WorldWideScience

Sample records for maximum accelerating gradient

  1. Maximum Acceleration Recording Circuit

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1995-01-01

    Coarsely digitized maximum levels recorded in blown fuses. Circuit feeds power to accelerometer and makes nonvolatile record of maximum level to which output of accelerometer rises during measurement interval. In comparison with inertia-type single-preset-trip-point mechanical maximum-acceleration-recording devices, circuit weighs less, occupies less space, and records accelerations within narrower bands of uncertainty. In comparison with prior electronic data-acquisition systems designed for same purpose, circuit simpler, less bulky, consumes less power, costs and analysis of data recorded in magnetic or electronic memory devices. Circuit used, for example, to record accelerations to which commodities subjected during transportation on trucks.

  2. High Gradient Accelerator Research

    International Nuclear Information System (INIS)

    Temkin, Richard

    2016-01-01

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  3. Enhancement of the Accelerating Gradient in Superconducting Microwave Resonators

    Energy Technology Data Exchange (ETDEWEB)

    Checchin, Mattia [Fermilab; Grassellino, Anna [Fermilab; Martinello, Martina [IIT, Chicago; Posen, Sam [Fermilab; Romanenko, Alexander [Fermilab; Zasadzinski, John [IIT, Chicago (main)

    2017-05-01

    The accelerating gradient of superconducting resonators can be enhanced by engineering the thickness of a dirty layer grown at the cavity's rf surface. In this paper the description of the physics behind the accelerating gradient enhancement by meaning of the dirty layer is carried out by solving numerically the the Ginzburg-Landau (GL) equations for the layered system. The calculation shows that the presence of the dirty layer stabilizes the Meissner state up to the lower critical field of the bulk, increasing the maximum accelerating gradient.

  4. Ultra-high gradient compact accelerator developments

    NARCIS (Netherlands)

    Brussaard, G.J.H.; Wiel, van der M.J.

    2004-01-01

    Continued development of relatively compact, although not quite 'table-top', lasers with peak powers in the range up to 100 TW has enabled laser-plasma-based acceleration experiments with amazing gradients of up to 1 TV/m. In order to usefully apply such gradients to 'controlled' acceleration,

  5. Ultimate gradient in solid-state accelerators

    International Nuclear Information System (INIS)

    Whittum, D.H.

    1998-08-01

    The authors recall the motivation for research in high-gradient acceleration and the problems posed by a compact collider. They summarize the phenomena known to appear in operation of a solid-state structure with large fields, and research relevant to the question of the ultimate gradient. They take note of new concepts, and examine one in detail, a miniature particle accelerator based on an active millimeter-wave circuit and parallel particle beams

  6. Relativistic klystron research for high gradient accelerators

    International Nuclear Information System (INIS)

    Allen, M.A.; Callin, R.S.; Deruyter, H.

    1988-06-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron--positron colliders, compact accelerators, and FEL sources. We have attained 200MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here on the design of our first klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 7 figs

  7. Relativistic klystrons for high-gradient accelerators

    International Nuclear Information System (INIS)

    Westenskow, G.A.; Aalberts, D.P.; Boyd, J.K.; Deis, G.A.; Houck, T.L.; Orzechowski, T.J.; Ryne, R.D.; Yu, S.S.; Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Loew, G.A.; Miller, R.H.; Ruth, R.D.; Vlieks, A.E.; Wang, J.W.; Hopkins, D.B.; Sessler, A.M.; Haimson, J.; Mecklenburg, B.

    1991-01-01

    Experimental work is being performed by collaborators at LLNL, SLAC, and LBL to investigate relativistic klystrons as a possible rf power source for future high-gradient accelerators. The authors have learned how to overcome their previously reported problem of high power rf pulse shortening and have achieved peak rf power levels of 330 MW using an 11.4-GHz high-gain tube with multiple output structures. In these experiments the rf pulse is of the same duration as the beam current pulse. In addition, experiments have been performed on two short sections of a high-gradient accelerator using the rf power from a relativistic klystron. An average accelerating gradient of 84 MV/m has been achieved with 80-MW of rf power

  8. Phase gradients in acceleration structures

    International Nuclear Information System (INIS)

    Decker, F.J.; Jobe, R.K.

    1990-05-01

    In linear accelerators with two or more bunches the beam loading of one bunch will influence the energy and energy spread the following bunches. This can be corrected by quickly changing the phase of a travelling wave structure, so that each bunch recieves a slightly different net phase. At the SLAC Linear Collider (SLC) three bunches, two (e + ,e - ) for the high energy collisions and one (e - -scavenger) for producing positrons should sit at different phases, due to their different tasks. The two e - -bunches are extracted from the damping ring at the same cycle time about 60 ns apart. Fast phase switching of the RF to the bunch length compressor in the Ring-To-Linac (RTL) section can produce the necessary advance of the scavenger bunch (about 6 degree in phase). This allows a low energy spread of this third bunch at the e + -production region at 2/3 of the linac length, while the other bunches are not influenced. The principles and possible other applications of this fast phase switching as using it for multi-bunches, as well as the experimental layout for the actual RTL compressor are presented

  9. Ultimate-gradient accelerators physics and prospects

    CERN Document Server

    Skrinsky, Aleksander Nikolayevich

    1995-01-01

    As introduction, the needs and ways for ultimate acceleration gradients are discussed briefly. The Plasma Wake Field Acceleration is analized in the most important details. The structure of specific plasma oscillations and "high energy driver beam SP-plasma" interaction is presented, including computer simulation of the process. Some pratical ways to introduce the necessary mm-scale bunching in driver beam and to arrange sequential energy multiplication are dicussed. The influence of accelerating beam particle - plasma binary collisions is considered, also. As applications of PWFA, the use of proton super-colliders beams (LHC and Future SC) to drive the "multi particle types" accelerator, and the arrangements for the electron-positron TeV range collider are discussed.

  10. High gradient accelerators for linear light sources

    International Nuclear Information System (INIS)

    Barletta, W.A.

    1988-01-01

    Ultra-high gradient radio frequency linacs powered by relativistic klystrons appear to be able to provide compact sources of radiation at XUV and soft x-ray wavelengths with a duration of 1 picosecond or less. This paper provides a tutorial review of the physics applicable to scaling the present experience of the accelerator community to the regime applicable to compact linear light sources. 22 refs., 11 figs., 21 tabs

  11. CERN/KEK: Very high accelerating gradients

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-01-15

    Full text: A world-wide effort is under way to develop linear electron-positron colliders so that physics experiments can be extended into a range of energies where circular machines (necessarily much larger than CERN's 27-kilometre LEP machine) would be crippled by synchrotron radiation. CERN is studying the feasibility of building a 2 TeV machine called CLIC powered not by individual klystrons, but by a high intensity electron 'drive' linac running parallel to the main linac (November 1990, page 7). This drive linac will itself be powered by similar superconducting cavities to those developed for LEP. A high gradient is an obvious design aim for any future high energy linear collider because it makes it shorter and therefore cheaper - the design figure for the CLIC machine is 80 MV/m. The CLIC study group has taken a significant step forward in demonstrating the technical feasibility of their machine by achieving peak and average accelerating gradients of 137 MV/m and 84 MV/m respectively in a short section of accelerating structure during high gradient tests at the Japanese KEK Laboratory last year. This result obtained within the framework of a CERN/KEK collaboration on linear colliders was obtained using a 20-cell accelerating section built at CERN using state-of the- art technology which served both as a model for CLIC studies as well as a prototype for the Japanese Linear Collider studies. The operating frequency of the model accelerating section is 2.6 times lower than the CLIC frequency but was chosen because a high power r.f. source and pulse compression scheme has been developed for this frequency at KEK. Testing CLIC models at 11.4 GHz is however more stringent than at 30 GHz because the chance of electrical breakdown increases as the frequency is lowered. This recent result clearly demonstrates that a gradient of 80 MV/m is feasible.

  12. CERN/KEK: Very high accelerating gradients

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Full text: A world-wide effort is under way to develop linear electron-positron colliders so that physics experiments can be extended into a range of energies where circular machines (necessarily much larger than CERN's 27-kilometre LEP machine) would be crippled by synchrotron radiation. CERN is studying the feasibility of building a 2 TeV machine called CLIC powered not by individual klystrons, but by a high intensity electron 'drive' linac running parallel to the main linac (November 1990, page 7). This drive linac will itself be powered by similar superconducting cavities to those developed for LEP. A high gradient is an obvious design aim for any future high energy linear collider because it makes it shorter and therefore cheaper - the design figure for the CLIC machine is 80 MV/m. The CLIC study group has taken a significant step forward in demonstrating the technical feasibility of their machine by achieving peak and average accelerating gradients of 137 MV/m and 84 MV/m respectively in a short section of accelerating structure during high gradient tests at the Japanese KEK Laboratory last year. This result obtained within the framework of a CERN/KEK collaboration on linear colliders was obtained using a 20-cell accelerating section built at CERN using state-of the- art technology which served both as a model for CLIC studies as well as a prototype for the Japanese Linear Collider studies. The operating frequency of the model accelerating section is 2.6 times lower than the CLIC frequency but was chosen because a high power r.f. source and pulse compression scheme has been developed for this frequency at KEK. Testing CLIC models at 11.4 GHz is however more stringent than at 30 GHz because the chance of electrical breakdown increases as the frequency is lowered. This recent result clearly demonstrates that a gradient of 80 MV/m is feasible

  13. High-gradient compact linear accelerator

    Science.gov (United States)

    Carder, Bruce M.

    1998-01-01

    A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter.

  14. Accelerated gradient methods for constrained image deblurring

    International Nuclear Information System (INIS)

    Bonettini, S; Zanella, R; Zanni, L; Bertero, M

    2008-01-01

    In this paper we propose a special gradient projection method for the image deblurring problem, in the framework of the maximum likelihood approach. We present the method in a very general form and we give convergence results under standard assumptions. Then we consider the deblurring problem and the generality of the proposed algorithm allows us to add a energy conservation constraint to the maximum likelihood problem. In order to improve the convergence rate, we devise appropriate scaling strategies and steplength updating rules, especially designed for this application. The effectiveness of the method is evaluated by means of a computational study on astronomical images corrupted by Poisson noise. Comparisons with standard methods for image restoration, such as the expectation maximization algorithm, are also reported.

  15. Dielectric-Lined High-Gradient Accelerator Structure

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2012-04-24

    operating at 30 GHz. It was shown that the ratio of maximum surface electric field to accelerating field at the metal wall is only 0.35-0.4 for DLA, much smaller than the value 2.2 for HDS; and the ratio of surface magnetic field to accelerating field is 3.0 mA/V for DLA, compared with 3.45 mA/V for HDS. These values bode well for DLA in helping to avoid breakdown and to reducing pulsed surface heating and fatigue. The shunt impedance is found to be 160-175 M{Omega}/m for DLA, as compared to 99 M{Omega}/m for HDS. Conclusions are reached from this project that CVD diamond appears promising as a dielectric with a high threshold for RF breakdown, and that rectangular accelerator structures can be devised using planar CVD diamond elements that could be operated at higher acceleration gradients with low probability of RF breakdown, as compared with corresponding all-metallic structures.

  16. Dielectric-Lined High-Gradient Accelerator Structure

    International Nuclear Information System (INIS)

    Hirshfield, Jay L.

    2012-01-01

    GHz. It was shown that the ratio of maximum surface electric field to accelerating field at the metal wall is only 0.35-0.4 for DLA, much smaller than the value 2.2 for HDS; and the ratio of surface magnetic field to accelerating field is 3.0 mA/V for DLA, compared with 3.45 mA/V for HDS. These values bode well for DLA in helping to avoid breakdown and to reducing pulsed surface heating and fatigue. The shunt impedance is found to be 160-175 M(Omega)/m for DLA, as compared to 99 M(Omega)/m for HDS. Conclusions are reached from this project that CVD diamond appears promising as a dielectric with a high threshold for RF breakdown, and that rectangular accelerator structures can be devised using planar CVD diamond elements that could be operated at higher acceleration gradients with low probability of RF breakdown, as compared with corresponding all-metallic structures.

  17. High-gradient electron accelerator powered by a relativisitic klystron

    International Nuclear Information System (INIS)

    Allen, M.A.; Boyd, J.K.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Haimson, J.; Hoag, H.A.; Hopkins, D.B.; Houck, T.; Koontz, R.F.; Lavine, T.L.; Loew, G.A.; Mecklenburg, B.; Miller, R.H.; Ruth, R.D.; Ryne, R.D.; Sessler, A.M.; Vlieks, A.E.; Wang, J.W.; Westenskow, G.A.; Yu, S.S.

    1989-01-01

    We have used relativistic klystron technology to extract 290 MW of peak power at 11.4 GHz from an induction linac beam, and to power a short 11.4-GHz high-gradient accelerator. We have measured rf phase stability, field emission, and the momentum spectrum of an accelerated electron beam. An average accelerating gradient of 84 MV/m has been achieved with 80 MW of relativistic klystron power

  18. Coupler tuning for constant gradient travelling wave accelerating structures

    International Nuclear Information System (INIS)

    Guo Xingkun; Ma Yanyun; Wang Xiulong

    2013-01-01

    The method of the coupler tuning for the constant gradient traveling wave accelerating structure was described and the formula of coupling coefficient p was deduced on the basis of analyzing the existing methods for the constant impedance traveling wave accelerating structures and coupling-cavity chain equivalent circuits. The method and formula were validated by the simulation result by CST and experiment data. (authors)

  19. High gradient RF test results of S-band and C-band cavities for medical linear accelerators

    Science.gov (United States)

    Degiovanni, A.; Bonomi, R.; Garlasché, M.; Verdú-Andrés, S.; Wegner, R.; Amaldi, U.

    2018-05-01

    TERA Foundation has proposed and designed hadrontherapy facilities based on novel linacs, i.e. high gradient linacs which accelerate either protons or light ions. The overall length of the linac, and therefore its cost, is almost inversely proportional to the average accelerating gradient. With the scope of studying the limiting factors for high gradient operation and to optimize the linac design, TERA, in collaboration with the CLIC Structure Development Group, has conducted a series of high gradient experiments. The main goals were to study the high gradient behavior and to evaluate the maximum gradient reached in 3 and 5.7 GHz structures to direct the design of medical accelerators based on high gradient linacs. This paper summarizes the results of the high power tests of 3.0 and 5.7 GHz single-cell cavities.

  20. Gradient limitation in accelerating structures imposed by surface melting

    International Nuclear Information System (INIS)

    Wilson, Perry B

    2003-01-01

    A rough picture is beginning to emerge of the physics behind the maximum gradient that can be sustained in an accelerating structure without producing surface damage at a level sufficient to cause a measurable change in the rf properties of the structure. Field emission sites are known to trigger the formation of so-called plasma spots in regions of high dc or rf surface electric fields. A single plasma spot has a finite lifetime (∼ 20-50ns) and leaves behind a single crater. In the rf case, some fraction of the electrons emitted from the spot pick up energy from the rf field and back-bombard the area around the spot. Depending on the gradient, pulse length and available rf energy, multiple spots can form in close proximity. The combined back-bombardment power density from such a spot cluster can be sufficient to raise the surface temperature to the melting point in tens of nanoseconds over an area on the order of 100 microns in diameter. This molten area can now support a plasma capable of emitting several kiloamperes of electrons with an average energy of 50-100kV. This is sufficient beam power to collapse the field in a travelling structure in 30 ns or so. The plasma also exerts a tremendous pressure on the molten surface, sufficient to cause a macroscopic amount of material to migrate toward a region of lower surface field. Over time, this process can modify the profile of the iris tip and produce an unacceptable change in the phase shift per cell

  1. Prototyping high-gradient mm-wave accelerating structures

    International Nuclear Information System (INIS)

    Nanni, Emilio A.; Dolgashev, Valery A.; Haase, Andrew; Neilson, Jeffrey; Tantawi, Sami

    2017-01-01

    We present single-cell accelerating structures designed for high-gradient testing at 110 GHz. The purpose of this work is to study the basic physics of ultrahigh vacuum RF breakdown in high-gradient RF accelerators. The accelerating structures are π-mode standing-wave cavities fed with a TM 01 circular waveguide. The structures are fabricated using precision milling out of two metal blocks, and the blocks are joined with diffusion bonding and brazing. The impact of fabrication and joining techniques on the cell geometry and RF performance will be discussed. First prototypes had a measured Q 0 of 2800, approaching the theoretical design value of 3300. The geometry of these accelerating structures are as close as practical to singlecell standing-wave X-band accelerating structures more than 40 of which were tested at SLAC. This wealth of X-band data will serve as a baseline for these 110 GHz tests. Furthermore, the structures will be powered with short pulses from a MW gyrotron oscillator. RF power of 1 MW may allow an accelerating gradient of 400 MeV/m to be reached.

  2. Radiation pressure acceleration: The factors limiting maximum attainable ion energy

    Energy Technology Data Exchange (ETDEWEB)

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Bulanov, S. V. [KPSI, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215 (Japan); A. M. Prokhorov Institute of General Physics RAS, Moscow 119991 (Russian Federation); Esirkepov, T. Zh.; Kando, M. [KPSI, National Institutes for Quantum and Radiological Science and Technology, Kizugawa, Kyoto 619-0215 (Japan); Pegoraro, F. [Physics Department, University of Pisa and Istituto Nazionale di Ottica, CNR, Pisa 56127 (Italy); Leemans, W. P. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Physics Department, University of California, Berkeley, California 94720 (United States)

    2016-05-15

    Radiation pressure acceleration (RPA) is a highly efficient mechanism of laser-driven ion acceleration, with near complete transfer of the laser energy to the ions in the relativistic regime. However, there is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. The tightly focused laser pulses have group velocities smaller than the vacuum light speed, and, since they offer the high intensity needed for the RPA regime, it is plausible that group velocity effects would manifest themselves in the experiments involving tightly focused pulses and thin foils. However, in this case, finite spot size effects are important, and another limiting factor, the transverse expansion of the target, may dominate over the group velocity effect. As the laser pulse diffracts after passing the focus, the target expands accordingly due to the transverse intensity profile of the laser. Due to this expansion, the areal density of the target decreases, making it transparent for radiation and effectively terminating the acceleration. The off-normal incidence of the laser on the target, due either to the experimental setup, or to the deformation of the target, will also lead to establishing a limit on maximum ion energy.

  3. Magnesium diboride coated bulk niobium: a new approach to higher acceleration gradient

    Science.gov (United States)

    Civale, Leonardo; Tan, Teng; Wolak, M.; Xi, Xiaoxing; Tajima, Tsuyoshi

    Bulk niobium Superconducting Radio-Frequency cavities are a leading accelerator technology. Their performance is limited by the cavity loss and maximum acceleration gradient, which are negatively affected by vortex penetration into the superconductor when the peak magnetic field at the cavity wall surface exceeds the vortex penetration field (Hvp). It has been proposed that coating the inner wall of an SRF cavity with superconducting thin films increases Hvp. In this work, we utilized Nb ellipsoids to simulate an inverse SRF cavity and investigate the effect of coating it with magnesium diboride layer on the vortex penetration field. A significant enhancement of Hvp was observed. At 2.8 K, Hvp increased from 2100 Oe for an uncoated Nb ellipsoid to 2700 Oe for a Nb ellipsoid coated with 200 nm thick MgB2 thin film. This finding creates a new route towards achieving higher acceleration gradient in SRF cavity accelerator beyond the theoretical limit of bulk Nb.

  4. Effects of Spatial Gradients on Electron Runaway Acceleration

    Science.gov (United States)

    MacNeice, Peter; Ljepojevic, N. N.

    1996-01-01

    The runaway process is known to accelerate electrons in many laboratory plasmas and has been suggested as an acceleration mechanism in some astrophysical plasmas, including solar flares. Current calculations of the electron velocity distributions resulting from the runaway process are greatly restricted because they impose spatial homogeneity on the distribution. We have computed runaway distributions which include consistent development of spatial gradients in the energetic tail. Our solution for the electron velocity distribution is presented as a function of distance along a finite length acceleration region, and is compared with the equivalent distribution for the infinitely long homogenous system (i.e., no spatial gradients), as considered in the existing literature. All these results are for the weak field regime. We also discuss the severe restrictiveness of this weak field assumption.

  5. High Gradient Accelerating Structures for Carbon Therapy Linac

    Energy Technology Data Exchange (ETDEWEB)

    Kutsaev, Sergey; Agustsson, R.; Faillace, L.; Goel, A.; Mustapha, B.; Nassiri, A.; Ostroumov, P.; Plastun, A.; Savin, E.

    2016-05-01

    Carbon therapy is the most promising among techniques for cancer treatment, as it has demonstrated significant improvements in clinical efficiency and reduced toxicity profiles in multiple types of cancer through much better localization of dose to the tumor volume. RadiaBeam, in collaboration with Argonne National Laboratory, are developing an ultra-high gradient linear accelerator, Advanced Compact Carbon Ion Linac (ACCIL), for the delivery of ion-beams with end-energies up to 450 MeV/u for 12C6+ ions and 250 MeV for protons. In this paper, we present a thorough comparison of standing and travelling wave designs for high gradient S-Band accelerating structures operating with ions at varying velocities, relative to the speed of light, in the range 0.3-0.7. In this paper we will compare these types of accelerating structures in terms of RF, beam dynamics and thermo-mechanical performance.

  6. Measurements of ultimate accelerating gradients in the SLAC disk-loaded structure. Part I

    International Nuclear Information System (INIS)

    Wang, J.W.; Loew, G.A.

    1985-01-01

    The work reported here describes measurements made to study the maximum attainable accelerating gradients in a conventional SLAC disk-loaded accelerator section of the constant-gradient type running at 2856 MHz. The objective was to reach an accelerating gradient of at least 100 MV/m. The accelerating gradient at which the SLAC disk-loaded waveguide runs routinely is approx. 9 MV/m (36 MW tubes without SLED) and approx. 12 MV/m with SLED I (2.5 μsec pulse). To reach 100 MV/m in a conventional 3 m constant-gradient section, one would need a klystron with a peak power output of 900 MW. since such a tube is not available, we decided to use a short standing-wave section in which the resonant fields would be allowed to build up. The design criteria for this section, the fabrication, matching and tuning, the experimental set-up and the results are described below

  7. Coaxial two-channel high-gradient dielectric wakefield accelerator

    Directory of Open Access Journals (Sweden)

    G. V. Sotnikov

    2009-06-01

    Full Text Available A new scheme for a dielectric wakefield accelerator is proposed that employs a cylindrical multizone dielectric structure configured as two concentric dielectric tubes with outer and inner vacuum channels for drive and accelerated bunches. Analytical and numerical studies have been carried out for such coaxial dielectric-loaded structures (CDS for high-gradient acceleration. An analytical theory of wakefield excitation by particle bunches in a multizone CDS has been formulated. Numerical calculations are presented for an example of a CDS using dielectric tubes with dielectric permittivity 5.7, having external diameters of 2.121 and 0.179 mm with inner diameters of 2.095 and 0.1 mm. An annular 5 GeV, 6 nC electron bunch with rms length of 0.035 mm energizes a wakefield on the structure axis having an accelerating gradient of ∼600  MeV/m with a transformer ratio ∼8∶1. The period of the accelerating field is ∼0.33  mm. If the width of the drive bunch channel is decreased, it is possible to obtain an accelerating gradient of >1  GeV/m while keeping the transformer ratio approximately the same. Full numerical simulations using a particle-in-cell code have confirmed results of the linear theory and furthermore have shown the important influence of the quenching wave that restricts the region of the wakefield to within several periods following the drive bunch. Numerical simulations for another example have shown nearly stable transport of drive and accelerated bunches through the CDS, using a short train of drive bunches.

  8. Simulations of Flame Acceleration and DDT in Mixture Composition Gradients

    Science.gov (United States)

    Zheng, Weilin; Kaplan, Carolyn; Houim, Ryan; Oran, Elaine

    2017-11-01

    Unsteady, multidimensional, fully compressible numerical simulations of methane-air in an obstructed channel with spatial gradients in equivalence ratios have been carried to determine the effects of the gradients on flame acceleration and transition to detonation. Results for gradients perpendicular to the propagation direction were considered here. A calibrated, optimized chemical-diffusive model that reproduces correct flame and detonation properties for methane-air over a range of equivalence ratios was derived from a combination of a genetic algorithm with a Nelder-Mead optimization scheme. Inhomogeneous mixtures of methane-air resulted in slower flame acceleration and longer distance to DDT. Detonations were more likely to decouple into a flame and a shock under sharper concentration gradients. Detailed analyses of temperature and equivalence ratio illustrated that vertical gradients can greatly affect the formation of hot spots that initiate detonation by changing the strength of leading shock wave and local equivalence ratio near the base of obstacles. This work is supported by the Alpha Foundation (Grant No. AFC215-20).

  9. Vertical orbit excursion fixed field alternating gradient accelerators

    Directory of Open Access Journals (Sweden)

    Stephen Brooks

    2013-08-01

    Full Text Available Fixed field alternating gradient (FFAG accelerators with vertical orbit excursion (VFFAGs provide a promising alternative design for rings with fixed-field superconducting magnets. They have a vertical magnetic field component that increases with height in the vertical aperture, yielding a skew quadrupole focusing structure. Scaling-type VFFAGs are found with fixed tunes and no intrinsic limitation on momentum range. This paper presents the first multiparticle tracking of such machines. Proton driver rings to accelerate the 800 MeV beam from the ISIS synchrotron are presented, in terms of both magnet field geometry and longitudinal behavior during acceleration with space charge. The 12 GeV ring produces an output power of at least 2.18 MW. Possible applications of VFFAGs to waste transmutation, hadron therapy, and energy-recovery electron accelerators are also discussed.

  10. Experimental and theoretical investigation of high gradient acceleration

    International Nuclear Information System (INIS)

    Wurtele, J.S.; Bekefi, G.; Chen, C.; Chen, S.C.; Temkin, R.J.

    1993-01-01

    This report contains a technical progress summary of the research conducted under the auspices of DOE Grant No. DE-AC02-91-ER40648, ''Experimental and Theoretical Investigations of High Gradient Acceleration''. This grant supports three research tasks: Task A consists of the design, fabrication and testing of a 17GHz RF photocathode gun, which can produce 2ps electron pulses with up to 1nC of charge at 2MeV energy and at a 1OHz repetition rate. Task B supports the testing of high gradient acceleration at 33GHz structure, and Task C comprises theoretical investigations, both in support of the experimental tasks and on critical physics issues for the development of high energy linear colliders

  11. Accelerated maximum likelihood parameter estimation for stochastic biochemical systems

    Directory of Open Access Journals (Sweden)

    Daigle Bernie J

    2012-05-01

    Full Text Available Abstract Background A prerequisite for the mechanistic simulation of a biochemical system is detailed knowledge of its kinetic parameters. Despite recent experimental advances, the estimation of unknown parameter values from observed data is still a bottleneck for obtaining accurate simulation results. Many methods exist for parameter estimation in deterministic biochemical systems; methods for discrete stochastic systems are less well developed. Given the probabilistic nature of stochastic biochemical models, a natural approach is to choose parameter values that maximize the probability of the observed data with respect to the unknown parameters, a.k.a. the maximum likelihood parameter estimates (MLEs. MLE computation for all but the simplest models requires the simulation of many system trajectories that are consistent with experimental data. For models with unknown parameters, this presents a computational challenge, as the generation of consistent trajectories can be an extremely rare occurrence. Results We have developed Monte Carlo Expectation-Maximization with Modified Cross-Entropy Method (MCEM2: an accelerated method for calculating MLEs that combines advances in rare event simulation with a computationally efficient version of the Monte Carlo expectation-maximization (MCEM algorithm. Our method requires no prior knowledge regarding parameter values, and it automatically provides a multivariate parameter uncertainty estimate. We applied the method to five stochastic systems of increasing complexity, progressing from an analytically tractable pure-birth model to a computationally demanding model of yeast-polarization. Our results demonstrate that MCEM2 substantially accelerates MLE computation on all tested models when compared to a stand-alone version of MCEM. Additionally, we show how our method identifies parameter values for certain classes of models more accurately than two recently proposed computationally efficient methods

  12. Accelerating deep neural network training with inconsistent stochastic gradient descent.

    Science.gov (United States)

    Wang, Linnan; Yang, Yi; Min, Renqiang; Chakradhar, Srimat

    2017-09-01

    Stochastic Gradient Descent (SGD) updates Convolutional Neural Network (CNN) with a noisy gradient computed from a random batch, and each batch evenly updates the network once in an epoch. This model applies the same training effort to each batch, but it overlooks the fact that the gradient variance, induced by Sampling Bias and Intrinsic Image Difference, renders different training dynamics on batches. In this paper, we develop a new training strategy for SGD, referred to as Inconsistent Stochastic Gradient Descent (ISGD) to address this problem. The core concept of ISGD is the inconsistent training, which dynamically adjusts the training effort w.r.t the loss. ISGD models the training as a stochastic process that gradually reduces down the mean of batch's loss, and it utilizes a dynamic upper control limit to identify a large loss batch on the fly. ISGD stays on the identified batch to accelerate the training with additional gradient updates, and it also has a constraint to penalize drastic parameter changes. ISGD is straightforward, computationally efficient and without requiring auxiliary memories. A series of empirical evaluations on real world datasets and networks demonstrate the promising performance of inconsistent training. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A constant gradient planar accelerating structure for linac use

    International Nuclear Information System (INIS)

    Kang, Y.W.; Matthews, P.J.; Kustom, R.L.

    1995-01-01

    Planar accelerating millimeter-wave structures have been studied during the last few years at Argonne National Laboratory in collaboration with Technical University of Berlin. The cavity structures are intended to be manufactured by using x-ray lithography microfabrication technology. A complete structure consists of two identical planar half structures put together face-to-face. Since microfabrication technology can make a since-depth indentation on a planar substrate, realizing the constant impedance structure was possible but a constant gradient structure was difficult; changing the group velocity along the structure while maintaining the gap and the depth of the indentation constant was difficult. A constant gradient structure has been devised by introducing a cut between the adjacent cavity cells along the beam axis of each half structure. The width of the cut is varied along the longitudinal axis of the structure to have proper coupling between the cells. The result of the computer simulation on such structures is shown

  14. Role of resistivity gradient in laser-driven ion acceleration

    Directory of Open Access Journals (Sweden)

    L. A. Gizzi

    2011-01-01

    Full Text Available It was predicted that, when a fast electron beam with some angular spread is normally incident on a resistivity gradient, magnetic field generation can occur that can inhibit beam propagation [A. R. Bell et al., Phys. Rev. E 58, 2471 (1998PLEEE81063-651X10.1103/PhysRevE.58.2471]. This effect can have consequences on the laser-driven ion acceleration. In the experiment reported here, we compare ion emission from laser irradiated coated and uncoated metal foils and we show that the ion beam from the coated target has a much smaller angular spread. Detailed hybrid numerical simulations confirm that the inhibition of fast electron transport through the resistivity gradient may explain the observed effect.

  15. Design study on quasi-constant gradient accelerator structure

    International Nuclear Information System (INIS)

    Wang, J.W.; Littmann, B.W.

    1991-09-01

    In order to obtain high luminosity, the Next Linear Collider will operate in multibunch mode with ten or more bunches per bunch train. This leads to the need for detuning and/or damping of higher modes to control multibunch beam breakup. Continued studies of wake fields for a detuned structure with a Gaussian distribution of dipole modes showed encouraging results, and a detuned structure model has been tested experimentally. It is desirable to study the design method for this type of structure, which has a quasi-constant accelerating gradient. This note gives a brief summary of the design procedure. Also, the RF parameters of the structure are evaluated to compare with conventional constant gradient and constant impedance structures

  16. High gradient tests of SLAC Linear Collider Accelerator Structures

    International Nuclear Information System (INIS)

    Wang, J.W.; Deruyter, H.; Eichner, J.; Fant, K.H.; Hoag, H.A.; Koontz, R.F.; Lavine, T.; Loew, G.A.; Loewen, R.; Menegat, L.

    1994-08-01

    This paper describes the current SLAC R ampersand D program to develop room temperature accelerator structures for the Next Linear Collider (NLC). The structures are designed to operate at 11.4 GHz at an accelerating gradient in the range of 50 to 100 MV/m. In the past year a 26 cm constant-impedance traveling-wave section, a 75 cm constant-impedance traveling-wave section, and a 1.8 m traveling-wave section with detuned deflecting modes have been high-power tested. The paper presents a brief description of the RF test setup, the design and manufacturing details of the structures, and a discussion of test results including field emission, RF processing, dark current spectrum and RF breakdown

  17. Plasma acceleration using. mu. -gradient(B) force

    Energy Technology Data Exchange (ETDEWEB)

    Nihei, H; Inoue, N; Ohara, Y; Nishino, O [Tokyo Univ. (Japan). Faculty of Engineering

    1973-12-01

    Several types of high flux beam sources have been developed for the purpose of heating and fuel feeding of the fusion reactor plasma. In our laboratory a duoPIGatron ion source and a ..mu..gradient B plasma accelerator are constructed. The former is used for the production of the beam with the energy of higher than several keV, and the latter is for the lower energy beam. The present paper describes the results of experiments on the ..mu..gradient B plasma accelerator. The absolute intensity of the beam is obtained by calorimetric measurement. The beam intensity increases as the microwave input power increases. Distribution of beam energy is measured with a multigrid electrostatic analyzer. The average energy of ions is about 60 eV and the total current is 0.5 A. In addition to the fusion reactor application, such a type of low energy and high intensity beam source is applicable to the investigation of atomic processes and the space craft propulsion.

  18. Determination of accelerated factors in gradient descent iterations based on Taylor's series

    Directory of Open Access Journals (Sweden)

    Petrović Milena

    2017-01-01

    Full Text Available In this paper the efficiency of accelerated gradient descent methods regarding the way of determination of accelerated factor is considered. Due to the previous researches we assert that the use of Taylor's series of posed gradient descent iteration in calculation of accelerated parameter gives better final results than some other choices. We give a comparative analysis of efficiency of several methods with different approaches in obtaining accelerated parameter. According to the achieved results of numerical experiments we make a conclusion about the one of the most optimal way in defining accelerated parameter in accelerated gradient descent schemes.

  19. Modified Magnicon for High-Gradient Accelerator R and D

    International Nuclear Information System (INIS)

    Hirshfield, Jay L.

    2011-01-01

    Analysis, and low-power cold tests are described on a modified design intended for the Ka-band pulsed magnicon now in use for high-gradient accelerator R and D and rare elementary particle searches at the Yale University Beam Physics Laboratory. The modification is mainly to the output cavity of the magnicon, which presently operates in the TM310 mode. It is proposed to substitute for this a dual-chamber TE311 cavity structure. The first chamber is to extract about 40% of the beam power (about 25 MW) at 34.272 GHz, while the second chamber is to convey the power to four WR-28 output waveguides. Minor design changes are also proposed for the penultimate 11.424 GHz cavity and the beam collector. The intention of these design changes is to allow the magnicon to operate reliably 24/7, with minor sensitivity to operating parameters.

  20. Modified Magnicon for High-Gradient Accelerator R&D

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2011-12-19

    Analysis, and low-power cold tests are described on a modified design intended for the Ka-band pulsed magnicon now in use for high-gradient accelerator R and D and rare elementary particle searches at the Yale University Beam Physics Laboratory. The modification is mainly to the output cavity of the magnicon, which presently operates in the TM310 mode. It is proposed to substitute for this a dual-chamber TE311 cavity structure. The first chamber is to extract about 40% of the beam power (about 25 MW) at 34.272 GHz, while the second chamber is to convey the power to four WR-28 output waveguides. Minor design changes are also proposed for the penultimate 11.424 GHz cavity and the beam collector. The intention of these design changes is to allow the magnicon to operate reliably 24/7, with minor sensitivity to operating parameters.

  1. Observation of 690 MV m-1 Electron Accelerating Gradient with a Laser-Driven Dielectric Microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, K.P.; Wu, Z.; /SLAC; Cowan, B.M.; /Tech-X, Boulder; Hanuka, A.; /SLAC /Technion; Makasyuk, I.V.; /SLAC; Peralta, E.A.; Soong, K.; Byer, R.L.; /Stanford U.; England, R.J.; /SLAC

    2016-06-27

    Acceleration of electrons using laser-driven dielectric microstructures is a promising technology for the miniaturization of particle accelerators. In this work, experimental results are presented of relativistic electron acceleration with 690±100 MVm-1 gradient. This is a record-high accelerating gradient for a dielectric microstructure accelerator, nearly doubling the previous record gradient. To reach higher acceleration gradients the present experiment employs 90 fs duration laser pulses.

  2. RF processing of an S-band high gradient accelerator unit

    International Nuclear Information System (INIS)

    Morita, S.

    1994-01-01

    A 3m-long S-band accelerating structure is used in 1.54 GeV Linac of Accelerator Test Facility. The accelerating structure should be processed up to 200 MW which produce 52 MV/m accelerating gradient. The process of RF processing is described. (author)

  3. Acceleration of monte Carlo solution by conjugate gradient method

    International Nuclear Information System (INIS)

    Toshihisa, Yamamoto

    2005-01-01

    The conjugate gradient method (CG) was applied to accelerate Monte Carlo solutions in fixed source problems. The equilibrium model based formulation enables to use CG scheme as well as initial guess to maximize computational performance. This method is available to arbitrary geometry provided that the neutron source distribution in each subregion can be regarded as flat. Even if it is not the case, the method can still be used as a powerful tool to provide an initial guess very close to the converged solution. The major difference of Monte Carlo CG to deterministic CG is that residual error is estimated using Monte Carlo sampling, thus statistical error exists in the residual. This leads to a flow diagram specific to Monte Carlo-CG. Three pre-conditioners were proposed for CG scheme and the performance was compared with a simple 1-D slab heterogeneous test problem. One of them, Sparse-M option, showed an excellent performance in convergence. The performance per unit cost was improved by four times in the test problem. Although direct estimation of efficiency of the method is impossible mainly because of the strong problem-dependence of the optimized pre-conditioner in CG, the method seems to have efficient potential as a fast solution algorithm for Monte Carlo calculations. (author)

  4. High gradient test of the C-band choke-mode type accelerating structure

    International Nuclear Information System (INIS)

    Inagaki, T.; Shintake, T.; Baba, H.; Togawa, K.; Onoe, K.; Marechal, X.; Takashima, T.; Takahashi, S.; Matsumoto, H.

    2004-01-01

    The C-band (5712 MHz) choke-mode type accelerating structure will be used for SPring-8 Compact SASE-FEL Source (SCSS). To make the accelerator length short, we designed the field gradient as high as 40 MV/m. Since it is higher gradient than other traditional electron accelerators, we have to carefully check its performance (RF breakdown, dark current emission, etc.) in the high gradient test stand. The first experiment will be scheduled in this summer. In this paper, we will describe the preparation progress for the test. (author)

  5. The Hengill geothermal area, Iceland: Variation of temperature gradients deduced from the maximum depth of seismogenesis

    Science.gov (United States)

    Foulger, G. R.

    1995-04-01

    Given a uniform lithology and strain rate and a full seismic data set, the maximum depth of earthquakes may be viewed to a first order as an isotherm. These conditions are approached at the Hengill geothermal area S. Iceland, a dominantly basaltic area. The likely strain rate calculated from thermal and tectonic considerations is 10 -15 s -1, and temperature measurements from four drill sites within the area indicate average, near-surface geothermal gradients of up to 150 °C km -1 throughout the upper 2 km. The temperature at which seismic failure ceases for the strain rates likely at the Hengill geothermal area is determined by analogy with oceanic crust, and is about 650 ± 50 °C. The topographies of the top and bottom of the seismogenic layer were mapped using 617 earthquakes located highly accurately by performing a simultaneous inversion for three-dimensional structure and hypocentral parameters. The thickness of the seismogenic layer is roughly constant and about 3 km. A shallow, aseismic, low-velocity volume within the spreading plate boundary that crosses the area occurs above the top of the seismogenic layer and is interpreted as an isolated body of partial melt. The base of the seismogenic layer has a maximum depth of about 6.5 km beneath the spreading axis and deepens to about 7 km beneath a transform zone in the south of the area. Beneath the high-temperature part of the geothermal area, the maximum depth of earthquakes may be as shallow as 4 km. The geothermal gradient below drilling depths in various parts of the area ranges from 84 ± 9 °Ckm -1 within the low-temperature geothermal area of the transform zone to 138 ± 15 °Ckm -1 below the centre of the high-temperature geothermal area. Shallow maximum depths of earthquakes and therefore high average geothermal gradients tend to correlate with the intensity of the geothermal area and not with the location of the currently active spreading axis.

  6. Ultimate Gradient Limitation in Niobium Superconducting Accelerating Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Checchin, Mattia [Illinois Inst. of Technology, Chicago, IL (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Grassellino, Anna [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Martinello, Martina [Illinois Inst. of Technology, Chicago, IL (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Posen, Sam [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Romanenko, Alexander [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Zasadzinski, John [Illinois Inst. of Technology, Chicago, IL (United States)

    2016-06-01

    The present study is addressed to the theoretical description of the ultimate gradient limitation in SRF cavities. Our intent is to exploit experimental data to confirm models which provide feed-backs on how to improve the current state-of-art. New theoretical insight on the cavities limiting factor can be suitable to improve the quench field of N-doped cavities, and therefore to take advantage of high Q0 at high gradients.

  7. Simultaneous measurement of gravity acceleration and gravity gradient with an atom interferometer

    International Nuclear Information System (INIS)

    Sorrentino, F.; Lien, Y.-H.; Rosi, G.; Tino, G. M.; Bertoldi, A.; Bodart, Q.; Cacciapuoti, L.; Angelis, M. de; Prevedelli, M.

    2012-01-01

    We demonstrate a method to measure the gravitational acceleration with a dual cloud atom interferometer; the use of simultaneous atom interferometers reduces the effect of seismic noise on the gravity measurement. At the same time, the apparatus is capable of accurate measurements of the vertical gravity gradient. The ability to determine the gravity acceleration and gravity gradient simultaneously and with the same instrument opens interesting perspectives in geophysical applications.

  8. THE MAXIMUM EFFECT OF DEEP LAKES ON TEMPERATURE PROFILES – DETERMINATION OF THE GEOTHERMAL GRADIENT

    Directory of Open Access Journals (Sweden)

    Eppelbaum L. V.

    2009-07-01

    Full Text Available Understanding the climate change processes on the basis of geothermal observations in boreholes is an important and at the same time high-intricate problem. Many non-climatic effects could cause changes in ground surface temperatures. In this study we investigate the effects of deep lakes on the borehole temperature profilesobserved within or in the vicinity of the lakes. We propose a method based on utilization of Laplace equation with nonuniform boundary conditions. The proposed method makes possible to estimate the maximum effect of deep lakes (here the term "deep lake" means that long term mean annual temperature of bottom sediments can beconsidered as a constant value on the borehole temperature profiles. This method also allows one to estimate an accuracy of the determination of the geothermal gradient.

  9. High gradient experiment by accelerator test facility for Japan Linear Collider

    International Nuclear Information System (INIS)

    Takeda, Seishi; Akemoto, Mitsuo; Hayano, Hitoshi; Naito, Takashi; Matsumoto, Hiroshi

    1991-01-01

    For the e + e - linear colliders in TeV energy region such as the Japan Linear Collider (JLC), the accelerating gradient will be one of the important parameters affecting the over all design of main linacs. The gradient determines the accelerating structures, RF frequencies, peak power, AC power, total length and cost. High gradient experiment by using a traveling wave structure in S-band frequencies is presented. Discussions are given about the dependence of dark current and structure length. As one of the parameters indicating the quality of the structure, the multiplication factor η has been proposed

  10. FPGA Hardware Acceleration of a Phylogenetic Tree Reconstruction with Maximum Parsimony Algorithm

    OpenAIRE

    BLOCK, Henry; MARUYAMA, Tsutomu

    2017-01-01

    In this paper, we present an FPGA hardware implementation for a phylogenetic tree reconstruction with a maximum parsimony algorithm. We base our approach on a particular stochastic local search algorithm that uses the Progressive Neighborhood and the Indirect Calculation of Tree Lengths method. This method is widely used for the acceleration of the phylogenetic tree reconstruction algorithm in software. In our implementation, we define a tree structure and accelerate the search by parallel an...

  11. SLAC High Gradient Testing of a KEK X-Band Accelerator Structure

    International Nuclear Information System (INIS)

    Loewen, Rod

    2000-01-01

    The high accelerating gradients required for future linear colliders demands a better study of field emission and RF breakdown in accelerator structures. Changes in structure geometry, vacuum pumping, fabrication methods, and surface finish can all potentially impact the conditioning process, dark current emission, and peak RF power handling capability. Recent tests at SLAC of KEK's ''M2'' travelling wave x-band accelerator section provides an opportunity to investigate some of these effects by comparing its performance to previously high power tested structures at SLAC. In addition to studying ultimate power limitations, this test also demonstrates the use of computer automated conditioning to reach practical, achievable gradients

  12. Development of High-Gradient Dielectric Laser-Driven Particle Accelerator Structures

    Energy Technology Data Exchange (ETDEWEB)

    Byer, Robert L. [Stanford Univ., CA (United States). Edward L. Ginzton Lab.

    2013-11-07

    The thrust of Stanford's program is to conduct research on high-gradient dielectric accelerator structures driven with high repetition-rate, tabletop infrared lasers. The close collaboration between Stanford and SLAC (Stanford Linear Accelerator Center) is critical to the success of this project, because it provides a unique environment where prototype dielectric accelerator structures can be rapidly fabricated and tested with a relativistic electron beam.

  13. Optical design for increased interaction length in a high gradient dielectric laser accelerator

    OpenAIRE

    Cesar, D.; Maxson, J.; Musumeci, P.; Shen, X.; England, R. J.; Wootton, K. P.

    2018-01-01

    We present a methodology for designing and measuring pulse front tilt in an ultrafast laser for use in dielectric laser acceleration. Previous research into dielectric laser accelerating modules has focused on measuring high accelerating gradients in novel structures, but has done so only for short electron-laser coupling lengths. Here we demonstrate an optical design to extend the laser-electron interaction to 1mm.

  14. The chirped-pulse inverse free-electron laser: A high-gradient vacuum laser accelerator

    International Nuclear Information System (INIS)

    Hartemann, F.V.; Landahl, E.C.; Troha, A.L.; Van Meter, J.R.; Baldis, H.A.; Freeman, R.R.; Luhmann, N.C. Jr.; Song, L.; Kerman, A.K.; Yu, D.U.

    1999-01-01

    The inverse free-electron laser (IFEL) interaction is studied theoretically and computationally in the case where the drive laser intensity approaches the relativistic regime, and the pulse duration is only a few optical cycles long. The IFEL concept has been demonstrated as a viable vacuum laser acceleration process; it is shown here that by using an ultrashort, ultrahigh-intensity drive laser pulse, the IFEL interaction bandwidth and accelerating gradient are increased considerably, thus yielding large energy gains. Using a chirped pulse and negative dispersion focusing optics allows one to take further advantage of the laser optical bandwidth and produce a chromatic line focus maximizing the gradient. The combination of these novel ideas results in a compact vacuum laser accelerator capable of accelerating picosecond electron bunches with a high gradient (GeV/m) and very low energy spread. copyright 1999 American Institute of Physics

  15. Improved voltage gradient control system for electrostatic accelerators

    International Nuclear Information System (INIS)

    Jones, N.L.; Dittner, P.F.

    1993-01-01

    An improved voltage gradient control system has been designed and installed in the EN tandem at the Oak Ridge National Laboratory. An improved design was sought due to high failure rates, increasing replacement parts and labor costs, and decreasing availability of the original carbon film resistor systems supplied for the EN-12 at ORNL. The resulting system utilizes two inexpensive, readily available, metal oxide resistors in series between each plane. They are protected by coaxial stainless steel shielding tubes, and spark gaps across individual resistors and adjacent pairs. The new resistors mount atop the column bridge in a compact configuration. This permits easy access both to the resistors and to the interior column components such as the belt. Well controlled gradients now provide improved machine performance. Both initial capital outlay and future maintenance result in reduced costs. Design, installation, performance, and cost details are reported. (orig.)

  16. Differences in hamstring activation characteristics between the acceleration and maximum-speed phases of sprinting.

    Science.gov (United States)

    Higashihara, Ayako; Nagano, Yasuharu; Ono, Takashi; Fukubayashi, Toru

    2018-06-01

    This study aimed to investigate activation characteristics of the biceps femoris long head (BFlh) and semitendinosus (ST) muscles during the acceleration and maximum-speed phases of sprinting. Lower-extremity kinematics and electromyographic (EMG) activities of the BFlh and ST muscles were examined during the acceleration sprint and maximum-speed sprint in 13 male sprinters during an overground sprinting. Differences in hamstring activation during each divided phases and in the hip and knee joint angles and torques at each time point of the sprinting gait cycle were determined between two sprints. During the early stance of the acceleration sprint, the hip extension torque was significantly greater than during the maximum-speed sprint, and the relative EMG activation of the BFlh muscle was significantly higher than that of the ST muscle. During the late stance and terminal mid-swing of maximum-speed sprint, the knee was more extended and a higher knee flexion moment was observed compared to the acceleration sprint, and the ST muscle showed higher activation than that of the BFlh. These results indicate that the functional demands of the medial and lateral hamstring muscles differ between two different sprint performances.

  17. High-gradient two-beam electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L. [Omega-P, Inc., New Haven, CT (United States)

    2014-11-04

    The main goal for this project was to design, build, and evaluate a detuned-cavity, collinear, two-beam accelerator structure. Testing was to be at the Yale University Beam Physics Laboratory, under terms of a sub-grant from Omega-P to Yale. Facilities available at Yale for this project include a 6-MeV S-band RF gun and associated beam line for forming and transporting a ~1 A drive beam , a 300 kV beam source for use as a test beam, and a full panoply of laboratory infrastructure and test equipment. During the first year of this project, availability and functionality of the 6-MeV drive beam and 300 kV test beam were confirmed, and the beam line was restored to a layout to be used with the two-beam accelerator project. Major efforts during the first year were also focused on computational design and simulation of the accelerator structure itself, on beam dynamics, and on beam transport. Effort during the second year was focussed on building and preparing to test the structure, including extensive cold testing. Detailed results from work under this project have been published in twelve archival journal articles, listed in Section IV of the technical report.

  18. Assessment of fluctuating pressure gradient using acceleration spectra in near wall flows

    Science.gov (United States)

    Cadel, Daniel; Lowe, K. Todd

    2015-11-01

    Separation of contributions to the fluctuating acceleration from pressure gradient fluctuations and viscous shear fluctuations in the frequency domain is examined in a turbulent boundary layer. Past work leveraging turbulent accelerations for pressure gradient measurements has neglected the viscous shear term from the momentum equation--an invalid assumption in the case of near wall flows. The present study seeks to account for the influence of the viscous shear term and spectrally reject its contribution, which is thought to be concentrated at higher frequencies. Spectra of velocity and acceleration fluctuations in a flat plate, zero pressure gradient turbulent boundary layer at a momentum thickness Reynolds number of 7500 are measured using a spatially resolving three-component laser Doppler velocimeter. This canonical case data is applied for validation of the spectral approach for future application in more complex aerodynamic flows.

  19. Study of the variation of maximum beam size with quadrupole gradient in the FMIT drift tube linac

    International Nuclear Information System (INIS)

    Boicourt, G.P.; Jameson, R.A.

    1981-01-01

    The sensitivity of maximum beam size to input mismatch is studied as a function of quadrupole gradient in a short, high-current, drift-tube linac (DTL), for two presriptions: constant phase advance with constant filling factor; and constant strength with constant-length quads. Numerical study using PARMILA shows that the choice of quadrupole strength that minimizes the maximum transverse size of the matched beam through subsequent cells of the linac tends to be most sensitive to input mismatch. However, gradients exist nearby that result in almost-as-small beams over a suitably broad range of mismatch. The study was used to choose the initial gradient for the DTL portion of the Fusion Material Irradiation Test (FMIT) linac. The matching required across quad groups is also discussed

  20. An efficient implementation of maximum likelihood identification of LTI state-space models by local gradient search

    NARCIS (Netherlands)

    Bergboer, N.H.; Verdult, V.; Verhaegen, M.H.G.

    2002-01-01

    We present a numerically efficient implementation of the nonlinear least squares and maximum likelihood identification of multivariable linear time-invariant (LTI) state-space models. This implementation is based on a local parameterization of the system and a gradient search in the resulting

  1. Theory of factors limiting high gradient operation of warm accelerating structures

    Energy Technology Data Exchange (ETDEWEB)

    Nusinovich, Gregory S. [Univ. of Maryland, College Park, MD (United States)

    2014-07-22

    This report consists of two parts. In the first part we describe a study of the heating of microprotrusions on surfaces of accelerating structures. This ;process is believed to lead to breakdown in these structures. Our study revealed that for current accelerator parameters melting should not occur due to space charge limitations of the current emitted by a protrusion. The second part describes a novel concept to develop THz range sources based on harmonic cyclotron masers for driving future colliders. This work was stimulated by a recent request of SLAC to develop high power, high-efficiency sources of sub-THz radiation for future high-gradient accelerators.

  2. Spherical gradient-index lenses as perfect imaging and maximum power transfer devices.

    Science.gov (United States)

    Gordon, J M

    2000-08-01

    Gradient-index lenses can be viewed from the perspectives of both imaging and nonimaging optics, that is, in terms of both image fidelity and achievable flux concentration. The simple class of gradient-index lenses with spherical symmetry, often referred to as modified Luneburg lenses, is revisited. An alternative derivation for established solutions is offered; the method of Fermat's strings and the principle of skewness conservation are invoked. Then these nominally perfect imaging devices are examined from the additional vantage point of power transfer, and the degree to which they realize the thermodynamic limit to flux concentration is determined. Finally, the spherical gradient-index lens of the fish eye is considered as a modified Luneburg lens optimized subject to material constraints.

  3. Improving a maximum horizontal gradient algorithm to determine geological body boundaries and fault systems based on gravity data

    Science.gov (United States)

    Van Kha, Tran; Van Vuong, Hoang; Thanh, Do Duc; Hung, Duong Quoc; Anh, Le Duc

    2018-05-01

    The maximum horizontal gradient method was first proposed by Blakely and Simpson (1986) for determining the boundaries between geological bodies with different densities. The method involves the comparison of a center point with its eight nearest neighbors in four directions within each 3 × 3 calculation grid. The horizontal location and magnitude of the maximum values are found by interpolating a second-order polynomial through the trio of points provided that the magnitude of the middle point is greater than its two nearest neighbors in one direction. In theoretical models of multiple sources, however, the above condition does not allow the maximum horizontal locations to be fully located, and it could be difficult to correlate the edges of complicated sources. In this paper, the authors propose an additional condition to identify more maximum horizontal locations within the calculation grid. This additional condition will improve the method algorithm for interpreting the boundaries of magnetic and/or gravity sources. The improved algorithm was tested on gravity models and applied to gravity data for the Phu Khanh basin on the continental shelf of the East Vietnam Sea. The results show that the additional locations of the maximum horizontal gradient could be helpful for connecting the edges of complicated source bodies.

  4. Measurement of asymmetric optical pumping of ions accelerating in a magnetic-field gradient

    International Nuclear Information System (INIS)

    Sun Xuan; Scime, Earl; Miah, Mahmood; Cohen, Samuel; Skiff, Frederick

    2004-01-01

    We report observations of asymmetric optical pumping of argon ions accelerating in a magnetic-field gradient. The signature is a difference in the laser-induced-fluorescence emission amplitude from a pair of Zeeman-split states. A model that reproduces the dependence of the asymmetry on magnetic-field and ion-velocity gradients is described. With the model, the fluorescence intensity ratio provides a new method of measuring ion collisionality. This phenomenon has implications for interpreting stellar plasma spectroscopy data which often exhibit unequal Zeeman state intensities

  5. Measurement of Asymmetric Optical Pumping of Ions Accelerating in a Magnetic-field Gradient

    Energy Technology Data Exchange (ETDEWEB)

    Xuan Sun; Earl Scime; Mahmood Miah; Samuel Cohen; Frederick Skiff

    2004-10-28

    We report observations of asymmetric optical pumping of argon ions accelerating in a magnetic field gradient. The signature is a difference in the laser-induced-fluorescence (LIF) emission amplitude from a pair of Zeeman-split states. A model that reproduces the dependence of the asymmetry on magnetic-field and ion-velocity gradients is described. With the model, the fluorescence intensity ratio provides a new method of measuring ion collisionality. This phenomenon has implications for interpreting stellar plasma spectroscopy data which often exhibit unequal Zeeman state intensities.

  6. Measurement of Asymmetric Optical Pumping of Ions Accelerating in a Magnetic-field Gradient

    International Nuclear Information System (INIS)

    Xuan Sun; Earl Scime; Mahmood Miah; Samuel Cohen; Frederick Skiff

    2004-01-01

    We report observations of asymmetric optical pumping of argon ions accelerating in a magnetic field gradient. The signature is a difference in the laser-induced-fluorescence (LIF) emission amplitude from a pair of Zeeman-split states. A model that reproduces the dependence of the asymmetry on magnetic-field and ion-velocity gradients is described. With the model, the fluorescence intensity ratio provides a new method of measuring ion collisionality. This phenomenon has implications for interpreting stellar plasma spectroscopy data which often exhibit unequal Zeeman state intensities

  7. Time at which the maximum of a random acceleration process is reached

    International Nuclear Information System (INIS)

    Majumdar, Satya N; Rosso, Alberto; Zoia, Andrea

    2010-01-01

    We study the random acceleration model, which is perhaps one of the simplest, yet nontrivial, non-Markov stochastic processes, and is key to many applications. For this non-Markov process, we present exact analytical results for the probability density p(t m |T) of the time t m at which the process reaches its maximum, within a fixed time interval [0, T]. We study two different boundary conditions, which correspond to the process representing respectively (i) the integral of a Brownian bridge and (ii) the integral of a free Brownian motion. Our analytical results are also verified by numerical simulations.

  8. Orbit and optics distortion in fixed field alternating gradient muon accelerators

    Directory of Open Access Journals (Sweden)

    Shinji Machida

    2007-11-01

    Full Text Available In a linear nonscaling fixed field alternating gradient (FFAG accelerator, betatron tunes vary over a wide range and a beam has to cross integer and half-integer tunes several times. Although it is plausible to say that integer and half-integer resonances are not harmful if the crossing speed is fast, no quantitative argument exists. With tracking simulation, we studied orbit and optics distortion due to alignment and magnet errors. It was found that the concept of integer and half-integer resonance crossing is irrelevant to explain beam behavior in a nonscaling FFAG when acceleration is fast and betatron tunes change quickly. In a muon FFAG accelerator, it takes 17 turns for acceleration and the betatron tunes change more than 10, for example. Instead, the orbit and optics distortion is excited by random dipole and quadrupole kicks. The latter causes beam size growth because the beam starts tumbling in phase space, but not necessarily with emittance growth.

  9. A linear accelerator power amplification system for high gradient structure research

    International Nuclear Information System (INIS)

    Haimson, J.; Mecklenburg, B.

    1999-01-01

    The ongoing development of linear collider high power RF sources and pulse compression systems has resulted in substantial progress towards a goal of providing a peak RF power level of approximately 250 MW at the input of the accelerator structure. While the immediate development and the high power testing of specialized waveguide components required for power transmission at these high levels have proceeded expeditiously due to the availability of resonant ring systems, the testing of high gradient accelerator structures at very high power levels, and the investigation of coupler cavity RF breakdown problems have, typically, been curtailed due to the unavailability of suitable 200 to 300 MW RF test facilities. We describe herein a compact, high peak power amplification system based on a dual hybrid bridge configuration that avoids the need for power splitters at the accelerator dual feed couplers, and also provides a convenient interface for installing high gradient accelerator test structures. Design parameters are presented for a proposed power amplification system that makes use of a 75 MW, 1/2 μs flat-top RF source to produce 280 MW, 1/4 μs flat-top power for testing dual feed TW experimental accelerator sections

  10. Tune-stabilized, non-scaling, fixed-field, alternating gradient accelerator

    Science.gov (United States)

    Johnstone, Carol J [Warrenville, IL

    2011-02-01

    A FFAG is a particle accelerator having turning magnets with a linear field gradient for confinement and a large edge angle to compensate for acceleration. FODO cells contain focus magnets and defocus magnets that are specified by a number of parameters. A set of seven equations, called the FFAG equations relate the parameters to one another. A set of constraints, call the FFAG constraints, constrain the FFAG equations. Selecting a few parameters, such as injection momentum, extraction momentum, and drift distance reduces the number of unknown parameters to seven. Seven equations with seven unknowns can be solved to yield the values for all the parameters and to thereby fully specify a FFAG.

  11. HIGH-GRADIENT, HIGH-TRANSFORMER-RATIO, DIELECTRIC WAKE FIELD ACCELERATOR

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L

    2012-04-12

    The Phase I work reported here responds to DoE'ss stated need "...to develop improved accelerator designs that can provide very high gradient (>200 MV/m for electrons...) acceleration of intense bunches of particles." Omega-P's approach to this goal is through use of a ramped train of annular electron bunches to drive a coaxial dielectric wakefield accelerator (CDWA) structure. This approach is a direct extension of the CDWA concept from acceleration in wake fields caused by a single drive bunch, to the more efficient acceleration that we predict can be realized from a tailored (or ramped) train of several drive bunches. This is possible because of a much higher transformer ratio for the latter. The CDWA structure itself has a number of unique features, including: a high accelerating gradient G, potentially with G > 1 GeV/m; continuous energy coupling from drive to test bunches without transfer structures; inherent transverse focusing forces for particles in the accelerated bunch; highly stable motion of high charge annular drive bunches; acceptable alignment tolerances for a multi-section system. What is new in the present approach is that the coaxial dielectric structure is now to be energized by-not one-but by a short train of ramped annular-shaped drive bunches moving in the outer coaxial channel of the structure. We have shown that this allows acceleration of an electron bunch traveling along the axis in the inner channel with a markedly higher transformer ratio T than for a single drive bunch. As described in this report, the structure will be a GHz-scale prototype with cm-scale transverse dimensions that is expected to confirm principles that can be applied to the design of a future THz-scale high gradient (> 500 MV/m) accelerator with mm-scale transverse dimensions. We show here a new means to significantly increase the transformer ratio T of the device, and thereby to significantly improve its suitability as a flexible and effective component in

  12. Free-electron laser as a power source for a high-gradient accelerating structure

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1982-02-01

    A two beam colliding linac accelerator is proposed in which one beam is intense (approx. = 1KA), of low energy (approx. = MeV), and long (approx. = 100 ns) and provides power at 1 cm wavelength through a free-electron-laser-mechanism to the second beam of a few electrons (approx. = 10 11 ), which gain energy at the rate of 250 MeV/m in a high-gradient accelerating structure and hence reach 375 GeV in 1.5 km. The intense beam is given energy by induction units and gains, and losses by radiation, 250 keV/m thus supplying 25 J/m to the accelerating structure. The luminosity, L, of two such linacs would be, at a repetition rate of 1 kHz, L = 4. x 10 32 cm -2 s -1

  13. Accelerated gradient methods for total-variation-based CT image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, Jakob H.; Hansen, Per Christian [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Informatics and Mathematical Modeling; Jensen, Tobias L.; Jensen, Soeren H. [Aalborg Univ. (Denmark). Dept. of Electronic Systems; Sidky, Emil Y.; Pan, Xiaochuan [Chicago Univ., Chicago, IL (United States). Dept. of Radiology

    2011-07-01

    Total-variation (TV)-based CT image reconstruction has shown experimentally to be capable of producing accurate reconstructions from sparse-view data. In particular TV-based reconstruction is well suited for images with piecewise nearly constant regions. Computationally, however, TV-based reconstruction is demanding, especially for 3D imaging, and the reconstruction from clinical data sets is far from being close to real-time. This is undesirable from a clinical perspective, and thus there is an incentive to accelerate the solution of the underlying optimization problem. The TV reconstruction can in principle be found by any optimization method, but in practice the large scale of the systems arising in CT image reconstruction preclude the use of memory-intensive methods such as Newton's method. The simple gradient method has much lower memory requirements, but exhibits prohibitively slow convergence. In the present work we address the question of how to reduce the number of gradient method iterations needed to achieve a high-accuracy TV reconstruction. We consider the use of two accelerated gradient-based methods, GPBB and UPN, to solve the 3D-TV minimization problem in CT image reconstruction. The former incorporates several heuristics from the optimization literature such as Barzilai-Borwein (BB) step size selection and nonmonotone line search. The latter uses a cleverly chosen sequence of auxiliary points to achieve a better convergence rate. The methods are memory efficient and equipped with a stopping criterion to ensure that the TV reconstruction has indeed been found. An implementation of the methods (in C with interface to Matlab) is available for download from http://www2.imm.dtu.dk/~pch/TVReg/. We compare the proposed methods with the standard gradient method, applied to a 3D test problem with synthetic few-view data. We find experimentally that for realistic parameters the proposed methods significantly outperform the standard gradient method. (orig.)

  14. The Hengill geothermal area, Iceland: variation of temperature gradients deduced from the maximum depth of seismogenesis

    Science.gov (United States)

    Foulger, G.R.

    1995-01-01

    Given a uniform lithology and strain rate and a full seismic data set, the maximum depth of earthquakes may be viewed to a first order as an isotherm. These conditions are approached at the Hengill geothermal area, S. Iceland, a dominantly basaltic area. The temperature at which seismic failure ceases for the strain rates likely at the Hengill geothermal area is determined by analogy with oceanic crust, and is about 650 ?? 50??C. The topographies of the top and bottom of the seismogenic layer were mapped using 617 earthquakes. The thickness of the seismogenic layer is roughly constant and about 3 km. A shallow, aseismic, low-velocity volume within the spreading plate boundary that crosses the area occurs above the top of the seismogenic layer and is interpreted as an isolated body of partial melt. The base of the seismogenic layer has a maximum depth of about 6.5 km beneath the spreading axis and deepens to about 7 km beneath a transform zone in the south of the area. -from Author

  15. Longitudinal wake field for an electron beam accelerated through a ultra-high field gradient

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, G.; Saldin, E.; Schneidmiller, E.; Yurkov, M.

    2006-12-15

    Electron accelerators with higher and higher longitudinal field gradients are desirable, as they allow for the production of high energy beams by means of compact and cheap setups. The new laser-plasma acceleration technique appears to constitute the more promising breakthrough in this direction, delivering unprecedent field gradients up to TV/m. In this article we give a quantitative description of the impact of longitudinal wake fields on the electron beam. Our paper is based on the solution of Maxwell's equations for the longitudinal field. Our conclusions are valid when the acceleration distance is much smaller than the the overtaking length, that is the length that electrons travel as a light signal from the tail of the bunch overtakes the head of the bunch. This condition is well verified for laser-plasma devices. We calculate a closed expression for the impedance and the wake function that may be evaluated numerically. It is shown that the rate of energy loss in the bunch due to radiative interaction is equal to the energy emitted through coherent radiation in the far-zone. Furthermore, an expression is found for the asymptotic limit of a large distance of the electron beam from the accelerator compared with the overtaking length. Such expression allows us to calculate analytical solutions for a Gaussian transverse and longitudinal bunch shape. Finally, we study the feasibility of Table-Top Free-Electron Lasers in the Vacuum Ultra-Violet (TT-VUV FEL) and X-ray range (TT-XFEL), respectively based on 100 MeV and 1 GeV laser-plasma accelerator drivers. Numerical estimations presented in this paper indicate that the effects of the time-dependent energy change induced by the longitudinal wake pose a serious threat to the operation of these devices. (orig.)

  16. The UCLA/SLAC Ultra-High Gradient Cerenkov Wakefield Accelerator Experiment

    CERN Document Server

    Thompson, Matthew C; Hogan, Mark; Ischebeck, Rasmus; Muggli, Patric; Rosenzweig, James E; Scott, A; Siemann, Robert; Travish, Gil; Walz, Dieter; Yoder, Rodney

    2005-01-01

    An experiment is planned to study the performance of dielectric Cerenkov wakefield accelerating structures at extremely high gradients in the GV/m range. This new UCLA/SLAC collaboration will take advantage of the unique SLAC FFTB electron beam and its demonstrated ultra-short pulse lengths and high currents (e.g., sz = 20 μm at Q = 3 nC). The electron beam will be focused down and sent through varying lengths of fused silica capillary tubing with two different sizes: ID = 200 μm / OD = 325 μm and ID = 100 μm / OD = 325 μm. The pulse length of the electron beam will be varied in order to alter the accelerating gradient and probe the breakdown threshold of the dielectric structures. In addition to breakdown studies, we plan to collect and measure coherent Cerenkov radiation emitted from the capillary tube to gain information about the strength of the accelerating fields. Status and progress on the experiment are reported.

  17. Fabrication Technologies of the High Gradient Accelerator Structures at 100MV/m Range

    CERN Document Server

    Wang, Juwen; Van Pelt, John; Yoneda, Charles; Gudkov, D; Riddone, Germana; Higo, Toshiyasu; Takatomi, Toshikazu

    2010-01-01

    A CERN-SLAC-KEK collaboration on high gradient X-band structure research has been established in order to demonstrate the feasibility of the CLIC baseline design for the main linac stably operating at more than 100 MV/m loaded accelerating gradient. Several prototype CLIC structures were successfully fabricated and high power tested. They operated at 105 MV/m with a breakdown rate that meets the CLIC linear collider specifications of <5×10-7/pulse/m. This paper summarizes the fabrication technologies including the mechanical design, precision machining, chemical cleaning, diffusion bonding as well as vacuum baking and all related assembly technologies. Also, the tolerances control, tuning and RF characterization will be discussed

  18. Hadron cancer therapy complex using nonscaling fixed field alternating gradient accelerator and gantry design

    Directory of Open Access Journals (Sweden)

    E. Keil

    2007-05-01

    Full Text Available Nonscaling fixed field alternating gradient (FFAG rings for cancer hadron therapy offer reduced physical aperture and large dynamic aperture as compared to scaling FFAGs. The variation of tune with energy implies the crossing of resonances during acceleration. Our design avoids intrinsic resonances, although imperfection resonances must be crossed. We consider a system of three nonscaling FFAG rings for cancer therapy with 250 MeV protons and 400   MeV/u carbon ions. Hadrons are accelerated in a common radio frequency quadrupole and linear accelerator, and injected into the FFAG rings at v/c=0.1294. H^{+}/C^{6+} ions are accelerated in the two smaller/larger rings to 31 and 250  MeV/68.8 and 400   MeV/u kinetic energy, respectively. The lattices consist of doublet cells with a straight section for rf cavities. The gantry with triplet cells accepts the whole required momentum range at fixed field. This unique design uses either high-temperature superconductors or superconducting magnets reducing gantry magnet size and weight. Elements with a variable field at the beginning and at the end set the extracted beam at the correct position for a range of energies.

  19. Fixed field alternating gradient accelerator with small orbit shift and tune excursion

    Directory of Open Access Journals (Sweden)

    Suzanne L. Sheehy

    2010-04-01

    Full Text Available A new design principle of a nonscaling fixed field alternating gradient accelerator is proposed. It is based on optics that produce approximate scaling properties. A large field index k is chosen to squeeze the orbit shift as much as possible by setting the betatron oscillation frequency in the second stability region of Hill’s equation. Then, the lattice magnets and their alignment are simplified. To simplify the magnets, we expand the field profile of r^{k} into multipoles and keep only a few lower order terms. A rectangular-shaped magnet is assumed with lines of constant field parallel to the magnet axis. The lattice employs a triplet of rectangular magnets for focusing, which are parallel to one another to simplify alignment. These simplifications along with fringe fields introduce finite chromaticity and the fixed field alternating gradient accelerator is no longer a scaling one. However, the tune excursion of the whole ring can be within half an integer and we avoid the crossing of strong resonances.

  20. The canonical equation of adaptive dynamics for life histories: from fitness-returns to selection gradients and Pontryagin's maximum principle.

    Science.gov (United States)

    Metz, Johan A Jacob; Staňková, Kateřina; Johansson, Jacob

    2016-03-01

    This paper should be read as addendum to Dieckmann et al. (J Theor Biol 241:370-389, 2006) and Parvinen et al. (J Math Biol 67: 509-533, 2013). Our goal is, using little more than high-school calculus, to (1) exhibit the form of the canonical equation of adaptive dynamics for classical life history problems, where the examples in Dieckmann et al. (J Theor Biol 241:370-389, 2006) and Parvinen et al. (J Math Biol 67: 509-533, 2013) are chosen such that they avoid a number of the problems that one gets in this most relevant of applications, (2) derive the fitness gradient occurring in the CE from simple fitness return arguments, (3) show explicitly that setting said fitness gradient equal to zero results in the classical marginal value principle from evolutionary ecology, (4) show that the latter in turn is equivalent to Pontryagin's maximum principle, a well known equivalence that however in the literature is given either ex cathedra or is proven with more advanced tools, (5) connect the classical optimisation arguments of life history theory a little better to real biology (Mendelian populations with separate sexes subject to an environmental feedback loop), (6) make a minor improvement to the form of the CE for the examples in Dieckmann et al. and Parvinen et al.

  1. Thermally Induced Ultra High Cycle Fatigue of Copper Alloys of the High Gradient Accelerating Structures

    CERN Document Server

    Heikkinen, Samuli; Wuensch, Walter

    2010-01-01

    In order to keep the overall length of the compact linear collider (CLIC), currently being studied at the European Organization for Nuclear Research (CERN), within reasonable limits, i.e. less than 50 km, an accelerating gradient above 100 MV/m is required. This imposes considerable demands on the materials of the accelerating structures. The internal surfaces of these core components of a linear accelerator are exposed to pulsed radio frequency (RF) currents resulting in cyclic thermal stresses expected to cause surface damage by fatigue. The designed lifetime of CLIC is 20 years, which results in a number of thermal stress cycles of the order of 2.33•1010. Since no fatigue data existed in the literature for CLIC parameter space, a set of three complementary experiments were initiated: ultra high cycle mechanical fatigue by ultrasound, low cycle fatigue by pulsed laser irradiation and low cycle thermal fatigue by high power microwaves, each test representing a subset of the original problem. High conductiv...

  2. Fixed Field Alternating Gradient (FFAG)accelerators and their medical application in proton therapy

    International Nuclear Information System (INIS)

    Fourrier, J.

    2008-10-01

    Radiotherapy uses particle beams to irradiate and kill cancer tumors while sparing healthy tissues. Bragg peak shape of the proton energy loss in matter allows a ballistic improvement of the dose deposition compared with X rays. Thus, the irradiated volume can be precisely adjusted to the tumour. This thesis, in the frame of the RACCAM project, aims to the study and the design of a proton therapy installation based on a fixed field alternating gradient (FFAG) accelerator in order to build a spiral sector FFAG magnet for validation. First, we present proton therapy to define medical specifications leading to the technical specifications of a proton therapy installation. Secondly, we introduce FFAG accelerators through their past and on-going projects which are on their way around the world before developing the beam dynamic theories in the case of invariant focusing optics (scaling FFAG). We describe modelling and simulation tools developed to study the dynamics in a spiral scaling FFAG accelerator. Then we explain the spiral optic parameter search which has leaded to the construction of a magnet prototype. Finally, we describe the RACCAM project proton therapy installation starting from the injector cyclotron and ending with the extraction system. (author)

  3. Use of the preconditioned conjugate gradient method to accelerate S/sub n/ iterations

    International Nuclear Information System (INIS)

    Derstine, K.L.; Gelbard, E.M.

    1985-01-01

    It is well known that specially tailored diffusion difference equations are required in the synthetic method. The tailoring process is not trivial, and for some S/sub n/ schemes (e.g., in hexagonal geometry) tailored diffusion operators are not available. The need for alternative acceleration methods has been noted by Larsen who has, in fact, proposed two alternatives. The proposed methods, however, do not converge to the S/sub n/ solution, and their accuracy is still largely unknown. Los Alamos acceleration methods are required to converge for any mesh, no matter how coarse. Since negative flux-fix ups (normally involved when mesh widths are large) may impede convergence, it is not clear that such a strict condition is really practical. Here a lesser objective is chosen. The authors wish to develop an acceleration method useful for a wide (though finite) range of mesh widths, but to avoid the use of special diffusion difference equations. It is shown that the conjugate gradient (CG) method, with the standard box-centered (BC) diffusion equation as a preconditioner, yields an algorithm that, for fixed-source problems with isotropic scattering, is mechanically very similar to the synthetic method; but, in two-dimensional test problems in various geometries, the CG method is substantially more stable

  4. Current state of X-band accelerating structure high gradient test. Be held at high energy accelerator organization on April 15, 2005

    International Nuclear Information System (INIS)

    Watanabe, Ken; Higo, Toshiyasu

    2005-01-01

    XTF (X-band Test Facility, Old name is GLCTA) is the high gradient test facility for X-band acceleration. We have installed an X-band 60cm structure (KX01) in the April 2004 and have been processing it for more than 10 months. Now it is under test on long-term operation. We report here the high gradient test result to date. (author)

  5. Ka-Band Rf Transmission Line Components for a High-Gradient Linear Accelerator. Final report

    International Nuclear Information System (INIS)

    Hirshfield, Jay L.

    2005-01-01

    High-power, high-vacuum prototypes of a variety of components for use at 34 GHz were developed. These include waveguide tapers, right-angle miter bends, windows, mode converters, power combiners, mode launchers, phase shifters, dual directional couplers, and loads. High-power, high-vacuum prototypes of all the components were built and tested up to 45 MW, using the Omega-P 34-GHz magnicon. Peak power limits for the components were determined using a quasi-optical rf pulse compressor, developed under a companion project. The components and the magnicon were configured into a user's facility for research and development by others on high-gradient accelerator structures for a future high-energy electron-positron collider.

  6. In-situ plasma processing to increase the accelerating gradients of superconducting radio-frequency cavities

    Science.gov (United States)

    Doleans, M.; Tyagi, P. V.; Afanador, R.; McMahan, C. J.; Ball, J. A.; Barnhart, D. L.; Blokland, W.; Crofford, M. T.; Degraff, B. D.; Gold, S. W.; Hannah, B. S.; Howell, M. P.; Kim, S.-H.; Lee, S.-W.; Mammosser, J.; Neustadt, T. S.; Saunders, J. W.; Stewart, S.; Strong, W. H.; Vandygriff, D. J.; Vandygriff, D. M.

    2016-03-01

    A new in-situ plasma processing technique is being developed at the Spallation Neutron Source (SNS) to improve the performance of the cavities in operation. The technique utilizes a low-density reactive oxygen plasma at room temperature to remove top surface hydrocarbons. The plasma processing technique increases the work function of the cavity surface and reduces the overall amount of vacuum and electron activity during cavity operation; in particular it increases the field emission onset, which enables cavity operation at higher accelerating gradients. Experimental evidence also suggests that the SEY of the Nb surface decreases after plasma processing which helps mitigating multipacting issues. In this article, the main developments and results from the plasma processing R&D are presented and experimental results for in-situ plasma processing of dressed cavities in the SNS horizontal test apparatus are discussed.

  7. Characteristics of high gradient insulators for accelerator and high power flow applications

    International Nuclear Information System (INIS)

    Elizondo, J.M.; Krogh, M.L.; Smith, D.

    1997-07-01

    The high gradient insulator has been demonstrated to operate at levels comparable or better than special geometry or coated insulators. Some patented insulator configurations allow for sophisticated accelerator structures, high power flow interfaces, and microwave applications not previously possible. Sophisticated manufacturing techniques available at AlliedSignal FM and T made this development possible. Bipolar and high power flow applications are specially suited for present insulator designs. The insulator shows a beneficial effect when used under RF fields or RF structures. These insulators can be designed, to a first approximation, from simple electron flight path equations. With a recently developed model of surface flashover physics the authors completed a set of design calculations that include effects such as layer density and dielectric/metal thickness. Experimental data, obtained in the last few years of development, is presented and reviewed. Several insulator fabrication characteristics, indicating critical design parameters, are also presented

  8. Accelerated gradient methods for the x-ray imaging of solar flares

    Science.gov (United States)

    Bonettini, S.; Prato, M.

    2014-05-01

    In this paper we present new optimization strategies for the reconstruction of x-ray images of solar flares by means of the data collected by the Reuven Ramaty high energy solar spectroscopic imager. The imaging concept of the satellite is based on rotating modulation collimator instruments, which allow the use of both Fourier imaging approaches and reconstruction techniques based on the straightforward inversion of the modulated count profiles. Although in the last decade, greater attention has been devoted to the former strategies due to their very limited computational cost, here we consider the latter model and investigate the effectiveness of different accelerated gradient methods for the solution of the corresponding constrained minimization problem. Moreover, regularization is introduced through either an early stopping of the iterative procedure, or a Tikhonov term added to the discrepancy function by means of a discrepancy principle accounting for the Poisson nature of the noise affecting the data.

  9. Possible role of rf melted microparticles on the operation of high-gradient accelerating structures

    Directory of Open Access Journals (Sweden)

    G. S. Nusinovich

    2009-10-01

    Full Text Available High-gradient accelerating structures should operate reliably for a long time. Therefore studies of various processes which may lead to disruption of such an operation are so important. In the present paper, the dissipation of rf electromagnetic energy in metallic microparticles is analyzed accounting for the temperature dependence of the skin depth. Such particles may appear in structures, for example, due to mechanical fracture of irises in strong rf electric fields. It is shown that such microparticles with dimensions on the order of the skin depth, being immersed in the region of strong rf magnetic field, can absorb enough energy in long-pulse operation to be melted. Then, the melted clumps can impinge on the surface of a structure and create nonuniformities leading to field enhancement and corresponding emission of dark current. Results are given for several geometries and materials of microparticles.

  10. High Gradient Performance of NLC/GLC X-Band Accelerating Structures

    CERN Document Server

    Döbert, Steffen; Boffo, Cristian; Bowden, Gordon B; Burke, David; Carter, Harry; Chan, Jose; Dolgashev, Valery A; Frisch, Josef; Funahashi, Y; Gonin, Ivan V; Hayano, Hitoshi; Higashi, Norio; Higashi, Yasuo; Higo, Toshiyasu; Jobe, R Keith; Jones, Roger M; Kawamata, H; Khabiboulline, Timergali N; Kirby, Robert; Kume, T; Lewandowski, James R; Li, Zenghai; McCormick, Douglas; Miller, Roger H; Mishra, Shekhar; Morozumi, Yuichi; Nantista, Christopher D; Nelson, Janice; Pearson, Chris; Romanov, Gennady; Ross, Marc; Schultz, David; Smith, Tonee; Solyak, Nikolay; Tacku Arkan, Tug; Takata, Koji; Takatomi, Toshikazu; Tantawi, Sami G; Toge, Nobu; Ueno, K; Wang, Juwen W; Watanabe, Y

    2005-01-01

    During the past five years, there has been an concerted effort at FNAL, KEK and SLAC to develop accelerator structures that meet the high gradient performance requirements for the Next Linear Collider (NLC) and Global Linear Collider (GLC) initiatives. The structure that resulted is a 60-cm-long, traveling-wave design with low group velocity (< 4% c) and a 150 degree phase advance per cell. It has an average iris size that produces an acceptable short-range wakefield in the linacs, and dipole mode damping and detuning that adequately suppresses the long-range wakefield. More than eight such structures have operated over 1000 hours at a 60 Hz pulse rate at the design gradient (65 MV/m) and pulse length (400 ns), and have reached breakdown rate levels below the limit for the linear collider. Moreover, the structures are robust in that the breakdown rates continue to decrease over time, and if the structures are briefly exposed to air, the rates recover to their low values within a few days. This paper pr...

  11. The effects of linear accelerations on the maximum heat transfer capacity of micro pipes with triangular grooves

    International Nuclear Information System (INIS)

    Shokouhmand, H.; Kahrobaian, A.; Tabandeh, N.; Jalilvand, A.

    2002-01-01

    Micro heat pipes are widely used for the thermal control of spacecraft and their electronic components. In this paper the influence of linear accelerations in micro grooves has been studied. A mathematical model for predicating the minimum meniscus radius and the maximum heat transport in triangular groove under the influence of linear acceleration is presented and method for determining the theoretical minimum meniscus radius is developed. It is shown that both, the direction and the magnitude of the acceleration have a great effect upon heat transfer capability of micro heat pipes. The analysis presented here provides a mechanism where by the groove geometry can be optimized with respect to the length of the heat pipe and direction and magnitude of linear acceleration

  12. Theory of factors limiting high gradient operation of warm accelerating structures

    Energy Technology Data Exchange (ETDEWEB)

    Nusinovich, Gregory S. [University of Maryland; Antonsen, Thomas M. [University of Maryland; Kishek, Rami [University of Maryland

    2014-07-25

    This final report summarizes the research performed during the time period from 8/1/2010 to 7/31/2013. It consists of two parts describing our studies in two directions: (a) analysis of factors limiting operation of dielectric-loaded accelerating (DLA) structures where the main problem is the occurrence of multipactor on dielectric surfaces, and (b) studies of effects associated with either RF magnetic or RF electric fields which may cause the RF breakdown in high-gradient metallic accelerating structures. In the studies of DLA structures, at least, two accomplishments should be mentioned: the development of a 3D non-stationary, self-consistent code describing the multipactor phenomena and yielding very good agreement with some experimental data obtained in joint ANL/NRL experiments. In the metallic structures, such phenomena as the heating and melting of micro-particles (metallic dust) by RF electric and magnetic fields in single-shot and rep-rate regimes is analyzed. Also, such processes in micro-protrusions on the structure surfaces as heating and melting due to the field emitted current and the Nottingham effect are thoroughly investigated with the account for space charge of emitted current on the field emission from the tip.

  13. Identification of Random Dynamic Force Using an Improved Maximum Entropy Regularization Combined with a Novel Conjugate Gradient

    Directory of Open Access Journals (Sweden)

    ChunPing Ren

    2017-01-01

    Full Text Available We propose a novel mathematical algorithm to offer a solution for the inverse random dynamic force identification in practical engineering. Dealing with the random dynamic force identification problem using the proposed algorithm, an improved maximum entropy (IME regularization technique is transformed into an unconstrained optimization problem, and a novel conjugate gradient (NCG method was applied to solve the objective function, which was abbreviated as IME-NCG algorithm. The result of IME-NCG algorithm is compared with that of ME, ME-CG, ME-NCG, and IME-CG algorithm; it is found that IME-NCG algorithm is available for identifying the random dynamic force due to smaller root mean-square-error (RMSE, lower restoration time, and fewer iterative steps. Example of engineering application shows that L-curve method is introduced which is better than Generalized Cross Validation (GCV method and is applied to select regularization parameter; thus the proposed algorithm can be helpful to alleviate the ill-conditioned problem in identification of dynamic force and to acquire an optimal solution of inverse problem in practical engineering.

  14. Unprecedented quality factors at accelerating gradients up to 45 MVm-1 in niobium superconducting resonators via low temperature nitrogen infusion

    Science.gov (United States)

    Grassellino, A.; Romanenko, A.; Trenikhina, Y.; Checchin, M.; Martinello, M.; Melnychuk, O. S.; Chandrasekaran, S.; Sergatskov, D. A.; Posen, S.; Crawford, A. C.; Aderhold, S.; Bice, D.

    2017-09-01

    We report the finding of new surface treatments that permits one to manipulate the niobium resonator nitrogen content in the first few nanometers in a controlled way, and the resonator fundamental Mattis-Bardeen surface resistance and residual resistance accordingly. In particular, we find surface ‘infusion’ conditions that systematically (a) increase the quality factor of these 1.3 GHz superconducting radio frequency (SRF) bulk niobium resonators, up to very high gradients; (b) increase the achievable accelerating gradient of the cavity compared to its own baseline with state-of-the-art surface processing. Cavities subject to the new surface process have more than two times the state-of-the-art Q at 2 K for accelerating fields >35 MVm-1. Moreover, very high accelerating gradients ˜45 MVm-1 are repeatedly reached, which correspond to peak magnetic surface fields of 190 mT, among the highest measured for bulk niobium cavities. These findings open the opportunity to tailor the surface impurity content distribution to maximize performance in Q and gradients, and have therefore very important implications on future performance and cost of SRF based accelerators. They also help deepen the understanding of the physics of the RF niobium cavity surface.

  15. Concerning the maximum energy of ions accelerated at the front of a relativistic electron cloud expanding into vacuum

    International Nuclear Information System (INIS)

    Bulanov, S.V.; Esirkepov, T.Zh.; Koga, J.; Tajima, T.; Farina, D.

    2004-01-01

    Results of particle-in-cell simulations are presented that demonstrate characteristic interaction regimes of high-power laser radiation with plasma. It is shown that the maximum energy of fast ions can substantially exceed the electron energy. A theoretical model is proposed of ion acceleration at the front of a relativistic electron cloud expanding into vacuum in the regime of strong charge separation. The model describes the electric field structure and the dynamics of fast ions inside the electron cloud. The maximum energy the ions can gain at the front of the expanding electron cloud is found

  16. Accelerated gradient-based free form deformable registration for online adaptive radiotherapy

    International Nuclear Information System (INIS)

    Yu, Gang; Yang, Guanyu; Shu, Huazhong; Li, Baosheng; Liang, Yueqiang; Yin, Yong; Li, Dengwang

    2015-01-01

    The registration of planning fan-beam computed tomography (FBCT) and daily cone-beam CT (CBCT) is a crucial step in adaptive radiation therapy. The current intensity-based registration algorithms, such as Demons, may fail when they are used to register FBCT and CBCT, because the CT numbers in CBCT cannot exactly correspond to the electron densities. In this paper, we investigated the effects of CBCT intensity inaccuracy on the registration accuracy and developed an accurate gradient-based free form deformation algorithm (GFFD). GFFD distinguishes itself from other free form deformable registration algorithms by (a) measuring the similarity using the 3D gradient vector fields to avoid the effect of inconsistent intensities between the two modalities; (b) accommodating image sampling anisotropy using the local polynomial approximation-intersection of confidence intervals (LPA-ICI) algorithm to ensure a smooth and continuous displacement field; and (c) introducing a ‘bi-directional’ force along with an adaptive force strength adjustment to accelerate the convergence process. It is expected that such a strategy can decrease the effect of the inconsistent intensities between the two modalities, thus improving the registration accuracy and robustness. Moreover, for clinical application, the algorithm was implemented by graphics processing units (GPU) through OpenCL framework. The registration time of the GFFD algorithm for each set of CT data ranges from 8 to 13 s. The applications of on-line adaptive image-guided radiation therapy, including auto-propagation of contours, aperture-optimization and dose volume histogram (DVH) in the course of radiation therapy were also studied by in-house-developed software. (paper)

  17. Measures of maximum magnetic field in 3 GHz radio frequency superconducting cavities; Mesures du gradient accelerateur maximum dans des cavites supraconductrices en regime impulsionnel a 3 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Catherine [Paris-11 Univ., 91 Orsay (France)

    2000-01-19

    Theoretical models have shown that the maximum magnetic field in radio frequency superconducting cavities is the superheating field H{sub sh}. For niobium, H{sub sh} is 25 - 30% higher than the thermodynamical H{sub c} field: H{sub sh} within (240 - 274) mT. However, the maximum magnetic field observed so far is in the range H{sub c,max} = 152 mT for the best 1.3 GHz Nb cavities. This field is lower than the critical field H{sub c1} above which the superconductor breaks up into divided normal and superconducting zones (H{sub c1}{<=}H{sub c}). Thermal instabilities are responsible for this low value. In order to reach H{sub sh} before thermal breakdown, high power short pulses are used. The cavity needs then to be strongly over-coupled. The dedicated test bed has been built from the collaboration between Istituto Nazionale di Fisica Nucleare (INFN) - Sezione di Genoa, and the Service d'Etudes et Realisation d'Accelerateurs (SERA) of Laboratoire de l'Accelerateur Lineaire (LAL). The maximum magnetic field, H{sub rf,max}, measurements on INFN cavities give lower results than the theoretical speculations and are in agreement with previous results. The superheating magnetic fields is linked to the magnetic penetration depth. This superconducting characteristic length can be used to determine the quality of niobium through the ratio between the resistivity measured at 300 K and 4.2 K in the normal conducting state (RRR). Results have been compared to previous ones and agree pretty well. They show that the RRR measured on cavities is superficial and lower than the RRR measured on samples which concerns the volume. (author)

  18. QuickVina: accelerating AutoDock Vina using gradient-based heuristics for global optimization.

    Science.gov (United States)

    Handoko, Stephanus Daniel; Ouyang, Xuchang; Su, Chinh Tran To; Kwoh, Chee Keong; Ong, Yew Soon

    2012-01-01

    Predicting binding between macromolecule and small molecule is a crucial phase in the field of rational drug design. AutoDock Vina, one of the most widely used docking software released in 2009, uses an empirical scoring function to evaluate the binding affinity between the molecules and employs the iterated local search global optimizer for global optimization, achieving a significantly improved speed and better accuracy of the binding mode prediction compared its predecessor, AutoDock 4. In this paper, we propose further improvement in the local search algorithm of Vina by heuristically preventing some intermediate points from undergoing local search. Our improved version of Vina-dubbed QVina-achieved a maximum acceleration of about 25 times with the average speed-up of 8.34 times compared to the original Vina when tested on a set of 231 protein-ligand complexes while maintaining the optimal scores mostly identical. Using our heuristics, larger number of different ligands can be quickly screened against a given receptor within the same time frame.

  19. Biomaterials with persistent growth factor gradients in vivo accelerate vascularized tissue formation.

    Science.gov (United States)

    Akar, Banu; Jiang, Bin; Somo, Sami I; Appel, Alyssa A; Larson, Jeffery C; Tichauer, Kenneth M; Brey, Eric M

    2015-12-01

    Gradients of soluble factors play an important role in many biological processes, including blood vessel assembly. Gradients can be studied in detail in vitro, but methods that enable the study of spatially distributed soluble factors and multi-cellular processes in vivo are limited. Here, we report on a method for the generation of persistent in vivo gradients of growth factors in a three-dimensional (3D) biomaterial system. Fibrin loaded porous poly (ethylene glycol) (PEG) scaffolds were generated using a particulate leaching method. Platelet derived growth factor BB (PDGF-BB) was encapsulated into poly (lactic-co-glycolic acid) (PLGA) microspheres which were placed distal to the tissue-material interface. PLGA provides sustained release of PDGF-BB and its diffusion through the porous structure results in gradient formation. Gradients within the scaffold were confirmed in vivo using near-infrared fluorescence imaging and gradients were present for more than 3 weeks. The diffusion of PDGF-BB was modeled and verified with in vivo imaging findings. The depth of tissue invasion and density of blood vessels formed in response to the biomaterial increased with magnitude of the gradient. This biomaterial system allows for generation of sustained growth factor gradients for the study of tissue response to gradients in vivo. Published by Elsevier Ltd.

  20. The PyZgoubi framework and the simulation of dynamic aperture in fixed-field alternating-gradient accelerators

    International Nuclear Information System (INIS)

    Tygier, S.; Appleby, R.B.; Garland, J.M.; Hock, K.; Owen, H.; Kelliher, D.J.; Sheehy, S.L.

    2015-01-01

    We present PyZgoubi, a framework that has been developed based on the tracking engine Zgoubi to model, optimise and visualise the dynamics in particle accelerators, especially fixed-field alternating-gradient (FFAG) accelerators. We show that PyZgoubi abstracts Zgoubi by wrapping it in an easy-to-use Python framework in order to allow simple construction, parameterisation, visualisation and optimisation of FFAG accelerator lattices. Its object oriented design gives it the flexibility and extensibility required for current novel FFAG design. We apply PyZgoubi to two example FFAGs; this includes determining the dynamic aperture of the PAMELA medical FFAG in the presence of magnet misalignments, and illustrating how PyZgoubi may be used to optimise FFAGs. We also discuss a robust definition of dynamic aperture in an FFAG and show its implementation in PyZgoubi

  1. The PyZgoubi framework and the simulation of dynamic aperture in fixed-field alternating-gradient accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Tygier, S., E-mail: sam.tygier@hep.manchester.ac.uk [Cockcroft Accelerator Group, The University of Manchester (United Kingdom); Appleby, R.B., E-mail: robert.appleby@manchester.ac.uk [Cockcroft Accelerator Group, The University of Manchester (United Kingdom); Garland, J.M. [Cockcroft Accelerator Group, The University of Manchester (United Kingdom); Hock, K. [University of Liverpool (United Kingdom); Owen, H. [Cockcroft Accelerator Group, The University of Manchester (United Kingdom); Kelliher, D.J.; Sheehy, S.L. [STFC Rutherford Appleton Laboratory (United Kingdom)

    2015-03-01

    We present PyZgoubi, a framework that has been developed based on the tracking engine Zgoubi to model, optimise and visualise the dynamics in particle accelerators, especially fixed-field alternating-gradient (FFAG) accelerators. We show that PyZgoubi abstracts Zgoubi by wrapping it in an easy-to-use Python framework in order to allow simple construction, parameterisation, visualisation and optimisation of FFAG accelerator lattices. Its object oriented design gives it the flexibility and extensibility required for current novel FFAG design. We apply PyZgoubi to two example FFAGs; this includes determining the dynamic aperture of the PAMELA medical FFAG in the presence of magnet misalignments, and illustrating how PyZgoubi may be used to optimise FFAGs. We also discuss a robust definition of dynamic aperture in an FFAG and show its implementation in PyZgoubi.

  2. Experimental Study of the Effect of Beam Loading on RF Breakdown Rate in CLIC High-Gradient Accelerating Structures

    CERN Document Server

    Tecker, F; Kelisani, M; Doebert, S; Grudiev, A; Quirante, J; Riddone, G; Syratchev, I; Wuensch, W; Kononenko, O; Solodko, A; Lebet, S

    2013-01-01

    RF breakdown is a key issue for the multi-TeV highluminosity e+e- Compact Linear Collider (CLIC). Breakdowns in the high-gradient accelerator structures can deflect the beam and decrease the desired luminosity. The limitations of the accelerating structures due to breakdowns have been studied so far without a beam present in the structure. The presence of the beam modifies the distribution of the electrical and magnetic field distributions, which determine the breakdown rate. Therefore an experiment has been designed for high power testing a CLIC prototype accelerating structure with a beam present in the CLIC Test Facility (CTF3). A special beam line allows extracting a beam with nominal CLIC beam current and duration from the CTF3 linac. The paper describes the beam optics design for this experimental beam line and the commissioning of the experiment with beam.

  3. Direct reconstruction of the source intensity distribution of a clinical linear accelerator using a maximum likelihood expectation maximization algorithm.

    Science.gov (United States)

    Papaconstadopoulos, P; Levesque, I R; Maglieri, R; Seuntjens, J

    2016-02-07

    Direct determination of the source intensity distribution of clinical linear accelerators is still a challenging problem for small field beam modeling. Current techniques most often involve special equipment and are difficult to implement in the clinic. In this work we present a maximum-likelihood expectation-maximization (MLEM) approach to the source reconstruction problem utilizing small fields and a simple experimental set-up. The MLEM algorithm iteratively ray-traces photons from the source plane to the exit plane and extracts corrections based on photon fluence profile measurements. The photon fluence profiles were determined by dose profile film measurements in air using a high density thin foil as build-up material and an appropriate point spread function (PSF). The effect of other beam parameters and scatter sources was minimized by using the smallest field size ([Formula: see text] cm(2)). The source occlusion effect was reproduced by estimating the position of the collimating jaws during this process. The method was first benchmarked against simulations for a range of typical accelerator source sizes. The sources were reconstructed with an accuracy better than 0.12 mm in the full width at half maximum (FWHM) to the respective electron sources incident on the target. The estimated jaw positions agreed within 0.2 mm with the expected values. The reconstruction technique was also tested against measurements on a Varian Novalis Tx linear accelerator and compared to a previously commissioned Monte Carlo model. The reconstructed FWHM of the source agreed within 0.03 mm and 0.11 mm to the commissioned electron source in the crossplane and inplane orientations respectively. The impact of the jaw positioning, experimental and PSF uncertainties on the reconstructed source distribution was evaluated with the former presenting the dominant effect.

  4. theoretical and experimental study of plasma acceleration by means of R.F. and static magnetic field gradient

    International Nuclear Information System (INIS)

    Bardet, Rene; Consoli, Terenzio; Geller, Richard

    1964-09-01

    In the first part of the paper, the theory of the physical mechanism of ion dragging by accelerated electrons due to the superimposition of the gradient of a electromagnetic field and the gradient of a static magnetic field, is described. The resulting trajectory of the electrons is a helicoid and one shows the variations of the diameter and the path of the spirals along the axis as a function of the difference between the gyrofrequency and the applied R.F. frequency. The ion acceleration is due to an electron space charge effect. The grouping of the equations of the electronic and ionic fluid motions leads to the introduction of a tensor mass: along the x and y direction the transverse motion of the fluid is controlled by the relativistic mass of electrons whereas along the z direction the axial motion is determined by the ionic mass. Then we deduce physical consequences of the theoretical study and give three experimental evidences. The second part of the paper is devoted to the experimental device called Pleiade which allowed us to verify some of the theoretical predictions. Pleiade produces a D.C. operating plasma beam in which the electrons exhibit radially oriented energies whereas the ionic energy is mainly axial. The experimental results indicate that the energy of the particles is in the keV range. In the third part we deal with the reflecting properties of the device. We show that the R.F. static magnetic field gradients are not only capable of accelerating a Plasma beam along the axially decreasing magnetic field, but are also capable of stopping and reflecting such a beam when the latter is moving along an axially increasing magnetic field. We describe finally a plasma accumulation experiment in which two symmetric structures form simultaneously an accelerator and a 'dynamic mirror' for the particles. Evidence of accumulation is given. (authors) [fr

  5. Recent developments in the application of rf superconductivity to high-brightness and high-gradient ion beam accelerators

    International Nuclear Information System (INIS)

    Delayen, J.R.; Bohn, C.L.; Kennedy, W.L.; Nichols, G.L.; Roche, C.T.; Sagalovsky, L.

    1991-01-01

    A development program is underway to apply rf superconductivity to the design of continuous-wave (cw) linear accelerators for high- brightness ion beams. Since the last workshop, considerable progress has been made both experimentally and theoretically toward this application. Recent tests of niobium resonators for ion acceleration have yielded average accelerating gradients as high as 18 MV/m. In an experiment with a radio-frequency quadrupole geometry, niobium was found to sustain cw peak surface electric fields as high as 128 MV/m over large (10 cm 2 ) surface areas. Theoretical studies of beam impingement and cumulative beam breakup have also yielded encouraging results. Consequently, a section of superconducting resonators and focusing elements has been designed for tests with high-current deuteron beams. In addition, considerable data pertaining to the rf properties of high-T c superconductors has been collected at rf-field amplitudes and frequencies of interest in connection with accelerator operation. This paper summarizes the recent progress and identifies current and future work in the areas of accelerator technology and superconducting materials which will build upon it

  6. High gradient test of X-band accelerating structure at GLCTA

    International Nuclear Information System (INIS)

    Watanabe, K.; Higo, T.; Hayano, H.; Terunuma, N.; Saeki, T.; Kudo, N.; Sanuki, T.; Seuhara, T.

    2004-01-01

    GLCTA (Global Linear Collider Test Accelerator) is the high power test facility for X-band acceleration. We have installed an X-band 60cm structure in April 2004 and have been processing it for more than 3 months. Now it is under test on long-term operation. We report here the installation process and high power test result to date. (author)

  7. Ultra-High Gradient Channeling Acceleration in Nanostructures: Design/Progress of Proof-of-Concept (POC) Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young Min [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Northern Illinois Univ., DeKalb, IL (United States). Northern Illinois Center for Accelerator & Detector Development; Green, A. [Northern Illinois Univ., DeKalb, IL (United States). Northern Illinois Center for Accelerator & Detector Development; Lumpkin, A. H. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Thurman-Keup, R. M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Shiltsev, V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Zhang, X. [Shanhai Inst. of Optics and Fine Mechanics, Shanghai (China); Farinella, D. M. [Univ. of California, Irvine, CA (United States); Taborek, P. [Univ. of California, Irvine, CA (United States); Tajima, T. [Univ. of California, Irvine, CA (United States); Wheeler, J. A. [Univ. of Michigan, Ann Arbor, MI (United States). Center for Ultrafast Optical Science and FOCUS Center; Ecole Polytechnique, CNRS, Palaiseau (France). Lab. d' Optique Appliquee; Mourou, G. [Univ. of Michigan, Ann Arbor, MI (United States). Center for Ultrafast Optical Science and FOCUS Center; Ecole Polytechnique, CNRS, Palaiseau (France). Lab. d' Optique Appliquee

    2016-09-16

    A short bunch of relativistic particles or a short-pulse laser perturbs the density state of conduction electrons in a solid crystal and excites wakefields along atomic lattices in a crystal. Under a coupling condition the wakes, if excited, can accelerate channeling particles with TeV/m acceleration gradients in principle since the density of charge carriers (conduction electrons) in solids n0 = ~ 1020 – 1023 cm-3 is significantly higher than what can be obtained in gaseous plasma. Nanostructures have some advantages over crystals for channeling applications of high power beams. The dechanneling rate can be reduced and the beam acceptance increased by the large size of the channels. For beam-driven acceleration, a bunch length with a sufficient charge density would need to be in the range of the plasma wavelength to properly excite plasma wakefields, and channeled particle acceleration with the wakefields must occur before the ions in the lattices move beyond the restoring threshold. In the case of the excitation by short laser pulses, the dephasing length is appreciably increased with the larger channel, which enables channeled particles to gain sufficient amounts of energy. This paper describes simulation analyses on beam- and laser (X-ray)-driven accelerations in effective nanotube models obtained from Vsim and EPOCH codes. Experimental setups to detect wakefields are also outlined with accelerator facilities at Fermilab and NIU. In the FAST facility, the electron beamline was successfully commissioned at 50 MeV and it is being upgraded toward higher energies for electron accelerator R&D. The 50 MeV injector beamline of the facility is used for X-ray crystal-channeling radiation with a diamond target. It has been proposed to utilize the same diamond crystal for a channeling acceleration POC test. Another POC experiment is also designed for the NIU accelerator lab with time-resolved electron diffraction. Recently, a

  8. Devices for launching 0.1-g projectiles to 150 km/s or more to initiate fusion. Part 1. Magnetic-gradient and electrostatic accelerators

    International Nuclear Information System (INIS)

    Brittingham, J.N.

    1979-01-01

    The feasibility of using magnetic-gradient and electrostatic accelerators to launch a 0.1-g projectile to hypervelocities (150 km/s or more) is studied. Such hypervelocity projectiles could be used to ignite deuterium-tritium fuel pellets in a fusion reactor. For the magnetic-gradient accelerator, several types of projectile were studied: shielded and unshielded copper, ferromagnetic, and superconducting. The calculations revealed the superconducting projectile to be the best of those materials. It would require a 3.2-km-long magnetic-gradient accelerator and achieve a 92% efficiency. This accelerator-projectile combination would be the one most likely to launch a 0.1-g projectile to 150 km/s or more. Its components would cost $58.9 million. The electrostatic accelerator was found to be impractical because of its excessive length of 23 km

  9. Temperature of the Icelandic crust: Inferred from electrical conductivity, temperature surface gradient, and maximum depth of earthquakes

    Science.gov (United States)

    Björnsson, Axel

    2008-02-01

    Two different models of the structure of the Icelandic crust have been presented. One is the thin-crust model with a 10-15 km thick crust beneath the axial rift zones, with an intermediate layer of partially molten basalt at the base of the crust and on the top of an up-domed asthenosphere. The thick-crust model assumes a 40 km thick and relatively cold crust beneath central Iceland. The most important and crucial parameter to distinguish between these different models is the temperature distribution with depth. Three methods are used to estimate the temperature distribution with depth. First, the surface temperature gradient measured in shallow wells drilled outside geothermal areas. Second, the thickness of the seismogenic zone which is associated with a 750 °C isothermal surface. Third, the depth to a layer with high electrical conductivity which is associated with partially molten basalt with temperature around 1100 °C at the base of the crust. Combination of these data shows that the temperature gradient can be assumed to be nearly linear from the surface down to the base of the crust. These results are strongly in favour of the thin-crust model. The scattered deep seismic reflectors interpreted as Moho in the thick-crust model could be caused by phase transitions or reflections from melt pockets in the mantle.

  10. Measurements of the temporal and spatial phase variations of a 33 GHz pulsed free electron laser amplifier and application to high gradient RF acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Volfbeyn, P.; Bekefi, G. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1995-12-31

    We report the results of temporal and spatial measurements of phase of a pulsed free electron laser amplifier (FEL) operating in combined wiggler and axial guide magnetic fields. The 33 GHz FEL is driven by a mildly relativistic electron beam (750 kV, 90-300 A, 30 ns) and generates 61 MW of radiation with a high power magnetron as the input source. The phase is measured by an interferometric technique from which frequency shifting is determined. The results are simulated with a computer code. Experimental studies on a CERN-CLIC 32.98 GHz 26-cell high gradient accelerating section (HGA) were carried out for input powers from 0.1 MW to 35 MW. The FEL served as the r.f. power source for the HGA. The maximum power in the transmitted pulse was measured to be 15 MW for an input pulse of 35 MW. The theoretically calculated shunt impedance of 116 M{Omega}/m predicts a field gradient of 65 MeV/m inside the HGA. For power levels >3MW the pulse transmitted through the HGA was observed to be shorter than the input pulse and pulse shortening became more serious with increasing power input. At the highest power levels the output pulse length (about 5 nsec) was about one quarter of the input pulse length. Various tests suggest that these undesirable effects occur in the input coupler to the HGA. Light and X-ray production inside the HGA have been observed.

  11. Development of high gradient superconducting radio frequency cavities for international linear collider and energy recovery linear accelerator

    International Nuclear Information System (INIS)

    Saito, Kenji; Furuta, Fumio; Saeki, Takayuki

    2009-01-01

    Superconducting radio frequency (SRF) cavities were used for storage rings like TRISTAN at KEK, HERA at DESY and LEP-II at CERN in 1990-2000. This technology has been accepted as a common accelerator technology. In August 2004, ITPR recommended an electron/positron linear collider based on SRF technology for the future high energy physics. ICFA accepted the recommendation and named it ILC (International Linear Collider). SRF cavities have a very unique feature due to its very small surface resistance. Energy recovery is another very exciting application. Many laboratories are proposing ERL (Energy Recovery LINAC) as a next bright photon source. In these accelerators, production of SRF cavities with reliably high performance is the most important issue. In this paper the activities of ILC high gradient cavities will be introduced. ERL activity will be briefly presented. (author)

  12. Development of High Gradient Superconducting Radio Frequency Cavities for International Linear Collider and Energy Recovery Linear Accelerator

    Science.gov (United States)

    Saito, Kenji; Furuta, Fumio; Saeki, Takayuki

    Superconducting radio frequency (SRF) cavities were used for storage rings like TRISTAN at KEK, HERA at DESY and LEP-II at CERN in 1990-2000. This technology has been accepted as a common accelerator technology. In August 2004, ITPR recommended an electron/positron linear collider based on SRF technology for the future high energy physics. ICFA accepted the recommendation and named it ILC (International Linear Collider). SRF cavities have a very unique feature due to its very small surface resistance. Energy recovery is another very exciting application. Many laboratories are proposing ERL (Energy Recovery LINAC) as a next bright photon source. In these accelerators, production of SRF cavities with reliably high performance is the most important issue. In this paper the activities of ILC high gradient cavities will be introduced. ERL activity will be briefly presented.

  13. Numerical Studies of Electron Acceleration Behind Self-Modulating Proton Beam in Plasma with a Density Gradient

    CERN Document Server

    Petrenko, A.; Sosedkin, A.

    2016-01-01

    Presently available high-energy proton beams in circular accelerators carry enough momentum to accelerate high-intensity electron and positron beams to the TeV energy scale over several hundred meters of the plasma with a density of about 1e15 1/cm^3. However, the plasma wavelength at this density is 100-1000 times shorter than the typical longitudinal size of the high-energy proton beam. Therefore the self-modulation instability (SMI) of a long (~10 cm) proton beam in the plasma should be used to create the train of micro-bunches which would then drive the plasma wake resonantly. Changing the plasma density profile offers a simple way to control the development of the SMI and the acceleration of particles during this process. We present simulations of the possible use of a plasma density gradient as a way to control the acceleration of the electron beam during the development of the SMI of a 400 GeV proton beam in a 10 m long plasma. This work is done in the context of the AWAKE project --- the proof-of-prin...

  14. Test of the beam effect on vacuum arc occurrence in a high-gradient accelerating structure for the CLIC project

    CERN Document Server

    AUTHOR|(CDS)2130409; Gagliardi, Martino

    A new generation of lepton colliders capable of reaching TeV energies is pres- ently under development, and to succeed in this task it is necessary to show that the technology for such a machine is available. The Compact Linear Collider (CLIC) is a possible design option among the future lepton collider projects. It consists of two normal-conducting linacs. Accelerating structures with a gradient of the order of 100 MV/m are necessary to reach the required high energies within a reasonable machine length. One of the strictest require- ments for such accelerating structures is a relatively low occurrence of vacuum arcs. CLIC prototype structures have been tested in the past, but only in absence of beam. In order to proof the feasibility of the high gradient technology for building a functional collider, it is necessary to understand the effect of the beam presence on the vacuum breakdowns. Tests of this type have never been performed previously. The main goal of this work is to provide a first measurement of t...

  15. Electron Acceleration by Cascading Reconnection in the Solar Corona. I. Magnetic Gradient and Curvature Drift Effects

    Czech Academy of Sciences Publication Activity Database

    Zhou, X.; Büchner, J.; Bárta, Miroslav; Gan, W.; Liu, S.

    2015-01-01

    Roč. 815, č. 1 (2015), 6/1-6/17 ISSN 0004-637X Institutional support: RVO:67985815 Keywords : acceleration of particles * magnetic reconnection * magnetohydrodynamics Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.909, year: 2015

  16. Design study of high gradient, low impedance accelerating structures for the FERMI free electron laser linac upgrade

    Science.gov (United States)

    Shafqat, N.; Di Mitri, S.; Serpico, C.; Nicastro, S.

    2017-09-01

    The FERMI free-electron laser (FEL) of Elettra Sincrotrone Trieste, Italy, is a user facility driven by a 1.5 GeV 10-50 Hz S-band radiofrequency linear accelerator (linac), and it is based on an external laser seeding scheme that allows lasing at the shortest fundamental wavelength of 4 nm. An increase of the beam energy to 1.8 GeV at a tolerable breakdown rate, and an improvement of the final beam quality is desired in order to allow either lasing at 4 nm with a higher flux, or lasing at shorter wavelengths. This article presents the impedance analysis of newly designed S-band accelerating structures, for replacement of the existing backward travelling wave structures (BTWS) in the last portion of the FERMI linac. The new structure design promises higher accelerating gradient and lower impedance than those of the existing BTWS. Particle tracking simulations show that, with the linac upgrade, the beam relative energy spread, its linear and nonlinear z-correlation internal to the bunch, and the beam transverse emittances can be made smaller than the ones in the present configuration, with expected advantage to the FEL performance. The repercussion of the upgrade on the linac quadrupole magnets setting, for a pre-determined electron beam optics, is also considered.

  17. Accelerated gradient methods for total-variation-based CT image reconstruction

    DEFF Research Database (Denmark)

    Jørgensen, Jakob Heide; Jensen, Tobias Lindstrøm; Hansen, Per Christian

    2011-01-01

    incorporates several heuristics from the optimization literature such as Barzilai-Borwein (BB) step size selection and nonmonotone line search. The latter uses a cleverly chosen sequence of auxiliary points to achieve a better convergence rate. The methods are memory efficient and equipped with a stopping...... reconstruction can in principle be found by any optimization method, but in practice the large scale of the systems arising in CT image reconstruction preclude the use of memory-demanding methods such as Newton’s method. The simple gradient method has much lower memory requirements, but exhibits slow convergence...

  18. Accelerating learning of neural networks with conjugate gradients for nuclear power plant applications

    International Nuclear Information System (INIS)

    Reifman, J.; Vitela, J.E.

    1994-01-01

    The method of conjugate gradients is used to expedite the learning process of feedforward multilayer artificial neural networks and to systematically update both the learning parameter and the momentum parameter at each training cycle. The mechanism for the occurrence of premature saturation of the network nodes observed with the back propagation algorithm is described, suggestions are made to eliminate this undesirable phenomenon, and the reason by which this phenomenon is precluded in the method of conjugate gradients is presented. The proposed method is compared with the standard back propagation algorithm in the training of neural networks to classify transient events in neural power plants simulated by the Midland Nuclear Power Plant Unit 2 simulator. The comparison results indicate that the rate of convergence of the proposed method is much greater than the standard back propagation, that it reduces both the number of training cycles and the CPU time, and that it is less sensitive to the choice of initial weights. The advantages of the method are more noticeable and important for problems where the network architecture consists of a large number of nodes, the training database is large, and a tight convergence criterion is desired

  19. Beam halo in high-intensity hadron accelerators caused by statistical gradient errors

    Directory of Open Access Journals (Sweden)

    Frank Gerigk

    2004-06-01

    Full Text Available The particle-core model for a continuous cylindrical beam is used to describe the motion of single particles oscillating in a uniform linear focusing channel. Using a random variation of the focusing forces, the model is deployed as proof of principle for the occurrence of large single particle radii without the presence of initial mismatch of the beam core. Multiparticle simulations of a periodic 3D transport channel are then used to qualify and quantify the effects in a realistic accelerator lattice.

  20. Bacterial and enchytraeid abundance accelerate soil carbon turnover along a lowland vegetation gradient in interior Alaska

    Science.gov (United States)

    Waldrop, M.P.; Harden, Jennifer W.; Turetsky, M.R.; Petersen, D.G.; McGuire, A.D.; Briones, M.J.I.; Churchill, A.C.; Doctor, D.H.; Pruett, L.E.

    2012-01-01

    Boreal wetlands are characterized by a mosaic of plant communities, including forests, shrublands, grasslands, and fens, which are structured largely by changes in topography and water table position. The soil associated with these plant communities contain quantitatively and qualitatively different forms of soil organic matter (SOM) and nutrient availability that drive changes in biogeochemical cycling rates. Therefore different boreal plant communities likely contain different soil biotic communities which in turn affect rates of organic matter decomposition. We examined relationships between plant communities, microbial communities, enchytraeids, and soil C turnover in near-surface soils along a shallow topographic soil moisture and vegetation gradient in interior Alaska. We tested the hypothesis that as soil moisture increases along the gradient, surface soils would become increasingly dominated by bacteria and mesofauna and have more rapid rates of C turnover. We utilized bomb radiocarbon techniques to infer rates of C turnover and the 13C isotopic composition of SOM and respired CO2 to infer the degree of soil humification. Soil phenol oxidase and peroxidase enzyme activities were generally higher in the rich fen compared with the forest and bog birch sites. Results indicated greater C fluxes and more rapid C turnover in the surface soils of the fen sites compared to the wetland forest and shrub sites. Quantitative PCR analyses of soil bacteria and archaea, combined with enchytraeid counts, indicated that surface soils from the lowland fen ecosystems had higher abundances of these microbial and mesofaunal groups. Fungal abundance was highly variable and not significantly different among sites. Microbial data was utilized in a food web model that confirmed that rapidly cycling systems are dominated by bacterial activity and enchytraeid grazing. However, our results also suggest that oxidative enzymes play an important role in the C mineralization process in

  1. CLIC: Overview of applications using high-gradient acceleration, from photon sources to medical physics

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    The Compact Linear Collider (CLIC) is a future electron-positron collider under study. It foresees e+e- collisions at centre-of-mass energies ranging from a few hundred GeV up to 3 TeV. The CLIC study is an international collaboration hosted by CERN. The lectures provide a broad overview of the CLIC project, covering the physics potential, the particle detectors and the accelerator. An overview of the CLIC physics opportunities is presented. These are best exploited in a staged construction and operation scenario of the collider. The detector technologies, fulfilling CLIC performance requirements and currently under study, are described. The accelerator design and performance, together with its major technologies, are presented in the light of ongoing component tests and large system tests. The status of the optimisation studies (e.g. for cost and power) of the CLIC complex for the proposed energy staging is included. One lecture is dedicated to the use of CLIC technologies in free electron lasers and other ...

  2. Experimental study of DC vacuum breakdown and application to high-gradient accelerating structures for CLIC

    CERN Document Server

    Shipman, Nicholas; Jones, Roger

    2016-01-01

    The compact linear collider (CLIC) is a leading candidate for the next generation high energy linear collider. As any breakdown would result in a partial or full loss of luminosity for the pulse in which it occurs, obtaining a low breakdown rate in CLIC accelerating structures is a critical requirement for the successful operation of the proposed collider. This thesis presents investigations into the breakdown phenomenon primarily in the low breakdown rate regime of interest to CLIC, performed using the CERN DC spark systems between 2011 and 2014. The design, construction and commissioning of several new pieces of hardware, as well as the development of improved techniques to measuring the inter-electrode gap distance are detailed. These hardware improvements were fundamental in enabling the exciting new experiments mentioned below, which in turn have provided significant additional insight into the phenomenon of breakdown. Experiments were performed to measure fundamental parameters of individual breakdowns...

  3. Exploring the Physics Limitations of Compact High Gradient Accelerating Structures Simulations of the Electron Current Spectrometer Setup in Geant4

    CERN Document Server

    Van Vliet, Philine Julia

    2017-01-01

    The high field gradient of 100 MV/m that will be applied to the accelerator cavities of the Compact Linear Collider (CLIC), gives rise to the problem of RF breakdowns. The field collapses and a plasma of electrons and ions is being formed in the cavity, preventing the RF field from penetrating the cavity. Electrons in the plasma are being accelerated and ejected out, resulting in a breakdown current up to a few Amp`eres, measured outside the cavities. These breakdowns lead to luminosity loss, so reducing their amount is of great importance. For this, a better understanding of the physics behind RF breakdowns is needed. To study these breakdowns, the XBox 2 test facility has a spectrometer setup installed after the RF cavity that is being conditioned. For this report, a simulation of this spectrometer setup has been made using Geant4. Once a detailed simulation of the RF field and cavity has been made, it can be connected to this simulation of the spectrometer setup and used to recreate the data that has b...

  4. Limitation on the accelerating gradient of a wakefield excited by an ultrarelativistic electron beam in rubidium plasma

    Directory of Open Access Journals (Sweden)

    N. Vafaei-Najafabadi

    2016-10-01

    Full Text Available We have investigated the viability of using plasmas formed by ionization of high Z, low ionization potential element rubidium (Rb for beam-driven plasma wakefield acceleration. The Rb vapor column confined by argon (Ar buffer gas was used to reduce the expected limitation on the beam propagation length due to head erosion that was observed previously when a lower Z but higher ionization potential lithium vapor was used. However, injection of electrons into the wakefield due to ionization of Ar buffer gas and nonuniform ionization of Rb^{1+} to Rb^{2+} was a possible concern. In this paper we describe experimental results and the supporting simulations which indicate that such ionization of Ar and Rb^{1+} in the presence of combined fields of the beam and the wakefield inside the wake does indeed occur. Some of this charge accumulates in the accelerating region of the wake leading to the reduction of the electric field—an effect known as beam loading. The beam-loading effect is quantified by determining the average transformer ratio ⟨R⟩ which is the maximum energy gained divided by the maximum energy lost by the electrons in the bunch used to produce the wake. ⟨R⟩ is shown to depend on the propagation length and the quantity of the accumulated charge, indicating that the distributed injection of secondary Rb electrons is the main cause of beam loading in this experiment. The average transformer ratio is reduced from 1.5 to less than 1 as the excess charge from secondary ionization increased from 100 to 700 pC. The simulations show that while the decelerating field remains constant, the accelerating field is reduced from its unloaded value of 82 to 46  GeV/m due to this distributed injection of dark current into the wake.

  5. Transverse beam dynamics in non-linear Fixed Field Alternating Gradient accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Haj, Tahar M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-02

    In this paper, we present some aspects of the transverse beam dynamics in Fixed Field Ring Accelerators (FFRA): we start from the basic principles in order to derive the linearized transverse particle equations of motion for FFRA, essentially FFAGs and cyclotrons are considered here. This is a simple extension of a previous work valid for linear lattices that we generalized by including the bending terms to ensure its correctness for FFAG lattice. The space charge term (contribution of the internal coulombian forces of the beam) is contained as well, although it is not discussed here. The emphasis is on the scaling FFAG type: a collaboration work is undertaken in view of better understanding the properties of the 150 MeV scaling FFAG at KURRI in Japan, and progress towards high intensity operation. Some results of the benchmarking work between different codes are presented. Analysis of certain type of field imperfections revealed some interesting features about this machine that explain some of the experimental results and generalize the concept of a scaling FFAG to a non-scaling one for which the tune variations obey a well-defined law.

  6. Unprecedented quality factors at accelerating gradients up to 45 MVm -1 in niobium superconducting resonators via low temperature nitrogen infusion

    Energy Technology Data Exchange (ETDEWEB)

    Grassellino, A.; Romanenko, A.; Trenikhina, Y.; Checchin, M.; Martinello, M.; Melnychuk, O. S.; Chandrasekaran, S.; Sergatskov, D. A.; Posen, S.; Crawford, A. C.; Aderhold, S.; Bice, D.

    2017-08-14

    We report the finding of new surface treatments that permit to manipulate the niobium resonator nitrogen content in the first few nanometers in a controlled way, and the resonator fundamental Mattis-Bardeen surface resistance and residual resistance accordingly. In particular, we find surface infusion conditions that systematically a) increase the quality factor of these 1.3 GHz superconducting radio frequency (SRF) bulk niobium resonators, up to very high gradients; b) increase the achievable accelerating gradient of the cavity compared to its own baseline with state-of-the-art surface processing. Cavities subject to the new surface process have larger than two times the state of the art Q at 2K for accelerating fields > 35 MV/m. Moreover, very high accelerating gradients ~ 45 MV/m are repeatedly reached, which correspond to peak magnetic surface fields of 190 mT, among the highest measured for bulk niobium cavities. These findings open the opportunity to tailor the surface impurity content distribution to maximize performance in Q and gradients, and have therefore very important implications on future performance and cost of SRF based accelerators. They also help deepen the understanding of the physics of the RF niobium cavity surface.

  7. The Effects of a Maximal Power Training Cycle on the Strength, Maximum Power, Vertical Jump Height and Acceleration of High-Level 400-Meter Hurdlers

    Science.gov (United States)

    Balsalobre-Fernández, Carlos; Tejero-González, Carlos Mª; del Campo-Vecino, Juan; Alonso-Curiel, Dionisio

    2013-01-01

    The aim of this study was to determine the effects of a power training cycle on maximum strength, maximum power, vertical jump height and acceleration in seven high-level 400-meter hurdlers subjected to a specific training program twice a week for 10 weeks. Each training session consisted of five sets of eight jump-squats with the load at which each athlete produced his maximum power. The repetition maximum in the half squat position (RM), maximum power in the jump-squat (W), a squat jump (SJ), countermovement jump (CSJ), and a 30-meter sprint from a standing position were measured before and after the training program using an accelerometer, an infra-red platform and photo-cells. The results indicated the following statistically significant improvements: a 7.9% increase in RM (Z=−2.03, p=0.021, δc=0.39), a 2.3% improvement in SJ (Z=−1.69, p=0.045, δc=0.29), a 1.43% decrease in the 30-meter sprint (Z=−1.70, p=0.044, δc=0.12), and, where maximum power was produced, a change in the RM percentage from 56 to 62% (Z=−1.75, p=0.039, δc=0.54). As such, it can be concluded that strength training with a maximum power load is an effective means of increasing strength and acceleration in high-level hurdlers. PMID:23717361

  8. An accelerated conjugate gradient algorithm to compute low-lying eigenvalues - a study for the Dirac operator in SU(2) lattice QCD

    International Nuclear Information System (INIS)

    Kalkreuter, T.; Simma, H.

    1995-07-01

    The low-lying eigenvalues of a (sparse) hermitian matrix can be computed with controlled numerical errors by a conjugate gradient (CG) method. This CG algorithm is accelerated by alternating it with exact diagonalizations in the subspace spanned by the numerically computed eigenvectors. We study this combined algorithm in case of the Dirac operator with (dynamical) Wilson fermions in four-dimensional SU(2) gauge fields. The algorithm is numerically very stable and can be parallelized in an efficient way. On lattices of sizes 4 4 - 16 4 an acceleration of the pure CG method by a factor of 4 - 8 is found. (orig.)

  9. Probability distributions of bed load particle velocities, accelerations, hop distances, and travel times informed by Jaynes's principle of maximum entropy

    Science.gov (United States)

    Furbish, David; Schmeeckle, Mark; Schumer, Rina; Fathel, Siobhan

    2016-01-01

    We describe the most likely forms of the probability distributions of bed load particle velocities, accelerations, hop distances, and travel times, in a manner that formally appeals to inferential statistics while honoring mechanical and kinematic constraints imposed by equilibrium transport conditions. The analysis is based on E. Jaynes's elaboration of the implications of the similarity between the Gibbs entropy in statistical mechanics and the Shannon entropy in information theory. By maximizing the information entropy of a distribution subject to known constraints on its moments, our choice of the form of the distribution is unbiased. The analysis suggests that particle velocities and travel times are exponentially distributed and that particle accelerations follow a Laplace distribution with zero mean. Particle hop distances, viewed alone, ought to be distributed exponentially. However, the covariance between hop distances and travel times precludes this result. Instead, the covariance structure suggests that hop distances follow a Weibull distribution. These distributions are consistent with high-resolution measurements obtained from high-speed imaging of bed load particle motions. The analysis brings us closer to choosing distributions based on our mechanical insight.

  10. High- and Low-Order Overtaking-Ability Affordances: Drivers Rely on the Maximum Velocity and Acceleration of Their Cars to Perform Overtaking Maneuvers.

    Science.gov (United States)

    Basilio, Numa; Morice, Antoine H P; Marti, Geoffrey; Montagne, Gilles

    2015-08-01

    The aim of this study was to answer the question, Do drivers take into account the action boundaries of their car when overtaking? The Morice et al. affordance-based approach to visually guided overtaking suggests that the "overtake-ability" affordance can be formalized as the ratio of the "minimum satisfying velocity" (MSV) of the maneuver to the maximum velocity (V(max)) of the driven car. In this definition, however, the maximum acceleration (A(max)) of the vehicle is ignored. We hypothesize that drivers may be sensitive to an affordance redefined with the ratio of the "minimum satisfying acceleration" (MSA) to the A(max) of the car. Two groups of nine drivers drove cars differing in their A(max). They were instructed to attempt overtaking maneuvers in 25 situations resulting from the combination of five MSA and five MSV values. When overtaking frequency was expressed as a function of MSV and MSA, maneuvers were found to be initiated differently for the two groups. However, when expressed as a function of MSV/V(max) and MSA/A(max), overtaking frequency was quite similar for both groups. Finally, a multiple regression coefficient analysis demonstrated that overtaking decisions are fully explained by a composite variable comprising MSA/A(max) and the time required to reach MSV. Drivers reliably decide whether overtaking is safe (or not) by using low- and high-order variables taking into account their car's maximum velocity and acceleration, respectively, as predicted by "affordance-based control" theory. Potential applications include the design of overtaking assistance, which should exploit the MSA/A(max) variables in order to suggest perceptually relevant overtaking solutions. © 2015, Human Factors and Ergonomics Society.

  11. Accelerators

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    The talk summarizes the principles of particle acceleration and addresses problems related to storage rings like LEP and LHC. Special emphasis will be given to orbit stability, long term stability of the particle motion, collective effects and synchrotron radiation.

  12. Operation regimes of a dielectric laser accelerator

    Science.gov (United States)

    Hanuka, Adi; Schächter, Levi

    2018-04-01

    We investigate three operation regimes in dielectric laser driven accelerators: maximum efficiency, maximum charge, and maximum loaded gradient. We demonstrate, using a self-consistent approach, that loaded gradients of the order of 1 to 6 [GV/m], efficiencies of 20% to 80%, and electrons flux of 1014 [el/s] are feasible, without significant concerns regarding damage threshold fluence. The latter imposes that the total charge per squared wavelength is constant (a total of 106 per μm2). We conceive this configuration as a zero-order design that should be considered for the road map of future accelerators.

  13. LIAR -- A new program for the modeling and simulation of linear accelerators with high gradients and small emittances

    International Nuclear Information System (INIS)

    Assmann, R.; Adolphsen, C.; Bane, K.; Raubenheimer, T.O.; Siemann, R.; Thompson, K.

    1996-09-01

    Linear accelerators are the central components of the proposed next generation of linear colliders. They need to provide acceleration of up to 750 GeV per beam while maintaining very small normalized emittances. Standard simulation programs, mainly developed for storage rings, do not meet the specific requirements for high energy linear accelerators. The authors present a new program LIAR (LInear Accelerator Research code) that includes wakefield effects, a 4D coupled beam description, specific optimization algorithms and other advanced features. Its modular structure allows to use and to extend it easily for different purposes. They present examples of simulations for SLC and NLC

  14. Prospects for a soft x-ray FEL powered by a relativistic-klystron high-gradient accelerator (RK-HGA)

    International Nuclear Information System (INIS)

    Shay, H.D.; Barletta, W.A.; Yu, S.S.; Schlueter, R.; Deis, G.A.

    1989-01-01

    We present here the concept of x-ray FELs using high gain, single-pass amplifiers with electron beams accelerated in high gradient structures powered by relativistic klystrons. Other authors have also considered x-ray FELs; the unique aspect of this paper is the use of high gradient acceleration. One of the authors has previously presented preliminary studies on this concept. The intent in this paper is to display the results of a top level design study on a high gain FEL, to present its sensitivity to a variety of fabrication and tuning errors, to discuss several mechanisms for increasing gain yet more, and to present explicitly the output characteristics of such an FEL. The philosophy of the design study is to find a plausible operating point which employs existing or nearly existing state-of-the-art technologies while minimizing the accelerator and wiggler lengths. The notion is to distribute the technical risk as evenly as possible over the several technologies so that each must advance only slightly in order to make this design feasible. This study entailed no systematic investigation of possible costs so that, for example, the sole criterion for balancing the trade-off between beam energy and wiggler length is that the two components have comparable lengths. 20 refs., 10 figs., 1 tab

  15. SU-G-201-14: Is Maximum Skin Dose a Reliable Metric for Accelerated Partial Breast Irradiation with Brachytherapy?

    International Nuclear Information System (INIS)

    Park, S; Ragab, O; Patel, S; Demanes, J; Kamrava, M; Kim, Y

    2016-01-01

    Purpose: To evaluate the reliability of the maximum point dose (Dmax) to the skin surface as a dosimetric constraint, we investigated the correlation between Dmax at the skin surface and dose metrics at various definitions of skin thickness. Methods: 42 patients treated with APBI using a Strut Adjusted Volume Implant (SAVI) applicator between 2010 and 2014 were retrospectively reviewed. Target (PTV-EVAL) and organs at risk (OARs: skin, lung, and ribs) were delineated on a CT following NSABP B-39 guidelines. Six skin structures were contoured: a rind 3cm external to the body surface and 1, 2, 3, 4, and 5mm thick rinds deep to the body surface. Inverse planning simulated annealing optimization was used to deliver 32–34Gy in 8-10 fractions to the target while minimizing OAR doses. Dmax, D0.1cc, D1.0cc, and D2.0cc to the various skin structures were calculated. Linear regressions between the metrics were evaluated using the coefficient of determination (R"2). Results: The average±SD PTV-EVAL volume and cavity-to-skin distances were 71.1±28.5cc and 6.9±5.0mm. The target V90 and V95 were 97.3±2.3% and 95.1±3.2%. The Dmax to the skin structures were 78.7±10.2% (skin surface), 82.2±10.7% (skin-1mm), 89.4±12.6% (skin-2mm), 97.9±15.4% (skin-3mm), 114.1±32.5% (skin-4mm), and 157.0±85.3% (skin-5mm). Linear regression analysis showed D1.0cc and D2.0cc to the skin 1mm and Dmax to the skin-4mm and 5mm were poorly correlated with other metrics (R"2=0.413±0.204). Dmax to the skin surface was well correlated (R"2=0.910±0.047) and D1.0cc to the skin-3mm was strongly correlated with all subsurface skin layers (R"2=0.935±0.050). Conclusion: Dmax to the skin surface is a relevant metric for breast skin dose. Contouring discontinuities in the skin with a 1mm subsurface rind and the active dwells in the skin 4 and 5mm introduced significant variations in skin DVH. D0.1cc, D1.0cc, and D2.0cc to a 3mm skin rind are more robust metrics in breast brachytherapy.

  16. Plasma accelerators

    International Nuclear Information System (INIS)

    Bingham, R.; Angelis, U. de; Johnston, T.W.

    1991-01-01

    Recently attention has focused on charged particle acceleration in a plasma by a fast, large amplitude, longitudinal electron plasma wave. The plasma beat wave and plasma wakefield accelerators are two efficient ways of producing ultra-high accelerating gradients. Starting with the plasma beat wave accelerator (PBWA) and laser wakefield accelerator (LWFA) schemes and the plasma wakefield accelerator (PWFA) steady progress has been made in theory, simulations and experiments. Computations are presented for the study of LWFA. (author)

  17. Study of betatron oscillations in a constant field and alternating gradient accelerator; Etude des oscillations betatron dans l'accelerateur a champ fixe et a gradient alterne

    Energy Technology Data Exchange (ETDEWEB)

    Lauzanne, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    The conditions for the stability of a constant energy particle beam circulating in the magnetic field of the F.F.A.G. accelerator are studied. By a mathematical study it is possible to derive the equations for the equilibrium orbit and for the low amplitude oscillations, and the expressions for the amplitude stability limits of the beam. For this, approximation methods are used, in particular the linearization of the differential equations of the movement, and the method of gradual approximation. Numerical investigations carried out with the help of the IBM 7090 computer make it possible to judge the precision of the results given by the theory. A systematic variation of the parameters makes it possible to understand more clearly the mechanism of the amplitude variations of the trajectories. Finally, for the radial sector model, the possibility of introducing zones free from the magnetic field is considered. The case of short straight sections, respecting the field periodicity, and of that of long straight sections creating super-periods are considered. For the two cases are given solutions which should lead to a practical machine. (author) [French] On etudie les conditions de stabilite d'un faisceau de particules circulant a energie constante dans le champ magnetique de l'accelerateur F.F.A.G. Une etude mathematique permet d'etablir les equations de l'orbite d'equilibre et des oscillations de faible amplitude, les expressions des limites de stabilite en amplitude du faisceau. On emploie a cet effet des methodes d'approximation, essentiellement la linearisation des equations differentielles du mouvement et la methode de l'approximation douce. Des investigations numeriques effectuees a l'aide de la calculatrice IBM 7090 permettent d'apprecier l'exactitude des resultats fournis par la theorie. Une variation systematique des parametres permet de mieux comprendre le mecanisme des variations d'amplitude des trajectoires. On etudie enfin, pour le modele a secteur radial

  18. A New Damped and Tapered Accelerating Structure for CLIC

    CERN Document Server

    Raguin, J Y; Syratchev, I V; Wilson, Ian H; Wuensch, Walter

    2002-01-01

    The main performance limits when designing accelerating structures for the Compact Linear Collider (CLIC) for an average accelerating gradient above 100 MV/m are electrical breakdown and material fatigue caused by pulsed surface heating. In addition, for stable beam operation, the structures should have low short-range transverse wakefields and much-reduced transverse and longitudinal long-range wakefields. Two damped and tapered accelerating structures have been designed. The first has an accelerating gradient of 112 MV/m with the surface electrical field limited to 300 MV/m and the maximum temperature increase limited to 100°C. The second, with an accelerating gradient of 150 MV/m, has a peak surface electrical field of 392 MV/m and a maximum temperature increase of 167°C. Innovations to the cell and damping waveguide geometry and to the tapering of the structures are presented, and possible further improvements are proposed.

  19. Multi-MW K-Band Harmonic Multiplier: RF Source For High-Gradient Accelerator R & D

    Science.gov (United States)

    Solyak, N. A.; Yakovlev, V. P.; Kazakov, S. Yu.; Hirshfield, J. L.

    2009-01-01

    A preliminary design is presented for a two-cavity harmonic multiplier, intended as a high-power RF source for use in experiments aimed at developing high-gradient structures for a future collider. The harmonic multiplier is to produce power at selected frequencies in K-band (18-26.5 GHz) using as an RF driver an XK-5 S-band klystron (2.856 GHz). The device is to be built with a TE111 rotating mode input cavity and interchangeable output cavities running in the TEn11 rotating mode, with n = 7,8,9 at 19.992, 22.848, and 25.704 GHz. An example for a 7th harmonic multiplier is described, using a 250 kV, 20 A injected laminar electron beam; with 10 MW of S-band drive power, 4.7 MW of 20-GHz output power is predicted. Details are described of the magnetic circuit, cavities, and output coupler.

  20. Difference in the craniocaudal gradient of the maximum pixel value change rate between chronic obstructive pulmonary disease patients and normal subjects using sub-mGy dynamic chest radiography with a flat panel detector system.

    Science.gov (United States)

    Yamada, Yoshitake; Ueyama, Masako; Abe, Takehiko; Araki, Tetsuro; Abe, Takayuki; Nishino, Mizuki; Jinzaki, Masahiro; Hatabu, Hiroto; Kudoh, Shoji

    2017-07-01

    To compare the craniocaudal gradients of the maximum pixel value change rate (MPCR) during tidal breathing between chronic obstructive pulmonary disease (COPD) patients and normal subjects using dynamic chest radiography. This prospective study was approved by the institutional review board and all participants provided written informed consent. Forty-three COPD patients (mean age, 71.6±8.7 years) and 47 normal subjects (non-smoker healthy volunteers) (mean age, 54.8±9.8 years) underwent sequential chest radiographs during tidal breathing in a standing position using dynamic chest radiography with a flat panel detector system. We evaluated the craniocaudal gradient of MPCR. The results were analyzed using an unpaired t-test and the Tukey-Kramer method. The craniocaudal gradients of MPCR in COPD patients were significantly lower than those in normal subjects (right inspiratory phase, 75.5±48.1 vs. 108.9±42.0s -1 cm -1 , P<0.001; right expiratory phase, 66.4±40.6 vs. 89.8±31.6s -1 cm -1 , P=0.003; left inspiratory phase, 75.5±48.2 vs. 108.2±47.2s -1 cm -1 , P=0.002; left expiratory phase, 60.9±38.2 vs. 84.3±29.5s -1 cm -1 , P=0.002). No significant differences in height, weight, or BMI were observed between COPD and normal groups. In the sub-analysis, the gradients in severe COPD patients (global initiative for chronic obstructive lung disease [GOLD] 3 or 4, n=26) were significantly lower than those in mild COPD patients (GOLD 1 or 2, n=17) for both right and left inspiratory/expiratory phases (all P≤0.005). A decrease of the craniocaudal gradient of MPCR was observed in COPD patients. The craniocaudal gradient was lower in severe COPD patients than in mild COPD patients. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  1. Theoretical and experimental study of a modular accelerating structure of travelling waves sections for high gradient tests (MECCANO); Etude theorique et experimentale d`une structure acceleratrice a ondes progressives demontable pour des tests fort gradient (Structure dite ``MECCANO``)

    Energy Technology Data Exchange (ETDEWEB)

    Chanudet, M

    1996-06-04

    A modular system, MECCANO, has been developed at the Laboratoire de l`Accelerateur Lineaire d`Orsay to study the physical and technical phenomena of high electric fields in travelling waves structures in the context of future linear colliders which can reach TeV energies. The behaviour of the electric field inside the section MECCANO is considered from the theoretical point of view with numerical simulations and analytical representations and from the experimental side with low and high power measurements. An infinite and uniform structure is classically described by series of RLC resonant circuits. The basic RF properties of the fundamental mode are given. For a finite section, the matching of a forward or backward travelling wave of any phase advance per cell is also represented by means of RLC circuits. The variations of the reflection and transmission properties of the structure with frequency and a new procedure to match couplers have been modelled and experimentally verified. The electromagnetic behaviour of each cavity and of the whole structure have been studied, the fundamental and first high order modes have been simulated by 2D or 3D codes and measured at low power. The matching of the phase, the amplitude and the reflection level of the accelerator is described. This procedure is found to be extremely delicate due to the abrupt changes in the geometry of the cavities. The structure has been tested at fields superior to 150 MV/m. The behaviour of some materials and surface layers subject to high gradients are presented. (author) 46 refs.

  2. Non-linear extension of FFT-based methods accelerated by conjugate gradients to evaluate the mechanical behavior of composite materials

    International Nuclear Information System (INIS)

    Gelebart, Lionel; Mondon-Cancel, Romain

    2013-01-01

    FFT-based methods are used to solve the problem of a heterogeneous unit-cell submitted to periodic boundary conditions, which is of a great interest in the context of numerical homogenization. Recently (in 2010), Brisard and Zeman proposed simultaneously to use Conjugate Gradient based solvers in order to improve the convergence properties (when compared to the basic scheme, proposed initially in 1994). The purpose of the paper is to extend this idea to the case of non-linear behaviors. The proposed method is based on a Newton-Raphson algorithm and can be applied to various kinds of behaviors (time dependant or independent, with or without internal variables) through a conventional integration procedure as used in finite element codes. It must be pointed out that this approach is fundamentally different from the traditional FFT-based approaches which rely on a fixed-point algorithm (e.g. basic scheme, Eyre and Milton accelerated scheme, Augmented Lagrangian scheme, etc.). The method is compared to the basic scheme on the basis of a simple application (a linear elastic spherical inclusion within a non-linear elastic matrix): a low sensitivity to the reference material and an improved efficiency, for a soft or a stiff inclusion, are observed. At first proposed for a prescribed macroscopic strain, the method is then extended to mixed loadings. (authors)

  3. Multicavity proton cyclotron accelerator

    Directory of Open Access Journals (Sweden)

    J. L. Hirshfield

    2002-08-01

    Full Text Available A mechanism for acceleration of protons is described, in which energy gain occurs near cyclotron resonance as protons drift through a sequence of rotating-mode TE_{111} cylindrical cavities in a strong nearly uniform axial magnetic field. Cavity resonance frequencies decrease in sequence from one another with a fixed frequency interval Δf between cavities, so that synchronism can be maintained between the rf fields and proton bunches injected at intervals of 1/Δf. An example is presented in which a 122 mA, 1 MeV proton beam is accelerated to 961 MeV using a cascade of eight cavities in an 8.1 T magnetic field, with the first cavity resonant at 120 MHz and with Δf=8 MHz. Average acceleration gradient exceeds 40 MV/m, average effective shunt impedance is 223 MΩ/m, but maximum surface field in the cavities does not exceed 7.2 MV/m. These features occur because protons make many orbital turns in each cavity and thus experience acceleration from each cavity field many times. Longitudinal and transverse stability appear to be intrinsic properties of the acceleration mechanism, and an example to illustrate this is presented. This acceleration concept could be developed into a proton accelerator for a high-power neutron spallation source, such as that required for transmutation of nuclear waste or driving a subcritical fission burner, provided a number of significant practical issues can be addressed.

  4. Comparative Studies of High-Gradient Rf and Dc Breakdowns

    CERN Document Server

    Kovermann, Jan Wilhelm; Wuensch, Walter

    2010-01-01

    The CLIC project is based on normal-conducting high-gradient accelerating structures with an average accelerating gradient of 100 MV/m. The maximum achievable gradient in these structures is limited by the breakdown phenomenon. The physics of breakdowns is not yet fully understood quantitatively. A full knowledge could have strong impact on the design, material choice and construction of rf structures. Therefore, understanding breakdowns has great importance to reaching a gradient of 100MV/m with an acceptable breakdown probability. This thesis addresses the physics underlying the breakdown effect, focusing on a comparison of breakdowns in rf structures and in a dc spark setup. The dc system is simpler, easier to benchmark against simulations, with a faster turnaround time, but the relationship to rf breakdown must be established. To do so, an experimental approach based on optical diagnostics and electrical measurements methods was made. Following an introduction into the CLIC project, a general theoretical ...

  5. Evaluation of a multiple spin- and gradient-echo (SAGE) EPI acquisition with SENSE acceleration: applications for perfusion imaging in and outside the brain.

    Science.gov (United States)

    Skinner, Jack T; Robison, Ryan K; Elder, Christopher P; Newton, Allen T; Damon, Bruce M; Quarles, C Chad

    2014-12-01

    Perfusion-based changes in MR signal intensity can occur in response to the introduction of exogenous contrast agents and endogenous tissue properties (e.g. blood oxygenation). MR measurements aimed at capturing these changes often implement single-shot echo planar imaging (ssEPI). In recent years ssEPI readouts have been combined with parallel imaging (PI) to allow fast dynamic multi-slice imaging as well as the incorporation of multiple echoes. A multiple spin- and gradient-echo (SAGE) EPI acquisition has recently been developed to allow measurement of transverse relaxation rate (R2 and R2(*)) changes in dynamic susceptibility contrast (DSC)-MRI experiments in the brain. With SAGE EPI, the use of PI can influence image quality, temporal resolution, and achievable echo times. The effect of PI on dynamic SAGE measurements, however, has not been evaluated. In this work, a SAGE EPI acquisition utilizing SENSE PI and partial Fourier (PF) acceleration was developed and evaluated. Voxel-wise measures of R2 and R2(*) in healthy brain were compared using SAGE EPI and conventional non-EPI multiple echo acquisitions with varying SENSE and PF acceleration. A conservative SENSE factor of 2 with PF factor of 0.73 was found to provide accurate measures of R2 and R2(*) in white (WM) (rR2=[0.55-0.79], rR2*=[0.47-0.71]) and gray (GM) matter (rR2=[0.26-0.59], rR2*=[0.39-0.74]) across subjects. The combined use of SENSE and PF allowed the first dynamic SAGE EPI measurements in muscle, with a SENSE factor of 3 and PF factor of 0.6 providing reliable relaxation rate estimates when compared to multi-echo methods. Application of the optimized SAGE protocol in DSC-MRI of high-grade glioma patients provided T1 leakage-corrected estimates of CBV and CBF as well as mean vessel diameter (mVD) and simultaneous measures of DCE-MRI parameters K(trans) and ve. Likewise, application of SAGE in a muscle reperfusion model allowed dynamic measures of R2', a parameter that has been shown to correlate

  6. Substrate curvature gradient drives rapid droplet motion.

    Science.gov (United States)

    Lv, Cunjing; Chen, Chao; Chuang, Yin-Chuan; Tseng, Fan-Gang; Yin, Yajun; Grey, Francois; Zheng, Quanshui

    2014-07-11

    Making small liquid droplets move spontaneously on solid surfaces is a key challenge in lab-on-chip and heat exchanger technologies. Here, we report that a substrate curvature gradient can accelerate micro- and nanodroplets to high speeds on both hydrophilic and hydrophobic substrates. Experiments for microscale water droplets on tapered surfaces show a maximum speed of 0.42  m/s, 2 orders of magnitude higher than with a wettability gradient. We show that the total free energy and driving force exerted on a droplet are determined by the substrate curvature and substrate curvature gradient, respectively. Using molecular dynamics simulations, we predict nanoscale droplets moving spontaneously at over 100  m/s on tapered surfaces.

  7. Theory of the dielectric wakefield accelerator

    International Nuclear Information System (INIS)

    Mtingwa, S.K.

    1990-10-01

    The general theory for all angular modes m of the dielectric wakefield accelerator is reformulated. The expressions for the accelerating electric fields and transverse wake forces are written in terms of matrices, the zeros of one of which determine the excitation frequencies of the dielectric structure. In this scheme it is possible to obtain a maximum accelerating gradient of 2.0 megavolts per meter per nanoCoulomb of driver beam charge, for a driver beam of 0.7 millimeters rms bunch length. 29 refs., 5 figs

  8. Optimized operation of dielectric laser accelerators: Single bunch

    Directory of Open Access Journals (Sweden)

    Adi Hanuka

    2018-05-01

    Full Text Available We introduce a general approach to determine the optimal charge, efficiency and gradient for laser driven accelerators in a self-consistent way. We propose a way to enhance the operational gradient of dielectric laser accelerators by leverage of beam-loading effect. While the latter may be detrimental from the perspective of the effective gradient experienced by the particles, it can be beneficial as the effective field experienced by the accelerating structure, is weaker. As a result, the constraint imposed by the damage threshold fluence is accordingly weakened and our self-consistent approach predicts permissible gradients of ∼10  GV/m, one order of magnitude higher than previously reported experimental results—with unbunched pulse of electrons. Our approach leads to maximum efficiency to occur for higher gradients as compared with a scenario in which the beam-loading effect on the material is ignored. In any case, maximum gradient does not occur for the same conditions that maximum efficiency does—a trade-off set of parameters is suggested.

  9. A high gradient test of a single-cell superconducting radio frequency cavity with a feedback waveguide

    Science.gov (United States)

    Kostin, Roman; Avrakhov, Pavel; Kanareykin, Alexei; Solyak, Nikolay; Yakovlev, Vyacheslav; Kazakov, Sergey; Wu, Genfa; Khabiboulline, Timergali; Rowe, Allan; Rathke, John

    2015-09-01

    The most severe problem of the international linear collider (ILC-type) is its high cost, resulting in part from the enormous length of the collider. This length is determined mainly by the achievable accelerating gradient in the RF system of the collider. In current technology, the maximum acceleration gradient in superconducting (SC) structures is determined mainly by the value of the surface RF magnetic field. In order to increase the gradient, a superconducting traveling wave accelerating (STWA) structure is suggested. Utilization of STWA structure with small phase advance per cell for future high energy linear colliders such as ILCs may provide an accelerating gradient 1.2-1.4 times larger [1] than a standing wave structure. However, STWA structure requires a feedback waveguide for power redirecting from the end of the structure back to the front end of accelerating structure. Recent tests of a 1.3 GHz model of a single-cell cavity with waveguide feedback demonstrated an accelerating gradient comparable to the gradient of a single-cell ILC-type cavity from the same manufacturer [2]. In the present paper, high gradient test results are presented.

  10. Avoiding vacuum arcs in high gradient normal conducting RF structures

    CERN Document Server

    Sjøbæk, Kyrre Ness; Adli, Erik; Grudiev, Alexej; Wuensch, Walter

    In order to build the Compact LInear Collider (CLIC), accelerating structures reaching extremely high accelerating gradients are needed. Such structures have been built and tested using normal-conducting copper, powered by X-band RF power and reaching gradients of 100 MV/m and above. One phenomenon that must be avoided in order to reliably reach such gradients, is vacuum arcs or “breakdowns”. This can be accomplished by carefully designing the structure geometry such that high surface fields and large local power flows are avoided. The research presented in this thesis presents a method for optimizing the geometry of accelerating structures so that these breakdowns are made less likely, allowing the structure to operate reliably at high gradients. This was done primarily based on a phenomenological scaling model, which predicted the maximum gradient as a function of the break down rate, pulse length, and field distribution in the structure. The model is written in such a way that it allows direct comparis...

  11. Maximum entropy beam diagnostic tomography

    International Nuclear Information System (INIS)

    Mottershead, C.T.

    1985-01-01

    This paper reviews the formalism of maximum entropy beam diagnostic tomography as applied to the Fusion Materials Irradiation Test (FMIT) prototype accelerator. The same formalism has also been used with streak camera data to produce an ultrahigh speed movie of the beam profile of the Experimental Test Accelerator (ETA) at Livermore. 11 refs., 4 figs

  12. Maximum entropy beam diagnostic tomography

    International Nuclear Information System (INIS)

    Mottershead, C.T.

    1985-01-01

    This paper reviews the formalism of maximum entropy beam diagnostic tomography as applied to the Fusion Materials Irradiation Test (FMIT) prototype accelerator. The same formalism has also been used with streak camera data to produce an ultrahigh speed movie of the beam profile of the Experimental Test Accelerator (ETA) at Livermore

  13. Ionization and pulse lethargy effects in inverse Cherenkov accelerators

    International Nuclear Information System (INIS)

    Sprangle, P.; Hubbard, R.F.; Hafizi, B.

    1997-01-01

    Ionization processes limit the accelerating gradient and place an upper limit on the pulse duration of the electromagnetic driver in the inverse Cherenkov accelerator (ICA). Group velocity slippage, i.e., pulse lethargy, on the other hand, imposes a lower limit on the pulse duration. These limits are obtained for two ICA configurations in which the electromagnetic driver (e.g., laser or millimeter wave source) is propagated in a waveguide that is (i) lined with a dielectric material or (ii) filled with a neutral gas. In either configuration the electromagnetic driving field is guided and has an axial electric field with phase velocity equal to the speed of light in vacuum, c. The intensity of the driver in the ICA, and therefore the acceleration gradient, is limited by tunneling and collisional ionization effects. Partial ionization of the dielectric liner or gas can lead to significant modification of the dispersive properties of the waveguide, altering the phase velocity of the accelerating field and causing particle slippage, thus disrupting the acceleration process. An additional limitation on the pulse duration is imposed since the group velocity of the driving pulse is less than c and the pulse slips behind the accelerated electrons. Hence for sufficiently short pulses the electrons outrun the pulse, terminating the acceleration. Limitations on the driver pulse duration and accelerating gradient, due to ionization and pulse lethargy, are estimated for the two ICA configurations. Maximum accelerating gradients and pulse durations are presented for a 10 μm, 1 mm, and 1 cm wavelength electromagnetic driver. The combination of ionization and pulse lethargy effects impose severe limitations on the maximum energy gain in inverse Cherenkov accelerators. copyright 1997 The American Physical Society

  14. Electron accelerator

    International Nuclear Information System (INIS)

    Abramyan.

    1981-01-01

    The USSR produces an electron accelerator family of a simple design powered straight from the mains. The specifications are given of accelerators ELITA-400, ELITA-3, ELT-2, TEUS-3 and RIUS-5 with maximum electron energies of 0.3 to 5 MeV, a mean power of 10 to 70 kW operating in both the pulsed and the continuous (TEUS-3) modes. Pulsed accelerators ELITA-400 and ELITA-3 and RIUS-5 in which TESLA resonance transformers are used are characterized by their compact size. (Ha)

  15. Particle beam accelerator

    International Nuclear Information System (INIS)

    Turner, N.L.

    1982-01-01

    A particle beam accelerator is described which has several electrodes that are selectively short circuited together synchronously with changes in the magnitude of a DC voltage applied to the accelerator. By this method a substantially constant voltage gradient is maintained along the length of the unshortened electrodes despite variations in the energy applied to the beam by the accelerator. The invention has particular application to accelerating ion beams that are implanted into semiconductor wafers. (U.K.)

  16. UCLA accelerator research ampersand development. Progress report

    International Nuclear Information System (INIS)

    1997-01-01

    This report discusses work on advanced accelerators and beam dynamics at ANL, BNL, SLAC, UCLA and Pulse Sciences Incorporated. Discussed in this report are the following concepts: Wakefield acceleration studies; plasma lens research; high gradient rf cavities and beam dynamics studies at the Brookhaven accelerator test facility; rf pulse compression development; and buncher systems for high gradient accelerator and relativistic klystron applications

  17. Conceptual design of an L-band recirculating superconducting traveling wave accelerating structure for ILC

    International Nuclear Information System (INIS)

    Avrakhov, P.; Kanareykin, A.; Liu, Z.; Kazakov, S.; KEK, Tsukuba; Solyak, N.; Yakovlev, V.; Gai, W.

    2007-01-01

    With this paper, we propose the conceptual design of a traveling wave accelerating structure for a superconducting accelerator. The overall goal is to study a traveling wave (TW) superconducting (SC) accelerating structure for ILC that allows an increased accelerating gradient and, therefore reduction of the length of the collider. The conceptual studies were performed in order to optimize the acceleration structure design by minimizing the surface fields inside the cavity of the structure, to make the design compatible with existing technology, and to determine the maximum achievable gain in the accelerating gradient. The proposed solution considers RF feedback system redirecting the accelerating wave that passed through the superconducting traveling wave acceleration (STWA) section back to the input of the accelerating structure. The STWA structure has more cells per unit length than a TESLA structure but provides an accelerating gradient higher than a TESLA structure, consequently reducing the cost. In this paper, the STWA cell shape optimization, coupler cell design and feedback waveguide solution are considered. We also discuss the field flatness in the superconducting TW structure, the HOM modes and multipactor performance have been studied as well. The proposed TW structure design gives an overall 46% gain over the SW ILC structure if the 10 m long TW structure is employed

  18. Plasma-based accelerator structures

    International Nuclear Information System (INIS)

    Schroeder, Carl B.

    1999-01-01

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas

  19. Additional comments on 'A proposed method for measuring the electric dipole moment of the neutron using acceleration in an electric field gradient and ultracold neutron interferometry'

    CERN Document Server

    Lamoreaux, S K

    1999-01-01

    We have previously (Lamoreaux and Golub, Los Alamos archive (xxx) nucl-ex/9901007vs, Nucl. Instr. and Meth., 433 (1999)) presented an analysis, using classical, semi-classical and quantum mechanical tehniques, of the proposal of Freedman et al., (Nucl. Instr. and Meth., A 396 (1997) 181) to search for the neutron electric dipole moment by the use of acceleration of ultracold neutrons in an inhomogeneous electric field followed by amplification of the resulting displacement by several methods involving spin independent interactions (gravity) or reflection from curved (spin independent) mirrors. Following the appearance of some more recent comments (Peshkin, Los Alamos archive (xxx) nucl-ex/9903012 v2; Dombeck and Ringo, Nucl. Instr. and Meth., A 433 (1999)) it now seems reasonable to publish a revised version of our quantum mechanical treatment (Section 2 B of ) with a more detailed exposition.

  20. High temperature experiment for accelerator inertial fusion

    International Nuclear Information System (INIS)

    Lee, E.P.

    1985-01-01

    The High Temperature Experiment (HTE) is intended to produce temperatures of 50-100 eV in solid density targets driven by heavy ion beams from a multiple beam induction linac. The fundamental variables (particle species, energy number of beamlets, current and pulse length) must be fixed to achieve the temperature at minimum cost, subject to criteria of technical feasibility and relevance to the development of a Fusion Driver. The conceptual design begins with an assumed (radiation-limited) target temperature and uses limitations due to particle range, beamlet perveance, and target disassembly to bound the allowable values of mass number (A) and energy (E). An accelerator model is then applied to determine the minimum length accelerator, which is a guide to total cost. The accelerator model takes into account limits on transportable charge, maximum gradient, core mass per linear meter, and head-to-tail momentum variation within a pulse

  1. Design of the detuned accelerator structure

    International Nuclear Information System (INIS)

    Wang, J.W.; Nelson, E.M.

    1993-05-01

    This is a summary of the design procedure for the detuned accelerator structure for SLAC's Next Linear Collider (NLC) program. The 11.424 GHz accelerating mode of each cavity must be synchronous with the beam. The distribution of the disk thicknesses and lowest synchronous dipole mode frequencies of the cavities in the structure is Gaussian in order to reduce the effect of wake fields. The finite element field solver YAP calculated the accelerating mode frequency and the lowest synchronous dipole mode frequency for various cavity diameters, aperture diameters and disk thicknesses. Polynomial 3-parameter fits are used to calculate the dimensions for a 1.8 m detuned structure. The program SUPERFISH was used to calculate the shunt impedances, quality factors and group velocities. The RF parameters of the section like filling time, attenuation factor, accelerating gradient and maximum surface field along the section are evaluated. Error estimates will be discussed and comparisons with conventional constant gradient and constant impedance structures will be presented

  2. Resent advance in electron linear accelerators

    International Nuclear Information System (INIS)

    Takeda, Seishi; Tsumori, Kunihiko; Takamuku, Setsuo; Okada, Toichi; Hayashi, Koichiro; Kawanishi, Masaharu

    1986-01-01

    In recently constructed electron linear accelerators, there has been remarkable advance both in acceleration of a high-current single bunch electron beam for radiation research and in generation of high accelerating gradient for high energy accelerators. The ISIR single bunch electron linear accelerator has been modified an injector to increase a high-current single bunch charge up to 67 nC, which is ten times greater than the single bunch charge expected in early stage of construction. The linear collider projects require a high accelerating gradient of the order of 100 MeV/m in the linear accelerators. High-current and high-gradient linear accelerators make it possible to obtain high-energy electron beam with small-scale linear accelerators. The advance in linear accelerators stimulates the applications of linear accelerators not only to fundamental research of science but also to industrial uses. (author)

  3. Plasma based accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, Allen [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2015-05-01

    The concept of laser-induced plasma wakefields as a technique to accelerate charged particles was introduced 35 years ago as a means to go beyond the accelerating gradients possible with metallic cavities supporting radio frequency electromagnetic fields. Significant developments in laser technology have made possible the pulse intensity needed to realize this concept, and rapid progress is now underway in the realization of laser-driven plasma wakefield acceleration. It has also been realized that similar accelerating gradients can be produced by particle beams propagating in plasmas, and experimental programs have also been undertaken to study this possibility. Positive results have been achieved with electron-driven plasma wakefields, and a demonstration experiment with proton-driven wakefields is under construction at CERN. The concepts behind these different schemes and their pros and cons are described, as well as the experimental results achieved. An outlook for future practical uses of plasma based accelerators will also be given.

  4. Coreless Concept for High Gradient Induction Cell

    International Nuclear Information System (INIS)

    Krasnykh, Anatoly

    2008-01-01

    An induction linac cell for a high gradient is discussed. The proposed solid state coreless approach for the induction linac topology (SLIM(reg s ign)) is based on nanosecond mode operation. This mode may have an acceleration gradient comparable with gradients of rf- accelerator structures. The discussed induction system has the high electric efficiency. The key elements are a solid state semiconductor switch and a high electric density dielectric with a thin section length. The energy in the induction system is storied in the magnetic field. The nanosecond current break-up produces the high voltage. The induced voltage is used for acceleration. This manner of an operation allows the use of low voltage elements in the booster part and achieves a high accelerating gradient. The proposed topology was tested in POP (proof of principle) experiments

  5. Superfast maximum-likelihood reconstruction for quantum tomography

    Science.gov (United States)

    Shang, Jiangwei; Zhang, Zhengyun; Ng, Hui Khoon

    2017-06-01

    Conventional methods for computing maximum-likelihood estimators (MLE) often converge slowly in practical situations, leading to a search for simplifying methods that rely on additional assumptions for their validity. In this work, we provide a fast and reliable algorithm for maximum-likelihood reconstruction that avoids this slow convergence. Our method utilizes the state-of-the-art convex optimization scheme, an accelerated projected-gradient method, that allows one to accommodate the quantum nature of the problem in a different way than in the standard methods. We demonstrate the power of our approach by comparing its performance with other algorithms for n -qubit state tomography. In particular, an eight-qubit situation that purportedly took weeks of computation time in 2005 can now be completed in under a minute for a single set of data, with far higher accuracy than previously possible. This refutes the common claim that MLE reconstruction is slow and reduces the need for alternative methods that often come with difficult-to-verify assumptions. In fact, recent methods assuming Gaussian statistics or relying on compressed sensing ideas are demonstrably inapplicable for the situation under consideration here. Our algorithm can be applied to general optimization problems over the quantum state space; the philosophy of projected gradients can further be utilized for optimization contexts with general constraints.

  6. LCLS Maximum Credible Beam Power

    International Nuclear Information System (INIS)

    Clendenin, J.

    2005-01-01

    The maximum credible beam power is defined as the highest credible average beam power that the accelerator can deliver to the point in question, given the laws of physics, the beam line design, and assuming all protection devices have failed. For a new accelerator project, the official maximum credible beam power is determined by project staff in consultation with the Radiation Physics Department, after examining the arguments and evidence presented by the appropriate accelerator physicist(s) and beam line engineers. The definitive parameter becomes part of the project's safety envelope. This technical note will first review the studies that were done for the Gun Test Facility (GTF) at SSRL, where a photoinjector similar to the one proposed for the LCLS is being tested. In Section 3 the maximum charge out of the gun for a single rf pulse is calculated. In Section 4, PARMELA simulations are used to track the beam from the gun to the end of the photoinjector. Finally in Section 5 the beam through the matching section and injected into Linac-1 is discussed

  7. Irradiance gradients

    International Nuclear Information System (INIS)

    Ward, G.J.; Heckbert, P.S.; Technische Hogeschool Delft

    1992-04-01

    A new method for improving the accuracy of a diffuse interreflection calculation is introduced in a ray tracing context. The information from a hemispherical sampling of the luminous environment is interpreted in a new way to predict the change in irradiance as a function of position and surface orientation. The additional computation involved is modest and the benefit is substantial. An improved interpolation of irradiance resulting from the gradient calculation produces smoother, more accurate renderings. This result is achieved through better utilization of ray samples rather than additional samples or alternate sampling strategies. Thus, the technique is applicable to a variety of global illumination algorithms that use hemicubes or Monte Carlo sampling techniques

  8. Berkeley Lab Laser Accelerator (BELLA) facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Berkeley Lab Laser Accelerator (BELLA) facility (formerly LOASIS) develops advanced accelerators and radiation sources. High gradient (1-100 GV/m) laser-plasma...

  9. Large tandem accelerators

    International Nuclear Information System (INIS)

    Jones, C.M.

    1976-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of tandem accelerators designed to operate at maximum terminal potentials in the range 14 to 30 MV. In addition, a number of older tandem accelerators are now being significantly upgraded to improve their heavy ion performance. Both of these developments have reemphasized the importance of negative heavy ion sources. The new large tandem accelerators are described, and the requirements placed on negative heavy ion source technology by these and other tandem accelerators used for the acceleration of heavy ions are discussed. First, a brief description is given of the large tandem accelerators which have been completed recently, are under construction, or are funded for construction, second, the motivation for construction of these accelerators is discussed, and last, criteria for negative ion sources for use with these accelerators are presented

  10. HIRFL-SSC trim coil currents calculation by conjugate gradients method

    International Nuclear Information System (INIS)

    Liu, W.

    2005-01-01

    For accelerating different kinds of ions to various energies, the HIRFL-SSC should form the corresponding isochronous magnetic field by its main coil and trim coils. Previously, there were errors in fitting the theoretical isochronous magnetic field in the small radius region, which led to some operation difficulties for ion acceleration in the inject region. After further investigation of the restrictive condition of the maximum current limitation, the trim coil currents for fitting the theoretical isochronous magnetic field were recalculated by the conjugate gradients method. Better results were obtained in the operation of HIRFL-SSC. This article introduces the procedure to calculate the trim coil currents. The calculation method of conjugate gradients is introduced and the fitting error is analysed. (author)

  11. Enhancement of proton acceleration field in laser double-layer target interaction

    International Nuclear Information System (INIS)

    Gu, Y. J.; Kong, Q.; Li, X. F.; Yu, Q.; Wang, P. X.; Kawata, S.; Izumiyama, T.; Ma, Y. Y.

    2013-01-01

    A mechanism is proposed to enhance a proton acceleration field in laser plasma interaction. A double-layer plasma with different densities is illuminated by an intense short pulse. Electrons are accelerated to a high energy in the first layer by the wakefield. The electrons accelerated by the laser wakefield induce the enhanced target normal sheath (TNSA) and breakout afterburner (BOA) accelerations through the second layer. The maximum proton energy reaches about 1 GeV, and the total charge with an energy higher than 100 MeV is about several tens of μC/μm. Both the acceleration gradient and laser energy transfer efficiency are higher than those in single-target-based TNSA or BOA. The model has been verified by 2.5D-PIC simulations

  12. Advanced Accelerator Concepts

    Science.gov (United States)

    Siemann, Robert

    1998-04-01

    Current particle accelerators rely on conventional or superconducting radio frequency cavities to accelerate beams of protons or electrons for nuclear and particle research and for medical and materials science studies. New methods for achieving larger accelerating gradients have been proposed and are being studied. These include the use of high power lasers, laser driven plasmas, wake fields generated by intense low energy beams, and millimeter wavelength EM structures. The studies to date, and the prospects for practical applications of these new ideas will be discussed.

  13. Approximate maximum parsimony and ancestral maximum likelihood.

    Science.gov (United States)

    Alon, Noga; Chor, Benny; Pardi, Fabio; Rapoport, Anat

    2010-01-01

    We explore the maximum parsimony (MP) and ancestral maximum likelihood (AML) criteria in phylogenetic tree reconstruction. Both problems are NP-hard, so we seek approximate solutions. We formulate the two problems as Steiner tree problems under appropriate distances. The gist of our approach is the succinct characterization of Steiner trees for a small number of leaves for the two distances. This enables the use of known Steiner tree approximation algorithms. The approach leads to a 16/9 approximation ratio for AML and asymptotically to a 1.55 approximation ratio for MP.

  14. BNL accelerator plans

    International Nuclear Information System (INIS)

    Lowenstein, D.I.

    1986-01-01

    The Brookhaven National Laboratory plan for high energy and heavy ion physics accelerator use for the next ten-year period is described. The two major initiatives are in the construction of the Relativistic Heavy Ion Collider and the upgrade of the Alternating Gradient Synchrotron to a ''Mini Kaon Factory''

  15. Accelerations in Flight

    Science.gov (United States)

    Doolittle, J H

    1925-01-01

    This work on accelerometry was done at McCook Field for the purpose of continuing the work done by other investigators and obtaining the accelerations which occur when a high-speed pursuit airplane is subjected to the more common maneuvers. The accelerations obtained in suddenly pulling out of a dive with well-balanced elevators are shown to be within 3 or 4 per cent of the theoretically possible accelerations. The maximum acceleration which a pilot can withstand depends upon the length of time the acceleration is continued. It is shown that he experiences no difficulty under the instantaneous accelerations as high as 7.8 G., but when under accelerations in excess of 4.5 G., continued for several seconds, he quickly loses his faculties.

  16. Maximum permissible dose

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    This chapter presents a historic overview of the establishment of radiation guidelines by various national and international agencies. The use of maximum permissible dose and maximum permissible body burden limits to derive working standards is discussed

  17. Muon acceleration in cosmic-ray sources

    International Nuclear Information System (INIS)

    Klein, Spencer R.; Mikkelsen, Rune E.; Becker Tjus, Julia

    2013-01-01

    Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in gamma-ray bursts, magnetars, or other sources. These transient sources have short lifetimes, which necessitate very high accelerating gradients, up to 10 13 keV cm –1 . At gradients above 1.6 keV cm –1 , muons produced by hadronic interactions undergo significant acceleration before they decay. This muon acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. Using the IceCube high-energy diffuse neutrino flux limits, we set two-dimensional limits on the source opacity and matter density, as a function of accelerating gradient. These limits put strong constraints on different models of particle acceleration, particularly those based on plasma wake-field acceleration, and limit models for sources like gamma-ray bursts and magnetars.

  18. Coherent multimoded dielectric wakefield accelerators

    International Nuclear Information System (INIS)

    Power, J.

    1998-01-01

    There has recently been a study of the potential uses of multimode dielectric structures for wakefield acceleration [1]. This technique is based on adjusting the wakefield modes of the structure to constructively interfere at certain delays with respect to the drive bunch, thus providing an accelerating gradient enhancement over single mode devices. In this report we examine and attempt to clarify the issues raised by this work in the light of the present state of the art in wakefield acceleration

  19. Accelerator requirments for strategic defense

    International Nuclear Information System (INIS)

    Gullickson, R.L.

    1987-01-01

    The authors discuss how directed energy applications require accelerators with high brightness and large gradients to minimize size and weight for space systems. Several major directed energy applications are based upon accelerator technology. The radio-frequency linear accelerator is the basis for both space-based neutral particle beam (NPB) and free electron laser (FEL) devices. The high peak current of the induction linac has made it a leading candidate for ground based free electron laser applications

  20. The Brookhaven National Laboratory Accelerator Test Facility

    International Nuclear Information System (INIS)

    Batchelor, K.

    1992-01-01

    The Brookhaven National Laboratory Accelerator Test Facility comprises a 50 MeV traveling wave electron linear accelerator utilizing a high gradient, photo-excited, raidofrequency electron gun as an injector and an experimental area for study of new acceleration methods or advanced radiation sources using free electron lasers. Early operation of the linear accelerator system including calculated and measured beam parameters are presented together with the experimental program for accelerator physics and free electron laser studies

  1. FFAGS for muon acceleration

    International Nuclear Information System (INIS)

    Berg, J. Scott; Kahn, Stephen; Palmer, Robert; Trbojevic, Dejan; Johnstone, Carol; Keil, Eberhard; Aiba, Masamitsu; Machida, Shinji; Mori, Yoshiharu; Ogitsu, Toru; Ohmori, Chihiro; Sessler, Andrew; Koscielniak, Shane

    2003-01-01

    Due to their finite lifetime, muons must be accelerated very rapidly. It is challenging to make the magnets ramp fast enough to accelerate in a synchrotron, and accelerating in a linac is very expensive. One can use a recirculating accelerator (like CEBAF), but one needs a different arc for each turn, and this limits the number of turns one can use to accelerate, and therefore requires significant amounts of RF to achieve the desired energy gain. An alternative method for muon acceleration is using a fixed field alternating gradient (FFAG) accelerator. Such an accelerator has a very large energy acceptance (a factor of two or three), allowing one to use the same arc with a magnetic field that is constant over time. Thus, one can in principle make as many turns as one can tolerate due to muon decay, therefore reducing the RF cost without increasing the arc cost. This paper reviews the current status of research into the design of FFAGs for muon acceleration. Several current designs are described and compared. General design considerations are also discussed

  2. Dielectric laser acceleration of non-relativistic electrons at a photonic structure

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, John

    2013-08-29

    This thesis reports on the observation of dielectric laser acceleration of non-relativistic electrons via the inverse Smith-Purcell effect in the optical regime. Evanescent modes in the vicinity of a periodic grating structure can travel at the same velocity as the electrons along the grating surface. A longitudinal electric field component is used to continuously impart momentum onto the electrons. This is only possible in the near-field of a suitable photonic structure, which means that the electron beam has to pass the structure within about one wavelength. In our experiment we exploit the third spatial harmonic of a single fused silica grating excited by laser pulses derived from a Titanium:sapphire oscillator and accelerate non-relativistic 28 keV electrons. We measure a maximum energy gain of 280 eV, corresponding to an acceleration gradient of 25 MeV/m, already comparable with state-of-the-art radio-frequency linear accelerators. To experience this acceleration gradient the electrons approach the grating closer than 100 nm. We present the theory behind grating-based particle acceleration and discuss simulation results of dielectric laser acceleration in the near-field of photonic grating structures, which is excited by near-infrared laser light. Our measurements show excellent agreement with our simulation results and therefore confirm the direct acceleration with the light field. We further discuss the acceleration inside double grating structures, dephasing effects of non-relativistic electrons as well as the space charge effect, which can limit the attainable peak currents of these novel accelerator structures. The photonic structures described in this work can be readily concatenated and therefore represent a scalable realization of dielectric laser acceleration. Furthermore, our structures are directly compatible with the microstructures used for the acceleration of relativistic electrons demonstrated in parallel to this work by our collaborators in

  3. Maximum mutual information regularized classification

    KAUST Repository

    Wang, Jim Jing-Yan

    2014-09-07

    In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.

  4. Maximum mutual information regularized classification

    KAUST Repository

    Wang, Jim Jing-Yan; Wang, Yi; Zhao, Shiguang; Gao, Xin

    2014-01-01

    In this paper, a novel pattern classification approach is proposed by regularizing the classifier learning to maximize mutual information between the classification response and the true class label. We argue that, with the learned classifier, the uncertainty of the true class label of a data sample should be reduced by knowing its classification response as much as possible. The reduced uncertainty is measured by the mutual information between the classification response and the true class label. To this end, when learning a linear classifier, we propose to maximize the mutual information between classification responses and true class labels of training samples, besides minimizing the classification error and reducing the classifier complexity. An objective function is constructed by modeling mutual information with entropy estimation, and it is optimized by a gradient descend method in an iterative algorithm. Experiments on two real world pattern classification problems show the significant improvements achieved by maximum mutual information regularization.

  5. High-efficiency high-energy Ka source for the critically-required maximum illumination of x-ray optics on Z using Z-petawatt-driven laser-breakout-afterburner accelerated ultrarelativistic electrons LDRD .

    Energy Technology Data Exchange (ETDEWEB)

    Sefkow, Adam B.; Bennett, Guy R.

    2010-09-01

    Under the auspices of the Science of Extreme Environments LDRD program, a <2 year theoretical- and computational-physics study was performed (LDRD Project 130805) by Guy R Bennett (formally in Center-01600) and Adam B. Sefkow (Center-01600): To investigate novel target designs by which a short-pulse, PW-class beam could create a brighter K{alpha} x-ray source than by simple, direct-laser-irradiation of a flat foil; Direct-Foil-Irradiation (DFI). The computational studies - which are still ongoing at this writing - were performed primarily on the RedStorm supercomputer at Sandia National Laboratories Albuquerque site. The motivation for a higher efficiency K{alpha} emitter was very clear: as the backlighter flux for any x-ray imaging technique on the Z accelerator increases, the signal-to-noise and signal-to-background ratios improve. This ultimately allows the imaging system to reach its full quantitative potential as a diagnostic. Depending on the particular application/experiment this would imply, for example, that the system would have reached its full design spatial resolution and thus the capability to see features that might otherwise be indiscernible with a traditional DFI-like x-ray source. This LDRD began FY09 and ended FY10.

  6. Is the cooling of coils of pulsed accelerators profitable?

    International Nuclear Information System (INIS)

    Neyret, G.; Parain, J.; Schnuriger, J.C.

    1960-05-01

    In this report, the authors recall how metal resistivity decreases at low temperatures, and give some indications about the power and price of cryogenic installations. They report the study of the cooling of coils in accelerators displaying an alternate gradient with a 15 GeV energy, with or without a magnetic circuit in iron. They establish that cooling does not result in a decrease in the cost price for an hour of operation. They also state that it is not even sure that this cooling would result in a dimension reduction while increasing the maximum achievable induction [fr

  7. The LLNL/UCLA high gradient inverse free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J. T.; Musumeci, P.; Anderson, G.; Anderson, S.; Betts, S.; Fisher, S.; Gibson, D.; Tremaine, A.; Wu, S. [Department of Physics and Astronomy, UCLA, Los Angeles California, 90095 (United States); Lawrence Livermore National Laboratory (United States)

    2012-12-21

    We describe the Inverse Free Electron Accelerator currently under construction at Lawrence Livermore National Lab. Upon completion of this accelerator, high brightness electrons generated in the photoinjector blowout regime and accelerated to 50 MeV by S-band accelerating sections will interact with > 4 TW peak power Ti:Sapphire laser in a highly tapered 50 cm undulator and experience an acceleration gradient of > 200 MeV/m. We present the final design of the accelerator as well as the results of start-to-end simulations investigating preservation of beam quality and tolerances involved with this accelerator.

  8. Dose gradient curve: A new tool for evaluating dose gradient.

    Science.gov (United States)

    Sung, KiHoon; Choi, Young Eun

    2018-01-01

    Stereotactic radiotherapy, which delivers an ablative high radiation dose to a target volume for maximum local tumor control, requires a rapid dose fall-off outside the target volume to prevent extensive damage to nearby normal tissue. Currently, there is no tool to comprehensively evaluate the dose gradient near the target volume. We propose the dose gradient curve (DGC) as a new tool to evaluate the quality of a treatment plan with respect to the dose fall-off characteristics. The average distance between two isodose surfaces was represented by the dose gradient index (DGI) estimated by a simple equation using the volume and surface area of isodose levels. The surface area was calculated by mesh generation and surface triangulation. The DGC was defined as a plot of the DGI of each dose interval as a function of the dose. Two types of DGCs, differential and cumulative, were generated. The performance of the DGC was evaluated using stereotactic radiosurgery plans for virtual targets. Over the range of dose distributions, the dose gradient of each dose interval was well-characterized by the DGC in an easily understandable graph format. Significant changes in the DGC were observed reflecting the differences in planning situations and various prescription doses. The DGC is a rational method for visualizing the dose gradient as the average distance between two isodose surfaces; the shorter the distance, the steeper the dose gradient. By combining the DGC with the dose-volume histogram (DVH) in a single plot, the DGC can be utilized to evaluate not only the dose gradient but also the target coverage in routine clinical practice.

  9. Technology and applications of advanced accelerator concepts

    CERN Document Server

    Chou, Weiren

    2016-01-01

    Since its invention in the 1920s, particle accelerators have made tremendous progress in accelerator science, technology and applications. However, the fundamental acceleration principle, namely, to apply an external radiofrequency (RF) electric field to accelerate charged particles, remains unchanged. As this method (either room temperature RF or superconducting RF) is approaching its intrinsic limitation in acceleration gradient (measured in MeV/m), it becomes apparent that new methods with much higher acceleration gradient (measured in GeV/m) must be found for future very high energy accelerators as well as future compact (table-top or room-size) accelerators. This volume introduces a number of advanced accelerator concepts (AAC) — their principles, technologies and potential applications. For the time being, none of them stands out as a definitive direction in which to go. But these novel ideas are in hot pursuit and look promising. Furthermore, some AAC requires a high power laser system. This has the ...

  10. Two-beam accelerator

    International Nuclear Information System (INIS)

    Sessler, A.M.; Hopkins, D.B.

    1986-06-01

    The Two-Beam Accelerator (TBA) consists of a long high-gradient accelerator structure (HGS) adjacent to an equal-length Free Electron Laser (FEL). In the FEL, a beam propagates through a long series of undulators. At regular intervals, waveguides couple microwave power out of the FEL into the HGS. To replenish energy given up by the FEL beam to the microwave field, induction accelerator units are placed periodically along the length of the FEL. In this manner it is expected to achieve gradients of more than 250 MV/m and thus have a serious option for a 1 TeV x 1 TeV linear collider. The state of present theoretical understanding of the TBA is presented with particular emphasis upon operation of the ''steady-state'' FEL, phase and amplitude control of the rf wave, and suppression of sideband instabilities. Experimental work has focused upon the development of a suitable HGS and the testing of this structure using the Electron Laser Facility (ELF). Description is given of a first test at ELF with a seven-cell 2π/3 mode structure which without preconditioning and with a not-very-good vacuum nevertheless at 35 GHz yielded an average accelerating gradient of 180 MV/m

  11. Can Accelerators Accelerate Learning?

    International Nuclear Information System (INIS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-01-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  12. Can Accelerators Accelerate Learning?

    Science.gov (United States)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  13. The opportunity offered by the ESSnuSB project to exploit the larger leptonic CP violation signal at the second oscillation maximum and the requirements of this project on the ESS accelerator complex

    CERN Document Server

    Wildner, Elena; Blennow, M.; Bogomilov, M.; Burgman, A.; Bouquerel, E.; Carlile, C.; Cederkäll, J.; Christiansen, P.; Cupial, P.; Danared, H.; Dracos, M.; Ekelöf, T.; Eshraqi, M.; Hall-Wilton, R.; Koutchouk, J.P.; Lindroos, M.; Martini, M.; Matev, R.; McGinnis, D.; Miyamoto, R.; Ohlsson, T.; Öhman, H.; Olvegård, M.; Ruber, R.; Schönauer, H.; Tang, J.Y.; Tsenov, R.; Vankova-Kirilova, G.; Vassilopoulos, N.

    2016-01-01

    Very intense neutrino beams and large neutrino detectors will be needed to enable the discovery of CP violation in the leptonic sector. The European Spallation Source (ESS), currently under construction in Lund, Sweden, is a research center that will provide, by 2023, the world's most powerful neutron source. The average power will be 5 MW. Pulsing this linac at higher frequency, at the same instantaneous power, will make it possible to raise the average beam power to 10 MW to produce, in parallel with the spallation neutron production, a high performance neutrino Super Beam of about 0.4 GeV mean neutrino energy. The ESS neutrino Super Beam, ESSnuSB, operated with a 2.0 GeV linac proton beam, together with a large underground Water Cherenkov detector located at 540 km from Lund, close to the second oscillation maximum, will make it possible to discover leptonic CP violation at 5 sigma significance level in 56 percent (65 percent for an upgrade to 2.5 GeV beam energy) of the leptonic Dirac CP-violating phase r...

  14. High-gradient experiment on X-band disk-loaded structures

    International Nuclear Information System (INIS)

    Higo, T.; Taniuchi, T.; Yamamoto, M.; Odagiri, J.; Tokumoto, S.; Mizuno, H.; Takata, K.; Wilson, I.; Wuensch, W.

    1993-09-01

    The high-gradient performance of two travelling-wave X-band accelerating structures 20 cm long has been studied. One of the structures, KEK, was conditioned up to an average accelerating gradient (Eav) of 68 MV/m in 600 hours, while the other, CERN, reached 85 MV/m in 50 hours. In the latter case the maximum output power was fed from the SLED system and the maximum field inside the structure was 138 MV/m. This maximum level was limited by the available power from the klystron. Operation at the Eav=50 MV/m level was found to be stable for both structures. The associated dark current at this level was less than a few μA for CERN but 20 to 30 μA for KEK. Since the two electrical designs are almost the same the difference in dark current must be attributed to the difference in the two fabrication techniques. Modified Fowler-Northeim plots of downstream dark current showed a change of slope, a kink, around 50 to 60 MV/m above which the field enhancement factor was substantially increased. (author)

  15. Extreme Maximum Land Surface Temperatures.

    Science.gov (United States)

    Garratt, J. R.

    1992-09-01

    There are numerous reports in the literature of observations of land surface temperatures. Some of these, almost all made in situ, reveal maximum values in the 50°-70°C range, with a few, made in desert regions, near 80°C. Consideration of a simplified form of the surface energy balance equation, utilizing likely upper values of absorbed shortwave flux (1000 W m2) and screen air temperature (55°C), that surface temperatures in the vicinity of 90°-100°C may occur for dry, darkish soils of low thermal conductivity (0.1-0.2 W m1 K1). Numerical simulations confirm this and suggest that temperature gradients in the first few centimeters of soil may reach 0.5°-1°C mm1 under these extreme conditions. The study bears upon the intrinsic interest of identifying extreme maximum temperatures and yields interesting information regarding the comfort zone of animals (including man).

  16. Particle acceleration in near critical density plasma

    International Nuclear Information System (INIS)

    Gu, Y.J.; Kong, Q.; Kawata, S.; Izumiyama, T.; Nagashima, T.

    2013-01-01

    Charged particle acceleration schemes driven by ultra intense laser and near critical density plasma interactions are presented. They include electron acceleration in a plasma channel, ion acceleration by the Coulomb explosion and high energy electron beam driven ion acceleration. It is found that under the near critical density plasma both ions and electrons are accelerated with a high acceleration gradient. The electron beam containing a large charge quantity is accelerated well with 23 GeV/cm. The collimated ion bunch reaches 1 GeV. The investigations and discussions are based on 2.5D PIC (particle-in-cell) simulations. (author)

  17. Production of a monoenergetic electron bunch in a self-injected laser-wakefield accelerator

    International Nuclear Information System (INIS)

    Chang, C.-L.; Hsieh, C.-T.; Ho, Y.-C.; Chen, Y.-S.; Lin, J.-Y.; Wang, J.; Chen, S.-Y.

    2007-01-01

    Production of a monoenergetic electron bunch in a self-injected laser-wakefield accelerator is investigated with a tomographic method which resolves the electron injection and acceleration processes. It is found that all the electrons in the monoenergetic electron bunch are injected at the same location in the plasma column and then accelerated with an acceleration gradient exceeding 2 GeV/cm. The injection position shifts with the position of pump-pulse focus, and no significant deceleration is observed for the monoenergetic electron bunch after it reaches the maximum energy. The results are consistent with the model of transverse wave breaking and beam loading for the injection of monoenergetic electrons. The tomographic method adds a crucial dimension to the whole array of existing diagnostics for laser beams, plasma waves, and electron beams. With this method the details of the underlying physical processes in laser-plasma interactions can be resolved and compared directly to particle-in-cell simulations

  18. High gradient RF breakdown study

    International Nuclear Information System (INIS)

    Laurent, L.; Luhmann, N.C. Jr.; Scheitrum, G.; Hanna, S.; Pearson, C.; Phillips, R.

    1998-01-01

    Stanford Linear Accelerator Center and UC Davis have been investigating high gradient RF breakdown and its effects on pulse shortening in high energy microwave devices. RF breakdown is a critical issue in the development of high power microwave sources and next generation linear accelerators since it limits the output power of microwave sources and the accelerating gradient of linacs. The motivation of this research is to find methods to increase the breakdown threshold level in X-band structures by reducing dark current. Emphasis is focused on improved materials, surface finish, and cleanliness. The test platform for this research is a traveling wave resonant ring. A 30 MW klystron is employed to provide up to 300 MW of traveling wave power in the ring to trigger breakdown in the cavity. Five TM 01 cavities have previously been tested, each with a different combination of surface polish and/or coating. The onset of breakdown was extended up to 250 MV/m with a TiN surface finish, as compared to 210 MV/m for uncoated OFE copper. Although the TiN coating was helpful in depressing the field emission, the lowest dark current was obtained with a 1 microinch surface finish, single-point diamond-turned cavity

  19. Linear Accelerators

    International Nuclear Information System (INIS)

    Vretenar, M

    2014-01-01

    The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics

  20. Maximum Quantum Entropy Method

    OpenAIRE

    Sim, Jae-Hoon; Han, Myung Joon

    2018-01-01

    Maximum entropy method for analytic continuation is extended by introducing quantum relative entropy. This new method is formulated in terms of matrix-valued functions and therefore invariant under arbitrary unitary transformation of input matrix. As a result, the continuation of off-diagonal elements becomes straightforward. Without introducing any further ambiguity, the Bayesian probabilistic interpretation is maintained just as in the conventional maximum entropy method. The applications o...

  1. Maximum power demand cost

    International Nuclear Information System (INIS)

    Biondi, L.

    1998-01-01

    The charging for a service is a supplier's remuneration for the expenses incurred in providing it. There are currently two charges for electricity: consumption and maximum demand. While no problem arises about the former, the issue is more complicated for the latter and the analysis in this article tends to show that the annual charge for maximum demand arbitrarily discriminates among consumer groups, to the disadvantage of some [it

  2. Collinear wake field acceleration

    International Nuclear Information System (INIS)

    Bane, K.L.F.; Chen, P.; Wilson, P.B.

    1985-04-01

    In the Voss-Weiland scheme of wake field acceleration a high current, ring-shaped driving bunch is used to accelerate a low current beam following along on axis. In such a structure, the transformer ratio, i.e., the ratio of maximum voltage that can be gained by the on-axis beam and the voltage lost by the driving beam, can be large. In contrast, it has been observed that for an arrangement in which driving and driven bunches follow the same path, and where the current distribution of both bunches is gaussian, the transformer ratio is not normally greater than two. This paper explores some of the possibilities and limitations of a collinear acceleration scheme. In addition to its application to wake field acceleration in structures, this study is also of interest for the understanding of the plasma wake field accelerator. 11 refs., 4 figs

  3. Future Accelerator Magnet Needs

    International Nuclear Information System (INIS)

    Devred, Arnaud; Gourlay, Stephen A.; Yamamoto, Akira

    2005-01-01

    Superconducting magnet technology is continually evolving in order to meet the demanding needs of new accelerators and to provide necessary upgrades for existing machines. A variety of designs are now under development, including high fields and gradients, rapid cycling and novel coil configurations. This paper presents a summary of R and D programs in the EU, Japan and the USA. A performance comparison between NbTi and Nb 3 Sn along with fabrication and cost issues are also discussed

  4. Accelerator Service

    International Nuclear Information System (INIS)

    Champelovier, Y.; Ferrari, M.; Gardon, A.; Hadinger, G.; Martin, J.; Plantier, A.

    1998-01-01

    Since the cessation of the operation of hydrogen cluster accelerator in July 1996, four electrostatic accelerators were in operation and used by the peri-nuclear teams working in multidisciplinary collaborations. These are the 4 MV Van de Graaff accelerator, 2,5 MV Van de Graaff accelerator, 400 kV ion implanter as well as the 120 kV isotope separator

  5. Temperature Gradient in Hall Thrusters

    International Nuclear Information System (INIS)

    Staack, D.; Raitses, Y.; Fisch, N.J.

    2003-01-01

    Plasma potentials and electron temperatures were deduced from emissive and cold floating probe measurements in a 2 kW Hall thruster, operated in the discharge voltage range of 200-400 V. An almost linear dependence of the electron temperature on the plasma potential was observed in the acceleration region of the thruster both inside and outside the thruster. This result calls into question whether secondary electron emission from the ceramic channel walls plays a significant role in electron energy balance. The proportionality factor between the axial electron temperature gradient and the electric field is significantly smaller than might be expected by models employing Ohmic heating of electrons

  6. Summary report on large HVEC accelerators

    International Nuclear Information System (INIS)

    Thieberger, P.

    1981-01-01

    The main features are described of the ten presently operating large HVEC tandem accelerators and of four additional HVEC accelerators which are in different stages of testing, construction or planning. Present performance characteristics are discussed as well as available information about long term reliability. Some recent improvements are mentioned and comparisons are drawn for acceleration tube gradients in various different configurations and accelerators. Finally, some possible future developments are indicated

  7. Standing Wave Linear Accelerators: An Investigation of the Fundamental Field Stability and Tuning Characteristics

    International Nuclear Information System (INIS)

    2002-01-01

    The first accelerators were designed as a tool in high-energy particle physics. Their development has given rise to numerous applications in industry, such as materials processing, sterilization, food preservation, and radiopharmaceutical product generation (Barbalat, 1994). Modern day linear accelerators for particle physics accelerate multiple bunches of electrons and positrons up to 50 GeV. Accelerators of the next generation, such as the Next Linear Collider (NLC), aim to accelerate the bunches initially to a center of mass of 500GeV and later to 1.5 TeV (Decking 2001, Miyamoto 2002, Phinney 2002). The NLC will operate under gradient fields on the order of 70 MV/m (Phinney, 2002). For all accelerators, two issues are fundamental for their construction: maximizing the efficiency of acceleration while, at the same time, preserving the luminosity of the beam. These issues are critically important in the design of the NLC. A linear accelerator operates as follows: An electron gun fires electrons into a structure that bunches the electrons and tightly focuses the beam. At the same time, a radiofrequency wave is fed into the accelerating structure. The electron bunches enter the accelerating structure in phase with the crest of the radiofrequency wave in order to achieve maximum energy. There are two principal types of accelerating structures: traveling wave (TW) and standing wave (SW). The electromagnetic wave in a TW structure travels in one direction; the electromagnetic wave in a SW structure travels in two directions. Many TW structures have been designed for the NLC, but recent experiments indicate that TW structures suffer from electrical breakdown at high gradients (Miller et. al., 2001). To address this problem, SW structures are being considered as the alternative for the NLC (Jones and Miller et. al., 2002). The input power required for an accelerating cavity increases with the length of the cavity (Miller et. al., 2001). Since SW structures can be made

  8. Maximum likely scale estimation

    DEFF Research Database (Denmark)

    Loog, Marco; Pedersen, Kim Steenstrup; Markussen, Bo

    2005-01-01

    A maximum likelihood local scale estimation principle is presented. An actual implementation of the estimation principle uses second order moments of multiple measurements at a fixed location in the image. These measurements consist of Gaussian derivatives possibly taken at several scales and/or ...

  9. Robust Maximum Association Estimators

    NARCIS (Netherlands)

    A. Alfons (Andreas); C. Croux (Christophe); P. Filzmoser (Peter)

    2017-01-01

    textabstractThe maximum association between two multivariate variables X and Y is defined as the maximal value that a bivariate association measure between one-dimensional projections αX and αY can attain. Taking the Pearson correlation as projection index results in the first canonical correlation

  10. Superconducting niobium cavities with high gradients

    International Nuclear Information System (INIS)

    Kneisel, P.; Saito, K.

    1992-01-01

    Present accelerator projects making use of superconducting cavity technology are constructed with design accelerating gradients E acc ranging between 5 MV/m and 8 MV/m and Q-values of several 10 9 . Future plans for upgrades of existing accelerators or for linear colliders call for gradients greater than 15 MV/m corresponding to peak surface electric fields above 30 MV/m. These demands challenge state-of-the-art production technology and require improvements in processing and handling of these cavities to overcome the major performance limitation of field emission loading. This paper reports on efforts to improve the performance of cavities made from niobium from different suppliers by using improved cleaning techniques after processing and ultrahigh vacuum annealing at temperatures of 1400 C. In single cell L-band cavities peak surface electric fields as high as 50 MV/m have been measured without significant field emission loading. (Author) 8 refs., fig

  11. Plasma accelerators at the energy frontier and on tabletops

    CERN Document Server

    Joshi, Chandrashekhar

    2003-01-01

    New approaches to charged-particle acceleration by collective fields in plasma were discussed. These approaches show considerable promise for realizing plasma accelerators at the energy frontier as well as table-top electron and ion accelerators. Charged particles surfing on electron density waves in plasmas can experience enormous accelerating gradients. (Edited abstract) 45 Refs.

  12. BRIEF HISTORY OF FFAG ACCELERATORS

    International Nuclear Information System (INIS)

    RUGGIERO, A.

    2006-01-01

    Colleagues of mine have asked me few times why we have today so much interest in Fixed-Field Alternating-Gradient (FFAG) accelerators when these were invented a long time ago, and have always been ignored since then. I try here to give a reply with a short history of FFAG accelerators, at least as I know it. I take also the opportunity to clarify few definitions

  13. BRIEF HISTORY OF FFAG ACCELERATORS.

    Energy Technology Data Exchange (ETDEWEB)

    RUGGIERO, A.

    2006-12-04

    Colleagues of mine have asked me few times why we have today so much interest in Fixed-Field Alternating-Gradient (FFAG) accelerators when these were invented a long time ago, and have always been ignored since then. I try here to give a reply with a short history of FFAG accelerators, at least as I know it. I take also the opportunity to clarify few definitions.

  14. Maximum power point tracking

    International Nuclear Information System (INIS)

    Enslin, J.H.R.

    1990-01-01

    A well engineered renewable remote energy system, utilizing the principal of Maximum Power Point Tracking can be m ore cost effective, has a higher reliability and can improve the quality of life in remote areas. This paper reports that a high-efficient power electronic converter, for converting the output voltage of a solar panel, or wind generator, to the required DC battery bus voltage has been realized. The converter is controlled to track the maximum power point of the input source under varying input and output parameters. Maximum power point tracking for relative small systems is achieved by maximization of the output current in a battery charging regulator, using an optimized hill-climbing, inexpensive microprocessor based algorithm. Through practical field measurements it is shown that a minimum input source saving of 15% on 3-5 kWh/day systems can easily be achieved. A total cost saving of at least 10-15% on the capital cost of these systems are achievable for relative small rating Remote Area Power Supply systems. The advantages at larger temperature variations and larger power rated systems are much higher. Other advantages include optimal sizing and system monitor and control

  15. Large Airborne Full Tensor Gradient Data Inversion Based on a Non-Monotone Gradient Method

    Science.gov (United States)

    Sun, Yong; Meng, Zhaohai; Li, Fengting

    2018-03-01

    Following the development of gravity gradiometer instrument technology, the full tensor gravity (FTG) data can be acquired on airborne and marine platforms. Large-scale geophysical data can be obtained using these methods, making such data sets a number of the "big data" category. Therefore, a fast and effective inversion method is developed to solve the large-scale FTG data inversion problem. Many algorithms are available to accelerate the FTG data inversion, such as conjugate gradient method. However, the conventional conjugate gradient method takes a long time to complete data processing. Thus, a fast and effective iterative algorithm is necessary to improve the utilization of FTG data. Generally, inversion processing is formulated by incorporating regularizing constraints, followed by the introduction of a non-monotone gradient-descent method to accelerate the convergence rate of FTG data inversion. Compared with the conventional gradient method, the steepest descent gradient algorithm, and the conjugate gradient algorithm, there are clear advantages of the non-monotone iterative gradient-descent algorithm. Simulated and field FTG data were applied to show the application value of this new fast inversion method.

  16. Future accelerators (?)

    Energy Technology Data Exchange (ETDEWEB)

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  17. Maximum entropy methods

    International Nuclear Information System (INIS)

    Ponman, T.J.

    1984-01-01

    For some years now two different expressions have been in use for maximum entropy image restoration and there has been some controversy over which one is appropriate for a given problem. Here two further entropies are presented and it is argued that there is no single correct algorithm. The properties of the four different methods are compared using simple 1D simulations with a view to showing how they can be used together to gain as much information as possible about the original object. (orig.)

  18. Ion Acceleration by Ultra-intense Laser Pulse Interacting with Double-layer Near-critical Density Plasma

    International Nuclear Information System (INIS)

    Gu, Y. J.; Kong, Q.; Li, X. F.; Yu, Q.; Wang, P. X.; Kawata, S.; Izumiyama, T.; Nagashima, T.; Takano, M.; Barada, D.; Ma, Y. Y.

    2016-01-01

    A collimated ion beam is generated through the interaction between ultra-intense laser pulse and a double layer plasma. The maximum energy is above 1 GeV and the total charge of high energy protons is about several tens of nC/μm. The double layer plasma is combined with an underdense plasma and a thin overdense one. The wakefield traps and accelerates a bunch of electrons to high energy in the first underdense slab. When the well collimated electron beam accelerated by the wakefield penetrates through the second overdense slab, it enhances target normal sheath acceleration (TNSA) and breakout after-burner (BOA) regimes. The mechanism is simulated and analyzed by 2.5 dimensional Particle-in-cell code. Compared with single target TNSA or BOA, both the acceleration gradient and energy transfer efficiency are higher in the double layer regime. (paper)

  19. Superconductivity and future accelerators

    International Nuclear Information System (INIS)

    Danby, G.T.; Jackson, J.W.

    1963-01-01

    For 50 years particle accelerators employing accelerating cavities and deflecting magnets have been developed at a prodigious rate. New accelerator concepts and hardware ensembles have yielded great improvements in performance and GeV/$. The great idea for collective acceleration resulting from intense auxiliary charged-particle beams or laser light may or may not be just around the corner. In its absence, superconductivity (SC) applied both to rf cavities and to magnets opened up the potential for very large accelerators without excessive energy consumption and with other economies, even with the cw operation desirable for colliding beams. HEP has aggressively pioneered this new technology: the Fermilab single ring 1 TeV accelerator - 2 TeV collider is near the testing stage. Brookhaven National Laboratory's high luminosity pp 2 ring 800 GeV CBA collider is well into construction. Other types of superconducting projects are in the planning stage with much background R and D accomplished. The next generation of hadron colliders under discussion involves perhaps a 20 TeV ring (or rings) with 40 TeV CM energy. This is a very large machine: even if the highest practical field B approx. 10T is used, the radius is 10x that of the Fermilab accelerator. An extreme effort to get maximum GeV/$ may be crucial even for serious consideration of funding

  20. A Phase Matching, Adiabatic Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lemery, Francois [Hamburg U.; Flöttmann, Klaus [DESY; Kärtner, Franz [CFEL, Hamburg; Piot, Philippe [Northern Illinois U.

    2017-05-01

    Tabletop accelerators are a thing of the future. Reducing their size will require scaling down electromagnetic wavelengths; however, without correspondingly high field gradients, particles will be more susceptible to phase-slippage – especially at low energy. We investigate how an adiabatically-tapered dielectric-lined waveguide could maintain phase-matching between the accelerating mode and electron bunch. We benchmark our simple model with CST and implement it into ASTRA; finally we provide a first glimpse into the beam dynamics in a phase-matching accelerator.

  1. The last glacial maximum

    Science.gov (United States)

    Clark, P.U.; Dyke, A.S.; Shakun, J.D.; Carlson, A.E.; Clark, J.; Wohlfarth, B.; Mitrovica, J.X.; Hostetler, S.W.; McCabe, A.M.

    2009-01-01

    We used 5704 14C, 10Be, and 3He ages that span the interval from 10,000 to 50,000 years ago (10 to 50 ka) to constrain the timing of the Last Glacial Maximum (LGM) in terms of global ice-sheet and mountain-glacier extent. Growth of the ice sheets to their maximum positions occurred between 33.0 and 26.5 ka in response to climate forcing from decreases in northern summer insolation, tropical Pacific sea surface temperatures, and atmospheric CO2. Nearly all ice sheets were at their LGM positions from 26.5 ka to 19 to 20 ka, corresponding to minima in these forcings. The onset of Northern Hemisphere deglaciation 19 to 20 ka was induced by an increase in northern summer insolation, providing the source for an abrupt rise in sea level. The onset of deglaciation of the West Antarctic Ice Sheet occurred between 14 and 15 ka, consistent with evidence that this was the primary source for an abrupt rise in sea level ???14.5 ka.

  2. Magnetic field of longitudinal gradient bend

    Science.gov (United States)

    Aiba, Masamitsu; Böge, Michael; Ehrlichman, Michael; Streun, Andreas

    2018-06-01

    The longitudinal gradient bend is an effective method for reducing the natural emittance in light sources. It is, however, not a common element. We have analyzed its magnetic field and derived a set of formulae. Based on the derivation, we discuss how to model the longitudinal gradient bend in accelerator codes that are used for designing electron storage rings. Strengths of multipole components can also be evaluated from the formulae, and we investigate the impact of higher order multipole components in a very low emittance lattice.

  3. Electron acceleration by surface plasma waves in double metal surface structure

    Science.gov (United States)

    Liu, C. S.; Kumar, Gagan; Singh, D. B.; Tripathi, V. K.

    2007-12-01

    Two parallel metal sheets, separated by a vacuum region, support a surface plasma wave whose amplitude is maximum on the two parallel interfaces and minimum in the middle. This mode can be excited by a laser using a glass prism. An electron beam launched into the middle region experiences a longitudinal ponderomotive force due to the surface plasma wave and gets accelerated to velocities of the order of phase velocity of the surface wave. The scheme is viable to achieve beams of tens of keV energy. In the case of a surface plasma wave excited on a single metal-vacuum interface, the field gradient normal to the interface pushes the electrons away from the high field region, limiting the acceleration process. The acceleration energy thus achieved is in agreement with the experimental observations.

  4. The Bonn Electron Stretcher Accelerator ELSA: Past and future

    Energy Technology Data Exchange (ETDEWEB)

    Hillert, W. [Universitaet Bonn, Physikalisches Institut, Bonn (Germany)

    2006-05-15

    In 1953, it was decided to build a 500 MeV electron synchrotron in Bonn. It came into operation 1958, being the first alternating gradient synchrotron in Europe. After five years of performing photoproduction experiments at this accelerator, a larger 2.5 GeV electron synchrotron was built and set into operation in 1967. Both synchrotrons were running for particle physics experiments, until from 1982 to 1987 a third accelerator, the electron stretcher ring ELSA, was constructed and set up in a separate ring tunnel below the physics institute. ELSA came into operation in 1987, using the pulsed 2.5 GeV synchrotron as pre-accelerator. ELSA serves either as storage ring producing synchrotron radiation, or as post-accelerator and pulse stretcher. Applying a slow extraction close to a third integer resonance, external electron beams with energies up to 3.5 GeV and high duty factors are delivered to hadron physics experiments. Various photo- and electroproduction experiments, utilising the experimental set-ups PHOENICS, ELAN, SAPHIR, GDH and Crystal Barrel have been carried out. During the late 90's, a pulsed GaAs source of polarised electrons was constructed and set up at the accelerator. ELSA was upgraded in order to accelerate polarised electrons, compensating for depolarising resonances by applying the methods of fast tune jumping and harmonic closed orbit correction. With the experimental investigation of the GDH sum rule, the first experiment requiring a polarised beam and a polarised target was successfully performed at the accelerator. In the near future, the stretcher ring will be further upgraded to increase polarisation and current of the external electron beams. In addition, the aspects of an increase of the maximum energy to 5 GeV using superconducting resonators will be investigated. (orig.)

  5. The Bonn Electron Stretcher Accelerator ELSA: Past and future

    Science.gov (United States)

    Hillert, W.

    2006-05-01

    In 1953, it was decided to build a 500MeV electron synchrotron in Bonn. It came into operation 1958, being the first alternating gradient synchrotron in Europe. After five years of performing photoproduction experiments at this accelerator, a larger 2.5GeV electron synchrotron was built and set into operation in 1967. Both synchrotrons were running for particle physics experiments, until from 1982 to 1987 a third accelerator, the electron stretcher ring ELSA, was constructed and set up in a separate ring tunnel below the physics institute. ELSA came into operation in 1987, using the pulsed 2.5GeV synchrotron as pre-accelerator. ELSA serves either as storage ring producing synchrotron radiation, or as post-accelerator and pulse stretcher. Applying a slow extraction close to a third integer resonance, external electron beams with energies up to 3.5GeV and high duty factors are delivered to hadron physics experiments. Various photo- and electroproduction experiments, utilising the experimental set-ups PHOENICS, ELAN, SAPHIR, GDH and Crystal Barrel have been carried out. During the late 90's, a pulsed GaAs source of polarised electrons was constructed and set up at the accelerator. ELSA was upgraded in order to accelerate polarised electrons, compensating for depolarising resonances by applying the methods of fast tune jumping and harmonic closed orbit correction. With the experimental investigation of the GDH sum rule, the first experiment requiring a polarised beam and a polarised target was successfully performed at the accelerator. In the near future, the stretcher ring will be further upgraded to increase polarisation and current of the external electron beams. In addition, the aspects of an increase of the maximum energy to 5GeV using superconducting resonators will be investigated.

  6. The Bonn Electron Stretcher Accelerator ELSA: Past and future

    International Nuclear Information System (INIS)

    Hillert, W.

    2006-01-01

    In 1953, it was decided to build a 500 MeV electron synchrotron in Bonn. It came into operation 1958, being the first alternating gradient synchrotron in Europe. After five years of performing photoproduction experiments at this accelerator, a larger 2.5 GeV electron synchrotron was built and set into operation in 1967. Both synchrotrons were running for particle physics experiments, until from 1982 to 1987 a third accelerator, the electron stretcher ring ELSA, was constructed and set up in a separate ring tunnel below the physics institute. ELSA came into operation in 1987, using the pulsed 2.5 GeV synchrotron as pre-accelerator. ELSA serves either as storage ring producing synchrotron radiation, or as post-accelerator and pulse stretcher. Applying a slow extraction close to a third integer resonance, external electron beams with energies up to 3.5 GeV and high duty factors are delivered to hadron physics experiments. Various photo- and electroproduction experiments, utilising the experimental set-ups PHOENICS, ELAN, SAPHIR, GDH and Crystal Barrel have been carried out. During the late 90's, a pulsed GaAs source of polarised electrons was constructed and set up at the accelerator. ELSA was upgraded in order to accelerate polarised electrons, compensating for depolarising resonances by applying the methods of fast tune jumping and harmonic closed orbit correction. With the experimental investigation of the GDH sum rule, the first experiment requiring a polarised beam and a polarised target was successfully performed at the accelerator. In the near future, the stretcher ring will be further upgraded to increase polarisation and current of the external electron beams. In addition, the aspects of an increase of the maximum energy to 5 GeV using superconducting resonators will be investigated. (orig.)

  7. Maximum Entropy Fundamentals

    Directory of Open Access Journals (Sweden)

    F. Topsøe

    2001-09-01

    Full Text Available Abstract: In its modern formulation, the Maximum Entropy Principle was promoted by E.T. Jaynes, starting in the mid-fifties. The principle dictates that one should look for a distribution, consistent with available information, which maximizes the entropy. However, this principle focuses only on distributions and it appears advantageous to bring information theoretical thinking more prominently into play by also focusing on the "observer" and on coding. This view was brought forward by the second named author in the late seventies and is the view we will follow-up on here. It leads to the consideration of a certain game, the Code Length Game and, via standard game theoretical thinking, to a principle of Game Theoretical Equilibrium. This principle is more basic than the Maximum Entropy Principle in the sense that the search for one type of optimal strategies in the Code Length Game translates directly into the search for distributions with maximum entropy. In the present paper we offer a self-contained and comprehensive treatment of fundamentals of both principles mentioned, based on a study of the Code Length Game. Though new concepts and results are presented, the reading should be instructional and accessible to a rather wide audience, at least if certain mathematical details are left aside at a rst reading. The most frequently studied instance of entropy maximization pertains to the Mean Energy Model which involves a moment constraint related to a given function, here taken to represent "energy". This type of application is very well known from the literature with hundreds of applications pertaining to several different elds and will also here serve as important illustration of the theory. But our approach reaches further, especially regarding the study of continuity properties of the entropy function, and this leads to new results which allow a discussion of models with so-called entropy loss. These results have tempted us to speculate over

  8. $L_{0}$ Gradient Projection.

    Science.gov (United States)

    Ono, Shunsuke

    2017-04-01

    Minimizing L 0 gradient, the number of the non-zero gradients of an image, together with a quadratic data-fidelity to an input image has been recognized as a powerful edge-preserving filtering method. However, the L 0 gradient minimization has an inherent difficulty: a user-given parameter controlling the degree of flatness does not have a physical meaning since the parameter just balances the relative importance of the L 0 gradient term to the quadratic data-fidelity term. As a result, the setting of the parameter is a troublesome work in the L 0 gradient minimization. To circumvent the difficulty, we propose a new edge-preserving filtering method with a novel use of the L 0 gradient. Our method is formulated as the minimization of the quadratic data-fidelity subject to the hard constraint that the L 0 gradient is less than a user-given parameter α . This strategy is much more intuitive than the L 0 gradient minimization because the parameter α has a clear meaning: the L 0 gradient value of the output image itself, so that one can directly impose a desired degree of flatness by α . We also provide an efficient algorithm based on the so-called alternating direction method of multipliers for computing an approximate solution of the nonconvex problem, where we decompose it into two subproblems and derive closed-form solutions to them. The advantages of our method are demonstrated through extensive experiments.

  9. Probable maximum flood control

    International Nuclear Information System (INIS)

    DeGabriele, C.E.; Wu, C.L.

    1991-11-01

    This study proposes preliminary design concepts to protect the waste-handling facilities and all shaft and ramp entries to the underground from the probable maximum flood (PMF) in the current design configuration for the proposed Nevada Nuclear Waste Storage Investigation (NNWSI) repository protection provisions were furnished by the United States Bureau of Reclamation (USSR) or developed from USSR data. Proposed flood protection provisions include site grading, drainage channels, and diversion dikes. Figures are provided to show these proposed flood protection provisions at each area investigated. These areas are the central surface facilities (including the waste-handling building and waste treatment building), tuff ramp portal, waste ramp portal, men-and-materials shaft, emplacement exhaust shaft, and exploratory shafts facility

  10. Introduction to maximum entropy

    International Nuclear Information System (INIS)

    Sivia, D.S.

    1988-01-01

    The maximum entropy (MaxEnt) principle has been successfully used in image reconstruction in a wide variety of fields. We review the need for such methods in data analysis and show, by use of a very simple example, why MaxEnt is to be preferred over other regularizing functions. This leads to a more general interpretation of the MaxEnt method, and its use is illustrated with several different examples. Practical difficulties with non-linear problems still remain, this being highlighted by the notorious phase problem in crystallography. We conclude with an example from neutron scattering, using data from a filter difference spectrometer to contrast MaxEnt with a conventional deconvolution. 12 refs., 8 figs., 1 tab

  11. Solar maximum observatory

    International Nuclear Information System (INIS)

    Rust, D.M.

    1984-01-01

    The successful retrieval and repair of the Solar Maximum Mission (SMM) satellite by Shuttle astronauts in April 1984 permitted continuance of solar flare observations that began in 1980. The SMM carries a soft X ray polychromator, gamma ray, UV and hard X ray imaging spectrometers, a coronagraph/polarimeter and particle counters. The data gathered thus far indicated that electrical potentials of 25 MeV develop in flares within 2 sec of onset. X ray data show that flares are composed of compressed magnetic loops that have come too close together. Other data have been taken on mass ejection, impacts of electron beams and conduction fronts with the chromosphere and changes in the solar radiant flux due to sunspots. 13 references

  12. Introduction to maximum entropy

    International Nuclear Information System (INIS)

    Sivia, D.S.

    1989-01-01

    The maximum entropy (MaxEnt) principle has been successfully used in image reconstruction in a wide variety of fields. The author reviews the need for such methods in data analysis and shows, by use of a very simple example, why MaxEnt is to be preferred over other regularizing functions. This leads to a more general interpretation of the MaxEnt method, and its use is illustrated with several different examples. Practical difficulties with non-linear problems still remain, this being highlighted by the notorious phase problem in crystallography. He concludes with an example from neutron scattering, using data from a filter difference spectrometer to contrast MaxEnt with a conventional deconvolution. 12 refs., 8 figs., 1 tab

  13. Functional Maximum Autocorrelation Factors

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Nielsen, Allan Aasbjerg

    2005-01-01

    MAF outperforms the functional PCA in concentrating the interesting' spectra/shape variation in one end of the eigenvalue spectrum and allows for easier interpretation of effects. Conclusions. Functional MAF analysis is a useful methods for extracting low dimensional models of temporally or spatially......Purpose. We aim at data where samples of an underlying function are observed in a spatial or temporal layout. Examples of underlying functions are reflectance spectra and biological shapes. We apply functional models based on smoothing splines and generalize the functional PCA in......\\verb+~+\\$\\backslash\\$cite{ramsay97} to functional maximum autocorrelation factors (MAF)\\verb+~+\\$\\backslash\\$cite{switzer85,larsen2001d}. We apply the method to biological shapes as well as reflectance spectra. {\\$\\backslash\\$bf Methods}. MAF seeks linear combination of the original variables that maximize autocorrelation between...

  14. Regularized maximum correntropy machine

    KAUST Repository

    Wang, Jim Jing-Yan; Wang, Yunji; Jing, Bing-Yi; Gao, Xin

    2015-01-01

    In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.

  15. Regularized maximum correntropy machine

    KAUST Repository

    Wang, Jim Jing-Yan

    2015-02-12

    In this paper we investigate the usage of regularized correntropy framework for learning of classifiers from noisy labels. The class label predictors learned by minimizing transitional loss functions are sensitive to the noisy and outlying labels of training samples, because the transitional loss functions are equally applied to all the samples. To solve this problem, we propose to learn the class label predictors by maximizing the correntropy between the predicted labels and the true labels of the training samples, under the regularized Maximum Correntropy Criteria (MCC) framework. Moreover, we regularize the predictor parameter to control the complexity of the predictor. The learning problem is formulated by an objective function considering the parameter regularization and MCC simultaneously. By optimizing the objective function alternately, we develop a novel predictor learning algorithm. The experiments on two challenging pattern classification tasks show that it significantly outperforms the machines with transitional loss functions.

  16. Plasma based charged-particle accelerators

    International Nuclear Information System (INIS)

    Bingham, R; Mendonca, J T; Shukla, P K

    2004-01-01

    Studies of charged-particle acceleration processes remain one of the most important areas of research in laboratory, space and astrophysical plasmas. In this paper, we present the underlying physics and the present status of high gradient and high energy plasma accelerators. We will focus on the acceleration of charged particles to relativistic energies by plasma waves that are created by intense laser and particle beams. The generation of relativistic plasma waves by intense lasers or electron beams in plasmas is important in the quest for producing ultra-high acceleration gradients for accelerators. With the development of compact short pulse high brightness lasers and electron positron beams, new areas of studies for laser/particle beam-matter interactions is opening up. A number of methods are being pursued vigorously to achieve ultra-high acceleration gradients. These include the plasma beat wave accelerator mechanism, which uses conventional long pulse (∼100 ps) modest intensity lasers (I ∼ 10 14 -10 16 W cm -2 ), the laser wakefield accelerator (LWFA), which uses the new breed of compact high brightness lasers ( 10 18 W cm -2 , the self-modulated LWFA concept, which combines elements of stimulated Raman forward scattering, and electron acceleration by nonlinear plasma waves excited by relativistic electron and positron bunches. In the ultra-high intensity regime, laser/particle beam-plasma interactions are highly nonlinear and relativistic, leading to new phenomena such as the plasma wakefield excitation for particle acceleration, relativistic self-focusing and guiding of laser beams, high-harmonic generation, acceleration of electrons, positrons, protons and photons. Fields greater than 1 GV cm -1 have been generated with particles being accelerated to 200 MeV over a distance of millimetre. Plasma wakefields driven by positron beams at the Stanford Linear Accelerator Center facility have accelerated the tail of the positron beam. In the near future

  17. Wake shed by an accelerating carangiform fish

    Science.gov (United States)

    Ting, Shang-Chieh; Yang, Jing-Tang

    2008-11-01

    We reveal an important fact that momentum change observed in the wake of an accelerating carangiform fish does not necessarily elucidate orientations of propulsive forces produced. An accelerating Crucian Carp (Carassius auratus) was found to shed a wake with net forward fluid momentum, which seemed drag-producing. Based on Newton's law, however, an accelerating fish is expected to shed a thrust wake with net rearward fluid momentum, rather than a drag wake. The unusual wake pattern observed is considered to be resulted primarily from the effect of pressure gradient created by accelerating movements of the fish. Ambient fluids tend to be sucked into low pressure zones behind an accelerating fish, resulting in forward orientations of jets recognizable in the wake. Accordingly, as to an accelerating fish, identifying force orientations from the wake requires considering also the effect of pressure gradient.

  18. Electrostatic accelerators

    OpenAIRE

    Hinterberger, F

    2006-01-01

    The principle of electrostatic accelerators is presented. We consider Cockcroft– Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We ...

  19. A laser plasma beatwave accelerator experiment

    International Nuclear Information System (INIS)

    Ebrahim, N.A.

    1987-03-01

    An experiment to test the laser plasma beatware accelerator concept is outlined. A heuristic estimate of the relevant experimental parameters is obtained from fluid theory and considerations of wave-particle interactions. Acceleration of 10 MeV electrons to approximately 70 MeV over a plasma length of 3 cm appears to be feasible. This corresponds to an accelerating gradient of approximately 2.5 GeV/m

  20. Electrostatic accelerators

    CERN Document Server

    Hinterberger, F

    2006-01-01

    The principle of electrostatic accelerators is presented. We consider Cockcroft– Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We sketch possible applications and the progress in the development of electrostatic accelerators.

  1. Accelerator development

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Because the use of accelerated heavy ions would provide many opportunities for new and important studies in nuclear physics and nuclear chemistry, as well as other disciplines, both the Chemistry and Physics Divisions are supporting the development of a heavy-ion accelerator. The design of greatest current interest includes a tandem accelerator with a terminal voltage of approximately 25 MV injecting into a linear accelerator with rf superconducting resonators. This combined accelerator facility would be capable of accelerating ions of masses ranging over the entire periodic table to an energy corresponding to approximately 10 MeV/nucleon. This approach, as compared to other concepts, has the advantages of lower construction costs, lower operating power, 100 percent duty factor, and high beam quality (good energy resolution, good timing resolution, small beam size, and small beam divergence). The included sections describe the concept of the proposed heavy-ion accelerator, and the development program aiming at: (1) investigation of the individual questions concerning the superconducting accelerating resonators; (2) construction and testing of prototype accelerator systems; and (3) search for economical solutions to engineering problems. (U.S.)

  2. Acceleration mechanisms flares, magnetic reconnection and shock waves

    International Nuclear Information System (INIS)

    Colgate, S.A.

    1979-01-01

    Several mechanisms are briefly discussed for the acceleration of particles in the astrophysical environment. Included are hydrodynamic acceleration, spherically convergent shocks, shock and a density gradient, coherent electromagnetic acceleration, the flux tube origin, symmetries and instabilities, reconnection, galactic flares, intergalactic acceleration, stochastic acceleration, and astrophysical shocks. It is noted that the supernova shock wave models still depend critically on the presupernova star structure and the assumption of highly compact presupernova models for type I supernovae. 37 references

  3. Solar maximum mission

    International Nuclear Information System (INIS)

    Ryan, J.

    1981-01-01

    By understanding the sun, astrophysicists hope to expand this knowledge to understanding other stars. To study the sun, NASA launched a satellite on February 14, 1980. The project is named the Solar Maximum Mission (SMM). The satellite conducted detailed observations of the sun in collaboration with other satellites and ground-based optical and radio observations until its failure 10 months into the mission. The main objective of the SMM was to investigate one aspect of solar activity: solar flares. A brief description of the flare mechanism is given. The SMM satellite was valuable in providing information on where and how a solar flare occurs. A sequence of photographs of a solar flare taken from SMM satellite shows how a solar flare develops in a particular layer of the solar atmosphere. Two flares especially suitable for detailed observations by a joint effort occurred on April 30 and May 21 of 1980. These flares and observations of the flares are discussed. Also discussed are significant discoveries made by individual experiments

  4. Beam front accelerators

    International Nuclear Information System (INIS)

    Reiser, M.

    1982-01-01

    An intense relativistic electron beam cannot propagate in a metal drift tube when the current exceeds the space charge limit. Very high charge density and electric field gradients (10 2 to 10 3 MV/m) develop at the beam front and the electrons are reflected. When a neutral gas or a plasma is present, collective acceleration of positive ions occur, and the resulting charge neutralization enables the beam to propagate. Experimental results, theoretical understanding, and schemes to achieve high ion energies by external control of the beam front velocity will be reviewed

  5. Test accelerator for linear collider

    International Nuclear Information System (INIS)

    Takeda, S.; Akai, K.; Akemoto, M.; Araki, S.; Hayano, H.; Hugo, T.; Ishihara, N.; Kawamoto, T.; Kimura, Y.; Kobayashi, H.; Kubo, T.; Kurokawa, S.; Matsumoto, H.; Mizuno, H.; Odagiri, J.; Otake, Y.; Sakai, H.; Shidara, T.; Shintake, T.; Suetake, M.; Takashima, T.; Takata, K.; Takeuchi, Y.; Urakawa, J.; Yamamoto, N.; Yokoya, K.; Yoshida, M.; Yoshioka, M.; Yamaoka, Y.

    1989-01-01

    KEK has proposed to build Test Accelerator Facility (TAF) capable of producing a 2.5 GeV electron beam for the purpose of stimulating R ampersand D for linear collider in TeV region. The TAF consists of a 1.5 GeV S-band linear accelerator, 1.5 GeV damping ring and 1.0 GeV X-band linear accelerator. The TAF project will be carried forward in three phases. Through Phase-I and Phase-II, the S-band and X-band linacs will be constructed, and in Phase-III, the damping ring will be completed. The construction of TAF Phase-I has started, and the 0.2 GeV S-band injector linac has been almost completed. The Phase-I linac is composed of a 240 keV electron gun, subharmonic bunchers, prebunchers and traveling buncher followed by high-gradient accelerating structures. The SLAC 5045 klystrons are driven at 450 kV in order to obtain the rf-power of 100 MW in a 1 μs pulse duration. The rf-power from a pair of klystrons are combined into an accelerating structure. The accelerating gradient up to 100 MeV/m will be obtained in a 0.6 m long structure. 5 refs., 3 figs., 2 tabs

  6. Hepatic venous pressure gradients measured by duplex ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Tasu, J.-P.; Rocher, L.; Peletier, G.; Kuoch, V.; Kulh, E.; Miquel, A.; Buffet, C.; Biery, M

    2002-08-01

    AIMS: The hepatic venous pressure gradient is a major prognostic factor in portal hypertension but its measurement is complex and requires invasive angiography. This study investigated the relationship between the hepatic venous pressure gradient and a number of Doppler measurements, including the arterial acceleration index. METHOD: We measured the hepatic venous pressure gradient in 50 fasting patients at hepatic venography. Immediately afterwards, a duplex sonographic examination of the liver was performed at which multiple measurements and indices of the venous and arterial hepatic vasculature were made. RESULTS: Hepatic arterial acceleration was correlated directly with the hepatic venous pressure gradient (r = 0.83, P < 0.0001) and with the Child-Pugh score (r = 0.63, P < 0.0001). An acceleration index cut-off value of 1 m.s{sup -2} provided a positive predictive value of 95%, a sensitivity of 65% and a specificity of 95% for detecting patients with severe portal hypertension (hepatic venous pressure gradient > 12 mmHg). A correlation between the hepatic venous pressure gradient and the congestion index of the portal vein velocity (r = 0.45,P = 0.01) and portal vein velocity (r = 0.40,P = 0.044), was also noted. CONCLUSION: Measuring the hepatic arterial acceleration index may help in the non-invasive evaluation of portal hypertension. Tasu, J.-P. et al. (2002)

  7. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, Benjamin M.

    2007-01-01

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques

  8. RECIRCULATING ACCELERATION

    International Nuclear Information System (INIS)

    BERG, J.S.; GARREN, A.A.; JOHNSTONE, C.

    2000-01-01

    This paper compares various types of recirculating accelerators, outlining the advantages and disadvantages of various approaches. The accelerators are characterized according to the types of arcs they use: whether there is a single arc for the entire recirculator or there are multiple arcs, and whether the arc(s) are isochronous or non-isochronous

  9. LIBO accelerates

    CERN Multimedia

    2002-01-01

    The prototype module of LIBO, a linear accelerator project designed for cancer therapy, has passed its first proton-beam acceleration test. In parallel a new version - LIBO-30 - is being developed, which promises to open up even more interesting avenues.

  10. Accelerating Inspire

    CERN Document Server

    AUTHOR|(CDS)2266999

    2017-01-01

    CERN has been involved in the dissemination of scientific results since its early days and has continuously updated the distribution channels. Currently, Inspire hosts catalogues of articles, authors, institutions, conferences, jobs, experiments, journals and more. Successful orientation among this amount of data requires comprehensive linking between the content. Inspire has lacked a system for linking experiments and articles together based on which accelerator they were conducted at. The purpose of this project has been to create such a system. Records for 156 accelerators were created and all 2913 experiments on Inspire were given corresponding MARC tags. Records of 18404 accelerator physics related bibliographic entries were also tagged with corresponding accelerator tags. Finally, as a part of the endeavour to broaden CERN's presence on Wikipedia, existing Wikipedia articles of accelerators were updated with short descriptions and links to Inspire. In total, 86 Wikipedia articles were updated. This repo...

  11. Review of new shapes for higher gradients

    International Nuclear Information System (INIS)

    Geng, R.L.

    2006-01-01

    High-gradient superconducting RF (SRF) cavities are needed for energy frontier superconducting accelerators. Progress has been made over the past decades and the accelerating gradient E acc has been increased from a few MV/m to ∼42 MV/m in SRF niobium cavities. The corresponding peak RF magnetic field H pk on the niobium cavity surface is approaching the intrinsic RF critical magnetic field H crit,RF , a hard physical limit at which superconductivity breaks down. Pushing the gradient envelope further by adopting new cavity shapes with a lower ratio of H pk /E acc has been recently proposed. For a reduced H pk /E acc , a higher ultimate E acc is sustained when H pk finally strikes H crit,RF . The new cavity geometry include the re-entrant shape conceived at Cornell University and the so-called 'Low-loss' shape proposed by a DESY/JLAB/KEK collaboration. Experimental work is being pursued at Cornell, KEK and JLAB. Results of single-cell cavities are encouraging. A record gradient of 47 MV/m was first demonstrated in a 1.3 GHz re-entrant niobium cavity at Cornell University. At the time of writing, a new record of 52 MV/m has been realized with another 1.3 GHz re-entrant cavity, designed and built at Cornell and processed and tested at KEK. Single-cell low-loss cavities have reached equally high gradients in the range of 45-51 MV/m at KEK and JLAB. Owing to their higher gradient potential and the encouraging single-cell cavity results, the new cavity shapes are becoming attractive for their possible use in the international linear collider (ILC). Experimental work on multi-cell niobium cavities of new shapes is currently under active exploration

  12. Review of new shapes for higher gradients

    Science.gov (United States)

    Geng, R. L.

    2006-07-01

    High-gradient superconducting RF (SRF) cavities are needed for energy frontier superconducting accelerators. Progress has been made over the past decades and the accelerating gradient Eacc has been increased from a few MV/m to ∼42 MV/m in SRF niobium cavities. The corresponding peak RF magnetic field Hpk on the niobium cavity surface is approaching the intrinsic RF critical magnetic field Hcrit,RF, a hard physical limit at which superconductivity breaks down. Pushing the gradient envelope further by adopting new cavity shapes with a lower ratio of Hpk/ Eacc has been recently proposed. For a reduced Hpk/ Eacc, a higher ultimate Eacc is sustained when Hpk finally strikes Hcrit,RF. The new cavity geometry include the re-entrant shape conceived at Cornell University and the so-called “Low-loss” shape proposed by a DESY/JLAB/KEK collaboration. Experimental work is being pursued at Cornell, KEK and JLAB. Results of single-cell cavities are encouraging. A record gradient of 47 MV/m was first demonstrated in a 1.3 GHz re-entrant niobium cavity at Cornell University. At the time of writing, a new record of 52 MV/m has been realized with another 1.3 GHz re-entrant cavity, designed and built at Cornell and processed and tested at KEK. Single-cell low-loss cavities have reached equally high gradients in the range of 45-51 MV/m at KEK and JLAB. Owing to their higher gradient potential and the encouraging single-cell cavity results, the new cavity shapes are becoming attractive for their possible use in the international linear collider (ILC). Experimental work on multi-cell niobium cavities of new shapes is currently under active exploration.

  13. A hybrid dielectric and iris loaded periodic accelerating structure

    International Nuclear Information System (INIS)

    Zou, P.; Xiao, L.; Sun, X.; Gai, W.

    2001-01-01

    One disadvantage of conventional iris-loaded accelerating structures is the high ratio of the peak surface electric field to the peak axial electric field useful for accelerating a beam. Typically this ratio E s /E a ≥ 2. The high surface electric field relative to the accelerating gradient may prove to be a limitation for realizing technologies for very high gradient accelerators. In this paper, we present a scheme that uses a hybrid dielectric and iris loaded periodic structure to reduce E s /E a to near unity, while the shunt impedance per unit length r and the quality factor Q compare favorably with conventional metallic structures. The analysis based on MAFIA simulations of such structures shows that we can lower the peak surface electric field close to the accelerating gradient while maintaining high acceleration efficiency as measured by r/Q. Numerical examples of X-band hybrid accelerating structures are given

  14. Laser-driven acceleration with Bessel and Gaussian beams

    International Nuclear Information System (INIS)

    Hafizi, B.; Esarey, E.; Sprangle, P.

    1997-01-01

    The possibility of enhancing the energy gain in laser-driven accelerators by using Bessel laser beams is examined. Scaling laws are derived for the propagation length, acceleration gradient, and energy gain in various accelerators for both Gaussian and Bessel beam drivers. For equal beam powers, the energy gain can be increased by a factor of N 1/2 by utilizing a Bessel beam with N lobes, provided that the acceleration gradient is linearly proportional to the laser field. This is the case in the inverse free electron laser and the inverse Cherenkov accelerators. If the acceleration gradient is proportional to the square of the laser field (e.g., the laser wakefield, plasma beat wave, and vacuum beat wave accelerators), the energy gain is comparable with either beam profile. copyright 1997 American Institute of Physics

  15. Summary of the second international conference on electrostatic accelerator technology

    International Nuclear Information System (INIS)

    Wegner, H.E.

    1977-01-01

    A review is given of the history of electrostatic accelerator technology, including a technology assessment of acceleration tubes, vacuum systems, voltage gradients, charging systems, and ion sources. Improvements in the performance of electrostatic accelerators during the last four years and of those currently under construction are discussed. The improved performance has greatly expanded the heavy ion research capabilities of the entire research community

  16. Molecular ion acceleration using tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Yuichi; Mizuhashi, Kiyoshi; Tajima, Satoshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1996-12-01

    In TIARA compound beam radiation system, cluster beams have been produced using 3 MV tandem accelerator (9SDH-2) to supply them to various radiation on injection experiments. Till now, productions of C{sub 2-8}, Si{sub 2-4} and O{sub 2} and their accelerations up to 6 MeV have been succeeded. This study aimed at production and acceleration of B{sub 2-4} and LiF. Anion clusters were produced using the conventional ion source of cesium sputter type. The proportions of atoms, molecules and clusters elicited from the ion source were varied depending on the material`s properties and the operating conditions of ion source such as sample temperature, sputter voltage and the shape of sample. The anion clusters were accelerated toward the high voltage terminal in the center of tandem accelerator, leading to cations through losing their electrons by the collision to N{sub 2} gas in a charge conversion cell at the terminal. Positively charged cluster ions could be obtained by modulating the pressure of N{sub 2} gas. Thus, B{sub 2} (64 nA), B{sub 3} (4.4 nA) and B{sub 4} (2.7 nA) have been produced and their maximum survival probabilities were higher than those of carbon or silicon clusters. In addition, the relationship between beam current and gas pressure was investigated for Bn (n = 2-4) and LiF. (M.N.)

  17. Complex Surface Concentration Gradients by Stenciled "Electro Click Chemistry"

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; Lind, Johan Ulrik; Daugaard, Anders Egede

    2010-01-01

    Complex one- or two-dimensional concentration gradients of alkynated molecules are produced on azidized conducting polymer substrates by stenciled "electro click chemistry". The latter describes the local electrochemical generation of catalytically active Cu(I) required to complete a "click...... reaction" between alkynes and azides at room temperature. A stencil on the counter electrode defines the shape and multiplicity of the gradient(s) on the conducting polymer substrate, while the specific reaction conditions control gradient steepness and the maximum concentration deposited. Biologically...

  18. Travelling gradient thermocouple calibration

    International Nuclear Information System (INIS)

    Broomfield, G.H.

    1975-01-01

    A short discussion of the origins of the thermocouple EMF is used to re-introduce the idea that the Peltier and Thompson effects are indistinguishable from one another. Thermocouples may be viewed as devices which generate an EMF at junctions or as integrators of EMF's developed in thermal gradients. The thermal gradient view is considered the more appropriate, because of its better accord with theory and behaviour, the correct approach to calibration, and investigation of service effects is immediately obvious. Inhomogeneities arise in thermocouples during manufacture and in service. The results of travelling gradient measurements are used to show that such effects are revealed with a resolution which depends on the length of the gradient although they may be masked during simple immersion calibration. Proposed tests on thermocouples irradiated in a nuclear reactor are discussed

  19. FMIT accelerator

    International Nuclear Information System (INIS)

    Armstrong, D.D.

    1983-01-01

    A 35-MeV 100-mA cw linear accelerator is being designed by Los Alamos for use in the Fusion Materials Irradiation Test (FMIT) Facility. Essential to this program is the design, construction, and evaluation of performance of the accelerator's injector, low-energy beam transport, and radio-frequency quadrupole sections before they are shipped to the facility site. The installation and testing of some of these sections have begun as well as the testing of the rf, noninterceptive beam diagnostics, computer control, dc power, and vacuum systems. An overview of the accelerator systems and the performance to date is given

  20. Thermodynamics, maximum power, and the dynamics of preferential river flow structures at the continental scale

    Directory of Open Access Journals (Sweden)

    A. Kleidon

    2013-01-01

    Full Text Available The organization of drainage basins shows some reproducible phenomena, as exemplified by self-similar fractal river network structures and typical scaling laws, and these have been related to energetic optimization principles, such as minimization of stream power, minimum energy expenditure or maximum "access". Here we describe the organization and dynamics of drainage systems using thermodynamics, focusing on the generation, dissipation and transfer of free energy associated with river flow and sediment transport. We argue that the organization of drainage basins reflects the fundamental tendency of natural systems to deplete driving gradients as fast as possible through the maximization of free energy generation, thereby accelerating the dynamics of the system. This effectively results in the maximization of sediment export to deplete topographic gradients as fast as possible and potentially involves large-scale feedbacks to continental uplift. We illustrate this thermodynamic description with a set of three highly simplified models related to water and sediment flow and describe the mechanisms and feedbacks involved in the evolution and dynamics of the associated structures. We close by discussing how this thermodynamic perspective is consistent with previous approaches and the implications that such a thermodynamic description has for the understanding and prediction of sub-grid scale organization of drainage systems and preferential flow structures in general.

  1. Progress toward NLC / GLC prototype accelerator structures

    CERN Document Server

    Wang, J W; Arkan, T; Baboi, N; Boffo, C; Bowden, G B; Burke, D L; Carter, H; Chan, J; Cornuelle, J; Döbert, Steffen; Dolgashev, Valery A; Finley, D; Gonin, I; Higashi, Y; Higo, T; Jones, R M; Khabiboulline, T; Kume, T; Lewandowski, J; Li, Z; Miller, R H; Mishra, S; Morozumi, Y; Nantista, C; Pearson, C; Romanov, G; Ruth, Ronald D; Solyak, N; Tantawi, S; Toge, N; Ueno, K; Wilson, P B; Xiao, L

    2004-01-01

    The accelerator structure groups for NLC (Next Linear Collider) and GLC (Global Linear Colliders) have successfully collaborated on the research and development of a major series of advanced accelerator structures based on room-temperature technology at X-band frequency. The progress in design, simulation, microwave measurement and high gradient tests are summarized in this paper. The recent effort in design and fabrication of the accelerator structure prototype for the main linac is presented in detail including HOM (High Order Mode) suppression and couplers, fundamental mode couplers, optimized accelerator cavities as well as plans for future structures. We emphasize techniques to reduce the field on the surface of the copper structures (in order to achieve high accelerating gradients), limit the dipole wakefields (to relax alignment tolerance and prevent a beam break up instability) and improve shunt impedance (to reduce the RF power required).

  2. Quaternion Gradient and Hessian

    OpenAIRE

    Xu, Dongpo; Mandic, Danilo P.

    2014-01-01

    The optimization of real scalar functions of quaternion variables, such as the mean square error or array output power, underpins many practical applications. Solutions typically require the calculation of the gradient and Hessian. However, real functions of quaternion variables are essentially nonanalytic, which are prohibitive to the development of quaternion-valued learning systems. To address this issue, we propose new definitions of quaternion gradient and Hessian, based on the novel gen...

  3. A cyclotron resonance laser accelerator

    International Nuclear Information System (INIS)

    Sprangle, P.; Tang, C.M.; Vlahos, L.

    1983-01-01

    A laser acceleration mechanism which utilizes a strong static, almost uniform, magnetic field together with an intense laser pulse is analyzed. The interaction and acceleration mechanism relies on a self resonance effect. Since the laser field is assumed to be diffraction limited, the magnetic field must be spatially varied to maintain resonance. The effective accelerating gradient is shown to scale like 1/√E /SUB b/ , where E /SUB b/ is the electron energy. For a numerical illustration the authors consider a 1 x 10 13 W/cm 2 , CO 2 laser and show that electrons can be accelerated to more than 500 MeV in a distance of 15 m (approximately two Rayleigh lengths)

  4. Accelerator development at Bates

    International Nuclear Information System (INIS)

    Sargent, C.P.

    1983-01-01

    The past year has seen the completion of a major expansion of the Bates Accelerator Laboratory. A second experimental hall, South Hall, and several magnetic spectrometers have been constructed. The accelerator's maximum energy has been raised from 400 to 750 MeV by means of beam recirculation. A current two-year project for the fabrication of an additional RF transmitter plus a 30% increase in RF peak power capability will increase energy further to ca. 1 GeV. During the same period pulse-to-pulse beam sharing between the high-resolution spectrometer area and South Hall will become available. In January 1981 the Laboratory submitted their ''Proposal for a Long-Range Expansion Program'' to DOE-NSF. The proposed development consists of three stages. Stage I calls for the addition of a pulse stretcher ring to furnish a CW beam to the South Hall beam lines. Additional experimental space for internal target experiments and photon tagging research are also included. Stage II increases the accelerator energy to 2.1 GeV (at 140 microamps) by means of a five-pass head-to-tail recirculator. Stage III is, at this time, a plan rather than a proposal. It increases accelerator energy to 4 GeV by extending the accelerator length and power and adds another pulse stretcher ring and three new experimental areas for the higher energy work. This paper discusses each of these stages in detail and recommends their funding and scheduling

  5. Horizontal Accelerator

    Data.gov (United States)

    Federal Laboratory Consortium — The Horizontal Accelerator (HA) Facility is a versatile research tool available for use on projects requiring simulation of the crash environment. The HA Facility is...

  6. Acceleration theorems

    International Nuclear Information System (INIS)

    Palmer, R.

    1994-06-01

    Electromagnetic fields can be separated into near and far components. Near fields are extensions of static fields. They do not radiate, and they fall off more rapidly from a source than far fields. Near fields can accelerate particles, but the ratio of acceleration to source fields at a distance R, is always less than R/λ or 1, whichever is smaller. Far fields can be represented as sums of plane parallel, transversely polarized waves that travel at the velocity of light. A single such wave in a vacuum cannot give continuous acceleration, and it is shown that no sums of such waves can give net first order acceleration. This theorem is proven in three different ways; each method showing a different aspect of the situation

  7. LINEAR ACCELERATOR

    Science.gov (United States)

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  8. Gradient Alloy for Optical Packaging

    Data.gov (United States)

    National Aeronautics and Space Administration — Advances in additive manufacturing, such as Laser Engineered Net Shaping (LENS), enables the fabrication of compositionally gradient microstructures, i.e. gradient...

  9. Traveling Wave Accelerating Structure for a Superconducting Accelerator

    CERN Document Server

    Kanareykin, Alex; Solyak, Nikolay

    2005-01-01

    We are presenting a superconducting traveling wave accelerating structure (STWA) concept, which may prove to be of crucial importance to the International Linear Collider. Compared to the existing design of a TESLA cavity, the traveling wave structure can provide ~20-40% higher accelerating gradient for the same aperture and the same peak surface magnetic RF field. The recently achieved SC structure gradient of 35 MV/m can be increased up to ~50 MV/m with the new STWA structure design. The STWA structure is supposed to be installed into the superconducting resonance ring and is fed by the two couplers with appropriate phase advance to excite a traveling wave inside the structure. The system requires two independent tuners to be able to adjust the cavity and feedback waveguide frequencies and hence to reduce the unwanted backward wave. In this presentation we discuss the structure design, optimization of the parameters, tuning requirements and plans for further development.

  10. Vertical gradients of sunspot magnetic fields

    Science.gov (United States)

    Hagyard, M. J.; Teuber, D.; West, E. A.; Tandberg-Hanssen, E.; Henze, W., Jr.; Beckers, J. M.; Bruner, M.; Hyder, C. L.; Woodgate, B. E.

    1983-01-01

    The results of a Solar Maximum Mission (SMM) guest investigation to determine the vertical gradients of sunspot magnetic fields for the first time from coordinated observations of photospheric and transition-region fields are described. Descriptions are given of both the photospheric vector field of a sunspot, derived from observations using the NASA Marshall Space Flight Center vector magnetograph, and of the line-of-sight component in the transition region, obtained from the SMM Ultraviolet Spectrometer and Polarimeter instrument. On the basis of these data, vertical gradients of the line-of-sight magnetic field component are calculated using three methods. It is found that the vertical gradient of Bz is lower than values from previous studies and that the transition-region field occurs at a height of approximately 4000-6000 km above the photosphere.

  11. COMPARISON OF GKS CALCULATED CRITICAL ION TEMPERATURE GRADIENTS AND ITG GROWTH RATES TO DIII-D MEASURED GRADIENTS AND DIFFUSIVITIES

    International Nuclear Information System (INIS)

    BAKER, DR; STAEBLER, GM; PETTY, CC; GREENFIELD, CM; LUCE, TC

    2003-01-01

    OAK-B135 The gyrokinetic equations predict that various drift type waves or modes can be unstable in a tokamak. For some of these modes, such as the ion temperature gradient (ITG) mode and the electron temperature gradient mode, there exists a critical gradient, above which the mode is unstable. Since the existence of unstable modes can cause increased transport, plasmas which are centrally heated tend to increase in temperature gradient until the modes become unstable. Under some conditions the increased transport can fix the gradient at the critical value. here they present a comparison between the measured ion temperature gradients and the critical gradient as calculated by a gyrokinetic linear stability (GKS) code. They also present the maximum linear growth rate as calculated by this code for comparison to experimentally derived transport coefficients. The results show that for low confinement mode (L-mode) discharges, the measured ion temperature gradient is significantly greater than the GKS calculated critical gradient over a large region of the plasma. This is the same region of the plasma where the ion thermal diffusivity is large. For high confinement mode (H-mode) discharges the ion temperature gradient is closer to the critical gradient, but often still greater than the critical gradient over some region. For the best H-mode discharges, the ion temperature is less than or equal to the critical gradient over the whole plasma. In general they find that the position in the plasma where the ion thermal diffusivity starts to increase rapidly is where the maximum linear growth rate is greater than the E x B shearing rate

  12. Progress of Laser-Driven Plasma Accelerators

    International Nuclear Information System (INIS)

    Nakajima, Kazuhisa

    2007-01-01

    There is a great interest worldwide in plasma accelerators driven by ultra-intense lasers which make it possible to generate ultra-high gradient acceleration and high quality particle beams in a much more compact size compared with conventional accelerators. A frontier research on laser and plasma accelerators is focused on high energy electron acceleration and ultra-short X-ray and Tera Hertz radiations as their applications. These achievements will provide not only a wide range of sciences with benefits of a table-top accelerator but also a basic science with a tool of ultrahigh energy accelerators probing an unknown extremely microscopic world.Harnessing the recent advance of ultra-intense ultra-short pulse lasers, the worldwide research has made a tremendous breakthrough in demonstrating high-energy high-quality particle beams in a compact scale, so called ''dream beams on a table top'', which represents monoenergetic electron beams from laser wakefield accelerators and GeV acceleration by capillary plasma-channel laser wakefield accelerators. This lecture reviews recent progress of results on laser-driven plasma based accelerator experiments to quest for particle acceleration physics in intense laser-plasma interactions and to present new outlook for the GeV-range high-energy laser plasma accelerators

  13. Technology of magnetically driven accelerators

    International Nuclear Information System (INIS)

    Brix, D.L.; Hawkins, S.A.; Poor, S.E.; Reginato, L.L.; Smith, M.W.

    1985-01-01

    The marriage of Induction Linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/meter, and with power efficiencies approaching 50%. A 2 MeV, 5 kA electron accelerator has been constructed at the Lawrence Livermore National Laboratory (LLNL) to demonstrate these concepts and to provide a test facility for high brightness sources. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak power capability, repetition rates exceeding a kilohertz and excellent reliability

  14. Technology of magnetically driven accelerators

    International Nuclear Information System (INIS)

    Birx, D.L.; Hawkins, S.A.; Poor, S.E.; Reginato, L.L.; Smith, M.W.

    1985-01-01

    The marriage of Induction Linac technology with Nonlinear Magnetic Modulators has produced some unique capabilities. It appears possible to produce electron beams with average currents measured in amperes, at gradients exceeding 1 MeV/meter, and with power efficiencies approach 50%. A 2 MeV, 5 kA electron accelerator has been constructed at the Lawrence Livermore National Laboratory (LLNL) to demonstrate these concepts and to provide a test facility for high brightness sources. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak power capability, repetition rates exceeding a kilohertz and excellent reliability

  15. Laser-driven acceleration with Bessel beam

    International Nuclear Information System (INIS)

    Imasaki, Kazuo; Li, Dazhi

    2005-01-01

    A new approach of laser-driven acceleration with Bessel beam is described. Bessel beam, in contrast to the Gaussian beam, shows diffraction-free'' characteristics in its propagation, which implies potential in laser-driven acceleration. But a normal laser, even if the Bessel beam, laser can not accelerate charged particle efficiently because the difference of velocity between the particle and photon makes cyclic acceleration and deceleration phase. We proposed a Bessel beam truncated by a set of annular slits those makes several special regions in its travelling path, where the laser field becomes very weak and the accelerated particles are possible to receive no deceleration as they undergo decelerating phase. Thus, multistage acceleration is realizable with high gradient. In a numerical computation, we have shown the potential of multistage acceleration based on a three-stage model. (author)

  16. 2nd European Advanced Accelerator Concepts Workshop

    CERN Document Server

    Assmann, Ralph; Grebenyuk, Julia; EAAC 2015

    2016-01-01

    The European Advanced Accelerator Concepts Workshop has the mission to discuss and foster methods of beam acceleration with gradients beyond state of the art in operational facilities. The most cost effective and compact methods for generating high energy particle beams shall be reviewed and assessed. This includes diagnostics methods, timing technology, special need for injectors, beam matching, beam dynamics with advanced accelerators and development of adequate simulations. This workshop is organized in the context of the EU-funded European Network for Novel Accelerators (EuroNNAc2), that includes 52 Research Institutes and universities.

  17. Particle acceleration by inverse-Weibel instability

    Energy Technology Data Exchange (ETDEWEB)

    Kawata, S [Nagaoka Univ. of Technology (Japan). Dept. of Electrical Engineering

    1997-12-31

    A high demagnetization rate delta B/delta t can be obtained through fast decoupling of a magnetic field from an electric circuit which generates the magnetic field. Nowadays fast decoupling is possible by present switching technologies. A high particle-acceleration gradient can be obtained in an inductive acceleration system compared with that in a conventional induction accelerator. Based on this new proposal, inductive ion and electron accelerations were investigated numerically. The mechanism presented can be considered as pseudo-inverse Weibel instability. (author). 3 figs., 7 refs.

  18. Particle acceleration by inverse-Weibel instability

    International Nuclear Information System (INIS)

    Kawata, S.

    1996-01-01

    A high demagnetization rate delta B/delta t can be obtained through fast decoupling of a magnetic field from an electric circuit which generates the magnetic field. Nowadays fast decoupling is possible by present switching technologies. A high particle-acceleration gradient can be obtained in an inductive acceleration system compared with that in a conventional induction accelerator. Based on this new proposal, inductive ion and electron accelerations were investigated numerically. The mechanism presented can be considered as pseudo-inverse Weibel instability. (author). 3 figs., 7 refs

  19. Construction of ion accelerator for ion-surface interaction research

    International Nuclear Information System (INIS)

    Obara, Kenziro; Ohtsuka, Hidewo; Yamada, Rayji; Abe, Tetsuya; Sone, Kazuho

    1977-09-01

    A Cockcroft-Walton type ion accelerator for ion-surface interaction research was installed at Plasma Engineering Laboratory, Division of Thermonuclear Fusion Research, JAERI, in March 1977. Its maximum accelerating voltage is 400 kV. The accelerator has some outstanding features compared with the conventional type. Described are setup of the accelerator specification of the major components, safety system and performance. (auth.)

  20. Hepatic venous pressure gradients measured by duplex ultrasound

    International Nuclear Information System (INIS)

    Tasu, J.-P.; Rocher, L.; Peletier, G.; Kuoch, V.; Kulh, E.; Miquel, A.; Buffet, C.; Biery, M.

    2002-01-01

    AIMS: The hepatic venous pressure gradient is a major prognostic factor in portal hypertension but its measurement is complex and requires invasive angiography. This study investigated the relationship between the hepatic venous pressure gradient and a number of Doppler measurements, including the arterial acceleration index. METHOD: We measured the hepatic venous pressure gradient in 50 fasting patients at hepatic venography. Immediately afterwards, a duplex sonographic examination of the liver was performed at which multiple measurements and indices of the venous and arterial hepatic vasculature were made. RESULTS: Hepatic arterial acceleration was correlated directly with the hepatic venous pressure gradient (r = 0.83, P -2 provided a positive predictive value of 95%, a sensitivity of 65% and a specificity of 95% for detecting patients with severe portal hypertension (hepatic venous pressure gradient > 12 mmHg). A correlation between the hepatic venous pressure gradient and the congestion index of the portal vein velocity (r = 0.45,P = 0.01) and portal vein velocity (r = 0.40,P = 0.044), was also noted. CONCLUSION: Measuring the hepatic arterial acceleration index may help in the non-invasive evaluation of portal hypertension. Tasu, J.-P. et al. (2002)

  1. Heavy ion accelerators at GSI

    International Nuclear Information System (INIS)

    Angert, N.

    1984-01-01

    The status of the Unilac heavy ion linear accelerator at GSI, Darmstadt is given. A schematic overall plan view of the Unilac is shown and its systems are described. List of isotopes and intensities accelerated at the Unilac is presented. The experimental possibilities at GSI should be considerably extended by a heavy ion synchrotron (SIS 18) in combination with an experimental storage ring (ESR). A prototype of the rf-accelerating system of the synchrotron has been built and tested. Prototypes for the quadrupole and dipole magnets for the ring are being constructed. The SIS 18 is desigmed for a maximum magnetic rigidity of 18Tm so that neon can be accelerated to 2 GeV/W and uranium to 1 GeV/u. The design allows also the acceleration of protons up to 4.5 GeV. The ESR permits to storage fully stripped uranium ions up to an energy of approximately R50 MeV/u

  2. Conjugate gradient optimization programs for shuttle reentry

    Science.gov (United States)

    Powers, W. F.; Jacobson, R. A.; Leonard, D. A.

    1972-01-01

    Two computer programs for shuttle reentry trajectory optimization are listed and described. Both programs use the conjugate gradient method as the optimization procedure. The Phase 1 Program is developed in cartesian coordinates for a rotating spherical earth, and crossrange, downrange, maximum deceleration, total heating, and terminal speed, altitude, and flight path angle are included in the performance index. The programs make extensive use of subroutines so that they may be easily adapted to other atmospheric trajectory optimization problems.

  3. Acceleration of particles in plasmas

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    The accelerating fields in radio-frequency accelerators are limited to roughly 100 MV/m due to material breakdown which occurs on the walls of the structure. In contrast, a plasma, being already ionized, can support electric fields in excess of 100 GV/m. Such high accelerating gradients hold the promise of compact particle accelerators. Plasma acceleration has been an emerging and fast growing field of research in the past two decades. In this series of lectures, we will review the principles of plasma acceleration. We will see how relativistic plasma waves can be excited using an ultra-intense laser or using a particle beam. We will see how these plasma waves can be used to accelerate electrons to high energy in short distances. Throughout the lectures, we will also review recent experimental results. Current laser-plasma experiments throughout the world have shown that monoenergetic electron beams from 100 MeV to 1 GeV can be obtained in distances ranging from the millimetre to the centimetre. Experiments a...

  4. Inverse Free Electron Laser accelerator

    International Nuclear Information System (INIS)

    Fisher, A.; Gallardo, J.; van Steenbergen, A.; Sandweiss, J.

    1992-09-01

    The study of the INVERSE FREE ELECTRON LASER, as a potential mode of electron acceleration, is being pursued at Brookhaven National Laboratory. Recent studies have focussed on the development of a low energy, high gradient, multi stage linear accelerator. The elementary ingredients for the IFEL interaction are the 50 MeV Linac e - beam and the 10 11 Watt CO 2 laser beam of BNL's Accelerator Test Facility (ATF), Center for Accelerator Physics (CAP) and a wiggler. The latter element is designed as a fast excitation unit making use of alternating stacks of Vanadium Permendur (VaP) ferromagnetic laminations, periodically interspersed with conductive, nonmagnetic laminations, which act as eddy current induced field reflectors. Wiggler parameters and field distribution data will be presented for a prototype wiggler in a constant period and in a ∼ 1.5 %/cm tapered period configuration. The CO 2 laser beam will be transported through the IFEL interaction region by means of a low loss, dielectric coated, rectangular waveguide. Short waveguide test sections have been constructed and have been tested using a low power cw CO 2 laser. Preliminary results of guide attenuation and mode selectivity will be given, together with a discussion of the optical issues for the IFEL accelerator. The IFEL design is supported by the development and use of 1D and 3D simulation programs. The results of simulation computations, including also wiggler errors, for a single module accelerator and for a multi-module accelerator will be presented

  5. Development of superconducting acceleration cavity technology for free electron lasers

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Byung Cheol; Kim, Sun Kook; Jeong, Young Uk; Cho, Sung Oh

    2000-10-01

    As a result of the cooperative research between the KAERI and Peking University, the key technologies of superconducting acceleration cavity and photoelectron gun have been developed for the application to high power free electron lasers. A 1.5-GHz, 1-cell superconducting RF cavity has been designed and fabricated by using pure Nb sheets. The unloaded Q values of the fabricated superconducting cavity has been measured to be 2x10 9 at 2.5K, and 8x10 9 at 1.8K. The maximum acceleration gradient achieved was 12 MeV/m at 2.5K, and 20MV/m at 1.8 K. A cryostat for the 1-cell superconducting cavity has been designed. As a source of electron beam, a DC photocathode electron gun has been designed and fabricated, which is composed of a photocathode evaporation chamber and a 100-keV acceleration chamber. The efficiency of the Cs2Te photocathode is 3% nominally at room temperature, 10% at 290 deg C. The superconducting photoelectron gun system developed has been estimated to be a good source of high-brightness electron beam for high-power free electron lasers

  6. Development of superconducting acceleration cavity technology for free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Lee, Byung Cheol; Kim, Sun Kook; Jeong, Young Uk; Cho, Sung Oh

    2000-10-01

    As a result of the cooperative research between the KAERI and Peking University, the key technologies of superconducting acceleration cavity and photoelectron gun have been developed for the application to high power free electron lasers. A 1.5-GHz, 1-cell superconducting RF cavity has been designed and fabricated by using pure Nb sheets. The unloaded Q values of the fabricated superconducting cavity has been measured to be 2x10{sup 9} at 2.5K, and 8x10{sup 9} at 1.8K. The maximum acceleration gradient achieved was 12 MeV/m at 2.5K, and 20MV/m at 1.8 K. A cryostat for the 1-cell superconducting cavity has been designed. As a source of electron beam, a DC photocathode electron gun has been designed and fabricated, which is composed of a photocathode evaporation chamber and a 100-keV acceleration chamber. The efficiency of the Cs2Te photocathode is 3% nominally at room temperature, 10% at 290 deg C. The superconducting photoelectron gun system developed has been estimated to be a good source of high-brightness electron beam for high-power free electron lasers.

  7. Diamond coating in accelerator structure

    International Nuclear Information System (INIS)

    Lin, X.E.

    1998-08-01

    The future accelerators with 1 GeV/m gradient will give rise to hundreds of degrees instantaneous temperature rise on the copper surface. Due to its extraordinary thermal and electric properties, diamond coating on the surface is suggested to remedy this problem. Multi-layer structure, with the promise of even more temperature reduction, is also discussed, and a proof of principle experiment is being carried out

  8. Secondary Electron Emission from Plasma Processed Accelerating Cavity Grade Niobium

    Energy Technology Data Exchange (ETDEWEB)

    Basovic, Milos [Old Dominion Univ., Norfolk, VA (United States)

    2016-05-01

    Advances in the particle accelerator technology have enabled numerous fundamental discoveries in 20th century physics. Extensive interdisciplinary research has always supported further development of accelerator technology in efforts of reaching each new energy frontier. Accelerating cavities, which are used to transfer energy to accelerated charged particles, have been one of the main focuses of research and development in the particle accelerator field. Over the last fifty years, in the race to break energy barriers, there has been constant improvement of the maximum stable accelerating field achieved in accelerating cavities. Every increase in the maximum attainable accelerating fields allowed for higher energy upgrades of existing accelerators and more compact designs of new accelerators. Each new and improved technology was faced with ever emerging limiting factors. With the standard high accelerating gradients of more than 25 MV/m, free electrons inside the cavities get accelerated by the field, gaining enough energy to produce more electrons in their interactions with the walls of the cavity. The electron production is exponential and the electron energy transfer to the walls of a cavity can trigger detrimental processes, limiting the performance of the cavity. The root cause of the free electron number gain is a phenomenon called Secondary Electron Emission (SEE). Even though the phenomenon has been known and studied over a century, there are still no effective means of controlling it. The ratio between the electrons emitted from the surface and the impacting electrons is defined as the Secondary Electron Yield (SEY). A SEY ratio larger than 1 designates an increase in the total number of electrons. In the design of accelerator cavities, the goal is to reduce the SEY to be as low as possible using any form of surface manipulation. In this dissertation, an experimental setup was developed and used to study the SEY of various sample surfaces that were treated

  9. Secondary electron emission from plasma processed accelerating cavity grade niobium

    Science.gov (United States)

    Basovic, Milos

    Advances in the particle accelerator technology have enabled numerous fundamental discoveries in 20th century physics. Extensive interdisciplinary research has always supported further development of accelerator technology in efforts of reaching each new energy frontier. Accelerating cavities, which are used to transfer energy to accelerated charged particles, have been one of the main focuses of research and development in the particle accelerator field. Over the last fifty years, in the race to break energy barriers, there has been constant improvement of the maximum stable accelerating field achieved in accelerating cavities. Every increase in the maximum attainable accelerating fields allowed for higher energy upgrades of existing accelerators and more compact designs of new accelerators. Each new and improved technology was faced with ever emerging limiting factors. With the standard high accelerating gradients of more than 25 MV/m, free electrons inside the cavities get accelerated by the field, gaining enough energy to produce more electrons in their interactions with the walls of the cavity. The electron production is exponential and the electron energy transfer to the walls of a cavity can trigger detrimental processes, limiting the performance of the cavity. The root cause of the free electron number gain is a phenomenon called Secondary Electron Emission (SEE). Even though the phenomenon has been known and studied over a century, there are still no effective means of controlling it. The ratio between the electrons emitted from the surface and the impacting electrons is defined as the Secondary Electron Yield (SEY). A SEY ratio larger than 1 designates an increase in the total number of electrons. In the design of accelerator cavities, the goal is to reduce the SEY to be as low as possible using any form of surface manipulation. In this dissertation, an experimental setup was developed and used to study the SEY of various sample surfaces that were treated

  10. Variable high gradient permanent magnet quadrupole (QUAPEVA)

    Science.gov (United States)

    Marteau, F.; Ghaith, A.; N'Gotta, P.; Benabderrahmane, C.; Valléau, M.; Kitegi, C.; Loulergue, A.; Vétéran, J.; Sebdaoui, M.; André, T.; Le Bec, G.; Chavanne, J.; Vallerand, C.; Oumbarek, D.; Cosson, O.; Forest, F.; Jivkov, P.; Lancelot, J. L.; Couprie, M. E.

    2017-12-01

    Different applications such as laser plasma acceleration, colliders, and diffraction limited light sources require high gradient quadrupoles, with strength that can reach up to 200 T/m for a typical 10 mm bore diameter. We present here a permanent magnet based quadrupole (so-called QUAPEVA) composed of a Halbach ring and surrounded by four permanent magnet cylinders. Its design including magnetic simulation modeling enabling us to reach 201 T/m with a gradient variability of 45% and mechanical issues are reported. Magnetic measurements of seven systems of different lengths are presented and confirmed the theoretical expectations. The variation of the magnetic center while changing the gradient strength is ±10 μm. A triplet of QUAPEVA magnets is used to efficiently focus a beam with large energy spread and high divergence that is generated by a Laser Plasma Acceleration source for a free electron laser demonstration and has enabled us to perform beam based alignment and control the dispersion of the beam.

  11. Uniform gradient expansions

    CERN Document Server

    Giovannini, Massimo

    2015-01-01

    Cosmological singularities are often discussed by means of a gradient expansion that can also describe, during a quasi-de Sitter phase, the progressive suppression of curvature inhomogeneities. While the inflationary event horizon is being formed the two mentioned regimes coexist and a uniform expansion can be conceived and applied to the evolution of spatial gradients across the protoinflationary boundary. It is argued that conventional arguments addressing the preinflationary initial conditions are necessary but generally not sufficient to guarantee a homogeneous onset of the conventional inflationary stage.

  12. High gradient superconducting quadrupoles

    International Nuclear Information System (INIS)

    Lundy, R.A.; Brown, B.C.; Carson, J.A.; Fisk, H.E.; Hanft, R.H.; Mantsch, P.M.; McInturff, A.D.; Remsbottom, R.H.

    1987-07-01

    Prototype superconducting quadrupoles with a 5 cm aperture and gradient of 16 kG/cm have been built and tested as candidate magnets for the final focus at SLC. The magnets are made from NbTi Tevatron style cable with 10 inner and 14 outer turns per quadrant. Quench performance and multipole data are presented. Design and data for a low current, high gradient quadrupole, similar in cross section but wound with a cable consisting of five insulated conductors are also discussed

  13. Credal Networks under Maximum Entropy

    OpenAIRE

    Lukasiewicz, Thomas

    2013-01-01

    We apply the principle of maximum entropy to select a unique joint probability distribution from the set of all joint probability distributions specified by a credal network. In detail, we start by showing that the unique joint distribution of a Bayesian tree coincides with the maximum entropy model of its conditional distributions. This result, however, does not hold anymore for general Bayesian networks. We thus present a new kind of maximum entropy models, which are computed sequentially. ...

  14. Gradient Material Strategies for Hydrogel Optimization in Tissue Engineering Applications

    Science.gov (United States)

    2018-01-01

    Although a number of combinatorial/high-throughput approaches have been developed for biomaterial hydrogel optimization, a gradient sample approach is particularly well suited to identify hydrogel property thresholds that alter cellular behavior in response to interacting with the hydrogel due to reduced variation in material preparation and the ability to screen biological response over a range instead of discrete samples each containing only one condition. This review highlights recent work on cell–hydrogel interactions using a gradient material sample approach. Fabrication strategies for composition, material and mechanical property, and bioactive signaling gradient hydrogels that can be used to examine cell–hydrogel interactions will be discussed. The effects of gradients in hydrogel samples on cellular adhesion, migration, proliferation, and differentiation will then be examined, providing an assessment of the current state of the field and the potential of wider use of the gradient sample approach to accelerate our understanding of matrices on cellular behavior. PMID:29485612

  15. Accelerator microanalysis

    International Nuclear Information System (INIS)

    Tuniz, C.

    1997-01-01

    Particle accelerators have been developed more than sixty years ago to investigate nuclear and atomic phenomena. A major shift toward applications of accelerators in the study of materials structure and composition in inter-disciplinary projects has been witnessed in the last two decades. The Australian Nuclear Science and Technology Organisation (ANSTO) has developed advanced research programs based on the use of particle and photon beams. Atmospheric pollution problems are investigated at the 3 MV Van de Graff accelerator using ion beam analysis techniques to detect toxic elements in aerosol particles. High temperature superconductor and semiconductor materials are characterised using the recoil of iodine and other heavy ions produced at ANTARES, the 10-MV Tandem accelerator. A heavy-ion microprobe is presently being developed at ANTARES to map elemental concentrations of specific elements with micro-size resolution. An Accelerator mass Spectrometry (AMS) system has been developed at ANSTO for the ultra-sensitive detection of Carbon-14, Iodine-129 and other long-lived radioisotopes. This AMS spectrometer is a key instrument for climate change studies and international safeguards. ANSTO is also managing the Australian Synchrotron Research program based on facilities developed at the Photon Factory (Japan) and at the Advanced Photon Source (USA). Advanced projects in biology, materials chemistry, structural condensed matter and other disciplines are being promoted by a consortium involving Australian universities and research institutions. This paper will review recent advances in the use of particle accelerators, with a particular emphasis on applications developed at ANSTO and related to problems of international concern, such as global environmental change, public health and nuclear proliferation

  16. The fabrication of millimeter-wavelength accelerating structures

    International Nuclear Information System (INIS)

    Chou, P.J.; Bowden, G.B.; Copeland, M.R.

    1996-11-01

    There is a growing interest in the development of high gradient (≥ 1 GeV/m) accelerating structures. The need for high gradient acceleration based on current microwave technology requires the structures to be operated in the millimeter wavelength. Fabrication of accelerating structures at millimeter scale with sub-micron tolerances poses great challenges. The accelerating structures impose strict requirements on surface smoothness and finish to suppress field emission and multipactor effects. Various fabrication techniques based on conventional machining and micromachining have been evaluated and tested. These will be discussed and measurement results presented

  17. Experimental studies of the laser-controlled collective ion accelerator

    International Nuclear Information System (INIS)

    Destler, W.W.; Rodgers, J.; Segalov, Z.

    1989-01-01

    Detailed experimental studies of a collective acceleration experiment in which a time-sequenced laser-generated ionization channel is used to control the propagation of an intense relativistic electron beamfront are presented. Ions trapped in the potential well at the beamfront are accelerated as the velocity of the beamfront is increased in a manner controlled by the time-dependent axial extent of the ionization channel. Beamfront propagation data for two different accelerating gradients are presented, together with results of ion acceleration studies for both gradients

  18. Manipulating the Gradient

    Science.gov (United States)

    Gaze, Eric C.

    2005-01-01

    We introduce a cooperative learning, group lab for a Calculus III course to facilitate comprehension of the gradient vector and directional derivative concepts. The lab is a hands-on experience allowing students to manipulate a tangent plane and empirically measure the effect of partial derivatives on the direction of optimal ascent. (Contains 7…

  19. Accelerator operations

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    This section is concerned with the operation of both the tandem-linac system and the Dynamitron, two accelerators that are used for entirely different research. Developmental activities associated with the tandem and the Dynamitron are also treated here, but developmental activities associated with the superconducting linac are covered separately because this work is a program of technology development in its own right

  20. CNSTN Accelerator

    International Nuclear Information System (INIS)

    Habbassi, Afifa; Trabelsi, Adel

    2010-01-01

    This project give a big idea about the measurement of the linear accelerator in the CNSTN. During this work we control dose distribution for different product. For this characterisation we have to make an installation qualification ,operational qualification,performance qualification and of course for every step we have to control temperature and the dose ,even the distribution of the last one.

  1. Accelerators course

    CERN Multimedia

    CERN. Geneva HR-RFA; Métral, E

    2006-01-01

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges

  2. Accelerator operations

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Operations of the SuperHILAC, the Bevatron/Bevalac, and the 184-inch Synchrocyclotron during the period from October 1977 to September 1978 are discussed. These include ion source development, accelerator facilities, the Heavy Ion Spectrometer System, and Bevelac biomedical operations

  3. Accelerator update

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    When the Accelerator Conference, combined International High Energy and US Particle versions, held in Dallas in May, was initially scheduled, progress nearby for the US Superconducting Supercollider was high on the preliminary agenda. With the SSC voted down by Congress in October 1993, this was no longer the case. However the content of the meeting, in terms of both its deep implications for ambitious new projects and the breadth of its scope, showed that the worldwide particle accelerator field is far from being moribund. A traditional feature of such accelerator conferences is the multiplicity of parallel sessions. No one person can attend all sessions, so that delegates can follow completely different paths and emerge with totally different impressions. Despite this overload, and despite the SSC cancellation, the general picture is one of encouraging progress over a wide range of major new projects throughout the world. At the same time, spinoff from, and applications of, accelerators and accelerator technology are becoming increasingly important. Centrestage is now CERN's LHC proton-proton collider, where a test string of superconducting magnets is operating over long periods at the nominal LHC field of 8.36 tesla or more. The assignment of the underground areas in the existing 27- kilometre LEP tunnel is now quasidefinitive (see page 3). For CERN's existing big machine, the LEP electron-positron collider, ongoing work concentrates on boosting performance using improved optics and bunch trains. But the main objective is the LEP2 scheme using superconducting accelerating cavities to boost the beam energy (see page 6). After some initial teething problems, production and operation of these cavities appears to have been mastered, at least under test conditions. A highlight at CERN last year was the first run with lead ions (December 1994, page 15). Handling these heavy particles with systems originally designed for protons calls for ingenuity. The SPS

  4. Accelerator update

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-09-15

    When the Accelerator Conference, combined International High Energy and US Particle versions, held in Dallas in May, was initially scheduled, progress nearby for the US Superconducting Supercollider was high on the preliminary agenda. With the SSC voted down by Congress in October 1993, this was no longer the case. However the content of the meeting, in terms of both its deep implications for ambitious new projects and the breadth of its scope, showed that the worldwide particle accelerator field is far from being moribund. A traditional feature of such accelerator conferences is the multiplicity of parallel sessions. No one person can attend all sessions, so that delegates can follow completely different paths and emerge with totally different impressions. Despite this overload, and despite the SSC cancellation, the general picture is one of encouraging progress over a wide range of major new projects throughout the world. At the same time, spinoff from, and applications of, accelerators and accelerator technology are becoming increasingly important. Centrestage is now CERN's LHC proton-proton collider, where a test string of superconducting magnets is operating over long periods at the nominal LHC field of 8.36 tesla or more. The assignment of the underground areas in the existing 27- kilometre LEP tunnel is now quasidefinitive (see page 3). For CERN's existing big machine, the LEP electron-positron collider, ongoing work concentrates on boosting performance using improved optics and bunch trains. But the main objective is the LEP2 scheme using superconducting accelerating cavities to boost the beam energy (see page 6). After some initial teething problems, production and operation of these cavities appears to have been mastered, at least under test conditions. A highlight at CERN last year was the first run with lead ions (December 1994, page 15). Handling these heavy particles with systems originally designed for protons calls for ingenuity. The SPS has managed

  5. Application of International Linear Collider superconducting cavities for acceleration of protons

    Directory of Open Access Journals (Sweden)

    P. N. Ostroumov

    2007-12-01

    Full Text Available Beam acceleration in the International Linear Collider (ILC will be provided by 9-cell 1300 MHz superconducting (SC cavities. The cavities are designed for effective acceleration of charged particles moving with the speed of light and are operated on π-mode to provide a maximum accelerating gradient. A significant research and development effort has been devoted to develop ILC SC technology and its rf system which resulted in excellent performance of ILC cavities. Therefore, the proposed 8-GeV proton driver in Fermilab is based on ILC cavities above ∼1.2  GeV. The efficiency of proton beam acceleration by ILC cavities drops fast for lower velocities and it was proposed to develop squeezed ILC-type (S-ILC cavities operating at 1300 MHz and designed for β_{G}=0.81, geometrical beta, to accelerate protons or H^{-} from ∼420  MeV to 1.2 GeV. This paper discusses the possibility of avoiding the development of new β_{G}=0.81 cavities by operating ILC cavities on 8/9π-mode of standing wave oscillations.

  6. Effect of strong-focusing field distortions on particle motion in a linear accelerator

    International Nuclear Information System (INIS)

    Bondarev, B.I.; Durkin, A.P.; Solov'ev, L.Yu.

    1979-01-01

    The increased sensitivity of quadrupole focusing channel used in the highenergetic part of the linear accelerator makes it necessary to pay serious attention to the effect of various distortions of focusing fields on the transverse motion of the beam. The distortions may cause the inadmissible losses of particles in the accelerator. To achieve this aim the main equation of disturbed motion of particles in the linear accelerator, obtained by analogy with the cyclic accelerator theory is presented. The investigation of the solutions of this equation has permitted to obtain the analytical formulas for the estimation of the beam size increase under the effect of focusing field distortions of various types, such as structural non-linearity, gradient errors, random non-linearity, channel axis deformation. While studying the effect of structural non-linearity considered are the resonance effects and obtained are the relations describing the maximum beam size increase in the channel of the linear accelerator in the presence and in the absence of the resonance

  7. The project SPES at LNL: Accelerator challenges

    Indian Academy of Sciences (India)

    accelerator driven system for waste transmutation. .... a 30 mA (equivalent to 3 MW power), cw proton beam, with high reliability required by the ADS .... maximum achievable surface electric field, related to the onset of field emission, and since.

  8. RF acceleration of intense laser generated proton bunches

    Energy Technology Data Exchange (ETDEWEB)

    Almomani, Ali

    2012-07-13

    With respect to laser-accelerated beams, the high current capability of the CH-DTL cavity has been investigated. Beam simulations have demonstrated that 10{sup 10} protons per bunch can be accelerated successfully and loss free along the structure. It was shown that, the maximum number of protons per bunch that can be accelerated in the first cavity by exploiting about 1% of the stored field energy is 2.02 x 10{sup 11} protons. One further aspect is the total number of protons arriving at the linac entrance. One main aspect of an rf postacceleration experiment is the rf operation stability under these beam load conditions. Detailed simulations from the target along the solenoid and down to the linac entrance were presented, applying adapted software. Special care was taken on the time steps, especially close to the target, and on the collective phenomena between electron and proton distributions. The effect of comoving electrons on the beam dynamics has been investigated in detail. A CH-linac with high space charge limit and large transverse and longitudinal acceptance was designed to accept a maximum fraction of the laser generated proton bursts. Due to well-known transformations of the injected beam emittances along the CH-cavity, it is aimed to derive parameters of the laser generated beam by measuring the beam properties behind of the CH-cavity. With respect to the linac development it is intended to realize the first cavity of the proposed CH-DTL and to demonstrate the acceleration of a laser generated proton bunch with the LIGHT project. The first cavity consists of 7 gaps within a total length of about 668 mm. It is operated at 325 MHz and has an effective accelerating field gradient of about 12.6 MV/m. The study on the surface electric field for this cavity shows, that maximum surface fields of about 94 MV/m and 88 MV/m on the third and sixth drift tubes are reachable, respectively.

  9. Summary Report of Working Group 1: Laser-Plasma Acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Geddes, C.G.R.; Clayton, C.; Lu, W.; Thomas, A.G.R.

    2010-06-01

    Advances in and physics of the acceleration of particles using underdense plasma structures driven by lasers were the topics of presentations and discussions in Working Group 1 of the 2010 Advanced Accelerator Concepts Workshop. Such accelerators have demonstrated gradients several orders beyond conventional machines, with quasi-monoenergetic beams at MeV-GeV energies, making them attractive candidates for next generation accelerators. Workshop discussions included advances in control over injection and laser propagation to further improve beam quality and stability, detailed diagnostics and physics models of the acceleration process, radiation generation as a source and diagnostic, and technological tools and upcoming facilities to extend the reach of laser-plasma accelerators.

  10. Summary Report of Working Group 1: Laser-Plasma Acceleration

    International Nuclear Information System (INIS)

    Geddes, C.G.R.; Clayton, C.; Lu, W.; Thomas, A.G.R.

    2010-01-01

    Advances in and physics of the acceleration of particles using underdense plasma structures driven by lasers were the topics of presentations and discussions in Working Group 1 of the 2010 Advanced Accelerator Concepts Workshop. Such accelerators have demonstrated gradients several orders beyond conventional machines, with quasi-monoenergetic beams at MeV-GeV energies, making them attractive candidates for next generation accelerators. Workshop discussions included advances in control over injection and laser propagation to further improve beam quality and stability, detailed diagnostics and physics models of the acceleration process, radiation generation as a source and diagnostic, and technological tools and upcoming facilities to extend the reach of laser-plasma accelerators.

  11. Accelerator timing at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Oerter, B.; Conkling, C.R.

    1995-01-01

    Accelerator timing at Brookhaven National Laboratory has evolved from multiple coaxial cables transmitting individual pulses in the original Alternating Gradient Synchrotron (AGS) design, to serial coded transmission as the AGS Booster was added. With the implementation of this technology, the Super Cycle Generator (SCG) which synchronizes the AGS, Booster, LINAC, and Tandem accelerators was introduced. This paper will describe the timing system being developed for the Relativistic Heavy Ion Collider (RHIC)

  12. History of accelerators at Orme des Merisiers

    International Nuclear Information System (INIS)

    Antoine, C.Z.; Martin, J.

    1997-01-01

    This article draws the saga of particle acceleration in CEA facilities at Orme Des Merisiers. At the end of the sixties an electron linear accelerator with copper accelerating cavities was built. This machine presented a great step forwards: its luminosity was one thousand stronger and it could tell details as small as a third of a proton's size. As early as 1970 it was evident to use superconducting cavities otherwise the quest for more energetic particles would have led to design monsters devourer of energy. In 1990 MACSE an accelerator equipped with superconducting cavities produced the first continuous electron beam. MACSE was an efficient laboratory bench to study and develop superconducting cavities. Huge energy savings,a reduced beam emittance and a far better accelerating gradient are the main advantages of superconductivity. These advantages will fully benefit accelerators only if improvements are made concerning the mastery of thermal transfers, cryogenic power, ultra-vacuum techniques and the coupling of cavities. (A.C.)

  13. The Pulse Line Ion Accelerator Concept

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, Richard J.

    2006-02-15

    The Pulse Line Ion Accelerator concept was motivated by the desire for an inexpensive way to accelerate intense short pulse heavy ion beams to regimes of interest for studies of High Energy Density Physics and Warm Dense Matter. A pulse power driver applied at one end of a helical pulse line creates a traveling wave pulse that accelerates and axially confines the heavy ion beam pulse. Acceleration scenarios with constant parameter helical lines are described which result in output energies of a single stage much larger than the several hundred kilovolt peak voltages on the line, with a goal of 3-5 MeV/meter acceleration gradients. The concept might be described crudely as an ''air core'' induction linac where the PFN is integrated into the beam line so the accelerating voltage pulse can move along with the ions to get voltage multiplication.

  14. Inverse free-electron laser accelerator development

    International Nuclear Information System (INIS)

    Fisher, A.; Gallardo, J.; Steenbergen, A. van; Sandweiss, J.; Fang, J.M.

    1994-06-01

    The study of the Inverse Free-Electron Laser, as a potential mode of electron acceleration, has been pursued at Brookhaven National Laboratory for a number of years. More recent studies focused on the development of a low energy (few GeV), high gradient, multistage linear accelerator. The authors are presently designing a short accelerator module which will make use of the 50 MeV linac beam and high power (2 x 10 11 W) CO 2 laser beam of the Accelerator Test Facility (ATF) at the Center for Accelerator Physics (CAP), Brookhaven National Laboratory. These elements will be used in conjunction with a fast excitation (300 μsec pulse duration) variable period wiggler, to carry out an accelerator demonstration stage experiment

  15. TeV/m Nano-Accelerator: Current Status of CNT-Channeling Acceleration Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young Min [Northern Illinois U.; Lumpkin, Alex H. [Fermilab; Thangaraj, Jayakar Charles [Fermilab; Thurman-Keup, Randy Michael [Fermilab; Shiltsev, Vladimir D. [Fermilab

    2014-09-17

    Crystal channeling technology has offered various opportunities in the accelerator community with a viability of ultrahigh gradient (TV/m) acceleration for future HEP collider. The major challenge of channeling acceleration is that ultimate acceleration gradients might require a high power driver in the hard x-ray regime (~ 40 keV). This x-ray energy exceeds those for x-rays as of today, although x-ray lasers can efficiently excite solid plasma and accelerate particles inside a crystal channel. Moreover, only disposable crystal accelerators are possible at such high externally excited fields which would exceed the ionization thresholds destroying the atomic structure, so acceleration will take place only in a short time before full dissociation of the lattice. Carbon-based nanostructures have great potential with a wide range of flexibility and superior physical strength, which can be applied to channeling acceleration. This paper presents a beam- driven channeling acceleration concept with CNTs and discusses feasible experiments with the Advanced Superconducting Test Accelerator (ASTA) in Fermilab.

  16. High Accelerating Field Superconducting Radio Frequency Cavities

    Science.gov (United States)

    Orr, R. S.; Saito, K.; Furuta, F.; Saeki, T.; Inoue, H.; Morozumi, Y.; Higo, T.; Higashi, Y.; Matsumoto, H.; Kazakov, S.; Yamaoka, H.; Ueno, K.; Sato, M.

    2008-06-01

    We have conducted a study of a series of single cell superconducting RF cavities at KEK. These tests were designed to investigate the effect of surface treatment on the maximum accelerating field attainable. All of these cavities are of the ICHIRO shape, based on the Low Loss shape. Our results indicate that accelerating fields as high as the theoretical maximum of 50MV/m are attainable.

  17. Accelerating Value Creation with Accelerators

    DEFF Research Database (Denmark)

    Jonsson, Eythor Ivar

    2015-01-01

    and developing the best business ideas and support the due diligence process. Even universities are noticing that the learning experience of the action learning approach is an effective way to develop capabilities and change cultures. Accelerators related to what has historically been associated...

  18. Interior Gradient Estimates for Nonuniformly Parabolic Equations II

    Directory of Open Access Journals (Sweden)

    Lieberman Gary M

    2007-01-01

    Full Text Available We prove interior gradient estimates for a large class of parabolic equations in divergence form. Using some simple ideas, we prove these estimates for several types of equations that are not amenable to previous methods. In particular, we have no restrictions on the maximum eigenvalue of the coefficient matrix and we obtain interior gradient estimates for so-called false mean curvature equation.

  19. Alternating gradient focusing and deceleration of polar molecules

    NARCIS (Netherlands)

    Bethlem, H.L.; Tarbutt, M.R.; Kupper, J.; Carty, D.; Wohlfart, K.; Hinds, E.A.; Meijer, G.

    2006-01-01

    Beams of polar molecules can be focused using an array of electrostatic lenses in alternating gradient (AG) configuration. They can also be accelerated or decelerated by applying an appropriate high-voltage switching sequence to the lenses. AG focusing is applicable to molecules in both low-field-

  20. Bigravity from gradient expansion

    International Nuclear Information System (INIS)

    Yamashita, Yasuho; Tanaka, Takahiro

    2016-01-01

    We discuss how the ghost-free bigravity coupled with a single scalar field can be derived from a braneworld setup. We consider DGP two-brane model without radion stabilization. The bulk configuration is solved for given boundary metrics, and it is substituted back into the action to obtain the effective four-dimensional action. In order to obtain the ghost-free bigravity, we consider the gradient expansion in which the brane separation is supposed to be sufficiently small so that two boundary metrics are almost identical. The obtained effective theory is shown to be ghost free as expected, however, the interaction between two gravitons takes the Fierz-Pauli form at the leading order of the gradient expansion, even though we do not use the approximation of linear perturbation. We also find that the radion remains as a scalar field in the four-dimensional effective theory, but its coupling to the metrics is non-trivial.

  1. Laser acceleration

    Science.gov (United States)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  2. Laser acceleration

    International Nuclear Information System (INIS)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-01-01

    The fundamental idea of LaserWakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wake fields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ∼ c and ultra fastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nano materials is also emerging.

  3. Accelerating networks

    International Nuclear Information System (INIS)

    Smith, David M D; Onnela, Jukka-Pekka; Johnson, Neil F

    2007-01-01

    Evolving out-of-equilibrium networks have been under intense scrutiny recently. In many real-world settings the number of links added per new node is not constant but depends on the time at which the node is introduced in the system. This simple idea gives rise to the concept of accelerating networks, for which we review an existing definition and-after finding it somewhat constrictive-offer a new definition. The new definition provided here views network acceleration as a time dependent property of a given system as opposed to being a property of the specific algorithm applied to grow the network. The definition also covers both unweighted and weighted networks. As time-stamped network data becomes increasingly available, the proposed measures may be easily applied to such empirical datasets. As a simple case study we apply the concepts to study the evolution of three different instances of Wikipedia, namely, those in English, German, and Japanese, and find that the networks undergo different acceleration regimes in their evolution

  4. Gradient-Index Optics

    Science.gov (United States)

    2010-03-31

    nonimaging design capabilities to incorporate 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 12-04-2011 13. SUPPLEMENTARY NOTES The views, opinions...Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Imaging Optics, Nonimaging Optics, Gradient Index Optics, Camera, Concentrator...imaging and nonimaging design capabilities to incorporate manufacturable GRIN lenses can provide imaging lens systems that are compact and

  5. Stability of boundary layer flow based on energy gradient theory

    Science.gov (United States)

    Dou, Hua-Shu; Xu, Wenqian; Khoo, Boo Cheong

    2018-05-01

    The flow of the laminar boundary layer on a flat plate is studied with the simulation of Navier-Stokes equations. The mechanisms of flow instability at external edge of the boundary layer and near the wall are analyzed using the energy gradient theory. The simulation results show that there is an overshoot on the velocity profile at the external edge of the boundary layer. At this overshoot, the energy gradient function is very large which results in instability according to the energy gradient theory. It is found that the transverse gradient of the total mechanical energy is responsible for the instability at the external edge of the boundary layer, which induces the entrainment of external flow into the boundary layer. Within the boundary layer, there is a maximum of the energy gradient function near the wall, which leads to intensive flow instability near the wall and contributes to the generation of turbulence.

  6. Alternating gradient synchrotron

    International Nuclear Information System (INIS)

    Lowenstein, D.I.

    1984-01-01

    With the start of a research and development effort directed towards the Superconducting Super Collider (SSC), it is essential that US industry become involved as soon as possible. For that reason, I describe what a conventional accelerator complex is like and therefore what the first stages of the SSC would entail

  7. Evolution of a Planar Wake in Adverse Pressure Gradient

    Science.gov (United States)

    Driver, David M.; Mateer, George G.

    2016-01-01

    In the interest of improving the predictability of high-lift systems at maximum lift conditions, a series of fundamental experiments were conducted to study the effects of adverse pressure gradient on a wake flow. Mean and fluctuating velocities were measured with a two-component laser-Doppler velocimeter. Data were obtained for several cases of adverse pressure gradient, producing flows ranging from no reversed flow to massively reversed flow. While the turbulent Reynolds stresses increase with increasing size of the reversed flow region, the gradient of Reynolds stress does not. Computations using various turbulence models were unable to reproduce the reversed flow.

  8. Hamilton's gradient estimate for the heat kernel on complete manifolds

    OpenAIRE

    Kotschwar, Brett

    2007-01-01

    In this paper we extend a gradient estimate of R. Hamilton for positive solutions to the heat equation on closed manifolds to bounded positive solutions on complete, non-compact manifolds with $Rc \\geq -Kg$. We accomplish this extension via a maximum principle of L. Karp and P. Li and a Bernstein-type estimate on the gradient of the solution. An application of our result, together with the bounds of P. Li and S.T. Yau, yields an estimate on the gradient of the heat kernel for complete manifol...

  9. Advanced concepts for acceleration

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations

  10. Broadband accelerator control network

    International Nuclear Information System (INIS)

    Skelly, J.; Clifford, T.; Frankel, R.

    1983-01-01

    A broadband data communications network has been implemented at BNL for control of the Alternating Gradient Synchrotron (AG) proton accelerator, using commercial CATV hardware, dual coaxial cables as the communications medium, and spanning 2.0 km. A 4 MHz bandwidth Digital Control channel using CSMA-CA protocol is provided for digital data transmission, with 8 access nodes available over the length of the RELWAY. Each node consists of an rf modem and a microprocessor-based store-and-forward message handler which interfaces the RELWAY to a branch line implemented in GPIB. A gateway to the RELWAY control channel for the (preexisting) AGS Computerized Accelerator Operating system has been constructed using an LSI-11/23 microprocessor as a device in a GPIB branch line. A multilayer communications protocol has been defined for the Digital Control Channel, based on the ISO Open Systems Interconnect layered model, and a RELWAY Device Language defined as the required universal language for device control on this channel

  11. Accelerators and the Accelerator Community

    Energy Technology Data Exchange (ETDEWEB)

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  12. Accelerators and the Accelerator Community

    International Nuclear Information System (INIS)

    Malamud, Ernest; Sessler, Andrew

    2008-01-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process

  13. Advanced Accelerator Test Facility (AATF) upgrade plan

    International Nuclear Information System (INIS)

    Gai, W.; Ho, C.; Konecny, R.

    1989-01-01

    We have successfully demonstrated the principles of wake-field acceleration using structures (cavity, dielectric) and plasmas as wake-field devices using the AATF at Argonne National Laboratory. Due to the limited driver electron pulse intensity and relative long pulse length, only modest accelerating gradients were observed. In order to study the wake field effects in much greater detail and demonstrate the feasibility of wake-field accelerator for high energy physics, we are considering construction of a laser photocathode injector on the existing 20 MeV Chem-Linac to produce very intense and short electron pulses. 10 refs., 5 figs

  14. Wake fields and wake field acceleration

    International Nuclear Information System (INIS)

    Bane, K.L.F.; Wilson, P.B.; Weiland, T.

    1984-12-01

    In this lecture we introduce the concepts of wake fields and wake potentials, examine some basic properties of these functions, show how they can be calculated, and look briefly at a few important applications. One such application is wake field acceleration. The wake field accelerator is capable of producing the high gradients required for future very high energy e + e - linear colliders. The principles of wake field acceleration, and a brief description of experiments in progress in this area, are presented in the concluding section. 40 references, 27 figures

  15. Multi-stage wake-field accelerator

    International Nuclear Information System (INIS)

    Gai, Wei.

    1989-01-01

    In this paper we propose a multi-stage wake field acceleration scheme to overcome the low transformer ratio problem and still provide high accelerating gradients. The idea is very simple. We use a train of several electron bunches from a linear accelerator (main linac) with well defined separations between the bunches (tens of ns) to drive wake field devices. Here we have made the assumption that the wake field devices are available, whether plasma, iris-loaded metallic or dielectric wake field structures. 10 refs

  16. The nonlinear CWFA [Cherenkov Wakefield Accelerator

    International Nuclear Information System (INIS)

    Schoessow, P.

    1989-01-01

    The possible use of nonlinear media to enhance the performance of the Cherenkov Wakefield Accelerator (CWFA) is considered. Numerical experiments have been performed using a new wakefield code which demonstrate larger gradients and transformer ratios in the nonlinear CWFA than are obtained in the linear case. 7 refs., 3 figs

  17. The tandem betatron accelerator

    International Nuclear Information System (INIS)

    Keinigs, R.

    1991-01-01

    This paper reports that the tandem betatron is a compact, high-current induction accelerator that has the capability to accelerate electrons to an energy of order one gigavolt. Based upon the operating principle of a conventional betatron, the tandem betatron employs two synchronized induction cores operating 180 degrees out of phase. Embedded within the cores are the vacuum chambers, and these are connected by linear transport sections to allow for moving the beam back and forth between the two betatrons. The 180 degree phase shift between the core fluxes permits the circumvention of the flux swing constraint that limits the maximum energy gain of a conventional betatron. By transporting the beam between the synchronized cores, an electron can access more than one acceleration cycle, and thereby continue to gain energy. This added degree of freedom also permits a significant decrease in the size of the magnet system. Biasing coils provide independent control of the confining magnetic field. Provided that efficient beam switching can be performed, it appears feasible that a one gigavolt electron beam can be generated and confined. At this energy, a high current electron beam circulating in a one meter radius orbit could provide a very intense source of short wavelength (λ < 10 nm) synchrotron radiation. This has direct application to the emerging field of x-ray lithography. At more modest energies (10 MeV-30 MEV) a compact tandem betatron could be employed in the fields of medical radiation therapy, industrial radiography, and materials processing

  18. Maximum Entropy in Drug Discovery

    Directory of Open Access Journals (Sweden)

    Chih-Yuan Tseng

    2014-07-01

    Full Text Available Drug discovery applies multidisciplinary approaches either experimentally, computationally or both ways to identify lead compounds to treat various diseases. While conventional approaches have yielded many US Food and Drug Administration (FDA-approved drugs, researchers continue investigating and designing better approaches to increase the success rate in the discovery process. In this article, we provide an overview of the current strategies and point out where and how the method of maximum entropy has been introduced in this area. The maximum entropy principle has its root in thermodynamics, yet since Jaynes’ pioneering work in the 1950s, the maximum entropy principle has not only been used as a physics law, but also as a reasoning tool that allows us to process information in hand with the least bias. Its applicability in various disciplines has been abundantly demonstrated. We give several examples of applications of maximum entropy in different stages of drug discovery. Finally, we discuss a promising new direction in drug discovery that is likely to hinge on the ways of utilizing maximum entropy.

  19. Ring accelerators

    International Nuclear Information System (INIS)

    Gisler, G.; Faehl, R.

    1983-01-01

    We present two-dimensional simulations in (r-z) and r-theta) cylinderical geometries of imploding-liner-driven accelerators of rings of charged particles. We address issues of azimuthal and longitudinal stability of the rings. We discuss self-trapping designs in which beam injection and extraction is aided by means of external cusp fields. Our simulations are done with the 2-1/2-D particle-in-cell plasma simulation code CLINER, which combines collisionless, electromagnetic PIC capabilities with a quasi-MHD finite element package

  20. accelerating cavity

    CERN Multimedia

    On the inside of the cavity there is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  1. An Efficient UD-Based Algorithm for the Computation of Maximum Likelihood Sensitivity of Continuous-Discrete Systems

    DEFF Research Database (Denmark)

    Boiroux, Dimitri; Juhl, Rune; Madsen, Henrik

    2016-01-01

    This paper addresses maximum likelihood parameter estimation of continuous-time nonlinear systems with discrete-time measurements. We derive an efficient algorithm for the computation of the log-likelihood function and its gradient, which can be used in gradient-based optimization algorithms....... This algorithm uses UD decomposition of symmetric matrices and the array algorithm for covariance update and gradient computation. We test our algorithm on the Lotka-Volterra equations. Compared to the maximum likelihood estimation based on finite difference gradient computation, we get a significant speedup...

  2. Cosmic ray acceleration mechanisms

    International Nuclear Information System (INIS)

    Cesarsky, C.J.

    1982-09-01

    We present a brief summary of some of the most popular theories of cosmic ray acceleration: Fermi acceleration, its application to acceleration by shocks in a scattering medium, and impulsive acceleration by relativistic shocks

  3. Global correlation imaging of magnetic total field gradients

    International Nuclear Information System (INIS)

    Guo, Lianghui; Meng, Xiaohong; Shi, Lei

    2012-01-01

    Firstly we introduce the correlation imaging approach for the x-, y- and z-gradients of a magnetic total field anomaly for deriving the distribution of equivalent magnetic sources of the subsurface. In this approach, the subsurface space is divided into a regular grid, and then a correlation coefficient function is computed at each grid node, based on the cross-correlation between the x-gradient (or y-gradient or z-gradient) of the observed magnetic total field anomaly and the x-gradient (or y-gradient or z-gradient) of the theoretical magnetic total field anomaly due to a magnetic dipole. The resultant correlation coefficient is used to describe the probability of a magnetic dipole occurring at the node. We then define a global correlation coefficient function for comprehensively delineating the probability of an occurrence of a magnetic dipole, which takes, at each node, the maximum positive value of the corresponding correlation coefficient function of the three gradients. We finally test the approach both on synthetic data and real data from a metallic deposit area in the middle-lower reaches of the Yangtze River, China. (paper)

  4. On the structure of acceleration in turbulence

    DEFF Research Database (Denmark)

    Liberzon, A.; Lüthi, B.; Holzner, M.

    2012-01-01

    Acceleration and spatial velocity gradients are obtained simultaneously in an isotropic turbulent flow via three dimensional particle tracking velocimetry. We observe two distinct populations of intense acceleration events: one in flow regions of strong strain and another in regions of strong...... vorticity. Geometrical alignments with respect to vorticity vector and to the strain eigenvectors, curvature of Lagrangian trajectories and of streamlines for total acceleration, and for its convective part, , are studied in detail. We discriminate the alignment features of total and convective acceleration...... statistics, which are genuine features of turbulent nature from those of kinematic nature. We find pronounced alignment of acceleration with vorticity. Similarly, and especially are predominantly aligned at 45°with the most stretching and compressing eigenvectors of the rate of the strain tensor...

  5. Study on the limiting acceleration rate in the VLEPP linear accelerator

    International Nuclear Information System (INIS)

    Balakin, V.E.; Brezhnev, O.N.; Zakhvatkin, M.N.

    1987-01-01

    To realize the design of colliding linear electron-positron beams it is necessary to solve the radical problem of production of accelerating structure with acceleration rate of approximately 100 MeV/m which can accelerate 10 12 particles in a bunch. Results of experimental studies of the limiting acceleration rate in the VLEPP accelerating structure are presented. Accelerating sections of different length were tested. When testing sections 29 cm long the acceleration rate of 55 MeV/m was attained, and for 1 m section the value reached 40 MeV/m. The maximum rate of acceleration (90 MeV/m) was attained when electric field intensity on the structure surface constituted more than 150 MV/m

  6. Wetting of flat gradient surfaces.

    Science.gov (United States)

    Bormashenko, Edward

    2018-04-01

    Gradient, chemically modified, flat surfaces enable directed transport of droplets. Calculation of apparent contact angles inherent for gradient surfaces is challenging even for atomically flat ones. Wetting of gradient, flat solid surfaces is treated within the variational approach, under which the contact line is free to move along the substrate. Transversality conditions of the variational problem give rise to the generalized Young equation valid for gradient solid surfaces. The apparent (equilibrium) contact angle of a droplet, placed on a gradient surface depends on the radius of the contact line and the values of derivatives of interfacial tensions. The linear approximation of the problem is considered. It is demonstrated that the contact angle hysteresis is inevitable on gradient surfaces. Electrowetting of gradient surfaces is discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Rippled plasma wall accelerating structures

    International Nuclear Information System (INIS)

    Cavenago, M.

    1992-01-01

    A concept to form a hot, pulsed, inhomogeneous plasma and to use it as a linac structure is presented. The plasma spatial distribution is controlled by an external magnetic field and by the location of thermionic emitters; microwave ECR heating at frequency ω 1 favours plasma build up and reduces plasma resistivity. A shorter microwave pulse with frequency ω 2 ≠ ω 1 excites a longitudinal mode. An expression for the maximum attainable accelerating field is found. A linearized theory of accelerating modes is given. (Author) 6 refs., 3 figs

  8. Latitudinal and radial variation of >2 GeV/n protons and alpha-particles at solar maximum: ULYSSES COSPIN/KET and neutron monitor network observations

    Directory of Open Access Journals (Sweden)

    A. V. Belov

    2003-06-01

    Full Text Available Ulysses, launched in October 1990, began its second out-of-ecliptic orbit in September 1997. In 2000/2001 the spacecraft passed from the south to the north polar regions of the Sun in the inner heliosphere. In contrast to the first rapid pole to pole passage in 1994/1995 close to solar minimum, Ulysses experiences now solar maximum conditions. The Kiel Electron Telescope (KET measures also protons and alpha-particles in the energy range from 5 MeV/n to >2 GeV/n. To derive radial and latitudinal gradients for >2 GeV/n protons and alpha-particles, data from the Chicago instrument on board IMP-8 and the neutron monitor network have been used to determine the corresponding time profiles at Earth. We obtain a spatial distribution at solar maximum which differs greatly from the solar minimum distribution. A steady-state approximation, which was characterized by a small radial and significant latitudinal gradient at solar minimum, was interchanged with a highly variable one with a large radial and a small – consistent with zero – latitudinal gradient. A significant deviation from a spherically symmetric cosmic ray distribution following the reversal of the solar magnetic field in 2000/2001 has not been observed yet. A small deviation has only been observed at northern polar regions, showing an excess of particles instead of the expected depression. This indicates that the reconfiguration of the heliospheric magnetic field, caused by the reappearance of the northern polar coronal hole, starts dominating the modulation of galactic cosmic rays already at solar maximum.Key words. Interplanetary physics (cosmic rays; energetic particles – Space plasma physics (charged particle motion and acceleration

  9. Design of an electrostatic magnetic quadrupole accelerator

    International Nuclear Information System (INIS)

    Mizuno, M.; Ohara, Y.

    1993-01-01

    A new type of electrostatic acceleration system, electrostatic magnetic quadrupole (ESMQ) acceleration system, is proposed for efficient acceleration of negative ion beams. In this system, permanent magnets are buried in the acceleration electrodes so as to produce a quadrupole magnetic field in the electrode aperture region. Envelope simulation indicates that the quadrupole field can deflect electrons stripped from the negative ions. Beam envelope simulations for deuterium ions and electrons have been carried out using the beam envelope code TRACE. Electrons are largely divergent and most appear likely to hit downstream electrodes. Furthermore, maximum beam divergence of the deuterium ions is reduced to the focusing effect of the quadrupole magnetic field

  10. Maximum stellar iron core mass

    Indian Academy of Sciences (India)

    60, No. 3. — journal of. March 2003 physics pp. 415–422. Maximum stellar iron core mass. F W GIACOBBE. Chicago Research Center/American Air Liquide ... iron core compression due to the weight of non-ferrous matter overlying the iron cores within large .... thermal equilibrium velocities will tend to be non-relativistic.

  11. A portable storage maximum thermometer

    International Nuclear Information System (INIS)

    Fayart, Gerard.

    1976-01-01

    A clinical thermometer storing the voltage corresponding to the maximum temperature in an analog memory is described. End of the measurement is shown by a lamp switch out. The measurement time is shortened by means of a low thermal inertia platinum probe. This portable thermometer is fitted with cell test and calibration system [fr

  12. Neutron spectra unfolding with maximum entropy and maximum likelihood

    International Nuclear Information System (INIS)

    Itoh, Shikoh; Tsunoda, Toshiharu

    1989-01-01

    A new unfolding theory has been established on the basis of the maximum entropy principle and the maximum likelihood method. This theory correctly embodies the Poisson statistics of neutron detection, and always brings a positive solution over the whole energy range. Moreover, the theory unifies both problems of overdetermined and of underdetermined. For the latter, the ambiguity in assigning a prior probability, i.e. the initial guess in the Bayesian sense, has become extinct by virtue of the principle. An approximate expression of the covariance matrix for the resultant spectra is also presented. An efficient algorithm to solve the nonlinear system, which appears in the present study, has been established. Results of computer simulation showed the effectiveness of the present theory. (author)

  13. Multistage linear electron acceleration using pulsed transmission lines

    International Nuclear Information System (INIS)

    Miller, R.B.; Prestwich, K.R.; Poukey, J.W.; Epstein, B.G.; Freeman, J.R.; Sharpe, A.W.; Tucker, W.K.; Shope, S.L.

    1981-01-01

    A four-stage linear electron accelerator is described which uses pulsed radial transmission lines as the basic accelerating units. An annular electron beam produced by a foilless diode is guided through the accelerator by a strong axial magnetic field. Synchronous firing of the injector and the acccelerating modules is accomplished with self-breaking oil switches. The device has accelerated beam currents of 25 kA to kinetic energies of 9 MV, with 90% current transport efficiency. The average accelerating gradient is 3 MV/m

  14. Automatic frequency control system for driving a linear accelerator

    International Nuclear Information System (INIS)

    Helgesson, A.L.

    1976-01-01

    An automatic frequency control system is described for maintaining the drive frequency applied to a linear accelerator to produce maximum particle output from the accelerator. The particle output amplitude is measured and the frequency of the radio frequency source powering the linear accelerator is adjusted to maximize particle output amplitude

  15. Post optimization paradigm in maximum 3-satisfiability logic programming

    Science.gov (United States)

    Mansor, Mohd. Asyraf; Sathasivam, Saratha; Kasihmuddin, Mohd Shareduwan Mohd

    2017-08-01

    Maximum 3-Satisfiability (MAX-3SAT) is a counterpart of the Boolean satisfiability problem that can be treated as a constraint optimization problem. It deals with a conundrum of searching the maximum number of satisfied clauses in a particular 3-SAT formula. This paper presents the implementation of enhanced Hopfield network in hastening the Maximum 3-Satisfiability (MAX-3SAT) logic programming. Four post optimization techniques are investigated, including the Elliot symmetric activation function, Gaussian activation function, Wavelet activation function and Hyperbolic tangent activation function. The performances of these post optimization techniques in accelerating MAX-3SAT logic programming will be discussed in terms of the ratio of maximum satisfied clauses, Hamming distance and the computation time. Dev-C++ was used as the platform for training, testing and validating our proposed techniques. The results depict the Hyperbolic tangent activation function and Elliot symmetric activation function can be used in doing MAX-3SAT logic programming.

  16. Cosmic-ray shock acceleration in oblique MHD shocks

    Science.gov (United States)

    Webb, G. M.; Drury, L. OC.; Volk, H. J.

    1986-01-01

    A one-dimensional, steady-state hydrodynamical model of cosmic-ray acceleration at oblique MHD shocks is presented. Upstream of the shock the incoming thermal plasma is subject to the adverse pressure gradient of the accelerated particles, the J x B force, as well as the thermal gas pressure gradient. The efficiency of the acceleration of cosmic-rays at the shock as a function of the upstream magnetic field obliquity and upstream plasma beta is investigated. Astrophysical applications of the results are briefly discussed.

  17. Determination of the maximum-depth to potential field sources by a maximum structural index method

    Science.gov (United States)

    Fedi, M.; Florio, G.

    2013-01-01

    A simple and fast determination of the limiting depth to the sources may represent a significant help to the data interpretation. To this end we explore the possibility of determining those source parameters shared by all the classes of models fitting the data. One approach is to determine the maximum depth-to-source compatible with the measured data, by using for example the well-known Bott-Smith rules. These rules involve only the knowledge of the field and its horizontal gradient maxima, and are independent from the density contrast. Thanks to the direct relationship between structural index and depth to sources we work out a simple and fast strategy to obtain the maximum depth by using the semi-automated methods, such as Euler deconvolution or depth-from-extreme-points method (DEXP). The proposed method consists in estimating the maximum depth as the one obtained for the highest allowable value of the structural index (Nmax). Nmax may be easily determined, since it depends only on the dimensionality of the problem (2D/3D) and on the nature of the analyzed field (e.g., gravity field or magnetic field). We tested our approach on synthetic models against the results obtained by the classical Bott-Smith formulas and the results are in fact very similar, confirming the validity of this method. However, while Bott-Smith formulas are restricted to the gravity field only, our method is applicable also to the magnetic field and to any derivative of the gravity and magnetic field. Our method yields a useful criterion to assess the source model based on the (∂f/∂x)max/fmax ratio. The usefulness of the method in real cases is demonstrated for a salt wall in the Mississippi basin, where the estimation of the maximum depth agrees with the seismic information.

  18. Proof on principle experiments of laser wakefield acceleration

    International Nuclear Information System (INIS)

    Nakajima, K.; Kawakubo, T.; Nakanishi, H.

    1994-01-01

    The principle of laser wakefield particle acceleration has been tested by the Nd:glass laser system providing a short pulse with a power of 10 TW and a duration of 1 ps. Electrons accelerated up to 18 MeV/c have been observed by injecting 1 MeV/c electrons emitted from a solid target by an intense laser impact. The accelerating field gradient of 30 GeV/m is inferred. (author)

  19. The Next Linear Collider Test Accelerator

    International Nuclear Information System (INIS)

    Ruth, R.D.; Adolphsen, C.; Bane, K.

    1993-04-01

    During the past several years, there has been tremendous progress the development of the RF system and accelerating structures for a Next Linear Collider (NLC). Developments include high-power klystrons, RF pulse compression systems and damped/detuned accelerator structures to reduce wakefields. In order to integrate these separate development efforts into an actual X-band accelerator capable of accelerating the electron beams necessary for an NLC, we are building an NLC Test Accelerator (NLCTA). The goal of the NLCTA is to bring together all elements of the entire accelerating system by constructing and reliably operating an engineered model of a high-gradient linac suitable for the NLC. The NLCTA will serve as a testbed as the design of the NLC evolves. In addition to testing the RF acceleration system, the NLCTA is designed to address many questions related to the dynamics of the beam during acceleration. In this paper, we will report oil the status of the design, component development, and construction of the NLC Test Accelerator

  20. On Maximum Entropy and Inference

    Directory of Open Access Journals (Sweden)

    Luigi Gresele

    2017-11-01

    Full Text Available Maximum entropy is a powerful concept that entails a sharp separation between relevant and irrelevant variables. It is typically invoked in inference, once an assumption is made on what the relevant variables are, in order to estimate a model from data, that affords predictions on all other (dependent variables. Conversely, maximum entropy can be invoked to retrieve the relevant variables (sufficient statistics directly from the data, once a model is identified by Bayesian model selection. We explore this approach in the case of spin models with interactions of arbitrary order, and we discuss how relevant interactions can be inferred. In this perspective, the dimensionality of the inference problem is not set by the number of parameters in the model, but by the frequency distribution of the data. We illustrate the method showing its ability to recover the correct model in a few prototype cases and discuss its application on a real dataset.

  1. Maximum Water Hammer Sensitivity Analysis

    OpenAIRE

    Jalil Emadi; Abbas Solemani

    2011-01-01

    Pressure waves and Water Hammer occur in a pumping system when valves are closed or opened suddenly or in the case of sudden failure of pumps. Determination of maximum water hammer is considered one of the most important technical and economical items of which engineers and designers of pumping stations and conveyance pipelines should take care. Hammer Software is a recent application used to simulate water hammer. The present study focuses on determining significance of ...

  2. Maximum Gene-Support Tree

    Directory of Open Access Journals (Sweden)

    Yunfeng Shan

    2008-01-01

    Full Text Available Genomes and genes diversify during evolution; however, it is unclear to what extent genes still retain the relationship among species. Model species for molecular phylogenetic studies include yeasts and viruses whose genomes were sequenced as well as plants that have the fossil-supported true phylogenetic trees available. In this study, we generated single gene trees of seven yeast species as well as single gene trees of nine baculovirus species using all the orthologous genes among the species compared. Homologous genes among seven known plants were used for validation of the finding. Four algorithms—maximum parsimony (MP, minimum evolution (ME, maximum likelihood (ML, and neighbor-joining (NJ—were used. Trees were reconstructed before and after weighting the DNA and protein sequence lengths among genes. Rarely a gene can always generate the “true tree” by all the four algorithms. However, the most frequent gene tree, termed “maximum gene-support tree” (MGS tree, or WMGS tree for the weighted one, in yeasts, baculoviruses, or plants was consistently found to be the “true tree” among the species. The results provide insights into the overall degree of divergence of orthologous genes of the genomes analyzed and suggest the following: 1 The true tree relationship among the species studied is still maintained by the largest group of orthologous genes; 2 There are usually more orthologous genes with higher similarities between genetically closer species than between genetically more distant ones; and 3 The maximum gene-support tree reflects the phylogenetic relationship among species in comparison.

  3. Gradient angle estimation by uniform directional simulation on a cone

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    1997-01-01

    approximation to a locally most central limit state point. Moreover, the estimated angle can be used to correct the geometric reliability index.\\bfseries Keywords: Directional simulation, effectivity factor, gradient angle estimation, maximum likelihood, model-correction-factor method, Monte Carlo simulation...

  4. Diagnostics for advanced laser acceleration experiments

    International Nuclear Information System (INIS)

    Misuri, Alessio

    2002-01-01

    The first proposal for plasma based accelerators was suggested by 1979 by Tajima and Dawson. Since then there has been a tremendous progress both theoretically and experimentally. The theoretical progress is particularly due to the growing interest in the subject and to the development of more accurate numerical codes for the plasma simulations (especially particle-in-cell codes). The experimental progress follows from the development of multi-terawatt laser systems based on the chirped-pulse amplification technique. These efforts have produced results in several experiments world-wide, with the detection of accelerated electrons of tens of MeV. The peculiarity of these advanced accelerators is their ability to sustain extremely large acceleration gradients. In the conventional radio frequency linear accelerators (RF linacs) the acceleration gradients are limited roughly to 100 MV/m; this is partially due to breakdown which occurs on the walls of the structure. The electrical breakdown is originated by the emission of the electrons from the walls of the cavity. The electrons cause an avalanche breakdown when they reach other metal parts of the RF linacs structure

  5. Diagnostics for advanced laser acceleration experiments

    Energy Technology Data Exchange (ETDEWEB)

    Misuri, Alessio [Univ. of Pisa (Italy)

    2002-01-01

    The first proposal for plasma based accelerators was suggested by 1979 by Tajima and Dawson. Since then there has been a tremendous progress both theoretically and experimentally. The theoretical progress is particularly due to the growing interest in the subject and to the development of more accurate numerical codes for the plasma simulations (especially particle-in-cell codes). The experimental progress follows from the development of multi-terawatt laser systems based on the chirped-pulse amplification technique. These efforts have produced results in several experiments world-wide, with the detection of accelerated electrons of tens of MeV. The peculiarity of these advanced accelerators is their ability to sustain extremely large acceleration gradients. In the conventional radio frequency linear accelerators (RF linacs) the acceleration gradients are limited roughly to 100 MV/m; this is partially due to breakdown which occurs on the walls of the structure. The electrical breakdown is originated by the emission of the electrons from the walls of the cavity. The electrons cause an avalanche breakdown when they reach other metal parts of the RF linacs structure.

  6. Folded tandem ion accelerator facility at BARC

    International Nuclear Information System (INIS)

    Agarwal, Arun; Padmakumar, Sapna; Subrahmanyam, N.B.V.; Singh, V.P.; Bhatt, J.P.; Ware, Shailaja V.; Pol, S.S; Basu, A.; Singh, S.K.; Krishnagopal, S.; Bhagwat, P.V.

    2017-01-01

    The 5.5 MV single stage Van de Graaff (VDG) accelerator was in continuous operation at Nuclear Physics Division (NPD), Bhabha Atomic Research Centre (BARC) since its inception in 1962. During 1993-96, VDG accelerator was converted to a Folded Tandem Ion Accelerator (FOTIA). The scientists and engineers of NPD, IADD (then a part of NPD) along with several other divisions of BARC joined hands together in designing, fabrication, installation and commissioning of the FOTIA for the maximum terminal voltage of 6 MV. After experiencing the first accelerated ion beam on the target from FOTIA during April 2000, different ion species were accelerated and tested. Now this accelerator FOTIA is in continuous use for different kind of experiments

  7. Gradient Boosting Machines, A Tutorial

    Directory of Open Access Journals (Sweden)

    Alexey eNatekin

    2013-12-01

    Full Text Available Gradient boosting machines are a family of powerful machine-learning techniques that have shown considerable success in a wide range of practical applications. They are highly customizable to the particular needs of the application, like being learned with respect to different loss functions. This article gives a tutorial introduction into the methodology of gradient boosting methods. A theoretical information is complemented with many descriptive examples and illustrations which cover all the stages of the gradient boosting model design. Considerations on handling the model complexity are discussed. A set of practical examples of gradient boosting applications are presented and comprehensively analyzed.

  8. Accelerator vacuum system elements

    International Nuclear Information System (INIS)

    Sivokon', V.V.; Kobets, A.F.; Shvetsov, V.A.; Sivokon', L.V.

    1980-01-01

    Some elements of vacuum systems are investigated. Considerable attention has been given to the investigation into peculiarities in pumping out of a ionoguide for transportation of an accelerated charged particles beam the spread of which often attains a considerable length. The number of pumps over the ionoguide length is experimentally determined. It is shown that as a result of ionoguide warm-up the pumping out time is considerably reduced maximum permissible pressure is decreased by two orders and lesser rate of pump pumping out is required. The investigations have shown that when operating the ionoguide there is no necessity in setting up seals between the ionoguide and magnetodischarged pump. The causes of the phenomenon in which the pressure near the pump is greater than in the end of the ionoguide, are impurities carried in by the pump into the ionoguide volume and the pumping out capacity of the pressure converter

  9. Ultra-High Gradient S-band Linac for Laboratory and Industrial Applications

    Science.gov (United States)

    Faillace, L.; Agustsson, R.; Dolgashev, V.; Frigola, P.; Murokh, A.; Rosenzweig, J.; Yakimenko, V.

    2010-11-01

    A strong demand for high gradient structures arises from the limited real estate available for linear accelerators. RadiaBeam Technologies is developing a Doubled Energy Compact Accelerator (DECA) structure: an S-band standing wave electron linac designed to operate at accelerating gradients of up to 50 MV/m. In this paper, we present the radio-frequency design of the DECA S-band accelerating structure, operating at 2.856 GHz in the π-mode. The structure design is heavily influenced by NLC collaboration experience with ultra high gradient X-band structures; S-band, however, is chosen to take advantage of commonly available high power S-band klystrons.

  10. Harmonic ratcheting for fast acceleration

    Science.gov (United States)

    Cook, N.; Brennan, J. M.; Peggs, S.

    2014-04-01

    A major challenge in the design of rf cavities for the acceleration of medium-energy charged ions is the need to rapidly sweep the radio frequency over a large range. From low-power medical synchrotrons to high-power accelerator driven subcritical reactor systems, and from fixed focus alternating gradient accelerators to rapid cycling synchrotrons, there is a strong need for more efficient, and faster, acceleration of protons and light ions in the semirelativistic range of hundreds of MeV/u. A conventional way to achieve a large, rapid frequency sweep (perhaps over a range of a factor of 6) is to use custom-designed ferrite-loaded cavities. Ferrite rings enable the precise tuning of the resonant frequency of a cavity, through the control of the incremental permeability that is possible by introducing a pseudoconstant azimuthal magnetic field. However, rapid changes over large permeability ranges incur anomalous behavior such as the "Q-loss" and "f-dot" loss phenomena that limit performance while requiring high bias currents. Notwithstanding the incomplete understanding of these phenomena, they can be ameliorated by introducing a "harmonic ratcheting" acceleration scheme in which two or more rf cavities take turns accelerating the beam—one turns on when the other turns off, at different harmonics—so that the radio frequency can be constrained to remain in a smaller range. Harmonic ratcheting also has straightforward performance advantages, depending on the particular parameter set at hand. In some typical cases it is possible to halve the length of the cavities, or to double the effective gap voltage, or to double the repetition rate. This paper discusses and quantifies the advantages of harmonic ratcheting in general. Simulation results for the particular case of a rapid cycling medical synchrotron ratcheting from harmonic number 9 to 2 show that stability and performance criteria are met even when realistic engineering details are taken into consideration.

  11. Lasers and new methods of particle acceleration

    International Nuclear Information System (INIS)

    Parsa, Z.

    1998-02-01

    There has been a great progress in development of high power laser technology. Harnessing their potential for particle accelerators is a challenge and of great interest for development of future high energy colliders. The author discusses some of the advances and new methods of acceleration including plasma-based accelerators. The exponential increase in sophistication and power of all aspects of accelerator development and operation that has been demonstrated has been remarkable. This success has been driven by the inherent interest to gain new and deeper understanding of the universe around us. With the limitations of the conventional technology it may not be possible to meet the requirements of the future accelerators with demands for higher and higher energies and luminosities. It is believed that using the existing technology one can build a linear collider with about 1 TeV center of mass energy. However, it would be very difficult (or impossible) to build linear colliders with energies much above one or two TeV without a new method of acceleration. Laser driven high gradient accelerators are becoming more realistic and is expected to provide an alternative, (more compact, and more economical), to conventional accelerators in the future. The author discusses some of the new methods of particle acceleration, including laser and particle beam driven plasma based accelerators, near and far field accelerators. He also discusses the enhanced IFEL (Inverse Free Electron Laser) and NAIBEA (Nonlinear Amplification of Inverse-Beamstrahlung Electron Acceleration) schemes, laser driven photo-injector and the high energy physics requirements

  12. Gradient waveform synthesis for magnetic propulsion using MRI gradient coils

    International Nuclear Information System (INIS)

    Han, B H; Lee, S Y; Park, S

    2008-01-01

    Navigating an untethered micro device in a living subject is of great interest for both diagnostic and therapeutic applications. Magnetic propulsion of an untethered device carrying a magnetic core in it is one of the promising methods to navigate the device. MRI gradients coils are thought to be suitable for navigating the device since they are capable of magnetic propulsion in any direction while providing magnetic resonance images. For precise navigation of the device, especially in the peripheral region of the gradient coils, the concomitant gradient fields, as well as the linear gradient fields in the main magnetic field direction, should be considered in driving the gradient coils. For simple gradient coil configurations, the Maxwell coil in the z-direction and the Golay coil in the x- and y-directions, we have calculated the magnetic force fields, which are not necessarily the same as the conventional linear gradient fields of MRI. Using the calculated magnetic force fields, we have synthesized gradient waveforms to navigate the device along a desired path

  13. THE MAXIMUM EFFECT OF DEEP LAKES ON TEMPERATURE PROFILES – DETERMINATION OF THE GEOTHERMAL GRADIENT

    OpenAIRE

    Eppelbaum L. V.; Kutasov I. M.; Balobaev V. T.

    2009-01-01

    Understanding the climate change processes on the basis of geothermal observations in boreholes is an important and at the same time high-intricate problem. Many non-climatic effects could cause changes in ground surface temperatures. In this study we investigate the effects of deep lakes on the borehole temperature profilesobserved within or in the vicinity of the lakes. We propose a method based on utilization of Laplace equation with nonuniform boundary conditions. The proposed method make...

  14. Multi-Mode Cavity Accelerator Structure

    International Nuclear Information System (INIS)

    Jiang, Yong; Hirshfield, Jay Leonard

    2016-01-01

    This project aimed to develop a prototype for a novel accelerator structure comprising coupled cavities that are tuned to support modes with harmonically-related eigenfrequencies, with the goal of reaching an acceleration gradient >200 MeV/m and a breakdown rate <10"-"7/pulse/meter. Phase I involved computations, design, and preliminary engineering of a prototype multi-harmonic cavity accelerator structure; plus tests of a bimodal cavity. A computational procedure was used to design an optimized profile for a bimodal cavity with high shunt impedance and low surface fields to maximize the reduction in temperature rise Δ T. This cavity supports the TM010 mode and its 2nd harmonic TM011 mode. Its fundamental frequency is at 12 GHz, to benchmark against the empirical criteria proposed within the worldwide High Gradient collaboration for X-band copper structures; namely, a surface electric field E_s_u_r"m"a"x< 260 MV/m and pulsed surface heating Δ T"m"a"x< 56 °K. With optimized geometry, amplitude and relative phase of the two modes, reductions are found in surface pulsed heating, modified Poynting vector, and total RF power - as compared with operation at the same acceleration gradient using only the fundamental mode.

  15. Multi-Mode Cavity Accelerator Structure

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yong [Yale Univ., New Haven, CT (United States); Hirshfield, Jay Leonard [Omega-P R& D, Inc., New Haven, CT (United States)

    2016-11-10

    This project aimed to develop a prototype for a novel accelerator structure comprising coupled cavities that are tuned to support modes with harmonically-related eigenfrequencies, with the goal of reaching an acceleration gradient >200 MeV/m and a breakdown rate <10-7/pulse/meter. Phase I involved computations, design, and preliminary engineering of a prototype multi-harmonic cavity accelerator structure; plus tests of a bimodal cavity. A computational procedure was used to design an optimized profile for a bimodal cavity with high shunt impedance and low surface fields to maximize the reduction in temperature rise ΔT. This cavity supports the TM010 mode and its 2nd harmonic TM011 mode. Its fundamental frequency is at 12 GHz, to benchmark against the empirical criteria proposed within the worldwide High Gradient collaboration for X-band copper structures; namely, a surface electric field Esurmax< 260 MV/m and pulsed surface heating ΔTmax< 56 °K. With optimized geometry, amplitude and relative phase of the two modes, reductions are found in surface pulsed heating, modified Poynting vector, and total RF power—as compared with operation at the same acceleration gradient using only the fundamental mode.

  16. Sector ring accelerator ''RESATRON''

    International Nuclear Information System (INIS)

    Schwabe, E.

    1980-01-01

    Project of sector ring accelerator RESATRON is described. The curiosity of this accelerator is the second cycle of acceleration of the beam after stripping it on the foil. In such an accelerator heavy ions with a different ratio Z to A can be accelerated. (S.B.)

  17. Generic maximum likely scale selection

    DEFF Research Database (Denmark)

    Pedersen, Kim Steenstrup; Loog, Marco; Markussen, Bo

    2007-01-01

    in this work is on applying this selection principle under a Brownian image model. This image model provides a simple scale invariant prior for natural images and we provide illustrative examples of the behavior of our scale estimation on such images. In these illustrative examples, estimation is based......The fundamental problem of local scale selection is addressed by means of a novel principle, which is based on maximum likelihood estimation. The principle is generally applicable to a broad variety of image models and descriptors, and provides a generic scale estimation methodology. The focus...

  18. Theoretical and numerical study of the expansion of a laser-produced plasma: high energy ion acceleration; Etude theorique et numerique de l'expansion d'un plasma cree par laser: acceleration d'ions a haute energie

    Energy Technology Data Exchange (ETDEWEB)

    Grismayer, T

    2006-12-15

    This work is a theoretical and numerical study on the high energy ion acceleration in laser created plasma expansion. The ion beams produced on the rear side of an irradiated foil reveal some characteristics (low divergence, wide spectra) which distinguish them from the ones coming from the front side. The discovery of these beams has renewed speculation for applications such as proton-therapy or proton radiography. The ion acceleration is performed via a self-consistent electrostatic field due to the charge separation between ions and hot electrons. In the first part of this dissertation, we present the fluid theoretical model and the hybrid code which simulates the plasma expansion. The numerical simulation of a recent experience on the dynamic of the electric field by proton radiography validates the theoretical model. The second part deals with the influence of an initial ion density gradient on the acceleration efficiency. We establish a model which relates the plasma dynamic and more precisely the wave breaking of the ion flow. The numerical results which predict a strong decrease of the ion maximum energy for large gradient length are in agreement with the experimental data. The Boltzmann equilibrium for the electron assumed in the first part has been thrown back into doubt in the third part. We adopt a kinetic description for the electron. The new version of the code can measure the Boltzmann law deviation which does not strongly modify the maximum energy that can reach the ions. (author)

  19. Ambipolar ion acceleration in an expanding magnetic nozzle

    Energy Technology Data Exchange (ETDEWEB)

    Longmier, Benjamin W; Carter, Mark D; Cassady, Leonard D; Chancery, William J; Diaz, Franklin R Chang; Glover, Tim W; Ilin, Andrew V; McCaskill, Greg E; Olsen, Chris S; Squire, Jared P [Ad Astra Rocket Company, 141 W. Bay Area Blvd, Webster, TX (United States); Bering, Edgar A III [Department of Physics and Department of Electrical and Computer Engineering, University of Houston, 617 Science and Research Building 1, Houston, TX (United States); Hershkowitz, Noah [Department of Engineering Physics, University of Wisconsin, 1500 Engineering Dr., Madison, WI (United States)

    2011-02-15

    The helicon plasma stage in the Variable Specific Impulse Magnetoplasma Rocket (VASIMR (registered)) VX-200i device was used to characterize an axial plasma potential profile within an expanding magnetic nozzle region of the laboratory based device. The ion acceleration mechanism is identified as an ambipolar electric field produced by an electron pressure gradient, resulting in a local axial ion speed of Mach 4 downstream of the magnetic nozzle. A 20 eV argon ion kinetic energy was measured in the helicon source, which had a peak magnetic field strength of 0.17 T. The helicon plasma source was operated with 25 mg s{sup -1} argon propellant and 30 kW of RF power. The maximum measured values of plasma density and electron temperature within the exhaust plume were 1 x 10{sup 20} m{sup -3} and 9 eV, respectively. The measured plasma density is nearly an order of magnitude larger than previously reported steady-state helicon plasma sources. The exhaust plume also exhibits a 95% to 100% ionization fraction. The size scale and spatial location of the plasma potential structure in the expanding magnetic nozzle region appear to follow the size scale and spatial location of the expanding magnetic field. The thickness of the potential structure was found to be 10{sup 4} to 10{sup 5} {lambda}{sub De} depending on the local electron temperature in the magnetic nozzle, many orders of magnitude larger than typical laboratory double layer structures. The background plasma density and neutral argon pressure were 10{sup 15} m{sup -3} and 2 x 10{sup -5} Torr, respectively, in a 150 m{sup 3} vacuum chamber during operation of the helicon plasma source. The agreement between the measured plasma potential and plasma potential that was calculated from an ambipolar ion acceleration analysis over the bulk of the axial distance where the potential drop was located is a strong confirmation of the ambipolar acceleration process.

  20. Denaturing gradient gel electrophoresis

    International Nuclear Information System (INIS)

    Kocherginskaya, S.A.; Cann, I.K.O.; Mackie, R.I.

    2005-01-01

    It is worthwhile considering that only some 30 species make up the bulk of the bacterial population in human faeces at any one time based on the classical cultivation-based approach. The situation in the rumen is similar. Thus, it is practical to focus on specific groups of interest within the complex community. These may be the predominant or the most active species, specific physiological groups or readily identifiable (genetic) clusters of phylogenetically related organisms. Several 16S rDNA fingerprinting techniques can be invaluable for selecting and monitoring sequences or phylogenetic groups of interest and are described below. Over the past few decades, considerable attention was focussed on the identification of pure cultures of microbes on the basis of genetic polymorphisms of DNA encoding rRNA such as ribotyping, amplified fragment length polymorphism and randomly amplified polymorphic DNA. However, many of these methods require prior cultivation and are less suitable for use in analysis of complex mixed populations although important in describing cultivated microbial diversity in molecular terms. Much less attention was given to molecular characterization of complex communities. In particular, research into diversity and community structure over time has been revolutionized by the advent of molecular fingerprinting techniques for complex communities. Denaturing or temperature gradient gel electrophoresis (DGGE/TGGE) methods have been successfully applied to the analysis of human, pig, cattle, dog and rodent intestinal populations

  1. Ion temperature gradient instability

    International Nuclear Information System (INIS)

    1989-01-01

    Anomalous ion thermal conductivity remains an open physics issue for the present generation of high temperature Tokamaks. It is generally believed to be due to Ion Temperature Gradient Instability (η i mode). However, it has been difficult, if not impossible to identify this instability and study the anomalous transport due to it, directly. Therefore the production and identification of the mode is pursued in the simpler and experimentally convenient configuration of the Columbia Linear Machine (CLM). CLM is a steady state machine which already has all the appropriate parameters, except η i . This parameter is being increased to the appropriate value of the order of 1 by 'feathering' a tungsten screen located between the plasma source and the experimental cell to flatten the density profile and appropriate redesign of heating antennas to steepen the ion temperature profile. Once the instability is produced and identified, a thorough study of the characteristics of the mode can be done via a wide range of variation of all the critical parameters: η i , parallel wavelength, etc

  2. A parametric study of adverse pressure gradient turbulent boundary layers

    International Nuclear Information System (INIS)

    Monty, J.P.; Harun, Z.; Marusic, I.

    2011-01-01

    There are many open questions regarding the behaviour of turbulent boundary layers subjected to pressure gradients and this is confounded by the large parameter space that may affect these flows. While there have been many valuable investigations conducted within this parameter space, there are still insufficient data to attempt to reduce this parameter space. Here, we consider a parametric study of adverse pressure gradient turbulent boundary layers where we restrict our attention to the pressure gradient parameter, β, the Reynolds number and the acceleration parameter, K. The statistics analyzed are limited to the streamwise fluctuating velocity. The data show that the mean velocity profile in strong pressure gradient boundary layers does not conform to the classical logarithmic law. Moreover, there appears to be no measurable logarithmic region in these cases. It is also found that the large-scale motions scaling with outer variables are energised by the pressure gradient. These increasingly strong large-scale motions are found to be the dominant contributor to the increase in turbulence intensity (scaled with friction velocity) with increasing pressure gradient across the boundary layer.

  3. Study of the possibility of growing germanium single crystals under low temperature gradients

    Science.gov (United States)

    Moskovskih, V. A.; Kasimkin, P. V.; Shlegel, V. N.; Vasiliev, Y. V.; Gridchin, V. A.; Podkopaev, O. I.; Zhdankov, V. N.

    2014-03-01

    The possibility of growing germanium single crystals under low temperature gradients in order to produce a dislocation-free material has been studied. Germanium crystals with a dislocation density of about 100-200 cm-2 have been grown in a system with a weight control of crystal growth at maximum axial gradients of about 1.5 K/cm.

  4. Multiperiodic accelerator structures for linear particle accelerators

    International Nuclear Information System (INIS)

    Tran, D.T.

    1975-01-01

    High efficiency linear accelerator structures, comprised of a succession of cylindrical resonant cavities for acceleration, are described. Coupling annular cavities are located at the periphery, each being coupled to two adjacent cylindrical cavities. (auth)

  5. Transverse wakefield effects in the two-beam accelerator

    International Nuclear Information System (INIS)

    Selph, F.; Sessler, A.

    1986-01-01

    Transverse wakefield effects in the high-gradient accelerating structure of the two-beam accelerator (TBA) are analyzed theoretically using three different models. The first is a very simple two-particle model, the second is for a beam with uniform charge distribution, constant betatron wavelength, and a linear wake approximation. Both of these models give analytic scaling laws. The third model has a Gaussian beam (represented by 11 superparticles), energy variation across the bunch, acceleration, variation of betatron focusing with energy, and variation of the wakefield from linearity. The three models are compared, and the third model is used to explore the wakefield effects when accelerator parameters such as energy, energy spread, injection energy, accelerating gradient, and betatron wavelength are varied. Also explored are the sensitivity of the beam to the wakefield profile to the longitudinal charge distribution. Finally, in consideration of wakefield effects, possible parameters of a TBA are presented. (orig./HSI)

  6. Beam manipulation and acceleration with Dielectric-Lined Waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Lemery, Francois [Northern Illinois Univ., DeKalb, IL (United States)

    2015-06-01

    The development of next-generation TeV+ electron accelerators will require either immense footprints based on conventional acceleraton techniques or the development of new higher{gradient acceleration methods. One possible alternative is beam-driven acceleration in a high-impedance medium such as a dielectric-lined-waveguide (DLW), where a highcharge bunch passes through a DLW and can excite gradients on the order of GV/m. An important characteristic of this acceleration class is the transformer ratio which characterizes the energy transfer of the scheme. This dissertation discusses alternative methods to improve the transformer ratio for beam-driven acceleration and also considers the use of DLWs for beam manipulation at low energy.

  7. Characterization of gradient control systems

    NARCIS (Netherlands)

    Cortés, Jorge; van der Schaft, Arjan; Crouch, Peter E.

    2005-01-01

    Given a general nonlinear affine control system with outputs and a torsion-free affine connection defined on its state space, we investigate the gradient realization problem: we give necessary and sufficient conditions under which the control system can be written as a gradient control system

  8. Characterization of Gradient Control Systems

    NARCIS (Netherlands)

    Cortés, Jorge; Schaft, Arjan van der; Crouch, Peter E.

    2005-01-01

    Given a general nonlinear affine control system with outputs and a torsion-free affine connection defined on its state space, we investigate the gradient realization problem: we give necessary and sufficient conditions under which the control system can be written as a gradient control system

  9. Sobolev gradients and differential equations

    CERN Document Server

    Neuberger, J W

    2010-01-01

    A Sobolev gradient of a real-valued functional on a Hilbert space is a gradient of that functional taken relative to an underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. For discrete versions of partial differential equations, corresponding Sobolev gradients are seen to be vastly more efficient than ordinary gradients. In fact, descent methods with these gradients generally scale linearly with the number of grid points, in sharp contrast with the use of ordinary gradients. Aside from the first edition of this work, this is the only known account of Sobolev gradients in book form. Most of the applications in this book have emerged since the first edition was published some twelve years ago. What remains of the first edition has been extensively revised. There are a number of plots of results from calculations and a sample MatLab code is included for a simple problem. Those working through a fair p...

  10. Electric field gradients in metals

    International Nuclear Information System (INIS)

    Schatz, G.

    1979-01-01

    A review of the recent works on electric field gradient in metals is given. The main emphasis is put on the temperature dependence of the electric field gradient in nonmagnetic metals. Some methods of investigation of this effect using nuclear probes are described. One of them is nuclear accoustic resonance method. (S.B.)

  11. MUON ACCELERATION WITH THE RACETRACK FFAG

    International Nuclear Information System (INIS)

    TRBOJEVIC, D.; EBERHARD, K.; SESSLER, A.

    2007-01-01

    Muon acceleration for muon collider or neutrino factory is still in a stage where further improvements are likely as a result of further study. This report presents a design of the racetrack non-scaling Fixed Field Alternating Gradient (NS-FFAG) accelerator to allow fast muon acceleration in small number of turns. The racetrack design is made of four arcs: two arcs at opposite sides have a smaller radius and are made of closely packed combined function magnets, while two additional arcs, with a very large radii, are used for muon extraction, injection, and RF accelerating cavities. The ends of the large radii arcs are geometrically matched at the connections to the arcs with smaller radii. The dispersion and both horizontal and vertical amplitude fictions are matched at the central energy

  12. 14 CFR 25.109 - Accelerate-stop distance.

    Science.gov (United States)

    2010-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Flight Performance § 25.109 Accelerate-stop distance. (a...) The maximum tire-to-ground wet runway braking coefficient of friction is defined as: ER18FE98.004 Where— Tire Pressure=maximum airplane operating tire pressure (psi); μt/gMAX=maximum tire-to-ground...

  13. Coupling and decoupling of the accelerating units for pulsed synchronous linear accelerator

    Science.gov (United States)

    Shen, Yi; Liu, Yi; Ye, Mao; Zhang, Huang; Wang, Wei; Xia, Liansheng; Wang, Zhiwen; Yang, Chao; Shi, Jinshui; Zhang, Linwen; Deng, Jianjun

    2017-12-01

    A pulsed synchronous linear accelerator (PSLA), based on the solid-state pulse forming line, photoconductive semiconductor switch, and high gradient insulator technologies, is a novel linear accelerator. During the prototype PSLA commissioning, the energy gain of proton beams was found to be much lower than expected. In this paper, the degradation of the energy gain is explained by the circuit and cavity coupling effect of the accelerating units. The coupling effects of accelerating units are studied, and the circuit topologies of these two kinds of coupling effects are presented. Two methods utilizing inductance and membrane isolations, respectively, are proposed to reduce the circuit coupling effects. The effectiveness of the membrane isolation method is also supported by simulations. The decoupling efficiency of the metal drift tube is also researched. We carried out the experiments on circuit decoupling of the multiple accelerating cavity. The result shows that both circuit decoupling methods could increase the normalized voltage.

  14. The geomagnetic field gradient tensor

    DEFF Research Database (Denmark)

    Kotsiaros, Stavros; Olsen, Nils

    2012-01-01

    We develop the general mathematical basis for space magnetic gradiometry in spherical coordinates. The magnetic gradient tensor is a second rank tensor consisting of 3 × 3 = 9 spatial derivatives. Since the geomagnetic field vector B is always solenoidal (∇ · B = 0) there are only eight independent...... tensor elements. Furthermore, in current free regions the magnetic gradient tensor becomes symmetric, further reducing the number of independent elements to five. In that case B is a Laplacian potential field and the gradient tensor can be expressed in series of spherical harmonics. We present properties...... of the magnetic gradient tensor and provide explicit expressions of its elements in terms of spherical harmonics. Finally we discuss the benefit of using gradient measurements for exploring the Earth’s magnetic field from space, in particular the advantage of the various tensor elements for a better determination...

  15. ETA-II accelerator upgrades

    International Nuclear Information System (INIS)

    Nilson, D.G.; Deadrick, F.J.; Hibbs, S.M.; Sampayan, S.E.; Petersen, D.E.

    1991-09-01

    We discuss recent improvements to the ETA-II linear induction electron accelerator. The accelerator's cells have been carefully reconditioned to raise the maximum accelerating gap voltage from approximately 100 kV to 125 kV. Insulators of Rexolite plastic in a new ''zero-gap'' arrangement replaced the alumina originals after several alternative materials were investigated. A new multi-cable current feed system will be used to eliminate pulse reflection interactions encountered in earlier experiments. Improved alignment fixtures have been installed to help minimize beam perturbation due to poorly aligned intercell magnets between 10-cell groups. A stretched wire alignment technique (SWAT) has been utilized to enhance overall magnetic alignment, and to characterize irreducible alignment errors. These changes are in conjunction with an expansion of the accelerator from a 20-cell to a 60-cell configuration. When completed, the upgraded accelerator is expected to deliver 2.5 kA of electron beam current at 7.5 MeV in bursts of up to fifty 70-ns pulses at a 5-kHz repetition rate. A 5.5-meter-long wiggler will convert the energy into 3-GW microwave pulses at 140 GHz for plasma heating experiments in the Microwave Tokamak Experiment (MTX)

  16. Accelerators of atomic particles

    International Nuclear Information System (INIS)

    Sarancev, V.

    1975-01-01

    A brief survey is presented of accelerators and methods of accelerating elementary particles. The principle of collective accelerating of elementary particles is clarified and the problems are discussed of its realization. (B.S.)

  17. High gradient lens for charged particle beam

    Science.gov (United States)

    Chen, Yu-Jiuan

    2014-04-29

    Methods and devices enable shaping of a charged particle beam. A dynamically adjustable electric lens includes a series of alternating a series of alternating layers of insulators and conductors with a hollow center. The series of alternating layers when stacked together form a high gradient insulator (HGI) tube to allow propagation of the charged particle beam through the hollow center of the HGI tube. A plurality of transmission lines are connected to a plurality of sections of the HGI tube, and one or more voltage sources are provided to supply an adjustable voltage value to each transmission line of the plurality of transmission lines. By changing the voltage values supplied to each section of the HGI tube, any desired electric field can be established across the HGI tube. This way various functionalities including focusing, defocusing, acceleration, deceleration, intensity modulation and others can be effectuated on a time varying basis.

  18. Simulation studies on high-gradient experiments

    International Nuclear Information System (INIS)

    Yamaguchi, S.

    1992-12-01

    Computer simulation of the characteristics of the dark current emitted from a 0.6 m long S-band accelerating structure has been made. The energy spectra and the dependence of the dark current on the structure length were simulated. By adjusting the secondary electron emission (SEE) coefficients, the simulated energy spectra qualitatively reproduced the observed ones. It was shown that the dark current increases exponentially with the structure length. The measured value of the multiplication factor of the dark current per unit cell can be explained if the SEE coefficient is set to 1.2. The critical gradient for dark current capture E cri has been calculated for two structures of 180 cells. They are E cri [MV/m] = 13.1 f and 8.75 f for a/λ = 0.089 and 0.16, respectively, where f is the frequency in GHz, a the iris diameter and λ the wave length

  19. Organization of lasers with particle accelerators to create new tools for frontier sciences

    International Nuclear Information System (INIS)

    Nakajima, Kazuhisa; Kando, Masaki; Kotaki, Hideyuki; Kondo, Shuji; Kanazawa, Shuhei; Masuda, Shinichi; Honma, Takayuki

    2003-01-01

    Recently great advances of ultraintense ultrashort pulse lasers have brought about tremendous experimental and theoretical progress in maturity of laser-driven particle accelerator concepts. In near future creation of new tools for frontier sciences is forseen, which will be combined and organized from ultraintense lasers and particle accelerators. Here we report research activities on the laser acceleration at JAERI - APR as well as the outlook for developments of laser-driven particle injectors, accelerators and radiation sources. Recent world-wide experiments have successfully demonstrated that the self-modulated LWFA mechanism is capable of generating ultrahigh accelerating gradient of the order of 100 GeV/m, while the maximum energy gain is limited at most to 200 MeV with energy spread of 100% because of dephasing and wavebreaking effects in plasmas. The first high energy gain acceleration 300 MeV has been opened with the injection of an electron beam at an energy matched to a wakefield phase velocity in a fairly underdense plasma by our group. Our activities on laser acceleration research have focused on the laser wakefield accelerator developments for high energy electron acceleration achieving more than 1 GeV with channel-guided scheme, and on high quality beam generation with both conventional and advanced technologies. The main task has been devoted to completion of the Laser Acceleration Test Facility (LATF) consisting of the photocathode RF gun, the 150 MeV microtron accelerator and the test beam line as well as the estimation of radiation doses produced by LATF for the radiation safety clearance. With the use of LATF, we plan to demonstrate the channel-guided LWFA in which both the driving laser pulses and particle beams can be guided through the capillary discharge plasmas with a cm-scale length. The development of the plasma waveguide is underway after the first demonstration of propagating a 2 TW, 90 fs laser pulse through a stable 2 cm plasma

  20. System for memorizing maximum values

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1992-08-01

    The invention discloses a system capable of memorizing maximum sensed values. The system includes conditioning circuitry which receives the analog output signal from a sensor transducer. The conditioning circuitry rectifies and filters the analog signal and provides an input signal to a digital driver, which may be either linear or logarithmic. The driver converts the analog signal to discrete digital values, which in turn triggers an output signal on one of a plurality of driver output lines n. The particular output lines selected is dependent on the converted digital value. A microfuse memory device connects across the driver output lines, with n segments. Each segment is associated with one driver output line, and includes a microfuse that is blown when a signal appears on the associated driver output line.

  1. Remarks on the maximum luminosity

    Science.gov (United States)

    Cardoso, Vitor; Ikeda, Taishi; Moore, Christopher J.; Yoo, Chul-Moon

    2018-04-01

    The quest for fundamental limitations on physical processes is old and venerable. Here, we investigate the maximum possible power, or luminosity, that any event can produce. We show, via full nonlinear simulations of Einstein's equations, that there exist initial conditions which give rise to arbitrarily large luminosities. However, the requirement that there is no past horizon in the spacetime seems to limit the luminosity to below the Planck value, LP=c5/G . Numerical relativity simulations of critical collapse yield the largest luminosities observed to date, ≈ 0.2 LP . We also present an analytic solution to the Einstein equations which seems to give an unboundedly large luminosity; this will guide future numerical efforts to investigate super-Planckian luminosities.

  2. Scintillation counter, maximum gamma aspect

    International Nuclear Information System (INIS)

    Thumim, A.D.

    1975-01-01

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into radiation-responsive areas. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (U.S.)

  3. Effect of temperature gradient on liquid-liquid phase separation in a polyolefin blend.

    Science.gov (United States)

    Jiang, Hua; Dou, Nannan; Fan, Guoqiang; Yang, Zhaohui; Zhang, Xiaohua

    2013-09-28

    We have investigated experimentally the structure formation processes during phase separation via spinodal decomposition above and below the spinodal line in a binary polymer blend system exposed to in-plane stationary thermal gradients using phase contrast optical microscopy and temperature gradient hot stage. Below the spinodal line there is a coupling of concentration fluctuations and thermal gradient imposed by the temperature gradient hot stage. Also under the thermal gradient annealing phase-separated domains grow faster compared with the system under homogeneous temperature annealing on a zero-gradient or a conventional hot stage. We suggest that the in-plane thermal gradient accelerates phase separation through the enhancement in concentration fluctuations in the early and intermediate stages of spinodal decomposition. In a thermal gradient field, the strength of concentration fluctuation close to the critical point (above the spinodal line) is strong enough to induce phase separation even in one-phase regime of the phase diagram. In the presence of a temperature gradient the equilibrium phase diagrams are no longer valid, and the systems with an upper critical solution temperature can be quenched into phase separation by applying the stationary temperature gradient. The in-plane temperature gradient drives enhanced concentration fluctuations in a binary polymer blend system above and below the spinodal line.

  4. Accelerated Testing Of Photothermal Degradation Of Polymers

    Science.gov (United States)

    Kim, Soon Sam; Liang, Ranty Hing; Tsay, Fun-Dow

    1989-01-01

    Electron-spin-resonance (ESR) spectroscopy and Arrhenius plots used to determine maximum safe temperature for accelerated testing of photothermal degradation of polymers. Aging accelerated by increasing illumination, temperature, or both. Results of aging tests at temperatures higher than those encountered in normal use valid as long as mechanism of degradation same throughout range of temperatures. Transition between different mechanisms at some temperature identified via transition between activation energies, manifesting itself as change in slope of Arrhenius plot at that temperature.

  5. A maximum likelihood framework for protein design

    Directory of Open Access Journals (Sweden)

    Philippe Hervé

    2006-06-01

    Full Text Available Abstract Background The aim of protein design is to predict amino-acid sequences compatible with a given target structure. Traditionally envisioned as a purely thermodynamic question, this problem can also be understood in a wider context, where additional constraints are captured by learning the sequence patterns displayed by natural proteins of known conformation. In this latter perspective, however, we still need a theoretical formalization of the question, leading to general and efficient learning methods, and allowing for the selection of fast and accurate objective functions quantifying sequence/structure compatibility. Results We propose a formulation of the protein design problem in terms of model-based statistical inference. Our framework uses the maximum likelihood principle to optimize the unknown parameters of a statistical potential, which we call an inverse potential to contrast with classical potentials used for structure prediction. We propose an implementation based on Markov chain Monte Carlo, in which the likelihood is maximized by gradient descent and is numerically estimated by thermodynamic integration. The fit of the models is evaluated by cross-validation. We apply this to a simple pairwise contact potential, supplemented with a solvent-accessibility term, and show that the resulting models have a better predictive power than currently available pairwise potentials. Furthermore, the model comparison method presented here allows one to measure the relative contribution of each component of the potential, and to choose the optimal number of accessibility classes, which turns out to be much higher than classically considered. Conclusion Altogether, this reformulation makes it possible to test a wide diversity of models, using different forms of potentials, or accounting for other factors than just the constraint of thermodynamic stability. Ultimately, such model-based statistical analyses may help to understand the forces

  6. New Pulsed Power Technology for High Current Accelerators

    International Nuclear Information System (INIS)

    Caporaso, G J

    2002-01-01

    Recent advances in solid-state modulators now permit the design of a new class of high current accelerators. These new accelerators will be able to operate in burst mode at frequencies of several MHz with unprecedented flexibility and precision in pulse format. These new modulators can drive accelerators to high average powers that far exceed those of any other technology and can be used to enable precision beam manipulations. New insulator technology combined with novel pulse forming lines and switching may enable the construction of a new type of high gradient, high current accelerator. Recent developments in these areas will be reviewed

  7. Electrostatic field distributions in the Harwell Tandem accelerator

    International Nuclear Information System (INIS)

    Read, P.M.

    1981-11-01

    The electrostatic field distributions in the Harwell Tandem accelerator have been precisely calculated using the electrostatics program FINALE. The results indicate that the accelerator which presently has an upper voltage limit of 6.5 MV has the potential to operate at 8 MV. Such an upgrade could be achieved by a modification to the high voltage terminal. Replacement of the existing accelerator tubes with accelerator tubes capable of a gradient of 1.8 MV/m would also be required. The existing stack may also require replacement. The terminal modification itself would reduce the terminal to tank breakdown frequency. (author)

  8. New generation of compact electron accelerators for radiation technologies

    International Nuclear Information System (INIS)

    Auslender, V.L.; Balakin, V.E.; Kraynov, G.S.

    1995-01-01

    Compact electron accelerators with energy range 0.25-1.0 MeV and beam power up to 32 kw are described. The feeding high voltage is formed by converter (working frequency 20 khz), coreless step-up transformer and a set of rectifying sections. The rectifying multiplier circuit used in rectifying sections permits to reach voltage gradient along accelerator's axis up to 14 kV/cm. The accelerators with vertical and horizontal position are described. The accelerators can be produced together with local radiation shielding and various underbeam transportation systems for irradiation of different products. Such version can be installed in any room facing general requirements for electric equipment

  9. Computer codes for beam dynamics analysis of cyclotronlike accelerators

    Science.gov (United States)

    Smirnov, V.

    2017-12-01

    Computer codes suitable for the study of beam dynamics in cyclotronlike (classical and isochronous cyclotrons, synchrocyclotrons, and fixed field alternating gradient) accelerators are reviewed. Computer modeling of cyclotron segments, such as the central zone, acceleration region, and extraction system is considered. The author does not claim to give a full and detailed description of the methods and algorithms used in the codes. Special attention is paid to the codes already proven and confirmed at the existing accelerating facilities. The description of the programs prepared in the worldwide known accelerator centers is provided. The basic features of the programs available to users and limitations of their applicability are described.

  10. CO2 laser technology for advanced particle accelerators

    International Nuclear Information System (INIS)

    Pogorelsky, I.V.

    1996-06-01

    Short-pulse, high-power CO 2 lasers open new prospects for development of ultra-high gradient laser-driven electron accelerators. The advantages of λ=10 μm CO 2 laser radiation over the more widely exploited solid state lasers with λ∼1 μm are based on a λ 2 -proportional ponderomotive potential, λ-proportional phase slippage, and λ-proportional scaling of the laser accelerator structures. We show how a picosecond terawatt CO 2 laser that is under construction at the Brookhaven Accelerator Test Facility may benefit the ATF's experimental program of testing far-field, near-field, and plasma accelerator schemes

  11. Progress Toward NLC/GLC Prototype Accelerator Structures

    International Nuclear Information System (INIS)

    Wang, J

    2004-01-01

    The accelerator structure groups for NLC (Next Linear Collider) and GLC (Global Linear Colliders) have successfully collaborated on the research and development of a major series of advanced accelerator structures based on room-temperature technology at X-band frequency. The progress in design, simulation, microwave measurement and high gradient tests are summarized in this paper. The recent effort in design and fabrication of the accelerator structure prototype for the main linac is presented in detail including HOM (High Order Mode) suppression and design of HOM couplers and fundamental mode couplers, optimized accelerator cavities as well as plans for future structures

  12. Permanent-magnet material applications in particle accelerators

    International Nuclear Information System (INIS)

    Kraus, R.H. Jr.

    1992-01-01

    The modern charged particle accelerator has found application in a wide range of scientific research, industrial, medical, and defense fields. Researchers began to use permanent-magnet materials in particle accelerators soon after the invention of the alternating gradient principle, which showed that magnetic field could be used to control the transverse envelope of charged particle beams. The history of permanent-magnet use in accelerator physics and technology is outlined, current design methods and material properties of concern for particle accelerator applications are reviewed

  13. CAS CERN Accelerator School: Superconductivity in particle accelerators. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Turner, S [ed.

    1996-05-01

    These proceedings present the lectures given at the ninth specialized course organized by the CERN Accelerator School (CAS), the topic this time being ``Superconductivity in Particle Accelerators``. This course is basically a repeat of that given at the same location in 1988 whose proceedings were published as CERN 89-04. However, the opportunity was taken to improve the presentation of the various topics and to introduce the latest developments in this rapidly expanding field. First the basic theory of superconductivity is introduced. A review of the materials used for sc magnetics is followed by magnet design requirements, the influence of eddy and persistent currents, and the methods used to provide quench protection. Next follows the basic theory of sc cavities, their materials, high-gradient limitations, the problem of field emission and then their power couplers. After an introduction to cryogenics and cryoplants, the theory of superfluidity is presented followed by a review of the use of superfluid helium. Finally, two seminars detail the impact of superconductors in the design of the LHC and LEP2 accelerators. (orig.).

  14. CAS CERN Accelerator School: Superconductivity in particle accelerators. Proceedings

    International Nuclear Information System (INIS)

    Turner, S.

    1996-05-01

    These proceedings present the lectures given at the ninth specialized course organized by the CERN Accelerator School (CAS), the topic this time being ''Superconductivity in Particle Accelerators''. This course is basically a repeat of that given at the same location in 1988 whose proceedings were published as CERN 89-04. However, the opportunity was taken to improve the presentation of the various topics and to introduce the latest developments in this rapidly expanding field. First the basic theory of superconductivity is introduced. A review of the materials used for sc magnetics is followed by magnet design requirements, the influence of eddy and persistent currents, and the methods used to provide quench protection. Next follows the basic theory of sc cavities, their materials, high-gradient limitations, the problem of field emission and then their power couplers. After an introduction to cryogenics and cryoplants, the theory of superfluidity is presented followed by a review of the use of superfluid helium. Finally, two seminars detail the impact of superconductors in the design of the LHC and LEP2 accelerators. (orig.)

  15. MODIFIED ARMIJO RULE ON GRADIENT DESCENT AND CONJUGATE GRADIENT

    Directory of Open Access Journals (Sweden)

    ZURAIDAH FITRIAH

    2017-10-01

    Full Text Available Armijo rule is an inexact line search method to determine step size in some descent method to solve unconstrained local optimization. Modified Armijo was introduced to increase the numerical performance of several descent algorithms that applying this method. The basic difference of Armijo and its modified are in existence of a parameter and estimating the parameter that is updated in every iteration. This article is comparing numerical solution and time of computation of gradient descent and conjugate gradient hybrid Gilbert-Nocedal (CGHGN that applying modified Armijo rule. From program implementation in Matlab 6, it's known that gradient descent was applying modified Armijo more effectively than CGHGN from one side: iteration needed to reach some norm of the gradient  (input by the user. The amount of iteration was representing how long the step size of each algorithm in each iteration. In another side, time of computation has the same conclusion.

  16. A compact high-gradient 25 MeV 17 GHz RF linac for free-electron laser research

    International Nuclear Information System (INIS)

    Danly, B.G.; Chen, S.C.; Kreischer, K.E.

    1995-01-01

    A new compact high-gradient (60 MeV/m) high-frequency (17.136 GHz) RF linac is presently under construction by Haimson Research Corp. (HRC) for installation at the MIT Plasma Fusion Center in the High-Gradient Accelerator and High Power Microwave Laboratory. This accelerator will utilize an existing traveling-wave relativistic klystron (TWRK) which is now operation at MIT with 25 MW power, 67 dB gain, and 52% efficiency at 17.136 GHz

  17. The causal relation between turbulent particle flux and density gradient

    Energy Technology Data Exchange (ETDEWEB)

    Milligen, B. Ph. van; Martín de Aguilera, A.; Hidalgo, C. [CIEMAT - Laboratorio Nacional de Fusión, Avda. Complutense 40, 28040 Madrid (Spain); Carreras, B. A. [BACV Solutions, 110 Mohawk Road, Oak Ridge, Tennessee 37830 (United States); García, L.; Nicolau, J. H. [Universidad Carlos III, 28911 Leganés, Madrid (Spain)

    2016-07-15

    A technique for detecting the causal relationship between fluctuating signals is used to investigate the relation between flux and gradient in fusion plasmas. Both a resistive pressure gradient driven turbulence model and experimental Langmuir probe data from the TJ-II stellarator are studied. It is found that the maximum influence occurs at a finite time lag (non-instantaneous response) and that quasi-periodicities exist. Furthermore, the model results show very long range radial influences, extending over most of the investigated regions, possibly related to coupling effects associated with plasma self-organization. These results clearly show that transport in fusion plasmas is not local and instantaneous, as is sometimes assumed.

  18. Combining Step Gradients and Linear Gradients in Density.

    Science.gov (United States)

    Kumar, Ashok A; Walz, Jenna A; Gonidec, Mathieu; Mace, Charles R; Whitesides, George M

    2015-06-16

    Combining aqueous multiphase systems (AMPS) and magnetic levitation (MagLev) provides a method to produce hybrid gradients in apparent density. AMPS—solutions of different polymers, salts, or surfactants that spontaneously separate into immiscible but predominantly aqueous phases—offer thermodynamically stable steps in density that can be tuned by the concentration of solutes. MagLev—the levitation of diamagnetic objects in a paramagnetic fluid within a magnetic field gradient—can be arranged to provide a near-linear gradient in effective density where the height of a levitating object above the surface of the magnet corresponds to its density; the strength of the gradient in effective density can be tuned by the choice of paramagnetic salt and its concentrations and by the strength and gradient in the magnetic field. Including paramagnetic salts (e.g., MnSO4 or MnCl2) in AMPS, and placing them in a magnetic field gradient, enables their use as media for MagLev. The potential to create large steps in density with AMPS allows separations of objects across a range of densities. The gradients produced by MagLev provide resolution over a continuous range of densities. By combining these approaches, mixtures of objects with large differences in density can be separated and analyzed simultaneously. Using MagLev to add an effective gradient in density also enables tuning the range of densities captured at an interface of an AMPS by simply changing the position of the container in the magnetic field. Further, by creating AMPS in which phases have different concentrations of paramagnetic ions, the phases can provide different resolutions in density. These results suggest that combining steps in density with gradients in density can enable new classes of separations based on density.

  19. W-band accelerator study in KEK

    International Nuclear Information System (INIS)

    Zhu Xiongwei; Nakajima, Kazuhisa

    2001-01-01

    In this paper, we summarize the W-band accelerator study in KEK. We present a design study on W-Band photocathode RF gun which is capable of generating and accelerating 300 pC electron bunch. The design system is made up of 91.392 GHz photocathode RF gun and 91.392 GHz traveling wave linac cells. Based on the numerical simulation using SUPERFISH and PARMELA and the conventional RF linac scaling law, the design will produce 300 pC at 1.74 MeV with bunch length 0.72 ps and normalized transverse emittance 0.55 mm mrad. We study the beam dynamics in high frequency and high gradient; due to the high gradient, the pondermotive effect plays an important role in beam dynamics; we found the pondermotive effect still exist with only the fundamental space harmonics (synchrotron mode) due to the coupling of the transverse and longitudinal motion

  20. Block-conjugate-gradient method

    International Nuclear Information System (INIS)

    McCarthy, J.F.

    1989-01-01

    It is shown that by using the block-conjugate-gradient method several, say s, columns of the inverse Kogut-Susskind fermion matrix can be found simultaneously, in less time than it would take to run the standard conjugate-gradient algorithm s times. The method improves in efficiency relative to the standard conjugate-gradient algorithm as the fermion mass is decreased and as the value of the coupling is pushed to its limit before the finite-size effects become important. Thus it is potentially useful for measuring propagators in large lattice-gauge-theory calculations of the particle spectrum

  1. Superconductivity in high energy particle accelerators

    International Nuclear Information System (INIS)

    Schmueser, P.

    2002-08-01

    The basics of superconductivity are outlined with special emphasis on the features which are relevant for the application in magnets and radio frequency cavities for high energy particle accelerators. The special properties of superconducting accelerator magnets are described in detail: design principles, magnetic field calculations, magnetic forces, quench performance, persistent magnetization currents and eddy currents. The design principles and basic properties of superconducting cavities are explained as well as the observed performance limitations and the countermeasures. The ongoing research efforts towards maximum accelerating fields are addressed and the coupling of radio frequency power to the particle beam is treated. (orig.)

  2. An Electron Bunch Compression Scheme for a Superconducting Radio Frequency Linear Accelerator Driven Light Source

    Energy Technology Data Exchange (ETDEWEB)

    C. Tennant, S.V. Benson, D. Douglas, P. Evtushenko, R.A. Legg

    2011-09-01

    We describe an electron bunch compression scheme suitable for use in a light source driven by a superconducting radio frequency (SRF) linac. The key feature is the use of a recirculating linac to perform the initial bunch compression. Phasing of the second pass beam through the linac is chosen to de-chirp the electron bunch prior to acceleration to the final energy in an SRF linac ('afterburner'). The final bunch compression is then done at maximum energy. This scheme has the potential to circumvent some of the most technically challenging aspects of current longitudinal matches; namely transporting a fully compressed, high peak current electron bunch through an extended SRF environment, the need for a RF harmonic linearizer and the need for a laser heater. Additional benefits include a substantial savings in capital and operational costs by efficiently using the available SRF gradient.

  3. Orsay: High-gradient experiment

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Maintaining the tradition of its contribution to the LEP Injector Linac (LIL), Orsay's Linear Accelerator Laboratory (LAL) is carrying out an R&D programme entitled 'New accelerator physics experiments at LAL' (NEPAL). The aim is to contribute to the long-term development of high energy electron-positron linear colliders, where progress can be of short-term benefit both to conventional accelerators and to injectors in rings or free-electron lasers

  4. Optimal Control of Polymer Flooding Based on Maximum Principle

    Directory of Open Access Journals (Sweden)

    Yang Lei

    2012-01-01

    Full Text Available Polymer flooding is one of the most important technologies for enhanced oil recovery (EOR. In this paper, an optimal control model of distributed parameter systems (DPSs for polymer injection strategies is established, which involves the performance index as maximum of the profit, the governing equations as the fluid flow equations of polymer flooding, and the inequality constraint as the polymer concentration limitation. To cope with the optimal control problem (OCP of this DPS, the necessary conditions for optimality are obtained through application of the calculus of variations and Pontryagin’s weak maximum principle. A gradient method is proposed for the computation of optimal injection strategies. The numerical results of an example illustrate the effectiveness of the proposed method.

  5. Development and implementation of an 84-channel matrix gradient coil.

    Science.gov (United States)

    Littin, Sebastian; Jia, Feng; Layton, Kelvin J; Kroboth, Stefan; Yu, Huijun; Hennig, Jürgen; Zaitsev, Maxim

    2018-02-01

    Design, implement, integrate, and characterize a customized coil system that allows for generating spatial encoding magnetic fields (SEMs) in a highly-flexible fashion. A gradient coil with a high number of individual elements was designed. Dimensions of the coil were chosen to mimic a whole-body gradient system, scaled down to a head insert. Mechanical shape and wire layout of each element were optimized to increase the local gradient strength while minimizing eddy current effects and simultaneously considering manufacturing constraints. Resulting wire layout and mechanical design is presented. A prototype matrix gradient coil with 12 × 7 = 84 elements consisting of two element types was realized and characterized. Measured eddy currents are gradient strengths between 24 mT∕m and 78 mT∕m could be realized locally with maximum currents of 150 A. Initial proof-of-concept imaging experiments using linear and nonlinear encoding fields are demonstrated. A shielded matrix gradient coil setup capable of generating encoding fields in a highly-flexible manner was designed and implemented. The presented setup is expected to serve as a basis for validating novel imaging techniques that rely on nonlinear spatial encoding fields. Magn Reson Med 79:1181-1191, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  6. CLIC accelerator modules under construction at CERN

    CERN Multimedia

    Anna Pantelia

    2012-01-01

    The Compact LInear Collider (CLIC) study is dedicated to the design of an electron-positron (e- e+) linear accelerator, colliding particle beams at the energy of 3 TeV. The CLIC required luminosity can be reached with powerful particle beams (14 MW each) colliding with extremely small dimensions and high beam stability at the interaction point. The accelerated particle beams must have dimensions of 45 nm in the horizontal plane and 1 nm in the vertical plane. CLIC relies upon a novel two-beam acceleration concept in which the Radio Frequency (RF) power is extracted from a low energy but high-intensity particle beam, called Drive Beam (DB), and transferred to a parallel high energy accelerating particle beam, called Main Beam (MB). The extraction and transfer of the RF power is achieved by the Power Extraction and Transfer Structures (PETS) and the particle beam acceleration is achieved with high precision RF-Accelerating Structures (AS), operating at 11.9942 GHz with an accelerating gradient of 100 MV/m, whi...

  7. A new awakening for accelerator cavities

    CERN Multimedia

    Katarina Anthony

    2013-01-01

    Imagine: an accelerator unbound by length; one that can bring a beam up to the TeV level in just a few hundred metres. Sounds like a dream? Perhaps not for long. At CERN’s Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE), physicists may soon be working to bring this contemporary fairy-tale to life.   The AWAKE experiment in the CNGS facility. Wherever you find a modern linear particle accelerator, you’ll find with it a lengthy series of RF accelerating cavities. Although based on technology first developed over half a century ago, RF cavities have dominated the accelerating world since their inception. However, new developments in plasma accelerator systems may soon be bringing a new player into the game. By harnessing the power of wakefields generated by beams in plasma cells, physicists may be able to produce accelerator gradients of many GV/m –  hundreds of times higher than those achieved in current RF cavities. “Plasma wakef...

  8. Maximum entropy and Bayesian methods

    International Nuclear Information System (INIS)

    Smith, C.R.; Erickson, G.J.; Neudorfer, P.O.

    1992-01-01

    Bayesian probability theory and Maximum Entropy methods are at the core of a new view of scientific inference. These 'new' ideas, along with the revolution in computational methods afforded by modern computers allow astronomers, electrical engineers, image processors of any type, NMR chemists and physicists, and anyone at all who has to deal with incomplete and noisy data, to take advantage of methods that, in the past, have been applied only in some areas of theoretical physics. The title workshops have been the focus of a group of researchers from many different fields, and this diversity is evident in this book. There are tutorial and theoretical papers, and applications in a very wide variety of fields. Almost any instance of dealing with incomplete and noisy data can be usefully treated by these methods, and many areas of theoretical research are being enhanced by the thoughtful application of Bayes' theorem. Contributions contained in this volume present a state-of-the-art overview that will be influential and useful for many years to come

  9. In situ acceleration in extragalactic radio jets

    International Nuclear Information System (INIS)

    Bicknell, G.V.; Melrose, D.B.

    1982-01-01

    We have examined the energy dissipated by large-scale turbulence in an extragalactic jet. The turbulence is driven by a shear instability which does not disrupt the jet. Fluid theory should be used to treat the evolution of the turbulence, and this allows us to estimate the rate of dissipation without detailed knowledge of the dissipation process. Dissipation occurs due to Fermi acceleration at a scale length approx.10 -3 R and that resonant acceleration plays no role. The Alfvenic component in the turbulent spectrum is dissipated by first being converted into magneto-acoustic waves. An alternative dissipation process due to formation of weak shocks is shown to be equivalent in some respects to Fermi acceleration. Dissipation in the thermal gas should not exceed that due to Fermi acceleration. The effect of Fermi acceleration, adiabatic losses, and radiative losses on an initial power-law distribution with an upper cutoff is studied. Radio emission extending to at least 100 GHz is shown to be possible, and no spectral index gradients are introduced by the acceleration. The upper cutoff can increase due to the acceleration alone or when the acceleration is balanced by radiative losses. The northern jet in NGC 315 is studied in detail. Using our model for the acceleration, we estimate a jet velocity > or approx. =5000 km s -1 with Mach number not much greater than 1, and a density -4 f -1 cm -3 at the turn-on of the jet at 6 cm, where 0.05 5 yr, and it is predicted that the radius of the jet at the turn-on point should vary with frequency either as ν/sup 2/3/ or as ν/sup 3/2/, or there may be no frequency dependence, contingent upon the details of the acceleration

  10. Accelerators of future generation

    International Nuclear Information System (INIS)

    Kolomenskij, A.A.

    1983-01-01

    A brief review of the prospects of development of various of types accelerator over next 10 to 15 years is given. The following directions are considered: superhign energy proton accelerators and storage rings, electron-positron colliding beams, heavy ion accelerators, medium energy, high-current proton accelerators superhigh power particle beams (electrons light- and heavy ions) for inertial fusion

  11. Future accelerator technology

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1986-05-01

    A general discussion is presented of the acceleration of particles. Upon this foundation is built a categorization scheme into which all accelerators can be placed. Special attention is devoted to accelerators which employ a wake-field mechanism and a restricting theorem is examined. It is shown how the theorem may be circumvented. Comments are made on various acceleration schemes

  12. Spatial gradient tuning in metamaterials

    Science.gov (United States)

    Driscoll, Tom; Goldflam, Michael; Jokerst, Nan; Basov, Dimitri; Smith, David

    2011-03-01

    Gradient Index (GRIN) metamaterials have been used to create devices inspired by, but often surpassing the potential of, conventional GRIN optics. The unit-cell nature of metamaterials presents the opportunity to exert much greater control over spatial gradients than is possible in natural materials. This is true not only during the design phase but also offers the potential for real-time reconfiguration of the metamaterial gradient. This ability fits nicely into the picture of transformation-optics, in which spatial gradients can enable an impressive suite of innovative devices. We discuss methods to exert control over metamaterial response, focusing on our recent demonstrations using Vanadium Dioxide. We give special attention to role of memristance and mem-capacitance observed in Vanadium Dioxide, which simplify the demands of stimuli and addressing, as well as intersecting metamaterials with the field of memory-materials.

  13. Low-gradient aortic stenosis.

    Science.gov (United States)

    Clavel, Marie-Annick; Magne, Julien; Pibarot, Philippe

    2016-09-07

    An important proportion of patients with aortic stenosis (AS) have a 'low-gradient' AS, i.e. a small aortic valve area (AVA gradient (gradient discrepancy raises uncertainty about the actual stenosis severity and thus about the indication for aortic valve replacement (AVR) if the patient has symptoms and/or left ventricular (LV) systolic dysfunction. The most frequent cause of low-gradient (LG) AS is the presence of a low LV outflow state, which may occur with reduced left ventricular ejection fraction (LVEF), i.e. classical low-flow, low-gradient (LF-LG), or preserved LVEF, i.e. paradoxical LF-LG. Furthermore, a substantial proportion of patients with AS may have a normal-flow, low-gradient (NF-LG) AS: i.e. a small AVA-low-gradient combination but with a normal flow. One of the most important clinical challenges in these three categories of patients with LG AS (classical LF-LG, paradoxical LF-LG, and NF-LG) is to differentiate a true-severe AS that generally benefits from AVR vs. a pseudo-severe AS that should be managed conservatively. A low-dose dobutamine stress echocardiography may be used for this purpose in patients with classical LF-LG AS, whereas aortic valve calcium scoring by multi-detector computed tomography is the preferred modality in those with paradoxical LF-LG or NF-LG AS. Although patients with LF-LG severe AS have worse outcomes than those with high-gradient AS following AVR, they nonetheless display an important survival benefit with this intervention. Some studies suggest that transcatheter AVR may be superior to surgical AVR in patients with LF-LG AS. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  14. Maximum entropy principal for transportation

    International Nuclear Information System (INIS)

    Bilich, F.; Da Silva, R.

    2008-01-01

    In this work we deal with modeling of the transportation phenomenon for use in the transportation planning process and policy-impact studies. The model developed is based on the dependence concept, i.e., the notion that the probability of a trip starting at origin i is dependent on the probability of a trip ending at destination j given that the factors (such as travel time, cost, etc.) which affect travel between origin i and destination j assume some specific values. The derivation of the solution of the model employs the maximum entropy principle combining a priori multinomial distribution with a trip utility concept. This model is utilized to forecast trip distributions under a variety of policy changes and scenarios. The dependence coefficients are obtained from a regression equation where the functional form is derived based on conditional probability and perception of factors from experimental psychology. The dependence coefficients encode all the information that was previously encoded in the form of constraints. In addition, the dependence coefficients encode information that cannot be expressed in the form of constraints for practical reasons, namely, computational tractability. The equivalence between the standard formulation (i.e., objective function with constraints) and the dependence formulation (i.e., without constraints) is demonstrated. The parameters of the dependence-based trip-distribution model are estimated, and the model is also validated using commercial air travel data in the U.S. In addition, policy impact analyses (such as allowance of supersonic flights inside the U.S. and user surcharge at noise-impacted airports) on air travel are performed.

  15. Some advanced accelerator projects and ideas

    International Nuclear Information System (INIS)

    Sessler, A.

    1987-01-01

    The author discusses projects and ideas represented, as follows: The motivation is to secure high gradients to reduce power to a reasonable amount, and reduce the length as a consequence of the high gradient; a promising solution is offered by a possibility of having a free electron laser in conjunction with induction units resulting in the following steps: A free electron laser (FEL) to generate high peak power (30 GHz, 10 times the frequency at SLAC, so the wave length is one centimeter instead of ten centimeters); translate this radiation to a conventional high gradient accelerator structure, a conventional linac so that it results in stability and all the positive things known about ordinary linacs; this becomes a power source; use induction units to pump up low energy beams and accelerate little bunches of 10'' electrons up to a few hundred GeV; the schematic of such a system is exemplified with a low energy beam which is a kilo-amp of tens of MeVs; between the FEL sections, energy returns with induction units; and wave guides take rf power to a conventional linac structure - a high gradient linac structure

  16. Directed transport by surface chemical potential gradients for enhancing analyte collection in nanoscale sensors.

    Science.gov (United States)

    Sitt, Amit; Hess, Henry

    2015-05-13

    Nanoscale detectors hold great promise for single molecule detection and the analysis of small volumes of dilute samples. However, the probability of an analyte reaching the nanosensor in a dilute solution is extremely low due to the sensor's small size. Here, we examine the use of a chemical potential gradient along a surface to accelerate analyte capture by nanoscale sensors. Utilizing a simple model for transport induced by surface binding energy gradients, we study the effect of the gradient on the efficiency of collecting nanoparticles and single and double stranded DNA. The results indicate that chemical potential gradients along a surface can lead to an acceleration of analyte capture by several orders of magnitude compared to direct collection from the solution. The improvement in collection is limited to a relatively narrow window of gradient slopes, and its extent strongly depends on the size of the gradient patch. Our model allows the optimization of gradient layouts and sheds light on the fundamental characteristics of chemical potential gradient induced transport.

  17. Graded/Gradient Porous Biomaterials

    Directory of Open Access Journals (Sweden)

    Xigeng Miao

    2009-12-01

    Full Text Available Biomaterials include bioceramics, biometals, biopolymers and biocomposites and they play important roles in the replacement and regeneration of human tissues. However, dense bioceramics and dense biometals pose the problem of stress shielding due to their high Young’s moduli compared to those of bones. On the other hand, porous biomaterials exhibit the potential of bone ingrowth, which will depend on porous parameters such as pore size, pore interconnectivity, and porosity. Unfortunately, a highly porous biomaterial results in poor mechanical properties. To optimise the mechanical and the biological properties, porous biomaterials with graded/gradient porosity, pores size, and/or composition have been developed. Graded/gradient porous biomaterials have many advantages over graded/gradient dense biomaterials and uniform or homogenous porous biomaterials. The internal pore surfaces of graded/gradient porous biomaterials can be modified with organic, inorganic, or biological coatings and the internal pores themselves can also be filled with biocompatible and biodegradable materials or living cells. However, graded/gradient porous biomaterials are generally more difficult to fabricate than uniform or homogenous porous biomaterials. With the development of cost-effective processing techniques, graded/gradient porous biomaterials can find wide applications in bone defect filling, implant fixation, bone replacement, drug delivery, and tissue engineering.

  18. Measurement of the temperature of density maximum of water solutions using a convective flow technique

    OpenAIRE

    Cawley, M.F.; McGlynn, D.; Mooney, P.A.

    2006-01-01

    A technique is described which yields an accurate measurement of the temperature of density maximum of fluids which exhibit such anomalous behaviour. The method relies on the detection of changes in convective flow in a rectangular cavity containing the test fluid.The normal single-cell convection which occurs in the presence of a horizontal temperature gradient changes to a double cell configuration in the vicinity of the density maximum, and this transition manifests itself in changes in th...

  19. Last Glacial Maximum Salinity Reconstruction

    Science.gov (United States)

    Homola, K.; Spivack, A. J.

    2016-12-01

    It has been previously demonstrated that salinity can be reconstructed from sediment porewater. The goal of our study is to reconstruct high precision salinity during the Last Glacial Maximum (LGM). Salinity is usually determined at high precision via conductivity, which requires a larger volume of water than can be extracted from a sediment core, or via chloride titration, which yields lower than ideal precision. It has been demonstrated for water column samples that high precision density measurements can be used to determine salinity at the precision of a conductivity measurement using the equation of state of seawater. However, water column seawater has a relatively constant composition, in contrast to porewater, where variations from standard seawater composition occur. These deviations, which affect the equation of state, must be corrected for through precise measurements of each ion's concentration and knowledge of apparent partial molar density in seawater. We have developed a density-based method for determining porewater salinity that requires only 5 mL of sample, achieving density precisions of 10-6 g/mL. We have applied this method to porewater samples extracted from long cores collected along a N-S transect across the western North Atlantic (R/V Knorr cruise KN223). Density was determined to a precision of 2.3x10-6 g/mL, which translates to salinity uncertainty of 0.002 gms/kg if the effect of differences in composition is well constrained. Concentrations of anions (Cl-, and SO4-2) and cations (Na+, Mg+, Ca+2, and K+) were measured. To correct salinities at the precision required to unravel LGM Meridional Overturning Circulation, our ion precisions must be better than 0.1% for SO4-/Cl- and Mg+/Na+, and 0.4% for Ca+/Na+, and K+/Na+. Alkalinity, pH and Dissolved Inorganic Carbon of the porewater were determined to precisions better than 4% when ratioed to Cl-, and used to calculate HCO3-, and CO3-2. Apparent partial molar densities in seawater were

  20. Maximum Parsimony on Phylogenetic networks

    Science.gov (United States)

    2012-01-01

    Background Phylogenetic networks are generalizations of phylogenetic trees, that are used to model evolutionary events in various contexts. Several different methods and criteria have been introduced for reconstructing phylogenetic trees. Maximum Parsimony is a character-based approach that infers a phylogenetic tree by minimizing the total number of evolutionary steps required to explain a given set of data assigned on the leaves. Exact solutions for optimizing parsimony scores on phylogenetic trees have been introduced in the past. Results In this paper, we define the parsimony score on networks as the sum of the substitution costs along all the edges of the network; and show that certain well-known algorithms that calculate the optimum parsimony score on trees, such as Sankoff and Fitch algorithms extend naturally for networks, barring conflicting assignments at the reticulate vertices. We provide heuristics for finding the optimum parsimony scores on networks. Our algorithms can be applied for any cost matrix that may contain unequal substitution costs of transforming between different characters along different edges of the network. We analyzed this for experimental data on 10 leaves or fewer with at most 2 reticulations and found that for almost all networks, the bounds returned by the heuristics matched with the exhaustively determined optimum parsimony scores. Conclusion The parsimony score we define here does not directly reflect the cost of the best tree in the network that displays the evolution of the character. However, when searching for the most parsimonious network that describes a collection of characters, it becomes necessary to add additional cost considerations to prefer simpler structures, such as trees over networks. The parsimony score on a network that we describe here takes into account the substitution costs along the additional edges incident on each reticulate vertex, in addition to the substitution costs along the other edges which are

  1. JAC, 2-D Finite Element Method Program for Quasi Static Mechanics Problems by Nonlinear Conjugate Gradient (CG) Method

    International Nuclear Information System (INIS)

    Biffle, J.H.

    1991-01-01

    1 - Description of program or function: JAC is a two-dimensional finite element program for solving large deformation, temperature dependent, quasi-static mechanics problems with the nonlinear conjugate gradient (CG) technique. Either plane strain or axisymmetric geometry may be used with material descriptions which include temperature dependent elastic-plastic, temperature dependent secondary creep, and isothermal soil models. The nonlinear effects examined include material and geometric nonlinearities due to large rotations, large strains, and surface which slide relative to one another. JAC is vectorized to perform efficiently on the Cray1 computer. A restart capability is included. 2 - Method of solution: The nonlinear conjugate gradient method is employed in a two-dimensional plane strain or axisymmetric setting with various techniques for accelerating convergence. Sliding interface conditions are also implemented. A four-node Lagrangian uniform strain element is used with orthogonal hourglass viscosity to control the zero energy modes. Three sets of continuum equations are needed - kinematic statements, constitutive equations, and equations of equilibrium - to describe the deformed configuration of the body. 3 - Restrictions on the complexity of the problem - Maxima of: 10 load and solution control functions, 4 materials. The strain rate is assumed constant over a time interval. Current large rotation theory is applicable to a maximum shear strain of 1.0. JAC should be used with caution for large shear strains. Problem size is limited only by available memory

  2. Acceleration of runaway electrons and Joule heating in solar flares

    Science.gov (United States)

    Holman, G. D.

    1985-01-01

    The electric field acceleration of electrons out of a thermal plasma and the simultaneous Joule heating of the plasma are studied. Acceleration and heating timescales are derived and compared, and upper limits are obtained on the acceleration volume and the rate at which electrons can be accelerated. These upper limits, determined by the maximum magnetic field strength observed in flaring regions, place stringent restrictions upon the acceleration process. The role of the plasma resistivity in these processes is examined, and possible sources of anomalous resistivity are summarized. The implications of these results for the microwave and hard X-ray emission from solar flares are examined.

  3. Experimental demonstration of dielectric structure based two beam acceleration

    International Nuclear Information System (INIS)

    Gai, W.; Conde, M. E.; Konecny, R.; Power, J. G.; Schoessow, P.; Sun, X.; Zou, P.

    2000-01-01

    We report on the experimental results of the dielectric based two beam accelerator (step-up transformer). By using a single high charge beam, we have generated and extracted a high power RF pulse from a 7.8 GHz primary dielectric structure and then subsequently transferred to a second accelerating structure with higher dielectric constant and smaller transverse dimensions. We have measured the energy change of a second (witness) beam passing through the acceleration stage. The measured gradient is >4 times the deceleration gradient. The detailed experiment of set-up and results of the measurements are dimmed. Future plans for the development of a 100 MeV demonstration accelerator based on this technique is presented

  4. High Field Studies for CLIC Accelerating Structures Development

    CERN Document Server

    Profatilova, I

    2017-01-01

    Compact Linear Collider RF structures need to be able to achieve the very high average accelerating gradient of 100 MV/m. One of the main challenges in reaching such high accelerating gradients is to avoid vacuum electrical breakdown within CLIC accelerating structures. Accelerating structure tests are carried out in the klystron-based test stands known as the XBoxes. In order to investigate vacuum breakdown phenomena and its statistical characteristics in a simpler system and get results in a faster way, pulsed dc systems have been developed at CERN. To acquire sufficient breakdown data in a reasonable period of time, high repetition rate pulse generators are used in the systems for breakdown studies, so-called pulsed dc system. This paper describes the pulsed dc systems and the two high repetition rate circuits, which produce high-voltage pulses for it, available at CERN.

  5. NLC. A test accelerator for the next linear collider

    International Nuclear Information System (INIS)

    Ruth, R.D.; Adolphsen, C.; Bane, K.; Boyce, R.F.; Burke, D.L.; Callin, R.; Caryotakis, G.; Cassel, R.; Clark, S.L.; Deruyter, H.; Fant, K.; Fuller, R.; Heifets, S.; Hoag, H.; Humphrey, R.; Kheifets, S.; Koontz, R.; Kroll, N.M.; Lavine, T.; Loew, G.A.; Menegat, A.; Miller, R.H.; Nantista, C.; Paterson, J.M.; Pearson, C.; Phillips, R.; Rifkin, J.; Spencer, J.; Tantawi, S.; Thompson, K.A.; Vlieks, A.; Vylet, V.; Wang, J.W.; Wilson, P.B.; Yeremian, A.; Youngman, B.

    1993-01-01

    At SLAC, we are pursuing the design of a Next Linear Collider (NLC) which would begin with a center-of-mass energy of 0.5 TeV, and be upgradable to at least 1.0 TeV. To achieve this high energy, we have been working on the development of a high-gradient 11.4-GHz (X-band) linear accelerator for the main linac of the collider. In this paper, we present the design of a 'Next Linear Collider Test Accelerator' (NLCTA). The goal of the NLCTA is to incorporate the new technologies of X-band accelerator structures, RF pulse compression systems and klystrons into a short linac which will then be a test bed for beam dynamics issues related to high-gradient acceleration. (orig.)

  6. Experimental demonstration of dielectric structure based two beam acceleration.

    Energy Technology Data Exchange (ETDEWEB)

    Gai, W.; Conde, M. E.; Konecny, R.; Power, J. G.; Schoessow, P.; Sun, X.; Zou, P.

    2000-11-28

    We report on the experimental results of the dielectric based two beam accelerator (step-up transformer). By using a single high charge beam, we have generated and extracted a high power RF pulse from a 7.8 GHz primary dielectric structure and then subsequently transferred to a second accelerating structure with higher dielectric constant and smaller transverse dimensions. We have measured the energy change of a second (witness) beam passing through the acceleration stage. The measured gradient is >4 times the deceleration gradient. The detailed experiment of set-up and results of the measurements are dimmed. Future plans for the development of a 100 MeV demonstration accelerator based on this technique is presented.

  7. Imaging the Buried Chicxulub Crater with Gravity Gradients and Cenotes

    Science.gov (United States)

    Hildebrand, A. R.; Pilkington, M.; Halpenny, J. F.; Ortiz-Aleman, C.; Chavez, R. E.; Urrutia-Fucugauchi, J.; Connors, M.; Graniel-Castro, E.; Camara-Zi, A.; Vasquez, J.

    1995-09-01

    the other terrestrial planets. A modeled fault of 1.5 km displacement (slightly slumped block exterior and impact breccia interior) reproduces the steepest gradient feature. This model is incompatible with models that place these gradient features inside the collapsed transient cavity. Locations of the karst features of the northern Yucatan region were digitized from 1:50,000 topographic maps, which show most but not all the water-filled sinkholes (locally known as cenotes). A prominent ring of cenotes is visible over the crater that is spatially correlated to the outer steep gravity gradient feature. The mapped cenotes constitute an unbiased sampling of the region's karst surface features of >50 m diameter. The gradient maximum and the cenote ring both meander with amplitudes of up to 2 km. The wiggles in the gradient feature and the cenote distribution probably correspond to the "scalloping" observed at the headwall of terraces in large complex craters. A second partial cenote ring exterior to the southwest side of the main ring corresponds to a less-prominent gravity gradient feature. No concentric structure is observable in the distribution of karst features at radii >90 km. The cenote ring is bounded by the outer peripheral steep gradient feature and must be related to it; the slump faults must have been reactivated sufficiently to create fracturing in the overlying and much younger sediment. Long term subsidence, as found at other terrestrial craters is a possible mechanism for the reactivation. Such long term subsidence may be caused by differential compaction or thermal relaxation. Elevations acquired during gravity surveys show that the cenote ring also corresponds to a topographic low along some of its length that probably reflects preferential erosion.

  8. ELECTROMAGNETIC SIMULATIONS OF LINEAR PROTON ACCELERATOR STRUCTURES USING DIELECTRIC WALL ACCELERATORS

    International Nuclear Information System (INIS)

    Nelson, S; Poole, B; Caporaso, G

    2007-01-01

    Proton accelerator structures for medical applications using Dielectric Wall Accelerator (DWA) technology allow for the utilization of high electric field gradients on the order of 100 MV/m to accelerate the proton bunch. Medical applications involving cancer therapy treatment usually desire short bunch lengths on the order of hundreds of picoseconds in order to limit the extent of the energy deposited in the tumor site (in 3D space, time, and deposited proton charge). Electromagnetic simulations of the DWA structure, in combination with injections of proton bunches have been performed using 3D finite difference codes in combination with particle pushing codes. Electromagnetic simulations of DWA structures includes these effects and also include the details of the switch configuration and how that switch time affects the electric field pulse which accelerates the particle beam

  9. Muon Acceleration: Neutrino Factory and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Bogacz, Alex [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2018-03-01

    We summarize the current state of a concept for muon acceleration aimed at a future Neutrino Factory and extendable to Higgs Factory. The main thrust of these studies was to reduce the overall cost while maintaining performance by exploring the interplay between the complexity of the cooling systems and the acceptance of the accelerator complex. To ensure adequate survival for the short-lived muons, acceleration must occur at high average gradient. The need for large transverse and longitudinal acceptances drives the design of the acceleration system to an initially low RF frequency, e.g., 325 MHz, which is then increased to 650 MHz as the transverse size shrinks with increasing energy. High-gradient normal conducting RF cavities at these frequencies require extremely high peak-power RF sources. Hence superconducting RF (SRF) cavities are chosen. We consider an SRF-efficient design based on a multi-pass (4.5) ?dogbone? RLA, extendable to multi-pass FFAG-like arcs.

  10. Latitudinal gradients in ecosystem engineering by oysters vary across habitats.

    Science.gov (United States)

    McAfee, Dominic; Cole, Victoria J; Bishop, Melanie J

    2016-04-01

    Ecological theory predicts that positive interactions among organisms will increase across gradients of increasing abiotic stress or consumer pressure. This theory has been supported by empirical studies examining the magnitude of ecosystem engineering across environmental gradients and between habitat settings at local scale. Predictions that habitat setting, by modifying both biotic and abiotic factors, will determine large-scale gradients in ecosystem engineering have not been tested, however. A combination of manipulative experiments and field surveys assessed whether along the east Australian coastline: (1) facilitation of invertebrates by the oyster Saccostrea glomerata increased across a latitudinal gradient in temperature; and (2) the magnitude of this effect varied between intertidal rocky shores and mangrove forests. It was expected that on rocky shores, where oysters are the primary ecosystem engineer, they would play a greater role in ameliorating latitudinal gradients in temperature than in mangroves, where they are a secondary ecosystem engineer living under the mangrove canopy. On rocky shores, the enhancement of invertebrate abundance in oysters as compared to bare microhabitat decreased with latitude, as the maximum temperatures experienced by intertidal organisms diminished. By contrast, in mangrove forests, where the mangrove canopy resulted in maximum temperatures that were cooler and of greater humidity than on rocky shores, we found no evidence of latitudinal gradients of oyster effects on invertebrate abundance. Contrary to predictions, the magnitude by which oysters enhanced biodiversity was in many instances similar between mangroves and rocky shores. Whether habitat-context modifies patterns of spatial variation in the effects of ecosystem engineers on community structure will depend, in part, on the extent to which the environmental amelioration provided by an ecosystem engineer replicates that of other co-occurring ecosystem engineers.

  11. Low-β acceleration with a MEQALAC

    International Nuclear Information System (INIS)

    van Amersfoort, P.W.; Siebenlist, F.; Thomae, R.W.; Woljke, R.; Schonewille, F.G.; Ivanov, S.T.; Klein, H.; Schempp, A.; Weis, T.

    1986-01-01

    In a Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) a number of parallel beams is accelerated simultaneously. This devise is useful for exit energies up to 1 MeV per nucleon. Radial stability is provided by electrostatic quadrupole lenses placed between successive acceleration gaps. The proof-of-principle MEQALAC presently available at FOM features four He + ion beams which are accelerated to an energy of 120 keV. The resonator cavity has a modified Interdigital-H-structure and contains 20 acceleration gaps. Its resonance frequency is 40 MHz. Transmission measurements on injected beams with currents ranging from 1 to 15 mA are presented. The transverse phase advance per cell of the quadrupole channels is varied between 43 0 and 114 0 . A maximum current of 2.2 mA per channel has been accelerated. A design for a MEQALAC which will be used for acceleration of N + ions to 1 MeV is presented. This accelerator will be operated at various frequencies to allow for a variation of the exit energy

  12. Thermal and structural analysis of the LBL 10 x 40 cm long pulse accelerator and the 12 x 48 cm common long pulse accelerator for TFTR, doublet III-D, and MFTF-B

    International Nuclear Information System (INIS)

    Wells, R.P.

    1985-11-01

    Stress and deflection of the grid rails of the existing, Lawrence Berkeley Laboratory (LBL) designed, 10 x 40 cm Long Pulse (neutral beam) Accelerator (40LPA) and the expanded 12 x 48 cm version, Common Long Pulse Source (CLPS), have been computed for a series of assumed heat load distributions. The combined stress from self-constraint of thermal expansion and rail holder reaction forces has been calculated. A simplification of the gradient grid rail holder was analyzed and was found to work as well or better than the original 40LPA design under the most probable operating conditions. Heat flux non-uniformity over the rail surface for both accelerator designs was estimated from 40LPA grid calorimetry data for arc and beam extraction operation. The extrapolated total heat load per rail for the CLPS was less than the 1.2 kW value used in this analysis. Under worst case assumptions, the maximum equivalent stress in any of the molybdenum grid rails was less than 20% of yield. For the anticipated heat load distribution on the gradient grid, the predicted deflection of the grid rail meets the 0.0457 mm position tolerance except under extremely non-uniform heat loads

  13. Thermal and structural analysis of the LBL 10 x 40 cm Long Pulse Accelerator and the 12 x 48 cm Common Long Pulse Accelerator for TFTR, Doublet III-D, and MFTF-B

    International Nuclear Information System (INIS)

    Wells, R.P.

    1986-01-01

    Stress and deflection of the grid rails of the existing, Lawrence Berkeley Laboratory (LBL) designed, 10 x 40 cm Long Pulse (neutral beam) Accelerator (40LPA) and the expanded 12 x 48 cm version, Common Long Pulse Source (CLPS), have been computed for a series of assumed heat load distributions. The combined stress from self-constraint of thermal expansion and rail holder reaction forces has been calculated. A simplification of the gradient grid rail holder was analyzed and was found to work as well or better than the original 40LPA design under the most probable operating conditions. Heat flux non-uniformity over the rail surface for both accelerator designs was estimated from 40LPA grid calorimetry data for arc and beam extraction operation. The extrapolated total heat load per rail for the CLPS was less than the 1.2 kW value used in this analysis. Under worst case assumptions, the maximum equivalent stress in any of the molybdenum grid rails was less than 20% of yield. For the anticipated heat load distribution on the gradient grid, the predicted deflection of the grid rail meets the 0.0457 mm position tolerant except under extremely non-uniform heat loads

  14. Maximum discharge rate of liquid-vapor mixtures from vessels

    International Nuclear Information System (INIS)

    Moody, F.J.

    1975-09-01

    A discrepancy exists in theoretical predictions of the two-phase equilibrium discharge rate from pipes attached to vessels. Theory which predicts critical flow data in terms of pipe exit pressure and quality severely overpredicts flow rates in terms of vessel fluid properties. This study shows that the discrepancy is explained by the flow pattern. Due to decompression and flashing as fluid accelerates into the pipe entrance, the maximum discharge rate from a vessel is limited by choking of a homogeneous bubbly mixture. The mixture tends toward a slip flow pattern as it travels through the pipe, finally reaching a different choked condition at the pipe exit

  15. Linear induction accelerators for fusion and neutron production

    International Nuclear Information System (INIS)

    Barletta, W.A.; California Univ., Los Angeles, CA

    1993-08-01

    Linear induction accelerators (LIA) with pulsed power drives can produce high energy, intense beams or electrons, protons, or heavy ions with megawatts of average power. The continuing development of highly reliable LIA components permits the use such accelerators as cost-effective beam sources to drive fusion pellets with heavy ions, to produce intense neutron fluxes using proton beams, and to generate with electrons microwave power to drive magnetic fusion reactors and high gradient, rf-linacs

  16. High frequency single mode traveling wave structure for particle acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Ivanyan, M.I.; Danielyan, V.A.; Grigoryan, B.A.; Grigoryan, A.H. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Tsakanian, A.V. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Technische Universität Darmstadt, Institut TEMF, 64289 Darmstadt (Germany); Tsakanov, V.M., E-mail: tsakanov@asls.candle.am [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia); Vardanyan, A.S.; Zakaryan, S.V. [CANDLE Synchrotron Research Institute, 0040 Yerevan (Armenia)

    2016-09-01

    The development of the new high frequency slow traveling wave structures is one of the promising directions in accomplishment of charged particles high acceleration gradient. The disc and dielectric loaded structures are the most known structures with slowly propagating modes. In this paper a large aperture high frequency metallic two-layer accelerating structure is studied. The electrodynamical properties of the slowly propagating TM{sub 01} mode in a metallic tube with internally coated low conductive thin layer are examined.

  17. CHEBYSHEV ACCELERATION TECHNIQUE FOR SOLVING FUZZY LINEAR SYSTEM

    Directory of Open Access Journals (Sweden)

    S.H. Nasseri

    2011-07-01

    Full Text Available In this paper, Chebyshev acceleration technique is used to solve the fuzzy linear system (FLS. This method is discussed in details and followed by summary of some other acceleration techniques. Moreover, we show that in some situations that the methods such as Jacobi, Gauss-Sidel, SOR and conjugate gradient is divergent, our proposed method is applicable and the acquired results are illustrated by some numerical examples.

  18. CHEBYSHEV ACCELERATION TECHNIQUE FOR SOLVING FUZZY LINEAR SYSTEM

    Directory of Open Access Journals (Sweden)

    S.H. Nasseri

    2009-10-01

    Full Text Available In this paper, Chebyshev acceleration technique is used to solve the fuzzy linear system (FLS. This method is discussed in details and followed by summary of some other acceleration techniques. Moreover, we show that in some situations that the methods such as Jacobi, Gauss-Sidel, SOR and conjugate gradient is divergent, our proposed method is applicable and the acquired results are illustrated by some numerical examples.

  19. Staging laser plasma accelerators for increased beam energy

    International Nuclear Information System (INIS)

    Panasenko, Dmitriy; Shu, Anthony; Schroeder, Carl; Gonsalves, Anthony; Nakamura, Kei; Matlis, Nicholas; Cormier-Michel, Estelle; Plateau, Guillaume; Lin, Chen; Toth, Csaba; Geddes, Cameron; Esarey, Eric; Leemans, Wim

    2008-01-01

    Staging laser plasma accelerators is an efficient way of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energies with compact laser systems. The concept of staging includes coupling of additional laser energy and transporting the electron beam from one accelerating module to another. Due to laser damage threshold constraints, in-coupling laser energy with conventional optics requires distances between the accelerating modules of the order of 10m, resulting in decreased average accelerating gradient and complicated e-beam transport. In this paper we use basic scaling laws to show that the total length of future laser plasma accelerators will be determined by staging technology. We also propose using a liquid jet plasma mirror for in-coupling the laser beam and show that it has the potential to reduce distance between stages to the cm-scale.

  20. Awakening the potential of plasma acceleration

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    Civil engineering has begun for the new AWAKE experiment, which looks to push the boundaries of particle acceleration. This proof-of-principle experiment will harness the power of wakefields generated by proton beams in plasma cells, producing accelerator gradients hundreds of times higher than those used in current RF cavities.   Civil engineering works are currently ongoing at the AWAKE facility. As one of CERN's accelerator R&D experiments, the AWAKE project is rather unique. Like all of CERN's experiments, AWAKE is a collaborative endeavour with institutes and organisations participating around the world. "But unlike fixed-target experiments, where the users take over once CERN has delivered the facility, in AWAKE, the synchronised proton, electron and laser beams provided by CERN are an integral part of the experiment," explains Edda Gschwendtner, CERN AWAKE project leader. "So, of course, CERN's involvement in the project goes well...

  1. Rapid Gradient-Echo Imaging

    Science.gov (United States)

    Hargreaves, Brian

    2012-01-01

    Gradient echo sequences are widely used in magnetic resonance imaging (MRI) for numerous applications ranging from angiography to perfusion to functional MRI. Compared with spin-echo techniques, the very short repetition times of gradient-echo methods enable very rapid 2D and 3D imaging, but also lead to complicated “steady states.” Signal and contrast behavior can be described graphically and mathematically, and depends strongly on the type of spoiling: fully balanced (no spoiling), gradient spoiling, or RF-spoiling. These spoiling options trade off between high signal and pure T1 contrast while the flip angle also affects image contrast in all cases, both of which can be demonstrated theoretically and in image examples. As with spin-echo sequences, magnetization preparation can be added to gradient-echo sequences to alter image contrast. Gradient echo sequences are widely used for numerous applications such as 3D perfusion imaging, functional MRI, cardiac imaging and MR angiography. PMID:23097185

  2. The influence of ALN-Al gradient material gradient index on ballistic performance

    International Nuclear Information System (INIS)

    Wang Youcong; Liu Qiwen; Li Yao; Shen Qiang

    2013-01-01

    Ballistic performance of the gradient material is superior to laminated material, and gradient materials have different gradient types. Using ls-dyna to simulate the ballistic performance of ALN-AL gradient target plates which contain three gradient index (b = 1, b = 0.5, b = 2). Through Hopkinson bar numerical simulation to the target plate materials, we obtained the reflection stress wave and transmission stress wave state of gradient material to get the best gradient index. The internal stress state of gradient material is simulated by amplification processing of the target plate model. When the gradient index b is equal to 1, the gradient target plate is best of all.

  3. Evaluation of differences between dual salt-pH gradient elution and mono gradient elution using a thermodynamic model: Simultaneous separation of six monoclonal antibody charge and size variants on preparative-scale ion exchange chromatographic resin.

    Science.gov (United States)

    Lee, Yi Feng; Jöhnck, Matthias; Frech, Christian

    2018-02-21

    The efficiencies of mono gradient elution and dual salt-pH gradient elution for separation of six mAb charge and size variants on a preparative-scale ion exchange chromatographic resin are compared in this study. Results showed that opposite dual salt-pH gradient elution with increasing pH gradient and simultaneously decreasing salt gradient is best suited for the separation of these mAb charge and size variants on Eshmuno ® CPX. Besides giving high binding capacity, this type of opposite dual salt-pH gradient also provides better resolved mAb variant peaks and lower conductivity in the elution pools compared to single pH or salt gradients. To have a mechanistic understanding of the differences in mAb variants retention behaviors of mono pH gradient, parallel dual salt-pH gradient, and opposite dual salt-pH gradient, a linear gradient elution model was used. After determining the model parameters using the linear gradient elution model, 2D plots were used to show the pH and salt dependencies of the reciprocals of distribution coefficient, equilibrium constant, and effective ionic capacity of the mAb variants in these gradient elution systems. Comparison of the 2D plots indicated that the advantage of opposite dual salt-pH gradient system with increasing pH gradient and simultaneously decreasing salt gradient is the noncontinuous increased acceleration of protein migration. Furthermore, the fitted model parameters can be used for the prediction and optimization of mAb variants separation in dual salt-pH gradient and step elution. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  4. Overview of The Pulse Line Ion Accelerator

    International Nuclear Information System (INIS)

    Briggs, R.J.; Bieniosek, F.M.; Coleman, J.E.; Eylon, S.; Henestroza, E.; Leitner, M.; Logan, B.G.; Reginato, L.L.; Roy, P.K.; Seidl, P.A.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Caporaso, G.J.; Friedman, A.; Grote, D.P.; Nelson, S.D.

    2006-01-01

    An overview of the Pulse Line Ion Accelerator (PLIA) concept and its development is presented. In the PLIA concept a pulse power driver applied to one end of a helical pulse line creates a traveling wave pulse that accelerates and axially confines a heavy ion beam pulse The motivation for its development at the IFE-VNL is the acceleration of intense, short pulse, heavy ion beams to regimes of interest for studies of High Energy Density Physics and Warm Dense Matter. Acceleration scenarios with constant parameter helical lines are described which result in output energies of a single stage much larger than the several hundred kilovolt peak voltages on the line, with a goal of 3-5 MeV/meter acceleration gradients. The main attraction of the concept is the very low cost it promises. It might be described crudely as an ''air core'' induction linac where the pulse-forming network is integrated into the beam line so the accelerating voltage pulse can move along with the ions to get voltage multiplication

  5. Laser technologies for laser accelerators. Annual report

    International Nuclear Information System (INIS)

    1985-01-01

    The primary result of the work reported is the determination of laser system architectures that satsify the requirements of high luminosity, high energy (about 1 TeV), electron accelerators. It has been found that high laser efficiency is a very hard driver for these accelerators as the total average laser output optical power is likely to fall above 10 MW. The luminosity requires rep rates in the kHz range, and individual pulse lengths in the 1-10 psec range are required to satisfy acceleration gradient goals. CO 2 and KrF lasers were chosen for study because of their potential to simultaneously satisfy the given requirements. Accelerator luminosity is reviewed, and requirements on laser system average power and rep rate are determined as a function of electron beam bunch parameters. Laser technologies are reviewed, including CO 2 , excimers, solid state, and free electron lasers. The proposed accelerator mechanisms are summarized briefly. Work on optical transport geometries for near and far field accelerators are presented. Possible exploitation of the CO 2 and DrF laser technology to generate the required pulse lengths, rep rates, and projected efficiencies is illustrated and needed development work is suggested. Initial efforts at developing a 50 GeV benchmark conceptual design and a 100 MeV demonstration experiment conceptual design are presented

  6. Enhancing proton acceleration by using composite targets

    Energy Technology Data Exchange (ETDEWEB)

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Pegoraro, F.; Leemans, W. P.

    2015-07-10

    Efficient laser ion acceleration requires high laser intensities, which can only be obtained by tightly focusing laser radiation. In the radiation pressure acceleration regime, where the tightly focused laser driver leads to the appearance of the fundamental limit for the maximum attainable ion energy, this limit corresponds to the laser pulse group velocity as well as to another limit connected with the transverse expansion of the accelerated foil and consequent onset of the foil transparency. These limits can be relaxed by using composite targets, consisting of a thin foil followed by a near critical density slab. Such targets provide guiding of a laser pulse inside a self-generated channel and background electrons, being snowplowed by the pulse, compensate for the transverse expansion. The use of composite targets results in a significant increase in maximum ion energy, compared to a single foil target case.

  7. 2014 CERN Accelerator Schools: Plasma Wake Acceleration

    CERN Multimedia

    2014-01-01

    A specialised school on Plasma Wake Acceleration will be held at CERN, Switzerland from 23-29 November, 2014.   This course will be of interest to staff and students in accelerator laboratories, university departments and companies working in or having an interest in the field of new acceleration techniques. Following introductory lectures on plasma and laser physics, the course will cover the different components of a plasma wake accelerator and plasma beam systems. An overview of the experimental studies, diagnostic tools and state of the art wake acceleration facilities, both present and planned, will complement the theoretical part. Topical seminars and a visit of CERN will complete the programme. Further information can be found at: http://cas.web.cern.ch/cas/PlasmaWake2014/CERN-advert.html http://indico.cern.ch/event/285444/

  8. Gadolinium burnable absorber optimization by the method of conjugate gradients

    International Nuclear Information System (INIS)

    Drumm, C.R.; Lee, J.C.

    1987-01-01

    The optimal axial distribution of gadolinium burnable poison in a pressurized water reactor is determined to yield an improved power distribution. The optimization scheme is based on Pontryagin's maximum principle, with the objective function accounting for a target power distribution. The conjugate gradients optimization method is used to solve the resulting Euler-Lagrange equations iteratively, efficiently handling the high degree of nonlinearity of the problem

  9. Design of the Zero Gradient Synchrotron Booster-II lattice

    International Nuclear Information System (INIS)

    Crosbie, E.A.; Foss, M.H.; Khoe, T.K.; Simpson, J.D.

    1975-01-01

    A 500 MeV booster was designed at the Argonne National Laboratory to increase the beam intensity from the Zero Gradient Synchrotron (ZGS). Many turns of H - ions from the 50 MeV linac will be injected into the booster and stripped to H + so that the ring will contain the maximum useful charge in each booster pulse. Several booster pulses will be injected into the ZGS to form one ZGS pulse. This machine is now under construction. (auth)

  10. CLIC crab cavity design optimisation for maximum luminosity

    Energy Technology Data Exchange (ETDEWEB)

    Dexter, A.C., E-mail: a.dexter@lancaster.ac.uk [Lancaster University, Lancaster, LA1 4YR (United Kingdom); Cockcroft Institute, Daresbury, Warrington, WA4 4AD (United Kingdom); Burt, G.; Ambattu, P.K. [Lancaster University, Lancaster, LA1 4YR (United Kingdom); Cockcroft Institute, Daresbury, Warrington, WA4 4AD (United Kingdom); Dolgashev, V. [SLAC, Menlo Park, CA 94025 (United States); Jones, R. [University of Manchester, Manchester, M13 9PL (United Kingdom)

    2011-11-21

    The bunch size and crossing angle planned for CERN's compact linear collider CLIC dictate that crab cavities on opposing linacs will be needed to rotate bunches of particles into alignment at the interaction point if the desired luminosity is to be achieved. Wakefield effects, RF phase errors between crab cavities on opposing linacs and unpredictable beam loading can each act to reduce luminosity below that anticipated for bunches colliding in perfect alignment. Unlike acceleration cavities, which are normally optimised for gradient, crab cavities must be optimised primarily for luminosity. Accepting the crab cavity technology choice of a 12 GHz, normal conducting, travelling wave structure as explained in the text, this paper develops an analytical approach to optimise cell number and iris diameter.

  11. Two-dimensional maximum entropy image restoration

    International Nuclear Information System (INIS)

    Brolley, J.E.; Lazarus, R.B.; Suydam, B.R.; Trussell, H.J.

    1977-07-01

    An optical check problem was constructed to test P LOG P maximum entropy restoration of an extremely distorted image. Useful recovery of the original image was obtained. Comparison with maximum a posteriori restoration is made. 7 figures

  12. Performance of the Fitch generator in a nanosecond electron accelerator

    International Nuclear Information System (INIS)

    Chernyj, V.V.

    1976-01-01

    The operation of the Fitch generator in the nanosecond electron accelerator is discussed. The operating principle of the generator is based on the inversion of the voltage at the storage capacitances. Only one discharger is employed in the discharge circuit of the generator which provides for decreasing the generator impedance to 24 Ohms. The maximum accelerating voltage equals 0.6 MV

  13. Other people's accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-06-15

    The first report from the Washington Accelerator Conference concentrated on news from the particle physics centres. But the bulk of the Conference covered the use of accelerators in other fields, underlining this valuable spinoff from particle physics.

  14. Improved plasma accelerator

    Science.gov (United States)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  15. The electron accelerator Ridgetron

    International Nuclear Information System (INIS)

    Hayashizaki, N.; Hattori, T.; Odera, M.; Fujisawa, T.

    1999-01-01

    Many electron accelerators of DC or RF type have been widely used for electron beam irradiation (curing, crosslinking of polymers, sterilization of medical disposables, preservation of food, etc.). Regardless of the acceleration energy, the accelerators to be installed in industrial facilities, have to satisfy the requires of compact size, low power consumption and stable operation. The DC accelerator is realized very compact in the energy under 300 keV, however, it is large to prevent the discharge of an acceleration column in the energy over 300 keV. The RF electron accelerator Ridgetron has been developed to accelerate the continuous beam of the 0.5-10 MeV range in compact space. It is the first example as an electron accelerator incorporated a ridged RF cavity. A prototype system of final energy of 2.5 MeV has been studied to confirm the feasibility at present

  16. High brightness electron accelerator

    International Nuclear Information System (INIS)

    Sheffield, R.L.; Carlsten, B.E.; Young, L.M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of accelerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electrons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electrons as the electrons enter the first cavity. 5 figs

  17. Unified accelerator libraries

    International Nuclear Information System (INIS)

    Malitsky, Nikolay; Talman, Richard

    1997-01-01

    A 'Universal Accelerator Libraries' (UAL) environment is described. Its purpose is to facilitate program modularity and inter-program and inter-process communication among heterogeneous programs. The goal ultimately is to facilitate model-based control of accelerators

  18. YEREVAN: Acceleration workshop

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Sponsored by the Yerevan Physics Institute in Armenia, a Workshop on New Methods of Charged Particle Acceleration in October near the Nor Amberd Cosmic Ray Station attracted participants from most major accelerator centres in the USSR and further afield

  19. San Francisco Accelerator Conference

    International Nuclear Information System (INIS)

    Southworth, Brian

    1991-01-01

    'Where are today's challenges in accelerator physics?' was the theme of the open session at the San Francisco meeting, the largest ever gathering of accelerator physicists and engineers

  20. Vp x B acceleration

    International Nuclear Information System (INIS)

    Sugihara, Ryo.

    1987-05-01

    A unique particle acceleration by an electrostatic (ES) wave, a magnetosonic shock wave as well as an electromagnetic (EM) wave is reviewed. The principle of the acceleration is that when a charged particle is carried across an external magnetic field the charge feels a DC field (the Lorentz force) and is accelerated. The theory for the ES wave acceleration is experimentally verified thought it is semi-quantitative. The shock acceleration is extensively studied theoretically and in a particle simulation method and the application is extended to phenomena in interplanetary space. The EM wave acceleration is based on a trapping in a moving neutral sheet created by the wave magnetic field and the external magnetic field, and the particle can be accelerated indefinitely. A brief sketch on a slow-wave-structure for this acceleration will be given. (author)

  1. Accelerator-timing system

    International Nuclear Information System (INIS)

    Timmer, E.; Heine, E.

    1985-01-01

    Along the NIKHEF accelerator in Amsterdam (Netherlands), at several places a signal is needed for the sychronisation of all devices with the acceleration process. In this report, basic principles and arrangements of this timing system are described

  2. Linear accelerator: A concept

    Science.gov (United States)

    Mutzberg, J.

    1972-01-01

    Design is proposed for inexpensive accelerometer which would work by applying pressure to fluid during acceleration. Pressure is used to move shuttle, and shuttle movement is sensed and calibrated to give acceleration readings.

  3. Heavy ion accelerators

    International Nuclear Information System (INIS)

    Schmelzer, C.

    1974-01-01

    This review of the present state of work on heavy-ion accelerators pays particular attention to the requirements for nuclear research. It is divided into the following sections: single-particle versus collective acceleration, heavy-ion accelerators, beam quality, and a status report on the UNILAC facility. Among the topics considered are the recycling cyclotron, linacs with superconducting resonators, and acceleration to the GeV/nucleon range. (8 figures, 2 tables) (U.S.)

  4. Accelerators at school

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Latest subject covered by the CERN Accelerator School was 'Applied Geodesy of Particle Accelerators', which attracted an impressive number of outside participants to CERN for a week in April. Since the forerunners of today's particle accelerators were demonstrated over 50 years ago, the positioning of accelerator components has progressed from the laboratory bench-top to tunnels tens of kilometres long. Despite this phenomenal growth in size, sub-millimetre accuracy is still required

  5. Accelerators at school

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-06-15

    Latest subject covered by the CERN Accelerator School was 'Applied Geodesy of Particle Accelerators', which attracted an impressive number of outside participants to CERN for a week in April. Since the forerunners of today's particle accelerators were demonstrated over 50 years ago, the positioning of accelerator components has progressed from the laboratory bench-top to tunnels tens of kilometres long. Despite this phenomenal growth in size, sub-millimetre accuracy is still required.

  6. Accelerators for Medicine

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    This lecture will review the different applications of particle accelerators to the medical field, from cancer treatment with beams of accelerator-produced particles (photons, electrons, protons, ions and neutrons) to the generation of radioactive isotopes used in medical diagnostics, in cancer therapy and in the new domain of theragnostics. For each application will be outlined the state of the art, the potential, and the accelerator challenges to be faced to meet the increasing demand for therapeutic procedures based on accelerators.

  7. Large electrostatic accelerators

    International Nuclear Information System (INIS)

    Jones, C.M.

    1984-01-01

    The paper is divided into four parts: a discussion of the motivation for the construction of large electrostatic accelerators, a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year

  8. Superconducting accelerator technology

    International Nuclear Information System (INIS)

    Grunder, H.A.; Hartline, B.K.

    1986-01-01

    Modern and future accelerators for high energy and nuclear physics rely increasingly on superconducting components to achieve the required magnetic fields and accelerating fields. This paper presents a practical overview of the phenomenon of superconductivity, and describes the design issues and solutions associated with superconducting magnets and superconducting rf acceleration structures. Further development and application of superconducting components promises increased accelerator performance at reduced electric power cost

  9. Applications of particle accelerators

    International Nuclear Information System (INIS)

    Barbalat, O.

    1994-01-01

    Particle accelerators are now widely used in a variety of applications for scientific research, applied physics, medicine, industrial processing, while possible utilisation in power engineering is envisaged. Earlier presentations of this subject, given at previous CERN Accelerator School sessions have been updated with papers contributed to the first European Conference on Accelerators in Applied Research and Technology (ECAART) held in September 1989 in Frankfurt and to the Second European Particle Accelerator Conference in Nice in June 1990. (orig.)

  10. Receiver function estimated by maximum entropy deconvolution

    Institute of Scientific and Technical Information of China (English)

    吴庆举; 田小波; 张乃铃; 李卫平; 曾融生

    2003-01-01

    Maximum entropy deconvolution is presented to estimate receiver function, with the maximum entropy as the rule to determine auto-correlation and cross-correlation functions. The Toeplitz equation and Levinson algorithm are used to calculate the iterative formula of error-predicting filter, and receiver function is then estimated. During extrapolation, reflective coefficient is always less than 1, which keeps maximum entropy deconvolution stable. The maximum entropy of the data outside window increases the resolution of receiver function. Both synthetic and real seismograms show that maximum entropy deconvolution is an effective method to measure receiver function in time-domain.

  11. The CERN Accelerator School

    CERN Multimedia

    2016-01-01

    Introduction to accelerator physics The CERN Accelerator School: Introduction to Accelerator Physics, which should have taken place in Istanbul, Turkey, later this year has now been relocated to Budapest, Hungary.  Further details regarding the new hotel and dates will be made available as soon as possible on a new Indico site at the end of May.

  12. Angular Acceleration without Torque?

    Science.gov (United States)

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  13. Accelerators and Dinosaurs

    CERN Multimedia

    Turner, Michael Stanley

    2003-01-01

    Using naturally occuring particles on which to research might have made accelerators become extinct. But in fact, results from astrophysics have made accelerator physics even more important. Not only are accelerators used in hospitals but they are also being used to understand nature's inner workings by searching for Higgs bosons, CP violation, neutrino mass and dark matter (2 pages)

  14. Far field acceleration

    International Nuclear Information System (INIS)

    Fernow, R.C.

    1995-07-01

    Far fields are propagating electromagnetic waves far from their source, boundary surfaces, and free charges. The general principles governing the acceleration of charged particles by far fields are reviewed. A survey of proposed field configurations is given. The two most important schemes, Inverse Cerenkov acceleration and Inverse free electron laser acceleration, are discussed in detail

  15. Maximum Power from a Solar Panel

    Directory of Open Access Journals (Sweden)

    Michael Miller

    2010-01-01

    Full Text Available Solar energy has become a promising alternative to conventional fossil fuel sources. Solar panels are used to collect solar radiation and convert it into electricity. One of the techniques used to maximize the effectiveness of this energy alternative is to maximize the power output of the solar collector. In this project the maximum power is calculated by determining the voltage and the current of maximum power. These quantities are determined by finding the maximum value for the equation for power using differentiation. After the maximum values are found for each time of day, each individual quantity, voltage of maximum power, current of maximum power, and maximum power is plotted as a function of the time of day.

  16. Acceleration of a trailing positron bunch in a plasma wakefield accelerator

    International Nuclear Information System (INIS)

    Doche, A.; Beekman, C.; Corde, S.

    2017-01-01

    High gradients of energy gain and high energy efficiency are necessary parameters for compact, cost-efficient and high-energy particle colliders. Plasma Wakefield Accelerators (PWFA) offer both, making them attractive candidates for next-generation colliders. Here in these devices, a charge-density plasma wave is excited by an ultra-relativistic bunch of charged particles (the drive bunch). The energy in the wave can be extracted by a second bunch (the trailing bunch), as this bunch propagates in the wake of the drive bunch. While a trailing electron bunch was accelerated in a plasma with more than a gigaelectronvolt of energy gain, accelerating a trailing positron bunch in a plasma is much more challenging as the plasma response can be asymmetric for positrons and electrons. We report the demonstration of the energy gain by a distinct trailing positron bunch in a plasma wakefield accelerator, spanning nonlinear to quasi-linear regimes, and unveil the beam loading process underlying the accelerator energy efficiency. A positron bunch is used to drive the plasma wake in the experiment, though the quasi-linear wake structure could as easily be formed by an electron bunch or a laser driver. Finally, the results thus mark the first acceleration of a distinct positron bunch in plasma-based particle accelerators.

  17. Experiment on relationship between the magnetic gradient of low-carbon steel and its stress

    International Nuclear Information System (INIS)

    Jian Xingliang; Jian Xingchao; Deng Guoyong

    2009-01-01

    In geomagnetic field, a series of tensile experiments on the low-carbon steel sticks were carried out. A special homemade detector was used to measure the magnetic gradient on the material surface. The results showed that the relationship between the magnetic gradient and the stress varied with different conditions of measurement. There was no obvious correlation between the magnetic gradient and the tensile stress if the sample remained on the material test machine. If the sample was taken off from the machine, the measured magnetic gradient was linear with the prior maximum stress. In Nanjing, PR China, a place of 32 o N latitude, the slope of the linear relationship was about 67 (uT/m)/MPa. This offered a new method of non-destructive stress testing by measuring the magnetic gradient on the ferromagnetic component surface. The prior maximum applied stress of the sample could be tested by measuring the present surface magnetic gradient. Actually this phenomenon was the metal magnetic memory (MMM). The magnetic gradient near the stress concentration zone of the sample, the necking point, was much larger than other area. Thus, the hidden damage in the ferromagnetic component could be detected early by measuring the magnetic gradient distribution on its surface. In addition, the magnetic memory signal gradually weakened as the sample was taken off and laid aside. Therefore, it was effective for a given period of time to detect the stress or stress concentration based on the MMM testing.

  18. Using contemporary liquid chromatography theory and technology to improve capillary gradient ion-exchange separations.

    Science.gov (United States)

    Wouters, Bert; Broeckhoven, Ken; Wouters, Sam; Bruggink, Cees; Agroskin, Yury; Pohl, Christopher A; Eeltink, Sebastiaan

    2014-11-28

    The gradient-performance limits of capillary ion chromatography have been assessed at maximum system pressure (34.5 MPa) using capillary columns packed with 4.1 μm macroporous anion-exchange particles coated with 65 nm positively-charged nanobeads. In analogy to the van-Deemter curve, the gradient performance was assessed applying different flow rates, while decreasing the gradient time inversely proportional to the increase in flow rate in order to maintain the same retention properties. The gradient kinetic-performance limits were determined at maximum system pressure, applying tG/t0=5, 10, and 20. In addition, the effect of retention on peak width was assessed in gradient mode for mono-, di-, and trivalent inorganic anions. The peak width of late-eluting ions can be significantly reduced by using concave gradient, resulting in better detection sensitivity. A signal enhancement factor of 8 was measured for a late-eluting ion when applying a concave instead of a linear gradient. For the analysis of a complex anion mixture, a coupled column with a total length of 1.05 m was operated at the kinetic-performance limit applying a linear 250 min gradient (tG/t0=10). The peak capacity varied between 200 and 380 depending on analyte retention, and hence on charge and size of the ion. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. The acceleration of particles by relativistic electron plasma waves driven by the optical mixing of laser light in a plasma

    International Nuclear Information System (INIS)

    Ebrahim, N.A.; Douglas, S.R.

    1992-03-01

    Electron acceleration by relativistic large-amplitude electron plasma waves is studied by theory and particle simulations. The maximum acceleration that can be obtained from this process depends on many different factors. This report presents a study of how these various factors impact on the acceleration mechanism. Although particular reference is made to the laser plasma beatwave concept, the study is equally relevant to the acceleration of particles in the plasma wakefield accelerator and the laser wakefield accelerator

  20. Hydraulic gradients in rock aquifers

    International Nuclear Information System (INIS)

    Dahlblom, P.

    1992-05-01

    This report deals with fractured rock as a host for deposits of hazardous waste. In this context the rock, with its fractures containing moving groundwater, is called the geological barrier. The desired properties of the geological barrier are low permeability to water, low hydraulic gradients and ability to retain matter dissolved in the water. The hydraulic gradient together with the permeability and the porosity determines the migration velocity. Mathematical modelling of the migration involves calculation of the water flow and the hydrodynamic dispersion of the contaminant. The porous medium approach can be used to calculate mean flow velocities and hydrodynamic dispersion of a large number of fractures are connected, which means that a large volume have to be considered. It is assumed that the porous medium approach can be applied, and a number of idealized examples are shown. It is assumed that the groundwater table is replenished by percolation at a constant rate. One-dimensional analytical calculations show that zero hydraulic gradients may exist at relatively large distance from the coast. Two-dimensional numerical calculations show that it may be possible to find areas with low hydraulic gradients and flow velocities within blocks surrounded by areas with high hydraulic conductivity. (au)