongming; Zhou, Yu; Cheng, Liang


    The evolution of a screen cylinder wake was studied by analysing its statistical properties over a streamwise range of x/d={10-60}. The screen cylinder was made of a stainless steel screen mesh of 67% porosity. The experiments were conducted in a wind tunnel at a Reynolds number of 7000 using an X-probe. The results were compared with those obtained in the wake generated by a solid cylinder. It was observed that the evolution of the statistics in the wake of the screen cylinder was different from that of a solid cylinder, reflecting the differences in the formation of the organized large-scale vortices in both wakes. The streamwise evolution of the Reynolds stresses, energy spectra and cross-correlation coefficients indicated that there exists a critical location that differentiates the screen cylinder wake into two regions over the measured streamwise range. The formation of the fully formed large-scale vortices was delayed until this critical location. Comparison with existing results for screen strips showed that although the near-wake characteristics and the vortex formation mechanism were similar between the two wake generators, variation in the Strouhal frequencies was observed and the self-preservation states were non-universal, reconfirming the dependence of a wake on its initial condition.

  7. Structures of in-cylinder flow fields in a motored two-stroke engine; Zur Stroemungsstruktur im Zylinder eines Zweitaktmotors

    Weidlich, K.P.; Hertwig, K.


    Transfer-port and in-cylinder flow fields in a motored (non-firing, 2500 rpm), crankcase-compression, loop-scavenged two-stroke engine were investigated both experimentally and by computer simulations. A fiber LDV-system was used to measure the velocities two-dimensionally in 199 locations within the engine cylinder and in 43 points within the transfer port and transfer-port/cylinder interface. Comparisons were made between in-cylinder flow fields measured under motored and steady-state conditions. Calculations were performed applying FIRE, a computer-program based on the finite-volume method, that efficiently solves the transfer- and exhaust-port flows along with those in the cylinder. Velocity or pressure measurements at the crankcase/transfer-port interface and the exhaust-port pressure far away from the exhaust-port/cylinder interface were employed to define the boundary conditions. The use of velocity inflow/pressure outflow boundary conditions reveals the best agreement with experiments. In general, those computations replicate measurements well. In detail, however, the port efflux angle differs. (orig.) [Deutsch] Die Tendenzen in der Umweltgesetzgebung stellen die Zweitaktmotorenhersteller vor zunehmend schwierigere und nur langfristig loesbare Entwicklungsprobleme. Insbesondere die zu erwartenden Abgasgrenzwerte erfordern umfangreiche Forschungsarbeiten zur Spuelung, Gemischbildung und Verbrennung im Detail. Der vorliegende Beitrag beschreibt die durch Mitglieder der Foschungsvereingigung Verbrennungskraftmaschinen e.V. angeregten Arbeiten zur detaillierten Analyse des Spuelstroemungsfeldes in einem geschleppten, umkehrgespuelten Zweitaktmotor mit laseroptischen und numerischen Methoden. (orig.)

  8. Study on the two-dimensional jet impinging on a circular cylinder. 1st report. ; Measurements of flow-field and heat transfer around a circular cylinder mounted near two flat plates. Enchu eno nijigen shototsu funryu ni kansuru kenkyu. 1. ; Enchu ni kinsetsushite secchishita heiban no nagareba oyobi enchu netsudentatsu eno eikyo

    Haneda, Y.; Kurasawa, H. (Nagano National College of Technology, Nagano (Japan)); Tsuchiya, Y. (Shinshu Univ., Nagano (Japan). Faculty of Engineering); Suzuki, K. (Kyoto Univ., Kyoto (Japan). Faculty of Engineering)


    The flow field and heat transfer around a circular cylinder is investigated experimentally when two dimensional jet is impinged on a circular cylinder mounted near two flat plates which are set at a fixed inclination against the axis of jet. Flow field varies markedly depending on whether the minimum channel width is the minimum space B between the flat plates or the space C between the cylinder and the plates. The local Nusselt number of the cylinder strongly depends on the value of space C between the cylinder and the plates. The minimum and maximum locations correspond to the locations of separation and reattachment, respectively, of the flow around the cylinder. When the ratio between the nozzle-to-cylinder distance L and the short side h of the nozzle is 3 (L/h=3), the mean Nusselt number around the cylinder becomes the maximum when C/D is 0.1 where D is the diameter of the cylinder, and increases by about 9 to 12% as compared with the case where no plate is provided. For L/h=7 and L/h=10, the mean Nusselt number does not increase distinctly as compared with the case where no flat plate is provided. 16 refs., 15 figs.

  9. Blockage effect on the flow around a cylinder probe in calibration

    WANG Hong-wei; WEI Jun


    Flow around a 2-D cylinder pressure probe placed in uniform flow, free jet flow, and wind tunnel flow was analyzed with potential flow theory and simulated with numerical method. Blockage effect was investigated under several typical flow Mach numbers. The result from numerical simulation shows a similar trend to the one from potential flow method while varies in quantity. Wind tunnel walls accelerate the flow near the probe and thus produce a blockage effect;Boundary of free jet flow, however, decelerates the flow and thus produces a "negative" blockage effect. A maximum incoming Mach number exists when the probe is calibrated in wind tunnel in high subsonic condition due to choking caused by shocks and shock induced separation. The critical Mach number varies with blockage ratio, which makes high Mach number impossible to achieve in large blockage ratio condition. The blockage effect itself is unavoidable for calibration or measurement although a sufficiently small blockage ratio brings minor effect. Correction can be implemented based on the numerical simulation result presented in this paper and further works.

  10. A Method for Turbocharging Four-Stroke Single Cylinder Engines

    Buchman, Michael; Winter, Amos


    Turbocharging is not conventionally used with single cylinder engines due to the timing mismatch between when the turbo is powered and when it can deliver air to the cylinder. The proposed solution involves a fixed, pressurized volume - which we call an air capacitor - on the intake side of the engine between the turbocharger and intake valves. The capacitor acts as a buffer and would be implemented as a new style of intake manifold with a larger volume than traditional systems. This talk will present the flow analysis used to determine the optimal size for the capacitor, which was found to be four to five times the engine capacity, as well as its anticipated contributions to engine performance. For a capacitor sized for a one-liter engine, the time to reach operating pressure was found to be approximately two seconds, which would be acceptable for slowly accelerating applications and steady state applications. The air density increase that could be achieved, compared to ambient air, was found to vary between fifty percent for adiabatic compression and no heat transfer from the capacitor, to eighty percent for perfect heat transfer. These increases in density are proportional to, to first order, the anticipated power increases that could be realized. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1122374.

  11. Steady thermal stress and strain rates in a rotating circular cylinder under steady state temperature

    Pankaj Thakur


    Full Text Available Thermal stress and strain rates in a thick walled rotating cylinder under steady state temperature has been derived by using Seth’s transition theory. For elastic-plastic stage, it is seen that with the increase of temperature, the cylinder having smaller radii ratios requires lesser angular velocity to become fully plastic as compared to cylinder having higher radii ratios The circumferential stress becomes larger and larger with the increase in temperature. With increase in thickness ratio stresses must be decrease. For the creep stage, it is seen that circumferential stresses for incompressible materials maximum at the internal surface as compared to compressible material, which increase with the increase in temperature and measure n.

  12. Numerical Investigation of Heat Transfer on the Surface of a Circular Cylinder in Cross-Flow

    Gizem ŞENCAN


    Full Text Available In the present study, numerical analysis of heat transfer from heated cylinder, located inrectangular channel normal to the flow direction is studied. Finite volume based ANSYS-FLUENT 14 codeis used in the solution of governing equations. Three different turbulence models as Std. k-ε, RNG k-ε andRealizable k-ε are used in computations for four different Reynolds numbers, Re= 4000, 8000, 16000, and32000. It is found that numerical results obtained with Std. and RNG k-ε turbulence models are in goodagreement with experimental data for maximum value of local Nusselt number on the cylinder. As expectedthat local Nusselt numbers increase with increasing Reynolds number for almost all points on cylinder.

  13. Wave Forces on Linear Arrays of Rigid Vertical Circular Cylinders in Regular Wave

    V.J. Kurian


    Full Text Available The present investigation aims to experimentally determine the variation of forces and force coefficients acting on circular cylinders, which are arranged in a linear array along the direction of the waves. Most commonly used structural and non-structural elements in the construction of offshore platforms are circular cylindrical members. In many cases, these members are found in very close neighbourhood of each other, thus modifying the surrounding flow and wave forces acting on them. Model tests were conducted in the wave tank on a maximum of four cylinders of the same diameter. A reasonable scale factor was chosen considering the pertinent factors such as water depth, wave generating capability and accuracy of measurements. The cylinders were installed inside the wave tank as vertical cantilevers fixed at the top. Wave forces acting on the cylinders were measured using special wave force sensors exclusively designed and fabricated for the present project, while the wave profiles were recorded using wave probes installed in the wave basin. The results confirmed the presence of a force shielding effect on the trailing cylinders by the leading cylinders with few exceptions. The findings also substantiated the significant modification of the forces on cylinders when they are present in a linear array. A common practice adopted for the design of offshore platforms was identified with a possibility of underestimating the wave forces acting on the cylindrical elements. In many cases, the experimentally computed hydrodynamic force coefficients were found to be lower than the standard values adopted by various design codes. These findings portray the significance of the present work in achieving economy in the design of jacket platforms and risers.

  14. Engine control system having pressure-based timing

    Willi, Martin L.; Fiveland, Scott B.; Montgomery, David T.; Gong, Weidong


    A control system for an engine having a first cylinder and a second cylinder is disclosed having a first engine valve movable to regulate a fluid flow of the first cylinder and a first actuator associated with the first engine valve. The control system also has a second engine valve movable to regulate a fluid flow of the second cylinder and a sensor configured to generate a signal indicative of a pressure within the first cylinder. The control system also has a controller that is in communication with the first actuator and the sensor. The controller is configured to compare the pressure within the first cylinder with a desired pressure and selectively regulate the first actuator to adjust a timing of the first engine valve independently of the timing of the second engine valve based on the comparison.


    Smith, A.E.


    An improved seal between the piston and die member of a piston-cylinder type pressure vessel is presented. A layer of gold, of sufficient thickness to provide an interference fit between the piston and die member, is plated on the contacting surface of at least one of the members. (AEC)

  16. Convective heat transfer characteristics of low Reynolds number nanofluid flow around a circular cylinder

    Yacine Khelili


    Full Text Available Numerical investigation of heat transfer phenomena of low Reynolds number nano-fluid flow over an isothermal cylinder is presented in this paper. Steady state governing equations (continuity, N–S and energy equations have been solved using finite volume method. Stationary heat transfer, and flow characteristics over the cylinder have been studied for water based copper nanofluid with different solid fraction values. The effect of volume fraction of nano- particles on the fluid flow and heat transfer were investigated numerically. It was found that at a given Nusselt number, drag coefficient, re-circulation length, and pressure coefficient increase by increasing the volume fraction of nano-particles.

  17. Flow of an Eyring-Powell Model Fluid between Coaxial Cylinders with Variable Viscosity

    Azad Hussain


    Full Text Available We consider the flow of Eyring-Powell model fluid in the annulus between two cylinders whose viscosity depends upon the temperature. We consider the steady flow in the annulus due to the motion of inner cylinder and constant pressure gradient. In the problem considered the flow is found to be remarkedly different from that for the incompressible Navier-Stokes fluid with constant viscosity. An analytical solution of the nonlinear problem is obtained using homotopy analysis method. The behavior of pertinent parameters is analyzed and depicted through graphs.

  18. Influence of humidity on the convective heat transfer from small cylinders

    Still, M.; Venzke, H.; Durst, F.; Melling, A.

    The convective heat transfer from a cylinder to a humid air stream flowing normal to the cylinder was investigated experimentally at atmospheric pressure over a range of variables which is relevant to the use of hot-wire anemometry: air temperatures between 30°C and 70°C and velocities between 12 and 37 m/s. For molar fractions of water vapour up to 0.27, the heat transfer increased with increasing humidity. The ratio of heat transfer rates in humid air and dry air is a unique function of the molar fraction of water vapour, independent of the air temperature and flow velocity.

  19. Experimental investigation of flow characteristics around four square-cylinder arrays at subcritical Reynolds numbers

    Mingyue Liu


    Full Text Available The Deep Draft Semi-Submersible (DDS concepts are known for their favourable vertical motion performance. However, the DDS may experience critical Vortex-Induced Motion (VIM stemming from the fluctuating forces on the columns. In order to investigate the current-induced excitation forces of VIM, an experimental study of flow characteristics around four square-section cylinders in a square configuration is presented. A number of column spacing ratios and array attack angles were considered to investigate the parametric influences. The results comprise flow patterns, drag and lift forces, as well as Strouhal numbers. It is shown that both the drag and lift forces acting on the cylinders are slightly different between the various L/D values, and the fluctuating forces peak at L/D = 4.14. The lift force of downstream cylinders reaches its maximum at around α = 15°. Furthermore, the flow around circular- section-cylinder arrays is also discussed in comparison with that of square cylinders.

  20. Effects of confining walls on heat transfer from a vertical array of isothermal horizontal elliptic cylinders

    Yousefi, T.; Paknezhad, M. [Mechanical Engineering Department, Razi University, Kermanshah, Tehran 11365-4563 (Iran); Ashjaee, M.; Yazdani, S. [School of Mechanical Engineering, University of Tehran, Tehran 11365-4563 (Iran)


    Steady state two-dimensional natural convection heat transfer from the vertical array of five horizontal isothermal elliptic cylinders with vertical major axis which confined between two adiabatic walls has been studied experimentally. Experiments were carried out using a Mach-Zehnder interferometer. The Rayleigh number based on cylinder major axis was in the range 10{sup 3}{<=}Ra{<=}2.5 x 10{sup 3}, and dimensionless wall spacing 1.5{<=} t/b{<=}9 and infinity. The effect of wall spacing and Rayleigh number on the heat transfer from the individual cylinder and the array were investigated. Experiments are performed for ratio wall spacing to major diameter t/b = 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 9 and infinity. A correlation based on the experimental data for the average Nusselt number of the array as a function of Ra and t/b is presented in the aforementioned ranges. A relation has been derived for optimum wall spacing at which the Nusselt number of the array attains its maximum value. At optimum wall spacing, approximately 10% increase in the heat transfer from the confined array of elliptic cylinders has been observed as compared to the unconfined case. Also, a heat transfer correlation has been proposed for a single elliptic cylinder with vertical major axis and has been compared with earlier works. (author)

  1. Experimental investigation of flow characteristics around four square-cylinder arrays at subcritical Reynolds numbers

    Liu Mingyue


    Full Text Available The Deep Draft Semi-Submersible (DDS concepts are known for their favourable vertical motion performance. However, the DDS may experience critical Vortex-Induced Motion (VIM stemming from the fluctuating forces on the columns. In order to investigate the current-induced excitation forces of VIM, an experimental study of flow characteristics around four square-section cylinders in a square configuration is presented. A number of column spacing ratios and array attack angles were considered to investigate the parametric influences. The results comprise flow patterns, drag and lift forces, as well as Strouhal numbers. It is shown that both the drag and lift forces acting on the cylinders are slightly different between the various L/D values, and the fluctuating forces peak at L/D = 4.14. The lift force of downstream cylinders reaches its maximum at around α = 15°. Furthermore, the flow around circular-section-cylinder arrays is also discussed in comparison with that of square cylinders.

  2. Lattice Boltzmann simulation of surface radiation and natural convection in a square cavity with an inner cylinder

    Mezrhab, Ahmed; Moussaoui, M A [Laboratoire de Mecanique and Energetique, Departement de Physique, Faculte des Sciences, Universite Mohamed 1, Oujda (Morocco); Naji, H [Universite des Sciences et Technologies de Lille/Polytech' Lille/LML UMR 8107, F-59655 Villeneuve d' Ascq Cedex (France)], E-mail:


    A numerical study is carried out for conjugate natural convection-surface radiation heat transfer from a heated circular cylinder enclosed in a square cavity. A hybrid scheme with lattice Boltzmann for fluid velocity variables and finite difference for the temperature is used. The vertical walls of the enclosure are cooled with a uniform temperature while the others are adiabatic. Effects of the Rayleigh number, size and location of the heated cylinder and surface emissivities are investigated numerically. The results are reported in terms of isotherms, streamlines and the average Nusselt number. It is found that (i) the radiation exchange standardizes the temperature inside the cavity and produces an increase in the heat transfer, particularly at large Ra, (ii) the heat transfer enhances with increasing cylinder size and/or surface emissivity and (iii) the maximum rate of heat transfer occurs when the cylinder is located at the horizontal median close to the vertical wall.

  3. Reducing pressure oscillations in discrete fluid power systems

    Hansen, Anders Hedegaard; Pedersen, Henrik Clemmensen


    Discrete fluid power systems featuring transmission lines inherently include pressure oscillations. Experimental verification of a discrete fluid power power take off system for wave energy converters has shown the cylinder pressure to oscillate as force shifts are performed. This article...

  4. Evaluation of in-cylinder mixture homogeneity in a diesel HCCI engine – A CFD analysis

    N. Ramesh


    Full Text Available Performance and emission characteristics of HCCI engines depend on achieving a good in-cylinder homogeneous mixture. The formation of in-cylinder mixture depends on many engine parameters, which need optimization. In addition, as of now, there is no direct way to clearly describe and estimate in-cylinder mixture homogeneity. In the CFD analysis, it is evaluated indirectly using contour plots of equivalence ratio, variation of in-cylinder pressure with crank angles, heat release curves or by the comparison of emissions. In this study, an attempt has been made to develop methods to evaluate the in-cylinder mixture homogeneity by the CFD analysis using AVL-FIRE. Here, global and local in-cylinder fuel distribution and in-cylinder fuel distribution index are used to evaluate the mixture homogeneity. In order to evaluate these methods, mixture homogeneities in two cases of fuel injections with 7- and 10-hole injector are compared. Finally, we found that the global fuel distribution (GFD plot helps direct quantitative assessment of mixture distribution in various ER range. However, the GFD method cannot explain the spatial variation of fuel distribution and does not provide mixture homogeneity on a simple scale. In the method of plotting fuel distribution index, the overall homogeneity will be evaluated on a scale of 0 to 1 by a simple way. In the method of plotting local fuel distribution (LFD, the spatial variation of mixture homogeneity is well defined in local zones both in radial and axial directions. Further, these proposed methods help us to reduce the computation time significantly.

  5. Guided Circumferential Waves in Layered Poroelastic Cylinders

    Shah S.A.


    Full Text Available The present paper investigates the propagation of time harmonic circumferential waves in a two-dimensional hollow poroelastic cylinder with an inner shaft (shaft-bearing assembly. The hollow poroelastic cylinder and inner shaft are assumed to be infinite in axial direction. The outer surface of the cylinder is stress free and at the interface, between the inner shaft and the outer cylinder, it is assumed to be free sliding and the interfacial shear stresses are zero, also the normal stress and radial displacements are continuous. The frequency equation of guided circumferential waves for a permeable and an impermeable surface is obtained. When the angular wave number vanish the frequency equation of guided circumferential waves for a permeable and an impermeable surface degenerates and the dilatational and shear waves are uncoupled. Shear waves are independent of the nature of surface. The frequency equation of a permeable and an impermeable surface for bore-piston assembly is obtained as a particular case of the model under consideration when the outer radius of the hollow poroelastic cylinder tends to infinity. Results of previous studies are obtained as a particular case of the present study. Nondimensional frequency as a function of wave number is presented graphically for two types of models and discussed. Numerical results show that, in general, the first modes are linear for permeable and impermeable surfaces and the frequency of a permeable surface is more than that of an impermeable surface.

  6. UF{sub 6} cylinder fire test

    Park, S.H. [Oak Ridge K-25 Site, Oak Ridge, TN (United States)


    With the increasing number of nuclear reactors for power generation, there is a comparable increase in the amount of UF{sub 6} being transported. Likewise, the probability of having an accident involving UF{sub 6}-filled cylinders also increases. Accident scenarios which have been difficult to assess are those involving a filled UF{sub 6} cylinder subjected to fire. A study is underway at the Oak Ridge K-25 Site, as part of the US DOE Enrichment Program, to provide empirical data and a computer model that can be used to evaluate various cylinder-in-fire scenarios. It is expected that the results will provide information leading to better handling of possible fire accidents as well as show whether changes should be made to provide different physical protection during shipment. The computer model being developed will be capable of predicting the rupture of various cylinder sizes and designs as well as the amount of UF{sub 6}, its distribution in the cylinder, and the conditions of the fire.

  7. Dynamic Simulation of the Harvester Boom Cylinder

    Rongfeng Shen


    Full Text Available Based on the complete dynamic calculation method, the layout, force, and strength of harvester boom cylinders were designed and calculated. Closed simulations for the determination of the dynamic responses of the harvester boom during luffing motion considering the cylinder drive system and luffing angle position control have been realized. Using the ADAMS mechanical system dynamics analysis software, six different arm poses were selected and simulated based on the cylinder as the analysis object. A flexible model of the harvester boom luffing motion has been established. The movement of the oil cylinder under different conditions were analyzed, and the main operation dimensions of the harvester boom and the force condition of the oil cylinder were obtained. The calculation results show that the dynamic responses of the boom are more sensitive to the luffing acceleration, in comparison with the luffing velocity. It is seen that this method is very effective and convenient for boom luffing simulation. It is also reasonable to see that the extension of the distance of the bottom of the boom is shortened by adjusting the initial state of the boom in the working process, which can also effectively reduce the workload of the boom—thus improving the mechanical efficiency.

  8. Flexural vibrations of finite composite poroelastic cylinders

    Sandhya Rani Bandari; Srisailam Aleti; Malla Reddy Perati


    This paper deals with the flexural vibrations of composite poroelastic solid cylinder consisting of two cylinders that are bonded end to end. Poroelastic materials of the two cylinders are different. The frequency equations for pervious and impervious surfaces are obtained in the framework of Biot’s theory of wave propagation in poroelastic solids. The gauge invariance property is used to eliminate one arbitrary constant in the solution of the problem. This would lower the number of boundary conditions actually required. If the wavelength is infinite, frequency equations are degenerated as product of two determinants pertaining to extensional vibrations and shear vibrations. In this case, it is seen that the nature of the surface does not have any influence over shear vibrations unlike in the case of extensional vibrations. For illustration purpose, three composite cylinders are considered and then discussed. Of the three, two are sandstone cylinders and the third one is resulted when a cylindrical bone is implanted with Titanium. In either case, phase velocity is computed against aspect ratios.

  9. Experiments and simulations of flow noise inside a cylinder aligned with the flow

    Elboth, Thomas; Andreassen, Øyvind; Reif, Bjørn Anders


    This work uses Lighthill's acoustic analogy to investigate noise generated by a turbulent boundary layer surrounding a cylinder aligned with the flow direction. Based on a DNS of channel flow with a Reynolds number Reτ=180, both the direct and the acoustic pressure fluctuations (self-noise) from the turbulent boundary layer surrounding the cylinder are computed. The computational domain is surrounded by a Perfectly Matched Layer (PML) absorbing boundary conditions. The result from the simulation is compared with noise data recorded on a purpose built experimental seismic streamer towed in the ocean. We do this to gain knowledge about how turbulent flow noise in a ``towed'' cylinder behaves and to compare the turbulent flow noise with other sources of noise found in towed sonar arrays, commonly used for maritime surveillance and geophysical exploration. Based on both simulations and measurements we present spectral estimates of the acoustic field and estimates of the spatial coherence ``distance'' of the noise.

  10. Optimization of In-Cylinder Pressure Filter for Engine Research


    min, pmi = 9 bar) |Δp| (Short therm drift) [bar] ɘ.5 |Δpmi| [%] ɚ |Δpmax| [%] ə Insulation resistance at 23 °C [ Ohm ] >10^13 Shock resistance [g...Output resistance [ Ohm ] 10 Supply (amplifier) [VDC] 18 … 30 Zero setting (at 25°C, 1 bara) [mV] <±100 Linearity and hysteresis [% FSO ] <±1 Thermal

  11. Maximum Autocorrelation Factorial Kriging

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Pedersen, John L.; Steenfelt, Agnete


    This paper describes maximum autocorrelation factor (MAF) analysis, maximum autocorrelation factorial kriging, and its application to irregularly sampled stream sediment geochemical data from South Greenland. Kriged MAF images are compared with kriged images of varimax rotated factors from an ordinary non-spatial factor analysis, and they are interpreted in a geological context. It is demonstrated that MAF analysis contrary to ordinary non-spatial factor analysis gives an objective discrimina...

  12. 3-D FEM Analysis of Stress Distribution for Connecting Pipe in Mid-pressure Steam Drum%中压汽包接管应力分布的三维有限元分析

    杨伟春; 梁基照


    In this paper a stress distribution analysis for connecting pipes in a mid-pressure steam drum has been made by means of the 3-dimensional finite element of ANSYS structure analysis software.The results showed that the maximum values of all kinds of stresses were in the inside of the conjunction area betw een the pipe and the steam-drum cylinder,and these stresses decreased with incre asing distance from this area.




    Full Text Available Increased thermal efficiency, savings in the fuel consumption and the possibility to burn low quality fuels conducted to an intense development of marine engines in past 20 years, this progress being emphasized by the increased combustion pressures and better combustion properties. These improvements represent a continuous challenge for lubricating oil manufacturers: the rise in combustion temperatures and pressures is making difficult to preserve the oil film in critical areas and the longer strokes of the piston leads to issues of spreading the oil. Adding here the new type of engines using gas or biofuel which requires different types of lubricating oils. Therefore, the success of new generation of engines will depend on lubricating oils quality. :

  14. Rotation of an immersed cylinder sliding near a thin elastic coating

    Rallabandi, Bhargav; Jules, Theo; Salez, Thomas; Schönecker, Clarissa; Mahadevan, L; Stone, Howard A


    It is well known that an object translating parallel to a soft wall produces viscous stresses and a pressure field that deform the wall, which, in turn, results in a lift force on the object. Recent experiments on cylinders sliding near a soft incline under gravity confirmed previously developed theoretical arguments, but also reported an unexplained rotation of the cylinder at steady state (Saintyves et al. \\emph{PNAS} 113(21), 2016). Here, we use the Lorentz reciprocal theorem to calculate the angular velocity of an infinite cylinder sliding near a soft incline, in the lubrication limit. Our results show that the softness-induced angular velocity of the cylinder is quadratic in the deformation of the elastic layer. This implies that a cylinder sliding parallel to a soft wall without rotation experiences an elastohydrodynamic torque that is proportional to the cube of the sliding speed. We compare the theoretical predictions of the rotation speed with experimental measurements. We then develop scaling and sy...

  15. Forced Convection from Square Cylinder Placed Near a Wall Using Variable Resolution Turbulence Modelling

    Ranjan, Pritanshu; Dewan, Anupam


    The effect of wall proximity on flow and heat transfer around a square cylinder placed inside a channel is numerically investigated. This flow configuration is a fundamental problem and is widely encountered in several engineering applications. The presence of wall close to the cylinder can alter the shedding process and this in turn can affect the thermal transport in the wake region. Many researchers have studied this phenomenon experimentally but the heat transfer characteristics around a square cylinder placed inside a channel still remain an open question. We present here an insight into this problem. The simulations were carried out for a Reynolds number of 37,000 (based on cylinder diameter, D) and as a function of gap height, G/D, at different blockage ratios. A variable resolution modelling approach (PANS SST k- ω model) was used to study turbulence structures. The results are presented in terms of pressure coefficient, drag coefficient, thermal fluctuations and local and average Nusselt number (Nu). The results obtained showed that, for G / D < 0 . 5 very weak shedding process at random time intervals occurs suggesting the suppression of vortex shedding due to wall. Thus, the local and average Nu decrease as the cylinder is moved towards wall at all blockage ratios.

  16. Accelerated micropolar fluid-flow past an uniformly rotating circular cylinder

    Siddiqui, Abuzar Abid


    In this paper, we formulated the non-steady flow due to the uniformly accelerated and rotating circular cylinder from rest in a stationary, viscous, incompressible and micropolar fluid. This flow problem is examined numerically by adopting a special scheme comprising the Adams-Bashforth Temporal Fourier Series method and the Runge-Kutta Temporal Special Finite-Difference method. This numerical scheme transforms the governing equation into a system of finite-difference equations. This system was further solved numerically by point successive-over-relaxation method. These results were also further extrapolated by the Richardson extrapolation method. This scheme is valid for all values of the flow and fluid-parameters and for all time. Moreover the boundary conditions of the vorticity and the spin at points far from the cylinder are being imposed and encountered too. The results are compared with existing results (for non-rotating circular cylinder in Newtonian fluids). The comparison is good. The enhancement of lift and reduction in drag is observed if the micropolarity effects are intensified. Same is happened if the rotation of a cylinder increases. Furthermore, the vortex-pair in the wake is delayed to successively higher times as rotation parameter increases. In addition, the rotation helps not only in dissolving vortices adjacent to the cylinder and adverse pressure region but also in dissolving the boundary layer separation. Furthermore, the rotation reduces the micropolar spin boundary layer.

  17. Accelerated micropolar fluid–flow past an uniformly rotating circular cylinder

    Abuzar Abid Siddiqui


    Full Text Available In this paper, we formulated the non-steady flow due to the uniformly accelerated and rotating circular cylinder from rest in a stationary, viscous, incompressible and micropolar fluid. This flow problem is examined numerically by adopting a special scheme comprising the Adams-Bashforth Temporal Fourier Series method and the Runge-Kutta Temporal Special Finite-Difference method. This numerical scheme transforms the governing equation into a system of finite-difference equations. This system was further solved numerically by point successive-over-relaxation method. These results were also further extrapolated by the Richardson extrapolation method. This scheme is valid for all values of the flow and fluid-parameters and for all time. Moreover the boundary conditions of the vorticity and the spin at points far from the cylinder are being imposed and encountered too. The results are compared with existing results (for non-rotating circular cylinder in Newtonian fluids. The comparison is good. The enhancement of lift and reduction in drag is observed if the micropolarity effects are intensified. Same is happened if the rotation of a cylinder increases. Furthermore, the vortex-pair in the wake is delayed to successively higher times as rotation parameter increases. In addition, the rotation helps not only in dissolving vortices adjacent to the cylinder and adverse pressure region but also in dissolving the boundary layer separation. Furthermore, the rotation reduces the micropolar spin boundary layer.


    ZOU Lin; LIN Yu-feng; LU Hong


    A three-dimensional numerical investigation of cross-flow past four circular cylinders in a diamond arrangement at Reynolds number of 200 is carried out. With the spacing ratios ( L/D ) ranging from 1.2 to 5.0, the flow patterns can be classified into three basic regimes. The critical spacing ratio for the transition from narrow gap flow pattern to vortex impingement flow pattern around the cylinders is found to be L/D = 3.0, while a single bluff-body flow pattern is observed at L/D = 1.2. The relationship between the three-dimensional flow patterns and force characteristics around the four cylinders shows that the variation of forces and Strouhal numbers against L/D are generally governed by these three kinds of flow patterns. It is concluded that the spacing ratio has important effects on the development of the free shear layers about the cylinders and hence has significant effects on the force and pressure characteristics of the four cylinders with different spacing ratios.

  19. Sky reconstruction for the Tianlai cylinder array

    Zhang, Jiao; Zuo, Shi-Fan; Ansari, Reza; Chen, Xuelei; Li, Yi-Chao; Wu, Feng-Quan; Campagne, Jean-Eric; Magneville, Christophe


    We apply our sky map reconstruction method for transit type interferometers to the Tianlai cylinder array. The method is based on spherical harmonic decomposition, and can be applied to a cylindrical array as well as dish arrays and we can compute the instrument response, synthesized beam, transfer function and noise power spectrum. We consider cylinder arrays with feed spacing larger than half a wavelength and, as expected, we find that the arrays with regular spacing have grating lobes which produce spurious images in the reconstructed maps. We show that this problem can be overcome using arrays with a different feed spacing on each cylinder. We present the reconstructed maps, and study the performance in terms of noise power spectrum, transfer function and beams for both regular and irregular feed spacing configurations.

  20. UF{sub 6} cylinder inspections at PGDP

    Lamb, G.W.; Whinnery, W.N. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)


    Routine inspections of all UF{sub 6} cylinders at the Paducah Gaseous Diffusion Plant have been mandated by the Department of Energy. A specific UF{sub 6} cylinder inspection procedure for what items to inspect and training for the operators prior to inspection duty are described. The layout of the cylinder yards and the forms used in the inspections are shown. The large number of cylinders (>30,000) to inspect and the schedule for completion on the mandated time table are discussed. Results of the inspections and the actions to correct the deficiencies are explained. Future inspections and movement of cylinders for relocation of certain cylinder yards are defined.

  1. Experimental Investigation of the Effects of Various Plasma Actuator Configurations on Lift and Drag Coefficients of a Circular Cylinder Including the Effects of Electrodes



    In this paper,the effects of the existence of plasma actuator electrodes and also various configurations of the actuator for controlling the flow field around a circular cylinder are experimentally investigated.The cylinder is made of PVC (Polyvinyl Chloride) and considered as a dielectric barrier.Two electrodes are flush-mounted on the surface of the cylinder and are connected to a DC high voltage power supply for generation of electrical discharge.Pressure distribution results show that the existence of the electrodes and also the plasma are able to change the pressure distribution around the cylinder and consequently the lift and drag coefficients.It is found that the effect of the existence of the electrodes is comparable with the effect of plasma actuator in controlling the flow field around the cylinder and this effect is not reported by other researchers.Eventually it is concluded that the existence of the electrodes or any extra objects on the cylinder and also the existence of the plasma are capable of changing the flow field structure around the cylinder so that the behavior of the lift and drag coefficients of the cylinder will be changed significantly.

  2. Axisymmetric smooth contact for an elastic isotropic infinite hollow cylinder compressed by an outer rigid ring with circular profile

    A.Avci; A.Bulu; A.Yapici


    A contact problem for an infinitely long hollow cylinder is considered.The cylinder is compressed by an outer rigid ring with a circular profile.The material of the cylinder is linearly elastic and isotropic.The extent of the contact region and the pressure distribution are sought.Governing equations of the elasticity theory for the axisymmetric problem in cylindrical coordinates are solved by Fourier transfoms and general expressions for the displacements are obtained.Using the boundary conditions,the formulation is reduced to a singular integral equation.This equation is solved by using the Gaussian quadrature.Then the pressure distribution on the contact region is determined.Numerical results for the contact pressure and the distance characterizing the contact area are given in graphical form.

  3. Computation of Far-Field Noise from Vortex Shedding Behind a Circular Cylinder at Low Reynolds Numbers

    Choi, H.; You, D.; Choi, M.-R.; Kang, S.-H.


    Laminar vortex sheddings behind a circular cylinder with and without splitter plates attached to the cylinder at low Reynolds numbers are simulated by solving the unsteady incompressible Navier-Stokes equations. The Strouhal number, lift and drag rapidly change with the length of the splitter plate. Far-field noise from the vortex shedding behind the cylinder is computed using the Curle's formulation of the Lighthill acoustic analogy. The acoustic source functions are obtained from the computed near-field velocity and pressure. Numerical results show that the volume quadrupole noise is small at a low Mach number, compared to the surface dipole noise from the cylinder. Variations of the far-field noise characteristics with respect to the splitter plate are being investigated and will be shown in the final presentation. ^* Supported by KOSEF under Contract No. 961-1009-075-2

  4. Design of the liquefied natural gas (LNG) vehicle gas cylinder filling semi-physical simulation training and assessment system

    Gao, Jie; Zheng, Jianrong; Zhao, Yinghui


    With the rapid development of LNG vehicle in China, the operator's training and assessment of the operating skills cannot operate on material objects, because of Vehicle Gas Cylinder's high pressure, flammable and explosive characteristics. LNG Vehicle Gas Cylinder's filling simulation system with semi-physical simulation technology presents the overall design and procedures of the simulation system, and elaborates the realization of the practical analog machine, data acquisition and control system and the computer software, and introduces the design process of equipment simulation model in detail. According to the designed assessment system of the Vehicle Gas Cylinder, it can obtain the operation on the actual cylinder filling and visual effects for the operator, and automatically record operation, the results of real operation with its software, and achieve the operators' training and assessment of operating skills on mobile special equipment.

  5. Flow over an inline oscillating circular cylinder in the wake of a stationary circular cylinder

    Zhang, Yang; Zhu, Keqiang


    Flow interference between an upstream stationary cylinder and an inline oscillating cylinder is studied with the lattice Boltzmann method. With a fixed Reynolds number Re = 100 and pitch ratio L/D = 4, the effects of oscillation amplitude A/D = [0.25, 1] and frequency f e/f s = [0.5, 2] are investigated. The wake response state is categorized into lock-in and non-lock-in. The lock-in zone in the bifurcation diagram of amplitude versus frequency is discontinuous. Response states of upstream and downstream wakes are similar under the conditions of small amplitude or low frequency. However, with large oscillating parameters, the two wakes are prone to be in different states as the flow field becomes irregular. Two distinct flow regimes have been identified, i.e., single-cylinder and two-cylinder shedding regimes. The presence of single-cylinder shedding regime is attributed to the low shedding frequency of the downstream cylinder at large amplitude. Hydrodynamic forces of the oscillating tandem system are discussed. The results reveal that forces on the two cylinders behave differently and that the absence of vortices in the gap flow significantly reduces the forces exerting on the tandem system.

  6. Casimir Energy for a Dielectric Cylinder

    Cavero-Pelaez, I; Cavero-Pelaez, Ines; Milton, Kimball A.


    In this paper we calculate the Casimir energy for a dielectric-diamagnetic cylinder with the speed of light differing on the inside and outside. Although the result is in general divergent, special cases are meaningful. The well-known results for a uniform speed of light are reproduced. The self-stress on a purely dielectric cylinder is shown to vanish through second order in the deviation of the permittivity from its vacuum value, in agreement with the result calculated from the sum of van der Waals forces.

  7. Electromagnetic Invisibility of Elliptic Cylinder Cloaks

    YAO Kan; LI Chao; LI Fang


    Structures with unique electromagnetic properties are designed based on the approach of spatial coordinate transformations of Maxwell's equations.This approach is applied to scheme out invisible elliptic cylinder cloaks,which provide more feasibility for cloaking arbitrarily shaped objects.The transformation expressions for the anisotropic material parameters and the field distribution are derived.The cloaking performances of ideal and lossy elliptic cylinder cloaks are investigated by finite element simulations. It is found that the cloaking performance will degrade in the forward direction with increasing loss.

  8. Stress tests on cylinders and aluminum panels

    Sobel, L. H.; Agarwal, B. L.


    An optimization study of composite stiffened cylinders is discussed. The mathematical model for the buckling has been coupled successfully with the optimization program AESOP. The buckling analysis is based on the use of the smeared theory for the buckling of stiffened orthotropic cylindrical shells. The loading, radius, and length of the cylinder are assumed to be known parameters. An optimum solution gives the value of cross-sectional dimensions and laminate orientations. The different types of buckling modes are identified. Mathematical models are developed to show the relationships of the parameters.

  9. A Hybrid Approach To Tandem Cylinder Noise

    Lockard, David P.


    Aeolian tone generation from tandem cylinders is predicted using a hybrid approach. A standard computational fluid dynamics (CFD) code is used to compute the unsteady flow around the cylinders, and the acoustics are calculated using the acoustic analogy. The CFD code is nominally second order in space and time and includes several turbulence models, but the SST k - omega model is used for most of the calculations. Significant variation is observed between laminar and turbulent cases, and with changes in the turbulence model. A two-dimensional implementation of the Ffowcs Williams-Hawkings (FW-H) equation is used to predict the far-field noise.

  10. Controllable parabolic-cylinder optical rogue wave.

    Zhong, Wei-Ping; Chen, Lang; Belić, Milivoj; Petrović, Nikola


    We demonstrate controllable parabolic-cylinder optical rogue waves in certain inhomogeneous media. An analytical rogue wave solution of the generalized nonlinear Schrödinger equation with spatially modulated coefficients and an external potential in the form of modulated quadratic potential is obtained by the similarity transformation. Numerical simulations are performed for comparison with the analytical solutions and to confirm the stability of the rogue wave solution obtained. These optical rogue waves are built by the products of parabolic-cylinder functions and the basic rogue wave solution of the standard nonlinear Schrödinger equation. Such rogue waves may appear in different forms, as the hump and paw profiles.

  11. Position Control of an Over‐Actuated Direct Hydraulic Cylinder Drive

    Schmidt, Lasse; Grønkjær, Morten; Pedersen, Henrik Clemmensen


    This paper considers the analysis and control strategy for a novel direct hydraulic cylinder drive, that is overactuated in the sense that it has more inputs than sensible outputs. Efforts to overcome the inherent loss of energy due to th+rottling in valve driven hydraulic drives are many...... the ability to bleed off flow from the transmission lines to achieve reasonable pressure levels. This design renders the drive over-actuated as the line pressures and the cylinder piston motion cannot be controlled independently, due to the pressure difference being motion generating. In order to achieve...... satisfactory performance of this drive, a state coupling analysis is presented along with a control strategy based on state decoupling synthesized from input-output transformations. This includes control schemes for the transformed system. The proposed control strategy is experimentally verified on a drive...

  12. Coanda effect jet around a cylinder with an interacting adjacent surface

    Churchill, Randolph Allen

    The effects of placing a plane solid surface in close proximity to a Coanda effect jet turning over a cylindrical surface are investigated to help judge the possible application of this type of jet to manufacturing line processes. The Coanda jet is proposed as a coating control mechanism for fluidic coatings on sheets or a particulate removal device. A Coanda jet placed close to a surface will develop a strong tangential flow that will shear by viscous effects and pressure gradients. A turbulent k-epsilon finite element model, developed in FIDAP, is presented that studies the effects of cylinder-sheet separation distance and jet-to-gap angular placement of the jet. It is assumed that the operation is isothermal and that the sheet speed is negligible compared to the air jet speed. Unconstrained models and cases with a distant surface were run and compared to published experimental results for an unconstrained Coanda jet to validate the modeling method and optimize the empirical constants in the k-epsilon equations. Best agreement is found if the C(sub 2) parameter in the equations is increased from 1.92 to 3.0. Maximum shear stress and pressure gradient values increased exponentially for a decreasing gap size and physical geometric constraints will be the limiting factor to efficiency. For similar initial jets this study shows that the Coanda jet develops stripping forces about 1/2 as great as the regular air-knife, but has advantages such as directed flow. The Coanda jet is seen as a viable option to air-knives for certain operations.

  13. Steady viscous flows in an annulus between two cylinders produced by vibrations of the inner cylinder

    Ilin, K


    We study the steady streaming between two infinitely long circular cylinders produced by small amplitude transverse vibrations of the inner cylinder about the axis of the outer cylinder. The Vishik-Lyusternik method is employed to construct an asymptotic expansion of the solution of the Navier-Stokes equations in the limit of high-frequency vibrations for Reynolds numbers of order of unity. The effect of the Stokes drift of fluid particles is also studied. It is shown that it is nonzero not only within the boundary layers but also in higher order terms of the expansion of the averaged outer flow.

  14. Eccentricity and thermoviscous effects on ultrasonic scattering from a liquid-coated fluid cylinder


    Calculation of the scattered field of the eccentric scatterers is an old problem with numerous applications. This study considers the interaction of a plane compressional sound wave with a liquid-encapsulated thermoviscous fluid cylinder submerged in an unbounded viscous thermally conducting medium. The translational addition theorem for cylindrical wave functions, the appropriate wave field expansions and the pertinent boundary conditions are employed to develop a closed-form solution in the form of infinite series. The analytical results are illustrated with a numerical example in which the compound cylinder is insonified by a plane sound wave at selected angles of incidence in a wide range of dimensionless frequencies. The backscattered far-field acoustic pressure amplitude and the spatial distribution of the total acoustic pressure in the vicinity of the cylinder are evaluated and discussed for representative values of the parameters characterizing the system. The effects of incident wave frequency, angle of incidence, fluid thermoviscosity, core eccentricity and size are thoroughly examined. Limiting case involving an ideal compressible liquid-coated cylinder is considered and fair agreement with a well-known solution is established.

  15. Flow mediated interactions between two cylinders at finite Re numbers

    Gazzola, Mattia; Mimeau, Chloe; Tchieu, Andrew A.; Koumoutsakos, Petros


    We present simulations of two interacting moving cylinders immersed in a two-dimensional incompressible, viscous flow. Simulations are performed by coupling a wavelet-adapted, remeshed vortex method with the Brinkman penalization and projection approach. This method is validated on benchmark problems and applied to simulations of a master-slave pair of cylinders. The master cylinder's motion is imposed and the slave cylinder is let free to respond to the flow. We study the relative role of viscous and inertia effects in the cylinders interactions and identify related sharp transitions in the response of the slave. The observed differences in the behavior of cylinders with respect to corresponding potential flow simulations are discussed. In addition, it is observed that in certain situations the finite size of the slave cylinders enhances the transport so that the cylinders are advected more effectively than passive tracers placed, respectively, at the same starting position.

  16. The ideal dimensions of a Halbach cylinder of finite length

    Bjørk, R


    In this paper the smallest or optimal dimensions of a Halbach cylinder of a finite length for a given sample volume and desired flux density are determined using numerical modeling and parameter variation. A sample volume that is centered in and shaped as the Halbach cylinder bore but with a possible shorter length is considered. The external radius and the length of the Halbach cylinder with the smallest possible dimensions are found as a function of a desired internal radius, length of the sample volume and mean flux density. It is shown that the optimal ratio between the outer and inner radius of the Halbach cylinder does not depend on the length of the sample volume. Finally, the efficiency of a finite length Halbach cylinder is considered and compared with the case of a cylinder of infinite length. The most efficient dimensions for a Halbach cylinder are found and it is shown that the efficiency increases slowly with the length of the cylinder.

  17. Breached cylinder incident at the Portsmouth gaseous diffusion plant

    Boelens, R.A. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States)


    On June 16, 1990, during an inspection of valves on partially depleted product storage cylinders, a 14-ton partially depleted product cylinder was discovered breached. The cylinder had been placed in long-term storage in 1977 on the top row of Portsmouth`s (two rows high) storage area. The breach was observed when an inspector noticed a pile of green material along side of the cylinder. The breach was estimated to be approximately 8- inches wide and 16-inches long, and ran under the first stiffening ring of the cylinder. During the continuing inspection of the storage area, a second 14-ton product cylinder was discovered breached. This cylinder was stacked on the bottom row in the storage area in 1986. This breach was also located adjacent to a stiffening ring. This paper will discuss the contributing factors of the breaching of the cylinders, the immediate response, subsequent actions in support of the investigation, and corrective actions.

  18. Use of a rotating cylinder to induce laminar and turbulent separation over a flat plate

    Afroz, F.; Lang, A.; Jones, E.


    An innovative and easy technique using a rotating cylinder system has been implemented in a water tunnel experiment to generate an adverse pressure gradient (APG). The strength of the APG was varied through adjustment in the rotation speed and location of the cylinder. Then the technique was used for inducing a laminar separation bubble (LSB) and turbulent boundary layer (TBL) separation over a flat plate. A theoretical model to predict the pressure variation induced on the plate consists of an inviscid flow over a reverse doublet-like configuration of two counter rotating cylinders. This model quantified the pressure distribution with changes of cylinder speed and location. The dimensionless velocity ratio (VR) of the cylinder rotation rate to the mainstream velocity and gap to diameter ratio \\tfrac{G}{D} were chosen as the two main ways of varying the strength of the APG, which affects the nature and extent of the LSB as well as TBL separation. The experimental parametric study, using time-resolved digital particle image velocimetry, was then conducted in a water tunnel. The variation in height (h), length (l), and the separation point (S) of the LSB was documented due to the variation in the APG. The similar type of experimental parametric study was used to explore the unsteady, turbulent separation bubble in a 2D plane aligned with the flow and perpendicular to the plate. The mean detachment locations of TBL separation are determined by two different definitions: (i) back-flow coefficient (χ) = 50%, and (ii) location of start of negative mean skin friction coefficient (C f). They are in good agreement and separation bubble characteristics agreed well with results obtained using different methods thus proving the validity of the technique.

  19. An investigation of the fluid-structure interaction of piston/cylinder interface

    Pelosi, Matteo

    The piston/cylinder lubricating interface represents one of the most critical design elements of axial piston machines. Being a pure hydrodynamic bearing, the piston/cylinder interface fulfills simultaneously a bearing and sealing function under oscillating load conditions. Operating in an elastohydrodynamic lubrication regime, it also represents one of the main sources of power loss due to viscous friction and leakage flow. An accurate prediction of the time changing tribological interface characteristics in terms of fluid film thickness, dynamic pressure field, load carrying ability and energy dissipation is necessary to create more efficient interface designs. The aim of this work is to deepen the understanding of the main physical phenomena defining the piston/cylinder fluid film and to discover the impact of surface elastic deformations and heat transfer on the interface behavior. For this purpose, a unique fully coupled multi-body dynamics model has been developed to capture the complex fluid-structure interaction phenomena affecting the non-isothermal fluid film conditions. The model considers the squeeze film effect due to the piston micro-motion and the change in fluid film thickness due to the solid boundaries elastic deformations caused by the fluid film pressure and by the thermal strain. The model has been verified comparing the numerical results with measurements taken on special designed test pumps. The fluid film calculated dynamic pressure and temperature fields have been compared. Further validation has been accomplished comparing piston/cylinder axial viscous friction forces with measured data. The model has been used to study the piston/cylinder interface behavior of an existing axial piston unit operating at high load conditions. Numerical results are presented in this thesis.

  20. Drag Coefficient of Thin Flexible Cylinder

    Subramanian, Chelakara; Gurram, Harika


    Measurements of drag coefficients of thin flexible cylindrical wires are described for the Reynolds number range between 250 - 1000. Results indicate that the coefficient values are about 20 to 30 percent lower than the reported laminar flow values for rigid cylinders. Possible fluid dynamics mechanism causing the reduction in drag will be discussed.

  1. Frequency spectra of laminated piezoelectric cylinders

    Siao, J. C.-T.; Dong, S. B.; Song, J.


    A finite-element method is presented for determining the vibrational characteristics of a circular cylinder composed of bonded piezoelectric layers. Finite-element modeling occurs in the radial direction only using quadratic polynomials and the variationally derived partial differential equations are functions of the hoop and axial coordinates (theta, z) and time t. Using solution form Q exp (i(xi(z) + n(theta) + (omega)t)), with Q as the nodal amplitudes, leads to an algebraic eigensystem where any one of the three parameters (n, xi, omega), the circumferential or axial wave number or natural frequency, can act as the eigenvalue. Integer values always are assigned to n, leaving two possible eigenvalue problems. With omega as the eigenvalue and real values assigned to xi, the solutions represent propagating waves or harmonic standing vibrations in an infinite cylinder. When xi is the eigenvalue and real values assigned to omega, this eigensystem admits both real and complex eigendata. Real xi's represent propagating waves or harmonic standing vibrations as noted before. Complex conjugate pairs of xi 's describe end vibrations, which arise when an incident wave impinges upon a free end of a cylindrical bar. They are standing waves whose amplitudes decay sinusoidally or exponentially from the free end into the interior. Two examples are given to illustrate the method of analysis, viz., a solid piezoelectric cylinder of PZT-4 ceramic material and a two-layer cylinder of PZT-4 covering an isotropic material.

  2. In-Cylinder Heat Transfer Modelling

    Žák Zdeněk


    Full Text Available The goal of the paper is to discuss specific features of the in-cylinder heat transfer calculation based on widely used empirical formulas. The potential of in-house codes compared with commercially available software packages is presented. The principles of user models in the GT-SUITE environment are also explained. The results of calibrated models are briefly discussed.

  3. Acoustic signal analysis of underwater elastic cylinder

    LI Xiukun; YANG Shi'e


    The echoes of underwater elastic cylinder comprise two types of acoustic components: Geometrical scattering waves and elastic scattering waves. The transfer function is appropriate to characterize the echo of targets. And the discrete wavelet transform of amplitude spectrum is presented and used to identify the resonant components of underwater targets.PACS numbers: 43.30, 43.60

  4. The Experience Cylinder, an immersive interactive platform

    Andreasen, Troels; Gallagher, John Patrick; Møbius, Nikolaj


    This paper describes the development of an experimental interactive installation, a so-called "experience cylinder", intended as a travelogue and developed specifically to provide a narrative about the Viking ship Sea Stallion’s (Havhingst) voyage from Roskilde to Dublin and back. The installatio...

  5. Spin-Up in a Rectangular Cylinder


    cylinder by scaling as follows: I I IElt , and p = E’,X, 3.22 where we have scaled the radial and vertical flow to be higher order in Ekman number than the...two flow visualization systems, and the rectangular tank with prepared water. Fig- ure 4.1 is a schematic of this system, which we describe below.I I

  6. Maximum likely scale estimation

    Loog, Marco; Pedersen, Kim Steenstrup; Markussen, Bo


    A maximum likelihood local scale estimation principle is presented. An actual implementation of the estimation principle uses second order moments of multiple measurements at a fixed location in the image. These measurements consist of Gaussian derivatives possibly taken at several scales and/or ...

  7. Inner and outer cylinders of the CMS vacuum tank.

    Patrice Loïez


    The vacuum tank of the CMS magnet system consists of inner and outer stainless-steel cylinders and houses the superconducting coil. The inner cylinder contains all the barrel sub-detectors, which it supports via a system of horizontal rails. The cylinder is pictured here in the vertical position on a yellow platform mounted on the ferris-wheel support structure. This will allow it to be pivoted and inserted into the already installed outer cylinder, through which this photo was taken.

  8. Measurement of convective heat transfer to solid cylinders inside ventilated shrouds

    Daryabeigi, K.; Germain, E. F.; Ash, R. L.


    The influence of ventilated cylindrical shrouds on the convective heat transfer to circular cylinders has been studied experimentally. Geometries studied were similar to those used in commercially available platinum resistance thermometers. Experiments showed that thermal response (convection) was enhanced when the shroud ventilation factor was approximately 20 percent (80 percent solid), and that maximum enhancement occurred when the ventilation holes were located symmetrically on either side of the stagnation lines.

  9. Determining the Mechanism of In-Service Cylinder Distortion in Aluminum Engine Blocks with Cast-In Gray Iron Liners

    Lombardi, Anthony; Ravindran, Comondore; Sediako, Dimitry; MacKay, Robert


    In recent years, stringent government legislation on vehicle fuel efficiency has pushed the automotive industry to replace steel and cast iron power train components with light weight Al alloys. However, unlike their ferrous-based equivalents, Al-Si alloy engine blocks are prone to permanent dimensional distortion in critical locations such as the cylinder bore regions. Understanding the mechanisms that cause distortion will promote the use of Al alloys over ferrous alloys for power train applications and enable automotive manufacturers to meet emission standards and reduce fuel consumption. In this study, neutron diffraction was used to evaluate residual stress along the Al cylinder bridge and the gray cast iron liners of distorted and undistorted engine blocks. Microstructural analysis was carried out using OM, SEM, and TEM, while mechanical testing was accomplished via ambient and elevated temperature [~453 K (180 °C)] tensile testing. The results suggest that the distorted engine block had high tensile residual stress in the Al cylinder bridge, reaching a maximum of 170 MPa in the hoop direction, which triggered permanent dimensional distortion in the cylinders when exposed to service conditions. In addition, the middle of the cylinder had the highest magnitude of distortion since this region had a combination of high tensile residual stress (hoop stress of 150 MPa) and reduced strength compared with the bottom of the cylinder.

  10. 49 CFR 173.316 - Cryogenic liquids in cylinders.


    ... 49 Transportation 2 2010-10-01 2010-10-01 false Cryogenic liquids in cylinders. 173.316 Section... REQUIREMENTS FOR SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.316 Cryogenic liquids in cylinders. (a) General requirements. (1) A cylinder may not be loaded with a cryogenic liquid colder than...

  11. Energy Absorption of Monolithic and Fibre Reinforced Aluminium Cylinders

    De Kanter, J.L.C.G.


    Summary accompanying the thesis: Energy Absorption of Monolithic and Fibre Reinforced Aluminium Cylinders by Jens de Kanter This thesis presents the investigation of the crush behaviour of both monolithic aluminium cylinders and externally fibre reinforced aluminium cylinders. The research is based

  12. Electromagnetic Wave Scattering By the Coated Impedance Cylinder

    V.I. Vyunnik


    Full Text Available In this work the boundary conditions for the impedance circular cylinder coated by a low contrast dielectric thin layer are derived. Expression for the reduced impedance of the cylinder is obtained. Conditions and applicability limits of the proposed approach are defined. Influence of the coating impedance on the reduced impedance of the cylinder is investigated.

  13. Turbulent Taylor–Couette flow with stationary inner cylinder

    Ostilla-Monico, R.; Verzicco, Roberto; Lohse, Detlef


    A series of direct numerical simulations were performed of Taylor–Couette (TC) flow, the flow between two coaxial cylinders, with the outer cylinder rotating and the inner one fixed. Three cases were considered, where the Reynolds number of the outer cylinder was $Re_{o}=5.5\\times 10^{4}$Reo=5.5×104

  14. Investigation of breached depleted UF{sub 6} cylinders

    DeVan, J.H. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States)


    In June 1990, during a three-site inspection of cylinders being used for long-term storage of solid depleted UF{sub 6}, two 14-ton cylinders at Portsmouth, Ohio, were discovered with holes in the barrel section of the cylinders. An investigation team was immediately formed to determine the cause of the failures and their impact on future storage procedures and to recommend corrective actions. Subsequent investigation showed that the failures most probably resulted from mechanical damage that occurred at the time that the cylinders had been placed in the storage yard. In both cylinders evidence pointed to the impact of a lifting lug of an adjacent cylinder near the front stiffening ring, where deflection of the cylinder could occur only by tearing the cylinder. The impacts appear to have punctured the cylinders and thereby set up corrosion processes that greatly extended the openings in the wall and obliterated the original crack. Fortunately, the reaction products formed by this process were relatively protective and prevented any large-scale loss of uranium. The main factors that precipitated the failures were inadequate spacing between cylinders and deviations in the orientations of lifting lugs from their intended horizontal position. After reviewing the causes and effects of the failures, the team`s principal recommendation for remedial action concerned improved cylinder handling and inspection procedures. Design modifications and supplementary mechanical tests were also recommended to improve the cylinder containment integrity during the stacking operation.

  15. Sub-wavelength metamaterial cylinders with multiple dipole resonances

    Arslanagic, Samel; Breinbjerg, Olav


    It has been shown that the sub-wavelength resonances of the individual MTM cylinders also occur for electrically small configurations combining 2 or 4 cylinders. For the 2-and 4-cylinder configurations the overall size is 1/20 and 1/12.5 of the smallest wavelength, respectively. These MTM...... configuration thus offer the possibility for multi-resonant electrically small configurations....

  16. Energy Absorption of Monolithic and Fibre Reinforced Aluminium Cylinders

    De Kanter, J.L.C.G.


    Summary accompanying the thesis: Energy Absorption of Monolithic and Fibre Reinforced Aluminium Cylinders by Jens de Kanter This thesis presents the investigation of the crush behaviour of both monolithic aluminium cylinders and externally fibre reinforced aluminium cylinders. The research is based

  17. Turbulent Taylor–Couette flow with stationary inner cylinder

    Ostilla-Monico, R.; Verzicco, R.; Lohse, D.


    A series of direct numerical simulations were performed of Taylor–Couette (TC) flow, the flow between two coaxial cylinders, with the outer cylinder rotating and the inner one fixed. Three cases were considered, where the Reynolds number of the outer cylinder was $Re_{o}=5.5\\times 10^{4}$Reo=5.5×104

  18. DNS Study of the Turbulent Taylor-Vortex Flow on a Ribbed Inner Cylinder

    Takahiro Tsukahara


    Full Text Available Turbulent Taylor-vortex flows over regularly spaced square ribs mounted on a rotating inner cylinder surface were investigated using direct numerical simulations (DNSs for a Reynolds number of 3200 (based on the inner-wall velocity and the gap width between two cylinders in an apparatus with an inner-to-outer radius ratio of 0.617, while varying the streamwise interval of the ribs. We examined the flow and pressure fields around each rib, focusing on the recirculation zone, the frictional drag coefficient, and the pressure (form drag. Our results for the Taylor-Couette flows were compared to DNS for plane Poiseuille flows over ribbed surfaces performed by Leonardi et al. (2003. We determined the qualitative consistency between them with respect to the roughness effect, which depends significantly on the rib interval, but the rate of increase in the flow resistance was remarkably dampened by roughness in the present flows. Taylor vortices remaining over roughened cylinder surfaces were found to induce quick pressure recovery behind each rib, leading to less pressure drag and an enhanced backflow in the recirculation zone.

  19. Design and analysis of Stress on Thick Walled Cylinder with and with out Holes



    Full Text Available The conventional elastic analysis of thick walled cylinders to final radial & hoop stresses is applicable for the internal pressures up to yield strength of material. The stress is directly proportional to strain up to yield point Beyond elastic point, particularly in thick walled cylinders. The operating pressures are reduced or the material properties are strengthened. There is no such existing theory for the stress distributions around radial holes under impact of varying internal pressure. Present work puts thrust on this area and relation between pressure and stress distribution is plotted graphically based on observations. Here focus is on pure mechanical analysis & hence thermal, effects are not considered. The thick walled cylinders with a radial cross-hole ANSYS Macro program employed to evaluate the fatigue life of vessel. Stresses that remain in material even after removing applied loads are known as residual stresses. These stresses occur only when material begins to yield plastically. Residual stresses can be present in any mechanical structure because of many causes. Residual stresses may be due to the technological process used to make the component. Manufacturing processes lead to plastic deformation. Elasto plastic analysis with bilinear kinematic hardening material is performed to know the effect of hole sizes. It is observed that there are several factors which influence stress intensity factors. The Finite element analysis is conducted using commercial solvers ANSYS & CATIA. Theoretical formulae based results are obtained from MATLAB programs. The results are presented in form of graphs and tables.

  20. Development of new volumetric compressor with rotating cylinder and piston

    Sawai, K.; Iida, N.; Futagami, Y.; Hirano, H. [Matsushita Electrical Ind. Co. Ltd., Air-Conditioning Research Lab., Shiga (Japan); Hasegawa, H. [Matsushita Electric Ind. Co. Ltd., Human Environment Systems Development Center, Osaka (Japan); Ishii, N. [Osaka Electro-Communications Lab., Faculty of Engineering, Osaka (Japan)


    We developed a new compression mechanism named 'Ellipse Compressor', which can be used in air conditioning and refrigeration. This compression mechanism is basically rotary type machine, which consists of rotating cylinder and rotating piston without vane. It has high potentiality to exhibit high reliability in R410A refrigerant, because of low wear without extreme high pressure on the sliding parts. This paper presents a compression mechanism, theoretical analysis, a prototype model design, performance and loss analysis. Test results indicated that the performance of the prototype model exhibited almost the same as that of scroll compressor for room air conditioner. Durability test on the room air conditioner at heavy heating condition resulted in the low level of wear of the sliding parts, without special materials. (Author)

  1. Large eight.cylinder Stirling engine for biofuels

    Carlsen, Henrik; Biedermann, F.; Bovin, Jonas Kabell


    in the hot end connecting the expansion space with the hot end of the regenerator through the heater panel. However, this has resulted in comparably large dead volumes and flow losses in the connections between the heater and the regenerator/expansion volume. For the new eight-cylinder engine the design...... in the pressurised crankcase, has 6 poles corresponding to approximately 1000 rpm. Working gas is helium at a mean pressure of 45 bars. The eight heater panels, which form two separate square sections, are exposed directly to radiation from the combustion chamber. Each heater panel is divided in a section for heat...... transfer by radiation and heat transfer by convection. The convection part the heater has been optimised in order to obtain an equal distribution of heat transfer on each tube and at the same time maximise the heat transfer from the combustion products to the engine. In a double acting Stirling engine...

  2. Lattice Boltzmann Numerical Simulation of a Circular Cylinder

    冯士德; 赵颖; 郜宪林; 季仲贞


    The lattice Boltzmann equation (LBE) model based on the Boltzmann equation is suitable for the numerical simulation of various flow fields. The fluid dynamics equation can be recovered from the LBE model. However,compared to the Navier-Stokes transport equation, the fluid dynamics equation derived from the LBE model is somewhat different in the viscosity transport term, which contains not only the Navier-Stokes transport equation but also nonsteady pressure and momentum flux terms. The two nonsteady terms can produce the same function as the random stirring force term introduced in the direct numerical or large-eddy vortex simulation of turbulence.Through computation of a circular cylinder, it is verified that the influence of the two nonsteady terms on flow field stability cannot be ignored, which is helpful for the study of turbulence.

  3. Schlieren-based temperature measurement inside the cylinder of an optical spark ignition and homogeneous charge compression ignition engine.

    Aleiferis, Pavlos; Charalambides, Alexandros; Hardalupas, Yannis; Soulopoulos, Nikolaos; Taylor, A M K P; Urata, Yunichi


    Schlieren [Schlieren and Shadowgraphy Techniques (McGraw-Hill, 2001); Optics of Flames (Butterworths, 1963)] is a non-intrusive technique that can be used to detect density variations in a medium, and thus, under constant pressure and mixture concentration conditions, measure whole-field temperature distributions. The objective of the current work was to design a schlieren system to measure line-of-sight (LOS)-averaged temperature distribution with the final aim to determine the temperature distribution inside the cylinder of internal combustion (IC) engines. In a preliminary step, we assess theoretically the errors arising from the data reduction used to determine temperature from a schlieren measurement and find that the total error, random and systematic, is less than 3% for typical conditions encountered in the present experiments. A Z-type, curved-mirror schlieren system was used to measure the temperature distribution from a hot air jet in an open air environment in order to evaluate the method. Using the Abel transform, the radial distribution of the temperature was reconstructed from the LOS measurements. There was good agreement in the peak temperature between the reconstructed schlieren and thermocouple measurements. Experiments were then conducted in a four-stroke, single-cylinder, optical spark ignition engine with a four-valve, pentroof-type cylinder head to measure the temperature distribution of the reaction zone of an iso-octane-air mixture. The engine optical windows were designed to produce parallel rays and allow accurate application of the technique. The feasibility of the method to measure temperature distributions in IC engines was evaluated with simulations of the deflection angle combined with equilibrium chemistry calculations that estimated the temperature of the reaction zone at the position of maximum ray deflection as recorded in a schlieren image. Further simulations showed that the effects of exhaust gas recirculation and air

  4. Maximum information photoelectron metrology

    Hockett, P; Wollenhaupt, M; Baumert, T


    Photoelectron interferograms, manifested in photoelectron angular distributions (PADs), are a high-information, coherent observable. In order to obtain the maximum information from angle-resolved photoionization experiments it is desirable to record the full, 3D, photoelectron momentum distribution. Here we apply tomographic reconstruction techniques to obtain such 3D distributions from multiphoton ionization of potassium atoms, and fully analyse the energy and angular content of the 3D data. The PADs obtained as a function of energy indicate good agreement with previous 2D data and detailed analysis [Hockett et. al., Phys. Rev. Lett. 112, 223001 (2014)] over the main spectral features, but also indicate unexpected symmetry-breaking in certain regions of momentum space, thus revealing additional continuum interferences which cannot otherwise be observed. These observations reflect the presence of additional ionization pathways and, most generally, illustrate the power of maximum information measurements of th...

  5. Influence of the stacking sequence of layers on the mechanical behavior of polymeric composite cylinders; Influencia da configuracao de bobinagem no comportamento mecanico de cilindros de composito polimerico

    Carvalho, Osni de


    This work evaluated experimentally the influence of the stacking sequence of layers symmetrical and asymmetrical on the mechanical behavior of polymeric composite cylinders. For so much, two open-ended cylinders groups were manufactured by filament winding process, which had different stacking sequence related to the laminate midplane, characterizing symmetrical and asymmetrical laminates. The composite cylinders were made with epoxy matrix and carbon fiber as reinforcement. For evaluation of the mechanical strength, the cylinders were tested hydrostatically, which consisted of internal pressurization in a hydrostatic device through the utilization of a fluid until the cylinders burst. Additionally, were compared the strains and failure modes between the cylinders groups. The utilization of a finite element program allowed to conclude that this tool, very used in design, does not get to identify tensions in the fiber direction in each composite layer, as well as interlaminar shear stress, that appears in the cylinders with asymmetrical stacking sequence. The tests results showed that the stacking sequence had influence in the mechanical behavior of the composite cylinders, favoring the symmetrical construction. (author)

  6. The ideal dimensions of a Halbach cylinder of finite length

    Bjørk, Rasmus


    but with a possible shorter length is considered. The external radius and the length of the Halbach cylinder with the smallest possible dimensions are found as a function of a desired internal radius, length of the sample volume and mean flux density. It is shown that the optimal ratio between the outer and inner...... radius of the Halbach cylinder does not depend on the length of the sample volume. Finally, the efficiency of a finite length Halbach cylinder is considered and compared with the case of a cylinder of infinite length. The most efficient dimensions for a Halbach cylinder are found and it is shown...

  7. Performance of Air-cooled Engine Cylinders Using Blower Cooling

    Schey, Oscar W; Ellerbrock, Herman H , Jr


    An investigation was made to obtain information on the minimum quantity of air and power required to cool conventional air cooled cylinders at various operating conditions when using a blower. The results of these tests show that the minimum power required for satisfactory cooling with an overall blower efficiency of 100 percent varied from 2 to 6 percent of the engine power depending on the operating conditions. The shape of the jacket had a large effect on the cylinder temperatures. Increasing the air speed over the front of the cylinder by keeping the greater part of the circumference of the cylinder covered by the jacket reduced the temperatures over the entire cylinder.

  8. A multidomain chebyshev pseudo-spectral method for fluid flow and heat transfer from square cylinders

    Wang, Zhiheng


    A simple multidomain Chebyshev pseudo-spectral method is developed for two-dimensional fluid flow and heat transfer over square cylinders. The incompressible Navier-Stokes equations with primitive variables are discretized in several subdomains of the computational domain. The velocities and pressure are discretized with the same order of Chebyshev polynomials, i.e., the PN-PN method. The Projection method is applied in coupling the pressure with the velocity. The present method is first validated by benchmark problems of natural convection in a square cavity. Then the method based on multidomains is applied to simulate fluid flow and heat transfer from square cylinders. The numerical results agree well with the existing results. © Taylor & Francis Group, LLC.

  9. Effects of wind-tunnel noise on swept-cylinder transition at Mach 3.5

    Creel, T. R., Jr.; Beckwith, I. E.; Chen, F.-J.


    Transition data are reported for circular cylinders at swept angles of 45 and 60 degrees in the Mach 3.5 pilot-low-disturbance tunnel where free-stream noise levels are varied from approximately .05-0.5 percent in terms of the rms fluctuating pressure normalized by the mean static pressure. Results indicate that end plate or boundary layer trip disturbances at the upstream end of the cylinders cause turbulent flow along the entire test Reynolds number range of 10-170 thousand per inch. With all end plate and trip disturbances removed, transition at the attachment lines occurred at free-stream Reynolds numbers based on diameters of about 70-80 thousand, independent of stream noise levels. The installation of small trips on the attachement lines caused transition at lower Reynolds numbers, depending on both the roughness height and the wind tunnel noise level.

  10. An experimental study of induction noise in four-cylinder internal combustion engines

    Lamancusa, J.S.; Todd, K.B. (Pennsylvania State Univ., University Park, PA (USA))


    Induction noise has become a major source of consumer complaints in automobiles powered by four-cylinder engines. Induction noise typically manifests itself as a low frequency booming or mooing. It is most noticeable and objectionable under wide open throttle, hard acceleration conditions. In an effort to understand the basic cause of this noise, so that potential remedies might be more intelligently applied, an extensive study was undertaken. Careful measurements were made on a four-cylinder, motored engine. Dynamic pressure variations within the induction system, and external to the engine were studied. Peak to peak pressure variations of over 2 psi were found in the intake runners at the valves. Evidence of nonlinear acoustic behavior was found. A detailed examination of the events that cause induction noise is presented.

  11. Viscous-elastic dynamics of power-law fluids within an elastic cylinder

    Gat, Amir; Boyko, Evgeniy; Bercovici, Moran


    We study the fluid-structure interaction dynamics of non-Newtonian flow through a slender linearly elastic cylinder at the creeping flow regime. Specifically, considering power-law fluids and applying the thin shell approximation for the elastic cylinder, we obtain a non-homogeneous p-Laplacian equation governing the viscous-elastic dynamics. We obtain exact solutions for the pressure and deformation fields for various initial and boundary conditions, for both shear thinning and shear thickening fluids. In particular, impulse or a step in inlet pressure yield self-similar solutions, which exhibit a compactly supported propagation front solely for shear thinning fluids. Applying asymptotic expansions, we provide approximations for weakly non-Newtonian behavior showing good agreement with the exact solutions sufficiently far from the front.

  12. Influence of Valve's Characteristic on Total Performance of Three Cylinders Internal Combustion Water Pump

    ZHANG Hongxin; ZHANG Tiezhu; WANG Weichao


    lntenal combustion pump (ICP) is a new type power device turning the thermal energy from fuel combustion into fluid pressure energy. Three cylinders prototype has just been developed. The study on the influence of valve's characteristic on ICP's total performance will found the base for its optimum design. Based on the theoretical and testing fruits of single cylinder prototype, the performance of the valves and complete appliance of the latest is simulated. When the natural frequency of valves is approximately to the round number times of the working frequency, volumetric efficiency is seriously low. The nominal rotational speed of the prototype is nearly to the speed where the volumetric efficiency is lowest, which is harmful to the normal work of ICP, so further structure optimization of valves should be carried out. The change of volumetric efficiency has great influence on the fuel consumption rate,output flow, effective thermal efficiency, effective power, and so on, but little on output pressure.

  13. Recovery of Copper from Effluents by Cementation on Aluminum in a Multirotating Cylinder-Agitated Vessel

    Abdel-Aziz, M. H.; El-Ashtoukhy, E.-S. Z.; Bassyouni, M.


    Recovery of copper from synthetic waste solution using cementation technique in a new agitated vessel employing multirotating aluminum cylinders impeller was investigated. Parameters studied are cylinder diameter, rotation speed, initial copper ion concentrations, and effect of surfactants. Solution analysis and scanning electron microscopy were employed to investigate the kinetic and mechanism of the process. The rate of recovery was found to be at its maximum value at the operating conditions of 350 rpm rotation speed, 5000 ppm initial CuSO4 concentration, and 1.2 cm cylinder diameter. All data were correlated by the dimensionless equation: {Sh} = 1.16 {Sc}^{0.33} {Re}^{0.63} ( {{d_{{c}} }/L} )^{0.54}, with an average deviation of ±8.5 pct and a standard deviation of 5.88 pct. Presence of nonylphenol ethoxylate surfactant in the solution decreased the rate of recovery by an amount ranging from 2.94 to 38.57 pct depending on the operating conditions. The present geometry gave higher rates of recovery compared to both the single rotating cylinder and rotating disc reactor.

  14. Physical Modeling and Parametric Study on Two-Degree-of-Freedom VIV of A Cylinder near Rigid Wall

    YANG Bing; GAO Fu-ping; LI Dong-hui; WU Ying-xiang


    Unlike most previous studies on the transverse vortex-induced vibration(VIV) of a cylinder mainly under the wallfree condition (Williamson & Govardhan,2004),this paper experimentally investigates the vortex-induced vibration of a cylinder with two degrees of freedom near a rigid wall exposed to steady flow.The amplitude and frequency responses of the cylinder are discussed.The lee wake flow patterns of the cylinder undergoing VIV were visualized by employing the hydrogen bubble technique.The effects of the gap-to-diameter ratio (e0/D) and the mass ratio on the vibration amplitude and frequency are analyzed.Comparisons of VIV response of the cylinder are made between one degree (only transverse) and two degrees of freedom (streamwise and transverse) and those between the present study and previous ones.The experimental observation indicates that there are two types of streamwise vibration,i.e.the first streamwise vibration (FSV) with small amplitude and the second streamwise vibration (SSV) which coexists with transverse vibration.The vortex shedding pattem for the FSV is approximately symmetric and that for the SSV is alternate.The first streamwise vibration tends to disappear with the decrease of e0/D.For the case of large gap-to-diameter ratios (e.g.e0/D = 0.54~1.58),the maximum amplitudes of the second streamwise vibration and transverse one increase with the increasing gapto-diameter ratio.But for the case of small gap-to-diameter ratios (e.g.e0/D = 0.16,0.23),the vibration amplitude of the cylinder increases slowly at the initial stage ( small reduced velocity V,),and across the maximum amplitude it decreases quickly at the last stage ( large Vr).Within the range ofthe examined small mass ratio (m<4),both streamwise and transverse vibration amplitude of the cylinder decrease with the increase of mass ratio for the fixed value of V,.The vibration range (in terms of Vr ) tends to widen with the decrease of the mass ratio.In the second streamwise

  15. A falling-pressure method for measuring air permeability of asphalt in laboratory

    Li, Hailong; Jiao, Jiu Jimmy; Luk, Mario


    This paper presents a simple analytical solution for estimating air permeability using the test data obtained by a falling-pressure method in laboratory. The perimeter of the column-shaped sample is fixed in a steel cylinder with the upper sample surface open to the atmosphere. The lower surface of the sample and the cylinder form an air chamber. A water manometer is connected to the air chamber to measure the air pressure inside after the chamber is pressurized. The data of pressure versus time in the air chamber are recorded and analyzed. An approximate analytical solution is derived to describe the pressure-time relationship in the air chamber. The air permeability can be easily estimated using the approximate analytical solution based on the linear least-squares fitting to the recorded pressure-time test data. This method is used to estimate the falling-pressure test data of 15 asphalt samples. The agreement between the test data and the analytical prediction is satisfactory for all the samples. To investigate the error caused by the approximate analytical solution, the air permeabilities are also estimated based on fully numerical solutions. The permeability values obtained from analytical and numerical solutions are very close. The maximum relative error is less than 6% for samples with more than five pressure-time records. A quantitative condition is given under which the analytical solution applies with negligible estimation error. Compared with the common, steady-state method for measuring air permeability, the falling-pressure method has its advantages such as simplicity and economy. The steady-state method has to measure the air flux through the sample, while the falling-pressure method does not.

  16. Numerical Calculation on Altiplano Engine Cylinder Liner-piston Ring Wear%高原柴油机气缸套-活塞环磨损计算研究

    王宪成; 和穆; 张晶; 何星


    为了研究高原环境对柴油机寿命的影响,以某型柴油机为对象,通过模拟高原柴油机实际工作过程,结合活塞环受力分析和缸套传热计算得到边界条件,基于雷诺方程和改进的Holm-Achard黏着磨损公式建立气缸套-活塞环润滑磨损数值计算模型;经验证气缸套径向最大磨损深度的计算值与实测值误差不超过5%.计算表明,油膜厚度随外界大气压力降低而逐渐变薄;在海拔5 000 m左右时气缸平均磨损值达到最大.%In order to research the operating conditions effects on diesel life, a certain diesel through simulating the actually conditions of the altiplano diesel. The cylinder liner-piston ring boundary condition was established with dynamic and heat balance analysis. The lubrication and wear calculation mode was established based on mean Reynolds equation and Holm-Achard sticking wear mechanics. The results show that, the error of the calculated value of maximum radial wear depth of cylinder liner is lower than 5% compared with the measured value. The film thickness decreases with the gradually decrease of external atmospheric pressure. At an altitude of around 5 000 m, the average radial wear depth of cylinder attains the maximum.

  17. Evaluation of Concrete Cylinder Tests Using Finite Elements

    Saabye Ottosen, Niels


    Nonlinear axisymmetric finite element analyses are performed on the uniaxial compressive test of concrete cylinders. The models include thick steel loading plates, and cylinders with height‐to‐diameter ratios (h/d) ranging from 1‐3 are treated. A simple constitutive model of the concrete...... is employed, which accounts for the strain hardening and softening in the pre‐ and postfailure regions, respectively. When h/d  =  2, the failure mode is found to consist of undisturbed end cones and the occurrence of strain softening, especially in the outer region of the cylinder middle. For shorter...... cylinders the strain softening is more pronounced along the surface of the cylinder middle, whereas longer cylinders exhibit a more uniform distribution of strain softening. The failure modes for force and displacement controlled tests are found to be similar. If long cylinders are to provide the true...

  18. Features of Flow Past Square Cylinder with a Perforated Plate

    汪健生; 徐亚坤; 程浩杰


    A numerical investigation was performed on the reduction of the fluid forces acting on the square cylin-der in the laminar flow regime with a perforated plate. The effects of geometric parameters such as the distance between the square cylinder and the perforated plate on the wake of the square cylinder were discussed. Further-more, the flow characteristics such as the drag coefficient, lift coefficient, Strouhal number and flow pattern were obtained. It can be concluded that the drag force of the square cylinder reduces to some extent due to the addition of the perforated plate. The flow structure varies when the perforated plate is located behind the square cylinder. Moreover, the recirculation zone augments with the increase ofL/D, and the vortex trace on the upper and lower surface of the square cylinder moves gradually backwards until a stable recirculation zone formed between the square cylinder and the perforated plate.

  19. Maximum Likelihood Associative Memories

    Gripon, Vincent; Rabbat, Michael


    Associative memories are structures that store data in such a way that it can later be retrieved given only a part of its content -- a sort-of error/erasure-resilience property. They are used in applications ranging from caches and memory management in CPUs to database engines. In this work we study associative memories built on the maximum likelihood principle. We derive minimum residual error rates when the data stored comes from a uniform binary source. Second, we determine the minimum amo...

  20. Maximum likely scale estimation

    Loog, Marco; Pedersen, Kim Steenstrup; Markussen, Bo


    A maximum likelihood local scale estimation principle is presented. An actual implementation of the estimation principle uses second order moments of multiple measurements at a fixed location in the image. These measurements consist of Gaussian derivatives possibly taken at several scales and....../or having different derivative orders. Although the principle is applicable to a wide variety of image models, the main focus here is on the Brownian model and its use for scale selection in natural images. Furthermore, in the examples provided, the simplifying assumption is made that the behavior...... of the measurements is completely characterized by all moments up to second order....

  1. Upgraded Analytical Model of the Cylinder Test

    Souers, P. Clark; Lauderbach, Lisa; Garza, Raul; Ferranti, Louis; Vitello, Peter


    A Gurney-type equation was previously corrected for wall thinning and angle of tilt, and now we have added shock wave attenuation in the copper wall and air gap energy loss. Extensive calculations were undertaken to calibrate the two new energy loss mechanisms across all explosives. The corrected Gurney equation is recommended for cylinder use over the original 1943 form. The effect of these corrections is to add more energy to the adiabat values from a relative volume of 2 to 7, with low energy explosives having the largest correction. The data was pushed up to a relative volume of about 15 and the JWL parameter ω was obtained directly. The total detonation energy density was locked to the v=7 adiabat energy density, so that the Cylinder test gives all necessary values needed to make a JWL.

  2. Locomotion gaits of a rotating cylinder pair

    van Rees, Wim M.; Novati, Guido; Koumoutsakos, Petros; Mahadevan, L.


    Using 2D numerical simulations of the Navier-Stokes equations, we demonstrate that a simple pair of rotating cylinders can display a range of locomotion patterns of biological and engineering interest. Steadily counter-rotating the cylinders causes the pair to move akin to a vortex dipole for low rotation rates, but as the rotational velocity is increased the direction of motion reverses. Unsteady rotations lead to different locomotion gaits that resemble jellyfish (for in-phase rotations) and undulating swimmers (for out-of-phase rotations). The small number of parameters for this simple system allows us to systematically map the phase space of these gaits, and allows us to understand the underlying physical mechanisms using a minimal model with implications for biological locomotion and engineered analogs.

  3. Intergalactic Filaments as Isothermal Gas Cylinders

    Harford, A Gayler


    Using a cosmological simulation at redshift 5, we find that the baryon-rich cores of intergalactic filaments radiating from galaxies commonly form isothermal gas cylinders. The central gas density is typically about 500 times the cosmic mean total density, and the temperature is typically 1-2 times 10^4 K, just above the Lyman alpha cooling floor. These findings argue that the hydrodynamic properties of the gas are more important than the dark matter in determining the structure. Filaments form a major pipeline for the transport of gas into the centers of galaxies. Since the temperature and ionization state of the gas completely determine the mass per unit length of an isothermal gas cylinder, our findings suggest a constraint upon gas transport into galaxies by this mechanism.

  4. Anomalous magnetoresistance in magnetized topological insulator cylinders

    Siu, Zhuo Bin, E-mail: [NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456 (Singapore); Data Storage Institute, Agency for Science, Technology and Research, Singapore 117608 (Singapore); Jalil, Mansoor B. A. [NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456 (Singapore)


    The close coupling between the spin and momentum degrees of freedom in topological insulators (TIs) presents the opportunity for the control of one to manipulate the other. The momentum can, for example, be confined on a curved surface and the spin influenced by applying a magnetic field. In this work, we study the surface states of a cylindrical TI magnetized in the x direction perpendicular to the cylindrical axis lying along the z direction. We show that a large magnetization leads to an upwards bending of the energy bands at small |k{sub z}|. The bending leads to an anomalous magnetoresistance where the transmission between two cylinders magnetized in opposite directions is higher than when the cylinders are magnetized at intermediate angles with respect to each other.

  5. Upgraded Analytical Model of the Cylinder Test

    Souers, P. Clark [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Energetic Materials Center; Lauderbach, Lisa [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Energetic Materials Center; Garza, Raul [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Energetic Materials Center; Ferranti, Louis [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Energetic Materials Center; Vitello, Peter [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Energetic Materials Center


    A Gurney-type equation was previously corrected for wall thinning and angle of tilt, and now we have added shock wave attenuation in the copper wall and air gap energy loss. Extensive calculations were undertaken to calibrate the two new energy loss mechanisms across all explosives. The corrected Gurney equation is recommended for cylinder use over the original 1943 form. The effect of these corrections is to add more energy to the adiabat values from a relative volume of 2 to 7, with low energy explosives having the largest correction. The data was pushed up to a relative volume of about 15 and the JWL parameter ω was obtained directly. Finally, the total detonation energy density was locked to the v = 7 adiabat energy density, so that the Cylinder test gives all necessary values needed to make a JWL.

  6. Energy Loss, Velocity Distribution, and Temperature Distribution for a Baffled Cylinder Model

    Brevoort, Maurice J


    A study has been made of the important principles involved in the operation of a baffle for an engine cylinder and shows that cooling can be improved by 20 percent by using a correctly designed baffle. Such a gain is as effective as a 65 percent increase in pressure drop across the standard baffle, which had a 1/4 inch clearance between baffle and fin tips.

  7. Parabolic cylinder functions of large order

    Jones, D. S.


    The asymptotic behaviour of parabolic cylinder functions of large real order is considered. Various expansions in terms of elementary functions are derived. They hold uniformly for the variable in appropriate parts of the complex plane. Some of the expansions are doubly asymptotic with respect to the order and the complex variable which is an advantage for computational purposes. Error bounds are determined for the truncated versions of the asymptotic series.

  8. Four-Cylinder Stirling Engine Control Simulation

    Daniele, C. J.; Lorenzo, C. F.


    Four-cylinder, Stirling-engine, transient-engine-simulation computer program developed. Program intended for control analysis. Associated engine model simplified to shorten computer calculation time. Model includes engine mechanical-drive dynamics and vehicle-load effects. Computer program also includes subroutines that allow acceleration of engine by addition of hydrogen to system and braking of engine by short circuiting of working spaces.

  9. Effect of the Presence of Semi-circular Cylinders on Heat Transfer From Heat Sources Placed in Two Dimensional Channel

    Ahmed W. Mustava


    Full Text Available The effect of a semi-circular cylinders in a two dimensional channel on heat transfer by forced convection from two heat sources with a constant temperature has been studied numerically. Each channel contains two heat sources; one on the upper surface of the channel and the other on the lower surface of the channel. There is semi-circular cylinder under the source in upper surface and there is semi-circular cylinder above the source in lower surface. The location of the second heat source with its semi-cylinder has been changed and keeps the first source with its semi- cylinder at the same location. The flow and temperature field are studied numerically with different values of Reynolds numbers and for different spacing between the centers of the semi-cylinders. The laminar flow field is analyzed numerically by solving the steady forms of the two-dimensional incompressible Navier- Stokes and energy equations.  The Cartesian velocity components and pressure on a collocated (non-staggered grid are used as dependent variables in the momentum equations, which discretized by finite volume method, body fitted coordinates are used to represent the complex channel geometry accurately, and grid generation technique based on elliptic partial differential equations is employed. SIMPLE algorithm is used to adjust the velocity field to satisfy the conservation of mass.  The range of Reynolds number is (Re= 100 – 800 and the range of the spacing between the semi-cylinders is(1-4 and the Prandtl number is 0.7.The results showed that increasing the spacing between the semi-cylinders increases the average of Nusselt number of the first heat source for all Reynolds numbers. As well as the results show that the best case among the cases studied to enhance the heat transfer is when the second heat source and its semi-cylinder located on at the distance (S=1.5 from the first half of the cylinder and the Reynolds number is greater than (Re ≥ 400 because of the

  10. Axisymmetric planar cracks in finite hollow cylinders of transversely isotropic material: Part II—cutting method for finite cylinders

    Pourseifi, M.; Faal, R. T.; Asadi, E.


    This paper is the outcome of a companion part I paper allocated to finite hollow cylinders of transversely isotropic material. The paper provides the solution for the crack tip stress intensity factors of a system of coaxial axisymmetric planar cracks in a transversely isotropic finite hollow cylinder. The lateral surfaces of the hollow cylinder are under two inner and outer self-equilibrating distributed shear loadings. First, the stress fields due to these loadings are given for both infinite and finite cylinders. In the next step, the state of stress in an infinite hollow cylinder with transversely isotropic material containing axisymmetric prismatic and radial dislocations is extracted from part I paper. Next, using the distributed dislocation technique, the mixed mode crack problem in finite cylinder is reduced to Cauchy-type singular integral equations for dislocation densities on the surfaces of the cracks. The problem of a cracked finite hollow cylinder is treated by cutting method; i.e., the infinite cylinder is cut to a finite one by slicing it using two annular axisymmetric cracks at its ends. The cutting method is validated by comparing the state of stress of a sliced intact infinite cylinder with that of an intact finite cylinder. The paper is furnished to several examples to study the effect of crack type and location in finite cylinders on the ensuing stress intensity factors of the cracks and the interaction between the cracks.

  11. Analysis of radiation noise from cylinder block by boundary element method

    Miura, Akinori; Sakurai, Yoichi


    As an approach toward low noise in the cylinder blocks of engines for large vehicles, the analysis of emitted noise was attempted. The method of forecasting the sound pressure level emitted from a cylinder block using boundary element method, from the calculated values or the measured values of vibration modes by partial structure synthesis method, was developed. The method of forecasting emitted noise using the result of holography measurement was developed, and by utilizing this method, the experimental optimizing technique for reducing noise was worked up. By applying the combination of the partial structure synthesis method and boundary element method to the cylinder blocks of large and medium sized diesel engines, the investigation of low noise cylinder blocks has become feasible at the stage of desk work. By these methods, from the result of holography, the part which is most effective when its noise level is reduced is determined, and the effect of reduction can be forecast. Besides, low noise structures can be studied on a desk, and the products manufactured for trial can be decreased, and the efficient development can be made. (9 figs, 2 tabs, 15 refs)

  12. Interaction of a weak shock wave with a discontinuous heavy-gas cylinder

    Wang, Xiansheng; Yang, Dangguo; Wu, Junqiang [High Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000 (China); Luo, Xisheng, E-mail: [Advanced Propulsion Laboratory, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026 (China)


    The interaction between a cylindrical inhomogeneity and a weak planar shock wave is investigated experimentally and numerically, and special attention is given to the wave patterns and vortex dynamics in this scenario. A soap-film technique is realized to generate a well-controlled discontinuous cylinder (SF{sub 6} surrounded by air) with no supports or wires in the shock-tube experiment. The symmetric evolving interfaces and few disturbance waves are observed in a high-speed schlieren photography. Numerical simulations are also carried out for a detailed analysis. The refracted shock wave inside the cylinder is perturbed by the diffracted shock waves and divided into three branches. When these shock branches collide, the shock focusing occurs. A nonlinear model is then proposed to elucidate effects of the wave patterns on the evolution of the cylinder. A distinct vortex pair is gradually developing during the shock-cylinder interaction. The numerical results show that a low pressure region appears at the vortex core. Subsequently, the ambient fluid is entrained into the vortices which are expanding at the same time. Based on the relation between the vortex motion and the circulation, several theoretical models of circulation in the literature are then checked by the experimental and numerical results. Most of these theoretical circulation models provide a reasonably good prediction of the vortex motion in the present configuration.


    SHAO Xue-ming; PAN Ding-yi


    The water environment of swimming fish in nature is always complex which includes various vortices and fluctuations.In order to study the interaction between the fish and its surrounding complex flow,the physical model with a D-section cylinder placed at the front of a flapping foil is employed.The D-section cylinder is used to produce vortices to contact with the foil as well as the vortices shed from the foil.According to the experimental work of Gopalkrishnan et al.,there are three interaction modes between vortices shed from the cylinder and the flapping foil,which are expanding wake,destructive interaction and constructive interaction.Here in this article,three of those typical cases are picked up to reproduce the vortices interaction modes with the modified immersed boundary methods and their hydrodynamic performances are studied further.Results show that,for expanding wake mode and destructive interaction mode,the incoming vortices contact with the foil strongly,inducing relative low pressure domains at the leading-edge of the foil and enlarging the thrust of foils.For constructive mode,the foil slalom between the shed vortices from the D-section cylinder do not contact with them obviously and the foil's thrust is only enlarged a little.


    J.M. Lacy


    The classic Taylor impact test imparts temporally and spatially varying fields of strain, strain rate, and temperature through the specimen. It is possible to exploit this complexity to directly identify constitutive model parameters from the deformed shape of the specimen. Where prior investigators have employed various mathematical fitting methods to identify or improve strength model parameters from Taylor cylinder profiles, we extend the method to employ a multi-objective genetic optimization algorithm to minimize the cylinder profile errors simultaneously on three cylinders impacted at different velocities. No experimental data other than the three Taylor cylinders is employed in developing the constitutive model parameter set, and generic starting coefficients are employed. To validate the accuracy of the resulting coefficients, both split Hopkinson pressure bar and axisymmetric expanding ring tests were conducted and compared to the resultant Johnson-Cook strength model. The derived strength model agreed well with experimental data available to date. Further work is necessary to evaluate the range of rates and temperatures over which parameters derived by this method may be applied.

  15. The terms of turbulent kinetic energy budget within random arrays of emergent cylinders

    Ricardo, Ana M.; Koll, Katinka; Franca, Mário J.; Schleiss, Anton J.; Ferreira, Rui M. L.


    This article is aimed at quantifying and discussing the relative magnitude of key terms of the equation of conservation of turbulent kinetic energy (TKE) in the inter-stem space of a flow within arrays of vertical cylinders simulating plant stems of emergent and rigid vegetation. The spatial distribution of turbulent quantities and mean flow variables are influenced by two fundamental space scales, the diameter of the stems and the local stem areal number-density. Both may vary considerably since the areal distribution of plant stems in natural systems is generally not homogeneous; they are often arranged in alternating sparse and dense patches. The magnitude of the terms of the budget of TKE in the inter-stem space has seldom been quantified experimentally and is currently not well known. This work addresses this research need. New databases, consisting of three-component LDA velocity series and two-component PIV velocity maps, obtained in carefully controlled laboratory conditions, were used to calculate the terms of the TKE budget. The physical system comprises random arrays of rigid and emergent cylinders with longitudinally varying areal number-density. It is verified that the main source of TKE is vortex shedding from individual cylinders. The rates of production and dissipation are not in equilibrium. Regions with negative production, a previously unreported feature, are identified. Turbulent transport is particularly important along the von Kármán vortex street. Convective rate of change of TKE and pressure diffusion are most relevant in the vicinity of the cylinders.

  16. Maximum Entropy Fundamentals

    F. Topsøe


    Full Text Available Abstract: In its modern formulation, the Maximum Entropy Principle was promoted by E.T. Jaynes, starting in the mid-fifties. The principle dictates that one should look for a distribution, consistent with available information, which maximizes the entropy. However, this principle focuses only on distributions and it appears advantageous to bring information theoretical thinking more prominently into play by also focusing on the "observer" and on coding. This view was brought forward by the second named author in the late seventies and is the view we will follow-up on here. It leads to the consideration of a certain game, the Code Length Game and, via standard game theoretical thinking, to a principle of Game Theoretical Equilibrium. This principle is more basic than the Maximum Entropy Principle in the sense that the search for one type of optimal strategies in the Code Length Game translates directly into the search for distributions with maximum entropy. In the present paper we offer a self-contained and comprehensive treatment of fundamentals of both principles mentioned, based on a study of the Code Length Game. Though new concepts and results are presented, the reading should be instructional and accessible to a rather wide audience, at least if certain mathematical details are left aside at a rst reading. The most frequently studied instance of entropy maximization pertains to the Mean Energy Model which involves a moment constraint related to a given function, here taken to represent "energy". This type of application is very well known from the literature with hundreds of applications pertaining to several different elds and will also here serve as important illustration of the theory. But our approach reaches further, especially regarding the study of continuity properties of the entropy function, and this leads to new results which allow a discussion of models with so-called entropy loss. These results have tempted us to speculate over

  17. Uniform flow around a circular cylinder in the subcritical range - using the Self-induced angular Moment Method turbulence model

    Johansson, Jens; Nielsen, Mogens Peter

    The uniform flow around a circular cylinder at Reynolds number 1e5 is simulated in a three dimensional domain by means of the newly developed Self-induced angular Moment Method, SMoM, turbulence model. The global force coefficients, Strouhal number, pressure distributions and wall shear stress...

  18. Regularized maximum correntropy machine

    Wang, Jim Jing-Yan


    In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.

  19. The efficiency and the demagnetization field of a general Halbach cylinder

    Bjørk, R; Bahl, C R H


    The maximum magnetic efficiency of a general multipole Halbach cylinder of order $p$ is found as function of $p$. The efficiency is shown to decrease for increasing absolute value of $p$. The optimal ratio between the inner and outer radius, i.e. the ratio resulting in the most efficient design, is also found as function of $p$ and is shown to tend towards smaller and smaller magnet sizes. Finally, the demagnetizing field in a general $p$-Halbach cylinder is calculated, and it is shown that demagnetization is largest either at $\\cos 2p\\phi=1$ or $\\cos 2p\\phi=-1$. For the common case of a $p=1$ Halbach cylinder the maximum values of the demagnetizing field is either at $\\phi = 0,\\pi$ at the outer radius, where the field is always equal to the remanence, or at $\\phi = \\pm \\pi/2$ at the inner radius, where it is the magnitude of the field in the bore. Thus to avoid demagnetization the coercivity of the magnets must be larger than these values.

  20. Convective heat transfer from circular cylinders located within perforated cylindrical shrouds

    Daryabeigi, K.; Ash, R. L.


    The influence of perforated cylindrical shrouds on the convective heat transfer to circular cylinders in transverse flow has been studied experimentally. Geometries studied were similar to those used in industrial platinum resistance thermometers. The influence of Reynolds number, ventilation factor (ratio of the open area to the total surface area of shroud), radius ratio (ratio of shroud's inside radius to bare cylinder's radius), and shroud orientation with respect to flow were studied. The experiments showed that perforated shrouds with ventilation factors in the range 0.1 to 0.4 and radius ratios in the range 1.1 to 2.1 could enhance the convective heat transfer to bare cylinders up to 50%. The maximum enhancement occurred for a radius ratio of 1.4 and ventilation factors between 0.2 and 0.3. It was found that shroud orientation influenced the heat transfer, with maximum heat transfer generally occurring when the shroud's holes were centered on either side of the stagnation line. However, the hole orientation effect is of second order compared to the influence of ventilation factor and radius ratio.

  1. Interactive steering of supercomputing simulation for aerodynamic noise radiated from square cylinder; Supercomputer wo mochiita steering system ni yoru kakuchu kara hoshasareru kurikion no suchi kaiseki

    Yokono, Y. [Toshiba Corp., Tokyo (Japan); Fujita, H. [Tokyo Inst. of Technology, Tokyo (Japan). Precision Engineering Lab.


    This paper describes extensive computer simulation for aerodynamic noise radiated from a square cylinder using an interactive steering supercomputing simulation system. The unsteady incompressible three-dimensional Navier-Stokes equations are solved by the finite volume method using a steering system which can visualize the numerical process during calculation and alter the numerical parameter. Using the fluctuating surface pressure of the square cylinder, the farfield sound pressure is calculated based on Lighthill-Curle`s equation. The results are compared with those of low noise wind tunnel experiments, and good agreement is observed for the peak spectrum frequency of the sound pressure level. 14 refs., 10 figs.

  2. Prestressed concrete reactor vessel thermal cylinder model study

    Callahan, J.P.; Canonico, D.A.; Richardson, M.; Corum, J.M.; Dodge, W.G.; Robinson, G.C.; Whitman, G.D.


    The thermal cylinder experiment was designed both to provide information for evaluating the capability of analytical methods to predict the time-dependent stress-strain behavior of a /sup 1///sub 6/-scale model of the barrel section of a single-cavity prestressed concrete reactor vessel and to demonstrate the structural behavior under design and off-design thermal conditions. The model was a thick-walled cylinder having a height of 1.22 m, a thickness of 0.46 m, and an outer diameter of 2.06 m. It was prestressed both axially and circumferentially and subjected to 4.83 MPa internal pressure together with a thermal crossfall imposed by heating the inner surface to 338.8 K and cooling the outer surface to 297.1 K. The initial 460 days of testing were divided into time periods that simulated prestressing, heatup, reactor operation, and shutdown. At the conclusion of the simulated operating period, the model was repressurized and subjected to localized heating at 505.4 K for 84 days to produce an off-design hot-spot condition. Comparisons of experimental data with calculated values obtained using the SAFE-CRACK finite-element computer program showed that the program was capable of predicting time-dependent behavior in a vessel subjected to normal operating conditions, but that it was unable to accurately predict the behavior during off-design hot-spot heating. Readings made using a neutron and gamma-ray backscattering moisture probe showed little, if any, migration of moisture in the concrete cross section. Destructive examination indicated that the model maintained its basic structural integrity during localized hot-spot heating.

  3. Differences in scour around a single surface-piercing cylinder and a submerged cylinder

    Beninati, M. L.; Volpe, M. A.; Riley, D. R.; Krane, M.


    The equilibrium state of scour for a single surface piercing cylinder and a submerged cylinder of specific aspect ratio are presented. The equilibrium state is defined by a scour depth and associated time interval for a given set of flow conditions. Control variables such as sediment coarseness (or grain size) and cylinder size are held constant, while the flow intensity is varied. Sediment bed form topology is characterized with a series of two-dimensional slices across the bed for both the surface-piercing and submerged cylinder cases. Test results will help identify the geometry and pattern of the scour around the cylinders to aid in the optimal design of marine hydrokinetic (MHK) support structures in an effort to help minimize the deleterious impact of these devices on the local substrate. This study is performed in the small-scale testing platform in the hydraulic flume facility (32 ft long, 4 ft wide and 1.25 ft deep) in the Environmental Fluid Mechanics and Hydraulics Laboratory (EFM&H) at Bucknell University. The cylinders, of the same material and diameter, are placed centrally in the sediment filled test section (2.5 ft long, 2 ft wide and 0.75 ft deep) of the platform. Flow field measurements are taken with a 16-MHz Micro Acoustic Doppler Velocimeter while water depth is acquired using an ultrasonic distance sensor. These devices are attached to a gantry system that can be accurately positioned anywhere in the test section. Clear-water conditions (in the absence of live-bed scour) are maintained to study the effect of the horseshoe and wake vortices on the displacement of sediment around the cylinder as well as downstream of the device. Bed form topology is measured using an HR Wallingford 2D Sediment Bed Profiler with a low-powered laser distance sensor to accurately characterize changes in bed form around the cylinders. Additionally, specifications for testing such as operational procedures for start-up and shut-down of the facility are given.

  4. Spark ignition engine control: estimation and prediction of the in-cylinder mass and chemical species; Controle moteur a allumage commande: estimation / prediction de la masse et de la composition du melange enferme dans le cylindre

    Giansetti, P.


    Spark ignition engine control has become a major issue regarding compliance with emissions legislation while ensuring driving comfort. The objective of this thesis was to estimate the mass and composition of gases inside the cylinder of an engine based on physics in order to insure better control of transient phases taking into account residual gases as well as exhaust gas recirculation. Residual gas fraction has been characterized using two experiments and one CFD code. A model has been validated experimentally and integrated into an observer which predicts pressure and temperature inside the manifold. The predictions of the different gas flows and the chemical species inside the cylinder are deduced. A closed loop observer has been validated experimentally and in simulation. Moreover, an algorithm estimating the fresh and burned gas mass from the cylinder pressure has been proposed in order to obtain the information cycle by cycle and cylinder by cylinder. (author)

  5. Interaction dynamics of gap flow with vortex-induced vibration in side-by-side cylinder arrangement

    Liu, Bin; Jaiman, Rajeev K.


    A numerical investigation of the vortex-induced vibration (VIV) in a side-by-side circular cylinder arrangement has been performed in a two-dimensional laminar flow environment. One of the cylinders is elastically mounted and only vibrates in the transverse direction, while its counterpart remains stationary in a uniform flow stream. When the gap ratio is sufficiently small, the flip-flopping phenomenon of the gap flow can be an additional time-dependent interference to the flow field. This phenomenon was reported in the experimental work of Bearman and Wadcock ["The interaction between a pair of circular cylinders normal to a stream," J. Fluid Mech. 61(3), 499-511 (1973)] in a side-by-side circular cylinder arrangement, in which the gap flow deflects toward one of the cylinders and switched its sides intermittently. Albeit one of the two cylinders is free to vibrate, the flip-flop of a gap flow during VIV dynamics can still be observed outside the lock-in region. The exact moments of the flip-flop phenomenon due to spontaneous symmetry breaking are observed in this numerical study. The significant characteristic vortex modes in the near-wake region are extracted via dynamic modal analysis and the interference between the gap flow and VIV is found to be mutual. In a vibrating side-by-side arrangement, the lock-in region with respect to reduced velocity becomes narrower due to the interference from its stationary counterpart. The frequency lock-in occurs and ends earlier than that of an isolated vibrating circular cylinder subjected to an identical flow environment. Similar to a tandem cylinder arrangement, in the post-lock-in region, the maximum vibration amplitudes are escalated compared with those of an isolated circular cylinder configuration. On the other hand, subjected to the influence from VIV, the biased gap flow deflects toward the vibrating cylinder quasi-stably during the frequency lock-in process. This behavior is different from the reported bi

  6. Stirling engine with pressurized crankcase

    Corey, John A.


    A two piston Stirling engine wherein the pistons are coupled to a common crankshaft via bearing means, the pistons include pad means to minimize friction between the pistons and the cylinders during reciprocation of the pistons, means for pressurizing the engine crankcase, and means for cooling the crankshaft and the bearing means eliminating the need for oil in the crankcase.

  7. Refurbishment of uranium hexafluoride cylinder storage yards C-745-K, L, M, N, and P and construction of a new uranium hexafluoride cylinder storage yard (C-745-T) at the Paducah Gaseous Diffusion Plant, Paducah, Kentucky



    The Paducah Gaseous Diffusion Plant (PGDP) is a uranium enrichment facility owned by the US Department of Energy (DOE). A residual of the uranium enrichment process is depleted uranium hexafluoride (UF6). Depleted UF6, a solid at ambient temperature, is stored in 32,200 steel cylinders that hold a maximum of 14 tons each. Storage conditions are suboptimal and have resulted in accelerated corrosion of cylinders, increasing the potential for a release of hazardous substances. Consequently, the DOE is proposing refurbishment of certain existing yards and construction of a new storage yard. This environmental assessment (EA) evaluates the impacts of the proposed action and no action and considers alternate sites for the proposed new storage yard. The proposed action includes (1) renovating five existing cylinder yards; (2) constructing a new UF6 storage yard; handling and onsite transport of cylinders among existing yards to accommodate construction; and (4) after refurbishment and construction, restacking of cylinders to meet spacing and inspection requirements. Based on the results of the analysis reported in the EA, DOE has determined that the proposed action is not a major Federal action that would significantly affect the quality of the human environment within the context of the National Environmental Policy Act of 1969. Therefore, DOE is issuing a Finding of No Significant Impact. Additionally, it is reported in this EA that the loss of less than one acre of wetlands at the proposed project site would not be a significant adverse impact.

  8. Equalized near maximum likelihood detector


    This paper presents new detector that is used to mitigate intersymbol interference introduced by bandlimited channels. This detector is named equalized near maximum likelihood detector which combines nonlinear equalizer and near maximum likelihood detector. Simulation results show that the performance of equalized near maximum likelihood detector is better than the performance of nonlinear equalizer but worse than near maximum likelihood detector.

  9. Generalized Maximum Entropy

    Cheeseman, Peter; Stutz, John


    A long standing mystery in using Maximum Entropy (MaxEnt) is how to deal with constraints whose values are uncertain. This situation arises when constraint values are estimated from data, because of finite sample sizes. One approach to this problem, advocated by E.T. Jaynes [1], is to ignore this uncertainty, and treat the empirically observed values as exact. We refer to this as the classic MaxEnt approach. Classic MaxEnt gives point probabilities (subject to the given constraints), rather than probability densities. We develop an alternative approach that assumes that the uncertain constraint values are represented by a probability density {e.g: a Gaussian), and this uncertainty yields a MaxEnt posterior probability density. That is, the classic MaxEnt point probabilities are regarded as a multidimensional function of the given constraint values, and uncertainty on these values is transmitted through the MaxEnt function to give uncertainty over the MaXEnt probabilities. We illustrate this approach by explicitly calculating the generalized MaxEnt density for a simple but common case, then show how this can be extended numerically to the general case. This paper expands the generalized MaxEnt concept introduced in a previous paper [3].

  10. Characterization of the turbulent bistable flow regime of a 2 D bluff body wake disturbed by a small control cylinder

    Parezanović, Vladimir; Monchaux, Romain; Cadot, Olivier


    A small control cylinder placed in a turbulent wake of a much larger 2 D bluff body can cause a significant increase in drag fluctuations. These fluctuations occur on timescales longer than the timescales of the vortex shedding. The critical positions of the control cylinder are highly localized. Ensemble averages of PIV acquisitions and pressure measurements at the base of the bluff body reveal a bistable wake regime. Long duration hot-wire measurements are used to characterize the states and the transition process. The results show that a stochastic process is responsible for the transitions between the two stable states.

  11. Thermal shock in a circumferentially cracked hollow cylinder with cladding

    Nied, H. F.


    An theoretical analysis is presented which demonstrates the effect of cladding on the thermal resistance of a circumferentially cracked hollow cylinder. The cladding is assumed to be bonded to the inner wall of the hollow cylinder. The axisymmetric circumferential crack may be either embedded in the cylinder wall or may be an edge crack which passes through the clad and opens into the inner wall of the hollow cylinder. The problem is formulated mathematically and a solution is found which is in the form of a single integral equation. The integral equation is solved numerically and yields estimates of transient temperature distributions, thermal stresses in the uncracked cylinder, and stress intensity factors as a function of time for various cladding thickness to cylinder wall thickness ratios. It is shown that yielding of the clad under certain conditions can result in a reduction in the magnitude of the stress intensity factor for the crack tip in the elastic base material.

  12. Effect of Surface Coatings on Cylinders Exposed to Underwater Shock

    Y.W. Kwon


    Full Text Available The response of a coated cylinder (metallic cylinder coated with a rubber material subjected to an underwater explosion is analyzed numerically. The dynamic response of the coated cylinder appears to be adversely affected when impacted by an underwater shock wave under certain conditions of geometry and material properties of the coating. When adversely affected, significant deviations in values of axial stress, hoop stress, and strain are observed. The coated cylinder exhibits a larger deformation and higher internal energy in the metallic material. Rubber coatings appeared to inhibit energy dissipation from the metallic material to the surrounding water medium. A parametric study of various coatings was performed on both aluminum and steel cylinders. The adverse effect of the coating decreased when the stiffness of the rubber layer increased, indicating the existence of a threshold value. The results of this study indicate that the stiffness of the coating is a critical factor to the shock hardening of the coated cylinder.

  13. Coal slurry combustion optimization on single cylinder engine


    Under the sponsorship of the US Department of Energy, Morgantown Energy Technology Center, GE Transportation System has been conducting a proof of concept program to use coal water slurry (CWS) fuel to power a diesel engine locomotive since 1988. As reported earlier [1], a high pressure electronically controlled accumulator injector using a diamond compact insert nozzle was developed for this project. The improved reliability and durability of this new FIE allowed for an improved and more thorough study of combustion of CWS fuel in a diesel engine. It was decided to include a diesel pilot fuel injector in the combustion system mainly due to engine start and low load operation needs. BKM, Inc. of San Diego, CA was contracted to develop the electronic diesel fuel pilot/starting FIE for the research engine. As a result, the experimental combustion study was very much facilitated due to the ability of changing pilot/CWS injection timings and quantities without having to stop the engine. Other parameters studied included combustion chamber configuration (by changing CWS fuel injector nozzle hole number/shape/angle), as well as injection pressure. The initial phase of this combustion study is now complete. The results have been adopted into the design of a 12 cylinder engine FIE, to be tested in 1992. This paper summarizes the main findings of this study.

  14. Effects of Elevated Temperatures on the Compressive Strength Capacity of Concrete Cylinders Confined with FRP Sheets: An Experimental Investigation

    Sherif El-Gamal


    Full Text Available Due to their high strength, corrosion resistance, and durability, fiber reinforced polymers (FRP are very attractive for civil engineering applications. One of these applications is the strengthening of concrete columns with FRP sheets. The performance of this strengthening technique at elevated temperature is still questionable and needs more investigations. This research investigates the effects of exposure to high temperatures on the compressive strength of concrete cylinders wrapped with glass and carbon FRP sheets. Test specimens consisted of 30 unwrapped and 60 wrapped concrete cylinders. All specimens were exposed to temperatures of 100, 200, and 300°C for periods of 1, 2, and 3 hours. The compressive strengths of the unwrapped concrete cylinders were compared with their counterparts of the wrapped cylinders. For the unwrapped cylinders, test results showed that the elevated temperatures considered in this study had almost no effect on their compressive strength; however, the wrapped specimens were significantly affected, especially those wrapped with GFRP sheets. The compressive strength of the wrapped specimens decreased as the exposure period and the temperature level increased. After three hours of exposure to 300°C, a maximum compressive strength loss of about 25.3% and 37.9%, respectively, was recorded in the wrapped CFRP and GFRP specimens.

  15. Adaptronic tools for superfinishing of cylinder bores

    Roscher, Hans-Jürgen; Hochmuth, Carsten; Hoffmann, Michael; Praedicow, Michael


    Today in the production of internal combustion engines it is possible to make pistons as well as cylinders, for all practical purposes, perfectly round. The negative consequences of the subsequent assembly processes and operation of the engine is that the cylinders and pistons are deformed, resulting in a loss of power and an increase in fuel consumption. This problem can be solved by using an adaptronic tool, which can machine the cylinder to a predetermined nonround geometry, which will deform to the required geometry during assembly and operation of the engine. The article describes the actuatory effect of the tool in conjunction with its measuring and controlling algorithms. The adaptronic tool consists out the basic tool body and three axially-staggered floating cutter groups, these cutter groups consist out of guides, actuators and honing stones. The selective expansion of the tool is realised by 3 piezoelectric multilayer-actuators deployed in a series - parallel arrangement. It is also possible to superimpose actuator expansion on the conventional expansion. A process matrix is created during the processing of the required and actual contour data in a technology module. This is then transferred over an interface to the machine controller where it is finally processed and the setting values for the piezoelectric actuators are derived, after which an amplifier generates the appropriate actuator voltages. A slip ring system on the driveshaft is used to transfer the electricity to the actuators in the machining head. The functioning of the adaptronic form-honing tool and process were demonstrated with numerous experiments. The tool provides the required degrees of freedom to generate a contour that correspond to the inverse compound contour of assembled and operational engines.

  16. Vortex shedding noise of a cylinder with hairy flaps

    Kamps, L.; Geyer, T. F.; Sarradj, E.; Brücker, C.


    This study describes the modification of acoustic noise emitted from cylinders in a stationary subsonic flow for a cylinder equipped with flexible hairy flaps at the aft part as a passive way to manipulate the flow and acoustics. The study was motivated by the results from previous water tunnel measurements, which demonstrated that hairy flaps can modify the shedding cycle behind the cylinder and can reduce the wake deficit. In the present study, wind tunnel experiments were conducted on such...

  17. Analysis of a functionally graded piezothermoelastic hollow cylinder

    CHEN Ying; SHI Zhi-fei


    A long thick-walled hollow cylinder ofpiezothermoelastic materials was studied in this work. The gradient property of the piezoelectric parameter g31 was taken into account. The theory of elasticity was applied to obtain the exact solutions of the cylinder subjected simultaneously to thermal and electric loadings. As an application, these solutions have been successfully used to study the inverse problems of the material. For comparison, numerical results have been carried out for both graded and double-layered cylinders.

  18. Vortex-induced vibrations of two cylinders in tandem arrangement in the proximity-wake interference region.

    Borazjani, Iman; Sotiropoulos, Fotis


    We investigate numerically vortex-induced vibrations (VIV) of two identical two-dimensional elastically mounted cylinders in tandem in the proximity-wake interference regime at Reynolds number Re = 200 for systems having both one (transverse vibrations) and two (transverse and in-line) degrees of freedom (1-DOF and 2-DOF, respectively). For the 1-DOF system the computed results are in good qualitative agreement with available experiments at higher Reynolds numbers. Similar to these experiments our simulations reveal: (1) larger amplitudes of motion and a wider lock-in region for the tandem arrangement when compared with an isolated cylinder; (2) that at low reduced velocities the vibration amplitude of the front cylinder exceeds that of the rear cylinder; and (3) that above a threshold reduced velocity, large-amplitude VIV are excited for the rear cylinder with amplitudes significantly larger than those of the front cylinder. By analysing the simulated flow patterns we identify the VIV excitation mechanisms that lead to such complex responses and elucidate the near-wake vorticity dynamics and vortex-shedding modes excited in each case. We show that at low reduced velocities vortex shedding provides the initial excitation mechanism, which gives rise to a vertical separation between the two cylinders. When this vertical separation exceeds one cylinder diameter, however, a significant portion of the incoming flow is able to pass through the gap between the two cylinders and the gap-flow mechanism starts to dominate the VIV dynamics. The gap flow is able to periodically force either the top or the bottom shear layer of the front cylinder into the gap region, setting off a series of very complex vortex-to-vortex and vortex-to-cylinder interactions, which induces pressure gradients that result in a large oscillatory force in phase with the vortex shedding and lead to the experimentally observed larger vibration amplitudes. When the vortex shedding is the dominant

  19. Vortex-induced vibrations of two cylinders in tandem arrangement in the proximity–wake interference region



    We investigate numerically vortex-induced vibrations (VIV) of two identical two-dimensional elastically mounted cylinders in tandem in the proximity–wake interference regime at Reynolds number Re = 200 for systems having both one (transverse vibrations) and two (transverse and in-line) degrees of freedom (1-DOF and 2-DOF, respectively). For the 1-DOF system the computed results are in good qualitative agreement with available experiments at higher Reynolds numbers. Similar to these experiments our simulations reveal: (1) larger amplitudes of motion and a wider lock-in region for the tandem arrangement when compared with an isolated cylinder; (2) that at low reduced velocities the vibration amplitude of the front cylinder exceeds that of the rear cylinder; and (3) that above a threshold reduced velocity, large-amplitude VIV are excited for the rear cylinder with amplitudes significantly larger than those of the front cylinder. By analysing the simulated flow patterns we identify the VIV excitation mechanisms that lead to such complex responses and elucidate the near-wake vorticity dynamics and vortex-shedding modes excited in each case. We show that at low reduced velocities vortex shedding provides the initial excitation mechanism, which gives rise to a vertical separation between the two cylinders. When this vertical separation exceeds one cylinder diameter, however, a significant portion of the incoming flow is able to pass through the gap between the two cylinders and the gap-flow mechanism starts to dominate the VIV dynamics. The gap flow is able to periodically force either the top or the bottom shear layer of the front cylinder into the gap region, setting off a series of very complex vortex-to-vortex and vortex-to-cylinder interactions, which induces pressure gradients that result in a large oscillatory force in phase with the vortex shedding and lead to the experimentally observed larger vibration amplitudes. When the vortex shedding is the dominant

  20. Recording Rapidly Changing Cylinder-wall Temperatures

    Meier, Adolph


    The present report deals with the design and testing of a measuring plug suggested by H. Pfriem for recording quasi-stationary cylinder wall temperatures. The new device is a resistance thermometer, the temperature-susceptible part of which consists of a gold coating applied by evaporation under high vacuum and electrolytically strengthened. After overcoming initial difficulties, calibration of plugs up to and beyond 400 degrees C was possible. The measurements were made on high-speed internal combustion engines. The increasing effect of carbon deposit at the wall surface with increasing operating period is indicated by means of charts.