WorldWideScience

Sample records for maximum cladding temperatures

  1. The maximum allowable temperature of zircaloy-2 fuel cladding under dry storage conditions

    International Nuclear Information System (INIS)

    Mayuzumi, M.; Yoshiki, S.; Yasuda, T.; Nakatsuka, M.

    1990-09-01

    Japan plans to reprocess and reutilise the spent nuclear fuel from nuclear power generation. However, the temporary storage of spent fuel is assuming increasing importance as a means of ensuring flexibility in the nuclear fuel cycle. Our investigations of various methods of storage have shown that casks are the most suitable means of storing small quantities of spent fuel of around 500 t, and research and development are in progress to establish dry storage technology for such casks. The soundness of fuel cladding is being investigated. The most important factor in evaluating soundness in storage under inert gas as currently envisaged is creep deformation and rupture, and a number of investigations have been made of the creep behaviour of cladding. The present study was conducted on the basis of existing in-house results in collaboration with Nippon Kakunenryo Kaihatsu KK (Nippon Nuclear Fuel Department Co.), which has hot lab facilities. Tests were run on the creep deformation behaviour of irradiated cladding, and the maximum allowable temperature during dry storage was investigated. (author)

  2. Temperature distribution determination of JPSR power reactor fuel element and cladding

    International Nuclear Information System (INIS)

    Sudarmono

    1996-01-01

    In order to utilize of fuel rod efficiency, a concept of JAERI passive Safety Reactor (JPSR) has been developed in Japan Atomic Energy Research Institute. In the JPSR design, UO 2 . are adopted as a fuel rod. The temperature distribution in the fuel rod and cladding in the hottest channel is a potential limiting design constraint of the JPSR. In the present determination, temperature distribution of the fuel rod and cladding for JPSR were PET:formed using COBRA-IV-I to evaluate the safety margin of the present JPSR design. In this method, the whole core was represented by the 1/4 sector and divided into 50 subchannels and 40 axial nodes. The temperature become maximum at the elevation of 1.922 and 2.196 m in the typical cell under operating condition. The maximum temperature in the center of the fuel rod surface of the fuel rod and cladding were 1620,4 o C, 722,8 o C, and 348,6 o C. The maximum results of temperature in the center of the fuel rod and cladding; were 2015,28 o C and 550 o C which were observed at 3.1 second in the typical cell

  3. PWR clad ballooning: The effect of circumferential clad temperature variations on the burst strain/burst temperature relationship

    International Nuclear Information System (INIS)

    Barlow, P.

    1983-01-01

    By experiment, it has been shown by other workers that there is a reduction in the creep ductility of Zircaloy 4 in the α+β phase transition region. Results from single rod burst tests also show a reduction in burst strain in the α+β phase region. In this report it is shown theoretically that for single rod burst tests in the presence of circumferential temperature gradients, the temperature dependence of the mean burst strain is not determined by temperature variations in creep ductility, but is governed by the temperature sensitivity of the creep strain rate, which is shown to be a maximum in the α+β phase transition region. To demonstrate this effect, the mean clad strain at burst was calculated for creep straining at different temperature levels in the α, α+β and β phase regions. Cross-pin temperature gradients were applied which produced strain variations around the clad which were greatest in the α+β phase region. The mean strain at burst was determined using a maximum local burst strain (i.e. a creep ductility) which is independent of temperature. By assuming cross-pin temperature gradients which are typical of those observed during burst tests, then the calculated mean burst strain/burst temperature relationship gave good agreement with experiment. The calculations also show that when circumferential temperature differences are present, the calculated mean strain at burst is not sensitive to variations in the magnitude of the assumed creep ductility. This reduces the importance of the assumed burst criterion in the calculations. Hence a temperature independent creep ductility (e.g. 100% local strain) is adequate as a burst criterion for calculations under PWR LOCA conditions. (author)

  4. Effect of annealing temperature on the mechanical properties of Zircaloy-4 cladding

    International Nuclear Information System (INIS)

    Beauregard, R.J.; Clevinger, G.S.; Murty, K.L.

    1977-01-01

    The mechanical properties of Zircaloy cladding materials are sensitive to those fabrication variables which have an effect on the preferred crystallographic orientation or texture of the finished tube. The effect of one such variable, the final annealing temperature, on various mechanical properties is examined using tube reduced Zircaloy-4 fuel rod cladding annealed at temperatures from 905F to 1060F. This temperature range provides cladding with varying degrees of recrystallization including full recrystallization. The burst strength of the cladding at 650F decreased with the annealing temperature reaching a saturation value at approximately 1000F. The total circumferential elongation increased with the annealing temperature reaching a maximum at approximately 1000F and decreasing at higher temperatures. Hoop creep characteristics of Zircaloy cladding were studied as a function of the annealing temperature using closed-end internal pressurization tests at 750F and hoop stresses of 10, 15, 20 and 25 ksi. The effect of annealing temperature on the room temperature mechanical anisotropy parameters, R and P, was studied. The R-parameter was essentially independent of the annealing temperature while the P-parameter increased with annealing temperature. The mechanical anisotropy parameters were also studied as a function of the test temperature from ambient to approximately 800F using continuously monitored high precision extensometry. (Auth.)

  5. Evaluation of thermocouple fin effect in cladding surface temperature measurement during film boiling

    International Nuclear Information System (INIS)

    Tsuruta, Takaharu; Fujishiro, Toshio

    1984-01-01

    Thermocouple fin effect on surface temperature measurement of a fuel rod has been studied at elevated wall temperatures under film boiling condition in a reactivity initiated accident (RIA) situation. This paper presents an analytical equation to evaluate temperature drops caused by the thermocouple wires attached to cladding surface. The equation yielded the local temperature drop at measuring point depending on thermocouple diameter, cladding temperature, coolant flow condition and vapor film thickness. The temperature drops by the evaluating equation were shown in cases of free and forced convection conditions. The analytical results were compared with the measured data for various thermocouple sizes, and also with the estimated maximum cladding temperature based on the oxidation layer thickness in the cladding outer surface. It was concluded that the temperature drops at above 1,000 0 C in cladding temperature were around 120 and 150 0 C for 0.2 and 0.3 mm diameter Pt-Pt.Rh thermocouples, respectively, under a stagnant coolant condition. The fin effect increases with the decrease of vapor film thickness such as under forced flow cooling or at near the quenching point. (author)

  6. Experimental determination of the local temperature distribution in the cladding tubes of a sodium-cooled pin bundle caused by grid spacers

    International Nuclear Information System (INIS)

    Moeller, R.; Tschoeke, H.

    1980-01-01

    The cladding tubes of reactor core elements are highly stressed structural elements. Their careful design includes the following: (a) the mathematical determination of the maximum cladding tube temperatures; (b) the determination of the maximum permissible fatigue strengths and creep strains of the materials; and (c) the safety distance between the nominal cladding tube hot spots and the permissible extreme cladding tube temperature. The maximum cladding tube temperatures occur on the top edge of the core and, due to radial power gradients, in the wrapper-wall region of a pin bundle. If grid spacers are now used for fixing the pins as in the SNR fuel elements, a careful check must be made of whether and to what degree temperature peaks in the region of the supports have an influence on the cladding tube design. Initial experimental investigations on a sodium-cooled pin bundle model of the SNR-300 fuel element were carried out to throw light on these special problems. This is reported in the following together with the results so far obtained. (U.K.)

  7. Experimental study of effect of initial clad temperature on reflood phenomena during PWR-LOCA

    International Nuclear Information System (INIS)

    Sugimoto, Jun; Murao, Yoshio

    1983-01-01

    Integral system tests with the Cylindrical Core Test Facility (CCTF) were performed to investigate the effect of the initial clad temperature on the reflood phenomena in a PWR-LOCA. The initial peak clad temperatures in these three tests were 871, 968 and 1,047K, respectively. The feedback of the system on the core inlet mass flow rate was estimated to be little influenced by the variation of the initial clad temperature except for the first 20s in the transient. The observed temperature rise from the reflood initiation was lower with the higher initial clad temperature. This qualitatively agreed with the results of the small scale forced feed reflood experiments. However, the magnitude of the temperature rise in CCTF was significantly low due to the high initial core inlet mass flow rate. Also observed were the multi-dimensional thermal behaviors for the three cases in the CCTF wide core. The analysis codes REFLA and TRAC reasonably predicted the effect of the initial clad temperature on the core thermo-hydraulics under the simulated core inlet flow conditions. However, the calculated temperature rise of the maximum powered rod based on the one-dimensional core analysis was higher than that of the average powered rod, which contradicts the tendency observed in CCTF tests. (author)

  8. Review and evaluation of cladding attack of LMFBR fuel

    International Nuclear Information System (INIS)

    Koizumi, M.; Nagai, S.; Furuya, H.; Muto, T.

    1977-01-01

    The behavior of cladding inner wall corrosion during irradiation was evaluated in terms of fuel density, fuel form, O/M ratio, plutonium concentration, cladding composition, cladding pretreatment, cladding inner diameter, burnup and cladding inner wall temperature. Factors which influence the corrosion are O/M ratio (oxygen to metal ratio), burn up, cladding inner diameter and cladding inner wall temperature. Maximum cladding inner wall corrosion depth was formulated as a function of O/M ratio, burn up and cladding inner wall temperature

  9. High-temperature deformation and rupture behavior of internally-pressurized Zircaloy-4 cladding in vacuum and steam enivronments

    International Nuclear Information System (INIS)

    Chung, H.M.; Garde, A.M.; Kassner, T.F.

    1977-01-01

    The high-temperature diametral expansion and rupture behavior of Zircaloy-4 fuel-cladding tubes have been investigated in vacuum and steam environments under transient-heating conditions that are of interest in hypothetical loss-of-coolant accident situations in light-water reactors. The effects of internal pressure, heating rate, axial constraint, and localized temperature nonuniformities in the cladding on the maximum circumferential strain have been determined for burst temperatures between approximately 650 and 1350 0 C

  10. Numerical Simulation of Temperature Field and Residual Stress Distribution for Laser Cladding Remanufacturing

    Directory of Open Access Journals (Sweden)

    Liang Hua

    2014-05-01

    Full Text Available A three-dimensional finite element model was employed to simulate the cladding process of Ni-Cr-B-Si coatings on 16MnR steel under different parameters of laser power, scanning speed, and spot diameter. The temperature and residual stress distribution, the depth of the heat affected zone (HAZ, and the optimized parameters for laser cladding remanufacturing technology were obtained. The orthogonal experiment and intuitive analysis on the depth of the HAZ were performed to study the influence of different cladding parameters. A new criterion based on the ratio of the maximum tensile residual stress and fracture strength of the substrate was proposed for optimization of the remanufacturing parameters. The result showed well agreement with that of the HAZ analysis.

  11. Estimation of the Maximum Output Power of Double-Clad Photonic Crystal Fiber Laser

    International Nuclear Information System (INIS)

    Chen Yue-E; Wang Yong; Qu Xi-Long

    2012-01-01

    Compared with traditional optical fiber lasers, double-clad photonic crystal fiber (PCF) lasers have larger surface-area-to-volume ratios. With an increase of output power, thermal effects may severely restrict output power and deteriorate beam quality of fiber lasers. We utilize the heat-conduction equations to estimate the maximum output power of a double-clad PCF laser under natural-convection, air-cooling, and water-cooling conditions in terms of a certain surface-volume heat ratio of the PCF. The thermal effects hence define an upper power limit of double-clad PCF lasers when scaling output power. (fundamental areas of phenomenology(including applications))

  12. Out-of-pile experiments on the high-temperature behavior of Zircaloy-4 clad fuel rods

    International Nuclear Information System (INIS)

    Hagen, S.

    1984-01-01

    Out-of-pile experiments have been performed to investigate the escalation in temperature of Zircaloy-clad fuel rods during heatup in steam due to the exothermal Zircaloy steam reaction. In these tests single Zircaloy/uranium dioxide (UO 2 ) fuel rod simulators surrounded with a Zircaloy shroud--simulating the Zircaloy of neighboring rods--were heated inside a fiber ceramic insulation. The initial heating rates were varied from 0.3 to 2.5 K/s. In every test an escalation of the temperature rise rate was observed. The maximum measured surface temperature was about 2200 0 C. The temperature decreased after the maximum had been reached without decreasing the input electric power. The temperature decreases were due to inherent processes including the runoff of molten Zircaloy. The escalation process was influenced by the temperature behavior of the shroud, which was itself affected by the insulation and steam cooling. Damage to the fuel rods increased with increasing heatup rate. Fro slow heatup rates nearly no interaction between the oxidized cladding and UO 2 was observed, while for fast heatup rates the entire annular pellet was dissolved by molten Zircaloy

  13. The Effect of Peak Temperatures and Hoop Stresses on Hydride Reorientations of Zirconium Alloy Cladding Tubes under Interim Dry Storage Condition

    International Nuclear Information System (INIS)

    Cha, Hyun Jin; Jang, Ki Nam; Kim, Kyu Tae

    2016-01-01

    In this study, the effect of peak temperatures and hoop tensile stresses on hydride reorientation in cladding was investigated. It was shown that the 250ppm-H specimens generated larger radial hydride fractions and longer radial hydrides than the 500ppm-H ones. The precipitated hydride in radial direction severely degrades mechanical properties of spent fuel rod. Hydride reorientation is related to cladding material, cladding temperature, hydrogen contents, thermal cycling, hoop stress and cooling rate. US NRC established the regulation on cladding temperature during the dry storage, which is the maximum fuel cladding temperature should not exceed 400 .deg. C for all fuel burnups under normal conditions of storage. However, if it is proved that the best estimate cladding hoop stress is equal to or less than 90MPa for the temperature limit proposed, a higher short-term temperature limit is allowed for low burnup fuel. In this study, 250ppm and 500ppm hydrogen-charged Zr-Nb alloy cladding tubes were selected to evaluate the effect of peak temperatures and hoop tensile stresses on the hydride reorientation during the dry storage. In order to evaluate threshold stresses in relation to various peak temperatures, four peak temperatures of 250, 300, 350, and 400 .deg. C and three tensile hoop stresses of 80, 100, 120MPa were selected.

  14. Potential for cladding thermal failure in LWRs during high temperature transients

    International Nuclear Information System (INIS)

    El Genk, M.S.

    1979-01-01

    The temperature increase in the fuel and the cladding during a PCM accident produces film boiling at the cladding surface which may induce zircaloy cladding failure, due to embrittlement, and fuel melting at the centerline of the fuel pellets. Molten fuel may extrude through radial cracks in the fuel and relocate in the fuel-cladding gap. Contact of extruded molten fuel with the cladding, which is at high temperature during film boiling, may induce cladding thermal failure due to melting. An assessment of central fuel melting and molten fuel extrusion into the fuel-cladding gap during a PCM accident is presented. The potential for thermal failure of the zircaloy cladding upon being contacted by molten fuel during such an accident is also analyzed and compared with the applicable experimental evidence

  15. An allowable cladding peak temperature for spent nuclear fuels in interim dry storage

    Science.gov (United States)

    Cha, Hyun-Jin; Jang, Ki-Nam; Kim, Kyu-Tae

    2018-01-01

    Allowable cladding peak temperatures for spent fuel cladding integrity in interim dry storage were investigated, considering hydride reorientation and mechanical property degradation behaviors of unirradiated and neutron irradiated Zr-Nb cladding tubes. Cladding tube specimens were heated up to various temperatures and then cooled down under tensile hoop stresses. Cool-down specimens indicate that higher heat-up temperature and larger tensile hoop stress generated larger radial hydride precipitation and smaller tensile strength and plastic hoop strain. Unirradiated specimens generated relatively larger radial hydride precipitation and plastic strain than did neutron irradiated specimens. Assuming a minimum plastic strain requirement of 5% for cladding integrity maintenance in interim dry storage, it is proposed that a cladding peak temperature during the interim dry storage is to keep below 250 °C if cladding tubes are cooled down to room temperature.

  16. Reflood behavior at low initial clad temperature in Slab Core Test Facility Core-II

    International Nuclear Information System (INIS)

    Akimoto, Hajime; Sobajima, Makoto; Abe, Yutaka; Iwamura, Takamichi; Ohnuki, Akira; Okubo, Tsutomu; Murao, Yoshio; Okabe, Kazuharu; Adachi, Hiromichi.

    1990-07-01

    In order to study the reflood behavior with low initial clad temperature, a reflood test was performed using the Slab Core Test Facility (SCTF) with initial clad temperature of 573 K. The test conditions of the test are identical with those of SCTF base case test S2-SH1 (initial clad temperature 1073 K) except the initial clad temperature. Through the comparison of results from these two tests, the following conclusions were obtained. (1) The low initial clad temperature resulted in the low differential pressures through the primary loops due to smaller steam generation in the core. (2) The low initial clad temperature caused the accumulated mass in the core to be increased and the accumulated mass in the downcomer to be decreased in the period of the lower plenum injection with accumulator (before 50s). In the later period of the cold leg injection with LPCI (after 100s), the water accumulation rates in the core and the downcomer were almost the same between both tests. (3) The low initial clad temperature resulted in the increase of the core inlet mass flow rate in the lower plenum injection period. However, the core inlet mass flow rate was almost the same regardless of the initial clad temperature in the later period of the cold leg injection period. (4) The low initial clad temperature resulted in the low turnaround temperature, high temperature rise and fast bottom quench front propagation. (5) In the region apart from the quench front, low initial clad temperature resulted in the lower heat transfer. In the region near the quench front, almost the same heat transfer coefficient was observed between both tests. (6) No flow oscillation with a long period was observed in the SCTF test with low initial clad temperature of 573 K, while it was remarkable in the Cylindrical Core Test Facility (CCTF) test which was performed with the same initial clad temperature. (J.P.N.)

  17. Temperature measurements of the aluminium claddings of fuel elements in nuclear reactor

    International Nuclear Information System (INIS)

    Chen Daolong

    1986-01-01

    A method for embedding the sheathed thermocouples in the aluminium claddings of some fuel elements of experimental reactors by ultrasonic welding technique is described. The measurement results of the cladding temperature of fuel elements in reactors are given. By means of this method, the joint between the sheathed thermocouples and the cladding of fuel elements can be made very tight, there are no bulges on the cladding surfaces, and the sheathed thermocouples are embedded strongly and reliably. Therefore an essential means is provided for acquiring the stable and dynamic state data of the cladding temperature of in-core fuel elements

  18. Performance of HT9 clad metallic fuel at high temperature

    International Nuclear Information System (INIS)

    Pahl, R.G.; Lahm, C.E.; Hayes, S.L.

    1992-01-01

    Steady-state testing of HT9 clad metallic fuel at high temperatures was initiated in EBR-II in November of 1987. At that time U-10 wt. % Zr fuel clad with the low-swelling ferritic/martensitic alloy HT9 was being considered as driver fuel options for both EBR-II and FFTF. The objective of the X447 test described here was to determine the lifetime of HT9 cladding when operated with metallic fuel at beginning of life inside wall temperatures approaching ∼660 degree C. Though stress-temperature design limits for HT9 preclude its use for high burnup applications under these conditions due to excessive thermal creep, the X447 test was carried out to obtain data on high temperature breach phenomena involving metallic fuel since little data existed in that area

  19. Core temperature in super-Gaussian pumped air-clad photonic ...

    Indian Academy of Sciences (India)

    In this paper we investigate the core temperature of air-clad photonic crystal fiber (PCF) lasers pumped by a super-Gaussian (SG) source of order four. The results are compared with conventional double-clad fiber (DCF) lasers pumped by the same super-Gaussian and by top-hat pump profiles.

  20. Technical basis for storage of Zircaloy-clad spent fuel in inert gases

    International Nuclear Information System (INIS)

    Johnson, A.B. Jr.; Gilbert, E.R.

    1983-09-01

    The technical bases to establish safe conditions for dry storage of Zircaloy-clad fuel are summarized. Dry storage of fuel with zirconium alloy cladding has been licensed in Canada, the Federal Republic of Germany, and Switzerland. Dry storage demonstrations, hot cell tests, and modeling have been conducted using Zircaloy-clad fuel. The demonstrations have included irradiated boiling water reactor, pressurized heavy-water reactor, and pressurized water reactor fuel assemblies. Irradiated fuel has been emplaced in and retrieved from metal casks, dry wells, silos, and a vault. Dry storage tests and demonstrations have involved about 15,000 fuel rods, and about 5600 rods have been monitored during dry storage in inert gases with maximum cladding temperatures ranging from 50 to 570 0 C. Although some tests and demonstrations are still in progress, there is currently no evidence that any rods exposed to inert gases have failed (one PWR rod exposed to an air cover gas failed at about 270 0 C). Based on this favorable experience, it is concluded that there is sufficient information on fuel rod behavior, storage conditions, and potential cladding failure mechanisms to support licensing of dry storage in the US. This licensing position includes a requirement for inert cover gases and a maximum cladding temperature guideline of 380 0 C for Zircaloy-clad fuel. Using an inert cover gas assures that even if fuel with cladding defects were placed in dry storage, or if defects develop during storage, the defects would not propagate. Tests and demonstrations involving Zircaloy-clad rods and assemblies with maximum cladding temperatures above 400 0 C are in progress. When the results from these tests have been evaluated, the viability of higher temperature limits should be examined. Acceptable conditions for storage in air and dry storage of consolidated fuel are issues yet to be resolved

  1. Allowable peak heat-up cladding temperature for spent fuel integrity during interim-dry storage

    Directory of Open Access Journals (Sweden)

    Ki-Nam Jang

    2017-12-01

    Full Text Available To investigate allowable peak cladding temperature and hoop stress for maintenance of cladding integrity during interim-dry storage and subsequent transport, zirconium alloy cladding tubes were hydrogen-charged to generate 250 ppm and 500 ppm hydrogen contents, simulating spent nuclear fuel degradation. The hydrogen-charged specimens were heated to four peak temperatures of 250°C, 300°C, 350°C, and 400°C, and then cooled to room temperature at cooling rates of 0.3 °C/min under three tensile hoop stresses of 80 MPa, 100 MPa, and 120 MPa. The cool-down specimens showed that high peak heat-up temperature led to lower hydrogen content and that larger tensile hoop stress generated larger radial hydride fraction and consequently lower plastic elongation. Based on these out-of-pile cladding tube test results only, it may be said that peak cladding temperature should be limited to a level < 250°C, regardless of the cladding hoop stress, to ensure cladding integrity during interim-dry storage and subsequent transport.

  2. Study on microstructure and high temperature wear resistance of laser cladded nuclear valve clack

    International Nuclear Information System (INIS)

    Zhang Chunliang; Chen Zichen

    2002-01-01

    Laser cladding of Co-base alloy on the nuclear valve-sealing surface are performed with a 5 kW CO 2 transverse flowing laser. The microstructure and the high temperature impact-slide wear resistance of the laser cladded coating and the plasma cladded coating are studied. The results show that the microstructure, the dilution rate and the high temperature impact-slide wear resistance of the laser cladded coating have obvious advantages over the spurt cladding processing

  3. Influence of fuel pin bowing on the temperature distribution in fuel pin cladding tubes in case of sodium cooling; experimental results

    International Nuclear Information System (INIS)

    Moeller, R.; Tschoeke, H.; Kolodziej, M.

    1978-09-01

    The influence of rod bowing on the local temperature distribution was measured with turbulent sodium flow in the cladding tubes of a 19-rod bundle mock-up of the SNR 300 Mark Ia fuel element. Such measurements have been carried out for the first time. The results presented in this report are part 1 of the experimental evaluation not yet completed. The major results are: 1. When a rod on the first ring gets deformed towards a neighbour on the second ring with a gap reduction from the nominal value of 100 % down to 20 %, the maximum azimuthal temperature difference of the outer rod increases by about 60 %. 2. The maximum azimuthal temperature difference of a rod on the first ring increases by a factor of 2, if it is approached by a neighbour on the same ring. 3. The reduction in cross section of a subchannel by rod bowing results only locally in distinct temperature rises, i.e. in the adjacent cladding tubes. Rods of the next but one row are no more subject to noticeable changes in temperature [de

  4. A comparative study on the fretting wear properties of advanced zirconium fuel cladding materials

    International Nuclear Information System (INIS)

    Lee, Young Ho; Kim, Hyung Kyu; Park, Jeong Yong; Kim, Jun Hwan

    2005-06-01

    Fretting wear tests were carried out in room and high temperature water in order to evaluate the wear properties of new zirconium nuclear fuel claddings (K2∼K6) and the commercial claddings (M5, zirlo and zircaloy-4). The objective is to compare the wear resistance of K2∼K6 claddings with that of the commercial ones at the same test condition. After the wear tests, the average wear volume and the maximum wear depth were evaluated and compared at each test condition. As a result, it is difficult to select the most wear-resistant cladding between the K2∼K6 claddings and the commercial ones. This is because the average wear volume and maximum depth of each cladding included between the scattering range of measured results. However, wear resistance of the tested claddings based on the average wear volume and maximum wear depth could be summarized as follows: K5 > zircaloy-4 > (K2,K3) > (K4,M5) > K6 > zirlo at room temperature, zircaloy-4 > K5 > (K3,K4,zirlo) > (K2,K6) > M5 at high temperature and pressure. Therefore, it is concluded that K5 cladding among the tested new zirconium alloys has relatively higher wear-resistance in room and high temperature condition. In order to examine the wear mechanism, it is necessary to systematically study with the consideration of the alloying element effect and test environment. In this report, the wear test procedure and the wear evaluation method are described in detail

  5. Corrosion effect of fast reactor fuel claddings on their mechanical properties

    International Nuclear Information System (INIS)

    Davydov, E.F.; Krykov, F.N.; Shamardin, V.K.

    1985-01-01

    Fast reactor fuel cladding corrosion effect on its mechanical properties was investigated. UO 2 fuel elements were irradiated in the BOP-60 reactor at the linear heat rate of 42 kw/m. Fuel cladding is made of stainless steel OKh16N15M3BR. Calculated maximum cladding temperature is 920 K. Neutron fluence in the central part of fuel elements is 6.3x10 26 m+H- 2 . To investigate the strength changes temperature dependence of corrossion depth, cladding strength reduction factors was determined. Samples plasticity reduction with corrosion layer increase is considered to be a characteristic feature

  6. Hydrogenation and high temperature oxidation of Zirconium claddings

    International Nuclear Information System (INIS)

    Novotny, T.; Perez-Feró, E.; Horváth, M.

    2015-01-01

    In the last few years a new series of experiments started for supporting the new LOCA criteria, considering the proposals of US NRC. The effects which can cause the embrittlement of VVER fuel claddings were reviewed and evaluated in the framework of the project. The purpose of the work was to determine how the fuel cladding’s hydrogen uptake under normal operating conditions, effect the behavior of the cladding under LOCA conditions. As a first step a gas system equipment with gas valves and pressure gauge was built, in which the zirconium alloy can absorb hydrogen under controlled conditions. In this apparatus E110 (produced by electrolytic method, currently used at Paks NPP) and E110G (produced by a new technology) alloys were hydrogenated to predetermined hydrogen contents. According the results of ring compression tests the E110G alloys lose their ductility above 3200 ppm hydrogen content. This limit can be applied to determine the ductile-brittle transition of the nuclear fuel claddings. After the hydrogenation, high temperature oxidation experiments were carried out on the E110G and E110 samples at 1000 °C and 1200 °C. 16 pieces of E110G and 8 samples of E110 with 300 ppm and 600 ppm hydrogen content were tested. The oxidation of the specimens was performed in steam, under isothermal conditions. Based on the ring compression tests load-displacement curves were recorded. The main objective of the compression tests was to determine the ductile-brittle transition. These results were compared to the results of our previous experiments where the samples did not contain hydrogen. The original claddings showed more ductile behavior than the samples with hydrogen content. The higher hydrogen content resulted in a more brittle mechanical behavior. However no significant difference was observed in the oxidation kinetics of the same cladding types with different hydrogen content. The experiments showed that the normal operating hydrogen uptake of the fuel claddings

  7. Effect of annealing temperature on the mechanical properties of zircaloy-4 cladding

    International Nuclear Information System (INIS)

    Beauregard, R.J.; Clevinger, G.S.; Murty, K.L.

    1977-01-01

    The mechanical properties of zircaloy cladding materials are sensitive to those fabrication variables which have an effect on the preferred crystallographic orientation or texture of the finished tube. The effect of one such variable, the final annealing temperature, on various mechanical properties is examined using tube reduced zircaloy-4 fuel rod cladding annealed at temperatures from 905F to 1060F. This temperature range provides cladding with varying degrees of recrystallization including full recrystallization. Hoop creep characteristics of zircaloy cladding were studied as a function of the annealing temperature using closed-end internal pressurization tests at 750F and hoop stresses of 10, 15, 20 and 25 ksi. The critical annealing temperature at which a minimum creep strain occurs decreases as the applied stress increases. An additional test at 700F and 30 ksi hoop stress was conducted to demonstrate that the critical annealing temperature is essentially independent of the test temperature. Plausible explanations based on differing substructures developed in cold-worked stress-relieved material are forwarded. The effect of annealing temperature on the room temperature mechanical anisotropy parameters, R and P, was studied. R-parameters were determined from in situ transverse strain gage measurements in uniaxial tensile tests. P-parameters were calculated from uniaxial test data (R and yield stress) and hoop yield stress determined in biaxial, closed-end internal pressurization tests

  8. Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Y., E-mail: yano.yasuhide@jaea.go.jp [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki, 311-1393 (Japan); Tanno, T.; Oka, H.; Ohtsuka, S.; Inoue, T.; Kato, S.; Furukawa, T.; Uwaba, T.; Kaito, T. [Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Ibaraki, 311-1393 (Japan); Ukai, S.; Oono, N. [Materials Science and Engineering, Faculty of Engineering, Hokkaido University, N13, W-8, Kita-ku, Sapporo, Hokkaido, 060-8628 (Japan); Kimura, A. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hayashi, S. [Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Torimaru, T. [Nippon Nuclear Fuel Development Co., Ltd., 2163, Narita-cho, Oarai-machi, Ibaraki, 311-1313 (Japan)

    2017-04-15

    Ultra-high temperature ring tensile tests were performed to investigate the tensile behavior of oxide dispersion strengthened (ODS) steel claddings and wrapper materials under severe accident conditions with temperatures ranging from room temperature to 1400 °C which is close to the melting point of core materials. The experimental results showed that the tensile strength of 9Cr-ODS steel claddings was highest in the core materials at ultra-high temperatures of 900–1200 °C, but there was significant degradation in the tensile strength of 9Cr-ODS steel claddings above 1200 °C. This degradation was attributed to grain boundary sliding deformation with γ/δ transformation, which is associated with reduced ductility. By contrast, the tensile strength of recrystallized 12Cr-ODS and FeCrAl-ODS steel claddings retained its high value above 1200 °C, unlike the other tested materials.

  9. Ultra-high temperature tensile properties of ODS steel claddings under severe accident conditions

    Science.gov (United States)

    Yano, Y.; Tanno, T.; Oka, H.; Ohtsuka, S.; Inoue, T.; Kato, S.; Furukawa, T.; Uwaba, T.; Kaito, T.; Ukai, S.; Oono, N.; Kimura, A.; Hayashi, S.; Torimaru, T.

    2017-04-01

    Ultra-high temperature ring tensile tests were performed to investigate the tensile behavior of oxide dispersion strengthened (ODS) steel claddings and wrapper materials under severe accident conditions with temperatures ranging from room temperature to 1400 °C which is close to the melting point of core materials. The experimental results showed that the tensile strength of 9Cr-ODS steel claddings was highest in the core materials at ultra-high temperatures of 900-1200 °C, but there was significant degradation in the tensile strength of 9Cr-ODS steel claddings above 1200 °C. This degradation was attributed to grain boundary sliding deformation with γ/δ transformation, which is associated with reduced ductility. By contrast, the tensile strength of recrystallized 12Cr-ODS and FeCrAl-ODS steel claddings retained its high value above 1200 °C, unlike the other tested materials.

  10. High Temperature Fuel Cladding Chemical Interactions Between TRIGA Fuels and 304 Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Emmanuel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Keiser, Jr., Dennis D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Forsmann, Bryan [Boise State Univ., ID (United States); Janney, Dawn E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Henley, Jody [Idaho National Lab. (INL), Idaho Falls, ID (United States); Woolstenhulme, Eric C. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-02-01

    High-temperature fuel-cladding chemical interactions (FCCI) between TRIGA (Training, Research, Isotopes, General Atomics) fuel elements and the 304 stainless steel (304SS) are of interest to develop an understanding of the fuel behavior during transient reactor scenarios. TRIGA fuels are composed of uranium (U) particles dispersed in a zirconium-hydride (Zr-H) matrix. In reactor, the fuel is encased in 304-stainless-steel (304SS) or Incoloy 800 clad tubes. At high temperatures, the fuel can readily interact with the cladding, resulting in FCCI. A number of FCCI can take place in this system. Interactions can be expected between the cladding and the Zr-H matrix, and/or between the cladding and the U-particles. Other interactions may be expected between the Zr-H matrix and the U-particles. Furthermore, the fuel contains erbium-oxide (Er-O) additions. Interactions can also be expected between the Er-O, the cladding, the Zr-H and the U-particles. The overall result is that very complex interactions may take place as a result of fuel and cladding exposures to high temperatures. This report discusses the characterization of the baseline fuel microstructure in the as-received state (prior to exposure to high temperature), characterization of the fuel after annealing at 950C for 24 hours and the results from diffusion couple experiments carries out at 1000C for 5 and 24 hours. Characterization was carried out via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) with sample preparation via focused ion beam in situ-liftout-technique.

  11. High Temperature Fuel Cladding Chemical Interactions Between TRIGA Fuels and 304 Stainless Steel

    International Nuclear Information System (INIS)

    Perez, Emmanuel; Keiser Jr, Dennis D.; Forsmann, Bryan; Janney, Dawn E.; Henley, Jody; Woolstenhulme, Eric C.

    2016-01-01

    High-temperature fuel-cladding chemical interactions (FCCI) between TRIGA (Training, Research, Isotopes, General Atomics) fuel elements and the 304 stainless steel (304SS) are of interest to develop an understanding of the fuel behavior during transient reactor scenarios. TRIGA fuels are composed of uranium (U) particles dispersed in a zirconium-hydride (Zr-H) matrix. In reactor, the fuel is encased in 304-stainless-steel (304SS) or Incoloy 800 clad tubes. At high temperatures, the fuel can readily interact with the cladding, resulting in FCCI. A number of FCCI can take place in this system. Interactions can be expected between the cladding and the Zr-H matrix, and/or between the cladding and the U-particles. Other interactions may be expected between the Zr-H matrix and the U-particles. Furthermore, the fuel contains erbium-oxide (Er-O) additions. Interactions can also be expected between the Er-O, the cladding, the Zr-H and the U-particles. The overall result is that very complex interactions may take place as a result of fuel and cladding exposures to high temperatures. This report discusses the characterization of the baseline fuel microstructure in the as-received state (prior to exposure to high temperature), characterization of the fuel after annealing at 950C for 24 hours and the results from diffusion couple experiments carries out at 1000C for 5 and 24 hours. Characterization was carried out via scanning electron microscopy (SEM) and transmission electron microscopy (TEM) with sample preparation via focused ion beam in situ-liftout-technique.

  12. Zircaloy cladding degradation under repository conditions

    International Nuclear Information System (INIS)

    Santanam, L.; Raghavan, S.; Chin, B.A.

    1990-12-01

    Creep, a potential degradation mechanism of Zircaloy cladding after repository disposal of spent nuclear fuel, has been investigated. The deformation and fracture map methodology has been used to predict maximum allowable initial storage temperatures to achieve a thousand year life without rupture as a function of spent-fuel history. Maximum allowable temperatures are 340 degree C (613 K) for typically stressed rods (70--100 MPa) and 300 degree C (573 K) for highly stressed rods (140--160 MPa). 10 refs., 2 figs

  13. Ultrahigh temperature-sensitive silicon MZI with titania cladding

    Directory of Open Access Journals (Sweden)

    Jong-Moo eLee

    2015-05-01

    Full Text Available We present a possibility of intensifying temperature sensitivity of a silicon Mach-Zehnder interferometer (MZI by using a highly negative thermo-optic property of titania (TiO2. Temperature sensitivity of an asymmetric silicon MZI with a titania cladding is experimentally measured from +18pm/C to -340 pm/C depending on design parameters of MZI.

  14. Sensitivity Study of the Peak Cladding Temperature for the Pipe Break Accidents of the 3-Pin Fuel Test Loop

    International Nuclear Information System (INIS)

    Park, S. K.; Chi, D. Y.; Sim, B. S.; Park, K. N.; Ahn, S. H.; Lee, J. M.; Lee, C. Y.; Kim, H. R.

    2005-12-01

    The effect of the thermal hydraulic operation parameters, the stroke times of safety-related valves, the node number of test fuel for MARS modeling, and the axial power distribution on the peak cladding temperature (PCT) has been investigated for the loss of coolant accident of the 3-pin fuel test loop. The thermal hydraulic operation parameters investigated are the thermal power of the fuel test loop and the flow rate, temperature, and pressure of the main cooling water. The effect of the thermal power and the coolant temperature on the peak cladding temperature is dominant as compared with that of the coolant flow rate and pressure. The maximum PCT increases up to about 34.3K for the room 1 LOCA when the thermal power increase by 5% of the normal operation power and decreases up to about 38.9K for the room 1 LOCA when the coolant temperature decrease by 2% of the normal operation temperature. The effect of the stroke time of the loop isolation valves on the PCT is also dominant. However the effect of the stroke time of the safety injection valves and depressurization vent valves are negligible. Especially the maximum PCT increases up to 25.7K with the increase of the design stroke time of the cold leg loop isolation valve by 13% and decreases up to 25.1K with the decrease of the design stroke time by 13%. The maximum PCT increases by 3.3K as the number of nodes increases from 7 to 14 for the MARS model of test fuel. Three different axial power distributions are also investigated. The maximum PCT occurs for the room 1 LOCA in case the peak power is shifted to the downstream by 20cm

  15. Evaluation of integrally finned cladding for LMFBR fuel pins

    International Nuclear Information System (INIS)

    Cantley, D.A.; Sutherland, W.H.

    1975-01-01

    An integral fin design effectively reduces the coolant temperature gradients within an LMFBR subassembly by redistributing coolant flow so as to reduce the maximum cladding temperature and increase the duct wall temperature. The reduced cladding temperatures are offset by strain concentrations resulting from the fin geometry, so there is little net effect on predicted fuel pin performance. The increased duct wall temperatures, however, significantly reduce the duct design lifetime so that the final conclusion is that the integral fin design is inferior to the standard wire wrap design. This result, however, is dependent upon the material correlations used. Advanced alloys with improved irradiation properties could alter this conclusion

  16. Development and Experimental Benchmark of Simulations to Predict Used Nuclear Fuel Cladding Temperatures during Drying and Transfer Operations

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, Miles [Univ. of Nevada, Reno, NV (United States)

    2017-03-31

    Radial hydride formation in high-burnup used fuel cladding has the potential to radically reduce its ductility and suitability for long-term storage and eventual transport. To avoid this formation, the maximum post-reactor temperature must remain sufficiently low to limit the cladding hoop stress, and so that hydrogen from the existing circumferential hydrides will not dissolve and become available to re-precipitate into radial hydrides under the slow cooling conditions during drying, transfer and early dry-cask storage. The objective of this research is to develop and experimentallybenchmark computational fluid dynamics simulations of heat transfer in post-pool-storage drying operations, when high-burnup fuel cladding is likely to experience its highest temperature. These benchmarked tools can play a key role in evaluating dry cask storage systems for extended storage of high-burnup fuels and post-storage transportation, including fuel retrievability. The benchmarked tools will be used to aid the design of efficient drying processes, as well as estimate variations of surface temperatures as a means of inferring helium integrity inside the canister or cask. This work will be conducted effectively because the principal investigator has experience developing these types of simulations, and has constructed a test facility that can be used to benchmark them.

  17. Peak cladding temperature in a spent fuel storage or transportation cask

    International Nuclear Information System (INIS)

    Li, J.; Murakami, H.; Liu, Y.; Gomez, P.E.A.; Gudipati, M.; Greiner, M.

    2007-01-01

    From reactor discharge to eventual disposition, spent nuclear fuel assemblies from a commercial light water reactor are typically exposed to a variety of environments under which the peak cladding temperature (PCT) is an important parameter that can affect the characteristics and behavior of the cladding and, thus, the functions of the spent fuel during storage, transportation, and disposal. Three models have been identified to calculate the peak cladding temperature of spent fuel assemblies in a storage or transportation cask: a coupled effective thermal conductivity and edge conductance model developed by Manteufel and Todreas, an effective thermal conductivity model developed by Bahney and Lotz, and a computational fluid dynamics model. These models were used to estimate the PCT for spent fuel assemblies for light water reactors under helium, nitrogen, and vacuum environments with varying decay heat loads and temperature boundary conditions. The results show that the vacuum environment is more challening than the other gas environments in that the PCT limit is exceeded at a lower boundary temperature for a given decay heat load of the spent fuel assembly. This paper will highlight the PCT calculations, including a comparison of the PCTs obtained by different models.

  18. Fuel cladding behavior under rapid loading conditions

    Science.gov (United States)

    Yueh, K.; Karlsson, J.; Stjärnsäter, J.; Schrire, D.; Ledergerber, G.; Munoz-Reja, C.; Hallstadius, L.

    2016-02-01

    A modified burst test (MBT) was used in an extensive test program to characterize fuel cladding failure behavior under rapid loading conditions. The MBT differs from a normal burst test with the use of a driver tube to simulate the expansion of a fuel pellet, thereby producing a partial strain driven deformation condition similar to that of a fuel pellet expansion in a reactivity insertion accident (RIA). A piston/cylinder assembly was used to pressurize the driver tube. By controlling the speed and distance the piston travels the loading rate and degree of sample deformation could be controlled. The use of a driver tube with a machined gauge section localizes deformation and allows for continuous monitoring of the test sample diameter change at the location of maximum hoop strain, during each test. Cladding samples from five irradiated fuel rods were tested between 296 and 553 K and loading rates from 1.5 to 3.5/s. The test rods included variations of Zircaloy-2 with different liners and ZIRLO, ranging in burn-up from 41 to 74 GWd/MTU. The test results show cladding ductility is strongly temperature and loading rate dependent. Zircaloy-2 cladding ductility degradation due to operational hydrogen pickup started to recover at approximately 358 K for test condition used in the study. This recovery temperature is strongly loading rate dependent. At 373 K, ductility recovery was small for loading rates less than 8 ms equivalent RIA pulse width, but longer than 8 ms the ductility recovery increased exponentially with increasing pulse width, consistent with literature observations of loading rate dependent brittle-to-ductile (BTD) transition temperature. The cladding ductility was also observed to be strongly loading rate/pulse width dependent for BWR cladding below the BTD temperature and Pressurized Water Reactor (PWR) cladding at both 296 and 553 K.

  19. Mechanical and temperature contact in fuel rod cladding

    International Nuclear Information System (INIS)

    Fredriksson, B.E.; Rydholm, S.G.

    1977-01-01

    The paper presents results for the effect of different types of slip rules on the contact stress distribution. It is shown that the contact shear stress is smaller for the hardening model than for the ideal model. It is also shown that a crack in the fuel increases the contact stresses and that at temperature decrease high tensile stresses arise after eventual welding. It is also shown how particles between fuel and cladding influence the stresses. Also here the effect of eventual welding is studied. The present method is well suited to study cracks and crack propagation. The surfaces of the existing cracks are defined as contact surfaces and the crack extension work is calculated by releasing the nodes at the crack tip. As the crack surfaces are defined as contact surfaces eventual crack closure is automatically taken into account. Crack extension work is calculated for existing cracks in the cladding. It is shown that cracks in the fuel and particles between fuel and cladding will increase the crack extension work

  20. Investigation of the high temperature steam oxidation of Zircaloy 4 cladding tubes

    International Nuclear Information System (INIS)

    Leistikow, S.; Berg, H. v.; Kraft, R.; Pott, E.; Schanz, G.

    1979-01-01

    Also for the ORNL Zircaloy 4 cladding material, an intermediate decrease of the proportion of the ZrO 2 /α-phase layer was found, followed by an drastic increase when the breakaway of the ZrO 2 -scale occurred. Other reasons for small divergencies were evaluated, for instance temperature and time measurements, metallographic evaluation of layer thicknesses, consequences of one-sided (ORNL) and double-sided (KfK) oxidation. The so-called anomalous effect of steam oxidation during temperature transients was reproduced qualitatively and-in case that a reduced gain of oxygen was observed-explained by the predominant existence of the monoclinic oxide phase. The creep-rupture tests below 800 0 C showed a moderate prolongation of time-to-rupture when the tests were performed in steam (or after preoxidation in steam) instead of argon. Also slightly reduced maximum circumferential strain could be measured. (orig./RW) [de

  1. An integrated approach to selecting materials for fuel cladding in advanced high-temperature reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rangacharyulu, C., E-mail: chary.r@usask.ca [Univ. of Saskatchewan, Saskatoon, SK (Canada); Guzonas, D.A.; Pencer, J.; Nava-Dominguez, A.; Leung, L.K.H. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    An integrated approach has been developed for selection of fuel cladding materials for advanced high-temperature reactors. Reactor physics, thermalhydraulic and material analyses are being integrated in a systematic study comparing various candidate fuel-cladding alloys. The analyses established the axial and radial neutron fluxes, power distributions, axial and radial temperature distributions, rates of defect formation and helium production using AECL analytical toolsets and experimentally measured corrosion rates to optimize the material composition for fuel cladding. The project has just been initiated at University of Saskatchewan. Some preliminary results of the analyses are presented together with the path forward for the project. (author)

  2. Cladding temperature measurement by thermocouples at preirradiated LWR fuel rod samples

    International Nuclear Information System (INIS)

    Leiling, W.

    1981-12-01

    This report describes the technique to measure cladding temperatures of test fuel rod samples, applied during the in-pile tests on fuel rod failure in the steam loop of the FR2 reactor. NiCr/Ni thermocouples with stainless steel and Inconel sheaths, respectively,of 1 mm diameter were resistance spot weld to the outside of the fuel rod cladding. For the pre-irradiated test specimens, welding had to be done under hot-cell conditions, i.e. under remote handling. In order to prevent the formation of eutectics between zirconium and the chemical elements of the thermocouple sheath at elevated temperatures, the thermocouples were covered with a platinum jacket of 1.4 mm outside diameter swaged onto the sheath in the area of the measuring junction. This thermocouple design has worked satisfactorily in the in-pile experiments performed in a steam atmosphere. Even in the heatup phase, in which cladding temperatures up to 1050 0 C were reached, only very few failures occured. This good performance is to a great part due to a careful control and a thorough inspection of the thermocouples. (orig.) [de

  3. Peaking cladding temperature and break equivalent size of intermediate break loss of coolant accident

    International Nuclear Information System (INIS)

    Luo Bangqi

    2012-01-01

    The analysis results of intermediate break loss of coolant accident for the nuclear power plant of million kw level showed to be as following: (1) At the begin of life, the break occur simultaneity reactor shutdown with L(X)P. it's equivalent break size and peaking cladding temperature is respectively 20 cm and 849℃. (2) At the begin of life, the break occur simultaneity reactor shutdown without loop. the reactor coolant pumps will be stop after reactor shutdown 10 minutes, it's equivalent break size and peaking cladding temperature is respectively 10.5 cm and 921℃. (3) At the bur up of 31 GWd/t(EOC1). the break occur simultaneity reactor shutdown without loop, the reactor coolant pumps will be stop after reactor shutdown 20 minutes, it's equivalent break size and peaking cladding temperature is respectively 8 cm and 1145℃. The above analysis results showed that the peaking cladding temperature of intermediate break loss of coolant accident is not only related with the break equivalent size and core bur up, and is closely related with the stop time of coolant pumps because the coolant pumps would drive the coolant from safety system to produce the seal loop in break loop and affect the core coolant flow, results in the fuel cladding temperature increasing or damaging. Therefore, the break spectrum, burn up spectrum, the stop time of coolant pumps and operator action time will need to detail analysis and provide appropriate operating procedure, otherwise the peaking cladding temperature will exceed 1204℃ and threaten the safety of the reactor core when the intermediate break loss of coolant accident occur in some break equivalent size, burn up, stop pumps time and operator action not appropriate. The pressurizer pressure low signal simultaneity containment pressure higher signal were used as the operator manual close the signal of reactor coolant pumps after reactor shutdown of 20 minutes. have successful solved the operator intervention time from 10 minutes

  4. Effect of Temperature and Sheet Temper on Isothermal Solidification Kinetics in Clad Aluminum Brazing Sheet

    Science.gov (United States)

    Benoit, Michael J.; Whitney, Mark A.; Wells, Mary A.; Winkler, Sooky

    2016-09-01

    Isothermal solidification (IS) is a phenomenon observed in clad aluminum brazing sheets, wherein the amount of liquid clad metal is reduced by penetration of the liquid clad into the core. The objective of the current investigation is to quantify the rate of IS through the use of a previously derived parameter, the Interface Rate Constant (IRC). The effect of peak temperature and initial sheet temper on IS kinetics were investigated. The results demonstrated that IS is due to the diffusion of silicon (Si) from the liquid clad layer into the solid core. Reduced amounts of liquid clad at long liquid duration times, a roughened sheet surface, and differences in resolidified clad layer morphology between sheet tempers were observed. Increased IS kinetics were predicted at higher temperatures by an IRC model as well as by experimentally determined IRC values; however, the magnitudes of these values are not in good agreement due to deficiencies in the model when applied to alloys. IS kinetics were found to be higher for sheets in the fully annealed condition when compared with work-hardened sheets, due to the influence of core grain boundaries providing high diffusivity pathways for Si diffusion, resulting in more rapid liquid clad penetration.

  5. Effects of Lower Drying-Storage Temperature on the Ductility of High-Burnup PWR Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Burtseva, T. A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-08-30

    The purpose of this research effort is to determine the effects of canister and/or cask drying and storage on radial hydride precipitation in, and potential embrittlement of, high-burnup (HBU) pressurized water reactor (PWR) cladding alloys during cooling for a range of peak drying-storage temperatures (PCT) and hoop stresses. Extensive precipitation of radial hydrides could lower the failure hoop stresses and strains, relative to limits established for as-irradiated cladding from discharged fuel rods stored in pools, at temperatures below the ductile-to-brittle transition temperature (DBTT).

  6. Corrosion Resistance of Laser Clads of Inconel 625 and Metco 41C

    Science.gov (United States)

    Němeček, Stanislav; Fidler, Lukáš; Fišerová, Pavla

    The present paper explores the impact of laser cladding parameters on the corrosion behaviour of the resulting surface. Powders of Inconel 625 and austenitic Metco 41C steel were deposited on steel substrate. It was confirmed that the level of dilution has profound impact on the corrosion resistance and that dilution has to be minimized. However, the chemical composition of the cladding is altered even in the course of the cladding process, a fact which is related to the increase in the substrate temperature. The cladding process was optimized to achieve maximum corrosion resistance. The results were verified and validated using microscopic observation, chemical analysis and corrosion testing.

  7. A new high temperature deformation model for zircaloy clad ballooning under hypothetical LOCA conditions

    International Nuclear Information System (INIS)

    Brzoska, B.; Cheliotis, G.; Kunick, A.; Senski, G.

    1977-01-01

    Assuming Zircaloy clad ballooning occurs predominantly by thermal activated secondary creep, generally a power law is applied to describe the creep rate analytically. According to Norton the creep rate is taken as a power function of the cladding hoop stress multiplied by a numerical constant which is determined by the cladding structural properties and a Boltzmann factor including the creep activation energy, the gas constant and the cladding temperature respectively. As is well known, the stress exponent is not a constant value in the total range of LOCA stresses, but increases steadily with stress. This difficulty is avoided by introducing into the Norton law a plastic flow-factor including a limiting stress, which was derived by G. Senski using plastic crack models from Dugdale and Irwin. For LOCA applications the limiting stress is identified with the burst stress, which is experimentally determined. A total number of about 280 directly heated KWU burst tests including two types of experiments: (i) controlled temperature transient tests, (ii) creep rupture tests, are used to fit the burst stress of KWU zircaloy tubes simulating the whole range of LOCA temperatur

  8. Creep and creep rupture properties of cladding tube (type 316) in high temperature sodium

    International Nuclear Information System (INIS)

    Atsumo, H.

    1977-01-01

    The thin walled small sized seamless AISI 316 steel tubes, which are designated to be domestically used as the fuel cladding tube for sodium cooled fast breeder reactors in Japan, are irradiated in the following sodium of high temperature in the range of 370 deg. C to 700 deg. C, and receive gradually increased internal pressure caused by the fission produced gas generating from the nuclear fuel burn-up inside the cladding tube. Consequently, the creep behavior of fuel cladding tubes under a high temperature sodium environment is an important problem which must be determined and clarified together with their characteristic features under irradiation and in air. In relation to the creep performance of fuel cladding tubes made of AISI 316 steel and other comparable austenitic stainless steels, hardly any studies are found that are made systematically to examine the effect of sodium with sodium purity as parameter or any comparative studies with in-air data at various different temperatures. The present research work was aimed to obtain certain basic design data relating to in-sodium creep performance of the domestic made fuel cladding tubes for fast breeder reactors, and also to gain further date as considered necessary under several sodium conditions. That is, together with establishment of the technology for tensile creep test and internal pressure creep rupture test in flowing sodium of high temperature, a series of tests and studies were performed on the trial made cladding tubes of AISI Type-316 steel. In the first place, two kinds of purity conditions of sodium, close to the actual reactor-operating condition, (oxygen concentration of 10 ppm and 5 ppm respectively) were established, and then uniaxial tensile creep test and rupture test under various temperatures were performed and the resulting data were compared and evaluated against the in-air data. Then, secondly, an internal pressure creep rupture test was conducted under a single purity sodium environment

  9. BWR fuel clad behaviour following LOCA

    International Nuclear Information System (INIS)

    Chaudhry, S.M.; Vyas, K.N.; Dinesh Babu, R.

    1996-01-01

    Flow and pressure through the fuel coolant channel reduce rapidly following a loss of coolant accident. Due to stored energy and decay heat, fuel and cladding temperatures rise rapidly. Increase in clad temperature causes deterioration of mechanical properties of clad material. This coupled with increase of pressure inside the cladding due to accumulation of fission gases and de-pressurization of coolant causes the cladding to balloon. This phenomenon is important as it can reduce or completely block the flow passages in a fuel assembly causing reduction of emergency coolant flow. Behaviour of a BWR clad is analyzed in a design basis LOCA. Fuel and clad temperatures following a LOCA are calculated. Fission gas release and pressure is estimated using well established models. An elasto-plastic analysis of clad tube is carried out to determine plastic strains and corresponding deformations using finite-element technique. Analysis of neighbouring pins gives an estimate of flow areas available for emergency coolant flow. (author). 7 refs, 6 figs, 3 tabs

  10. Unirradiated cladding rip-propagation tests

    International Nuclear Information System (INIS)

    Hu, W.L.; Hunter, C.W.

    1981-04-01

    The size of cladding rips which develop when a fuel pin fails can affect the subassembly cooling and determine how rapidly fuel escapes from the pin. The object of the Cladding Rip Propagation Test (CRPT) was to quantify the failure development of cladding so that a more realistic fuel pin failure modeling may be performed. The test results for unirradiated 20% CS 316 stainless steel cladding show significantly different rip propagation behavior at different temperatures. At room temperature, the rip growth is stable as the rip extension increases monotonically with the applied deformation. At 500 0 C, the rip propagation becomes unstable after a short period of stable rip propagation. The rapid propagation rate is approximately 200 m/s, and the critical rip length is 9 mm. At test temperatures above 850 0 C, the cladding exhibits very high failure resistances, and failure occurs by multiple cracking at high cladding deformation. 13 figures

  11. Long-term strength of claddings made of E110 in the temperature range of 400-570 degrees C

    International Nuclear Information System (INIS)

    Kobylyansky, G.; Shamardin, V.; Eremin, S.

    2003-01-01

    This paper presents the data on the initial stage of the in-sight into the mechanism of long-term strength of spent fuel rod claddings in the temperature range 400-570 0 C and also their comparison with corresponding mechanism of irradiated in the inert environment specimens and unirradiated ones. A set of test results in the temperature range 400-570 0 C of non-irradiated and irradiated in BOR-60 specimens and also of the WWER-1000 fuel element claddings irradiated up to a burnup of 29-47 MWd/kgU is approximated by Larson-Miller parametric dependence in the first approximation that allows the long-term strength data to be extrapolated and interpolated onto the unknown value regions of stress, temperature and time. The time before damage of the fuel element claddings irradiated up to ∼ 29MWd/kgU in the temperature range 540-570 0 C is higher than that of non-irradiated tubular specimens and irradiated ones up to fast neutron fluence (1-2)x10 22 cm -2 (E >0.1 MeV). With temperature decreasing to 673 K, the long-term strength of the claddings irradiated up to ∼ 47 MWd/kgU is lower than it can be expected from the extrapolation of high-temperature data obtained with the irradiated specimens. Now, the bulk of experimental data on the long-term strength of the claddings made of E110 alloy makes it possible to provide only preliminary estimation for the validation of parameters typical of the deviation from the normal operation conditions; emergencies and accidental situations; dry and wet storage and also transportation. The experiments should be continued to accumulate missing data, in particular, tests of fuel element claddings irradiated up to high burnup at temperatures ranging 300-400 0 C and stresses, which are significantly lower than the yield stress

  12. Steam oxidation of Zr 1% Nb clads of VVER fuels in high temperature

    International Nuclear Information System (INIS)

    Solyanyj, V.I.; Bibilashvili, Yu.K.; Dranenko, V.V.; Levin, A.Ya.; Izrajlevskij, L.B.; Morozov, A.M.

    1984-01-01

    In a wide range of accident conditions processes of clad corrosion effected by steam are rather intensive and in many respects influence the safety of NPP and the after-accident dismantling of a reactor core. This paper discusses the results of comprehensive studies into corrosion behaviour of Zr 1%Nb clads of VVER-type fuels at high temperatures. These studies are a continuation of previous work and the base for the design modelling of corrosion processes

  13. Effects of non-uniform core flow on peak cladding temperature: MOXY/SCORE sensitivity calculations

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S.C.

    1979-08-15

    The MOXY/SCORE computer program is used to evaluate the potential effect on peak cladding temperature of selective cooling that may result from a nonuniform mass flux at the core boundaries during the blowdown phase of the LOFT L2-4 test. The results of this study indicate that the effect of the flow nonuniformity at the core boundaries will be neutralized by a strong radial flow redistribution in the neighborhood of core boundaries. The implication is that the flow nonuniformity at the core boundaries has no significant effect on the thermal-hydraulic behavior and cladding temperature at the hot plane.

  14. Effects of non-uniform core flow on peak cladding temperature: MOXY/SCORE sensitivity calculations

    International Nuclear Information System (INIS)

    Chang, S.C.

    1979-01-01

    The MOXY/SCORE computer program is used to evaluate the potential effect on peak cladding temperature of selective cooling that may result from a nonuniform mass flux at the core boundaries during the blowdown phase of the LOFT L2-4 test. The results of this study indicate that the effect of the flow nonuniformity at the core boundaries will be neutralized by a strong radial flow redistribution in the neighborhood of core boundaries. The implication is that the flow nonuniformity at the core boundaries has no significant effect on the thermal-hydraulic behavior and cladding temperature at the hot plane

  15. Analyses on Silicide Coating for LOCA Resistant Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sweidan, Faris B.; Lee, You Ho; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of)

    2015-10-15

    A particular focus of accident-tolerant fuel has been cladding due to the rapid high-temperature oxidation of zirconium-based cladding with the evolution of H2 when steam is a reactant. Some key features of the coated cladding include high-temperature resistance to oxidation, lower processing temperatures, and a high melting point of the coating. Zirconium alloys exhibit a reasonably high melting temperature, so a coating for the cladding is appealing if the coating increases the high-temperature resistance to oxidation. In this case, the cladding is protected from complete oxidation. The cladding coating involves the application of zirconium silicide onto Zr-based cladding. Zirconium silicide coating is expected to produce a glassy layer that becomes more protective at elevated temperature. For this reason, silicide coatings on cladding offer the potential for improved reliability at normal operating temperatures and at the higher transient temperatures encountered during accidents. Although ceramic coatings are brittle and may have weak points to be used as coating materials, several ceramic coatings were successful and showed adherent behavior and high resistance to oxidation. In this study, the oxidation behavior of zirconium silicide and its oxidation kinetics are analyzed. Zirconium silicide is a new suggested material to be used as coatings on existing Zr-based cladding alloys, the aim of this study is to evaluate if zirconium silicide is applicable to be used, so they can be more rapidly developed using existing cladding technology with some modifications. These silicide coatings are an attractive alternative to the use of coatings on zirconium claddings or to the lengthy development of monolithic ceramic or ceramic composite claddings and coatings.

  16. Analyses on Silicide Coating for LOCA Resistant Cladding

    International Nuclear Information System (INIS)

    Sweidan, Faris B.; Lee, You Ho; Ryu, Ho Jin

    2015-01-01

    A particular focus of accident-tolerant fuel has been cladding due to the rapid high-temperature oxidation of zirconium-based cladding with the evolution of H2 when steam is a reactant. Some key features of the coated cladding include high-temperature resistance to oxidation, lower processing temperatures, and a high melting point of the coating. Zirconium alloys exhibit a reasonably high melting temperature, so a coating for the cladding is appealing if the coating increases the high-temperature resistance to oxidation. In this case, the cladding is protected from complete oxidation. The cladding coating involves the application of zirconium silicide onto Zr-based cladding. Zirconium silicide coating is expected to produce a glassy layer that becomes more protective at elevated temperature. For this reason, silicide coatings on cladding offer the potential for improved reliability at normal operating temperatures and at the higher transient temperatures encountered during accidents. Although ceramic coatings are brittle and may have weak points to be used as coating materials, several ceramic coatings were successful and showed adherent behavior and high resistance to oxidation. In this study, the oxidation behavior of zirconium silicide and its oxidation kinetics are analyzed. Zirconium silicide is a new suggested material to be used as coatings on existing Zr-based cladding alloys, the aim of this study is to evaluate if zirconium silicide is applicable to be used, so they can be more rapidly developed using existing cladding technology with some modifications. These silicide coatings are an attractive alternative to the use of coatings on zirconium claddings or to the lengthy development of monolithic ceramic or ceramic composite claddings and coatings

  17. The significance of cladding material on the integrity of nuclear pressure vessels with cracks

    International Nuclear Information System (INIS)

    Sattari-Far, Iradj.

    1989-05-01

    The significance of the austenitic cladding layer is reviewed in this literature study. The cladding induced stresses are generally not considered when evaluating the severity of flaws in reactor pressure vessels. It has been shown that this emission may be misleading. The necessity to consider the cladding induced stresses is also emphasized in the latest edition of ASME XI. Contrary to what is commonly assumed, the austenitic cladding displays a charpy V transition region with a low ductility. The interface material (HAZ) is the most influenced region by irradiation, and a transition shift of over 100 degree C may be expected. Because of the significant difference in the thermal expansion coefficients of the cladding and the base metal, cladding induced stresses can be set up. Even after PWHT, residual stresses of yield magnitude remain in the cladding and the HAZ at ambient temperature. The cladding induced stresses are temperature dependent and decrease as the temperature increases. The cladding induced stresses have a significant influence on small defects near the inside surface of a pressure vessel. For semielliptical surface cracks, the maximum CTOD-value along the crack front is not found at the deepest point, but in the cladding/base metal interface, having a magnitude three times higher than the value in the deepest point. It implies that this type of crack would propagate along the clad/base material interface. At some point in time, the crack will reach a geometry which may cause such a severe condition at the deepest point that it will start to grow in the depth direction as well. The initiation and growth behaviour of such cracks need to be investigated to be able to assess the significance of cladding on the integrity of nuclear pressure vessels. (author) (50 figs., 33 refs.)

  18. Temperature measurement on Zircaloy-clad fuel pins during high temperature excursions

    International Nuclear Information System (INIS)

    Meservey, R.H.

    1976-04-01

    The development of a sheathed thermocouple suitable for attachment to zircaloy-clad fuel rods and for use during high temperature (2,800 0 F) excursions under loss-of-coolant accident conditions is described. Development, fabrication, and testing of the thermocouples is covered in detail. In addition, the development of a process for laser welding the thermocouples to fuel rods is discussed. The thermocouples and attachment welds have been tested for resistance to corrosion and nuclear radiation and have been subjected to fast thermal cycle, risetime, and blowdown accident tests

  19. High Temperature Dry Sliding Friction and Wear Performance of Laser Cladding WC/Ni Composite Coating

    Directory of Open Access Journals (Sweden)

    YANG Jiao-xi

    2016-06-01

    Full Text Available Two different types of agglomerate and angular WC/Ni matrix composite coatings were deposited by laser cladding. The high temperature wear resistance of these composite coatings was tested with a ring-on-disc MMG-10 apparatus. The morphologies of the worn surfaces were observed using a scanning electron microscopy (SEM equipped with an energy dispersive spectroscopy (EDS for elemental composition. The results show that the high temperature wear resistance of the laser clad WC/Ni-based composite coatings is improved significantly with WC mass fraction increasing. The 60% agglomerate WC/Ni composite coating has optimal high temperature wear resistance. High temperature wear mechanism of 60% WC/Ni composite coating is from abrasive wear of low temperature into composite function of the oxidation wear and abrasive wear.

  20. Fuel clad chemical interactions in fast reactor MOX fuels

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, R., E-mail: rvis@igcar.gov.in

    2014-01-15

    Clad corrosion being one of the factors limiting the life of a mixed-oxide fast reactor fuel element pin at high burn-up, some aspects known about the key elements (oxygen, cesium, tellurium, iodine) in the clad-attack are discussed and many Fuel–Clad-Chemical-Interaction (FCCI) models available in the literature are also discussed. Based on its relatively superior predictive ability, the HEDL (Hanford Engineering Development Laboratory) relation is recommended: d/μm = ({0.507 ⋅ [B/(at.% fission)] ⋅ (T/K-705) ⋅ [(O/M)_i-1.935]} + 20.5) for (O/M){sub i} ⩽ 1.98. A new model is proposed for (O/M){sub i} ⩾ 1.98: d/μm = [B/(at.% fission)] ⋅ (T/K-800){sup 0.5} ⋅ [(O/M){sub i}-1.94] ⋅ [P/(W cm{sup −1})]{sup 0.5}. Here, d is the maximum depth of clad attack, B is the burn-up, T is the clad inner surface temperature, (O/M){sub i} is the initial oxygen-to-(uranium + plutonium) ratio, and P is the linear power rating. For fuels with [n(Pu)/n(M = U + Pu)] > 0.25, multiplication factors f are recommended to consider the potential increase in the depth of clad-attack.

  1. The influence of residual stresses on small through-clad cracks in pressure vessels

    International Nuclear Information System (INIS)

    deLorenzi, H.G.; Schumacher, B.I.

    1984-01-01

    The influence of cladding residual stresses on the crack driving force for shallow cracks in the wall of a nuclear pressure vessel is investigated. Thermo-elastic-plastic analyses were carried out on long axial through-clad and sub-clad flaws on the inside of the vessel. The depth of the flaws were one and three times the cladding thickness, respectively. An analysis of a semielliptical axial through-clad flaw was also performed. It was assumed that the residual stresses arise due to the difference in the thermal expansion between the cladding and the base material during the cool down from stress relieving temperature to room temperature and due to the subsequent proof test before the vessel is put into service. The variation of the crack tip opening displacement during these loadings and during a subsequent thermal shock on the inside wall is described. The analyses for the long axial flaws suggest that the crack driving force is smaller for this type of flaw if the residual stresses in the cladding are taken into account than if one assumes that the cladding has no residual stresses. However, the analysis of the semielliptical flaw shows significantly different results. Here the crack driving force is higher than when the residual stresses are not taken into account and is maximum in the cladding at or near the clad/base material interface. This suggests that the crack would propagate along the clad/base material interface before it would penetrate deeper into the wall. The elastic-plastic behavior found in the analyses show that the cladding and the residual stresses in the cladding should be taken into acocunt when evaluating the severity of shallow surface cracks on the inside of a nuclear pressure vessel

  2. Influence of temperature and hydrogen content on stress-induced radial hydride precipitation in Zircaloy-4 cladding

    Energy Technology Data Exchange (ETDEWEB)

    Desquines, J., E-mail: jean.desquines@irsn.fr; Drouan, D.; Billone, M.; Puls, M.P.; March, P.; Fourgeaud, S.; Getrey, C.; Elbaz, V.; Philippe, M.

    2014-10-15

    Radial hydride precipitation in stress relieved Zircaloy-4 fuel claddings is studied using a new thermal–mechanical test. Two maximum temperatures for radial hydride precipitation heat treatment are studied, 350 and 450 °C with hydrogen contents ranging between 50 and 600 wppm. The new test provides two main results of interest: the minimum hoop stress required to precipitate radial hydrides and a maximum stress above which, all hydrides precipitate in the radial direction. Based on these two extreme stress conditions, a model is derived to determine the stress level required to obtain a given fraction of radial hydrides after high temperature thermal–mechanical heat treatment. The proposed model is validated using metallographic observation data on pressurized tubes cooled down under constant pressure. Most of the samples with reoriented hydrides are further subjected to a ductility test. Using finite element modeling, the test results are analyzed in terms of crack nucleation within radial hydrides at the outer diameter and crack growth through the thickness of the tubular samples. The combination of test results shows that samples with hydrogen contents of about 100 wppm had the lowest ductility.

  3. Technology readiness level (TRL) assessment of cladding alloys for advanced nuclear fuels

    International Nuclear Information System (INIS)

    Shepherd, Daniel

    2015-01-01

    Reliable fuel claddings are essential for the safe, sustainable and economic operation of nuclear stations. This paper presents a worldwide TRL assessment of advanced claddings for Gen III and IV reactors following an extensive literature review. Claddings include austenitic, ferritic/martensitic (F/M), reduced activation (RA) and oxide dispersion strengthened (ODS) steels as well as advanced iron-based alloys (Kanthal alloys). Also assessed are alloys of zirconium, nickel (including Hastelloy R ), titanium, chromium, vanadium and refractory metals (Nb, Mo, Ta and W). Comparison is made with Cf/C and SiCf/SiC composites, MAX phase ceramics, cermets and TRISO fuel particle coatings. The results show in general that the higher the maximum operating temperature of the cladding, the lower the TRL. Advanced claddings were found to have lower TRLs than the corresponding fuel materials, and therefore may be the limiting factor in the deployment of advanced fuels and even possibly the entire reactor in the case of Gen IV. (authors)

  4. Temperature and humidity effects on the corrosion of aluminium-base reactor fuel cladding materials during dry storage

    International Nuclear Information System (INIS)

    Peacock, H.B.; Sindelar, R.L.; Lam, P.S.

    2004-01-01

    The effect of temperature and relative humidity on the high temperature (up to 200 deg. C) corrosion of aluminum cladding alloys was investigated for dry storage of spent nuclear fuels. A dependency on alloy type and temperature was determined for saturated water vapor conditions. Models were developed to allow prediction of cladding behaviour of 1100, 5052, and 6061 aluminum alloys for up to 50+ years at 100% relative humidity. Calculations show that for a closed system, corrosion stops after all moisture and oxygen is used up during corrosion reactions with aluminum alloys. (author)

  5. Cladding Effects on Structural Integrity of Nuclear Components

    International Nuclear Information System (INIS)

    Sattari-Far, Iradi; Andersson, Magnus

    2006-06-01

    Based on this study, the following conclusions and recommendations can be made: Due to significant differences in the thermal and mechanical properties between the austenitic cladding and the ferritic base metal, residual stresses are induced in the cladding and the underlying base metal. These stresses are left in clad components even after Post-Weld Heat Treatment (PWHT). The different restraint conditions of the clad component have a minor influence on the magnitude of the cladding residual stresses in the cladding layer. The thickness of the clad object is the main impacting geometrical dimension in developing cladding residual stresses. A clad object having a base material thickness exceeding 10 times the cladding thickness would be practically sufficient to introduce cladding residual stresses of a thick reactor pressure vessel. For a clad component that received PWHT, the peak tensile stress is in the cladding layer, and the residual stresses in the underlying base material are negligible. However, for clad components not receiving PWHT, for instance the repair welding of the cladding, the cladding residual stresses of tensile type exist even in the base material. This implies a higher risk for underclad cracking for clad repairs that received no PWHT. For certain clad geometries, like nozzles, the profile of the cladding residual stresses depends on the clad thickness and position, and significant tensile stresses can also exist in the base material. Based on different measurements reported in the literature, a value of 150 GPa can be used as Young's Modulus of the austenitic cladding material at room temperature. The control measurements of small samples from the irradiated reactor pressure vessel head did not reveal a significant difference of Young's Modulus between the irradiated and the unirradiated cladding material condition. No significant differences between the axial and tangential cladding residual stresses are reported in the measurement of

  6. Metallurgical and mechanical behaviours of PWR fuel cladding tube oxidised at high temperature; Comportements metallurqigue et mecanique des materiaux de gainage du combustible REP oxydes a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Stern, A

    2007-12-15

    Zirconium alloys are used as cladding materials in Pressurized Water Reactors (PWR). As they are submitted to very extreme conditions, it is necessary to check their behaviour and especially to make sure they meet the safety criteria. They are therefore studied under typical in service-loadings but also under accidental loadings. In one of these accidental scenarios, called Loss of Coolant Accident (LOCA) the cladding temperature may increase above 800 C, in a steam environment, and decrease before a final quench of the cladding. During this temperature transient, the cladding is heavily oxidised, and the metallurgical changes lead to a decrease of the post quench mechanical properties. It is then necessary to correlate this drop in residual ductility to the metallurgical evolutions. This is the problem we want to address in this study: the oxidation of PWR cladding materials at high temperature in a steam environment and its consequences on post quench mechanical properties. As oxygen goes massively into the metallic part - a zirconia layer grows at the same time - during the high temperature oxidation, the claddings tubes microstructure shows three different phases that are the outer oxide layer (zirconia) and the inner metallic phases ({alpha}(O) and 'ex {beta}') - with various mechanical properties. In order to reproduce the behaviour of this multilayered material, the first part of this study consisted in creating samples with different - but homogeneous in thickness - oxygen contents, similar to those observed in the different phases of the real cladding. The study was especially focused on the {beta}-->{alpha} phase transformation upon cooling and on the resulting microstructures. A mechanism was proposed to describe this phase transformation. For instance, we conclude that for our oxygen enriched samples, the phase transformation kinetics upon cooling are ruled by the oxygen partitioning between the two allotropic phases. Then, these materials

  7. High-Temperature Tolerance in Multi-Scale Cermet Solar-Selective Absorbing Coatings Prepared by Laser Cladding.

    Science.gov (United States)

    Pang, Xuming; Wei, Qian; Zhou, Jianxin; Ma, Huiyang

    2018-06-19

    In order to achieve cermet-based solar absorber coatings with long-term thermal stability at high temperatures, a novel single-layer, multi-scale TiC-Ni/Mo cermet coating was first prepared using laser cladding technology in atmosphere. The results show that the optical properties of the cermet coatings using laser cladding were much better than the preplaced coating. In addition, the thermal stability of the optical properties for the laser cladding coating were excellent after annealing at 650 °C for 200 h. The solar absorptance and thermal emittance of multi-scale cermet coating were 85% and 4.7% at 650 °C. The results show that multi-scale cermet materials are more suitable for solar-selective absorbing coating. In addition, laser cladding is a new technology that can be used for the preparation of spectrally-selective coatings.

  8. High-Temperature Tolerance in Multi-Scale Cermet Solar-Selective Absorbing Coatings Prepared by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Xuming Pang

    2018-06-01

    Full Text Available In order to achieve cermet-based solar absorber coatings with long-term thermal stability at high temperatures, a novel single-layer, multi-scale TiC-Ni/Mo cermet coating was first prepared using laser cladding technology in atmosphere. The results show that the optical properties of the cermet coatings using laser cladding were much better than the preplaced coating. In addition, the thermal stability of the optical properties for the laser cladding coating were excellent after annealing at 650 °C for 200 h. The solar absorptance and thermal emittance of multi-scale cermet coating were 85% and 4.7% at 650 °C. The results show that multi-scale cermet materials are more suitable for solar-selective absorbing coating. In addition, laser cladding is a new technology that can be used for the preparation of spectrally-selective coatings.

  9. Crack resistance curves determination of tube cladding material

    Energy Technology Data Exchange (ETDEWEB)

    Bertsch, J. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)]. E-mail: johannes.bertsch@psi.ch; Hoffelner, W. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2006-06-30

    Zirconium based alloys have been in use as fuel cladding material in light water reactors since many years. As claddings change their mechanical properties during service, it is essential for the assessment of mechanical integrity to provide parameters for potential rupture behaviour. Usually, fracture mechanics parameters like the fracture toughness K {sub IC} or, for high plastic strains, the J-integral based elastic-plastic fracture toughness J {sub IC} are employed. In claddings with a very small wall thickness the determination of toughness needs the extension of the J-concept beyond limits of standards. In the paper a new method based on the traditional J approach is presented. Crack resistance curves (J-R curves) were created for unirradiated thin walled Zircaloy-4 and aluminium cladding tube pieces at room temperature using the single sample method. The procedure of creating sharp fatigue starter cracks with respect to optical recording was optimized. It is shown that the chosen test method is appropriate for the determination of complete J-R curves including the values J {sub 0.2} (J at 0.2 mm crack length), J {sub m} (J corresponding to the maximum load) and the slope of the curve.

  10. Cladding Effects on Structural Integrity of Nuclear Components

    Energy Technology Data Exchange (ETDEWEB)

    Sattari-Far, Iradi; Andersson, Magnus [lnspecta Technology AB, Stockholm (Sweden)

    2006-06-15

    Based on this study, the following conclusions and recommendations can be made: Due to significant differences in the thermal and mechanical properties between the austenitic cladding and the ferritic base metal, residual stresses are induced in the cladding and the underlying base metal. These stresses are left in clad components even after Post-Weld Heat Treatment (PWHT). The different restraint conditions of the clad component have a minor influence on the magnitude of the cladding residual stresses in the cladding layer. The thickness of the clad object is the main impacting geometrical dimension in developing cladding residual stresses. A clad object having a base material thickness exceeding 10 times the cladding thickness would be practically sufficient to introduce cladding residual stresses of a thick reactor pressure vessel. For a clad component that received PWHT, the peak tensile stress is in the cladding layer, and the residual stresses in the underlying base material are negligible. However, for clad components not receiving PWHT, for instance the repair welding of the cladding, the cladding residual stresses of tensile type exist even in the base material. This implies a higher risk for underclad cracking for clad repairs that received no PWHT. For certain clad geometries, like nozzles, the profile of the cladding residual stresses depends on the clad thickness and position, and significant tensile stresses can also exist in the base material. Based on different measurements reported in the literature, a value of 150 GPa can be used as Young's Modulus of the austenitic cladding material at room temperature. The control measurements of small samples from the irradiated reactor pressure vessel head did not reveal a significant difference of Young's Modulus between the irradiated and the unirradiated cladding material condition. No significant differences between the axial and tangential cladding residual stresses are reported in the

  11. Creep behavior under internal pressure of zirconium alloy cladding oxidized in steam at high temperature

    International Nuclear Information System (INIS)

    Chosson, Raphael

    2014-01-01

    During hypothetical Loss-Of-Coolant-Accident (LOCA) scenarios, zirconium alloy fuel cladding tubes creep under internal pressure and are oxidized on their outer surface at high temperature (HT). Claddings become stratified materials: zirconia and oxygen-stabilized α phase, called α(O), are formed on the outer surface of the cladding whereas the inner part remains in the β domain. The strengthening effect of oxidation on the cladding creep behavior under internal pressure has been highlighted at HT. In order to model this effect, the creep behavior of each layer had to be determined. This study focused on the characterization of the creep behavior of the α(O) phase at HT, through axial creep tests performed under vacuum on model materials, containing from 2 to 7 wt.% of oxygen and representative of the α(O) phase. For the first time, two creep flow regimes have been observed in this phase. Underlying physical mechanisms and relevant microstructural parameters have been discussed for each regime. The strengthening effect due to oxygen on the α(O) phase creep behavior at HT has been quantified and creep flow equations have been identified. A ductile to brittle transition criterion has been also suggested as a function of temperature and oxygen content. Relevance of the creep flow equations for each layer, identified in this study or from the literature, has been discussed. Then, a finite element model, describing the oxidized cladding as a stratified material, has been built. Based on this model, a fraction of the experimental strengthening during creep is predicted. (author) [fr

  12. Cladding using a 15 kW CO2 laser

    International Nuclear Information System (INIS)

    Vesely, E.J.; Verma, S.K.

    1989-01-01

    Laser alloying or cladding differs little in principle from the traditional forms of weld overlays, but lasers as a heat source offer some distinct advantages. With the selective heating attainable using high power lasers, good metallurgical bond of the clad layer, minimal dilution and typically, a very fine homogeneous microstructure can be obtained in the clad layer. This is a review of work in laser cladding using the 15 kW CO 2 laser. The authors discuss the ability of the laser clad surface to increase the high temperature oxidation resistance of a low-alloy carbon steel (4140). Examples of clads subjected to high- temperature thermal cycling of nickel-20% aluminum and TaC + 4140 clad low-alloy steel and straight high-temperature oxidation of Stellite 6-304L cladding on a 4140 substrate are given

  13. Modeling of mechanical behavior of quenched zirconium-based nuclear fuel claddings after a high temperature oxidation

    International Nuclear Information System (INIS)

    Cabrera-Salcedo, A.

    2012-01-01

    During the second stage of Loss Of Coolant Accident (LOCA) in Pressurized Water Reactors (PWR) zirconium-based fuel claddings undergo a high temperature oxidation (up to 1200 C), then a water quench. After a single-side steam oxidation followed by a direct quench, the cladding is composed of three layers: an oxide (Zirconia) outer layer (formed at HT), always brittle at Room Temperature (RT), an intermediate oxygen stabilized alpha layer, always brittle at RT, called alpha(O), and an inner 'prior-beta' layer, which is the only layer able to keep some significant Post Quench (PQ) ductility at RT. However, hydrogen absorbed because of service exposure or during the LOCA transient, concentrates in this layer and may leads to its embrittlement. To estimate the PQ mechanical properties of these materials, Ring Compression Tests (RCT) are widely used because of their simplicity. Small sample size makes RCTs advantageous when a comparison with irradiated samples is required. Despite their good reproducibility, these tests are difficult to interpret as they often present two or more load drops on the engineering load-displacement curve. Laboratories disagree about their interpretation. This study proposes an original fracture scenario for a stratified PQ cladding tested by RCT, and its associated FE model. Strong oxygen content gradient effect on layers mechanical properties is taken into account in the model. PQ thermal stresses resulting from water quench of HT oxidized cladding are investigated, as well as progressive damage of three layers during an RCT. The proposed scenario is based on interrupted RCT analysis, post- RCT sample's outer layers observation for damage evaluation, RCTs of prior-beta single-layer rings, and mechanical behavior of especially chemically adjusted samples. The force displacement curves appearance is correctly reproduced using the obtained FE model. The proposed fracture scenario elucidates RCTs of quenched zirconium-based nuclear fuel

  14. Scientific basis for storage criteria for interim dry storage of aluminum-clad fuels

    International Nuclear Information System (INIS)

    Sindelar, R.L.; Peacock, H.B. Jr.; Lam, P.S.; Iyer, N.C.; Louthan, M.R. Jr.; Murphy, J.R.

    1996-01-01

    An engineered system for dry storage of aluminum-clad foreign and domestic research reactor spent fuel owned by the US Department of Energy is being considered to store the fuel up to a nominal period of 40 years prior to ultimate disposition. Scientifically-based criteria for environmental limits to drying and storing the fuels for this system are being developed to avoid excessive degradation in sealed and non-sealed (open to air) dry storage systems. These limits are based on consideration of degradation modes that can cause loss of net section of the cladding, embrittlement of the cladding, distortion of the fuel, or release of fuel and fission products from the fuel/clad system. Potential degradation mechanisms include corrosion mechanisms from exposure to air and/or sources of humidity, hydrogen blistering of the aluminum cladding, distortion of the fuel due to creep, and interdiffusion of the fuel and fission products with the cladding. The aluminum-clad research reactor fuels are predominantly highly-enriched aluminum uranium alloy fuel which is clad with aluminum alloys similar to 1100, 5052, and 6061 aluminum. In the absence of corrodant species, degradation due to creep and diffusion mechanisms limit the maximum fuel storage temperature to 200 C. The results of laboratory scale corrosion tests indicate that this fuel could be stored under air up to 200 C at low relative humidity levels (< 20%) to limit corrosion of the cladding and fuel (exposed to the storage environment through assumed pre-existing pits in the cladding). Excessive degradation of fuels with uranium metal up to 200 C can be avoided if the fuel is sufficiently dried and contained in a sealed system; open storage can be achieved if the temperature is controlled to avoid excessive corrosion even in dry air

  15. Air oxidation of Zircaloy-4, M5 (registered) and ZIRLOTM cladding alloys at high temperatures

    International Nuclear Information System (INIS)

    Steinbrueck, M.; Boettcher, M.

    2011-01-01

    The paper presents the results of isothermal and transient oxidation experiments of the advanced cladding alloys M5 (registered) and ZIRLO TM in comparison to Zircaloy-4 in air at temperatures from 973 to 1853 K. Generally, oxidation in air leads to a strong degradation of the cladding material. The main mechanism of this process is the formation of zirconium nitride and its re-oxidation. From the point of view of safety, the barrier effect of the fuel cladding is lost much earlier than during accident transients with a steam atmosphere only. Comparison of the three alloys investigated reveals a qualitatively similar, but quantitatively varying oxidation behavior in air. The mainly parabolic oxidation kinetics, where applicable, is comparable for the three alloys. Strong differences of up to 500% in oxidation rates were observed after transition to linear kinetics at temperatures below 1300 K. The paper presents kinetic rate constants as well as critical times and oxide scale thicknesses at the point of transition from parabolic to linear kinetics.

  16. BISON Investigation of the Effect of the Fuel- Cladding Contact Irregularities on the Peak Cladding Temperature and FCCI Observed in AFC-3A Rodlet 4

    Energy Technology Data Exchange (ETDEWEB)

    Medvedev, Pavel G. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    The primary objective of this report is to document results of BISON analyses supporting Fuel Cycle Research and Development (FCRD) activities. Specifically, the present report seeks to provide explanation for the microstructural features observed during post irradiation examination of the helium-bonded annular U-10Zr fuel irradiated during the AFC-3A experiment. Post irradiation examination of the AFC-3A rodlet revealed microstructural features indicative of the fuel-cladding chemical interaction (FCCI) at the fuel-cladding interface. Presence of large voids was also observed in the same locations. BISON analyses were performed to examine stress and temperature profiles and to investigate possible correlation between the voids and FCCI. It was found that presence of the large voids lead to a formation of circumferential temperature gradients in the fuel that may have redirected migrating lanthanides to the locations where fuel and cladding are in contact. Resulting localized increase of lanthanide concentration is expected to accelerate FCCI. The results of this work provide important guidance to the post irradiation examination studies. Specifically, the hypothesis of lanthanides being redirected from the voids to the locations where the fuel and the cladding are in contact should be verified by conducting quantitative electron microscopy or Electron Probe Micro-Analyzer (EPMA). The results also highlight the need for computer models capable of simulating lanthanide diffusion in metallic fuel and establish a basis for validation of such models.

  17. Models for the Configuration and Integrity of Partially Oxidized Fuel Rod Cladding at High Temperatures

    International Nuclear Information System (INIS)

    Siefken, L.J.

    1999-01-01

    Models were designed to resolve deficiencies in the SCDAP/RELAP5/MOD3.2 calculations of the configuration and integrity of hot, partially oxidized cladding. These models are expected to improve the calculations of several important aspects of fuel rod behavior. First, an improved mapping was established from a compilation of PIE results from severe fuel damage tests of the configuration of melted metallic cladding that is retained by an oxide layer. The improved mapping accounts for the relocation of melted cladding in the circumferential direction. Then, rules based on PIE results were established for calculating the effect of cladding that has relocated from above on the oxidation and integrity of the lower intact cladding upon which it solidifies. Next, three different methods were identified for calculating the extent of dissolution of the oxidic part of the cladding due to its contact with the metallic part. The extent of dissolution effects the stress and thus the integrity of the oxidic part of the cladding. Then, an empirical equation was presented for calculating the stress in the oxidic part of the cladding and evaluating its integrity based on this calculated stress. This empirical equation replaces the current criterion for loss of integrity which is based on temperature and extent of oxidation. Finally, a new rule based on theoretical and experimental results was established for identifying the regions of a fuel rod with oxidation of both the inside and outside surfaces of the cladding. The implementation of these models is expected to eliminate the tendency of the SCDAP/RELAP5 code to overpredict the extent of oxidation of the upper part of fuel rods and to underpredict the extent of oxidation of the lower part of fuel rods and the part with a high concentration of relocated material. This report is a revision and reissue of the report entitled, Improvements in Modeling of Cladding Oxidation and Meltdown

  18. High-temperature irradiation of niobium-1 w/o zirconium-clad UO/sub 2/. [Compatibility with lithium

    Energy Technology Data Exchange (ETDEWEB)

    Kangilaski, M.; Fromm, E.O.; Lozier, D.H.; Storhok, V.W.; Gates, J.E.

    1965-06-28

    Twenty-four 0.225-in.-diameter and six 0.290-in.-diameter UO/sub 2/ specimens clad with 80 mils of niobium-1 w/o zirconium were irradiated to burnups of 1.4 to 6.0 at. % of uranium at surface temperatures of 900 to 1400/sup 0/C. UO/sub 2/ and lithium were found to be incompatible at these temperatures, and the thick cladding was used primarily to minimize the chances of contact of UO/sub 2/ and the lithium coolant. The thickly clad specimens did not undergo any dimensional changes as a result of irradiation, although it was found that movement of UO/sub 2/ took place in the axial direction by a vaporization-redeposition mechanism. It was found that 32 to 87% of the fission gases was released from the fuel, depending on the temperature of the specimen. Metallographic examination of longitudinal and transverse sections of the specimens indicated the usual UO/sub 2/ microstructure with columnar grains. Grain-boundary thickening was observed in the UO/sub 2/ at higher burnups. The oxygen/uranium ratio of UO/sub 2/ increased with increasing burnup.

  19. Laser cladding with powder

    NARCIS (Netherlands)

    Schneider, M.F.; Schneider, Marcel Fredrik

    1998-01-01

    This thesis is directed to laser cladding with powder and a CO2 laser as heat source. The laser beam intensity profile turned out to be an important pa6 Summary rameter in laser cladding. A numerical model was developed that allows the prediction of the surface temperature distribution that is

  20. Consequences of metallic fuel-cladding liquid phase attack during over-temperature transient on fuel element lifetime

    International Nuclear Information System (INIS)

    Lahm, C.E.; Koenig, J.F.; Seidel, B.R.

    1990-01-01

    Metallic fuel elements irradiated in EBR-II at temperatures significantly higher than design, causing liquid phase attack of the cladding, were subsequently irradiated at normal operating temperatures to first breach. The fuel element lifetime was compared to that for elements not subjected to the over-temperature transient and found to be equivalent. 1 ref., 3 figs

  1. Corrosion characteristics of K-claddings

    International Nuclear Information System (INIS)

    Park, J. Y.; Choi, B. K.; Jung, Y. H.; Jung, Y. H.

    2004-01-01

    The Improvement of the corrosion resistance of nuclear fuel claddings is the critical issue for the successful development of the high burn-up fuel. KAERI have developed the K-claddings having a superior corrosion resistance by controlling the alloying element addition and optimizing the manufacturing process. The comparative evaluation of the corrosion resistance for K-claddings and the foreign claddings was performed and the effect of the heat treatment on the corrosion behavior of K-claddings was also examined. Corrosion tests were carried out in the conditions of 360 .deg. C pure water, PWR-simulating loop and 400 .deg. C steam, From the results of the corrosion tests, it was found that the corrosion resistance of K-claddings is superior to those of Zry4 and A claddings and K6 showed a better corrosion resistance than K3. The corrosion behavior of K-cladding was strongly influenced by the final annealing rather than the intermediate annealing, and the corrosion resistance increased with decreasing the final annealing temperature

  2. Cladding creepdown model for FRAPCON-2

    International Nuclear Information System (INIS)

    Shah, V.N.; Tolli, J.E.

    1985-02-01

    This report presents a cladding deformation model developed to analyze cladding creepdown during steady state operation in both a pressurized water reactor (PWR) and a boiling water reactor (BWR). This model accounts for variations in zircaloy cladding heat treatment; cold worked and stress relieved material, typically used in a PWR, and fully recrystallized material, typically used in a BWR. The model calculates cladding creepdown as a function of hoop stress, fast neutron flux, exposure time, and temperature. This report also presents a comparison between cladding creep calculations by this model and corresponding measurements from the KWU/CE program, ORNL HOBBIE experiments, and EPRI/Westinghouse Engineering cooperative project. The comparisons show that the model calculates cladding creep strains well. The analyses of non-fueled rods by FRAPCON-2 show that the cladding creepdown model was correctly incorporated. Also, analysis of a PWR rod test case shows that the FRAPCON-2 code can analyze pellet-cladding mechanical interaction caused by cladding creepdown and fuel swelling

  3. High-temperature oxidation kinetics of sponge-based E110 cladding alloy

    Science.gov (United States)

    Yan, Yong; Garrison, Benton E.; Howell, Mike; Bell, Gary L.

    2018-02-01

    Two-sided oxidation experiments were recently conducted at 900°C-1200 °C in flowing steam with samples of sponge-based Zr-1Nb alloy E110. Although the old electrolytic E110 tubing exhibited a high degree of susceptibility to nodular corrosion and experienced breakaway oxidation rates in a relatively short time, the new sponge-based E110 demonstrated steam oxidation behavior comparable to Zircaloy-4. Sample weight gain and oxide layer thickness measurements were performed on oxidized E110 specimens and compared to oxygen pickup and oxide layer thickness calculations using the Cathcart-Pawel correlation. Our study shows that the sponge-based E110 follows the parabolic law at temperatures above 1015 °C. At or below 1015 °C, the oxidation rate was very low when compared to Zircaloy-4 and can be represented by a cubic expression. No breakaway oxidation was observed at 1000 °C for oxidation times up to 10,000 s. Arrhenius expressions are given to describe the parabolic rate constants at temperatures above 1015 °C and cubic rate constants are provided for temperatures below 1015 °C. The weight gains calculated by our equations are in excellent agreement with the measured sample weight gains at all test temperatures. In addition to the as-fabricated E110 cladding sample, prehydrided E110 cladding with hydrogen concentrations in the 100-150 wppm range was also investigated. The effect of hydrogen content on sponge-based E110 oxidation kinetics was minimal. No significant difference was found between as-fabricated and hydrided samples with regard to oxygen pickup and oxide layer thickness for hydrogen contents below 150 wppm.

  4. Behavior of an improved Zr fuel cladding with oxidation resistant coating under loss-of-coolant accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Jun, E-mail: pdj@kaeri.re.kr; Kim, Hyun Gil; Jung, Yang Il; Park, Jung Hwan; Yang, Jae Ho; Koo, Yang Hyun

    2016-12-15

    This study investigates protective coatings for improving the high temperature oxidation resistance of Zr fuel claddings for light water nuclear reactors. FeCrAl alloy and Cr layers were deposited onto Zr plates and tubes using cold spraying. For the FeCrAl/Zr system, a Mo layer was introduced between the FeCrAl coating and the Zr matrix to prevent inter-diffusion at high temperatures. Both the FeCrAl and Cr coatings improved the oxidation resistance compared to that of the uncoated Zr alloy when exposed to a steam environment at 1200 °C. The ballooning behavior and mechanical properties of the coated cladding samples were studied under simulated loss-of-coolant accident conditions. The coated samples showed higher burst temperatures, lower circumferential strain, and smaller rupture openings compared to the uncoated Zr. Although 4-point bend tests of the coated samples showed a small increase in the maximum load, ring compression tests of a sectioned sample showed increased ductility. - Highlights: • Cr and FeCrAl were coated onto Zr fuel cladding for light water nuclear reactors. • Mo layer between FeCrAl and Zr prevented inter-diffusion at high temperatures. • Coated claddings were tested under loss-of-cooling accident conditions. • Coating improved high-temperature oxidation resistance and mechanical properties.

  5. Extreme Maximum Land Surface Temperatures.

    Science.gov (United States)

    Garratt, J. R.

    1992-09-01

    There are numerous reports in the literature of observations of land surface temperatures. Some of these, almost all made in situ, reveal maximum values in the 50°-70°C range, with a few, made in desert regions, near 80°C. Consideration of a simplified form of the surface energy balance equation, utilizing likely upper values of absorbed shortwave flux (1000 W m2) and screen air temperature (55°C), that surface temperatures in the vicinity of 90°-100°C may occur for dry, darkish soils of low thermal conductivity (0.1-0.2 W m1 K1). Numerical simulations confirm this and suggest that temperature gradients in the first few centimeters of soil may reach 0.5°-1°C mm1 under these extreme conditions. The study bears upon the intrinsic interest of identifying extreme maximum temperatures and yields interesting information regarding the comfort zone of animals (including man).

  6. Cladding Alloys for Fluoride Salt Compatibility

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, Govindarajan [ORNL; Wilson, Dane F [ORNL; Walker, Larry R [ORNL; Santella, Michael L [ORNL; Holcomb, David Eugene [ORNL

    2011-06-01

    This report provides an overview of several candidate technologies for cladding nickel-based corrosion protection layers onto high-temperature structural alloys. The report also provides a brief overview of the welding and weld performance issues associated with joining nickel-clad nickel-based alloys. From the available techniques, two cladding technologies were selected for initial evaluation. The first technique is a line-of-sight method that would be useful for cladding large structures such as vessel interiors or large piping. The line-of-sight method is a laser-based surface cladding technique in which a high-purity nickel powder mixed into a polymer binder is first sprayed onto the surface, baked, and then rapidly melted using a high-power laser. The second technique is a vapor phase technique based on the nickel-carbonyl process that is suitable for cladding inaccessible surfaces such as the interior surfaces of heat exchangers. An initial evaluation for performed on the quality of nickel claddings processed using the two selected cladding techniques.

  7. Modelling cladding response to changing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tulkki, Ville; Ikonen, Timo [VTT Technical Research Centre of Finland ltd (Finland)

    2016-11-15

    The cladding of the nuclear fuel is subjected to varying conditions during fuel reactor life. Load drops and reversals can be modelled by taking cladding viscoelastic behaviour into account. Viscoelastic contribution to the deformation of metals is usually considered small enough to be ignored, and in many applications it merely contributes to the primary part of the creep curve. With nuclear fuel cladding the high temperature and irradiation as well as the need to analyse the variable load all emphasise the need to also inspect the viscoelasticity of the cladding.

  8. Kinetic approach in numerical modeling of melting and crystallization at laser cladding with powder injection

    Energy Technology Data Exchange (ETDEWEB)

    Mirzade, F. Kh., E-mail: fmirzade@rambler.ru [Institute on Laser and Information Technology, Russian Academy of Sciences, 1 Svyatoozerskaya Street, Shatura, Moscow Region 140700 (Russian Federation); Niziev, V.G.; Panchenko, V. Ya.; Khomenko, M.D.; Grishaev, R.V. [Institute on Laser and Information Technology, Russian Academy of Sciences, 1 Svyatoozerskaya Street, Shatura, Moscow Region 140700 (Russian Federation); Pityana, S.; Rooyen, Corney van [CSIR-National Laser Centre, Building 46A, Meiring Nauder Road, Brummeria, Pretoria (South Africa)

    2013-08-15

    The numerical model of laser cladding with coaxial powder injection includes the equations for heat transfer, melting and crystallization kinetics. It has been shown that the main parameters influencing the melt pool dynamics and medium maximum temperature are mass feed rate, laser power and scanning velocity. It has been observed that, due to the phase change occurring with superheating/undercooling, the melt zone has the boundary distinguished from melting isotherm. The calculated melt pool dimensions and dilution are in a good agreement with the experimental results for cladding of 431 martensitic stainless steel onto carbon steel substrate.

  9. Hydride precipitation crack propagation in zircaloy cladding during a decreasing temperature history

    International Nuclear Information System (INIS)

    Stout, R.B.

    2001-01-01

    An assessment of safety, design, and cost tradeoff issues for short (ten to fifty years) and longer (fifty to hundreds of years) interim dry storage of spent nuclear fuel in Zircaloy rods shall address potential failures of the Zircaloy cladding caused by the precipitation response of zirconium hydride platelets. To perform such assessment analyses rigorously and conservatively will be necessarily complex and difficult. For Zircaloy cladding, a model for zirconium hydride induced crack propagation velocity was developed for a decreasing temperature field and for hydrogen, temperature, and stress dependent diffusive transport of hydrogen to a generic hydride platelet at a crack tip. The development of the quasi-steady model is based on extensions of existing models for hydride precipitation kinetics for an isolated hydride platelet at a crack tip. An instability analysis model of hydride-crack growth was developed using existing concepts in a kinematic equation for crack propagation at a constant thermodynamic crack potential subject to brittle fracture conditions. At the time an instability is initiated, the crack propagation is no longer limited by hydride growth rate kinetics, but is then limited by stress rates. The model for slow hydride-crack growth will be further evaluated using existing available data. (authors)

  10. Hydride precipitation crack propagation in zircaloy cladding during a decreasing temperature history

    Energy Technology Data Exchange (ETDEWEB)

    Stout, R.B. [California Univ., Livermore, CA (United States). Lawrence Livermore National Lab

    2001-07-01

    An assessment of safety, design, and cost tradeoff issues for short (ten to fifty years) and longer (fifty to hundreds of years) interim dry storage of spent nuclear fuel in Zircaloy rods shall address potential failures of the Zircaloy cladding caused by the precipitation response of zirconium hydride platelets. To perform such assessment analyses rigorously and conservatively will be necessarily complex and difficult. For Zircaloy cladding, a model for zirconium hydride induced crack propagation velocity was developed for a decreasing temperature field and for hydrogen, temperature, and stress dependent diffusive transport of hydrogen to a generic hydride platelet at a crack tip. The development of the quasi-steady model is based on extensions of existing models for hydride precipitation kinetics for an isolated hydride platelet at a crack tip. An instability analysis model of hydride-crack growth was developed using existing concepts in a kinematic equation for crack propagation at a constant thermodynamic crack potential subject to brittle fracture conditions. At the time an instability is initiated, the crack propagation is no longer limited by hydride growth rate kinetics, but is then limited by stress rates. The model for slow hydride-crack growth will be further evaluated using existing available data. (authors)

  11. Maximum vehicle cabin temperatures under different meteorological conditions

    Science.gov (United States)

    Grundstein, Andrew; Meentemeyer, Vernon; Dowd, John

    2009-05-01

    A variety of studies have documented the dangerously high temperatures that may occur within the passenger compartment (cabin) of cars under clear sky conditions, even at relatively low ambient air temperatures. Our study, however, is the first to examine cabin temperatures under variable weather conditions. It uses a unique maximum vehicle cabin temperature dataset in conjunction with directly comparable ambient air temperature, solar radiation, and cloud cover data collected from April through August 2007 in Athens, GA. Maximum cabin temperatures, ranging from 41-76°C, varied considerably depending on the weather conditions and the time of year. Clear days had the highest cabin temperatures, with average values of 68°C in the summer and 61°C in the spring. Cloudy days in both the spring and summer were on average approximately 10°C cooler. Our findings indicate that even on cloudy days with lower ambient air temperatures, vehicle cabin temperatures may reach deadly levels. Additionally, two predictive models of maximum daily vehicle cabin temperatures were developed using commonly available meteorological data. One model uses maximum ambient air temperature and average daily solar radiation while the other uses cloud cover percentage as a surrogate for solar radiation. From these models, two maximum vehicle cabin temperature indices were developed to assess the level of danger. The models and indices may be useful for forecasting hazardous conditions, promoting public awareness, and to estimate past cabin temperatures for use in forensic analyses.

  12. Cladding creepdown under compression

    International Nuclear Information System (INIS)

    Hobson, D.O.

    1977-01-01

    Light-water power reactors use Zircaloy tubing as cladding to contain the UO 2 fuel pellets. In-service operating conditions impose an external hydrostatic force on the cladding, causing it to creep down into eventual contact with the fuel. Knowledge of the rate of such creepdown is of great importance to modelers of fuel element performance. An experimental system was devised for studying creepdown that meets several severe requirements by providing (1) correct stress state, (2) multiple positions for measuring radial displacement of the cladding surface, (3) high-precision data, and (4) an experimental configuration compact enough to fit in-reactor. A microcomputer-controlled, eddy-current monitoring system was developed for this study and has proven highly successful in measuring cladding deformation with time at temperatures of 371 0 C (700 0 F) and higher, and at pressures as high as 21 MPa

  13. Fuel-cladding chemical interaction

    International Nuclear Information System (INIS)

    Gueneau, C.; Piron, J.P.; Dumas, J.C.; Bouineau, V.; Iglesias, F.C.; Lewis, B.J.

    2015-01-01

    The chemistry of the nuclear fuel is very complex. Its chemical composition changes with time due to the formation of fission products and depends on the temperature level history within the fuel pellet and the clad during operation. Firstly, in thermal reactors, zircaloy oxidation from reaction with UO 2 fuel under high-temperature conditions will be addressed. Then other fuel-cladding interaction phenomena occurring in fast reactors will be described. Large thermal gradients existing between the centre and the periphery of the pellet induce the radial redistribution of the fuel constituents. The fuel pellet can react with the clad by different corrosion processes which can involve actinide and/or fission product transport via gas, liquid or/and solid phases. All these phenomena are briefly described in the case of different kinds of fuels (oxide, carbide, nitride, metallic) to be used in fast reactors. The way these phenomena are taken into account in fuel performance codes is presented. (authors)

  14. Modeling of Zircaloy cladding degradation under repository conditions

    International Nuclear Information System (INIS)

    Santanam, L.; Raghavan, S.; Chin, B.A.

    1989-07-01

    Two potential degradation mechanisms, creep and stress corrosion cracking, of Zircaloy cladding during repository storage of spent nuclear fuel have been investigated. The deformation and fracture map methodology has been used to predict maximum allowable initial storage temperatures to achieve a thousand year life without rupture as a function of spent-fuel history. A stress analysis of fuel rods has been performed. Stresses in the outer zirconium oxide layer and the inner Zircaloy tube have been predicted for typical internal pressurization, oxide layer thickness, volume expansion from formation of the oxide layer and thermal expansion coefficients of the cladding and oxide. Stress relaxation occurring in-reactor has also been taken into account. The calculations indicate that for the anticipated storage conditions investigated, the outer zirconium oxide layer is in a state of compression thus making it unlikely that stress corrosion cracking of the exterior surface will occur. 20 refs., 6 figs., 9 tabs

  15. Influence of texture on fracture toughness of zircaloy cladding

    International Nuclear Information System (INIS)

    Grigoriev, V.; Andersson, Stefan

    1997-06-01

    The correlation between texture and fracture toughness of Zircaloy 2 cladding has been investigated in connection with axial cracks in fuel rods. The texture of the cladding determines the anisotropy of plasticity of the cladding which, in turn, should influence the strain conditions at the crack-tip. Plastic strains in the cladding under uniaxial tension were characterised by means of the anisotropy constants F, G and H calculated according to Hill's theory. Test temperatures between 20 and 300 deg C do not influence the F, G and H values. Any significant effect of hydrogen (about 500 wtppm) on the anisotropy constants F, G and H has not been revealed at a test temperature of 300 deg C. The results, obtained for stress-relieved and recrystallized cladding with different texture, show an obvious influence of texture on the fracture toughness of Zircaloy cladding. A higher fracture toughness has been found for cladding with more radial texture

  16. Influence of texture on fracture toughness of zircaloy cladding

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, V. [Studsvik Material AB, Nykoeping (Sweden); Andersson, Stefan [Royal Inst. of Tech., Stockholm (Sweden)

    1997-06-01

    The correlation between texture and fracture toughness of Zircaloy 2 cladding has been investigated in connection with axial cracks in fuel rods. The texture of the cladding determines the anisotropy of plasticity of the cladding which, in turn, should influence the strain conditions at the crack-tip. Plastic strains in the cladding under uniaxial tension were characterised by means of the anisotropy constants F, G and H calculated according to Hill`s theory. Test temperatures between 20 and 300 deg C do not influence the F, G and H values. Any significant effect of hydrogen (about 500 wtppm) on the anisotropy constants F, G and H has not been revealed at a test temperature of 300 deg C. The results, obtained for stress-relieved and recrystallized cladding with different texture, show an obvious influence of texture on the fracture toughness of Zircaloy cladding. A higher fracture toughness has been found for cladding with more radial texture. With a 2 page summary in Swedish. 32 refs, 18 figs.

  17. Innovative coating of nanostructured vanadium carbide on the F/M cladding tube inner surface for mitigating the fuel cladding chemical interactions

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yong [Univ. of Florida, Gainesville, FL (United States); Phillpot, Simon [Univ. of Florida, Gainesville, FL (United States)

    2017-11-29

    Fuel cladding chemical interactions (FCCI) have been acknowledged as a critical issue in a metallic fuel/steel cladding system due to the formation of low melting intermetallic eutectic compounds between the fuel and cladding steel, resulting in reduction in cladding wall thickness as well as a formation of eutectic compounds that can initiate melting in the fuel at lower temperature. In order to mitigate FCCI, diffusion barrier coatings on the cladding inner surface have been considered. In order to generate the required coating techniques, pack cementation, electroplating, and electrophoretic deposition have been investigated. However, these methods require a high processing temperature of above 700 oC, resulting in decarburization and decomposition of the martensites in a ferritic/martensitic (F/M) cladding steel. Alternatively, organometallic chemical vapor deposition (OMCVD) can be a promising process due to its low processing temperature of below 600 oC. The aim of the project is to conduct applied and fundamental research towards the development of diffusion barrier coatings on the inner surface of F/M fuel cladding tubes. Advanced cladding steels such as T91, HT9 and NF616 have been developed and extensively studied as advanced cladding materials due to their excellent irradiation and corrosion resistance. However, the FCCI accelerated by the elevated temperature and high neutron exposure anticipated in fast reactors, can have severe detrimental effects on the cladding steels through the diffusion of Fe into fuel and lanthanides towards into the claddings. To test the functionality of developed coating layer, the diffusion couple experiments were focused on using T91 as cladding and Ce as a surrogate lanthanum fission product. By using the customized OMCVD coating equipment, thin and compact layers with a few micron between 1.5 µm and 8 µm thick and average grain size of 200 nm and 5 µm were successfully obtained at the specimen coated between 300oC and

  18. Temperature and composition profile during double-track laser cladding of H13 tool steel

    Science.gov (United States)

    He, X.; Yu, G.; Mazumder, J.

    2010-01-01

    Multi-track laser cladding is now applied commercially in a range of industries such as automotive, mining and aerospace due to its diversified potential for material processing. The knowledge of temperature, velocity and composition distribution history is essential for a better understanding of the process and subsequent microstructure evolution and properties. Numerical simulation not only helps to understand the complex physical phenomena and underlying principles involved in this process, but it can also be used in the process prediction and system control. The double-track coaxial laser cladding with H13 tool steel powder injection is simulated using a comprehensive three-dimensional model, based on the mass, momentum, energy conservation and solute transport equation. Some important physical phenomena, such as heat transfer, phase changes, mass addition and fluid flow, are taken into account in the calculation. The physical properties for a mixture of solid and liquid phase are defined by treating it as a continuum media. The velocity of the laser beam during the transition between two tracks is considered. The evolution of temperature and composition of different monitoring locations is simulated.

  19. Capturing reflected cladding modes from a fiber Bragg grating with a double-clad fiber coupler.

    Science.gov (United States)

    Baiad, Mohamad Diaa; Gagné, Mathieu; Lemire-Renaud, Simon; De Montigny, Etienne; Madore, Wendy-Julie; Godbout, Nicolas; Boudoux, Caroline; Kashyap, Raman

    2013-03-25

    We present a novel measurement scheme using a double-clad fiber coupler (DCFC) and a fiber Bragg grating (FBG) to resolve cladding modes. Direct measurement of the optical spectra and power in the cladding modes is obtained through the use of a specially designed DCFC spliced to a highly reflective FBG written into slightly etched standard photosensitive single mode fiber to match the inner cladding diameter of the DCFC. The DCFC is made by tapering and fusing two double-clad fibers (DCF) together. The device is capable of capturing backward propagating low and high order cladding modes simply and efficiently. Also, we demonstrate the capability of such a device to measure the surrounding refractive index (SRI) with an extremely high sensitivity of 69.769 ± 0.035 μW/RIU and a resolution of 1.433 × 10(-5) ± 8 × 10(-9) RIU between 1.37 and 1.45 RIU. The device provides a large SRI operating range from 1.30 to 1.45 RIU with sufficient discrimination for all individual captured cladding modes. The proposed scheme can be adapted to many different types of bend, temperature, refractive index and other evanescent wave based sensors.

  20. Development of high performance cladding materials

    International Nuclear Information System (INIS)

    Park, Jeong Yong; Jeong, Y. H.; Park, S. Y.

    2010-04-01

    The irradiation test for HANA claddings conducted and a series of evaluation for next-HANA claddings as well as their in-pile and out-of pile performances tests were also carried out at Halden research reactor. The 6th irradiation test have been completed successfully in Halden research reactor. As a result, HANA claddings showed high performance, such as corrosion resistance increased by 40% compared to Zircaloy-4. The high performance of HANA claddings in Halden test has enabled lead test rod program as the first step of the commercialization of HANA claddings. DB has been established for thermal and LOCA-related properties. It was confirmed from the thermal shock test that the integrity of HANA claddings was maintained in more expanded region than the criteria regulated by NRC. The manufacturing process of strips was established in order to apply HANA alloys, which were originally developed for the claddings, to the spacer grids. 250 kinds of model alloys for the next-generation claddings were designed and manufactured over 4 times and used to select the preliminary candidate alloys for the next-generation claddings. The selected candidate alloys showed 50% better corrosion resistance and 20% improved high temperature oxidation resistance compared to the foreign advanced claddings. We established the manufacturing condition controlling the performance of the dual-cooled claddings by changing the reduction rate in the cold working steps

  1. Influence of fuel-cladding system deviations from the model of continuous cylinders on the parameters of WWER fuel element working ability

    International Nuclear Information System (INIS)

    Scheglov, A.

    1994-01-01

    In the programs of fuel rod computation, fuel and cladding are usually presented in the form of coaxial cylinders, which can change their sizes, mechanical and thermal-physical properties. The real fuel element has some typical deviations from this continuous coaxial cylinders (CCC) model as: axial asymmetry of fuel-cladding system (due to the oval form of the cladding, cracking and other type of fuel pallet damage, axial asymmetry of the volumetric heat release), gaps between the pallets (and heat release peaking in fuel near the gap), chambers in the pallets. As a result of these deviations actual fuel rod parameters of working ability - temperature, stresses, thermal fluxes relieved from the cladding, geometry changes - in some locations can greatly vary from the ones calculated according to CCC model. The influence of these deviations is extremely important while calculating the fuel rod, because they are a part of the mechanical excess coefficient. The author reviews the influence of these factors using specific examples. He applies his own two-dimensional codes based on the Finite Elements Method for calculations of temperature fields, stresses and deformation in the fuel rod elements. It is shown that consideration of these deviations, as a rule, leads to the increase of the maximum fuel temperature in the WWER pellets (characterized by a large central hole), temperature of the cladding, thermal flux, relieved by the coolant from the cladding, and stresses in the cladding. It is necessary to consider these factors for both validation of the fuel element working ability and interpretation of the experimental results. 4 tabs., 3 figs., 5 refs

  2. Influence of fuel-cladding system deviations from the model of continuous cylinders on the parameters of WWER fuel element working ability

    Energy Technology Data Exchange (ETDEWEB)

    Scheglov, A [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)

    1994-12-31

    In the programs of fuel rod computation, fuel and cladding are usually presented in the form of coaxial cylinders, which can change their sizes, mechanical and thermal-physical properties. The real fuel element has some typical deviations from this continuous coaxial cylinders (CCC) model as: axial asymmetry of fuel-cladding system (due to the oval form of the cladding, cracking and other type of fuel pallet damage, axial asymmetry of the volumetric heat release), gaps between the pallets (and heat release peaking in fuel near the gap), chambers in the pallets. As a result of these deviations actual fuel rod parameters of working ability - temperature, stresses, thermal fluxes relieved from the cladding, geometry changes - in some locations can greatly vary from the ones calculated according to CCC model. The influence of these deviations is extremely important while calculating the fuel rod, because they are a part of the mechanical excess coefficient. The author reviews the influence of these factors using specific examples. He applies his own two-dimensional codes based on the Finite Elements Method for calculations of temperature fields, stresses and deformation in the fuel rod elements. It is shown that consideration of these deviations, as a rule, leads to the increase of the maximum fuel temperature in the WWER pellets (characterized by a large central hole), temperature of the cladding, thermal flux, relieved by the coolant from the cladding, and stresses in the cladding. It is necessary to consider these factors for both validation of the fuel element working ability and interpretation of the experimental results. 4 tabs., 3 figs., 5 refs.

  3. Cladding failure probability modeling for risk evaluations of fast reactors

    International Nuclear Information System (INIS)

    Mueller, C.J.; Kramer, J.M.

    1987-01-01

    This paper develops the methodology to incorporate cladding failure data and associated modeling into risk evaluations of liquid metal-cooled fast reactors (LMRs). Current US innovative designs for metal-fueled pool-type LMRs take advantage of inherent reactivity feedback mechanisms to limit reactor temperature increases in response to classic anticipated-transient-without-scram (ATWS) initiators. Final shutdown without reliance on engineered safety features can then be accomplished if sufficient time is available for operator intervention to terminate fission power production and/or provide auxiliary cooling prior to significant core disruption. Coherent cladding failure under the sustained elevated temperatures of ATWS events serves as one indicator of core disruption. In this paper we combine uncertainties in cladding failure data with uncertainties in calculations of ATWS cladding temperature conditions to calculate probabilities of cladding failure as a function of the time for accident recovery

  4. Benchmark Tests to Develop Analytical Time-Temperature Limit for HANA-6 Cladding for Compliance with New LOCA Criteria

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Yong; Jang, Hun; Lim, Jea Young; Kim, Dae Il; Kim, Yoon Ho; Mok, Yong Kyoon [KEPCO Nuclear Fuel Co. Ltd., Daejeon (Korea, Republic of)

    2016-10-15

    According to 10CFR50.46c, two analytical time and temperature limits for breakaway oxidation and postquench ductility (PQD) should be determined by approved experimental procedure as described in NRC Regulatory Guide (RG) 1.222 and 1.223. According to RG 1.222 and 1.223, rigorous qualification requirements for test system are required, such as thermal and weight gain benchmarks. In order to meet these requirements, KEPCO NF has developed the new special facility to evaluate LOCA performance of zirconium alloy cladding. In this paper, qualification results for test facility and HT oxidation model for HANA-6 are summarized. The results of thermal benchmark tests of LOCA HT oxidation tester is summarized as follows. 1. The best estimate HT oxidation model of HANA- 6 was developed for the vender proprietary HT oxidation model. 2. In accordance with the RG 1.222 and 1.223, Benchmark tests were performed by using LOCA HT oxidation tester 3. The maximum axial and circumferential temperature difference are ± 9 .deg. C and ± 2 .deg. C at 1200 .deg. C, respectively. At the other temperature conditions, temperature difference is less than 1200 .deg. C result. Thermal benchmark test results meet the requirements of NRC RG 1.222 and 1.223.

  5. Microstructure and high temperature oxidation resistance of Ti-Ni gradient coating on TA2 titanium alloy fabricated by laser cladding

    Science.gov (United States)

    Liu, Fencheng; Mao, Yuqing; Lin, Xin; Zhou, Baosheng; Qian, Tao

    2016-09-01

    To improve the high temperature oxidation resistance of TA2 titanium alloy, a gradient Ni-Ti coating was laser cladded on the surface of the TA2 titanium alloy substrate, and the microstructure and oxidation behavior of the laser cladded coating were investigated experimentally. The gradient coating with a thickness of about 420-490 μm contains two different layers, e.g. a bright layer with coarse equiaxed grain and a dark layer with fine and columnar dendrites, and a transition layer with a thickness of about 10 μm exists between the substrate and the cladded coating. NiTi, NiTi2 and Ni3Ti intermetallic compounds are the main constructive phases of the laser cladded coating. The appearance of these phases enhances the microhardness, and the dense structure of the coating improves its oxidation resistance. The solidification procedure of the gradient coating is analyzed and different kinds of solidification processes occur due to the heat dissipation during the laser cladding process.

  6. Application of Coating Technology for Accident Tolerant Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Gil; Kim, Il-Hyun; Jung, Yang-Il; Park, Dong-Jun; Park, Jeong-Yong; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    To commercialize the ATF cladding concepts, various factors are considered, such as safety under normal and accident conditions, economy for the fuel cycle, and developing development challenges, and schedule. From the proposed concepts, it is known that the cladding coating, FeCrAl alloy, and Zr-Mo claddings are considered as a near/mid-term application, whereas the SiC material is considered as a long-term application. Among them, the benefit of cladding coating on Zr-based alloys is the fuel cycle economy regarding the manufacturing, neutron cross section, and high tritium permeation characteristics. However, the challenge of cladding coating on Zr-based alloys is the lower oxidation resistance and mechanical strength at high-temperature than other concepts. Another important point is the adhesion property between the Zr-based alloy and coating materials. As an improved coating technology compared to a previous study, a 3D laser coating technology supplied with Cr powders is considered to make a coated cladding because it is possible to make a coated layer on the tubular cladding surface by controlling the 3-diminational axis. We are systematically studying the laser beam power, inert gas flow, cooling of the cladding tube, and powder control as key points to develop 3D laser coating technology. After Cr-coating on the Zr-based cladding, ring compression and ring tensile tests were performed to evaluate the adhesion property between a coated layer and Zr-based alloy tube at room temperature (RT), and a high-temperature oxidation test was conducted to evaluate the oxidation behavior at 1200 .deg. C of the coated tube samples. A 3D laser coating method supplied with Cr powders was developed to decrease the high-temperature oxidation rate in a steam environment through a systematic study for various coating parameters, and a Cr-coated Zircaloy-4 cladding tube of 100 mm in length to the axial direction can be successfully manufactured.

  7. Cladding failure probability modeling for risk evaluations of fast reactors

    International Nuclear Information System (INIS)

    Mueller, C.J.; Kramer, J.M.

    1987-01-01

    This paper develops the methodology to incorporate cladding failure data and associated modeling into risk evaluations of liquid metal-cooled fast reactors (LMRs). Current U.S. innovative designs for metal-fueled pool-type LMRs take advantage of inherent reactivity feedback mechanisms to limit reactor temperature increases in response to classic anticipated-transient-without-scram (ATWS) initiators. Final shutdown without reliance on engineered safety features can then be accomplished if sufficient time is available for operator intervention to terminate fission power production and/or provide auxiliary cooling prior to significant core disruption. Coherent cladding failure under the sustained elevated temperatures of ATWS events serves as one indicator of core disruption. In this paper we combine uncertainties in cladding failure data with uncertainties in calculations of ATWS cladding temperature conditions to calculate probabilities of cladding failure as a function of the time for accident recovery. (orig.)

  8. Diffusion in cladding materials

    International Nuclear Information System (INIS)

    Anand, M.S.; Pande, B.M.; Agarwala, R.P.

    1992-01-01

    Aluminium has been used as a cladding material in most research reactors because its low neutron absorption cross section and ease of fabrication. However, it is not suitable for cladding in power reactors and as such zircaloy-2 is normally used as a clad because it can withstand high temperature. It has low neutron absorption cross section, good oxidation, corrosion, creep properties and possesses good mechanical strength. With the passage of time, further development in this branch of science took place and designers started looking for better neutron economy and less hydrogen pickup in PHW reactors. The motion of fission products in the cladding material could pose a problem after long operation. In order to understand their behaviour under reactor environment, it is essential to study first the diffusion under normal conditions. These studies will throw light on the interaction of defects with impurities which would in turn help in understanding the mechanism of diffusion. In this article, it is intended to discuss the diffusion behaviour of impurities in cladding materials.(i.e. aluminium, zircaloy-2, zirconium-niobium alloy etc.). (author). 94 refs., 4 figs., 3 tabs

  9. Alloy development for high burnup cladding (PWR)

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, R. [Kraftwerk Union AG, Mulheim (Germany); Jeong, Y.H.; Baek, K.H.; Kim, S.J.; Choi, B.K.; Kim, J.M. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-04-01

    An overview on current alloy development for high burnup PWR fuel cladding is given. It is mainly based on literature data. First, the reasons for an increase of the current mean discharge burnup from 35 MWd / kg(U) to 70 MWd / kg(U) are outlined. From the material data, it is shown that a batch average burnup of 60-70 MWd / kg(U), as aimed by many fuel vendors, can not be achieved with stand (=ASTM-) Zry-4 cladding tubes without violating accepted design criteria. Specifically criteria which limit maximum oxide scale thickness and maximum hydrogen content, and to a less degree, maximum creep and growth rate, can not be achieved. The development potential of standard Zry-4 is shown. Even when taking advantage of this potential, it is shown that an 'improved' Zry-4 is reaching its limits when it achieves the target burnup. The behavior of some Zr alloys outside the ASTM range is shown, and the advantages and disadvantages of the 3 alloy groups (ZrSn+transition metals, ZrNb, ZrSnNb+transition metals) which are currently considered to have the development potential for high burnup cladding materials are depicted. Finally, conclusions are drawn. (author). 14 refs., 11 tabs., 82 figs.

  10. High-temperature steam-oxidation behavior of Zr-1Nb-1Sn-0.1Fe cladding tube at temperatures of 800-1000

    International Nuclear Information System (INIS)

    Lee, Cheol Min; Cho, Tae Won; Jeong, Gwan Yoon; Kim, Mi Jin; Kim, Ji Hyeon; Lee, Hee Jae; Sohn, Dong Seong; Mok, Yong Kyoon

    2016-01-01

    To prevent cladding failure, NRC issued a regulation Title 10 § 50.46, which specifies cladding temperature of 1204 .deg. C and 17% ECR should not be exceeded. The fundamental reason of the mechanical degradation of cladding is the formation of the oxide which is brittle. Theoretically, the oxide layer is formed following parabolic rate. However, from many experiments, sub-parabolic rates are often observed. There have been many suggestions so far; chemical and stress gradient across the oxide layer could initiate the sub-parabolic rate, the phase transformation of Zirconium dioxide from tetragonal to monoclinic could be the reason, change of the grain size of Zirconium dioxide could cause the cubic oxidation rate, and there is a suggestion that if electron migration is the major mechanism of the oxide growth, then the subparabolic rate can show up. However, the reason why the sub-parabolic rate appears is still not certain. Another important degradation mechanism is breakaway oxidation. A clear explanation that why the breakaway oxidation appears is still not clear. Most of the people believe the phase transformation of Zirconium dioxide cause instability within the oxide, which causes breakaway oxidation to appear. However, how much effect is caused from the phase transformation is not so sure. In this study, detailed analysis about the oxidation kinetics and the breakaway oxidation of Zr-1Nb-1Sn- 0.1Fe were carried out at temperatures between 800 - 1000 .deg. C.

  11. Experimental study and modeling of high-temperature oxidation and phase transformation of cladding-tubes made in zirconium alloy

    International Nuclear Information System (INIS)

    Mazeres, Benoit

    2013-01-01

    One of the hypothetical accident studied in the field of the safety studies of Pressurized light Water Reactor (PWR) is the Loss-Of-Coolant-Accident (LOCA). In this scenario, zirconium alloy fuel claddings could undergo an important oxidation at high temperature (T≅ 1200 C) in a steam environment. Cladding tubes constitute the first confinement barrier of radioelements and then it is essential that they keep a certain level of ductility after quenching to ensure their integrity. These properties are directly related to the growth kinetics of both the oxide and the αZr(O) phase and also to the oxygen diffusion profile in the cladding tube after the transient. In this context, this work was dedicated to the understanding and the modeling of the both oxidation phenomenon and oxygen diffusion in zirconium based alloys at high temperature. The numerical tool (EKINOX-Zr) used in this thesis is based on a numerical resolution of a diffusion/reaction problem with equilibrium-conditions on three moving boundaries: gas/oxide, oxide/αZr(O), αZr(O)/βZr. EKINOX-Zr kinetics model is coupled with ThermoCalc software and the Zircobase database to take into account the influence of the alloying elements (Sn, Fe, Cr, Nb) but also the influence of hydrogen on the solubility of oxygen. This study focused on two parts of the LOCA scenario: the influence of a pre-oxide layer (formed in-service) and the effects of hydrogen. Thanks to the link between EKINOX-Zr and the thermodynamic database Zircobase, the hydrogen effects on oxygen solubility limit could be considered in the numerical simulations. Thus, simulations could reproduce the oxygen diffusion profiles measured in pre-hydrided samples. The existence of a thick pre-oxide layer on cladding tubes can induce a reduction of this pre-oxide layer before the growth of a high-temperature one during the high temperature dwell under steam. The first simulations performed using the numerical tool EKINOX-Zr showed that this particular

  12. Deformation behavior of Zircaloy-4 cladding tubes under inert gas conditions in the temperature range from 600 to 12000C

    International Nuclear Information System (INIS)

    Hofmann, P.; Raff, S.; Gausmann, G.

    1981-07-01

    Within the temperature range from 600 0 to 1200 0 isothermal, isobaric creep rupture experiments were performed under inert gas with short Zircaloy-4 tube specimens in order to obtain experimental data supporting the development of the NORA cladding tube deformation model. The values of the tube inner pressure were so selected that the time-to-failure values varied between 2 and 2000 s. The corresponding creep rupture curves are indicated. Besides the temperature and the burst pressure the development of deformation over time of the tube specimens was measured. This allowed to draw diagrams of stress, strain rate and strain. On account of the type of specimen heating applied (radiation heating) the temperature difference at the cladding tube circumference is very small ( [de

  13. Fuel Retention Improvement at High Temperatures in Tungsten-Uranium Dioxide Dispersion Fuel Elements by Plasma-Spray Cladding

    Science.gov (United States)

    Grisaffe, Salvatore J.; Caves, Robert M.

    1964-01-01

    An investigation was undertaken to determine the feasibility of depositing integrally bonded plasma-sprayed tungsten coatings onto 80-volume-percent tungsten - 20-volume-percent uranium dioxide composites. These composites were face clad with thin tungsten foil to inhibit uranium dioxide loss at elevated temperatures, but loss at the unclad edges was still significant. By preheating the composite substrates to approximately 3700 degrees F in a nitrogen environment, metallurgically bonded tungsten coatings could be obtained directly by plasma spraying. Furthermore, even though these coatings were thin and somewhat porous, they greatly inhibited the loss of uranium dioxide. For example, a specimen that was face clad but had no edge cladding lost 5.8 percent uranium dioxide after 2 hours at 4750 dgrees F in flowing hydrogen. A similar specimen with plasma-spray-coated edges, however, lost only 0.75 percent uranium dioxide under the same testing conditions.

  14. Irradiation temperature memorization by retention of krypton-85. Application to the temperature determination for the internal cladding surface of fuel elements in PWR

    International Nuclear Information System (INIS)

    Fremiot, Claude

    1977-01-01

    The temperature of the inner surface of the cladding fuel elements, which can not be measured directly, can be determined after irradiation. During its stage within the reactor, the cladding is bombarded by krypton-85 fission product, which is trapped in the metallic lattice defects. The experience shows that the krypton release during postirradiation heating takes place at the irradiation temperature. This method was applied for PWR fuel element. A very simple model for retention and release of the krypton is proposed. The krypton trap-energy in zircaloy partakes in this model. This technique can be ordered amongst the Hot'Lab' control methods and expert appraisements. It is pointed out that the principal interest in that method is the fact that it does not need any fuel element instrumentation. At the present, this method is being used by CEA for routine-control. [fr

  15. Critical cladding radius for hybrid cladding modes

    Science.gov (United States)

    Guyard, Romain; Leduc, Dominique; Lupi, Cyril; Lecieux, Yann

    2018-05-01

    In this article we explore some properties of the cladding modes guided by a step-index optical fiber. We show that the hybrid modes can be grouped by pairs and that it exists a critical cladding radius for which the modes of a pair share the same electromagnetic structure. We propose a robust method to determine the critical cladding radius and use it to perform a statistical study on the influence of the characteristics of the fiber on the critical cladding radius. Finally we show the importance of the critical cladding radius with respect to the coupling coefficient between the core mode and the cladding modes inside a long period grating.

  16. Microstructure and wear behaviors of laser clad NiCr/Cr3C2-WS2 high temperature self-lubricating wear-resistant composite coating

    Science.gov (United States)

    Yang, Mao-Sheng; Liu, Xiu-Bo; Fan, Ji-Wei; He, Xiang-Ming; Shi, Shi-Hong; Fu, Ge-Yan; Wang, Ming-Di; Chen, Shu-Fa

    2012-02-01

    The high temperature self-lubricating wear-resistant NiCr/Cr3C2-30%WS2 coating and wear-resistant NiCr/Cr3C2 coating were fabricated on 0Cr18Ni9 austenitic stainless steel by laser cladding. Phase constitutions and microstructures were investigated, and the tribological properties were evaluated using a ball-on-disc wear tester under dry sliding condition at room-temperature (17 °C), 300 °C and 600 °C, respectively. Results indicated that the laser clad NiCr/Cr3C2 coating consisted of Cr7C3 primary phase and γ-(Fe,Ni)/Cr7C3 eutectic colony, while the coating added with WS2 was mainly composed of Cr7C3 and (Cr,W)C carbides, with the lubricating WS2 and CrS sulfides as the minor phases. The wear tests showed that the friction coefficients of two coatings both decrease with the increasing temperature, while the both wear rates increase. The friction coefficient of laser clad NiCr/Cr3C2-30%WS2 is lower than the coating without WS2 whatever at room-temperature, 300 °C, 600 °C, but its wear rate is only lower at 300 °C. It is considered that the laser clad NiCr/Cr3C2-30%WS2 composite coating has good combination of anti-wear and friction-reducing capabilities at room-temperature up to 300 °C.

  17. Oxidation Behavior of FeCrAl -coated Zirconium Cladding prepared by Laser Coating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Il-Hyun; Kim, Hyun-Gil; Choi, Byung-Kwan; Park, Jeong-Yong; Koo, Yang-Hyun; Kim, Jin-Seon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    From the recent research trends, the ATF cladding concepts for enhanced accident tolerance are divided as follows: Mo-Zr cladding to increase the high temperature strength, cladding coating to increase the high temperature oxidation resistance, FeCrAl alloy and SiC/SiCf material to increase the oxidation resistance and strength at high temperature. To commercialize the ATF cladding concepts, various factors are considered, such as safety under normal and accident conditions, economy for the fuel cycle, and developing development challenges, and schedule. From the proposed concepts, it is known that the cladding coating, FeCrAl alloy, and Zr-Mo claddings are considered as a near/mid-term application, whereas the SiC material is considered as a long-term application. Among them, the benefit of cladding coating on Zr-based alloys is the fuel cycle economy regarding the manufacturing, neutron cross section, and high tritium permeation characteristics. However, the challenge of cladding coating on Zr-based alloys is the lower oxidation resistance and mechanical strength at high-temperature than other concepts. Another important point is the adhesion property between the Zr-based alloy and coating materials. A laser coating method supplied with FeCrAl powders was developed to decrease the high-temperature oxidation rate in a steam environment through a systematic study for various coating parameters, and a FeCrAl-coated Zircaloy-4 cladding tube of 100 mm in length to the axial direction can be successfully manufactured.

  18. Development of Silicide Coating on Molybdenum Alloy Cladding

    International Nuclear Information System (INIS)

    Lim, Woojin; Ryu, Ho Jin

    2015-01-01

    The molybdenum alloy is considered as one of the accident tolerant fuel (ATF) cladding materials due to its high temperature mechanical properties. However, molybdenum has a weak oxidation resistance at elevated temperatures. To modify the oxidation resistance of molybdenum cladding, silicide coating on the cladding is considered. Molybdenum silicide layers are oxidized to SiO 2 in an oxidation atmosphere. The SiO 2 protective layer isolates the substrate from the oxidizing atmosphere. Pack cementation deposition technique is widely adopted for silicide coating for molybdenum alloys due to its simple procedure, homogeneous coating quality and chemical compatibility. In this study, the pack cementation method was conducted to develop molybdenum silicide layers on molybdenum alloys. It was found that the Mo 3 Si layer was deposited on substrate instead of MoSi 2 because of short holding time. It means that through the extension of holding time, MoSi 2 layer can be formed on molybdenum substrate to enhance the oxidation resistance of molybdenum. The accident tolerant fuel (ATF) concept is to delay the process following an accident by reducing the oxidation rate at high temperatures and to delay swelling and rupture of fuel claddings. The current research for Atf can be categorized into three groups: First, modification of existing zirconium-based alloy cladding by improving the high temperature oxidation resistance and strength. Second, replacing Zirconium based alloys with alternative metallic materials such as refractory elements with high temperature oxidation resistance and strength. Third, designing alternative fuel structures using ceramic and composite systems

  19. Review of experimental data for modelling LWR fuel cladding behaviour under loss of coolant accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Massih, Ali R. [Quantum Technologies AB, Uppsala Science Park (Sweden)

    2007-02-15

    Extensive range of experiments has been conducted in the past to quantitatively identify and understand the behaviour of fuel rod under loss-of-coolant accident (LOCA) conditions in light water reactors (LWRs). The obtained experimental data provide the basis for the current emergency core cooling system acceptance criteria under LOCA conditions for LWRs. The results of recent experiments indicate that the cladding alloy composition and high burnup effects influence LOCA acceptance criteria margins. In this report, we review some past important and recent experimental results. We first discuss the background to acceptance criteria for LOCA, namely, clad embrittlement phenomenology, clad embrittlement criteria (limitations on maximum clad oxidation and peak clad temperature) and the experimental bases for the criteria. Two broad kinds of test have been carried out under LOCA conditions: (i) Separate effect tests to study clad oxidation, clad deformation and rupture, and zirconium alloy allotropic phase transition during LOCA. (ii) Integral LOCA tests, in which the entire LOCA sequence is simulated on a single rod or a multi-rod array in a fuel bundle, in laboratory or in a tests and results are discussed and empirical correlations deduced from these tests and quantitative models are conferred. In particular, the impact of niobium in zirconium base clad and hydrogen content of the clad on allotropic phase transformation during LOCA and also the burst stress are discussed. We review some recent LOCA integral test results with emphasis on thermal shock tests. Finally, suggestions for modelling and further evaluation of certain experimental results are made.

  20. Cladding properties under simulated fuel pin transients

    International Nuclear Information System (INIS)

    Hunter, C.W.; Johnson, G.D.

    1975-01-01

    A description is given of the HEDL fuel pin testing program utilizing a recently developed Fuel Cladding Transient Tester (FCTT) to generate the requisite mechanical property information on irradiated and unirradiated fast reactor fuel cladding under temperature ramp conditions. The test procedure is described, and data are presented

  1. Eutectic reaction analysis between TRU-50%Zr alloy fuel and HT-9 cladding, and temperature prediction of eutectic reaction under steady-state

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Woan; Lee, Byoung Oon; Lee, Bong Sang; Park, Won Seok

    2001-02-01

    Blanket fuel assembly for HYPER contains a bundle of pins arrayed in triangular pitch, which has hexagonal bundle structure. The reference blanket fuel pin consists of the fuel slug of TRU-50wt%Zr alloy and the cladding material of ferritic martensite steel, HT-9. Chemical interaction between fuel slug and cladding is one of the major concerns in metallic fuel rod design. The contact of metallic fuel slug and stainless steel cladding in a fuel rod forms a complex multi-component diffusion couple at elevated temperatures. The potential problem of inter-diffusion of fuel and cladding components is essentially two-fold weakening of cladding mechanical strength due to the formation of diffusion zones in the cladding, and the formation of comparatively low melting point phases in the fuel/cladding interface to develop eutectic reaction. The main components of fuel slug are composed of zirconium alloying element in plutonium matrix, including neptunium, americium and uranium additionally. Therefore basic eutectic reaction change of Pu-Fe binary system can be assessed, while it is estimated how much other elements zirconium, uranium, americium and neptunium influence on plutonium phase stability. Afterwards it is needed that eutectic reaction is verified through experimental necessarily.

  2. Eutectic reaction analysis between TRU-50%Zr alloy fuel and HT-9 cladding, and temperature prediction of eutectic reaction under steady-state

    International Nuclear Information System (INIS)

    Hwang, Woan; Lee, Byoung Oon; Lee, Bong Sang; Park, Won Seok

    2001-02-01

    Blanket fuel assembly for HYPER contains a bundle of pins arrayed in triangular pitch, which has hexagonal bundle structure. The reference blanket fuel pin consists of the fuel slug of TRU-50wt%Zr alloy and the cladding material of ferritic martensite steel, HT-9. Chemical interaction between fuel slug and cladding is one of the major concerns in metallic fuel rod design. The contact of metallic fuel slug and stainless steel cladding in a fuel rod forms a complex multi-component diffusion couple at elevated temperatures. The potential problem of inter-diffusion of fuel and cladding components is essentially two-fold weakening of cladding mechanical strength due to the formation of diffusion zones in the cladding, and the formation of comparatively low melting point phases in the fuel/cladding interface to develop eutectic reaction. The main components of fuel slug are composed of zirconium alloying element in plutonium matrix, including neptunium, americium and uranium additionally. Therefore basic eutectic reaction change of Pu-Fe binary system can be assessed, while it is estimated how much other elements zirconium, uranium, americium and neptunium influence on plutonium phase stability. Afterwards it is needed that eutectic reaction is verified through experimental necessarily

  3. Aluminum-Oxide Temperatures on the Mark VB, VE, VR, 15, and Mark 25 Assemblies

    International Nuclear Information System (INIS)

    Aleman, S.E.

    2001-01-01

    The task was to compute the maximum aluminum-oxide and oxide-coolant temperatures of assemblies cladded in 99+ percent aluminum. The assemblies considered were the Mark VB, VE, V5, 15 and 25. These assemblies consist of nested slug columns with individual uranium slugs cladded in aluminum cans. The CREDIT code was modified to calculate the oxide film thickness and the aluminum-oxide temperature at each axial increment. This information in this report will be used to evaluate the potential for cladding corrosion of the Mark 25 assembly

  4. Fuel compliance model for pellet-cladding mechanical interaction

    International Nuclear Information System (INIS)

    Shah, V.N.; Carlson, E.R.

    1985-01-01

    This paper describes two aspects of fuel pellet deformation that play significant roles in determining maximum cladding hoop strains during pellet-cladding mechanical interaction: compliance of fragmented fuel pellets and influence of the pellet end-face design on the transmission of axial compressive force in the fuel stack. The latter aspect affects cladding ridge formation and explains several related observations that cannot be explained by the hourglassing model. An empirical model, called the fuel compliance model and representing the above aspects of fuel deformation, has been developed using the results from two Halden experiments and incorporated into the FRAP-T6 fuel performance code

  5. Development of Cr Electroplated Cladding Tube for preventing Fuel-Cladding Chemical Interaction (FCCI)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Hwan; Woo, Je Woong; Kim, Sung Ho; Cheon, Jin Sik; Lee, Byung Oon; Lee, Chan Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Metal fuel has been selected as a candidate fuel in the SFR because of its superior thermal conductivity as well as enhanced proliferation resistance in connection with the pyroprocessing. However, metal fuel suffers eutectic reaction (Fuel Cladding Chemical Interaction, FCCI) with the fuel cladding made of stainless steel at reactor operating temperature so that cladding thickness gradually reduces to endanger reactor safety. In order to mitigate FCCI, barrier concept has been proposed between the fuel and the cladding in designing fuel rod. Regarding this, KAERI has initiated barrier cladding development to prevent interdiffusion process as well as enhance the SFR fuel performance. Previous study revealed that Cr electroplating has been selected as one of the most promising options because of its technical and economic viability. This paper describes the development status of the Cr electroplating technology for the usage of fuel rod in SFR. This paper summarizes the status of Cr electroplating technology to prevent FCCI in metal fuel rod. It has been selected for the ease of practical application at the tube inner surface. Technical scoping, performance evaluation and optimization have been carried out. Application to the tube inner surface and in-pile test were conducted which revealed as effective.

  6. Fabrication of Tungsten-Rhenium Cladding materials via Spark Plasma Sintering for Ultra High Temperature Reactor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Charit, Indrajit; Butt, Darryl; Frary, Megan; Carroll, Mark

    2012-11-05

    This research will develop an optimized, cost-effective method for producing high-purity tungsten-rhenium alloyed fuel clad forms that are crucial for the development of a very high-temperature nuclear reactor. The study will provide critical insight into the fundamental behavior (processing-microstructure- property correlations) of W-Re alloys made using this new fabrication process comprising high-energy ball milling (HEBM) and spark plasma sintering (SPS). A broader goal is to re-establish the U.S. lead in the research field of refractory alloys, such as W-Re systems, with potential applications in very high-temperature nuclear reactors. An essential long-term goal for nuclear power is to develop the capability of operating nuclear reactors at temperatures in excess of 1,000K. This capability has applications in space exploration and some special terrestrial uses where high temperatures are needed in certain chemical or reforming processes. Refractory alloys have been identified as being capable of withstanding temperatures in excess of 1,000K and are considered critical for the development of ultra hightemperature reactors. Tungsten alloys are known to possess extraordinary properties, such as excellent high-temperature capability, including the ability to resist leakage of fissile materials when used as a fuel clad. However, there are difficulties with the development of refractory alloys: 1) lack of basic experimental data on thermodynamics and mechanical and physical properties, and 2) challenges associated with processing these alloys.

  7. Modification of tribology and high-temperature behavior of Ti-48Al-2Cr-2Nb intermetallic alloy by laser cladding

    International Nuclear Information System (INIS)

    Liu Xiubo; Wang Huaming

    2006-01-01

    In order to improve the tribology and high-temperature oxidation properties of the Ti-48Al-2Cr-2Nb intermetallic alloy simultaneously, mixed NiCr-Cr 3 C 2 precursor powders had been investigated for laser cladding treatment to modify wear and high-temperature oxidation resistance of the material. The alloy samples were pre-placed with NiCr-80, 50 and 20%Cr 3 C 2 (wt.%), respectively, and laser treated at the same parameters, i.e., laser output power 2.8 kW, beam scanning speed 2.0 mm/s, beam dimension 1 mm x 18 mm. The treated samples underwent tests of microhardness, wear and high-temperature oxidation. The results showed that laser cladding with different constitution of mixed precursor NiCr-Cr 3 C 2 powders improved surface hardness in all cases. Laser cladding with NiCr-50%Cr 3 C 2 resulted in the best modification of tribology and high-temperature oxidation behavior. X-ray diffraction (XRD), optical microscope (OM), scanning electron microscopy (SEM) and energy-dispersive spectrometer (EDS) analyses indicated that the formation of reinforced Cr 7 C 3 , TiC and both continuous and dense Al 2 O 3 , Cr 2 O 3 oxide scales were supposed to be responsible for the modification of the relevant properties. As a result, the present work had laid beneficial surface engineering foundation for TiAl alloy applied as future light weight and high-temperature structural candidate materials

  8. KALIMER-600-clad Core Fuel Assembly Calculation using MATRA-LMR (V2.0) Code

    International Nuclear Information System (INIS)

    Kim, Young Gyun; Kim, Young Il

    2006-12-01

    Since the sodium boiling point is very high, maximum cladding and pin temperatures are used for design limit condition in sodium cooled liquid metal reactor. It is necessary to predict accurately the temperature distribution in the core and in the subassemblies to increase the sodium coolant efficiency. Based on the MATRA code, which is developed for PWR analysis, MATRA-LMR has been developed for SFR. The major modifications are: the sodium properties table is implemented as subprogram in the code, Heat transfer coefficients are changed for SFR, te pressure drop correlations are changed for more accurate calculations, which are Novendstern, Chiu-Rohsenow-Todreas, and Cheng-Todreas correlations. This This report describes briefly code structure and equations of MATRA-LMR (Version 2.0), explains input data preparation and shows some calculation results for the KALIMER-600-clad core fuel assembly for which has been performed the conceptual design of the core in the year 2006

  9. Mechanical modelling of transient- to- failure SFR fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Feria, F.; Herranz, L. E.

    2014-07-01

    The response of Sodium Fast Reactor (SFR) fuel rods to transient accident conditions is an important safety concern. During transients the cladding strain caused by the stress due to pellet cladding mechanical interaction (PCMI) can lead to failure. Due to the fact that SFR fuel rods are commonly clad with strengthened material made of stainless steel (SS), cladding is usually treated as an elastic-perfectly-plastic material. However, viscoplastic behaviour can contribute to mechanical strain at high temperature (> 1000 K). (Author)

  10. Investigation on Nano-Self-Lubricant Coating Synthesized by Laser Cladding and Ion Sulfurization

    Directory of Open Access Journals (Sweden)

    Meiyan Li

    2015-01-01

    Full Text Available The composite processing between laser cladding and low temperature (300°C ion sulfurization was applied to prepare wear resistant and self-lubricating coating. The microstructure, morphology, phase composition, valence states, and wear resistance of the composite coating were investigated by scanning electron microscopy (SEM, atomic force microscope (AFM, X-ray diffraction (XRD, X-ray photoelectron spectroscope (XPS, and friction and wear apparatus. The results indicate that the laser cladding Ni-based coatings and the maximum hardness of 46.5 HRC were obtained when the percent of pure W powder was 10%, composed of columnar dendrites crystals and ultrafine dendritic structure. After ion sulfurization at 300°C for 4 h, the loose and porous composite coating is formed with nanograins and the granularity of all grains is less than 100 nm, which consists of γ-(Fe, Ni, M23C6 carbides, FeS, FeS2, and WS2. Furthermore, the wear resistance of the composite coating is better than the laser cladding Ni55 + 10%W coating, and the friction coefficient and mass losses under the conditions of dry and oil lubrication are lower than those of laser cladding Ni55 + 10%W coating.

  11. Evaluation of a Ductility after High Temperature Oxidation with the Three-Point Bend Test in Zirconium Alloys

    International Nuclear Information System (INIS)

    Jung, Yang Il; Park, Sang Yoon; Park, Jeong Yong; Jeong, Yong Hwan

    2010-01-01

    In a light water reactor, the fuel cladding play an important role of preventing leakage of radioactive materials into the coolant, and thus the mechanical integrity of the cladding should be guaranteed under the conditions of normal and transient operation. In the case of a loss of coolant accident (LOCA), the cladding is subjected to a high temperature oxidation which is finally quenched because of an emergency coolant reflooding into the core. In this situation, the current LOCA criteria consist of five separate requirements: i) peak cladding temperature, ii) maximum cladding oxidation, iii) maximum hydrogen generation, iv) coolable geometry, and v) long-term cooling. The claddings lose their ductility due to the microstructural phase transformation from beta to martensite alpha-prime. and hydrogen up-take after LOCA. Since the reduction in ductility can induce embrittlement of claddings, post-quench ductility is one of the major concerns in transient operation circumstances. For the analysis, usually ring compression test are performed on ring samples cut from the tube to examine the oxidized cladding ductility. However, the test would not be applicable to the platelet samples which are general form of a specimen for developing alloys. As a high burn-up fuel cladding materials, Zircaloys are being replaced by modern zirconium alloys such as ZIRLO, and M5. Korea has also developed a new fuel cladding material HANA (high performance alloy for nuclear application) by the Korea Atomic Energy Research Institute. Because of the different composition of the newer claddings in comparison with the conventional Zircaloy-4, the high temperature oxidation behavior and the ductility after the oxidation would be different, and the properties should be evaluated how much the newer claddings were improved

  12. Zircaloy PWR fuel cladding deformation tests under mainly convective cooling conditions

    International Nuclear Information System (INIS)

    Hindle, E.D.; Mann, C.A.

    1980-01-01

    In a loss-of-coolant accident the temperature of the cladding of the fuel rods may rise to levels (650-810 0 C) where the ductility of Zircaloy is high (approximately 80%). The net outward pressure which will obtain if the coolant pressure falls to a small fraction of its normal working value produces stresses in the cladding which can result in large strain through secondary creep. An earlier study of the deformation of specimens of PWR Zircaloy cladding tubing 450 mm long under internal pressure had shown that strains of over 50% could be produced over considerable lengths (greater than twenty tube diameters). Extended deformation of this sort might be unacceptable if it occurred in a fuel element. The previous tests had been carried out under conditions of uniform radiative heat loss, and the work reported here extends the study to conditions of mainly convective heat loss believed to be more representative of a fuel element following a loss of coolant. Zircaloy-4 cladding specimens 450 mm long were filled with alumina pellets and tested at temperatures between 630 and 845 0 C in flowing steam at atmospheric pressure. Internal test pressures were in the range 2.9-11.0 MPa (400-1600 1b/in 2 ). Maximum strains were observed of the same magnitude as those seen in the previous tests, but the shape of the deformation differed; in these tests the deformation progressively increased in the direction of the steam flow. These results are compared with those from multi-rod tests elsewhere, and it is suggested that heat transfer has a dominant effect in determining deformation. The implications for the behaviour of fuel elements in a loss-of-coolant accident are outlined. (author)

  13. Structural cladding /clad structures

    DEFF Research Database (Denmark)

    Beim, Anne

    2012-01-01

    Structural Cladding /Clad Structures: Studies in Tectonic Building Practice A. Beim CINARK – Centre for Industrialized Architecture, Institute of Architectural Technology, The Royal Danish Academy of Fine Arts School of Architecture, Copenhagen, Denmark ABSTRACT: With point of departure in the pr......Structural Cladding /Clad Structures: Studies in Tectonic Building Practice A. Beim CINARK – Centre for Industrialized Architecture, Institute of Architectural Technology, The Royal Danish Academy of Fine Arts School of Architecture, Copenhagen, Denmark ABSTRACT: With point of departure...... to analyze, compare, and discuss how these various construction solutions point out strategies for development based on fundamentally different mindsets. The research questions address the following issues: How to learn from traditional construction principles: When do we see limitations of tectonic maneuver......, to ask for more restrictive building codes. As an example, in Denmark there are series of increasing demands in the current building legislations that are focused at enhancing the energy performance of buildings, which consequently foster rigid insulation standards and ask for improvement of air...

  14. POST CRITICAL HEAT TRANSFER AND FUEL CLADDING OXIDATION

    Directory of Open Access Journals (Sweden)

    Vojtěch Caha

    2016-12-01

    Full Text Available The knowledge of heat transfer coefficient in the post critical heat flux region in nuclear reactor safety is very important. Although the nuclear reactors normally operate at conditions where critical heat flux (CHF is not reached, accidents where dryout occur are possible. Most serious postulated accidents are a loss of coolant accident or reactivity initiated accident which can lead to CHF or post CHF conditions and possible disruption of core integrity. Moreover, this is also influenced by an oxide layer on the cladding surface. The paper deals with the study of mathematical models and correlations used for heat transfer calculation, especially in post dryout region, and fuel cladding oxidation kinetics of currently operated nuclear reactors. The study is focused on increasing of accuracy and reliability of safety limit calculations (e.g. DNBR or fuel cladding temperature. The paper presents coupled code which was developed for the solution of forced convection flow in heated channel and oxidation of fuel cladding. The code is capable of calculating temperature distribution in the coolant, cladding and fuel and also the thickness of an oxide layer.

  15. Impact of reactor water chemistry on cladding performance

    Energy Technology Data Exchange (ETDEWEB)

    Cox, B. [University of Toronto, Centre for Nuclear Engineering, Toronto, Ontario (Canada)

    1997-07-01

    Water chemistry may have a major impact on fuel cladding performance in PWRs. If the saturation temperature on the surface of fuel cladding is exceeded, either because of the thermal hydraulics of the system, or because of crud deposition, then LiOH concentration can occur within thick porous oxide films on the cladding. This can degrade the protective film and accelerate the corrosion rate of the cladding. If sufficient boric acid is also present in the coolant then these effects may be mitigated. This is normally the case through most of any reactor fuel cycle. Extensive surface boiling may disrupt this equilibrium because of the volatility of boric acid in steam. Under such conditions severe cladding corrosion can ensue. The potential for such effects on high burnup cladding in CANDU reactors, where bone acid is not present in the primary coolant, is discussed. (author)

  16. Impact of reactor water chemistry on cladding performance

    International Nuclear Information System (INIS)

    Cox, B.

    1997-01-01

    Water chemistry may have a major impact on fuel cladding performance in PWRs. If the saturation temperature on the surface of fuel cladding is exceeded, either because of the thermal hydraulics of the system, or because of crud deposition, then LiOH concentration can occur within thick porous oxide films on the cladding. This can degrade the protective film and accelerate the corrosion rate of the cladding. If sufficient boric acid is also present in the coolant then these effects may be mitigated. This is normally the case through most of any reactor fuel cycle. Extensive surface boiling may disrupt this equilibrium because of the volatility of boric acid in steam. Under such conditions severe cladding corrosion can ensue. The potential for such effects on high burnup cladding in CANDU reactors, where bone acid is not present in the primary coolant, is discussed. (author)

  17. Effect of high hydrogen content on metallurgical and mechanical properties of zirconium alloy claddings after heat-treatment at high temperature

    International Nuclear Information System (INIS)

    Turque, Isabelle

    2016-01-01

    Under hypothetical loss-of-coolant accident conditions, fuel cladding tubes made of zirconium alloys can be exposed to steam at high temperature (HT, up 1200 C) before being cooled and then quenched in water. In some conditions, after burst occurrence the cladding can rapidly absorb a significant amount of hydrogen (secondary hydriding), up to 3000 wt.ppm locally, during steam exposition at HT. The study deals with the effect, poorly studied up to date, of high contents of hydrogen on the metallurgical and mechanical properties of two zirconium alloys, Zircaloy-4 and M5, during and after cooling from high temperatures, at which zirconium is in its β phase. A specific facility was developed to homogeneously charge in hydrogen up to ∼ 3000 wt.ppm cladding tube samples of several centimeters in length. Phase transformations, chemical element partitioning and hydrogen precipitation during cooling from the β temperature domain of zirconium were studied by using several techniques, for the materials containing up to ∼ 3000 wt.ppm of hydrogen in average: in-situ neutron diffraction upon cooling from 700 C, X-ray diffraction, μ-ERDA, EPMA and electron microscopy in particular. The results were compared to thermodynamic predictions. In order to study the effect of high hydrogen contents on the mechanical behavior of the (prior-)μ phase of zirconium, axial tensile tests were performed at various temperatures between 20 and 700 C upon cooling from the β temperature domain, on samples with mean hydrogen contents up to ∼ 3000 wt.ppm. The results show that metallurgical and mechanical properties of the (prior-)β phase of zirconium alloys strongly depend on temperature and hydrogen content. (author) [fr

  18. Study of the response of Zircaloy- 4 cladding to thermal shock during water quenching after double sided steam oxidation at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Sawarn, Tapan K., E-mail: sawarn@barc.gov.in; Banerjee, Suparna; Kumar, Sunil

    2016-05-15

    This study investigates the failure of embrittled Zircaloy-4 cladding in a simulated loss of coolant accident condition and correlates it with the evolved stratified microstructure. Isothermal steam oxidation of Zircaloy-4 cladding at high temperatures (900–1200 °C) with soaking periods in the range 60–900 s followed by water quenching was carried out. The combined oxide + oxygen stabilized α-Zr layer thickness and the fraction of the load bearing phase (recrystallised α-Zr grains + prior β-Zr or only prior β-Zr) of clad tube specimens were correlated with the %ECR calculated using Baker-Just equation. Average oxygen concentration of the load bearing phase corresponding to different oxidation conditions was calculated from the average microhardness using an empirical correlation. The results of these experiments are presented in this paper. Thermal shock sustainability of the clad was correlated with the %ECR, combined oxide+α-Zr(O) layer thickness, fraction of the load bearing phase and its average oxygen concentration. - Highlights: • Response of the embrittled Zircaloy-4 clad towards thermal shock, simulated under LOCA condition was investigated. • Thermal shock sustainability of the clad was correlated with its evolved stratified microstructure. • Cladding fails at %ECR value ≥ 29. • To resist the thermal shock, clad should have load bearing phase fraction > 0.44 and average oxygen concentration < 0.69 wt%.

  19. Gate-last TiN/HfO2 band edge effective work functions using low-temperature anneals and selective cladding to control interface composition

    KAUST Repository

    Hinkle, C. L.; Galatage, R. V.; Chapman, R. A.; Vogel, E. M.; Alshareef, Husam N.; Freeman, C.; Christensen, M.; Wimmer, E.; Niimi, H.; Li-Fatou, A.; Shaw, J. B.; Chambers, J. J.

    2012-01-01

    Silicon N-metal-oxide-semiconductor (NMOS) and P-metal-oxide-semiconductor (PMOS) band edge effective work functions and the correspondingly low threshold voltages (Vt) are demonstrated using standard fab materials and processes in a gate-last scheme employing low-temperature anneals and selective cladding layers. Al diffusion from the cladding to the TiN/HfO2interface during forming gas anneal together with low O concentration in the TiN enables low NMOS Vt. The use of non-migrating W cladding along with experimentally detected N-induced dipoles, produced by increased oxygen in the TiN, facilitates low PMOS Vt.

  20. Gate-last TiN/HfO2 band edge effective work functions using low-temperature anneals and selective cladding to control interface composition

    KAUST Repository

    Hinkle, C. L.

    2012-04-09

    Silicon N-metal-oxide-semiconductor (NMOS) and P-metal-oxide-semiconductor (PMOS) band edge effective work functions and the correspondingly low threshold voltages (Vt) are demonstrated using standard fab materials and processes in a gate-last scheme employing low-temperature anneals and selective cladding layers. Al diffusion from the cladding to the TiN/HfO2interface during forming gas anneal together with low O concentration in the TiN enables low NMOS Vt. The use of non-migrating W cladding along with experimentally detected N-induced dipoles, produced by increased oxygen in the TiN, facilitates low PMOS Vt.

  1. Temperature-referenced high-sensitivity point-probe optical fiber chem-sensors based on cladding etched fiber Bragg gratings

    OpenAIRE

    Zhou, Kaiming; Chen, Xianfeng F.; Zhang, Lin; Bennion, Ian

    2004-01-01

    Point-probe optical fiber chem-sensors have been implemented using cladding etched fiber Bragg gratings. The sensors possess refractive index sensing capability that can be utilized to measure chemical concentrations. The Bragg wavelength shift reaches 8 nm when the index of surrounding medium changes from 1.33 to 1.44, giving maximum sensitivity more than 10 times higher than that of previously reported devices. More importantly, the dual-grating configuration of the point-probe sensors offe...

  2. Measurement of peak temperature along an optical fiber

    International Nuclear Information System (INIS)

    Fox, R.J.

    1983-01-01

    A multimode silica-clad optical fiber with a liquid silicone core was used as a distributed-line peak-temperature sensor over a temperature range from ambient to 190 0 C. The maximum error was 2 0 C and was essentially independent of the length or position of the hot zone

  3. Experimental Setup with Transient Behavior of Fuel Cladding of SFR

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sang Hun; Kim, Jun Hwan; Kim, June-Hyung; Ryu, Woo Seog; Park, Sang Gyu; Kim, Sung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Nowadays, in Korea, advanced cladding such as FC92 is developed and its transient behaviors are required for the safety analysis of SFR. Design and safety analyses of sodium-cooled fast reactor (SFR) require understanding fuel pin responses to a wide range of off-normal events. In a loss-of-flow (LOF) or transient over-power (TOP), the temperature of the cladding is rapidly increased above its steady-state service temperature. Transient tests have been performed in sections of fuel pin cladding and a large data base has been established for austenitic stainless steel such as 20% cold-worked 316 SS and ferritic/martensitic steels such as HT9. This paper summarizes the technical status of transient testing facilities and their results. Previous researches showed the transient behaviors of HT9 cladding. For the safety analyses in SFR in Korea, simulated transient tests with newly developed FC92 as well as HT9 cladding are being carried out.

  4. Effect of axial stress on the transient mechanical response of 20%, cold-worked Type 316 stainless-steel cladding

    International Nuclear Information System (INIS)

    Yamada, H.

    1979-01-01

    To understand the effects of the fuel-cladding mechanical interaction on the failure of 20% cold-worked Type 316 stainless-steel cladding during anticipated nuclear reactor transients, the transient mechanical response of the cladding was investigated using a transient tube burst method at a heating rate of 5.6 0 C/s and axial-to-hoop-stress ratios in the range of 1/2 to 2. The failure temperatures were observed to remain essentially constant for the transient tests at axial-to-hoop-stress ratios between 1/2 and 1, but to decrease with an increase in axial-to-hoop-stress ratios above unity. The uniform diametral strains to failure were observed to decrease monotonically with an increase in axial-to-hoop-stress ratio from 1/2 to 2, and in general, the uniform axial strains to failure were observed to increase with an increase in axial-to-hoop-stress ratio. The fracture of the cladding during thermal transients was found to be strongly affected by the maximum principal stress but not by the effective stress

  5. Thermal and irradiation effects on high-temperature mechanical properties of materials for SCWR fuel cladding

    International Nuclear Information System (INIS)

    Kano, F.; Tsuchiya, Y.; Oka, K.

    2009-01-01

    The thermal and irradiation effects on high-temperature mechanical properties are examined for candidate alloys for fuel cladding of supercritical water-cooled reactors (SCRWs). JMTR (Japan Materials Testing Reactor) and Experimental Fast Reactor JOYO were utilized for neutron irradiation tests, considering their fluence and temperature. Irradiation was performed with JMTR at 600degC up to 4x10 24 n/m 2 and with JOYO at 600degC and 700degC up to 6x10 25 n/m 2 . Tensile test, creep test and hardness measurement were carried out for high-temperature mechanical properties. Based on the uniaxial creep test, the extrapolation curves were drawn with time-temperature relationships utilizing the Larson and Miller Parameter. Several candidate alloys are expected to satisfy the design requirement from the estimation of the creep rupture stress for 50000 hours. Comparing the creep strengths under irradiated and unirradiated conditions, it was inferred that creep deformation was dominated by the thermal effect rather than the irradiation at SCWR core condition. The microstructure was examined using transmission electron microscope (TEM) analysis, focusing on void swelling and helium (He) bubble formation. Void formation was observed in the materials irradiated with JOYO at 600degC but not at 700degC. However, its effect on the deformation of components was estimated to be tolerable since their size and density were negligibly small. The manufacturability of the thin-wall, small-diameter tube was confirmed for the potential candidate alloys through the trial tests in the factory where the fuel cladding tube is manufactured. (author)

  6. A thermodynamic model for the attack behaviour in stainless steel clad oxide fuel pins

    International Nuclear Information System (INIS)

    Goetzmann, O.

    1979-01-01

    So far, post irradiation examination of burnt fuel pins has not revealed a clear cut picture of the cladding attack situation. For seemingly same conditions sometimes attack occurs, sometimes not. This model tries to depict the reaction possibilities along the inner cladding wall on the basis of thermodynamic facts in the fuel pin. It shows how the thermodynamic driving force for attack changes along the fuel column, and with different initial and operational conditions. Two criteria for attack are postulated: attack as a result of the direct reaction of reactive elements with cladding components; and attack as a result of the action of a special agent (CsOH). In defining a reaction potenial the oxygen potential, the temperature conditions (cladding temperature and fuel surface temperature), and the fission products are involved. For the determination of the oxygen potential at the cladding, three models for the redistribution of oxygen across the fuel/clad gap are offered. The effect of various parameters, like rod power, gap conductance, oxygen potential, inner wall temperature, on the thermodynamic potential for attack is analysed. (Auth.)

  7. Effect of thermal transients on the hardness of Zircaloy fuel cladding

    International Nuclear Information System (INIS)

    Hobson, D.O.

    1976-06-01

    This study is directed toward the determination of the effects of annealing cycles with rapid heating rates, short hold times at specific temperatures, and rapid cool-down rates on the hardness of Zircaloy fuel cladding. These rapid annealing cycles are designed to provide preliminary annealing behavior data on Loss-of-Fluid-Test Reactor cladding samples. Information has been obtained on (1) the time dependence of the hardness as a function of annealing temperature, and (2) a correlation of single- and multitransient annealing relationships. Both single- and triple-cycle transients were used; four hold times at each of five maximum temperatures comprised the data set (each portion of the triple-cycle experiments had isothermal hold times equal to one-third of their analogous single-cycle times). It was found that there was little difference in the hardness response between single- and triple-cycle transients for a given total hold time at a particular temperature. Test temperatures range from 1000 to 1400 0 F (538 to 760 0 C) and hold times from 5 to 135 sec. The 1100 0 F (593 0 C) level was found to be the transition level for hardness changes, with shorter times (5 and 15 sec) effecting little or no hardness decrease and the longer times (45 and 135 sec) producing partially and fully annealed material, respectively. Temperatures equal to or greater than 1300 0 F (704 0 C) resulted in fully annealed material for all hold times. The 1000 0 F (538 0 C) tests produced no measurable softening

  8. Fuel-cladding chemical interaction in mixed-oxide fuels

    International Nuclear Information System (INIS)

    Lawrence, L.A.; Weber, J.W.; Devary, J.L.

    1978-10-01

    The character and extent of fuel-cladding chemical interaction (FCCI) was established for UO 2 -25 wt% PuO 2 clad with 20% cold worked Type 316 stainless steel irradiated at high cladding temperatures to peak burnups greater than 8 atom %. The data base consists of 153 data sets from fuel pins irradiated in EBR-II with peak burnups to 9.5 atom %, local cladding inner surface temperatures to 725 0 C, and exposure times to 415 equivalent full power days. As-fabricated oxygen-to-metal ratios (O/M) ranged from 1.938 to 1.984 with the bulk of the data in the range 1.96 to 1.98. HEDL P-15 pins provided data at low heat rates, approx. 200 W/cm, and P-23 series pins provided data at higher heat rates, approx. 400 W/cm. A design practice for breeder reactors is to consider an initial reduction of 50 microns in cladding thickness to compensate for possible FCCI. This approach was considered to be a conservative approximation in the absence of a comprehensive design correlation for extent of interaction. This work provides to the designer a statistically based correlation for depth of FCCI which reflects the influences of the major fuel and operating parameters on FCCI

  9. Method and etchant to join Ag-clad BSSCO superconducting tape

    Science.gov (United States)

    Balachandran, U.; Iyer, A.N.; Huang, J.Y.

    1999-03-16

    A method of removing a silver cladding from high temperature superconducting material clad in silver (HTS) is disclosed. The silver clad HTS is contacted with an aqueous solution of HNO{sub 3} followed by an aqueous solution of NH{sub 4}OH and H{sub 2}O{sub 2} for a time sufficient to remove the silver cladding from the superconducting material without adversely affecting the superconducting properties of the superconducting material. A portion of the silver cladding may be masked with a material chemically impervious to HNO{sub 3} and to a combination of NH{sub 4}OH and H{sub 2}O{sub 2} to preserve the Ag coating. A silver clad superconductor is disclosed, made in accordance with the method discussed. 3 figs.

  10. Transparent conducting oxide clad limited area epitaxy semipolar III-nitride laser diodes

    KAUST Repository

    Myzaferi, A.

    2016-08-11

    The bottom cladding design of semipolar III-nitride laser diodes is limited by stress relaxation via misfit dislocations that form via the glide of pre-existing threading dislocations (TDs), whereas the top cladding is limited by the growth time and temperature of the p-type layers. These design limitations have individually been addressed by using limited area epitaxy (LAE) to block TD glide in n-type AlGaN bottom cladding layers and by using transparent conducting oxide (TCO) top cladding layers to reduce the growth time and temperature of the p-type layers. In addition, a TCO-based top cladding should have significantly lower resistivity than a conventional p-type (Al)GaN top cladding. In this work, LAE and indium-tin-oxide cladding layers are used simultaneously in a (202⎯⎯1) III-nitride laser structure. Lasing was achieved at 446 nm with a threshold current density of 8.5 kA/cm2 and a threshold voltage of 8.4 V.

  11. Prediction of cladding life in waste package environments

    International Nuclear Information System (INIS)

    McCoy, J.K.; Doering, T.W.

    1994-01-01

    Fuel cladding can potentially provide longer containment or slower release of radionuclides from spent fuel after geologic disposal. To predict the amount of benefit that cladding can provide, we surveyed degradation modes and developed a model for creep rupture by diffusion-controlled cavity growth, the mechanism that several authors have concluded is the most important. In this mechanism, voids nucleate on the grain boundaries and grow by diffusion of vacancies along the grain boundaries to the voids. When a certain fraction of the grain boundary area is covered with voids, the material fails. An analytic expression for cladding lifetime is developed. Besides materials constants, the predicted lifetime depends on the temperature history, the hoop stress in the cladding, the spacing between void nuclei, and the micro-structure. The inclusion of microstructure is a significant new feature of the model; this feature is used to help avoid excessive conservatism. The model is applied in a sample calculation for disposal of spent fuel, and the practice of using temperature limits to evaluate repository designs is examined

  12. CREEP STRAIN CORRELATION FOR IRRADIATED CLADDING

    International Nuclear Information System (INIS)

    P. Macheret

    2001-01-01

    In an attempt to predict the creep deformation of spent nuclear fuel cladding under the repository conditions, different correlations have been developed. One of them, which will be referred to as Murty's correlation in the following, and whose expression is given in Henningson (1998), was developed on the basis of experimental points related to unirradiated Zircaloy cladding (Henningson 1998, p. 56). The objective of this calculation is to adapt Murty's correlation to experimental points pertaining to irradiated Zircaloy cladding. The scope of the calculation is provided by the range of experimental parameters characterized by Zircaloy cladding temperature between 292 C and 420 C, hoop stress between 50 and 630 MPa, and test time extending to 8000 h. As for the burnup of the experimental samples, it ranges between 0.478 and 64 MWd/kgU (i.e., megawatt day per kilogram of uranium), but this is not a parameter of the adapted correlation

  13. Pin clad strains in Phenix

    International Nuclear Information System (INIS)

    Languille, A.

    1979-07-01

    The Phenix reactor has operated for 4 years in a satisfactory manner. The first 2 sub-assembly loadings contained pins clad in solution treated 316. The principal pin strains are: diametral strain (swelling and irradiation creep), ovality and spiral bending of the pin (interaction of wire and pin cluster and wrapper). A pin cluster irradiated to a dose of 80 dpa F reached a pin diameter strain of 5%. This strain is principally due to swelling (low fission gas pressure). The principal parameters governing the swelling are instantaneous dose, time and temperature for a given type of pin cladding. Other types of steel are or will be irradiated in Phenix. In particular, cold-worked titanium stabilised 316 steel should contribute towards a reduction in the pin clad strains and increase the target burn-up in this reactor. (author)

  14. Cladding embrittlement during postulated loss-of-coolant accidents.

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M.; Yan, Y.; Burtseva, T.; Daum, R.; Nuclear Engineering Division

    2008-07-31

    The effect of fuel burnup on the embrittlement of various cladding alloys was examined with laboratory tests conducted under conditions relevant to loss-of-coolant accidents (LOCAs). The cladding materials tested were Zircaloy-4, Zircaloy-2, ZIRLO, M5, and E110. Tests were performed with specimens sectioned from as-fabricated cladding, from prehydrided (surrogate for high-burnup) cladding, and from high-burnup fuel rods which had been irradiated in commercial reactors. The tests were designed to determine for each cladding material the ductile-to-brittle transition as a function of steam oxidation temperature, weight gain due to oxidation, hydrogen content, pre-transient cladding thickness, and pre-transient corrosion-layer thickness. For short, defueled cladding specimens oxidized at 1000-1200 C, ring compression tests were performed to determine post-quench ductility at {le} 135 C. The effect of breakaway oxidation on embrittlement was also examined for short specimens oxidized at 800-1000 C. Among other findings, embrittlement was found to be sensitive to fabrication processes--especially surface finish--but insensitive to alloy constituents for these dilute zirconium alloys used as cladding materials. It was also demonstrated that burnup effects on embrittlement are largely due to hydrogen that is absorbed in the cladding during normal operation. Some tests were also performed with longer, fueled-and-pressurized cladding segments subjected to LOCA-relevant heating and cooling rates. Recommendations are given for types of tests that would identify LOCA conditions under which embrittlement would occur.

  15. BISON Fuel Performance Analysis of FeCrAl cladding with updated properties

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); George, Nathan M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wirth, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-08-30

    In order to improve the accident tolerance of light water reactor (LWR) fuel, alternative cladding materials have been proposed to replace zirconium (Zr)-based alloys. Of these materials, there is a particular focus on iron-chromium-aluminum (FeCrAl) alloys due to much slower oxidation kinetics in high-temperature steam than Zr-alloys. This should decrease the energy release due to oxidation and allow the cladding to remain integral longer in the presence of high temperature steam, making accident mitigation more likely. As a continuation of the development for these alloys, suitability for normal operation must also be demonstrated. This research is focused on modeling the integral thermo-mechanical performance of FeCrAl-cladded fuel during normal reactor operation. Preliminary analysis has been performed to assess FeCrAl alloys (namely Alkrothal 720 and APMT) as a suitable fuel cladding replacement for Zr-alloys, using the MOOSE-based, finite-element fuel performance code BISON and the best available thermal-mechanical and irradiation-induced constitutive properties. These simulations identify the effects of the mechanical-stress and irradiation response of FeCrAl, and provide a comparison with Zr-alloys. In comparing these clad materials, fuel rods have been simulated for normal reactor operation and simple steady-state operation. Normal reactor operating conditions target the cladding performance over the rod lifetime (~4 cycles) for the highest-power rod in the highest-power fuel assembly under reactor power maneuvering. The power histories and axial temperature profiles input into BISON were generated from a neutronics study on full-core reactivity equivalence for FeCrAl using the 3D full core simulator NESTLE. Evolution of the FeCrAl cladding behavior over time is evaluated by using steady-state operating conditions such as a simple axial power profile, a constant cladding surface temperature, and a constant fuel power history. The fuel rod designs and

  16. Study of cladding toughness in a pressure vessel steel water reactor

    International Nuclear Information System (INIS)

    Soulat, P.; Al Mundheri, M.

    1984-12-01

    Toughness of cladding and pressure vessel steel were determined at different temperatures in order to appreciate the participation of cladding resistance against crack propagation. The toughness of cladding is comparable with typical results on austenitic welds. The test on covered CT specimens shows the possibility of having a relatively good prevision of the behaviour of a coated structure

  17. In-reactor cladding breach of EBR-II driver-fuel elements

    International Nuclear Information System (INIS)

    Seidel, B.R.; Einziger, R.E.

    1977-01-01

    Knowledge of performance and minimum useful element lifetime of Mark-II driver-fuel elements is required to maintain a high plant operating capacity factor with maximum fuel utilization. To obtain such knowledge, intentional cladding breach has been obtained in four run-to-cladding-breach Mark-II experimental driver-fuel subassemblies operating under normal conditions in EBR-II. Breach and subsequent fission-product release proved benign to reactor operations. The breaches originated on the outer surface of the cladding in the root of the restrainer dimples and were intergranular. The Weibull distribution of lifetime accurately predicts the observed minimum useful element lifetime of 10 at.% burnup, with breach ensuing shortly thereafter

  18. Hygrothermal performance of ventilated wooden cladding

    Energy Technology Data Exchange (ETDEWEB)

    Nore, Kristine

    2009-10-15

    This project contributes to more accurate design guidelines for high-performance building envelopes by analysis of hygrothermal performance of ventilated wooden cladding. Hygrothermal performance is defined by cladding temperature and moisture conditions, and subsequently by risk of degradation. Wood cladding is the most common facade material used in rural and residential areas in Norway. Historically, wooden cladding design varied in different regions in Norway. This was due to both climatic variations and the logistical distance to materials and craftspeople. The rebuilding of Norwegian houses in the 1950s followed central guidelines where local climate adaptation was often not evaluated. Nowadays we find some technical solutions that do not withstand all climate exposures. The demand for thermal comfort and also energy savings has changed hygrothermal condition of the building envelopes. In well-insulated wall assemblies, the cladding temperature is lower compared to traditional walls. Thus the drying out potential is smaller, and the risk of decay may be higher. The climate change scenario indicates a warmer and wetter future in Norway. Future buildings should be designed to endure harsher climate exposure than at present. Is there a need for refined climate differentiated design guidelines for building enclosures? As part of the Norwegian research programme 'Climate 2000', varieties of wooden claddings have been investigated on a test house in Trondheim. The aim of this investigation was to increase our understanding of the relation between microclimatic conditions and the responding hygrothermal performance of wooden cladding, according to orientation, design of ventilation gap, wood material quality and surface treatment. The two test facades, facing east and west have different climate exposure. Hourly measurements of in total 250 sensors provide meteorological data; temperature, radiation, wind properties, relative humidity, and test house data

  19. GSGG edge cladding development: Final technical report

    International Nuclear Information System (INIS)

    Izumitani, T.; Meissner, H.E.; Toratani, H.

    1986-01-01

    The objectives of this project have been: (1) Investigate the possibility of chemical etching of GSGG crystal slabs to obtain increased strength. (2) Design and construct a simplified mold assembly for casting cladding glass to the edges of crystal slabs of different dimensions. (3) Conduct casting experiments to evaluate the redesigned mold assembly and to determine stresses as function of thermal expansion coefficient of cladding glass. (4) Clad larger sizes of GGG slabs as they become available. These tasks have been achieved. Chemical etching of GSGG slabs does not appear possible with any other acid than H 3 PO 4 at temperatures above 300 0 C. A mold assembly has been constructed which allowed casting cladding glass around the edges of the largest GGG slabs available (10 x 20 x 160 mm) without causing breakage through the annealing step

  20. Clad-coolant chemical interaction

    International Nuclear Information System (INIS)

    Iglesias, F.C.; Lewis, B.J.; Desgranges, C.; Toffolon, C.

    2015-01-01

    This paper provides an overview of the kinetics for zircaloy clad oxidation behaviour in steam and air during reactor accident conditions. The generation of chemical heat from metal/water reaction is considered. Low-temperature oxidation of zircaloy due to water-side corrosion is further described. (authors)

  1. Behavior of high burnup fuel rod cladding during long-term dry storage in CASTOR casks

    International Nuclear Information System (INIS)

    Schaberg, A.; Spilker, H.; Goll, W.

    2000-01-01

    Short-time creep and rupture tests were performed to assess the strain potential of cladding of high burnt rods under conditions of dry storage. The tests comprised optimized Zr y-4 cladding samples from fuel rods irradiated to burnups of up to 64 MWd/kg U and were carried out at temperatures of 573 and 643 K at cladding stresses of about 400 and 600 MPa. The stresses, much higher than those occurring in a fuel rod, were chosen to reach circumferential elongations of about 2% within an envisaged testing time of 3-4 days. The creep tests were followed by a low temperature test at 423 K and 100 MPa to assess the long-term behavior of the cladding ductility especially with regard to the effect of a higher hydrogen content in the cladding due to the high burnup. The creep tests showed considerable uniform plastic elongations at these high burnups. It was demonstrated that around 600 K a uniform plastic strain of a least 2% is reached without cladding failure. The low temperature tests at 423 K for up to 5 days revealed no cladding failure under these conditions of reduced cladding ductility. It can be concluded that the increased hydrogen content has no adverse effect on cladding performance. (Authors)

  2. Experimental and calculation results of the integral reflood test QUENCH-14 with M5 (registered) cladding tubes

    International Nuclear Information System (INIS)

    Stuckert, J.; Birchley, J.; Grosse, M.; Jaeckel, B.; Steinbrueck, M.

    2010-01-01

    The QUENCH-14 experiment investigated the effect of M5 (registered) cladding material on bundle oxidation and core reflood, in comparison with tests QUENCH-06 (ISP-45) that used standard Zircaloy-4 and QUENCH-12 that used VVER E110-claddings. The PWR bundle configuration of QUENCH-14 with a single unheated rod, 20 heated rods, and four corner rods was otherwise identical to QUENCH-06. The test was conducted in principle with the same protocol as QUENCH-06, so that the effects of the change of cladding material could be observed more easily. Pre-test calculations were performed by the Paul Scherrer Institut (Switzerland) using the SCDAPSIM, SCDAP/RELAP5 and MELCOR codes. Follow-on post-test analyses were performed using SCDAP/RELAP5 and MELCOR as part of an ongoing programme of model validation and code assessment. Alternative oxidation correlations were used to examine the possible influence of the M5 (registered) cladding material on hydrogen generation, in comparison with Zircaloy-4. The experiment started with a pre-oxidation phase in steam, lasting ∼3000 s at ∼1500 K peak bundle temperature. After a further temperature increase to maximum bundle temperature of 2073 K the bundle was flooded with 2 g/s/rod water from the bottom. The peak temperature of ∼2300 K was measured on the bundle shroud, shortly after quench initiation. The electrical power was reduced to average value of 2 W/cm during the reflood phase to simulate effective decay heat level. Complete bundle cooling was reached in 300 s after reflood initiation. The development of the oxide layer growth during the test was essentially defined by measurements performed on the three Zircaloy-4 corner rods withdrawn successively from the bundle. The withdrawal of Zircaloy-4 and E110 corner rods after the test allowed a comparison of the different alloys in one test. One heated rod with M5 cladding was withdrawn after the test for a detailed analysis of oxidation degree and measurement of absorbed

  3. High-temperature steam oxidation kinetics of the E110G cladding alloy

    International Nuclear Information System (INIS)

    Király, Márton; Kulacsy, Katalin; Hózer, Zoltán; Perez-Feró, Erzsébet; Novotny, Tamás

    2016-01-01

    In the course of recent years, several experiments were performed at MTA EK (Centre for Energy Research, Hungarian Academy of Sciences) on the isothermal high-temperature oxidation of the improved Russian cladding alloy E110G in steam/argon atmosphere. Using these data and designing additional supporting experiments, the oxidation kinetics of the E110G alloy was investigated in a wide temperature range, between 600 °C and 1200 °C. For short durations (below 500 s) or high temperatures (above 1065 °C) the oxidation kinetics was found to follow a square-root-of-time dependence, while for longer durations and in the intermediate temperature range (800–1000 °C) it was found to approach a cube-root-of-time dependence rather than a square-root one. Based on the results a new best-estimate and a conservative oxidation kinetics model were created. - Highlights: • Steam oxidation kinetics of E110G was studied at MTA EK based on old and new data. • New best-estimate and conservative steam oxidation kinetics were proposed for E110G. • The exponent of oxidation time changed depending on oxidation temperature. • A simple exponential curve was used instead of Arrhenius-type curve for the factor.

  4. Hydraulic burst tests at elevated temperatures on Zircaloy cladding from fuel rods irradiated in the Winfrith SGHWR

    International Nuclear Information System (INIS)

    Garlick, A.; Hindmarch, P.

    1980-09-01

    Closed-end hydraulic burst tests have been carried out at 613K on lengths of cladding cut from fuel rods that had been irradiated in the SGHWR to 25 n/m 2 . The effects of reactor exposure on the mechanical properties of the Zircaloy cladding, initially in the stress-relieved and fully recrystallised conditions, have been evaluated from measurements of the 0.2% proof stress, the ultimate burst stress, the total circumferential elongation and the reduction in wall thickness at fracture. It is shown that after irradiation, the measured strength properties of stress-relieved cladding remained higher than for that in the fully recrystallised condition, although the large differences observed before irradiation were considerably reduced. The irradiation-induced increase in proof stress measured during these tests was compared with US results from uniaxial tensile tests and, after correcting for the effect of stress-ratio, it is concluded that close agreement exists between the two sets of data for Zircaloy in the fully recrystallised condition. In contrast, the agreement for stress-relieved Zircaloy is less good, although the maximum increase in proof stress after high neutron doses for this material is similar for data from the two sources. After irradiation, the ductility of fully recrystallised Zircaloy remained higher than that of stress-relieved material and there was no evidence to suggest that a serious loss of ductility had occurred for Zircaloy in either condition of heat-treatment as a result of reactor exposure. (author)

  5. Statistical mechanical analysis of LMFBR fuel cladding tubes

    International Nuclear Information System (INIS)

    Poncelet, J.-P.; Pay, A.

    1977-01-01

    The most important design requirement on fuel pin cladding for LMFBR's is its mechanical integrity. Disruptive factors include internal pressure from mixed oxide fuel fission gas release, thermal stresses and high temperature creep, neutron-induced differential void-swelling as a source of stress in the cladding and irradiation creep of stainless steel material, corrosion by fission products. Under irradiation these load-restraining mechanisms are accentuated by stainless steel embrittlement and strength alterations. To account for the numerous uncertainties involved in the analysis by theoretical models and computer codes statistical tools are unavoidably requested, i.e. Monte Carlo simulation methods. Thanks to these techniques, uncertainties in nominal characteristics, material properties and environmental conditions can be linked up in a correct way and used for a more accurate conceptual design. First, a thermal creep damage index is set up through a sufficiently sophisticated clad physical analysis including arbitrary time dependence of power and neutron flux as well as effects of sodium temperature, burnup and steel mechanical behavior. Although this strain limit approach implies a more general but time consuming model., on the counterpart the net output is improved and e.g. clad temperature, stress and strain maxima may be easily assessed. A full spectrum of variables are statistically treated to account for their probability distributions. Creep damage probability may be obtained and can contribute to a quantitative fuel probability estimation

  6. Cladding Alloys for Fluoride Salt Compatibility Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Muralidharan, Govindarajan [ORNL; Wilson, Dane F [ORNL; Santella, Michael L [ORNL; Holcomb, David Eugene [ORNL

    2011-05-01

    This interim report provides an overview of several candidate technologies for cladding nickel-based corrosion protection layers onto high-temperature structural alloys. The report also provides a brief overview of the welding and weld performance issues associated with joining nickel-clad nickel-based alloys. From the available techniques, two cladding technologies were selected for initial evaluation. The first technique is a line-of-sight method that would be useful for coating large structures such as vessel interiors or large piping. The line-of-sight method is a laser-based surface cladding technique in which a high-purity nickel powder mixed into a polymer binder is first sprayed onto the surface, baked, and then rapidly melted using a high power laser. The second technique is a vapor phase technique based on the nickel-carbonyl process that is suitable for coating inaccessible surfaces such as the interior surfaces of heat exchangers. The final project report will feature an experimental evaluation of the performance of the two selected cladding techniques.

  7. Manufacture of thin-walled clad tubes by pressure welding of roll bonded sheets

    Science.gov (United States)

    Schmidt, Hans Christian; Grydin, Olexandr; Stolbchenko, Mykhailo; Homberg, Werner; Schaper, Mirko

    2017-10-01

    Clad tubes are commonly manufactured by fusion welding of roll bonded metal sheets or, mechanically, by hydroforming. In this work, a new approach towards the manufacture of thin-walled tubes with an outer diameter to wall thickness ratio of about 12 is investigated, involving the pressure welding of hot roll bonded aluminium-steel strips. By preparing non-welded edges during the roll bonding process, the strips can be zip-folded and (cold) pressure welded together. This process routine could be used to manufacture clad tubes in a continuous process. In order to investigate the process, sample tube sections with a wall thickness of 2.1 mm were manufactured by U-and O-bending from hot roll bonded aluminium-stainless steel strips. The forming and welding were carried out in a temperature range between RT and 400°C. It was found that, with the given geometry, a pressure weld is established at temperatures starting above 100°C. The tensile tests yield a maximum bond strength at 340°C. Micrograph images show a consistent weld of the aluminium layer over the whole tube section.

  8. Oxidation during reflood of reactor core with melting cladding

    Energy Technology Data Exchange (ETDEWEB)

    Siefken, L.J.; Allison, C.M.; Davis, K.L. [and others

    1995-09-01

    Models were recently developed and incorporated into the SCDAP/RELAP5 code for calculating the oxidation of fuel rods during cladding meltdown and reflood. Experiments have shown that a period of intense oxidation may occur when a hot partially oxidized reactor core is reflooded. This paper offers an explanation of the cladding meltdown and oxidation processes that cause this intense period of oxidation. Models for the cladding meltdown and oxidation processes are developed. The models are assessed by simulating a severe fuel damage experiment that involved reflood. The models for cladding meltdown and oxidation were found to improve calculation of the temperature and oxidation of fuel rods during the period in which hot fuel rods are reflooded.

  9. Semipolar III-nitride laser diodes with zinc oxide cladding.

    Science.gov (United States)

    Myzaferi, Anisa; Reading, Arthur H; Farrell, Robert M; Cohen, Daniel A; Nakamura, Shuji; DenBaars, Steven P

    2017-07-24

    Incorporating transparent conducting oxide (TCO) top cladding layers into III-nitride laser diodes (LDs) improves device design by reducing the growth time and temperature of the p-type layers. We investigate using ZnO instead of ITO as the top cladding TCO of a semipolar (202¯1) III-nitride LD. Numerical modeling indicates that replacing ITO with ZnO reduces the internal loss in a TCO clad LD due to the lower optical absorption in ZnO. Lasing was achieved at 453 nm with a threshold current density of 8.6 kA/cm 2 and a threshold voltage of 10.3 V in a semipolar (202¯1) III-nitride LD with ZnO top cladding.

  10. Composite polymer: Glass edge cladding for laser disks

    Science.gov (United States)

    Powell, H.T.; Wolfe, C.A.; Campbell, J.H.; Murray, J.E.; Riley, M.O.; Lyon, R.E.; Jessop, E.S.

    1987-11-02

    Large neodymium glass laser disks for disk amplifiers such as those used in the Nova laser require an edge cladding which absorbs at 1 micrometer. This cladding prevents edge reflections from causing parasitic oscillations which would otherwise deplete the gain. Nova now utilizes volume-absorbing monolithic-glass claddings which are fused at high temperature to the disks. These perform quite well but are expensive to produce. Absorbing glass strips are adhesively bonded to the edges of polygonal disks using a bonding agent whose index of refraction matches that of both the laser and absorbing glass. Optical finishing occurs after the strips are attached. Laser disks constructed with such claddings have shown identical gain performance to the previous Nova disks and have been tested for hundreds of shots without significant degradation. 18 figs.

  11. Composite polymer-glass edge cladding for laser disks

    Science.gov (United States)

    Powell, Howard T.; Riley, Michael O.; Wolfe, Charles R.; Lyon, Richard E.; Campbell, John H.; Jessop, Edward S.; Murray, James E.

    1989-01-01

    Large neodymium glass laser disks for disk amplifiers such as those used in the Nova laser require an edge cladding which absorbs at 1 micrometer. This cladding prevents edge reflections from causing parasitic oscillations which would otherwise deplete the gain. Nova now utilizes volume-absorbing monolithic-glass claddings which are fused at high temperature to the disks. These perform quite well but are expensive to produce. Absorbing glass strips are adhesively bonded to the edges of polygonal disks using a bonding agent whose index of refraction matches that of both the laser and absorbing glass. Optical finishing occurs after the strips are attached. Laser disks constructed with such claddings have shown identical gain performance to the previous Nova disks and have been tested for hundreds of shots without significant degradation.

  12. Mid-depth temperature maximum in an estuarine lake

    Science.gov (United States)

    Stepanenko, V. M.; Repina, I. A.; Artamonov, A. Yu; Gorin, S. L.; Lykossov, V. N.; Kulyamin, D. V.

    2018-03-01

    The mid-depth temperature maximum (TeM) was measured in an estuarine Bol’shoi Vilyui Lake (Kamchatka peninsula, Russia) in summer 2015. We applied 1D k-ɛ model LAKE to the case, and found it successfully simulating the phenomenon. We argue that the main prerequisite for mid-depth TeM development is a salinity increase below the freshwater mixed layer, sharp enough in order to increase the temperature with depth not to cause convective mixing and double diffusion there. Given that this condition is satisfied, the TeM magnitude is controlled by physical factors which we identified as: radiation absorption below the mixed layer, mixed-layer temperature dynamics, vertical heat conduction and water-sediments heat exchange. In addition to these, we formulate the mechanism of temperature maximum ‘pumping’, resulting from the phase shift between diurnal cycles of mixed-layer depth and temperature maximum magnitude. Based on the LAKE model results we quantify the contribution of the above listed mechanisms and find their individual significance highly sensitive to water turbidity. Relying on physical mechanisms identified we define environmental conditions favouring the summertime TeM development in salinity-stratified lakes as: small-mixed layer depth (roughly, ~wind and cloudless weather. We exemplify the effect of mixed-layer depth on TeM by a set of selected lakes.

  13. The ballooning of fuel cladding tubes: theory and experiment

    International Nuclear Information System (INIS)

    Shewfelt, R.S.W.

    1988-01-01

    Under some conditions, fuel clad ballooning can result in considerable strain before rupture. If ballooning were to occur during a loss-of-coolant accident (LOCA), the resulting substantial blockage of the sub-channel would restrict emergency core cooling. However, circumferential temperature gradients that would occur during a LOCA may significantly limit the average strain at failure. Understandably, the factors that control ballooning and rupture of fuel clad are required for the analysis of a LOCA. Considerable international effort has been spent on studying the deformation of Zircaloy fuel cladding under conditions that would occur during a LOCA. This effort has established a reasonable understanding of the factors that control the ballooning, failure time, and average failure strain of fuel cladding. In this paper, both the experimental and theoretical studies of the fuel clad ballooning are reviewed. (author)

  14. Effect of ultra high temperature ceramics as fuel cladding materials on the nuclear reactor performance by SERPENT Monte Carlo code

    Energy Technology Data Exchange (ETDEWEB)

    Korkut, Turgay; Kara, Ayhan; Korkut, Hatun [Sinop Univ. (Turkey). Dept. of Nuclear Energy Engineering

    2016-12-15

    Ultra High Temperature Ceramics (UHTCs) have low density and high melting point. So they are useful materials in the nuclear industry especially reactor core design. Three UHTCs (silicon carbide, vanadium carbide, and zirconium carbide) were evaluated as the nuclear fuel cladding materials. The SERPENT Monte Carlo code was used to model CANDU, PWR, and VVER type reactor core and to calculate burnup parameters. Some changes were observed at the same burnup and neutronic parameters (keff, neutron flux, absorption rate, and fission rate, depletion of U-238, U-238, Xe-135, Sm-149) with the use of these UHTCs. Results were compared to conventional cladding material zircalloy.

  15. Assessment of oxygen diffusion coefficients by studying high-temperature oxidation behaviour of Zr1Nb fuel cladding in the temperature range of 1100–1300 °C

    Energy Technology Data Exchange (ETDEWEB)

    Négyesi, M., E-mail: negy@seznam.cz [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2 (Czech Republic); UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Praha – Zbraslav (Czech Republic); Chmela, T. [UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Praha – Zbraslav (Czech Republic); Veselský, T. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2 (Czech Republic); Krejčí, J. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2 (Czech Republic); CHEMCOMEX Praha a.s., Elišky Přemyslovny 379, 156 10 Praha – Zbraslav (Czech Republic); Novotný, L.; Přibyl, A. [UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Praha – Zbraslav (Czech Republic); Bláhová, O. [New Technologies Research Centre, University of West Bohemia, Univerzitní 8, 306 14 Plzeň (Czech Republic); Burda, J. [NRI Rez plc, Husinec-Řež 130, 250 68 Řež (Czech Republic); Siegl, J. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2 (Czech Republic); Vrtílková, V. [UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Praha – Zbraslav (Czech Republic)

    2015-01-15

    The paper deals with high-temperature steam oxidation behaviour of Zr1Nb fuel cladding. First of all, comprehensive experimental program was conducted to provide sufficient experimental data, such as the thicknesses of evolved phase layers and the overall weight gain kinetics, as well as the oxygen concentration and nanohardness values at phase boundaries. Afterwards, oxygen diffusion coefficients in the oxide, in the α-Zr(O) layer, in the double-phase (α + β)-Zr region, and in the β-phase region have been estimated based on the experimental data employing analytical solution of the multiphase moving boundary problem, assuming the equilibrium conditions being fulfilled at the interface boundaries. Eventually, the determined oxygen diffusion coefficients served as input into the in-house numerical code, which was designed to predict the high-temperature oxidation behaviour of Zr1Nb fuel cladding. Very good agreement has been achieved between the numerical calculations and the experimental data.

  16. Maximum Temperature Detection System for Integrated Circuits

    Science.gov (United States)

    Frankiewicz, Maciej; Kos, Andrzej

    2015-03-01

    The paper describes structure and measurement results of the system detecting present maximum temperature on the surface of an integrated circuit. The system consists of the set of proportional to absolute temperature sensors, temperature processing path and a digital part designed in VHDL. Analogue parts of the circuit where designed with full-custom technique. The system is a part of temperature-controlled oscillator circuit - a power management system based on dynamic frequency scaling method. The oscillator cooperates with microprocessor dedicated for thermal experiments. The whole system is implemented in UMC CMOS 0.18 μm (1.8 V) technology.

  17. Clad buffer rod sensors for liquid metals

    International Nuclear Information System (INIS)

    Jen, C.-K.; Ihara, I.

    1999-01-01

    Clad buffer rods, consisting of a core and a cladding, have been developed for ultrasonic monitoring of liquid metal processing. The cores of these rods are made of low ultrasonic-loss materials and the claddings are fabricated by thermal spray techniques. The clad geometry ensures proper ultrasonic guidance. The lengths of these rods ranges from tens of centimeters to 1m. On-line ultrasonic level measurements in liquid metals such as magnesium at 700 deg C and aluminum at 960 deg C are presented to demonstrate their operation at high temperature and their high ultrasonic performance. A spherical concave lens is machined at the rod end for improving the spatial resolution. High quality ultrasonic images have been obtained in the liquid zinc at 600 deg C. High spatial resolution is needed for the detection of inclusions in liquid metals during processing. We also show that the elastic properties such as density, longitudinal and shear wave velocities of liquid metals can be measured using a transducer which generates and receives both longitudinal and shear waves and is mounted at the end of a clad buffer rod. (author)

  18. WWER water chemistry related to fuel cladding behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Kysela, J; Zmitko, M [Nuclear Research Inst. plc., Rez (Czech Republic); Vrtilkova, V [Nuclear Fuel Inst., Prague (Czech Republic)

    1997-02-01

    Operational experience in WWER primary water chemistry and corrosion related to the fuel cladding is reviewed. Insignificant corrosion of fuel cladding was found which is caused by good corrosion resistance of Zr1Nb material and relatively low coolant temperature at WWER-440 reactor units. The differences in water chemistry control is outlined and an attention to the question of compatibility of Zircaloys with WWER water chemistry is given. Some results of research and development in field of zirconium alloy corrosion behaviour are discussed. Experimental facility for in-pile and out-of-pile cladding material corrosion testing is shown. (author). 14 refs, 5 figs, 3 tabs.

  19. Annealing studies of zircaloy-2 cladding at 580-8500C

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1978-05-01

    For fuel element cladding it is important to determine if prior metallurgical condition combined with irradiation damage can influence high temperature deformation, because studies of such deformation are required to produce data for the cladding ballooning models which are used in analysing loss-of-coolant accidents (LOCA). If the behaviour of all cladding conditions during a LOCA can be represented by, say, the annealed condition, then much experimental work on a multiplicity of cladding conditions can be avoided. By examining the metallographic structure and hardness, the present study determines the time required in the range 580 to 850 0 C for returning Zircaloy cladding to the annealed condition, so that for any transient, a point can be specified where the material should have annealed. An equation has been derived to give this information. (author)

  20. Circumferential nonuniformity of cladding radiation swelling of fast reactor peripheral fuel elements

    International Nuclear Information System (INIS)

    Reutov, V.F.; Farkhutdinov, K.G.

    1977-01-01

    The results are presented of the investigation into the perimeter radiation swelling of Kh18N10T stainless steel cladding in different cross sections of a peripheral fuel element of the BR-5 reactor. The fluence on the cladding is 1.8-2.9 x 10 22 fast neutr/cm 2 , the operating temperatures in different parts of the fuel element being 430 deg to 585 deg C. There has been observed circumferential non-uniformity of the distribution, concentration, and of the total volume of radiation cavities, which is due to temperature non-uniformity along the cladding perimeter. It is shown that such non-uniformity of radiation swelling of the cladding material may result in bending of the peripheral fuel element with regard to the fuel assembly sheath walls

  1. Laser Cladding of Embedded Sensors for Thermal Barrier Coating Applications

    Directory of Open Access Journals (Sweden)

    Yanli Zhang

    2018-05-01

    Full Text Available The accurate real-time monitoring of surface or internal temperatures of thermal barrier coatings (TBCs in hostile environments presents significant benefits to the efficient and safe operation of gas turbines. A new method for fabricating high-temperature K-type thermocouple sensors on gas turbine engines using coaxial laser cladding technology has been developed. The deposition of the thermocouple sensors was optimized to provide minimal intrusive features to the TBC, which is beneficial for the operational reliability of the protective coatings. Notably, this avoids a melt pool on the TBC surface. Sensors were deposited onto standard yttria-stabilized zirconia (7–8 wt % YSZ coated substrates; subsequently, they were embedded with second YSZ layers by the Atmospheric Plasma Spray (APS process. Morphology of cladded thermocouples before and after embedding was optimized in terms of topography and internal homogeneity, respectively. The dimensions of the cladded thermocouple were in the order of 200 microns in thickness and width. The thermal and electrical response of the cladded thermocouple was tested before and after embedding in temperatures ranging from ambient to approximately 450 °C in a furnace. Seebeck coefficients of bared and embedded thermocouples were also calculated correspondingly, and the results were compared to that of a commercial standard K-type thermocouple, which demonstrates that laser cladding is a prospective technology for manufacturing microsensors on the surface of or even embedded into functional coatings.

  2. Irradiation behavior evaluation of oxide dispersion strengthened ferritic steel cladding tubes irradiated in JOYO

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Shinichiro, E-mail: yamashita.shinichiro@jaea.go.jp; Yano, Yasuhide; Ohtsuka, Satoshi; Yoshitake, Tsunemitsu; Kaito, Takeji; Koyama, Shin-ichi; Tanaka, Kenya

    2013-11-15

    Irradiation behavior of ODS steel cladding tubes was evaluated for the further progress in understanding of the neutron-irradiation effects on ODS steel. Two types of ODS (9Cr–ODS{sub F}/M, 12Cr–ODS{sub F}) steel cladding tubes with differences in basic compositions and matrix phases were irradiated in JOYO. Post-irradiation examination data concerning hardness, ring tensile property, and microstructure were obtained. Hardness measurement after irradiation showed that there was an apparent irradiation temperature dependence on hardness for 9Cr–ODS{sub F}/M steel whereas no distinct temperature dependence for 12Cr–ODS{sub F} steel. Also, there was no significant change in tensile strengths after irradiation below 923 K, but those above 1023 K up to 6.6 × 10{sup 26} n/m{sup 2} (E > 0.1 MeV) were decreased by about 20%. TEM observations showed that the radiation-induced defect cluster formation during irradiation was suppressed because of high density sink site for defect such as initially-existed dislocation, and precipitate interfaces. In addition, oxide particles were stable up to the maximum doses of this irradiation test.

  3. Real-time laser cladding control with variable spot size

    Science.gov (United States)

    Arias, J. L.; Montealegre, M. A.; Vidal, F.; Rodríguez, J.; Mann, S.; Abels, P.; Motmans, F.

    2014-03-01

    Laser cladding processing has been used in different industries to improve the surface properties or to reconstruct damaged pieces. In order to cover areas considerably larger than the diameter of the laser beam, successive partially overlapping tracks are deposited. With no control over the process variables this conduces to an increase of the temperature, which could decrease mechanical properties of the laser cladded material. Commonly, the process is monitored and controlled by a PC using cameras, but this control suffers from a lack of speed caused by the image processing step. The aim of this work is to design and develop a FPGA-based laser cladding control system. This system is intended to modify the laser beam power according to the melt pool width, which is measured using a CMOS camera. All the control and monitoring tasks are carried out by a FPGA, taking advantage of its abundance of resources and speed of operation. The robustness of the image processing algorithm is assessed, as well as the control system performance. Laser power is decreased as substrate temperature increases, thus maintaining a constant clad width. This FPGA-based control system is integrated in an adaptive laser cladding system, which also includes an adaptive optical system that will control the laser focus distance on the fly. The whole system will constitute an efficient instrument for part repair with complex geometries and coating selective surfaces. This will be a significant step forward into the total industrial implementation of an automated industrial laser cladding process.

  4. Study on the improvement of nuclear fuel cladding reliability

    International Nuclear Information System (INIS)

    Rheem, Karp Soon; Han, Jung Ho; Jeong, Yong Hwan; Lee, Deok Hyun

    1987-12-01

    In order to improve the nuclear fuel cladding reliability for high burn-up fuels, the corrosion resistance of laser beam surface treated and β-quenched zircaloys and the mechanical characteristics including fatigue, burst, and out-of-pile PCMI characteristics of heat treated zircaloys were investigated. In addition, the inadiation characteristics of Ko-Ri reactor fuel claddings was examined. It was found that the wasteside corrosion resistance of commercial zircaloys was improved remarkably by laser beam surface treatment. The out-of-pile transient cladding failures were investigated in terms of hoop stress versus time-to-failures by means of mandrel loading units at 25 deg C and 325 deg C. Fatigue characteristics of the β-quenched and as-received zircaloy cladding were investigated by using an internal oil pressurization method which can simulate the load-following operation cycle. The results were in good agreement with the existing data obtained by conventional methods for commercial zircaloys. Burst tests were performed with commercial and the β-quenched zircaloys in high pressure argon gas atmosphere as a function of burst temperature. The burst stress decreased linearly in the α phase region up to 600 deg C and hereafter the decrement of the burst stress decreased gradually with temperature in the β-phase region. For the first time, the burst characteristic of the irradiated zircaloy-4 cladding tubes released from Ko-Ri nuclear power unit 1 was investigated, and attempts were made to trace the cause of cladding failures by examining the failed structure and fret marks by debris. (Author)

  5. High temperature oxidation test of oxide dispersion strengthened (ODS) steel claddings

    International Nuclear Information System (INIS)

    Narita, Takeshi; Ukai, Shigeharu; Kaito, Takeji; Ohtsuka, Satoshi; Matsuda, Yasushi

    2006-07-01

    In a feasibility study of ODS steel cladding, its high temperature oxidation resistance was evaluated. Although addition of Cr is effective for preventing high temperature oxidation, excessively higher amount of Cr leads to embrittlement due to the Cr-rich α' precipitate formation. In the ODS steel developed by the Japan Atomic Energy Agency (JAEA), the Cr content is controlled in 9Cr-ODS martensite and 12Cr-ODS ferrite. In this study, high temperature oxidation test was conducted for ODS steels, and their results were compared with that of conventional austenitic stainless steel and ferritic-martensitic stainless steel. Following results were obtained in this study. (1) 9Cr-ODS martensitic and 12Cr-ODS ferritic steel have superior high temperature oxidation resistance compared to 11mass%Cr PNC-FMS and even 17mass% SUS430 and equivalent to austenitic PNC316. (2) The superior oxidation resistance of ODS steel was attributed to earlier formation of the protective alpha-Cr 2 O 3 layer at the matrix and inner oxide scale interface. The grain size of ODS steel is finer than that of PNC-FMS, so the superior oxidation resistance of ODS steel can be attributed to the enhanced Cr-supplying rate throughout the accelerated grain boundary diffusion. Finely dispersed Y 2 O 3 oxide particles in the ODS steel matrix may also stabilized the adherence between the protective alpha-Cr 2 O 3 layer and the matrix. (author)

  6. Elastic plastic analysis of fuel element assemblies - hexagonal claddings and fuel rods

    International Nuclear Information System (INIS)

    Mamoun, M.M.; Wu, T.S.; Chopra, P.S.; Rardin, D.C.

    1979-01-01

    Analytical studies have been conducted to investigate the structural, thermal, and mechanical behavior of fuel rods, claddings and fuel element assemblies of several designs for a conceptual Safety Test Facility (STF). One of the design objectives was to seek a geometrical configuration for a clad by maximizing the volume fraction of fuel and minimizing the resultant stresses set-up in the clad. The results of studies conducted on various geometrical configurations showed that the latter design objective can be achieved by selecting a clad of an hexagonal geometry. The analytical studies necessitated developing solutions for determining the stresses, strains, and displacements experienced by fuel rods and an hexagonal cladding subjected to thermal fuel-bowing loads acting on its internal surface, the external pressure of the coolant, and elevated temperatures. This paper presents some of the initially formulated analytical methods and results. It should be emphasized that the geometrical configuration considered in this paper may not necessarily be similar to that of the final design. Several variables have been taken into consideration including cladding thickness, the dimensions of the fuel rod, the temperature of the fuel and cladding, the external pressure of the cooling fluid, and the mechanical strength properties of fuel and cladding. A finite-element computer program, STRAW Code, has also been employed to generate several numerical results which have been compared with those predicted by employing the initially formulated solutions. The theoretically predicted results are in good agreement with those of the STRAW Code. (orig.)

  7. Chemical dissolution of spent fuel and cladding using complexed fluoride species

    International Nuclear Information System (INIS)

    Rance, P.J.W.; Freeman, G.A.; Mishin, V.; Issoupov, V.

    2001-01-01

    The dissolution of LWR fuel cladding using two fluoride ion donors, HBF 4 and K 2 ZrF 6 , in combination with nitric acid has been investigated as a potential reprocessing head-end process suitable for chemical decladding and fuel dissolution in a single process step. Maximum zirconium concentrations in the order of 0,75 to 1 molar have been achieved and dissolution found to continue to low F:Zr ratios albeit at ever decreasing rates. Dissolution rates of un-oxidised zirconium based fuel claddings are fast, whereas oxidised materials exhibit an induction period prior to dissolution. Data is presented relating to the rates of dissolution of cladding and UO 2 fuels under various conditions. (author)

  8. Effects of irradiation on strength and toughness of commercial LWR vessel cladding

    International Nuclear Information System (INIS)

    Haggag, F.M.; Corwin, W.R.; Alexander, D.J.; Nanstad, R.K.

    1987-01-01

    The potential for stainless steel cladding to improve the fracture behavior of an operating nuclear reactor pressure vessel, particularly during certain overcooling transients, may depend greatly on the properties of the irradiated cladding. Therefore, weld overlay cladding irradiated at temperatures and to fluences relevant to power reactor operation was examined. The cladding was applied to a pressure vessel steel plate by the three-wire series-arc commercial method. Cladding was applied in three layers to provide adequate thickness for the fabrication of test specimens. The three-wire series-arc procedure, developed by Combustion Engineering, Inc., Chattanooga, Tennessee, produced a highly controlled weld chemistry, microstructure, and fracture properties in all three layers of the weld. Charpy V-notch and tensile specimens were irradiated at 288 0 C to fluence levels of 2 and 5 x 10 19 neutrons/cm 2 (>1 MeV). Postirradiation testing results show that, in the test temperature range from -125 to 288 0 C, the yield strength increased by 8 to 30%, ductility insignificantly increased, while there was almost no change in ultimate tensile strength. All cladding exhibited ductile-to-brittle transition behavior during Charpy impact testing, due to the dominance of delta-ferrite failures at low temperatures. On the upper shelf, energy was reduced, due to irradiation exposure, 15 and 20%, while the lateral expansion was reduced 43 and 41%, at 2 and 5 x 10 19 neutrons/cm 2 (>1 MeV), respectively. In addition, radiation damage resulted in 13 and 28 0 C shifts of the Charpy impact transition temperature at the 41-J level for the low and high fluences, respectively

  9. Modeling Thermal and Stress Behavior of the Fuel-clad Interface in Monolithic Fuel Mini-plates

    International Nuclear Information System (INIS)

    Miller, Gregory K.; Medvedev, Pavel G.; Burkes, Douglas E.; Wachs, Daniel M.

    2010-01-01

    As part of the Global Threat Reduction Initiative, a fuel development and qualification program is in process with the objective of qualifying very high density low enriched uranium fuel that will enable the conversion of high performance research reactors with operational requirements beyond those supported with currently available low enriched uranium fuels. The high density of the fuel is achieved by replacing the fuel meat with a single monolithic low enriched uranium-molybdenum fuel foil. Doing so creates differences in the mechanical and structural characteristics of the fuel plate because of the planar interface created by the fuel foil and cladding. Furthermore, the monolithic fuel meat will dominate the structural properties of the fuel plate rather than the aluminum matrix, which is characteristic of dispersion fuel types. Understanding the integrity and behavior of the fuel-clad interface during irradiation is of great importance for qualification of the new fuel, but can be somewhat challenging to determine with a single technique. Efforts aimed at addressing this problem are underway within the fuel development and qualification program, comprised of modeling, as-fabricated plate characterization, and post-irradiation examination. An initial finite element analysis model has been developed to investigate worst-case scenarios for the basic monolithic fuel plate structure, using typical mini-plate irradiation conditions in the Advanced Test Reactor. Initial analysis shows that the stress normal to the fuel-clad interface dominates during irradiation, and that the presence of small, rounded delaminations at the interface is not of great concern. However, larger and/or fuel-clad delaminations with sharp corners can create areas of concern, as maximum principal cladding stress, strain, displacement, and peak fuel temperature are all significantly increased. Furthermore, stresses resulting from temperature gradients that cause the plate to bow or buckle in

  10. Introduction program of M5TM cladding in Japan

    International Nuclear Information System (INIS)

    Mardon, Jean Paul; Kaneko, Nori

    2008-01-01

    Experience from irradiation in PWR has confirmed that M5 TM possesses all the properties required for upgraded operation including new fuel management approaches and high duty reactor operation. Specifically, the alloy M5 TM has demonstrated impressive improvements over Zircaloy-4 for fuel rod cladding and fuel assembly structural components. Moreover, several irradiation campaigns have been worldwide performed in order to confirm the excellent M5 TM in-pile behavior in very demanding PWR irradiation conditions (high void fraction, heat flux, temperature, lithium content and Zinc injection). Regarding licensing, the authorization for loading M5 TM alloy has been granted by US, UK, South Korean, German, Chinese, South-African, Swedish and Belgian Safety Authorities. Also the French Nuclear Safety Authority has given individually its authorization to load all-M5 TM fuel assembly batches in 1300MWe plants and a generic license to load all-M5 TM fuel in EDF N4 reactors and M5 TM fuel clad in 900MWe reactors for MOX parity fuel management. Licensing is also now underway in Switzerland, Finland, Brazil and Spain. The M5 TM alloy has demonstrated its superiority at burn-ups beyond current licensing limits, through operations in PWR at fuel rod burn-ups exceeding 71GWd/tU in the United States and 78GWd/tU in Europe. The Japanese nuclear industry has planned a stepwise approach to increase the burn-up of the fuel. Step-I fuel (48GWd/tU Fuel Assembly maximum burn-up) which was introduced in the late 80s. In the 90s started the licensing of the Step-II fuel (55GWd/tU Fuel Assembly maximum burn-up). Because the extension of the burn-up is important to reduce discharge fuel and cycle cost, the Japanese industry has plans to further extend the burn-up. In such burn-up region, fuel cladding with even better corrosion properties and very low hydrogen pick-up shall be necessary. M5 TM alloy, with high anticorrosion/hydriding properties, is suitable for not only the Step-II fuel

  11. Development of advanced claddings for suppressing the hydrogen emission in accident conditions. Development of advanced claddings for suppressing the hydrogen emission in the accident condition

    International Nuclear Information System (INIS)

    Park, Jeong-Yong; KIM, Hyun-Gil; JUNG, Yang-Il; PARK, Dong-Jun; KOO, Yang-Hyun

    2013-01-01

    The development of accident-tolerant fuels can be a breakthrough to help solve the challenge facing nuclear fuels. One of the goals to be reached with accident-tolerant fuels is to reduce the hydrogen emission in the accident condition by improving the high-temperature oxidation resistance of claddings. KAERI launched a new project to develop the accident-tolerant fuel claddings with the primary objective to suppress the hydrogen emission even in severe accident conditions. Two concepts are now being considered as hydrogen-suppressed cladding. In concept 1, the surface modification technique was used to improve the oxidation resistance of Zr claddings. Like in concept 2, the metal-ceramic hybrid cladding which has a ceramic composite layer between the Zr inner layer and the outer surface coating is being developed. The high-temperature steam oxidation behaviour was investigated for several candidate materials for the surface modification of Zr claddings. From the oxidation tests carried out in 1 200 deg. C steam, it was found that the high-temperature steam oxidation resistance of Cr and Si was much higher than that of zircaloy-4. Al 3 Ti-based alloys also showed extremely low-oxidation rate compared to zircaloy-4. One important part in the surface modification is to develop the surface coating technology where the optimum process needs to be established depending on the surface layer materials. Several candidate materials were coated on the Zr alloy specimens by a laser beam scanning (LBS), a plasma spray (PS) and a PS followed by LBS and subject to the high-temperature steam oxidation test. It was found that Cr and Si coating layers were effective in protecting Zr-alloys from the oxidation. The corrosion behaviour of the candidate materials in normal reactor operation condition such as 360 deg. C water will be investigated after the screening test in the high-temperature steam. The metal-ceramic hybrid cladding consisted of three major parts; a Zr liner, a

  12. Laser cladding of quasicrystalline alloys

    International Nuclear Information System (INIS)

    Audebert, F.; Sirkin, H.; Colaco, R.; Vilar, R.

    1998-01-01

    Quasicrystals are a new class of ordinated structures with metastable characteristics room temperature. Quasicrystalline phases can be obtained by rapid quenching from the melt of some alloys. In general, quasicrystals present properties which make these alloys promising for wear and corrosion resistant coatings applications. During the last years, the development of quasicrystalline coatings by means of thermal spray techniques has been impulsed. However, no references have been found of their application by means of laser techniques. In this work four claddings of quasicrystalline compositions formed over aluminium substrate, produced by a continuous CO 2 laser using simultaneous powders mixture injection are presented. The claddings were characterized by X ray diffraction, scanning electron microscopy and Vickers microhardness. (Author) 18 refs

  13. Cladding failure model III (CFM III). A simple model for iodine induced stress corrosion cracking of zirconium-lined barrier and standard zircaloy cladding

    International Nuclear Information System (INIS)

    Tasooji, A.; Miller, A.K.

    1984-01-01

    A previously developed unified model (SCCIG*) for predicting iodine induced SCC in standard Zircaloy cladding was modified recently into the ''SCCIG-B'' model which predicts the stress corrosion cracking behaviour of zirconium lined barrier cladding. Several published papers have presented the capability of these models for predicting various observed behaviours related to SCC. A closed form equation, called Cladding Failure Model III (CMFIII), has been derived from the SCCIG-B model. CFMIII takes the form of an explicit equation for the radial crack growth rate dc/dt as a function of hoop strain, crack depth, temperature, and surface iodine concentration in irradiated cladding (both barrier and standard Zircaloy). CMFIII has approximately the same predictive capabilities as the physically based SCCIG and/or SCCIG-B models but is computationally faster and more convenient and can be easily utilized in fuel performance codes for predicting the behaviour of barrier and standard claddings in reactor operations. (author)

  14. A regression model for zircaloy cladding in-reactor creepdown: Database, development, and assessment

    International Nuclear Information System (INIS)

    Shah, V.N.; Tolli, J.E.; Lanning, D.

    1987-01-01

    The paper presents a cladding deformation model developed to analyze cladding creepdown during steady state operation in a PWR and a BWR. This model accounts for variation in the zircaloy cladding heat treatments - cold worked and stress relieved material typically used in a PWR and fully recrystallized material typically used in a BWR. This model calculates cladding creepdown as a function of hoop stress, fast neutron flux, exposure time, and temperature. The paper also presents a comparison between cladding creep calculations by the creepdown model and corresponding test results from the KWU/CE program. ORNL HOBBIE experiments, and EPRI/Westinghouse Engineering cooperative project. The comparisons show that the creepdown model calculates cladding creep strains reasonably well. (orig./HP)

  15. Femtosecond laser inscribed cladding waveguide lasers in Nd:LiYF4 crystals

    Science.gov (United States)

    Li, Shi-Ling; Huang, Ze-Ping; Ye, Yong-Kai; Wang, Hai-Long

    2018-06-01

    Depressed circular cladding, buried waveguides were fabricated in Nd:LiYF4 crystals with an ultrafast Yb-doped fiber master-oscillator power amplifier laser. Waveguides were optimized by varying the laser writing conditions, such as pulse energy, focus depth, femtosecond laser polarization and scanning velocity. Under optical pump at 799 nm, cladding waveguides showed continuous-wave laser oscillation at 1047 nm. Single- and multi-transverse modes waveguide laser were realized by varying the waveguide diameter. The maximum output power in the 40 μm waveguide is ∼195 mW with a slope efficiency of 34.3%. The waveguide lasers with hexagonal and cubic cladding geometry were also realized.

  16. Microstructure and high-temperature oxidation resistance of TiN/Ti3Al intermetallic matrix composite coatings on Ti6Al4V alloy surface by laser cladding

    Science.gov (United States)

    Zhang, Xiaowei; Liu, Hongxi; Wang, Chuanqi; Zeng, Weihua; Jiang, Yehua

    2010-11-01

    A high-temperature oxidation resistant TiN embedded in Ti3Al intermetallic matrix composite coating was fabricated on titanium alloy Ti6Al4V surface by 6kW transverse-flow CO2 laser apparatus. The composition, morphology and microstructure of the laser clad TiN/Ti3Al intermetallic matrix composite coating were characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometer (EDS). In order to evaluate the high-temperature oxidation resistance of the composite coatings and the titanium alloy substrate, isothermal oxidation test was performed in a conventional high-temperature resistance furnace at 600°C and 800°C respectively. The result shows that the laser clad intermetallic composite coating has a rapidly solidified fine microstructure consisting of TiN primary phase (granular-like, flake-like, and dendrites), and uniformly distributed in the Ti3Al matrix. It indicates that a physical and chemical reaction between the Ti powder and AlN powder occurred completely under the laser irradiation. In addition, the microhardness of the TiN/Ti3Al intermetallic matrix composite coating is 844HV0.2, 3.4 times higher than that of the titanium alloy substrate. The high-temperature oxidation resistance test reveals that TiN/Ti3Al intermetallic matrix composite coating results in the better modification of high-temperature oxidation behavior than the titanium substrate. The excellent high-temperature oxidation resistance of the laser cladding layer is attributed to the formation of the reinforced phase TiN and Al2O3, TiO2 hybrid oxide. Therefore, the laser cladding TiN/Ti3Al intermetallic matrix composite coating is anticipated to be a promising oxidation resistance surface modification technique for Ti6Al4V alloy.

  17. Advanced ceramic cladding for water reactor fuel

    International Nuclear Information System (INIS)

    Feinroth, H.

    2000-01-01

    Under the US Department of Energy's Nuclear Energy Research Initiatives (NERI) program, continuous fiber ceramic composites (CFCCs) are being developed as cladding for water reactor fuel elements. The purpose is to substantially increase the passive safety of water reactors. A development effort was initiated in 1991 to fabricate CFCC-clad tubes using commercially available fibers and a sol-gel process developed by McDermott Technologies. Two small-diameter CFCC tubes were fabricated using pure alumina and alumina-zirconia fibers in an alumina matrix. Densities of approximately 60% of theoretical were achieved. Higher densities are required to guarantee fission gas containment. This NERI work has just begun, and only preliminary results are presented herein. Should the work prove successful, further development is required to evaluate CFCC cladding and performance, including in-pile tests containing fuel and exploring a marriage of CFCC cladding materials with suitable advanced fuel and core designs. The possibility of much higher temperature core designs, possibly cooled with supercritical water, and achievement of plant efficiencies ge50% would be examined

  18. Analysis of fuel cladding chemical interaction in mixed oxide fuel pins

    International Nuclear Information System (INIS)

    Weber, J.W.; Dutt, D.S.

    1976-01-01

    An analysis is presented of the observed interaction between mixed oxide 75 wt percent UO 2 --25 wt percent PuO 2 fuel and 316--20 percent CW stainless steel cladding in LMFBR type fuel pins irradiated in EBR-II. A description is given of the test pins and their operating conditions together with, metallographic observations and measurements of the fuel/cladding reaction, and a correlation equation is developed relating depth of cladding attack to temperature and burnup. Some recent data on cladding reaction in fuel pins with low initial O/M in the fuel are given and compared with the correlation equation curves

  19. Potential for fuel melting and cladding thermal failure during a PCM event in LWRs

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Croucher, D.W.

    1979-01-01

    The primary concern in nuclear reactor safety is to ensure that no conceivable accident, whether initiated by a failure of the reactor system or by incorrect operation, will lead to a dangerous release of radiation to the environment. A number of hypothesized off-normal power or cooling conditions, generally termed as power-cooling-mismatch (PCM) accidents, are considered in the safety analysis of light water reactors (LWRs). During a PCM accident, film boiling may occur at the cladding surface and cause a rapid temperature increase in the fuel and the cladding, perhaps producing embrittlement of the zircaloy cladding by oxidation. Molten fuel may be produced at the center of the pellets, extrude radially through open cracks in the outer, unmelted portion of the pellet and relocate in the fuel-cladding gap. If the amount of extruded molten fuel is sufficient to establish contact with the cladding, which is at a high temperature during film boiling, the zircaloy cladding may melt. The present work assesses the potential for central fuel melting and thermal failure of the zircaloy cladding due to melting upon being contacted by extruded molten UO 2 -fuel during a PCM event

  20. Thermal creep behavior of N36 zirconium alloy cladding tube

    International Nuclear Information System (INIS)

    Wang, P.; Zhao, W.; Dai, X.

    2015-01-01

    N36 is an alloy containing Zr, Sn, Nb and Fe that is developed by China as a superior cladding material to meet the performance of PWR fuel assembly at the maximum fuel rod burn-up. The creep characteristics of N36 zirconium alloy cladding tube were investigated at temperature from 593 K to 723 K with stress ranging from 20 MPa to 160 MPa. Transitions in creep mechanisms were noted, showing the distinct three rate-controlled creep mechanisms for the alloy at test conditions. In the region of low stresses with stress exponent n ∼ 1 and activation energy Q ∼ (104±4) kJ.mol -1 , Coble creep, based on diffusion of materials through grain boundaries, is the dominant rate-controlling mechanism, which contributes to the creep deformation. The formation of slip bands acts as an accommodation mechanism. In the region of middle stress with stress exponent n ∼ 3 and activation energy Q ∼ (195±7) kJ.mol -1 , micro-creep, caused by viscous gliding of dislocations due to the interaction of O atoms with dislocations, controls the deformation. In the high stress region with stress exponent n ∼ 5-6 and activation energy Q ∼ (210±10) kJ.mol -1 , two mechanisms of the climb of edge dislocations (EDC) and the motion of jogged screw dislocation (MJS) contribute to rate controlling process. In test conditions N36 alloy cladding tube behaves a type of creep similar to that noted in class-I (A) alloys

  1. Review and perspective: Sapphire optical fiber cladding development for harsh environment sensing

    Science.gov (United States)

    Chen, Hui; Buric, Michael; Ohodnicki, Paul R.; Nakano, Jinichiro; Liu, Bo; Chorpening, Benjamin T.

    2018-03-01

    The potential to use single-crystal sapphire optical fiber as an alternative to silica optical fibers for sensing in high-temperature, high-pressure, and chemically aggressive harsh environments has been recognized for several decades. A key technological barrier to the widespread deployment of harsh environment sensors constructed with sapphire optical fibers has been the lack of an optical cladding that is durable under these conditions. However, researchers have not yet succeeded in incorporating a high-temperature cladding process into the typical fabrication process for single-crystal sapphire fibers, which generally involves seed-initiated fiber growth from the molten oxide state. While a number of advances in fabrication of a cladding after fiber-growth have been made over the last four decades, none have successfully transitioned to a commercial manufacturing process. This paper reviews the various strategies and techniques for fabricating an optically clad sapphire fiber which have been proposed and explored in published research. The limitations of current approaches and future prospects for sapphire fiber cladding are discussed, including fabrication methods and materials. The aim is to provide an understanding of the past research into optical cladding of sapphire fibers and to assess possible material systems for future research on this challenging problem for harsh environment sensors.

  2. Out-pile Test of Double Cladding Fuel Rod Mockups for a Nuclear Fuel Irradiation Test

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Jaemin; Park, Sungjae; Kang, Younghwan; Kim, Harkrho; Kim, Bonggoo; Kim, Youngki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-05-15

    An instrumented capsule for a nuclear fuel irradiation test has been developed to measure fuel characteristics, such as a fuel temperature, internal pressure of a fuel rod, a fuel pellet elongation and a neutron flux during an irradiation test at HANARO. In the future, nuclear fuel irradiation tests under a high temperature condition are expected from users. To prepare for this request, we have continued developing the technology for a high temperature nuclear fuel irradiation test at HANARO. The purpose of this paper is to verify the possibility that the temperature of a nuclear fuel can be controlled at a high temperature during an irradiation test. Therefore we designed and fabricated double cladding fuel rod mockups. And we performed out-pile tests using these mockups. The purposes of a out-pile test is to analyze an effect of a gap size, which is between an outer cladding and an inner cladding, on the temperature and the effect of a mixture ratio of helium gas and neon gas on the temperature. This paper presents the design and fabrication of double cladding fuel rod mockups and the results of the out-pile test.

  3. Vanadium diffusion coating on HT-9 cladding for mitigating the fuel cladding chemical interactions

    Science.gov (United States)

    Lo, Wei-Yang; Yang, Yong

    2014-08-01

    Fuel cladding chemical interaction (FCCI) has been identified as one of the crucial issues for developing Ferritic/Martensitic (F/M) stainless steel claddings for metallic fuels in a fast reactor. The anticipated elevated temperature and high neutron flux can significantly aggravate the FCCI, in terms of formation of inter-diffusion and lower melting point eutectic phases. To mitigate the FCCI, vanadium carbide coating as a diffusion barrier was deposited on the HT-9 substrate using a pack cementation diffusion coating (PCDC) method, and the processing temperature was optimized down to 730 °C. A solid metallurgical bonding between the coating layer and substrate was achieved, and the coating is free from through depth cracks. The microstructural characterizations using SEM and TEM show a nanostructured grain structure. EDS/WDS and XRD analysis confirm the phase of coating layer as V2C. Diffusion couple tests at 660 °C for 100 h demonstrate that V2C layer with a thickness of less than 5 μm can effectively eliminate the inter-diffusion between the lanthanide cerium and HT-9 steel.

  4. Vanadium diffusion coating on HT-9 cladding for mitigating the fuel cladding chemical interactions

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Wei-Yang; Yang, Yong, E-mail: yongyang@ufl.edu

    2014-08-01

    Fuel cladding chemical interaction (FCCI) has been identified as one of the crucial issues for developing Ferritic/Martensitic (F/M) stainless steel claddings for metallic fuels in a fast reactor. The anticipated elevated temperature and high neutron flux can significantly aggravate the FCCI, in terms of formation of inter-diffusion and lower melting point eutectic phases. To mitigate the FCCI, vanadium carbide coating as a diffusion barrier was deposited on the HT-9 substrate using a pack cementation diffusion coating (PCDC) method, and the processing temperature was optimized down to 730 °C. A solid metallurgical bonding between the coating layer and substrate was achieved, and the coating is free from through depth cracks. The microstructural characterizations using SEM and TEM show a nanostructured grain structure. EDS/WDS and XRD analysis confirm the phase of coating layer as V{sub 2}C. Diffusion couple tests at 660 °C for 100 h demonstrate that V{sub 2}C layer with a thickness of less than 5 μm can effectively eliminate the inter-diffusion between the lanthanide cerium and HT-9 steel.

  5. Effect of laser power on clad metal in laser-TIG combined metal cladding

    Science.gov (United States)

    Utsumi, Akihiro; Hino, Takanori; Matsuda, Jun; Tasoda, Takashi; Yoneda, Masafumi; Katsumura, Munehide; Yano, Tetsuo; Araki, Takao

    2003-03-01

    TIG arc welding has been used to date as a method for clad welding of white metal as bearing material. We propose a new clad welding process that combines a CO2 laser and a TIG arc, as a method for cladding at high speed. We hypothesized that this method would permit appropriate control of the melted quantity of base metal by varying the laser power. We carried out cladding while varying the laser power, and investigated the structure near the boundary between the clad layer and the base metal. Using the laser-TIG combined cladding, we found we were able to control appropriately the degree of dilution with the base metal. By applying this result to subsequent cladding, we were able to obtain a clad layer of high quality, which was slightly diluted with the base metal.

  6. Kilowatt-level cladding light stripper for high-power fiber laser.

    Science.gov (United States)

    Yan, Ping; Sun, Junyi; Huang, Yusheng; Li, Dan; Wang, Xuejiao; Xiao, Qirong; Gong, Mali

    2017-03-01

    We designed and fabricated a high-power cladding light stripper (CLS) by combining a fiber-etched CLS with a cascaded polymer-recoated CLS. The etched fiber reorganizes the numerical aperture (NA) distribution of the cladding light, leading to an increase in the leakage power and a flatter distribution of the leakage proportion in the cascaded polymer-recoated fiber. The index distribution of the cascaded polymer-recoated fiber is carefully designed to ensure an even leakage of cladding light. More stages near the index of 1.451 are included to disperse the heat. The CLS is capable of working consistently under 1187 W of cladding light with an attenuation of 26.59 dB, and the highest local temperature is less than 35°C.

  7. Analysis of clad motion observed in loss of flow accident simulation experiments

    International Nuclear Information System (INIS)

    Henkel, P.R.

    1987-01-01

    The clad motion observed in the first two STAR experiments is analysed. The movies reveal that at moderate temperatures molten cladding does not wet fresh fuel (within an argon gas atmosphere). The prevailing flow regime consists of single waves contacting the fuel pins and entrained drops. Entrainment is possible already at gas velocities of order 40-50 m/s. A multichannel clad motion model is presented that accounts for both flow modes. (author)

  8. Simulation of a pellet-clad mechanical interaction with ABAQUS and its verification

    International Nuclear Information System (INIS)

    Cheon, J.-S.; Lee, B.-H.; Koo, Y.-H.; Sohn, D.-S.; Oh, J.-Y.

    2003-01-01

    Pellet-clad mechanical interaction (PCMI) during power transients for MOX fuel is modelled by a FE method. The PCMI model predicts well clad elongation during power ramp and relaxation during power hold except the fuel behaviour during a power decrease. Higher fiction factor results in the earlier occurrence of PCMI and more enhanced clad elongation. The relaxation is dependent on the irradiation creep rate of the pellet and axial compressive force. Verification of the PCMI model was done using recent MOX experimental data. Temperature and clad elongation for the fuel rod can be evaluated in a reasonable way

  9. Explosion Clad for Upstream Oil and Gas Equipment

    Science.gov (United States)

    Banker, John G.; Massarello, Jack; Pauly, Stephane

    2011-01-01

    Today's upstream oil and gas facilities frequently involve the combination of high pressures, high temperatures, and highly corrosive environments, requiring equipment that is thick wall, corrosion resistant, and cost effective. When significant concentrations of CO2 and/or H2S and/or chlorides are present, corrosion resistant alloys (CRA) can become the material of choice for separator equipment, piping, related components, and line pipe. They can provide reliable resistance to both corrosion and hydrogen embrittlement. For these applications, the more commonly used CRA's are 316L, 317L and duplex stainless steels, alloy 825 and alloy 625, dependent upon the application and the severity of the environment. Titanium is also an exceptional choice from the technical perspective, but is less commonly used except for heat exchangers. Explosion clad offers significant savings by providing a relatively thin corrosion resistant alloy on the surface metallurgically bonded to a thick, lower cost, steel substrate for the pressure containment. Developed and industrialized in the 1960's the explosion cladding technology can be used for cladding the more commonly used nickel based and stainless steel CRA's as well as titanium. It has many years of proven experience as a reliable and highly robust clad manufacturing process. The unique cold welding characteristics of explosion cladding reduce problems of alloy sensitization and dissimilar metal incompatibility. Explosion clad materials have been used extensively in both upstream and downstream oil, gas and petrochemical facilities for well over 40 years. The explosion clad equipment has demonstrated excellent resistance to corrosion, embrittlement and disbonding. Factors critical to insure reliable clad manufacture and equipment design and fabrication are addressed.

  10. Explosion Clad for Upstream Oil and Gas Equipment

    International Nuclear Information System (INIS)

    Banker, John G.; Massarello, Jack; Pauly, Stephane

    2011-01-01

    Today's upstream oil and gas facilities frequently involve the combination of high pressures, high temperatures, and highly corrosive environments, requiring equipment that is thick wall, corrosion resistant, and cost effective. When significant concentrations of CO 2 and/or H 2 S and/or chlorides are present, corrosion resistant alloys (CRA) can become the material of choice for separator equipment, piping, related components, and line pipe. They can provide reliable resistance to both corrosion and hydrogen embrittlement. For these applications, the more commonly used CRA's are 316L, 317L and duplex stainless steels, alloy 825 and alloy 625, dependent upon the application and the severity of the environment. Titanium is also an exceptional choice from the technical perspective, but is less commonly used except for heat exchangers. Explosion clad offers significant savings by providing a relatively thin corrosion resistant alloy on the surface metallurgically bonded to a thick, lower cost, steel substrate for the pressure containment. Developed and industrialized in the 1960's the explosion cladding technology can be used for cladding the more commonly used nickel based and stainless steel CRA's as well as titanium. It has many years of proven experience as a reliable and highly robust clad manufacturing process. The unique cold welding characteristics of explosion cladding reduce problems of alloy sensitization and dissimilar metal incompatibility. Explosion clad materials have been used extensively in both upstream and downstream oil, gas and petrochemical facilities for well over 40 years. The explosion clad equipment has demonstrated excellent resistance to corrosion, embrittlement and disbonding. Factors critical to insure reliable clad manufacture and equipment design and fabrication are addressed.

  11. Fuel-clad heat transfer coefficient of a defected fuel rod

    International Nuclear Information System (INIS)

    Bruet, M.; Stora, J.P.

    1976-01-01

    A special rod has been built with a stack of UO 2 pellets inside a thick zircaloy clad. The atmosphere inside the fuel rod can be changed and particularly the introduction of water is possible. The capsule was inserted in the Siloe pool reactor in a special device equipped with a neutron flux monitor. The fuel centerline temperature and the temperature at a certain radius of the clad were recorded by two thermocouples. The temperature profiles in the fuel and in the cladding have been calculated and then the heat transfer coefficient. In order to check the proper functioning of the device, two runs were successively achieved with a helium atmosphere. Then the helium atmosphere inside the fuel rod was removed and replaced by water. The heat transfer coefficients derived from the measurements at low power level are in agreement with the values given by the model based on thermal conductivity. However, for higher power levels, the heat transfer coefficients become higher than those based on the calculated gap

  12. A Eutectic Melting Study of Double Wall Cladding Tubes of FeCrAl and Zircaloy-4

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Woojin; Son, Seongmin; Lee, You Ho; Lee, Jeong Ik; Ryu, Ho Jin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Jeong, Eun [Kyunghee University, Yongin (Korea, Republic of)

    2015-10-15

    The eutectic melting behavior of FeCrAl/Zircaloy-4 double wall cladding tubes was investigated by annealing at various temperatures ranging from 900 .deg. C to 1300 .deg. C. It was found that significant eutectic melting occurred after annealing at temperatures equal to or higher than 1150 .deg. C. It means that an additional diffusion barrier layer is necessary to limit the eutectic melting between FeCrAl and Zircaloy-4 alloy cladding tubes. Coating of FeCrAl layers on the Zr alloy cladding tube is being investigated for the development of accident tolerant fuel by exploiting of both the oxidation resistance of FeCrAl alloys and the neutronic advantages of Zr alloys. Coating of FeCrAl alloys on Zr alloy cladding tubes can be performed by various techniques including thermal spray, laser cladding, and co-extrusion. Son et al. also reported the fabrication of FeCrAl/Zr ally double wall cladding by the shrink fit method. For the double layered cladding tubes, the thermal expansion mismatch between the dissimilar materials, severe deformation or mechanical failure due to the evolution of thermal stresses can occur when there is a thermal cycling. In addition to the thermal stress problems, chemical compatibilities between the two different alloys should be investigated in order to check the stability and thermal margin of the double wall cladding at a high temperature. Generally, it is considered that Zr alloy cladding will maintain its mechanical integrity up to 1204 .deg. C (2200 .deg. F) to satisfy the acceptance criteria for emergency core cooling systems.

  13. Improving Accident Tolerance of Nuclear Fuel with Coated Mo-alloy Cladding

    Directory of Open Access Journals (Sweden)

    Bo Cheng

    2016-02-01

    Full Text Available In severe loss of coolant accidents (LOCA, similar to those experienced at Fukushima Daiichi and Three Mile Island Unit 1, the zirconium alloy fuel cladding materials are rapidly heated due to nuclear decay heating and rapid exothermic oxidation of zirconium with steam. This heating causes the cladding to rapidly react with steam, lose strength, burst or collapse, and generate large quantities of hydrogen gas. Although maintaining core cooling remains the highest priority in accident management, an accident tolerant fuel (ATF design may extend coping and recovery time for operators to restore emergency power, and cooling, and achieve safe shutdown. An ATF is required to possess high resistance to steam oxidation to reduce hydrogen generation and sufficient mechanical strength to maintain fuel rod integrity and core coolability. The initiative undertaken by Electric Power Research Institute (EPRI is to demonstrate the feasibility of developing an ATF cladding with capability to maintain its integrity in 1,200–1,500°C steam for at least 24 hours. This ATF cladding utilizes thin-walled Mo-alloys coated with oxidation-resistant surface layers. The basic design consists of a thin-walled Mo alloy structural tube with a metallurgically bonded, oxidation-resistant outer layer. Two options are being investigated: a commercially available iron, chromium, and aluminum alloy with excellent high temperature oxidation resistance, and a Zr alloy with demonstrated corrosion resistance. As these composite claddings will incorporate either no Zr, or thin Zr outer layers, hydrogen generation under severe LOCA conditions will be greatly reduced. Key technical challenges and uncertainties specific to Mo alloy fuel cladding include: economic core design, industrial scale fabricability, radiation embrittlement, and corrosion and oxidation resistance during normal operation, transients, and severe accidents. Progress in each aspect has been made and key results are

  14. A finite element elastic-plastic analysis of residual stresses due to clad welding in reactor vessels

    International Nuclear Information System (INIS)

    Buchalet, C.; Riccardella, P.C.

    1972-01-01

    Residual stresses due to weld deposited cladding on the inside of a typical Westinghouse pressurized water reactor vessel are investigated using an axisymmetric finite element elastic-plastic analysis. At the beginning of the analysis, one head of the weld cladding is assumed to lie on the reactor vessel wall at melting temperature (2600degF), but in the solid phase, while the vessel remains at 300degF (preheat temperature). All material properties used in the calculations are taken as temperature-dependent. Temperature profiles are obtained in the cladding and base metal at several discrete time intervals. These temperatures profiles are used to obtain the stress distribution for the same time intervals. Residual hoop tensile stresses of approximately 25 ksi were found to exist in the cladding. Peak tensile stresses in the hoop direction occur in the base metal near the cladding interface and reach a value of 60 ksi at the end of the transient. The tensile stress decreases very rapidly through the thickness of the base metal and becomes insignificant at about two inches from the inside surface. In order to lower residual stresses, a post-weld heat treatment is performed by uniformly heating the vessel to 1100degF, holding at that temperature for a specified period of time and then cooling slowly. The analysis shows that after this treatment, the peak stresses in the base metal decrease from 60 ksi to 32 ksi, while the stress in the cladding does not change significantly. (author)

  15. Annealing studies of Zircaloy-2 cladding at 580-850 deg C

    International Nuclear Information System (INIS)

    Hindle, E.D.

    1983-01-01

    For fuel rod cladding it is important to determine if prior metallurgical condition combined with irradiation damage can influence high temperature deformation, because studies of such deformation are required to produce data for the cladding ballooning models which are used in analysing loss-of-coolant (LOCA). If the behaviour of all cladding conditions during a LOCA can be represented by, say, the annealed condition, then a great deal of experimental work on a multiplicity of cladding conditions can be avoided. By examining the metallographic structure and hardness, the present study determines the time required in the range 580 to 850 deg C for returning Zircaloy cladding to the annealed condition, so that for any transient a point can be specified where the material should have annealed. An equation has been derived to give this information. (author)

  16. On the effect of temperature on the threshold stress intensity factor of delayed hydride cracking in light water reactor fuel cladding

    Directory of Open Access Journals (Sweden)

    Anna-Maria Alvarez Holston

    2017-06-01

    Full Text Available Delayed hydride cracking (DHC was first observed in pressure tubes in Canadian CANDU reactors. In light water reactors, DHC was not observed until the late 1990s in high-burnup boiling water reactor (BWR fuel cladding. In recent years, the focus on DHC has resurfaced in light of the increased interest in the cladding integrity during interim conditions. In principle, all spent fuel in the wet pools has sufficient hydrogen content for DHC to operate below 300°C. It is therefore of importance to establish the critical parameters for DHC to operate. This work studies the threshold stress intensity factor (KIH to initiate DHC as a function of temperature in Zry-4 for temperatures between 227°C and 315°C. The experimental technique used in this study was the pin-loading testing technique. To determine the KIH, an unloading method was used where the load was successively reduced in a stepwise manner until no cracking was observed during 24 hours. The results showed that there was moderate temperature behavior at lower temperatures. Around 300°C, there was a sharp increase in KIH indicating the upper temperature limit for DHC. The value for KIH at 227°C was determined to be 2.6 ± 0.3 MPa √m.

  17. On the effect of temperature on the threshold stress intensity factor of delayed hydride cracking in light water reactor fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Holston, Anna-MariaAlvarez; Stjarnsater, Johan [Studsvik Nuclear AB, Nykoping (Sweden)

    2017-06-15

    Delayed hydride cracking (DHC) was first observed in pressure tubes in Canadian CANDU reactors. In light water reactors, DHC was not observed until the late 1990s in high-burnup boiling water reactor (BWR) fuel cladding. In recent years, the focus on DHC has resurfaced in light of the increased interest in the cladding integrity during interim conditions. In principle, all spent fuel in the wet pools has sufficient hydrogen content for DHC to operate below 300°C. It is therefore of importance to establish the critical parameters for DHC to operate. This work studies the threshold stress intensity factor (K{sub IH}) to initiate DHC as a function of temperature in Zry-4 for temperatures between 227°C and 315°C. The experimental technique used in this study was the pin-loading testing technique. To determine the K{sub IH}, an unloading method was used where the load was successively reduced in a stepwise manner until no cracking was observed during 24 hours. The results showed that there was moderate temperature behavior at lower temperatures. Around 300°C, there was a sharp increase in K{sub IH} indicating the upper temperature limit for DHC. The value for K{sub IH} at 227°C was determined to be 2.6 ± 0.3 MPa √m.

  18. An analytical model to predict and minimize the residual stress of laser cladding process

    Science.gov (United States)

    Tamanna, N.; Crouch, R.; Kabir, I. R.; Naher, S.

    2018-02-01

    Laser cladding is one of the advanced thermal techniques used to repair or modify the surface properties of high-value components such as tools, military and aerospace parts. Unfortunately, tensile residual stresses generate in the thermally treated area of this process. This work focuses on to investigate the key factors for the formation of tensile residual stress and how to minimize it in the clad when using dissimilar substrate and clad materials. To predict the tensile residual stress, a one-dimensional analytical model has been adopted. Four cladding materials (Al2O3, TiC, TiO2, ZrO2) on the H13 tool steel substrate and a range of preheating temperatures of the substrate, from 300 to 1200 K, have been investigated. Thermal strain and Young's modulus are found to be the key factors of formation of tensile residual stresses. Additionally, it is found that using a preheating temperature of the substrate immediately before laser cladding showed the reduction of residual stress.

  19. First results on the effect of fuel-cladding eccentricity

    International Nuclear Information System (INIS)

    Panka, I.; Kereszturi, A.

    2009-01-01

    In the traditional fuel-behaviour or hot channel calculations it is assumed that the fuel pellet is centered within the clad. However, in the real life the pellet could be positioned asymmetrically within the clad, which leads to asymmetric gap conductance and therefore it is worthwhile to investigate the magnitude of the effect on maximal fuel temperature and surface heat flux. In this paper our first experiences are presented on this topic. (Authors)

  20. Inner wall attack and its inhibition method for FBR fuel pin cladding at high burnup

    International Nuclear Information System (INIS)

    Xu Yongli; Long Bin; Li Jingang; Wan Jiaying

    1998-01-01

    The inner wall attack of the modified 316-Ti S.S. cladding tubes manufactured in China used FBR at 10at.% burnup was investigated by means of the out of pile simulation tests. The inner surface morphologies of the cladding tubes attached by fission products Cs, Te, I and Se at 700 deg. C under lower and high oxygen potentials were observed respectively, and the depth of attack was also measured. The burst strength, maximum circum expansion and the appearances of fracture were measured and observed respectively for the cladding tubes attacked by fission products. Based on the mechanism of FBR fuel cladding chemical interaction (FCCI), Cr, Zr and Nb were used as the oxygen absorbers respectively, in order to inhibit the inner wall attack of the cladding tubes. The corrosion morphologies and depth, the penetration depth of the fission products in the inner surface of the cladding tubes were detected. The inhibition effectiveness of the oxygen absorbers for the inner wall attack of the cladding tubes was evaluated. (author)

  1. Observations of in-reactor endurance and rupture life for fueled and unfueled FTR cladding

    International Nuclear Information System (INIS)

    Lovell, A.J.; Christensen, B.Y.; Chin, B.A.

    1979-01-01

    Reactor component endurance limits are important to nuclear experimenters and operators. This paper investigates endurance limits of 316 CW fuel pin cladding. The objective of this paper is to compare and analyze two different sets of FTR fuel pin cladding data. The first data set is from unfueled pressurized cladding irradiated in the Experimental Breeder Reactor No. II (EBR-II). This data set was generated in an assembly in which the temperature was monitored and controlled. The second data set contains observations of breached and unbreached EBR-II test fuel pins covering a large range of temperature, power and burnup conditions

  2. Study and Behaviour of Prefabricated Composite Cladding

    Science.gov (United States)

    Sai Avinash, P.; Thiagarajan, N.; Santhi, A. S.

    2017-07-01

    The incessant population rise entailed for an expeditious construction at competitive prices that steered the customary path to the light weight structural components. This lead to construction of structural components using ferrocement. The load bearing structural cladding, sizing 3200x900x100 mm, is chosen for the study, which, is analyzed using the software ABAQUS 6.14 in accordance with the IS:875-87 Part1, IS:875-87 Part2, ACI 549R-97, ACI 318R-08 and NZS:3101-06 Part1 standards. The Ferrocement claddings (FCs) are fabricated to a scaled dimension of 400x115x38 mm. The light weight-high strength phenomena are corroborated by incorporating Glass Fibre Reinforced Polymer Laminates (GFRPL) of thickness 6mm, engineered with the aid of hand layup (wet layup) technique wielding epoxy resin, followed by curing under room temperature. The epoxy resin is employed for fastening ferrocement cladding with the Glass fiber reinforced polymer laminate, with the contemporary methodology. The compressive load carrying capacity of the amalgamated assembly, both in presence and absence of Glass Fibre Reinforced polymer laminates (GFRPL) on either side of Ferrocement cladding, has been experimented.

  3. Biaxial creep deformation of Zircaloy-4 PWR fuel cladding in the alpha,(alpha + beta) and beta phase temperature ranges

    International Nuclear Information System (INIS)

    Donaldson, A.T.; Healey, T.; Horwood, R.A.L.

    1985-01-01

    The biaxial creep behaviour of Zircaloy-4 fuel cladding has been determined at temperatures between 973 - 1073 K in the alpha phase range, in the duplex (alpha + beta) region between 1098 - 1223 K and in the beta phase range between 1323 - 1473 K. This paper presents the creep data together with empirical equations which describe the creep deformation response within each phase region. (author)

  4. Laser cladding of turbine blades

    International Nuclear Information System (INIS)

    Shepeleva, L.; Medres, B.; Kaplan, W.D.; Bamberger, M.

    2000-01-01

    A comparative study of two different techniques for the application of wear-resistant coatings for contact surfaces of shroud shelves of gas turbine engine blades (GTE) has been conducted. Wear-resistant coatings were applied on In713 by laser cladding with direct injection of the cladding powder into the melt pool. Laser cladding was conducted with a TRUMPF-2500, CW-CO 2 laser. The laser cladding was compared with commercially available plasma cladding with wire. Both plasma and laser cladded zones were characterized by optical and scanning electron microscopy. It was found that the laser cladded zone has a higher microhardness value (650-820 HV) compared with that of the plasma treated material (420-440 HV). This is a result of the significant reduction in grain size in the case of laser cladding. Unlike the plasma cladded zones, the laser treated material is free of micropores and microcracks. (orig.)

  5. Progress in Understanding of Fuel-Cladding Chemical interaction in Metal Fuel

    International Nuclear Information System (INIS)

    Inagaki, Okenta; Nakamura, Kinya; Ogata, Takanari

    2013-01-01

    Conclusion: Representative phases formed in FCCI were identified: • The reaction between lanthanide elements and cladding; • The reaction between U-PU-Zr and cladding (Fe). Characteristics of the wastage layer were clarified: • Time and temperature dependency of the growth ratio of the wastage layer formed by lanthanide elements; • Threshold temperature of the liquid phase formation in the reaction between U-Pu-Zr and Fe. These results are used: - as a basis for the FCCI modeling; - as a reference data in post-irradiation examination of irradiated metallic fuels

  6. Laser and Pressure Resistance Weld of Thin-Wall Cladding for LWR Accident-Tolerant Fuels

    Science.gov (United States)

    Gan, J.; Jerred, N.; Perez, E.; Haggard, D. C.

    2018-02-01

    FeCrAl alloy with typical composition of approximately Fe-15Cr-5Al is considered a primary candidate cladding material for light water reactor accident-tolerant fuel because of its superior resistance to oxidation in high-temperature steam compared with Zircaloy cladding. Thin-walled FeCrAl cladding at 350 μm wall thickness is required, and techniques for joining endplug to cladding need to be developed. Fusion-based laser weld and solid-state joining with pressure resistance weld were investigated in this study. The results of microstructural characterization, mechanical property evaluation by tensile testing, and hydraulic pressure burst testing of the welds for the cladding-endplug specimen are discussed.

  7. Semi-empirical corrosion model for Zircaloy-4 cladding

    International Nuclear Information System (INIS)

    Nadeem Elahi, Waseem; Atif Rana, Muhammad

    2015-01-01

    The Zircaloy-4 cladding tube in Pressurize Water Reactors (PWRs) bears corrosion due to fast neutron flux, coolant temperature, and water chemistry. The thickness of Zircaloy-4 cladding tube may be decreased due to the increase in corrosion penetration which may affect the integrity of the fuel rod. The tin content and inter-metallic particles sizes has been found significantly in the magnitude of oxide thickness. In present study we have developed a Semiempirical corrosion model by modifying the Arrhenius equation for corrosion as a function of acceleration factor for tin content and accumulative annealing. This developed model has been incorporated into fuel performance computer code. The cladding oxide thickness data obtained from the Semi-empirical corrosion model has been compared with the experimental results i.e., numerous cases of measured cladding oxide thickness from UO 2 fuel rods, irradiated in various PWRs. The results of the both studies lie within the error band of 20μm, which confirms the validity of the developed Semi-empirical corrosion model. Key words: Corrosion, Zircaloy-4, tin content, accumulative annealing factor, Semi-empirical, PWR. (author)

  8. Laser cladding of Colmonoy 6 powder on AISI316L austenitic stainless steel

    International Nuclear Information System (INIS)

    Zhang, H.; Shi, Y.; Kutsuna, M.; Xu, G.J.

    2010-01-01

    Stainless steels are widely used in nuclear power plant due to their good corrosion resistance, but their wear resistance is relatively low. Therefore, it is very important to improve this property by surface treatment. This paper investigates cladding Colmonoy 6 powder on AISI316L austenitic stainless steel by CO 2 laser. It is found that preheating is necessary for preventing cracking in the laser cladding procedure and 450 o C is the proper preheating temperature. The effects of laser power, traveling speed, defocusing distance, powder feed rate on the bead height, bead width, penetration depth and dilution are investigated. The friction and wear test results show that the friction coefficient of specimens with laser cladding is lower than that of specimens without laser cladding, and the wear resistance of specimens has been increased 53 times after laser cladding, which reveals that laser cladding layer plays roles on wear resistance. The microstructures of laser cladding layer are composed of Ni-rich austenitic, boride and carbide.

  9. Synthesis and Characterization of High-Entropy Alloy AlFeCoNiCuCr by Laser Cladding

    Directory of Open Access Journals (Sweden)

    Xiaoyang Ye

    2011-01-01

    Full Text Available High-entropy alloys have been recently found to have novel microstructures and unique properties. In this study, a novel AlFeCoNiCuCr high-entropy alloy was prepared by laser cladding. The microstructure, chemical composition, and constituent phases of the synthesized alloy were characterized by SEM, EDS, XRD, and TEM, respectively. High-temperature hardness was also evaluated. Experimental results demonstrate that the AlFeCoNiCuCr clad layer is composed of only BCC and FCC phases. The clad layers exhibit higher hardness at higher Al atomic content. The AlFeCoNiCuCr clad layer exhibits increased hardness at temperature between 400–700°C.

  10. Corrosion behavior of duplex and reference cladding in NPP Grohnde

    International Nuclear Information System (INIS)

    Besch, O.A.; Yagnik, S.K.; Eucken, C.M.; Bradley, E.R.

    1996-01-01

    The Nuclear Fuel Industry Research (NFIR) Group undertook a lead test assembly (LTA) program in NPP Grohnde PWR in Germany to assess the corrosion performance of duplex and reference cladding. Two identical 16 by 16 LTAs, each containing 32 peripheral test rods, completed four reactor cycles, reaching a peak rod burnup of 46 MWd/kgU. The results from poolside examinations performed at the end of each cycle, together with power histories and coolant chemistry, are reported. Five different cladding materials were characterized during fabrication. The corrosion performance of the cladding materials was tracked in long-term tests in high-pressure, high-temperature autoclaves. The relative ranking of corrosion behavior in such tests corresponded well with the in-reactor corrosion performance. The extent and distribution of hydriding in duplex and reference specimens during the autoclave testing has been characterized. The in-reactor corrosion data indicate that the low-tin Zircaloy-4 reference cladding, R2, had an improved corrosion resistance compared to high-tin Zircaloy-4 reference cladding, R1. Two types of duplex cladding, D1 (Zr-2.5% Nb) and D2 (Zr-0.4% Fe-0.5% Sn), showed an even further improvement in corrosion resistance compared to R2 cladding. The third duplex cladding, D3 (Zr-4 + 1.0% Nb), had significantly less corrosion resistance, which was inferior to R1. The in-reactor and out-reactor corrosion performances have been ranked

  11. Characterization of SiC–SiC composites for accident tolerant fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Deck, C.P., E-mail: Christian.Deck@ga.com; Jacobsen, G.M.; Sheeder, J.; Gutierrez, O.; Zhang, J.; Stone, J.; Khalifa, H.E.; Back, C.A.

    2015-11-15

    Silicon carbide (SiC) is being investigated for accident tolerant fuel cladding applications due to its high temperature strength, exceptional stability under irradiation, and reduced oxidation compared to Zircaloy under accident conditions. An engineered cladding design combining monolithic SiC and SiC–SiC composite layers could offer a tough, hermetic structure to provide improved performance and safety, with a failure rate comparable to current Zircaloy cladding. Modeling and design efforts require a thorough understanding of the properties and structure of SiC-based cladding. Furthermore, both fabrication and characterization of long, thin-walled SiC–SiC tubes to meet application requirements are challenging. In this work, mechanical and thermal properties of unirradiated, as-fabricated SiC-based cladding structures were measured, and permeability and dimensional control were assessed. In order to account for the tubular geometry of the cladding designs, development and modification of several characterization methods were required.

  12. Performance analysis and comparison of an Atkinson cycle coupled to variable temperature heat reservoirs under maximum power and maximum power density conditions

    International Nuclear Information System (INIS)

    Wang, P.-Y.; Hou, S.-S.

    2005-01-01

    In this paper, performance analysis and comparison based on the maximum power and maximum power density conditions have been conducted for an Atkinson cycle coupled to variable temperature heat reservoirs. The Atkinson cycle is internally reversible but externally irreversible, since there is external irreversibility of heat transfer during the processes of constant volume heat addition and constant pressure heat rejection. This study is based purely on classical thermodynamic analysis methodology. It should be especially emphasized that all the results and conclusions are based on classical thermodynamics. The power density, defined as the ratio of power output to maximum specific volume in the cycle, is taken as the optimization objective because it considers the effects of engine size as related to investment cost. The results show that an engine design based on maximum power density with constant effectiveness of the hot and cold side heat exchangers or constant inlet temperature ratio of the heat reservoirs will have smaller size but higher efficiency, compression ratio, expansion ratio and maximum temperature than one based on maximum power. From the view points of engine size and thermal efficiency, an engine design based on maximum power density is better than one based on maximum power conditions. However, due to the higher compression ratio and maximum temperature in the cycle, an engine design based on maximum power density conditions requires tougher materials for engine construction than one based on maximum power conditions

  13. MABEL-1. A code to analyse cladding deformation in a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Bowring, R.W.; Cooper, C.A.

    1978-06-01

    The MABEL-1 code has been written to investigate the deformation, of fuel pin cladding and its effects on fuel pin temperature transients during a loss-of-coolant accident. The code considers a single fuel pin with heated fuel concentric within the cladding. The fuel pin temperature distribution is evaluated using a one-dimensional conduction model with heat transfer to the coolant represented by an input set of heat transfer coefficients. The cladding deformation is calculated using the code CANSWEL, which assumes all strain to be elastic or creep and models the creep under a multi-axial stress system by a spring/dashpot combination undergoing alternate relaxation and elastic strain. (author)

  14. Femtosecond-laser inscribed double-cladding waveguides in Nd:YAG crystal: a promising prototype for integrated lasers.

    Science.gov (United States)

    Liu, Hongliang; Chen, Feng; Vázquez de Aldana, Javier R; Jaque, D

    2013-09-01

    We report on the design and implementation of a prototype of optical waveguides fabricated in Nd:YAG crystals by using femtosecond-laser irradiation. In this prototype, two concentric tubular structures with nearly circular cross sections of different diameters have been inscribed in the Nd:YAG crystals, generating double-cladding waveguides. Under 808 nm optical pumping, waveguide lasers have been realized in the double-cladding structures. Compared with single-cladding waveguides, the concentric tubular structures, benefiting from the large pump area of the outermost cladding, possess both superior laser performance and nearly single-mode beam profile in the inner cladding. Double-cladding waveguides of the same size were fabricated and coated by a thin optical film, and a maximum output power of 384 mW and a slope efficiency of 46.1% were obtained. Since the large diameters of the outer claddings are comparable with those of the optical fibers, this prototype paves a way to construct an integrated single-mode laser system with a direct fiber-waveguide configuration.

  15. The effect of mechanical restraint on the deformation of Zircaloy cladding

    International Nuclear Information System (INIS)

    Jones, P.M.; Haste, T.J.

    1980-10-01

    Zircaloy cladding, deformed at temperatures postulated for loss-of-coolant accidents, can exhibit considerable ductility. The actual circumferential strain is governed by the temperature uniformity around the rod during the time at which the major part of the deformation occurs. If the bulges in neighbouring rods in a multi-rod array touch before rupture, and the array is large enough for the outer rods to restrain bulges rather than be pushed away by them, then the stress in such bulges drops. However the stress in adjacent axial regions of the cladding which have not contacted remains high and these continue to strain until they also interact, thus propagating the bulging axially. Meanwhile the non-contacted portions of the interacting bulges continue to strain slowly into the remaining sub-channels. Illustrative calculations suggest that the mechanical restraint of bulging cladding will only be effective in increasing sub-channel blockage when the failure strains are greater than 60-70%. This may occur with temperature differences between neighbouring rods of 10-25 0 C if the deformation process is thermally stabilised. (author)

  16. Mechanical performance of SiC three-layer cladding in PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Angelici Avincola, Valentina, E-mail: valentina.avincola@kit.edu [Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Guenoun, Pierre, E-mail: pguenoun@mit.edu [Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139 (United States); Shirvan, Koroush, E-mail: kshirvan@mit.edu [Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139 (United States)

    2016-12-15

    Highlights: • FEA calculations of the stress distribution in SiC three-layer cladding. • Simulation of SiC mechanical performance under operation and accident conditions. • Failure probability analysis of SiC in steady-state and accident conditions. - Abstract: The silicon carbide cladding concept is currently under investigation with regard to increasing the accident tolerance and economic performance of light-water reactor fuels. In this work, the stress fields in the multi-layered silicon carbide cladding for LWR fuels are calculated using the commercial finite element analysis software ADINA. The material properties under irradiation are implemented as a function of temperature. The cladding is studied under operating and accident conditions, specifically for the loss-of-coolant accident (LOCA). During the LOCA, the blowdown and the reflood phases are modeled, including the quench waterfront. The calculated stresses along the cladding thickness show a high sensitivity to the assumptions regarding material properties. The resulting stresses are compared with experimental data and the probability of failure is calculated considering a Weibull model.

  17. Development Status of Accident Tolerant Fuel Cladding for LWRs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Gil; Kim, Il-Hyun; Jung, Yang-Il; Park, Dong-Jun; Park, Jung-Hwan; Yang, Jae-Ho; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Hydrogen explosions and the release of radionuclides are caused by severe damage of current nuclear fuels, which are composed of fuel pellets and fuel cladding, during an accident. To reduce the damage to the public, the fuels have to enhance their integrity under an accident environment. Enhanced accident tolerance fuels (ATFs) can tolerate a loss of active cooling in the reactor core for a considerably longer time period during design-basis and beyond design-basis events while maintaining or improving the fuel performance during normal operations as well as operational transients, in comparison with the current UO{sub 2}-Zr alloy system used in the LWR. Surface modified Zr cladding as a new concept was suggested to apply an enhanced ATF cladding. The aim of the partial ODS treatment is to increase the high-temperature strength to suppress the ballooning/rupture behavior of fuel cladding during an accident event. The target of the surface coating is to increase the corrosion resistance during normal operation and increase the oxidation resistance during an accident event. The partial ODS treatment of Zircaloy-4 cladding can be produced using a laser beam scanning method with Y2O3 powder, and the surface Cr-alloy and Cr/FeCrAl coating on Zircaloy-4 cladding can be obtained after the development of 3D laser coating and arc ion plating technologies.

  18. Study of the response of Zircaloy cladding to thermal shock during water quenching after double sided steam oxidation at elevated temperatures

    International Nuclear Information System (INIS)

    Banerjee, Suparna; Sawarn, Tapan K.; Kumar, Sunil

    2015-01-01

    This study investigates the failure of embrittled Zircaloy-4 cladding used in the present generation of Indian pressurized heavy water reactors (IPHWRs) in a simulated LOCA condition and its correlation with the evolved stratified microstructure. Isothermal steam oxidation of Zircaloy-4 cladding at high temperatures (900-1200°C) with soaking periods in the range 60-900 seconds followed by water quenching was carried out. None of the pieces broke during quenching except for those heated at 1100, 1150 and 1200°C for longer durations. The combined oxide + oxygen stabilized α-Zr(O) layer thickness and the fraction of the load bearing phase of clad tube specimens were correlated with the %ECR values calculated using Baker-Just equation. Average oxygen concentration of the load bearing prior β-Zr phase corresponding to different oxidation conditions was calculated from the average microhardness values in Vickers scale using an empirical correlation developed by Leistikow. The results of these experiments are presented in this paper. Thermal shock sustainability of the clad was correlated with the %ECR, combined oxide+α-Zr(O) layer thickness, fraction of the prior β-Zr phase and its average oxygen concentration. The thermal shock boundary was observed to be 29% ECR, 0.29 mm combined thickness of ZrO_2+α-Zr(O), 0.16 mm of β-Zr thickness with an average β phase oxygen content of 0.69 wt%. (author)

  19. Operational forecasting of daily temperatures in the Valencia Region. Part I: maximum temperatures in summer.

    Science.gov (United States)

    Gómez, I.; Estrela, M.

    2009-09-01

    Extreme temperature events have a great impact on human society. Knowledge of summer maximum temperatures is very useful for both the general public and organisations whose workers have to operate in the open, e.g. railways, roadways, tourism, etc. Moreover, summer maximum daily temperatures are considered a parameter of interest and concern since persistent heat-waves can affect areas as diverse as public health, energy consumption, etc. Thus, an accurate forecasting of these temperatures could help to predict heat-wave conditions and permit the implementation of strategies aimed at minimizing the negative effects that high temperatures have on human health. The aim of this work is to evaluate the skill of the RAMS model in determining daily maximum temperatures during summer over the Valencia Region. For this, we have used the real-time configuration of this model currently running at the CEAM Foundation. To carry out the model verification process, we have analysed not only the global behaviour of the model for the whole Valencia Region, but also its behaviour for the individual stations distributed within this area. The study has been performed for the summer forecast period of 1 June - 30 September, 2007. The results obtained are encouraging and indicate a good agreement between the observed and simulated maximum temperatures. Moreover, the model captures quite well the temperatures in the extreme heat episodes. Acknowledgement. This work was supported by "GRACCIE" (CSD2007-00067, Programa Consolider-Ingenio 2010), by the Spanish Ministerio de Educación y Ciencia, contract number CGL2005-03386/CLI, and by the Regional Government of Valencia Conselleria de Sanitat, contract "Simulación de las olas de calor e invasiones de frío y su regionalización en la Comunidad Valenciana" ("Heat wave and cold invasion simulation and their regionalization at Valencia Region"). The CEAM Foundation is supported by the Generalitat Valenciana and BANCAIXA (Valencia, Spain).

  20. FRAPCON analysis of cladding performance during dry storage operations

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, David J.; Geelhood, Kenneth J.

    2018-03-01

    There is an increasing need in the U.S. and around the world to move used nuclear fuel from wet storage in fuel pools to dry storage in casks stored at independent spent fuel storage installations (ISFSI) or interim storage sites. The NRC limits cladding temperature to 400°C while maintaining cladding hoop stress below 90 MPa in an effort to avoid radial hydride reorientation. An analysis was conducted with FRAPCON-4.0 on three modern fuel designs with three representative used nuclear fuel storage temperature profiles that peaked at 400 °C. Results were representative of the majority of U.S. LWR fuel. They conservatively showed that hoop stress remains below 90 MPa at the licensing temperature limit. Results also show that the limiting case for hoop stress may not be at the highest rod internal pressure in all cases but will be related to the axial temperature and oxidation profiles of the rods at the end of life and in storage.

  1. Evaluation of fast experimental reactor claddings, (2)

    International Nuclear Information System (INIS)

    Miura, Makoto; Nagaki, Hiroshi; Koyama, Masahiro; Tanaka, Yasumasa

    1974-01-01

    Thin-walled fine tubes of Type 316 austenitic stainless steel are used for fuel cladding in Joyo (experimental FBR). The material exhibits the change of the mechanical properties in long-time annealing at high temperature, resulting from the precipitation of carbide in structure. In this connection, the experiment and the results on the changes of the microstructure and mechanical properties (proof stress and hardness) are described. The test specimens are the fuel cladding tubes produced for trial for Joyo core and those for FFTF core made in the U.S.A. They were heated between 400 0 and 850 0 C for 1000 hr in vacuum. (Mori, K.)

  2. Composite polymer/glass edge claddings for new Nova laser disks

    International Nuclear Information System (INIS)

    Powell, H.T.; Campbell, J.H.; Edwards, G.

    1987-01-01

    Large Nd:glass laser disks like those used in Nova require an edge cladding which absorbs at 1 μm. This cladding prevents Fresnel reflections from the edges from causing parasitic oscillations which would otherwise reduce the gain. The original Nova disks had a Cu/sup 2+/-doped phosphate glass cladding which was cast at high temperature around the circumference of the disk. Although the performance of this cladding is excellent, it was expensive to produce. Consequently, in parallel with their efforts to develop Pt inclusion-free laser glass, the authors developed a composite polymer/glass edge cladding that can be applied at greatly reduced cost. Laser disks constructed with the new cladding design show identical performance to the previous Nova disks and have been tested for hundreds of shots without degradation. The new cladding consists of absorbing glass strips which are bonded to the edges of polygonal-rather that elliptical-shaped disks. The bond is made by an --25-μm thick clear epoxy adhesive whose index of refraction matches both the laser and absorbing glass. By blending aromatic and aliphatic epoxy constituents, they achieved an index-of-refraction match within approximately +-0.003 between the epoxy and glass. The epoxy was also chosen based on its damage resistance to flashlamp light and its adhesive strength to glass. The present cladding is a major improvement over a previous experimental cladding utilizing silicone rubber as a coupling agent. Early prototypes constructed without using the presented techniques exhibited failures from both mechanisms. Delamination failures occurred which clearly showed both surface and bulk-mode parasitic oscillation. Requirements on the polymer, disk size, and Nd doping to prevent these problems are presented

  3. Design of absorber assemblies with intentional pellet-cladding mechanical interaction

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Birney, K.R.; Pitner, A.L.; Basmajian, J.A.

    1980-04-01

    A number of improvements in absorber assembly performance characteristics can be achieved through implementation of absorber cladding mechanical interaction (ACMI). Benefits include lower operating temperatures, less potential for material relocation, longer lifetime, and increased reactivity worth. Analyses indicate that substantial cladding strains may be attainable without significant risk of breach. However, actual in-reactor testing of ACMI in absorber elements will be required before design criteria can be revised to accept ACMI

  4. Oxidation resistant chromium coating on Zircaloy-4 for accident tolerant fuel cladding

    International Nuclear Information System (INIS)

    Park, Jung-Hwan; Kim, Eui-Jung; Jung, Yang-Il; Park, Dong-Jun; Kim, Hyun-Gil; Park, Jeong-Yong; Koo, Yang-Hyun

    2015-01-01

    The attributes of such a fuel are approved reaction kinetics with steam, a slower hydrogen generation rate, and good cladding thermo-mechanical properties. Many researchers have tried to modify zirconium alloys to improve their oxidation resistance in the early stages of the ATF development. Corrosion resistant coating on cladding is one of the candidate technologies to improve the oxidation resistance of zirconium cladding. By applying coating technology to zirconium cladding, it is easy to obtain corrosion resistance without a change in the base materials. Among the surface coating methods, arc ion plating (AIP) is a coating technology to improve the adhesion owing to good throwing power, and a dense deposit (Fig. 1). Owing to these advantages, AIP has been widely used to efficiently form protective coatings on cutting tools, dies, bearings, etc. In this study, The AIP technique for the protection of zirconium claddings from the oxidation in a high-temperature steam environment was studied. The homogeneous Cr film with a high adhesive ability to the cladding was deposited by AIP and acted as a protection layer to enhance the corrosion resistance of the zirconium cladding. It was concluded that the AIP technology is effective for coating a protective layer on claddings

  5. Oxidation resistant chromium coating on Zircaloy-4 for accident tolerant fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung-Hwan; Kim, Eui-Jung; Jung, Yang-Il; Park, Dong-Jun; Kim, Hyun-Gil; Park, Jeong-Yong; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The attributes of such a fuel are approved reaction kinetics with steam, a slower hydrogen generation rate, and good cladding thermo-mechanical properties. Many researchers have tried to modify zirconium alloys to improve their oxidation resistance in the early stages of the ATF development. Corrosion resistant coating on cladding is one of the candidate technologies to improve the oxidation resistance of zirconium cladding. By applying coating technology to zirconium cladding, it is easy to obtain corrosion resistance without a change in the base materials. Among the surface coating methods, arc ion plating (AIP) is a coating technology to improve the adhesion owing to good throwing power, and a dense deposit (Fig. 1). Owing to these advantages, AIP has been widely used to efficiently form protective coatings on cutting tools, dies, bearings, etc. In this study, The AIP technique for the protection of zirconium claddings from the oxidation in a high-temperature steam environment was studied. The homogeneous Cr film with a high adhesive ability to the cladding was deposited by AIP and acted as a protection layer to enhance the corrosion resistance of the zirconium cladding. It was concluded that the AIP technology is effective for coating a protective layer on claddings.

  6. Modeling maximum daily temperature using a varying coefficient regression model

    Science.gov (United States)

    Han Li; Xinwei Deng; Dong-Yum Kim; Eric P. Smith

    2014-01-01

    Relationships between stream water and air temperatures are often modeled using linear or nonlinear regression methods. Despite a strong relationship between water and air temperatures and a variety of models that are effective for data summarized on a weekly basis, such models did not yield consistently good predictions for summaries such as daily maximum temperature...

  7. Design optimization of multi-layer Silicon Carbide cladding for light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youho, E-mail: euo@unm.edu [Department of Nuclear Engineering, University of New Mexico, MSC01 1120 1 University of New Mexico, Albuquerque, NM 87131 (United States); NO, Hee Cheon, E-mail: hcno@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, Jeong Ik, E-mail: jeongiklee@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2017-01-15

    Highlights: • SiC cladding designs are optimized with a multi-layer structural analysis code. • Layer radial thickness fraction that minimizes cladding fracture probability exists. • The demonstrated procedure is applicable for multi-layer SiC cladding design. • Duplex SiC with the inner composite fraction ∼0.4 is optimal in a reference case. • Increasing composite thermal conductivity markedly decreases SiC cladding stress. - Abstract: A parametric study that demonstrates a methodology for determining the optimum bilayer composition in a duplex SiC cladding is discussed. The structural performance of multi-layer SiC cladding design is significantly affected by radial thickness fraction of each layer. This study shows that there exists an optimal composite/monolith radial thickness fraction that minimizes failure probability for a duplex SiC cladding in steady-state operation. An exemplary reference case study shows that the duplex cladding with the inner composite fraction ∼0.4 and the outer CVD-SiC fraction ∼0.6 is found to be the optimal SiC cladding design for the current PWRs with the reference material choice for CVD-SiC and fiber reinforced composite. A marginal increase in the composite fraction from the presented optimal designs may lead to increase structural integrity by introducing some unquantified merits such as increasing damage tolerance. The major factors that affect the optimum cladding designs are temperature gradients and internal gas pressure. Clad wall thickness, thermal conductivity, and Weibull modulus are among the key design parameters/material properties.

  8. Dynamics of a BWR with inclusion of boiling nonlinearity, clad temperature and void-dependent core power removal: Stability and bifurcation characteristics of advanced heavy water reactor (AHWR)

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Dinkar, E-mail: dinkar@iitk.ac.in [Nuclear Engineering and Technology Program, Indian Institute of Technology Kanpur, Kanpur 208 016 (India); Kalra, Manjeet Singh, E-mail: drmanjeet.singh@dituniversity.edu.in [DIT University, Dehradun 248 009 (India); Wahi, Pankaj, E-mail: wahi@iitk.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016 (India)

    2016-11-15

    Highlights: • Simplified models with inclusion of the clad temperature are considered. • Boiling nonlinearity and core power removal have been modeled. • Method of multiple time scales has been used for nonlinear analysis to get the nature and amplitude of oscillations. • Incorporation of modeling complexities enhances the stability of system. • We find that reactors with higher nominal power are more desirable from the point of view of global stability. - Abstract: We study the effect of including boiling nonlinearity, clad temperature and void-dependent power removal from the primary loop in the mathematical modeling of a boiling water reactor (BWR) on its dynamic characteristics. The advanced heavy water reactor (AHWR) is taken as a case study. Towards this end, we have analyzed two different simplified models with different handling of the clad temperature. Each of these models has the necessary modifications pertaining to boiling nonlinearity and power removal from the primary loop. These simplified models incorporate the neutronics and thermal–hydraulic coupling. The effect of successive changes in the modeling assumptions on the linear stability of the reactor has been studied and we find that incorporation of each of these complexities in the model increases the stable operating region of the reactor. Further, the method of multiple time scales (MMTS) is exploited to carry out the nonlinear analysis with a view to predict the bifurcation characteristics of the reactor. Both subcritical and supercritical Hopf bifurcations are present in each model depending on the choice of operating parameters. These analytical observations from MMTS have been verified against numerical simulations. A parametric study on the effect of changing the nominal reactor power on the regions in the parametric space of void coefficient of reactivity and fuel temperature coefficient of reactivity with sub- and super-critical Hopf bifurcations has been performed for all

  9. Fracture mechanics analysis of reactor pressure vessel under pressurized thermal shock - The effect of elastic-plastic behavior and stainless steel cladding -

    International Nuclear Information System (INIS)

    Joo, Jae Hwang; Kang, Ki Ju; Jhung, Myung Jo

    2002-01-01

    Performed here is an assessment study for deterministic fracture mechanics analysis of a pressurized thermal shock (PTS). The PTS event means an event or transient in pressurized water reactors (PWRs) causing severe overcooling (thermal shock) concurrent with or followed by significant pressure in the reactor vessel. The problems consisting of two transients and 10 cracks are solved and maximum stress intensity factors and maximum allowable nil-ductility reference temperatures are calculated. Their results are compared each other to address the general characteristics between transients, crack types and analysis methods. The effects of elastic-plastic material behavior and clad coating on the inner surface are explored

  10. Comparison of corrosion behavior between fusion cladded and explosive cladded Inconel 625/plain carbon steel bimetal plates

    International Nuclear Information System (INIS)

    Zareie Rajani, H.R.; Akbari Mousavi, S.A.A.; Madani Sani, F.

    2013-01-01

    Highlights: ► Both explosive and fusion cladding aggravate the corrosion resistance of Inconel 625. ► Fusion cladding is more detrimental to nonuniform corrosion resistance. ► Single-layered fusion coat does not show any repassivation ability. ► Adding more layers enhance the corrosion resistance of fusion cladding Inconel 625. ► High impact energy spoils the corrosion resistance of explosive cladding Inconel 625. -- Abstract: One of the main concerns in cladding Inconel 625 superalloy on desired substrates is deterioration of corrosion resistance due to cladding process. The present study aims to compare the effect of fusion cladding and explosive cladding procedures on corrosion behavior of Inconel 625 cladding on plain carbon steel as substrate. Also, an attempt has been made to investigate the role of load ratio and numbers of fusion layers in corrosion behavior of explosive and fusion cladding Inconel 625 respectively. In all cases, the cyclic polarization as an electrochemical method has been applied to assess the corrosion behavior. According to the obtained results, both cladding methods aggravate the corrosion resistance of Inconel 625. However, the fusion cladding process is more detrimental to nonuniform corrosion resistance, where the chemical nonuniformity of fusion cladding superalloy issuing from microsegregation, development of secondary phases and contamination of clad through dilution hinders formation of a stable passive layer. Moreover, it is observed that adding more fusion layers can enhance the nonuniform corrosion resistance of fusion cladding Inconel 625, though this resistance still remains weaker than explosive cladding superalloy. Also, the results indicate that raising the impact energy in explosive cladding procedure drops the corrosion resistance of Inconel 625.

  11. Refractive index and temperature-sensing characteristics of a cladding-etched thin core fiber interferometer

    Science.gov (United States)

    Wang, Weiying; Dong, Xinran; Chu, Dongkai; Hu, Youwang; Sun, Xiaoyan; Duan, Ji-An

    2018-05-01

    A high refractive index (RI) sensor based on an in-line Mach-Zehnder mode interferometer (MZI) is proposed. The sensor was realized by splicing a 2-cm length of cladding-etched thin core fiber (TCF) between two single mode fibers (SMFs). The TCF-structured MZI exhibited good fringe visibility as high as 15 dB in air and the high RI sensitivity attained a value of 1143.89 nm/RIU at a RI of 1.447. The experimental data revealed that the MZI has high RI sensitivity after HF etching realizing 2599.66 nm/RIU. Studies were performed on the temperature characteristics of the device. It is anticipated that this high RI sensor will be deployed in new and diverse applications in the chemical and biological fields.

  12. Equilibrium moisture content of wood at different temperature/moisture conditions in the cladding of wooden constructions and in the relation to their reliability and service life

    Directory of Open Access Journals (Sweden)

    Zdeňka Havířová

    2010-01-01

    Full Text Available One of the natural properties of wood and wood-based materials is their soaking capacity (hy­gro­sco­pi­ci­ty. The moisture content of wood and building constructions of wood and wood based materials significantly influences the service life and reliability of these constructions and buildings. The equilibrium weight moisture content of built-in wood corresponding to temperature/moisture conditions inside the cladding has therefore a decisive influence on the basic requirements placed on building constructions. The wood in wooden frame cladding changes its moisture content depending on temperature and moisture conditions of the environment it is built into. The water vapor condensation doesn’t necessarily have to occur right in the wooden framework of the cladding for the equilibrium moisture content to rise over the level permissible for the reliable function of a given construction. In spite of the fact that the common heat-technical assessment cannot be considered fully capable of detecting the effects of these factors on the functional reliability of wood-based constructions and buildings, an extension has been proposed of the present method of design an assessment of building constructions according to the ČSN 73 0540 standard regarding the interpretation of equilibrium moisture content in relation to the temperature/moisture conditions and their time behavior inside a construction.

  13. High temperature behaviour of E110G and E110 fuel claddings in various mixtures of steam and air

    International Nuclear Information System (INIS)

    Perez-Feró, Erzsébet; Novotny, Tamás; Horváth, Márta; Kunstár, Mihály; Vér, Nóra; Hózer, Zoltán

    2014-01-01

    Experiments with sponge base E110G and the traditional E110 were carried out to compare the oxidation kinetics of these alloys in steam, in hydrogen rich steam, in steam-air and in air atmosphere and to study the effect of hydrogen- and nitrogen-containing environment on the oxidation. The effect of oxidizing atmosphere on the mechanical behaviour of the claddings was also investigated. The new and the traditional types of cladding rings were oxidised at high temperature (600°C – 1200°C). Oxidation of both alloys in steam-air mixture and in air atmosphere resulted in faster oxidation kinetics compared to steam. In many cases bumpy, porous oxide layer have been found. The presence of hydrogen in the steam atmosphere had no significant effect on the oxidation kinetics. Comparing the two alloys, more favourable behaviour of oxidised E110G was observed regarding the oxidation kinetics, breakaway oxidation and load bearing capability in all cases. (author)

  14. Influence of aliphatic amides on the temperature of maximum density of water

    International Nuclear Information System (INIS)

    Torres, Andrés Felipe; Romero, Carmen M.

    2017-01-01

    Highlights: • The addition of amides decreases the temperature of maximum density of water suggesting a disruptive effect on water structure. • The amides in aqueous solution do not follow the Despretz equation in the concentration range considered. • The temperature shift Δθ as a function of molality is represented by a second order equation. • The Despretz constants were determined considering the dilute concentration region for each amide solution. • Solute disrupting effect of amides becomes smaller as its hydrophobic character increases. - Abstract: The influence of dissolved substances on the temperature of the maximum density of water has been studied in relation to their effect on water structure as they can change the equilibrium between structured and unstructured species of water. However, most work has been performed using salts and the studies with small organic solutes such as amides are scarce. In this work, the effect of acetamide, propionamide and butyramide on the temperature of maximum density of water was determined from density measurements using a magnetic float densimeter. Densities of aqueous solutions were measured within the temperature range from T = (275.65–278.65) K at intervals of 0.50 K in the concentration range between (0.10000 and 0.80000) mol·kg −1 . The temperature of maximum density was determined from the experimental results. The effect of the three amides is to decrease the temperature of maximum density of water and the change does not follow the Despretz equation. The results are discussed in terms of solute-water interactions and the disrupting effect of amides on water structure.

  15. Laser performance and modeling of RE3+:YAG double-clad crystalline fiber waveguides

    Science.gov (United States)

    Li, Da; Lee, Huai-Chuan; Meissner, Stephanie K.; Meissner, Helmuth E.

    2018-02-01

    We report on laser performance of ceramic Yb:YAG and single crystal Tm:YAG double-clad crystalline fiber waveguide (CFW) lasers towards the goal of demonstrating the design and manufacturing strategy of scaling to high output power. The laser component is a double-clad CFW, with RE3+:YAG (RE = Yb, Tm respectively) core, un-doped YAG inner cladding, and ceramic spinel or sapphire outer cladding. Laser performance of the CFW has been demonstrated with 53.6% slope efficiency and 27.5-W stable output power at 1030-nm for Yb:YAG CFW, and 31.6% slope efficiency and 46.7-W stable output power at 2019-nm for Tm:YAG CFW, respectively. Adhesive-Free Bond (AFB®) technology enables a designable refractive index difference between core and inner cladding, and designable core and inner cladding sizes, which are essential for single transverse mode CFW propagation. To guide further development of CFW designs, we present thermal modeling, power scaling and design of single transverse mode operation of double-clad CFWs and redefine the single-mode operation criterion for the double-clad structure design. The power scaling modeling of double-clad CFW shows that in order to achieve the maximum possible output power limited by the physical properties, including diode brightness, thermal lens effect, and simulated Brillion scattering, the length of waveguide is in the range of 0.5 2 meters. The length of an individual CFW is limited by single crystal growth and doping uniformity to about 100 to 200 mm lengths, and also by availability of starting crystals and manufacturing complexity. To overcome the limitation of CFW lengths, end-to-end proximity-coupling of CFWs is introduced.

  16. Method for the protection of the cladding tubes of fuel rods

    International Nuclear Information System (INIS)

    Steinberg, E.

    1978-01-01

    To present stress crack corrosion and to protect the cladding tubes of the fuel rods made of a circonium alloy from attack by iodine, the inward surfaces are provided with protective coatings. Therefore the casting tubes already filled with fuel element pellets are put under over-pressure at a temperature range between 300 and 500 0 C, until almost yield-point is reached. A small amount of H 2 O or H 2 O 2 , filled in, reacts with the cladding tube material to form the Zr-O 2 protective coating. Afterwards comes a pressure relief, and the cladding tube reaches its original dimensions. (DG) [de

  17. Fabrication and use of zircaloy/tantalum-sheathed cladding thermocouples and molybdenum/rhenium-sheathed fuel centerline thermocouples

    International Nuclear Information System (INIS)

    Wilkins, S.C.; Sepold, L.K.

    1985-01-01

    The thermocouples described in this report are zircaloy/tantalum-sheathed and molybdenum/rhenium alloy-sheathed instruments intended for fuel rod cladding and fuel centerline temperature measurements, respectively. Both types incorporate beryllium oxide insulation and tungsten/rhenium alloy thermoelements. These thermocouples, operated at temperatures of 2000 0 C and above, were developed for use in the internationally sponsored Severe Fuel Damage test series in the Power Burst Facility. The fabrication steps for both thermocouple types are described in detail. A laser-welding attachment technique for the cladding-type thermocouple is presented, and experience with alternate materials for cladding and fuel therocouples is discussed

  18. Design limits for HT9 cladding using stress-induced aging data

    International Nuclear Information System (INIS)

    Fox, G.L.

    1986-04-01

    Stress-temperature design guidelines are developed for the ferritic/martensitic cladding material HT9. High temperature operation for HT9 may cause microstructural changes/aging which softens the structure and causes increased creep rates. Higher creep strains means cladding breech becomes more probable before the end of the expected pin lifetime. Tertiary creep is considered an indication of microstructural changes and is to be avoided in fuel pin operation. The creep rate correlation, which includes tertiary creep, is examined for information on stress-temperature relationships which promote aging. This approach leads to design limits for HT9 which are compared with expected hot channel conditions for fuel pins in the Core Demonstration Experiment (CDE) planned for FFTF. The results show aging should not be significant for CDE

  19. Effects of fasting on maximum thermogenesis in temperature-acclimated rats

    Science.gov (United States)

    Wang, L. C. H.

    1981-09-01

    To further investigate the limiting effect of substrates on maximum thermogenesis in acute cold exposure, the present study examined the prevalence of this effect at different thermogenic capabilities consequent to cold- or warm-acclimation. Male Sprague-Dawley rats (n=11) were acclimated to 6, 16 and 26‡C, in succession, their thermogenic capabilities after each acclimation temperature were measured under helium-oxygen (21% oxygen, balance helium) at -10‡C after overnight fasting or feeding. Regardless of feeding conditions, both maximum and total heat production were significantly greater in 6>16>26‡C-acclimated conditions. In the fed state, the total heat production was significantly greater than that in the fasted state at all acclimating temperatures but the maximum thermogenesis was significant greater only in the 6 and 16‡C-acclimated states. The results indicate that the limiting effect of substrates on maximum and total thermogenesis is independent of the magnitude of thermogenic capability, suggesting a substrate-dependent component in restricting the effective expression of existing aerobic metabolic capability even under severe stress.

  20. CASTI handbook of cladding technology. 2. ed.

    International Nuclear Information System (INIS)

    Smith, L.; Celant, M.

    2000-01-01

    This updated (2000) CASTI handbook covers all aspects of clad products - the different means of manufacture, properties and applications in various industries. Topics include: an introduction to cladding technology, clad plate, clad pipes, bends, clad fittings, specification requirements of clad products, welding clad products, clad product application and case histories from around the world. Unique to this book is the documentation of case histories of major cladding projects from around the world and how the technology of that day has withstood the demands of time. Filled with over 100 photos and graphics illustrating the various cladding technology examples and products, this book truly documents the most recent technologies in the field of cladding technology used worldwide

  1. Determination Of Maximum Power Of The RSG-Gas At Power Operation Mode Using One Line Cooling System

    International Nuclear Information System (INIS)

    Hastuti, Endiah Puji; Kuntoro, Iman; Darwis Isnaini, M.

    2000-01-01

    In the frame of minimizing the operation-cost, operation mode using one line cooling system is being evaluated. Maximum reactor power shall be determined to assure that the existing safety criteria are not violated. The analysis was done by means of a core thermal hydraulic code, COOLOD-N. The code solves core thermal hydraulic equation at steady state conditions. By varying the reactor power as the input, thermal hydraulic parameters such as fuel cladding and fuel meat temperatures as well as safety margin against flow instability were calculated. Imposing the safety criteria to the results, maximum permissible power for this operation was obtained as much as 17.1 MW. Nevertheless, for operation the maximum power is limited to 15MW

  2. Effects of Transverse Power Distribution on Fuel Temperature

    International Nuclear Information System (INIS)

    Jo, Daeseong; Park, Jonghark; Seo, Chul Gyo; Chae, Heetaek

    2014-01-01

    In the present study, transverse power distributions with segments of 4 and 18 are evaluated. Based on the power distribution, the fuel temperatures are evaluated with a consideration of lateral heat conduction. In the present study, the effect of the transverse power distribution on the fuel temperature is investigated. The transverse power distributions with variation of fuel segment number are evaluated. The maximum power peaking with 12 segments is higher than that with 4 segments. Based on the calculation, 6-order polynomial is generated to express the transverse power distributions. The maximum power peaking factor increases with segments. The averaged power peaking is 2.10, and the maximum power peaking with 18 segments is 2.80. With the uniform power distribution, the maximum fuel temperature is found in the middle of the fuel. As the power near the side ends of the fuel increases, the maximum fuel temperature is found near the side ends. However, the maximum fuel temperature is not found where the maximum transverse power is. This is because the high power locally released from the edge of the fuel is laterally conducted to the cladding. As a result of the present study, it can be concluded that the effect of the high power peaking at the edge of the fuel on the fuel outer wall temperature is not significant

  3. Reaction of yttria-stabilized zirconia with zirconium, silicon and Zircaloy-4 at high temperature: a compatibility study for cermet fuels

    International Nuclear Information System (INIS)

    Arima, T.; Tateyama, T.; Idemitsu, K.; Inagaki, Y.

    2003-01-01

    Compatibility studies for cermet (ceramic and metal) fuels have been completed for a temperature range of 1073-1423 K. A reaction between yttria-stabilized zirconia (YSZ), as a simulated fuel, and Zr, as a candidate for a metallic matrix, has been observed at temperatures ≥1273 K, which means the formation of a metallic reaction layer at the interface between YSZ and Zr and the occurrence of metallic phases inside the YSZ. Similar results were observed for the YSZ-Zry4 (cladding) system. On the other hand, the degree of reaction was relatively large for the YSZ-Si (metallic matrix) system, and Si diffused into the YSZ. However, the maximum fuel center-line temperature can be predicted to be less than ∼1273 K for cermet fuels. Therefore, compatibility between the ceramic fuel and the metallic matrix should be good under normal reactor operational conditions. Furthermore, since the temperature of the fuel-cladding gap is lower, the cermet fuel and the cladding material are compatible

  4. Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB_2 powders

    International Nuclear Information System (INIS)

    Diao, Yunhua; Zhang, Kemin

    2015-01-01

    Highlights: • A TiC/TiB_2 composite coating was produced onto a TC2 Ti alloy by laser cladding with Ti/TiC/TiB_2 powders. • A maximum hardness of 1100 HV was achieved in the laser clad TiC/TiB_2 composite layer. • Corrosion resistance of the TC2 alloy in NaCl (3.5 wt%) aqueous solution can be improved after laser cladding. - Abstract: In the present work, a TiC/TiB_2 composite coating was produced onto a TC2 Ti alloy by laser cladding with Ti/TiC/TiB_2 powders. The surface microstructure, phase components and compositions were characterized with methods of optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffractometry (XRD), and energy dispersive spectrometry (EDS). The cladding layer is consisted of Ti, TiC and TiB_2. And the surface microhardness was measured. After laser cladding, a maximum hardness of 1100 HV is achieved in the laser cladding surface layer, which is more three times higher than that of the TC2 substrate (∼300 HV). Due to the formation of TiC and TiB_2 intermetallic compounds in the alloyed region and grain refinement, the microhardness of coating is higher than TC2 Ti alloy. In this paper, the corrosion property of matrix material and treated samples were both measured in NaCl (3.5 wt%) aqueous solution. From the result we can see that the laser cladding specimens’ corrosion property is clearly becoming better than that of the substrate.

  5. Compatibility of niobium, titanium, and vanadium metals with LMFBR cladding

    International Nuclear Information System (INIS)

    Wilson, C.N.

    1975-10-01

    A series of laboratory capsule annealing experiments were conducted to assess the compatibility of niobium, vanadium, and titanium with 316 stainless steel cladding in the temperature range of 700 to 800 0 C. Niobium, vanadium, and titanium are cantidate oxygen absorber materials for control of oxygen chemistry in LMFBR fuel pins. Capsule examination indicated good compatibility between niobium and 316 stainless steel at 800 0 C. Potential compatibility problems between cladding and vanadium or titanium were indicated at 800 0 C under reducing conditions. In the presence of Pu/sub 0.25/U/sub 0.75/O/sub 1.98/ fuel (Δanti G 02 congruent to -160 kcal/mole) no reaction was observed between vanadium or titanium and cladding at 800 0 C

  6. Fuel Performance Calculations for FeCrAl Cladding in BWRs

    Energy Technology Data Exchange (ETDEWEB)

    George, Nathan [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Sweet, Ryan [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Maldonado, G. Ivan [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Wirth, Brian D. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    This study expands upon previous neutronics analyses of the reactivity impact of alternate cladding concepts in boiling water reactor (BWR) cores and directs focus toward contrasting fuel performance characteristics of FeCrAl cladding against those of traditional Zircaloy. Using neutronics results from a modern version of the 3D nodal simulator NESTLE, linear power histories were generated and supplied to the BISON-CASL code for fuel performance evaluations. BISON-CASL (formerly Peregrine) expands on material libraries implemented in the BISON fuel performance code and the MOOSE framework by providing proprietary material data. By creating material libraries for Zircaloy and FeCrAl cladding, the thermomechanical behavior of the fuel rod (e.g., strains, centerline fuel temperature, and time to gap closure) were investigated and contrasted.

  7. High-temperature air oxidation of E110 and Zr-1%Nb alloys claddings with coatings

    International Nuclear Information System (INIS)

    Kuprin, A.S.; Belous, V.A.; Voyevodin, V.N.; Bryk, V.V.; Vasilenko, R.L.; Ovcharenko, V.D.; Tolmachova, G.N.; V'yugov, P.N.

    2014-01-01

    Results of experimental study of the influence of protective vacuum-arc claddings on the base of compounds zirconium-chromium and of its nitrides on air oxidation resistance at temperatures 660, 770, 900, 1020, 1100 deg C during 3600 s. of tubes produced of zirconium alloys E110 and Zr-1%Nb (calcium-thermal alloy of Ukrainian production) are presented. Change of hardness, the width of oxide layer and depth of oxygen penetration into alloys from the side of coating and without coating are investigated by the methods of nanoindentation and by scanning electron microscopy. It is shown that the thickness of oxide layer in zirconium alloys at temperatures 1020 and 1100 deg C from the side of the coating doesn't exceed 5 μm, and from the unprotected side reaches the value of ≥ 120 μm with porous and rough structure. Tubes with coatings save their shape completely independently of the type of alloy; tubes without coatings deform with the production of through cracks

  8. Temperature distributions in cladded configurations of complicated boundary shape

    International Nuclear Information System (INIS)

    Laura, P.A.A.; Gutierrez, R.H.; Sarmiento, G.S.

    1981-01-01

    This pape deals with an approximate analytical solution of certain cladded shapes of basic interest in nuclear engineering technology. In one case a solution of Laplace's equation is obtained. In the other, a solution to a system of partial differential equations (Poisson's and Laplace's) is attained. A approximate conformal mapping approach is also used in both situation, and it is shown that the analytical predictions are in good agreement with the values obtained by means of a finite element code. (orig.)

  9. Effects of commercial cladding on the fracture behavior of pressure vessel steel plates

    International Nuclear Information System (INIS)

    Iskander, S.K.; Alexander, D.J.; Bolt, S.E.; Cook, K.V.; Corwin, W.R.; Oland, B.C.; Nanstad, R.K.; Robinson, G.C.

    1988-01-01

    The objective of this program is to determine the effect, if any, of stainless steel cladding upon the propagation of small surface cracks subjected to stress states similar to those produced by thermal shock conditions. Preliminary results from testing at temperature 10 deg. C and 60 deg. C below NDT have shown that (1) a tough surface layer (cladding and/or HAZ) has arrested running flaws under conditions where unclad plates have ruptured, and (2) the residual load-bearing capacity of clad plates with large subclad flaws significantly exceeded that of an unclad plate. (author)

  10. FRACAS: a subcode for the analysis of fuel pellet-cladding mechanical interaction

    International Nuclear Information System (INIS)

    Bohn, M.P.

    1977-04-01

    This report describes FRACAS (Fuel Rod and Cladding Analysis Subcode), a computer code which performs the mechanical analysis in the FRAP fuel rod codes. At each loadstep, FRACAS obtains a complete elastic-plastic-creep solution for the stresses, strains, and displacements in the fuel rod cladding. The cladding is modeled as a thin cylindrical shell with prescribed temperature, pressures, and radial displacement of the inside surface. The displacement of the fuel pellets is assumed to be due to thermal gradients only. Three different regimes of pellet-cladding mechanical interaction are considered: (a) open gap, (b) closed gap, and (c) trapped stack. Both transient and steady state creep calculations are performed. The capabilities of the code are illustrated by an example problem, and comparisons are made with data obtained from two experimental fuel rods

  11. Thermal gradient effects on the oxidation of Zircaloy fuel cladding

    International Nuclear Information System (INIS)

    Klein, A.C.; Reyes, J.N. Jr.; Maguire, M.A.

    1990-01-01

    A Thermal Gradient Test Facility (TGTF) has been designed and constructed to measure the thermal gradient effect on pressurized water reactor (PWR) fuel rod cladding. The TGTF includes a heat flux simulator assembly capable of producing a wide range of PWR operating conditions including water flow velocities and temperatures, water chemistry conditions, cladding temperatures, and heat fluxes ranging to 160 W/cm 2 . It is fully instrumented including a large number of thermocouples both inside the water flow channel and inside the cladding. Two test programs are in progress. First, cladding specimens are pre-oxidized in air at 500 deg. C and in 400 deg. C steam for various lengths of time to develop a range of uniform oxide thicknesses from 1 to 60 micrometers. The pre-oxidized specimens are placed in the TGTF to characterize the oxide thermal conductivity under a variety of water flow and heat flux conditions. Second, to overcome the long exposure times required under typical PWR conditions a series of tests with the addition of high concentrations of lithium hydroxide to the water are being considered. Static autoclave tests have been conducted with lithium hydroxide concentrations ranging from 0 to 2 moles per liter at 300, 330, and 360 deg. C for up to 36 hours. Results for zircaloy-4 show a considerable increase in the weight gain for the exposed samples with oxidation rate enhancement factors as high as 70 times that of pure water. Operation of the TGTF with elevated lithium hydroxide levels will yield real-time information concerning the effects of a heat flux on the oxidation kinetics of zircaloy fuel rod cladding. (author). 5 refs, 5 figs, 2 tabs

  12. Microstructure and Mechanical Properties of Laser Clad and Post-cladding Tempered AISI H13 Tool Steel

    Science.gov (United States)

    Telasang, Gururaj; Dutta Majumdar, Jyotsna; Wasekar, Nitin; Padmanabham, G.; Manna, Indranil

    2015-05-01

    This study reports a detailed investigation of the microstructure and mechanical properties (wear resistance and tensile strength) of hardened and tempered AISI H13 tool steel substrate following laser cladding with AISI H13 tool steel powder in as-clad and after post-cladding conventional bulk isothermal tempering [at 823 K (550 °C) for 2 hours] heat treatment. Laser cladding was carried out on AISI H13 tool steel substrate using a 6 kW continuous wave diode laser coupled with fiber delivering an energy density of 133 J/mm2 and equipped with a co-axial powder feeding nozzle capable of feeding powder at the rate of 13.3 × 10-3 g/mm2. Laser clad zone comprises martensite, retained austenite, and carbides, and measures an average hardness of 600 to 650 VHN. Subsequent isothermal tempering converted the microstructure into one with tempered martensite and uniform dispersion of carbides with a hardness of 550 to 650 VHN. Interestingly, laser cladding introduced residual compressive stress of 670 ± 15 MPa, which reduces to 580 ± 20 MPa following isothermal tempering. Micro-tensile testing with specimens machined from the clad zone across or transverse to cladding direction showed high strength but failure in brittle mode. On the other hand, similar testing with samples sectioned from the clad zone parallel or longitudinal to the direction of laser cladding prior to and after post-cladding tempering recorded lower strength but ductile failure with 4.7 and 8 pct elongation, respectively. Wear resistance of the laser surface clad and post-cladding tempered samples (evaluated by fretting wear testing) registered superior performance as compared to that of conventional hardened and tempered AISI H13 tool steel.

  13. Report of the advanced neutron source (ANS) aluminum cladding corrosion workshop

    International Nuclear Information System (INIS)

    Hanson, G.H.; Gibson, G.W.; Griess, J.C.; Pawel, R.E.; Pace, N.E.; Ryskamp, J.M.

    1989-02-01

    The Advanced Neutron Source (ANS) Corrosion Workshop on aluminum cladding corrosion in reactor environments is summarized. The Workshop was held to examine the aluminum cladding oxidation studies being conducted in support of the ANS design. This report was written principally to provide a record of the ideas and judgments expressed by the workshop attendees. The ANS operating heat flux is significantly higher than that in existing reactors, and early experiments indicate that there may be an aluminum cladding oxidation problem unique to higher heat fluxes or associated cladding temperatures that, if not solved, may limit the operation of the ANS to unacceptably low power levels. A brief description of the information presented by each speaker is included along with a compilation of the most significant ideas and recommended research areas. The appendixes contain a copy of the workshop agenda and a list of attendees

  14. Performance of IN-706 and PE-16 cladding in mixed-oxide fuel pins

    International Nuclear Information System (INIS)

    Makenas, B.J.; Lawrence, L.A.; Jensen, B.W.

    1982-05-01

    Iron-nickel base, precipitation-strengthened alloys, IN-706 and PE-16, advanced alloy cladding considered for breeder reactor applications, were irradiated in mixed-oxide fuel pins in the HEDL-P-60 subassembly in EBR-II. Initial selection of candidate advanced alloys was done using only nonfueled materials test results. However, to establish the performance characteristics of the candidate cladding alloys, i.e., dimensional stability and structural integrity under conditions of high neutron flux, elevated temperature, and applied stress, it was necessary to irradiate fuel pins under typical operating conditions. Fuel pins were clad with solution treated IN-706 and PE-16 and irradiated to peak fluences of 6.1 x 10 22 n/cm 2 (E > .1 MeV) and 8.8 x 10 22 n/cm 2 (E > .1 MeV) respectively. Fabrication and operating parameters for the fuel pins with the advanced cladding alloy candidates are summarized. Irradiation of HEDL-P-60 was interrupted with the breach of a pin with IN-706 cladding at 5.1 at % and the test was terminated with cladding breach in a pin with PE-16 cladding at 7.6 at %

  15. Zirconium-barrier cladding attributes

    International Nuclear Information System (INIS)

    Rosenbaum, H.S.; Rand, R.A.; Tucker, R.P.; Cheng, B.; Adamson, R.B.; Davies, J.H.; Armijo, J.S.; Wisner, S.B.

    1987-01-01

    This metallurgical study of Zr-barrier fuel cladding evaluates the importance of three salient attributes: (1) metallurgical bond between the zirconium liner and the Zircaloy substrate, (2) liner thickness (roughly 10% of the total cladding wall), and (3) softness (purity). The effect that each of these attributes has on the pellet-cladding interaction (PCI) resistance of the Zr-barrier fuel was studied by a combination of analytical model calculations and laboratory experiments using an expanding mandrel technique. Each of the attributes is shown to contribute to PCI resistance. The effect of the zirconium liner on fuel behavior during off-normal events in which steam comes in contact with the zirconium surface was studied experimentally. Simulations of loss-of-coolant accident (LOCA) showed that the behavior of Zr-barrier cladding is virtually indistinguishable from that of conventional Zircaloy cladding. If steam contacts the zirconium liner surface through a cladding perforation and the fuel rod is operated under normal power conditions, the zirconium liner is oxidized more rapidly than is Zircaloy, but the oxidation rate returns to the rate of Zircaloy oxidation when the oxide phase reaches the zirconium-Zircaloy metallurgical bond

  16. Progress and Challenges of Ultrasonic Testing for Stress in Remanufacturing Laser Cladding Coating

    Directory of Open Access Journals (Sweden)

    Xiao-Ling Yan

    2018-02-01

    Full Text Available Stress in laser cladding coating is an important factor affecting the safe operation of remanufacturing components. Ultrasonic testing has become a popular approach in the nondestructive evaluation of stress, because it has the advantages of safety, nondestructiveness, and online detection. This paper provides a review of ultrasonic testing for stress in remanufacturing laser cladding coating. It summarizes the recent research outcomes on ultrasonic testing for stress, and analyzes the mechanism of ultrasonic testing for stress. Remanufacturing laser cladding coating shows typical anisotropic behaviors. The ultrasonic testing signal in laser cladding coating is influenced by many complex factors, such as microstructure, defect, temperature, and surface roughness, among others. At present, ultrasonic testing for stress in laser cladding coating can only be done roughly. This paper discusses the active mechanism of micro/macro factors in the reliability of stress measurement, as well as the impact of stress measurement on the quality and safety of remanufacturing components. Based on the discussion, this paper proposes strategies to nondestructively, rapidly, and accurately measure stress in remanufacturing laser cladding coating.

  17. A Prediction Study on Oxidation of Aluminum Alloy Cladding of U{sub 3}Si{sub 2}-Al Fuel Plate

    Energy Technology Data Exchange (ETDEWEB)

    Tahk, Y.W.; Lee, B.H.; Oh, J.Y.; Park, J.H.; Yim, J.S. [Research Reactor Design and Engineering Div., Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong, Daejeon 305-353 (Korea, Republic of)

    2011-07-01

    U{sub 3}Si{sub 2}-Al dispersion fuel with aluminum alloy cladding will be used for the Jordan Research and Training Reactor (JRTR). Aluminum alloy cladding undergoes corrosion at slow rates under operational status. This causes thinning of the cladding walls and impairs heat transfer to the coolant. Predictions of the aluminum oxide thickness of the fuel cladding and the maximum temperature difference across the oxide film are needed for reliability evaluation based on the design criteria and limits which prohibit spallation of oxide film. In this work, several oxide thickness prediction models were compared with the measured data of in-pile test results from RERTR program. Moreover, specific parametric studies and a preliminary prediction of the aluminum alloy oxidation using the latest model were performed for JRTR fuel. According to the current JRTR fuel management scheme and operation strategy for 5 MW power, fresh fuel is discharged after 900 effective full power days (EFPD), which is too long a span to predict oxidation properly without an elaborate model. The latest model developed by Kim et al. is in good agreement with the recent in-pile test data as well as with the out-of-pile test data available in the literature, and is one of the best predictors for the oxidation of aluminum alloy cladding in various operating condition. Accordingly, this model was chosen for estimating the oxide film thickness. Through the preliminarily evaluation, water pH level is to be controlled lower than 6.2 for the conservativeness in the case of including the effect of anticipated operational occurrences and the spent fuel residence time in the storage rack after discharging. (author)

  18. Technical committee meeting on fuel and cladding interaction. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-04-01

    Experiments and experiences concerning fuel-cladding interaction in thermal and fast neutron flux burnup are dealt with. A number of results from in-pile and out-of pile experiments with different fuel pins with cladding made of different stainless steels showed the importance of corrosion process, dependent on the burnup, core temperature, metal-oxide ratio, and other steady state parameters in the core of fast reactors (most frequently LMFBRs). This is of importance for fuel pins design and fabrication. Mixed oxide fuel is treated in many cases.

  19. Technical committee meeting on fuel and cladding interaction. Summary report

    International Nuclear Information System (INIS)

    1977-04-01

    Experiments and experiences concerning fuel-cladding interaction in thermal and fast neutron flux burnup are dealt with. A number of results from in-pile and out-of pile experiments with different fuel pins with cladding made of different stainless steels showed the importance of corrosion process, dependent on the burnup, core temperature, metal-oxide ratio, and other steady state parameters in the core of fast reactors (most frequently LMFBRs). This is of importance for fuel pins design and fabrication. Mixed oxide fuel is treated in many cases

  20. Ultrasonic spot welding of Al/Mg/Al tri-layered clad sheets

    International Nuclear Information System (INIS)

    Macwan, A.; Patel, V.K.; Jiang, X.Q.; Li, C.; Bhole, S.D.; Chen, D.L.

    2014-01-01

    Highlights: • The optimal welding condition is achieved at 100 J and 0.1 s. • Failure load first increases and then decreases with increasing welding energy. • The highest failure load after welding is close to that of the clad sheets. • At low energy levels failure occurs in the mode of interfacial failure. • At high energy levels failure takes place at the edge of nugget region. - Abstract: Solid-state ultrasonic spot welding (USW) was used to join Al/Mg/Al tri-layered clad sheets, aiming at exploring weldability and identifying failure mode in relation to the welding energy. It was observed that the application of a low welding energy of 100 J was able to achieve the optimal welding condition during USW at a very short welding time of 0.1 s for the tri-layered clad sheets. The optimal lap shear failure load obtained was equivalent to that of the as-received Al/Mg/Al tri-layered clad sheets. With increasing welding energy, the lap shear failure load initially increased and then decreased after reaching a maximum value. At a welding energy of 25 J, failure occurred in the mode of interfacial failure along the center Al/Al weld interface due to insufficient bonding. At a welding energy of 50 J, 75 J and 100 J, failure was also characterized by the interfacial failure mode, but it occurred along the Al/Mg clad interface rather than the center Al/Al weld interface, suggesting stronger bonding of the Al/Al weld interface than that of the Al/Mg clad interface. The overall weld strength of the Al/Mg/Al tri-layered clad sheets was thus governed by the Al/Mg clad interface strength. At a welding energy of 125 J and 150 J, thinning of weld nugget and extensive deformation at the edge of welding tip caused failure at the edge of nugget region, leading to a lower lap shear failure load

  1. Development of Cold Spray Coatings for Accident-Tolerant Fuel Cladding in Light Water Reactors

    Science.gov (United States)

    Maier, Benjamin; Yeom, Hwasung; Johnson, Greg; Dabney, Tyler; Walters, Jorie; Romero, Javier; Shah, Hemant; Xu, Peng; Sridharan, Kumar

    2018-02-01

    The cold spray coating process has been developed at the University of Wisconsin-Madison for the deposition of oxidation-resistant coatings on zirconium alloy light water reactor fuel cladding with the goal of improving accident tolerance during loss of coolant scenarios. Coatings of metallic (Cr), alloy (FeCrAl), and ceramic (Ti2AlC) materials were successfully deposited on zirconium alloy flats and cladding tube sections by optimizing the powder size, gas preheat temperature, pressure and composition, and other process parameters. The coatings were dense and exhibited excellent adhesion to the substrate. Evaluation of the samples after high-temperature oxidation tests at temperatures up to 1300°C showed that the cold spray coatings significantly mitigate oxidation kinetics because of the formation of thin passive oxide layers on the surface. The results of the study indicate that the cold spray coating process is a viable near-term option for developing accident-tolerant zirconium alloy fuel cladding.

  2. Thermal Shock Properties of Cladding with SiC{sub f}/SiC Composite Protective Films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Donghee; Park, Kwangheon [Kyunghee University, Yongin (Korea, Republic of); Kim, Weonju; Park, Jiyeon; Kim, Daejong; Lee, Hyeon Geun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    In general, Zr-4 alloy is used for such nuclear fuel cladding. Zr-4 possesses a very small thermal neutron absorption cross-section and has superior corrosion resistance in the normal operating conditions of a nuclear reactor. However, in the case of a critical accident such as a LOCA (loss-of-coolant accident) in the Fukushima disaster, the risk of hydrogen explosion becomes serious. That is, in the case of coolant leakage, a dramatic reaction between the nuclear fuel cladding and steam can cause a heating reaction accompanied by rapid high-temperature oxidation, while creating a huge amount of hydrogen. Hence, the search for an alternative material for nuclear fuel cladding is being actively undertaken. Ceramic-based nuclear fuel cladding is receiving much attention as a means of improving safety. SiC has excellent properties of resistance to high temperature and high exposure and superior mechanical properties, as well as a very small thermal neutron absorption cross-section (0.09 barns), which causes almost no decrease in mechanical strength or volume change following exposure. This experiment examined the thermal shock properties and microstructure of cladding that has SiCf/SiC composite protective film, using polycarbosilane preceramic polymer.

  3. Mechanical test of E110 cladding material oxidized in hydrogen rich steam atmosphere

    International Nuclear Information System (INIS)

    Windberg, P.; Perez-Fero, E.

    2005-01-01

    The behavior of the fuel cladding under accidental conditions has been studied at the AEKI for more than a decade. Earlier, the effect of oxygen and hydrogen content on the mechanical properties was studied separately. The present experiments can help to understand what kind of processes took place in the cleaning tank at Paks NPP (2003). The purpose of our experiments was to investigate high temperature oxidation of E110 cladding in steam + hydrogen mixture. A high temperature tube furnace was used for oxidation of the samples. The oxidation was carried out at three different temperatures (900 0 C, 1000 0 C, 1100 0 C). The hydrogen content in the steam was varied between 19-36 vol%. The oxygen content of the sample was defined as oxidation ratio. Two sizes (length: 2 and 8 mm) of cladding rings and 100 mm long E110 cladding tubes were oxidized. After the oxidation we made compression and tensile tests for rings, and ballooning experiments for 100 mm long tube. The most important conclusions were the following. Oxidation in H-rich steam atmosphere need longer time to get the same oxidation ratio compared to the steam oxidation without hydrogen. The shorter oxidation time results in a more compact oxide layer. The longer oxidation time leads to a cracked oxide layer. (author)

  4. Fabrication and testing of U–7Mo monolithic plate fuel with Zircaloy cladding

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, E.E. [Laboratorio de Nanotecnología Nuclear, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Av. General Paz 1499, B1650KNA, San Martín, Prov. Buenos Aires (Argentina); Robinson, A.B. [Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID, 83415-6188 (United States); Porter, D.L., E-mail: Douglas.Porter@inl.gov [Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID, 83415-6188 (United States); Wachs, D.M. [Idaho National Laboratory, P. O. Box 1625, Idaho Falls, ID, 83415-6188 (United States); Finlay, M.R. [Australian Nuclear Science and Technology Organisation, PMB 1, Menai, NSW, 2234 (Australia)

    2016-10-15

    Nuclear fuel designs are being developed to replace highly enriched fuel used in research and test reactors with fuels of low enrichment. In the most challenging cases, U–(7–10 wt%)Mo monolithic plate fuels are proposed. One of the considered designs includes aluminum-alloy cladding, which provides some challenges in fabrication and fuel/cladding interaction during service. Zircaloy cladding, specifically Zry–4, was investigated as an alternative cladding, and development of a fabrication method was performed by researchers with the Comisión Nacionalde Energia Atómica (CNEA) in Argentina, resulting in test fuel plates (Zry–4 clad U–7Mo) which were subsequently tested in the Advanced Test Reactor in Idaho. Because Zry–4 and U–(7–10)Mo have similar high-temperature mechanical properties, fabrication was simplified in that the fuel foil and cladding could be co-rolled and bonded. The challenge was to prevent a thermal-expansion mismatch, which could destroy the fuel/cladding bond before complete bonding was achieved; the solution was to prevent the composites from cooling significantly during or between roll passes. The final product performed very well in-reactor, showing good bonding, very little fuel/cladding interaction—either from fabrication or in-reactor testing—and little swelling, especially no detectable heterogeneous bubble formation at the fuel/cladding interface tested to a fission density of up to 2.7E+21 (average) fissions/cm{sup 3}, 3.8E+21 (peak).

  5. 3D Finite Element Simulation of Pellet-Cladding Mechanical Interaction

    International Nuclear Information System (INIS)

    Seo, Sang Kyu; Lee, Sung Uk; Lee, Eun Ho; Yang, Dong Yol; Kim, Hyo Chan; Yang, Dong Yol

    2016-01-01

    In a nuclear power plant, the fuel assembly, which is composed of fuel rods, burns, and the high temperature can generate power. The fuel rod consists of pellets and a cladding that covers the pellets. It is important to understand the pellet-cladding mechanical interaction with regard to nuclear safety. This paper proposes simulation of the PCMI. The gap between the pellets and the cladding, and the contact pressure are very important for conducting thermal analysis. Since the gap conductance is not known, it has to be determined by a suitable method. This paper suggests a solution. In this study, finite element (FE) contact analysis is conducted considering thermal expansion of the pellets. As the contact causes plastic deformation, this aspect is considered in the analysis. A 3D FE module is developed to analyze the PCMI using FORTRAN 90. The plastic deformation due to the contact between the pellets and the cladding is the major physical phenomenon. The simple analytical solution of a cylinder is proposed and compared with the fuel rod performance code results

  6. Investigation on fuel-cladding chemical interaction in metal fuel for FBR. Reaction of rare earth elements with Fe-Cr alloy

    International Nuclear Information System (INIS)

    Inagaki, Kenta; Ogata, Takanari

    2010-01-01

    Rare-earth fission product (FP) elements generated in the metal fuel interact with cladding alloy and result in the wastage of the cladding (Fuel-Cladding Chemical Interaction (FCCI)). To evaluate FCCI quantitatively, several influential factors must be considered. They are temperature, temperature gradient, time, composition of the cladding and the behavior of rare-earth FP. In this research, the temperature and time dependencies are investigated with tests in the simplified system. Fe-12wt%Cr was used as stimulant material of cladding and rare-earth alloy 13La -24Ce -12Pr -39Nd -12Sm (RE) as a rare-earth FP. A diffusion couple Fe-Cr/RE was made and annealed at 923K, 853K, 773K or 693K. The structures of reaction layers were analyzed with Electron Probe Micro Analyzer (EPMA) and the details of the structures were clarified. The width of the reaction layer in the Fe-Cr alloy grew in proportion to the square root of time. The reaction rate constants K=(square of the width of reaction layer / time) were evaluated. It was confirmed that the relation between K and the inverse of the temperature showed linearity above 773 K. (author)

  7. Experimental program to determine maximum temperatures for dry storage of spent fuel

    International Nuclear Information System (INIS)

    Knox, C.A.; Gilbert, E.R.; White, G.D.

    1985-02-01

    Although air is used as a cover gas in some dry storage facilities, other facilities use inert cover gases which must be monitored to assure inertness of the atmosphere. Thus qualifying air as a cover gas is attractive for the dry storage of spent fuels. At sufficiently high temperatures, air can react with spent fuel (UO 2 ) at the site of cladding breaches that formed during reactor irradiation or during dry storage. The reaction rate is temperature dependent; hence the rates can be maintained at acceptable levels if temperatures are low. Tests with spent fuel are being conducted at Pacific Northwest Laboratory (PNL) to determine the allowable temperatures for storage of spent fuel in air. Tests performed with nonirradiated UO 2 pellets indicated that moisture, surface condition, gamma radiation, gadolinia content of the fuel pellet, and temperature are important variables. Tests were then initiated on spent fuel to develop design data under simulated dry storage conditions. Tests have been conducted at 200 and 230 0 C on spent fuel in air and 275 0 C in moist nitrogen. The results for nonirradiated UO 2 and published data for irradiated fuel indicate that above 230 0 C, oxidation rates are unacceptably high for extended storage in air. The tests with spent fuel will be continued for approximately three years to enable reliable extrapolations to be made for extended storage in air and inert gases with oxidizing constituents. 6 refs., 6 figs., 3 tabs

  8. Cladding failure by local plastic instability

    International Nuclear Information System (INIS)

    Kramer, J.M.; Deitrich, L.W.

    1977-01-01

    Cladding failure is one of the major considerations in analysis of fast-reactor fuel pin behavior during hypothetical accident transients since time, location and nature of failure govern the early post-failure material motion and reactivity feedback. Out-of-Pile transient burst tests of both irradiated and unirradiated fast-reactor cladding show that local plastic instability, or bulging, often precedes rupture. To investigate the details of cladding bulging, a perturbation analysis of the equations governing the large deformation of a cylindrical shell has been developed. The overall deformation history is assumed to consist of a small perturbation epsilon of the radial displacement superimposed on large axisymmetric displacements. Computations have been carried out using high temperature properties of stainless steel in conjunction with various constitutive theories, including a generalization of the Endochronic Theory of Plasticity in which both time-independent and time-dependent plastic strains are modeled. Although the results of the calculations are all qualitatively similar, it appears that modeling of both time-independent and time-dependent plastic strains is necessary to interpret the transient burst test results. Sources for bulge formation that have been considered include initial geometric imperfections and thermal perturbations due to either eccentric fuel pellets or non-symmetric cooling. (Auth.)

  9. Initial Cladding Condition

    International Nuclear Information System (INIS)

    Siegmann, E.

    2000-01-01

    The purpose of this analysis is to describe the condition of commercial Zircaloy clad fuel as it is received at the Yucca Mountain Project (YMP) site. Most commercial nuclear fuel is encased in Zircaloy cladding. This analysis is developed to describe cladding degradation from the expected failure modes. This includes reactor operation impacts including incipient failures, potential degradation after reactor operation during spent fuel storage in pool and dry storage and impacts due to transportation. Degradation modes include cladding creep, and delayed hydride cracking during dry storage and transportation. Mechanical stresses from fuel handling and transportation vibrations are also included. This Analysis and Model Report (AMR) does not address any potential damage to assemblies that might occur at the YMP surface facilities. Ranges and uncertainties have been defined. This analysis will be the initial boundary condition for the analysis of cladding degradation inside the repository. In accordance with AP-2.13Q, ''Technical Product Development Planning'', a work plan (CRWMS M andO 2000c) was developed, issued, and utilized in the preparation of this document. There are constraints, caveats and limitations to this analysis. This cladding degradation analysis is based on commercial Pressurized Water Reactor (PWR) fuel with Zircaloy cladding but is applicable to Boiling Water Reactor (BWR) fuel. Reactor operating experience for both PWRs and BWRs is used to establish fuel reliability from reactor operation. It is limited to fuel exposed to normal operation and anticipated operational occurrences (i.e. events which are anticipated to occur within a reactor lifetime), and not to fuel that has been exposed to severe accidents. Fuel burnup projections have been limited to the current commercial reactor licensing environment with restrictions on fuel enrichment, oxide coating thickness and rod plenum pressures. The information provided in this analysis will be used in

  10. Electra-Clad

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-04

    The study relates to the use of building-integrated photovoltaics. The Electra-Clad project sought to use steel-based cladding as a substrate for direct fabrication of a fully integrated solar panel of a design similar to the ICP standard glass-based panel. The five interrelated phases of the project are described. The study successfully demonstrated that the principles of the panel design are achievable and sound. But, despite intensive trials, a commercially realistic solar performance has not been achieved: the main failing was the poor solar conversion efficiency as the active area of the panel was increased in size. The problem lies with the coating used on the steel cladding substrates and it was concluded that a new type of coating will be required. ICP Solar Technologies UK carried out the work under contract to the DTI.

  11. Investigation on fuel-cladding chemical interaction in metal fuel for FBR

    International Nuclear Information System (INIS)

    Inagaki, Kenta; Nakamura, Kinya; Ogata, Takanari; Uwaba, Tomoyuki

    2013-01-01

    During steady-state irradiation of metallic fuel in fast reactors, rare-earth fission products can react with stainless steel cladding at the fuel-cladding interface. The authors conducted isothermal annealing tests with some diffusion couples to investigate the structure of the wastage layer formed at the interface. Candidate cladding alloys, ferritic-martensitic steel (PNC-FMS) and oxide-dispersion-strengthened (ODS) steel were assembled with rare-earth alloys, RE5 : La-Ce-Pr-Nd-Sm, which simulate the fission yield of rare-earth fission products. The diffusion couples were isothermally annealed in the temperature range of 500-650°C for up to 170 h. In both RE5/ODS-steel and RE5/PNC-FMS couples, the wastage layer of the two-phase region of the (Fe, Cr) 17 RE 2 matrix phase with the precipitation of the (Fe, RE, Cr) phase was formed. The structure was similar to that formed in RE5/Fe-12Cr and RE5/HT9 couples, which implies that the reaction between REs and steel is not significantly influenced by the minor alloying elements within the candidate cladding materials. It was also clarified that the increase in the wastage layer thickness was diffusion-controlled. The temperature dependence of the reaction rate constants were formulated, which can be the basis for the quantification of the wastage layer growth. (author)

  12. Interactions of zircaloy cladding with gallium -- 1997 status

    International Nuclear Information System (INIS)

    Wilson, D.F.; DiStefano, J.R.; King, J.F.; Manneschmidt, E.T.; Strizak, J.P.

    1997-11-01

    A four phase program has been implemented to evaluate the effect of gallium in mixed oxide (MOX) fuel derived from weapons grade (WG) plutonium on Zircaloy cladding performance. The objective is to demonstrate that low levels of gallium will not compromise the performance of the MOX fuel system in LWR. This graded, four phase experimental program will evaluate the performance of prototypic Zircaloy cladding materials against: (1) liquid gallium (Phase 1), (2) various concentrations of Ga 2 O 3 (Phase 2), (3) centrally heated surrogate fuel pellets with expected levels of gallium (Phase 3), and (4) centrally heated prototypic MOX fuel pellets (Phase 4). This status report describes the results of an initial series of tests for phases 1 and 2. Three types of tests are being performed: (1) corrosion, (2) liquid metal embrittlement (LME), and (3) corrosion mechanical. These tests are designed to determine the corrosion mechanisms, thresholds for temperature and concentration of gallium that may delineate behavioral regimes, and changes in mechanical properties of Zircaloy. Initial results have generally been favorable for the use of WG-MOX fuel. The MOX fuel cladding, Zircaloy, does react with gallium to form intermetallic compounds at ≥ 300 C; however, this reaction is limited by the mass of gallium and is therefore not expected to be significant with a low level (in parts per million) of gallium in the MOX fuel. While continued migration of gallium into the initially formed intermetallic compound results in large stresses that can lead to distortion, this is also highly unlikely because of the low mass of gallium or gallium oxide present and expected clad temperatures below 400 C. Furthermore, no evidence for grain boundary penetration by gallium has been observed

  13. Engineered zircaloy cladding modifications for improved accident tolerance of LWR fuel: US DOE NEUP Integrated Research Project

    International Nuclear Information System (INIS)

    Heuser, Brent

    2013-01-01

    An integrated research project (IRP) to fabricate and evaluate modified zircaloy LWR cladding under normal BWR/PWR operation and off-normal events has been funded by the US DOE. The IRP involves three US academic institutions, a US national laboratory, an intermediate stock industrial cladding supplier, and an international academic institution. A combination of computational and experimental protocols will be employed to design and test modified zircaloy cladding with respect to corrosion and accelerated oxide growth, the former associated with normal operation, the latter associated with steam exposure during loss of coolant accidents (LOCAs) and low-pressure core re-floods. Efforts will be made to go beyond design-base accident (DBA) scenarios (cladding temperature equal to or less than 1204 deg. C) during the experimental phase of modified zircaloy performance characterisation. The project anticipates the use of the facilities at ORNL to achieve steam exposure beyond DBA scenarios. In addition, irradiation of down-selected modified cladding candidates in the ATR may be performed. Cladding performance evaluation will be incorporated into a reactor system modelling effort of fuel performance, neutronics, and thermal hydraulics, thereby providing a holistic approach to accident-tolerant nuclear fuel. The proposed IRP brings together personnel, facilities, and capabilities across a wide range of technical areas relevant to the study of modified nuclear fuel and LWR performance during normal operation and off-normal scenarios. Two pathways towards accident-tolerant LWR fuel are envisioned, both based on the modification of existing zircaloy cladding. The first is the modification of the cladding surface by the application of a coating layer designed to shift the M + O→MO reaction away from oxide growth during steam exposure at elevated temperatures. This pathway is referred to as the 'surface coating' solution. The second is the modification of the bulk

  14. In-cell facility for performing mechanical-property tests on irradiated cladding

    International Nuclear Information System (INIS)

    Yaggee, F.L.; Haglund, R.C.; Mattas, R.F.

    1978-11-01

    A new facility was developed for testing cladding sections of LWR fuel rods. This facility and the accompanying test procedures have improved the level of in-cell mechanical-testing capabilities, making them comparable to existing capabilities for unirradiated cladding. The new facility is currently being used to study the susceptibility of irradiated Zircaloy cladding from LWR fuel rods to iodine stress-corrosion cracking. Preliminary testing results indicate a systematic effect of temperature, stress and irradiation on the susceptibility of annealed and stress-relieved Zircaloy-2. Experimental data obtained to date are being used to develop a stress-corrosion cracking model for LWR fuel rod failure. SEM examination of the undisturbed fracture surface of specimens that failed by pinhole leakage provides useful information on crack propagation and morphology

  15. Microstructural and wear characteristics of cobalt free, nickel base intermetallic alloy deposited by laser cladding

    International Nuclear Information System (INIS)

    Awasthi, Reena; Kumar, Santosh; Viswanadham, C.S.; Srivastava, D.; Dey, G.K.; Limaye, P.K.

    2011-01-01

    This paper describes the microstructural and wear characteristics of Ni base intermetallic hardfacing alloy (Tribaloy-700) deposited on stainless steel-316 L substrate by laser cladding technique. Cobalt base hardfacing alloys have been most commonly used hardfacing alloys for application involving wear, corrosion and high temperature resistance. However, the high cost and scarcity of cobalt led to the development of cobalt free hardfacing alloys. Further, in the nuclear industry, the use of cobalt base alloys is limited due to the induced activity of long lived radioisotope 60 Co formed. These difficulties led to the development of various nickel and iron base alloys to replace cobalt base hardfacing alloys. In the present study Ni base intermetallic alloy, free of Cobalt was deposited on stainless steel- 316 L substrate by laser cladding technique. Traditionally, welding and thermal spraying are the most commonly employed hardfacing techniques. Laser cladding has been explored for the deposition of less diluted and fusion-bonded Nickel base clad layer on stainless steel substrate with a low heat input. The laser cladding parameters (Laser power density: 200 W/mm 2 , scanning speed: 430 mm/min, and powder feed rate: 14 gm/min) resulted in defect free clad with minimal dilution of the substrate. The microstructure of the clad layer was examined by Optical microscopy, Scanning electron microscopy, with energy dispersive spectroscopy. The phase analysis was performed by X-ray diffraction technique. The clad layer exhibited sharp substrate/clad interface in the order of planar, cellular, and dendritic from the interface upwards. Dilution of clad with Fe from substrate was very low passing from ∼ 15% at the interface (∼ 40 μm) to ∼ 6% in the clad layer. The clad layer was characterized by the presence of hexagonal closed packed (hcp, MgZn 2 type) intermetallic Laves phase dispersed in the eutectic of Laves and face centered cubic (fcc) gamma solid solution. The

  16. Comparison of models discribing cladding deformations during LOCA

    International Nuclear Information System (INIS)

    Chakraborty, A.K.; Zipper, R.

    1981-05-01

    This report compares the important models for the determination of cladding deformations during LOCA. In addition to the comparisons of underlying assumptions of different models the same is done for the coefficients applied for the models. In order to assess the predictive capability of the models the calculated results are compared with the experimental results of the individual claddings. It was found out that the results of temperature ramp tests could be calculated better than that of the pressure ramp tests. The calculations revealed that even with the simplified assumption of the model used in TESPA the agreement of the calculated results with those of model NORA was relatively good. (orig.) [de

  17. Stochastic modelling of the monthly average maximum and minimum temperature patterns in India 1981-2015

    Science.gov (United States)

    Narasimha Murthy, K. V.; Saravana, R.; Vijaya Kumar, K.

    2018-04-01

    The paper investigates the stochastic modelling and forecasting of monthly average maximum and minimum temperature patterns through suitable seasonal auto regressive integrated moving average (SARIMA) model for the period 1981-2015 in India. The variations and distributions of monthly maximum and minimum temperatures are analyzed through Box plots and cumulative distribution functions. The time series plot indicates that the maximum temperature series contain sharp peaks in almost all the years, while it is not true for the minimum temperature series, so both the series are modelled separately. The possible SARIMA model has been chosen based on observing autocorrelation function (ACF), partial autocorrelation function (PACF), and inverse autocorrelation function (IACF) of the logarithmic transformed temperature series. The SARIMA (1, 0, 0) × (0, 1, 1)12 model is selected for monthly average maximum and minimum temperature series based on minimum Bayesian information criteria. The model parameters are obtained using maximum-likelihood method with the help of standard error of residuals. The adequacy of the selected model is determined using correlation diagnostic checking through ACF, PACF, IACF, and p values of Ljung-Box test statistic of residuals and using normal diagnostic checking through the kernel and normal density curves of histogram and Q-Q plot. Finally, the forecasting of monthly maximum and minimum temperature patterns of India for the next 3 years has been noticed with the help of selected model.

  18. Study of laser cladding nuclear valve parts

    International Nuclear Information System (INIS)

    Shi Shihong; Wang Xinlin; Huang Guodong

    1998-12-01

    The mechanism of laser cladding is discussed by using heat transfer model of laser cladding, heat conduction model of laser cladding and convective transfer mass model of laser melt-pool. Subsequently the laser cladding speed limit and the influence of laser cladding parameters on cladding layer structure is analyzed. A 5 kW with CO 2 transverse flow is used in the research for cladding treatment of sealing surface of stop valve parts of nuclear power stations. The laser cladding layer is found to be 3.0 mm thick. The cladding surface is smooth and has no such defects as crack, gas pore, etc. A series of comparisons with plasma spurt welding and arc bead welding has been performed. The results show that there are higher grain grade and hardness, lower dilution and better performances of resistance to abrasion, wear and of anti-erosion in the laser cladding layer. The new technology of laser cladding can obviously improve the quality of nuclear valve parts. Consequently it is possible to lengthen the service life of nuclear valve and to raise the safety and reliability of the production system

  19. Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB{sub 2} powders

    Energy Technology Data Exchange (ETDEWEB)

    Diao, Yunhua, E-mail: 990722012@qq.com; Zhang, Kemin, E-mail: zhangkm@sues.edu.cn

    2015-10-15

    Highlights: • A TiC/TiB{sub 2} composite coating was produced onto a TC2 Ti alloy by laser cladding with Ti/TiC/TiB{sub 2} powders. • A maximum hardness of 1100 HV was achieved in the laser clad TiC/TiB{sub 2} composite layer. • Corrosion resistance of the TC2 alloy in NaCl (3.5 wt%) aqueous solution can be improved after laser cladding. - Abstract: In the present work, a TiC/TiB{sub 2} composite coating was produced onto a TC2 Ti alloy by laser cladding with Ti/TiC/TiB{sub 2} powders. The surface microstructure, phase components and compositions were characterized with methods of optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffractometry (XRD), and energy dispersive spectrometry (EDS). The cladding layer is consisted of Ti, TiC and TiB{sub 2}. And the surface microhardness was measured. After laser cladding, a maximum hardness of 1100 HV is achieved in the laser cladding surface layer, which is more three times higher than that of the TC2 substrate (∼300 HV). Due to the formation of TiC and TiB{sub 2} intermetallic compounds in the alloyed region and grain refinement, the microhardness of coating is higher than TC2 Ti alloy. In this paper, the corrosion property of matrix material and treated samples were both measured in NaCl (3.5 wt%) aqueous solution. From the result we can see that the laser cladding specimens’ corrosion property is clearly becoming better than that of the substrate.

  20. Finite element modeling of pellet-clad mechanical interaction with ABAQUS

    International Nuclear Information System (INIS)

    Cheon, C. S.; Lee, B. H.; Koo, Y. H.; Oh, J. Y.; Son, D. S.

    2002-01-01

    Pellet-clad mechanical interaction (PCMI) was modelled by an axisymmetric finite element method. Thermomechanical models of pellet and clad materials and a contact model for their interaction have been implemented in addition to the application of appropriate boundary conditions so that the FE model was configured. Temperature and displacement were evaluated through a coupled analysis using a general purposed FE code, ABAQUS. Also, a batch program has been developed to efficiently deal with a series of jobs such as making an interface with a fuel performance code, the generation of an input deck for ABAQUS code and its execution, and an interpretation of the output. Under various conditions, results from the present FE model were analyzed. Preliminary verification was conducted by comparing the clad elongation measured during an in-pile PCMI experiment with that calculated by means of the developed FE model

  1. The VULKIN code used for evaluation of the cladding tube's performance

    International Nuclear Information System (INIS)

    Marbach, G.

    1979-01-01

    Full text: 1 - Introduction. The French approach for fast subassembly project is to analyse each component part of the subassembly and each basic phenomenon to estimate the total behaviour. The VULKIN code describes the mechanical behaviour of a clad alone. A cladding damage parameter is calculated from the observed deformations. When it is greater than a fixed value we consider that the rupture probability is not negligible. But this function is not the only limit for the irradiation project. Other limits are bound to other problems: no fuel melting bundle, interaction behaviour. 2 - VULKIN code - Presentation. The VULKIN code gives the evolution of stresses and strains distribution in the thickness of the clad with the hypothesis of revolution symmetry. This program takes into account temperature dilatation and radial thermal gradient, fission gas pressure and steel swelling due to neutron flux. The fuel clad mechanical interaction is not described by this model. Experimental results show that its influence is negligible for the most unusual subassemblies but, if it is necessary, a special calculation is obtained using a specific code like TUREN, described in another paper. This model does not consider the stresses and strains resulting from interaction between bundle and wrapper. Another model describes the bundle behaviour and determines diametral deformation limit from the subassembly geometrical characteristics. The clad is considered as an elasto-plastic element. Plastic flows instantaneous, thermal creep or irradiation creep are determined at each time. The data of this code are the geometry, the irradiation parameters (temperature, dose), the fission gas pressure evolution, the swelling law and the experimental relations for thermal and irradiation creep. The mechanical resolution is classical: the clad is divided into concentric rings. At each time the equations resulting from the equilibrium of strengths and compatibility of displacements are resolved

  2. Laser cladding of a Mg based Mg–Gd–Y–Zr alloy with Al–Si powders

    International Nuclear Information System (INIS)

    Chen, Erlei; Zhang, Kemin; Zou, Jianxin

    2016-01-01

    Graphical abstract: A Mg based Mg–Gd–Y–Zr alloy was treated by laser cladding with Al–Si powders at different laser scanning speeds. The laser clad layer mainly contains Mg_2Si, Mg_1_7Al_1_2 and Al_2(Gd,Y) phases distributed in the Mg matrix. After laser cladding, the corrosion resistance of the Mg alloy was significantly improved together with increased microhardness in the laser clad layers. - Highlights: • A Mg based Mg–Gd–Y–Zr alloy was laser clad with Al–Si powders. • The microstructure and morphology vary with the depth of the clad layer and the laser scanning speed. • Hardness and corrosion resistance were significantly improved after laser cladding. - Abstract: In the present work, a Mg based Mg–Gd–Y–Zr alloy was subjected to laser cladding with Al–Si powders at different laser scanning speeds in order to improve its surface properties. It is observed that the laser clad layer mainly contains Mg_2Si, Mg_1_7Al_1_2 and Al_2(Gd,Y) phases distributed in the Mg matrix. The depth of the laser clad layer increases with decreasing the scanning speed. The clad layer has graded microstructures and compositions. Both the volume fraction and size of Mg_2Si, Mg_1_7Al_1_2 and Al_2(Gd,Y) phases decreases with the increasing depth. Due to the formation of these hardening phases, the hardness of clad layer reached a maximum value of HV440 when the laser scanning speed is 2 mm/s, more than 5 times of the substrate (HV75). Besides, the corrosion properties of the untreated and laser treated samples were all measured in a NaCl (3.5 wt.%) aqueous solution. The corrosion potential was increased from −1.77 V for the untreated alloy to −1.13 V for the laser clad alloy with scanning rate of 2 mm/s, while the corrosion current density was reduced from 2.10 × 10"−"5 A cm"−"2 to 1.64 × 10"−"6 A cm"−"2. The results show that laser cladding is an efficient method to improve surface properties of Mg–Rare earth alloys.

  3. Study on the Standard Establishment for the Integrity Assessment of Nuclear Fuel Cladding Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S-S; Kim, S-H; Jung, Y-K; Yang, C-Y; Kim, I-G; Choi, Y-H; Kim, H-J; Kim, M-W; Rho, B-H [KINS, Daejeon (Korea, Republic of)

    2008-02-15

    Fuel cladding material plays important role as a primary structure under the high temperature, high pressure and neutron environment of nuclear power plant. According to this environment, cladding material can be experienced several type aging phenomena including the neutron irradiation embrittlement. On the other hand, although the early nuclear power plant was designed to fitting into the 40MWd/KgU burn-up, the currently power plant intends to go to the high burn-up range. In this case, the safety criteria which was established at low burn-up needs to conform the applicability at the high burn-up. In this study, the safety criteria of fuel cladding material was reviewed to assess the cladding material integrity, and the material characteristics of cladding were reviewed. The current LOCA criterial was also reviewed, and the basic study for re-establishment of LOCA criteria was performed. The time concept safety criteria was also discussed to prevent the breakaway oxidation. Through the this study, safety issues will be produced and be helpful for integrity insurance of nuclear fuel cladding material. This report is the final report.

  4. Failure probabilities of SiC clad fuel during a LOCA in public acceptable simple SMR (PASS)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youho, E-mail: euo@kaist.ac.kr; Kim, Ho Sik, E-mail: hskim25@kaist.ac.kr; NO, Hee Cheon, E-mail: hcno@kaist.ac.kr

    2015-10-15

    Highlights: • Graceful operating conditions of SMRs markedly lower SiC cladding stress. • Steady-state fracture probabilities of SiC cladding is below 10{sup −7} in SMRs. • PASS demonstrates fuel coolability (T < 1300 °C) with sole radiation in LOCA. • SiC cladding failure probabilities of PASS are ∼10{sup −2} in LOCA. • Cold gas gap pressure controls SiC cladding tensile stress level in LOCA. - Abstract: Structural integrity of SiC clad fuels in reference Small Modular Reactors (SMRs) (NuScale, SMART, IRIS) and a commercial pressurized water reactor (PWR) are assessed with a multi-layered SiC cladding structural analysis code. Featured with low fuel pin power and temperature, SMRs demonstrate markedly reduced incore-residence fracture probabilities below ∼10{sup −7}, compared to those of commercial PWRs ∼10{sup −6}–10{sup −1}. This demonstrates that SMRs can serve as a near-term deployment fit to SiC cladding with a sound management of its statistical brittle fracture. We proposed a novel SMR named Public Acceptable Simple SMR (PASS), which is featured with 14 × 14 assemblies of SiC clad fuels arranged in a square ring layout. PASS aims to rely on radiative cooling of fuel rods during a loss of coolant accident (LOCA) by fully leveraging high temperature tolerance of SiC cladding. An overarching assessment of SiC clad fuel performance in PASS was conducted with a combined methodology—(1) FRAPCON-SiC for steady-state performance analysis of PASS fuel rods, (2) computational fluid dynamics code FLUENT for radiative cooling rate of fuel rods during a LOCA, and (3) multi-layered SiC cladding structural analysis code with previously developed SiC recession correlations under steam environments for both steady-state and LOCA. The results show that PASS simultaneously maintains desirable fuel cooling rate with the sole radiation and sound structural integrity of fuel rods for over 36 days of a LOCA without water supply. The stress level of

  5. Real-time monitoring of laser hot-wire cladding of Inconel 625

    Science.gov (United States)

    Liu, Shuang; Liu, Wei; Harooni, Masoud; Ma, Junjie; Kovacevic, Radovan

    2014-10-01

    Laser hot-wire cladding (LHWC), characterized by resistance heating of the wire, largely increases the productivity and saves the laser energy. However, the main issue of applying this method is the occurrence of arcing which causes spatters and affects the stability of the process. In this study, an optical spectrometer was used for real-time monitoring of the LHWC process. The corresponding plasma intensity was analyzed under various operating conditions. The electron temperature of the plasma was calculated for elements of nickel and chromium that mainly comprised the plasma plume. There was a correlation between the electron temperature and the stability of the process. The characteristics of the resulted clad were also investigated by measuring the dilution, hardness and microstructure.

  6. Effect of zinc injection on BWR fuel cladding corrosion. Pt. 1. Study on an accelerated corrosion condition to evaluate corrosion resistance of zircaloy-2 fuel cladding

    International Nuclear Information System (INIS)

    Kawamura, Hirotaka; Kanbe, Hiromu; Furuya, Masahiro

    2002-01-01

    Japanese BWR utilities have a plan to apply zinc injection to the primary coolant in order to reduce radioactivity accumulation on the structure. Prior to applying the zinc injection to BWR plants, it is necessary to evaluate the effect of zinc injection on corrosion resistance of fuel cladding. The objective of this report was to examine the accelerated corrosion condition for evaluation of BWR fuel cladding corrosion resistance under non-irradiated conditions, as the first step of a zinc injection evaluation study. A heat transfer corrosion test facility, in which a two phase flow condition could be achieved, was designed and constructed. The effects of heat flux, void fraction and solution temperature on BWR fuel cladding corrosion resistance were quantitatively investigated. The main findings were as follows. (1) In situ measurements using high speed camera and a void sensor together with one dimensional two phase flow analysis results showed that a two phase flow simulated BWR core condition can be obtained in the corrosion test facility. (2) The heat transfer corrosion test results showed that the thickness of the zirconium oxide layer increased with increasing solution temperature and was independent of heat flux and void fraction. The corrosion accelerating factor was about 2.5 times in the case of a temperature increase from 288degC to 350degC. (author)

  7. Mechanical behavior of fast reactor fuel pin cladding subjected to simulated overpower transients

    International Nuclear Information System (INIS)

    Johnson, G.D.; Hunter, C.W.

    1978-06-01

    Cladding mechanical property data for analysis and prediction of fuel pin transient behavior were obtained under experimental conditions in which the temperature ramps of reactor transients were simulated. All cladding specimens were 20% CW Type 316 stainless steel and were cut from EBR-II irradiated fuel pins. It was determined that irradiation degraded the cladding ductility and failure strength. Specimens that had been adjacent to the fuel exhibited the poorest properties. Correlations were developed to describe the effect of neutron fluence on the mechanical behavior of the cladding. Metallographic examinations were conducted to characterize the failure mode and to establish the nature of internal and external surface corrosion. Various mechanisms for the fuel adjacency effect were examined and results for helium concentration profiles were presented. Results from the simulated transient tests were compared with TREAT test results

  8. Evaluation of the applicability of cladding deformation model in RELAP5/MOD3.2 code for VVER-1000 fuel

    International Nuclear Information System (INIS)

    Vorob'ev, Yu.; Zhabin, O.

    2015-01-01

    Applicability of cladding deformation model in RELAP5/MOD3.2 code is analyzed for VVER-1000 fuel cladding from Zr+1%Nb alloy. Experimental data and calculation model of fuel assembly channel of the core are used for this purpose. The model applicability is tested for the cladding temperature range from 600 to 1200 deg C and pressure range from 1 to 12 MPa. Evaluation results demonstrate limited applicability of built-in RELAP5/MOD3.2 cladding deformation model to the estimation of Zr+1%Nb cladding rupture conditions. The limitations found shall be considered in application of RELAP5/MOD3.2 cladding deformation model in the design-basis accident analysis of VVER reactors

  9. 3D analysis of thermal and stress evolution during laser cladding of bioactive glass coatings.

    Science.gov (United States)

    Krzyzanowski, Michal; Bajda, Szymon; Liu, Yijun; Triantaphyllou, Andrew; Mark Rainforth, W; Glendenning, Malcolm

    2016-06-01

    Thermal and strain-stress transient fields during laser cladding of bioactive glass coatings on the Ti6Al4V alloy basement were numerically calculated and analysed. Conditions leading to micro-cracking susceptibility of the coating have been investigated using the finite element based modelling supported by experimental results of microscopic investigation of the sample coatings. Consecutive temperature and stress peaks are developed within the cladded material as a result of the laser beam moving along the complex trajectory, which can lead to micro-cracking. The preheated to 500°C base plate allowed for decrease of the laser power and lowering of the cooling speed between the consecutive temperature peaks contributing in such way to achievement of lower cracking susceptibility. The cooling rate during cladding of the second and the third layer was lower than during cladding of the first one, in such way, contributing towards improvement of cracking resistance of the subsequent layers due to progressive accumulation of heat over the process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Model for incorporating fuel swelling and clad shrinkage effects in diffusion theory calculations (LWBR Development Program)

    International Nuclear Information System (INIS)

    Schick, W.C. Jr.; Milani, S.; Duncombe, E.

    1980-03-01

    A model has been devised for incorporating into the thermal feedback procedure of the PDQ few-group diffusion theory computer program the explicit calculation of depletion and temperature dependent fuel-rod shrinkage and swelling at each mesh point. The model determines the effect on reactivity of the change in hydrogen concentration caused by the variation in coolant channel area as the rods contract and expand. The calculation of fuel temperature, and hence of Doppler-broadened cross sections, is improved by correcting the heat transfer coefficient of the fuel-clad gap for the effects of clad creep, fuel densification and swelling, and release of fission-product gases into the gap. An approximate calculation of clad stress is also included in the model

  11. Phosphate-core silica-clad Er/Yb-doped optical fiber and cladding pumped laser.

    Science.gov (United States)

    Egorova, O N; Semjonov, S L; Velmiskin, V V; Yatsenko, Yu P; Sverchkov, S E; Galagan, B I; Denker, B I; Dianov, E M

    2014-04-07

    We present a composite optical fiber with a Er/Yb co-doped phosphate-glass core in a silica glass cladding as well as cladding pumped laser. The fabrication process, optical properties, and lasing parameters are described. The slope efficiency under 980 nm cladding pumping reached 39% with respect to the absorbed pump power and 28% with respect to the coupled pump power. Due to high doping level of the phosphate core optimal length was several times shorter than that of silica core fibers.

  12. Nuclear fuel clad clothed with burnable poison and obtainment process

    International Nuclear Information System (INIS)

    Diez, P.; Netter, P.

    1994-01-01

    This clad has preferentially on its inner surface a boron compound such boron carbide or boron nitrogen deposited by Chemical Vapor Deposition or by Physical Vapor Deposition without any temperature elevation injurious to its mechanical properties. 3 figs

  13. BWR stability: analysis of cladding temperature for high amplitude oscillations - 146

    International Nuclear Information System (INIS)

    Pohl, P.; Wehle, F.

    2010-01-01

    Power oscillations associated with density waves in boiling water reactors (BWRs) have been studied widely. Industrial research in this area is active since the invention of the first BWR. Stability measurements have been performed in various plants during commissioning phase but especially the magnitude and divergent nature of the oscillations during the LaSalle Unit 2 nuclear power plant event on March 9, 1988, renewed concern about the state of knowledge on BWR instabilities and possible consequences to fuel rod integrity. The objective of this paper is to present a simplified stability tool, applicable for stability analysis in the non-linear regime, which extends to high amplitude oscillations where inlet reverse flow occurs. In case of high amplitude oscillations a cyclical dryout and rewetting process at the fuel rod may take place, which leads in turn to rapid changes of the heat transfer from the fuel rod to the coolant. The application of this stability tool allows for a conservative determination of the fuel rod cladding temperature in case of high amplitude oscillations during the dryout / re-wet phase. Moreover, it reveals in good agreement to experimental findings the stabilizing effect of the reverse bundle inlet flow, which might be obtained for large oscillation amplitudes. (authors)

  14. Thermal stress intensity factor for an axial crack in a clad cylinder

    International Nuclear Information System (INIS)

    Kuo, An Yu; Deardorf, A.F.; Riccardella, P.C.

    1993-01-01

    Many clad pressure vessels have been found to have cracks running through the inside surface cladding and into the base material. Although Young's moduli and Poisson's ratios of the clad and base materials are about the same for most of the industrial applications, coefficients of thermal expansion of the two dissimilar materials, clad and base materials, are usually quite different. For example, low alloy ferritic steel is a common base material for reactor pressure vessels (RPV) and the vessels are usually clad with austenitic stainless steel. Young's moduli for the low alloy steel and stainless steel at 350 F are 29,000 ksi and 28,000 ksi, respectively, while their coefficients of thermal expansion are 7.47x10 -6 in/in and 9.50x10 -6 in/in-degree F, respectively. The mismatch in coefficients of thermal expansion will cause high residual thermal stress even when the entire vessel is at a uniform temperature. This residual stress is one of the primary reasons why so many cracks have been found in the cladded components. In performing reactor pressure vessel integrity evaluation, such as computing probability of brittle fracture of the RPV, it is necessary to calculate stress intensity factors for cracks, which initiate from the clad material and run into the base metal. This paper presents a convenient method of calculating stress intensity factor for an axial crack emanating from the inside surface of a cladded cylinder under thermal loading. A J-integral like line integral was derived and used to calculate the stress intensity factors from finite element stress solutions of the problem

  15. Rupture behaviour of nuclear fuel cladding during loss-of-coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Suman, Siddharth [Department of Mechanical Engineering, Indian Institute of Technology Patna, Patna 801 103 (India); Khan, Mohd Kaleem, E-mail: mkkhan@iitp.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Patna, Patna 801 103 (India); Pathak, Manabendra [Department of Mechanical Engineering, Indian Institute of Technology Patna, Patna 801 103 (India); Singh, R.N.; Chakravartty, J.K. [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2016-10-15

    Highlights: • Modelling of nuclear fuel cladding during loss-of-coolant accident transient. • Phase transformation, corrosion, and creep combined to evaluate burst criterion. • Effect of oxygen concentration on burst stress and burst strain. • Effect of heating rate, internal pressure fluctuation, shear modulus incorporated. - Abstract: A burst criterion model accounting the simultaneous phenomena of corrosion, solute-strengthening effect of oxygen, oxygen concentration based non-isothermal phase transformation, and thermal creep has been developed to predict the rupture behaviour of zircaloy-4 nuclear fuel cladding during the loss-of-coolant accident transients. The present burst criterion model has been validated using experimental data obtained from single-rod transient burst tests performed in steam environment. The predictions are in good agreement with the experimental results. A detailed computational analysis has been performed to assess the role of different parameters in the rupture of zircaloy cladding during loss-of-coolant accidents. This model reveals that at low temperatures, lower heating rates produce higher burst strains as oxidation effect is nominal. For high temperatures, the lower heating rates produce less burst strains, whereas higher heating rates yield greater burst strains.

  16. Nuclear-powered pacemaker fuel cladding study

    International Nuclear Information System (INIS)

    Shoup, R.L.

    1976-01-01

    The composite of metals and alloys used in the fabrication of 238 Pu cardiac pacemaker fuel capsules resists the effects of high temperatures, high mechanical forces, and chemical corrosives and provides more than adequate protection to the fuel pellet even from deliberate attempts to dissolve the cladding in inorganic acids. This does not imply that opening a pacemaker fuel capsule by inorganic acids is impossible but that it would not be a wise choice

  17. Separate-effect tests on zirconium cladding degradation in air ingress situations

    Energy Technology Data Exchange (ETDEWEB)

    Duriez, C. [Institut de Radioprotection et de Surete Nucleaire, IRSN, Direction de Prevention des Accidents Majeurs, Centre de Cadarache, 13115 St Paul Lez Durance (France)], E-mail: christian.duriez@irsn.fr; Steinbrueck, M. [Forschungszentrum Karlsruhe, FZK, Institut fuer Materialforschung, Postfach 3640, 76021 Karlsruhe (Germany); Ohai, D.; Meleg, T. [Institute for Nuclear Research, INR, Nuclear Material and Corrosion Department, Pitesti, 115400 Mioveni Arges (Romania); Birchley, J.; Haste, T. [Paul Scherrer Institute, 5232 Villigen PSI (Switzerland)

    2009-02-15

    In the event of air ingress during a reactor or spent fuel pond low probability accident, the fuel rods will be exposed to air-containing atmospheres at high temperatures. In comparison with steam, the presence of air is expected to result in a more rapid escalation of the accident. A state-of-the-art review performed before SARNET started showed that the existing data on zirconium alloy oxidation in air were scarce. Moreover, the exact role of zirconium nitride on the cladding degradation process was poorly understood. Regarding the cladding behaviour in air + steam or nitrogen-enriched atmospheres (encountered in oxygen-starved conditions), almost no data were available. New experimental programmes comprising small-scale tests have therefore been launched at FZK, IRSN (MOZART programme in the frame of the International Source Term Program-ISTP) and INR. Zircaloy-4 cladding in PWR (FZK, IRSN) and in CANDU (INR) geometry are investigated. On-line kinetic data are obtained on centimetre size tube segments, by thermogravimetry (FZK, IRSN and INR) or by mass spectrometry (FZK). Plugged tubes 15 cm long (FZK) are also investigated. The samples are air-oxidised either in the 'as-received' state, or after pre-oxidation in steam. 'Analytical' tests at constant temperature and gas composition provide basic kinetic data, while more prototypical temperature transients and sequential gas compositions are also investigated. The temperature domains extend from 600 deg. C up to 1500 deg. C. Systematic post-test metallographic inspections are performed. The paper gives a synthesis of the results obtained, comparing them in terms of kinetics and oxide scale structure and composition. A comparative analysis is performed with results of the QUENCH-10 (Q-10) bundle test, which included an air ingress phase. It is shown how the data contribute to a better understanding of the cladding degradation process, especially regarding the role of nitrogen. For modelling of

  18. Separate-effect tests on zirconium cladding degradation in air ingress situations

    International Nuclear Information System (INIS)

    Duriez, C.; Steinbrueck, M.; Ohai, D.; Meleg, T.; Birchley, J.; Haste, T.

    2009-01-01

    In the event of air ingress during a reactor or spent fuel pond low probability accident, the fuel rods will be exposed to air-containing atmospheres at high temperatures. In comparison with steam, the presence of air is expected to result in a more rapid escalation of the accident. A state-of-the-art review performed before SARNET started showed that the existing data on zirconium alloy oxidation in air were scarce. Moreover, the exact role of zirconium nitride on the cladding degradation process was poorly understood. Regarding the cladding behaviour in air + steam or nitrogen-enriched atmospheres (encountered in oxygen-starved conditions), almost no data were available. New experimental programmes comprising small-scale tests have therefore been launched at FZK, IRSN (MOZART programme in the frame of the International Source Term Program-ISTP) and INR. Zircaloy-4 cladding in PWR (FZK, IRSN) and in CANDU (INR) geometry are investigated. On-line kinetic data are obtained on centimetre size tube segments, by thermogravimetry (FZK, IRSN and INR) or by mass spectrometry (FZK). Plugged tubes 15 cm long (FZK) are also investigated. The samples are air-oxidised either in the 'as-received' state, or after pre-oxidation in steam. 'Analytical' tests at constant temperature and gas composition provide basic kinetic data, while more prototypical temperature transients and sequential gas compositions are also investigated. The temperature domains extend from 600 deg. C up to 1500 deg. C. Systematic post-test metallographic inspections are performed. The paper gives a synthesis of the results obtained, comparing them in terms of kinetics and oxide scale structure and composition. A comparative analysis is performed with results of the QUENCH-10 (Q-10) bundle test, which included an air ingress phase. It is shown how the data contribute to a better understanding of the cladding degradation process, especially regarding the role of nitrogen. For modelling of the oxide scale

  19. Chemical compatibility between cladding alloys and advanced fuels

    International Nuclear Information System (INIS)

    Fee, D.C.; Johnson, C.E.

    1975-05-01

    The National Advanced Fuels Program requires chemical, mechanical, and thermophysical properties data for cladding alloys. The compatibility behavior of cladding alloys with advanced fuels is critically reviewed. in carbide fuel pins, the principal compatibility problem is cladding carburization, diffusion of carbon into the cladding matrix accompanied by carbide precipitation. Carburization changes the mechanical properties of the cladding alloy. The extent of carburization increases in sodium (versus gas) bonded fuels. The depth of carburization increases with increasing sesquicarbide (M 2 C 3 ) content of the fuel. In nitride fuel pins, the principal compatibility problem is cladding nitriding, diffusion of nitrogen into the cladding matrix accompanied by nitride precipitation. Nitriding changes the mechanical properties of the cladding alloy. In both carbide and nitride fuel pins, fission products do not migrate appreciably to the cladding and do not appear to contribute to cladding attack. 77 references. (U.S.)

  20. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum

    Science.gov (United States)

    Sluijs, A.; Schouten, S.; Pagani, M.; Woltering, M.; Brinkhuis, H.; Damste, J.S.S.; Dickens, G.R.; Huber, M.; Reichart, G.-J.; Stein, R.; Matthiessen, J.; Lourens, L.J.; Pedentchouk, N.; Backman, J.; Moran, K.; Clemens, S.; Cronin, T.; Eynaud, F.; Gattacceca, J.; Jakobsson, M.; Jordan, R.; Kaminski, M.; King, J.; Koc, N.; Martinez, N.C.; McInroy, D.; Moore, T.C.; O'Regan, M.; Onodera, J.; Palike, H.; Rea, B.; Rio, D.; Sakamoto, T.; Smith, D.C.; St John, K.E.K.; Suto, I.; Suzuki, N.; Takahashi, K.; Watanabe, M. E.; Yamamoto, M.

    2006-01-01

    The Palaeocene/Eocene thermal maximum, ???55 million years ago, was a brief period of widespread, extreme climatic warming, that was associated with massive atmospheric greenhouse gas input. Although aspects of the resulting environmental changes are well documented at low latitudes, no data were available to quantify simultaneous changes in the Arctic region. Here we identify the Palaeocene/Eocene thermal maximum in a marine sedimentary sequence obtained during the Arctic Coring Expedition. We show that sea surface temperatures near the North Pole increased from ???18??C to over 23??C during this event. Such warm values imply the absence of ice and thus exclude the influence of ice-albedo feedbacks on this Arctic warming. At the same time, sea level rose while anoxic and euxinic conditions developed in the ocean's bottom waters and photic zone, respectively. Increasing temperature and sea level match expectations based on palaeoclimate model simulations, but the absolute polar temperatures that we derive before, during and after the event are more than 10??C warmer than those model-predicted. This suggests that higher-than-modern greenhouse gas concentrations must have operated in conjunction with other feedback mechanisms-perhaps polar stratospheric clouds or hurricane-induced ocean mixing-to amplify early Palaeogene polar temperatures. ?? 2006 Nature Publishing Group.

  1. Interactions of Zircaloy cladding with gallium: 1998 midyear status

    International Nuclear Information System (INIS)

    Wilson, D.F.; DiStefano, J.R.; Strizak, J.P.; King, J.F.; Manneschmidt, E.T.

    1998-06-01

    A program has been implemented to evaluate the effect of gallium in mixed-oxide (MOX) fuel derived from weapons-grade (WG) plutonium on Zircaloy cladding performance. The objective is to demonstrate that low levels of gallium will not compromise the performance of the MOX fuel system in a light-water reactor. The graded, four-phase experimental program was designed to evaluate the performance of prototypic Zircaloy cladding materials against (1) liquid gallium (Phase 1), (2) various concentrations of Ga 2 O 3 (Phase 2), (3) centrally heated surrogate fuel pellets with expected levels of gallium (Phase 3), and (4) centrally heated prototypic MOX fuel pellets (Phase 4). This status report describes the results of a series of tests for Phases 1 and 2. Three types of tests are being performed: (1) corrosion, (2) liquid metal embrittlement, and (3) corrosion-mechanical. These tests will determine corrosion mechanisms, thresholds for temperature and concentration of gallium that may delineate behavioral regimes, and changes in the mechanical properties of Zircaloy. Initial results have generally been favorable for the use of WG-MOX fuel. The MOX fuel cladding, Zircaloy, does react with gallium to form intermetallic compounds at ≥300 C; however, this reaction is limited by the mass of gallium and is therefore not expected to be significant with a low level (parts per million) of gallium in the MOX fuel. Although continued migration of gallium into the initially formed intermetallic compound can result in large stresses that may lead to distortion, this was shown to be extremely unlikely because of the low mass of gallium or gallium oxide present and expected clad temperatures below 400 C. Furthermore, no evidence for grain boundary penetration by gallium has been observed

  2. Uninterrupted thermoelectric energy harvesting using temperature-sensor-based maximum power point tracking system

    International Nuclear Information System (INIS)

    Park, Jae-Do; Lee, Hohyun; Bond, Matthew

    2014-01-01

    Highlights: • Feedforward MPPT scheme for uninterrupted TEG energy harvesting is suggested. • Temperature sensors are used to avoid current measurement or source disconnection. • MPP voltage reference is generated based on OCV vs. temperature differential model. • Optimal operating condition is maintained using hysteresis controller. • Any type of power converter can be used in the proposed scheme. - Abstract: In this paper, a thermoelectric generator (TEG) energy harvesting system with a temperature-sensor-based maximum power point tracking (MPPT) method is presented. Conventional MPPT algorithms for photovoltaic cells may not be suitable for thermoelectric power generation because a significant amount of time is required for TEG systems to reach a steady state. Moreover, complexity and additional power consumption in conventional circuits and periodic disconnection of power source are not desirable for low-power energy harvesting applications. The proposed system can track the varying maximum power point (MPP) with a simple and inexpensive temperature-sensor-based circuit without instantaneous power measurement or TEG disconnection. This system uses TEG’s open circuit voltage (OCV) characteristic with respect to temperature gradient to generate a proper reference voltage signal, i.e., half of the TEG’s OCV. The power converter controller maintains the TEG output voltage at the reference level so that the maximum power can be extracted for the given temperature condition. This feedforward MPPT scheme is inherently stable and can be implemented without any complex microcontroller circuit. The proposed system has been validated analytically and experimentally, and shows a maximum power tracking error of 1.15%

  3. Study on the standard establishment for the integrity assessment of nuclear fuel cladding Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S. S.; Kim, S. H.; Jung, Y. K.; Yang, C. Y.; Kim, I. G.; Choi, Y. H.; Kim, H. J.; Kim, M. W.; Rho, B. H. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2007-02-15

    Fuel cladding material plays important role as a primary structure under the high temperature, high pressure and neutron environment of nuclear power plant. According to this environment, cladding material can be experienced several type aging phenomena including the neutron irradiation embrittlement. On the other hand, although the early nuclear power plant was designed to fitting into the 40MWd/KgU burn-up, the currently power plant intends to go to the high burn-up range. In this case, the safety criteria which was established at low burn-up needs to conform the applicability at the high burn-up. In this study, the safety criteria of fuel cladding material was reviewed to assess the cladding material integrity, and the material characteristics of cladding were reviewed. The current LOCA criterial was also reviewed, and the basic study for re-establishment of LOCA criteria was performed. The time concept safety criteria was also discussed to prevent the breakaway oxidation. Through the this study, safety issues will be produced and be helpful for integrity insurance of nuclear fuel cladding material. This report is 2nd term report.

  4. Ceramic Coatings for Clad (The C3 Project): Advanced Accident-Tolerant Ceramic Coatings for Zr-Alloy Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sickafus, Kurt E. [Univ. of Tennessee, Knoxville, TN (United States); Wirth, Brian [Univ. of Tennessee, Knoxville, TN (United States); Miller, Larry [Univ. of Tennessee, Knoxville, TN (United States); Weber, Bill [Univ. of Tennessee, Knoxville, TN (United States); Zhang, Yanwen [Univ. of Tennessee, Knoxville, TN (United States); Patel, Maulik [Univ. of Tennessee, Knoxville, TN (United States); Motta, Arthur [Pennsylvania State Univ., University Park, PA (United States); Wolfe, Doug [Pennsylvania State Univ., University Park, PA (United States); Fratoni, Max [Univ. of California, Berkeley, CA (United States); Raj, Rishi [Univ. of Colorado, Boulder, CO (United States); Plunkett, Kenneth [Univ. of Colorado, Boulder, CO (United States); Was, Gary [Univ. of Michigan, Ann Arbor, MI (United States); Hollis, Kendall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nelson, Andy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stanek, Chris [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Comstock, Robert [Westinghouse Electric Corporation, Pittsburgh, PA (United States); Partezana, Jonna [Westinghouse Electric Corporation, Pittsburgh, PA (United States); Whittle, Karl [Univ. of Sheffield (United Kingdom); Preuss, Michael [Univ. of Manchester (United Kingdom); Withers, Philip [Univ. of Manchester (United Kingdom); Wilkinson, Angus [Univ. of Oxford (United Kingdom); Donnelly, Stephen [Univ. of Huddersfield (United Kingdom); Riley, Daniel [Australian Nuclear Science and Technology Organisation, Syndney (Australia)

    2017-02-14

    The goal of this NEUP-IRP project is to develop a fuel concept based on an advanced ceramic coating for Zr-alloy cladding. The coated cladding must exhibit demonstrably improved performance compared to conventional Zr-alloy clad in the following respects: During normal service, the ceramic coating should decrease cladding oxidation and hydrogen pickup (the latter leads to hydriding and embrittlement). During a reactor transient (e.g., a loss of coolant accident), the ceramic coating must minimize or at least significantly delay oxidation of the Zr-alloy cladding, thus reducing the amount of hydrogen generated and the oxygen ingress into the cladding. The specific objectives of this project are as follows: To produce durable ceramic coatings on Zr-alloy clad using two possible routes: (i) MAX phase ceramic coatings or similar nitride or carbide coatings; and (ii) graded interface architecture (multilayer) ceramic coatings, using, for instance, an oxide such as yttria-stabilized zirconia (YSZ) as the outer protective layer. To characterize the structural and physical properties of the coated clad samples produced in 1. above, especially the corrosion properties under simulated normal and transient reactor operating conditions. To perform computational analyses to assess the effects of such coatings on fuel performance and reactor neutronics, and to perform fuel cycle analyses to assess the economic viability of modifying conventional Zr-alloy cladding with ceramic coatings. This project meets a number of the goals outlined in the NEUP-IRP call for proposals, including: Improve the fuel/cladding system through innovative designs (e.g. coatings/liners for zirconium-based cladding) Reduce or eliminate hydrogen generation Increase resistance to bulk steam oxidation Achievement of our goals and objectives, as defined above, will lead to safer light-water reactor (LWR) nuclear fuel assemblies, due to improved cladding properties and built-in accident resistance, as well as

  5. Laser cladding of a Mg based Mg–Gd–Y–Zr alloy with Al–Si powders

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Erlei [School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Zhang, Kemin, E-mail: zhangkm@sues.edu.cn [School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620 (China); Zou, Jianxin [National Engineering Research Center of Light Alloys Net Forming & School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2016-03-30

    Graphical abstract: A Mg based Mg–Gd–Y–Zr alloy was treated by laser cladding with Al–Si powders at different laser scanning speeds. The laser clad layer mainly contains Mg{sub 2}Si, Mg{sub 17}Al{sub 12} and Al{sub 2}(Gd,Y) phases distributed in the Mg matrix. After laser cladding, the corrosion resistance of the Mg alloy was significantly improved together with increased microhardness in the laser clad layers. - Highlights: • A Mg based Mg–Gd–Y–Zr alloy was laser clad with Al–Si powders. • The microstructure and morphology vary with the depth of the clad layer and the laser scanning speed. • Hardness and corrosion resistance were significantly improved after laser cladding. - Abstract: In the present work, a Mg based Mg–Gd–Y–Zr alloy was subjected to laser cladding with Al–Si powders at different laser scanning speeds in order to improve its surface properties. It is observed that the laser clad layer mainly contains Mg{sub 2}Si, Mg{sub 17}Al{sub 12} and Al{sub 2}(Gd,Y) phases distributed in the Mg matrix. The depth of the laser clad layer increases with decreasing the scanning speed. The clad layer has graded microstructures and compositions. Both the volume fraction and size of Mg{sub 2}Si, Mg{sub 17}Al{sub 12} and Al{sub 2}(Gd,Y) phases decreases with the increasing depth. Due to the formation of these hardening phases, the hardness of clad layer reached a maximum value of HV440 when the laser scanning speed is 2 mm/s, more than 5 times of the substrate (HV75). Besides, the corrosion properties of the untreated and laser treated samples were all measured in a NaCl (3.5 wt.%) aqueous solution. The corrosion potential was increased from −1.77 V for the untreated alloy to −1.13 V for the laser clad alloy with scanning rate of 2 mm/s, while the corrosion current density was reduced from 2.10 × 10{sup −5} A cm{sup −2} to 1.64 × 10{sup −6} A cm{sup −2}. The results show that laser cladding is an efficient method to improve

  6. Clad Treatment in KARMA Code and Library

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong-yeup; Lee, Hae-chan; Woo, Hae-seuk [KEPCO Nuclear Fuel Co., Daejeon (Korea, Republic of)

    2016-05-15

    Zirconium is the main components in clad materials. The subgroup parameters of zirconium were generated with effective cross section which obtained by using flux distribution in clad region. It decreases absorption reaction rate differences with reference MCNP results. Use of composite nuclide is acceptable to increase efficiency but should be limited to specific target composition. Therefore, the use of the composite nuclide of Zircaloy-2 should be limited when HANA clad material is used for clad. Either using explicit components or generating composite nuclide for HANA is suggested. This paper investigates the clad analysis model for KARMA whether current method is applicable to HANA clad material.

  7. Performance testing of refractory alloy-clad fuel elements for space reactors

    International Nuclear Information System (INIS)

    Dutt, D.S.; Cox, C.M.; Karnesky, R.A.; Millhollen, M.K.

    1985-01-01

    Two fast reactor irradiation tests, SP-1 and SP-2, provide a unique and self-consistent data set with which to evaluate the technical feasibility of potential fuel systems for the SP-100 space reactor. Fuel pins fabricated with leading cladding candidates (Nb-1Zr, PWC-11, and Mo-13Re) and fuel forms (UN and UO 2 ) are operated at temperatures typical of those expected in the SP-100 design. The first US fast reactor irradiated, refractory alloy clad fuel pins, from the SP-1 test, reached 1 at. % burnup in EBR-II in March 1985. At that time selected pins were discharged for interim examination. These examinations confirmed the excellent performance of the Nb-1Zr clad uranium oxide and uranium nitride fuel elements, which are the baseline fuel systems for two SP-100 reactor concepts

  8. Performance of cladding on MOX fuel with low 240Pu/239Pu ratio

    International Nuclear Information System (INIS)

    McCoy, K.; Blanpain, P.; Morris, R.

    2015-01-01

    The U.S. Department of Energy has decided to dispose of a portion of its surplus plutonium by reconstituting it into mixed oxide (MOX) fuel and irradiating it in commercial power reactors. As part of fuel qualification, four lead assemblies were manufactured and irradiated to a maximum fuel rod average burnup of 47.3 MWd/kg heavy metal. This was the world's first commercial irradiation of MOX fuel with a 240 Pu/ 239 Pu ratio less than 0.10. Five fuel rods with varying burnups and plutonium contents were selected from one of the assemblies and shipped to Oak Ridge National Laboratory for hot cell examination. This paper discusses the results of those examinations with emphasis on cladding performance. Exams relevant to the cladding included visual and eddy current exams, profilometry, microscopy, hydrogen analysis, gallium analysis, and mechanical testing. There was no discernible effect of the type of MOX fuel on the performance of the cladding. (authors)

  9. A simulation study on the multi-pass rolling bond of 316L/Q345R stainless clad plate

    Directory of Open Access Journals (Sweden)

    Qin Qin

    2015-07-01

    Full Text Available This article describes an investigation into interface bonding research of 316L/Q345R stainless clad plate. A three-dimensional thermal–elastic–plastic model has been established using finite element analysis to model the multi-pass hot rolling process. Results of the model have been compared with those obtained from a rolling experiment of stainless clad plate. The comparisons of temperature and profile of the rolled stainless clad plate have indicated a satisfactory accuracy of finite element analysis simulation. Effects on interface bonding by different parameters including pre-heating temperature, multi-pass thickness reduction rules, rolling speed, covering rate, and different assemble patterns were analyzed systematically. The results show that higher temperature and larger thickness reduction are beneficial to achieve the bonding in vacuum hot rolling process. The critical reduction in the bond at the temperature of 1200 °C is 28%, and the critical thickness reduction reduces by about 2% when the temperature increases by 50 °C during the range from 1000 °C to 1250 °C. And the relationship between the minimum pass number and thickness reduction has been suggested. The results also indicate that large covering rate in the assemble pattern of outer soft and inner hard is beneficial to achieve the bond of stainless clad plate.

  10. Development of ODS (oxide dispersion strengthened) ferritic-martensitic steels for fast reactor fuel cladding

    International Nuclear Information System (INIS)

    Ukai, Shigeharu

    2000-01-01

    In order to attain higher burnup and higher coolant outlet temperature in fast reactor, oxide dispersion strengthened (ODS) ferritic-martensitic steels were developed as a long life fuel cladding. The improvement in formability and ductility, which are indispensable in the cold-rolling method for manufacturing cladding tube, were achieved by controlling the microstructure using techniques such as recrystallization heat-treatment and α to γ phase transformation. The ODS ferritic-martensitic cladding tubes manufactured using these techniques have the highest internal creep rupture strength in the world as ferritic stainless steels. Strength level approaches adequate value at 700degC, which meets the requirement for commercial fast reactors. (author)

  11. Design of Matched Cladding Fiber with UV-sensitive Cladding for Minimization of Claddingmode Losses in Fiber Bragg Gratings

    DEFF Research Database (Denmark)

    Nielsen, Mads Lønstrup; Berendt, Martin Ole; Bjarklev, Anders Overgaard

    2000-01-01

    The effect on the Bragg-grating-induced cladding-mode coupling of varying the extent of the photosensitive region in a step-index fiber is analyzed. We introduce a figure of merit for the suppression of cladding-mode loss and compare different matched cladding fiber designs. It is found to be adv......The effect on the Bragg-grating-induced cladding-mode coupling of varying the extent of the photosensitive region in a step-index fiber is analyzed. We introduce a figure of merit for the suppression of cladding-mode loss and compare different matched cladding fiber designs. It is found...... to be advantageous to increase the extent of the photosensitive region. However, no significant improvement is obtained by extending the photosensitive region more than approximately 10 mu m into the cladding. This result is not in agreement with a simple analysis that neglects UV absorption, which suggests...... that the radius of the photosensitive region should be close to twice as large. (C) 2000 Academic Press....

  12. Nuclear-powered pacemaker fuel cladding study

    International Nuclear Information System (INIS)

    Shoup, R.L.

    1976-07-01

    The fabrication of fuel capsules with refractory metal and alloy clads used in nuclear-powered cardiac pacemakers precludes the expedient dissolution of the clad in inorganic acid solutions. An experiment to measure penetration rates of acids on commonly used fuel pellet clads indicated that it is not impossible, but that it would be very difficult to dissolve the multiple cladding. This work was performed because of a suggestion that a 238 PuO 2 -powered pacemaker could be transformed into a terrorism weapon

  13. Influence of processing variables and alloy chemistry on the corrosion behavior of ZIRLO nuclear fuel cladding

    International Nuclear Information System (INIS)

    Comstock, R.J.; Sabol, G.P.; Schoenberger, G.

    1996-01-01

    Variations in the thermal heat treatments used during the fabrication of ZIRLO (Zr-1Nb-1Sn-0.1Fe) fuel clad tubing and in ZIRLO alloy chemistry were explored to develop a further understanding of the relationship between processing, microstructure, and cladding corrosion performance. Heat treatment variables included intermediate tube annealing temperatures as well as a beta-phase heat treatment during the latter stages of the tube reduction schedule. Chemistry variables included deviations in niobium and tin content from the nominal composition. The effects of both heat treatment and chemistry on corrosion behavior were assessed by autoclave tests in both pure and lithiated water and high-temperature steam. Analytical electron microscopy demonstrated that the best out-reactor corrosion performance is obtained for microstructures containing a fine distribution of beta-niobium and Zr-Nb-Fe particles. Deviations from this microstructure, such as the presence of beta-zirconium phase, tend to degrade corrosion resistance. ZIRLO fuel cladding was irradiated in four commercial reactors. In all cases, the microstructure in the cladding included beta-niobium and Zr-Nb-Fe particles. ZIRLO fuel cladding processed with a late-stage beta heat treatment to further refine the second-phase particle size exhibited in-reactor corrosion behavior that was similar to reference ZIRLO cladding. Variations of the in-reactor corrosion behavior of ZIRLO were correlated to tin content, with higher oxide thickness observed in the ZIRLO cladding containing higher tin. The results of these studies indicate that optimum corrosion performance of ZIRLO is achieved by maintaining a uniform distribution of fine second-phase particles and controlled levels of tin

  14. Analysis of corrosion behavior of KOFA cladding

    International Nuclear Information System (INIS)

    Lee, Chan Bock; Kim, Ki Hang; Seo, Keum Seok; Chung, Jin Gon

    1994-01-01

    The corrosion behavior of KOFA cladding was analyzed using the oxide measurement data of KOFA fuel irradiated up to the fuel rod burnup of 35,000 MWD/MTU for two cycles in Kori-2. Even though KOFA cladding is a standard Zircaloy-4 manufactured by Westinghouse according to the Siemens/KWU's HCW (Highly Cold Worked) standard Zircaloy-4 specification, it was expected that in-pile corrosion behavior of KOFA cladding would not be equivalent to that of Siemens/KWU's cladding due to the differences in such manufacturing processes as cold work and heat treatment. The analysis of measured KOFA cladding oxidation showed that oxidation of KOFA cladding is at least 19 % lower than the design analysis based upon Siemens/KWU's HCW standard Zircaloy-4 cladding. Lower corrosion of KOFA cladding seems to result from the differences in the manufacturing processes and chemical composition although the burnup and oxide layer thickness of the measured fuel rods is relatively low and the amount of the oxidation data base is small

  15. Numerical simulation on temperature field of TIG welding for 0Cr18Ni10Ti steel cladding and experimental verification

    International Nuclear Information System (INIS)

    Luo Hongyi; Tang Xian; Luo Zhifu

    2015-01-01

    Aiming at tungsten inert gas (TIG) for 0Cr18Ni10Ti stainless steel cladding for radioactive source, the numerical calculation of welding pool temperature field was carried out through adopting ANSYS software. The numerical model of non-steady TIG welding pool shape was established, the heat enthalpy and Gaussian electric arc heat source model of surface distribution were introduced, and the effects of welding current and welding speed to temperature field distribution were calculated. Comparing the experimental data and the calculation results under different welding currents and speeds, the reliability and correctness of the model were proved. The welding technological parameters of 0Cr18Ni10Ti stainless steel were optimized based on the calculation results and the welding procedure was established. (authors)

  16. Statistical mechanical analysis of LMFBR fuel cladding tubes

    International Nuclear Information System (INIS)

    Poncelet, J.-P.; Pay, A.

    1977-01-01

    The most important design requirement on fuel pin cladding for LMFBR's is its mechanical integrity. Disruptive factors include internal pressure from mixed oxide fuel fission gas release, thermal stresses and high temperature creep, neutron-induced differential void-swelling as a source of stress in the cladding and irradiation creep of stainless steel material, corrosion by fission products. Under irradiation these load-restraining mechanisms are accentuated by stainless steel embrittlement and strength alterations. To account for the numerous uncertainties involved in the analysis by theoretical models and computer codes statistical tools are unavoidably requested, i.e. Monte Carlo simulation methods. Thanks to these techniques, uncertainties in nominal characteristics, material properties and environmental conditions can be linked up in a correct way and used for a more accurate conceptual design. (Auth.)

  17. Evaluation of cost reduction method for manufacturing ODS ferritic claddings

    International Nuclear Information System (INIS)

    Fujiwara, Masayuki; Mizuta, Shunji; Ukai, Shigeharu

    2000-04-01

    For evaluating the fast reactor system technology, it is important to evaluate the practical feasibility of ODS ferritic claddings, which is the most promising materials to attain the goal of high coolant temperature and more than 150 GWd/t. Based on the results of their technology development, mass production process with highly economically benefit as well as manufacturing cost estimation of ODS ferritic claddings were preliminarily conducted. From the view point of future utility scale, the cost for manufacturing mother tubes has a dominant factor in the total manufacturing cost. The method to reduce the cost of mother tube manufacturing was also preliminarily investigated. (author)

  18. Laser surface cladding:a literature survey

    OpenAIRE

    Gedda, Hans

    2000-01-01

    This work consists of a literature survey of a laser surface cladding in order to investigate techniques to improve the cladding rate for the process. The high local heat input caused by the high power density of the laser generates stresses and the process is consider as slow when large areas are processed. To avoid these disadvantages the laser cladding process velocity can be increased three or four times by use of preheated wire instead of the powder delivery system. If laser cladding is ...

  19. All fiber cladding mode stripper with uniform heat distribution and high cladding light loss manufactured by CO2 laser ablation

    Science.gov (United States)

    Jebali, M. A.; Basso, E. T.

    2018-02-01

    Cladding mode strippers are primarily used at the end of a fiber laser cavity to remove high-power excess cladding light without inducing core loss and beam quality degradation. Conventional manufacturing methods of cladding mode strippers include acid etching, abrasive blasting or laser ablation. Manufacturing of cladding mode strippers using laser ablation consist of removing parts of the cladding by fused silica ablation with a controlled penetration and shape. We present and characterize an optimized cladding mode stripper design that increases the cladding light loss with a minimal device length and manufacturing time. This design reduces the localized heat generation by improving the heat distribution along the device. We demonstrate a cladding mode stripper written on a 400um fiber with cladding light loss of 20dB, with less than 0.02dB loss in the core and minimal heating of the fiber and coating. The manufacturing process of the designed component is fully automated and takes less than 3 minutes with a very high throughput yield.

  20. Compatibility study between U-UO{sub 2} cermet fuel and T91 cladding

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Sudhir, E-mail: sudhir@barc.gov.in [Radiometallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Kaity, Santu; Khan, K.B. [Radiometallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Sengupta, Pranesh; Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2016-12-01

    Cermet is a new fuel concept for the fast reactor system and is ideally designed to combine beneficial properties of both ceramic and metal. In order to understand fuel clad chemical compatibility, diffusion couples were prepared with U-UO{sub 2} cermet fuel and T91 cladding material. These diffusion couples were annealed at 923–1073 K for 1000 h and 1223 K for 50 h, subsequently their microstructures were examined using scanning electron microscope (SEM), X-ray energy dispersive spectroscope (EDS) and electron probe microanalyser (EPMA). It was observed that the interaction between the fuel and constituents of T91 clad was limited to a very small region up to the temperature 993 K and discrete U{sub 6}(Fe,Cr) and U(Fe,Cr){sub 2} intermetallic phases developed. Eutectic microstructure was observed in the reaction zone at 1223 K. The activation energy for reaction at the fuel clad interface was determined.

  1. Development of advanced zirconium fuel cladding

    International Nuclear Information System (INIS)

    Jeong, Young Hwan; Park, S. Y.; Lee, M. H.

    2007-04-01

    This report includes the manufacturing technology developed for HANA TM claddings, a series of their characterization results as well as the results of their in-pile and out-of pile performances tests which were carried out to develop some fuel claddings for a high burn-up (70,000MWd/mtU) which are competitive in the world market. Some of the HANA TM claddings, which had been manufactured based on the results from the 1st and 2nd phases of the project, have been tested in a research reactor in Halden of Norway for an in-pile performance qualification. The results of the in-pile test showed that the performance of the HANA TM claddings for corrosion and creep was better than 50% compared to that of Zircaloy-4 or A cladding. It was also found that the out-of pile performance of the HANA TM claddings for such as LOCA and RIA in some accident conditions corrosion creep, tensile, burst and fatigue was superior or equivalent to that of the Zircaloy-4 or A cladding. The project also produced the other many data which were required to get a license for an in-pile test of HANA TM claddings in a commercial reactor. The data for the qualification or characterization were provided for KNFC to assist their activities to get the license for the in-pile test of HANA TM Lead Test Rods(LTR) in a commercial reactor

  2. Temperature escalation in PWR fuel rod simulator bundles due to the zircaloy/steam reaction: Post test investigations of bundle test ESBU-2A

    International Nuclear Information System (INIS)

    Hagen, S.; Kapulla, H.; Malauschek, H.; Wallenfels, K.P.; Buescher, B.

    1986-11-01

    This KfK report describes the post test investigation of bundle experiment ESBU-2a. ESBU-2a was the second of two bundle tests on the temperature escalation of zircaloy clad fuel rods. The investigation of the temperature escalation is part of the program of out-of-pile experiments performed within the frame work of the PNS-Severe Fuel Damage program. The bundle was composed of a 3x3 fuel rod array of our fuel rod simulators (central tungsten heater, UO 2 -ring pellet and zircaloy cladding). The length was 0.4 meter. The bundle was heated to a maximum temperature of 2175 0 C. Molten cladding which dissolved part of the UO 2 pellets and slumped away from the already oxidized cladding formed a lump in the lower part of the bundle. After the test the bundle was embedded in epoxy and sectioned with a diamand saw, in the region of the refrozen melt. The cross sections were investigated by metallographic examination. The refrozen (U,Zr,O) melt consists variously of three phases with increasing oxygen content (metallic α-Zry, metallic (U,Zr) alloy and a (U,Zr)O 2 mixed oxide), two phases (α-Zry, (U,Zr)O 2 mixed oxide), or one phase ((U,Zr)O 2 mixed oxide). The cross sections show the increasing oxidation of the cladding with increasing elevation (temperature). A strong azimuthal dependency of the oxidation is found. In regions where the initial oxidized cladding is contacted by the melt one can recognize the interaction between the metallic melt and ZrO 2 of the cladding. Oxygen is taken away from the ZrO 2 . If the melt is in direct contact with steam a relatively well defined oxide layer is formed. (orig.) [de

  3. Thermal and mechanical behavior of APWR-claddings under critical heat flux conditions

    International Nuclear Information System (INIS)

    Diegele, E.; Rust, K.

    1986-10-01

    Helical grid spacers, such as three or six helical fins as integral part of the claddings, are regarded as a more convenient design for the very tight lattice of an advanced pressurized water reactor (APWR) than grid spacers usually used. Furthermore, it is expected that this spacer design allows an increased safety margin against the critical heat flux (CHF), the knowledge of which is important for design, licensing, and operation of water cooled reactors. To address the distribution of the heat flux density at the outer circumference of the cladding geometry under investigation, the temperature fields in claddings without as well with fins were calculated taking into consideration nuclear and electrically heated rods. Besides the thermal behavior of the claddings, the magnitude and distribution of thermal stresses were determined additionally. A locally increased surface heat flux up to about 40 percent was calculated for the fin bases of nuclear as well as indirect electrically heated claddings with six such helical fins. For all investigated cases, the VON MISES stresses are clearly lower than 200 MPa, implying that no plastic deformations are to be expected. The aim of this theoretical analysis is to allow a qualitative assessment of the finned tube conception and to support experimental investigations concerning the critical heat flux. (orig.) [de

  4. Construction of in-situ creep strain test facility for the SFR fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Gyu; Heo, Hyeong Min; Kim, Jun Hwan; Kim, Sung Ho [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, in-situ laser inspection creep test machine was developed for the measuring the creep strain of SFR fuel cladding materials. Ferritic-martensitic steels are being considered as an attractive candidate material for a fuel cladding of a SFR due to their low expansion coefficients, high thermal conductivities and excellent irradiation resistances to a void swelling. HT9 steel (12CrMoVW) is initially developed as a material for power plants in Europe in the 1960. This steel has experienced to expose up to 200dpa in FFTE and EBR-II. Ferritic-Martensitic steel's maximum creep strength in existence is 180Mpa for 106 hour 600 .deg., but HT9 steel is 60Mpa. Because SFR is difficult to secure in developing and applying materials, HT9 steel has accumulated validated data and is suitable for SFR component. And also, because of its superior dimensional stability against fast neutron irradiation, Ferritic-martensitic steel of 9Cr and 12Cr steels, such as HT9 and FC92(12Cr-2W) are preferable to utilize in the fuel cladding of an SFR in KAERI. The pressurized thermal creep test of HT9 and FC92 claddings are being conducted in KAERI, but the change of creep strain in cladding is not easy to measure during the creep test due to its pressurized and closed conditions. In this paper, in-situ laser inspection pressurized creep test machine developed for SFR fuel cladding specimens is described. Moreover, the creep strain rate of HT9 at 650 .deg. C was examined from the in-situ laser inspection pressurized creep test machine.

  5. Mechanical response of FFTF reference and P1 cladding tubes under transient heating

    International Nuclear Information System (INIS)

    Youngahl, C.A.; Ariman, T.; Lepacek, B.E.

    1977-01-01

    Burst tests of Type 316 stainless steel cladding tube samples subjected to increasing temperature and relatively constant internal pressure were conducted to assist in the pretest analysis of the P1 experiment performed in the Sodium Loop Safety Facility. This paper reports and analyzes the burst test results and those of subsequent transient heating work. The use of a modified extensometer in obtaining mechanical response data for stainless steel in the high temperature range is illustrated, some of such data is provided, and the potential of further experiments and analysis is indicated. Tubing of the same design as Fast Flux Test Facility (FFTF) cladding (20% cold worked, 0.230 in. OD, 15 mil wall) was tested as-received and after annealing or electrolytic thinning. P1 tubing (38% cold worked, 0.230 in. OD, 10 mil wall) was tested before and after aging under conditions anticipated in the P1 reactor experiment. The P1 cladding was designed to simulate FFTF tubing that had experienced irradiation embrittlement and attack by cesium oxide and sodium impurities

  6. Fracture assessment of weld material from a full-thickness clad RPV shell segment

    International Nuclear Information System (INIS)

    Keeney, J.A.; Bass, B.R.; McAfee, W.J.

    1996-01-01

    Fracture analysis was applied to full-thickness clad beam specimens containing shallow cracks in material for which metallurgical conditions are prototypic of those found in reactor pressure vessels (RPV) at beginning of life. The beam specimens were fabricated from a section of an RPV wall (removed from a canceled nuclear plant) that includes weld, plate, and clad material. Metallurgical factors potentially influencing fracture toughness for shallow cracks in the beam specimens include gradients of material properties and residual stresses due to welding and cladding applications. Fracture toughness estimates were obtained from load vs load-line displacement and load vs crack-mouth-opening displacement data using finite-element methods and estimation schemes based on the η-factor method. One of the beams experienced a significant amount of precleavage stable ductile tearing. Effects of precleavage tearing on estimates of fracture toughness were investigated using continuum damage models. Fracture toughness results from the clad beam specimens were compared with other deep- and shallow-crack single-edge notch bend (SENB) data generated previously from A533 Grade B plate material. Range of scatter for the clad beam data is consistent with that from the laboratory-scale SENB specimens tested at the same temperature

  7. Maximum Smoke Temperature in Non-Smoke Model Evacuation Region for Semi-Transverse Tunnel Fire

    OpenAIRE

    B. Lou; Y. Qiu; X. Long

    2017-01-01

    Smoke temperature distribution in non-smoke evacuation under different mechanical smoke exhaust rates of semi-transverse tunnel fire were studied by FDS numerical simulation in this paper. The effect of fire heat release rate (10MW 20MW and 30MW) and exhaust rate (from 0 to 160m3/s) on the maximum smoke temperature in non-smoke evacuation region was discussed. Results show that the maximum smoke temperature in non-smoke evacuation region decreased with smoke exhaust rate. Plug-holing was obse...

  8. Out-of-pile experiments of fuel-cladding chemical interaction, (2)

    International Nuclear Information System (INIS)

    Konashi, Kenji; Yato, Tadao; Kaneko, Hiromitsu; Honda, Yutaka

    1980-01-01

    Cesium seems to be one of the most important fission products in the fuel-cladding chemical interaction of fuel pins for LMFBRs. However the FCCI under irradiation cannot always be explained by considering only cesium-oxygen system as the corrosive, since attack does not occur in the cesium-oxygen system unless oxygen potential is sufficiently high. Cesium-tellurium-oxygen system has been proposed to account for heavy cladding attack which was sometimes found in hypostoichiometric mixed oxide fuel pins. In this paper, the experiment on the reaction of liquid tellurium with stainless steel is reported. The type 316 stainless steel claddings for Monju type fuel pins were used as the test specimens. Tellurium was contained into the cladding tubes with end plugs. The temperature dependence of the attack by tellurium was examined in the range from 450 to 900 deg C for 30 min, and the heating time dependence was examined from 5 min to 200 hr at 725 deg C. An infrared lamp furnace was used for the experiment within 7 hr, and a resistance furnace for longer experiment. The character of corrosion was matrix attack, and the reaction products on the stainless steel surfaces consisted of chrome rich inner phase and iron and nickel rich outer phase. The results are reported. (Kako, I.)

  9. Study on Co-free amorphous material cladding using a laser beam to improve the resistance of primary system parts in NPPs to wear/erosion-corrosion

    International Nuclear Information System (INIS)

    Kim, J. S.; Woo, S. S.; Seo, J. H.

    2001-01-01

    A study on Co-free amorphous material, ARMACOR M, cladding using a laser beam has been performed to improve resistance of the primary system main parts on nuclear power plants to wear/erosion-corrosion. The wear/erosion-corrosion properties of ARMACRO M cladded speciemens were characterized in air at room temperature and 300 .deg. C and in air at room temperature, and compared to those of other hardfacing materials, such as Stellite 6, NOREM 02, Deloro 50, TIG-welde or laer cladded. According to the results, ARMACOR M laser-cladded specimen showed to have the highest resistance to wear/erosion-corrosion

  10. Reaction in air and in nitrogen of pre-oxidised Zircaloy-4 and M5™ claddings

    Energy Technology Data Exchange (ETDEWEB)

    Duriez, C., E-mail: christian.duriez@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES/SEREX-LE2M, Centre de Cadarache, St Paul-Lez-Durance 13115 (France); Drouan, D. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES/SEREX-LE2M, Centre de Cadarache, St Paul-Lez-Durance 13115 (France); Pouzadoux, G. [Université Technologique de Troyes, BP 2060, Troyes 10010 (France)

    2013-10-15

    High temperature reactivity in air and in nitrogen of pre-oxidised Zircaloy-4 and M5™ claddings has been studied by thermogravimetry. Claddings were pre-oxidised at low temperature with the aim of simulating spent fuel. Different pre-oxidation modes, inducing significant variation in the pre-oxides microstructure, were compared. The behaviour in air, investigated in the 850–1000 °C temperature range, was found to be strongly dependant on the type of pre-oxide: the compact pre-oxide formed in autoclave (at temperature, pressure, and water chemistry representative of PWR conditions) significantly slows down the degradation in air compared to the bare alloys; on the contrary, a pre-oxide formed at 500 °C at ambient pressure, either in oxygen or in steam, favours the initiation of post-breakaway type oxidation, which in air is associated with nitride formation. The behaviour in nitrogen has been investigated in the 800–1200 °C temperature range, with Zircaloy-4 pre-oxidised at 500 °C in O{sub 2}. Reactivity is low up to 1000 °C but becomes very significant at the highest temperatures investigated, 1100 and 1200 °C. Finally, cladding segments first reacted in N{sub 2} at 1100 °C, were exposed to air and show fast oxidation even at the lowest temperature investigated (600 °C)

  11. Simulations of Failure via Three-Dimensional Cracking in Fuel Cladding for Advanced Nuclear Fuels

    International Nuclear Information System (INIS)

    Lu, Hongbing; Bukkapatnam, Satish; Harimkar, Sandip; Singh, Raman; Bardenhagen, Scott

    2014-01-01

    Enhancing performance of fuel cladding and duct alloys is a key means of increasing fuel burnup. This project will address the failure of fuel cladding via three-dimensional cracking models. Researchers will develop a simulation code for the failure of the fuel cladding and validate the code through experiments. The objective is to develop an algorithm to determine the failure of fuel cladding in the form of three-dimensional cracking due to prolonged exposure under varying conditions of pressure, temperature, chemical environment, and irradiation. This project encompasses the following tasks: 1. Simulate 3D crack initiation and growth under instantaneous and/or fatigue loads using a new variant of the material point method (MPM); 2. Simulate debonding of the materials in the crack path using cohesive elements, considering normal and shear traction separation laws; 3. Determine the crack propagation path, considering damage of the materials incorporated in the cohesive elements to allow the energy release rate to be minimized; 4. Simulate the three-dimensional fatigue crack growth as a function of loading histories; 5. Verify the simulation code by comparing results to theoretical and numerical studies available in the literature; 6. Conduct experiments to observe the crack path and surface profile in unused fuel cladding and validate against simulation results; and 7. Expand the adaptive mesh refinement infrastructure parallel processing environment to allow adaptive mesh refinement at the 3D crack fronts and adaptive mesh merging in the wake of cracks. Fuel cladding is made of materials such as stainless steels and ferritic steels with added alloying elements, which increase stability and durability under irradiation. As fuel cladding is subjected to water, chemicals, fission gas, pressure, high temperatures, and irradiation while in service, understanding performance is essential. In the fast fuel used in advanced burner reactors, simulations of the nuclear

  12. Simulations of Failure via Three-Dimensional Cracking in Fuel Cladding for Advanced Nuclear Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Hongbing [Univ. of Texas, Austin, TX (United States); Bukkapatnam, Satish; Harimkar, Sandip; Singh, Raman; Bardenhagen, Scott

    2014-01-09

    Enhancing performance of fuel cladding and duct alloys is a key means of increasing fuel burnup. This project will address the failure of fuel cladding via three-dimensional cracking models. Researchers will develop a simulation code for the failure of the fuel cladding and validate the code through experiments. The objective is to develop an algorithm to determine the failure of fuel cladding in the form of three-dimensional cracking due to prolonged exposure under varying conditions of pressure, temperature, chemical environment, and irradiation. This project encompasses the following tasks: 1. Simulate 3D crack initiation and growth under instantaneous and/or fatigue loads using a new variant of the material point method (MPM); 2. Simulate debonding of the materials in the crack path using cohesive elements, considering normal and shear traction separation laws; 3. Determine the crack propagation path, considering damage of the materials incorporated in the cohesive elements to allow the energy release rate to be minimized; 4. Simulate the three-dimensional fatigue crack growth as a function of loading histories; 5. Verify the simulation code by comparing results to theoretical and numerical studies available in the literature; 6. Conduct experiments to observe the crack path and surface profile in unused fuel cladding and validate against simulation results; and 7. Expand the adaptive mesh refinement infrastructure parallel processing environment to allow adaptive mesh refinement at the 3D crack fronts and adaptive mesh merging in the wake of cracks. Fuel cladding is made of materials such as stainless steels and ferritic steels with added alloying elements, which increase stability and durability under irradiation. As fuel cladding is subjected to water, chemicals, fission gas, pressure, high temperatures, and irradiation while in service, understanding performance is essential. In the fast fuel used in advanced burner reactors, simulations of the nuclear

  13. Statistical assessment of changes in extreme maximum temperatures over Saudi Arabia, 1985-2014

    Science.gov (United States)

    Raggad, Bechir

    2018-05-01

    In this study, two statistical approaches were adopted in the analysis of observed maximum temperature data collected from fifteen stations over Saudi Arabia during the period 1985-2014. In the first step, the behavior of extreme temperatures was analyzed and their changes were quantified with respect to the Expert Team on Climate Change Detection Monitoring indices. The results showed a general warming trend over most stations, in maximum temperature-related indices, during the period of analysis. In the second step, stationary and non-stationary extreme-value analyses were conducted for the temperature data. The results revealed that the non-stationary model with increasing linear trend in its location parameter outperforms the other models for two-thirds of the stations. Additionally, the 10-, 50-, and 100-year return levels were found to change with time considerably and that the maximum temperature could start to reappear in the different T-year return period for most stations. This analysis shows the importance of taking account the change over time in the estimation of return levels and therefore justifies the use of the non-stationary generalized extreme value distribution model to describe most of the data. Furthermore, these last findings are in line with the result of significant warming trends found in climate indices analyses.

  14. Cr13Ni5Si2-Based Composite Coating on Copper Deposited Using Pulse Laser Induction Cladding

    Directory of Open Access Journals (Sweden)

    Ke Wang

    2017-02-01

    Full Text Available A Cr13Ni5Si2-based composite coating was successfully deposited on copper by pulse laser induction hybrid cladding (PLIC, and its high-temperature wear behavior was investigated. Temperature evolutions associated with crack behaviors in PLIC were analyzed and compared with pulse laser cladding (PLC using the finite element method. The microstructure and present phases were analyzed using scanning electron microscopy and X-ray diffraction. Compared with continuous laser induction cladding, the higher peak power offered by PLIC ensures metallurgical bonding between highly reflective copper substrate and coating. Compared with a wear test at room temperature, at 500 °C the wear volume of the Cr13Ni5Si2-based composite coating increased by 21%, and increased by 225% for a NiCr/Cr3C2 coating deposited by plasma spray. This novel technology has good prospects for application with respect to the extended service life of copper mold plates for slab continuous casting.

  15. Cr13Ni5Si2-Based Composite Coating on Copper Deposited Using Pulse Laser Induction Cladding.

    Science.gov (United States)

    Wang, Ke; Wang, Hailin; Zhu, Guangzhi; Zhu, Xiao

    2017-02-10

    A Cr13Ni5Si2-based composite coating was successfully deposited on copper by pulse laser induction hybrid cladding (PLIC), and its high-temperature wear behavior was investigated. Temperature evolutions associated with crack behaviors in PLIC were analyzed and compared with pulse laser cladding (PLC) using the finite element method. The microstructure and present phases were analyzed using scanning electron microscopy and X-ray diffraction. Compared with continuous laser induction cladding, the higher peak power offered by PLIC ensures metallurgical bonding between highly reflective copper substrate and coating. Compared with a wear test at room temperature, at 500 °C the wear volume of the Cr13Ni5Si2-based composite coating increased by 21%, and increased by 225% for a NiCr/Cr3C2 coating deposited by plasma spray. This novel technology has good prospects for application with respect to the extended service life of copper mold plates for slab continuous casting.

  16. Instrument for measuring fuel cladding strain

    International Nuclear Information System (INIS)

    Billeter, T.R.

    1976-01-01

    Development work to provide instrumentation for the continuous measurement of strain of material specimens such as nuclear fuel cladding has shown that a microwave sensor and associated instrumentation hold promise. The cylindrical sensor body enclosing the specimen results in a coaxial resonator absorbing microwave energy at frequencies dependent upon the diameter of the specimen. Diametral changes of a microinch can be resolved with use of the instrumentation. Very reasonable values of elastic strain were measured at 75 0 F and 1000 0 F for an internally pressurized 20 percent C.W. 316 stainless steel specimen simulating nuclear fuel cladding. The instrument also indicated the creep strain of the same specimen pressurized at 6500 psi and at a temperature of 1000 0 F for a period of 700 hours. Although the indicated strain appears greater than actual, the sensor/specimen unit experienced considerable oxidation even though an inert gas purge persisted throughout the test duration. By monitoring at least two modes of resonance, the measured strain was shown to be nearly independent of sensor temperature. To prevent oxidation, a second test was performed in which the specimen/sensor units were contained in an evacuated enclosure. The strain of the two prepressurized specimens as indicated by the microwave instrumentation agreed very closely with pre- and post-test measurements obtained with use of a laser interferometer

  17. Effect of water chemistry and fuel operation parameters on Zr + 1% Nb cladding corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Kritsky, V G; Petrik, N G; Berezina, I G; Doilnitsina, V V [VNIPIET, St. Petersburg (Russian Federation)

    1997-02-01

    In-pile corrosion of Zr + 1%Nb fuel cladding has been studied. Zr-oxide and hydroxide solubilities at various temperatures and pH values have been calculated and correlations obtained between post-transition corrosion and the solubilities nodular corrosion and fuel operation parameters, as well as between the rate of fuel cladding degradation and water chemistry. Extrapolations of fuel assemblies behaviour to higher burnups have also performed. (author). 12 refs, 11 figs.

  18. The anisotropic creep behaviour of zircaloy-4 fuel cladding at 1073 K

    International Nuclear Information System (INIS)

    Rosinger, H.E.; Bowden, J.; Shewfelt, R.S.W.

    1982-04-01

    The anisotropy coefficients (F, G and H) of Hill's equation, suitably modified for creep deformation, have been determined for Zircaloy-4 fuel cladding from steady-state creep tests at an elevated temperature. Creep specimens were subjected to both uniaxial and biaxial loads (via internal pressure) at 1073 K and the strain measured concurrently in the axial and tangential directions. It has been found that Zircaloy-4 fuel cladding is almost, but not completely, isotropic at 1073 K; the values of F, G and H are 0.57, 0.48 and 0.45 respectively

  19. The influence of ventilation on moisture conditions in facades with wooden cladding

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Brandt, Erik

    2009-01-01

    A ventilated cavity behind the cladding of timber frame walls is often considered good building practice that facilitates the removal of moisture from the construction. However, moisture will only be removed from the construction by ventilating it with dry air, whereas ventilating with humid air...... might add moisture to the construction. Full-size wall elements with wooden cladding placed in a test building were exposed to natural climate on the outside and to a humid indoor climate on the inside. Temperature and moisture conditions inside the wall elements and climate parameters were monitored...

  20. Microstructure and Property Evolution in Advanced Cladding and Duct Materials Under Long-Term and Elevated Temperature Irradiation: Modeling and Experimental Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Wirth, Brian; Morgan, Dane; Kaoumi, Djamel; Motta, Arthur

    2013-12-01

    The in-service degradation of reactor core materials is related to underlying changes in the irradiated microstructure. During reactor operation, structural components and cladding experience displacement of atoms by collisions with neutrons at temperatures at which the radiation-induced defects are mobile, leading to microstructure evolution under irradiation that can degrade material properties. At the doses and temperatures relevant to fast reactor operation, the microstructure evolves by dislocation loop formation and growth, microchemistry changes due to radiation-induced segregation, radiation-induced precipitation, destabilization of the existing precipitate structure, and in some cases, void formation and growth. These processes do not occur independently; rather, their evolution is highly interlinked. Radiationinduced segregation of Cr and existing chromium carbide coverage in irradiated alloy T91 track each other closely. The radiation-induced precipitation of Ni-Si precipitates and RIS of Ni and Si in alloys T91 and HCM12A are likely related. Neither the evolution of these processes nor their coupling is understood under the conditions required for materials performance in fast reactors (temperature range 300-600°C and doses beyond 200 dpa). Further, predictive modeling is not yet possible as models for microstructure evolution must be developed along with experiments to characterize these key processes and provide tools for extrapolation. To extend the range of operation of nuclear fuel cladding and structural materials in advanced nuclear energy and transmutation systems to that required for the fast reactor, the irradiation-induced evolution of the microstructure, microchemistry, and the associated mechanical properties at relevant temperatures and doses must be understood. Predictive modeling relies on an understanding of the physical processes and also on the development of microstructure and microchemical models to describe their evolution under

  1. Friction Surface Cladding of AA1050 on AA2024-T351; influence of clad layer thickness and tool rotation rate

    NARCIS (Netherlands)

    Liu, Shaojie; Bor, Teunis Cornelis; Geijselaers, Hubertus J.M.; Akkerman, Remko

    2015-01-01

    Friction Surfacing Cladding (FSC) is a recently developed solid state process to deposit thin metallic clad layers on a substrate. The process employs a rotating tool with a central opening to supply clad material and support the distribution and bonding of the clad material to the substrate. The

  2. Friction and wear behavior of laser cladding Ni/hBN self-lubricating composite coating

    International Nuclear Information System (INIS)

    Zhang Shitang; Zhou Jiansong; Guo Baogang; Zhou Huidi; Pu Yuping; Chen Jianmin

    2008-01-01

    Ni/hBN coating was successfully prepared on 1Cr18Ni9Ti stainless steel substrate by means of laser cladding. The microhardness profile of the composite coating along the depth direction was measured, while its cross-sectional microstructures and phase compositions were analyzed by means of scanning electron microscopy and X-ray diffraction. Moreover, the friction and wear behavior of the composite coatings sliding against Si 3 N 4 from ambient to 800 deg. C was evaluated using a ball-on-disc friction and wear tester, and the worn surface morphologies of the composite coatings and counterpart ceramic balls were observed using a scanning electron microscope. At the same time, the worn surfaces of the ceramic balls were also analyzed using a 3D non-contact surface mapping profiler as well. It was found that the laser cladding Ni/hBN coating on the stainless steel substrate had high microhardness and good friction-reducing and antiwear abilities at elevated temperatures up to 800 deg. C. The composite coating registered slightly increased friction coefficient and wear rate as the temperature rose from ambient to 100 deg. C; then the friction coefficient and wear rate decreased with increasing temperature up to 800 deg. C (with the slight increase in the wear rate at 700 deg. C and 800 deg. C to be an exception). The laser cladding Ni/hBN coating was dominated by mixed adhesion and abrasive wear as it slid against the ceramic ball below 300 deg. C. With further increase in the test temperature up to 400 deg. C and above, it was characterized by mild adhesion wear and plastic deformation. Since the laser cladding Ni/hBN coating registered an increased wear rate at temperatures of 600 deg. C and above, it was not suggested to be used for wear prevention and protection of the stainless steel at elevated temperature above 800 deg. C

  3. Friction and wear behavior of laser cladding Ni/hBN self-lubricating composite coating

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shitang [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate School, Chinese Academy of Sciences, Beijing 100039 (China); Zhou Jiansong [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Guo Baogang [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate School, Chinese Academy of Sciences, Beijing 100039 (China); Zhou Huidi [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Pu Yuping [Central Iron and Steel Research Institute, Beijing 100081 (China); Chen Jianmin [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)], E-mail: chenjm@lzb.ac.cn

    2008-09-15

    Ni/hBN coating was successfully prepared on 1Cr18Ni9Ti stainless steel substrate by means of laser cladding. The microhardness profile of the composite coating along the depth direction was measured, while its cross-sectional microstructures and phase compositions were analyzed by means of scanning electron microscopy and X-ray diffraction. Moreover, the friction and wear behavior of the composite coatings sliding against Si{sub 3}N{sub 4} from ambient to 800 deg. C was evaluated using a ball-on-disc friction and wear tester, and the worn surface morphologies of the composite coatings and counterpart ceramic balls were observed using a scanning electron microscope. At the same time, the worn surfaces of the ceramic balls were also analyzed using a 3D non-contact surface mapping profiler as well. It was found that the laser cladding Ni/hBN coating on the stainless steel substrate had high microhardness and good friction-reducing and antiwear abilities at elevated temperatures up to 800 deg. C. The composite coating registered slightly increased friction coefficient and wear rate as the temperature rose from ambient to 100 deg. C; then the friction coefficient and wear rate decreased with increasing temperature up to 800 deg. C (with the slight increase in the wear rate at 700 deg. C and 800 deg. C to be an exception). The laser cladding Ni/hBN coating was dominated by mixed adhesion and abrasive wear as it slid against the ceramic ball below 300 deg. C. With further increase in the test temperature up to 400 deg. C and above, it was characterized by mild adhesion wear and plastic deformation. Since the laser cladding Ni/hBN coating registered an increased wear rate at temperatures of 600 deg. C and above, it was not suggested to be used for wear prevention and protection of the stainless steel at elevated temperature above 800 deg. C.

  4. Modelling of pellet-clad interaction during power ramps

    International Nuclear Information System (INIS)

    Zhou, G.; Lindback, J.E.; Schutte, H.C.; Jernkvist, L.O.; Massih, A.R.; Massih, A.R.

    2005-01-01

    A computational method to describe the pellet-clad interaction phenomenon is presented. The method accounts for the mechanical contact between fragmented pellets and the zircaloy clad, as well as for chemical reaction of fission products with zircaloy during power ramps. Possible pellet-clad contact states, soft, hard and friction, are taken into account in the computational algorithm. The clad is treated as an elastic-plastic-viscoplastic material with irradiation hardening. Iodine-induced stress corrosion cracking is described by using a fracture mechanics-based model for crack propagation. This integrated approach is used to evaluate two power ramp experiments made on boiling water reactor fuel rods in test reactors. The influence of the pellet-clad coefficient of friction on clad deformation is evaluated and discussed. Also, clad deformations, pellet-clad gap size and fission product gas release for one of the ramped rods are calculated and compared with measured data. (authors)

  5. LOCA testing of high burnup PWR fuel in the HBWR. Additional PIE on the cladding of the segment 650-5

    Energy Technology Data Exchange (ETDEWEB)

    Oberlaender, B.C.; Espeland, M.; Jenssen, H.K.

    2008-07-01

    IFA-650.5, a test with pre-irradiated fuel in the Halden Project LOCA test series, was conducted on October 23rd, 2006. The fuel rod had been used in a commercial PWR and had a high burnup, 83 MWd/kgU. Experimental arrangements of the fifth test were similar to the preceding LOCA tests. The peak cladding temperature (PCT) level was higher than in the third and fourth tests, 1050 C. A peak temperature close to the target was achieved and cladding burst occurred at approx. 750 C. Within the joint programme framework of the Halden Project PIE was done, consisting of gamma scanning, visual inspection, neutron-radiography, hydrogen analysis and metallography / ceramography. An additional extensive PIE including metallography, hydrogen analysis, and hardness measurements of cross-sections at seven axial elevations was done. It was completed to study the high burnup and LOCA induced effects on the Zr-4 cladding, namely the migration of oxygen into the cladding from the inside surface, the cladding distension, and the burst (author)(tk)

  6. Future changes over the Himalayas: Maximum and minimum temperature

    Science.gov (United States)

    Dimri, A. P.; Kumar, D.; Choudhary, A.; Maharana, P.

    2018-03-01

    An assessment of the projection of minimum and maximum air temperature over the Indian Himalayan region (IHR) from the COordinated Regional Climate Downscaling EXperiment- South Asia (hereafter, CORDEX-SA) regional climate model (RCM) experiments have been carried out under two different Representative Concentration Pathway (RCP) scenarios. The major aim of this study is to assess the probable future changes in the minimum and maximum climatology and its long-term trend under different RCPs along with the elevation dependent warming over the IHR. A number of statistical analysis such as changes in mean climatology, long-term spatial trend and probability distribution function are carried out to detect the signals of changes in climate. The study also tries to quantify the uncertainties associated with different model experiments and their ensemble in space, time and for different seasons. The model experiments and their ensemble show prominent cold bias over Himalayas for present climate. However, statistically significant higher warming rate (0.23-0.52 °C/decade) for both minimum and maximum air temperature (Tmin and Tmax) is observed for all the seasons under both RCPs. The rate of warming intensifies with the increase in the radiative forcing under a range of greenhouse gas scenarios starting from RCP4.5 to RCP8.5. In addition to this, a wide range of spatial variability and disagreements in the magnitude of trend between different models describes the uncertainty associated with the model projections and scenarios. The projected rate of increase of Tmin may destabilize the snow formation at the higher altitudes in the northern and western parts of Himalayan region, while rising trend of Tmax over southern flank may effectively melt more snow cover. Such combined effect of rising trend of Tmin and Tmax may pose a potential threat to the glacial deposits. The overall trend of Diurnal temperature range (DTR) portrays increasing trend across entire area with

  7. Solution treatment of fast reactor claddings

    International Nuclear Information System (INIS)

    Miura, Makoto; Nagaki, Hiroshi; Koyama, Masahiro

    1974-01-01

    The fuel cladding tubes for Joyo (experimental FBR) are required to be a material corresponding to AISI Type 316 and cold-rolled after solution treatment. It is necessary to have no precipitation of carbide and to make the grain size smaller than ASTM No.6. It is very difficult to obtain the fine grains without the precipitation, however. In this connection, the behavior of carbide solution at high temperature and the annealing behavior of the material cold-worked and solution-treated were studied. The following matters are described: the solid solubility line of AISI Type 316; the behavior of carbide at solution treatment temperature; and the annealing behavior of the cold-worked material. (Mori, K.)

  8. Assessment of clad integrity of PHWR fuel pin following a postulated severe accident

    International Nuclear Information System (INIS)

    Dutta, B.K.; Kushwaha, H.S.; Venkat Raj, V.

    2000-01-01

    A mechanistic fuel performance analysis code FAIR has been developed. The code can analyse fuel pins with free standing as well as collapsible clad under normal, off-normal and accident conditions of reactors. The code FAIR is capable of analysing the effects of high burnup on fuel behaviour. The code incorporates finite element based thermo-mechanical module for computing transient temperature distribution and thermal-elastic-plastic stresses in the fuel pin. A number of high temperature thermo-physical and thermo-mechanical models also have been incorporated for analysing fuel pins subjected to severe accident scenario. The present paper describes salient features of code FAIR and assessment of clad integrity of PHWR fuel pins with different initial burnup subjected to severe accident scenario. (author)

  9. Parametric Evaluation of SiC/SiC Composite Cladding with UO2 Fuel for LWR Applications: Fuel Rod Interactions and Impact of Nonuniform Power Profile in Fuel Rod

    Science.gov (United States)

    Singh, G.; Sweet, R.; Brown, N. R.; Wirth, B. D.; Katoh, Y.; Terrani, K.

    2018-02-01

    SiC/SiC composites are candidates for accident tolerant fuel cladding in light water reactors. In the extreme nuclear reactor environment, SiC-based fuel cladding will be exposed to neutron damage, significant heat flux, and a corrosive environment. To ensure reliable and safe operation of accident tolerant fuel cladding concepts such as SiC-based materials, it is important to assess thermo-mechanical performance under in-reactor conditions including irradiation and realistic temperature distributions. The effect of non-uniform dimensional changes caused by neutron irradiation with spatially varying temperatures, along with the closing of the fuel-cladding gap, on the stress development in the cladding over the course of irradiation were evaluated. The effect of non-uniform circumferential power profile in the fuel rod on the mechanical performance of the cladding is also evaluated. These analyses have been performed using the BISON fuel performance modeling code and the commercial finite element analysis code Abaqus. A constitutive model is constructed and solved numerically to predict the stress distribution in the cladding under normal operating conditions. The dependence of dimensions and thermophysical properties on irradiation dose and temperature has been incorporated into the models. Initial scoping results from parametric analyses provide time varying stress distributions in the cladding as well as the interaction of fuel rod with the cladding under different conditions of initial fuel rod-cladding gap and linear heat rate. It is found that a non-uniform circumferential power profile in the fuel rod may cause significant lateral bowing in the cladding, and motivates further analysis and evaluation.

  10. A high-throughput investigation of Fe-Cr-Al as a novel high-temperature coating for nuclear cladding materials.

    Science.gov (United States)

    Bunn, Jonathan Kenneth; Fang, Randy L; Albing, Mark R; Mehta, Apurva; Kramer, Matthew J; Besser, Matthew F; Hattrick-Simpers, Jason R

    2015-07-10

    High-temperature alloy coatings that can resist oxidation are urgently needed as nuclear cladding materials to mitigate the danger of hydrogen explosions during meltdown. Here we apply a combination of computationally guided materials synthesis, high-throughput structural characterization and data analysis tools to investigate the feasibility of coatings from the Fe–Cr–Al alloy system. Composition-spread samples were synthesized to cover the region of the phase diagram previous bulk studies have identified as forming protective oxides. The metallurgical and oxide phase evolution were studied via in situ synchrotron glancing incidence x-ray diffraction at temperatures up to 690 K. A composition region with an Al concentration greater than 3.08 at%, and between 20.0 at% and 32.9 at% Cr showed the least overall oxide growth. Subsequently, a series of samples were deposited on stubs and their oxidation behavior at 1373 K was observed. The continued presence of a passivating oxide was confirmed in this region over a period of 6 h.

  11. The fuel to clad heat transfer coefficient in advanced MX-type fuel pins

    International Nuclear Information System (INIS)

    Caligara, F.; Campana, M.; Mandler, R.; Blank, H.

    1979-01-01

    Advanced fuels (mixed carbides, nitrides and carbonitrides) are characterised by a high thermal conductivity compared to that of oxide fuels (5 times greater) and their behaviour under irradiation (amount of swelling, fracture behaviour, restructuring) is far more sensitive to the design parameters and to the operating temperature than that of oxide fuels. The use of advanced fuels is therefore conditioned by the possibility of mastering the above phenomena, and the full exploitation of their favorable neutron characteristics depends upon a good understanding of the mutual relationships of the various parameters, which eventually affect the mechanical stability of the pin. By far the most important parameter is the radial temperature profile which controls the swelling of the fuel and the build-up of stress fields within the pin. Since the rate of fission gas swelling of these fuels is relatively large, a sufficient amount of free space has to be provided within the pin. This space originally appears as fabrication porosity and as fuel-to-clad clearance. Due to the large initial gap width and to the high fuel thermal conductivity, the range of the fuel operating temperatures is mainly determined by the fuel-to-clad heat transfer coefficient h, whose correct determination becomes one of the central points in modelling. During the many years of modelling activity in the field of oxide fuels, several theoretical models have been developed to calculate h, and a large amount of experimental data has been produced for the empirical adjustment of the parameters involved, so that the situation may be regarded as rather satisfactory. The analysis lead to the following conclusions. A quantitative comparison of experimental h-values with existing models for h requires rather sophisticated instrumented irradiation capsules, which permit the measurement of mechanical data (concerning fuel and clad) together with heat rating and temperatures. More and better well

  12. Assessment of extreme value distributions for maximum temperature in the Mediterranean area

    Science.gov (United States)

    Beck, Alexander; Hertig, Elke; Jacobeit, Jucundus

    2015-04-01

    Extreme maximum temperatures highly affect the natural as well as the societal environment Heat stress has great effects on flora, fauna and humans and culminates in heat related morbidity and mortality. Agriculture and different industries are severely affected by extreme air temperatures. Even more under climate change conditions, it is necessary to detect potential hazards which arise from changes in the distributional parameters of extreme values, and this is especially relevant for the Mediterranean region which is characterized as a climate change hot spot. Therefore statistical approaches are developed to estimate these parameters with a focus on non-stationarities emerging in the relationship between regional climate variables and their large-scale predictors like sea level pressure, geopotential heights, atmospheric temperatures and relative humidity. Gridded maximum temperature data from the daily E-OBS dataset (Haylock et al., 2008) with a spatial resolution of 0.25° x 0.25° from January 1950 until December 2012 are the predictands for the present analyses. A s-mode principal component analysis (PCA) has been performed in order to reduce data dimension and to retain different regions of similar maximum temperature variability. The grid box with the highest PC-loading represents the corresponding principal component. A central part of the analyses is the model development for temperature extremes under the use of extreme value statistics. A combined model is derived consisting of a Generalized Pareto Distribution (GPD) model and a quantile regression (QR) model which determines the GPD location parameters. The QR model as well as the scale parameters of the GPD model are conditioned by various large-scale predictor variables. In order to account for potential non-stationarities in the predictors-temperature relationships, a special calibration and validation scheme is applied, respectively. Haylock, M. R., N. Hofstra, A. M. G. Klein Tank, E. J. Klok, P

  13. Retention and release of tritium in aluminum clad, Al-Li alloys

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.

    1991-01-01

    Tritium retention in and release from aluminum clad, aluminum-lithium alloys is modeled from experimental and operational data developed during the thirty plus years of tritium production at the Savannah River Site. The model assumes that tritium atoms, formed by the 6 Li(n,α) 3 He reaction, are produced in solid solution in the Al-Li alloy. Because of the low solubility of hydrogen isotopes in aluminum alloys, the irradiated Al-Li rapidly becomes supersaturated in tritium. Newly produced tritium atoms are trapped by lithium atoms to form a lithium tritide. The effective tritium pressure required for trap or tritide stability is the equilibrium decomposition pressure of tritium over a lithium tritide-aluminum mixture. The temperature dependence of tritium release is determined by the permeability of the cladding to tritium and the local equilibrium at the trap sites. This model is used to calculate tritium release from aluminum clad, aluminum-lithium alloys. 9 refs., 3 figs

  14. Compression and heating of a cladding target by a partially profiled laser pulse

    International Nuclear Information System (INIS)

    Andreev, A.A.; Samsonov, A.G.; Solov'ev, N.A.

    1990-01-01

    The CLADDING-T semiempirical model and numerical calculations in accordance with the SPHERE program have been employed to show that the action of a partially profiled pulse on a simple cladding target raises the fuel compession degree and reduces the fuel temperature as compared to the action of a rectangular pulse (or a polynomial-shaped pulse) with the same energy. From the standpoint of the flash criterion the system composed of the profiled pulse and the simple (cladding) target is shown to be equivalent to that composed of a simple pulse and a dual-cascade (profiled) target. An analysis of the system composed of the laser and the simple target shows that the use of the partially profiled pulse and the simple target makes it possible to reduce requirements to the energy of laser systems

  15. Effect of Heating Time on Hardness Properties of Laser Clad Gray Cast Iron Surface

    Science.gov (United States)

    Norhafzan, B.; Aqida, S. N.; Mifthal, F.; Zulhishamuddin, A. R.; Ismail, I.

    2018-03-01

    This paper presents effect of heating time on cladded gray cast iron. In this study, the effect of heating time on cladded gray cast iron and melted gray cast iron were analysed. The gray cast iron sample were added with mixed Mo-Cr powder using laser cladding technique. The mixed Mo and Cr powder was pre-placed on gray cast iron surface. Modified layer were sectioned using diamond blade cutter and polish using SiC abrasive paper before heated. Sample was heated in furnace for 15, 30 and 45 minutes at 650 °C and cool down in room temperature. Metallographic study was conduct using inverted microscope while surface hardness properties were tested using Wilson hardness test with Vickers scale. Results for metallographic study showed graphite flakes within matrix of pearlite. The surface hardness for modified layer decreased when increased heating time process. These findings are significant to structure stability of laser cladded gray cast iron with different heating times.

  16. Maximum temperature accounts for annual soil CO2 efflux in temperate forests of Northern China

    Science.gov (United States)

    Zhou, Zhiyong; Xu, Meili; Kang, Fengfeng; Jianxin Sun, Osbert

    2015-01-01

    It will help understand the representation legality of soil temperature to explore the correlations of soil respiration with variant properties of soil temperature. Soil temperature at 10 cm depth was hourly logged through twelve months. Basing on the measured soil temperature, soil respiration at different temporal scales were calculated using empirical functions for temperate forests. On monthly scale, soil respiration significantly correlated with maximum, minimum, mean and accumulated effective soil temperatures. Annual soil respiration varied from 409 g C m−2 in coniferous forest to 570 g C m−2 in mixed forest and to 692 g C m−2 in broadleaved forest, and was markedly explained by mean soil temperatures of the warmest day, July and summer, separately. These three soil temperatures reflected the maximum values on diurnal, monthly and annual scales. In accordance with their higher temperatures, summer soil respiration accounted for 51% of annual soil respiration across forest types, and broadleaved forest also had higher soil organic carbon content (SOC) and soil microbial biomass carbon content (SMBC), but a lower contribution of SMBC to SOC. This added proof to the findings that maximum soil temperature may accelerate the transformation of SOC to CO2-C via stimulating activities of soil microorganisms. PMID:26179467

  17. Interaction between thorium and potential clad materials

    International Nuclear Information System (INIS)

    Kale, G.B.; Gawde, P.S.; Sengupta, Pranesh

    2005-01-01

    Thorium based fuels are being used for nuclear reactors. The structural stability of fuel-clad assemblies in reactor systems depend upon the nature of interdiffusion reaction between fuel-cladding materials. Interdiffusion reaction thorium and various cladding materials is presented in this paper. (author)

  18. Watt-level passively Q-switched double-cladding fiber laser based on graphene oxide saturable absorber.

    Science.gov (United States)

    Yu, Zhenhua; Song, Yanrong; Dong, Xinzheng; Li, Yanlin; Tian, Jinrong; Wang, Yonggang

    2013-10-10

    A watt-level passively Q-switched ytterbium-doped double-cladding fiber laser with a graphene oxide (GO) absorber was demonstrated. The structure of the GO saturable absorber mirror (GO-SAM) was of the sandwich type. A maximum output power of 1.8 W was obtained around a wavelength of 1044 nm. To the best of our knowledge, this is the highest output power in Q-switched fiber lasers based on a GO saturable absorber. The pure GO was protected from the oxygen in the air so that the damage threshold of the GO-SAM was effectively raised. The gain fiber was a D-shaped ytterbium-doped double-cladding fiber. The pulse repetition rates were tuned from 120 to 215 kHz with pump powers from 3.89 to 7.8 W. The maximum pulse energy was 8.37 μJ at a pulse width of 1.7 μs.

  19. EXTREME MAXIMUM AND MINIMUM AIR TEMPERATURE IN MEDİTERRANEAN COASTS IN TURKEY

    Directory of Open Access Journals (Sweden)

    Barbaros Gönençgil

    2016-01-01

    Full Text Available In this study, we determined extreme maximum and minimum temperatures in both summer and winter seasons at the stations in the Mediterranean coastal areas of Turkey.In the study, the data of 24 meteorological stations for the daily maximum and minimumtemperatures of the period from 1970–2010 were used. From this database, a set of four extreme temperature indices applied warm (TX90 and cold (TN10 days and warm spells (WSDI and cold spell duration (CSDI. The threshold values were calculated for each station to determine the temperatures that were above and below the seasonal norms in winter and summer. The TX90 index displays a positive statistically significant trend, while TN10 display negative nonsignificant trend. The occurrence of warm spells shows statistically significant increasing trend while the cold spells shows significantly decreasing trend over the Mediterranean coastline in Turkey.

  20. Maximum And Minimum Temperature Trends In Mexico For The Last 31 Years

    Science.gov (United States)

    Romero-Centeno, R.; Zavala-Hidalgo, J.; Allende Arandia, M. E.; Carrasco-Mijarez, N.; Calderon-Bustamante, O.

    2013-05-01

    Based on high-resolution (1') daily maps of the maximum and minimum temperatures in Mexico, an analysis of the last 31-year trends is performed. The maps were generated using all the available information from more than 5,000 stations of the Mexican Weather Service (Servicio Meteorológico Nacional, SMN) for the period 1979-2009, along with data from the North American Regional Reanalysis (NARR). The data processing procedure includes a quality control step, in order to eliminate erroneous daily data, and make use of a high-resolution digital elevation model (from GEBCO), the relationship between air temperature and elevation by means of the average environmental lapse rate, and interpolation algorithms (linear and inverse-distance weighting). Based on the monthly gridded maps for the mentioned period, the maximum and minimum temperature trends calculated by least-squares linear regression and their statistical significance are obtained and discussed.

  1. Online study of cracks during laser cladding process based on acoustic emission technique and finite element analysis

    International Nuclear Information System (INIS)

    Wang Fujun; Mao Huaidong; Zhang Dawei; Zhao Xingyu; Shen Yu

    2008-01-01

    This paper presents a novel method by using acoustic emission technique to online study of the crack generation and expansion during laser cladding process. The cracks during laser cladding processes with five different laser cladding powder materials were online tested, respectively, with this method. Through finite element analysis (FEA), the temperature ranges of crack generation and expansion were figured out. The main forms and extended forms of the cracks were investigated by using optical microscope and scanning electron microscope (SEM). The experiment and analysis results show that the amount of cracks increases with the area and thickness of coating and the cooling rate increasing. A majority of cracks occur in the bonding zone and extend cross the whole cladding coating along the perpendicular direction of laser scanning during laser cladding, and few cracks generate in the cooling process. There are mainly four kinds of crack forms, and the forms of crack expansion are related to the stress states of coating and substrate. The method and conclusions in this paper provide important information for reducing the cracks during large area laser cladding process.

  2. Development of Diffusion barrier coatings and Deposition Technologies for Mitigating Fuel Cladding Chemical Interactions (FCCI)

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar; Allen, Todd; Cole, James

    2013-02-27

    The goal of this project is to develop diffusion barrier coatings on the inner cladding surface to mitigate fuel-cladding chemical interaction (FCCI). FCCI occurs due to thermal and radiation enhanced inter-diffusion between the cladding and fuel materials, and can have the detrimental effects of reducing the effective cladding wall thickness and lowering the melting points of the fuel and cladding. The research is aimed at the Advanced Burner Reactor (ABR), a sodium-cooled fast reactor, in which higher burn-ups will exacerbate the FCCI problem. This project will study both diffusion barrier coating materials and deposition technologies. Researchers will investigate pure vanadium, zirconium, and titanium metals, along with their respective oxides, on substrates of HT-9, T91, and oxide dispersion-strengthened (ODS) steels; these materials are leading candidates for ABR fuel cladding. To test the efficacy of the coating materials, the research team will perform high-temperature diffusion couple studies using both a prototypic metallic uranium fuel and a surrogate the rare-earth element lanthanum. Ion irradiation experiments will test the stability of the coating and the coating-cladding interface. A critical technological challenge is the ability to deposit uniform coatings on the inner surface of cladding. The team will develop a promising non-line-of-sight approach that uses nanofluids . Recent research has shown the feasibility of this simple yet novel approach to deposit coatings on test flats and inside small sections of claddings. Two approaches will be investigated: 1) modified electrophoretic deposition (MEPD) and 2) boiling nanofluids. The coatings will be evaluated in the as-deposited condition and after sintering.

  3. Investigations of chemical reactions between U-Zr alloy and FBR cladding materials

    International Nuclear Information System (INIS)

    Ishii, Tetsuya; Ukai, Shigeharu

    2005-07-01

    U-Pu-Zr alloys are candidate materials for commercial FBR fuel. However, informations about chemical reactions with cladding materials developed by JNC for commercial FBR have not been well obtained. In this work, the reaction zones formed in four diffusion couples U-10wt.%Zr/PNC-FMS, U-10wt.%Zr/9Cr-ODS, U-10wt.%Zr/12Cr-ODS, and U-10wt.%Zr/Fe at about 1013K have been examined and following results were obtained. 1) At about 1013K, in the U-10wt.%Zr/Fe couple, the liquid phase zones were obtained. In the other couples U-10wt.%Zr/PNC-FMS, U-10wt.%Zr/9Cr-ODS and U-10wt.%Zr/12Cr-ODS, no liquid phase zones were obtained. The obtained chemical reaction zones in the later 3 couples were similar to the reported ones obtained in U-Zr/Fe couples without liquid phase formation. In comparison with the reaction zones obtained in the U-10wt.%Zr/Fe couple, the reaction zones inside cladding materials obtained in the PNC-FMS, 9Cr-ODS, and 12Cr-ODS couples were thin. 2) From the investigations of relationship between the obtained depths of the chemical reaction zones inside cladding materials and composition of the cladding materials, it was considered that the depth of chemical reaction zone would depend on the Cr content of the cladding materials and the depth would decrease with increasing Cr content, resulting in prevention of liquid phase formation. 3) From the investigations of the mechanisms of chemical reactions between U-Pu-Zr/cladding materials, it was considered that the same effect of Cr obtained in the U-Zr/cladding materials would be expected in U-Pu-Zr/cladding materials. Those seemed to indicate that the threshold temperatures of liquid phase formation for U-Pu-Zr/PNC-FMS, U-Pu-Zr/9Cr-ODS, and U-Pu-Zr/12Cr-ODS might be higher than that for U-Pu-Zr/Fe. (author)

  4. Cladding-pumped 70-kW-peak-power 2-ns-pulse Er-doped fiber amplifier

    Science.gov (United States)

    Khudyakov, M. M.; Bubnov, M. M.; Senatorov, A. K.; Lipatov, D. S.; Guryanov, A. N.; Rybaltovsky, A. A.; Butov, O. V.; Kotov, L. V.; Likhachev, M. E.

    2018-02-01

    An all-fiber pulsed erbium laser with pulse width of 2.4 ns working in a MOPA configuration has been created. Cladding pumped double clad erbium doped large mode area fiber was used in the final stage amplifier. Peculiarity of the current work is utilization of custom-made multimode diode wavelength stabilized at 981+/-0.5 nm - wavelength of maximum absorption by Er ions. It allowed us to shorten Er-doped fiber down to 1.7 m and keep a reasonably high pump-to signal conversion efficiency of 8.4%. The record output peak power for all-fiber amplifiers of 84 kW was achieved within 1555.9+/-0.15 nm spectral range.

  5. Modeling of Heat Transfer and Fluid Flow in the Laser Multilayered Cladding Process

    Science.gov (United States)

    Kong, Fanrong; Kovacevic, Radovan

    2010-12-01

    The current work examines the heat-and-mass transfer process in the laser multilayered cladding of H13 tool steel powder by numerical modeling and experimental validation. A multiphase transient model is developed to investigate the evolution of the temperature field and flow velocity of the liquid phase in the molten pool. The solid region of the substrate and solidified clad, the liquid region of the melted clad material, and the gas region of the surrounding air are included. In this model, a level-set method is used to track the free surface motion of the molten pool with the powder material feeding and scanning of the laser beam. An enthalpy-porosity approach is applied to deal with the solidification and melting that occurs in the cladding process. Moreover, the laser heat input and heat losses from the forced convection and heat radiation that occurs on the top surface of the deposited layer are incorporated into the source term of the governing equations. The effects of the laser power, scanning speed, and powder-feed rate on the dilution and height of the multilayered clad are investigated based on the numerical model and experimental measurements. The results show that an increase of the laser power and powder feed rate, or a reduction of the scanning speed, can increase the clad height and directly influence the remelted depth of each layer of deposition. The numerical results have a qualitative agreement with the experimental measurements.

  6. Trends in mean maximum temperature, mean minimum temperature and mean relative humidity for Lautoka, Fiji during 2003 – 2013

    Directory of Open Access Journals (Sweden)

    Syed S. Ghani

    2017-12-01

    Full Text Available The current work observes the trends in Lautoka’s temperature and relative humidity during the period 2003 – 2013, which were analyzed using the recently updated data obtained from Fiji Meteorological Services (FMS. Four elements, mean maximum temperature, mean minimum temperature along with diurnal temperature range (DTR and mean relative humidity are investigated. From 2003–2013, the annual mean temperature has been enhanced between 0.02 and 0.080C. The heating is more in minimum temperature than in maximum temperature, resulting in a decrease of diurnal temperature range. The statistically significant increase was mostly seen during the summer months of December and January. Mean Relative Humidity has also increased from 3% to 8%. The bases of abnormal climate conditions are also studied. These bases were defined with temperature or humidity anomalies in their appropriate time sequences. These established the observed findings and exhibited that climate has been becoming gradually damper and heater throughout Lautoka during this period. While we are only at an initial phase in the probable inclinations of temperature changes, ecological reactions to recent climate change are already evidently noticeable. So it is proposed that it would be easier to identify climate alteration in a small island nation like Fiji.

  7. Backward pumping kilowatt Yb3+-doped double-clad fiber laser

    Science.gov (United States)

    Han, Z. H.; Lin, X. C.; Hou, W.; Yu, H. J.; Zhou, S. Z.; Li, J. M.

    2011-09-01

    A ytterbium-doped double-clad fiber laser generating up to 1026 W of continuous-wave output power at 1085 nm with a slope efficiency of 74% by single-ended backward pumping configuration is reported. The core diameter was 20 μm with a low numerical aperture of 0.06, and a good beam quality (BPP < 1.8 mm mrad) is achieved without special mode selection methods. No undesirable roll-over was observed in output power with increasing pump power, and the maximum output power was limited by the available pump power. The instability of maximum output power was better than ±0.6%. Different pumping configurations were also compared in experiment, which shows good agreements with theoretical analyses.

  8. FY 2014 Status Report: of Vibration Testing of Clad Fuel (M4FT-14OR0805033)

    Energy Technology Data Exchange (ETDEWEB)

    Bevard, Bruce Balkcom [ORNL

    2014-03-28

    The DOE Used Fuel Disposition Campaign (UFDC) tasked Oak Ridge National Laboratory (ORNL) to investigate the behavior of light-water-reactor (LWR) fuel cladding material performance related to extended storage and transportation of UNF. ORNL has been tasked to perform a systematic study on UNF integrity under simulated normal conditions of transportation (NCT) by using the recently developed hot-cell testing equipment, Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT). To support the testing on actual high-burnup UNF, fast-neutron irradiation of pre-hydrided zirconium-alloy cladding in the High Flux Isotope Reactor (HFIR) at elevated temperatures will be used to simulate the effects of high-burnup on fuel cladding for help in understanding the cladding materials properties relevant to extended storage and subsequent transportation. The irradiated pre-hydrided metallic materials testing will generate baseline data to benchmark hot-cell testing of the actual high-burnup UNF cladding. More importantly, the HFIR-irradiated samples will be free of alpha contamination and can be provided to researchers who do not have hot cell facilities to handle highly contaminated high-burnup UNF cladding to support their research projects for the UFDC.

  9. The VULKIN code used for evaluation of the cladding tube's performance

    International Nuclear Information System (INIS)

    Marbach, G.

    1979-01-01

    The VULKIN code gives the evolution of stresses and strains distribution in the thickness of the clad with the hypothesis of revolution symmetry. This programm takes into account temperature dilatation and radial thermal gradient, fission gas pressure and steel swelling due to neutron flux

  10. Evaluation of cladding residual stresses in clad blocks by measurements and numerical simulations

    International Nuclear Information System (INIS)

    Dupas, P.; Moinereau, D.

    1996-01-01

    Reactor pressure vessels are internally clad with austenitic stainless steel. This welding operation generates residual stresses which can have an important role in integrity assessments. In order to evaluate these stresses, an experimental and numerical programme has been conducted. The experiments includes cladding operations, macrographic analyses, temperature and residual stresses measurements with different methods. According to these measurements, transversal stresses (perpendicular to the welding direction) and longitudinal stresses (parallel to the welding direction) are highly tensile in stainless steel and they are compressive in the HAZ. Finite element calculations were used to simulate both welding operations and post weld heat treatment. These calculations coupled the thermal, metallurgical and mechanical aspects in a 2D representation. Different models were studied including effect of generalised plane strain, transformation plasticity, creep and tempering. The transversal stresses calculated are similar to the measured ones, but the longitudinal stresses showed to be very sensitive to the model used. As expected because of the two-dimension model, the longitudinal stresses can't be well estimated. More work is needed to improve measurements of stresses in depth (important differences appeared between the different methods). A predictive model would be also very useful to determine the thermal loading which is at present dependant on measurements. A 3D calculation appears to be necessary to evaluate longitudinal stresses. (orig.)

  11. Temperature escalation in PWR fuel rod simulators due to the zircaloy/steam reaction ESSI-4 ESSI-11

    International Nuclear Information System (INIS)

    Hagen, S.; Kapulla, H.; Malauscheck, H.; Wallenfels, K.P.; Buescher, B.J.

    1985-03-01

    The tests had the initial heatup rate as main parameter. The experimental arrangement consisted of a fuel rod simulator (central tungsten heater, UO 2 ring pellets and zircaloy cladding), a zircaloy shroud and the fiber ceramic insulation. A steam flow of ca. 20 g/min was introduced at the lower end of the bundle. A temperature escalation was observed in every test. The maximum cladding surface temperature in the single rod tests never exceeded 2200 0 C. The escalation began in the upper region of the rods and moved down the rods, opposite to the direction of steam flow. For fast initial heatup rates, the runoff of molten zircaloy was a limiting process for the escalation. For slow heatup rates, the formation of a protective oxide layer reduced the reaction rate. The test with less insulation thickness showed a reduction of the escalation. A stronger influence was found for the gap between shroud and insulation. This is caused by convection heat losses to the steam circulating in this gap by natural convection. Removal of the gap between shroud and insulation in essentially the same experimental arrangement produced a faster escalation. The posttest appearance of the fuel rod simulators showed that, at slow heatup rates oxidation of the cladding was complete, and the fuel rod was relatively intact. Conversely, at fast heatup rates, relatively little cladding oxidation with extensive dissolution of the UO 2 pellets and runoff of molten cladding was observed. (orig./HP) [de

  12. New England observed and predicted growing season maximum stream/river temperature points

    Data.gov (United States)

    U.S. Environmental Protection Agency — The shapefile contains points with associated observed and predicted growing season maximum stream/river temperatures in New England based on a spatial statistical...

  13. Microstructure evolution of Fe-based nanostructured bainite coating by laser cladding

    International Nuclear Information System (INIS)

    Guo, Yanbing; Li, Zhuguo; Yao, Chengwu; Zhang, Ke; Lu, Fenggui; Feng, Kai; Huang, Jian; Wang, Min; Wu, Yixiong

    2014-01-01

    Highlights: • The laser cladding and isothermal holding are used to fabricate nanobainite coating. • Fine prior austenite is obtained to accelerate the bainite transformation. • Low transformation temperature results in fine bainite ferrite and film austenite. • Retained austenite volume fraction in bainite coating is determined by XRD. • Evolution of carbon content in austenite and ferrite is analyzed. - Abstract: A Fe-based coating with nano-scale bainitic microstructure was fabricated using laser cladding and subsequent isothermal heat treatment. The microstructure of the coating was observed and analyzed using optical microscope (OM), field-emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). The results showed that nanostructured bainitic ferrite and carbon-enriched retained austenite distributed uniformly in the coating. Blocky retained austenite was confined to the prior austenite grain boundaries resulting from the elements segregation. The bainitic microstructure obtained at 250 °C had a finer scale compared with that obtained at 300 °C. The volume fraction of austenite increased with increasing transformation temperature for the fully transformed bainitic coating. The bainitic transformation was accelerated as a result of the fine prior austenite generated during the laser cladding. The evolution of the carbon contents in bainitic ferrite and retained austenite revealed the diffusionless mechanism of the bainitic transformation

  14. Effect of Al2Gd on microstructure and properties of laser clad Mg–Al–Gd coatings

    International Nuclear Information System (INIS)

    Chen, Hong; Zhang, Ke; Yao, Chengwu; Dong, Jie; Li, Zhuguo; Emmelmann, Claus

    2015-01-01

    Highlights: • Mg–Al–Gd coatings with different Gd contents were fabricated by fiber laser cladding. • Chemical compositions and crystal structures of the second phases were characterized. • Dispersion of Al 2 Gd led to further grain refining and elevated mechanical properties. • Al 2 Gd improved high-temperature performances by preventing tiny liquation. - Abstract: In order to investigate the effects of Gd addition on the microstructures and properties of magnesium coatings, the Mg–7.5Al–xGd (x = 0, 2.5, 5.0 and 7.5 wt.%) coatings on cast magnesium alloy were fabricated by laser cladding with wire feeding. The results indicated that the gadolinium (Gd) addition led to the formation of a cubic Al 2 Gd phase as well as suppressed the precipitation of eutectic Mg 17 Al 12 phase. The laser clad coating containing nominally 7.5 wt.% Gd presented the highest microhardness, ultimate tensile strength and yield strength at both room temperature and high temperatures. The enhancement of heat resistant capacities was chiefly attributed to the existence of thermally stable Al 2 Gd particles, which prevented tiny liquation of eutectic phases along the grain boundaries and made great contributions on maintaining high yield ratio during high-temperature deformation

  15. LASER SURFACE CLADDING FOR STRUCTURAL REPAIR

    OpenAIRE

    SANTANU PAUL

    2018-01-01

    Laser cladding is a powder deposition technique, which is used to deposit layers of clad material on a substrate to improve its surface properties. It has widespread application in the repair of dies and molds used in the automobile industry. These molds and dies are subjected to cyclic thermo-mechanical loading and therefore undergo localized damage and wear. The final clad quality and integrity is influenced by various physical phenomena, namely, melt pool morphology, microst...

  16. Variation in the strain anisotropy of Zircaloy with temperature and strain

    International Nuclear Information System (INIS)

    Hindle, E.D.; Worswick, D.

    1984-01-01

    The strong crystallographic texture which is developed during the fabrication of zirconium-based alloys causes pronounced anisotropy in their mechanical properties, particularly deformation. The tendency for circular-section tension specimens with a high concentration of basal poles in one direction to become elliptical when deformed in tension has been used in this study to provide quantitative data on the effects of both strain and temperature on strain anisotropy. Tension tests were carried out over a temperature range of 293 to 1193 K on specimens machined from Zircaloy-2 plate. The strain anisotropy was found to increase markedly at temperatures over 923 K, reaching a maximum in the region of 1070 K. The strain anisotropy increased with increasing strain in this temperature region. The study was extended to Zircaloy-4 pressurized-water reactor fuel cladding by carrying out tube swelling tests and evaluating the axial deformation produced. Although scatter in the test results was higher than that exhibited in the tension tests, the general trend in the data was similar. The effects of the strain anisotropy observed are discussed in relation to the effects of temperature on the ductility of Zircaloy fuel cladding tubes during postulated largebreak loss-of-coolant accidents

  17. A cladding-pumped, tunable holmium doped fiber laser.

    Science.gov (United States)

    Simakov, Nikita; Hemming, Alexander; Clarkson, W Andrew; Haub, John; Carter, Adrian

    2013-11-18

    We present a tunable, high power cladding-pumped holmium doped fiber laser. The laser generated >15 W CW average power across a wavelength range of 2.043 - 2.171 μm, with a maximum output power of 29.7 W at 2.120 μm. The laser also produced 18.2 W when operating at 2.171 µm. To the best of our knowledge this is the highest power operation of a holmium doped laser at a wavelength >2.15 µm. We discuss the significance of background losses and fiber design for achieving efficient operation in holmium doped fibers.

  18. Design of photonic crystal surface emitting lasers with indium-tin-oxide top claddings

    Science.gov (United States)

    Huang, Shen-Che; Hong, Kuo-Bin; Chiu, Han-Lun; Lan, Shao-Wun; Chang, Tsu-Chi; Li, Heng; Lu, Tien-Chang

    2018-02-01

    Electrically pumped GaAs-based photonic crystal surface emitting lasers were fabricated using a simple fabrication process by directly capping the indium-tin-oxide transparent conducting thin film as the top cladding layer upon a photonic crystal layer. Optimization of the separate-confinement heterostructures of a laser structure is crucial to improving characteristics by providing advantageous optical confinements. The turn-on voltage, series resistance, threshold current, and slope efficiency of the laser with a 100 × 100 μm2 photonic crystal area operated at room temperature were 1.3 V, 1.5 Ω, 121 mA, and 0.2 W/A, respectively. Furthermore, we demonstrated a single-lobed lasing wavelength of 928.6 nm at 200 mA and a wavelength redshift rate of 0.05 nm/K in temperature-dependent measurements. The device exhibited the maximum output power of approximately 400 mW at an injection current of 2 A; moreover, divergence angles of less than 1° for the unpolarized circular-shaped laser beam were measured at various injection currents. Overall, the low threshold current, excellent beam quality, small divergence, high output power, and high-operating-temperature (up to 343 K) of our devices indicate that they can potentially fill the requirements for next-generation light sources and optoelectronic devices.

  19. Plastic deformation of the cladding of Fortissimo fuel elements

    International Nuclear Information System (INIS)

    Marbach, G.; Millet, P.; Blanchard, F.

    1979-07-01

    A study of a large number of standard Fortissimo pins, clad in solution treated 316 steel, shows that the plastic strain depends linearly on the fission gas pressure and the dose (in dpaF). The derived modulus of irradiation creep ranges from 1 to 2 x 10 -6 (MPa dpaF) -1 at 450 0 C and increases steadily with temperature. (author)

  20. Investigation and basic evaluation for ultra-high burnup fuel cladding material

    International Nuclear Information System (INIS)

    Ioka, Ikuo; Nagase, Fumihisa; Futakawa, Masatoshi; Kiuchi, Kiyoshi

    2001-03-01

    In ultra-high burnup of the power reactor, it is an essential problem to develop the cladding with excellent durability. First, development history and approach of the safety assessment of Zircaloy for the high burnup fuel were summarized in the report. Second, the basic evaluation and investigation were carried out on the material with high practicability in order to select the candidate materials for the ultra-high burnup fuel. In addition, the basic research on modification technology of the cladding surface was carried out from the viewpoint of the addition of safety margin as a cladding. From the development history of the zirconium alloy including the Zircaloy, it is hard to estimate the results of in-pile test from those of the conventional corrosion test (out-pile test). Therefore, the development of the new testing technology that can simulate the actual environment and the elucidation of the corrosion-controlling factor of the cladding are desired. In cases of RIA (Reactivity Initiated Accident) and LOCA (Loss of Coolant Accident), it seems that the loss of ductility in zirconium alloys under heavy irradiation and boiling of high temperature water restricts the extension of fuel burnup. From preliminary evaluation on the high corrosion-resistance materials (austenitic stainless steel, iron or nickel base superalloys, titanium alloy, niobium alloy, vanadium alloy and ferritic stainless steel), stabilized austenitic stainless steels with a capability of future improvement and high-purity niobium alloys with a expectation of the good corrosion resistance were selected as candidate materials of ultra-high burnup cladding. (author)

  1. Safety of some fuel cladding materials, alternative to Zr-alloys

    International Nuclear Information System (INIS)

    Hache, Georges; Clement, Bernard; Barrachin, Marc

    2013-01-01

    The Fukushima accident underlined the impact of hydrogen production on LWR core melt accident behaviour. New fuel cladding and structural materials are under development by the industry. IRSN performed a bibliographic study on the behaviour of these materials during LWR core melt accidents. Method This presentation is focused on cladding oxidation by steam and more precisely on: - number of H 2 moles produced per cladding length unit at thermochemical equilibrium; - oxidation kinetics; - heat of reaction; - physic-chemical interactions between material or oxidation products and fuel. Silicon carbide (SiC) - During SiC oxidation by steam, nearly 3 times more explosive gases (CO+H 2 ) moles are produced per cladding length unit at thermochemical equilibrium than for Zr-alloys. - SiC oxidation kinetics below 1700 deg. C: According to early tests performed by NASA and ORNL, the oxidation is linear but slow, there is an effective protection by a thin vitreous SiO 2 layer; these tests underlined the importance of the steam pressure and flow rate. Recently, published MIT and ORNL tests confirm that under large break LOCA conditions (∼5 bars) and up to 1200 deg. C, SiC recession is much slower than for Zr-alloys. Tests under small break conditions (3 inches LOCA: ∼40 bars) were not performed or not published. - SiC oxidation kinetics above 1700 deg. C (melting point of SiO 2 ): Molten SiO 2 loses its protective effect; this is known in the literature as 'catastrophic oxidation by molten oxides'. There will be a cliff-edge effect. For un-inerted containments, H 2 recombiners will be saturated, leading to a risk of CO+H 2 explosion in these containments. - During SiC oxidation by steam, the heat of reaction produced per cladding length unit at thermochemical equilibrium is of the same order of magnitude as for Zr alloys. Molten SiO 2 will interact with UO 2 to form molten mixtures at temperatures well below UO 2 melting temperature. - Calculations were

  2. Effects of ionizing radiation on various core/clad ratio step index pure silica fibers

    International Nuclear Information System (INIS)

    Greenwell, R.A.; Barnes, C.E.; Nelson, G.W.

    1988-01-01

    Radiation testing was performed on polyimide-coated pure-silica-core step-index fibers fabricated from different preform core/clad ratios. Preliminary results indicate that the smaller the core/clad ratio, the better the radiation response of the fiber. These results are fortuitous for space applications, since the polyimide coating is also a low-outgassing wide-temperature-range small-size fiber coating material. The variations in radiation response may be due to a postdrawing anneal occurring during coating cure, which minimizes drawing-induced defects. 8 references

  3. Stress analysis and probabilistic assessment of multi-layer SiC-based accident tolerant nuclear fuel cladding

    Energy Technology Data Exchange (ETDEWEB)

    Stone, J.G., E-mail: Joshua.Stone@ga.com; Schleicher, R.; Deck, C.P.; Jacobsen, G.M.; Khalifa, H.E.; Back, C.A.

    2015-11-15

    Silicon carbide (SiC) fiber, SiC matrix composites (SiC/SiC) are being considered as a cladding material for light water reactors in order to improve safety performance. Engineered, multi-layer cladding designs consisting of both monolithic SiC (mSiC) and SiC/SiC have been examined as promising concepts to meet both strength and impermeability requirements. A new model has been developed to calculate stresses and failure probabilities for multi-layer cladding consisting of SiC-based materials in reactor operating conditions. The results show that stresses in SiC-based cladding are dominated by temperature-dependent irradiation-induced swelling, with the largest stresses occurring during the cold shutdown conditions. Failure probabilities are driven by the resulting tensile stresses at the cladding inner wall, while the outer wall is subject to compressive stresses. This indicates that the inner SiC/SiC, outer mSiC concept has the lowest failure probability, as the pseudo-plastic deformation of the composite reduces tensile loading and the compressed monolith provides a reliable, impermeable barrier to fission product release.

  4. Electrically heated ex-reactor pellet-cladding interaction (PCI) simulations utilizing irradiated Zircaloy cladding

    International Nuclear Information System (INIS)

    Barner, J.O.; Fitzsimmons, D.E.

    1985-02-01

    In a program sponsored by the Fuel Systems Research Branch of the US Nuclear Regulatory Commission, a series of six electrically heated fuel rod simulation tests were conducted at Pacific Northwest Laboratory. The primary objective of these tests was to determine the susceptibility of irradiated pressurized-water reactor (PWR) Zircaloy-4 cladding to failures caused by pellet-cladding mechanical interaction (PCMI). A secondary objective was to acquire kinetic data (e.g., ridge growth or relaxation rates) that might be helpful in the interpretation of in-reactor performance results and/or the modeling of PCMI. No cladding failures attributable to PCMI occurred during the six tests. This report describes the testing methods, testing apparatus, fuel rod diametral strain-measuring device, and test matrix. Test results are presented and discussed

  5. Effect of glycine, DL-alanine and DL-2-aminobutyric acid on the temperature of maximum density of water

    International Nuclear Information System (INIS)

    Romero, Carmen M.; Torres, Andres Felipe

    2015-01-01

    Highlights: • Effect of α-amino acids on the temperature of maximum density of water is presented. • The addition of α-amino acids decreases the temperature of maximum density of water. • Despretz constants suggest that the amino acids behave as water structure breakers. • Despretz constants decrease as the number of CH 2 groups of the amino acid increase. • Solute disrupting effect becomes smaller as its hydrophobic character increases. - Abstract: The effect of glycine, DL-alanine and DL-2-aminobutyric acid on the temperature of maximum density of water was determined from density measurements using a magnetic float densimeter. Densities of aqueous solutions were measured within the temperature range from T = (275.65 to 278.65) K at intervals of T = 0.50 K over the concentration range between (0.0300 and 0.1000) mol · kg −1 . A linear relationship between density and concentration was obtained for all the systems in the temperature range considered. The temperature of maximum density was determined from the experimental results. The effect of the three amino acids is to decrease the temperature of maximum density of water and the decrease is proportional to molality according to Despretz equation. The effect of the amino acids on the temperature of maximum density decreases as the number of methylene groups of the alkyl chain becomes larger. The results are discussed in terms of (solute + water) interactions and the effect of amino acids on water structure

  6. FeCrAl/Zr dual layer fuel cladding for improved safety margin under accident scenario

    International Nuclear Information System (INIS)

    Park, D.J.; Park, J.H.; Jung, Y.I.; Kim, H.G.; Park, J.Y.; Koo, Y.H.

    2014-01-01

    For application of advanced steel as a cladding material in light water reactor (LWR), FeCrAl/Zr dual layer tube was manufactured by using a hot isostatic pressing (HIP) method. To optimize HIP condition for joining both FeCrAl and Zr alloys, HIP was carried out under various temperature conditions. Tensile test and 3-point bend test performed for measuring mechanical properties of HIPed sample. To better understand microstructural characteristics in interface region between two alloys, SEM and TEM study were conducted by using HIPed sample with different process conditions. Based on this optimization study and analyzed results, optimized HIP condition was determined and FeCrAl/Zr dual layer fuel cladding having same wall thickness with current LWR fuel cladding was manufactured. Simulated loss-of-coolant accident test was carried out using FeCrAl/Zr dual layer cladding sample and fuel integrity was measured by mechanical test. (authors)

  7. Laser cladding technology to small diameter pipes

    International Nuclear Information System (INIS)

    Fujimagari, H.; Hagiwara, M.; Kojima, T.

    2000-01-01

    A laser cladding method which produces a highly corrosion-resistant material coating layers (cladding) on the austenitic stainless steel (type 304 SS) pipe inner surface was developed to prevent SCC (stress corrosion cracking) occurrence. This technology is applicable to a narrow and long distance area from operators, because of the good accessibility of the YAG (yttrium-aluminum-garnet) laser beam that can be transmitted through an optical fiber. In this method a mixed paste metallic powder and heating-resistive organic solvent are firstly placed on the inner surface of a small pipe, and then a YAG laser beam transmitted through an optical fiber irradiates to the pasted area. A mixed paste will be melted and form a cladding layer subsequently. A cladding layer shows as excellent corrosion resistance property. This laser cladding (LC) method had already applied to several domestic nuclear power plants and had obtained a good reputation. This report introduces the outline of laser cladding technology, the developed equipment for practical application in the field, and the circumstance in actual plant application. (orig.)

  8. Fuel assembly and fuel cladding tube

    International Nuclear Information System (INIS)

    Tsutsumi, Shinro; Ito, Ken-ichi; Inagaki, Masatoshi; Nakajima, Junjiro.

    1996-01-01

    A fuel cladding tube is a zirconium liner tube formed by lining a pure zirconium layer on the inner side of a zirconium alloy tube. The fuel cladding tube is formed by extrusion molding of a composite billet formed by inserting a pure zirconium billet into a zirconium alloy billet. Accordingly, the pure zirconium layer and the zirconium alloy tube are strongly joined by metal bond. The fuel cladding tube has an external oxide film on the outer surface of the zirconium alloy tube and an internal oxide film on the inner side of the pure zirconium layer. The external oxide film has a thickness preferably of about 1μm. The internal oxide film has a thickness of not more than 10μm, preferably, from 1 to 5μm. With such a constitution, flaws to be formed on both inner and outer surfaces of the cladding tube upon assembling a fuel assembly can be reduced thereby enabling to reduce the amount of hydrogen absorbed to the cladding tube. (I.N.)

  9. Effect of known clad and pellet reactions on the GEC ESL design of dry vault store

    International Nuclear Information System (INIS)

    Wheeler, D.

    1984-01-01

    The more important clad and pellet reactions and their temperature dependence are briefly reviewed, followed by an outline of the economical GEC ESL interim spent fuel storage concept that highlights: The ability of the concept to reduce the temperature of the fuel to values where the clad and pellet reactions are minimal. The containment philosophy that enables any consequences of the reactions to be safely retained to ALARA principles. The maintenance of an air storage environment that can never be lost. The utilisation of passive, naturally induced cooling regimes. The ability to continuously monitor for long-term degradation, together with ease of inspection at any time during storage

  10. Protection of spent aluminum-clad research reactor fuels during extended wet storage

    International Nuclear Information System (INIS)

    Fernandes, Stela M.C.; Correa, Olandir V.; Souza, Jose A.; Ramanathan, Lalgudi V.; Antunes, Renato A.

    2013-01-01

    Aluminum-clad spent nuclear fuel from research reactors (RR) is stored in light water filled pools or basins worldwide. Many incidences of pitting corrosion of the fuel cladding has been reported and attributed to synergism in the effect of certain water parameters. Protection of spent Al-clad RR fuel with a conversion coating was proposed in 2008. Preliminary results revealed increased pitting corrosion resistance of cerium oxide coated aluminum alloys AA 1050 and AA 6061, used as RR fuel plate cladding. Further development of conversion coatings for Al alloys was carried out and this paper presents: (a) the preparation and characterization of hydrotalcite (HTC) coatings; (b) the results of laboratory tests in which the corrosion behavior of coated Al alloys in NaCl solutions was determined; (c) the results of field tests in which un-coated, boehmite coated, HTC coated and cerium modified boehmite / HTC coated AA 1050 and AA 6061 coupons were exposed to the IEA-R1 reactor spent fuel basin for extended periods. In these field tests the coupons coated with HTC from a high temperature (HT) bath and subsequently modified with Ce were the most resistant to pitting corrosion. In laboratory tests also, HT- hydrotalcite + Ce coated specimens were the most corrosion resistant in 0.01 M NaCl. The role of cerium in increasing the corrosion resistance imparted by the different conversion coatings of spent Al-clad RR fuel elements is presented. (author)

  11. Microstructural Evolution of NiCrBSi Coatings Fabricated by Stationary Local Induction Cladding

    Science.gov (United States)

    Chen, Xuliang; Qin, Xunpeng; Gao, Kai; Zhu, Zhenhua; Huang, Feng

    2018-05-01

    The development of induction cladding has been restricted by the complicated geometric characteristics of workpieces and the large heat-affected zone in the cladded workpieces. In this paper, three-dimensional continual local induction cladding (3D-CLIC) was proposed as a potential process to clad coating over a substrate with curved surface, and a stationary local induction cladding (SLIC) experiment was conducted as an exploratory study of 3D-CLIC. The microstructures and microhardness in the coatings were measured by SEM, EDS, XRD and microsclerometer, respectively. The results indicate that the coating is metallurgically bonded with the substrate without any defects. A compositional gradient exists in the diffusion transfer belt (DTB), and it decreases with the increase in induction heating time. The coating is mainly composed of (Fe, Ni), CrB, M7C3, Ni3B, Ni3Si and M23C6 (M = Cr, Ni, Fe). Among the carbides, M7C3 presents several morphologies and M23C6 is always attached to the DTB. A special phenomenon of texture was found in the SLIC coatings. The preferred orientation in (200) crystal plane or the restrained orientation in (111) (200) crystal plane becomes more obvious as the scanning speed increases. The maximum average microhardness is 721 HV when the coating is heated for 5 s. The wear loss of different samples increases with increasing induction heating time. The longer heating time would result in higher dilution in the SLIC coatings due to the complete mixing with the substrate, thus leading to the decrease in microhardness and wear loss.

  12. Resonantly cladding-pumped Yb-free Er-doped LMA fiber laser with record high power and efficiency.

    Science.gov (United States)

    Zhang, Jun; Fromzel, Viktor; Dubinskii, Mark

    2011-03-14

    We report the results of our power scaling experiments with resonantly cladding-pumped Er-doped eye-safe large mode area (LMA) fiber laser. While using commercial off-the-shelf LMA fiber we achieved over 88 W of continuous-wave (CW) single transverse mode power at ~1590 nm while pumping at 1532.5 nm. Maximum observed optical-to-optical efficiency was 69%. This result presents, to the best of our knowledge, the highest power reported from resonantly-pumped Yb-free Er-doped LMA fiber laser, as well as the highest efficiency ever reported for any cladding-pumped Er-doped laser, either Yb-co-doped or Yb-free.

  13. Development of Mechanical Improvement of the Cladding by Ion Implantation

    Energy Technology Data Exchange (ETDEWEB)

    Han, J G; Lee, S B [Sungkyunkwan University, Seoul (Korea, Republic of); Kim, S H [Kangwon University, Chunchon (Korea, Republic of); Song, G [Suwon College, Suwon (Korea, Republic of)

    1997-07-01

    In this research we analyzed the state of art related to the surface treatment method of nuclear fuel cladding for the development of the surface treatment technique of nuclear fuel cladding by ion beam while investigating major causes of the leakage of fuel rods. Ion implantation simulation code called TRIM-95 was used to decide basic parameters ion beams and wetup an appropriate process for ion implantation. For the mechanical properties measurements, a high temperature wear resistance tester, a fretting wear tester, and a fretting fatigue resistance tester were constructed. Using these testers, some mechanical properties as micro hardness, wear resistance against AISI52100 and AI{sub 2}O{sub 3} balls, and fretting properties were measured and analyzed for the implanted materials as a function of ion dose and processing temperature. Effect of the oxygen atmosphere was measured in the nitrogen implantation. Auger electron spectroscopy(AES) was applied for the depth profile, and X-ray diffraction was used for the nitrogen and oxide measurements. 48 refs., 7 tabs., 46 figs. (author)

  14. Accident tolerant fuel cladding development: Promise, status, and challenges

    Science.gov (United States)

    Terrani, Kurt A.

    2018-04-01

    The motivation for transitioning away from zirconium-based fuel cladding in light water reactors to significantly more oxidation-resistant materials, thereby enhancing safety margins during severe accidents, is laid out. A review of the development status for three accident tolerant fuel cladding technologies, namely coated zirconium-based cladding, ferritic alumina-forming alloy cladding, and silicon carbide fiber-reinforced silicon carbide matrix composite cladding, is offered. Technical challenges and data gaps for each of these cladding technologies are highlighted. Full development towards commercial deployment of these technologies is identified as a high priority for the nuclear industry.

  15. Progress In Developing an Impermeable, High Temperature Ceramic Composite for Advanced Reactor Clad And Structural Applications

    International Nuclear Information System (INIS)

    Feinroth, Herbert; Hao, Bernard; Fehrenbacher, Larry; Patterson, Mark

    2002-01-01

    Most Advanced Reactors for Energy and Space Applications require higher temperature materials for fuel cladding and core internal structures. For temperatures above 500 deg. C, metal alloys do not retain sufficient strength or long term corrosion resistance for use in either water, liquid metal or gas cooled systems. In the case of water cooled systems, such metals react exo-thermically with water during core overheating accidents, thus requiring extensive and expensive emergency systems to protect against major releases. Past efforts to apply ceramic composites (oxide, carbide or nitride based) having passive safety characteristics, good strength properties at high temperatures, and reasonable resistance to crack growth, have not been successful, either because of irradiation induced effects, or lack of impermeability to fission gases. Under a Phase 1 SBIR (Small Business Innovative Research) project sponsored by DOE's Office of Nuclear Energy, the authors have developed a new material system that may solve these problems. A hybrid tubular structure (0.6 inches in outside diameter) consisting of an inner layer of monolithic silicon carbide (SiC) and outer layers of SiC-SiC composite, bonded to the inner layer, has been fabricated in small lengths. Room temperature permeability tests demonstrate zero gas leakage at pressures up to 120 psig internal pressure. Four point flexural bending tests on these hybrid tubular specimens demonstrate a 'graceful' failure mode: i.e. - the outer composite structure sustains a failure mode under stress that is similar to the yield vs. stress characteristics of metal structures. (authors)

  16. Stochastic thermal stress analysis of clad cylindrical fuel elements

    International Nuclear Information System (INIS)

    Barrett, P.R.

    1975-01-01

    After a review of deterministic elastic thermal stress analysis by means of the displacement method for a cylindrical system in which the temperature distribution is not only radially variable but azimuthally and axially variable also, a method is shown for the determination of the statistical moments of the stress components when (a) the outer boundary of the cladding is a stochastic quantity, and (b) the uncertainties in the elastic and thermal constants of the materials and in the magnitude of the heat generation term are taken into account. A typical model is proposed for describing the statistics of the outer radius of the cladding which is a stochastic variable owing to uncertainties produced by the extrusion process. The theory is illustrated by means of a simple example by examining a meaningful reliability index and the relative importance of each of the uncertainties. (Auth.)

  17. Mechanical Property and Oxidation Behavior of ATF cladding developed in KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun-Gil; Kim, Il-Hyun; Jung, Yang-Il; Park, Dong-Jun; Park, Jung-Hwan; Park, Jeong-Yong; Koo, Yang-Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    To realize the coating cladding, coating material (Cr-based alloy) as well as coating technology (3D laser coating and arc ion plating combined with vacuum annealing) can be developed to meet the fuel cladding criteria. The coated Zr cladding can be produced after the optimization of coating technologies. The coated cladding sample showed the good oxidation/corrosion and adhesion properties without the spalling and/or severe interaction with the Zr alloy cladding from the various tests. Thus, it is known that the mechanical property and oxidation behavior of coated cladding concept developed in KAERI is reasonable for applying the ATF cladding in LWRs. At the present time various ATF concepts have been proposed and developing in many countries. The ATF concepts with potentially improved accident performance can be summarized to the coating cladding, Mo-Zr cladding, FeCrAl cladding, and SiCf/SiC cladding. Regarding the cladding performance, ATF cladding concepts will be evaluated with respect to the accident scenarios and normal operations of LWRs as well as to the fuel cladding fabrication.

  18. Pulsed Laser Cladding of Ni Based Powder

    Science.gov (United States)

    Pascu, A.; Stanciu, E. M.; Croitoru, C.; Roata, I. C.; Tierean, M. H.

    2017-06-01

    The aim of this paper is to optimize the operational parameters and quality of one step Metco Inconel 718 atomized powder laser cladded tracks, deposited on AISI 316 stainless steel substrate by means of a 1064 nm high power pulsed laser, together with a Precitec cladding head manipulated by a CLOOS 7 axes robot. The optimization of parameters and cladding quality has been assessed through Taguchi interaction matrix and graphical output. The study demonstrates that very good cladded layers with low dilution and increased mechanical proprieties could be fabricated using low laser energy density by involving a pulsed laser.

  19. Protective claddings for high strength chromium alloys

    Science.gov (United States)

    Collins, J. F.

    1971-01-01

    The application of a Cr-Y-Hf-Th alloy as a protective cladding for a high strength chromium alloy was investigated for its effectiveness in inhibiting nitrogen embrittlement of a core alloy. Cladding was accomplished by a combination of hot gas pressure bonding and roll cladding techniques. Based on bend DBTT, the cladding alloy was effective in inhibiting nitrogen embrittlement of the chromium core alloy for up to 720 ks (200hours) in air at 1422 K (2100 F). A significant increase in the bend DBTT occurred with longer time exposures at 1422 K or short time exposures at 1589 K (2400 F).

  20. Tubular depressed cladding waveguide laser realized in Yb: YAG by direct inscription of femtosecond laser

    International Nuclear Information System (INIS)

    Tang, Wenlong; Zhang, Wenfu; Liu, Xin; Liu, Shuang; Cheng, Guanghua; Stoian, Razvan

    2015-01-01

    We report on the fabrication of tubular depressed cladding waveguides in single crystalline Yb:YAG by the direct femtosecond laser writing technique. Full control over the confined light spatial distribution is demonstrated by the photoinscription of high index contrast waveguides with tubular configuration. Under optical pumping, highly efficient laser oscillation in depressed cladding waveguide at 1030 nm is demonstrated. The maximum output power obtained is 68 mW with a slope efficiency of 35% for an outcoupling transmission of 50%. A slope efficiency as high as 44% is realized when the coupling output ratio is 91% and a low lasing threshold of 70 mW is achieved with the output coupling mirror of 10%. (paper)

  1. Temperature estimates from the zircaloy oxidation kinetics in the α plus β phase region

    International Nuclear Information System (INIS)

    Olsen, C.S.

    1981-01-01

    Oxidation rates of zircaloy in steam were measured at temperatures between 961 and 1264 K and for duration times between 25 and 1900 seconds in order to calculate, in conjunction with measurements from postirradiation metallographic examination, the prior peak temperatures of zircaloy fuel rod cladding. These temperature estimates will be used in light water reactor research programs to assess (a) the accuracy of temperature measurements of fuel rod cladding peak temperatures from thermocouples attached to the surface during loss-of-coolant experiments (LOCEs), (b) the perturbation of the fuel rod cladding LOCE temperature history caused by the presence of thermocouples, and (c) the measurements of cladding azimuthal temperature gradients near thermocouple locations

  2. Temperature estimates from the Zircaloy oxidation kinetics in the α plus β phase region

    International Nuclear Information System (INIS)

    Olsen, C.S.

    1981-01-01

    Oxidation rates of Zircaloy in steam were measured at temperatures between 961 and 1264 K and for duration times between 25 and 1900 seconds in order to calculate, in conjunction with measurements from postirradiation metallographic examination, the prior peak temperatures of Zircaloy fuel rod cladding. These temperature estimates will be used in light water reactor research programs to assess (a) the accuracy of temperature measurements of fuel rod cladding peak temperatures from thermocouples attached to the surface during loss-of-coolant experiments (LOCEs), (b) the perturbation of the fuel rod cladding LOCE temperature history caused by the presence of thermocouples, and (c) the measurements of cladding azimuthal temperature gradients near the thermocouple locations

  3. DECONTAMINATION OF ZIRCALOY SPENT FUEL CLADDING HULLS

    International Nuclear Information System (INIS)

    Rudisill, T; John Mickalonis, J

    2006-01-01

    The reprocessing of commercial spent nuclear fuel (SNF) generates a Zircaloy cladding hull waste which requires disposal as a high level waste in the geologic repository. The hulls are primarily contaminated with fission products and actinides from the fuel. During fuel irradiation, these contaminants are deposited in a thin layer of zirconium oxide (ZrO 2 ) which forms on the cladding surface at the elevated temperatures present in a nuclear reactor. Therefore, if the hulls are treated to remove the ZrO 2 layer, a majority of the contamination will be removed and the hulls could potentially meet acceptance criteria for disposal as a low level waste (LLW). Discard of the hulls as a LLW would result in significant savings due to the high costs associated with geologic disposal. To assess the feasibility of decontaminating spent fuel cladding hulls, two treatment processes developed for dissolving fuels containing zirconium (Zr) metal or alloys were evaluated. Small-scale dissolution experiments were performed using the ZIRFLEX process which employs a boiling ammonium fluoride (NH 4 F)/ammonium nitrate (NH 4 NO 3 ) solution to dissolve Zr or Zircaloy cladding and a hydrofluoric acid (HF) process developed for complete dissolution of Zr-containing fuels. The feasibility experiments were performed using Zircaloy-4 metal coupons which were electrochemically oxidized to produce a thin ZrO 2 layer on the surface. Once the oxide layer was in place, the ease of removing the layer using methods based on the two processes was evaluated. The ZIRFLEX and HF dissolution processes were both successful in removing a 0.2 mm (thick) oxide layer from Zircaloy-4 coupons. Although the ZIRFLEX process was effective in removing the oxide layer, two potential shortcomings were identified. The formation of ammonium hexafluorozirconate ((NH 4 ) 2 ZrF 6 ) on the metal surface prior to dissolution in the bulk solution could hinder the decontamination process by obstructing the removal of

  4. IFPE/IFA-508 and 515, PCMI Behaviour of Thin Cladding Rods, JAERI and HRP

    International Nuclear Information System (INIS)

    2007-01-01

    Description: To measure the integrated response of UO 2 and its cladding to conditions associated with PCI, the Japan Atomic Energy Research Institute carried out a series of experiments in the Halden BWR. The experiment involved two major objectives. The first was to study the influence of rod design parameters on PCI. Diametral gap, wall cladding thickness, SiO 2 additive, and pellet grain size were used as design parameters. The second objective was to study the influence of pre-irradiation (i.e. burnup) on PCI. The maximum burnup attained in the experiment was 23 MWd/kgU. These research results can be applied to current BWR-type fuel rods. The tests were performed between April 1977 and March 1981

  5. Oxidation behavior of fuel cladding tube in spent fuel pool accident condition

    International Nuclear Information System (INIS)

    Nemoto, Yoshiyuki; Kaji, Yoshiyuki; Ogawa, Chihiro; Nakashima, Kazuo; Tojo, Masayuki

    2017-01-01

    In spent fuel pool (SFP) under loss-of-cooling or loss-of-coolant severe accident condition, the spent fuels will be exposed to air and heated by their own residual decay heat. Integrity of fuel cladding is crucial for SFP safety therefore study on cladding oxidation in air at high temperature is important. Zircaloy-2 (Zry2) and zircaloy-4 (Zry4) were applied for thermogravimetric analyses (TGA) in different temperatures in air at different flow rates to evaluate oxidation behavior. Oxidation rate increased with testing temperature. In a range of flow rate of air which is predictable in spent fuel lack during a hypothetical SFP accident, influence of flow rate was not clearly observed below 950degC for the Zry2, or below 1050degC for Zry4. In higher temperature, oxidation rate was higher in high rate condition, and this trend was seen clearer when temperature increased. Oxide layers were carefully examined after the TGA analyses and compared with mass gain data to investigate detail of oxidation process in air. It was revealed that the mass gain data in pre-breakaway regime reflects growth of dense oxide film on specimen surface, meanwhile in post-breakaway regime, it reflects growth of porous oxide layer beneath fracture of the dense oxide film. (author)

  6. Polarization characteristics of double-clad elliptical fibers.

    Science.gov (United States)

    Zhang, F; Lit, J W

    1990-12-20

    A scalar variational analysis based on a Gaussian approximation of the fundamental mode of a double-clad elliptical fiber with a depressed inner cladding is studied. The polarization properties and graphic results are presented; they are given in terms of three parameters: the ratio of the major axis to the minor axis of the core, the ratio of the inner cladding major axis to the core major axis, and the difference between the core index and the inner cladding index. The variations of both the spot size and the field intensity with core ellipticity are examined. It is shown that high birefringence and dispersion-free orthogonal polarization modes can be obtained within the single-mode region and that the field intensity distribution may be more confined to the fiber center than in a single-clad elliptical fiber.

  7. Use of a commercial heat transfer code to predict horizontally oriented spent fuel rod temperatures

    International Nuclear Information System (INIS)

    Wix, S.D.; Koski, J.A.

    1992-01-01

    Radioactive spent fuel assemblies are a source of hazardous waste that will have to be dealt with in the near future. It is anticipated that the spent fuel assemblies will be transported to disposal sites in spent fuel transportation casks. In order to design a reliable and safe transportation cask, the maximum cladding temperature of the spent fuel rod arrays must be calculated. The maximum rod temperature is a limiting factor in the amount of spent fuel that can be loaded in a transportation cask. The scope of this work is to demonstrate that reasonable and conservative spent fuel rod temperature predictions can be made using commercially available thermal analysis codes. The demonstration is accomplished by a comparison between numerical temperature predictions, with a commercially available thermal analysis code, and experimental temperature data for electrical rod heaters simulating a horizontally oriented spent fuel rod bundle

  8. Dilution and Ferrite Number Prediction in Pulsed Current Cladding of Super-Duplex Stainless Steel Using RSM

    Science.gov (United States)

    Eghlimi, Abbas; Shamanian, Morteza; Raeissi, Keyvan

    2013-12-01

    Super-duplex stainless steels have an excellent combination of mechanical properties and corrosion resistance at relatively low temperatures and can be used as a coating to improve the corrosion and wear resistance of low carbon and low alloy steels. Such coatings can be produced using weld cladding. In this study, pulsed current gas tungsten arc cladding process was utilized to deposit super-duplex stainless steel on high strength low alloy steel substrates. In such claddings, it is essential to understand how the dilution affects the composition and ferrite number of super-duplex stainless steel layer in order to be able to estimate its corrosion resistance and mechanical properties. In the current study, the effect of pulsed current gas tungsten arc cladding process parameters on the dilution and ferrite number of super-duplex stainless steel clad layer was investigated by applying response surface methodology. The validity of the proposed models was investigated by using quadratic regression models and analysis of variance. The results showed an inverse relationship between dilution and ferrite number. They also showed that increasing the heat input decreases the ferrite number. The proposed mathematical models are useful for predicting and controlling the ferrite number within an acceptable range for super-duplex stainless steel cladding.

  9. The effect of hot spots upon swelling of Zircaloy cladding as modelled by the code CANSWEL-2

    International Nuclear Information System (INIS)

    Haste, T.J.; Gittus, J.H.

    1980-12-01

    The code CANSWEL-2 models cladding creep deformation under conditions relevant to a loss-of-coolant accident (LOCA) in a pressurised-water reactor (PWR). It can treat azimuthal non-uniformities in cladding thickness and temperature, and model the mechanical restraint imposed by the nearest neighbouring rods, including situations where cladding is forced into non-circular shapes. The physical and mechanical models used in the code are presented. Applications of the code are described, both as a stand-alone version and as part of the PWR LOCA code MABEL-2. Comparison with a limited number of relevant out-of-reactor creep strain experiments has generally shown encouraging agreement with the data. (author)

  10. A statistical analysis of pellet-clad interaction failures in water reactor fuel

    International Nuclear Information System (INIS)

    McDonald, S.G.; Fardo, R.D.; Sipush, P.J.; Kaiser, R.S.

    1981-01-01

    The primary objective of the statistical analysis was to develop a mathematical function that would predict PCI fuel rod failures as a function of the imposed operating conditions. Linear discriminant analysis of data from both test and commercial reactors was performed. The initial data base used encompassed 713 data points (117 failures and 596 non-failures) representing a wide variety of water cooled reactor fuel (PWR, BWR, CANDU, and SGHWR). When applied on a best-estimate basis, the resulting function simultaneously predicts approximately 80 percent of both the failure and non-failure data correctly. One of the most significant predictions of the analysis is that relatively large changes in power can be tolerated when the pre-ramp irradiation power is low, but that only small changes in power can be tolerated when the pre-ramp irradiation power is high. However, it is also predicted that fuel rods irradiated at low power will fail at lower final powers than those irradiated at high powers. Other results of the analysis are that fuel rods with high clad operating temperatures can withstand larger power increases that fuel rods with low clad operating temperatures, and that burnup has only a minimal effect on PCI performance after levels of approximately 10000 MWD/MTU have been exceeded. These trends in PCI performance and the operating parameters selected are believed to be consistent with mechanistic considerations. Published PCI data indicate that BWR fuel usually operates at higher local powers and changes in power, lower clad temperatures, and higher local ramp rates than PWR fuel

  11. Polarization effects in silicon-clad optical waveguides

    Science.gov (United States)

    Carson, R. F.; Batchman, T. E.

    1984-01-01

    By changing the thickness of a semiconductor cladding layer deposited on a planar dielectric waveguide, the TE or TM propagating modes may be selectively attenuated. This polarization effect is due to the periodic coupling between the lossless propagating modes of the dielectric slab waveguide and the lossy modes of the cladding layer. Experimental tests involving silicon claddings show high selectivity for either polarization.

  12. Effect of Al{sub 2}Gd on microstructure and properties of laser clad Mg–Al–Gd coatings

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hong; Zhang, Ke; Yao, Chengwu [Shanghai Key Lab of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Dong, Jie [National Engineering Research Center of Light Alloy Net Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, Zhuguo, E-mail: lizg@sjtu.edu.cn [Shanghai Key Lab of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Emmelmann, Claus [Institute of Laser and System Technologies, Hamburg University of Technology, Hamburg, 21073 (Germany)

    2015-03-01

    Highlights: • Mg–Al–Gd coatings with different Gd contents were fabricated by fiber laser cladding. • Chemical compositions and crystal structures of the second phases were characterized. • Dispersion of Al{sub 2}Gd led to further grain refining and elevated mechanical properties. • Al{sub 2}Gd improved high-temperature performances by preventing tiny liquation. - Abstract: In order to investigate the effects of Gd addition on the microstructures and properties of magnesium coatings, the Mg–7.5Al–xGd (x = 0, 2.5, 5.0 and 7.5 wt.%) coatings on cast magnesium alloy were fabricated by laser cladding with wire feeding. The results indicated that the gadolinium (Gd) addition led to the formation of a cubic Al{sub 2}Gd phase as well as suppressed the precipitation of eutectic Mg{sub 17}Al{sub 12} phase. The laser clad coating containing nominally 7.5 wt.% Gd presented the highest microhardness, ultimate tensile strength and yield strength at both room temperature and high temperatures. The enhancement of heat resistant capacities was chiefly attributed to the existence of thermally stable Al{sub 2}Gd particles, which prevented tiny liquation of eutectic phases along the grain boundaries and made great contributions on maintaining high yield ratio during high-temperature deformation.

  13. Effect of PWR Re-start ramp rate on pellet-cladding interactions

    International Nuclear Information System (INIS)

    Yagnik, S.K.; Chang, B.C.; Sunderland, D.J.

    2005-01-01

    To mitigate pellet-cladding interaction (PCI) leading to fuel rod failures, fuel suppliers specify reactor power ramp rate limitations during reactor start-up after an outage. Typical re-start ramp rates are restricted and range between 3-4% per hour of full reactor power above a threshold power level. Relaxation of threshold power and ramp rate restrictions has the potential to improve plant economics. The paper will compare known re-start power ascension procedures employed in the US, German, French and Korean PWRs after a refuelling outage. A technical basis for optimising power ascension procedures during reactor start-up can be developed using analytical modelling. The main objective of the modelling is to determine the potential for PCI failure for various combinations of threshold power levels and ramp rate levels. A key element of our analysis is to estimate the decrease in margin to cladding failure by ISCC based on a time-temperature-stress failure criterion fashioned Act a cumulative cladding damage index. The analysis approach and the cladding damage model will be described and the results from three case studies based on the FALCON fuel rod behaviour code will be reported. We conclude that the PCI behaviour is more affected by ramp rate and threshold power than by the fuel design and that the fuel power history is the most important parameter. (authors)

  14. Experimental determination of local temperature field variations due to spacer grids in the cladding tubes of a rod cluster flowed through by sodium

    International Nuclear Information System (INIS)

    Moeller, R.; Tschoeke, H.

    1978-01-01

    If spacer grids are used to keep the fuel rods in their places - as in the fuel elements of the SNR series, exact tests are necessary to find out whether and to what extent temperature peaks near the supporting points affect cladding tube design. To clarify this special problem, experimental investigations have been carried out for the first time in a rod cluster model of the SNR-300 fuel element cross-flowed with sodium. The investigations and findings so far are reported on. (orig./RW) [de

  15. Modification of OCA-I for application to a reactor pressure vessel with cladding on the inner surface

    International Nuclear Information System (INIS)

    Sauter, A.; Cheverton, R.D.; Iskander, S.K.

    1983-01-01

    The computer code OCA-I calculates the temperature distribution through the walls of a cylinder during a thermal transient and then performs a two-dimensional linear-elastic fracture-mechanics analysis to obtain stress-intensity factors for long surface flaws, considering both pressure and thermal loads. The code has been particularly useful in evaluating flaw behavior in reactor pressure vessels during overcooling accidents, but it has not previously treated the stainless steel cladding on the inner surface of the vessel as a discrete region. Although the cladding is quite thin compared with the base material, the large difference in thermal conductivity and coefficient of thermal expansion between the two materials results in a significant effect of the cladding on stress-intensity factors for surface cracks. Thus, the cladding was recently included as a discrete region in OCA-I

  16. A deformation and thermodynamic model for hydride precipitation kinetics in spent fuel cladding

    International Nuclear Information System (INIS)

    Stout, R.B.

    1989-10-01

    Hydrogen is contained in the Zircaloy cladding of spent fuel rods from nuclear reactors. All the spent fuel rods placed in a nuclear waste repository will have a temperature history that decreases toward ambient; and as a result, most all of the hydrogen in the Zircaloy will eventually precipitate as zirconium hydride platelets. A model for the density of hydride platelets is a necessary sub-part for predicting Zircaloy cladding failure rate in a nuclear waste repository. A model is developed to describe statistically the hydride platelet density, and the density function includes the orientation as a physical attribute. The model applies concepts from statistical mechanics to derive probable deformation and thermodynamic functionals for cladding material response that depend explicitly on the hydride platelet density function. From this model, hydride precipitation kinetics depend on a thermodynamic potential for hydride density change and on the inner product of a stress tensor and a tensor measure for the incremental volume change due to hydride platelets. The development of a failure response model for Zircaloy cladding exposed to the expected conditions in a nuclear waste repository is supported by the US DOE Yucca Mountain Project. 19 refs., 3 figs

  17. Thermo-mechanical assessment of full SiC/SiC composite cladding for LWR applications with sensitivity analysis

    Science.gov (United States)

    Singh, Gyanender; Terrani, Kurt; Katoh, Yutai

    2018-02-01

    SiC/SiC composites are considered among leading candidates for accident tolerant fuel cladding in light water reactors. However, when SiC-based materials are exposed to neutron irradiation, they experience significant changes in dimensions and physical properties. Under a large heat flux application (i.e. fuel cladding), the non-uniform changes in the dimensions and physical properties will lead to build-up of stresses in the structure over the course of time. To ensure reliable and safe operation of such a structure it is important to assess its thermo-mechanical performance under in-reactor conditions of irradiation and elevated temperature. In this work, the foundation for 3D thermo-mechanical analysis of SiC/SiC cladding is put in place and a set of analyses with simplified boundary conditions has been performed. The analyses were carried out with two different codes that were benchmarked against one another and prior results in the literature. A constitutive model is constructed and solved numerically to predict the stress distribution and variation in the cladding under normal operating conditions. The dependence of dimensions and physical properties variation with irradiation and temperature has been incorporated. These robust models may now be modified to take into account the axial and circumferential variation in neutron and heat flux to fully account for 3D effects. The results from the simple analyses show the development of high tensile stresses especially in the circumferential and axial directions at the inner region of the cladding. Based on the results obtained, design guidelines are recommended. For lack of certainty in or tailor-ability for the physical and mechanical properties of SiC/SiC composite material a sensitivity analysis is conducted. The analysis results establish a precedence order of the properties based on the extent to which these properties influence the temperature and the stresses.

  18. Clad Degradation - FEPs Screening Arguments

    International Nuclear Information System (INIS)

    E. Siegmann

    2004-01-01

    The purpose of this report is to document the screening of the cladding degradation features, events, and processes (FEPs) for commercial spent nuclear fuel (CSNF). This report also addresses the effect of some FEPs on both the cladding and the CSNF, DSNF, and HLW waste forms where it was considered appropriate to address the effects on both materials together. This report summarizes the work of others to screen clad degradation FEPs in a manner consistent with, and used in, the Total System Performance Assessment-License Application (TSPA-LA). This document was prepared according to ''Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of LA'' (BSC 2004a [DIRS 167796])

  19. Analysis of coaxial laser micro cladding processing conditions

    OpenAIRE

    Tarasova, Tatiana Vasilievna; Gvozdeva, Galina Olegovna; Nowotny, Steffen; Ableyeva, Riana R.; Dolzhikova, Evgenia Yu

    2018-01-01

    The laser build-up cladding is a well-known technique for repair, coatings and additive manufacturing tasks. Modern equipment for the laser cladding enables material to be deposited with the lateral resolution of about 100 μm and to manufacture miniature precise parts. However, the micro cladding regimes are unknown. Determination of these regimes is an expensive task as a well-known relation between laser cladding parameters and melt pool dimensions are changing by technology micro-miniaturi...

  20. Some proposed mechanisms for internal cladding corrosion

    International Nuclear Information System (INIS)

    Bradbury, M.H.; Pickering, S.; Whitlow, W.H.

    1977-01-01

    In spite of extensive research during recent years, a comprehensive model for internal cladding corrosion in fast reactor oxide fuel pins has not yet been established. In this paper, a model is proposed which accounts for many of the features normally associated with this type of corrosion. The model is composed of a number of parts which describe the chronological sequence of events at the fuel/cladding interface. The corrosion reaction is visualised as being primarily chemical in character, involving the cladding steel, the fuel and the more aggressive fission products, notably caesium in the presence of oxygen. The model attempts to explain how corrosion starts, how it depends on the oxygen potential, why it occurs non-uniformly; also covered are phase changes within the cladding steel and morphological features such as the intergranular form of attack and the distribution of corrosion products in the fuel/cladding gap. (author)

  1. Some proposed mechanisms for internal cladding corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, M H; Pickering, S; Whitlow, W H [EURATOM (United Kingdom)

    1977-04-01

    In spite of extensive research during recent years, a comprehensive model for internal cladding corrosion in fast reactor oxide fuel pins has not yet been established. In this paper, a model is proposed which accounts for many of the features normally associated with this type of corrosion. The model is composed of a number of parts which describe the chronological sequence of events at the fuel/cladding interface. The corrosion reaction is visualised as being primarily chemical in character, involving the cladding steel, the fuel and the more aggressive fission products, notably caesium in the presence of oxygen. The model attempts to explain how corrosion starts, how it depends on the oxygen potential, why it occurs non-uniformly; also covered are phase changes within the cladding steel and morphological features such as the intergranular form of attack and the distribution of corrosion products in the fuel/cladding gap. (author)

  2. Nuclear fuel cladding material

    International Nuclear Information System (INIS)

    Nakahigashi, Shigeo.

    1982-01-01

    Purpose: To largely improve the durability and the safety of fuel cladding material. Constitution: Diffusion preventive layers, e.g., aluminum or the like are covered on both sides of a zirconium alloy base layer of thin material, and corrosion resistant layers, e.g., copper or the like are covered thereon. This thin plate material is intimately wound in a circularly tubular shape in a plurality of layers to form a fuel cladding tube. With such construction, corrosion of the tube due to fuel and impurity can be prevented by the corrosion resistant layers, and the diffusion of the corrosion resistant material to the zirconium alloy can be prevented by the diffusion preventive layers. Since a plurality of layers are cladded, even if the corrosion resistant layers are damaged or cracked due to stress corrosion, only one layer is damaged or cracked, but the other layers are not affected. (Sekiya, K.)

  3. A systematic approach for development of a PWR cladding corrosion model

    International Nuclear Information System (INIS)

    Quecedo, M.; Serna, J.J.; Weiner, R.A.; Kersting, P.J.

    2001-01-01

    A new model for the in-reactor corrosion of Improved (low-tin) Zircaloy-4 cladding irradiated in commercial pressurized water reactors (PWRs) is described. The model is based on an extensive database of PWR fuel cladding corrosion data from fuel irradiated in commercial reactors, with a range of fuel duty and coolant chemistry control strategies which bracket current PWR fuel management practices. The fuel thermal duty with these current fuel management practices is characterized by a significant amount of sub-cooled nucleate boiling (SNB) during the fuel's residence in-core, and the cladding corrosion model is very sensitive to the coolant heat transfer models used to calculate the coolant temperature at the oxide surface. The systematic approach to developing the new corrosion model therefore began with a review and evaluation of several alternative models for the forced convection and SNB coolant heat transfer. The heat transfer literature is not sufficient to determine which of these heat transfer models is most appropriate for PWR fuel rod operating conditions, and the selection of the coolant heat transfer model used in the new cladding corrosion model has been coupled with a statistical analysis of the in-reactor corrosion enhancement factors and their impact on obtaining the best fit to the cladding corrosion data. The in-reactor corrosion enhancement factors considered in this statistical analysis are based on a review of the current literature for PWR cladding corrosion phenomenology and models. Fuel operating condition factors which this literature review indicated could have a significant effect on the cladding corrosion performance were also evaluated in detail in developing the corrosion model. An iterative least squares fitting procedure was used to obtain the model coefficients and select the coolant heat transfer models and in-reactor corrosion enhancement factors. This statistical procedure was completed with an exhaustive analysis of the model

  4. Effect of cladding defect size on the oxidation of irradiated spent LWR [light-water reactor] fuel below 3690C

    International Nuclear Information System (INIS)

    Einziger, R.E.; Strain, R.V.

    1984-01-01

    Tests on spent fuel fragments and rod segments were conducted between 250 and 360 0 C to relate temperature, defect size, and fuel oxidation rate with time-to-cladding-splitting. Defect sizes from 760 μm diameter down to 8 μm, the size of an SCC type breach, were used. Above 283 0 C, the time-to-cladding-splitting was longer for the smaller defects. The enhancement of the incubation time by smaller defects steadily decreased with temperature and was not detected at 250 0 C. 18 refs., 10 figs., 4 tabs

  5. Cladding of aluminum on AISI 304L stainless steel by cold roll bonding: Mechanism, microstructure, and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Akramifard, H.R., E-mail: akrami.1367@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Mirzadeh, H., E-mail: hmirzadeh@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Parsa, M.H., E-mail: mhparsa@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Advanced Metalforming and Thermomechanical Processing Laboratory, School of Metallurgy and Materials Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2014-09-08

    The AA1050 aluminum alloy and AISI 304L stainless steel sheets were stacked together to fabricate Al/304L/Al clad sheet composites by the cold roll bonding process, which was performed at temperatures of ∼100 and 23 °C to produce austenitic and austenitic–martensitic microstructures in the AISI 304L counterpart, respectively. The peel test results showed that the threshold reduction required to make a suitable bond at room temperature is below 10%, which is significantly lower than the required reduction for cold roll bonding of Al sheets. The tearing of the Al sheet during the peel test signified that the bond strength of the roll bonded sheets by only 38% reduction has reached the strength of Al, which is a key advantage of the developed sheets. The extrusion of Al through the surface cracks and settling inside the 304L surface valleys due to strong affinity between Al and Fe was found to be the bonding mechanism. Subsequently, the interface and tensile behaviors of three-layered clad sheets after soaking at 200–600 °C for 1 h were investigated to characterize the effect of annealing treatment on the formation and thickening of intermetallic compound layer and the resultant mechanical properties. Field emission scanning electron microscopy, X-ray diffraction, and optical microscopy techniques revealed that an intermediate layer composed mainly of Al{sub 13}Fe{sub 4}, FeC and Al{sub 8}SiC{sub 7} forms during annealing at 500–600 °C. A significant drop in tensile stress–strain curves after the maximum point (UTS) was correlated to the interface debonding. It was found that the formation of intermediate layer by post heat treatment deteriorates the bond quality and encourages the debonding process. Moreover, the existence of strain-induced martensite in clad sheets was found to play a key role in the enhancement of tensile strength.

  6. Deep-probe metal-clad waveguide biosensors

    DEFF Research Database (Denmark)

    Skivesen, Nina; Horvath, Robert; Thinggaard, S.

    2007-01-01

    Two types of metal-clad waveguide biosensors, so-called dip-type and peak-type, are analyzed and tested. Their performances are benchmarked against the well-known surface-plasmon resonance biosensor, showing improved probe characteristics for adlayer thicknesses above 150-200 nm. The dip-type metal-clad...... waveguide sensor is shown to be the best all-round alternative to the surface-plasmon resonance biosensor. Both metal-clad waveguides are tested experimentally for cell detection, showing a detection linut of 8-9 cells/mm(2). (c) 2006 Elsevier B.V. All rights reserved....

  7. Measurement of the temperature of density maximum of water solutions using a convective flow technique

    OpenAIRE

    Cawley, M.F.; McGlynn, D.; Mooney, P.A.

    2006-01-01

    A technique is described which yields an accurate measurement of the temperature of density maximum of fluids which exhibit such anomalous behaviour. The method relies on the detection of changes in convective flow in a rectangular cavity containing the test fluid.The normal single-cell convection which occurs in the presence of a horizontal temperature gradient changes to a double cell configuration in the vicinity of the density maximum, and this transition manifests itself in changes in th...

  8. Parametric Study and Multi-Criteria Optimization in Laser Cladding by a High Power Direct Diode Laser

    Science.gov (United States)

    Farahmand, Parisa; Kovacevic, Radovan

    2014-12-01

    In laser cladding, the performance of the deposited layers subjected to severe working conditions (e.g., wear and high temperature conditions) depends on the mechanical properties, the metallurgical bond to the substrate, and the percentage of dilution. The clad geometry and mechanical characteristics of the deposited layer are influenced greatly by the type of laser used as a heat source and process parameters used. Nowadays, the quality of fabricated coating by laser cladding and the efficiency of this process has improved thanks to the development of high-power diode lasers, with power up to 10 kW. In this study, the laser cladding by a high power direct diode laser (HPDDL) as a new heat source in laser cladding was investigated in detail. The high alloy tool steel material (AISI H13) as feedstock was deposited on mild steel (ASTM A36) by a HPDDL up to 8kW laser and with new design lateral feeding nozzle. The influences of the main process parameters (laser power, powder flow rate, and scanning speed) on the clad-bead geometry (specifically layer height and depth of the heat affected zone), and clad microhardness were studied. Multiple regression analysis was used to develop the analytical models for desired output properties according to input process parameters. The Analysis of Variance was applied to check the accuracy of the developed models. The response surface methodology (RSM) and desirability function were used for multi-criteria optimization of the cladding process. In order to investigate the effect of process parameters on the molten pool evolution, in-situ monitoring was utilized. Finally, the validation results for optimized process conditions show the predicted results were in a good agreement with measured values. The multi-criteria optimization makes it possible to acquire an efficient process for a combination of clad geometrical and mechanical characteristics control.

  9. Laser cladding of Zr on Mg for improved corrosion properties

    International Nuclear Information System (INIS)

    Subramanian, R.; Sircar, S.; Mazumder, J.

    1989-01-01

    This paper reports the results of laser cladding of Mg-2wt%Zr, and Mg-5wt%Zr powder mixture onto magnesium. The microstructure of the laser clad was studied. From the microstructural study, the epitaxial regrowth of the clad region on the underlying substrate was observed. Martensite plates of different size were observed in transmission electron microscope for MG-2wt%Zr and Mg-5wt%Zr laser clad. The corrosion properties of the laser clad were evaluated in sea water (3.5% NaCl). The position of the laser claddings in the galvanic series of metals in sea water, the anodic polarization characteristics of the laser claddings and the protective nature and the stability of the passivating film formed have been determined. The formation of pits on the surface of the laser clad subjected to corrosion is reported. The corrosion properties of the laser claddings are compared with that of the commercially used magnesium alloy AZ91B

  10. Device for determining the maximum temperature of an environment

    International Nuclear Information System (INIS)

    Cartier, Louis.

    1976-01-01

    This invention concerns a device for determining the maximum temperature of an environment. Its main characteristic is a central cylindrical rod on which can slide two identical tubes, the facing ends of which are placed end to end and the far ends are shaped to provide a sliding friction along the rod. The rod and tubes are fabricated in materials of which the linear expansion factors are different in value. The far ends are composed of tongs of which the fingers, fitted with claws, bear on the central rod. Because of this arrangement of the device the two tubes, placed end to end on being fitted, can expand under the effect of a rise in the temperature of the environment into which the device is introduced, with the result that there occurs an increase in the distance between the two far ends. This distance is maximal when the device is raised to its highest temperature. The far ends are shaped to allow the tubes to slide under the effect of expansion but to prevent sliding in the opposite direction when the device is taken back into the open air and the temperature drops to within ambient temperature. It follows that the tubes tend to return to their initial length and the ends that were placed end to end when fitted now have a gap between them. The measurement of this gap makes it possible to know the maximal temperature sought [fr

  11. Oxidation properties of laser clad Nb-Al alloys

    International Nuclear Information System (INIS)

    Tewari, S.K.; Mazumder, J.

    1992-01-01

    This paper reports on laser cladding parameters for non-equilibrium synthesis for several ternary and complex Nb-Al base alloys containing Ti, Cr, Si, Ni, B and C that have been established. Phase transformations occurring below 1500 degrees C have been determined using differential thermal analysis. Ductility of the clads is qualitatively evaluated from the extent of cracking around the microhardness indentations. Oxidation resistance of the clads in flowing air is measured at 800 degrees C, 1200 degrees C and 1400 degrees C and parabolic rate constants are calculated. Microstructure of the clads is studied using optical and scanning electron microscopes. X-ray diffraction and EDX techniques are used for identification of the oxides formed and the phases formed in as clad material. Oxide morphology is studied using SEM. Effect of alloying additions on the ductility and oxidation resistance of the laser clad Nb-Al alloys is discussed. The results are compared with those reported in literature for similar alloys produced by conventional processing methods

  12. Mechanisms of fuel-cladding chemical interaction: US interpretation

    International Nuclear Information System (INIS)

    Adamson, M.G.

    1977-01-01

    Proposed mechanisms of fuel-cladding chemical interaction (FCCI) in LMFBR fuel pins are reviewed and examined in terms of in-pile and out-of-pile data. From this examination several factors are identified which may govern the occurrence of localized deep intergranular penetrations of Type-316SS cladding. Using a plausible mechanistic hypothesis for FCCI, first steps have been taken towards developing a quantitative, physically-meaningful, mathematical method of predicting cladding wastage in operating fuel pins. Both kinetic and thermodynamic aspects of FCCI are considered in the development of this prediction method, together with a fuel chemistry model that describes the evolution of thermochemical conditions at the fuel-cladding gap. On the basis of results from recent fuel pin and laboratory tests a thermal transport mechanism has been proposed to explain the thermal gradient-induced migration of Fe, Cr, and Ni from cladding into the fuel. This mechanism involves chemical transport of the metallic cladding components (as tellurides) in liquid Cs-Te. (author)

  13. Mechanisms of fuel-cladding chemical interaction: US interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, M G [General Electric Company, Vallecitos Nuclear Center, Pleasanton, CA (United States)

    1977-04-01

    Proposed mechanisms of fuel-cladding chemical interaction (FCCI) in LMFBR fuel pins are reviewed and examined in terms of in-pile and out-of-pile data. From this examination several factors are identified which may govern the occurrence of localized deep intergranular penetrations of Type-316SS cladding. Using a plausible mechanistic hypothesis for FCCI, first steps have been taken towards developing a quantitative, physically-meaningful, mathematical method of predicting cladding wastage in operating fuel pins. Both kinetic and thermodynamic aspects of FCCI are considered in the development of this prediction method, together with a fuel chemistry model that describes the evolution of thermochemical conditions at the fuel-cladding gap. On the basis of results from recent fuel pin and laboratory tests a thermal transport mechanism has been proposed to explain the thermal gradient-induced migration of Fe, Cr, and Ni from cladding into the fuel. This mechanism involves chemical transport of the metallic cladding components (as tellurides) in liquid Cs-Te. (author)

  14. Near-infrared lasers and self-frequency-doubling in Nd:YCOB cladding waveguides.

    Science.gov (United States)

    Ren, Yingying; Chen, Feng; Vázquez de Aldana, Javier R

    2013-05-06

    A design of cladding waveguides in Nd:YCOB nonlinear crystals is demonstrated in this work. Compact Fabry-Perot oscillation cavities are employed for waveguide laser generation at 1062 nm and self-frequency-doubling at 531 nm, under optical pump at 810 nm. The waveguide laser shows slope efficiency as high as 55% at 1062 nm. The SFD green waveguide laser emits at 531 nm with a maximum power of 100 μW.

  15. Fundamentals and industrial applications of high power laser beam cladding

    International Nuclear Information System (INIS)

    Bruck, G.J.

    1988-01-01

    Laser beam cladding has been refined such that clad characteristics are precisely determined through routine process control. This paper reviews the state of the art of laser cladding optical equipment, as well as the fundamental process/clad relationships that have been developed for high power processing. Major categories of industrial laser cladding are described with examples chose to highlight particular process attributes

  16. Flaw behavior in mechanically loaded clad plates

    International Nuclear Information System (INIS)

    Iskander, S.K.; Robinson, G.C.; Oland, C.B.

    1989-01-01

    A small crack near the inner surface of clad nuclear reactor pressure vessels is an important consideration in the safety assessment of the structural integrity of the vessel. Four-point bend tests on large plate specimens, conforming to ASTM specification for pressure vessel plates, alloy steels, quenched and tempered, Mn-Mo and Mn-Mo-Ni (A533) grade B six clad and two unclad with stainless steels 308, 309 and 312 weld wires, were performed to determine the effect of cladding upon the propagation of small surface cracks subjected to stress states. Results indicated that the tough surface layer composed of cladding and/or heat-affected zone has enhanced the load-bearing capacity of plates under conditions where unclad plates have ruptured. The results are interpreted in terms of fracture mechanics. The behavior of flaws in clad reactor pressure vessels is examined in the light of the test results. 11 refs., 8 figs., 2 tabs

  17. Analysis of pellet cladding mechanical interaction using computational simulation

    Energy Technology Data Exchange (ETDEWEB)

    Berretta, José R.; Suman, Ricardo B.; Faria, Danilo P.; Rodi, Paulo A., E-mail: jose.berretta@marinha.mil.br [Centro Tecnológico da Marinha em São Paulo (CTMSP), São Paulo, SP (Brazil); Giovedi, Claudia, E-mail: claudia.giovedi@labrisco.usp.br [Universidade de Sao Paulo (LabRisco/USP), São Paulo, SP (Brazil). Laboratório de Análise, Avaliação e Gerenciamento de Riscos

    2017-07-01

    During the operation of Pressurized Water Reactors (PWR), specifically under power transients, the fuel pellet experiences many phenomena, such as swelling and thermal expansion. These dimensional changes in the fuel pellet can enable occurrence of contact it and the cladding along the fuel rod. Thus, pellet cladding mechanical interaction (PCMI), due this contact, induces stress increase at the contact points during a period, until the accommodation of the cladding to the stress increases. This accommodation occurs by means of the cladding strain, which can produce failure, if the fuel rod deformation is permanent or the burst limit of the cladding is reached. Therefore, the mechanical behavior of the cladding during the occurrence of PCMI under power transients shall be investigated during the fuel rod design. Considering the Accident Tolerant Fuel program which aims to develop new materials to be used as cladding in PWR, one important design condition to be evaluated is the cladding behavior under PCMI. The purpose of this paper is to analyze the effects of the PCMI on a typical PWR fuel rod geometry with stainless steel cladding under normal power transients using computational simulation (ANSYS code). The PCMI was analyzed considering four geometric situations at the region of interaction between pellet and cladding. The first case, called “perfect fuel model” was used as reference for comparison. In the second case, it was considered the occurrence of a pellet crack with the loss of a chip. The goal for the next two cases was that a pellet chip was positioned into the gap of pellet-cladding, in the situations described in the first two cases. (author)

  18. Evaluations of Mo-alloy for light water reactor fuel cladding to enhance accident tolerance

    Directory of Open Access Journals (Sweden)

    Cheng Bo

    2016-01-01

    Full Text Available Molybdenum based alloy is selected as a candidate to enhance tolerance of fuel to severe loss of coolant accidents due to its high melting temperature of ∼2600 °C and ability to maintain sufficient mechanical strength at temperatures exceeding 1200 °C. An outer layer of either a Zr-alloy or Al-containing stainless steel is designed to provide corrosion resistance under normal operation and oxidation resistance in steam exceeding 1000 °C for 24 hours under severe loss of coolant accidents. Due to its higher neutron absorption cross-sections, the Mo-alloy cladding is designed to be less than half the thickness of the current Zr-alloy cladding. A feasibility study has been undertaken to demonstrate (1 fabricability of long, thin wall Mo-alloy tubes, (2 formability of a protective outer coating, (3 weldability of Mo tube to endcaps, (4 corrosion resistance in autoclaves with simulated LWR coolant, (5 oxidation resistance to steam at 1000–1500 °C, and (6 sufficient axial and diametral strength and ductility. High purity Mo as well as Mo + La2O3 ODS alloy have been successfully fabricated into ∼2-meter long tubes for the feasibility study. Preliminary results are encouraging, and hence rodlets with Mo-alloy cladding containing fuel pellets have been under preparation for irradiation at the Advanced Test Reactor (ATR in Idaho National Laboratory. Additional efforts are underway to enhance the Mo cladding mechanical properties via process optimization. Oxidation tests to temperatures up to 1500 °C, and burst and creep tests up to 1000 °C are also underway. In addition, some Mo disks in close contact with UO2 from a previous irradiation program (to >100 GWd/MTU at the Halden Reactor have been subjected to post-irradiation examination to evaluate the chemical compatibility of Mo with irradiated UO2 and fission products. This paper will provide an update on results from the feasibility study and discuss the attributes of the

  19. Pellet-clad interaction in water reactor fuels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The aim of this seminar is was to draw up a comprehensive picture of the pellet clad interaction and its impact on the fuel rod. This document is a detailed abstract of the papers presented during the following five sessions: industrial goals, fuel material behaviour in PCI situation, cladding behaviour relevant to PCI, in pile rod behaviour and modelling of the mechanical interaction between pellet and cladding. (A.L.B.)

  20. Pellet-clad interaction in water reactor fuels

    International Nuclear Information System (INIS)

    2004-01-01

    The aim of this seminar is was to draw up a comprehensive picture of the pellet clad interaction and its impact on the fuel rod. This document is a detailed abstract of the papers presented during the following five sessions: industrial goals, fuel material behaviour in PCI situation, cladding behaviour relevant to PCI, in pile rod behaviour and modelling of the mechanical interaction between pellet and cladding. (A.L.B.)

  1. Assessment of the fracture behavior of weld material from a full-thickness clad RPV shell segment

    International Nuclear Information System (INIS)

    Bass, B.R.; Keeney, J.A.; McAfee, W.J.

    1995-01-01

    A testing program is described that utilizes full-thickness clad beam specimens to quantify fracture toughness for shallow cracks in material for which metallurgical conditions are prototypic of those found in reactor pressure vessels (RPVs). The beam specimens are fabricated from a section of an RPV shell (removed from a canceled nuclear plant) that includes weld, plate, and clad material. A summary of the testing program includes a description of the specimen geometry, material properties, the testing procedure, and the experimental results from three specimens. The yield strength of the weld material was determined to be 36% higher than the base material. The high yield strength for prototypic weld material may be implications for RPV integrity assessments. Fracture toughness data from three clad beam specimens are compared with other shallow- and deep-crack beam cruciform data generated previously from A 533 Grade B plate material. Difficulties with interpreting lower-bound fracture toughness curves constructed from the shallow-crack data are essentially resolved by adopting a single normalizing temperature parameter, namely, the nil-ductility transition temperature (NDT)

  2. CEA studies on advanced nuclear fuel claddings for enhanced accident tolerant LWRs fuel (LOCA and beyond LOCA conditions)

    International Nuclear Information System (INIS)

    Brachet, J.C.; Lorrette, C.; Michaux, A.; Sauder, C.; Idarraga-Trujillo, I.; Le Saux, M.; Le Flem, M.; Schuster, F.; Billard, A.; Monsifrot, E.; Torres, E.; Rebillat, F.; Bischoff, J.; Ambard, A.

    2015-01-01

    This paper gives an overview of CEA studies on advanced nuclear fuel claddings for enhanced Accident Tolerant LWR Fuel in collaboration with industrial partners AREVA and EDF. Two potential solutions were investigated: chromium coated zirconium based claddings and SiC/SiC composite claddings with a metallic liner. Concerning the first solution, the optimization of chromium coatings on Zircaloy-4 substrate has been performed. Thus, it has been demonstrated that, due in particular to their slower oxidation rate, a significant additional 'grace period( can be obtained on high temperature oxidized coated claddings in comparison to the conventional uncoated ones, regarding their residual PQ (Post-Quench) ductility and their ability to survive to the final water quenching in LOCA and, to some extent, beyond LOCA conditions. Concerning the second solution, the innovative 'sandwich' SiC/SiC cladding concept is introduced. Initially designed for the next generation of nuclear reactors, it can be adapted to obtain high safety performance for LWRs in LOCA conditions. The key findings of this work highlight the low sensitivity of SiC/SiC composites under the explored steam oxidation conditions. No signification degradation of the mechanical properties of CVI-HNI SiC/SiC specimen is particularly acknowledged for relatively long duration (beyond 100 h at 1200 Celsius degrees). Despite these very positive preliminary results, significant studies and developments are still necessary to close the technology gap. Qualification for nuclear application requires substantial irradiation testing, additional characterization and the definition of design rules applicable to such a structure. The use of a SiC-based fuel cladding shows promise for the highest temperature accident conditions but remains a long term perspective

  3. Determination of plastic anisotropy of zirconium alloys cladding

    International Nuclear Information System (INIS)

    Yamshchikov, N.V.; Prasolov, P.F.; Shestak, V.E.

    1991-01-01

    Method for determining plastic anisotropy of zurconium alloy cladding is described. It is based on consideration of material as a combination of transversal crystallites with known distribution over orientations. Such approach enables to describe cladding resistance to plastic deformation at arbitrary stressed state, using the results of texture investigations and uniaxial tests of samples, cut out of claddings along three directions. Plastic anisotropy of fuel element claddings 9.15 and 13.6 mm in diameter up to several percents of plastic deformation is shown

  4. Cladding modes of optical fibers: properties and applications

    International Nuclear Information System (INIS)

    Ivanov, Oleg V; Nikitov, Sergei A; Gulyaev, Yurii V

    2006-01-01

    One of the new methods of fiber optics uses cladding modes for controlling propagation of radiation in optical fibers. This paper reviews the results of studies on the propagation, excitation, and interaction of cladding modes in optical fibers. The resonance between core and cladding modes excited by means of fiber Bragg gratings, including tilted ones, is analyzed. Propagation of cladding modes in microstructured fibers is considered. The most frequently used method of exciting cladding modes is described, based on the application of long-period fiber gratings. Examples are presented of long-period gratings used as sensors and gain equalizers for fiber amplifiers, as well as devices for coupling light into and out of optical fibers. (instruments and methods of investigation)

  5. Neutron-induced helium implantation in GCFR cladding

    International Nuclear Information System (INIS)

    Yamada, H.; Poeppel, R.B.; Sevy, R.H.

    1980-10-01

    The neutron-induced implantation of helium atoms on the exterior surfaces of the cladding of a prototypic gas-cooled fast reactor (GCFR) has been investigated analytically. A flux of recoil helium particles as high as 4.2 x 10 10 He/cm 2 .s at the cladding surface has been calculated at the peak power location in the core of a 300-MWe GCFR. The calculated profile of the helium implantation rates indicates that although some helium is implanted as deep as 20 μm, more than 99% of helium particles are implanted in the first 2-μm-deep layer below the cladding surface. Therefore, the implanted helium particles should mainly affect surface properties of the GCFR cladding

  6. Texture and hydride orientation relationship of Zircaloy-4 fuel clad tube during its fabrication for pressurized heavy water reactors

    International Nuclear Information System (INIS)

    Vaibhaw, Kumar; Rao, S.V.R.; Jha, S.K.; Saibaba, N.; Jayaraj, R.N.

    2008-01-01

    Zircaloy-4 material is used for cladding tube in pressurized heavy water reactors (PHWRs) of 220 MWe and 540 MWe capacity in India. These tubes are fabricated by using various combinations of thermo-mechanical processes to achieve desired mechanical and corrosion properties. Cladding tube develops crystallographic texture during its fabrication, which has significant influence on its in-reactor performance. Due to radiolytic decomposition of water Zircaloy-4 picks-up hydrogen. This hydrogen in excess of its maximum solubility in reactor operating condition (∼300 deg. C), precipitates as zirconium hydrides causing embrittlement of cladding tube. Hydride orientation in the radial direction of the tube limits the service life and lowers the fuel burn-up in reactor. The orientation of the hydride primarily depends on texture developed during fabrication. A correlation between hydride orientation (F n ) with the texture in the tube during its fabrication has been developed using a second order polynomial. The present work is aimed at quantification and correlation of texture evolved in Zircaloy-4 cladding tube using Kearn's f-parameter during its fabrication process

  7. Texture and hydride orientation relationship of Zircaloy-4 fuel clad tube during its fabrication for pressurized heavy water reactors

    Science.gov (United States)

    Vaibhaw, Kumar; Rao, S. V. R.; Jha, S. K.; Saibaba, N.; Jayaraj, R. N.

    2008-12-01

    Zircaloy-4 material is used for cladding tube in pressurized heavy water reactors (PHWRs) of 220 MWe and 540 MWe capacity in India. These tubes are fabricated by using various combinations of thermo-mechanical processes to achieve desired mechanical and corrosion properties. Cladding tube develops crystallographic texture during its fabrication, which has significant influence on its in-reactor performance. Due to radiolytic decomposition of water Zircaloy-4 picks-up hydrogen. This hydrogen in excess of its maximum solubility in reactor operating condition (˜300 °C), precipitates as zirconium hydrides causing embrittlement of cladding tube. Hydride orientation in the radial direction of the tube limits the service life and lowers the fuel burn-up in reactor. The orientation of the hydride primarily depends on texture developed during fabrication. A correlation between hydride orientation ( F n) with the texture in the tube during its fabrication has been developed using a second order polynomial. The present work is aimed at quantification and correlation of texture evolved in Zircaloy-4 cladding tube using Kearn's f-parameter during its fabrication process.

  8. Calculation of thermoelastic stresses in the rewetting region of the fuel rod cladding during a loss of coolant accident (loca)

    International Nuclear Information System (INIS)

    Roberty, N.C.; Carmo, E.G.D. do; Tanajura, C.A.S.

    1982-01-01

    A one-dimensional model for axial distribution calculation of temperature and thermal stresses in the fuel rod cladding for a Pressurized Water Reactors (PWR) is developed. The effect of the coolant inlet temperaure, the Leidenfrost and the nucleate boiling in the stress distribution are evaluated. A perturbation in the cladding stress state is obtained. (E.G.) [pt

  9. Status Report on the Fabrication of Fuel Cladding Chemical Interaction Test Articles for ATR Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Field, Kevin G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-28

    FeCrAl alloys are a promising new class of alloys for light water reactor (LWR) applications due to their superior oxidation and corrosion resistance in high temperature environments. The current R&D efforts have focused on the alloy composition and processing routes to generate nuclear grade FeCrAl alloys with optimized properties for enhanced accident tolerance while maintaining properties needed for normal operation conditions. Therefore, the composition and processing routes must be optimized to maintain the high temperature steam oxidation (typically achieved by increasing the Cr and Al content) while still exhibiting properties conducive to normal operation in a LWR (such as radiation tolerance where reducing Cr content is favorable). Within this balancing act is the addition of understanding the influence on composition and processing routes on the FeCrAl alloys for fuel-cladding chemical interactions (FCCI). Currently, limited knowledge exists on FCCI for the FeCrAl-UO2 clad-fuel system. To overcome the knowledge gaps on the FCCI for the FeCrAl-UO2 clad-fuel system a series of fueled irradiation tests have been developed for irradiation in the Advanced Test Reactor (ATR) housed at the Idaho National Laboratory (INL). The first series of tests has already been reported. These tests used miniaturized 17x17 PWR fuel geometry rodlets of second-generation FeCrAl alloys fueled with industrial Westinghouse UO2 fuel. These rodlets were encapsulated within a stainless steel housing.To provide high fidelity experiments and more robust testing, a new series of rodlets have been developed deemed the Accident Tolerant Fuel Experiment #1 Oak Ridge National Laboratory FCCI test (ATF-1 ORNL FCCI). The main driving factor, which is discussed in detail, was to provide a radiation environment where prototypical fuel-clad interface temperatures are met while still maintaining constant contact between industrial fuel and the candidate cladding alloys

  10. Heat transfer in a fuel pin shipping container

    International Nuclear Information System (INIS)

    Ingham, J.G.

    1980-01-01

    Maximum cladding temperatures occur when the IDENT 1578 fuel pin shipping container is installed in the T-3 Cask. The maximum allowable cladding temperature of 800 0 F is reached when the rate of energy deposited in the 19-pin basket reaches 400 watts. Since 45% of the energy which is generated in the fuel escapes the 19-pin basket without being deposited, mostly gamma energy, the maximum allowable rate of heat generation is 400/.55 = 727 watts. Similarly, the maximum allowable cladding temperature of 800 0 F is reached when the rate of energy deposited in the 40-pin basket reaches 465 watts. Since 33% of the energy which is generated in the fuel escapes the 40-pin basket without being deposited, mostly gamma energy, the maximum allowable rate of heat generation is 465/.66 = 704 watts. The IDENT 1578 fuel pin shipping container therefore meets its thermal design criteria. IDENT 1578 can handle fuel pins with a decay heat load of 600 watts while maintaining the maximum fuel pin cladding temperature below 800 0 F. The emissivities which were determined from the test results for the basket tubes and container are relatively low and correspond to new, shiny conditions. As the IDENT 1578 container is exposed to high temperatures for extended periods of time during the transportation of fuel pins, the emissivities will probably increase. This will result in reduced temperatures

  11. A Prediction Study of Aluminum Alloy Oxidation of the Fuel Cladding in Jordan Research and Training Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tahk, Y. W.; Oh, J. Y.; Lee, B. H.; Seo, C. G.; Chae, H. T.; Yim, J. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    U{sub 3}Si{sub 2}-Al dispersion fuel with Al cladding will be used for Jordan Research and Training Reactor (JRTR). Aluminum alloy cladding experiences the oxidation layer growth on the surface during the reactor operation. The formation of oxides on the cladding affects fuel performance by increasing fuel temperature. According to the current JRTR fuel management scheme and operation strategy for 5 MW power, a fresh fuel is discharged after 900 effective full power days (EFPD) with 18 cycles of 50 days loading. For the proper prediction of the aluminum oxide thickness of fuel cladding during the long residence time, a reliable model is needed. In this work, several oxide thickness prediction models are compared with the measured data from in-pile test by RERTR program. Moreover, specific parametric studies and a preliminary prediction of the aluminum alloy oxidation using the latest model are performed for JRTR fuel

  12. Clad Degradation- Summary and Abstraction for LA

    International Nuclear Information System (INIS)

    D. Stahl

    2004-01-01

    The purpose of this model report is to develop the summary cladding degradation abstraction that will be used in the Total System Performance Assessment for the License Application (TSPA-LA). Most civilian commercial nuclear fuel is encased in Zircaloy cladding. The model addressed in this report is intended to describe the postulated condition of commercial Zircaloy-clad fuel as a function of postclosure time after it is placed in the repository. Earlier total system performance assessments analyzed the waste form as exposed UO 2 , which was available for degradation at the intrinsic dissolution rate. Water in the waste package quickly became saturated with many of the radionuclides, limiting their release rate. In the total system performance assessments for the Viability Assessment and the Site Recommendation, cladding was analyzed as part of the waste form, limiting the amount of fuel available at any time for degradation. The current model is divided into two stages. The first considers predisposal rod failures (most of which occur during reactor operation and associated activities) and postdisposal mechanical failure (from static loading of rocks) as mechanisms for perforating the cladding. Other fuel failure mechanisms including those caused by handling or transportation have been screened out (excluded) or are treated elsewhere. All stainless-steel-clad fuel, which makes up a small percentage of the overall amount of fuel to be stored, is modeled as failed upon placement in the waste packages. The second stage of the degradation model is the splitting of the cladding from the reaction of water or moist air and UO 2 . The splitting has been observed to be rapid in comparison to the total system performance assessment time steps and is modeled to be instantaneous. After the cladding splits, the rind buildup inside the cladding widens the split, increasing the diffusion area from the fuel rind to the waste package interior. This model report summarizes the

  13. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings -- Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Blough, J.L.; Seitz, W.W. [Foster Wheeler Development Corp., Livingston, NJ (United States)

    1997-12-01

    In Phase 1 a variety of developmental and commercial tubing alloys and claddings were exposed to laboratory fireside corrosion testing simulating a superheater or reheater in a coal-fired boiler. Phase 2 (in situ testing) has exposed samples of 347 RA-85H, HR3C, 253MA, Fe{sub 3}Al + 5Cr, 310 Ta modified, NF 709, 690 clad, and 671 clad for approximately 4,000, 12,000, and 16,000 hours to the actual operating conditions of a 250-MW coal-fired boiler. The samples were assembled on an air-cooled, retractable corrosion probe, the probe was installed in the reheater activity of the boiler and controlled to the operating metal temperatures of an existing and advanced-cycle coal-fired boiler. The results will be presented for the preliminary metallurgical examination of the corrosion probe samples after 16,000 hours of exposure. Continued metallurgical and interpretive analysis is still on going.

  14. Embrittlement of zircaloy cladding due to oxygen uptake (CBRTTL)

    International Nuclear Information System (INIS)

    Reymann, G.A.

    1979-02-01

    A model for embrittlement of zircaloy due to oxygen uptake at high temperatures is described. The model defines limits for oxygen content and temperature which, if exceeded, give rise to zircaloy cladding which is sufficiently embrittled to cause failure either on quenching or normal handling following a transient. A significant feature of this model is that the onset of embrittlement is dependent on the cooling rate. A distinction is made between slow and fast cooling, with the boundary at 100 K/s. The material property correlations and computer subcodes described in MATPRO are developed for use in Light Water Reactor (LWR) codes

  15. Thermodynamics of pellet-cladding interaction

    International Nuclear Information System (INIS)

    Kyoh, Bunkei; Fuji, Kensho

    1987-01-01

    Equilibrium thermodynamic calculations are performed on the U-Zr-Cs-I-O system that is assumed to exist in the fuel-cladding gap of light water reactor (LWR) fuel under pellet-cladding interaction (PCI) failure condition. For this purpose a computer program called SOLGASMIX-PV for the calculation of complex multi-component equilibria is used, and the results of postirradiation examination are interpreted. The analysis of the thermodynamics of the system U-Zr-Cs-I-O indicates that cesium and iodine are assumed to be released from fuel pellet into the fuel-cladding gap as CsI, therefore, the Cs/I ratio in fuel-cladding bonding zone is one. The important condensed phases in this region are UO 2 , U 3 O 8 , Cs 2 U 2 O 7 , Cs 2 U 15 O 46 , ZrO 2 and CsI, and the major gaseous species are CsI, I 2 and I. Under this situation where Cs/I ratio is one, cesium-zirconate is not present. If, however, cesium rich phase is partially present then cesium will be associated with zirconium, possibly as Cs 2 ZrO 3 . (author)

  16. A pellet-clad interaction failure criterion

    International Nuclear Information System (INIS)

    Howl, D.A.; Coucill, D.N.; Marechal, A.J.C.

    1983-01-01

    A Pellet-Clad Interaction (PCI) failure criterion, enabling the number of fuel rod failures in a reactor core to be determined for a variety of normal and fault conditions, is required for safety analysis. The criterion currently being used for the safety analysis of the Pressurized Water Reactor planned for Sizewell in the UK is defined and justified in this paper. The criterion is based upon a threshold clad stress which diminishes with increasing fast neutron dose. This concept is consistent with the mechanism of clad failure being stress corrosion cracking (SCC); providing excess corrodant is always present, the dominant parameter determining the propagation of SCC defects is stress. In applying the criterion, the SLEUTH-SEER 77 fuel performance computer code is used to calculate the peak clad stress, allowing for concentrations due to pellet hourglassing and the effect of radial cracks in the fuel. The method has been validated by analysis of PCI failures in various in-reactor experiments, particularly in the well-characterised power ramp tests in the Steam Generating Heavy Water Reactor (SGHWR) at Winfrith. It is also in accord with out-of-reactor tests with iodine and irradiated Zircaloy clad, such as those carried out at Kjeller in Norway. (author)

  17. Experimental approach for adhesion strength of ATF cladding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Donghyun; Kim, Hyochan; Yang, Yongsik; In, Wangkee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Haksung [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    The quality of a coating depends on the quality of its adhesion bond strength between the coating and the underlying substrate. Therefore, it is essential to evaluate the adhesion properties of the coating. There are many available test methods for the evaluation of coatings adhesion bond strength. Considering these restrictions of the coated cladding, the scratch test is useful for evaluation of adhesion properties compared to other methods. The purpose of the present study is to analyze the possibility of adhesion bond strength evaluation of ATF coated cladding by scratch testing on coatings cross sections. Experimental approach for adhesion strength of ATF coated cladding was investigated in the present study. The scratch testing was chosen as a testing method. Uncoated zircaloy-4 tube was employed as a reference and plasma spray and arc ion coating were selected as a ATF coated claddings for comparison. As a result, adhesion strengths of specimens affect the measured normal and tangential forces. For the future, the test will be conducted for CrAl coated cladding by laser coating, which is the most promising ATF cladding. Computational analysis with finite element method will also be conducted to analyze a stress distribution in the cladding tube.

  18. Research on laser cladding control system based on fuzzy PID

    Science.gov (United States)

    Zhang, Chuanwei; Yu, Zhengyang

    2017-12-01

    Laser cladding technology has a high demand for control system, and the domestic laser cladding control system mostly uses the traditional PID control algorithm. Therefore, the laser cladding control system has a lot of room for improvement. This feature is suitable for laser cladding technology, Based on fuzzy PID three closed-loop control system, and compared with the conventional PID; At the same time, the laser cladding experiment and friction and wear experiment were carried out under the premise of ensuring the reasonable control system. Experiments show that compared with the conventional PID algorithm in fuzzy the PID algorithm under the surface of the cladding layer is more smooth, the surface roughness increases, and the wear resistance of the cladding layer is also enhanced.

  19. A Hybrid Maximum Power Point Search Method Using Temperature Measurements in Partial Shading Conditions

    Directory of Open Access Journals (Sweden)

    Mroczka Janusz

    2014-12-01

    Full Text Available Photovoltaic panels have a non-linear current-voltage characteristics to produce the maximum power at only one point called the maximum power point. In the case of the uniform illumination a single solar panel shows only one maximum power, which is also the global maximum power point. In the case an irregularly illuminated photovoltaic panel many local maxima on the power-voltage curve can be observed and only one of them is the global maximum. The proposed algorithm detects whether a solar panel is in the uniform insolation conditions. Then an appropriate strategy of tracking the maximum power point is taken using a decision algorithm. The proposed method is simulated in the environment created by the authors, which allows to stimulate photovoltaic panels in real conditions of lighting, temperature and shading.

  20. Current status of materials development of nuclear fuel cladding tubes for light water reactors

    International Nuclear Information System (INIS)

    Duan, Zhengang; Yang, Huilong; Satoh, Yuhki; Murakami, Kenta; Kano, Sho; Zhao, Zishou; Shen, Jingjie; Abe, Hiroaki

    2017-01-01

    Zirconium-based (Zr-based) alloys have been widely used as materials for the key components in light water reactors (LWRs), such as fuel claddings which suffer from waterside corrosion, hydrogen uptakes and strength loss at elevated temperature, especially during accident scenarios like the lost-of-coolant accident (LOCA). For the purpose of providing a safer, nuclear leakage resistant and economically viable LWRs, three general approaches have been proposed so far to develop the accident tolerant fuel (ATF) claddings: optimization of metallurgical composition and processing of Zr-based alloys, coatings on existing Zr-based alloys and replacement of current Zr-based alloys. In this manuscript, an attempt has been made to systematically present the historic development of Zr-based cladding, including the impacts of alloying elements on the material properties. Subsequently, the research investigations on coating layer on the surface of Zr-based claddings, mainly referring coating materials and fabrication methods, have been broadly reviewed. The last section of this review provides the introduction to alternative materials (Non-Zr) to Zr-based alloys for LWRs, such as advanced steels, Mo-based, and SiC-based materials.

  1. The role of a fuel element and its cladding in water cooled reactor dynamics

    International Nuclear Information System (INIS)

    Randles, J.

    1963-10-01

    To clarify the role of fuel element cladding in water reactor dynamics, the heat diffusion and transfer equations are solved in slab geometry for (a) an oscillatory fission power, (b) an oscillatory coolant temperature. From the resulting transfer functions a clear description of the effect of the cladding on the heat flow is obtained. A Mercury autocode programme for evaluating the transfer functions is described. In addition to the slab element, the heat diffusion equations are also solved for a cylindrical system exposed to an oscillatory fission power. The solutions are expressed as transfer functions and are obtainable numerically from another autocode programme. Both of these programmes are used to obtain the power out/ power in transfer function for a typical cylindrical and slab UO 2 fuel pellet clad in zircaloy. The results give a further indication of the effect of the cladding heat capacity over a wide frequency range. It is shown also that the effect of the geometrical difference between a slab and cylindrical fuel element is unimportant provided the surface to volume ratio of the fuel is the same in each case. (author)

  2. The role of a fuel element and its cladding in water cooled reactor dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Randles, J [Technical Assessments and Services Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1963-10-15

    To clarify the role of fuel element cladding in water reactor dynamics, the heat diffusion and transfer equations are solved in slab geometry for (a) an oscillatory fission power, (b) an oscillatory coolant temperature. From the resulting transfer functions a clear description of the effect of the cladding on the heat flow is obtained. A Mercury autocode programme for evaluating the transfer functions is described. In addition to the slab element, the heat diffusion equations are also solved for a cylindrical system exposed to an oscillatory fission power. The solutions are expressed as transfer functions and are obtainable numerically from another autocode programme. Both of these programmes are used to obtain the power out/ power in transfer function for a typical cylindrical and slab UO{sub 2} fuel pellet clad in zircaloy. The results give a further indication of the effect of the cladding heat capacity over a wide frequency range. It is shown also that the effect of the geometrical difference between a slab and cylindrical fuel element is unimportant provided the surface to volume ratio of the fuel is the same in each case. (author)

  3. Current status of materials development of nuclear fuel cladding tubes for light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Zhengang, E-mail: duan_zg@imr.tohoku.ac.jp [Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Yang, Huilong [Department of Nuclear Engineering, School of Engineering, The University of Tokyo, Nakagun, Ibaraki 319-1188 (Japan); Satoh, Yuhki [Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Murakami, Kenta; Kano, Sho; Zhao, Zishou; Shen, Jingjie [Department of Nuclear Engineering, School of Engineering, The University of Tokyo, Nakagun, Ibaraki 319-1188 (Japan); Abe, Hiroaki, E-mail: abe.hiroaki@n.t.u-tokyo.ac.jp [Department of Nuclear Engineering, School of Engineering, The University of Tokyo, Nakagun, Ibaraki 319-1188 (Japan)

    2017-05-15

    Zirconium-based (Zr-based) alloys have been widely used as materials for the key components in light water reactors (LWRs), such as fuel claddings which suffer from waterside corrosion, hydrogen uptakes and strength loss at elevated temperature, especially during accident scenarios like the lost-of-coolant accident (LOCA). For the purpose of providing a safer, nuclear leakage resistant and economically viable LWRs, three general approaches have been proposed so far to develop the accident tolerant fuel (ATF) claddings: optimization of metallurgical composition and processing of Zr-based alloys, coatings on existing Zr-based alloys and replacement of current Zr-based alloys. In this manuscript, an attempt has been made to systematically present the historic development of Zr-based cladding, including the impacts of alloying elements on the material properties. Subsequently, the research investigations on coating layer on the surface of Zr-based claddings, mainly referring coating materials and fabrication methods, have been broadly reviewed. The last section of this review provides the introduction to alternative materials (Non-Zr) to Zr-based alloys for LWRs, such as advanced steels, Mo-based, and SiC-based materials.

  4. Method for decontaminating stainless cladding tubes

    International Nuclear Information System (INIS)

    Komatsu, Fumiaki.

    1986-01-01

    Purpose: To form an oxide film over the surface of stainless cladding tubes and to efficiently remove radioactive materials from the steel surface together with the oxide layer by the use of an acid water solution. Method: After the removal of water from cladding tubes that have passed through the re-processing process, an oxide film is formed on the surface of the cladding tubes by heating over 400 deg C in an oxidizing atmosphere and thereafter washed again in an acid water solution. When the cladding tubes are thus oxidized once, the stainless base metal itself is oxidized, an oxide layer of several 10 μm or more being formed thereon. In consequence, since the oxide layer is far inferior in corrosion resistance to stainless metals, a pickling liquid easily penetrates into the stainless metal through the oxide layer, thereby remarkably promoting the peeling of the layer from the base metal surface and also improving the residual radioactive material removing efficiency together. (Takahashi, M.)

  5. Duplex stainless steel surface bay laser cladding

    International Nuclear Information System (INIS)

    Amigo, V.; Pineda, Y.; Segovia, F.; Vicente, A.

    2004-01-01

    Laser cladding is one of the most promising techniques to restore damaged surfaces and achieve properties similar to those of the base metal. In this work, duplex stainless steels have been cladded by a nickel alloy under different processing conditions. The influence of the beam speed and defocusing variables ha been evaluated in the microstructure both of the cladding and heat affected zone, HAZ. These results have been correlated to mechanical properties by means of microhardness measurements from cladding area to base metal through the interface. This technique has shown to be very appropriate to obtain controlled mechanical properties as they are determined by the solidification microstructure, originated by the transfer of mass and heat in the system. (Author) 21 refs

  6. Corrosion behaviour of cladded nickel base alloys

    International Nuclear Information System (INIS)

    Brandl, W.; Ruczinski, D.; Nolde, M.; Blum, J.

    1995-01-01

    As a consequence of the high cost of nickel base alloys their use as surface layers is convenient. In this paper the properties of SA-as well as RES-cladded NiMo 16Cr16Ti and NiCr21Mo14W being produced in single and multi-layer technique are compared and discussed with respect to their corrosion behaviour. Decisive criteria describing the qualities of the claddings are the mass loss, the susceptibility against intergranular corrosion and the pitting corrosion resistance. The results prove that RES cladding is the most suitable technique to produce corrosion resistant nickel base coatings. The corrosion behaviour of a two-layer RES deposition shows a better resistance against pitting than a three layer SAW cladding. 7 refs

  7. Stress analysis of fuel claddings with axial fins including creep effects

    International Nuclear Information System (INIS)

    Krieg, R.

    1977-01-01

    For LMFBR fuel claddings with axial fins the stress and strain fields are calculated which may be caused by internal pressure, differential thermal expansion and irradiation induced differential swelling. To provide an appropriate description of the cladding material it is assumed that the total strain is the sum of a linear elastic and a creep term, where the latter one includes the thermal as well as the irradiation induced creep. First the linear elastic problem is treated by a semi-analytical method leading to a bipotential equation for Airys' stress function. Solving this equation analytically means that the field equations valid within the cladding are satisfied exactly. By applying a combined point matching- least square-method the boundary conditions could be satisfied approximately such that in most cases the remaining error is within the uncertainty range of the loading conditions. Then the nonlinear problem which includes creep is approximated by a sequence of linear elastic solutions with time as parameter. The accumulated creep strain is treated here as an imposed strain field. To study the influence of different effects such as fin shape, temperature region, irradiation induced creep and swelling or internal pressure, a total of eleven cases with various parameter variations are investigated. The results are presented graphically in the following forms: stress and strain distributions over the cladding cross section for end of life conditions and boundary stresses and strains versus time. (Auth.)

  8. Deformation and fracture map methodology for predicting cladding behavior during dry storage

    International Nuclear Information System (INIS)

    Chin, B.A.; Khan, M.A.; Tarn, J.C.L.

    1986-09-01

    The licensing of interim dry storage of light-water reactor spent fuel requires assurance that release limits of radioactive materials are not exceeded. The extent to which Zircaloy cladding can be relied upon as a barrier to prevent release of radioactive spent fuel and fission products depends upon its integrity. The internal pressure from helium and fission gases could become a source of hoop stress for creep rupture if pressures and temperatures were sufficiently high. Consequently, it is of interest to predict the condition of spent fuel cladding during interim storage for periods up to 40 years. To develop this prediction, deformation and fracture theories were used to develop maps. Where available, experimental deformation and fracture data were used to test the validity of the maps. Predictive equations were then developed and cumulative damage methodology was used to take credit for the declining temperature of spent fuel during storage. This methodology was then used to predict storage temperatures below which creep rupture would not be expected to occur except in fuel rods with pre-existing flaws. Predictions were also made and compared with results from tests conducted under abnormal conditions

  9. Trends in Mean Annual Minimum and Maximum Near Surface Temperature in Nairobi City, Kenya

    Directory of Open Access Journals (Sweden)

    George Lukoye Makokha

    2010-01-01

    Full Text Available This paper examines the long-term urban modification of mean annual conditions of near surface temperature in Nairobi City. Data from four weather stations situated in Nairobi were collected from the Kenya Meteorological Department for the period from 1966 to 1999 inclusive. The data included mean annual maximum and minimum temperatures, and was first subjected to homogeneity test before analysis. Both linear regression and Mann-Kendall rank test were used to discern the mean annual trends. Results show that the change of temperature over the thirty-four years study period is higher for minimum temperature than maximum temperature. The warming trends began earlier and are more significant at the urban stations than is the case at the sub-urban stations, an indication of the spread of urbanisation from the built-up Central Business District (CBD to the suburbs. The established significant warming trends in minimum temperature, which are likely to reach higher proportions in future, pose serious challenges on climate and urban planning of the city. In particular the effect of increased minimum temperature on human physiological comfort, building and urban design, wind circulation and air pollution needs to be incorporated in future urban planning programmes of the city.

  10. Gallium-cladding compatibility testing plan. Phases 1 and 2: Test plan for gallium corrosion tests. Revision 2

    International Nuclear Information System (INIS)

    Wilson, D.F.; Morris, R.N.

    1998-05-01

    This test plan is a Level-2 document as defined in the Fissile Materials Disposition Program Light-Water-Reactor Mixed-Oxide Fuel Irradiation Test Project Plan. The plan summarizes and updates the projected Phases 1 and 2 Gallium-Cladding compatibility corrosion testing and the following post-test examination. This work will characterize the reactions and changes, if any, in mechanical properties that occur between Zircaloy clad and gallium or gallium oxide in the temperature range 30--700 C

  11. Solution to a fuel-and-cladding rewetting model

    International Nuclear Information System (INIS)

    Olek, S.

    1989-06-01

    A solution by the Wiener-Hopf technique is derived for a model for the rewetting of a nuclear fuel rod. The gap between the fuel and the cladding is modelled by an imperfect contact between the two. A constant heat transfer coefficient is assumed on the wet side, whereas the dry side is assumed to be adiabatic. The solution for the rewetting temperature is in the form of an integral whose integrand contains the model parameters, including the rewetting velocity. Numerical results are presented for a large number of these parameters. It is shown that there are such large values of the rewetting temperature and the gap resistance, or such low values of the initial wall temperature, for which the rewetting velocity is unaffected by the fuel properties. (author) l fig., 7 tabs., 17 refs

  12. Photoemission Studies of Si Quantum Dots with Ge Core: Dots formation, Intermixing at Si-clad/Ge-core interface and Quantum Confinement Effect

    Directory of Open Access Journals (Sweden)

    Yudi Darma

    2008-03-01

    Full Text Available Spherical Si nanocrystallites with Ge core (~20nm in average dot diameter have been prepared by controlling selective growth conditions of low-pressure chemical vapor deposition (LPCVD on ultrathin SiO2 using alternately pure SiH4 and 5% GeH4 diluted with He. XPS results confirm the highly selective growth of Ge on the pregrown Si dots and subsequently complete coverage by Si selective growth on Ge/Si dots. Compositional mixing and the crystallinity of Si dots with Ge core as a function of annealing temperature in the range of 550-800oC has been evaluated by XPS analysis and confirms the diffusion of Ge atoms from Ge core towards the Si clad accompanied by formation of GeOx at the Si clad surface. The first subband energy at the valence band of Si dot with Ge core has been measured as an energy shift at the top of the valence band density of state using XPS. The systematic shift of the valence band maximum towards higher binding energy with progressive deposition in the dot formation indicate the charging effect of dots and SiO2 layer by photoemission during measurements.

  13. Stone cladding engineering

    National Research Council Canada - National Science Library

    Camposinhos, Rui de Sousa

    2014-01-01

    .... Straightforward formulae are provided for computing action on cladding, with special emphasis on the effect of seismic forces, including an extensive general methodology applied to non-structural elements...

  14. Studies of the AA2519 Alloy Hot Rolling Process and Cladding with EN AW-1050A Alloy

    Directory of Open Access Journals (Sweden)

    Płonka B.

    2016-03-01

    Full Text Available The objective of the study was to determine the feasibility of plastic forming by hot rolling of the AA2519 aluminium alloy sheets and cladding these sheets with a layer of the EN AW-1050A alloy. Numerous hot-rolling tests were carried out on the slab ingots to define the parameters of the AA2519 alloy rolling process. It has been established that rolling of the AA2519 alloy should be carried out in the temperature range of 400-440°C. Depending on the required final thickness of the sheet metal, appropriate thickness of the EN AW-1050A alloy sheet, used as a cladding layer, was selected. As a next step, structure and mechanical properties of the resulting AA2519 alloy sheets clad with EN AW-1050A alloy was examined. The thickness of the coating layer was established at 0,3÷0,5mm. Studies covered alloy grain size and the core alloy-cladding material bond strength.

  15. Influences of Cr content and PWHT on microstructure and oxidation behavior of stainless steel weld overlay cladding materials in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Cao, X.Y.; Ding, X.F. [National Center for Materials Service Safety, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing (China); Lu, Y.H., E-mail: lu_yonghao@mater.ustb.edu.cn [National Center for Materials Service Safety, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing (China); Zhu, P. [Suzhou Nuclear Power Research Institute Co. Ltd., 1788 Xihuan Road, 215004 Suzhou (China); Shoji, T. [National Center for Materials Service Safety, University of Science and Technology Beijing, 30 Xueyuan Road, 100083 Beijing (China); Fracture and Reliability Research Institute, Tohoku University, 6-6-01 Aramaki Aoba, Aoba-ku, Sendai City 980-8579 (Japan)

    2015-12-15

    Influences of Cr content and post weld heat treatment (PWHT) on microstructure and oxidation behavior of stainless steel cladding materials in high temperature water were investigated. The amounts of metal oxidized and dissolved were estimated to compare the oxidation behaviors of cladding materials with different Cr contents and PWHT. The results indicated that higher Cr content led to formation of more ferrite content, and carbides were found along δ/γ phase interface after PWHT. Higher Cr content enhanced the pitting resistance and compactness of the oxide film to reduce metal amount oxidized and dissolved, which mitigated the weight changes and the formation of Fe-rich oxides. PWHT promoted more and deeper pitting holes along the δ/γ phase interface due to formation of carbides, which resulted in an increase in metal amount oxidized and dissolved, and were also responsible for more Fe-rich oxides and higher weight changes. - Highlights: • The amounts of metal oxidized and metal dissolved were estimated. • Higher Cr content increased ferrite content and PWHT led to formation of carbides. • PWHT promoted more and deeper pitting holes along the δ/γ phase interface. • Lower Cr content and PWHT promoted the metal amounts oxidized and dissolved. • Lower Cr content and PWHT increased weight changes and Fe-rich film formation.

  16. Cladding Heatup Prediction between Spacer Grids for the Downstream Effect Evaluation

    International Nuclear Information System (INIS)

    Park, J. Y.; Kim, M. W.

    2009-01-01

    Since a recirculation sump clogging issue by debris generated from high energy pipe line break had been invoked as GSI-191 in the US, many researches on this issue have been undertaken. Previous researches on this topic are well summarized in Bang et al. Due to comprehensive nature of the issue, it includes many area of research and one of them is the area of downstream effect evaluation. The downstream effect is involved with adverse effects of debris passing the sump screen on the downstream systems, components and piping including core and it can be further divided into an ex-vessel downstream effect and an in-vessel downstream effect. In the ex-vessel downstream effect, focus is laid on plugging of spray nozzle, wearing and abrasion of moving parts of pump and valve and etc. Otherwise, a debris effect on reactor core is focused in the in-vessel downstream effect. Since debris can be ingested in the core or the systems of downstream of sump screen during recirculation, basically the downstream effect influences long-term core cooling phase. With respect to the in-vessel downstream effect, an up-to-date evaluation methodology is well summarized in a topical report submitted to the US nuclear regulatory commission by the pressurized water reactor owners group (PWROG). The report evaluates various aspects of debris ingestion in the core such as blockage at the core inlet, collection of debris on fuel grids, plating-out of fuel, chemical precipitants, protective coatings effect and etc. Most of them are evaluated qualitative manner based on previous research results and geometrical consideration on fuel rod bundles but some of them are also backed up by quantitative calculations to corroborate the qualitative decisions. One of them is a cladding heatup calculation between spacer grids. This is done to demonstrate that the cladding temperature of a fuel rod between grids with debris deposited on the clad surface in a post- LOCA recirculation environment is below

  17. Temperature dependence of attitude sensor coalignments on the Solar Maximum Mission (SMM)

    Science.gov (United States)

    Pitone, D. S.; Eudell, A. H.; Patt, F. S.

    1990-01-01

    The temperature correlation of the relative coalignment between the fine-pointing sun sensor and fixed-head star trackers measured on the Solar Maximum Mission (SMM) is analyzed. An overview of the SMM, including mission history and configuration, is given. Possible causes of the misalignment variation are discussed, with focus placed on spacecraft bending due to solar-radiation pressure, electronic or mechanical changes in the sensors, uncertainty in the attitude solutions, and mounting-plate expansion and contraction due to thermal effects. Yaw misalignment variation from the temperature profile is assessed, and suggestions for spacecraft operations are presented, involving methods to incorporate flight measurements of the temperature-versus-alignment function and its variance in operational procedures and the spacecraft structure temperatures in the attitude telemetry record.

  18. Influence of partial blockage of a BWR bundle on heat transfer, cladding temperature, and quenching during bottom flooding or top spraying under simulated LOCA conditions

    International Nuclear Information System (INIS)

    Brand, B.; Gaul, H.P.; Sarkar, J.

    1982-01-01

    In a test facility with two parallel boiling water reactor fuel assemblies, experiments were carried out with top spray and bottom flooding, simulating loss-of-coolant accident (LOCA) conditions. The flow area restriction, caused by the ballooning of fuel rod cladding within one of the bundles, was provided by blockage plates, which had reductions of 37% in one case and in a second series 70% of the flow area. Test parameters were system pressure (1, 5, and 10 bars), spray (0.68 and 1.02 m 3 /h) and flooding rates (1.5,2, and 3.3 cm/s), power input (520 and 614 kW), and the initial cladding temperature (600 and 800 0 C at midplane) of the heaters. The test results showed no significant variations from those without blockage, except in the blocked region. An enhancement of heat transfer was observed in a close region downstream from the blockage in cases such as bottom flooding and top spray tests. The results will serve the purpose of code verification for reactor LOCA analysis

  19. Electron beam cladding of titanium on stainless steel plate

    International Nuclear Information System (INIS)

    Tomie, Michio; Abe, Nobuyuki; Yamada, Masanori; Noguchi, Shuichi.

    1990-01-01

    Fundamental characteristics of electron beam cladding was investigated. Titanium foil of 0.2mm thickness was cladded on stainless steel plate of 3mm thickness by scanning electron beam. Surface roughness and cladded layer were analyzed by surface roughness tester, microscope, scanning electron microscope and electron probe micro analyzer. Electron beam conditions were discussed for these fundamental characteristics. It is found that the energy density of the electron beam is one of the most important factor for cladding. (author)

  20. Temperature escalation in PWR fuel rod simulator bundles due to the zircaloy/steam reaction: Test ESBU-1

    International Nuclear Information System (INIS)

    Hagen, S.; Malauschek, H.; Peck, S.O.; Wallenfels, K.P.

    1983-12-01

    This report describes the test conduct and results of the bundle test ESBU-1. The test objective was the investigation of temperature escalation of zircaloy clad fuel rods. The investigation of the temperature escalation is part of a program of out-of-pile experiments, performed within the framework of the PNS Several Fuel Damage Program. The bundle was composed of a 3x3 array of fuel rod simulators surrounded by a zircaloy shroud which was insulated with a ZrO 2 fiber ceramic wrap. The fuel rod simulators comprised a tungsten heater, UO 2 annular pellets, and zircaloy cladding over a 0.4 m heated length. A steam flow of 1 g/s was inlet to the bundle. The most pronounced temperature escalation was found on the central rod. The initial heatup rate of 2 0 C/s at 1100 0 C increased to approximately 6 0 C/s. The maximum temperature reached was 2250 0 C. The following fast temperature decrease was caused by runoff of molten zircaloy. Molten zircaloy swept down the thin cladding oxide layer formed during heatup. The melt dissolved the surface of the UO 2 pellets and refroze as a coherent lump in the lower part of the bundle. The remaining pellets fragmented during cooldown and formed a powdery layer on the refrozen lump. The lump was sectioned posttest at several elevations: Dissolution of UO 2 by the molten zircaloy, interaction between the melt and previously oxidized zircaloy, and oxidation of the melt had occurred. (orig.) [de