WorldWideScience

Sample records for maximizing crop yield

  1. Integrated crop management practices for maximizing grain yield of double-season rice crop

    Science.gov (United States)

    Wang, Depeng; Huang, Jianliang; Nie, Lixiao; Wang, Fei; Ling, Xiaoxia; Cui, Kehui; Li, Yong; Peng, Shaobing

    2017-01-01

    Information on maximum grain yield and its attributes are limited for double-season rice crop grown under the subtropical environment. This study was conducted to examine key characteristics associated with high yielding double-season rice crop through a comparison between an integrated crop management (ICM) and farmers’ practice (FP). Field experiments were conducted in the early and late seasons in the subtropical environment of Wuxue County, Hubei Province, China in 2013 and 2014. On average, grain yield in ICM was 13.5% higher than that in FP. A maximum grain yield of 9.40 and 10.53 t ha-1 was achieved under ICM in the early- and late-season rice, respectively. Yield improvement of double-season rice with ICM was achieved with the combined effects of increased plant density and optimized nutrient management. Yield gain of ICM resulted from a combination of increases in sink size due to more panicle number per unit area and biomass production, further supported by the increased leaf area index, leaf area duration, radiation use efficiency, crop growth rate, and total nitrogen uptake compared with FP. Further enhancement in the yield potential of double-season rice should focus on increasing crop growth rate and biomass production through improved and integrated crop management practices.

  2. Assessment of heavy metal pollution with applications of sewage sludge and city compost for maximizing crop yields

    International Nuclear Information System (INIS)

    D'Souza, T.J.; Ramachandran, V.; Raghu, K.

    1997-01-01

    Land application of municipal sewage sludge and city compost as organic manures make it imperative to assess heavy-metal pollution in soils and crops. Greenhouse experiments, conducted on maize in a vertisol and an ultisol amended with various doses of dry sewage sludge and city compost from Mumbai, indicated significant increases in dry matter-yields only in the vertisol. Significantly higher concentrations of Zn, Cu, Co, Pb, Ni and Cd were obtained in plants grown in the amended ultisol, but not in the amended vertisol. As Cd is the most toxic, experiments were conducted with four contrasting soils amended with varying doses of Cd-enriched sewage sludge and city compost. Results showed significant reductions in dry-matter yields of maize shoots at the higher rates of sludge or compost in the ultisol and an alfisol, but with no significant effects in the vertisol or an entisol. The levels of Cd and Zn were significantly elevated in plants in all four soil types. There were negative residual effects from the sludge and compost amendments: dry-matter yields of a succeeding maize crop were decreased in the ultisol and alfisol. Experiments with soils amended with sludge enriched with either Cd or Zn at 80 mg kg -1 indicated significant reductions in dry matter in all soils with Cd, but not with Zn. The results demonstrate that sewage sludges and city composts may be effectively used for maximizing crop yields, especially in vertisols and entisols. However, caution has to be exercised when using sludges containing even relatively low levels of Cd, or high levels of Zn, depending upon soil type. (author)

  3. Transpiration and crop yields

    NARCIS (Netherlands)

    Wit, de C.T.

    1958-01-01

    Theoretical and practical aspects of the transpiration of crops in the field are discussed and he concludes that the relationship between transpiration and total dry matter production is much less affected by growing conditions than has been supposed. In semi-arid and arid regions, this relationship

  4. Decomposing global crop yield variability

    Science.gov (United States)

    Ben-Ari, Tamara; Makowski, David

    2014-11-01

    Recent food crises have highlighted the need to better understand the between-year variability of agricultural production. Although increasing future production seems necessary, the globalization of commodity markets suggests that the food system would also benefit from enhanced supplies stability through a reduction in the year-to-year variability. Here, we develop an analytical expression decomposing global crop yield interannual variability into three informative components that quantify how evenly are croplands distributed in the world, the proportion of cultivated areas allocated to regions of above or below average variability and the covariation between yields in distinct world regions. This decomposition is used to identify drivers of interannual yield variations for four major crops (i.e., maize, rice, soybean and wheat) over the period 1961-2012. We show that maize production is fairly spread but marked by one prominent region with high levels of crop yield interannual variability (which encompasses the North American corn belt in the USA, and Canada). In contrast, global rice yields have a small variability because, although spatially concentrated, much of the production is located in regions of below-average variability (i.e., South, Eastern and South Eastern Asia). Because of these contrasted land use allocations, an even cultivated land distribution across regions would reduce global maize yield variance, but increase the variance of global yield rice. Intermediate results are obtained for soybean and wheat for which croplands are mainly located in regions with close-to-average variability. At the scale of large world regions, we find that covariances of regional yields have a negligible contribution to global yield variance. The proposed decomposition could be applied at any spatial and time scales, including the yearly time step. By addressing global crop production stability (or lack thereof) our results contribute to the understanding of a key

  5. Crop diversity for yield increase.

    Directory of Open Access Journals (Sweden)

    Chengyun Li

    2009-11-01

    Full Text Available Traditional farming practices suggest that cultivation of a mixture of crop species in the same field through temporal and spatial management may be advantageous in boosting yields and preventing disease, but evidence from large-scale field testing is limited. Increasing crop diversity through intercropping addresses the problem of increasing land utilization and crop productivity. In collaboration with farmers and extension personnel, we tested intercropping of tobacco, maize, sugarcane, potato, wheat and broad bean--either by relay cropping or by mixing crop species based on differences in their heights, and practiced these patterns on 15,302 hectares in ten counties in Yunnan Province, China. The results of observation plots within these areas showed that some combinations increased crop yields for the same season between 33.2 and 84.7% and reached a land equivalent ratio (LER of between 1.31 and 1.84. This approach can be easily applied in developing countries, which is crucial in face of dwindling arable land and increasing food demand.

  6. Analysis of yield advantage in mixed cropping

    NARCIS (Netherlands)

    Ranganathan, R.

    1993-01-01

    It has long been recognized that mixed cropping can give yield advantages over sole cropping, but methods that can identify such yield benefits are still being developed. This thesis presents a method that combines physiological and economic principles in the evaluation of yield advantage.

  7. Crop yield response to increasing biochar rates

    Science.gov (United States)

    The benefit or detriment to crop yield from biochar application varies with biochar type/rate, soil, crop, or climate. The objective of this research was to identify yield response of cotton (Gossypium hirsutum L.), corn (Zea mayes L.), and peanut (Arachis hypogaea L.) to hardwood biochar applied at...

  8. Crop yield response to climate change varies with cropping intensity.

    Science.gov (United States)

    Challinor, Andrew J; Parkes, Ben; Ramirez-Villegas, Julian

    2015-04-01

    Projections of the response of crop yield to climate change at different spatial scales are known to vary. However, understanding of the causes of systematic differences across scale is limited. Here, we hypothesize that heterogeneous cropping intensity is one source of scale dependency. Analysis of observed global data and regional crop modelling demonstrate that areas of high vs. low cropping intensity can have systematically different yields, in both observations and simulations. Analysis of global crop data suggests that heterogeneity in cropping intensity is a likely source of scale dependency for a number of crops across the globe. Further crop modelling and a meta-analysis of projected tropical maize yields are used to assess the implications for climate change assessments. The results show that scale dependency is a potential source of systematic bias. We conclude that spatially comprehensive assessments of climate impacts based on yield alone, without accounting for cropping intensity, are prone to systematic overestimation of climate impacts. The findings therefore suggest a need for greater attention to crop suitability and land use change when assessing the impacts of climate change. © 2015 John Wiley & Sons Ltd.

  9. Benefits of seasonal forecasts of crop yields

    Science.gov (United States)

    Sakurai, G.; Okada, M.; Nishimori, M.; Yokozawa, M.

    2017-12-01

    Major factors behind recent fluctuations in food prices include increased biofuel production and oil price fluctuations. In addition, several extreme climate events that reduced worldwide food production coincided with upward spikes in food prices. The stabilization of crop yields is one of the most important tasks to stabilize food prices and thereby enhance food security. Recent development of technologies related to crop modeling and seasonal weather forecasting has made it possible to forecast future crop yields for maize and soybean. However, the effective use of these technologies remains limited. Here we present the potential benefits of seasonal crop-yield forecasts on a global scale for choice of planting day. For this purpose, we used a model (PRYSBI-2) that can well replicate past crop yields both for maize and soybean. This model system uses a Bayesian statistical approach to estimate the parameters of a basic process-based model of crop growth. The spatial variability of model parameters was considered by estimating the posterior distribution of the parameters from historical yield data by using the Markov-chain Monte Carlo (MCMC) method with a resolution of 1.125° × 1.125°. The posterior distributions of model parameters were estimated for each spatial grid with 30 000 MCMC steps of 10 chains each. By using this model and the estimated parameter distributions, we were able to estimate not only crop yield but also levels of associated uncertainty. We found that the global average crop yield increased about 30% as the result of the optimal selection of planting day and that the seasonal forecast of crop yield had a large benefit in and near the eastern part of Brazil and India for maize and the northern area of China for soybean. In these countries, the effects of El Niño and Indian Ocean dipole are large. The results highlight the importance of developing a system to forecast global crop yields.

  10. Will energy crop yields meet expectations?

    International Nuclear Information System (INIS)

    Searle, Stephanie Y.; Malins, Christopher J.

    2014-01-01

    Expectations are high for energy crops. Government policies in the United States and Europe are increasingly supporting biofuel and heat and power from cellulose, and biomass is touted as a partial solution to energy security and greenhouse gas mitigation. Here, we review the literature for yields of 5 major potential energy crops: Miscanthus spp., Panicum virgatum (switchgrass), Populus spp. (poplar), Salix spp. (willow), and Eucalyptus spp. Very high yields have been achieved for each of these types of energy crops, up to 40 t ha −1  y −1 in small, intensively managed trials. But yields are significantly lower in semi-commercial scale trials, due to biomass losses with drying, harvesting inefficiency under real world conditions, and edge effects in small plots. To avoid competition with food, energy crops should be grown on non-agricultural land, which also lowers yields. While there is potential for yield improvement for each of these crops through further research and breeding programs, for several reasons the rate of yield increase is likely to be slower than historically has been achieved for cereals; these include relatively low investment, long breeding periods, low yield response of perennial grasses to fertilizer, and inapplicability of manipulating the harvest index. Miscanthus × giganteus faces particular challenges as it is a sterile hybrid. Moderate and realistic expectations for the current and future performance of energy crops are vital to understanding the likely cost and the potential of large-scale production. - Highlights: • This review covers Miscanthus, switchgrass, poplar, willow, and Eucalyptus. • High yields of energy crops are typically from small experimental plots. • Field scale yields are lower due to real world harvesting losses and edge effects. • The potential for yield improvement of energy crops is relatively limited. • Expectations must be realistic for successful policies and commercial production

  11. Validation of crop weather models for crop assessment arid yield ...

    African Journals Online (AJOL)

    IRSIS and CRPSM models were used in this study to see how closely they could predict grain yields for selected stations in Tanzania. Input for the models comprised of weather, crop and soil data collected from five selected stations. Simulation results show that IRSIS model tends to over predict grain yields of maize, ...

  12. Principal component regression for crop yield estimation

    CERN Document Server

    Suryanarayana, T M V

    2016-01-01

    This book highlights the estimation of crop yield in Central Gujarat, especially with regard to the development of Multiple Regression Models and Principal Component Regression (PCR) models using climatological parameters as independent variables and crop yield as a dependent variable. It subsequently compares the multiple linear regression (MLR) and PCR results, and discusses the significance of PCR for crop yield estimation. In this context, the book also covers Principal Component Analysis (PCA), a statistical procedure used to reduce a number of correlated variables into a smaller number of uncorrelated variables called principal components (PC). This book will be helpful to the students and researchers, starting their works on climate and agriculture, mainly focussing on estimation models. The flow of chapters takes the readers in a smooth path, in understanding climate and weather and impact of climate change, and gradually proceeds towards downscaling techniques and then finally towards development of ...

  13. PARAMETRIZATION OF INNER STRUCTURE OF AGRICULTURAL SYSTEMS ON THE BASIS OF MAXIMAL YIELDS ISOLINES (ISOCARPS

    Directory of Open Access Journals (Sweden)

    K KUDRNA

    2004-07-01

    Full Text Available On the basis of analysis of yield time series from a ten-year period, isolines of maximal yields of crops (isocarps have been constructed, homogenized yield zones have been determined, and inner structures of the agricultural system have been calculated. The algorithm of a normal and an optimal structure calculation have been used, and differences in the structure of the agricultural system have been determined for every defi ned zone.

  14. Soybean growth and yield under cover crops

    Directory of Open Access Journals (Sweden)

    Priscila de Oliveira

    2013-04-01

    Full Text Available The use of cover crops in no-tillage systems can provide better conditions for the development of soybean plants with positive effects on grain yield and growth analysis techniques allow researchers to characterize and understand the behavior of soybean plants under different straw covers. Thus, the aim of this study was to characterize, using growth analysis, yield components and agronomic performance of soybean under common bean, Brachiaria brizantha and pearl millet straws. The experiment was performed on a soil under cerrado in the municipality of Santo Antônio de Goiás, GO. The experiment was arranged in a randomized complete block design with three treatments (cover crops and five replications. Soybean grain yield was lower in the B. brizantha straw treatment (3,708 kg ha-1 than both in the pearl millet (4.772 kg ha-1 and common bean straw treatments (5,200 kg ha-1. The soybean growth analysis in B. brizantha, pearl millet and common bean allowed characterizing the variation in the production of dry matter of leaves, stems, pods and total and leaf area index that provided different grain yields. The cover crop directly affects the soybean grain yield.

  15. FOLIAR APPLICATION OF SILICON ON YIELD COMPONENTS OF WHEAT CROP

    Directory of Open Access Journals (Sweden)

    THOMAS NEWTON MARTIN

    2017-01-01

    Full Text Available Wheat is a major winter crop in southern Brazil. To maximize its productivity, there should be no biotic or abiotic restrictions that can affect the yield components. Thus, the objective was to evaluate the changes caused in the wheat crop yield components by silicon foliar application. The experiment was conducted in two growing seasons. In the first year, five wheat cultivars (Quartzo, Campo Real, Onix and Fundacep Lineage were assessed and in the second year four were assessed (Mirante, Campo Real, Horizonte and Quartzo. In both years the crops were subjected to three doses of silicon (0, 3 and 6 L of silicon ha -1. The silicon was applied during the tillering, booting and anthesis stages. The yield components assessed were the number of plants, number of ears, number of fertile tillers, dry matter per plant, hectoliter weight, number of spikelets, number of grains per spike, weight of hundred grains, grain yield and harvest index. Most yield components did not respond to the silicon foliar application. The harvest index (first year and the number of tillers (second year however presented a quadratic relationship with the supply of silicon. The remaining differences were attributed to variations among the wheat cultivars.

  16. Yield trends and yield gap analysis of major crops in the world

    OpenAIRE

    Hengsdijk, H.; Langeveld, J.W.A.

    2009-01-01

    This study aims to quantify the gap between current and potential yields of major crops in the world, and the production constraints that contribute to this yield gap. Using an expert-based evaluation of yield gaps and the literature, global and regional yields and yield trends of major crops are quantified, yield gaps evaluated by crop experts, current yield progress by breeding estimated, and different yield projections compared. Results show decreasing yield growth for wheat and rice, but ...

  17. Estimating yield gaps at the cropping system level.

    Science.gov (United States)

    Guilpart, Nicolas; Grassini, Patricio; Sadras, Victor O; Timsina, Jagadish; Cassman, Kenneth G

    2017-05-01

    Yield gap analyses of individual crops have been used to estimate opportunities for increasing crop production at local to global scales, thus providing information crucial to food security. However, increases in crop production can also be achieved by improving cropping system yield through modification of spatial and temporal arrangement of individual crops. In this paper we define the cropping system yield potential as the output from the combination of crops that gives the highest energy yield per unit of land and time, and the cropping system yield gap as the difference between actual energy yield of an existing cropping system and the cropping system yield potential. Then, we provide a framework to identify alternative cropping systems which can be evaluated against the current ones. A proof-of-concept is provided with irrigated rice-maize systems at four locations in Bangladesh that represent a range of climatic conditions in that country. The proposed framework identified (i) realistic alternative cropping systems at each location, and (ii) two locations where expected improvements in crop production from changes in cropping intensity (number of crops per year) were 43% to 64% higher than from improving the management of individual crops within the current cropping systems. The proposed framework provides a tool to help assess food production capacity of new systems ( e.g. with increased cropping intensity) arising from climate change, and assess resource requirements (water and N) and associated environmental footprint per unit of land and production of these new systems. By expanding yield gap analysis from individual crops to the cropping system level and applying it to new systems, this framework could also be helpful to bridge the gap between yield gap analysis and cropping/farming system design.

  18. Maximizing plant density affects broccoli yield and quality

    Science.gov (United States)

    Increased demand for fresh market bunch broccoli (Brassica oleracea L. var. italica) has led to increased production along the United States east coast. Maximizing broccoli yields is a primary concern for quickly expanding southeastern commercial markets. This broccoli plant density study was carr...

  19. Yield trends and yield gap analysis of major crops in the world

    NARCIS (Netherlands)

    Hengsdijk, H.; Langeveld, J.W.A.

    2009-01-01

    This study aims to quantify the gap between current and potential yields of major crops in the world, and the production constraints that contribute to this yield gap. Using an expert-based evaluation of yield gaps and the literature, global and regional yields and yield trends of major crops are

  20. Ecoinformatics reveals effects of crop rotational histories on cotton yield.

    Science.gov (United States)

    Meisner, Matthew H; Rosenheim, Jay A

    2014-01-01

    Crop rotation has been practiced for centuries in an effort to improve agricultural yield. However, the directions, magnitudes, and mechanisms of the yield effects of various crop rotations remain poorly understood in many systems. In order to better understand how crop rotation influences cotton yield, we used hierarchical Bayesian models to analyze a large ecoinformatics database consisting of records of commercial cotton crops grown in California's San Joaquin Valley. We identified several crops that, when grown in a field the year before a cotton crop, were associated with increased or decreased cotton yield. Furthermore, there was a negative association between the effect of the prior year's crop on June densities of the pest Lygus hesperus and the effect of the prior year's crop on cotton yield. This suggested that some crops may enhance L. hesperus densities in the surrounding agricultural landscape, because residual L. hesperus populations from the previous year cannot continuously inhabit a focal field and attack a subsequent cotton crop. In addition, we found that cotton yield declined approximately 2.4% for each additional year in which cotton was grown consecutively in a field prior to the focal cotton crop. Because L. hesperus is quite mobile, the effects of crop rotation on L. hesperus would likely not be revealed by small plot experimentation. These results provide an example of how ecoinformatics datasets, which capture the true spatial scale of commercial agriculture, can be used to enhance agricultural productivity.

  1. Ecoinformatics reveals effects of crop rotational histories on cotton yield.

    Directory of Open Access Journals (Sweden)

    Matthew H Meisner

    Full Text Available Crop rotation has been practiced for centuries in an effort to improve agricultural yield. However, the directions, magnitudes, and mechanisms of the yield effects of various crop rotations remain poorly understood in many systems. In order to better understand how crop rotation influences cotton yield, we used hierarchical Bayesian models to analyze a large ecoinformatics database consisting of records of commercial cotton crops grown in California's San Joaquin Valley. We identified several crops that, when grown in a field the year before a cotton crop, were associated with increased or decreased cotton yield. Furthermore, there was a negative association between the effect of the prior year's crop on June densities of the pest Lygus hesperus and the effect of the prior year's crop on cotton yield. This suggested that some crops may enhance L. hesperus densities in the surrounding agricultural landscape, because residual L. hesperus populations from the previous year cannot continuously inhabit a focal field and attack a subsequent cotton crop. In addition, we found that cotton yield declined approximately 2.4% for each additional year in which cotton was grown consecutively in a field prior to the focal cotton crop. Because L. hesperus is quite mobile, the effects of crop rotation on L. hesperus would likely not be revealed by small plot experimentation. These results provide an example of how ecoinformatics datasets, which capture the true spatial scale of commercial agriculture, can be used to enhance agricultural productivity.

  2. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification

    Directory of Open Access Journals (Sweden)

    Ignasi Bartomeus

    2014-03-01

    Full Text Available Background. Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production.Methods. We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient from simple to heterogeneous landscapes.Results. Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries’ commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness.Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild

  3. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification.

    Science.gov (United States)

    Bartomeus, Ignasi; Potts, Simon G; Steffan-Dewenter, Ingolf; Vaissière, Bernard E; Woyciechowski, Michal; Krewenka, Kristin M; Tscheulin, Thomas; Roberts, Stuart P M; Szentgyörgyi, Hajnalka; Westphal, Catrin; Bommarco, Riccardo

    2014-01-01

    Background. Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods. We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient from simple to heterogeneous landscapes. Results. Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries' commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness. Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild pollinators in

  4. Increasing crop diversity mitigates weather variations and improves yield stability.

    Science.gov (United States)

    Gaudin, Amélie C M; Tolhurst, Tor N; Ker, Alan P; Janovicek, Ken; Tortora, Cristina; Martin, Ralph C; Deen, William

    2015-01-01

    Cropping sequence diversification provides a systems approach to reduce yield variations and improve resilience to multiple environmental stresses. Yield advantages of more diverse crop rotations and their synergistic effects with reduced tillage are well documented, but few studies have quantified the impact of these management practices on yields and their stability when soil moisture is limiting or in excess. Using yield and weather data obtained from a 31-year long term rotation and tillage trial in Ontario, we tested whether crop rotation diversity is associated with greater yield stability when abnormal weather conditions occur. We used parametric and non-parametric approaches to quantify the impact of rotation diversity (monocrop, 2-crops, 3-crops without or with one or two legume cover crops) and tillage (conventional or reduced tillage) on yield probabilities and the benefits of crop diversity under different soil moisture and temperature scenarios. Although the magnitude of rotation benefits varied with crops, weather patterns and tillage, yield stability significantly increased when corn and soybean were integrated into more diverse rotations. Introducing small grains into short corn-soybean rotation was enough to provide substantial benefits on long-term soybean yields and their stability while the effects on corn were mostly associated with the temporal niche provided by small grains for underseeded red clover or alfalfa. Crop diversification strategies increased the probability of harnessing favorable growing conditions while decreasing the risk of crop failure. In hot and dry years, diversification of corn-soybean rotations and reduced tillage increased yield by 7% and 22% for corn and soybean respectively. Given the additional advantages associated with cropping system diversification, such a strategy provides a more comprehensive approach to lowering yield variability and improving the resilience of cropping systems to multiple environmental

  5. Historical effects of temperature and precipitation on California crop yields

    Energy Technology Data Exchange (ETDEWEB)

    Lobell, D.B. [Energy and Environment Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Cahill, K.N. [Interdisciplinary Graduate Program in Environment and Resources, Stanford University, Stanford, CA 94305 (United States); Field, C.B. [Department of Global Ecology, Carnegie Institution, Stanford, CA 94305 (United States)

    2007-03-15

    For the 1980-2003 period, we analyzed the relationship between crop yield and three climatic variables (minimum temperature, maximum temperature, and precipitation) for 12 major Californian crops: wine grapes, lettuce, almonds, strawberries, table grapes, hay, oranges, cotton, tomatoes, walnuts, avocados, and pistachios. The months and climatic variables of greatest importance to each crop were used to develop regressions relating yield to climatic conditions. For most crops, fairly simple equations using only 2-3 variables explained more than two-thirds of observed yield variance. The types of variables and months identified suggest that relatively poorly understood processes such as crop infection, pollination, and dormancy may be important mechanisms by which climate influences crop yield. Recent climatic trends have had mixed effects on crop yields, with orange and walnut yields aided, avocado yields hurt, and most crops little affected by recent climatic trends. Yield-climate relationships can provide a foundation for forecasting crop production within a year and for projecting the impact of future climate changes.

  6. Influence of poultry litter and double cropping on soybean yield

    Science.gov (United States)

    Continuous cultivation of mono-cropping systems coupled with inorganic fertilizer consumption has led to a decline in soil fertility, negatively influencing crop yields. Poultry litter application and double cropping are two management practices that could be used with conservation tillage to increa...

  7. The Effect of Soil Erosion on Europe's Crop Yields

    NARCIS (Netherlands)

    Bakker, M.M.; Govers, G.; Jones, R.A.; Rounsevell, M.D.A.

    2007-01-01

    Soil erosion negatively affects crop yields and may have contributed to the collapse of ancient civilizations. Whether erosion may have such an impact on modern societies as well, is subject to debate. In this paper we quantify the relationship between crop yields and soil water available to plants,

  8. Spatial Sampling of Weather Data for Regional Crop Yield Simulations

    Science.gov (United States)

    Van Bussel, Lenny G. J.; Ewert, Frank; Zhao, Gang; Hoffmann, Holger; Enders, Andreas; Wallach, Daniel; Asseng, Senthold; Baigorria, Guillermo A.; Basso, Bruno; Biernath, Christian; hide

    2016-01-01

    Field-scale crop models are increasingly applied at spatio-temporal scales that range from regions to the globe and from decades up to 100 years. Sufficiently detailed data to capture the prevailing spatio-temporal heterogeneity in weather, soil, and management conditions as needed by crop models are rarely available. Effective sampling may overcome the problem of missing data but has rarely been investigated. In this study the effect of sampling weather data has been evaluated for simulating yields of winter wheat in a region in Germany over a 30-year period (1982-2011) using 12 process-based crop models. A stratified sampling was applied to compare the effect of different sizes of spatially sampled weather data (10, 30, 50, 100, 500, 1000 and full coverage of 34,078 sampling points) on simulated wheat yields. Stratified sampling was further compared with random sampling. Possible interactions between sample size and crop model were evaluated. The results showed differences in simulated yields among crop models but all models reproduced well the pattern of the stratification. Importantly, the regional mean of simulated yields based on full coverage could already be reproduced by a small sample of 10 points. This was also true for reproducing the temporal variability in simulated yields but more sampling points (about 100) were required to accurately reproduce spatial yield variability. The number of sampling points can be smaller when a stratified sampling is applied as compared to a random sampling. However, differences between crop models were observed including some interaction between the effect of sampling on simulated yields and the model used. We concluded that stratified sampling can considerably reduce the number of required simulations. But, differences between crop models must be considered as the choice for a specific model can have larger effects on simulated yields than the sampling strategy. Assessing the impact of sampling soil and crop management

  9. Yields of Selected Catch Crops in Dry Conditions

    Directory of Open Access Journals (Sweden)

    Martina Handlířová

    2016-01-01

    Full Text Available Catch crops mainly reduce soil erosion and leaching of nutrients as well as enrich the soil organic matter. The aim of this research is to evaluate the yields of catch crops of Sinapis alba, Phacelia tanacetifolia, Fagopyrum esculentum, Carthamus tinctorius and Secale cereale v. multicaule, and thus determine the possible applicability of catch crops in areas with high average annual temperature and low precipitation totals. The small-plot field experiment was performed on clay-loam gleyic fluvisol at the Field Experimental Station in Žabčice, Southern Moravia, Czech Republic, within the period of 2006-2014. The catch crops were set up after winter wheat in mid-August. The results have shown a statistically significant difference among different catch crops in yield of dry matter and even among years. The yield of catch crops is mainly dependent on a sufficient supply of water in the soil and the appropriate amount and distribution of rainfall over the growing season. Sinapis alba and Phacelia tanacetifolia regularly reached the highest yields. High yields were also achieved with Fagopyrum esculentum. Due to the method of crop rotation in the Czech Republic, with a predominance of Brassica napus var. napus, it is inappropriate to include Sinapis alba. It is the best to grow Phacelia tanacetifolia and even Fagopyrum esculentum, or a mixture thereof, depending on the use of catch crops.

  10. Nutrient Uptake by High-Yielding Cotton Crop in Brazil

    Directory of Open Access Journals (Sweden)

    José Luís Vilela Vieira

    2018-02-01

    Full Text Available ABSTRACT: Determining nutrient uptake and accumulation rates by cotton crops is important to define management strategies, especially for transgenic varieties, which are cultivated using high-technology approaches that require substantial investment to maximize yield. Currently in Brazil, the states of Bahia and Mato Grosso are responsible for 84.4 % of the total cotton growing area. In the present study, two trials were conducted in 2013, one that involved planting FM 940 GLT, FM 980 GLT, and FM 913 GLT varieties in the state of Bahia and the other which involved FM 940 GLT and FM 980 GLT varieties in the state of Mato Grosso. The aim of the two trials was to represent the two regions that currently encompass the largest areas of cotton cultivation. Tissue samples, consisting of leaves, stems, and reproductive components, were collected eleven times during the crop cycle for determination of nutrient content and shoot dry matter. After weighing, plant tissue samples were dried and ground to determine nutrient contents. Because there were no overall differences in nutrient contents and biomass accumulation of the varieties during the crop cycle, we undertook joint analysis of the data from all varieties at each site. Favorable climatic conditions in Bahia promoted plant biomass production that was twice as much as plants grown in Mato Grosso, with cotton yields of 6.2 and 3.8 t ha−1 of lint and seed, respectively. The maximum nutrient accumulation occurred between 137-150 days after emergence (DAE for N; 143-148 for P; 172-185 for K; 100 for Ca; 144-149 for Mg; and 153-158 for S. Maximum uptake ranged from 218-362 kg ha−1 N; 26-53 kg ha−1 P; 233-506 kg ha−1 K; 91-202 kg ha−1 Ca; 28-44 kg ha−1 Mg; and 19-61 kg ha−1 S. On average, the sites revealed nutrient export of 14, 2, 23, 3, 2, and 2 kg t−1 of lint and seed for N, P, K, Ca, Mg, and S, respectively, with little variation among sites. Extraction of nutrients per area by cotton

  11. Pea yield and its components in different crop rotations

    OpenAIRE

    Seibutis, Vytautas; Deveikytė, Irena

    2006-01-01

    The effects of the crop rotations (2-4 course) differing in duration on the formation of pea productivity elements and the yield were investigated in stationary field experiments in Dotnuva during 1997-2004. Averaged experimental data showed that the highest pea yield (3.70 t ha-1) was recorded in the three-course crop rotation (sugar beet-spring barley-pea), in the four-course (pea-winter wheat-sugar beet-spring barley) and two-course (pea-winter wheat) crop rotations the grain yield consist...

  12. Assessing climate change effects on European crop yields using the Crop Growth

    NARCIS (Netherlands)

    Supit, I.; Diepen, van C.A.; Wit, de A.J.W.; Wolf, J.; Kabat, P.; Baruth, B.; Ludwig, F.

    2012-01-01

    Climate change impacts on potential and rainfed crop yields on the European continent were studied using output of three General Circulation Models and the Crop Growth Monitoring System in combination with a weather generator. Climate change impacts differ per crop type and per CO2 emission

  13. Tropical rotation crops influence nematode densities and vegetable yields.

    Science.gov (United States)

    McSorley, R; Dickson, D W; de Brito, J A; Hochmuth, R C

    1994-09-01

    The effects of eight summer rotation crops on nematode densities and yields of subsequent spring vegetable crops were determined in field studies conducted in north Florida from 1991 to 1993. The crop sequence was as follows: (i) rotation crops during summer 1991; (ii) cover crop of rye (Secale cereale) during winter 1991-92; (iii) 'Lemondrop L' squash (Cucurbita pepo) during spring 1992; (iv) rotation crops during summer 1992; (v) rye during winter 1992-93; (vi) 'Classic' eggplant (Solanum melongena) during spring 1993. The eight summer crop rotation treatments were as follows: 'Hale' castor (Ricinus communis), velvetbean (Mucuna deeringiana), sesame (Sesamum indicum), American jointvetch (Aeschynomene americana), weed fallow, 'SX- 17' sorghum-sudangrass (Sorghum bicolor x S. sudanense), 'Kirby' soybean (Glycine max), and 'Clemson Spineless' okra (Hibiscus esculentus) as a control. Rotations with castor, velvetbean, American jointvetch, and sorghum-sudangrass were most effective in maintaining the lowest population densities of Meloidogyne spp. (a mixture of M. incognita race 1 and M. arenaria race 1), but Paratrichodorus minor built up in the sorghum-sudangrass rotation. Yield of squash was lower (P crops evaluated here may be useful for managing nematodes in the field and for improving yields of subsequent vegetable crops.

  14. Yield gap analysis of feed-crop livestock systems

    NARCIS (Netherlands)

    Linden, van der Aart; Oosting, Simon J.; Ven, van de Gerrie W.J.; Veysset, Patrick; Boer, de Imke J.M.; Ittersum, van Martin K.

    2018-01-01

    Sustainable intensification is a strategy contributing to global food security. The scope for sustainable intensification in crop sciences can be assessed through yield gap analysis, using crop growth models based on concepts of production ecology. Recently, an analogous cattle production model

  15. Relationships between phenological and yield traits of the plant crop ...

    African Journals Online (AJOL)

    Multiple correlation of phenological and yield traits of the plant crop (PC) with those of the first ratoon crop (RC) of 36 Musa genotypes was carried out. The genotypes were landraces (triploid) belonging to AAA, AAB and ABB Musa genomic groups and hybrids (mostly tetraploid) thereof. The plants were grown under four ...

  16. Impact of capillary rise and recirculation on simulated crop yields

    NARCIS (Netherlands)

    Kroes, J.G.; Supit, I.; Dam, van J.C.; Walsum, van P.E.V.; Mulder, H.M.

    2018-01-01

    Upward soil water flow is a vital supply of water to crops. The purpose of this study is to determine if upward flow and recirculated percolation water can be quantified separately, and to determine the contribution of capillary rise and recirculated water to crop yield and groundwater recharge.

  17. Climate change impacts on crop yield: evidence from China.

    Science.gov (United States)

    Wei, Taoyuan; Cherry, Todd L; Glomrød, Solveig; Zhang, Tianyi

    2014-11-15

    When estimating climate change impact on crop yield, a typical assumption is constant elasticity of yield with respect to a climate variable even though the elasticity may be inconstant. After estimating both constant and inconstant elasticities with respect to temperature and precipitation based on provincial panel data in China 1980-2008, our results show that during that period, the temperature change contributes positively to total yield growth by 1.3% and 0.4% for wheat and rice, respectively, but negatively by 12% for maize. The impacts of precipitation change are marginal. We also compare our estimates with other studies and highlight the implications of the inconstant elasticities for crop yield, harvest and food security. We conclude that climate change impact on crop yield would not be an issue in China if positive impacts of other socio-economic factors continue in the future. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Improving crop yields for Sahelian Women | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-06-07

    Jun 7, 2016 ... Less is more: Improving yields for Sahelian women with tiny dozes of fertilizer Farmers living in the semi-arid Sahel belt of West Africa are increasing the yields and income earned from their crops, thanks to a simple technique that combines small quantities of fertilizers (microdosing) with improved ...

  19. Biochar boosts tropical but not temperate crop yields

    NARCIS (Netherlands)

    Jeffery, Simon; Abalos Rodriguez, Diego; Prodana, Marija; Bastos, Ana Catarina; Groenigen, van Jan Willem; Hungate, Bruce A.; Verheijen, Frank

    2017-01-01

    Applying biochar to soil is thought to have multiple benefits, from helping mitigate climate change [1, 2], to managing waste [3] to conserving soil [4]. Biochar is also widely assumed to boost crop yield [5, 6], but there is controversy regarding the extent and cause of any yield benefit [7].

  20. Application of Artificial Neural Networks in Canola Crop Yield Prediction

    Directory of Open Access Journals (Sweden)

    S. J. Sajadi

    2014-02-01

    Full Text Available Crop yield prediction has an important role in agricultural policies such as specification of the crop price. Crop yield prediction researches have been based on regression analysis. In this research canola yield was predicted using Artificial Neural Networks (ANN using 11 crop year climate data (1998-2009 in Gonbad-e-Kavoos region of Golestan province. ANN inputs were mean weekly rainfall, mean weekly temperature, mean weekly relative humidity and mean weekly sun shine hours and ANN output was canola yield (kg/ha. Multi-Layer Perceptron networks (MLP with Levenberg-Marquardt backpropagation learning algorithm was used for crop yield prediction and Root Mean Square Error (RMSE and square of the Correlation Coefficient (R2 criterions were used to evaluate the performance of the ANN. The obtained results show that the 13-20-1 network has the lowest RMSE equal to 101.235 and maximum value of R2 equal to 0.997 and is suitable for predicting canola yield with climate factors.

  1. Possible changes to arable crop yields by 2050.

    Science.gov (United States)

    Jaggard, Keith W; Qi, Aiming; Ober, Eric S

    2010-09-27

    By 2050, the world population is likely to be 9.1 billion, the CO(2) concentration 550 ppm, the ozone concentration 60 ppb and the climate warmer by ca 2 degrees C. In these conditions, what contribution can increased crop yield make to feeding the world? CO(2) enrichment is likely to increase yields of most crops by approximately 13 per cent but leave yields of C4 crops unchanged. It will tend to reduce water consumption by all crops, but this effect will be approximately cancelled out by the effect of the increased temperature on evaporation rates. In many places increased temperature will provide opportunities to manipulate agronomy to improve crop performance. Ozone concentration increases will decrease yields by 5 per cent or more. Plant breeders will probably be able to increase yields considerably in the CO(2)-enriched environment of the future, and most weeds and airborne pests and diseases should remain controllable, so long as policy changes do not remove too many types of crop-protection chemicals. However, soil-borne pathogens are likely to be an increasing problem when warmer weather will increase their multiplication rates; control is likely to need a transgenic approach to breeding for resistance. There is a large gap between achievable yields and those delivered by farmers, even in the most efficient agricultural systems. A gap is inevitable, but there are large differences between farmers, even between those who have used the same resources. If this gap is closed and accompanied by improvements in potential yields then there is a good prospect that crop production will increase by approximately 50 per cent or more by 2050 without extra land. However, the demands for land to produce bio-energy have not been factored into these calculations.

  2. Understanding the weather signal in national crop-yield variability

    Science.gov (United States)

    Frieler, Katja; Schauberger, Bernhard; Arneth, Almut; Balkovič, Juraj; Chryssanthacopoulos, James; Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Khabarov, Nikolay; Müller, Christoph; Olin, Stefan; Pugh, Thomas A. M.; Schaphoff, Sibyll; Schewe, Jacob; Schmid, Erwin; Warszawski, Lila; Levermann, Anders

    2017-06-01

    Year-to-year variations in crop yields can have major impacts on the livelihoods of subsistence farmers and may trigger significant global price fluctuations, with severe consequences for people in developing countries. Fluctuations can be induced by weather conditions, management decisions, weeds, diseases, and pests. Although an explicit quantification and deeper understanding of weather-induced crop-yield variability is essential for adaptation strategies, so far it has only been addressed by empirical models. Here, we provide conservative estimates of the fraction of reported national yield variabilities that can be attributed to weather by state-of-the-art, process-based crop model simulations. We find that observed weather variations can explain more than 50% of the variability in wheat yields in Australia, Canada, Spain, Hungary, and Romania. For maize, weather sensitivities exceed 50% in seven countries, including the United States. The explained variance exceeds 50% for rice in Japan and South Korea and for soy in Argentina. Avoiding water stress by simulating yields assuming full irrigation shows that water limitation is a major driver of the observed variations in most of these countries. Identifying the mechanisms leading to crop-yield fluctuations is not only fundamental for dampening fluctuations, but is also important in the context of the debate on the attribution of loss and damage to climate change. Since process-based crop models not only account for weather influences on crop yields, but also provide options to represent human-management measures, they could become essential tools for differentiating these drivers, and for exploring options to reduce future yield fluctuations.

  3. Do green manures as winter cover crops impact the weediness and crop yield in an organic crop rotation?

    OpenAIRE

    Madsen, Helena; Talgre, Liina; Eremeev, Viacheslav; Alaru, Maarika; Kauer, Karin; Luik, Anne

    2016-01-01

    The effects of different winter cover crops and their combination with composted cattle manure on weeds and crop yields were investigated within a five-field crop rotation (barley undersown with red clover, red clover, winter wheat, pea, potato) in three organic cropping systems. The control system (Org 0) followed the rotation. In organic systems Org I and Org II the winter cover crops were used as follows: ryegrass (Lolium perenne L. in 2011/2012) and a mixture of winter oilseed-rape (Brass...

  4. Modelling crop yield in Iberia under drought conditions

    Science.gov (United States)

    Ribeiro, Andreia; Páscoa, Patrícia; Russo, Ana; Gouveia, Célia

    2017-04-01

    The improved assessment of the cereal yield and crop loss under drought conditions are essential to meet the increasing economy demands. The growing frequency and severity of the extreme drought conditions in the Iberian Peninsula (IP) has been likely responsible for negative impacts on agriculture, namely on crop yield losses. Therefore, a continuous monitoring of vegetation activity and a reliable estimation of drought impacts is crucial to contribute for the agricultural drought management and development of suitable information tools. This works aims to assess the influence of drought conditions in agricultural yields over the IP, considering cereal yields from mainly rainfed agriculture for the provinces with higher productivity. The main target is to develop a strategy to model drought risk on agriculture for wheat yield at a province level. In order to achieve this goal a combined assessment was made using a drought indicator (Standardized Precipitation Evapotranspiration Index, SPEI) to evaluate drought conditions together with a widely used vegetation index (Normalized Difference Vegetation Index, NDVI) to monitor vegetation activity. A correlation analysis between detrended wheat yield and SPEI was performed in order to assess the vegetation response to each time scale of drought occurrence and also identify the moment of the vegetative cycle when the crop yields are more vulnerable to drought conditions. The time scales and months of SPEI, together with the months of NDVI, better related with wheat yield were chosen to perform a multivariate regression analysis to simulate crop yield. Model results are satisfactory and highlighted the usefulness of such analysis in the framework of developing a drought risk model for crop yields. In terms of an operational point of view, the results aim to contribute to an improved understanding of crop yield management under dry conditions, particularly adding substantial information on the advantages of combining

  5. Improving the Yield and Nutritional Quality of Forage Crops

    Directory of Open Access Journals (Sweden)

    Nicola M. Capstaff

    2018-04-01

    Full Text Available Despite being some of the most important crops globally, there has been limited research on forages when compared with cereals, fruits, and vegetables. This review summarizes the literature highlighting the significance of forage crops, the current improvements and some of future directions for improving yield and nutritional quality. We make the point that the knowledge obtained from model plant and grain crops can be applied to forage crops. The timely development of genomics and bioinformatics together with genome editing techniques offer great scope to improve forage crops. Given the social, environmental and economic importance of forage across the globe and especially in poorer countries, this opportunity has enormous potential to improve food security and political stability.

  6. Estimation of Rice Crop Yields Using Random Forests in Taiwan

    Science.gov (United States)

    Chen, C. F.; Lin, H. S.; Nguyen, S. T.; Chen, C. R.

    2017-12-01

    Rice is globally one of the most important food crops, directly feeding more people than any other crops. Rice is not only the most important commodity, but also plays a critical role in the economy of Taiwan because it provides employment and income for large rural populations. The rice harvested area and production are thus monitored yearly due to the government's initiatives. Agronomic planners need such information for more precise assessment of food production to tackle issues of national food security and policymaking. This study aimed to develop a machine-learning approach using physical parameters to estimate rice crop yields in Taiwan. We processed the data for 2014 cropping seasons, following three main steps: (1) data pre-processing to construct input layers, including soil types and weather parameters (e.g., maxima and minima air temperature, precipitation, and solar radiation) obtained from meteorological stations across the country; (2) crop yield estimation using the random forests owing to its merits as it can process thousands of variables, estimate missing data, maintain the accuracy level when a large proportion of the data is missing, overcome most of over-fitting problems, and run fast and efficiently when handling large datasets; and (3) error verification. To execute the model, we separated the datasets into two groups of pixels: group-1 (70% of pixels) for training the model and group-2 (30% of pixels) for testing the model. Once the model is trained to produce small and stable out-of-bag error (i.e., the mean squared error between predicted and actual values), it can be used for estimating rice yields of cropping seasons. The results obtained from the random forests-based regression were compared with the actual yield statistics indicated the values of root mean square error (RMSE) and mean absolute error (MAE) achieved for the first rice crop were respectively 6.2% and 2.7%, while those for the second rice crop were 5.3% and 2

  7. Are GM Crops for Yield and Resilience Possible?

    Science.gov (United States)

    Paul, Matthew J; Nuccio, Michael L; Basu, Shib Sankar

    2018-01-01

    Crop yield improvements need to accelerate to avoid future food insecurity. Outside Europe, genetically modified (GM) crops for herbicide- and insect-resistance have been transformative in agriculture; other traits have also come to market. However, GM of yield potential and stress resilience has yet to impact on food security. Genes have been identified for yield such as grain number, size, leaf growth, resource allocation, and signaling for drought tolerance, but there is only one commercialized drought-tolerant GM variety. For GM and genome editing to impact on yield and resilience there is a need to understand yield-determining processes in a cell and developmental context combined with evaluation in the grower environment. We highlight a sugar signaling mechanism as a paradigm for this approach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The effect of conservation tillage on crop yield in China

    Directory of Open Access Journals (Sweden)

    Hongwen LI,Jin HE,Huanwen GAO,Ying CHEN,Zhiqiang ZHANG

    2015-06-01

    Full Text Available Traditional agricultural practices have resulted in decreased soil fertility, shortage of water resources and deterioration of agricultural ecological environment, which are seriously affecting grain production. Conservation tillage (CT research has been developed and applied in China since the 1960s and 1970s, and a series of development policies have been issued by the Chinese government. Recent research and application have shown that CT has positive effects on crop yields in China. According to the data from the Conservation Tillage Research Center (CTRC, Chinese Ministry of Agriculture (MOA, the mean crop yield increase can be at least 4% in double cropping systems in the North China Plain and 6% in single cropping systems in the dryland areas of North-east and North-west China. Crop yield increase was particularly significant in dryland areas and drought years. The mechanism for the yield increase in CT system can be attributed to enhanced soil water content and improved soil properties. Development strategies have been implemented to accelerate the adoption of CT in China.

  9. Climate Change Modelling and Its Roles to Chinese Crops Yield

    Institute of Scientific and Technical Information of China (English)

    JU Hui; LIN Er-da; Tim Wheeler; Andrew Challinor; JIANG Shuai

    2013-01-01

    Climate has been changing in the last fifty years in China and will continue to change regardless any efforts for mitigation. Agriculture is a climate-dependent activity and highly sensitive to climate changes and climate variability. Understanding the interactions between climate change and agricultural production is essential for society stable development of China. The first mission is to fully understand how to predict future climate and link it with agriculture production system. In this paper, recent studies both domestic and international are reviewed in order to provide an overall image of the progress in climate change researches. The methods for climate change scenarios construction are introduced. The pivotal techniques linking crop model and climate models are systematically assessed and climate change impacts on Chinese crops yield among model results are summarized. The study found that simulated productions of grain crop inherit uncertainty from using different climate models, emission scenarios and the crops simulation models. Moreover, studies have different spatial resolutions, and methods for general circulation model (GCM) downscaling which increase the uncertainty for regional impacts assessment. However, the magnitude of change in crop production due to climate change (at 700 ppm CO2 eq correct) appears within ±10%for China in these assessments. In most literatures, the three cereal crop yields showed decline under climate change scenarios and only wheat in some region showed increase. Finally, the paper points out several gaps in current researches which need more studies to shorten the distance for objective recognizing the impacts of climate change on crops. The uncertainty for crop yield projection is associated with climate change scenarios, CO2 fertilization effects and adaptation options. Therefore, more studies on the fields such as free air CO2 enrichment experiment and practical adaptations implemented need to be carried out.

  10. The effect of cropping sequence on the crop yield and nutrient availability

    International Nuclear Information System (INIS)

    Sisworo, W.H.; Rasjid, H.

    1988-01-01

    A two seasons field experiment was conducted to study the carry over effect of previous crop on the succeeding crop yield and plan nutrient (N and P) availability. The experiment consisted of eight treatments were arranged in a randomized block design with six resplications. Cropping sequence was studied that was soybean followed by corn and a continuous corn system. The effect of added P to the previous crops on the succeeding crops yield was also observed. Labelled fertilizer were used in the experiment to measure dinitrogen fixation of two soybean varieties and the amount of available nutrient in the soil by using isotopic dilution technique. The result obtained showed that corn yield was significantly influenced by cropping sequence, but available nutrient was not. Corn grown after soybean produced about 22 percent more grain than those of the continuous corn system. The phosphorus applied to the first season crops increased significantly the succeeding corn yield. The highest amount of accumulation in soybean was 81 kg N/h, around 40 percent of the amount was obtained through fixation. (authors). 19 refs.; 8 tabs

  11. Documenting costs and yield of crops of organic origin

    Directory of Open Access Journals (Sweden)

    J.P. Melnychuk

    2016-06-01

    Full Text Available The article focuses on the study of primary cost accounting and output of organic crop production. The article has also agreed the key issues that ensure in the primary accounting of organic crop production. For the survey we have used such general scientific methods as induction and deduction, dialectic, historical and systematic methods and some specific methods of accounting which include documentation, inventory, assessment, calculation, accounting records, double entry, balance sheet and financial statements. . As for the documentation of costs and yield of crops of organic origin, it should be noted that documentation is an important method of accounting as it’s the basis of initial observation of commercial operations and it’s a prerequisite for their reflection in accounting. The article has highlighted the features of documenting the posting of production costs and crop production of organic origin, and has also studied the order of registration of land in the operating lease for the production of organic products. The author submits the suggestions for improvement of documenting costs and yields of organic crop production in order to develop reliable information about the costs of production and the grown crop of organic origin for management decision-making.

  12. Biochar boosts tropical but not temperate crop yields

    Science.gov (United States)

    Jeffery, Simon; Abalos, Diego; Prodana, Marija; Catarina Bastos, Ana; van Groenigen, Jan Willem; Hungate, Bruce A.; Verheijen, Frank

    2017-05-01

    Applying biochar to soil is thought to have multiple benefits, from helping mitigate climate change [1, 2], to managing waste [3] to conserving soil [4]. Biochar is also widely assumed to boost crop yield [5, 6], but there is controversy regarding the extent and cause of any yield benefit [7]. Here we use a global-scale meta-analysis to show that biochar has, on average, no effect on crop yield in temperate latitudes, yet elicits a 25% average increase in yield in the tropics. In the tropics, biochar increased yield through liming and fertilization, consistent with the low soil pH, low fertility, and low fertilizer inputs typical of arable tropical soils. We also found that, in tropical soils, high-nutrient biochar inputs stimulated yield substantially more than low-nutrient biochar, further supporting the role of nutrient fertilization in the observed yield stimulation. In contrast, arable soils in temperate regions are moderate in pH, higher in fertility, and generally receive higher fertilizer inputs, leaving little room for additional benefits from biochar. Our findings demonstrate that the yield-stimulating effects of biochar are not universal, but may especially benefit agriculture in low-nutrient, acidic soils in the tropics. Biochar management in temperate zones should focus on potential non-yield benefits such as lime and fertilizer cost savings, greenhouse gas emissions control, and other ecosystem services.

  13. Harvester development for new high yielding SRC crops and markets

    Energy Technology Data Exchange (ETDEWEB)

    Paulson, Mark

    2005-07-01

    This report describes the development of harvesting equipment for short rotation cultivation (SRC) crops produced in the UK that can produce fuel to a required specification in a single pass at a cost that is profitable for the grower while minimising the cost of the product. Details are given of the manufacture and installation of new components for large crop harvesting, and production of fuel suitable for co-firing in a coal combustion system using pulverised fuel and fuel suitable for gasification. The development of the drive chain to cope with the higher yielding crops, field tests on SRC crops, and determination of the most economic harvesting system are discussed along with the remanufacture of the chipping drum, and production of market chip samples. Harvesting guidance and an economic analysis of harvesting systems are presented.

  14. Harvester development for new high yielding SRC crops and markets

    International Nuclear Information System (INIS)

    Paulson, Mark

    2005-01-01

    This report describes the development of harvesting equipment for short rotation cultivation (SRC) crops produced in the UK that can produce fuel to a required specification in a single pass at a cost that is profitable for the grower while minimising the cost of the product. Details are given of the manufacture and installation of new components for large crop harvesting, and production of fuel suitable for co-firing in a coal combustion system using pulverised fuel and fuel suitable for gasification. The development of the drive chain to cope with the higher yielding crops, field tests on SRC crops, and determination of the most economic harvesting system are discussed along with the remanufacture of the chipping drum, and production of market chip samples. Harvesting guidance and an economic analysis of harvesting systems are presented

  15. Improving yield potential in crops under elevated CO(2): Integrating the photosynthetic and nitrogen utilization efficiencies.

    Science.gov (United States)

    Kant, Surya; Seneweera, Saman; Rodin, Joakim; Materne, Michael; Burch, David; Rothstein, Steven J; Spangenberg, German

    2012-01-01

    Increasing crop productivity to meet burgeoning human food demand is challenging under changing environmental conditions. Since industrial revolution atmospheric CO(2) levels have linearly increased. Developing crop varieties with increased utilization of CO(2) for photosynthesis is an urgent requirement to cope with the irreversible rise of atmospheric CO(2) and achieve higher food production. The primary effects of elevated CO(2) levels in most crop plants, particularly C(3) plants, include increased biomass accumulation, although initial stimulation of net photosynthesis rate is only temporal and plants fail to sustain the maximal stimulation, a phenomenon known as photosynthesis acclimation. Despite this acclimation, grain yield is known to marginally increase under elevated CO(2). The yield potential of C(3) crops is limited by their capacity to exploit sufficient carbon. The "C fertilization" through elevated CO(2) levels could potentially be used for substantial yield increase. Rubisco is the rate-limiting enzyme in photosynthesis and its activity is largely affected by atmospheric CO(2) and nitrogen availability. In addition, maintenance of the C/N ratio is pivotal for various growth and development processes in plants governing yield and seed quality. For maximizing the benefits of elevated CO(2), raising plant nitrogen pools will be necessary as part of maintaining an optimal C/N balance. In this review, we discuss potential causes for the stagnation in yield increases under elevated CO(2) levels and explore possibilities to overcome this limitation by improved photosynthetic capacity and enhanced nitrogen use efficiency. Opportunities of engineering nitrogen uptake, assimilatory, and responsive genes are also discussed that could ensure optimal nitrogen allocation toward expanding source and sink tissues. This might avert photosynthetic acclimation partially or completely and drive for improved crop production under elevated CO(2) levels.

  16. Improving yield potential in crops under elevated CO2: Integrating the photosynthetic and nitrogen utilization efficiencies

    Science.gov (United States)

    Kant, Surya; Seneweera, Saman; Rodin, Joakim; Materne, Michael; Burch, David; Rothstein, Steven J.; Spangenberg, German

    2012-01-01

    Increasing crop productivity to meet burgeoning human food demand is challenging under changing environmental conditions. Since industrial revolution atmospheric CO2 levels have linearly increased. Developing crop varieties with increased utilization of CO2 for photosynthesis is an urgent requirement to cope with the irreversible rise of atmospheric CO2 and achieve higher food production. The primary effects of elevated CO2 levels in most crop plants, particularly C3 plants, include increased biomass accumulation, although initial stimulation of net photosynthesis rate is only temporal and plants fail to sustain the maximal stimulation, a phenomenon known as photosynthesis acclimation. Despite this acclimation, grain yield is known to marginally increase under elevated CO2. The yield potential of C3 crops is limited by their capacity to exploit sufficient carbon. The “C fertilization” through elevated CO2 levels could potentially be used for substantial yield increase. Rubisco is the rate-limiting enzyme in photosynthesis and its activity is largely affected by atmospheric CO2 and nitrogen availability. In addition, maintenance of the C/N ratio is pivotal for various growth and development processes in plants governing yield and seed quality. For maximizing the benefits of elevated CO2, raising plant nitrogen pools will be necessary as part of maintaining an optimal C/N balance. In this review, we discuss potential causes for the stagnation in yield increases under elevated CO2 levels and explore possibilities to overcome this limitation by improved photosynthetic capacity and enhanced nitrogen use efficiency. Opportunities of engineering nitrogen uptake, assimilatory, and responsive genes are also discussed that could ensure optimal nitrogen allocation toward expanding source and sink tissues. This might avert photosynthetic acclimation partially or completely and drive for improved crop production under elevated CO2 levels. PMID:22833749

  17. Ozone Induced Premature Mortality and Crop Yield Loss in China

    Science.gov (United States)

    Lin, Y.; Jiang, F.; Wang, H.

    2017-12-01

    Exposure to ambient ozone is a major risk factor for health impacts such as chronic obstructive pulmonary disease (COPD) and cause damage to plant and agricultural crops. But these impacts were usually evaluated separately in earlier studies. We apply Community Multi-scale Air Quality model to simulate the ambient O3 concentration at a resolution of 36 km×36 km across China. Then, we follow Global Burden of Diseases approach and AOT40 (i.e., above a threshold of 40 ppb) metric to estimate the premature mortalities and yield losses of major grain crops (i.e., winter wheat, rice and corn) across China due to surface ozone exposure, respectively. Our results show that ozone exposure leads to nearly 67,700 premature mortalities and 145 billion USD losses in 2014. The ozone induced yield losses of all crop production totaled 78 (49.9-112.6)million metric tons, worth 5.3 (3.4-7.6)billion USD, in China. The relative yield losses ranged from 8.5-14% for winter wheat, 3.9-15% for rice, and 2.2-5.5% for maize. We can see that the top four health affected provinces (Sichuan, Henan, Shandong, Jiangsu) are also ranking on the winter wheat and rice crop yield loss. Our results provide further evidence that surface ozone pollution is becoming urgent air pollution in China, and have important policy implications for China to alleviate the impacts of air pollution.

  18. Effect of crop sequence and crop residues on soil C, soil N and yield of maize

    International Nuclear Information System (INIS)

    Shafi, M.; Bakht, J.; Attaullah; Khan, M.A.

    2010-01-01

    Improved management of nitrogen (N) in low N soils is critical for increased soil productivity and crop sustainability. The objective of the present study was to evaluate the effects of residues incorporation, residues retention on soil surface as mulch, fertilizer N and legumes in crop rotation on soil fertility and yield of maize (Zea may L.). Fertilizer N was applied to maize at the rate of 160 kg ha/sup -1/, and to wheat at the rate of 120 kg ha/sup -1/ or no fertilizer N application. Crop rotation with the sequence of maize after wheat (Triticum aestivum L.), maize after lentil (Lens culinaris Medic) or wheat after mash bean (Vigna mungo L.) arranged in a split plot design was followed. Post-harvest incorporation of crop residues and residues retention on soil surface as mulch had significantly (p=0.05) affected grain and stover yield during 2004 and 2005. Two years average data revealed that grain yield was increased by 3.31 and 6.72% due to mulch and residues incorporation. Similarly, stover yield was also enhanced by 5.39 and 10.27% due to the same treatment respectively. Mulch and residues incorporation also improved stover N uptake by 2.23 and 6.58%, respectively. Total soil N and organic matter was non significantly (p=0.05) increased by 5.63 and 2.38% due to mulch and 4.13, 7.75% because of crop residues incorporation in the soil. Maize grain and stover yield responded significantly (p=0.05) to the previous legume (lentil) crop when compared with the previous cereal crop (wheat). The treatment of lentil - maize(+N), on the average, increased grain yield of maize by 15.35%, stover yield by 16.84%, total soil N by 10.31% and organic matter by 10.17%. Similarly, fertilizer N applied to the previous wheat showed carry over effect on grain yield (6.82%) and stover yield (11.37%) of the following maize crop. The present study suggested that retention of residues on soil surface as mulch, incorporation of residues in soil and legume (lentil - maize) rotation

  19. Cover Crops Effects on Soil Chemical Properties and Onion Yield

    Directory of Open Access Journals (Sweden)

    Rodolfo Assis de Oliveira

    2016-01-01

    Full Text Available ABSTRACT Cover crops contribute to nutrient cycling and may improve soil chemical properties and, consequently, increase crop yield. The aim of this study was to evaluate cover crop residue decomposition and nutrient release, and the effects of these plants on soil chemical properties and on onion (Allium cepa L. yield in a no-tillage system. The experiment was carried out in an Inceptisol in southern Brazil, where cover crops were sown in April 2012 and 2013. In July 2013, shoots of weeds (WD, black oats (BO, rye (RY, oilseed radish (RD, oilseed radish + black oats (RD + BO, and oilseed radish + rye (RD + RY were cut at ground level and part of these material from each treatment was placed in litter bags. The litter bags were distributed on the soil surface and were collected at 0, 30, 45, 60, 75, and 90 days after distribution (DAD. The residues in the litter bags were dried, weighed, and ground, and then analyzed to quantify lignin, cellulose, non-structural biomass, total organic carbon (TOC, N, P, K, Ca, and Mg. In November 2012 and 2013, onion crops were harvested to quantify yield, and bulbs were classified according to diameter, and the number of rotted and flowering bulbs was determined. Soil in the 0.00-0.10 m layer was collected for chemical analysis before transplanting and after harvesting onion in December 2012 and 2013. The rye plant residues presented the highest half-life and they released less nutrients until 90 DAD. The great permanence of rye residue was considered a protection to soil surface, the opposite was observed with spontaneous vegetation. The cultivation and addition of dry residue of cover crops increased the onion yield at 2.5 Mg ha-1.

  20. Performance evaluation of selected crop yield-water use models for wheat crop

    Directory of Open Access Journals (Sweden)

    H. E. Igbadun

    2001-10-01

    Full Text Available Crop yield-water use models that provide useful information about the exact form of crop response to different amounts of water used by the crop throughout its growth stages and those that provide adequate information for decisions on optimal use of water in the farm were evaluated. Three crop yield models: Jensen (1968, Minhas et al., (1974 and Bras and Cordova (1981 additive type models were studied. Wheat (Triticum aestivum was planted at the Institute for Agricultural Research Farm during the 1995/96 and 1996/97 irrigation seasons of November to March. The data collected from the field experiments during the 1995/96 planting season were used to calibrate the models and their stress sensitivity factors estimated for four selected growth stages of the wheat crop. The ability of the model to predict grain yield of wheat with the estimated stress sensitivity factors was evaluated by comparing predicted grain yields by each model with those obtained in the field during the 1996/97 season. The three models performed fairly well in predicting grain yields, as the predicted results were not significantly different from the field measured grain yield at 5% level of significance.

  1. Bats and birds increase crop yield in tropical agroforestry landscapes.

    Science.gov (United States)

    Maas, Bea; Clough, Yann; Tscharntke, Teja

    2013-12-01

    Human welfare is significantly linked to ecosystem services such as the suppression of pest insects by birds and bats. However, effects of biocontrol services on tropical cash crop yield are still largely unknown. For the first time, we manipulated the access of birds and bats in an exclosure experiment (day, night and full exclosures compared to open controls in Indonesian cacao agroforestry) and quantified the arthropod communities, the fruit development and the final yield over a long time period (15 months). We found that bat and bird exclusion increased insect herbivore abundance, despite the concurrent release of mesopredators such as ants and spiders, and negatively affected fruit development, with final crop yield decreasing by 31% across local (shade cover) and landscape (distance to primary forest) gradients. Our results highlight the tremendous economic impact of common insectivorous birds and bats, which need to become an essential part of sustainable landscape management. © 2013 John Wiley & Sons Ltd/CNRS.

  2. A crop model-based approach for sunflower yields

    Directory of Open Access Journals (Sweden)

    João Guilherme Dal Belo Leite

    2014-10-01

    Full Text Available Pushed by the Brazilian biodiesel policy, sunflower (Helianthus annuus L. production is becoming increasingly regarded as an option to boost farmers' income, particularly under semi-arid conditions. Biodiesel related opportunities increase the demand for decision-making information at different levels, which could be met by simulation models. This study aimed to evaluate the performance of the crop model OILCROP-SUN to simulate sunflower development and growth under Brazilian conditions and to explore sunflower water- and nitrogen-limited, water-limited and potential yield and yield variability over an array of sowing dates in the northern region of the state of Minas Gerais, Brazil. For model calibration, an experiment was conducted in which two sunflower genotypes (H358 and E122 were cultivated in a clayey soil. Growth components (leaf area index, above ground biomass, grain yield and development stages (crop phenology were measured. A database composed of 27 sunflower experiments from five Brazilian regions was used for model evaluation. The spatial yield distribution of sunflower was mapped using ordinary kriging in ArcGIS. The model simulated sunflower grain productivity satisfactorily (Root Mean Square Error ≈ 13 %. Simulated yields were relatively high (1,750 to 4,250 kg ha-1 and the sowing window was fairly wide (Oct to Feb for northwestern locations, where sunflower could be cultivated as a second crop (double cropping at the end of the rainy season. The hybrid H358 had higher yields for all simulated sowing dates, growth conditions and selected locations.

  3. Does heavy traffic have long term implications for crop yields?

    DEFF Research Database (Denmark)

    Nielsen, J. Aa.; Munkholm, Lars Juhl; Schjønning, Per

    Danish soils are subject to increasingly heavier traffic. Today, wheel loads of 6-12 tons are common on e.g. slurry tankers, combines and sugar beet harvesters. Field trials were started in Denmark in spring 2010 to answer the question: "does heavy traffic have long term implications for crop...... by the contractors delivering the machinery for the experimentation. Each year, spring barley (Hordeum vulgare L.) was established after the compaction treatments. s.ince 2013, investigations on biological tillage (root growth by pioneering crops) have been added to the trials. Significant yield losses up to 12.5 dt...

  4. Harvester development for new high yielding SRC crops and markets

    International Nuclear Information System (INIS)

    2005-12-01

    Details are given of a project to develop a harvesting system that can produce fuel economically in a single pass to a required specification at a cost that is profitable for the grower while minimising the cost of the product. The project objectives listed include the development of a harvester drive chain and feeding systems to allow harvesting of the higher yielding crops now produced in the UK, determination of the most economic harvesting cycle for SRC crops, and production of fuels suitable for co-firing with coal in pulverised fuel systems or for gasification. The work programme and project conclusions are discussed

  5. Estimating crop yields and crop evapotranspiration distributions from remote sensing and geospatial agricultural data

    Science.gov (United States)

    Smith, T.; McLaughlin, D.

    2017-12-01

    Growing more crops to provide a secure food supply to an increasing global population will further stress land and water resources that have already been significantly altered by agriculture. The connection between production and resource use depends on crop yields and unit evapotranspiration (UET) rates that vary greatly, over both time and space. For regional and global analyses of food security it is appropriate to treat yield and UET as uncertain variables conditioned on climatic and soil properties. This study describes how probability distributions of these variables can be estimated by combining remotely sensed land use and evapotranspiration data with in situ agronomic and soils data, all available at different resolutions and coverages. The results reveal the influence of water and temperature stress on crop yield at large spatial scales. They also provide a basis for stochastic modeling and optimization procedures that explicitly account for uncertainty in the environmental factors that affect food production.

  6. Reductions in India's crop yield due to ozone

    Science.gov (United States)

    Ghude, Sachin D.; Jena, Chinmay; Chate, D. M.; Beig, G.; Pfister, G. G.; Kumar, Rajesh; Ramanathan, V.

    2014-08-01

    This bottom-up modeling study, supported by emission inventories and crop production, simulates ozone on local to regional scales. It quantifies, for the first time, potential impact of ozone on district-wise cotton, soybeans, rice, and wheat crops in India for the first decade of the 21st century. Wheat is the most impacted crop with losses of 3.5 ± 0.8 million tons (Mt), followed by rice at 2.1 ± 0.8 Mt, with the losses concentrated in central and north India. On the national scale, this loss is about 9.2% of the cereals required every year (61.2 Mt) under the provision of the recently implemented National Food Security Bill (in 2013) by the Government of India. The nationally aggregated yield loss is sufficient to feed about 94 million people living below poverty line in India.

  7. Use of nuclear and biotechnological tools for improving crop yield

    International Nuclear Information System (INIS)

    Mukherjee, Prasun K.; Venugopalan, V.P.

    2017-01-01

    Crop improvement, crop production and crop protection are the three pillars of agriculture. Optimum yield can be achieved only by cultivating the best available variety coupled with good agronomic practices and robust plant protection (from pests and diseases). Depletion of soil organic matter has become a serious problem, especially in the post-green revolution era, due to the cultivation of nutrient-exhausting, high yielding crop varieties with intensive chemical inputs. Soil organic matter is crucial not only for restoring soil physical properties, but also to sustain the soil flora and fauna that are involved in nutrient cycling. Depletion of cattle population has resulted in less availability of manures. In order to assess the soil health and extent of carbon depletion, we have developed a user-friendly kit for in situ soil organic carbon detection. This technology has been transferred to six companies and many products are already available in the market. This technology has been adopted by CIFAL (Sweden), an FAO -backed NGO for imparting training to the farmers in African countries

  8. Climate change and global crop yield: impacts, uncertainties and adaptation

    OpenAIRE

    Deryng, Delphine

    2014-01-01

    As global mean temperature continues to rise steadily, agricultural systems are projected to face unprecedented challenges to cope with climate change. However, understanding of climate change impacts on global crop yield, and of farmers’ adaptive capacity, remains incomplete as previous global assessments: (1) inadequately evaluated the role of extreme weather events; (2) focused on a small subset of the full range of climate change predictions; (3) overlooked uncertainties related to the ch...

  9. Simulating the influence of crop spatial patterns on canola yield

    DEFF Research Database (Denmark)

    Griepentrog, H.W.; Nielsen, J.; Olsen, Jannie Maj

    2011-01-01

    plant uniformity on the yield of oil seed rape. Voronoi polygons (tessellations) which define the area closer to an individual than to any other individual were used as a measure of the area available to each plant, and corrections were included for extreme polygon shape and eccentricity of the plant...... location within the polygon. These adjusted polygon areas were used to investigate the potential influence of two of the most important determinants of crop sowing spatial uniformity: row width and longitudinal spacing accuracy, on yield per unit area, and to ask how changes in seeding technology would...

  10. Impact of capillary rise and recirculation on simulated crop yields

    Directory of Open Access Journals (Sweden)

    J. Kroes

    2018-05-01

    Full Text Available Upward soil water flow is a vital supply of water to crops. The purpose of this study is to determine if upward flow and recirculated percolation water can be quantified separately, and to determine the contribution of capillary rise and recirculated water to crop yield and groundwater recharge. Therefore, we performed impact analyses of various soil water flow regimes on grass, maize and potato yields in the Dutch delta. Flow regimes are characterized by soil composition and groundwater depth and derived from a national soil database. The intermittent occurrence of upward flow and its influence on crop growth are simulated with the combined SWAP-WOFOST model using various boundary conditions. Case studies and model experiments are used to illustrate the impact of upward flow on yield and crop growth. This impact is clearly present in situations with relatively shallow groundwater levels (85 % of the Netherlands, where capillary rise is a well-known source of upward flow; but also in free-draining situations the impact of upward flow is considerable. In the latter case recirculated percolation water is the flow source. To make this impact explicit we implemented a synthetic modelling option that stops upward flow from reaching the root zone, without inhibiting percolation. Such a hypothetically moisture-stressed situation compared to a natural one in the presence of shallow groundwater shows mean yield reductions for grassland, maize and potatoes of respectively 26, 3 and 14 % or respectively about 3.7, 0.3 and 1.5 t dry matter per hectare. About half of the withheld water behind these yield effects comes from recirculated percolation water as occurs in free-drainage conditions and the other half comes from increased upward capillary rise. Soil water and crop growth modelling should consider both capillary rise from groundwater and recirculation of percolation water as this improves the accuracy of yield simulations. This also improves the

  11. Impact of capillary rise and recirculation on simulated crop yields

    Science.gov (United States)

    Kroes, Joop; Supit, Iwan; van Dam, Jos; van Walsum, Paul; Mulder, Martin

    2018-05-01

    Upward soil water flow is a vital supply of water to crops. The purpose of this study is to determine if upward flow and recirculated percolation water can be quantified separately, and to determine the contribution of capillary rise and recirculated water to crop yield and groundwater recharge. Therefore, we performed impact analyses of various soil water flow regimes on grass, maize and potato yields in the Dutch delta. Flow regimes are characterized by soil composition and groundwater depth and derived from a national soil database. The intermittent occurrence of upward flow and its influence on crop growth are simulated with the combined SWAP-WOFOST model using various boundary conditions. Case studies and model experiments are used to illustrate the impact of upward flow on yield and crop growth. This impact is clearly present in situations with relatively shallow groundwater levels (85 % of the Netherlands), where capillary rise is a well-known source of upward flow; but also in free-draining situations the impact of upward flow is considerable. In the latter case recirculated percolation water is the flow source. To make this impact explicit we implemented a synthetic modelling option that stops upward flow from reaching the root zone, without inhibiting percolation. Such a hypothetically moisture-stressed situation compared to a natural one in the presence of shallow groundwater shows mean yield reductions for grassland, maize and potatoes of respectively 26, 3 and 14 % or respectively about 3.7, 0.3 and 1.5 t dry matter per hectare. About half of the withheld water behind these yield effects comes from recirculated percolation water as occurs in free-drainage conditions and the other half comes from increased upward capillary rise. Soil water and crop growth modelling should consider both capillary rise from groundwater and recirculation of percolation water as this improves the accuracy of yield simulations. This also improves the accuracy of the

  12. Improved Satellite-based Crop Yield Mapping by Spatially Explicit Parameterization of Crop Phenology

    Science.gov (United States)

    Jin, Z.; Azzari, G.; Lobell, D. B.

    2016-12-01

    Field-scale mapping of crop yields with satellite data often relies on the use of crop simulation models. However, these approaches can be hampered by inaccuracies in the simulation of crop phenology. Here we present and test an approach to use dense time series of Landsat 7 and 8 acquisitions data to calibrate various parameters related to crop phenology simulation, such as leaf number and leaf appearance rates. These parameters are then mapped across the Midwestern United States for maize and soybean, and for two different simulation models. We then implement our recently developed Scalable satellite-based Crop Yield Mapper (SCYM) with simulations reflecting the improved phenology parameterizations, and compare to prior estimates based on default phenology routines. Our preliminary results show that the proposed method can effectively alleviate the underestimation of early-season LAI by the default Agricultural Production Systems sIMulator (APSIM), and that spatially explicit parameterization for the phenology model substantially improves the SCYM performance in capturing the spatiotemporal variation in maize and soybean yield. The scheme presented in our study thus preserves the scalability of SCYM, while significantly reducing its uncertainty.

  13. The Importance of Juvenile Root Traits for Crop Yields

    Science.gov (United States)

    White, Philip; Adu, Michael; Broadley, Martin; Brown, Lawrie; Dupuy, Lionel; George, Timothy; Graham, Neil; Hammond, John; Hayden, Rory; Neugebauer, Konrad; Nightingale, Mark; Ramsay, Gavin; Thomas, Catherine; Thompson, Jacqueline; Wishart, Jane; Wright, Gladys

    2014-05-01

    Genetic variation in root system architecture (RSA) is an under-exploited breeding resource. This is partly a consequence of difficulties in the rapid and accurate assessment of subterranean root systems. However, although the characterisation of root systems of large plants in the field are both time-consuming and labour-intensive, high-throughput (HTP) screens of root systems of juvenile plants can be performed in the field, glasshouse or laboratory. It is hypothesised that improving the root systems of juvenile plants can accelerate access to water and essential mineral elements, leading to rapid crop establishment and, consequently, greater yields. This presentation will illustrate how aspects of the juvenile root systems of potato (Solanum tuberosum L.) and oilseed rape (OSR; Brassica napus L.) correlate with crop yields and examine the reasons for such correlations. It will first describe the significant positive relationships between early root system development, phosphorus acquisition, canopy establishment and eventual yield among potato genotypes. It will report the development of a glasshouse assay for root system architecture (RSA) of juvenile potato plants, the correlations between root system architectures measured in the glasshouse and field, and the relationships between aspects of the juvenile root system and crop yields under drought conditions. It will then describe the development of HTP systems for assaying RSA of OSR seedlings, the identification of genetic loci affecting RSA in OSR, the development of mathematical models describing resource acquisition by OSR, and the correlations between root traits recorded in the HTP systems and yields of OSR in the field.

  14. Effect of Different Tillage Methods and Cover Crop Types on Yield and Yield Components of Wheat

    Directory of Open Access Journals (Sweden)

    Z Sharefee

    2018-05-01

    Full Text Available Introduction Conservation agriculture is an appropriate strategy for maintaining and improving agricultural resources which increases crop production and stability and also provides environmental protection. This attitude contributes to the conservation of natural resources (soil, water, and air and is one of the most effective ways to overcome the drought crisis, water management and compensation of soil organic matter in arid and semi-arid regions. The practice of zero-tillage decreases the mineralization of organic matter and contributes to the sequestration of organic carbon in the soil. Higher amounts of organic matter in the soil improve soil structure and root growth, water infiltration and retention, and cation exchange capacity. In addition, zero-tillage reduces soil compaction and crop production costs. Cover crops are cultivated to protect the soil from erosion and elements loss by leaching or runoff and also improve the soil moisture and temperature. Given that South Khorasan farmers still use traditional methods of cultivation of wheat, and cover crops have no place in their farming systems, the aim of this study was to investigate the effect of cover crops types and tillage systems on yield and yield components of wheat in Birjand region. Materials and Methods A split plot field experiment was conducted based on randomized complete block design with three replications at the Research Farm of the University of Birjand over the growing season of 2014-2015. The main factor was the type of tillage (no-till, reduced tillage and conventional tillage and cover crop type (chickling pea (Lathyrus sativus, rocket salad (Eruca sativa, triticale (X Triticosecale witmack, barley (Hordeum vulgaris and control (no cover crop was considered as sub plots. Cover crops were planted on July 2014. Before planting wheat, cover crops were dried through spraying paraquat herbicide using a backpack sprayer at a rate of 3 L ha-1. Then the three tillage

  15. Effects of Climate Change on the Yield and Cropping Area of Major Food Crops: A Case of Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Ruhul Amin

    2015-01-01

    Full Text Available The crops that we grow for food need specific climatic conditions to show better performance in view of economic yield. A changing climate could have both beneficial and harmful effects on crops. Keeping the above view in mind, this study is undertaken to investigate the impacts of climate change (viz. changes in maximum temperature, minimum temperature, rainfall, humidity and sunshine on the yield and cropping area of four major food crops (viz. Aus rice, Aman rice, Boro rice and wheat in Bangladesh. Heteroskedasticity and autocorrelation consistent standard error (HAC and feasible generalized least square (FGLS methods were used to determine the climate-crop interrelations using national level time series data for the period of 1972–2010. Findings revealed that the effects of all the climate variables have had significant contributions to the yield and cropping area of major food crops with distinct variation among them. Maximum temperature statistically significantly affected all the food crops’ yield except Aus rice. Maximum temperature also insignificantly affected cropping area of all the crops. Minimum temperature insignificantly affected Aman rice but benefited other three crops’ yield and cropping area. Rainfall significantly benefitted cropping area of Aus rice, but significantly affected both yield and cropping area of Aman rice. Humidity statistically positively contributed to the yield of Aus and Aman rice but, statistically, negatively influenced the cropping area of Aus rice. Sunshine statistically significantly benefitted only Boro rice yield. Overall, maximum temperature adversely affected yield and cropping area of all the major food crops and rainfall severely affected Aman rice only. Concerning the issue of climate change and ensuring food security, the respective authorities thus should give considerable attention to the generation, development and extension of drought (all major food crops and flood (particularly Aman

  16. Tillage and Composting Strategies to Maximize Potentially Mineralizable Nitrogen in Maize-based Cropping Systems

    Science.gov (United States)

    Cereal crop yields vary drastically between developed and developing nations. In developing nations, a lack of synthetic nitrogen (N) fertilizer often limits yields. Low-cost soil management strategies that increase biologically available soil organic matter can reduce farmer reliance on synthetic N...

  17. effect of cropping system on yield of some sweetpotato and okra ...

    African Journals Online (AJOL)

    oma

    remain the most feasible approach to optimizing crop production and maximizing the use of available land ... available space, and also maximizing the cost of production. Other advantages include ..... with CIP, Peru, Cambridge University Press.

  18. Impact of water-fertilizer interaction on yields of crops

    International Nuclear Information System (INIS)

    Kahlown, M.A.; Iqbal, M.; Junejo, M.R.; Ghaffar, A.

    2002-01-01

    Water-fertilizer interaction was studied on wheat and cotton during crop seasons of 1995 to 1998 in the Fordwah Eastern Sadiqia (south), Irrigation and Drainage Project. Irrigation levels applied included 0.75, 1.00 and 1.25 times the evapotranspiration (ET), while fertilizer doses were 75, 100 and 125 percent of recommendations of NPK for district Bahawalnagar. The experiment was conducted at four different locations of the project, where soil was medium textured, free from salinity/alkalinity and sufficiently drained, with water table in the range of 2-3m from the soil surface. Wheat variety Inqalab-91 and cotton variety CLM-109 were sown at their recommended time of sowing, seed rate and management practices. Irrigation was applied in consideration of open-pan evaporation and crop co-efficient for the respective crop, when sum total of the products of pan-evaporation and KC values reached 7.5 cm. Irrigation was applied to all the plots according to treatment allowance, i.e. , with 25 percent cut and addition to .75 and 1.25 Et levels, respectively. The results indicated that irrigation levels had non-significant effect on wheat and cotton yields. The results clearly negate the concept of heavy irrigation, generally exercised by our farming community. Light irrigation as a results of 0.75 Et indication were equally effective: rather, these were economical and efficient under the scarce water availability. Fertilizer had somewhat significant response. Irrigation and fertilizer did not exhibit much significant interaction. In case of wheat, the two inputs were independent, while cotton had significant inter-dependence of the two variables. The experiment gave the conclusion that both wheat and cotton crops should be applied lighter irrigation and NPK fertilizer must be applied in compliance to recommendations, for efficient and economical use of the available crop-production resources. (author)

  19. Maximizing land productivity by diversified cropping systems with different nitrogen fertilizer types

    Directory of Open Access Journals (Sweden)

    Abd El-Hafeez Ahmed ZOHRY

    2017-12-01

    Full Text Available Six field experiments were conducted in Giza Agricultural Research Station, Egypt during 2010, 2011 and 2012 growing seasons to study the effect of two types of N fertilizers (urea and urea form as slow-release (UF on intercropping cowpea with sunflower and intercropping wheat with pea. A split plot design with three replications was used. The results indicated that insignificant effect of cropping systems was found for sunflower and significant effect was found for cowpea yield. Significant effect of N fertilizers was found on sunflower and insignificant effect was found for cowpea yield. Furthermore, insignificant effect of interaction of cropping systems and N fertilizers was found for sunflower and significant effect was found for cowpea yield. With respect to wheat and pea intercropping, both crops were significantly affected by intercropping system. Significant effect of N fertilizers was found on wheat and insignificant effect was found for pea yield. Both wheat and pea were significantly affected by the interaction of cropping system and N fertilizers. Yield advantage was achieved because land equivalent ratio exceeded 1.00. Dominance analysis proved that leguminous crop is dominated component. Thus, the studied intercropping systems could be recommended to farmers due to its beneficial returns.

  20. Comparison of energy and yield parameters in maize crop

    International Nuclear Information System (INIS)

    Memon, S.Q.; Mirjat, M.S.; Amjad, N.

    2013-01-01

    The aim of this study was to determine direct and indirect input energy in maize production and to investigate the efficiency of energy consumption in maize crop. Result showed that emergence percent, plant height, number of grains per cob and grain yield were the highest in deep tillage as compared to conventional and zero tillage. Total energy input and output were the highest in deep tillage with NPK at the rate 150-75-75kg/ha. The net energy gain was found the highest in deep tillage followed by conventional tillage and the lowest net energy gain in zero tillage. (author)

  1. Coal mine subsidence: effects of mitigation on crop yields

    International Nuclear Information System (INIS)

    Darmody, R.G.; Hetzler, R.T.; Simmons, F.W.

    1992-01-01

    Subsidence from longwall underground coal mining adversely impacts agricultural land by creating wet or ponded areas. While most subsided areas show little impact, some localized places, usually less than 1.5 ha in size, may experience total crop failure. Coal companies mitigate subsidence damaged cropland by installing drainage waterways or by adding fill material to raise the grade. The objective of this study was to test the effectiveness of mitigation in restoring corn and soybean yields to pre-mined levels. Fourteen sites in southern Illinois were selected for study. Corn (Zea mays L.) and soybean (Glycine max L.) yields from mitigated and nearby undisturbed areas were compared for four years. Results varied due to differing weather and site conditions. Mean corn yields overall, however were significantly (α0.05) lower on mitigated areas. There was no significant difference in overall mean soybean yields. Soil fertility levels were similar and did not account for yield differences. 14 refs., 1 fig., 7 tabs

  2. Evaluation of the Effect of Crop Rotations on Yield and Yield Components of Bread Wheat (Triticum aestivum L. cv. Darya)

    OpenAIRE

    H. A. Fallahi; U. Mahmadyarov; H. Sabouri; M. Ezat-Ahmadi4

    2013-01-01

    Grain yield in wheat is influenced directly and indirectly by other plant characteristics. One of the main goals in wheat breeding programs is increase of grain yield. Considering the role of crop rotation in increasing grain yield, and in order to study the difference between crop rotations for wheat yield and yield components (Darya cultivar), an experiment was conducted with six rotation treatments (wheat-chickpea-wheat, wheat-cotton-wheat, wheat-watermelon-wheat, wheat-wheat-wheat, wheat-...

  3. Cacao Crop Management Zones Determination Based on Soil Properties and Crop Yield

    Directory of Open Access Journals (Sweden)

    Perla Silva Matos de Carvalho

    Full Text Available ABSTRACT: The use of management zones has ensured yield success for numerous agricultural crops. In spite of this potential, studies applying precision agricultural techniques to cacao plantations are scarce or almost nonexistent. The aim of the present study was to delineate management zones for cacao crop, create maps combining soil physical properties and cacao tree yield, and identify what combinations best fit within the soil chemical properties. The study was conducted in 2014 on a cacao plantation in a Nitossolo Háplico Eutrófico (Rhodic Paleudult in Bahia, Brazil. Soil samples were collected in a regular sampling grid with 120 sampling points in the 0.00-0.20 m soil layer, and pH(H2O, P, K+, Ca2+, Mg2+, Na+, H+Al, Fe, Zn, Cu, Mn, SB, V, TOC, effective CEC, CEC at pH 7.0, coarse sand, fine sand, clay, and silt were determined. Yield was measured in all the 120 points every month and stratified into annual, harvest, and early-harvest cacao yields. Data were subjected to geostatistical analysis, followed by ordinary kriging interpolation. The management zones were defined through a Fuzzy K-Means algorithm for combinations between soil physical properties and cacao tree yield. Concordance analysis was carried out between the delineated zones and soil chemical properties using Kappa coefficients. The zones that best classified the soil chemical properties were defined from the early-harvest cacao yield map associated with the clay or sand fractions. Silt content proved to be an inadequate variable for defining management zones for cacao production. The delineated management zones described the spatial variability of the soil chemical properties, and are therefore important for site-specific management in the cacao crop.

  4. Enhanced biogas yield from energy crops with rumen anaerobic fungi

    Energy Technology Data Exchange (ETDEWEB)

    Prochazka, Jindrich; Zabranska, Jana; Dohanyos, Michal [Department of Water Technology and Environmental Engineering, Faculty of Environmental Technology, Institute of Chemical Technology in Prague, Prague (Czech Republic); Mrazek, Jakub; Strosova, Lenka; Fliegerova, Katerina [Laboratory of Anaerobic Microbiology, Institute of Animal Physiology and Genetics, CAS, v.v.i., Prague (Czech Republic)

    2012-06-15

    Anaerobic fungi (AF) are able to degrade crop substrates with higher efficiency than commonly used anaerobic bacteria. The aim of this study was to investigate ways of use of rumen AF to improve biogas production from energy crops under laboratory conditions. In this study, strains of AF isolated from feces or rumen fluid of cows and deer were tested for their ability to integrate into the anaerobic bacterial ecosystem used for biogas production, in order to improve degradation of substrate polysaccharides and consequently the biogas yield. Batch culture, fed batch culture, and semicontinuous experiments have been performed using anaerobic sludge from pig slurry fermentation and different kinds of substrates (celluloses, maize, and grass silage) inoculated by different genera of AF. All experiments showed a positive effect of AF on the biogas yield and quality. AF improved the biogas production by 4-22%, depending on the substrate and AF species used. However, all the cultivation experiments indicated that rumen fungi do not show long-term survival in fermenters with digestate from pig slurry. The best results were achieved during fed batch experiment with fungal culture Anaeromyces (KF8), in which biogas production was enhanced during the whole experimental period of 140 days. This result has not been achieved in semicontinuous experiment, where increment in biogas production in fungal enriched reactor was only 4% after 42 days. (copyright 2012 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Effectiveness of rabbit manure biofertilizer in barley crop yield.

    Science.gov (United States)

    Islas-Valdez, Samira; Lucho-Constantino, Carlos A; Beltrán-Hernández, Rosa I; Gómez-Mercado, René; Vázquez-Rodríguez, Gabriela A; Herrera, Juan M; Jiménez-González, Angélica

    2017-11-01

    The quality of biofertilizers is usually assessed only in terms of the amount of nutrients that they supply to the crops and their lack of viable pathogens and phytotoxicity. The goal of this study was to determine the effectiveness of a liquid biofertilizer obtained from rabbit manure in terms of presence of pathogens, phytotoxicity, and its effect on the grain yield and other agronomic traits of barley (Hordeum vulgare L.). Environmental effects of the biofertilizer were also evaluated by following its influence on selected soil parameters. We applied the biofertilizer at five combinations of doses and timings each and in two application modes (foliar or direct soil application) within a randomized complete block design with three replicates and using a chemical fertilizer as control. The agronomic traits evaluated were plant height, root length, dry weight, and number of leaves and stems at three growth stages: tillering, jointing, and flowering. The effectiveness of the biofertilizer was significantly modified by the mode of application, the growth stage of the crop, and the dose of biofertilizer applied. The results showed that the foliar application of the biofertilizer at the tillering stage produced the highest increase in grain yield (59.7 %, p biofertilizer caused significant changes in soil, particularly concerning pH, EC, Ca, Zn, Mg, and Mn. It is our view that the production and use of biofertilizers are a reliable alternative to deal with a solid waste problem while food security is increased.

  6. Maximizing the ExoEarth candidate yield from a future direct imaging mission

    International Nuclear Information System (INIS)

    Stark, Christopher C.; Roberge, Aki; Mandell, Avi; Robinson, Tyler D.

    2014-01-01

    ExoEarth yield is a critical science metric for future exoplanet imaging missions. Here we estimate exoEarth candidate yield using single visit completeness for a variety of mission design and astrophysical parameters. We review the methods used in previous yield calculations and show that the method choice can significantly impact yield estimates as well as how the yield responds to mission parameters. We introduce a method, called Altruistic Yield Optimization, that optimizes the target list and exposure times to maximize mission yield, adapts maximally to changes in mission parameters, and increases exoEarth candidate yield by up to 100% compared to previous methods. We use Altruistic Yield Optimization to estimate exoEarth candidate yield for a large suite of mission and astrophysical parameters using single visit completeness. We find that exoEarth candidate yield is most sensitive to telescope diameter, followed by coronagraph inner working angle, followed by coronagraph contrast, and finally coronagraph contrast noise floor. We find a surprisingly weak dependence of exoEarth candidate yield on exozodi level. Additionally, we provide a quantitative approach to defining a yield goal for future exoEarth-imaging missions.

  7. Fertigation for improved water use efficiency and crop yield

    International Nuclear Information System (INIS)

    Al-Wabel, M.I.; Al-Jaloud, A.A.; Hussain, G.; Karimulla, S.

    2002-01-01

    A greenhouse experiment was carried out at the Al-Muzahmiya Research Station, King Abdulaziz City for Science and Technology, Riyadh, to evaluate the effect of fertigation on cucumber yield. Five labelled N ( 15 N) treatments namely a control, soil application (120 mg N L -1 ), N-1 (60 mg N L -1 ), N-2 (120 mg N L -1 ) and N-3 (180 mg N L -1 ) were tried for their effect on greenhouse cucumber yield. A cucumber cultivar (Figaro F-1) was sown as test crop. The experiment was carried out during the period from April to July, 1997. The mean fresh fruit cucumber yield ranged between 7.73 to 33.74 t ha -1 . Highest yield was obtained with the labelled N application of 180 mg L -1 . The mean ranges for the different elements in the plant leaves were 1.33- 2.70% (N), 0.364-0.515% (P) and 1.57-3.82% (K). Whereas, in the plant shoot these ranges were 1.26-2.42% (N), 0.28-0.49% (P) and 4.74-9.45% (K). The mean content of the different elements in the cucumber fruit was 2.15-3.70% (N), 0.47-0.73% (P) and 4.40-5.23% (K). The soil salinity varied between 2.23-4.66 dS m -1 in the top soil (0-20 cm depth) and 0.95-2.62 dS m -1 in the sub-surface (20-40 cm depth) soil. The application did not affect significantly the soil salinity and was found well below the hazardous limit for most crops. The evolution of the other elements was different.. For example, elements such as Ca, P and K showed an increase while Na showed a decrease, whereas the Mg content did not respond with increasing N application. The soil moisture ranged between 8.06-9.15% (0-20 cm depth) and 5.51-9.36% (20-40 cm depth) and did not show any effect of N application. The nitrogen use efficiency (NUE) varied between 72.70 to 129.53 kg kg -1 N in the different N treatments. The mean 15 N a.e. ranged from 0.010 to 0.844% (leaves), 0.058 to 0.855% (shoots), 0.044 to 0.747 (roots) and 0.07 to 0.823 % (fruits). In conclusion, the mean highest yield of cucumber as fresh fruit was 33.74 t ha -1 , obtained with 180 mg N L

  8. Bivariate return periods of temperature and precipitation explain a large fraction of European crop yields

    Science.gov (United States)

    Zscheischler, Jakob; Orth, Rene; Seneviratne, Sonia I.

    2017-07-01

    Crops are vital for human society. Crop yields vary with climate and it is important to understand how climate and crop yields are linked to ensure future food security. Temperature and precipitation are among the key driving factors of crop yield variability. Previous studies have investigated mostly linear relationships between temperature and precipitation and crop yield variability. Other research has highlighted the adverse impacts of climate extremes, such as drought and heat waves, on crop yields. Impacts are, however, often non-linearly related to multivariate climate conditions. Here we derive bivariate return periods of climate conditions as indicators for climate variability along different temperature-precipitation gradients. We show that in Europe, linear models based on bivariate return periods of specific climate conditions explain on average significantly more crop yield variability (42 %) than models relying directly on temperature and precipitation as predictors (36 %). Our results demonstrate that most often crop yields increase along a gradient from hot and dry to cold and wet conditions, with lower yields associated with hot and dry periods. The majority of crops are most sensitive to climate conditions in summer and to maximum temperatures. The use of bivariate return periods allows the integration of non-linear impacts into climate-crop yield analysis. This offers new avenues to study the link between climate and crop yield variability and suggests that they are possibly more strongly related than what is inferred from conventional linear models.

  9. Increasing plant diversity with border crops reduces insecticide use and increases crop yield in urban agriculture.

    Science.gov (United States)

    Wan, Nian-Feng; Cai, You-Ming; Shen, Yan-Jun; Ji, Xiang-Yun; Wu, Xiang-Wen; Zheng, Xiang-Rong; Cheng, Wei; Li, Jun; Jiang, Yao-Pei; Chen, Xin; Weiner, Jacob; Jiang, Jie-Xian; Nie, Ming; Ju, Rui-Ting; Yuan, Tao; Tang, Jian-Jun; Tian, Wei-Dong; Zhang, Hao; Li, Bo

    2018-05-24

    Urban agriculture is making an increasing contribution to food security in large cities around the world. The potential contribution of biodiversity to ecological intensification in urban agricultural systems has not been investigated. We present monitoring data collected from rice fields in 34 community farms in mega-urban Shanghai, China, from 2001 to 2015, and show that the presence of a border crop of soybeans and neighboring crops (maize, eggplant and Chinese cabbage), both without weed control, increased invertebrate predator abundance, decreased the abundance of pests and dependence on insecticides, and increased grain yield and economic profits. Two 2 year randomized experiments with the low and high diversity practices in the same locations confirmed these results. Our study shows that diversifying farming practices can make an important contribution to ecological intensification and the sustainable use of associated ecosystem services in an urban ecosystem. © 2018, Wan et al.

  10. Yields of crops on a rhodic ferralsol in southern Brazil in relation to ...

    African Journals Online (AJOL)

    Even though no-tillage, crop rotation management systems have been accepted as useful for sustaining crop production, there is the need to identify which crops can be used for such rotations. This study evaluated the dry matter and grain yields of eight winter and two summer crops (maize, Zea mays L. and soybean, ...

  11. Climate change and its effect on grain crops yields in the middle belt ...

    African Journals Online (AJOL)

    user

    impact of climate on the yield on reference crops in Kwara State, Nigeria. Multiple ... As a result, it is recommended that investment should be made to intensify the cultivation of crops on which .... Project (KWADP), Ilorin on maize (Zea mays), sorghum (Sorghum ... crop yield and the evaluation of a decade data is based on.

  12. Spatial resolution of precipitation and radiation: the effect on regional crop yield forecasts

    NARCIS (Netherlands)

    Wit, de A.J.W.; Boogaard, H.L.; Diepen, van C.A.

    2005-01-01

    This paper explores the effect of uncertainty in precipitation and radiation on crop simulation results at local (50 × 50 km grids) and regional scale (NUTS1 regions) and on the crop yield forecasts for Germany and France. Two experiments were carried out where crop yields for winter-wheat and grain

  13. THE EFFECTS OF CLIMATIC VARIABLES AND CROP AREA ON MAIZE YIELD AND VARIABILITY IN GHANA

    Directory of Open Access Journals (Sweden)

    Henry De-Graft Acquah

    2012-10-01

    Full Text Available Climate change tends to have negative effects on crop yield through its influence on crop production. Understanding the relationship between climatic variables and crop area on the mean and variance of crop yield will facilitate development of appropriate policies to cope with climate change. This paper examines the effects of climatic variables and crop area on the mean and variance of maize yield in Ghana. The Just and Pope stochastic production function using the Cobb-Douglas functional form was employed. The results show that average maize yield is positively related to crop area and negatively related to rainfall and temperature. Furthermore, increase in crop area and temperature will enlarge maize yield variability while rainfall increase will decrease the variability in maize yield.

  14. Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions

    NARCIS (Netherlands)

    Li, T.; Hasegawa, T.; Yin, X.; Zhu, Y.; Boote, K.; Adam, M.; Bregaglio, S.; Buis, S.; Confalonieri, R.; Fumoto, T.; Gaydon, D.; Marcaida III, M.; Nakagawa, H.; Oriol, P.; Ruane, A.C.; Ruget, F.; Singh, B.; Singh, U.; Tang, L.; Yoshida, H.; Zhang, Z.; Bouman, B.

    2015-01-01

    Predicting rice (Oryza sativa) productivity under future climates is important for global food security. Ecophysiological crop models in combination with climate model outputs are commonly used in yield prediction, but uncertainties associated with crop models remain largely unquantified. We

  15. Increasing plant density in eastern United States broccoli production systems to maximize marketable head yields

    Science.gov (United States)

    Increased demand for fresh market broccoli (Brassica oleracea L. var. italica) has led to increased production along the eastern seaboard of the United States. Maximizing broccoli yields is a primary concern for quickly expanding eastern commercial markets. Thus, a plant density study was carried ...

  16. Influence of Previous Crop on Durum Wheat Yield and Yield Stability in a Long-term Experiment

    Directory of Open Access Journals (Sweden)

    Anna Maria Stellacci

    2011-02-01

    Full Text Available Long-term experiments are leading indicators of sustainability and serve as an early warning system to detect problems that may compromise future productivity. So the stability of yield is an important parameter to be considered when judging the value of a cropping system relative to others. In a long-term rotation experiment set up in 1972 the influence of different crop sequences on the yields and on yield stability of durum wheat (Triticum durum Desf. was studied. The complete field experiment is a split-split plot in a randomized complete block design with two replications; the whole experiment considers three crop sequences: 1 three-year crop rotation: sugar-beet, wheat + catch crop, wheat; 2 one-year crop rotation: wheat + catch crop; 3 wheat continuous crop; the split treatments are two different crop residue managements; the split-split plot treatments are 18 different fertilization formulas. Each phase of every crop rotation occurred every year. In this paper only one crop residue management and only one fertilization treatment have been analized. Wheat crops in different rotations are coded as follows: F1: wheat after sugar-beet in three-year crop rotation; F2: wheat after wheat in three-year crop rotation; Fc+i: wheat in wheat + catch crop rotation; Fc: continuous wheat. The following two variables were analysed: grain yield and hectolitre weight. Repeated measures analyses of variance and stability analyses have been perfomed for the two variables. The stability analysis was conducted using: three variance methods, namely the coefficient of variability of Francis and Kannenberg, the ecovalence index of Wricke and the stability variance index of Shukla; the regression method of Eberhart and Russell; a method, proposed by Piepho, that computes the probability of one system outperforming another system. It has turned out that each of the stability methods used has enriched of information the simple variance analysis. The Piepho

  17. Tradeoffs between water requirements and yield stability in annual vs. perennial crops

    Science.gov (United States)

    Vico, Giulia; Brunsell, Nathaniel A.

    2018-02-01

    Population growth and changes in climate and diets will likely further increase the pressure on agriculture and water resources globally. Currently, staple crops are obtained from annuals plants. A shift towards perennial crops may enhance many ecosystem services, but at the cost of higher water requirements and lower yields. It is still unclear when the advantages of perennial crops overcome their disadvantages and perennial crops are thus a sustainable solution. Here we combine a probabilistic description of the soil water balance and crop development with an extensive dataset of traits of congeneric annuals and perennials to identify the conditions for which perennial crops are more viable than annual ones with reference to yield, yield stability, and effective use of water. We show that the larger and more developed roots of perennial crops allow a better exploitation of soil water resources and a reduction of yield variability with respect to annual species, but their yields remain lower when considering grain crops. Furthermore, perennial crops have higher and more variable irrigation requirements and lower water productivity. These results are important to understand the potential consequences for yield, its stability, and water resource use of a shift from annual to perennial crops and, more generally, if perennial crops may be more resilient than annual crops in the face of climatic fluctuations.

  18. Increasing Crop Yields in Water Stressed Countries by Combining Operations of Freshwater Reservoir and Wastewater Reclamation Plant

    Science.gov (United States)

    Bhushan, R.; Ng, T. L.

    2015-12-01

    Freshwater resources around the world are increasing in scarcity due to population growth, industrialization and climate change. This is a serious concern for water stressed countries, including those in Asia and North Africa where future food production is expected to be negatively affected by this. To address this problem, we investigate the potential of combining freshwater reservoir and wastewater reclamation operations. Reservoir water is the cheaper source of irrigation, but is often limited and climate sensitive. Treated wastewater is a more reliable alternative for irrigation, but often requires extensive further treatment which can be expensive. We propose combining the operations of a reservoir and a wastewater reclamation plant (WWRP) to augment the supply from the reservoir with reclaimed water for increasing crop yields in water stressed regions. The joint system of reservoir and WWRP is modeled as a multi-objective optimization problem with the double objective of maximizing the crop yield and minimizing total cost, subject to constraints on reservoir storage, spill and release, and capacity of the WWRP. We use the crop growth model Aquacrop, supported by The Food and Agriculture Organization of the United Nations (FAO), to model crop growth in response to water use. Aquacrop considers the effects of water deficit on crop growth stages, and from there estimates crop yield. We generate results comparing total crop yield under irrigation with water from just the reservoir (which is limited and often interrupted), and yield with water from the joint system (which has the potential of higher supply and greater reliability). We will present results for locations in India and Africa to evaluate the potential of the joint operations for improving food security in those areas for different budgets.

  19. Climate change impacts on crop yields, land use and environment in response to crop sowing dates and thermal time requirements

    NARCIS (Netherlands)

    Zimmermann, Andrea; Webber, Heidi; Zhao, Gang; Ewert, Frank; Kros, Hans; Wolf, Joost; Britz, Wolfgang; Vries, de Wim

    2017-01-01

    Impacts of climate change on European agricultural production, land use and the environment depend on its impact on crop yields. However, many impact studies assume that crop management remains unchanged in future scenarios, while farmers may adapt their sowing dates and cultivar thermal time

  20. A quality assessment of the MARS crop yield forecasting system for the European Union

    Science.gov (United States)

    van der Velde, Marijn; Bareuth, Bettina

    2015-04-01

    Timely information on crop production forecasts can become of increasing importance as commodity markets are more and more interconnected. Impacts across large crop production areas due to (e.g.) extreme weather and pest outbreaks can create ripple effects that may affect food prices and availability elsewhere. The MARS Unit (Monitoring Agricultural ResourceS), DG Joint Research Centre, European Commission, has been providing forecasts of European crop production levels since 1993. The operational crop production forecasting is carried out with the MARS Crop Yield Forecasting System (M-CYFS). The M-CYFS is used to monitor crop growth development, evaluate short-term effects of anomalous meteorological events, and provide monthly forecasts of crop yield at national and European Union level. The crop production forecasts are published in the so-called MARS bulletins. Forecasting crop yield over large areas in the operational context requires quality benchmarks. Here we present an analysis of the accuracy and skill of past crop yield forecasts of the main crops (e.g. soft wheat, grain maize), throughout the growing season, and specifically for the final forecast before harvest. Two simple benchmarks to assess the skill of the forecasts were defined as comparing the forecasts to 1) a forecast equal to the average yield and 2) a forecast using a linear trend established through the crop yield time-series. These reveal a variability in performance as a function of crop and Member State. In terms of production, the yield forecasts of 67% of the EU-28 soft wheat production and 80% of the EU-28 maize production have been forecast superior to both benchmarks during the 1993-2013 period. In a changing and increasingly variable climate crop yield forecasts can become increasingly valuable - provided they are used wisely. We end our presentation by discussing research activities that could contribute to this goal.

  1. Estimating the impact of mineral aerosols on crop yields in food insecure regions using statistical crop models

    Science.gov (United States)

    Hoffman, A.; Forest, C. E.; Kemanian, A.

    2016-12-01

    A significant number of food-insecure nations exist in regions of the world where dust plays a large role in the climate system. While the impacts of common climate variables (e.g. temperature, precipitation, ozone, and carbon dioxide) on crop yields are relatively well understood, the impact of mineral aerosols on yields have not yet been thoroughly investigated. This research aims to develop the data and tools to progress our understanding of mineral aerosol impacts on crop yields. Suspended dust affects crop yields by altering the amount and type of radiation reaching the plant, modifying local temperature and precipitation. While dust events (i.e. dust storms) affect crop yields by depleting the soil of nutrients or by defoliation via particle abrasion. The impact of dust on yields is modeled statistically because we are uncertain which impacts will dominate the response on national and regional scales considered in this study. Multiple linear regression is used in a number of large-scale statistical crop modeling studies to estimate yield responses to various climate variables. In alignment with previous work, we develop linear crop models, but build upon this simple method of regression with machine-learning techniques (e.g. random forests) to identify important statistical predictors and isolate how dust affects yields on the scales of interest. To perform this analysis, we develop a crop-climate dataset for maize, soybean, groundnut, sorghum, rice, and wheat for the regions of West Africa, East Africa, South Africa, and the Sahel. Random forest regression models consistently model historic crop yields better than the linear models. In several instances, the random forest models accurately capture the temperature and precipitation threshold behavior in crops. Additionally, improving agricultural technology has caused a well-documented positive trend that dominates time series of global and regional yields. This trend is often removed before regression with

  2. Assessment of climate change impact on yield of major crops in the Banas River Basin, India.

    Science.gov (United States)

    Dubey, Swatantra Kumar; Sharma, Devesh

    2018-09-01

    Crop growth models like AquaCrop are useful in understanding the impact of climate change on crop production considering the various projections from global circulation models and regional climate models. The present study aims to assess the climate change impact on yield of major crops in the Banas River Basin i.e., wheat, barley and maize. Banas basin is part of the semi-arid region of Rajasthan state in India. AquaCrop model is used to calculate the yield of all the three crops for a historical period of 30years (1981-2010) and then compared with observed yield data. Root Mean Square Error (RMSE) values are calculated to assess the model accuracy in prediction of yield. Further, the calibrated model is used to predict the possible impacts of climate change and CO 2 concentration on crop yield using CORDEX-SA climate projections of three driving climate models (CNRM-CM5, CCSM4 and MPI-ESM-LR) for two different scenarios (RCP4.5 and RCP8.5) for the future period 2021-2050. RMSE values of simulated yield with respect to observed yield of wheat, barley and maize are 11.99, 16.15 and 19.13, respectively. It is predicted that crop yield of all three crops will increase under the climate change conditions for future period (2021-2050). Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Global impacts of surface ozone changes on crop yields and land use

    NARCIS (Netherlands)

    Chuwah, Clifford; van Noije, Twan; van Vuuren, Detlef P.; Stehfest, Elke; Hazeleger, Wilco

    2015-01-01

    Exposure to surface ozone has detrimental impacts on vegetation and crop yields. In this study, we estimate ozone impacts on crop production and subsequent impacts on land use in the 2005-2050 period using results of the TM5 atmospheric chemistry and IMAGE integrated assessment model. For the crops

  4. Analysis of the spatial variability of crop yield and soil properties in small agricultural plots

    Directory of Open Access Journals (Sweden)

    Vieira Sidney Rosa

    2003-01-01

    Full Text Available The objective of this study was to assess spatial variability of soil properties and crop yield under no tillage as a function of time, in two soil/climate conditions in São Paulo State, Brazil. The two sites measured approximately one hectare each and were cultivated with crop sequences which included corn, soybean, cotton, oats, black oats, wheat, rye, rice and green manure. Soil fertility, soil physical properties and crop yield were measured in a 10-m grid. The soils were a Dusky Red Latossol (Oxisol and a Red Yellow Latossol (Ultisol. Soil sampling was performed in each field every two years after harvesting of the summer crop. Crop yield was measured at the end of each crop cycle, in 2 x 2.5 m sub plots. Data were analysed using semivariogram analysis and kriging interpolation for contour map generation. Yield maps were constructed in order to visually compare the variability of yields, the variability of the yield components and related soil properties. The results show that the factors affecting the variability of crop yield varies from one crop to another. The changes in yield from one year to another suggest that the causes of variability may change with time. The changes with time for the cross semivariogram between phosphorus in leaves and soybean yield is another evidence of this result.

  5. CHANGES IN CLIMATIC CHARACTERISTICS AND CROP YIELD IN KWARA STATE (NIGERIA

    Directory of Open Access Journals (Sweden)

    O. Oriola

    2017-01-01

    Full Text Available This paper assessed the vagaries of climatic elements on crop yield in Kwara State with a view to predicting the future climatic suitability level for selected crops in the state. Descriptive and infrential statistics analytical methods were used to examine the pattern of climatic elements for a period of 30 years. Analysis of variance was used to examine the variations in crop yield and also to determine whether or not significant differences in the harvests of the period under investigation. Correlation analysis was used to determine the relationship between climatic elements and crop yield while multiple regression analysis was used to determine the contribution of each climatic elements to crop yield. Time series analysis was used to project crop yield from 2014 to 2025. GAEZ model was adopted to determine the climatic suitability for the selected crops over time 1960 - 2050 and ArcGIS 10.3 software was used to produce the crop suitability maps. The result revealed that cassava, yam, maize and cowpea would be less suitable for production with the rate at which the climate is changing. The result also revealed that the climatic suitability level for cassava, yam, maize and cowpea would reduce drastically with time. The prediction shows severe impacts of changes in the selected climatic elements on both overall climatic suitability and crop the selected crops yield for by 2050.

  6. Metal accumulation and crop yield for a variety of edible crops grown in diverse soil media amended with sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, J; Blessin, C W; Inglett, G E; Kwolek, W F

    1981-07-01

    This study was designed to determine the best uses for sewage sludge, by amending soil materials ranging in scope from distributed materials such as coal mine gob and sanitary landfill to fully productive agricultural soils. The following aspects were studied: physical characteristics of the soils as a result of their amendment with sludge; yields for a broad variety of crop species; nutritional quality of selected crops; metal uptake and accumulation in crop tissues; and translocation of metals from soil medium to tissues. Harvested crops with the highest metal contents were derived from landfill and coal mine gob treatments, and the lowest were associated with loam, clay, and agriculturally productive topsoils.

  7. Agricultural interventions for water saving and crop yield improvement, in a Mediterranean area - an experimental design

    Science.gov (United States)

    Morianou, Giasemi; Kourgialas, Nektarios; Psarras, George; Koubouris, George; Arampatzis, George; Karatzas, George; Pavlidou, Elisavet

    2017-04-01

    This work is a part of LIFE+ AGROCLIMAWATER project and the aim is to improve the water efficiency, increase the adaptive capacity of tree corps and save water, in a Mediterranean area, under different climatic conditions and agricultural practices. The experimental design as well as preliminary results at farm and river basin scales are presented in this work. Specifically, ten (10) pilot farms, both organic and conventional ones have been selected in the sub-basin of Platanias in western Crete - Greece. These ten pilot farms were selected representing the most typical crops in Platanias area (olive trees and citrus trees), as well as the typical soil, landscape and agricultural practices differentiation for each crop (field slope, water availability, soil type, management regime). From the ten pilot farms, eight were olive farms and the rest two citrus. This proportion correspond adequacy to the presentence of olive and citrus crops in the extended area of Platanias prefecture. Each of the ten pilot farm has been divided in two parts, the first one will be used as a control part, while the other one as the demonstration part where the interventions will be applied. The action plans for each selected farm are based on the following groups of possible interventions: a) reduction of water evaporation losses from soil surface, b) reduction of transpiration water losses through winter pruning and summer pruning, c) reduction of deep percolation water and nutrient losses, d) reduction of surface runoff, e) measures in order to maximize the efficiency of irrigation and f) rationalization of fertilizers and agrochemicals utilized. Preliminary results indicate that water saving and crop yield can be significantly improved based on the above innervations both at farm and river basin scale.

  8. Effects of Tropical Rotation Crops on Meloidogyne arenaria Population Densities and Vegetable Yields in Microplots.

    Science.gov (United States)

    McSorley, R; Dickson, D W; de Brito, J A; Hewlett, T E; Frederick, J J

    1994-06-01

    The effects of 12 summer crop rotation treatments on population densities of Meloidogyne arenaria race 1 and on yields of subsequent spring vegetable crops were determined in microplots. The crop sequence was: (i) rotation crops during summer 1991 ; (ii) cover crop of rye (Secale cereale) during winter 1991-92; (iii) squash (Cucurbita pepo) during spring 1992; (iv) rotation crops during summer 1992; (v) rye during winter 1992-93; (vi) eggplant (Solanum melongena) during spring 1993. The 12 rotation treatments were castor (Ricinus communis), cotton (Gossypium hirsutum), velvetbean (Mucuna deeringiana), crotalaria (Crotalaria spectabilis), fallow, hairy indigo (Indigofera hirsuta), American jointvetch (Aeschynomene americana), sorghum-sudangrass (Sorghum bicolor x S. sudanense), soybean (Glycine max), horsebean (Canavalia ensiformis), sesame (Sesamum indicum), and peanut (Arachis hypogaea). Compared to peanut, the first eight rotation treatments resulted in lower (P crops may provide a means for depressing M. arenaria population densities on a short-term basis to enhance yields in a subsequent susceptible vegetable crop.

  9. Humans as Sensors: Assessing the Information Value of Qualitative Farmer's Crop Condition Surveys for Crop Yield Monitoring and Forecasting

    Science.gov (United States)

    Beguería, S.

    2017-12-01

    While large efforts are devoted to developing crop status monitoring and yield forecasting systems trough the use of Earth observation data (mostly remotely sensed satellite imagery) and observational and modeled weather data, here we focus on the information value of qualitative data on crop status from direct observations made by humans. This kind of data has a high value as it reflects the expert opinion of individuals directly involved in the development of the crop. However, they have issues that prevent their direct use in crop monitoring and yield forecasting systems, such as their non-spatially explicit nature, or most importantly their qualitative nature. Indeed, while the human brain is good at categorizing the status of physical systems in terms of qualitative scales (`very good', `good', `fair', etcetera), it has difficulties in quantifying it in physical units. This has prevented the incorporation of this kind of data into systems that make extensive use of numerical information. Here we show an example of using qualitative crop condition data to estimate yields of the most important crops in the US early in the season. We use USDA weekly crop condition reports, which are based on a sample of thousands of reporters including mostly farmers and people in direct contact with them. These reporters provide subjective evaluations of crop conditions, in a scale including five levels ranging from `very poor' to `excellent'. The USDA report indicates, for each state, the proportion of reporters fort each condition level. We show how is it possible to model the underlying non-observed quantitative variable that reflects the crop status on each state, and how this model is consistent across states and years. Furthermore, we show how this information can be used to monitor the status of the crops and to produce yield forecasts early in the season. Finally, we discuss approaches for blending this information source with other, more classical earth data sources

  10. New approach for regional crop yield gap analysis in the Borujen ...

    African Journals Online (AJOL)

    enoh

    2012-03-20

    Mar 20, 2012 ... for model calibration and evaluation of WOFOST as a crop growth ... In general, simulated results matched well with the measured ... regional-scale yield prediction and assessment (Jagtap ... the benchmark value and most of the variation in yield ... The model simulates daily crop growth rate, based on.

  11. Correlation Between Precipitation and Crop Yield for Corn and Cotton Produced in Alabama

    Science.gov (United States)

    Hayes, Carol E.; Perkey, Donald J.

    1998-01-01

    In this study, variations in precipitation during the time of corn silking are compared to Alabama corn yields. Also, this study compares precipitation variations during bloom to Alabama cotton yield. The goal is to obtain mathematical correlations between rainfall during the crop's critical period and the crop amount harvested per acre.

  12. An investigation into the energy use in relation to yield of traditional crops in central Himalaya, India

    International Nuclear Information System (INIS)

    Chandra, Abhishek; Saradhi, P. Pardha; Rao, K.S.; Saxena, K.G.; Maikhuri, R.K.

    2011-01-01

    Agrobiodiversity and agroecosystem management have changed in central Himalaya due to increasing emphasis on market economy and the motive 'maximization of profit'. Such changes have benefited local people in economic terms, but at the same time increased their vulnerability to environmental and economic risks. The present study addressed the issue of how the ecological functions that are provided by agrobiodiversity translate into tangible benefits for the society. Important characteristics of agrodiversity management are the use of bullocks for draught power, human energy as labour, crop residues as animal feed and animal waste mixed with forest litter as organic input to restore soil fertility levels. The present analysis of resource input-output energy currency in traditional crop production indicated that inputs into different crop systems were significantly higher during kharif season compared to rabi season both under rainfed and irrigated conditions. The maximum input for crop during rabi season (second crop season) was about 31% of that of kharif season (first crop season after fallow) under rainfed conditions. Under irrigated conditions the rabi season input was about 63% of kharif season input. Under rainfed conditions, paddy sole cropping required maximum inputs (231.31 GJ/ha) as compared to mustard sole cropping (11.79 GJ/ha). The present investigation revealed that the total energy inputs and outputs are higher for irrigated agriculture as compared to rainfed system, the difference in inputs is about 5 fold and outputs is about 2 fold. The output-input ratio showed that irrigated systems have higher values as compared to rainfed systems. -- Highlights: → Agriculture continues to be biggest employment provider in the region. → Ecological functions that are provided by agrobiodiversity translate into tangible benefits for the society. → Analysis of resource input-output energy currency in traditional crop production. → Improvements in crop

  13. Crop insurance demand in wheat production: focusing on yield gaps and asymmetric information

    International Nuclear Information System (INIS)

    Castañeda-Vera, A.; Saa-Requejo, A.; Mínguez, I.; Garrido, A.

    2017-01-01

    Analysis of yield gaps were conducted in the context of crop insurance and used to build an indicator of asymmetric information. The possible influence of asymmetric information in the decision of Spanish wheat producers to contract insurance was additionally evaluated. The analysis includes simulated yield using a validated crop model, CERES-Wheat previously selected among others, whose suitability to estimate actual risk when no historical data are available was assessed. Results suggest that the accuracy in setting the insured yield is decisive in farmers’ willingness to contract crop insurance under the wider coverage. Historical insurance data, when available, provide a more robust technical basis to evaluate and calibrate insurance parameters than simulated data, using crop models. Nevertheless, the use of crop models might be useful in designing new insurance packages when no historical data is available or to evaluate scenarios of expected changes. In that case, it is suggested that yield gaps be estimated and considered when using simulated attainable yields.

  14. Crop insurance demand in wheat production: focusing on yield gaps and asymmetric information

    Energy Technology Data Exchange (ETDEWEB)

    Castañeda-Vera, A.; Saa-Requejo, A.; Mínguez, I.; Garrido, A.

    2017-07-01

    Analysis of yield gaps were conducted in the context of crop insurance and used to build an indicator of asymmetric information. The possible influence of asymmetric information in the decision of Spanish wheat producers to contract insurance was additionally evaluated. The analysis includes simulated yield using a validated crop model, CERES-Wheat previously selected among others, whose suitability to estimate actual risk when no historical data are available was assessed. Results suggest that the accuracy in setting the insured yield is decisive in farmers’ willingness to contract crop insurance under the wider coverage. Historical insurance data, when available, provide a more robust technical basis to evaluate and calibrate insurance parameters than simulated data, using crop models. Nevertheless, the use of crop models might be useful in designing new insurance packages when no historical data is available or to evaluate scenarios of expected changes. In that case, it is suggested that yield gaps be estimated and considered when using simulated attainable yields.

  15. Weed flora, yield losses and weed control in cotton crop

    OpenAIRE

    Jabran, Khawar

    2016-01-01

    Cotton (Gossypium spp.) is the most important fiber crop of world and provides fiber, oil, and animals meals. Weeds interfere with the growth activities of cotton plants and compete with it for resources. All kinds of weeds (grasses, sedges, and broadleaves) have been noted to infest cotton crop. Weeds can cause more than 30% decrease in cotton productivity. Several methods are available for weed control in cotton. Cultural control carries significance for weed control up to a certain extent....

  16. Tradeoffs between vigor and yield for crops grown under different management systems

    Science.gov (United States)

    Simic Milas, Anita; Keller Vincent, Robert; Romanko, Matthew; Feitl, Melina; Rupasinghe, Prabha

    2016-04-01

    Remote sensing can provide an effective means for rapid and non-destructive monitoring of crop status and biochemistry. Monitoring pattern of traditional vigor algorithms generated from Landsat 8 OLI satellite data represents a robust method that can be widely used to differentiate the status of crops, as well as to monitor nutrient uptake functionality of differently treated seeds grown under different managements. This study considers 24 factorial parcels of winter wheat in 2013, corn in 2014, and soybeans in 2015, grown under four different types of agricultural management. The parcels are located at the Kellogg Biological Station, Long-Term Ecological Research site in the State of Michigan USA. At maturity, the organic crops exhibit significantly higher vigor and significantly lower yield than conventionally managed crops under different treatments. While organic crops invest in their metabolism at the expense of their yield, the conventional crops manage to increase their yield at the expense of their vigor. Landsat 8 OLI is capable of 1) differentiating the biochemical status of crops under different treatments at maturity, and 2) monitoring the tradeoff between crop yield and vigor that can be controlled by the seed treatments and proper conventional applications, with the ultimate goal of increasing food yield and food availability, and 3) distinguishing between organic and conventionally treated crops. Timing, quantity and types of herbicide applications have a great impact on early and pre-harvest vigor, maturity and yield of conventionally treated crops. Satellite monitoring using Landsat 8 is an optimal tool for coordinating agricultural applications, soil practices and genetic coding of the crop to produce higher yield as well as have early crop maturity, desirable in northern climates.

  17. Changes in crop yields and their variability at different levels of global warming

    Science.gov (United States)

    Ostberg, Sebastian; Schewe, Jacob; Childers, Katelin; Frieler, Katja

    2018-05-01

    An assessment of climate change impacts at different levels of global warming is crucial to inform the policy discussion about mitigation targets, as well as for the economic evaluation of climate change impacts. Integrated assessment models often use global mean temperature change (ΔGMT) as a sole measure of climate change and, therefore, need to describe impacts as a function of ΔGMT. There is already a well-established framework for the scalability of regional temperature and precipitation changes with ΔGMT. It is less clear to what extent more complex biological or physiological impacts such as crop yield changes can also be described in terms of ΔGMT, even though such impacts may often be more directly relevant for human livelihoods than changes in the physical climate. Here we show that crop yield projections can indeed be described in terms of ΔGMT to a large extent, allowing for a fast estimation of crop yield changes for emissions scenarios not originally covered by climate and crop model projections. We use an ensemble of global gridded crop model simulations for the four major staple crops to show that the scenario dependence is a minor component of the overall variance of projected yield changes at different levels of ΔGMT. In contrast, the variance is dominated by the spread across crop models. Varying CO2 concentrations are shown to explain only a minor component of crop yield variability at different levels of global warming. In addition, we find that the variability in crop yields is expected to increase with increasing warming in many world regions. We provide, for each crop model, geographical patterns of mean yield changes that allow for a simplified description of yield changes under arbitrary pathways of global mean temperature and CO2 changes, without the need for additional climate and crop model simulations.

  18. Ground-level ozone in China: Distribution and effects on crop yields

    International Nuclear Information System (INIS)

    Wang Xiaoke; Manning, William; Feng Zongwei; Zhu Yongguan

    2007-01-01

    Rapid economic development and an increasing demand for food in China have drawn attention to the role of ozone at pollution levels on crop yields. Some assessments of ozone effects on crop yields have been carried out in China. Determination of ozone distribution by geographical location and resulting crop loss estimations have been made by Chinese investigators and others from abroad. It is evident that surface level ozone levels in China exceed critical levels for occurrence of crop losses. Current levels of information from ozone dose/response studies are limited. Given the size of China, existing ozone monitoring sites are too few to provide enough data to scale ozone distribution to a national level. There are large uncertainties in the database for ozone effects on crop loss and for ozone distribution. Considerable research needs to be done to allow accurate estimation of crop losses caused by ozone in China. - More research is needed to reliably estimate ozone caused crop losses in China

  19. Yield gap determinants for wheat production in major irrigated cropping zones of punjab, pakistan

    International Nuclear Information System (INIS)

    Hussain, A.; Aujla, K.M.; Badar, N.

    2014-01-01

    Yield gap is useful measurement for crop productivity and the extent to which crop productivity falls below some potential level. The study was carried out to analyze the yield gap and determinants of wheat production in the Punjab province of Pakistan. It is based on cross sectional data from 210 farmers for the crop year 2009-10. Results suggest that farm level wheat yields are less than the potential yield level by 33.0%, 43.0% and 50.6% in the mixed-cropping, cotton-wheat and rice-wheat zones of the province, respectively. Ordinary least square regression analysis of wheat production by assuming Cobb-Douglas specification reveals that the number of irrigations, usage of farm yard manure and fertilizers contribute positively and significantly to wheat crop production. Coefficients of dummy variables for cropping zones indicate that farmers in the mixed cropping zone are obtaining better yield of the wheat crop as compared to their counterparts in other selected cropping zones. These results suggested that farmers can increase wheat productivity by increasing the use of factor inputs; however, poverty may be a constraint on realizing these gains. Thus, wheat production can be increased in the country by helping resource poor farmers through suitable support mechanisms. (author)

  20. Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations.

    Science.gov (United States)

    Bennett, Amanda J; Bending, Gary D; Chandler, David; Hilton, Sally; Mills, Peter

    2012-02-01

    There is a trend world-wide to grow crops in short rotation or in monoculture, particularly in conventional agriculture. This practice is becoming more prevalent due to a range of factors including economic market trends, technological advances, government incentives, and retailer and consumer demands. Land-use intensity will have to increase further in future in order to meet the demands of growing crops for both bioenergy and food production, and long rotations may not be considered viable or practical. However, evidence indicates that crops grown in short rotations or monoculture often suffer from yield decline compared to those grown in longer rotations or for the first time. Numerous factors have been hypothesised as contributing to yield decline, including biotic factors such as plant pathogens, deleterious rhizosphere microorganisms, mycorrhizas acting as pathogens, and allelopathy or autotoxicity of the crop, as well as abiotic factors such as land management practices and nutrient availability. In many cases, soil microorganisms have been implicated either directly or indirectly in yield decline. Although individual factors may be responsible for yield decline in some cases, it is more likely that combinations of factors interact to cause the problem. However, evidence confirming the precise role of these various factors is often lacking in field studies due to the complex nature of cropping systems and the numerous interactions that take place within them. Despite long-term knowledge of the yield-decline phenomenon, there are few tools to counteract it apart from reverting to longer crop rotations or break crops. Alternative cropping and management practices such as double-cropping or inter-cropping, tillage and organic amendments may prove valuable for combating some of the negative effects seen when crops are grown in short rotation. Plant breeding continues to be important, although this does require a specific breeding target to be identified. This

  1. Added-values of high spatiotemporal remote sensing data in crop yield estimation

    Science.gov (United States)

    Gao, F.; Anderson, M. C.

    2017-12-01

    Timely and accurate estimation of crop yield before harvest is critical for food market and administrative planning. Remote sensing derived parameters have been used for estimating crop yield by using either empirical or crop growth models. The uses of remote sensing vegetation index (VI) in crop yield modeling have been typically evaluated at regional and country scales using coarse spatial resolution (a few hundred to kilo-meters) data or assessed over a small region at field level using moderate resolution spatial resolution data (10-100m). Both data sources have shown great potential in capturing spatial and temporal variability in crop yield. However, the added value of data with both high spatial and temporal resolution data has not been evaluated due to the lack of such data source with routine, global coverage. In recent years, more moderate resolution data have become freely available and data fusion approaches that combine data acquired from different spatial and temporal resolutions have been developed. These make the monitoring crop condition and estimating crop yield at field scale become possible. Here we investigate the added value of the high spatial and temporal VI for describing variability of crop yield. The explanatory ability of crop yield based on high spatial and temporal resolution remote sensing data was evaluated in a rain-fed agricultural area in the U.S. Corn Belt. Results show that the fused Landsat-MODIS (high spatial and temporal) VI explains yield variability better than single data source (Landsat or MODIS alone), with EVI2 performing slightly better than NDVI. The maximum VI describes yield variability better than cumulative VI. Even though VI is effective in explaining yield variability within season, the inter-annual variability is more complex and need additional information (e.g. weather, water use and management). Our findings augment the importance of high spatiotemporal remote sensing data and supports new moderate

  2. Cura Annonae-Chemically Boosting Crop Yields Through Metabolic Feeding of a Plant Signaling Precursor.

    Science.gov (United States)

    Vocadlo, David J

    2017-05-22

    The cream of the crop: With the world facing a projected shortfall of crops by 2050, new approaches are needed to boost crop yields. Metabolic feeding of plants with photocaged trehalose-6-phosphate (Tre6P) can increase levels of the signaling metabolite Tre6P in the plant. Reprogramming of cellular metabolism by Tre6P stimulates a program of plant growth and enhanced crop yields, while boosting starch content. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Regional crop gross primary production and yield estimation using fused Landsat-MODIS data

    Science.gov (United States)

    He, M.; Kimball, J. S.; Maneta, M. P.; Maxwell, B. D.; Moreno, A.

    2017-12-01

    Accurate crop yield assessments using satellite-based remote sensing are of interest for the design of regional policies that promote agricultural resiliency and food security. However, the application of current vegetation productivity algorithms derived from global satellite observations are generally too coarse to capture cropland heterogeneity. Merging information from sensors with reciprocal spatial and temporal resolution can improve the accuracy of these retrievals. In this study, we estimate annual crop yields for seven important crop types -alfalfa, barley, corn, durum wheat, peas, spring wheat and winter wheat over Montana, United States (U.S.) from 2008 to 2015. Yields are estimated as the product of gross primary production (GPP) and a crop-specific harvest index (HI) at 30 m spatial resolution. To calculate GPP we used a modified form of the MOD17 LUE algorithm driven by a 30 m 8-day fused NDVI dataset constructed by blending Landsat (5 or 7) and MODIS Terra reflectance data. The fused 30-m NDVI record shows good consistency with the original Landsat and MODIS data, but provides better spatiotemporal information on cropland vegetation growth. The resulting GPP estimates capture characteristic cropland patterns and seasonal variations, while the estimated annual 30 m crop yield results correspond favorably with county-level crop yield data (r=0.96, pcrop yield performance was generally lower, but still favorable in relation to field-scale crop yield surveys (r=0.42, p<0.01). Our methods and results are suitable for operational applications at regional scales.

  4. Yield and yield structure of spring barley (Hodeum vulgare L. grown in monoculture after different stubble crops

    Directory of Open Access Journals (Sweden)

    Dorota Gawęda

    2012-12-01

    Full Text Available A field experiment was conducted in the period 2006- 2008 in the Uhrusk Experimental Farm belonging to the University of Life Sciences in Lublin. The experimental factor was the type of stubble crop ploughed in each year after harvest of spring barley: white mustard, lacy phacelia, winter rape, and a mixture of narrow-leaf lupin with field pea. In the experiment, successive spring barley crops were grown one after the other (in continuous monoculture. The aim of the experiment was to evaluate the effect of stubble crops used on the size and structure of barley yield. The three-year study showed an increasing trend in grain yield of spring barley grown after the mixture of legumes, lacy phacelia, and white mustard compared to its size in the treatment with no cover crop. Straw yield was significantly higher when barley was grown after the mixture of narrowleaf lupin with field pea than in the other treatments of the experiment. The type of ploughed-in stubble crop did not modify significantly plant height, ear length, and grain weight per ear. Growing the mixture of leguminous plants as a cover crop resulted in a significant increase in the density of ears per unit area in barley by an average of 14.7% relative to the treatment with winter rape. The experiment also showed the beneficial effect of the winter rape cover crop on 1000-grain weight of spring barley compared to that obtained in the treatments with white mustard and the mixture of legumes. All the cover crops caused an increase in the number of grains per ear of barley relative to that found in the control treatment. However, this increase was statistically proven only for the barley crops grown after lacy phacelia and the mixture of legumes.

  5. Soil tillage practices and crops rotations effects on yields and ...

    African Journals Online (AJOL)

    Methodology and Results: Three soil tillage practices in main plot (T1 = no tillage with direct sowing, T2 = minimum tillage by soil scarifying with IR12 tool and T3 = conventional tillage with animals drawn plough) were compared and combined to four crops rotation systems, in a split-plot experimental design. Soil chemical ...

  6. Crop yield network and its response to changes in climate system

    Science.gov (United States)

    Yokozawa, M.

    2013-12-01

    Crop failure (reduction in crop yield) due to extreme weather and climate change could lead to unstable food supply, reflecting the recent globalization in world agricultural production. Specifically, in several major production countries producing large amount of main cereal crops, wheat, maize, soybean and rice, abrupt crop failures in wide area are significantly serious for world food supply system. We examined the simultaneous changes in crop yield in USA, China and Brazil, in terms of the changes in climate system such as El Nino, La nina and so on. In this study, we defined a crop yield networks, which represent the correlation between yearly changes in crop yields and climate resources during the crop growing season in two regions. The climate resources during the crop growing season represents here the average temperature and the accumulated precipitation during the crop growing season of a target crop. As climate data, we used a reanalysis climate data JRA-25 (Japan Meteorological Agency). The yearly changes in crop yields are based on a gridded crop productivity database with a resolution of 1.125 degree in latitude/longitude (Iizumi et al. 2013). It is constructed from the agriculture statistics issued by local administrative bureau in each country, which covers the period during 1982 to 2006 (25 years). For the regions being lack of data, the data was interpolated referring to NPP values estimated by satellite data. Crop yield network is constructed as follows: (1) let DY(i,y) be negative difference in crop yield of year y from the trend yield at grid i; (2) define the correlation of the differences Cij(y) = DY(i, y) DY(j, y); (3) if Cij(y) > Q, then grids i and j are mutually linked for a threshold value Q. Links between grids make a crop yield network. It is here noted that only negative differences are taken into account because we focused on the lean year cases (i.e. yields of both grids were lower than those in the long-term trend). The arrays of

  7. Emission-conditioned iron dusts and their effects on the growth and yield of agricultural crops

    Energy Technology Data Exchange (ETDEWEB)

    Berge, H

    1966-01-01

    Experiments were performed to determine the effects of iron dusts from industrial plants in Germany on crops. For the purposes of the investigation, 1.5 g/day/m/sup 2/ of iron dust was spread over a designated farmland near Heiligenhaus. Potatoes were grown as the first experimental crop. Other crops studied were winter wheat and rye, rape and turnips. No yield reducing effect of iron dust resulted from the experiments. An actual yield-increasing effect of iron dust on the main product yields may be assumed, but cannot be proved with adequate statistical reliability.

  8. Understanding the Changes in Global Crop Yields Through Changes in Climate and Technology

    Science.gov (United States)

    Najafi, Ehsan; Devineni, Naresh; Khanbilvardi, Reza M.; Kogan, Felix

    2018-03-01

    During the last few decades, the global agricultural production has risen and technology enhancement is still contributing to yield growth. However, population growth, water crisis, deforestation, and climate change threaten the global food security. An understanding of the variables that caused past changes in crop yields can help improve future crop prediction models. In this article, we present a comprehensive global analysis of the changes in the crop yields and how they relate to different large-scale and regional climate variables, climate change variables and technology in a unified framework. A new multilevel model for yield prediction at the country level is developed and demonstrated. The structural relationships between average yield and climate attributes as well as trends are estimated simultaneously. All countries are modeled in a single multilevel model with partial pooling to automatically group and reduce estimation uncertainties. El Niño-southern oscillation (ENSO), Palmer drought severity index (PDSI), geopotential height anomalies (GPH), historical carbon dioxide (CO2) concentration and country-based time series of GDP per capita as an approximation of technology measurement are used as predictors to estimate annual agricultural crop yields for each country from 1961 to 2013. Results indicate that these variables can explain the variability in historical crop yields for most of the countries and the model performs well under out-of-sample verifications. While some countries were not generally affected by climatic factors, PDSI and GPH acted both positively and negatively in different regions for crop yields in many countries.

  9. Climatically driven yield variability of major crops in Khakassia (South Siberia)

    Science.gov (United States)

    Babushkina, Elena A.; Belokopytova, Liliana V.; Zhirnova, Dina F.; Shah, Santosh K.; Kostyakova, Tatiana V.

    2017-12-01

    We investigated the variability of yield of the three main crop cultures in the Khakassia Republic: spring wheat, spring barley, and oats. In terms of yield values, variability characteristics, and climatic response, the agricultural territory of Khakassia can be divided into three zones: (1) the Northern Zone, where crops yield has a high positive response to the amount of precipitation, May-July, and a moderately negative one to the temperatures of the same period; (2) the Central Zone, where crops yield depends mainly on temperatures; and (3) the Southern Zone, where climate has the least expressed impact on yield. The dominant pattern in the crops yield is caused by water stress during periods of high temperatures and low moisture supply with heat stress as additional reason. Differences between zones are due to combinations of temperature latitudinal gradient, precipitation altitudinal gradient, and the presence of a well-developed hydrological network and the irrigational system as moisture sources in the Central Zone. More detailed analysis shows differences in the climatic sensitivity of crops during phases of their vegetative growth and grain development and, to a lesser extent, during harvesting period. Multifactor linear regression models were constructed to estimate climate- and autocorrelation-induced variability of the crops yield. These models allowed prediction of the possibility of yield decreasing by at least 2-11% in the next decade due to increasing of the regional summer temperatures.

  10. Simulating the effects of climate and agricultural management practices on global crop yield

    Science.gov (United States)

    Deryng, D.; Sacks, W. J.; Barford, C. C.; Ramankutty, N.

    2011-06-01

    Climate change is expected to significantly impact global food production, and it is important to understand the potential geographic distribution of yield losses and the means to alleviate them. This study presents a new global crop model, PEGASUS 1.0 (Predicting Ecosystem Goods And Services Using Scenarios) that integrates, in addition to climate, the effect of planting dates and cultivar choices, irrigation, and fertilizer application on crop yield for maize, soybean, and spring wheat. PEGASUS combines carbon dynamics for crops with a surface energy and soil water balance model. It also benefits from the recent development of a suite of global data sets and analyses that serve as model inputs or as calibration data. These include data on crop planting and harvesting dates, crop-specific irrigated areas, a global analysis of yield gaps, and harvested area and yield of major crops. Model results for present-day climate and farm management compare reasonably well with global data. Simulated planting and harvesting dates are within the range of crop calendar observations in more than 75% of the total crop-harvested areas. Correlation of simulated and observed crop yields indicates a weighted coefficient of determination, with the weighting based on crop-harvested area, of 0.81 for maize, 0.66 for soybean, and 0.45 for spring wheat. We found that changes in temperature and precipitation as predicted by global climate models for the 2050s lead to a global yield reduction if planting and harvesting dates remain unchanged. However, adapting planting dates and cultivar choices increases yield in temperate regions and avoids 7-18% of global losses.

  11. Long Term Evaluation of Yield Stability Trend for Cereal Crops in Iran

    Directory of Open Access Journals (Sweden)

    mehdi nassiri mahalati

    2016-05-01

    Full Text Available During the last few decades cereals yield have increased drastically at the national level however, information about yield stability and its resistance to annual environmental variability are scare. In this study long term stability of grin yield of wheat, barley, rice, corn and overall cereals in Iran were evaluated during a 40-year period (1971-2011. Stability analysis was conducted using two different methods. In the first method the residuals of regression between crop yield and time (years were calculated as stability index. For this different segmented regression models including linear, bi-linear and tri-linear were fitted to yield trend data and the best model for each crop was selected based on statistical measures. Absolute residuals (the difference between actual and predicted yields for each year as well as relative residuals (absolute residuals as percent of predicted yield were estimated. In the second method yield stability was estimated from the slope of the regression line between average annual yield of all cereals (environmental index and the yield of each crop in the same year. Results indicted that in wheat and barley absolute and relative residuals were increased during the study period leading to reduction of stability despite considerable yield increment. However, for rice and corn residuals followed a decreasing trend and therefore yield stability of these crops was increased during the last 40 years. The same result was obtained with the environmental index but in this method reduction of yield stability in barley was lower than wheat. Based on the results, yield and yield stability of cereals crops in Iran increased during the last 40 years. However, the percentage increase in stability is lower than that of yield. Application of nitrogen fertilizers was led to reduction in stability. Yield stability of wheat, barley, rice, corn and overall cereals was improved with increasing their cultivated area.

  12. Crop rotation biomass and arbuscular mycorrhizal fungi effects on sugarcane yield

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosano, Edmilson Jose; Rossi, Fabricio; Guirado, Nivaldo; Teramoto, Juliana Rolim Salome [Agencia Paulista de Tecnologia dos Agronegocios (APTA), Piracicaba, SP (Brazil). Polo Regional Centro Sul; Azcon, Rozario [Consejo Superior de Investigaciones Cientificas (CSIC), Granada (Spain). Estacao Experimental de Zaidin; Cantarela, Heitor [Agencia Paulista de Tecnologia dos Agronegocios (APTA/IAC), Campinas, SP (Brazil). Inst. Agronomico. Centro de Solos e Recursos Ambientais; Ambrosano, Glaucia Maria Bovi [Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP (Brazil). Fac. de Odontologia. Dept. de Odontologia Social], Email: ambrosano@apta.sp.gov.br; Schammass, Eliana Aparecida [Agencia Paulista de Tecnologia dos Agronegocios (APTA/IZ), Nova Odessa, SP (Brazil). Inst. de Zootecnia; Muraoka, Takashi; Trivelin, Paulo Cesar Ocheuze [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil); Ungaro, Maria Regina Goncalves [Agencia Paulista de Tecnologia dos Agronegocios (APTA/IAC), Campinas, SP (Brazil). Inst. Agronomico. Centro de Plantas Graniferas

    2010-07-01

    Sugarcane (Saccharum spp.) is an important crop for sugar production and agro-energy purposes in Brazil. In the sugarcane production system after a 4- to 8-year cycle crop rotation may be used before replanting sugarcane to improve soil conditions and give an extra income. This study had the objective of characterizing the biomass and the natural colonization of arbuscular mycorrhizal fungi (AMF) of leguminous green manure and sunflower (Helianthus annuus L.) in rotation with sugarcane. Their effect on stalk and sugar yield of sugarcane cv. IAC 87-3396 grown subsequently was also studied. Cane yield was harvested in three subsequent cuttings. Peanut cv. IAC-Caiapo, sunflower cv. IAC-Uruguai and velvet bean (Mucuna aterrimum Piper and Tracy) were the rotational crops that resulted in the greater percentage of AMF. Sunflower was the specie that most extracted nutrients from the soil, followed by peanut cv. IAC-Tatu and mung bean (Vigna radiata L. Wilczek). The colonization with AMF had a positive correlation with sugarcane plant height, at the first cut (p = 0.01 and R = 0.52) but not with the stalk or cane yields. Sunflower was the rotational crop that brought about the greatest yield increase of the subsequent sugarcane crop: 46% increase in stalk yield and 50% in sugar yield compared with the control. Except for both peanut varieties, all rotational crops caused an increase in net income of the cropping system in the average of three sugarcane harvests. (author)

  13. Enhanced Yields in Organic Arable Crop Production by Eco-Functional Intensification using Intercropping

    DEFF Research Database (Denmark)

    Jensen, Erik Steen; Bedoussac, Laurent; Carlsson, Georg

    2015-01-01

    for enhancing yields in OA. EFI involves activating more knowledge and intensifying the beneficial effects of ecosystem functions, including agrobiodiversity (planned and associated) and soil fertility, and refocusing the importance of ecosystems services in agriculture. Organic farmers manage agrobiodiversity...... in space by intercropping, fitted into the organic crop rotation, has a strong potential to increase yield and hereby reduce the global environmental effects performance such as GHG per kg organic grain. Finally, we discuss likely barriers for increased use of intercropping in organic farming and suggest...... by planned crop diversification in time (crop rotation). However, cultivating genetically identical plants in OA sole crops (SC), limits resource use efficiency and yield per unit area. Intercropping (IC) of annual species or cultivars, perennial polycultures of forage or grain crops and agroforestry...

  14. Comparative Evaluation of Some Crop Yield Prediction Models ...

    African Journals Online (AJOL)

    A computer program was adopted from the work of Hill et al. (1982) to calibrate and test three of the existing yield prediction models using tropical cowpea yieldÐweather data. The models tested were Hanks Model (first and second versions). Stewart Model (first and second versions) and HallÐButcher Model. Three sets of ...

  15. African crop yield reductions due to increasingly unbalanced Nitrogen and Phosphorus consumption

    Science.gov (United States)

    van der Velde, Marijn; Folberth, Christian; Balkovič, Juraj; Ciais, Philippe; Fritz, Steffen; Janssens, Ivan A.; Obersteiner, Michael; See, Linda; Skalský, Rastislav; Xiong, Wei; Peñuealas, Josep

    2014-05-01

    The impact of soil nutrient depletion on crop production has been known for decades, but robust assessments of the impact of increasingly unbalanced nitrogen (N) and phosphorus (P) application rates on crop production are lacking. Here, we use crop response functions based on 741 FAO maize crop trials and EPIC crop modeling across Africa to examine maize yield deficits resulting from unbalanced N:P applications under low, medium, and high input scenarios, for past (1975), current, and future N:P mass ratios of respectively, 1:0.29, 1:0.15, and 1:0.05. At low N inputs (10 kg/ha), current yield deficits amount to 10% but will increase up to 27% under the assumed future N:P ratio, while at medium N inputs (50 kg N/ha), future yield losses could amount to over 40%. The EPIC crop model was then used to simulate maize yields across Africa. The model results showed relative median future yield reductions at low N inputs of 40%, and 50% at medium and high inputs, albeit with large spatial variability. Dominant low-quality soils such as Ferralsols, which are strongly adsorbing P, and Arenosols with a low nutrient retention capacity, are associated with a strong yield decline, although Arenosols show very variable crop yield losses at low inputs. Optimal N:P ratios, i.e. those where the lowest amount of applied P produces the highest yield (given N input) where calculated with EPIC to be as low as 1:0.5. Finally, we estimated the additional P required given current N inputs, and given N inputs that would allow Africa to close yield gaps (ca. 70%). At current N inputs, P consumption would have to increase 2.3-fold to be optimal, and to increase 11.7-fold to close yield gaps. The P demand to overcome these yield deficits would provide a significant additional pressure on current global extraction of P resources.

  16. Estimating the Impact and Spillover Effect of Climate Change on Crop Yield in Northern Ghana.

    Science.gov (United States)

    Botchway, E.

    2016-12-01

    In tropical regions of the world human-induced climate change is likely to impact negatively on crop yields. To investigate the impact of climate change and its spillover effect on mean and variance of crop yields in northern Ghana, the Just and Pope stochastic production function and the Spatial Durbin model were adopted. Surprisingly, the results suggest that both precipitation and average temperature have positive effects on mean crop yield during the wet season. Wet season average temperature has a significant spillover effect in the region, whereas precipitation during the wet season has only one significant spillover effect on maize yield. Wet season precipitation does not have a strong significant effect on crop yield despite the rainfed nature of agriculture in the region. Thus, even if there are losers and winners as a result of future climate change at the regional level, future crop yield would largely depend on future technological development in agriculture, which may improve yields over time despite the changing climate. We argue, therefore, that technical improvement in farm management such as improved seeds and fertilizers, conservation tillage and better pest control, may have a more significant role in increasing observed crop productivity levels over time. So investigating the relative importance of non-climatic factors on crop yield may shed more light on where appropriate interventions can help in improving crop yields. Climate change, also, needs to be urgently assessed at the level of the household, so that poor and vulnerable people dependent on agriculture can be appropriately targeted in research and development activities whose object is poverty alleviation.

  17. Global impacts of surface ozone changes on crop yields and land use

    NARCIS (Netherlands)

    Chuwah, C.D.; Noije, van Twan; Vuuren, van Detlef P.; Stehfest, Elke; Hazeleger, Wilco

    2015-01-01

    Exposure to surface ozone has detrimental impacts on vegetation and crop yields. In this study, we estimate ozone impacts on crop production and subsequent impacts on land use in the 2005-2050 period using results of the TM5 atmospheric chemistry and IMAGE integrated assessment model. For the

  18. Sample Size Requirements for Assessing Statistical Moments of Simulated Crop Yield Distributions

    NARCIS (Netherlands)

    Lehmann, N.; Finger, R.; Klein, T.; Calanca, P.

    2013-01-01

    Mechanistic crop growth models are becoming increasingly important in agricultural research and are extensively used in climate change impact assessments. In such studies, statistics of crop yields are usually evaluated without the explicit consideration of sample size requirements. The purpose of

  19. Crop coefficient, yield response to water stress and water productivity of teff (Eragrostis tef (Zucc.)

    NARCIS (Netherlands)

    Araya, A.; Stroosnijder, L.; Girmay, G.; Keesstra, S.D.

    2011-01-01

    In the semi-arid region of Tigray, Northen Ethiopia a two season experiment was conducted to measure evapotranspiration, estimate yield response to water stress and derive the crop coefficient of teff using the single crop coefficient approach with simple, locally made lysimeters and field plots.

  20. Impact of integrated nutrient management on growth and grain yield of wheat under irrigated cropping system

    International Nuclear Information System (INIS)

    Nawab, K.; Amanullah, A.; Shah, P.; Arif, M.; Khan, A.M.

    2011-01-01

    Field study was conducted during 2001-02 and 2002-03 to investigate the effect of cropping patterns and farm yard manure, potassium and zinc on the grain yield of wheat. Trials were conducted at Agricultural Research Farm, KPK Agricultural University Peshawar, Pakistan. Two factors cropping patterns and manures/fertilizers were studied in the experiment. Randomized complete block design was used with split plot arrangements and four replications having net plot size of 12 m/sup 2/. Wheat variety Ghaznavi-98 was sown in November soon after ploughing the soil at proper moisture level suitable for wheat seed germination. Five cropping patterns were allotted to main plots and the eight combinations of FYM, K and Zn to the sub-plots. Same plots were used for next year sowing. Effects of five cropping patterns i.e., rice-wheat, maize-wheat, sunflower-wheat, sorghum-wheat and pigeon pea-wheat and three organic and in-organic fertilizers (Farmyard Manure, Potassium and Zinc) on subsequent wheat crop were observed. Highest grain yield was obtained when wheat was planted after pigeon pea. Manures/fertilizer application (Farmyard Manure, Potassium and Zinc) produced significantly higher grain yield than the control plots. The findings of the present study revealed that leguminous crops can significantly increase the yield of succeeding crops. Thus use of Farmyard Manure, Potassium and Zinc should be included in integrated crop management approaches for sustainable agriculture. (author)

  1. Salience Assignment for Multiple-Instance Data and Its Application to Crop Yield Prediction

    Science.gov (United States)

    Wagstaff, Kiri L.; Lane, Terran

    2010-01-01

    An algorithm was developed to generate crop yield predictions from orbital remote sensing observations, by analyzing thousands of pixels per county and the associated historical crop yield data for those counties. The algorithm determines which pixels contain which crop. Since each known yield value is associated with thousands of individual pixels, this is a multiple instance learning problem. Because individual crop growth is related to the resulting yield, this relationship has been leveraged to identify pixels that are individually related to corn, wheat, cotton, and soybean yield. Those that have the strongest relationship to a given crop s yield values are most likely to contain fields with that crop. Remote sensing time series data (a new observation every 8 days) was examined for each pixel, which contains information for that pixel s growth curve, peak greenness, and other relevant features. An alternating-projection (AP) technique was used to first estimate the "salience" of each pixel, with respect to the given target (crop yield), and then those estimates were used to build a regression model that relates input data (remote sensing observations) to the target. This is achieved by constructing an exemplar for each crop in each county that is a weighted average of all the pixels within the county; the pixels are weighted according to the salience values. The new regression model estimate then informs the next estimate of the salience values. By iterating between these two steps, the algorithm converges to a stable estimate of both the salience of each pixel and the regression model. The salience values indicate which pixels are most relevant to each crop under consideration.

  2. Combined effects of agrochemicals and ecosystem services on crop yield across Europe

    NARCIS (Netherlands)

    Gagic, Vesna; Kleijn, David; Báldi, András; Boros, Gergely; Jørgensen, Helene Bracht; Elek, Zoltán; Garratt, Michael P. D.; de Groot, G. Arjen; Hedlund, Katarina; Kovács- Hostyánszki, Anikó; Marini, Lorenzo; Martin, Emily; Pevere, Ines; Potts, Simon G.; Redlich, Sarah; Senapathi, Deepa; Steffan-Dewenter, Ingolf; Świtek, Stanislaw; Smith, Henrik G.; Takács, Viktória; Tryjanowski, Piotr; van der Putten, Wim H.; van Gils, Stijn; Bommarco, Riccardo

    2017-01-01

    Simultaneously enhancing ecosystem services provided by biodiversity below and above ground is recommended to reduce dependence on chemical pesticides and mineral fertilisers in agriculture. However, consequences for crop yield have been poorly evaluated. Above ground, increased landscape complexity

  3. What aspects of future rainfall changes matter for crop yields in West Africa?

    Science.gov (United States)

    Guan, Kaiyu; Sultan, Benjamin; Biasutti, Michela; Baron, Christian; Lobell, David B.

    2015-10-01

    How rainfall arrives, in terms of its frequency, intensity, the timing and duration of rainy season, may have a large influence on rainfed agriculture. However, a thorough assessment of these effects is largely missing. This study combines a new synthetic rainfall model and two independently validated crop models (APSIM and SARRA-H) to assess sorghum yield response to possible shifts in seasonal rainfall characteristics in West Africa. We find that shifts in total rainfall amount primarily drive the rainfall-related crop yield change, with less relevance to intraseasonal rainfall features. However, dry regions (total annual rainfall below 500 mm/yr) have a high sensitivity to rainfall frequency and intensity, and more intense rainfall events have greater benefits for crop yield than more frequent rainfall. Delayed monsoon onset may negatively impact yields. Our study implies that future changes in seasonal rainfall characteristics should be considered in designing specific crop adaptations in West Africa.

  4. Development of a European Ensemble System for Seasonal Prediction: Application to crop yield

    Science.gov (United States)

    Terres, J. M.; Cantelaube, P.

    2003-04-01

    Western European agriculture is highly intensive and the weather is the main source of uncertainty for crop yield assessment and for crop management. In the current system, at the time when a crop yield forecast is issued, the weather conditions leading up to harvest time are unknown and are therefore a major source of uncertainty. The use of seasonal weather forecast would bring additional information for the remaining crop season and has valuable benefit for improving the management of agricultural markets and environmentally sustainable farm practices. An innovative method for supplying seasonal forecast information to crop simulation models has been developed in the frame of the EU funded research project DEMETER. It consists in running a crop model on each individual member of the seasonal hindcasts to derive a probability distribution of crop yield. Preliminary results of cumulative probability function of wheat yield provides information on both the yield anomaly and the reliability of the forecast. Based on the spread of the probability distribution, the end-user can directly quantify the benefits and risks of taking weather-sensitive decisions.

  5. Agriculture and Bioactives: Achieving Both Crop Yield and Phytochemicals

    Directory of Open Access Journals (Sweden)

    Irineo Torres-Pacheco

    2013-02-01

    Full Text Available Plants are fundamental elements of the human diet, either as direct sources of nutrients or indirectly as feed for animals. During the past few years, the main goal of agriculture has been to increase yield in order to provide the food that is needed by a growing world population. As important as yield, but commonly forgotten in conventional agriculture, is to keep and, if it is possible, to increase the phytochemical content due to their health implications. Nowadays, it is necessary to go beyond this, reconciling yield and phytochemicals that, at first glance, might seem in conflict. This can be accomplished through reviewing food requirements, plant consumption with health implications, and farming methods. The aim of this work is to show how both yield and phytochemicals converge into a new vision of agricultural management in a framework of integrated agricultural practices.

  6. Sensitivity of simulated maize crop yields to regional climate in the Southwestern United States

    Science.gov (United States)

    Kim, S.; Myoung, B.; Stack, D.; Kim, J.; Hatzopoulos, N.; Kafatos, M.

    2013-12-01

    The sensitivity of maize yield to the regional climate in the Southwestern United States (SW US) has been investigated by using a crop-yield simulation model (APSIM) in conjunction with meteorological forcings (daily minimum and maximum temperature, precipitation, and radiation) from the North American Regional Reanalysis (NARR) dataset. The primary focus of this study is to look at the effects of interannual variations of atmospheric components on the crop productivity in the SW US over the 21-year period (1991 to 2011). First of all, characteristics and performance of APSIM was examined by comparing simulated maize yields with observed yields from United States Department of Agriculture (USDA) and the leaf-area index (LAI) from MODIS satellite data. Comparisons of the simulated maize yield with the available observations show that the crop model can reasonably reproduce observed maize yields. Sensitivity tests were performed to assess the relative contribution of each climate driver to regional crop yield. Sensitivity experiments show that potential crop production responds nonlinearly to climate drivers and the yield sensitivity varied among geographical locations depending on their mean climates. Lastly, a detailed analysis of both the spatial and temporal variations of each climate driver in the regions where maize is actually grown in three states (CA, AZ, and NV) in the SW US was performed.

  7. Nut crop yield records show that budbreak-based chilling requirements may not reflect yield decline chill thresholds

    Science.gov (United States)

    Pope, Katherine S.; Dose, Volker; Da Silva, David; Brown, Patrick H.; DeJong, Theodore M.

    2015-06-01

    Warming winters due to climate change may critically affect temperate tree species. Insufficiently cold winters are thought to result in fewer viable flower buds and the subsequent development of fewer fruits or nuts, decreasing the yield of an orchard or fecundity of a species. The best existing approximation for a threshold of sufficient cold accumulation, the "chilling requirement" of a species or variety, has been quantified by manipulating or modeling the conditions that result in dormant bud breaking. However, the physiological processes that affect budbreak are not the same as those that determine yield. This study sought to test whether budbreak-based chilling thresholds can reasonably approximate the thresholds that affect yield, particularly regarding the potential impacts of climate change on temperate tree crop yields. County-wide yield records for almond ( Prunus dulcis), pistachio ( Pistacia vera), and walnut ( Juglans regia) in the Central Valley of California were compared with 50 years of weather records. Bayesian nonparametric function estimation was used to model yield potentials at varying amounts of chill accumulation. In almonds, average yields occurred when chill accumulation was close to the budbreak-based chilling requirement. However, in the other two crops, pistachios and walnuts, the best previous estimate of the budbreak-based chilling requirements was 19-32 % higher than the chilling accumulations associated with average or above average yields. This research indicates that physiological processes beyond requirements for budbreak should be considered when estimating chill accumulation thresholds of yield decline and potential impacts of climate change.

  8. Comparison of perimeter trap crop varieties: effects on herbivory, pollination, and yield in butternut squash.

    Science.gov (United States)

    Adler, L S; Hazzard, R V

    2009-02-01

    Perimeter trap cropping (PTC) is a method of integrated pest management (IPM) in which the main crop is surrounded with a perimeter trap crop that is more attractive to pests. Blue Hubbard (Cucurbita maxima Duch.) is a highly effective trap crop for butternut squash (C. moschata Duch. ex Poir) attacked by striped cucumber beetles (Acalymma vittatum Fabricius), but its limited marketability may reduce adoption of PTC by growers. Research comparing border crop varieties is necessary to provide options for growers. Furthermore, pollinators are critical for cucurbit yield, and the effect of PTC on pollination to main crops is unknown. We examined the effect of five border treatments on herbivory, pollination, and yield in butternut squash and manipulated herbivory and pollination to compare their importance for main crop yield. Blue Hubbard, buttercup squash (C. maxima Duch.), and zucchini (C. pepo L.) were equally attractive to cucumber beetles. Border treatments did not affect butternut leaf damage, but butternut flowers had the fewest beetles when surrounded by Blue Hubbard or buttercup squash. Yield was highest in the Blue Hubbard and buttercup treatments, but this effect was not statistically significant. Native bees accounted for 87% of pollinator visits, and pollination did not limit yield. There was no evidence that border crops competed with the main crop for pollinators. Our results suggest that both buttercup squash and zucchini may be viable alternatives to Blue Hubbard as borders for the main crop of butternut squash. Thus, growers may have multiple border options that reduce pesticide use, effectively manage pests, and do not disturb mutualist interactions with pollinators.

  9. Landscape crop composition effects on cotton yield, Lygus hesperus densities and pesticide use.

    Science.gov (United States)

    Meisner, Matthew H; Zaviezo, Tania; Rosenheim, Jay A

    2017-01-01

    Landscape crop composition surrounding agricultural fields is known to affect the density of crop pests, but quantifying these effects, as well as measuring how they translate to changes in yield, is difficult. Using a large dataset consisting of 1498 records of commercial cotton production in California between 1997 and 2008, we explored the relationship between landscape composition and cotton yield, the density of Lygus hesperus (a key cotton pest) at field-level and within-field spatial scales and pesticide use. We found that the crop composition immediately adjacent to a cotton field was associated with substantial differences in cotton yield, L. hesperus density and pesticide use. Furthermore, crops that tended to be associated with increased L. hesperus density also tended to be associated with increased pesticide use and decreased cotton yield. Our results suggest a possible mechanism by which landscape composition can affect cotton yield: by increasing the density of pests which in turn damage cotton plants. Our quantification of how surrounding crops affect pest densities, and in turn yield, in cotton fields has significant impacts for cotton farmers, who can use this information to help optimize crop selection and ranch layout. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Using NDVI and guided sampling to develop yield prediction maps of processing tomato crop

    Energy Technology Data Exchange (ETDEWEB)

    Fortes, A.; Henar Prieto, M. del; García-Martín, A.; Córdoba, A.; Martínez, L.; Campillo, C.

    2015-07-01

    The use of yield prediction maps is an important tool for the delineation of within-field management zones. Vegetation indices based on crop reflectance are of potential use in the attainment of this objective. There are different types of vegetation indices based on crop reflectance, the most commonly used of which is the NDVI (normalized difference vegetation index). NDVI values are reported to have good correlation with several vegetation parameters including the ability to predict yield. The field research was conducted in two commercial farms of processing tomato crop, Cantillana and Enviciados. An NDVI prediction map developed through ordinary kriging technique was used for guided sampling of processing tomato yield. Yield was studied and related with NDVI, and finally a prediction map of crop yield for the entire plot was generated using two geostatistical methodologies (ordinary and regression kriging). Finally, a comparison was made between the yield obtained at validation points and the yield values according to the prediction maps. The most precise yield maps were obtained with the regression kriging methodology with RRMSE values of 14% and 17% in Cantillana and Enviciados, respectively, using the NDVI as predictor. The coefficient of correlation between NDVI and yield was correlated in the point samples taken in the two locations, with values of 0.71 and 0.67 in Cantillana and Enviciados, respectively. The results suggest that the use of a massive sampling parameter such as NDVI is a good indicator of the distribution of within-field yield variation. (Author)

  11. Response of maize varieties to nitrogen application for leaf area profile, crop growth, yield and yield components

    International Nuclear Information System (INIS)

    Akmal, M.; Hameed-urRehman; Farhatullah; Asim, M.; Akbar, H.

    2010-01-01

    An experiment was conducted at NWFP Agricultural University, Peshawar, to study maize varieties and Nitrogen (N) rates for growth, yield and yield components. Three varieties (Azam, Jalal and Sarhad white) and three N rates (90, 120, 150, kg N ha/sup -1/) were compared. Experiment was conducted in a Randomized Complete Block design; split plot arrangement with 4 replications. Uniform and recommended cultural practices were applied during the crop growth. The results revealed that maize variety 'Jalal' performed relatively better crop growth rate (CGR) and leaf area profile (LAP) at nodal position one to six as compared to the other two varieties (Sarhad white and Azam). This resulted higher radiation use efficiency by the crop canopy at vegetative stage of development and hence contributed higher assimilates towards biomass production. Heavier grains in number and weight were due to higher LAP and taller plants of Jalal which yielded higher in the climate. Nitrogen applications have shown that maize seed yield increase in quadratic fashion with increased N to a plateau level. Considering soil fertility status and cropping system, the 150 kg ha/sup -1/ N application to maize variety Jalal in Peshawar is required for maximum biological and seed production. (author)

  12. The Effect of Crop Residue and Different NPK Fertilizer Rates on yield Components and Yield of Wheat

    Directory of Open Access Journals (Sweden)

    fatemeh khamadi

    2017-08-01

    Full Text Available Introduction Integrated nutrient management involving crop residue/green manures and chemical fertilizer is potential alternative to provide a balanced supply of nutrients, enhance soil quality and thereby sustain higher productivity. The present experiment was undertaken to evaluate the effect of different crop residue management practices and NPK levels on yield components and yield of wheat. Materials and methods Field experiments were conducted during 2012-2014 at department of agronomy, Chamran University. Experiment was laid out in a randomized block designs in split plot arrangement. With three replications. Crop residues were assigned to main plot consistent CR1: wheat residue; CR2: rape residue; CR3: barley residue; CR4: barley residue + vetch; CR5: wheat straw + mungbean; CR6: vetch residue; CR7: mungbean residue; CR8: No residue incorporation as main plot and three NPK fertilizer rates: F1: (180N-120P-100K kg.ha-1; F2: (140N-90P-80K kg.ha-1; F3: (90N-60P-40K kg.ha-1 as sub plots. Twelve hills were collected at physiological maturity for measuring yield components from surrounding area of grain yield harvest area. Yield components, viz. number of spike per m2, seed per spike, 1000- grain weight, plant height were measured. Grain and straw yields were recorded from the central 5 m2 grain yield harvest area of each treatment and harvest index was calculated. Data were subjected to analysis by SAS and mean companions were performed using the Duncan multiple range test producer. Also, graphs were drawn in Excel software. Results and discussion The result of analysis variance showed significant difference between crop residues for evaluated traits. The result indicated that the highest biological and grain yield was obtained when wheat treated with CR5: wheat straw + mungbean (green manure and CR4: barley straw + vetch (green manure. Biological and grain yield increased 31 and 26% respectively by CR5 comparing with control. The highest

  13. Effect of Winter Cover Crops on Soil Nitrogen Availability, Corn Yield, and Nitrate Leaching

    OpenAIRE

    Kuo, S.; Huang, B.; Bembenek, R.

    2001-01-01

    Biculture of nonlegumes and legumes could serve as cover crops for increasing main crop yield, while reducing NO3 leaching. This study, conducted from 1994 to 1999, determined the effect of monocultured cereal rye (Secale cereale L.), annual ryegrass (Lolium multiflorum), and hairy vetch (Vicia villosa), and bicultured rye/vetch and ryegrass/vetch on N availability in soil, corn (Zea mays L.) yield, and NO3-N leaching in a silt loam soil. The field had been in corn and cover crop rotation sin...

  14. Climate Variability and Yields of Major Staple Food Crops in Northern Ghana

    Science.gov (United States)

    Amikuzuno, J.

    2012-12-01

    Climate variability, the short-term fluctuations in average weather conditions, and agriculture affect each other. Climate variability affects the agroecological and growing conditions of crops and livestock, and is recently believed to be the greatest impediment to the realisation of the first Millennium Development Goal of reducing poverty and food insecurity in arid and semi-arid regions of developing countries. Conversely, agriculture is a major contributor to climate variability and change by emitting greenhouse gases and reducing the agroecology's potential for carbon sequestration. What however, is the empirical evidence of this inter-dependence of climate variability and agriculture in Sub-Sahara Africa? In this paper, we provide some insight into the long run relationship between inter-annual variations in temperature and rainfall, and annual yields of the most important staple food crops in Northern Ghana. Applying pooled panel data of rainfall, temperature and yields of the selected crops from 1976 to 2010 to cointegration and Granger causality models, there is cogent evidence of cointegration between seasonal, total rainfall and crop yields; and causality from rainfall to crop yields in the Sudano-Guinea Savannah and Guinea Savannah zones of Northern Ghana. This suggests that inter-annual yields of the crops have been influenced by the total mounts of rainfall in the planting season. Temperature variability over the study period is however stationary, and is suspected to have minimal effect if any on crop yields. Overall, the results confirm the appropriateness of our attempt in modelling long-term relationships between the climate and crop yield variables.

  15. An assessment of irrigation needs and crop yield for the United States under potential climate changes

    Science.gov (United States)

    Brumbelow, Kelly; Georgakakos, Aris P.

    2000-01-01

    Past assessments of climate change on U.S. agriculture have mostly focused on changes in crop yield. Few studies have included the entire conterminous U.S., and few studies have assessed changing irrigation requirements. None have included the effects of changing soil moisture characteristics as determined by changing climatic forcing. This study assesses changes in irrigation requirements and crop yields for five crops in the areas of the U.S. where they have traditionally been grown. Physiologically-based crop models are used to incorporate inputs of climate, soils, agricultural management, and drought stress tolerance. Soil moisture values from a macroscale hydrologic model run under a future climate scenario are used to initialize soil moisture content at the beginning of each growing season. Historical crop yield data is used to calibrate model parameters and determine locally acceptable drought stress as a management parameter. Changes in irrigation demand and crop yield are assessed for both means and extremes by comparing results for atmospheric forcing close to the present climate with those for a future climate scenario. Assessments using the Canadian Center for Climate Modeling and Analysis General Circulation Model (CGCM1) indicate greater irrigation demands in the southern U.S. and decreased irrigation demands in the northern and western U.S. Crop yields typically increase except for winter wheat in the southern U.S. and corn. Variability in both irrigation demands and crop yields increases in most cases. Assessment results for the CGCM1 climate scenario are compared to those for the Hadley Centre for Climate Prediction and Research GCM (HadCM2) scenario for southwestern Georgia. The comparison shows significant differences in irrigation and yield trends, both in magnitude and direction. The differences reflect the high forecast uncertainty of current GCMs. Nonetheless, both GCMs indicate higher variability in future climatic forcing and, consequently

  16. Effect of simulated sulfuric acid rain on yield, growth and foliar injury of several crops

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J J; Neely, G E; Perrigan, S C; Grothaus, L C

    1981-01-01

    This study was designed to reveal patterns of response of major United States crops to sulfuric acid rain. Potted plants were grown in field chambers and exposed to simulated sulfuric acid rain (pH 3.0, 3.5 or 4.0) or to a control rain (pH 5.6). At harvest, the weights of the marketable portion, total aboveground portion and roots were determined for 28 crops. Of these, marketable yield production was inhibited for 5 crops (radish, beet, carrot, mustard greens, broccoli), stimulated for 6 crops (tomato, green pepper, strawberry, alfalfa, orchardgrass, timothy), and ambiguously affected for 1 crop (potato). In addition, stem and leaf production of sweet corn was stimulated. Visible injury of tomatoes might have decreased their marketabiity. No statistically significant effects on yield were observed for the other 15 crops. The results suggest that the likelihood of yield being affected by acid depends on the part of the plant utilized, as well as on species. Effects on the aboveground portion of crops and on roots are also presented. Plants were regularly examined for foliar injury associated with acid rain. Of the 35 cultivars examined, the foliage of 31 was injured at pH 3.0, 28 at pH 3.5, and 5 at pH 4.0. Foliar injury was not generally related to effects on yield. However, foliar injury of Swiss chard, mustard greens and spinach was severe enough to adversely affect marketability.

  17. Prediction of County-Level Corn Yields Using an Energy-Crop Growth Index.

    Science.gov (United States)

    Andresen, Jeffrey A.; Dale, Robert F.; Fletcher, Jerald J.; Preckel, Paul V.

    1989-01-01

    Weather conditions significantly affect corn yields. while weather remains as the major uncontrolled variable in crop production, an understanding of the influence of weather on yields can aid in early and accurate assessment of the impact of weather and climate on crop yields and allow for timely agricultural extension advisories to help reduce farm management costs and improve marketing, decisions. Based on data for four representative countries in Indiana from 1960 to 1984 (excluding 1970 because of the disastrous southern corn leaf blight), a model was developed to estimate corn (Zea mays L.) yields as a function of several composite soil-crop-weather variables and a technology-trend marker, applied nitrogen fertilizer (N). The model was tested by predicting corn yields for 15 other counties. A daily energy-crop growth (ECG) variable in which different weights were used for the three crop-weather variables which make up the daily ECG-solar radiation intercepted by the canopy, a temperature function, and the ratio of actual to potential evapotranspiration-performed better than when the ECG components were weighted equally. The summation of the weighted daily ECG over a relatively short period (36 days spanning silk) was found to provide the best index for predicting county average corn yield. Numerical estimation results indicate that the ratio of actual to potential evapotranspiration (ET/PET) is much more important than the other two ECG factors in estimating county average corn yield in Indiana.

  18. Citizen science and remote sensing for crop yield gap analysis

    NARCIS (Netherlands)

    Beza, Eskender Andualem

    2017-01-01

    The world population is anticipated to be around 9.1 billion in 2050 and the challenge is how to feed this huge number of people without affecting natural ecosystems. Different approaches have been proposed and closing the ‘yield gap’ on currently available agricultural lands is one of them. The

  19. Inter cropping and population density effects on yield component ...

    African Journals Online (AJOL)

    Thus the objective of this study was to determine the influence of intercropping and population density on protein and oil yield components, photosynthesis of sorghum and Soybean at the canopy closure. The study was conducted at the University of Nairobi farm during the long rains. There was a significant increase in the ...

  20. Enhanced biogas yield from energy crops with rumen anaerobic fungi

    Czech Academy of Sciences Publication Activity Database

    Procházka, J.; Mrázek, Jakub; Štrosová, Lenka; Fliegerová, Kateřina; Zábranská, J.; Dohányos, M.

    2012-01-01

    Roč. 12, č. 3 (2012), s. 343-351 ISSN 1618-0240 R&D Projects: GA ČR GPP503/10/P394; GA MZe QI92A286 Institutional support: RVO:67985904 Keywords : Anaerobic digestion * Anaerobic fungi * Biogas yield Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.633, year: 2012

  1. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential.

    Science.gov (United States)

    Long, Stephen P; Marshall-Colon, Amy; Zhu, Xin-Guang

    2015-03-26

    Increase in demand for our primary foodstuffs is outstripping increase in yields, an expanding gap that indicates large potential food shortages by mid-century. This comes at a time when yield improvements are slowing or stagnating as the approaches of the Green Revolution reach their biological limits. Photosynthesis, which has been improved little in crops and falls far short of its biological limit, emerges as the key remaining route to increase the genetic yield potential of our major crops. Thus, there is a timely need to accelerate our understanding of the photosynthetic process in crops to allow informed and guided improvements via in-silico-assisted genetic engineering. Potential and emerging approaches to improving crop photosynthetic efficiency are discussed, and the new tools needed to realize these changes are presented. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. A Novel Approach for Forecasting Crop Production and Yield Using Remotely Sensed Satellite Images

    Science.gov (United States)

    Singh, R. K.; Budde, M. E.; Senay, G. B.; Rowland, J.

    2017-12-01

    Forecasting crop production in advance of crop harvest plays a significant role in drought impact management, improved food security, stabilizing food grain market prices, and poverty reduction. This becomes essential, particularly in Sub-Saharan Africa, where agriculture is a critical source of livelihoods, but lacks good quality agricultural statistical data. With increasing availability of low cost satellite data, faster computing power, and development of modeling algorithms, remotely sensed images are becoming a common source for deriving information for agricultural, drought, and water management. Many researchers have shown that the Normalized Difference Vegetation Index (NDVI), based on red and near-infrared reflectance, can be effectively used for estimating crop production and yield. Similarly, crop production and yield have been closely related to evapotranspiration (ET) also as there are strong linkages between production/yield and transpiration based on plant physiology. Thus, we combined NDVI and ET information from remotely sensed images for estimating total production and crop yield prior to crop harvest for Niger and Burkina Faso in West Africa. We identified the optimum time (dekads 23-29) for cumulating NDVI and ET and developed a new algorithm for estimating crop production and yield. We used the crop data from 2003 to 2008 to calibrate our model and the data from 2009 to 2013 for validation. Our results showed that total crop production can be estimated within 5% of actual production (R2 = 0.98) about 30-45 days before end of the harvest season. This novel approach can be operationalized to provide a valuable tool to decision makers for better drought impact management in drought-prone regions of the world.

  3. Global scale climate-crop yield relationships and the impacts of recent warming

    International Nuclear Information System (INIS)

    Lobell, David B; Field, Christopher B

    2007-01-01

    Changes in the global production of major crops are important drivers of food prices, food security and land use decisions. Average global yields for these commodities are determined by the performance of crops in millions of fields distributed across a range of management, soil and climate regimes. Despite the complexity of global food supply, here we show that simple measures of growing season temperatures and precipitation-spatial averages based on the locations of each crop-explain ∼30% or more of year-to-year variations in global average yields for the world's six most widely grown crops. For wheat, maize and barley, there is a clearly negative response of global yields to increased temperatures. Based on these sensitivities and observed climate trends, we estimate that warming since 1981 has resulted in annual combined losses of these three crops representing roughly 40 Mt or $5 billion per year, as of 2002. While these impacts are small relative to the technological yield gains over the same period, the results demonstrate already occurring negative impacts of climate trends on crop yields at the global scale

  4. Trading carbon for food: global comparison of carbon stocks vs. crop yields on agricultural land.

    Science.gov (United States)

    West, Paul C; Gibbs, Holly K; Monfreda, Chad; Wagner, John; Barford, Carol C; Carpenter, Stephen R; Foley, Jonathan A

    2010-11-16

    Expanding croplands to meet the needs of a growing population, changing diets, and biofuel production comes at the cost of reduced carbon stocks in natural vegetation and soils. Here, we present a spatially explicit global analysis of tradeoffs between carbon stocks and current crop yields. The difference among regions is striking. For example, for each unit of land cleared, the tropics lose nearly two times as much carbon (∼120 tons·ha(-1) vs. ∼63 tons·ha(-1)) and produce less than one-half the annual crop yield compared with temperate regions (1.71 tons·ha(-1)·y(-1) vs. 3.84 tons·ha(-1)·y(-1)). Therefore, newly cleared land in the tropics releases nearly 3 tons of carbon for every 1 ton of annual crop yield compared with a similar area cleared in the temperate zone. By factoring crop yield into the analysis, we specify the tradeoff between carbon stocks and crops for all areas where crops are currently grown and thereby, substantially enhance the spatial resolution relative to previous regional estimates. Particularly in the tropics, emphasis should be placed on increasing yields on existing croplands rather than clearing new lands. Our high-resolution approach can be used to determine the net effect of local land use decisions.

  5. Seeing is believing I: The use of thermal sensing from satellite imagery to predict crop yield

    International Nuclear Information System (INIS)

    Potgieter A B; Rodriguez D; Power B; Mclean J; Davis P

    2014-01-01

    Volatility in crop production has been part of the Australian environment since cropping began with the arrival of the first European settlers. Climate variability is the main factor affecting crop production at national, state and local scales. At field level spatial patterns on yield production are also determined by spatially changing soil properties in interaction with seasonal climate conditions and weather patterns at critical stages in the crop development. Here we used a combination of field level weather records, canopy characteristics, and satellite information to determine the spatial performance of a large field of wheat. The main objective of this research is to determine the ability of remote sensing technologies to capture yield losses due to water stress at the canopy level. The yield, canopy characteristics (i.e. canopy temperature and ground cover) and seasonal conditions of a field of wheat (∼1400ha) (-29.402° South and 149.508°, New South Wales, Australia) were continuously monitored during the winter of 2011. Weather and crop variables were continuously monitored by installing three automatic weather stations in a transect covering different positions and soils in the landscape. Weather variables included rainfall, minimum and maximum temperatures and relative humidity, and crop characteristics included ground cover and canopy temperature. Satellite imagery Landsat TM 5 and 7 was collected at five different stages in the crop cycle. Weather variables and crop characteristics were used to calculate a crop stress index (CSI) at point and field scale (39 fields). Field data was used to validate a spatial satellite image derived index. Spatial yield data was downloaded from the harvester at the different locations in the field. We used the thermal band (land surface temperature, LST) and enhanced vegetation index (EVI) bands from the MODIS (250 m for visible bands and 1km for thermal band) and a derived EVI from Landsat TM 7 (25 m for visible

  6. Effect of cropping system on yield of some sweetpotato and okra ...

    African Journals Online (AJOL)

    A field trial was conducted for 2 years to determine cropping system effect on yield of some sweetpotato and okra cultivars in an intercropping system. Sweetpotato variety TIS 87/0087 produced significantly (P<0.05) higher number of tubers per plant than Tis 8164 and Tis 2532.op.1.13 varieties. Tuber yield was also ...

  7. A scalable satellite-based crop yield mapper: Integrating satellites and crop models for field-scale estimation in India

    Science.gov (United States)

    Jain, M.; Singh, B.; Srivastava, A.; Lobell, D. B.

    2015-12-01

    Food security will be challenged over the upcoming decades due to increased food demand, natural resource degradation, and climate change. In order to identify potential solutions to increase food security in the face of these changes, tools that can rapidly and accurately assess farm productivity are needed. With this aim, we have developed generalizable methods to map crop yields at the field scale using a combination of satellite imagery and crop models, and implement this approach within Google Earth Engine. We use these methods to examine wheat yield trends in Northern India, which provides over 15% of the global wheat supply and where over 80% of farmers rely on wheat as a staple food source. In addition, we identify the extent to which farmers are shifting sow date in response to heat stress, and how well shifting sow date reduces the negative impacts of heat stress on yield. To identify local-level decision-making, we map wheat sow date and yield at a high spatial resolution (30 m) using Landsat satellite imagery from 1980 to the present. This unique dataset allows us to examine sow date decisions at the field scale over 30 years, and by relating these decisions to weather experienced over the same time period, we can identify how farmers learn and adapt cropping decisions based on weather through time.

  8. Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms.

    Science.gov (United States)

    Garibaldi, Lucas A; Carvalheiro, Luísa G; Vaissière, Bernard E; Gemmill-Herren, Barbara; Hipólito, Juliana; Freitas, Breno M; Ngo, Hien T; Azzu, Nadine; Sáez, Agustín; Åström, Jens; An, Jiandong; Blochtein, Betina; Buchori, Damayanti; Chamorro García, Fermín J; Oliveira da Silva, Fabiana; Devkota, Kedar; Ribeiro, Márcia de Fátima; Freitas, Leandro; Gaglianone, Maria C; Goss, Maria; Irshad, Mohammad; Kasina, Muo; Pacheco Filho, Alípio J S; Kiill, Lucia H Piedade; Kwapong, Peter; Parra, Guiomar Nates; Pires, Carmen; Pires, Viviane; Rawal, Ranbeer S; Rizali, Akhmad; Saraiva, Antonio M; Veldtman, Ruan; Viana, Blandina F; Witter, Sidia; Zhang, Hong

    2016-01-22

    Ecological intensification, or the improvement of crop yield through enhancement of biodiversity, may be a sustainable pathway toward greater food supplies. Such sustainable increases may be especially important for the 2 billion people reliant on small farms, many of which are undernourished, yet we know little about the efficacy of this approach. Using a coordinated protocol across regions and crops, we quantify to what degree enhancing pollinator density and richness can improve yields on 344 fields from 33 pollinator-dependent crop systems in small and large farms from Africa, Asia, and Latin America. For fields less than 2 hectares, we found that yield gaps could be closed by a median of 24% through higher flower-visitor density. For larger fields, such benefits only occurred at high flower-visitor richness. Worldwide, our study demonstrates that ecological intensification can create synchronous biodiversity and yield outcomes. Copyright © 2016, American Association for the Advancement of Science.

  9. Crop yield estimation in 2014 for Vojvodina using methods of remote sensing

    Directory of Open Access Journals (Sweden)

    Jovanović Dušan

    2014-01-01

    Full Text Available Monitoring phenology of crops and yield estimate based on vegetation indices as well as other parameters such as temperature or amount of rainfall were largely reported in literature. In this research, MODIS Normalized Difference Vegetation Index (NDVI was used as an indicator of specific crop condition; the other parameter was Land Surface Temperature (LST which can indicate the amount of crop moisture. Trial years were 2011, 2012, and 2013. For those years sowing structure was acquired from agricultural organizations Nova Budućnost from Žarkovac and Sava Kovačević from Vrbas, both in Serbia. Also, satellite images with high and medium resolution for these areas and years were available. Multiple linear regression was used for crop yield estimate for Vojvodina Province, Serbia where the NDVI and LST were independent variables and the average yield for specific crop was the dependent variable. The results of crop yield estimate two months before harvest are presented (excluding wheat.

  10. EFFECT OF COVER CROPS ON SOIL ATTRIBUTES, PLANT NUTRITION, AND IRRIGATED TROPICAL RICE YIELD

    Directory of Open Access Journals (Sweden)

    ANDRE FROES DE BORJA REIS

    2017-01-01

    Full Text Available In flood plains, cover crops are able to alter soil properties and significantly affect rice nutrition and yield. The aims of this study were to determine soil properties, plant nutrition, and yield of tropical rice cultivated on flood plains after cover crop cultivation with conventional tillage (CT and no-tillage system (NTS at low and high nitrogen (N fertilization levels. The experimental design was a randomized block in a split-split-plot scheme with four replications. In the main plots were cover crops sunhemp (Crotalaria juncea and C. spectabilis, velvet bean (Mucuna aterrima, jackbean (Canavalia ensiformis, pigeon pea (Cajanus cajan, Japanese radish (Raphanus sativus, cowpea (Vigna unguiculata and a fallow field. In the subplots were the tillage systems (CT or NTS. The nitrogen fertilization levels in the sub-subplots were (10 kg N ha-1 and 45 kg N ha-1. All cover crops except Japanese radish significantly increased mineral soil nitrogen and nitrate concentrations. Sunhemp, velvet bean, and cowpea significantly increased soil ammonium content. The NTS provides higher mineral nitrogen and ammonium content than that by CT. Overall, cover crops provided higher levels of nutrients to rice plants in NTS than in CT. Cover crops provide greater yield than fallow treatments. Rice yield was higher in NTS than in CT, and greater at a higher rather than lower nitrogen fertilization level.

  11. Remote sensing and gis based wheat crop acreage and yield estimation of district hyderabad, pakistan

    International Nuclear Information System (INIS)

    Siyal, A.

    2015-01-01

    Pre-harvest reliable and timely yield forecast and area estimates of cropped area is vital to planners and policy makers for making important and timely decisions with respect to food security in a country. The present study was conducted to estimate the wheat cropped area and crop yield in Hyderabad District, Pakistan from the Landsat 8 satellite imagery for Rabi 2013-14 and ground trothing. The required imagery of district Hyderabad was acquired from GLOVIS and was classified with maximum likelihood algorithm using ArcGIS 10.1. The classified image revealed that in district Hyderabad wheat covered 10,210 hectares (9.74% of total area) during Rabi season 2013-14 against 15,000 hectares (14.3% of total area) reported by Crop reporting Services (CRS), Sindh which is 30% less than that of reported by CRS. A positive linear relation between the wheat crop yield and the peak NDVI with coefficient of determination R2 = 0.91 was observed. Crop area and yield forecast through remote sensing is easy, cost effective, quick and reliable hence this technology needs to be introduced and propagated in the concerned government departments of Pakistan. (author)

  12. Winter cover crops on processing tomato yield, quality, pest pressure, nitrogen availability, and profit margins.

    Science.gov (United States)

    Belfry, Kimberly D; Trueman, Cheryl; Vyn, Richard J; Loewen, Steven A; Van Eerd, Laura L

    2017-01-01

    Much of cover crop research to date focuses on key indicators of impact without considering the implications over multiple years, in the absence of a systems-based approach. To evaluate the effect of three years of autumn cover crops on subsequent processing tomato (Solanum lycopersicum L.) production in 2010 and 2011, a field split-split-plot factorial design trial with effects of cover crop type, urea ammonium nitrate fertilizer rate (0 or 140 kg N ha-1 preplant broadcast incorporated) and tomato cultivar (early vs. late) was conducted. The main plot factor, cover crop, included a no cover crop control, oat (Avena sativa L.), winter cereal rye (hereafter referred to as rye) (Secale cereale L.), oilseed radish (OSR) (Raphanus sativus L. var. oleiferus Metzg Stokes), and mix of OSR and rye (OSR + rye) treatments. Cover crop biomass of 0.5 to 2.8 and 1.7 to 3.1 Mg ha-1 was attained in early Oct. and the following early May, respectively. In general, OSR increased soil mineral N during cover crop growth and into the succeeding summer tomato growing season, while the remaining cover crops did not differ from the no cover crop control. The lack of a cover crop by N rate interaction in soil and plant N analyses at harvest suggests that growers may not need to modify N fertilizer rates to tomatoes based on cover crop type. Processing tomato fruit quality at harvest (rots, insect or disease damage, Agtron colour, pH, or natural tomato soluble solids (NTSS)) was not affected by cover crop type. In both years, marketable yield in the no cover crop treatment was lower or not statistically different than all planted cover crops. Partial profit margins over both years were 1320 $ ha-1 higher with OSR and $960 higher with oat compared to the no cover crop control. Thus, results from a systems-based approach suggest that the cover crops tested had no observed negative impact on processing tomato production and have the potential to increase marketable yield and profit margins.

  13. Winter cover crops on processing tomato yield, quality, pest pressure, nitrogen availability, and profit margins.

    Directory of Open Access Journals (Sweden)

    Kimberly D Belfry

    Full Text Available Much of cover crop research to date focuses on key indicators of impact without considering the implications over multiple years, in the absence of a systems-based approach. To evaluate the effect of three years of autumn cover crops on subsequent processing tomato (Solanum lycopersicum L. production in 2010 and 2011, a field split-split-plot factorial design trial with effects of cover crop type, urea ammonium nitrate fertilizer rate (0 or 140 kg N ha-1 preplant broadcast incorporated and tomato cultivar (early vs. late was conducted. The main plot factor, cover crop, included a no cover crop control, oat (Avena sativa L., winter cereal rye (hereafter referred to as rye (Secale cereale L., oilseed radish (OSR (Raphanus sativus L. var. oleiferus Metzg Stokes, and mix of OSR and rye (OSR + rye treatments. Cover crop biomass of 0.5 to 2.8 and 1.7 to 3.1 Mg ha-1 was attained in early Oct. and the following early May, respectively. In general, OSR increased soil mineral N during cover crop growth and into the succeeding summer tomato growing season, while the remaining cover crops did not differ from the no cover crop control. The lack of a cover crop by N rate interaction in soil and plant N analyses at harvest suggests that growers may not need to modify N fertilizer rates to tomatoes based on cover crop type. Processing tomato fruit quality at harvest (rots, insect or disease damage, Agtron colour, pH, or natural tomato soluble solids (NTSS was not affected by cover crop type. In both years, marketable yield in the no cover crop treatment was lower or not statistically different than all planted cover crops. Partial profit margins over both years were 1320 $ ha-1 higher with OSR and $960 higher with oat compared to the no cover crop control. Thus, results from a systems-based approach suggest that the cover crops tested had no observed negative impact on processing tomato production and have the potential to increase marketable yield and profit

  14. Bivariate return periods of temperature and precipitation explain a large fraction of European crop yields

    Directory of Open Access Journals (Sweden)

    J. Zscheischler

    2017-07-01

    Full Text Available Crops are vital for human society. Crop yields vary with climate and it is important to understand how climate and crop yields are linked to ensure future food security. Temperature and precipitation are among the key driving factors of crop yield variability. Previous studies have investigated mostly linear relationships between temperature and precipitation and crop yield variability. Other research has highlighted the adverse impacts of climate extremes, such as drought and heat waves, on crop yields. Impacts are, however, often non-linearly related to multivariate climate conditions. Here we derive bivariate return periods of climate conditions as indicators for climate variability along different temperature–precipitation gradients. We show that in Europe, linear models based on bivariate return periods of specific climate conditions explain on average significantly more crop yield variability (42 % than models relying directly on temperature and precipitation as predictors (36 %. Our results demonstrate that most often crop yields increase along a gradient from hot and dry to cold and wet conditions, with lower yields associated with hot and dry periods. The majority of crops are most sensitive to climate conditions in summer and to maximum temperatures. The use of bivariate return periods allows the integration of non-linear impacts into climate–crop yield analysis. This offers new avenues to study the link between climate and crop yield variability and suggests that they are possibly more strongly related than what is inferred from conventional linear models.

  15. The potential of satellite-observed crop phenology to enhance yield gap assessments in smallholder landscapes

    Directory of Open Access Journals (Sweden)

    John M A Duncan

    2015-08-01

    Full Text Available Many of the undernourished people on the planet obtain their entitlements to food via agricultural-based livelihood strategies, often on underperforming croplands and smallholdings. In this context, expanding cropland extent is not a viable strategy for smallholders to meet their food needs. Therefore, attention must shift to increasing productivity on existing plots and ensuring yield gaps do not widen. Thus, supporting smallholder farmers to sustainably increase the productivity of their lands is one part of a complex solution to realising universal food security. However, the information (e.g. location and causes of cropland underperformance required to support measures to close yield gaps in smallholder landscapes are often not available. This paper reviews the potential of crop phenology, observed from satellites carrying remote sensing sensors, to fill this information gap. It is suggested that on a theoretical level phenological approaches can reveal greater intra-cropland thematic detail, and increase the accuracy of crop extent maps and crop yield estimates. However, on a practical level the spatial mismatch between the resolution at which crop phenology can be estimated from satellite remote sensing data and the scale of yield variability in smallholder croplands inhibits its use in this context. Similarly, the spatial coverage of remote sensing-derived phenology offers potential for integration with ancillary spatial datasets to identify causes of yield gaps. To reflect the complexity of smallholder cropping systems requires ancillary datasets at fine spatial resolutions which, often, are not available. This further precludes the use of crop phenology in attempts to unpick the causes of yield gaps. Research agendas should focus on generating fine spatial resolution crop phenology, either via data fusion or through new sensors (e.g. Sentinel-2 in smallholder croplands. This has potential to transform the applied use of remote sensing

  16. High-resolution, regional-scale crop yield simulations for the Southwestern United States

    Science.gov (United States)

    Stack, D. H.; Kafatos, M.; Medvigy, D.; El-Askary, H. M.; Hatzopoulos, N.; Kim, J.; Kim, S.; Prasad, A. K.; Tremback, C.; Walko, R. L.; Asrar, G. R.

    2012-12-01

    Over the past few decades, there have been many process-based crop models developed with the goal of better understanding the impacts of climate, soils, and management decisions on crop yields. These models simulate the growth and development of crops in response to environmental drivers. Traditionally, process-based crop models have been run at the individual farm level for yield optimization and management scenario testing. Few previous studies have used these models over broader geographic regions, largely due to the lack of gridded high-resolution meteorological and soil datasets required as inputs for these data intensive process-based models. In particular, assessment of regional-scale yield variability due to climate change requires high-resolution, regional-scale, climate projections, and such projections have been unavailable until recently. The goal of this study was to create a framework for extending the Agricultural Production Systems sIMulator (APSIM) crop model for use at regional scales and analyze spatial and temporal yield changes in the Southwestern United States (CA, AZ, and NV). Using the scripting language Python, an automated pipeline was developed to link Regional Climate Model (RCM) output with the APSIM crop model, thus creating a one-way nested modeling framework. This framework was used to combine climate, soil, land use, and agricultural management datasets in order to better understand the relationship between climate variability and crop yield at the regional-scale. Three different RCMs were used to drive APSIM: OLAM, RAMS, and WRF. Preliminary results suggest that, depending on the model inputs, there is some variability between simulated RCM driven maize yields and historical yields obtained from the United States Department of Agriculture (USDA). Furthermore, these simulations showed strong non-linear correlations between yield and meteorological drivers, with critical threshold values for some of the inputs (e.g. minimum and

  17. Biomass production of 12 winter cereal cover crop cultivars and their effect on subsequent no-till corn yield

    Science.gov (United States)

    Cover crops can improve the sustainability and resilience of corn and soybean production systems. However, there have been isolated reports of corn yield reductions following winter rye cover crops. Although there are many possible causes of corn yield reductions following winter cereal cover crops,...

  18. Weed-crop competition effects on growth and yield of sugarcane planted using two methods

    International Nuclear Information System (INIS)

    Zafar, M.; Tanveer, A.; Cheema, Z.A.; Ashraf, M.

    2010-01-01

    Effect of planting techniques and weed-crop competition periods on yield potential of spring planted sugarcane variety HSF-240 was studied at the Ayub Agricultural Research Institute, Faisalabad, Pakistan. The experiment was laid out in RCBD with a split-plot arrangement, with four replications and net plot size of 3.6m x 10m. In the experiment, two planting techniques viz., 60 cm apart rows in flat sowing technique and 120 cm apart rows in trench sowing technique were randomized in main plots. Seven weed-crop competition periods viz., Zero (weed free), weed-crop competition for 45, 60, 75, 90, 105 days after sowing (DAS) and weedy check (full season weed-crop competition) were randomized in sub-plots. Sugarcane sown by trench method exhibited more leaf area index (LAI), average crop growth rate (ACGR) and yield contributing attributes. Trench sowing by yielding 72.22 and 75.08 t ha/sup -1/ stripped cane yields, significantly showed superiority over the flat sowing, which gave 64.13 and 66.04 t ha/sup -1/ stripped cane yields in 2005-06 and 2006- 07, respectively. Generally, there was an increase in weed population and biomass but decrease in leaf area index, crop growth rate and yield components with an increase in weed-crop competition period. A decrease of 10.06, 17.90, 22.42, 28.65, 37.64 and 56.89% in stripped cane yield was observed for weed-crop competition periods of 45, 60, 75, 90, 105 DAS and weedy check as compared with zero competition in 2005-06, respectively. In 2006-07, the respective decrease in stripped cane yield was 9.84, 18.76, 22.92, 27.98, 38.75, and 54.98%. Trench sowing at 1.2 m row spacing proved better sowing technique and 45 DAS was the critical period of weed-crop competition. (author)

  19. Climate effects on crop yields in the Northeast Farming Region of China during 1961–2010

    DEFF Research Database (Denmark)

    Yin, Xiaogang; Olesen, Jørgen Eivind; Wang, M.

    2016-01-01

    on the yield of maize (Zea mays L.), rice (Oryza sativa L.), soybean (Glycine max L. Merr.) and spring wheat (Triticum aestivum L.) in different crop growth phases. The crop growing season was divided into three growth phases based on the average crop phenological dates from records covering 1981 and 2010...... cycles), average daily solar radiation, accumulated precipitation, aridity index (which is used to assess drought stress) and heat degree-days index (HDD) (which is used to indicate heat stress) were calculated for each growth phase and year. Over the 1961–2010 period, the minimum temperature increased...... water management....

  20. Linkages among climate change, crop yields and Mexico-US cross-border migration.

    Science.gov (United States)

    Feng, Shuaizhang; Krueger, Alan B; Oppenheimer, Michael

    2010-08-10

    Climate change is expected to cause mass human migration, including immigration across international borders. This study quantitatively examines the linkages among variations in climate, agricultural yields, and people's migration responses by using an instrumental variables approach. Our method allows us to identify the relationship between crop yields and migration without explicitly controlling for all other confounding factors. Using state-level data from Mexico, we find a significant effect of climate-driven changes in crop yields on the rate of emigration to the United States. The estimated semielasticity of emigration with respect to crop yields is approximately -0.2, i.e., a 10% reduction in crop yields would lead an additional 2% of the population to emigrate. We then use the estimated semielasticity to explore the potential magnitude of future emigration. Depending on the warming scenarios used and adaptation levels assumed, with other factors held constant, by approximately the year 2080, climate change is estimated to induce 1.4 to 6.7 million adult Mexicans (or 2% to 10% of the current population aged 15-65 y) to emigrate as a result of declines in agricultural productivity alone. Although the results cannot be mechanically extrapolated to other areas and time periods, our findings are significant from a global perspective given that many regions, especially developing countries, are expected to experience significant declines in agricultural yields as a result of projected warming.

  1. Linkages among climate change, crop yields and Mexico–US cross-border migration

    Science.gov (United States)

    Feng, Shuaizhang; Krueger, Alan B.; Oppenheimer, Michael

    2010-01-01

    Climate change is expected to cause mass human migration, including immigration across international borders. This study quantitatively examines the linkages among variations in climate, agricultural yields, and people's migration responses by using an instrumental variables approach. Our method allows us to identify the relationship between crop yields and migration without explicitly controlling for all other confounding factors. Using state-level data from Mexico, we find a significant effect of climate-driven changes in crop yields on the rate of emigration to the United States. The estimated semielasticity of emigration with respect to crop yields is approximately −0.2, i.e., a 10% reduction in crop yields would lead an additional 2% of the population to emigrate. We then use the estimated semielasticity to explore the potential magnitude of future emigration. Depending on the warming scenarios used and adaptation levels assumed, with other factors held constant, by approximately the year 2080, climate change is estimated to induce 1.4 to 6.7 million adult Mexicans (or 2% to 10% of the current population aged 15–65 y) to emigrate as a result of declines in agricultural productivity alone. Although the results cannot be mechanically extrapolated to other areas and time periods, our findings are significant from a global perspective given that many regions, especially developing countries, are expected to experience significant declines in agricultural yields as a result of projected warming. PMID:20660749

  2. Improvement of red pepper yield and soil environment by summer catch aquatic crops in greenhouses

    Science.gov (United States)

    Du, X. F.; Wang, L. Z.; Peng, J.; Wang, G. L.; Guo, X. S.; Wen, T. G.; Gu, D. L.; Wang, W. Z.; Wu, C. W.

    2016-08-01

    To investigate effects of the rotation of summer catch crops on remediation retrogressed soils in continuous cropping, a field experiment was conducted. Rice, water spinach, or cress were selected as summer catch crops; bare fallow during summer fallow was used as the control group. Results showed that aquatic crops grown in summer fallow period could effectively reduce soil bulk density and pH, facilitate soil nutrient release, and improve soil physical and chemical properties compared with those grown in fallow period. Paddy-upland rotation could improve soil microbial members and increase bacterial and actinomycete populations; by contrast, paddy-upland rotation could reduce fungal populations and enhance bacterium-to-fungus ratio. Paddy-upland rotation could also actively promote activities of soil enzymes, such as urease, phosphatase, invertase, and catalase. The proposed paddy-upland rotation significantly affected the growth of red pepper; the yield and quality of the grown red pepper were enhanced. Summer catch crops, such as rice, water spinach, and cress significantly increased pepper yield in the following growing season by 15.4%, 10.2% and 14.0%, respectively, compared with those grown in fallow treatment. Therefore, the proposed paddy-upland crop rotation could be a useful method to alleviate continuous cropping problems involved in cultivating red pepper in greenhouses.

  3. Plant Residual Management in different Crop Rotations System on Potato Tuber Yield Loss Affected by Wireworms

    Directory of Open Access Journals (Sweden)

    A. Zarea Feizabadi

    2016-07-01

    Full Text Available Introduction: Selection a proper crop rotation based on environmental conservation rules is a key factor for increasing long term productivity. On the other hand, the major problem in reaching agricultural sustainability is lack of soil organic matter. Recently, a new viewpoint has emerged based on efficient use of inputs, environmental protection, ecological economy, food supply and security. Crop rotation cannot supply and restore plant needed nutrients, so gradually the productivity of rotation system tends to be decreased. Returning the plant residues to the soil helps to increase its organic matter and fertility in long-term period. Wireworms are multi host pests and we can see them in wheat and barley too. The logic way for their control is agronomic practices like as crop rotation. Wireworms’ population and damages are increased with using grasses and small seed gramineas in mild winters, variation in cropping pattern, reduced chemical control, and cover crops in winter. In return soil cultivation, crop rotation, planting date, fertilizing, irrigation and field health are the examples for the effective factors in reducing wireworms’ damage. Materials and Methods: In order to study the effect of crop rotations, residue management and yield damage because of wireworms’ population in soil, this experiment was conducted using four rotation systems for five years in Jolgeh- Rokh agricultural research station. Crop rotations were included, 1 Wheat monoculture for the whole period (WWWWW, 2 Wheat- wheat- wheat- canola- wheat (WWWCW, 3 Wheat- sugar beet- wheat- potato- wheat (WSWPW, 4 Wheat- maize- wheat- potato- wheat (WMWPW as main plots and three levels of returning crop residues to soil (returning 0, 50 and 100% produced crop residues to soil were allocated as sub plots. This experiment was designed as split plot based on RCBD design with three replications. After ending each rotation treatment, the field was sowed with potato cv. Agria

  4. Effect of biochar on aerobic processes, enzyme activity, and crop yields in two sandy loam soils

    DEFF Research Database (Denmark)

    Sun, Zhencai; Bruun, Esben; Arthur, Emmanuel

    2014-01-01

    Biochar added to agricultural soils may sequester carbon and improve physico-chemical conditions for crop growth, due to effects such as increased water and nutrient retention in the root zone. The effects of biochar on soil microbiological properties are less certain. We addressed the effects...... of wood-based biochar on soil respiration, water contents, potential ammonia oxidation (PAO), arylsulfatase activity (ASA), and crop yields at two temperate sandy loam soils under realistic field conditions. In situ soil respiration, PAO, and ASA were not significantly different in quadruplicate field...... plots with or without biochar (20 Mg ha−1); however, in the same plots, volumetric water contents increased by 7.5 % due to biochar (P = 0.007). Crop yields (oat) were not significantly different in the first year after biochar application, but in the second year, total yields of spring barley increased...

  5. Heterogeneous global crop yield response to biochar: a meta-regression analysis

    International Nuclear Information System (INIS)

    Crane-Droesch, Andrew; Torn, Margaret S; Abiven, Samuel; Jeffery, Simon

    2013-01-01

    Biochar may contribute to climate change mitigation at negative cost by sequestering photosynthetically fixed carbon in soil while increasing crop yields. The magnitude of biochar’s potential in this regard will depend on crop yield benefits, which have not been well-characterized across different soils and biochars. Using data from 84 studies, we employ meta-analytical, missing data, and semiparametric statistical methods to explain heterogeneity in crop yield responses across different soils, biochars, and agricultural management factors, and then estimate potential changes in yield across different soil environments globally. We find that soil cation exchange capacity and organic carbon were strong predictors of yield response, with low cation exchange and low carbon associated with positive response. We also find that yield response increases over time since initial application, compared to non-biochar controls. High reported soil clay content and low soil pH were weaker predictors of higher yield response. No biochar parameters in our dataset—biochar pH, percentage carbon content, or temperature of pyrolysis—were significant predictors of yield impacts. Projecting our fitted model onto a global soil database, we find the largest potential increases in areas with highly weathered soils, such as those characterizing much of the humid tropics. Richer soils characterizing much of the world’s important agricultural areas appear to be less likely to benefit from biochar. (letter)

  6. Potential impacts of agricultural drought on crop yield variability under a changing climate in Texas

    Science.gov (United States)

    Lee, K.; Leng, G.; Huang, M.; Sheffield, J.; Zhao, G.; Gao, H.

    2017-12-01

    Texas has the largest farm area in the U.S, and its revenue from crop production ranks third overall. With the changing climate, hydrological extremes such as droughts are becoming more frequent and intensified, causing significant yield reduction in rainfed agricultural systems. The objective of this study is to investigate the potential impacts of agricultural drought on crop yields (corn, sorghum, and wheat) under a changing climate in Texas. The Variable Infiltration Capacity (VIC) model, which is calibrated and validated over 10 major Texas river basins during the historical period, is employed in this study.The model is forced by a set of statistically downscaled climate projections from Coupled Model Intercomparison Project Phase 5 (CMIP5) model ensembles at a spatial resolution of 1/8°. The CMIP5 projections contain four Representative Concentration Pathways (RCP) that represent different greenhouse gas concentration (4.5 and 8.5 w/m2 are selected in this study). To carry out the analysis, VIC simulations from 1950 to 2099 are first analyzed to investigate how the frequency and severity of agricultural droughts will be altered in Texas (under a changing climate). Second, future crop yields are projected using a statistical crop model. Third, the effects of agricultural drought on crop yields are quantitatively analyzed. The results are expected to contribute to future water resources planning, with a goal of mitigating the negative impacts of future droughts on agricultural production in Texas.

  7. [Accepted Manuscript] Annual Crop Yield Variation, Child Survival and Nutrition among Subsistence Farmers in Burkina Faso.

    OpenAIRE

    Belesova, K.; Gasparrini, A.; Sié, A.; Sauerborn, R.; Wilkinson, P.

    2017-01-01

    Whether year to year variation in crop yields affects the nutrition, health, and survival of subsistence farming populations is relevant to the understanding of the potential impacts of climate change. However, the empirical evidence is limited. We examined the association of child survival with inter-annual variation in food crop yield and middle-upper arm circumference (MUAC) in a subsistence farming population of rural Burkina Faso. The study was of 44,616 children < 5 years of age incl...

  8. Transport biofuel yields from food and lignocellulosic C{sub 4} crops

    Energy Technology Data Exchange (ETDEWEB)

    Reijnders, L. [IBED University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam (Netherlands)

    2010-01-15

    In the near future, the lignocellulosic C{sub 4} crops Miscanthus and switchgrass (Panicum virgatum) are unlikely to outcompete sugarcane (Saccharum officinarum) in net energetic yearly yield of transport biofuel ha{sup -1}. This holds both for the thermochemical conversion into liquid hydrocarbons and the enzymatic conversion into ethanol. Currently, Miscanthus and switchgrass would also not seem able to outcompete corn (Zea mays) in net energetic yearly yield of liquid transport biofuel ha{sup -1}, but further development of these lignocellulosic crops may gradually lead to a different outcome. (author)

  9. [Effects of tobacco garlic crop rotation and intercropping on tobacco yield and rhizosphere soil phosphorus fractions].

    Science.gov (United States)

    Tang, Biao; Zhang, Xi-zhou; Yang, Xian-bin

    2015-07-01

    A field plot experiment was conducted to investigate the tobacco yield and different forms of soil phosphorus under tobacco garlic crop rotation and intercropping patterns. The results showed that compared with tobacco monoculture, the tobacco yield and proportion of middle/high class of tobacco leaves to total leaves were significantly increased in tobacco garlic crop rotation and intercropping, and the rhizosphere soil available phosphorus contents were 1.3 and 1.7 times as high as that of tobacco monoculture at mature stage of lower leaf. For the inorganic phosphorus in rhizosphere and non-rhizosphere soil in different treatments, the contents of O-P and Fe-P were the highest, followed by Ca2-P and Al-P, and Ca8-P and Ca10-P were the lowest. Compared with tobacco monoculture and tobacco garlic crop intercropping, the Ca2-P concentration in rhizosphere soil under tobacco garlic crop rotation at mature stage of upper leaf, the Ca8-P concentration at mature stage of lower leaf, and the Ca10-P concentration at mature stage of middle leaf were lowest. The Al-P concentrations under tobacco garlic crop rotation and intercropping were 1.6 and 1.9 times, and 1.2 and 1.9 times as much as that under tobacco monoculture in rhizosphere soil at mature stages of lower leaf and middle leaf, respectively. The O-P concentrations in rhizosphere soil under tobacco garlic crop rotation and intercropping were significantly lower than that under tobacco monoculture. Compared with tobacco garlic crop intercropping, the tobacco garlic crop rotation could better improve tobacco yield and the proportion of high and middle class leaf by activating O-P, Ca10-P and resistant organic phosphorus in soil.

  10. Bioenergy Sorghum Crop Model Predicts VPD-Limited Transpiration Traits Enhance Biomass Yield in Water-Limited Environments.

    Science.gov (United States)

    Truong, Sandra K; McCormick, Ryan F; Mullet, John E

    2017-01-01

    Bioenergy sorghum is targeted for production in water-limited annual cropland therefore traits that improve plant water capture, water use efficiency, and resilience to water deficit are necessary to maximize productivity. A crop modeling framework, APSIM, was adapted to predict the growth and biomass yield of energy sorghum and to identify potentially useful traits for crop improvement. APSIM simulations of energy sorghum development and biomass accumulation replicated results from field experiments across multiple years, patterns of rainfall, and irrigation schemes. Modeling showed that energy sorghum's long duration of vegetative growth increased water capture and biomass yield by ~30% compared to short season crops in a water-limited production region. Additionally, APSIM was extended to enable modeling of VPD-limited transpiration traits that reduce crop water use under high vapor pressure deficits (VPDs). The response of transpiration rate to increasing VPD was modeled as a linear response until a VPD threshold was reached, at which the slope of the response decreases, representing a range of responses to VPD observed in sorghum germplasm. Simulation results indicated that the VPD-limited transpiration trait is most beneficial in hot and dry regions of production where crops are exposed to extended periods without rainfall during the season or to a terminal drought. In these environments, slower but more efficient transpiration increases biomass yield and prevents or delays the exhaustion of soil water and onset of leaf senescence. The VPD-limited transpiration responses observed in sorghum germplasm increased biomass accumulation by 20% in years with lower summer rainfall, and the ability to drastically reduce transpiration under high VPD conditions could increase biomass by 6% on average across all years. This work indicates that the productivity and resilience of bioenergy sorghum grown in water-limited environments could be further enhanced by development

  11. Atmospheric CO2 fertilization effects on biomass yields of 10 crops in northern Germany

    Directory of Open Access Journals (Sweden)

    Jan F. Degener

    2015-07-01

    Full Text Available The quality and quantity of the influence that atmospheric CO2 has on cropgrowth is still a matter of debate. This study's aim is to estimate if CO2 will have an effect on biomass yields at all, to quantify and spatially locate the effects and to explore if an elevated photosynthesis rate or water-use-efficiency is predominantly responsible. This study uses a numerical carbon based crop model (BioSTAR to estimate biomass yields within theadministrative boundaries of Niedersachsen in Northern Germany. 10 crops are included (winter grains: wheat, barley,rye, triticale - early, medium, late maize variety - sunflower, sorghum, spring wheat, modeled annuallyfor the entire 21st century on 91,014 separate sites. Modeling was conducted twice, once with an annually adaptedCO2 concentration according to the SRES-A1B scenario and once with a fixed concentration of 390 ppm to separate the influence of CO2 from that of the other input variables.Rising CO2 concentrations will play a central role in keeping future yields of all crops above or aroundtoday's level. Differences in yields between modeling with fixed or adapted CO2 can be as high as60 % towards the century's end. Generally yields will increase when CO2 rises and decline whenit is kept constant. As C4-crops are equivalently affected it is presumed that anelevated efficiency in water use is the main responsible factor for all plants.

  12. Impacts of climate variability and change on crop yield in sub-Sahara Africa

    Science.gov (United States)

    Pan, S.; Zhang, J.; Yang, J.; Chen, G.; Xu, R.; Zhang, B.; Lou, Y.

    2017-12-01

    Much concern has been raised about the impacts of climate change and climate extremes on Africa's food security. The impact of climate change on Africa's agriculture is likely to be severe compared to other continents due to high rain-fed agricultural dependence, and limited ability to mitigate and adapt to climate change. In recent decades, warming in Africa is more pronounced and faster than the global average and this trend is likely to continue in the future. However, quantitative assessment on impacts of climate extremes and climate change on crop yield has not been well investigated yet. By using an improved agricultural module of the Dynamic Land Ecosystem Model (DLEM-AG2) driven by spatially-explicit information on land use, climate and other environmental changes, we have assessed impacts of historical climate variability and future climate change on food crop yield across the sub-Sahara Africa during1980-2016 and the rest of the 21st century (2017-2099). Our simulated results indicate that African crop yield in the past three decades shows an increasing trend primarily due to cropland expansion. However, crop yield shows substantially spatial and temporal variation due to inter-annual and inter-decadal climate variability and spatial heterogeneity of environmental drivers. Droughts have largely reduced crop yield in the most vulnerable regions of Sub-Sahara Africa. Future projections with DLEM-AG2 show that food crop production in Sub-Sahara Africa would be favored with limiting end-of-century warming to below 1.50 C.

  13. Predictive ability of machine learning methods for massive crop yield prediction

    Directory of Open Access Journals (Sweden)

    Alberto Gonzalez-Sanchez

    2014-04-01

    Full Text Available An important issue for agricultural planning purposes is the accurate yield estimation for the numerous crops involved in the planning. Machine learning (ML is an essential approach for achieving practical and effective solutions for this problem. Many comparisons of ML methods for yield prediction have been made, seeking for the most accurate technique. Generally, the number of evaluated crops and techniques is too low and does not provide enough information for agricultural planning purposes. This paper compares the predictive accuracy of ML and linear regression techniques for crop yield prediction in ten crop datasets. Multiple linear regression, M5-Prime regression trees, perceptron multilayer neural networks, support vector regression and k-nearest neighbor methods were ranked. Four accuracy metrics were used to validate the models: the root mean square error (RMS, root relative square error (RRSE, normalized mean absolute error (MAE, and correlation factor (R. Real data of an irrigation zone of Mexico were used for building the models. Models were tested with samples of two consecutive years. The results show that M5-Prime and k-nearest neighbor techniques obtain the lowest average RMSE errors (5.14 and 4.91, the lowest RRSE errors (79.46% and 79.78%, the lowest average MAE errors (18.12% and 19.42%, and the highest average correlation factors (0.41 and 0.42. Since M5-Prime achieves the largest number of crop yield models with the lowest errors, it is a very suitable tool for massive crop yield prediction in agricultural planning.

  14. Combined effects of agrochemicals and ecosystem services on crop yield across Europe.

    Science.gov (United States)

    Gagic, Vesna; Kleijn, David; Báldi, András; Boros, Gergely; Jørgensen, Helene Bracht; Elek, Zoltán; Garratt, Michael P D; de Groot, G Arjen; Hedlund, Katarina; Kovács-Hostyánszki, Anikó; Marini, Lorenzo; Martin, Emily; Pevere, Ines; Potts, Simon G; Redlich, Sarah; Senapathi, Deepa; Steffan-Dewenter, Ingolf; Świtek, Stanislaw; Smith, Henrik G; Takács, Viktória; Tryjanowski, Piotr; van der Putten, Wim H; van Gils, Stijn; Bommarco, Riccardo

    2017-11-01

    Simultaneously enhancing ecosystem services provided by biodiversity below and above ground is recommended to reduce dependence on chemical pesticides and mineral fertilisers in agriculture. However, consequences for crop yield have been poorly evaluated. Above ground, increased landscape complexity is assumed to enhance biological pest control, whereas below ground, soil organic carbon is a proxy for several yield-supporting services. In a field experiment replicated in 114 fields across Europe, we found that fertilisation had the strongest positive effect on yield, but hindered simultaneous harnessing of below- and above-ground ecosystem services. We furthermore show that enhancing natural enemies and pest control through increasing landscape complexity can prove disappointing in fields with low soil services or in intensively cropped regions. Thus, understanding ecological interdependences between land use, ecosystem services and yield is necessary to promote more environmentally friendly farming by identifying situations where ecosystem services are maximised and agrochemical inputs can be reduced. © 2017 John Wiley & Sons Ltd/CNRS.

  15. Effects of No-Till on Yields as Influenced by Crop and Environmental Factors

    Energy Technology Data Exchange (ETDEWEB)

    Toliver, Dustin K.; Larson, James A.; Roberts, Roland K.; English, B.C.; De La Torre Ugarte, D. G.; West, Tristram O.

    2012-02-07

    Th is research evaluated diff erences in yields and associated downside risk from using no-till and tillage practices. Yields from 442 paired tillage experiments across the United States were evaluated with respect to six crops and environmental factors including geographic location, annual precipitation, soil texture, and time since conversion from tillage to no-till. Results indicated that mean yields for sorghum [Sorghum bicolor (L.) Moench] and wheat (Triticum aestivum L.) with no-till were greater than with tillage. In addition, no-till tended to produce similar or greater mean yields than tillage for crops grown on loamy soils in the Southern Seaboard and Mississippi Portal regions. A warmer and more humid climate and warmer soils in these regions relative to the Heartland, Basin and Range, and Fruitful Rim regions appear to favor no-till on loamy soils. With the exception of corn (Zea mays L.) and cotton (Gossypium hirsutum L.) in the Southern Seaboard region, no-till performed poorly on sandy soils. Crops grown in the Southern Seaboard were less likely to have lower no-till yields than tillage yields on loamy soils and thus had lower downside yield risk than other farm resource regions. Consistent with mean yield results, soybean [Glycine max (L.) Merr.] and wheat grown on sandy soils in the Southern Seaboard region using no-till had larger downside yield risks than when produced with no-till on loamy soils. Th e key fi ndings of this study support the hypothesis that soil and climate factors impact no-till yields relative to tillage yields and may be an important factor infl uencing risk and expected return and the adoption of the practice by farmers.

  16. Supporting Crop Loss Insurance Policy of Indonesia through Rice Yield Modelling and Forecasting

    Science.gov (United States)

    van Verseveld, Willem; Weerts, Albrecht; Trambauer, Patricia; de Vries, Sander; Conijn, Sjaak; van Valkengoed, Eric; Hoekman, Dirk; Grondard, Nicolas; Hengsdijk, Huib; Schrevel, Aart; Vlasbloem, Pieter; Klauser, Dominik

    2017-04-01

    The Government of Indonesia has decided on a crop insurance policy to assist Indonesia's farmers and to boost food security. To support the Indonesian government, the G4INDO project (www.g4indo.org) is developing/constructing an integrated platform implemented in the Delft-FEWS forecasting system (Werner et al., 2013). The integrated platform brings together remote sensed data (both visible and radar) and hydrologic, crop and reservoir modelling and forecasting to improve the modelling and forecasting of rice yield. The hydrological model (wflow_sbm), crop model (wflow_lintul) and reservoir models (RTC-Tools) are coupled on time stepping basis in the OpenStreams framework (see https://github.com/openstreams/wflow) and deployed in the integrated platform to support seasonal forecasting of water availability and crop yield. First we will show the general idea about the G4INDO project, the integrated platform (including Sentinel 1 & 2 data) followed by first (reforecast) results of the coupled models for predicting water availability and crop yield in the Brantas catchment in Java, Indonesia. Werner, M., Schellekens, J., Gijsbers, P., Van Dijk, M., Van den Akker, O. and Heynert K, 2013. The Delft-FEWS flow forecasting system, Environmental Modelling & Software; 40:65-77. DOI: 10.1016/j.envsoft.2012.07.010.

  17. Integrating remote sensing, geographic information system and modeling for estimating crop yield

    Science.gov (United States)

    Salazar, Luis Alonso

    This thesis explores various aspects of the use of remote sensing, geographic information system and digital signal processing technologies for broad-scale estimation of crop yield in Kansas. Recent dry and drought years in the Great Plains have emphasized the need for new sources of timely, objective and quantitative information on crop conditions. Crop growth monitoring and yield estimation can provide important information for government agencies, commodity traders and producers in planning harvest, storage, transportation and marketing activities. The sooner this information is available the lower the economic risk translating into greater efficiency and increased return on investments. Weather data is normally used when crop yield is forecasted. Such information, to provide adequate detail for effective predictions, is typically feasible only on small research sites due to expensive and time-consuming collections. In order for crop assessment systems to be economical, more efficient methods for data collection and analysis are necessary. The purpose of this research is to use satellite data which provides 50 times more spatial information about the environment than the weather station network in a short amount of time at a relatively low cost. Specifically, we are going to use Advanced Very High Resolution Radiometer (AVHRR) based vegetation health (VH) indices as proxies for characterization of weather conditions.

  18. Food Yields and Nutrient Analyses of the Three Sisters: A Haudenosaunee Cropping System

    Directory of Open Access Journals (Sweden)

    Jane Mt.Pleasant

    2016-11-01

    Full Text Available Scholars have studied The Three Sisters, a traditional cropping system of the Haudenosaunee (Iroquois, from multiple perspectives. However, there is no research examining food yields, defined as the quantities of energy and protein produced per unit land area, from the cropping system within Iroquoia. This article compares food yields and other nutrient contributions from the Three Sisters, comprised of interplanted maize, bean and pumpkin, with monocultures of these same crops. The Three Sisters yields more energy (12.25 x 106 kcal/ha and more protein (349 kg/ha than any of the crop monocultures or mixtures of monocultures planted to the same area. The Three Sisters supplies 13.42 people/ha/yr. with energy and 15.86 people/ha/yr. with protein. Nutrient contents of the crops are further enhanced by nixtamalization, a traditional processing technique where maize is cooked in a high alkaline solution. This process increases calcium, protein quality, and niacin in maize.

  19. Effects of grain-producing cover crops on rice grain yield in Cabo Delgado, Mozambique

    Directory of Open Access Journals (Sweden)

    Adriano Stephan Nascente

    Full Text Available ABSTRACT Besides providing benefits to the environment such as soil protection, release of nutrients, soil moisture maintenance, and weed control, cover crops can increase food production for grain production. The aim of this study was to evaluate the production of biomass and grain cover crops (and its respective effects on soil chemical and physical attributes, yield components, and grain yield of rice in Mozambique. The study was conducted in two sites located in the province of Cabo Delgado, in Mozambique. The experimental design was a randomized block in a 2 × 6 factorial, with four repetitions. Treatments were carried out in two locations (Cuaia and Nambaua with six cover crops: Millet (Pennisetum glaucum L.; namarra bean (Lablab purpureus (L. Sweet, velvet beans (Mucuna pruriens L., oloco beans (Vigna radiata (L. R. Wilczek, cowpea (Vigna unguiculata L., and fallow. Cover crops provided similar changes in chemical and physical properties of the soil. Lablab purpureus, Vigna unguiculata, and Mucuna pruriens produced the highest dry matter biomass. Vigna unguiculada produced the highest amount of grains. Rice grain yields were similar under all cover crops and higher in Cuaia than Nambaua.

  20. Crop Yield Simulations Using Multiple Regional Climate Models in the Southwestern United States

    Science.gov (United States)

    Stack, D.; Kafatos, M.; Kim, S.; Kim, J.; Walko, R. L.

    2013-12-01

    Agricultural productivity (described by crop yield) is strongly dependent on climate conditions determined by meteorological parameters (e.g., temperature, rainfall, and solar radiation). California is the largest producer of agricultural products in the United States, but crops in associated arid and semi-arid regions live near their physiological limits (e.g., in hot summer conditions with little precipitation). Thus, accurate climate data are essential in assessing the impact of climate variability on agricultural productivity in the Southwestern United States and other arid regions. To address this issue, we produced simulated climate datasets and used them as input for the crop production model. For climate data, we employed two different regional climate models (WRF and OLAM) using a fine-resolution (8km) grid. Performances of the two different models are evaluated in a fine-resolution regional climate hindcast experiment for 10 years from 2001 to 2010 by comparing them to the North American Regional Reanalysis (NARR) dataset. Based on this comparison, multi-model ensembles with variable weighting are used to alleviate model bias and improve the accuracy of crop model productivity over large geographic regions (county and state). Finally, by using a specific crop-yield simulation model (APSIM) in conjunction with meteorological forcings from the multi-regional climate model ensemble, we demonstrate the degree to which maize yields are sensitive to the regional climate in the Southwestern United States.

  1. Changing regional weather−crop yield relationships across Europe between 1901 and 2012

    Czech Academy of Sciences Publication Activity Database

    Trnka, Miroslav; Olesen, J. E.; Kersebaum, K. C.; Rötter, R. P.; Brázdil, Rudolf; Eitzinger, Josef; Jansen, S.; Skjelväg, A. O.; Peltonen-Sainio, P.; Hlavinka, Petr; Balek, J.; Eckersten, H.; Gobin, A.; Vučeti, V.; Dalla Marta, A.; Orlandini, S.; Alexandrov, V.; Semerádová, Daniela; Štěpánek, Petr; Svobodová, Eva; Rajdl, Kamil

    2016-01-01

    Roč. 70, 2-3 (2016), s. 195-214 ISSN 0936-577X R&D Projects: GA MŠk(CZ) LO1415; GA MŠk(CZ) LD13030; GA MZe QJ1310123; GA ČR GA13-19831S Institutional support: RVO:67179843 Keywords : Climatic trend * Weather–crop yield relationship * Wheat * Barley * Yield trend * Drought * Europe Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.578, year: 2016

  2. No-tillage and fertilization management on crop yields and nitrate leaching in North China Plain

    Science.gov (United States)

    Huang, Manxiang; Liang, Tao; Wang, Lingqing; Zhou, Chenghu

    2015-01-01

    A field experiment was performed from 2003 to 2008 to evaluate the effects of tillage system and nitrogen management regimes on crop yields and nitrate leaching from the fluvo-aquic soil with a winter wheat (Triticum aestivum L.)–maize (Zea mays L.) double-cropping system. The tillage systems consisted of conventional tillage (CT) and no-tillage (NT). Three nitrogen management regimes were included: 270 kg N ha−1 of urea for wheat and 225 kg N ha−1 of urea for maize (U), 180 kg N ha−1 of urea and 90 kg N ha−1 of straw for wheat and 180 kg N of urea and 45 kg N ha−1 of straw for maize (S), 180 kg N ha−1 of urea and 90 kg N ha−1 of manure for wheat and 180 kg N ha−1 of urea and 45 kg N ha−1 of manure for maize (M). An array of tension-free pan lysimeters (50 cm × 75 cm) were installed (1.2 m deep) to measure water flow and -N movement. No significant effect of the N management regime on yields of winter wheat and maize grain was found in the 5-year rotation. Tillage systems had significant influences on -N leaching from the second year and thereafter interacted with N management regimes on -N loads during all maize seasons. The average yield-scaled -N leaching losses were in order of CTS leaching losses while sustaining crop grain yields. Considering the lower costs, NTS could be a potential alternative to decrease yield-scaled -N leaching losses and improve soil fertility while maintaining crop yield for the winter wheat–maize double-cropping systems in the North China Plain. PMID:25859321

  3. Annual Crop-Yield Variation, Child Survival, and Nutrition Among Subsistence Farmers in Burkina Faso.

    Science.gov (United States)

    Belesova, Kristine; Gasparrini, Antonio; Sié, Ali; Sauerborn, Rainer; Wilkinson, Paul

    2018-02-01

    Whether year-to-year variation in crop yields affects the nutrition, health, and survival of subsistence-farming populations is relevant to the understanding of the potential impacts of climate change. However, the empirical evidence is limited. We examined the associations of child survival with interannual variation in food crop yield and middle-upper arm circumference (MUAC) in a subsistence-farming population of rural Burkina Faso. The study was of 44,616 children aged Demographic Surveillance System, 1992-2012, whose survival was analyzed in relation to the food crop yield in the year of birth (which ranged from 65% to 120% of the period average) and, for a subset of 16,698 children, to MUAC, using shared-frailty Cox proportional hazards models. Survival was appreciably worse in children born in years with low yield (full-adjustment hazard ratio = 1.11 (95% confidence interval: 1.02, 1.20) for a 90th- to 10th-centile decrease in annual crop yield) and in children with small MUAC (hazard ratio = 2.72 (95% confidence interval: 2.15, 3.44) for a 90th- to 10th-centile decrease in MUAC). These results suggest an adverse impact of variations in crop yields, which could increase under climate change. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Possible effects of climatic change on estimated crop yields in Canada: A review

    International Nuclear Information System (INIS)

    Stewart, R.

    1990-01-01

    An overview is presented of research relating to the possible effects of climatic change on crop yields in Canada. Possible changes in the long-term climate resulting from a doubling in atmospheric carbon dioxide would have a major impact on agriculture in Canada. The Goddard Institute for Space Studies' general circulation model suggests that Canada will be significantly warmer and somewhat drier, with an annual temperature increase of more than 3 degree C and an annual precipitation increase of 11-13%. The increased annual precipitation will not compensate for the increased temperatures, and most agricultural regions will be somewhat drier. Current crop varieties and cropping systems will be unsuitable. Existing varieties will be eliminated or moved north into more suitable agricultural areas. Longer growing season varieties or alternative crops will be required for existing agricultural areas. Production opportunities for hard and soft winter wheat, corn, soybeans, horticulture and tender fruits could be enhanced. 21 refs

  5. Characterization of yield reduction in Ethiopia using a GIS-based crop water balance model

    Science.gov (United States)

    Senay, G.B.; Verdin, J.

    2003-01-01

    In many parts of sub-Saharan Africa, subsistence agriculture is characterized by significant fluctuations in yield and production due to variations in moisture availability to staple crops. Widespread drought can lead to crop failures, with associated deterioration in food security. Ground data collection networks are sparse, so methods using geospatial rainfall estimates derived from satellite and gauge observations, where available, have been developed to calculate seasonal crop water balances. Using conventional crop production data for 4 years in Ethiopia (1996-1999), it was found that water-limited and water-unlimited growing regions can be distinguished. Furthermore, maize growing conditions are also indicative of conditions for sorghum. However, another major staple, teff, was found to behave sufficiently differently from maize to warrant studies of its own.

  6. Conventional vs. organic cropping systems: yield of crops and weeds in Mediterranean environment

    OpenAIRE

    Campiglia, Enio; Mancinelli , Roberto; Radicetti, Emanuele

    2015-01-01

    Agriculture must meet the twin challenge of feeding a growing population while simultaneously of minimizing its global environmental impacts. The organic farming, which is a system aimed at producing food with minimal harm to ecosystems, is often proposed as a possible solution. However, critics argue that organic agriculture may give lower yields and therefore more land is required in order to produce the same amount of food of the conventional farms, resulting in more widespread deforestati...

  7. Temporal changes in climatic variables and their impact on crop yields in southwestern China.

    Science.gov (United States)

    Liu, Hong-Bin; Gou, Yu; Wang, Hong-Ye; Li, Hong-Mei; Wu, Wei

    2014-08-01

    Knowledge of variability in climatic variables changes and its impact on crop yields is important for farmers and policy makers, especially in southwestern China where rainfed agriculture is dominant. In the current study, six climatic parameters (mean temperature, rainfall, relative humidity, sunshine hours, temperature difference, and rainy days) and aggregated yields of three main crops (rice: Oryza sativa L., oilseed rape: Brassica napus L., and tobacco: Nicotiana tabacum L.) during 1985-2010 were collected and analyzed for Chongqing-a large agricultural municipality of China. Climatic variables changes were detected by Mann-Kendall test. Increased mean temperature and temperature difference and decreased relative humidity were found in annual and oilseed rape growth time series (Pchanges in climatic variables in this region. Yield of rice increased with rainfall (Pclimatic variables to crop yields. Temperature difference and sunshine hours had higher direct and indirect effects via other climatic variables on yields of rice and tobacco. Mean temperature, relative humidity, rainy days, and temperature difference had higher direct and indirect effects via others on yield of oilseed rape.

  8. Variability of effects of spatial climate data aggregation on regional yield simulation by crop models

    NARCIS (Netherlands)

    Hoffmann, H.; Zhao, G.; Bussel, van L.G.J.

    2015-01-01

    Field-scale crop models are often applied at spatial resolutions coarser than that of the arable field. However, little is known about the response of the models to spatially aggregated climate input data and why these responses can differ across models. Depending on the model, regional yield

  9. The Role of Soil Organic Matter for Maintaining Crop Yields: Evidence for a Renewed Conceptual Basis

    DEFF Research Database (Denmark)

    Schjønning, Per; Jensen, Johannes Lund; Bruun, Sander

    2018-01-01

    Soil organic carbon (SOC) is believed to play a crucial role for many soil functions and ecosystem services. Despite much research, a lower threshold of SOC for sustainable crop production has not been identified across soil types. We addressed a comprehensive dataset with yields of winter wheat...

  10. The impact of mineral fertilization and atmospheric precipitation on yield of field crops on family farms

    Directory of Open Access Journals (Sweden)

    Munćan Mihajlo

    2016-01-01

    Full Text Available The field crop production, as the most important branch of plant production of the Republic of Serbia, in the period 2002-2011, was carried out on an average of over 2.7 million hectares, 82.7% of which took place on the individual farms/family holdings. Hence, the subject of research in this paper covers yields of major field crops realized on family farms in the region of Vojvodina in the period 1972-2011. The main objective of the research is to study the interdependence of utilization of mineral fertilizers and atmospheric precipitation during the vegetation period and realized yields of major field crops on family farms in the observed period. The regression analysis was applied in order to verify dependencies and determine the form of dependence of achieved yields from examined variables. The results showed that the main limiting factors for obtaining high and stable yields of field crops is inadequate use of fertilizers and the lack of precipitation during the vegetation period.

  11. Modeling osmotic salinity effects on yield characteristics of substrate-grown greenhouse crops

    NARCIS (Netherlands)

    Sonneveld, C.; Bos, van den A.L.; Voogt, W.

    2004-01-01

    In a series of experiments with different osmotic potentials in the root environment, various vegetables, and ornamentals were grown in a substrate system. The osmotic potential was varied by addition of nutrients. Yield characteristics of the crop were related to the osmotic potential of the

  12. Time interval between cover crop termination and planting influences corn seedling disease, plant growth, and yield

    Science.gov (United States)

    Experiments were established in controlled and field environment to evaluate the effect of time intervals between cereal rye cover crop termination and corn planting on corn seedling disease, corn growth, and grain yield in 2014 and 2015. Rye termination dates ranged from 25 days before planting (DB...

  13. Nitrate Leaching, Yields and Carbon Sequestration after Noninversion Tillage, Catch Crops, and Straw Retention

    DEFF Research Database (Denmark)

    Hansen, Elly Møller; Munkholm, Lars Juhl; Olesen, Jørgen E

    2015-01-01

    retention did not significantly increase yields, nor did it reduce leaching, while fodder radish (Raphanus sativus L.) as a catch crop was capable of reducing nitrate leaching to a low level. Thus, YSL of winter wheat (Triticum aestivum L.) was higher than for spring barley (Hordeum vulgare L.) grown after...

  14. Biogas production from high-yielding energy crops in boreal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Seppala, M.

    2013-11-01

    In this thesis, the methane production potential of traditional and novel energy crops was evaluated in boreal conditions. The highest methane yield per hectare was achieved with maize (4 000-9 200 m{sup 3}CH{sub 4} ha{sup -1} a{sup -1}) and the second highest with brown knapweed (2 700-6 100 m{sup 3}CH{sub 4} ha{sup -1} a{sup -1}). Recently, the most feasible energy crop, grass, produced 1 200-3 600 m{sup 3}CH{sub 4} ha{sup -1} a{sup -1}. The specific methane yields of traditional and novel energy crops varied from 170-500 l kg{sup -1} volatile solid (VS). The highest specific methane yields were obtained with maize, while the novel energy crops were at a lower range. The specific methane yields decreased in the later harvest time with maize and brown knapweed, and the specific methane yield of the grasses decreased from the 1st to 2nd harvests. Maize and brown knapweed produced the highest total solid (TS) yields per hectare 13-23 tTS ha{sup -1}, which were high when compared with the TS yields of grasses (6-13 tTS ha{sup -1}). The feasibility of maize and brown knapweed in co-digestion with liquid cow manure, in continuously stirred tank reactors (CSTR), was evaluated. According to the CSTR runs, maize and brown knapweed are suitable feeds and have stable processes, producing the highest methane yields (organic loading rate 2 kgVS m{sup -3}d{sup -1}), with maize at 259 l kgVS{sup -1} and brown knapweed at 254 l kgVS{sup -1}. The energy balance (input/output) of the cultivation of the grasses, maize and brown knapweed was calculated in boreal conditions, and it was better when the digestate was used as a fertilizer (1.8-4.8 %) than using chemical fertilizers (3.7-16.2 %), whose production is the most energy demanding process in cultivation. In conclusion, the methane production of maize, grasses and novel energy crops can produce high methane yields and are suitable feeds for anaerobic digestion. The cultivation managements of maize and novel energy crops for

  15. Cost of soybean crop yield transgenic in Goias ( crop 2015/2016 equity x third capital

    Directory of Open Access Journals (Sweden)

    Sidney Jordan Silva

    2016-06-01

    Full Text Available Considering the data from the Ministry of Agriculture, in 2014 the Gross Domestic Product - Brazilian agricultural GDP accounted for about 23% of the total GDP of the Brazilian economy, in reais equivalent to R $ 1.1 trillion. And within it agriculture is represented in 70% of the production of agribusiness. Seen it, one sees Brazil's potential in this activity. Therefore, it is evident that this Montate production needs to be managed throughout the production cycle. This includes as a first step planting, a fact that needs initial investment to allow the harvest to the end of the process. Because of this it was thought what are the ways to start agricultural production. This work specifically measured the transgenic soybean crop in the state of Goiás. The source of the resource that defrayed the cost of production was studied. It found that can be made via bank through a rural financing or financing with own resources, considering that the farmer has this option when you start your planting. If the producer utilizasse own resources he would not receive the full amount calculated the profitability of Agribusiness Credit Bills - LCA. By financing the farmer will pay only the interest calculated if using all capital financed the formalization of the contract. And taking into account that the cost of financing ranges from planting to harvest, if the releases are gradually made the producer may also reduce the interest to be paid.

  16. Statistical rice yield modeling using blended MODIS-Landsat based crop phenology metrics in Taiwan

    Science.gov (United States)

    Chen, C. R.; Chen, C. F.; Nguyen, S. T.; Lau, K. V.

    2015-12-01

    Taiwan is a populated island with a majority of residents settled in the western plains where soils are suitable for rice cultivation. Rice is not only the most important commodity, but also plays a critical role for agricultural and food marketing. Information of rice production is thus important for policymakers to devise timely plans for ensuring sustainably socioeconomic development. Because rice fields in Taiwan are generally small and yet crop monitoring requires information of crop phenology associating with the spatiotemporal resolution of satellite data, this study used Landsat-MODIS fusion data for rice yield modeling in Taiwan. We processed the data for the first crop (Feb-Mar to Jun-Jul) and the second (Aug-Sep to Nov-Dec) in 2014 through five main steps: (1) data pre-processing to account for geometric and radiometric errors of Landsat data, (2) Landsat-MODIS data fusion using using the spatial-temporal adaptive reflectance fusion model, (3) construction of the smooth time-series enhanced vegetation index 2 (EVI2), (4) rice yield modeling using EVI2-based crop phenology metrics, and (5) error verification. The fusion results by a comparison bewteen EVI2 derived from the fusion image and that from the reference Landsat image indicated close agreement between the two datasets (R2 > 0.8). We analysed smooth EVI2 curves to extract phenology metrics or phenological variables for establishment of rice yield models. The results indicated that the established yield models significantly explained more than 70% variability in the data (p-value 0.8), in both cases. The root mean square error (RMSE) and mean absolute error (MAE) used to measure the model accuracy revealed the consistency between the estimated yields and the government's yield statistics. This study demonstrates advantages of using EVI2-based phenology metrics (derived from Landsat-MODIS fusion data) for rice yield estimation in Taiwan prior to the harvest period.

  17. Global crop yield response to extreme heat stress under multiple climate change futures

    Science.gov (United States)

    Deryng, D.; Conway, D.; Ramankutty, N.; Price, J.; Warren, R.

    2014-12-01

    Extreme heat stress during the crop reproductive period can be critical for crop productivity. Projected changes in the frequency and severity of extreme climatic events are expected to negatively impact crop yields and global food production. This study applies the global crop model PEGASUS to quantify, for the first time at the global scale, impacts of extreme heat stress on maize, spring wheat and soybean yields resulting from 72 climate change scenarios for the 21st century. Our results project maize to face progressively worse impacts under a range of RCPs but spring wheat and soybean to improve globally through to the 2080s due to CO2 fertilization effects, even though parts of the tropic and sub-tropic regions could face substantial yield declines. We find extreme heat stress at anthesis (HSA) by the 2080s (relative to the 1980s) under RCP 8.5, taking into account CO2 fertilization effects, could double global losses of maize yield (dY = -12.8 ± 6.7% versus -7.0 ± 5.3% without HSA), reduce projected gains in spring wheat yield by half (dY = 34.3 ± 13.5% versus 72.0 ± 10.9% without HSA) and in soybean yield by a quarter (dY = 15.3 ± 26.5% versus 20.4 ± 22.1% without HSA). The range reflects uncertainty due to differences between climate model scenarios; soybean exhibits both positive and negative impacts, maize is generally negative and spring wheat generally positive. Furthermore, when assuming CO2 fertilization effects to be negligible, we observe drastic climate mitigation policy as in RCP 2.6 could avoid more than 80% of the global average yield losses otherwise expected by the 2080s under RCP 8.5. We show large disparities in climate impacts across regions and find extreme heat stress adversely affects major producing regions and lower income countries.

  18. CONTRIBUTIONS TO THE DEVELOPMENT OF THE FIELD CROPS YIELD IN TEISANI AREA HOUSEHOLDS, PRAHOVA COUNTY

    Directory of Open Access Journals (Sweden)

    Cristina Elena ANGELESCU

    2015-06-01

    Full Text Available The aim of the paper was to analyze the technological performance of the field crops on luvisoils in Teisani area, Prahova County, where corn and potato are cultivated for personal consumption and beet for animal nutrition. The cultivation of wheat and fodder plants has been an exception. Studies conducted have firstly referred to the introduction of crops in rotation system, through cooperation and exchange between households and within their own household for those with larger surfaces. To compare the productivity of crops, the yield energy value has been used as a measure unit, which facilitates the comparison. The yields was reduced up to the lower limit of crop potential because of monocultures and the lack of appropriate technologies, even for small farming machinery. The results showed that using improved technologies, in 2013 and 2014, the yields were significantly superior, the highest ones, for potatoes and alfalfa, the last one as jumper field. Introducing alfalfa in the crop rotation system has led to the potato yield doubling, but also of those of wheat, corn and beet. Using manure and organic material available and degradable in the form of compost made in their own household, to which are added small amounts of nitrogen and phosphorus, there were obtained average yields by 40% higher than the average of the experience and by 139%, i.e. 2.4 times higher than the unfertilized variant, very much used in the area. Therefore, it was demonstrated, that there are huge resources to produce agricultural products and primary food in the Teisani rural area. Small peasant households should be encouraged and financially supported to participate to food production both for their own consumption, but also for the market.

  19. Assessment of Climate Change Impacts on Agricultural Water Demands and Crop Yields in California's Central Valley

    Science.gov (United States)

    Tansey, M. K.; Flores-Lopez, F.; Young, C. A.; Huntington, J. L.

    2012-12-01

    Long term planning for the management of California's water resources requires assessment of the effects of future climate changes on both water supply and demand. Considerable progress has been made on the evaluation of the effects of future climate changes on water supplies but less information is available with regard to water demands. Uncertainty in future climate projections increases the difficulty of assessing climate impacts and evaluating long range adaptation strategies. Compounding the uncertainty in the future climate projections is the fact that most readily available downscaled climate projections lack sufficient meteorological information to compute evapotranspiration (ET) by the widely accepted ASCE Penman-Monteith (PM) method. This study addresses potential changes in future Central Valley water demands and crop yields by examining the effects of climate change on soil evaporation, plant transpiration, growth and yield for major types of crops grown in the Central Valley of California. Five representative climate scenarios based on 112 bias corrected spatially downscaled CMIP 3 GCM climate simulations were developed using the hybrid delta ensemble method to span a wide range future climate uncertainty. Analysis of historical California Irrigation Management Information System meteorological data was combined with several meteorological estimation methods to compute future solar radiation, wind speed and dew point temperatures corresponding to the GCM projected temperatures and precipitation. Future atmospheric CO2 concentrations corresponding to the 5 representative climate projections were developed based on weighting IPCC SRES emissions scenarios. The Land, Atmosphere, and Water Simulator (LAWS) model was used to compute ET and yield changes in the early, middle and late 21st century for 24 representative agricultural crops grown in the Sacramento, San Joaquin and Tulare Lake basins. Study results indicate that changes in ET and yield vary

  20. Seed yield response to N fertilization and potential of proximal sensing in Italian ryegrass seed crops

    DEFF Research Database (Denmark)

    Vleugels, Tim; Rijckaert, Georges; Gislum, René

    2017-01-01

    Italian ryegrass (Lolium multiflorum L.) seed crops are often routinely fertilized with a predetermined amount of nitrogen (N) fertilizer in spring. However, nitrate leaching and increasing N fertilizer prices require rationalized fertilizer applications without compromises in seed yield....... The objectives of this study were (1) to determine the seed yield response to N fertilization, and (2) to evaluate if NDVI values can reliably predict the N status in Italian ryegrass seed crops. During eight years, field trials were conducted with two cultivars ‘Melclips’ and ‘Melquatro’, and seven N strategies...... applied after the forage cut as single or split application: 0, 60, 60 + 30, 90, 90 + 30, 120 and 150 kg N ha−1. NDVI values were obtained with a ‘GreenSeeker’ optical sensor. Maximum seed yield was attained at 141 kg N ha−1 total available N (92 kg N ha−1 fertilized). Higher fertilizations only increased...

  1. Modelling and Forecasting of Rice Yield in support of Crop Insurance

    Science.gov (United States)

    Weerts, A.; van Verseveld, W.; Trambauer, P.; de Vries, S.; Conijn, S.; van Valkengoed, E.; Hoekman, D.; Hengsdijk, H.; Schrevel, A.

    2016-12-01

    The Government of Indonesia has embarked on a policy to bring crop insurance to all of Indonesia's farmers. To support the Indonesian government, the G4INDO project (www.g4indo.org) is developing/constructing an integrated platform for judging and handling insurance claims. The platform consists of bringing together remote sensed data (both visible and radar) and hydrologic and crop modelling and forecasting to improve predictions in one forecasting platform (i.e. Delft-FEWS, Werner et al., 2013). The hydrological model and crop model (LINTUL) are coupled on time stepping basis in the OpenStreams framework (see https://github.com/openstreams/wflow) and deployed in a Delft-FEWS forecasting platform to support seasonal forecasting of water availability and crop yield. First we will show the general idea about the project, the integrated platform (including Sentinel 1 & 2 data) followed by first (reforecast) results of the coupled models for predicting water availability and crop yield in the Brantas catchment in Java, Indonesia. Werner, M., Schellekens, J., Gijsbers, P., Van Dijk, M., Van den Akker, O. and Heynert K, 2013. The Delft-FEWS flow forecasting system, Environmental Modelling & Software; 40:65-77. DOI: 10.1016/j.envsoft.2012.07.010 .

  2. Soil Moisture Anomaly as Predictor of Crop Yield Deviation in Germany

    Science.gov (United States)

    Peichl, Michael; Thober, Stephan; Schwarze, Reimund; Meyer, Volker; Samaniego, Luis

    2016-04-01

    Natural hazards, such as droughts, have the potential to drastically diminish crop yield in rain-fed agriculture. For example, the drought in 2003 caused direct losses of 1.5 billion EUR only in Germany (COPA-COGECA 2003). Predicting crop yields allows to economize the mitigation of risks of weather extremes. Economic approaches for quantifying agricultural impacts of natural hazards mainly rely on temperature and related concepts. For instance extreme heat over the growing season is considered as best predictor of corn yield (Auffhammer and Schlenker 2014). However, those measures are only able to provide a proxy for the available water content in the root zone that ultimately determines plant growth and eventually crop yield. The aim of this paper is to analyse whether soil moisture has a causal effect on crop yield that can be exploited in improving adaptation measures. For this purpose, reduced form fixed effect panel models are developed with yield as dependent variable for both winter wheat and silo maize crops. The explanatory variables used are soil moisture anomalies, precipitation and temperature. The latter two are included to estimate the current state of the water balance. On the contrary, soil moisture provides an integrated signal over several months. It is also the primary source of water supply for plant growth. For each crop a single model is estimated for every month within the growing period to study the variation of the effects over time. Yield data is available for Germany as a whole on the level of administrative districts from 1990 to 2010. Station data by the German Weather Service are obtained for precipitation and temperature and are aggregated to the same spatial units. Simulated soil moisture computed by the mesoscale Hydrologic Model (mHM, www.ufz.de/mhm) is transformed into Soil Moisture Index (SMI), which represents the monthly soil water quantile and hence accounts directly for the water content available to plants. The results

  3. Exploring and Harnessing Haplotype Diversity to Improve Yield Stability in Crops

    Directory of Open Access Journals (Sweden)

    Lunwen Qian

    2017-09-01

    Full Text Available In order to meet future food, feed, fiber, and bioenergy demands, global yields of all major crops need to be increased significantly. At the same time, the increasing frequency of extreme weather events such as heat and drought necessitates improvements in the environmental resilience of modern crop cultivars. Achieving sustainably increase yields implies rapid improvement of quantitative traits with a very complex genetic architecture and strong environmental interaction. Latest advances in genome analysis technologies today provide molecular information at an ultrahigh resolution, revolutionizing crop genomic research, and paving the way for advanced quantitative genetic approaches. These include highly detailed assessment of population structure and genotypic diversity, facilitating the identification of selective sweeps and signatures of directional selection, dissection of genetic variants that underlie important agronomic traits, and genomic selection (GS strategies that not only consider major-effect genes. Single-nucleotide polymorphism (SNP markers today represent the genotyping system of choice for crop genetic studies because they occur abundantly in plant genomes and are easy to detect. SNPs are typically biallelic, however, hence their information content compared to multiallelic markers is low, limiting the resolution at which SNP–trait relationships can be delineated. An efficient way to overcome this limitation is to construct haplotypes based on linkage disequilibrium, one of the most important features influencing genetic analyses of crop genomes. Here, we give an overview of the latest advances in genomics-based haplotype analyses in crops, highlighting their importance in the context of polyploidy and genome evolution, linkage drag, and co-selection. We provide examples of how haplotype analyses can complement well-established quantitative genetics frameworks, such as quantitative trait analysis and GS, ultimately

  4. Exploring and Harnessing Haplotype Diversity to Improve Yield Stability in Crops.

    Science.gov (United States)

    Qian, Lunwen; Hickey, Lee T; Stahl, Andreas; Werner, Christian R; Hayes, Ben; Snowdon, Rod J; Voss-Fels, Kai P

    2017-01-01

    In order to meet future food, feed, fiber, and bioenergy demands, global yields of all major crops need to be increased significantly. At the same time, the increasing frequency of extreme weather events such as heat and drought necessitates improvements in the environmental resilience of modern crop cultivars. Achieving sustainably increase yields implies rapid improvement of quantitative traits with a very complex genetic architecture and strong environmental interaction. Latest advances in genome analysis technologies today provide molecular information at an ultrahigh resolution, revolutionizing crop genomic research, and paving the way for advanced quantitative genetic approaches. These include highly detailed assessment of population structure and genotypic diversity, facilitating the identification of selective sweeps and signatures of directional selection, dissection of genetic variants that underlie important agronomic traits, and genomic selection (GS) strategies that not only consider major-effect genes. Single-nucleotide polymorphism (SNP) markers today represent the genotyping system of choice for crop genetic studies because they occur abundantly in plant genomes and are easy to detect. SNPs are typically biallelic, however, hence their information content compared to multiallelic markers is low, limiting the resolution at which SNP-trait relationships can be delineated. An efficient way to overcome this limitation is to construct haplotypes based on linkage disequilibrium, one of the most important features influencing genetic analyses of crop genomes. Here, we give an overview of the latest advances in genomics-based haplotype analyses in crops, highlighting their importance in the context of polyploidy and genome evolution, linkage drag, and co-selection. We provide examples of how haplotype analyses can complement well-established quantitative genetics frameworks, such as quantitative trait analysis and GS, ultimately providing an effective tool

  5. Impacts of Agro-Ecological Practices on Soil Losses and Cash Crop Yield

    Directory of Open Access Journals (Sweden)

    Daniela De Benedetto

    2017-12-01

    Full Text Available The aim of this study was to determine the impact of agro-ecological practices on soil losses, by assessing experimental field topography changes and cauliflower crop yield after an artificial extreme rainfall event. Data were collected in an innovative experimental device in which different combined agronomic strategies were tested such as hydraulic arrangement, crop rotations and agro-ecological service crops (ASC introduction. The collection of elevation data was carried out in kinematic way before rainfall, and in punctual surveys to evaluate the effects of artificial event on this parameter. Non-parametric tests were performed to evaluate differences between samples. High-resolution digital elevation models were generated from independent data using kriging, and elevation difference maps were produced. The results indicated that the data before and after the artificial rainfall were statistically different. The raised strips suffered soil loss showing that the strip with permanent intercropping was higher than that in the absence of ASC. A significant rise of elevation was registered in the furrowed strips after rainfall, and deposition of soil occurred at the lowest areas of the experimental field. Moreover, the study showed a relationship between cash crop yield and elevation: the areas with lower elevation (higher flooding were characterized by the lowest yield.

  6. Linking Land Cover Data and Crop Yields for Mapping and Assessment of Pollination Services in Europe

    Directory of Open Access Journals (Sweden)

    Maria Luisa Paracchini

    2013-09-01

    Full Text Available Pollination is a key ecosystem service as many crops but in particular, fruits and vegetables are partially dependent on pollinating insects to produce food for human consumption. Here we assessed how pollination services are delivered at the European scale. We used this assessment to estimate the relative contribution of wild pollinators to crop production. We developed an index of relative pollination potential, which is defined as the relative potential or relative capacity of ecosystems to support crop pollination. The model for relative pollination potential is based on the assumption that different habitats, but in particular forest edges, grasslands rich in flowers and riparian areas, offer suitable sites for wild pollinator insects. Using data of the foraging range of wild bees with short flight distances, we linked relative pollination potential to regional statistics of crop production. At aggregated EU level, the absence of insect pollination would result in a reduction of between 25% and 32% of the total production of crops which are partially dependent on insect pollination, depending on the data source used for the assessment. This production deficit decreases to 2.5% if only the relative pollination potential of a single guild of pollinators is considered. A strength of our approach is the spatially-explicit link between land cover based relative pollination potential and crop yield which enables a general assessment of the benefits that are derived from pollination services in Europe while providing insight where pollination gaps in the landscape occur.

  7. Application of seasonal rainfall forecasts and satellite rainfall observations to crop yield forecasting for Africa

    Science.gov (United States)

    Greatrex, H. L.; Grimes, D. I. F.; Wheeler, T. R.

    2009-04-01

    Rain-fed agriculture is of utmost importance in sub-Saharan Africa; the FAO estimates that over 90% of food consumed in the region is grown in rain-fed farming systems. As the climate in sub-Saharan Africa has a high interannual variability, this dependence on rainfall can leave communities extremely vulnerable to food shortages, especially when coupled with a lack of crop management options. The ability to make a regional forecast of crop yield on a timescale of months would be of enormous benefit; it would enable both governmental and non-governmental organisations to be alerted in advance to crop failure and could facilitate national and regional economic planning. Such a system would also enable individual communities to make more informed crop management decisions, increasing their resilience to climate variability and change. It should be noted that the majority of crops in the region are rainfall limited, therefore the ability to create a seasonal crop forecast depends on the ability to forecast rainfall at a monthly or seasonal timescale and to temporally downscale this to a daily time-series of rainfall. The aim of this project is to develop a regional-scale seasonal forecast for sub-Saharan crops, utilising the General Large Area Model for annual crops (GLAM). GLAM would initially be driven using both dynamical and statistical seasonal rainfall forecasts to provide an initial estimate of crop yield. The system would then be continuously updated throughout the season by replacing the seasonal rainfall forecast with daily weather observations. TAMSAT satellite rainfall estimates are used rather than rain-gauge data due to the scarcity of ground based observations. An important feature of the system is the use of the geo-statistical method of sequential simulation to create an ensemble of daily weather inputs from both the statistical seasonal rainfall forecasts and the satellite rainfall estimates. This allows a range of possible yield outputs to be

  8. Breaking continuous potato cropping with legumes improves soil microbial communities, enzyme activities and tuber yield

    Science.gov (United States)

    Qin, Shuhao; Yeboah, Stephen; Cao, Li; Zhang, Junlian; Shi, Shangli; Liu, Yuhui

    2017-01-01

    This study was conducted to explore the changes in soil microbial populations, enzyme activity, and tuber yield under the rotation sequences of Potato–Common vetch (P–C), Potato–Black medic (P–B) and Potato–Longdong alfalfa (P–L) in a semi–arid area of China. The study also determined the effects of continuous potato cropping (without legumes) on the above mentioned soil properties and yield. The number of bacteria increased significantly (p continuous cropping soils, respectively compared to P–C rotation. The highest fungi/bacteria ratio was found in P–C (0.218), followed by P–L (0.184) and then P–B (0.137) rotation over the different cropping years. In the continuous potato cropping soils, the greatest fungi/bacteria ratio was recorded in the 4–year (0.4067) and 7–year (0.4238) cropping soils and these were significantly higher than 1–year (0.3041), 2–year (0.2545) and 3–year (0.3030) cropping soils. Generally, actinomycetes numbers followed the trend P–L>P–C>P–B. The P–L rotation increased aerobic azotobacters in 2–year (by 26% and 18%) and 4–year (40% and 21%) continuous cropping soils compared to P–C and P–B rotation, respectively. Generally, the highest urease and alkaline phosphate activity, respectively, were observed in P–C (55.77 mg g–1) and (27.71 mg g–1), followed by P–B (50.72 mg mg–1) and (25.64 mg g–1) and then P–L (41.61 mg g–1) and (23.26 mg g–1) rotation. Soil urease, alkaline phosphatase and hydrogen peroxidase activities decreased with increasing years of continuous potato cropping. On average, the P–B rotation significantly increased (p improve soil biology environment, alleviate continuous cropping obstacle and increase potato tuber yield in semi–arid region. PMID:28463981

  9. Principles of root water uptake, soil salinity and crop yield for optimizing irrigation management

    International Nuclear Information System (INIS)

    Dirksen, C.

    1983-01-01

    The paper reviews the principles of water and salt transport, root water uptake, crop salt tolerance, water quality, and irrigation methods which should be considered in optimizing irrigation management for sustained, viable agriculture with protection of the quality of land and water resources. In particular, the advantages of high-frequency irrigation at small leaching fractions with closed systems are discussed, for which uptake-weighted mean salinity is expected to correlate best with crop yields. Optimization of irrigation management depends on the scale considered. Non-technical problems which are often much harder to solve than technical problems, may well be most favourable for new projects in developing countries. (author)

  10. Managing tile drainage, subirrigation, and nitrogen fertilization to enhance crop yields and reduce nitrate loss.

    Science.gov (United States)

    Drury, C F; Tan, C S; Reynolds, W D; Welacky, T W; Oloya, T O; Gaynor, J D

    2009-01-01

    Improving field-crop use of fertilizer nitrogen is essential for protecting water quality and increasing crop yields. The objective of this study was to determine the effectiveness of controlled tile drainage (CD) and controlled tile drainage with subsurface irrigation (CDS) for mitigating off-field nitrate losses and enhancing crop yields. The CD and CDS systems were compared on a clay loam soil to traditional unrestricted tile drainage (UTD) under a corn (Zea Mays L.)-soybean (Glycine Max. (L.) Merr.) rotation at two nitrogen (N) fertilization rates (N1: 150 kg N ha(-1) applied to corn, no N applied to soybean; N2: 200 kg N ha(-1) applied to corn, 50 kg N ha(-1) applied to soybean). The N concentrations in tile flow events with the UTD treatment exceeded the provisional long-term aquatic life limit (LT-ALL) for freshwater (4.7 mg N L(-1)) 72% of the time at the N1 rate and 78% at the N2 rate, whereas only 24% of tile flow events at N1 and 40% at N2 exceeded the LT-ALL for the CDS treatment. Exceedances in N concentration for surface runoff and tile drainage were greater during the growing season than the non-growing season. At the N1 rate, CD and CDS reduced average annual N losses via tile drainage by 44 and 66%, respectively, relative to UTD. At the N2 rate, the average annual decreases in N loss were 31 and 68%, respectively. Crop yields from CDS were increased by an average of 2.8% relative to UTD at the N2 rate but were reduced by an average of 6.5% at the N1 rate. Hence, CD and CDS were effective for reducing average nitrate losses in tile drainage, but CDS increased average crop yields only when additional N fertilizer was applied.

  11. Components of corn crop yield under inoculation with Azospirillum brasilense using integrated crop-livestock system

    Directory of Open Access Journals (Sweden)

    Marcos da Silva Brum

    2016-09-01

    Full Text Available The objective of this study was to evaluate the agronomic characteristics of corn seed inoculated with Azospirillum brasilense, grown on black oat and ryegrass straw, and managed under different grazing strategies and doses of nitrogen. The experiment was conducted in Santa Maria, Rio Grande do Sul State, Brazil, during two agricultural seasons (2012/2013 and 2013/2014 in a randomized, complete block design with three replications. In the winter period, black oat and ryegrass straw were managed at different grazing heights by sheep (0.30, 0.20, 0.10 m, conventional grazing, and no grazing with three doses of nitrogen (0, 50, and 100 kg ha-1, with or without inoculation by A. brasilense. We used the hybrid Pioneer (P1630H® in 2012 and the hybrid Agroeste (AS 1551® in 2013. The height of corn plants was greater when they were grown on black oat and ryegrass straw, and the absence of grazing favored productivity. Under drought conditions, the application of nitrogen to the pasture favored corn development, increasing plant height, ear height, and stem diameter. Inoculation with A. brasilense had a positive effect on the characteristics of yield and productivity of corn, independent of growing season and hybrid used.

  12. Effect of Winter Cover Crops on Soil Nitrogen Availability, Corn Yield, and Nitrate Leaching

    Directory of Open Access Journals (Sweden)

    S. Kuo

    2001-01-01

    Full Text Available Biculture of nonlegumes and legumes could serve as cover crops for increasing main crop yield, while reducing NO3 leaching. This study, conducted from 1994 to 1999, determined the effect of monocultured cereal rye (Secale cereale L., annual ryegrass (Lolium multiflorum, and hairy vetch (Vicia villosa, and bicultured rye/vetch and ryegrass/vetch on N availability in soil, corn (Zea mays L. yield, and NO3-N leaching in a silt loam soil. The field had been in corn and cover crop rotation since 1987. In addition to the cover crop treatments, there were four N fertilizer rates (0, 67, 134, and 201 kg N ha-1, referred to as N0, N1, N2, and N3, respectively applied to corn. The experiment was a randomized split-block design with three replications for each treatment. Lysimeters were installed in 1987 at 0.75 m below the soil surface for leachate collection for the N0, N2, and N3 treatments. The result showed that vetch monoculture had the most influence on soil N availability and corn yield, followed by the bicultures. Rye or ryegrass monoculture had either no effect or an adverse effect on corn yield and soil N availability. Leachate NO3-N concentration was highest where vetch cover crop was planted regardless of N rates, which suggests that N mineralization of vetch N continued well into the fall and winter. Leachate NO3-N concentration increased with increasing N fertilizer rates and exceeded the U.S. Environmental Protection Agency’s drinking water standard of 10 mg N l�1 even at recommended N rate for corn in this region (coastal Pacific Northwest. In comparisons of the average NO3-N concentration during the period of high N leaching, monocultured rye and ryegrass or bicultured rye/vetch and ryegrass/vetch very effectively decreased N leaching in 1998 with dry fall weather. The amount of N available for leaching (determined based on the presidedress nitrate test, the amount of N fertilizer applied, and N uptake correlated well with average NO3

  13. Effect of winter cover crops on soil nitrogen availability, corn yield, and nitrate leaching.

    Science.gov (United States)

    Kuo, S; Huang, B; Bembenek, R

    2001-10-25

    Biculture of nonlegumes and legumes could serve as cover crops for increasing main crop yield, while reducing NO3 leaching. This study, conducted from 1994 to 1999, determined the effect of monocultured cereal rye (Secale cereale L.), annual ryegrass (Lolium multiflorum), and hairy vetch (Vicia villosa), and bicultured rye/vetch and ryegrass/vetch on N availability in soil, corn (Zea mays L.) yield, and NO3-N leaching in a silt loam soil. The field had been in corn and cover crop rotation since 1987. In addition to the cover crop treatments, there were four N fertilizer rates (0, 67, 134, and 201 kg N ha(-1), referred to as N0, N1, N2, and N3, respectively) applied to corn. The experiment was a randomized split-block design with three replications for each treatment. Lysimeters were installed in 1987 at 0.75 m below the soil surface for leachate collection for the N 0, N 2, and N 3 treatments. The result showed that vetch monoculture had the most influence on soil N availability and corn yield, followed by the bicultures. Rye or ryegrass monoculture had either no effect or an adverse effect on corn yield and soil N availability. Leachate NO3-N concentration was highest where vetch cover crop was planted regardless of N rates, which suggests that N mineralization of vetch N continued well into the fall and winter. Leachate NO3-N concentration increased with increasing N fertilizer rates and exceeded the U.S. Environmental Protection Agency's drinking water standard of 10 mg N l(-1) even at recommended N rate for corn in this region (coastal Pacific Northwest). In comparisons of the average NO3-N concentration during the period of high N leaching, monocultured rye and ryegrass or bicultured rye/vetch and ryegrass/vetch very effectively decreased N leaching in 1998 with dry fall weather. The amount of N available for leaching (determined based on the presidedress nitrate test, the amount of N fertilizer applied, and N uptake) correlated well with average NO3-N during

  14. Beyond yields: Climate change effects on specialty crop quality and agroecological management

    Directory of Open Access Journals (Sweden)

    Selena Ahmed

    2016-03-01

    Full Text Available Abstract Climate change is impacting the sustainability of food systems through shifts in natural and human dimensions of agroecosystems that influence farmer livelihoods, consumer choices, and food security. This paper highlights the need for climate studies on specialty crops to focus not only on yields, but also on quality, as well as the ability of agroecological management to buffer climate effects on quality parameters. Crop quality refers to phytonutrient and secondary metabolite profiles and associated health and sensory properties that influence consumer buying decisions. Through two literature reviews, we provide examples of specialty crops that are vulnerable to climate effects on quality and examples of climate-resilient agroecological strategies. A range of specialty crops including fruits, vegetables, tree nuts, stimulants, and herbs were identified to respond to climate variables with changes in quality. The review on climate-resilient strategies to mitigate effects on crop quality highlighted a major gap in the literature. However, agricultural diversification emerged as a promising strategy for climate resilience more broadly and highlights the need for future research to assess the potential of diversified agroecosystems to buffer climate effects on crop quality. We integrate the concepts from our literature review within a socio-ecological systems framework that takes into account feedbacks between crop quality, consumer responses, and agroecosystem management. The presented framework is especially useful for two themes in agricultural development and marketing, nutrition-sensitive agriculture and terroir, for informing the design of climate-change resilient specialty crop systems focused on management of quality and other ecosystem services towards promoting environmental and human wellbeing.

  15. Examining the roles that changing harvested areas, closing yield-gaps, and increasing yield ceilings have had on crop production

    Science.gov (United States)

    Johnston, M.; Ray, D. K.; Mueller, N. D.; Foley, J. A.

    2011-12-01

    -weighted result of area and yield contributions for each country, at each time-step. As part of our research we will generate historic figures and tabular data for every country-crop combination. Phase 3: In the final phase of our research, we attempt to demonstrate how different yield performers (for example, those growing crops at the yield floor vs. the yield ceiling) have utilized different area/yield strategies to increase agricultural production. To group individual pixels into performance quintiles, we utilize binning strategies from previous spatial yield-gap assessments. The results from this step will illustrate how the yield ceiling has improved over time vis-à-vis improvements in the yield floor. As we look forward to a more sustainable and productive agricultural future, we hope the results of this global analysis of our agricultural past can be utilized to identify both optimal and adverse strategies for agricultural growth.

  16. Estimating national crop yield potential and the relevance of weather data sources

    Science.gov (United States)

    Van Wart, Justin

    2011-12-01

    To determine where, when, and how to increase yields, researchers often analyze the yield gap (Yg), the difference between actual current farm yields and crop yield potential. Crop yield potential (Yp) is the yield of a crop cultivar grown under specific management limited only by temperature and solar radiation and also by precipitation for water limited yield potential (Yw). Yp and Yw are critical components of Yg estimations, but are very difficult to quantify, especially at larger scales because management data and especially daily weather data are scarce. A protocol was developed to estimate Yp and Yw at national scales using site-specific weather, soils and management data. Protocol procedures and inputs were evaluated to determine how to improve accuracy of Yp, Yw and Yg estimates. The protocol was also used to evaluate raw, site-specific and gridded weather database sources for use in simulations of Yp or Yw. The protocol was applied to estimate crop Yp in US irrigated maize and Chinese irrigated rice and Yw in US rainfed maize and German rainfed wheat. These crops and countries account for >20% of global cereal production. The results have significant implications for past and future studies of Yp, Yw and Yg. Accuracy of national long-term average Yp and Yw estimates was significantly improved if (i) > 7 years of simulations were performed for irrigated and > 15 years for rainfed sites, (ii) > 40% of nationally harvested area was within 100 km of all simulation sites, (iii) observed weather data coupled with satellite derived solar radiation data were used in simulations, and (iv) planting and harvesting dates were specified within +/- 7 days of farmers actual practices. These are much higher standards than have been applied in national estimates of Yp and Yw and this protocol is a substantial step in making such estimates more transparent, robust, and straightforward. Finally, this protocol may be a useful tool for understanding yield trends and directing

  17. Bee pollination increases yield quantity and quality of cash crops in Burkina Faso, West Africa.

    Science.gov (United States)

    Stein, Katharina; Coulibaly, Drissa; Stenchly, Kathrin; Goetze, Dethardt; Porembski, Stefan; Lindner, André; Konaté, Souleymane; Linsenmair, Eduard K

    2017-12-18

    Mutualistic biotic interactions as among flowering plants and their animal pollinators are a key component of biodiversity. Pollination, especially by insects, is a key element in ecosystem functioning, and hence constitutes an ecosystem service of global importance. Not only sexual reproduction of plants is ensured, but also yields are stabilized and genetic variability of crops is maintained, counteracting inbreeding depression and facilitating system resilience. While experiencing rapid environmental change, there is an increased demand for food and income security, especially in sub-Saharan communities, which are highly dependent on small scale agriculture. By combining exclusion experiments, pollinator surveys and field manipulations, this study for the first time quantifies the contribution of bee pollinators to smallholders' production of the major cash crops, cotton and sesame, in Burkina Faso. Pollination by honeybees and wild bees significantly increased yield quantity and quality on average up to 62%, while exclusion of pollinators caused an average yield gap of 37% in cotton and 59% in sesame. Self-pollination revealed inbreeding depression effects on fruit set and low germination rates in the F1-generation. Our results highlight potential negative consequences of any pollinator decline, provoking risks to agriculture and compromising crop yields in sub-Saharan West Africa.

  18. A Remote-Sensing Driven Tool for Estimating Crop Stress and Yields

    Directory of Open Access Journals (Sweden)

    Martha C. Anderson

    2013-07-01

    Full Text Available Biophysical crop simulation models are normally forced with precipitation data recorded with either gauges or ground-based radar. However, ground-based recording networks are not available at spatial and temporal scales needed to drive the models at many critical places on earth. An alternative would be to employ satellite-based observations of either precipitation or soil moisture. Satellite observations of precipitation are currently not considered capable of forcing the models with sufficient accuracy for crop yield predictions. However, deduction of soil moisture from space-based platforms is in a more advanced state than are precipitation estimates so that these data may be capable of forcing the models with better accuracy. In this study, a mature two-source energy balance model, the Atmosphere Land Exchange Inverse (ALEXI model, was used to deduce root zone soil moisture for an area of North Alabama, USA. The soil moisture estimates were used in turn to force the state-of-the-art Decision Support System for Agrotechnology Transfer (DSSAT crop simulation model. The study area consisted of a mixture of rainfed and irrigated cornfields. The results indicate that the model forced with the ALEXI moisture estimates produced yield simulations that compared favorably with observed yields and with the rainfed model. The data appear to indicate that the ALEXI model did detect the soil moisture signal from the mixed rainfed/irrigation corn fields and this signal was of sufficient strength to produce adequate simulations of recorded yields over a 10 year period.

  19. Yields of cotton and other crops as affected by applications of sulfuric acid in irrigation water

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, P.D.; Lyerly, P.J.

    1954-01-01

    Effects of sulfuric acid on crop yields and on some physical and chemical properties of a calcareous soil were investigated in a field experiment from 1947 through 1952. On cotton plots, the treatments consisted of applications of irrigation water containing no acid (pH 8.3), water acidified to pH 6, and water acidified to pH 2.3. Cotton was grown five seasons followed by sesbania the sixth season. A test on alfalfa was established using irrigation water not acidified and water acidifeid to pH 4. Alfalfa was grown for 3 years. The fourth year the alfalfa was plowed under and a crop of corn was raised. Cotton yields on the acid plots relative to the checks became progressively higher (with two exceptions) from one year to the next; however, in only one year (1950) were differences in yield statistically significant. With sesbania following cotton, highly significant yield increases resulted from the high acid treatment. Alfalfa yields on the acid plots became progressively greater relative to the non-acid plots, but yield differences were not significant. In cotton leaves, the acid treatments resulted in increased uptake of magnesium, sulfur, and phosphorus, but the increases were probably not significant. Uptake of sodium, potassium, calcium, manganese, and iron were not appreciably affected. In sesbania, the acid treatments did not significantly alter the uptake of any of the plant nutrients determined. There was some indication, however, that the uptake of sodium and iron was reduced by the acidification. The results of this study support the view that soil acidification on calcareous soils may improve the soil physical conditions and result in increased yields, particularly in some crops. The application of acid in the irrigation water did not prove to be economically feasible. 12 references, 1 figure, 7 tables.

  20. Improvement of crop yield in dry environments: benchmarks, levels of organisation and the role of nitrogen.

    Science.gov (United States)

    Sadras, V O; Richards, R A

    2014-05-01

    Crop yield in dry environments can be improved with complementary approaches including selecting for yield in the target environments, selecting for yield potential, and using indirect, trait- or genomic-based methods. This paper (i) outlines the achievements of direct selection for yield in improving drought adaptation, (ii) discusses the limitations of indirect approaches in the context of levels of organization, and (iii) emphasizes trade-offs and synergies between nitrogen nutrition and drought adaptation. Selection for yield in the water- and nitrogen-scarce environments of Australia improved wheat yield per unit transpiration at a rate of 0.12kg ha(-1) mm(-1) yr(-1); for indirect methods to be justified, they must return superior rates of improvement, achieve the same rate at lower cost or provide other cost-effective benefits, such as expanding the genetic basis for selection. Slow improvement of crop adaptation to water stress using indirect methods is partially related to issues of scale. Traits are thus classified into three broad groups: those that generally scale up from low levels of organization to the crop level (e.g. herbicide resistance), those that do not (e.g. grain yield), and traits that might scale up provided they are considered in a integrated manner with scientifically sound scaling assumptions, appropriate growing conditions, and screening techniques (e.g. stay green). Predicting the scalability of traits may help to set priorities in the investment of research efforts. Primary productivity in arid and semi-arid environments is simultaneously limited by water and nitrogen, but few attempts are made to target adaptation to water and nitrogen stress simultaneously. Case studies in wheat and soybean highlight biological links between improved nitrogen nutrition and drought adaptation.

  1. Towards a Solid Foundation of Using Remotely Sensed Solar-Induced Chlorophyll Fluorescence for Crop Monitoring and Yield Forecast

    Science.gov (United States)

    Chen, Y.; Sun, Y.; You, L.; Liu, Y.

    2017-12-01

    The growing demand for food production due to population increase coupled with high vulnerability to volatile environmental changes poses a paramount challenge for mankind in the coming century. Real-time crop monitoring and yield forecasting must be a key part of any solution to this challenge as these activities provide vital information needed for effective and efficient crop management and for decision making. However, traditional methods of crop growth monitoring (e.g., remotely sensed vegetation indices) do not directly relate to the most important function of plants - photosynthesis and therefore crop yield. The recent advance in the satellite remote sensing of Solar-Induced chlorophyll Fluorescence (SIF), an integrative photosynthetic signal from molecular origin and a direct measure of plant functions holds great promise for real-time monitoring of crop growth conditions and forecasting yields. In this study, we use satellite measurements of SIF from both the Global Ozone Monitoring Experiment-2 (GOME-2) onboard MetOp-A and the Orbiting Carbon Observatory-2 (OCO-2) satellites to estimate crop yield using both process-based and statistical models. We find that SIF-based crop yield well correlates with the global yield product Spatial Production Allocation Model (SPAM) derived from ground surveys for all major crops including maize, soybean, wheat, sorghum, and rice. The potential and challenges of using upcoming SIF satellite missions for crop monitoring and prediction will also be discussed.

  2. Simulating crop yield losses in Switzerland for historical and present Tambora climate scenarios

    Science.gov (United States)

    Flückiger, Simon; Brönnimann, Stefan; Holzkämper, Annelie; Fuhrer, Jürg; Krämer, Daniel; Pfister, Christian; Rohr, Christian

    2017-07-01

    Severe climatic anomalies in summer 1816, partly due to the eruption of Tambora in April 1815, contributed to delayed growth and poor harvests of important crops in Central Europe. Coinciding with adverse socio-economic conditions, this event triggered the last subsistence crisis in the western World. Here, we model reductions in potential crop yields for 1816 and 1817 and address the question, what impact a similar climatic anomaly would have today. We reconstructed daily weather for Switzerland for 1816/17 on a 2 km grid using historical observations and an analogue resampling method. These data were used to simulate potential crop yields for potato, grain maize, and winter barley using the CropSyst model calibrated for current crop cultivars. We also simulated yields for the same weather anomalies, but referenced to a present-day baseline temperature. Results show that reduced temperature delayed growth and harvest considerably, and in combination with reduced solar irradiance led to a substantial reduction (20%-50%) in the potential yield of potato in 1816. Effects on winter barley were smaller. Significant reductions were also modelled for 1817 and were mainly due to a cold late spring. Relative reductions for the present-day scenario for the two crops were almost indistinguishable from the historical ones. An even stronger response was found for maize, which was not yet common in 1816/17. Waterlogging, which we assessed using a stress-day approach, likely added to the simulated reductions. The documented, strong east-west gradient in malnutrition across Switzerland in 1817/18 could not be explained by biophysical yield limitations (though excess-water limitation might have contributed), but rather by economic, political and social factors. This highlights the importance of these factors for a societies’ ability to cope with extreme climate events. While the adaptive capacity of today’s society in Switzerland is much greater than in the early 19th century

  3. Pleiotropic effects of herbicide-resistance genes on crop yield: a review.

    Science.gov (United States)

    Darmency, Henri

    2013-08-01

    The rapid adoption of genetically engineered herbicide-resistant crop varieties (HRCVs)-encompassing 83% of all GM crops and nearly 8% of the worldwide arable area-is due to technical efficiency and higher returns. Other herbicide-resistant varieties obtained from genetic resources and mutagenesis have also been successfully released. Although the benefit for weed control is the main criteria for choosing HRCVs, the pleiotropic costs of genes endowing resistance have rarely been investigated in crops. Here the available data of comparisons between isogenic resistant and susceptible varieties are reviewed. Pleiotropic harmful effects on yield are reported in half of the cases, mostly with resistance mechanisms that originate from genetic resources and mutagenesis (atrazine in oilseed rape and millet, trifluralin in millet, imazamox in cotton) rather than genetic engineering (chlorsulfuron and glufosinate in some oilseed rape varieties, glyphosate in soybean). No effect was found for sethoxydim and bromoxynil resistance. Variable minor effects were found for imazamox, chlorsulfuron, glufosinate and glyphosate resistance. The importance of the breeding plan and the genetic background on the emergence of these effects is pointed out. Breeders' efforts to produce better varieties could compensate for the yield loss, which eliminates any possibility of formulating generic conclusions on pleiotropic effects that can be applied to all resistant crops. © 2013 Society of Chemical Industry.

  4. Soil physical properties and grape yield influenced by cover crops and management systems

    Directory of Open Access Journals (Sweden)

    Jaqueline Dalla Rosa

    2013-10-01

    Full Text Available The use of cover crops in vineyards is a conservation practice with the purpose of reducing soil erosion and improving the soil physical quality. The objective of this study was to evaluate cover crop species and management systems on soil physical properties and grape yield. The experiment was carried out in Bento Gonçalves, RS, Southern Brazil, on a Haplic Cambisol, in a vineyard established in 1989, using White and Rose Niagara grape (Vitis labrusca L. in a horizontal, overhead trellis system. The treatments were established in 2002, consisting of three cover crops: spontaneous species (SS, black oat (Avena strigosa Schreb (BO, and a mixture of white clover (Trifolium repens L., red clover (Trifolium pratense L. and annual rye-grass (Lolium multiflorum L. (MC. Two management systems were applied: desiccation with herbicide (D and mechanical mowing (M. Soil under a native forest (NF area was collected as a reference. The experimental design consisted of completely randomized blocks, with three replications. The soil physical properties in the vine rows were not influenced by cover crops and were similar to the native forest, with good quality of the soil structure. In the inter-rows, however, there was a reduction in biopores, macroporosity, total porosity and an increase in soil density, related to the compaction of the surface soil layer. The M system increased soil aggregate stability compared to the D system. The treatments affected grapevine yield only in years with excess or irregular rainfall.

  5. Simulation of potato yield in temperate condition by the AquaCrop model

    DEFF Research Database (Denmark)

    Razzaghi, Fatemeh; Zhenjiang, Zhou; Andersen, Mathias Neumann

    2017-01-01

    Potato production ranks fourth in the world after rice, wheat, and maize and it is highly sensitive to water stress. It is thus very important to implement irrigation management strategies to minimize the effects of water stress under different climate conditions. The use of modelling tools...... to calculate the soil water balance on a daily basis has become widespread in the last decades. Therefore, this study was performed to simulate potato yield, dry matter and soil water content under different water stress condition using the AquaCrop model. Three levels of irrigation comprising full irrigated...... (If), deficit irrigated (Id) and not irrigated (I0) were investigated in three-years potato field experiment (2013–15) with four replicates in randomized complete block design. Tuber and total dry matter yield, canopy cover, dry matter production during the crop growth season, and soil water content...

  6. Comparing the performance of 11 crop simulation models in predicting yield response to nitrogen fertilization

    DEFF Research Database (Denmark)

    Salo, T J; Palosuo, T; Kersebaum, K C

    2016-01-01

    Eleven widely used crop simulation models (APSIM, CERES, CROPSYST, COUP, DAISY, EPIC, FASSET, HERMES, MONICA, STICS and WOFOST) were tested using spring barley (Hordeum vulgare L.) data set under varying nitrogen (N) fertilizer rates from three experimental years in the boreal climate of Jokioinen......, Finland. This is the largest standardized crop model inter-comparison under different levels of N supply to date. The models were calibrated using data from 2002 and 2008, of which 2008 included six N rates ranging from 0 to 150 kg N/ha. Calibration data consisted of weather, soil, phenology, leaf area...... ranged from 170 to 870 kg/ha. During the test year 2009, most models failed to accurately reproduce the observed low yield without N fertilizer as well as the steep yield response to N applications. The multi-model predictions were closer to observations than most single-model predictions, but multi...

  7. Crop yield response to water stress imposed at different growth stages

    International Nuclear Information System (INIS)

    Iqbal, M.; Mahmood Shah, M.; Wisal, M.

    1995-01-01

    Potato requires sufficient soil moisture and fertilization to produce high yields but the present water resoures are limited compared to the cultivable land, field experiments were conduced from 1991 to 1995 to study relationship between yield and crop water use as a function of water stress imposed at different growth stages. The irrigation treatments involved application of full and stress watering s selectively at four growth stages : Establishment , Flowering Tuber formation and ripening. In full watering, full water requirements of the crop were met, i.e., ET sub a = ET sub m whereas in stress watering about half the amount of full watering was applied, i.e., ET sub a < ET sub m. Changes in moisture content of the soil pre files after irrigation were monitored with the help of neutron moisture probe in order to compute ET sub a by the water balance method. The results obtained showed that the tuber yield was produced by full watering ( T 1) and the lowest by continuous stress watering (T 2). A plot of relative yield against relative evapotranspiration deficit revealed that ripening was the lest sensitive whereas early development followed by flowering the most sensitive growth stage to water stress. The crop water use efficiencies were generally higher in the treatments where a combination of normal and stress watering was applied compared to where all - normal watering s were applied. The traditional irrigation practice resulted in wasteful water application with relatively lower yields, hence the results from this project will have high value for the farming community to get this higher yields with scarce water resources. The studies with labelled fertilizer showed that planting and earthing - up were equally important growth stages of potato for applying fertilizer for its efficient utilization. 3 figs; 25 tabs; 12 refs (Author)

  8. InfoDROUGHT: Technical reliability assessment using crop yield data at the Spanish-national level

    Science.gov (United States)

    Contreras, Sergio; Garcia-León, David; Hunink, Johannes E.

    2017-04-01

    Drought monitoring (DM) is a key component of risk-centered drought preparedness plans and drought policies. InfoDROUGHT (www.infosequia.es) is a a site- and user-tailored and fully-integrated DM system which combines functionalities for: a) the operational satellite-based weekly-1km tracking of severity and spatial extent of drought impacts, b) the interactive and faster query and delivery of drought information through a web-mapping service. InfoDROUGHT has a flexible and modular structure. The calibration (threshold definitions) and validation of the system is performed by combining expert knowledge and auxiliary impact assessments and datasets. Different technical solutions (basic or advanced versions) or deployment options (open-standard or restricted-authenticated) can be purchased by end-users and customers according to their needs. In this analysis, the technical reliability of InfoDROUGHT and its performance for detecting drought impacts on agriculture has been evaluated in the 2003-2014 period by exploring and quantifying the relationships among the drought severity indices reported by InfoDROUGHT and the annual yield anomalies observed for different rainfed crops (maize, wheat, barley) at Spain. We hypothesize a positive relationship between the crop anomalies and the drought severity level detected by InfoDROUGHT. Annual yield anomalies were computed at the province administrative level as the difference between the annual yield reported by the Spanish Annual Survey of Crop Acreages and Yields (ESYRCE database) and the mean annual yield estimated during the study period. Yield anomalies were finally compared against drought greenness-based and thermal-based drought indices (VCI and TCI, respectively) to check the coherence of the outputs and the hypothesis stated. InfoDROUGHT has been partly funded by the Spanish Ministry of Economy and Competiveness through a Torres-Quevedo grant, and by the H2020-EU project "Bridging the Gap for Innovations in

  9. An integrated, probabilistic model for improved seasonal forecasting of agricultural crop yield under environmental uncertainty

    Directory of Open Access Journals (Sweden)

    Nathaniel K. Newlands

    2014-06-01

    Full Text Available We present a novel forecasting method for generating agricultural crop yield forecasts at the seasonal and regional-scale, integrating agroclimate variables and remotely-sensed indices. The method devises a multivariate statistical model to compute bias and uncertainty in forecasted yield at the Census of Agricultural Region (CAR scale across the Canadian Prairies. The method uses robust variable-selection to select the best predictors within spatial subregions. Markov-Chain Monte Carlo (MCMC simulation and random forest-tree machine learning techniques are then integrated to generate sequential forecasts through the growing season. Cross-validation of the model was performed by hindcasting/backcasting it and comparing its forecasts against available historical data (1987-2011 for spring wheat (Triticum aestivum L.. The model was also validated for the 2012 growing season by comparing its forecast skill at the CAR, provincial and Canadian Prairie region scales against available statistical survey data. Mean percent departures between wheat yield forecasted were under-estimated by 1-4 % in mid-season and over-estimated by 1 % at the end of the growing season. This integrated methodology offers a consistent, generalizable approach for sequentially forecasting crop yield at the regional-scale. It provides a statistically robust, yet flexible way to concurrently adjust to data-rich and data-sparse situations, adaptively select different predictors of yield to changing levels of environmental uncertainty, and to update forecasts sequentially so as to incorporate new data as it becomes available. This integrated method also provides additional statistical support for assessing the accuracy and reliability of model-based crop yield forecasts in time and space.

  10. Using the CLM Crop Model to assess the impacts of changes in Climate, Atmospheric CO2, Irrigation, Fertilizer and Geographic Distribution on Historical and Future Crop Yields

    Science.gov (United States)

    Lawrence, P.

    2015-12-01

    Since the start of the green revolution global crop yields have increased linearly for most major cereal crops, so that present day global values are around twice those of the 1960s. The increase in crop yields have allowed for large increases in global agricultural production without correspondingly large increases in cropping area. Future projections under the Shared Socio-economic Pathways (SSP) framework and other assessments result in increases of global crop production of greater than 100% by the year 2050. In order to meet this increased agricultural demand within the available arable land, future production gains need to be understood in terms of the yield changes due to changes in climate, atmospheric CO2, and adaptive management such as irrigation and fertilizer application. In addition to the changes in crop yield, future agricultural demand will need to be met through increasing cropping areas into what are currently marginal lands at the cost of existing forests and other natural ecosystems. In this study we assess the utility of the crop model within the Community Land Model (CLM Crop) to provide both historical and future guidance on changes in crop yields under a range of global idealized crop modeling experiments. The idealized experiments follow the experimental design of the AgMIP Global Gridded Crop Model Intercomparison (GGCMI) in which CLM Crop is a participating model. The idealized experiments consist of global crop simulations for Cotton, Maize, Rice, Soy, Sugarcane, and Wheat under various climate, atmospheric CO2 levels, irrigation prescription, and nitrogen fertilizer application. The time periods simulated for the experiments are for the Historical period (1901 - 2005), and for the two Representative Concentration Pathways of RCP 4.5 and RCP 8.5 (2006 - 2100). Each crop is simulated on all land grid cells globally for each time period with atmospheric forcing that is a combination of: 1. transient climate and CO2; 2. transient climate

  11. Climate change impacts on crop yield and quality with CO2 fertilization in China

    Science.gov (United States)

    Erda, Lin; Wei, Xiong; Hui, Ju; Yinlong, Xu; Yue, Li; Liping, Bai; Liyong, Xie

    2005-01-01

    A regional climate change model (PRECIS) for China, developed by the UK's Hadley Centre, was used to simulate China's climate and to develop climate change scenarios for the country. Results from this project suggest that, depending on the level of future emissions, the average annual temperature increase in China by the end of the twenty-first century may be between 3 and 4 °C. Regional crop models were driven by PRECIS output to predict changes in yields of key Chinese food crops: rice, maize and wheat. Modelling suggests that climate change without carbon dioxide (CO2) fertilization could reduce the rice, maize and wheat yields by up to 37% in the next 20–80 years. Interactions of CO2 with limiting factors, especially water and nitrogen, are increasingly well understood and capable of strongly modulating observed growth responses in crops. More complete reporting of free-air carbon enrichment experiments than was possible in the Intergovernmental Panel on Climate Change's Third Assessment Report confirms that CO2 enrichment under field conditions consistently increases biomass and yields in the range of 5–15%, with CO2 concentration elevated to 550 ppm Levels of CO2 that are elevated to more than 450 ppm will probably cause some deleterious effects in grain quality. It seems likely that the extent of the CO2 fertilization effect will depend upon other factors such as optimum breeding, irrigation and nutrient applications. PMID:16433100

  12. Simulating and Predicting Cereal Crop Yields in Ethiopia: Model Calibration and Verification

    Science.gov (United States)

    Yang, M.; Wang, G.; Ahmed, K. F.; Eggen, M.; Adugna, B.; Anagnostou, E. N.

    2017-12-01

    Agriculture in developing countries are extremely vulnerable to climate variability and changes. In East Africa, most people live in the rural areas with outdated agriculture techniques and infrastructure. Smallholder agriculture continues to play a key role in this area, and the rate of irrigation is among the lowest of the world. As a result, seasonal and inter-annual weather patterns play an important role in the spatiotemporal variability of crop yields. This study investigates how various climate variables (e.g., temperature, precipitation, sunshine) and agricultural practice (e.g., fertilization, irrigation, planting date) influence cereal crop yields using a process-based model (DSSAT) and statistical analysis, and focuses on the Blue Nile Basin of Ethiopia. The DSSAT model is driven with meteorological forcing from the ECMWF's latest reanalysis product that cover the past 35 years; the statistical model will be developed by linking the same meteorological reanalysis data with harvest data at the woreda level from the Ethiopian national dataset. Results from this study will set the stage for the development of a seasonal prediction system for weather and crop yields in Ethiopia, which will serve multiple sectors in coping with the agricultural impact of climate variability.

  13. Paddy crop yield estimation in Kashmir Himalayan rice bowl using remote sensing and simulation model.

    Science.gov (United States)

    Muslim, Mohammad; Romshoo, Shakil Ahmad; Rather, A Q

    2015-06-01

    The Kashmir Himalayan region of India is expected to be highly prone to the change in agricultural land use because of its geo-ecological fragility, strategic location vis-à-vis the Himalayan landscape, its trans-boundary river basins, and inherent socio-economic instabilities. Food security and sustainability of the region are thus greatly challenged by these impacts. The effect of future climate change, increased competition for land and water, labor from non-agricultural sectors, and increasing population adds to this complex problem. In current study, paddy rice yield at regional level was estimated using GIS-based environment policy integrated climate (GEPIC) model. The general approach of current study involved combining regional level crop database, regional soil data base, farm management data, and climatic data outputs with GEPIC model. The simulated yield showed that estimated production to be 4305.55 kg/ha (43.05 q h(-1)). The crop varieties like Jhelum, K-39, Chenab, China 1039, China-1007, and Shalimar rice-1 grown in plains recorded average yield of 4783.3 kg/ha (47.83 q ha(-1)). Meanwhile, high altitude areas with varieties like Kohsaar, K-78 (Barkat), and K-332 recorded yield of 4102.2 kg/ha (41.02 q ha(-1)). The observed and simulated yield showed a good match with R (2) = 0.95, RMSE = 132.24 kg/ha, respectively.

  14. Climate variability: Possible changes with climate change and impacts on crop yields

    International Nuclear Information System (INIS)

    Mearns, L.O.

    1991-01-01

    A pilot study was carried out of the sensitivity of the CERES wheat model, a deterministic crop-climate model, to changes in the interannual variability of temperature and precipitation. The study was designed to determine the effect of changed temperature variance on the mean and variance of the simulated yields, to compare the effect with the effect of mean temperature changes, and to determine the interacting effects of changes in mean and variance of temperature. The CERES model was applied to 29 cropping years (1952-1980), using three different soil types and two different management practices (fully irrigated and dryland). The coefficients of variation of the yields for irrigated and dryland conditions are plotted against variance change. It was found that in both management systems, the yield response is usually greater to increases rather than decreases in variance. The combined effect of mean and variance temperature changes are most striking under irrigated conditions, with a dramatic decrease in yield variability in the high mean climate change scenario with decreased temperature variance. This suggests that the variability decrease might mitigate the effect of a mean increase in temperature. This result is not found with the dryland case, where decreased temperature variability has little impact on yield variability. 12 refs., 4 figs

  15. Advances in regional crop yield estimation over the United States using satellite remote sensing data

    Science.gov (United States)

    Johnson, D. M.; Dorn, M. F.; Crawford, C.

    2015-12-01

    Since the dawn of earth observation imagery, particularly from systems like Landsat and the Advanced Very High Resolution Radiometer, there has been an overarching desire to regionally estimate crop production remotely. Research efforts integrating space-based imagery into yield models to achieve this need have indeed paralleled these systems through the years, yet development of a truly useful crop production monitoring system has been arguably mediocre in coming. As a result, relatively few organizations have yet to operationalize the concept, and this is most acute in regions of the globe where there are not even alternative sources of crop production data being collected. However, the National Agricultural Statistics Service (NASS) has continued to push for this type of data source as a means to complement its long-standing, traditional crop production survey efforts which are financially costly to the government and create undue respondent burden on farmers. Corn and soybeans, the two largest field crops in the United States, have been the focus of satellite-based production monitoring by NASS for the past decade. Data from the Moderate Resolution Imaging Spectroradiometer (MODIS) has been seen as the most pragmatic input source for modeling yields primarily based on its daily revisit capabilities and reasonable ground sample resolution. The research methods presented here will be broad but provides a summary of what is useful and adoptable with satellite imagery in terms of crop yield estimation. Corn and soybeans will be of particular focus but other major staple crops like wheat and rice will also be presented. NASS will demonstrate that while MODIS provides a slew of vegetation related products, the traditional normalized difference vegetation index (NDVI) is still ideal. Results using land surface temperature products, also generated from MODIS, will also be shown. Beyond the MODIS data itself, NASS research has also focused efforts on understanding a

  16. Effect of a Terminated Cover Crop and Aldicarb on Cotton Yield and Meloidogyne incognita Population Density.

    Science.gov (United States)

    Wheeler, T A; Leser, J F; Keeling, J W; Mullinix, B

    2008-06-01

    Terminated small grain cover crops are valuable in light textured soils to reduce wind and rain erosion and for protection of young cotton seedlings. A three-year study was conducted to determine the impact of terminated small grain winter cover crops, which are hosts for Meloidogyne incognita, on cotton yield, root galling and nematode midseason population density. The small plot test consisted of the cover treatment as the main plots (winter fallow, oats, rye and wheat) and rate of aldicarb applied in-furrow at-plant (0, 0.59 and 0.84 kg a.i./ha) as subplots in a split-plot design with eight replications, arranged in a randomized complete block design. Roots of 10 cotton plants per plot were examined at approximately 35 days after planting. Root galling was affected by aldicarb rate (9.1, 3.8 and 3.4 galls/root system for 0, 0.59 and 0.84 kg aldicarb/ha), but not by cover crop. Soil samples were collected in mid-July and assayed for nematodes. The winter fallow plots had a lower density of M. incognita second-stage juveniles (J2) (transformed to Log(10) (J2 + 1)/500 cm(3) soil) than any of the cover crops (0.88, 1.58, 1.67 and 1.75 Log(10)(J2 + 1)/500 cm(3) soil for winter fallow, oats, rye and wheat, respectively). There were also fewer M. incognita eggs at midseason in the winter fallow (3,512, 7,953, 8,262 and 11,392 eggs/500 cm(3) soil for winter fallow, oats, rye and wheat, respectively). Yield (kg lint per ha) was increased by application of aldicarb (1,544, 1,710 and 1,697 for 0, 0.59 and 0.84 kg aldicarb/ha), but not by any cover crop treatments. These results were consistent over three years. The soil temperature at 15 cm depth, from when soils reached 18 degrees C to termination of the grass cover crop, averaged 9,588, 7,274 and 1,639 centigrade hours (with a minimum threshold of 10 degrees C), in 2005, 2006 and 2007, respectively. Under these conditions, potential reproduction of M. incognita on the cover crop did not result in a yield penalty.

  17. The Space-Time Variation of Global Crop Yields, Detecting Simultaneous Outliers and Identifying the Teleconnections with Climatic Patterns

    Science.gov (United States)

    Najafi, E.; Devineni, N.; Pal, I.; Khanbilvardi, R.

    2017-12-01

    An understanding of the climate factors that influence the space-time variability of crop yields is important for food security purposes and can help us predict global food availability. In this study, we address how the crop yield trends of countries globally were related to each other during the last several decades and the main climatic variables that triggered high/low crop yields simultaneously across the world. Robust Principal Component Analysis (rPCA) is used to identify the primary modes of variation in wheat, maize, sorghum, rice, soybeans, and barley yields. Relations between these modes of variability and important climatic variables, especially anomalous sea surface temperature (SSTa), are examined from 1964 to 2010. rPCA is also used to identify simultaneous outliers in each year, i.e. systematic high/low crop yields across the globe. The results demonstrated spatiotemporal patterns of these crop yields and the climate-related events that caused them as well as the connection of outliers with weather extremes. We find that among climatic variables, SST has had the most impact on creating simultaneous crop yields variability and yield outliers in many countries. An understanding of this phenomenon can benefit global crop trade networks.

  18. Evaluation of yield and forage quality in main and ratoon crops of different sorghum lines

    Directory of Open Access Journals (Sweden)

    K.S. Vinutha

    2017-01-01

    Full Text Available Improving the yield and quality of sorghum (Sorghum bicolor forage for livestock feeding is a major breeding objective, because of sorghum’s inherently high biomass accumulation, high productivity per unit water utilized and its ability to produce a ratoon crop after harvesting of the plant crop. Newly bred sorghum lines, including 36 lines falling in 5 different categories, i.e. 12 experimental dual-purpose lines, 6 germplasm accessions from the ICRISAT collection, 11 commercial varieties and hybrids, 6 forage varieties and 1 bmr mutant line, were evaluated in terms of fodder yield, quality and ratooning ability. The main crop produced more dry biomass (P<0.05 at 80 days after planting (mean 22.87 t DM/ha; range 17.32‒33.82 t DM/ha than the ratoon crop (mean 8.47 t DM/ha; range 3.2‒17.42 t DM/ha after a further 80 days of growth. Mean nitrogen concentration in forage did not differ greatly between main and ratoon crops (2.56 vs. 2.40%, respectively but there was wide variation between lines (2.06‒2.89%. The line N 610 recorded highest N percentage of 2.89%, followed by SSG 59 3 (2.86% and SX 17 (2.81%. Highest acid detergent fiber % was recorded by ICSV 12008 (42.1%, closely followed by CO 31 and IS 34638 (40.0%. The least acid detergent lignin % was observed in MLSH-296 Gold (3.59%, ICSV 700 (3.75% and ICSSH 28 (3.83%. Metabolizable energy concentration was highest in N 610, Phule Yashodha and SX 17 (mean 8.34 MJ/kg DM, while in vitro organic matter digestibility ranged from 52.5 to 62.6%. The main crop contained much higher mean concentrations of the cyanogenic glycoside, dhurrin, than the ratoon (639 vs. 233 ppm, respectively with ranges of 38 to 2,298 ppm and 7 to 767 ppm, respectively. There was no significant correlation between dhurrin concentration and dry biomass yield so breeding and selection for low dhurrin concentrations should not jeopardize yields. Hence, breeding for sorghum can target simultaneously both quality and

  19. The global impact of ozone on agricultural crop yields under current and future air quality legislation

    Science.gov (United States)

    Van Dingenen, Rita; Dentener, Frank J.; Raes, Frank; Krol, Maarten C.; Emberson, Lisa; Cofala, Janusz

    In this paper we evaluate the global impact of surface ozone on four types of agricultural crop. The study is based on modelled global hourly ozone fields for the year 2000 and 2030, using the global 1°×1° 2-way nested atmospheric chemical transport model (TM5). Projections for the year 2030 are based on the relatively optimistic "current legislation (CLE) scenario", i.e. assuming that currently approved air quality legislation will be fully implemented by the year 2030, without a further development of new abatement policies. For both runs, the relative yield loss due to ozone damage is evaluated based on two different indices (accumulated concentration above a 40 ppbV threshold and seasonal mean daytime ozone concentration respectively) on a global, regional and national scale. The cumulative metric appears to be far less robust than the seasonal mean, while the seasonal mean shows satisfactory agreement with measurements in Europe, the US, China and Southern India and South-East Asia. Present day global relative yield losses are estimated to range between 7% and 12% for wheat, between 6% and 16% for soybean, between 3% and 4% for rice, and between 3% and 5% for maize (range resulting from different metrics used). Taking into account possible biases in our assessment, introduced through the global application of "western" crop exposure-response functions, and through model performance in reproducing ozone-exposure metrics, our estimates may be considered as being conservative. Under the 2030 CLE scenario, the global situation is expected to deteriorate mainly for wheat (additional 2-6% loss globally) and rice (additional 1-2% loss globally). India, for which no mitigation measures have been assumed by 2030, accounts for 50% of these global increase in crop yield loss. On a regional-scale, significant reductions in crop losses by CLE-2030 are only predicted in Europe (soybean) and China (wheat). Translating these assumed yield losses into total global economic

  20. Effect of FYM, potassium and zinc on phenology and grain yield of wheat in rain fed cropping systems

    International Nuclear Information System (INIS)

    Nawab, K.; Amanullah; Arif, M.; Shah, P.; Khan, M.A.; Khan, K.

    2011-01-01

    Little work has been done on potassium (K) and zinc (Zn) in combination with farm yard manure (FYM) under rain fed conditions of NWFP. This study was designed to examine the effects of un-irrigated cropping patterns and organic and in-organic fertilizers on wheat crop. Field experiments were conducted to investigate the effect of cropping patterns and farm yard manure, potassium and zinc on phenology and grain yield of wheat under rain fed (barani or un-irrigated) conditions at Agricultural Research Station, Serai Naurang Bannu for two years during 2001-02 and 2002-03. The experiment was designed in RCB design with split arrangements. Two factors were studied in the experiment. Effects of five cropping patterns i.e., fallow-wheat, groundnut-wheat, mungbean-wheat, sorghum-wheat and pigeon pea-wheat and three organic and in-organic fertilizers on subsequent wheat crop were observed. Data revealed that both the cropping patterns and manures/fertilizers had non-significant effect on days to anthesis, seed fill duration and days to maturity of wheat. Highest grain yield (3194 kg ha/sup -1/ wheat following mungbean produced more yield and wheat following groundnut produced less yield under dry land conditions. The present findings revealed that pigeon pea-wheat cropping pattern seems to be more sustainable in terms of yield under rain fed conditions and use of FYM, K and Zn should be included in integrated crop management approaches for sustainable crop production. (Author)

  1. Crop yields response to water pressures in the Ebro basin in Spain: risk and water policy implications

    Science.gov (United States)

    Quiroga, S.; Fernández-Haddad, Z.; Iglesias, A.

    2011-02-01

    The increasing pressure on water systems in the Mediterranean enhances existing water conflicts and threatens water supply for agriculture. In this context, one of the main priorities for agricultural research and public policy is the adaptation of crop yields to water pressures. This paper focuses on the evaluation of hydrological risk and water policy implications for food production. Our methodological approach includes four steps. For the first step, we estimate the impacts of rainfall and irrigation water on crop yields. However, this study is not limited to general crop production functions since it also considers the linkages between those economic and biophysical aspects which may have an important effect on crop productivity. We use statistical models of yield response to address how hydrological variables affect the yield of the main Mediterranean crops in the Ebro river basin. In the second step, this study takes into consideration the effects of those interactions and analyzes gross value added sensitivity to crop production changes. We then use Montecarlo simulations to characterize crop yield risk to water variability. Finally we evaluate some policy scenarios with irrigated area adjustments that could cope in a context of increased water scarcity. A substantial decrease in irrigated land, of up to 30% of total, results in only moderate losses of crop productivity. The response is crop and region specific and may serve to prioritise adaptation strategies.

  2. Global crop yield response to extreme heat stress under multiple climate change futures

    International Nuclear Information System (INIS)

    Deryng, Delphine; Warren, Rachel; Conway, Declan; Ramankutty, Navin; Price, Jeff

    2014-01-01

    Extreme heat stress during the crop reproductive period can be critical for crop productivity. Projected changes in the frequency and severity of extreme climatic events are expected to negatively impact crop yields and global food production. This study applies the global crop model PEGASUS to quantify, for the first time at the global scale, impacts of extreme heat stress on maize, spring wheat and soybean yields resulting from 72 climate change scenarios for the 21st century. Our results project maize to face progressively worse impacts under a range of RCPs but spring wheat and soybean to improve globally through to the 2080s due to CO 2 fertilization effects, even though parts of the tropic and sub-tropic regions could face substantial yield declines. We find extreme heat stress at anthesis (HSA) by the 2080s (relative to the 1980s) under RCP 8.5, taking into account CO 2 fertilization effects, could double global losses of maize yield (ΔY = −12.8 ± 6.7% versus − 7.0 ± 5.3% without HSA), reduce projected gains in spring wheat yield by half (ΔY = 34.3 ± 13.5% versus 72.0 ± 10.9% without HSA) and in soybean yield by a quarter (ΔY = 15.3 ± 26.5% versus 20.4 ± 22.1% without HSA). The range reflects uncertainty due to differences between climate model scenarios; soybean exhibits both positive and negative impacts, maize is generally negative and spring wheat generally positive. Furthermore, when assuming CO 2 fertilization effects to be negligible, we observe drastic climate mitigation policy as in RCP 2.6 could avoid more than 80% of the global average yield losses otherwise expected by the 2080s under RCP 8.5. We show large disparities in climate impacts across regions and find extreme heat stress adversely affects major producing regions and lower income countries. (paper)

  3. Leguminous cover crops differentially affect maize yields in three contrasting soil types of Kakamega, Western Kenya

    Directory of Open Access Journals (Sweden)

    Kelvin Mark Mtei

    2011-06-01

    Full Text Available Maize production in smallholder farming systems in Kenya is largely limited by low soil fertility. As mineral fertilizer is expensive, green manuring using leguminous cover crops could be an alternative strategy for farmers to enhance farm productivity. However due to variability in soil type and crop management, the effects of green manure are likely to differ with farms. The objectives of this study were to evaluate Mucuna pruriens and Arachis pintoi on (i biomass and nitrogen fixation (15N natural abundance, (ii soil carbon and nitrogen stocks and (iii their effects on maize yields over two cropping seasons in Kakamega, Western Kenya. Mucuna at 6 weeks accumulated 1–1.3 Mg ha^{-1} of dry matter and 33–56 kg ha^{-1} nitrogen of which 70% was nitrogen derived from the atmosphere (Ndfa. Arachis after 12 months accumulated 2–2.7 Mg ha^{-1} of dry matter and 51–74 kg N ha^{-1} of which 52-63 % was from Ndfa. Soil carbon and nitrogen stocks at 0–15 cm depth were enhanced by 2-4 Mg C ha^{-1} and 0.3–1.0 Mg N ha^{-1} under Mucuna and Arachis fallow, irrespective of soil type. Maize yield increased by 0.5-2 Mg ha^{-1} in Mucuna and 0.5–3 Mg ha^{-1} in Arachis and the response was stronger on Nitisol than on Acrisol or Ferralsol. We concluded that leguminous cover crops seem promising in enhancing soil fertility and maize yields in Kenya, provided soil conditions and rainfall are suitable.

  4. Mind the Roots: Phenotyping Below-Ground Crop Diversity and Its Influence on Final Yield

    Science.gov (United States)

    Nieters, C.; Guadagno, C. R.; Lemli, S.; Hosseini, A.; Ewers, B. E.

    2017-12-01

    Changes in global climate patterns and water regimes are having profound impacts on worldwide crop production. An ever-growing population paired with increasing temperatures and unpredictable periods of severe drought call for accurate modeling of future crop yield. Although novel approaches are being developed in high-throughput, above-ground image phenotyping, the below-ground plant system is still poorly phenotyped. Collection of plant root morphology and hydraulics are needed to inform mathematical models to reliably estimate yields of crops grown in sub-optimal conditions. We used Brassica rapa to inform our model as it is a globally cultivated crop with several functionally diverse cultivars. Specifically, we use 7 different accessions from oilseed (R500 and Yellow Sarson), leafy type (Pac choi and Chinese cabbage), a vegetable turnip, and two Wisconsin Fast Plants (Imb211 and Fast Plant self-compatible), which have shorter life cycles and potentially large differences in allocation to roots. Bi-weekly, we harvested above and below-ground biomass to compare the varieties in terms of carbon allocation throughout their life cycle. Using WinRhizo software, we analyzed root system length and surface area to compare and contrast root morphology among cultivars. Our results confirm that root structural characteristics are crucial to explain plant water use and carbon allocation. The root:shoot ratio reveals a significant (p physiological traits such as gas exchange, chlorophyll content, and chlorophyll a fluorescence. A thorough analysis of the root system will clarify carbon dynamics and hydraulics at the whole-plant level, improving final yield predictions.

  5. Sustainable management in crop monocultures: the impact of retaining forest on oil palm yield.

    Science.gov (United States)

    Edwards, Felicity A; Edwards, David P; Sloan, Sean; Hamer, Keith C

    2014-01-01

    Tropical agriculture is expanding rapidly at the expense of forest, driving a global extinction crisis. How to create agricultural landscapes that minimise the clearance of forest and maximise sustainability is thus a key issue. One possibility is protecting natural forest within or adjacent to crop monocultures to harness important ecosystem services provided by biodiversity spill-over that may facilitate production. Yet this contrasts with the conflicting potential that the retention of forest exports dis-services, such as agricultural pests. We focus on oil palm and obtained yields from 499 plantation parcels spanning a total of ≈23,000 ha of oil palm plantation in Sabah, Malaysian Borneo. We investigate the relationship between the extent and proximity of both contiguous and fragmented dipterocarp forest cover and oil palm yield, controlling for variation in oil palm age and for environmental heterogeneity by incorporating proximity to non-native forestry plantations, other oil palm plantations, and large rivers, elevation and soil type in our models. The extent of forest cover and proximity to dipterocarp forest were not significant predictors of oil palm yield. Similarly, proximity to large rivers and other oil palm plantations, as well as soil type had no significant effect. Instead, lower elevation and closer proximity to forestry plantations had significant positive impacts on oil palm yield. These findings suggest that if dipterocarp forests are exporting ecosystem service benefits or ecosystem dis-services, that the net effect on yield is neutral. There is thus no evidence to support arguments that forest should be retained within or adjacent to oil palm monocultures for the provision of ecosystem services that benefit yield. We urge for more nuanced assessments of the impacts of forest and biodiversity on yields in crop monocultures to better understand their role in sustainable agriculture.

  6. A Methodology to Infer Crop Yield Response to Climate Variability and Change Using Long-Term Observations

    Directory of Open Access Journals (Sweden)

    Manfred A. Lange

    2013-11-01

    Full Text Available A new methodology to extract crop yield response to climate variability and change from long-term crop yield observations is presented in this study. In contrast to the existing first-difference approach (FDA, the proposed methodology considers that the difference in value between crop yields of two consecutive years reflects necessarily the contributions of climate and management conditions, especially at large spatial scales where both conditions may vary significantly from one year to the next. Our approach was applied to remove the effect of non-climatic factors on crop yield and, hence, to isolate the effect of the observed climate change between 1961 and 2006 on three widely crops grown in three Mediterranean countries—namely wheat, corn and potato—using national-level crop yield observations’ time-series. Obtained results show that the proposed methodology provides us with a ground basis to improve substantially our understanding of crop yield response to climate change at a scale that is relevant to large-scale estimations of agricultural production and to food security analyses; and therefore to reduce uncertainties in estimations of potential climate change effects on agricultural production. Furthermore, a comparison of outputs of our methodology and FDA outputs yielded a difference in terms of maize production in Egypt, for example, that exceeds the production of some neighbouring countries.

  7. Maximization of DRAM yield by control of surface charge and particle addition during high dose implantation

    Science.gov (United States)

    Horvath, J.; Moffatt, S.

    1991-04-01

    Ion implantation processing exposes semiconductor devices to an energetic ion beam in order to deposit dopant ions in shallow layers. In addition to this primary process, foreign materials are deposited as particles and surface films. The deposition of particles is a major cause of IC yield loss and becomes even more significant as device dimensions are decreased. Control of particle addition in a high-volume production environment requires procedures to limit beamline and endstation sources, control of particle transport, cleaning procedures and a well grounded preventative maintenance philosophy. Control of surface charge by optimization of the ion beam and electron shower conditions and measurement with a real-time charge sensor has been effective in improving the yield of NMOS and CMOS DRAMs. Control of surface voltages to a range between 0 and -20 V was correlated with good implant yield with PI9200 implanters for p + and n + source-drain implants.

  8. An overview of available crop growth and yield models for studies and assessments in agriculture.

    Science.gov (United States)

    Di Paola, Arianna; Valentini, Riccardo; Santini, Monia

    2016-02-01

    The scientific community offers numerous crop models with different levels of sophistication. In such a wide range of crop models, users should have the possibility to choose the most suitable, in terms of detail, scale and representativeness, to their objectives. However, even when an appropriate choice is made, model limitations should be clarified such that modelling studies are put in the proper perspective and robust applications are achieved. This work is an overview of available models to simulate crop growth and yield. A summary matrix with more than 70 crop models is provided, storing the main model characteristics that can help users to choose the proper tool according to their purposes. Overall, we found that two main aspects of models, despite their importance, are not always clear from the published references, i.e. the versatility of the models, in terms of reliable transferability to different conditions, and the degree of complexity. Hence, the developers of models should be encouraged to pay more attention to clarifying the model limitations and limits of applicability, and users should make an effort in proper model selection, to save time often devoted to iteration of tuning steps to force an inappropriate model to be adapted to their own purpose. © 2015 Society of Chemical Industry.

  9. Effect of Nutrient Management Planning on Crop Yield, Nitrate Leaching and Sediment Loading in Thomas Brook Watershed

    Science.gov (United States)

    Amon-Armah, Frederick; Yiridoe, Emmanuel K.; Ahmad, Nafees H. M.; Hebb, Dale; Jamieson, Rob; Burton, David; Madani, Ali

    2013-11-01

    Government priorities on provincial Nutrient Management Planning (NMP) programs include improving the program effectiveness for environmental quality protection, and promoting more widespread adoption. Understanding the effect of NMP on both crop yield and key water-quality parameters in agricultural watersheds requires a comprehensive evaluation that takes into consideration important NMP attributes and location-specific farming conditions. This study applied the Soil and Water Assessment Tool (SWAT) to investigate the effects of crop and rotation sequence, tillage type, and nutrient N application rate on crop yield and the associated groundwater leaching and sediment loss. The SWAT model was applied to the Thomas Brook Watershed, located in the most intensively managed agricultural region of Nova Scotia, Canada. Cropping systems evaluated included seven fertilizer application rates and two tillage systems (i.e., conventional tillage and no-till). The analysis reflected cropping systems commonly managed by farmers in the Annapolis Valley region, including grain corn-based and potato-based cropping systems, and a vegetable-horticulture system. ANOVA models were developed and used to assess the effects of crop management choices on crop yield and two water-quality parameters (i.e., leaching and sediment loading). Results suggest that existing recommended N-fertilizer rate can be reduced by 10-25 %, for grain crop production, to significantly lower leaching ( P > 0.05) while optimizing the crop yield. The analysis identified the nutrient N rates in combination with specific crops and rotation systems that can be used to manage leaching while balancing impacts on crop yields within the watershed.

  10. Review on the significance of chlorine for crop yield and quality.

    Science.gov (United States)

    Geilfus, Christoph-Martin

    2018-05-01

    The chloride concentration in the plant determines yield and quality formation for two reasons. First, chlorine is a mineral nutrient and deficiencies thereof induce metabolic problems that interfere with growth. However, due to low requirement of most crops, deficiency of chloride hardly appears in the field. Second, excess of chloride, an event that occurs under chloride-salinity, results in severe physiological dysfunctions impairing both quality and yield formation. The chloride ion can effect quality of plant-based products by conferring a salty taste that decreases market appeal of e.g. fruit juices and beverages. However, most of the quality impairments are based on physiological dysfunctions that arise under conditions of chloride-toxicity: Shelf life of persimmon is shortened due to an autocatalytic ethylene production in fruit tissues. High concentrations of chloride in the soil can increase phyto-availability of the heavy metal cadmium, accumulating in wheat grains above dietary intake thresholds. When crops are cultivated on soils that are moderately salinized by chloride, nitrate fertilization might be a strategy to suppress uptake of chloride by means of an antagonistic anion-anion uptake competition. Overall, knowledge about proteins that catalyse chloride-efflux out of the roots or that restrict xylem loading is needed to engineer more resistant crops. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Modeling Long Term Corn Yield Response to Nitrogen Rate and Crop Rotation

    Directory of Open Access Journals (Sweden)

    Laila Alejandra Puntel

    2016-11-01

    Full Text Available Improved prediction of optimal N fertilizer rates for corn (Zea mays L. can reduce N losses and increase profits. We tested the ability of the Agricultural Production Systems sIMulator (APSIM to simulate corn and soybean (Glycine max L. yields, the economic optimum N rate (EONR using a 16-year field-experiment dataset from central Iowa, USA that included two crop sequences (continuous corn and soybean-corn and five N fertilizer rates (0, 67, 134, 201, and 268 kg N ha-1 applied to corn. Our objectives were to: a quantify model prediction accuracy before and after calibration, and report calibration steps; b compare crop model-based techniques in estimating optimal N rate for corn; and c utilize the calibrated model to explain factors causing year to year variability in yield and optimal N. Results indicated that the model simultaneously simulated well long-term crop yields response to N (relative root mean square error, RRMSE of 19.6% before and 12.3% after calibration, which provided strong evidence that important soil and crop processes were accounted for in the model. The prediction of EONR was more complex and had greater uncertainty than the prediction of crop yield (RRMSE of 44.5% before and 36.6% after calibration. For long-term site mean EONR predictions, both calibrated and uncalibrated versions can be used as the 16-yr mean differences in EONR’s were within the historical N rate error range (40 to 50 kg N ha-1. However, for accurate year-by-year simulation of EONR the calibrated version should be used. Model analysis revealed that higher EONR values in years with above normal spring precipitation were caused by an exponential increase in N loss (denitrification and leaching with precipitation. We concluded that long term experimental data were valuable in testing and refining APSIM predictions. The model can be used as a tool to assist N management guidelines in the US Midwest and we identified five avenues on how the model can add

  12. Modeling Long-Term Corn Yield Response to Nitrogen Rate and Crop Rotation.

    Science.gov (United States)

    Puntel, Laila A; Sawyer, John E; Barker, Daniel W; Dietzel, Ranae; Poffenbarger, Hanna; Castellano, Michael J; Moore, Kenneth J; Thorburn, Peter; Archontoulis, Sotirios V

    2016-01-01

    Improved prediction of optimal N fertilizer rates for corn ( Zea mays L. ) can reduce N losses and increase profits. We tested the ability of the Agricultural Production Systems sIMulator (APSIM) to simulate corn and soybean ( Glycine max L. ) yields, the economic optimum N rate (EONR) using a 16-year field-experiment dataset from central Iowa, USA that included two crop sequences (continuous corn and soybean-corn) and five N fertilizer rates (0, 67, 134, 201, and 268 kg N ha -1 ) applied to corn. Our objectives were to: (a) quantify model prediction accuracy before and after calibration, and report calibration steps; (b) compare crop model-based techniques in estimating optimal N rate for corn; and (c) utilize the calibrated model to explain factors causing year to year variability in yield and optimal N. Results indicated that the model simulated well long-term crop yields response to N (relative root mean square error, RRMSE of 19.6% before and 12.3% after calibration), which provided strong evidence that important soil and crop processes were accounted for in the model. The prediction of EONR was more complex and had greater uncertainty than the prediction of crop yield (RRMSE of 44.5% before and 36.6% after calibration). For long-term site mean EONR predictions, both calibrated and uncalibrated versions can be used as the 16-year mean differences in EONR's were within the historical N rate error range (40-50 kg N ha -1 ). However, for accurate year-by-year simulation of EONR the calibrated version should be used. Model analysis revealed that higher EONR values in years with above normal spring precipitation were caused by an exponential increase in N loss (denitrification and leaching) with precipitation. We concluded that long-term experimental data were valuable in testing and refining APSIM predictions. The model can be used as a tool to assist N management guidelines in the US Midwest and we identified five avenues on how the model can add value toward

  13. Derivation of ozone flux-yield relationships for lettuce: A key horticultural crop

    International Nuclear Information System (INIS)

    Goumenaki, Eleni; Fernandez, Ignacio Gonzalez; Papanikolaou, Antigoni; Papadopoulou, Despoina; Askianakis, Christos; Kouvarakis, George; Barnes, Jeremy

    2007-01-01

    Ozone flux-response relationships were derived for lettuce, employing a multiplicative approach to model the manner in which stomatal conductance is influenced by key environmental variables, using a dataset collected during field experimentation in Crete and yield-response relationships derived from parallel open-top chamber experiments. Regional agronomic practices were adopted throughout. Computed versus measured data revealed that the derived model explained 51% (P -2 s -1 . Regressions employing very low or zero flux thresholds resulted in the strongest yield-flux relationships (explaining ∼80% (P < 0.05) of the variation in the dataset). - Establishment of ozone flux-yield relationships for a commercially-important horticultural crop grown widely in the Mediterranean

  14. Evidence for a climate signal in trends of global crop yield variability over the past 50 years

    International Nuclear Information System (INIS)

    Osborne, T M; Wheeler, T R

    2013-01-01

    Low variability of crop production from year to year is desirable for many reasons, including reduced income risk and stability of supplies. Therefore, it is important to understand the nature of yield variability, whether it is changing through time, and how it varies between crops and regions. Previous studies have shown that national crop yield variability has changed in the past, with the direction and magnitude dependent on crop type and location. Whilst such studies acknowledge the importance of climate variability in determining yield variability, it has been assumed that its magnitude and its effect on crop production have not changed through time and, hence, that changes to yield variability have been due to non-climatic factors. We address this assumption by jointly examining yield and climate variability for three major crops (rice, wheat and maize) over the past 50 years. National yield time series and growing season temperature and precipitation were de-trended and related using multiple linear regression. Yield variability changed significantly in half of the crop–country combinations examined. For several crop–country combinations, changes in yield variability were related to changes in climate variability. (letter)

  15. Remotely sensed vegetation indices for seasonal crop yields predictions in the Czech Republic

    Science.gov (United States)

    Hlavinka, Petr; Semerádová, Daniela; Balek, Jan; Bohovic, Roman; Žalud, Zdeněk; Trnka, Miroslav

    2015-04-01

    Remotely sensed vegetation indices by satellites are valuable tool for vegetation conditions assessment also in the case of field crops. This study is based on the use of NDVI (Normalized Difference Vegetation Index) and EVI (Enhanced Vegetation Index) derived from MODIS (Moderate Resolution Imaging Spectroradiometer) aboard Terra satellite. Data available from the year 2000 were analyzed and tested for seasonal yields predictions within selected districts of the Czech Republic (Central Europe). Namely the yields of spring barley, winter wheat and oilseed winter rape during the period from 2000 to 2014 were assessed. Observed yields from 14 districts (NUTS 4) were collected and thus 210 seasons were included. Selected districts differ considerably in their soil fertility and terrain configuration and represent transect across various agroclimatic conditions (from warm and dry to relative cool and wet regions). Two approaches were tested: 1) using of composite remotely sensed data (available in 16 day time step) provided by the USGS (https://lpdaac.usgs.gov/); 2) using daily remotely sensed data in combination with originally developed smoothing method. The yields were successfully predicted based on established regression models (remotely sensed data used as independent parameter). Besides others the impact of severe drought episodes within vegetation were identified and yield reductions at district level predicted (even before harvest). As a result the periods with the best relationship between remotely sensed data and yields were identified. The impact of drought conditions as well as normal or above normal yields of field crops could be predicted by proposed method within study region up to 30 days prior to the harvest. It could be concluded that remotely sensed vegetation conditions assessment should be important part of early warning systems focused on drought. Such information should be widely available for various users (decision makers, farmers, etc.) in

  16. MODELING OF YIELD AND QUALITY OF TABLE ROOT CROPS WITH THE USE OF DIFFERENT AGROTECHNICAL METHODS

    Directory of Open Access Journals (Sweden)

    S. M. Nadezhkin

    2017-01-01

    Full Text Available The effects of different fertilizer rates, irrigation, sowing rate for carrot and red beet were studied in the field condition in food-hills zone of Chechen Republic. The use of N40-80P40-80K40-80 caused the increase in yield from 22.8 to 30.8-33.2 t/ha or by 35-46%, when cultivating a carrot crop. Under irrigation the yield increases by 30-33%. Application of N40P40K40 and maintenance of soil moisture at 70% of moisture rate provoked the improvement in value, market and biochemical characteristics of roots; where the increased contents of dry matter, total sugar and vitamins were observed. The mathematical modeling for the process of yielding abilities and root quality in carrot and red beet showed that highest productivity can be achieved on chernozem soil at Central Pre-Caucasus zone when the level of mineral plant nutrition was N40-60P40-60K40-60. The further increment in fertilizer doses does not bring an improvement to yields and leads to decrease in quality of yields. The increased level of antecedent soil water moisture 70-75% of moisture rates does not raise the yield, on the contrary decreasing at the same time the root quality. The use of mathematical modeling enables to rationally define the fertilizer rates depending on application of irrigation and sowing rates in cultivation of carrot and red beet.

  17. Global climate change increases risk of crop yield losses and food insecurity in the tropical Andes.

    Science.gov (United States)

    Tito, Richard; Vasconcelos, Heraldo L; Feeley, Kenneth J

    2018-02-01

    One of the greatest current challenges to human society is ensuring adequate food production and security for a rapidly growing population under changing climatic conditions. Climate change, and specifically rising temperatures, will alter the suitability of areas for specific crops and cultivation systems. In order to maintain yields, farmers may be forced to change cultivation practices, the timing of cultivation, or even the type of crops grown. Alternatively, farmers can change the location where crops are cultivated (e.g., to higher elevations) to track suitable climates (in which case the plants will have to grow in different soils), as cultivated plants will otherwise have to tolerate warmer temperatures and possibly face novel enemies. We simulated these two last possible scenarios (for temperature increases of 1.3°C and 2.6°C) in the Peruvian Andes through a field experiment in which several traditionally grown varieties of potato and maize were planted at different elevations (and thus temperatures) using either the local soil or soil translocated from higher elevations. Maize production declined by 21%-29% in response to new soil conditions. The production of maize and potatoes declined by >87% when plants were grown under warmer temperatures, mainly as a result of the greater incidence of novel pests. Crop quality and value also declined under simulated migration and warming scenarios. We estimated that local farmers may experience severe economic losses of up to 2,300 US$ ha -1  yr -1 . These findings reveal that climate change is a real and imminent threat to agriculture and that there is a pressing need to develop effective management strategies to reduce yield losses and prevent food insecurity. Importantly, such strategies should take into account the influences of non-climatic and/or biotic factors (e.g., novel pests) on plant development. © 2017 John Wiley & Sons Ltd.

  18. Fungal endophytes from Acer ginnala Maxim: isolation, identification and their yield of gallic acid.

    Science.gov (United States)

    Qi, F-H; Jing, T-Z; Wang, Z-X; Zhan, Y-G

    2009-07-01

    The aim of the study was to isolate the endophytic fungi from Acer ginnala and screen isolates rich in gallic acid. After epiphytic sterilization, 145 fungal endophytes were isolated from the stem, annual twig and seed of Acer ginnala. The endophytes were grouped into ten different taxa, Phomopsis sp., Neurospora sp., Phoma sp., Epicoccum sp., Penicillium sp., Alternaria sp., Fusarium sp., Trichoderma sp., Cladosporium sp. and a species of Pleosporales Incertae Sedis, by their morphological traits and ITS-rDNA sequence analysis. The content and yield of gallic acid of 141 isolates were determined by HPLC. On average, the species of Pleosporales Incertae Sedis had the highest content and yield of gallic acid (13.28 mg g(-1) DW; 119.62 mg l(-1)), while Alternaria sp. had the lowest. Of 141 fungal endophytes from A. ginnala, Phomopsis sp. isolate SX10 showed both the highest content and the highest yield of gallic acid (29.25 mg g(-1) DW; 200.47 mg l(-1)). Endophytic fungi isolated from A. ginnala may be used as potential producers of gallic acid and other compounds with biological activities, or functioned as elicitors to produce natural compounds.

  19. Biochar potential in intensive cultivation of Capsicum annuum L. (sweet pepper): crop yield and plant protection.

    Science.gov (United States)

    Kumar, Abhay; Elad, Yigal; Tsechansky, Ludmila; Abrol, Vikas; Lew, Beni; Offenbach, Rivka; Graber, Ellen R

    2018-01-01

    The influence of various biochars on crop yield and disease resistance of Capsicum annuum L. (sweet pepper) under modern, high input, intensive net house cultivation was tested over the course of 2011-2014 in the Arava desert region of Israel. A pot experiment with Lactuca sativa L. (lettuce) grown in the absence of fertilizer employed the 3-year-old field trial soils to determine if biochar treatments contributed to soil intrinsic fertility. Biochar amendments resulted in a significant increase in the number and weight of pepper fruits over 3 years. Concomitant with the increased yield, biochar significantly decreased the severity of powdery mildew (Leveillula taurica) disease and broad mite (Polyphagotarsonemus latus) pest infestation. Biochar additions resulted in increased soil organic matter but did not influence the pH, electrical conductivity or soil or plant mineral nutrients. Intrinsic fertility experiments with lettuce showed that two of the four biochar-treated field soils had significant positive impacts on lettuce fresh weight and total chlorophyll, carotenoid and anthocyanin contents. Biochar-based soil management can enhance the functioning of intensive, commercial, net house production of peppers under the tested conditions, resulting in increased crop yield and plant resistance to disease over several years. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Land Use, Yield and Quality Changes of Minor Field Crops: Is There Superseded Potential to Be Reinvented in Northern Europe?

    Science.gov (United States)

    Peltonen-Sainio, Pirjo; Jauhiainen, Lauri; Lehtonen, Heikki

    2016-01-01

    Diversification of agriculture was one of the strengthened aims of the greening payment of European Agricultural Policy (CAP) as diversification provides numerous ecosystems services compared to cereal-intensive crop rotations. This study focuses on current minor crops in Finland that have potential for expanded production and considers changes in their cropping areas, yield trends, breeding gains, roles in crop rotations and potential for improving resilience. Long-term datasets of Natural Resources Institute Finland and farmers' land use data from the Agency of Rural Affairs were used to analyze the above-mentioned trends and changes. The role of minor crops in rotations declined when early and late CAP periods were compared and that of cereal monocultures strengthened. Genetic yield potentials of minor crops have increased as also genetic improvements in quality traits, although some typical trade-offs with improved yields have also appeared. However, the gap between potential and attained yields has expanded, depending on the minor crop, as national yield trends have either stagnated or declined. When comparing genetic improvements of minor crops to those of the emerging major crop, spring wheat, breeding achievements in minor crops were lower. It was evident that the current agricultural policies in the prevailing market and the price environment have not encouraged cultivation of minor crops but further strengthened the role of cereal monocultures. We suggest optimization of agricultural land use, which is a core element of sustainable intensification, as a future means to couple long-term environmental sustainability with better success in economic profitability and social acceptability. This calls for development of effective policy instruments to support farmer's diversification actions.

  1. Biochar in vineyards: impact on soil quality and crop yield four years after the application

    Science.gov (United States)

    Ferreira, Carla; Verheijen, Frank; Puga, João; Keizer, Jacob; Ferreira, António

    2017-04-01

    Biochar is a recalcitrant organic carbon compound, created by biomass heating at high temperatures (300-1000°C) under low oxygen concentrations. Biochar application to agricultural soils has received increasing attention over the last years, due to its climate change mitigation and adaptation potential and reported improved soil properties and functions relevant to agronomic and environmental performance. Reported impacts are linked with increased cation exchange capacity, enhanced nutrient and water retention, and positive influences on soil microbial communities, which influence crop yields. Nevertheless, few studies have focused on mid-to-long term impacts of biochar application. This study investigated the impact of biochar on soil quality and crop yield four years after biochar application in a vineyard in North-Central Portugal. The site has a Mediterranean climate with a strong Atlantic Ocean influence, with mean annual rainfall and temperature of 1100 mm and 15°C, respectively. The soil is a relatively deep ( 80cm) sandy loam Cambisol, with gentle slopes (3°). The experimental design included three treatments: (i) control, without biochar; (ii) high biochar application rate (40 ton/ha); and (iii) biochar compost (40 ton/ha, 10% biochar). Three plots per treatment (2m×3m) were installed in March 2012, using a mini-rotavator (0-15cm depth). In May 2016, soil quality was also assessed through soil surveys and sampling. Penetration resistance was performed at the soil surface with a pocket penetrometer, and soil surface sampling rings were used for bulk density analyses (100 cm3). Bulked soil samples (0-30 cm) were collected in each plot for aggregate stability, microbial biomass (by chloroform fumigation extraction) and net mineralization rate (through photometric determination of non-incubated and incubated samples). Decomposition rate and litter stabilisation was assessed over a 3-month period through the Tea Bag Index (Keuskamp et al., 2013). The number

  2. Yield trends in the long-term crop rotation with organic and inorganic fertilisers on Alisols in Mata (Rwanda)

    NARCIS (Netherlands)

    Rutunga, V.; Neel, H.

    2006-01-01

    A crop rotation system with various species was established on Alisols at Mata grassland site, oriental side of Zaire-Nile Watershed Divide (CZN), Rwanda. Inorganic and organic fertilizers were applied in various plots under randomized complete blocs with three replicates. Crop yield data for each

  3. Dryland maize yields and water use efficiency in response to tillage/crop stubble and nutrient management practices in China

    NARCIS (Netherlands)

    Wang, X.B.; Dai, K.; Zhang, D.; Zhang, X.; Wang, Y.; Zhao, Q.; Cai, D.X.; Hoogmoed, W.B.; Oenema, O.

    2011-01-01

    Rainfed crop production in northern China is constrained by low and variable rainfall. This study explored the effects of tillage/crop residue and nutrient management practices on maize (Zea mays L.) yield, water use efficiency (WUE), and N agronomic use efficiency (NAE) at Shouyang Dryland Farming

  4. Long-term conventional and no-tillage effects on field hydrology and yields of a dryland crop rotation

    Science.gov (United States)

    Semiarid dryland crop yields with no-till, NT, residue management are often greater than stubble-mulch, SM, tillage as a result of improved soil conditions and water conservation, but information on long-term tillage effects on field hydrology and sustained crop production are needed. Our objective ...

  5. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types

    NARCIS (Netherlands)

    Bai, Z.H.; Li, H.G.; Yang, X.Y.; Zhou, B.K.; Shi, X.J.; Wang, B.R.; Li, D.C.; Shen, J.B.; Chen, Q.; Qin, W.; Oenema, O.; Zhang, F.S.

    2013-01-01

    Sufficient soil phosphorus (P) is important for achieving optimal crop production, but excessive soil P levels may create a risk of P losses and associated eutrophication of surface waters. The aim of this study was to determine critical soil P levels for achieving optimal crop yields and minimal P

  6. Assessing the impacts of current and future concentrations of surface ozone on crop yield with meta-analysis

    Science.gov (United States)

    Feng, Zhaozhong; Kobayashi, Kazuhiko

    Meta-analysis was conducted to quantitatively assess the effects of rising ozone concentrations ([O 3]) on yield and yield components of major food crops: potato, barley, wheat, rice, bean and soybean in 406 experimental observations. Yield loss of the crops under current and future [O 3] was expressed relative to the yield under base [O 3] (≤26 ppb). With potato, current [O 3] (31-50 ppb) reduced the yield by 5.3%, and it reduced the yield of barley, wheat and rice by 8.9%, 9.7% and 17.5%, respectively. In bean and soybean, the yield losses were 19.0% and 7.7%, respectively. Compared with yield loss at current [O 3], future [O 3] (51-75 ppb) drove a further 10% loss in yield of soybean, wheat and rice, and 20% loss in bean. Mass of individual grain, seed, or tuber was often the major cause of the yield loss at current and future [O 3], whereas other yield components also contributed to the yield loss in some cases. No significant difference was found between the responses in crops grown in pots and those in the ground for any yield parameters. The ameliorating effect of elevated [CO 2] was significant in the yields of wheat and potato, and the individual grain weight in wheat exposed to future [O 3]. These findings confirm the rising [O 3] as a threat to food security for the growing global population in this century.

  7. Algal biofuels from urban wastewaters: maximizing biomass yield using nutrients recycled from hydrothermal processing of biomass.

    Science.gov (United States)

    Selvaratnam, T; Pegallapati, A K; Reddy, H; Kanapathipillai, N; Nirmalakhandan, N; Deng, S; Lammers, P J

    2015-04-01

    Recent studies have proposed algal cultivation in urban wastewaters for the dual purpose of waste treatment and bioenergy production from the resulting biomass. This study proposes an enhancement to this approach that integrates cultivation of an acidophilic strain, Galdieria sulphuraria 5587.1, in a closed photobioreactor (PBR); hydrothermal liquefaction (HTL) of the wet algal biomass; and recirculation of the nutrient-rich aqueous product (AP) of HTL to the PBR to achieve higher biomass productivity than that could be achieved with raw wastewater. The premise is that recycling nutrients in the AP can maintain optimal C, N and P levels in the PBR to maximize biomass growth to increase energy returns. Growth studies on the test species validated growth on AP derived from HTL at temperatures from 180 to 300°C. Doubling N and P concentrations over normal levels in wastewater resulted in biomass productivity gains of 20-25% while N and P removal rates also doubled. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Cereal yield and quality as affected by N availability in organic and conventional crop rotations in Denmark

    DEFF Research Database (Denmark)

    Doltra, Jordi; Lægdsmand, Mette; Olesen, Jørgen E

    2011-01-01

    The effects of nitrogen (N) availability related to fertilizer type, catch crop management, and rotation composition on cereal yield and grain N were investigated in four organic and one conventional cropping systems in Denmark using the FASSET model. The four-year rotation studied was: spring...... loamy soil. DM yield and grain N content were mainly influenced by the type and amount of fertilizer-N at all three locations. Although a catch crop benefit in terms of yield and grain N was observed in most of the cases, a limited N availability affected the cereal production in the four organic...... systems. Scenario analyses conducted with the FASSET model indicated the possibility of increasing N fertilization without significantly affecting N leaching if there is an adequate catch crop management. This would also improve yields of cereal production of organic farming in Denmark...

  9. Effect of plant density and mixing ratio on crop yield in sweet corn/mungbean intercropping.

    Science.gov (United States)

    Sarlak, S; Aghaalikhani, M; Zand, B

    2008-09-01

    In order to evaluate the ear and forage yield of sweet corn (Zea mays L. var. Saccarata) in pure stand and intercropped with mung bean (Vigna radiata L.), a field experiment was conducted at Varamin region on summer 2006. Experiment was carried out in a split plot design based on randomized complete blocks with 4 replications. Plant density with 3 levels [Low (D1), Mean (D2) and High (D3) respecting 6, 8 and 10 m(-2) for sweet corn, cultivar S.C.403 and 10, 20 and 30 m(-2) for mung bean cultivar, Partow] was arranged in main plots and 5 mixing ratios [(P1) = 0/100, (P2) = 25/75, (P3) = 50/50, (P4) = 75/25, (P5) = 100/0% for sweet corn/mung bean, respectively] were arranged in subplots. Quantitative attributes such as plant height, sucker numbers, LER, dry matter distribution in different plant organs were measured in sweet corn economical maturity. Furthermore the yield of cannable ear corn and yield components of sweet corn and mung bean were investigated. Results showed that plant density has not any significant effect on evaluated traits, while the effect of mixing ratio was significant (p ratio of 75/25 (sweet corn/mung bean) could be introduced as the superior mixing ratio; because of it's maximum rate of total sweet corn's biomass, forage yield, yield and yield components of ear corn in intercropping. Regarding to profitability indices of intercropping, the mixing ratio 75/25 (sweet corn/mung bean) in low density (D1P2) which showed the LER = 1.03 and 1.09 for total crop yield before ear harvesting and total forage yield after ear harvest respectively, was better than corn or mung bean monoculture.

  10. Wheat Yield Forecasting for Punjab Province from Vegetation Index Time Series and Historic Crop Statistics

    Directory of Open Access Journals (Sweden)

    Jan Dempewolf

    2014-10-01

    Full Text Available Policy makers, government planners and agricultural market participants in Pakistan require accurate and timely information about wheat yield and production. Punjab Province is by far the most important wheat producing region in the country. The manual collection of field data and data processing for crop forecasting by the provincial government requires significant amounts of time before official reports can be released. Several studies have shown that wheat yield can be effectively forecast using satellite remote sensing data. In this study, we developed a methodology for estimating wheat yield and area for Punjab Province from freely available Landsat and MODIS satellite imagery approximately six weeks before harvest. Wheat yield was derived by regressing reported yield values against time series of four different peak-season MODIS-derived vegetation indices. We also tested deriving wheat area from the same MODIS time series using a regression-tree approach. Among the four evaluated indices, WDRVI provided more consistent and accurate yield forecasts compared to NDVI, EVI2 and saturation-adjusted normalized difference vegetation index (SANDVI. The lowest RMSE values at the district level for forecast versus reported yield were found when using six or more years of training data. Forecast yield for the 2007/2008 to 2012/2013 growing seasons were within 0.2% and 11.5% of final reported values. Absolute deviations of wheat area and production forecasts from reported values were slightly greater compared to using the previous year's or the three- or six-year moving average values, implying that 250-m MODIS data does not provide sufficient spatial resolution for providing improved wheat area and production forecasts.

  11. Coal mine subsidence: effects of mitigation on crop yields. [USA - Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Darmody, R.G.; Hetzler, R.T.; Simmons, F.W. (Illinois Univ., Urbana, IL (USA). Dept. of Agronomy)

    1992-01-01

    Subsidence from longwall underground coal mining adversely impacts agricultural land by creating wet or ponded areas. While most subsided areas show little impact, some localized places, usually less than 1.5 ha in size, may experience total crop failure. Coal companies mitigate subsidence damaged cropland by installing drainage waterways or by adding fill material to raise the grade. The objective of this study was to test the effectiveness of mitigation in restoring corn and soybean yields to pre-mined levels. Fourteen sites in southern Illinois were selected for study. Corn ([ital Zea mays] L.) and soybean ([ital Glycine max] L.) yields from mitigated and nearby undisturbed areas were compared for four years. Results varied due to differing weather and site conditions. Mean corn yields overall, however were significantly ([alpha]0.05) lower on mitigated areas. There was no significant difference in overall mean soybean yields. Soil fertility levels were similar and did not account for yield differences. 14 refs., 1 fig., 7 tabs.

  12. Effects of pre-sowing gamma irradiation of tomato seeds on production and yield of open field tomato crops

    Energy Technology Data Exchange (ETDEWEB)

    Zhamyansurehn, D [Institut Fiziki i Matematiki Akademii Nauk Mongol' skoj Narodnoj Respubliki, Ulan Bator; Voloozh, D

    1976-01-01

    The following conclusions may be drawn from results obtained in experiments with pre-sowing irradiation of tomato seeds and its effect on tomato crops. The dose of 2500 R proved to be optimum for increase of tomato crops yield. The yield increase resulted from increase in average weight, quantity and the dry matter of the fruit. The irradiation did not significantly affect the concentration of sugar, phosphorus, nitrogen and ascorbic acid in the fruit.

  13. Effects of pre-sowing gamma irradiation of tomato seeds on production and yield of open field tomato crops

    International Nuclear Information System (INIS)

    Zhamyansurehn, D.; Voloozh, D.

    1976-01-01

    The following conclusions may be drawn from results obtained in experiments with pre-sowing irradiation of tomato seeds and its effect on tomato crops. The dose of 2500 R proved to be optimum for increase of tomato crops yield. The yield increase resulted from increase in average weight, quantity and the dry matter of the fruit. The irradiation did not significantly affect the concentration of sugar, phosphorus, nitrogen and ascorbic acid in the fruit. (author)

  14. Changing regional weather-crop yield relationships across Europe between 1901 and 2012

    DEFF Research Database (Denmark)

    Trnka, M; Olesen, Jørgen Eivind; Kersebaum, KC

    2016-01-01

    century would also aid in our understanding of the potential impact of future climate changes and in assessments of the potential for adaptation across Europe. In this study, we compiled information from several sources on winter wheat and spring barley yields and climatological data from 12 countries......, and that presently grown wheat and barley show a more pronounced response to adverse weather conditions compared to crops from the early 20th century. The results confirm that climate-yield relationships have changed significantly over the period studied, and that in some regions, different predictors have had...... by expanding the harvested area. This was followed, from the mid-20th century, by a massive increase in productivity that in many regions has stalled since 2000. However, it remains unclear what role climatic factors have played in these changes. Understanding the net impact of climatic trends over the past...

  15. SPATIO-TEMPORAL MODELING OF AGRICULTURAL YIELD DATA WITH AN APPLICATION TO PRICING CROP INSURANCE CONTRACTS

    Science.gov (United States)

    Ozaki, Vitor A.; Ghosh, Sujit K.; Goodwin, Barry K.; Shirota, Ricardo

    2009-01-01

    This article presents a statistical model of agricultural yield data based on a set of hierarchical Bayesian models that allows joint modeling of temporal and spatial autocorrelation. This method captures a comprehensive range of the various uncertainties involved in predicting crop insurance premium rates as opposed to the more traditional ad hoc, two-stage methods that are typically based on independent estimation and prediction. A panel data set of county-average yield data was analyzed for 290 counties in the State of Paraná (Brazil) for the period of 1990 through 2002. Posterior predictive criteria are used to evaluate different model specifications. This article provides substantial improvements in the statistical and actuarial methods often applied to the calculation of insurance premium rates. These improvements are especially relevant to situations where data are limited. PMID:19890450

  16. Onion crop yield submitted to water and nitrogen levels by drip system

    Directory of Open Access Journals (Sweden)

    Renato Carvalho Vilas Boas

    2014-02-01

    Full Text Available The aim this work was evaluate the effects of water and nitrogen (N levels, supplied by drip system, on yield and water use efficiency of onion crop (Allium cepa L.. The experiment was carried at the experimental area of DEG/UFLA, in a randomized block statistical design was used, in a factorial scheme 4 x 4, with three replicates. Four irrigation depths based on Class A evaporation tanks (50, 100, 150 and 200% and four N doses (0, 60, 120 and 180 kg ha-1 were supplied through irrigation water (fertigation. It can be concluded that higher yields (total bulbs and of marketable bulbs and higher average marketable bulbs mass were obtained with the irrigation depth of 512.7 mm (100% Class A and 180 kg ha-1 of N. Water use efficiency decreased linearly as irrigation depths increased and N rate decreased.

  17. Carbon isotope discrimination as a selection tool for high water use efficiency and high crop yields

    International Nuclear Information System (INIS)

    Kumarasinghe, K.S.; Kirda, C.; Bowen, G.D.; Zapata, F.; Awonaike, K.O.; Holmgren, E.; Arslan, A.; De Bisbal, E.C.; Mohamed, A.R.A.G.; Montenegro, A.

    1996-01-01

    Results of back-up research conducted at the FAO/IAEA Agriculture and Biotechnology Laboratory in support of the FAO/IAEA Co-ordinated Research Programme on the Use of Isotope Studies on Increasing and Stabilizing Plant Productivity in Low Phosphate and Semi-arid and Sub-humid Soils of the Tropics and Sub-tropics, are presented here. Neutron probe measurements confirmed the earlier reports of a strong correlation of Δ with grain yield and water use efficiency of wheat. High soil gypsum content and soil salinity, a wide spread problem in soils of arid and semi-arid climatic zones, do not interfere with the association of Δ with crop yields, provided plants are grown in similar soil water status and soil fertility level. Results of a glasshouse experiment using selected cowpea genotypes showed that Δ values measured at flowering stage positively correlated with total dry matter production and percent N 2 derived from atmosphere (%Ndfa), contributing to an earlier report from the laboratory that it may be possible to use Δ values for screening of leguminous crops for high N 2 fixation potential. 13 C isotope discrimination in the leaves of Gliricidia sepium was measured to examine if the technique could be extended to studies with trees. Results of a glasshouse experiment with 18 provenances of Gliricidia sepium showed highly significant correlations of Δ with total dry matter production, water use efficiency and total N accumulated through biological nitrogen fixation. Although the correlation of Δ with water use efficiency and dry matter yield are relatively clear and better understood, the correlation with nitrogen fixation still needs a closer examination under different environmental conditions and with different species. While 13 C isotope discrimination may be a valuable tool for identifying annual crops with high water use efficiency and high yield potential, it may be more attractive for tree species considering the long growth periods taken for trees

  18. Application of Serratia marcescens RZ-21 significantly enhances peanut yield and remediates continuously cropped peanut soil.

    Science.gov (United States)

    Ma, Hai-Yan; Yang, Bo; Wang, Hong-Wei; Yang, Qi-Yin; Dai, Chuan-Chao

    2016-01-15

    Continuous cropping practices cause a severe decline in peanut yield. The aim of this study was to investigate the remediation effect of Serratia marcescens on continuously cropped peanut soil. A pot experiment was conducted under natural conditions to determine peanut agronomic indices, soil microorganism characteristics, soil enzyme activities and antagonism ability to typical pathogens at different growth stages. Four treatments were applied to red soil as follows: an active fermentation liquor of S. marcescens (RZ-21), an equivalent sterilized fermentation liquor (M), an equivalent fermentation medium (P) and distilled water (CK). S. marcescens significantly inhibited the two typical plant pathogens Fusarium oxysporum A1 and Ralstonia solanacearum B1 and reduced their populations in rhizosphere soil. The RZ-21 treatment significantly increased peanut yield, vine dry weight, root nodules and taproot length by 62.3, 33, 72 and 61.4% respectively, followed by the M treatment. The P treatment also increased root nodules and root length slightly. RZ-21 also enhanced the activities of soil urease, sucrase and hydrogen peroxidase at various stages. In addition, RZ-21 and M treatments increased the average population of soil bacteria and decreased the average population of fungi in the three critical peanut growth stages, except for M in the case of the fungal population at flowering, thus balancing the structure of the soil microorganism community. This is the first report of S. marcescens being applied to continuously cropped peanut soil. The results suggest that S. marcescens RZ-21 has the potential to improve the soil environment and agricultural products and thus allow the development of sustainable management practices. © 2015 Society of Chemical Industry.

  19. Estimation of effects of photosynthesis response functions on rice yields and seasonal variation of CO2 fixation using a photosynthesis-sterility type of crop yield model

    International Nuclear Information System (INIS)

    Kaneko, D.; Moriwaki, Y.

    2008-01-01

    This study presents a crop production model improvement: the previously adopted Michaelis-Menten (MM) type photosynthesis response function (fsub(rad-MM)) was replaced with a Prioul-Chartier (PC) type function (fsub(rad-PC)). The authors' analysis reflects concerns regarding the background effect of global warming, under simultaneous conditions of high air temperature and strong solar radiation. The MM type function fsub(rad-MM) can give excessive values leading to an overestimate of photosynthesis rate (PSN) and grain yield for paddy-rice. The MM model is applicable to many plants whose (PSN) increases concomitant with increased insolation: wheat, maize, soybean, etc. For paddy rice, the PSN apparently shows a maximum PSN. This paper proves that the MM model overestimated the PSN for paddy rice for sufficient solar radiation: the PSN using the PC model yields 10% lower values. However, the unit crop production index (CPIsub(U)) is almost independent of the MM and PC models because of respective standardization of both PSN and crop production index using average PSNsub(0) and CPIsub(0). The authors improved the estimation method using a photosynthesis-and-sterility based crop situation index (CSIsub(E)) to produce a crop yield index (CYIsub(E)), which is used to estimate rice yields in place of the crop situation index (CSI); the CSI gives a percentage of rice yields compared to normal annual production. The model calculates PSN including biomass effects, low-temperature sterility, and high-temperature injury by incorporating insolation, effective air temperature, the normalized difference vegetation index (NDVI), and effects of temperature on photosynthesis. Based on routine observation data, the method enables automated crop-production monitoring in remote regions without special observations. This method can quantify grain production early to raise an alarm in Southeast Asian countries, which must confront climate fluctuation through this era of global

  20. Maximizing the TESS Mission’s Yield of Long-Period Planets

    Science.gov (United States)

    Dragomir, Diana; Gaudi, B. Scott; Villanueva, Steven; Crossfield, Ian; Huang, Xu; Ribas, Ignasi; Quinn, Samuel

    2018-01-01

    The upcoming TESS mission will discover thousands of transiting planets around bright stars. However, during its primary mission the satellite will observe most of the sky for just 27 days (and for at most one year even in its continuous viewing zones near the ecliptic poles), thus limiting the mission’s yield of long-period planets that show three or more transits in the TESS light curves. By also pursuing single- and double-transit events, we can increase by several hundred the number of planets with periods longer than 10 days that TESS will discover. I will show how strategic planning and the judicious use of follow-up observations can confirm these planets and refine their ephemerides. Through this program, we will generate a sample of long-period planets transiting bright stars that are ripe for detailed characterization studies such as mass measurements and atmospheric observations. In turn, these studies will provide important constraints on the composition and formation of long-period planets.

  1. THE STRUCTURE AND YIELD LEVEL OF SWEET CORN DEPENDING ON THE TYPE OF WINTER CATCH CROPS AND WEED CONTROL METHOD

    Directory of Open Access Journals (Sweden)

    Robert Rosa

    2014-10-01

    Full Text Available Organic manuring is suggested to be necessary in sweet corn cultivation. It is not always possible to use farmyard manure due to economic, production or technical reasons. Catch crops used as green manures can be an alternative source of organic matter. The experiment was carried out in central-east Poland (52°06’N, 22°55’E, in years 2008–2011. The successive effect of winter catch crops (hairy vetch, white clover, winter rye, Italian ryegrass, winter turnip rape and the type of weed control on the growth and yielding of sweet corn was examined. The catch crops were sown in early September, incorporated in early May. The effect of the winter catch crops on yield was compared to the effect of FYM at a rate of 30 t·ha-1 and the control without organic manuring. The sweet corn was grown directly after organic fertilization. Three methods of weed control was used: Hw – hand weeding, twice during the growing period, GCM – herbicide Guardian CompleteMix 664 SE, immediately after sowing the seed corn, Z+T – a mixture of herbicides Zeagran 340 SE + Titus 25 WG, in the 3–4 leaf stage sweet corn. The highest yields of biomass were found for winter rye (35.5 t·ha-1 FM and 7.3 t·ha-1 DM, the most of macroelements accumulated winter turnip rape (480.2 kg N+P+K+Ca+Mg·ha-1. Generally, leguminous catch crops had similar to the FYM and better than non-leguminous catch crops yield-forming effect. The highest yield of marketable ears of sweet corn was obtained after FYM (14.4 t·ha-1 and after hairy vetch catch crop (14.0 t·ha-1. A similar yield-forming effect also had white clover and Italian ryegrass. The most of ears from 1 ha was achieved after white clover catch crop (59.3 tausend, similar after FYM and hairy vetch catch crop. The highest kernel yields were found after FYM (10.7 t·ha-1. The yields of kernel after hairy vetch and white clover catch crops were significantly higher than after non-leguminous catch crops. Z+T weed control

  2. Derivation of ozone flux-yield relationships for lettuce: A key horticultural crop

    Energy Technology Data Exchange (ETDEWEB)

    Goumenaki, Eleni [Environmental and Molecular Plant Physiology, Institute for Research on the Environment and Sustainability, School of Biology and Psychology, Division of Biology, Devonshire Building, Newcastle University, Newcastle Upon Tyne NE1 7RU (United Kingdom); School of Agricultural Technology, Technological Education Institute of Crete, P.O. Box 1939, 71004 Heraklion (Greece); Fernandez, Ignacio Gonzalez [Environmental and Molecular Plant Physiology, Institute for Research on the Environment and Sustainability, School of Biology and Psychology, Division of Biology, Devonshire Building, Newcastle University, Newcastle Upon Tyne NE1 7RU (United Kingdom); CIEMAT, Ecotoxicology of Air Pollution, Avda. Complutense 22, 28040 Madrid (Spain); Papanikolaou, Antigoni [School of Agricultural Technology, Technological Education Institute of Crete, P.O. Box 1939, 71004 Heraklion (Greece); Papadopoulou, Despoina [School of Agricultural Technology, Technological Education Institute of Crete, P.O. Box 1939, 71004 Heraklion (Greece); Askianakis, Christos [School of Agricultural Technology, Technological Education Institute of Crete, P.O. Box 1939, 71004 Heraklion (Greece); Kouvarakis, George [Environmental and Chemical Processes Laboratory, Department of Chemistry, University of Crete, P.O. Box 1470, 71409 Heraklion (Greece); Barnes, Jeremy [Environmental and Molecular Plant Physiology, Institute for Research on the Environment and Sustainability, School of Biology and Psychology, Division of Biology, Devonshire Building, Newcastle University, Newcastle Upon Tyne NE1 7RU (United Kingdom)]. E-mail: j.d.barnes@ncl.ac.uk

    2007-04-15

    Ozone flux-response relationships were derived for lettuce, employing a multiplicative approach to model the manner in which stomatal conductance is influenced by key environmental variables, using a dataset collected during field experimentation in Crete and yield-response relationships derived from parallel open-top chamber experiments. Regional agronomic practices were adopted throughout. Computed versus measured data revealed that the derived model explained 51% (P < 0.001) of the observed variation in stomatal conductance. Concentration-based indices were compared with flux-based indices. Analyses revealed a significant relationship between accumulated stomatal ozone flux and yield employing flux threshold cut-offs up to 4 nmol m{sup -2} s{sup -1}. Regressions employing very low or zero flux thresholds resulted in the strongest yield-flux relationships (explaining {approx}80% (P < 0.05) of the variation in the dataset). - Establishment of ozone flux-yield relationships for a commercially-important horticultural crop grown widely in the Mediterranean.

  3. The impact of large-scale circulation patterns on summer crop yields in IP

    Science.gov (United States)

    Capa Morocho, Mirian; Rodríguez Fonseca, Belén; Ruiz Ramos, Margarita

    2014-05-01

    Large-scale circulations patterns (ENSO, NAO) have been shown to have a significant impact on seasonal weather, and therefore on crop yield over many parts of the world(Garnett and Khandekar, 1992; Aasa et al., 2004; Rozas and Garcia-Gonzalez, 2012). In this study, we analyze the influence of large-scale circulation patterns and regional climate on the principal components of maize yield variability in Iberian Peninsula (IP) using reanalysis datasets. Additionally, we investigate the modulation of these relationships by multidecadal patterns. This study is performed analyzing long time series of maize yield, only climate dependent, computed with the crop model CERES-maize (Jones and Kiniry, 1986) included in Decision Support System for Agrotechnology Transfer (DSSAT v.4.5). To simulate yields, reanalysis daily data of radiation, maximum and minimum temperature and precipitation were used. The reanalysis climate data were obtained from National Center for Environmental Prediction (20th Century and NCEP) and European Centre for Medium-Range Weather Forecasts (ECMWF) data server (ERA 40 and ERA Interim). Simulations were run at five locations: Lugo (northwestern), Lerida (NE), Madrid (central), Albacete (southeastern) and Córdoba (S IP) (Gabaldón et al., 2013). From these time series standardized anomalies were calculated. Afterwards, time series were time filtered to focus on the interannual-to-multiannual variability, splitting up in two components: low frequency (LF) and high frequency (HF) time scales. The principal components of HF yield anomalies in IP were compared with a set of documented patterns. These relationships were compared with multidecadal patterns, as Atlanctic Multidecadal Oscillations (AMO) and Interdecadal Pacific Oscillations (IPO). The results of this study have important implications in crop forecasting. In this way, it may have a positive impact on both public (agricultural planning) and private (decision support to farmers, insurance

  4. Response Surface Methodology Optimization of Ultrasonic-Assisted Extraction of Acer Truncatum Leaves for Maximal Phenolic Yield and Antioxidant Activity.

    Science.gov (United States)

    Yang, Lingguang; Yin, Peipei; Fan, Hang; Xue, Qiang; Li, Ke; Li, Xiang; Sun, Liwei; Liu, Yujun

    2017-02-04

    This study is the first to report the use of response surface methodology to improve phenolic yield and antioxidant activity of Acer truncatum leaves extracts (ATLs) obtained by ultrasonic-assisted extraction. The phenolic composition in ATLs extracted under the optimized conditions were characterized by UPLC-QTOF-MS/MS. Solvent and extraction time were selected based on preliminary experiments, and a four-factors-three-levels central composite design was conducted to optimize solvent concentration ( X ₁), material-to-liquid ratio ( X ₂), ultrasonic temperature ( X ₃) and power ( X ₄) for an optimal total phenol yield ( Y ₁) and DPPH• antioxidant activity ( Y ₂). The results showed that the optimal combination was ethanol:water ( v : v ) 66.21%, material-to-liquid ratio 1:15.31 g/mL, ultrasonic bath temperature 60 °C, power 267.30 W, and time 30 min with three extractions, giving a maximal total phenol yield of 7593.62 mg gallic acid equivalent/100 g d.w. and a maximal DPPH• antioxidant activity of 74,241.61 μmol Trolox equivalent/100 g d.w. Furthermore, 22 phenolics were first identified in ATL extract obtained under the optimized conditions, indicating that gallates, gallotannins, quercetin, myricetin and chlorogenic acid derivatives were the main phenolic components in ATL. What's more, a gallotannins pathway existing in ATL from gallic acid to penta- O -galloylglucoside was proposed. All these results provide practical information aiming at full utilization of phenolics in ATL, together with fundamental knowledge for further research.

  5. Carbon isotope discrimination as a selection tool for high water use efficiency and high crop yields

    Energy Technology Data Exchange (ETDEWEB)

    Kumarasinghe, K S; Kirda, C; Bowen, G D [Joint FAO/IAEA Div. of Nuclear Techniques in Food and Agriculture, Vienna (Austria). Soil Fertility, Irrigation and Crop Production Section; Zapata, F; Awonaike, K O; Holmgren, E; Arslan, A; De Bisbal, E C; Mohamed, A R.A.G.; Montenegro, A [FAO/IAEA Agriculture and Biotechnology Lab., Seibersdorf (Austria). Soils Science Unit

    1996-07-01

    Results of back-up research conducted at the FAO/IAEA Agriculture and Biotechnology Laboratory in support of the FAO/IAEA Co-ordinated Research Programme on the Use of Isotope Studies on Increasing and Stabilizing Plant Productivity in Low Phosphate and Semi-arid and Sub-humid Soils of the Tropics and Sub-tropics, are presented here. Neutron probe measurements confirmed the earlier reports of a strong correlation of {Delta} with grain yield and water use efficiency of wheat. High soil gypsum content and soil salinity, a wide spread problem in soils of arid and semi-arid climatic zones, do not interfere with the association of {Delta} with crop yields, provided plants are grown in similar soil water status and soil fertility level. Results of a glasshouse experiment using selected cowpea genotypes showed that {Delta} values measured at flowering stage positively correlated with total dry matter production and percent N{sub 2} derived from atmosphere (%Ndfa), contributing to an earlier report from the laboratory that it may be possible to use {Delta} values for screening of leguminous crops for high N{sub 2} fixation potential. {sup 13}C isotope discrimination in the leaves of Gliricidia sepium was measured to examine if the technique could be extended to studies with trees. Results of a glasshouse experiment with 18 provenances of Gliricidia sepium showed highly significant correlations of {Delta} with total dry matter production, water use efficiency and total N accumulated through biological nitrogen fixation. Although the correlation of {Delta} with water use efficiency and dry matter yield are relatively clear and better understood, the correlation with nitrogen fixation still needs a closer examination under different environmental conditions and with different species. (Abstract Truncated)

  6. Crop yield response to deficit irrigation imposed at different plant growth stages

    International Nuclear Information System (INIS)

    Kovaks, T.; Kovaks, G.; Szito, J.

    1995-01-01

    A series of field experiments were conducted between 1991 - 1994 using 7 irrigation treatments at two fertilizer levels. Nitrogen fertilizers used were labelled with 15 N stable isotope to examine the effect of irrigation on the fertilizer N use efficiency by isotope technique. The irrigation were maintained at four different growth stages of maize, soybean and potato( vegetative, flowering, yield formation and ripening ) in 4 replicates. The aim of study was to compare deficit irrigation( i.e. the water stress imposed, during one growth stage ) with normal irrigation practice included the traditional one. Two watering regimes were established : (1) normal watering when available water was within the range of 60 - 90 %, and (2) deficit irrigation, when the AW was at 30 to 60 %. Neutron probe was used for measuring the soil water status and evaporation data were recorded to determine the amount of irrigation water demand. Reference evapotranspiration ( ETo) was calculated according to Penman - Monteith. Crop water requirement ( ETm) were determined in every year. Actual evapotranspiration ( ETa) was computed using CROPWAT: FAO computer program for irrigation planning and management (1992). Every irrigation treatment was equipped with neutron access tubes in two replicates at a depth from 10 to 130 cm. tensiometers were installed at depths of 30, 50, 60 and 80 cm in one replicate of treatments and were measured on a daily basis while neutron probe measurements were used to monitor the soil water table fluctuations. The irrigation method used was a special type of low pressure drop irrigation. There were measured the amount of rainfall with irrigation water supplied and the moisture distribution profiles were drown for the different treatments. Relationships between relative yield decrease and evapotranspiration and also between the crop yield and water use were determined. 9 tabs, 9 refs, ( Author )

  7. Influence of cover crops on arthropods, free-living nematodes, and yield in a succeeding no-till soybean crop

    Science.gov (United States)

    Production practices that incorporate fall-planted cover crops into no-till agronomic crop rotations have become increasingly popular across the Northeastern United States for weed suppression and enhancing environmental stewardship. Field experiments were conducted in 2011 and 2012 to investigate e...

  8. Residue and soil carbon sequestration in relation to crop yield as affected by irrigation, tillage, cropping system and nitrogen fertilization

    Science.gov (United States)

    Information on management practices is needed to increase surface residue and soil C sequestration to obtain farm C credit. The effects of irrigation, tillage, cropping system, and N fertilization were evaluated on the amount of crop biomass (stems and leaves) returned to the soil, surface residue C...

  9. Assessments of Future Maize Yield Potential Changes in the Korean Peninsula Using Multiple Crop Models

    Science.gov (United States)

    Kim, S. H.; Lim, C. H.; Kim, J.; Lee, W. K.; Kafatos, M.

    2016-12-01

    The Korean Peninsula has unique agricultural environment due to the differences of political and socio-economical system between Republic of Korea (SK, hereafter) and Democratic Peoples' Republic of Korea (NK, hereafter). NK has been suffering lack of food supplies caused by natural disasters, land degradation and political failure. The neighboring developed country SK has better agricultural system but very low food self-sufficiency rate. Maize is an important crop in both countries since it is staple food for NK and SK is No. 2 maize importing country in the world after Japan. Therefore, evaluating maize yield potential (Yp) in the two distinct regions is essential to assess food security under climate change and variability. In this study, we utilized multiple process-based crop models, having ability of regional scale assessment, to evaluate maize Yp and assess the model uncertainties -EPIC, GEPIC, DSSAT, and APSIM model that has capability of regional scale expansion (apsimRegions). First we evaluated each crop model for 3 years from 2012 to 2014 using reanalysis data (RDAPS; Regional Data Assimilation and Prediction System produced by Korea Meteorological Agency) and observed yield data. Each model performances were compared over the different regions in the Korean Peninsula having different local climate characteristics. To quantify of the major influence of at each climate variables, we also conducted sensitivity test using 20 years of climatology in historical period from 1981 to 2000. Lastly, the multi-crop model ensemble analysis was performed for future period from 2031 to 2050. The required weather variables projected for mid-century were employed from COordinated Regional climate Downscaling EXperiment (CORDEX) East Asia. The high-resolution climate data were obtained from multiple regional climate models (RCM) driven by multiple climate scenarios projected from multiple global climate models (GCMs) in conjunction with multiple greenhouse gas

  10. Simulated vs. empirical weather responsiveness of crop yields: US evidence and implications for the agricultural impacts of climate change

    Science.gov (United States)

    Mistry, Malcolm N.; Wing, Ian Sue; De Cian, Enrica

    2017-07-01

    Global gridded crop models (GGCMs) are the workhorse of assessments of the agricultural impacts of climate change. Yet the changes in crop yields projected by different models in response to the same meteorological forcing can differ substantially. Through an inter-method comparison, we provide a first glimpse into the origins and implications of this divergence—both among GGCMs and between GGCMs and historical observations. We examine yields of rainfed maize, wheat, and soybeans simulated by six GGCMs as part of the Inter-Sectoral Impact Model Intercomparison Project-Fast Track (ISIMIP-FT) exercise, comparing 1981-2004 hindcast yields over the coterminous United States (US) against US Department of Agriculture (USDA) time series for about 1000 counties. Leveraging the empirical climate change impacts literature, we estimate reduced-form econometric models of crop yield responses to temperature and precipitation exposures for both GGCMs and observations. We find that up to 60% of the variance in both simulated and observed yields is attributable to weather variation. A majority of the GGCMs have difficulty reproducing the observed distribution of percentage yield anomalies, and exhibit aggregate responses that show yields to be more weather-sensitive than in the observational record over the predominant range of temperature and precipitation conditions. This disparity is largely attributable to heterogeneity in GGCMs’ responses, as opposed to uncertainty in historical weather forcings, and is responsible for widely divergent impacts of climate on future crop yields.

  11. Impacts of multiple global environmental changes on African crop yield and water use efficiency: Implications to food and water security

    Science.gov (United States)

    Pan, S.; Yang, J.; Zhang, J.; Xu, R.; Dangal, S. R. S.; Zhang, B.; Tian, H.

    2016-12-01

    Africa is one of the most vulnerable regions in the world to climate change and climate variability. Much concern has been raised about the impacts of climate and other environmental factors on water resource and food security through the climate-water-food nexus. Understanding the responses of crop yield and water use efficiency to environmental changes is particularly important because Africa is well known for widespread poverty, slow economic growth and agricultural systems particularly sensitive to frequent and persistent droughts. However, the lack of integrated understanding has limited our ability to quantify and predict the potential of Africa's agricultural sustainability and freshwater supply, and to better manage the system for meeting an increasing food demand in a way that is socially and environmentally or ecologically sustainable. By using the Dynamic Land Ecosystem Model (DLEM-AG2) driven by spatially-explicit information on land use, climate and other environmental changes, we have assessed the spatial and temporal patterns of crop yield, evapotranspiration (ET) and water use efficiency across entire Africa in the past 35 years (1980-2015) and the rest of the 21st century (2016-2099). Our preliminary results indicate that African crop yield in the past three decades shows an increasing trend primarily due to cropland expansion (about 50%), elevated atmospheric CO2 concentration, and nitrogen deposition. However, crop yield shows substantially spatial and temporal variation due to inter-annual and inter-decadal climate variability and spatial heterogeneity of environmental drivers. Climate extremes especially droughts and heat wave have largely reduced crop yield in the most vulnerable regions. Our results indicate that N fertilizer could be a major driver to improve food security in Africa. Future climate warming could reduce crop yield and shift cropland distribution. Our study further suggests that improving water use efficiency through land

  12. Climatic Droughts and the Impacts on Crop Yields in Northern India during the Past Century

    Science.gov (United States)

    Ge, Y.; Cai, X.; Zhu, T.

    2014-12-01

    Drought has become an increasingly severe threat to water and food security recently. This study presents a novel method to calculate the return period of drought, considering drought as event characterized by expected drought inter-arrival time, duration, severity and peak intensity. Recently, Copula distribution, a multivariable probability distribution, is used to deal with strongly correlated variables in analyzing complex hydrologic phenomenon. This study assesses drought conditions in Northern India, including 8 sites, in the past century using Palmer Drought Severity Index (PDSI) from two latest datasets, Dai (2011, 2013) and Sheffield et al. (2012), which concluded conflicting results about global average drought trend. Our results include the change of the severity, intensity and duration of drought events during the past century and the impact of the drought condition on crop yields in the region. It is found that drought variables are highly correlated, thus copulas joint distribution enables the estimation of multi-variate return period. Based on Dai's dataset from 1900 to 2012, for a fixed drought return period the severity and duration is lower for the period before1955 in sites close to the Indus basin (site 1) or off the coast of the Indian Ocean (Bay of Bengal) (site 8), while they are higher for the period after 1955 in other inland sites (sites 3-7), (e.g., severity in Fig.1). Projections based on two models (IPCC AR4 and AR5) in Dai (2011, 2013) suggested less severity and shorter duration in longer-year drought (e.g., 100-year drought), but larger in shorter-year drought (e.g., 2-year drought). Drought could bring nonlinear responses and unexpected losses in agriculture system, thus prediction and management are essential. Therefore, in the years with extreme drought conditions, impact assessment of drought on crop yield of corn, barley, wheat and sorghum will be also conducted through correlating crop yields with drought conditions during

  13. Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability

    International Nuclear Information System (INIS)

    Erb, Karl-Heinz; Haberl, Helmut; Plutzar, Christoph

    2012-01-01

    The future bioenergy crop potential depends on (1) changes in the food system (food demand, agricultural technology), (2) political stability and investment security, (3) biodiversity conservation, (4) avoidance of long carbon payback times from deforestation, and (5) energy crop yields. Using a biophysical biomass-balance model, we analyze how these factors affect global primary bioenergy potentials in 2050. The model calculates biomass supply and demand balances for eleven world regions, eleven food categories, seven food crop types and two livestock categories, integrating agricultural forecasts and scenarios with a consistent global land use and NPP database. The TREND scenario results in a global primary bioenergy potential of 77 EJ/yr, alternative assumptions on food-system changes result in a range of 26–141 EJ/yr. Exclusion of areas for biodiversity conservation and inaccessible land in failed states reduces the bioenergy potential by up to 45%. Optimistic assumptions on future energy crop yields increase the potential by up to 48%, while pessimistic assumptions lower the potential by 26%. We conclude that the design of sustainable bioenergy crop production policies needs to resolve difficult trade-offs such as food vs. energy supply, renewable energy vs. biodiversity conservation or yield growth vs. reduction of environmental problems of intensive agriculture. - Highlights: ► Global energy crop potentials in 2050 are calculated with a biophysical biomass-balance model. ► The study is focused on dedicated energy crops, forestry and residues are excluded. ► Depending on food-system change, global energy crop potentials range from 26–141 EJ/yr. ► Exclusion of protected areas and failed states may reduce the potential up to 45%. ► The bioenergy potential may be 26% lower or 45% higher, depending on energy crop yields.

  14. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield

    International Nuclear Information System (INIS)

    Servin, Alia; Elmer, Wade; Mukherjee, Arnab; Torre-Roche, Roberto De la; Hamdi, Helmi; White, Jason C.; Bindraban, Prem; Dimkpa, Christian

    2015-01-01

    Nanotechnology has the potential to play a critical role in global food production, food security, and food safety. The applications of nanotechnology in agriculture include fertilizers to increase plant growth and yield, pesticides for pest and disease management, and sensors for monitoring soil quality and plant health. Over the past decade, a number of patents and products incorporating nanomaterials into agricultural practices (e.g., nanopesticides, nanofertilizers, and nanosensors) have been developed. The collective goal of all of these approaches is to enhance the efficiency and sustainability of agricultural practices by requiring less input and generating less waste than conventional products and approaches. This review evaluates the current literature on the use of nanoscale nutrients (metals, metal oxides, carbon) to suppress crop disease and subsequently enhance growth and yield. Notably, this enhanced yield may not only be directly linked to the reduced presence of pathogenic organisms, but also to the potential nutritional value of the nanoparticles themselves, especially for the essential micronutrients necessary for host defense. We also posit that these positive effects are likely a result of the greater availability of the nutrients in the “nano” form. Last, we offer comments on the current regulatory perspective for such applications

  15. A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield

    Energy Technology Data Exchange (ETDEWEB)

    Servin, Alia; Elmer, Wade; Mukherjee, Arnab; Torre-Roche, Roberto De la [The Connecticut Agricultural Experiment Station (United States); Hamdi, Helmi [University of Carthage, Water Research and Technology Center (Tunisia); White, Jason C., E-mail: jason.white@ct.gov [The Connecticut Agricultural Experiment Station (United States); Bindraban, Prem; Dimkpa, Christian [Virtual Fertilizer Research Center (United States)

    2015-02-15

    Nanotechnology has the potential to play a critical role in global food production, food security, and food safety. The applications of nanotechnology in agriculture include fertilizers to increase plant growth and yield, pesticides for pest and disease management, and sensors for monitoring soil quality and plant health. Over the past decade, a number of patents and products incorporating nanomaterials into agricultural practices (e.g., nanopesticides, nanofertilizers, and nanosensors) have been developed. The collective goal of all of these approaches is to enhance the efficiency and sustainability of agricultural practices by requiring less input and generating less waste than conventional products and approaches. This review evaluates the current literature on the use of nanoscale nutrients (metals, metal oxides, carbon) to suppress crop disease and subsequently enhance growth and yield. Notably, this enhanced yield may not only be directly linked to the reduced presence of pathogenic organisms, but also to the potential nutritional value of the nanoparticles themselves, especially for the essential micronutrients necessary for host defense. We also posit that these positive effects are likely a result of the greater availability of the nutrients in the “nano” form. Last, we offer comments on the current regulatory perspective for such applications.

  16. Drip irrigation in coffee crop under different planting densities: Growth and yield in southeastern Brazil

    Directory of Open Access Journals (Sweden)

    Gleice A. de Assis

    2014-11-01

    Full Text Available Irrigation associated to reduction on planting spaces between rows and between coffee plants has been a featured practice in coffee cultivation. The objective of the present study was to assess, over a period of five consecutive years, influence of different irrigation management regimes and planting densities on growth and bean yield of Coffea arabica L.. The treatments consisted of four irrigation regimes: climatologic water balance, irrigation when the soil water tension reached values close to 20 and 60 kPa; and a control that was not irrigated. The treatments were distributed randomly in five planting densities: 2,500, 3,333, 5,000, 10,000 and 20,000 plants ha-1. A split-plot in randomized block design was used with four replications. Irrigation promoted better growth of coffee plants and increased yield that varied in function of the plant density per area. For densities from 10,000 to 20,000 plants ha-1, regardless of the used irrigation management, mean yield increases were over 49.6% compared to the non-irrigated crop.

  17. Assessments of Maize Yield Potential in the Korean Peninsula Using Multiple Crop Models

    Science.gov (United States)

    Kim, S. H.; Myoung, B.; Lim, C. H.; Lee, S. G.; Lee, W. K.; Kafatos, M.

    2015-12-01

    The Korean Peninsular has unique agricultural environments due to the differences in the political and socio-economical systems between the Republic of Korea (SK, hereafter) and the Democratic Peoples' Republic of Korea (NK, hereafter). NK has been suffering from the lack of food supplies caused by natural disasters, land degradation and failed political system. The neighboring developed country SK has a better agricultural system but very low food self-sufficiency rate (around 1% of maize). Maize is an important crop in both countries since it is staple food for NK and SK is No. 2 maize importing country in the world after Japan. Therefore evaluating maize yield potential (Yp) in the two distinct regions is essential to assess food security under climate change and variability. In this study, we have utilized multiple process-based crop models capable of regional-scale assessments to evaluate maize Yp over the Korean Peninsula - the GIS version of EPIC model (GEPIC) and APSIM model that can be expanded to regional scales (APSIM regions). First we evaluated model performance and skill for 20 years from 1991 to 2010 using reanalysis data (Local Data Assimilation and Prediction System (LDAPS); 1.5km resolution) and observed data. Each model's performances were compared over different regions within the Korean Peninsula of different regional climate characteristics. To quantify the major influence of individual climate variables, we also conducted a sensitivity test using 20 years of climatology. Lastly, a multi-model ensemble analysis was performed to reduce crop model uncertainties. The results will provide valuable information for estimating the climate change or variability impacts on Yp over the Korean Peninsula.

  18. Drought mitigation in perennial crops by fertilization and adjustments of regional yield models for future climate variability

    Science.gov (United States)

    Kantola, I. B.; Blanc-Betes, E.; Gomez-Casanovas, N.; Masters, M. D.; Bernacchi, C.; DeLucia, E. H.

    2017-12-01

    Increased variability and intensity of precipitation in the Midwest agricultural belt due to climate change is a major concern. The success of perennial bioenergy crops in replacing maize for bioethanol production is dependent on sustained yields that exceed maize, and the marketing of perennial crops often emphasizes the resilience of perennial agriculture to climate stressors. Land conversion from maize for bioethanol to Miscanthus x giganteus (miscanthus) increases yields and annual evapotranspiration rates (ET). However, establishment of miscanthus also increases biome water use efficiency (the ratio between net ecosystem productivity after harvest and ET), due to greater belowground biomass in miscanthus than in maize or soybean. In 2012, a widespread drought reduced the yield of 5-year-old miscanthus plots in central Illinois by 36% compared to the previous two years. Eddy covariance data indicated continued soil water deficit during the hydrologically-normal growing season in 2013 and miscanthus yield failed to rebound as expected, lagging behind pre-drought yields by an average of 53% over the next three years. In early 2014, nitrogen fertilizer was applied to half of mature (7-year-old) miscanthus plots in an effort to improve yields. In plots with annual post-emergence application of 60 kg ha-1 of urea, peak biomass was 29% greater than unfertilized miscanthus in 2014, and 113% greater in 2015, achieving statistically similar yields to the pre-drought average. Regional-scale models of perennial crop productivity use 30-year climate averages that are inadequate for predicting long-term effects of short-term extremes on perennial crops. Modeled predictions of perennial crop productivity incorporating repeated extreme weather events, observed crop response, and the use of management practices to mitigate water deficit demonstrate divergent effects on predicted yields.

  19. Yield of Potato as Influenced by Crop Sanitation and Reduced Fungicidal Treatments

    Directory of Open Access Journals (Sweden)

    Fontem, DA.

    1995-01-01

    Full Text Available The effects of crop sanitation and reduced sprays of "Ridomil plus®" (12 % metalaxyl + 60 % cuprous oxide on the control of potato (Solanum tuberosum late blight caused by Phytophthora infestans were evaluated in two field experiments in 1993 in Dschang, Cameroon. In the first experiment, sanitation (five weekly removals of blighted leaves and two fungicidal treatments were initiated from first symptoms. In the second experiment, both fungicidal sprays were made at varying rates. Marketable yields increased by 50 % in sanitation-treated plots, by 94 % in plots sprayed with Ridomil plus (2.24 kg a. i./ha, or by 55 % in those exposed to both control methods. The fungicide equivalence of the sanitation treatment was two sprays of Ridomil plus at 0.76 kg a. i./ha. These results suggest that proper removal of diseased leaves or reduced fungicidal protection may be an effective late blight control method in potato farming.

  20. Effects of land cover change on moisture availability and potential crop yield in the world’s breadbaskets

    International Nuclear Information System (INIS)

    Bagley, Justin E; Desai, Ankur R; Dirmeyer, Paul A; Foley, Jonathan A

    2012-01-01

    The majority of the world’s food production capability is inextricably tied to global precipitation patterns. Changes in moisture availability—whether from changes in climate from anthropogenic greenhouse gas emissions or those induced by land cover change (LCC)—can have profound impacts on food production. In this study, we examined the patterns of evaporative sources that contribute to moisture availability over five major global food producing regions (breadbaskets), and the potential for land cover change to influence these moisture sources by altering surface evapotranspiration. For a range of LCC scenarios we estimated the impact of altered surface fluxes on crop moisture availability and potential yield using a simplified linear hydrologic model and a state-of-the-art ecosystem and crop model. All the breadbasket regions were found to be susceptible to reductions in moisture owing to perturbations in evaporative source (ES) from LCC, with reductions in moisture availability ranging from 7 to 17% leading to potential crop yield reductions of 1–17%, which are magnitudes comparable to the changes anticipated with greenhouse warming. The sensitivity of these reductions in potential crop yield to varying magnitudes of LCC was not consistent among regions. Two variables explained most of these differences: the first was the magnitude of the potential moisture availability change, with regions exhibiting greater reductions in moisture availability also tending to exhibit greater changes in potential yield; the second was the soil moisture within crop root zones. Regions with mean growing season soil moisture fractions of saturation >0.5 typically had reduced impacts on potential crop yield. Our results indicate the existence of LCC thresholds that have the capability to create moisture shortages adversely affecting crop yields in major food producing regions, which could lead to future food supply disruptions in the absence of increased irrigation or other

  1. Legal and economic aspects of contracts of insurance of crops and yields against drought

    Directory of Open Access Journals (Sweden)

    Veselinović Janko P.

    2016-01-01

    Full Text Available The contract of insurance of crops and yields against drought is based on the risk of decrease of precipitation in comparison with an earlier relevant period. The authors analysed the specificities of the case of draught risk, but also other regulations characteristic of this contractual relationship, both from the economic and the legal point of view. The paper also treats the position of contractual parties in this contractual relationship, partly arising from the monopolising position of the insuring organisation. That part also analyses the contract freedom that is endangered due to unequal positions of contractual parties. Special attention is paid to legal sources, especially the general and special conditions of insurance organisations, seeing as they are the main source of law, as there is a lack of legal regulation of this field. The number of Serbian insurance organisations that offer this type of insurance is extremely low, as well as the percentage of insurance against this risk. The authors analyse the reasons for which this type of insurance is underdeveloped in Serbia, as well as the consequences of such a state to a safe agricultural production. The paper also covers the topic of the role of legislators and the state in general, in terms of regulation of certain elements of this contractual relation, but also in terms of state incentives that would contribute to a higher percentage of insured agricultural areas. This would reduce the uncertainty and the damage suffered by agricultural producers due to increasing weather fluctuations. Taking into account the inadequate legal and economic tradition, education in this field would represent a significant contribution to the development of this kind of insurance. The authors analyse the difference between the contracts of insurance of crops and yields against drought and the weather derivative contracts, which can be traded on the stock market.

  2. Using statistical model to simulate the impact of climate change on maize yield with climate and crop uncertainties

    Science.gov (United States)

    Zhang, Yi; Zhao, Yanxia; Wang, Chunyi; Chen, Sining

    2017-11-01

    Assessment of the impact of climate change on crop productions with considering uncertainties is essential for properly identifying and decision-making agricultural practices that are sustainable. In this study, we employed 24 climate projections consisting of the combinations of eight GCMs and three emission scenarios representing the climate projections uncertainty, and two crop statistical models with 100 sets of parameters in each model representing parameter uncertainty within the crop models. The goal of this study was to evaluate the impact of climate change on maize ( Zea mays L.) yield at three locations (Benxi, Changling, and Hailun) across Northeast China (NEC) in periods 2010-2039 and 2040-2069, taking 1976-2005 as the baseline period. The multi-models ensembles method is an effective way to deal with the uncertainties. The results of ensemble simulations showed that maize yield reductions were less than 5 % in both future periods relative to the baseline. To further understand the contributions of individual sources of uncertainty, such as climate projections and crop model parameters, in ensemble yield simulations, variance decomposition was performed. The results indicated that the uncertainty from climate projections was much larger than that contributed by crop model parameters. Increased ensemble yield variance revealed the increasing uncertainty in the yield simulation in the future periods.

  3. Assessment of crop yield losses in Punjab and Haryana using two years of continuous in-situ ozone measurements

    Science.gov (United States)

    Sinha, B.; Singh Sangwan, K.; Maurya, Y.; Kumar, V.; Sarkar, C.; Chandra, B. P.; Sinha, V.

    2015-01-01

    In this study we use a high quality dataset of in-situ ozone measurements at a suburban site called Mohali in the state of Punjab to estimate ozone related crop yield losses for wheat, rice, cotton and maize for Punjab and the neighbouring state Haryana for the years 2011-2013. We inter-compare crop yield loss estimates according to different exposure metrics such as AOT40 and M7 for the two major crop growing seasons of Kharif (June-October) and Rabi (November-April) and establish a new crop yield exposure relationship for South Asian wheat and rice cultivars. These are a factor of two more sensitive to ozone induced crop yield losses compared to their European and American counterparts. Relative yield losses based on the AOT40 metrics ranged from 27-41% for wheat, 21-26% for rice, 9-11% for maize and 47-58% for cotton. Crop production losses for wheat amounted to 20.8 million t in fiscal year 2012-2013 and 10.3 million t in fiscal year 2013-2014 for Punjab and Haryana jointly. Crop production losses for rice totalled 5.4 million t in fiscal year 2012-2013 and 3.2 million t year 2013-2014 for Punjab and Haryana jointly. The Indian National Food Security Ordinance entitles ~ 820 million of India's poor to purchase about 60 kg of rice/wheat per person annually at subsidized rates. The scheme requires 27.6 Mt of wheat and 33.6 Mt of rice per year. Mitigation of ozone related crop production losses in Punjab and Haryana alone could provide >50% of the wheat and ~10% of the rice required for the scheme. The total economic cost losses in Punjab and Haryana amounted to USD 6.5 billion in the fiscal year 2012-2013 and USD 3.7 billion in the fiscal year 2013-2014. This economic loss estimate represents a very conservative lower limit based on the minimum support price of the crop, which is lower than the actual production costs. The upper limit for ozone related crop yield losses in entire India currently amounts to 3.5-20% of India's GDP. Mitigation of high surface ozone

  4. An image based method for crop yield prediction using remotely sensed and crop canopy data: the case of Paphos district, western Cyprus

    Science.gov (United States)

    Papadavid, G.; Hadjimitsis, D.

    2014-08-01

    Remote sensing techniques development have provided the opportunity for optimizing yields in the agricultural procedure and moreover to predict the forthcoming yield. Yield prediction plays a vital role in Agricultural Policy and provides useful data to policy makers. In this context, crop and soil parameters along with NDVI index which are valuable sources of information have been elaborated statistically to test if a) Durum wheat yield can be predicted and b) when is the actual time-window to predict the yield in the district of Paphos, where Durum wheat is the basic cultivation and supports the rural economy of the area. 15 plots cultivated with Durum wheat from the Agricultural Research Institute of Cyprus for research purposes, in the area of interest, have been under observation for three years to derive the necessary data. Statistical and remote sensing techniques were then applied to derive and map a model that can predict yield of Durum wheat in this area. Indeed the semi-empirical model developed for this purpose, with very high correlation coefficient R2=0.886, has shown in practice that can predict yields very good. Students T test has revealed that predicted values and real values of yield have no statistically significant difference. The developed model can and will be further elaborated with more parameters and applied for other crops in the near future.

  5. Effect of chemical and mechanical weed control on cassava yield, soil quality and erosion under cassava cropping system

    Science.gov (United States)

    Islami, Titiek; Wisnubroto, Erwin; Utomo, Wani

    2016-04-01

    Three years field experiments were conducted to study the effect of chemical and mechanical weed control on soil quality and erosion under cassava cropping system. The experiment were conducted at University Brawijaya field experimental station, Jatikerto, Malang, Indonesia. The experiments were carried out from 2011 - 2014. The treatments consist of three cropping system (cassava mono culture; cassava + maize intercropping and cassava + peanut intercropping), and two weed control method (chemical and mechanical methods). The experimental result showed that the yield of cassava first year and second year did not influenced by weed control method and cropping system. However, the third year yield of cassava was influence by weed control method and cropping system. The cassava yield planted in cassava + maize intercropping system with chemical weed control methods was only 24 t/ha, which lower compared to other treatments, even with that of the same cropping system used mechanical weed control. The highest cassava yield in third year was obtained by cassava + peanuts cropping system with mechanical weed control method. After three years experiment, the soil of cassava monoculture system with chemical weed control method possessed the lowest soil organic matter, and soil aggregate stability. During three years of cropping soil erosion in chemical weed control method, especially on cassava monoculture, was higher compared to mechanical weed control method. The soil loss from chemical control method were 40 t/ha, 44 t/ha and 54 t/ha for the first, second and third year crop. The soil loss from mechanical weed control method for the same years was: 36 t/ha, 36 t/ha and 38 t/ha. Key words: herbicide, intercropping, soil organic matter, aggregate stability.

  6. Spatial Rice Yield Estimation Based on MODIS and Sentinel-1 SAR Data and ORYZA Crop Growth Model

    Directory of Open Access Journals (Sweden)

    Tri D. Setiyono

    2018-02-01

    Full Text Available Crop insurance is a viable solution to reduce the vulnerability of smallholder farmers to risks from pest and disease outbreaks, extreme weather events, and market shocks that threaten their household food and income security. In developing and emerging countries, the implementation of area yield-based insurance, the form of crop insurance preferred by clients and industry, is constrained by the limited availability of detailed historical yield records. Remote-sensing technology can help to fill this gap by providing an unbiased and replicable source of the needed data. This study is dedicated to demonstrating and validating the methodology of remote sensing and crop growth model-based rice yield estimation with the intention of historical yield data generation for application in crop insurance. The developed system combines MODIS and SAR-based remote-sensing data to generate spatially explicit inputs for rice using a crop growth model. MODIS reflectance data were used to generate multitemporal LAI maps using the inverted Radiative Transfer Model (RTM. SAR data were used to generate rice area maps using MAPScape-RICE to mask LAI map products for further processing, including smoothing with logistic function and running yield simulation using the ORYZA crop growth model facilitated by the Rice Yield Estimation System (Rice-YES. Results from this study indicate that the approach of assimilating MODIS and SAR data into a crop growth model can generate well-adjusted yield estimates that adequately describe spatial yield distribution in the study area while reliably replicating official yield data with root mean square error, RMSE, of 0.30 and 0.46 t ha−1 (normalized root mean square error, NRMSE of 5% and 8% for the 2016 spring and summer seasons, respectively, in the Red River Delta of Vietnam, as evaluated at district level aggregation. The information from remote-sensing technology was also useful for identifying geographic locations with

  7. Dynamic Predictions of Crop Yield and Irrigation in Sub-Saharan Africa Due to Climate Change Impacts

    Science.gov (United States)

    Foster-Wittig, T.

    2012-12-01

    The highest damages from climate change are predicted to be in the agricultural sector in sub-Saharan Africa. Agriculture is predicted to be especially vulnerable in this region because of its current state of high temperature and low precipitation and because it is usually rain-fed or relies on relatively basic technologies which therefore limit its ability to sustain in increased poor climatic conditions [1]. The goal of this research is to quantify the vulnerability of this ecosystem by projecting future changes in agriculture due to IPCC predicted climate change impacts on precipitation and temperature. This research will provide a better understanding of the relationship between precipitation and rain-fed agriculture in savannas. In order to quantify the effects of climate change on agriculture, the impacts of climate change are modeled through the use of a land surface vegetation dynamics model previously developed combined with a crop model [2,4]. In this project, it will be used to model yield for point cropland locations within sub-Saharan Africa between Kenya and Botswana with a range of annual rainfall. With this model, future projections are developed for what can be anticipated for the crop yield based on two precipitation climate change scenarios; (1) decreased depth and (2) decreased frequency as well as temperature change scenarios; (3) only temperature increased, (4) temperature increase dand decreased precipitation depth, and (5) temperature increased and decreased precipitation frequency. Therefore, this will allow conclusions to be drawn about how mean precipitation and a changing climate effect food security in sub-Saharan Africa. As an additional analysis, irrigation is added to the model as it is thought to be the solution to protect food security by maximizing on the potential of food production. In water-limited areas such as Sub-Saharan Africa, it is important to consider water efficient irrigation techniques such as demand-based micro

  8. Climate change and agroecosystems: the effect of elevated atmospheric CO2 and temperature on crop growth, development, and yield

    Directory of Open Access Journals (Sweden)

    Streck Nereu Augusto

    2005-01-01

    Full Text Available The amount of carbon dioxide (CO2 of the Earths atmosphere is increasing, which has the potential of increasing greenhouse effect and air temperature in the future. Plants respond to environment CO2 and temperature. Therefore, climate change may affect agriculture. The purpose of this paper was to review the literature about the impact of a possible increase in atmospheric CO2 concentration and temperature on crop growth, development, and yield. Increasing CO2 concentration increases crop yield once the substrate for photosynthesis and the gradient of CO2 concentration between atmosphere and leaf increase. C3 plants will benefit more than C4 plants at elevated CO2. However, if global warming will take place, an increase in temperature may offset the benefits of increasing CO2 on crop yield.

  9. Crop rotation in the Valle Calido del Alto Magdalena a sustainable focus of high yield

    International Nuclear Information System (INIS)

    Alfaro Rodriguez, Ricardo; Maria Caicedo, Antonio; Amezquita Collazos, Edgar; Castro Franco, Hugo Eduardo

    1996-01-01

    Experiments were carried out during five years at the Nataima Research Center, located at 431 m.a.s.l, with average temperature of 28 Celsius degrades and annual rainfall of 1274 Boyaca mm, on a soil classified as Arenic Haplustalf, to evaluate different crops rotation based on rice and sorghum; the combinations used were as follows; rice-rice (R-R), rice-- soybean (R-SY), rice-crotalaria-sorghum (R-C-S), sorghum-sorghum (S-S), sorghum-soybean (S-SY) and cotton-sorghum (Al-S). Simultaneously it was evaluated the response to four nitrogen levels, which allowed to find out yield functions and optimum economical. The rotations S-SY, R-SY and AI-S have been the best qualified from an environmental perspective. Sorghum-soybean rotation presents increases in yield compared with expected values, which allows thinking that it is a truly sustainable rotation. This rotation also had an excellent profitability and for that reason is considered the best option within the goals of this work

  10. Analyzing and modelling the effect of long-term fertilizer management on crop yield and soil organic carbon in China.

    Science.gov (United States)

    Zhang, Jie; Balkovič, Juraj; Azevedo, Ligia B; Skalský, Rastislav; Bouwman, Alexander F; Xu, Guang; Wang, Jinzhou; Xu, Minggang; Yu, Chaoqing

    2018-06-15

    This study analyzes the influence of various fertilizer management practices on crop yield and soil organic carbon (SOC) based on the long-term field observations and modelling. Data covering 11 years from 8 long-term field trials were included, representing a range of typical soil, climate, and agro-ecosystems in China. The process-based model EPIC (Environmental Policy Integrated Climate model) was used to simulate the response of crop yield and SOC to various fertilization regimes. The results showed that the yield and SOC under additional manure application treatment were the highest while the yield under control treatment was the lowest (30%-50% of NPK yield) at all sites. The SOC in northern sites appeared more dynamic than that in southern sites. The variance partitioning analysis (VPA) showed more variance of crop yield could be explained by the fertilization factor (42%), including synthetic nitrogen (N), phosphorus (P), potassium (K) fertilizers, and fertilizer NPK combined with manure. The interactive influence of soil (total N, P, K, and available N, P, K) and climate factors (mean annual temperature and precipitation) determine the largest part of the SOC variance (32%). EPIC performs well in simulating both the dynamics of crop yield (NRMSE = 32% and 31% for yield calibration and validation) and SOC (NRMSE = 13% and 19% for SOC calibration and validation) under diverse fertilization practices in China. EPIC can assist in predicting the impacts of different fertilization regimes on crop growth and soil carbon dynamics, and contribute to the optimization of fertilizer management for different areas in China. Copyright © 2018. Published by Elsevier B.V.

  11. Variations in pollinator density and impacts on large cardamom (Amomum subulatum Roxb. crop yield in Sikkim Himalaya, India

    Directory of Open Access Journals (Sweden)

    Kailash S. Gaira

    2016-03-01

    Full Text Available Large cardamom (Amomum subulatum Roxb., a perennial cash crop, cultivated under an agroforestry system in the eastern Himalaya of India, is well recognized as a pollination-dependent crop. Observations on pollinator abundance in Mamlay watershed of Sikkim Himalaya were collected during the blooming season to evaluate the pollinator abundance across sites and time frames, and impact of pollinator abundance on crop yield from 2010 to 2012. The results revealed that the bumblebees and honeybees are most frequent visitors of large cardamom flowers. The abundance of honeybees, however, varied between sites for the years 2010–2012, while that of bumblebees varied for the years 2011 and 2012. The abundance of honeybees resulted in a variation within time frames for 2010 and 2011, while that of bumblebees varied for 2010 and 2012 (p<0.01. The density of pollinators correlated positively with the number of flowers of the target crop. The impact of pollinator abundance revealed that the increasing bumblebee visitation resulted in a higher yield of the crop (i.e. 17–41 g/plant and the increasing abundance of all bees (21–41 g/plant was significant (p<0.03. Therefore, the study concluded that the large cardamom yield is sensitive to pollinator abundance and there is a need for adopting the best pollinator conservation and management practices toward sustaining the yield of large cardamom.

  12. Improving Crop Yield and Nutrient Use Efficiency via Biofertilization—A Global Meta-analysis

    Directory of Open Access Journals (Sweden)

    Lukas Schütz

    2018-01-01

    Full Text Available The application of microbial inoculants (biofertilizers is a promising technology for future sustainable farming systems in view of rapidly decreasing phosphorus stocks and the need to more efficiently use available nitrogen (N. Various microbial taxa are currently used as biofertilizers, based on their capacity to access nutrients from fertilizers and soil stocks, to fix atmospheric nitrogen, to improve water uptake or to act as biocontrol agents. Despite the existence of a considerable knowledge on effects of specific taxa of biofertilizers, a comprehensive quantitative assessment of the performance of biofertilizers with different traits such as phosphorus solubilization and N fixation applied to various crops at a global scale is missing. We conducted a meta-analysis to quantify benefits of biofertilizers in terms of yield increase, nitrogen and phosphorus use efficiency, based on 171 peer reviewed publications that met eligibility criteria. Major findings are: (i the superiority of biofertilizer performance in dry climates over other climatic regions (yield response: dry climate +20.0 ± 1.7%, tropical climate +14.9 ± 1.2%, oceanic climate +10.0 ± 3.7%, continental climate +8.5 ± 2.4%; (ii meta-regression analyses revealed that yield response due to biofertilizer application was generally small at low soil P levels; efficacy increased along higher soil P levels in the order arbuscular mycorrhizal fungi (AMF, P solubilizers, and N fixers; (iii meta-regressions showed that the success of inoculation with AMF was greater at low organic matter content and at neutral pH. Our comprehensive analysis provides a basis and guidance for proper choice and application of biofertilizers.

  13. Improving Crop Yield and Nutrient Use Efficiency via Biofertilization—A Global Meta-analysis

    Science.gov (United States)

    Schütz, Lukas; Gattinger, Andreas; Meier, Matthias; Müller, Adrian; Boller, Thomas; Mäder, Paul; Mathimaran, Natarajan

    2018-01-01

    The application of microbial inoculants (biofertilizers) is a promising technology for future sustainable farming systems in view of rapidly decreasing phosphorus stocks and the need to more efficiently use available nitrogen (N). Various microbial taxa are currently used as biofertilizers, based on their capacity to access nutrients from fertilizers and soil stocks, to fix atmospheric nitrogen, to improve water uptake or to act as biocontrol agents. Despite the existence of a considerable knowledge on effects of specific taxa of biofertilizers, a comprehensive quantitative assessment of the performance of biofertilizers with different traits such as phosphorus solubilization and N fixation applied to various crops at a global scale is missing. We conducted a meta-analysis to quantify benefits of biofertilizers in terms of yield increase, nitrogen and phosphorus use efficiency, based on 171 peer reviewed publications that met eligibility criteria. Major findings are: (i) the superiority of biofertilizer performance in dry climates over other climatic regions (yield response: dry climate +20.0 ± 1.7%, tropical climate +14.9 ± 1.2%, oceanic climate +10.0 ± 3.7%, continental climate +8.5 ± 2.4%); (ii) meta-regression analyses revealed that yield response due to biofertilizer application was generally small at low soil P levels; efficacy increased along higher soil P levels in the order arbuscular mycorrhizal fungi (AMF), P solubilizers, and N fixers; (iii) meta-regressions showed that the success of inoculation with AMF was greater at low organic matter content and at neutral pH. Our comprehensive analysis provides a basis and guidance for proper choice and application of biofertilizers. PMID:29375594

  14. Improving Crop Yield and Nutrient Use Efficiency via Biofertilization-A Global Meta-analysis.

    Science.gov (United States)

    Schütz, Lukas; Gattinger, Andreas; Meier, Matthias; Müller, Adrian; Boller, Thomas; Mäder, Paul; Mathimaran, Natarajan

    2017-01-01

    The application of microbial inoculants (biofertilizers) is a promising technology for future sustainable farming systems in view of rapidly decreasing phosphorus stocks and the need to more efficiently use available nitrogen (N). Various microbial taxa are currently used as biofertilizers, based on their capacity to access nutrients from fertilizers and soil stocks, to fix atmospheric nitrogen, to improve water uptake or to act as biocontrol agents. Despite the existence of a considerable knowledge on effects of specific taxa of biofertilizers, a comprehensive quantitative assessment of the performance of biofertilizers with different traits such as phosphorus solubilization and N fixation applied to various crops at a global scale is missing. We conducted a meta-analysis to quantify benefits of biofertilizers in terms of yield increase, nitrogen and phosphorus use efficiency, based on 171 peer reviewed publications that met eligibility criteria. Major findings are: (i) the superiority of biofertilizer performance in dry climates over other climatic regions (yield response: dry climate +20.0 ± 1.7%, tropical climate +14.9 ± 1.2%, oceanic climate +10.0 ± 3.7%, continental climate +8.5 ± 2.4%); (ii) meta-regression analyses revealed that yield response due to biofertilizer application was generally small at low soil P levels; efficacy increased along higher soil P levels in the order arbuscular mycorrhizal fungi (AMF), P solubilizers, and N fixers; (iii) meta-regressions showed that the success of inoculation with AMF was greater at low organic matter content and at neutral pH. Our comprehensive analysis provides a basis and guidance for proper choice and application of biofertilizers.

  15. Capability of crop water content for revealing variability of winter wheat grain yield and soil moisture under limited irrigation.

    Science.gov (United States)

    Zhang, Chao; Liu, Jiangui; Shang, Jiali; Cai, Huanjie

    2018-08-01

    Winter wheat (Triticum aestivum L.) is a major crop in the Guanzhong Plain, China. Understanding its water status is important for irrigation planning. A few crop water indicators, such as the leaf equivalent water thickness (EWT: g cm -2 ), leaf water content (LWC: %) and canopy water content (CWC: kg m -2 ), have been estimated using remote sensing techniques for a wide range of crops, yet their suitability and utility for revealing winter wheat growth and soil moisture status have not been well studied. To bridge this knowledge gap, field-scale irrigation experiments were conducted over two consecutive years (2014 and 2015) to investigate relationships of crop water content with soil moisture and grain yield, and to assess the performance of four spectral process methods for retrieving these three crop water indicators. The result revealed that the water indicators were more sensitive to soil moisture variation before the jointing stage. All three water indicators were significantly correlated with soil moisture during the reviving stage, and the correlations were stronger for leaf water indicators than that of the canopy water indicator at the jointing stage. No correlation was observed after the heading stage. All three water indicators showed good capabilities of revealing grain yield variability in jointing stage, with R 2 up to 0.89. CWC had a consistent relationship with grain yield over different growing seasons, but the performances of EWT and LWC were growing-season specific. The partial least squares regression was the most accurate method for estimating LWC (R 2 =0.72; RMSE=3.6%) and comparable capability for EWT and CWC. Finally, the work highlights the usefulness of crop water indicators to assess crop growth, productivity, and soil water status and demonstrates the potential of various spectral processing methods for retrieving crop water contents from canopy reflectance spectrums. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Crop diversification, tillage, and management system influences on spring wheat yield and soil water use

    Science.gov (United States)

    Depleted soil quality, decreased water availability, and increased weed competition constrain spring wheat production in the northern Great Plains. Integrated crop management systems are necessary for improved crop productivity. We conducted a field experiment from 2004-2010 comparing productivity...

  17. Application of GIS to assess rainfall variability impacts on crop yield ...

    African Journals Online (AJOL)

    SERVER

    2007-09-19

    Sep 19, 2007 ... Geospatial analysis. GIS Interpolation and other geospatial Analysis techniques were carried out to ... means of Spatial Decision Support System (SDSS) to plan crops ... rainwater variability on water availability for crop maize ...

  18. Satellite-based mapping of field-scale stress indicators for crop yield forecasting: an application over Mead, NE

    Science.gov (United States)

    Yang, Y.; Anderson, M. C.; Gao, F.; Wardlow, B.; Hain, C.; Otkin, J.; Sun, L.; Dulaney, W.

    2017-12-01

    In agricultural regions, water is one of the most widely limiting factors of crop performance and production. Evapotranspiration (ET) describes crop water use through transpiration and water lost through direct soil evaporation, which makes it a good indicator of soil moisture availability and vegetation health and thus has been an integral part of many yield estimation efforts. The Evaporative Stress Index (ESI) describes temporal anomalies in a normalized evapotranspiration metric (fRET) as derived from satellite remote sensing and has demonstrated capacity to explain regional yield variability in water limited crop growing regions. However, its performance in some regions where the vegetation cycle is intensively managed appears to be degraded. In this study we generated maps of ET, fRET, and ESI at high spatiotemporal resolution (30-m pixels, daily timesteps) using a multi-sensor data fusion method, integrating information from satellite platforms with good temporal coverage and other platforms that provide field-scale spatial detail. The study was conducted over the period 2010-2014, covering a region around Mead, Nebraska that includes both rainfed and irrigated crops. Correlations between ESI and measurements of corn yield are investigated at both the field and county level to assess the value of ESI as a yield forecasting tool. To examine the role of phenology in ESI-yield correlations, annual input fRET timeseries were aligned by both calendar day and by biophysically relevant dates (e.g. days since planting or emergence). Results demonstrate that mapping of fRET and ESI at 30-m has the advantage of being able to resolve different crop types with varying phenology. The study also suggests that incorporating phenological information significantly improves yield-correlations by accounting for effects of phenology such as variable planting date and emergence date. The yield-ESI relationship in this study well captures the inter-annual variability of yields

  19. An economic assessment of the health effects and crop yield losses caused by air pollution in mainland China.

    Science.gov (United States)

    Miao, Weijie; Huang, Xin; Song, Yu

    2017-06-01

    Air pollution is severe in China, and pollutants such as PM 2.5 and surface O 3 may cause major damage to human health and crops, respectively. Few studies have considered the health effects of PM 2.5 or the loss of crop yields due to surface O 3 using model-simulated air pollution data in China. We used gridded outputs from the WRF-Chem model, high resolution population data, and crop yield data to evaluate the effects on human health and crop yield in mainland China. Our results showed that outdoor PM 2.5 pollution was responsible for 1.70-1.99 million cases of all-cause mortality in 2006. The economic costs of these health effects were estimated to be 151.1-176.9 billion USD, of which 90% were attributed to mortality. The estimated crop yield losses for wheat, rice, maize, and soybean were approximately 9, 4.6, 0.44, and 0.34 million tons, respectively, resulting in economic losses of 3.4 billion USD. The total economic losses due to ambient air pollution were estimated to be 154.5-180.3 billion USD, accounting for approximately 5.7%-6.6% of the total GDP of China in 2006. Our results show that both population health and staple crop yields in China have been significantly affected by exposure to air pollution. Measures should be taken to reduce emissions, improve air quality, and mitigate the economic loss. Copyright © 2016. Published by Elsevier B.V.

  20. Crop yield monitoring in the Sahel using root zone soil moisture anomalies derived from SMOS soil moisture data assimilation

    Science.gov (United States)

    Gibon, François; Pellarin, Thierry; Alhassane, Agali; Traoré, Seydou; Baron, Christian

    2017-04-01

    West Africa is greatly vulnerable, especially in terms of food sustainability. Mainly based on rainfed agriculture, the high variability of the rainy season strongly impacts the crop production driven by the soil water availability in the soil. To monitor this water availability, classical methods are based on daily precipitation measurements. However, the raingauge network suffers from the poor network density in Africa (1/10000km2). Alternatively, real-time satellite-derived precipitations can be used, but they are known to suffer from large uncertainties which produce significant error on crop yield estimations. The present study proposes to use root soil moisture rather than precipitation to evaluate crop yield variations. First, a local analysis of the spatiotemporal impact of water deficit on millet crop production in Niger was done, from in-situ soil moisture measurements (AMMA-CATCH/OZCAR (French Critical Zone exploration network)) and in-situ millet yield survey. Crop yield measurements were obtained for 10 villages located in the Niamey region from 2005 to 2012. The mean production (over 8 years) is 690 kg/ha, and ranges from 381 to 872 kg/ha during this period. Various statistical relationships based on soil moisture estimates were tested, and the most promising one (R>0.9) linked the 30-cm soil moisture anomalies from mid-August to mid-September (grain filling period) to the crop yield anomalies. Based on this local study, it was proposed to derive regional statistical relationships using 30-cm soil moisture maps over West Africa. The selected approach was to use a simple hydrological model, the Antecedent Precipitation Index (API), forced by real-time satellite-based precipitation (CMORPH, PERSIANN, TRMM3B42). To reduce uncertainties related to the quality of real-time rainfall satellite products, SMOS soil moisture measurements were assimilated into the API model through a Particular Filter algorithm. Then, obtained soil moisture anomalies were

  1. Assimilation of Remotely Sensed Soil Moisture Profiles into a Crop Modeling Framework for Reliable Yield Estimations

    Science.gov (United States)

    Mishra, V.; Cruise, J.; Mecikalski, J. R.

    2017-12-01

    growing seasons from 2015-2017. Soil moisture profiles compared favorably to in situ data and simulated crop yields compared well with observed yields.

  2. Impacts of previous crops on Fusarium foot and root rot, and on yields of durum wheat in North West Tunisia

    Directory of Open Access Journals (Sweden)

    Samia CHEKALI

    2016-07-01

    Full Text Available The impacts of ten previous crop rotations (cereals, legumes and fallow on Fusarium foot and root rot of durum wheat were investigated for three cropping seasons in a trial established in 2004 in Northwest Tunisia. Fungi isolated from the roots and stem bases were identified using morphological and molecular methods, and were primarily Fusarium culmorum and F. pseudograminearum. Under low rainfall conditions, the previous crop affected F. pseudograminearum incidence on durum wheat roots but not F. culmorum. Compared to continuous cropping of durum wheat, barley as a previous crop increased disease incidence more than fivefold, while legumes and fallow tended to reduce incidence.  Barley as a previous crop increased wheat disease severity by 47%, compared to other rotations. Grain yield was negatively correlated with the incidence of F. culmorum infection, both in roots and stem bases, and fitted an exponential model (R2 = -0.61 for roots and -0.77 for stem bases, P<0.0001. Fusarium pseudograminearum was also negatively correlated with yield and fitted an exponential model (R2 = -0.53 on roots and -0.71 on stem bases, P < 0.0001 but was not correlated with severity.

  3. Seasonal temperatures have more influence than nitrogen fertilizer rates on cucumber yield and nitrogen uptake in a double cropping system

    International Nuclear Information System (INIS)

    Guo Ruiying; Li Xiaolin; Christie, Peter; Chen Qing; Zhang Fusuo

    2008-01-01

    Two-year greenhouse cucumber experiments were conducted to investigate seasonal effects on fruit yield, dry matter allocation, and N uptake in a double-cropping system with different fertilizer management. Seasonal effects were much greater than fertilizer effects, and winter-spring (WS) cucumber attained higher fruit yields and N uptake than autumn-winter (AW) cucumber due to lower cumulative air temperatures during fruit maturation in the AW season. Fertilizer N application and apparent N loss under recommended N management (Nmr) decreased by 40-78% and 33-48% without yield loss compared to conventional N management (Nmt) over four growing seasons. However, there were no seasonal differences in N recommendations, taking into consideration seasonal differences in crop N demand, critical nutrient supply in the root zone and N mineralization rate. - Nitrogen inputs can be reduced to minimize N losses to the environment while maintaining yields but N recommendations must reflect seasonal temperature effects

  4. Seasonal temperatures have more influence than nitrogen fertilizer rates on cucumber yield and nitrogen uptake in a double cropping system

    Energy Technology Data Exchange (ETDEWEB)

    Guo Ruiying; Li Xiaolin [College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian District, Beijing 100094 (China); Christie, Peter [College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian District, Beijing 100094 (China); Agricultural and Environmental Science Department, Queen' s University Belfast, Belfast BT9 5PX (United Kingdom); Chen Qing [College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian District, Beijing 100094 (China)], E-mail: qchen@cau.edu.cn; Zhang Fusuo [College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Haidian District, Beijing 100094 (China)

    2008-02-15

    Two-year greenhouse cucumber experiments were conducted to investigate seasonal effects on fruit yield, dry matter allocation, and N uptake in a double-cropping system with different fertilizer management. Seasonal effects were much greater than fertilizer effects, and winter-spring (WS) cucumber attained higher fruit yields and N uptake than autumn-winter (AW) cucumber due to lower cumulative air temperatures during fruit maturation in the AW season. Fertilizer N application and apparent N loss under recommended N management (Nmr) decreased by 40-78% and 33-48% without yield loss compared to conventional N management (Nmt) over four growing seasons. However, there were no seasonal differences in N recommendations, taking into consideration seasonal differences in crop N demand, critical nutrient supply in the root zone and N mineralization rate. - Nitrogen inputs can be reduced to minimize N losses to the environment while maintaining yields but N recommendations must reflect seasonal temperature effects.

  5. Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability.

    Science.gov (United States)

    Erb, Karl-Heinz; Haberl, Helmut; Plutzar, Christoph

    2012-08-01

    The future bioenergy crop potential depends on (1) changes in the food system (food demand, agricultural technology), (2) political stability and investment security, (3) biodiversity conservation, (4) avoidance of long carbon payback times from deforestation, and (5) energy crop yields. Using a biophysical biomass-balance model, we analyze how these factors affect global primary bioenergy potentials in 2050. The model calculates biomass supply and demand balances for eleven world regions, eleven food categories, seven food crop types and two livestock categories, integrating agricultural forecasts and scenarios with a consistent global land use and NPP database. The TREND scenario results in a global primary bioenergy potential of 77 EJ/yr, alternative assumptions on food-system changes result in a range of 26-141 EJ/yr. Exclusion of areas for biodiversity conservation and inaccessible land in failed states reduces the bioenergy potential by up to 45%. Optimistic assumptions on future energy crop yields increase the potential by up to 48%, while pessimistic assumptions lower the potential by 26%. We conclude that the design of sustainable bioenergy crop production policies needs to resolve difficult trade-offs such as food vs. energy supply, renewable energy vs. biodiversity conservation or yield growth vs. reduction of environmental problems of intensive agriculture.

  6. Root length densities of UK wheat and oilseed rape crops with implications for water capture and yield

    Science.gov (United States)

    White, Charlotte A.; Sylvester-Bradley, Roger; Berry, Peter M.

    2015-01-01

    Root length density (RLD) was measured to 1 m depth for 17 commercial crops of winter wheat (Triticum aestivum) and 40 crops of winter oilseed rape [Brassica napus; oilseed rape (OSR)] grown in the UK between 2004 and 2013. Taking the critical RLD (cRLD) for water capture as 1cm cm–3, RLDs appeared inadequate for full water capture on average below a depth of 0.32 m for winter wheat and below 0.45 m for OSR. These depths compare unfavourably (for wheat) with average depths of ‘full capture’ of 0.86 m and 0.48 m, respectively, determined for three wheat crops and one OSR crop studied in the 1970s and 1980s, and treated as references here. A simple model of water uptake and yield indicated that these shortfalls in wheat and OSR rooting compared with the reference data might be associated with shortfalls of up to 3.5 t ha–1 and 1.2 t ha–1, respectively, in grain yields under water-limited conditions, as increasingly occur through climate change. Coupled with decreased summer rainfall, poor rooting of modern arable crops could explain much of the yield stagnation that has been observed on UK farms since the 1990s. Methods of monitoring and improving rooting under commercial conditions are reviewed and discussed. PMID:25750427

  7. Responses of Pea (Pisum sativum Growth and Yield to Residual Effects of Organic and Urea Fertilizers from Previous Crop

    Directory of Open Access Journals (Sweden)

    S. Fallah

    2016-07-01

    Full Text Available Application of organic manure in organic farming and long-term mineralization may lead to residual effects on the succeeding crop. So, residual effects of combined cattle manure and urea fertilizer of previous crop (black cumin on growth and yield of pea were examined in a randomized complete block design. Treatments included of  cattle manure (CM, urea (U, three ratios of CM+U full dose application (2:1; 1:1; 1:2 and three ratios of CM+U split application (2:1; 1:1; 1:2, and unfertilized control to previous crop (black cumin in 2012. Pea planted without any fertilizer in 2013. There was no significant difference between control and residual of urea treatment for some parameters including dry matter in flowering stage, plant nitrogen and phosphorus concentration, plant height, yield components, grain yield and biological yield of pea. Biological and grain yields were greater under both residual of cattle manure treatment and integrated treatments compared to residual of urea treatment. The highest grain yield (4000 kg ha-1 was observed in residual of CM:U full dosed application treatment, to the extent that grain yield in this treatment indicated a 1.5-fold increase in comparison with residual of urea treatment. The highest biological yield (8325 kg ha-1 was obtained in residual of CM treatment, though it was not significant different from that of residual of CM:U (1:2 treatments. In general, although residual of urea fertilizer did not leave a notable effect on pea production, but production of this crop relying on residual of cattle manure deems effective to lowering of fertilization cost and ameliorating environmental contaminations.

  8. FUZZY LOGIC BASED HYBRID RECOMMENDER OF MAXIMUM YIELD CROP USING SOIL, WEATHER AND COST

    Directory of Open Access Journals (Sweden)

    U Aadithya

    2016-07-01

    Full Text Available Our system is designed to predict best suitable crops for the region of farmer. It also suggests farming strategies for the crops such as mixed cropping, spacing, irrigation, seed treatment, etc. along with fertilizer and pesticide suggestions. This is done based on the historic soil parameters of the region and by predicting cost of crops and weather. The system is based on fuzzy logic which gets input from an Artificial Neural Network (ANN based weather prediction module. An Agricultural Named Entity Recognition (NER module is developed using Conditional Random Field (CRF to extract crop conditions data. Further, cost prediction is done based on Linear Regression equation to aid in ranking the crops recommended. Using this approach we achieved an F-Score of 54% with a precision of 77% thus accounting for the correctness of crop production.

  9. High yielding tropical energy crops for bioenergy production: Effects of plant components, harvest years and locations on biomass composition.

    Science.gov (United States)

    Surendra, K C; Ogoshi, Richard; Zaleski, Halina M; Hashimoto, Andrew G; Khanal, Samir Kumar

    2018-03-01

    The composition of lignocellulosic feedstock, which depends on crop type, crop management, locations and plant parts, significantly affects the conversion efficiency of biomass into biofuels and biobased products. Thus, this study examined the composition of different parts of two high yielding tropical energy crops, Energycane and Napier grass, collected across three locations and years. Significantly higher fiber content was found in the leaves of Energycane than stems, while fiber content was significantly higher in the stems than the leaves of Napier grass. Similarly, fiber content was higher in Napier grass than Energycane. Due to significant differences in biomass composition between the plant parts within a crop type, neither biological conversion, including anaerobic digestion, nor thermochemical pretreatment alone is likely to efficiently convert biomass components into biofuels and biobased products. However, combination of anaerobic digestion with thermochemical conversion technologies could efficiently utilize biomass components in generating biofuels and biobased products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The influence of crop density and harvesting time on yield and quality of various sugar beet cultivars

    Directory of Open Access Journals (Sweden)

    Filipović Vladimir

    2009-01-01

    Full Text Available In this paper the influence of crop density and harvesting time on yield and quality of various sugar beet cultivars has been analyzed. During three year research conducted on soil of carbonate chernozem on loess terrace on experimental field of Institute Tamiš in Pančevo. Method of completely random block system in four repetitions we're analyzed the influence of crop density (80.000 plants per ha, 100.000 plants per ha and 120.000 plants per ha and harvesting time (10th Sept, 01st Oct and 20th Oct on yield and quality of various sugar beet cultivars of different technological type (Esprit N - type, Belinda Z - type and Chiara NE - type. Increase in crop density had very little effect on increase on sugar beet yield. The yield was considerably increased in the period between the first harvesting date and the second. The highest yield of consumable sugar was obtained of cultivars of N - type Esprit and lower yield was obtained of cultivars of Z - type (Belinda. .

  11. A Field Experiment on Enhancement of Crop Yield by Rice Straw and Corn Stalk-Derived Biochar in Northern China

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2015-10-01

    Full Text Available Biochar, a green way to deal with burning and burying biomass, has attracted more attention in recent years. To fill the gap of the effects of different biochar on crop yield in Northern China, the first field experiment was conducted in farmland located in Hebei Province. Biochars derived from two kinds of feedstocks (rice straw and corn stalk were added into an Inceptisols area with different dosages (1 ton/ha, 2 ton/ha or 4 ton/ha in April 2014. The crop yields were collected for corn, peanut, and sweet potato during one crop season from spring to autumn 2014, and the wheat from winter 2014 to summer 2015, respectively. The results showed biochar amendment could enhance yields, and biochar from rice straw showed a more positive effect on the yield of corn, peanut, and winter wheat than corn stalk biochar. The dosage of biochar of 2 ton/ha or 1 ton/ha could enhance the yield by 5%–15% and biochar of 4 ton/ha could increase the yield by about 20%. The properties of N/P/K, CEC, and pH of soils amended with biochar were not changed, while biochar effects could be related to improvement of soil water content.

  12. GROWTH AND YIELD OF ORGANIC RICE WITH COW MANURE APPLICATION IN THE FIRST CROPPING SEASON

    Directory of Open Access Journals (Sweden)

    Wahyu Arif Sudarsono

    2014-02-01

    Full Text Available The study was addressed to investigating the effect of cow manure application rate on organic rice growth and yield in the first cropping season. The study was conducted from January to April 2012 in Blora, Central Java, Indonesia. The experiment was arranged in Randomized Complete Block Design, consisting of four treatments and four replications. There were two types of control treatments i.e. organic fertilizer treatments (statistically analyzed and conventional fertilizer (not statistically analyzed. The treatments were corn biomass, corn biomass+cow manure (7.5 tons ha-1, corn biomass+cow manure (10 tons ha-1 and cow manure (10 tons ha-1 with square spacing of 20 cm x 20 cm. The organic control treatments were corn biomass+sheep manure (7.5 tons ha-1 with spacing of 20 cm x 20 cm and corn biomass+cow manure (7.5 tons ha-1 with double-row spacing of 40 cm x 25 cm x 15 cm. For every treatment, the rate of corn biomass was 3 tons ha-1. All organic treatments were also added with 3 tons rice hull ash ha-1. The application of cow manure (10 tons ha-1 with square spacing or corn biomass+cow manure (7.5 tons ha-1 with double-row spacing resulted in better performance than those of other treatments.

  13. Control of seedling blight in winter wheat by seed treatments - impact on emergence, crop stand, yield and deoxynivalenol

    DEFF Research Database (Denmark)

    Jørgensen, Lise N; K. Nielsen, Linda; Nielsen, Bent J

    2012-01-01

    germination by approximately 100%, which led to an improved crop stand and yield increases in the range of 1.2–1.5 tonnes ha−1. Attacks of Fusarium head blight were relatively slight in the two trials and the content of deoxynivalenol was below the EU limits of 1250 ppb in the harvested grain. Even so, seed...

  14. The shared and unique values of optical, fluorescence, thermal and microwave satellite data for estimating large-scale crop yields

    Science.gov (United States)

    Large-scale crop monitoring and yield estimation are important for both scientific research and practical applications. Satellite remote sensing provides an effective means for regional and global cropland monitoring, particularly in data-sparse regions that lack reliable ground observations and rep...

  15. CROP YIELD AND CO2 FIXATION MONITORING IN ASIA USING A PHOTOSYNTHETICSTERILITY MODEL WITH SATELLITES AND METEOROLOGICAL DATA

    Energy Technology Data Exchange (ETDEWEB)

    Daijiro Kaneko [Department of Civil and Environmental Engineering, Matsue National College of Technology, Matsue (Japan); Toshiro Kumakura [Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka (Japan); Peng Yang [Laboratory of Resources Remote Sensing and Digital Agriculture, Ministry of Agriculture, Beijing (China)

    2008-09-30

    This study is intended to develop a model for estimating carbon dioxide (CO{sub 2}) fixation in the carbon cycle and for monitoring grain yields using a photosynthetic-sterility model, which integrates solar radiation and air temperature effects on photosynthesis, along with grain-filling from heading to ripening. Grain production monitoring would support orderly crisis management to maintain food security in Asia, which is facing climate fluctuation through this century of global warming. The author improved a photosynthesis-and-sterility model to compute both the crop yield and crop situation index CSI, which gives a percentage of rice yields compared to normal annual production. The model calculates photosynthesis rates including biomass effects, lowtemperature sterility, and high-temperature injury by incorporating solar radiation, effective air temperature, the normalized difference vegetation index NDVI, and the effect of temperature on photosynthesis by grain plant leaves. A decision-tree method classifies the distribution of crop fields in Asia using MODIS fundamental landcover and SPOT VEGETATION data, which include the Normalized Vegetation index (NDVI) and Land Surface Water Index (LSWI). This study provides daily distributions of the photosynthesis rate, which is the CO2 fixation in Asian areas combined with the land-cover distribution, the Japanese geostationary meteorological satellite (GMS), and meteorological re-analysis data by National Centers for Environmental Prediction (NCEP). The method is based on routine observation data, enabling automated monitoring of crop yields.

  16. Effects of soil bunds on runoff, soil and nutrient losses, and crop yield in the Central Highlands of Ethiopia

    NARCIS (Netherlands)

    Adimassu Teferi, Z.; Mekonnen, K.; Yirga, C.; Kessler, A.

    2014-01-01

    The effects of soil bunds on runoff, losses of soil and nutrients, and crop yield are rarely documented in the Central Highlands of Ethiopia. A field experiment was set up consisting of three treatments: (i) barley-cultivated land protected with graded soil bunds (Sb); (ii) fallow land (F); and

  17. Simulation of spring barley yield in different climatic zones of Northern and Central Europe. A comparison of nine crop models

    Czech Academy of Sciences Publication Activity Database

    Rötter, R.P.; Palosuo, T.; Kersebaum, K. C.; Angulo, C.; Bindi, M.; Ewert, F.; Ferrise, R.; Hlavinka, P.; Moriondo, M.; Nendel, C.; Olesen, J. E.; Patil, R. H.; Ruget, F.; Takáč, J.; Trnka, Miroslav

    2012-01-01

    Roč. 133, July 2012 (2012), s. 23-36 ISSN 0378-4290 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional research plan: CEZ:AV0Z60870520 Keywords : Climate * Crop growth simulation * Model comparison * Spring barley * Yield variability * Uncertainty Subject RIV: EH - Ecology, Behaviour Impact factor: 2.474, year: 2012

  18. Yield-scaled N2O emissions in a winter wheat - summer corn double-cropping system

    NARCIS (Netherlands)

    Qin, S.; Wang, Y.; Hu, C.; Oenema, O.; Li, X.; Zhang, Y.; Dong, W.

    2012-01-01

    Emissions of nitrous oxide (N2O) from agricultural soils contribute to global warming and stratospheric ozone depletion. Applications of fertilizer nitrogen (N) increase N2O emission, but also increase agricultural production. Here, we report on the responses of crop yield, N2O emission and

  19. Growth and yield of cowpea/sunflower crop rotation under different irrigation management strategies with saline water

    Directory of Open Access Journals (Sweden)

    Antônia Leila Rocha Neves

    2015-05-01

    Full Text Available This study aimed to evaluate the effect of management strategies of irrigation with saline water on growth and yield of cowpea and sunflower in a crop rotation. The experiment was conducted in randomized blocks with thirteen treatments and five replications. The treatments consisted of: T1 (control, T2, T3 and T4 using water of 0.5 (A1, 2.2 (A2, 3.6 (A3 and 5.0 (A4 dS m-1, respectively, during the entire crop cycle; T5, T6 and T7, use of A2, A3 and A4 water, respectively, only in the flowering and fructification stage of the crop cycle; using different water in a cyclic way, six irrigations with A1 followed by six irrigations with A2 (T8, A3 (T9 and A4, (T10, respectively; T11, T12 and T13, using water A2, A3 and A4, respectively, starting at 11 days after planting (DAP and continuing until the end of the crop cycle. These treatments were employed in the first crop (cowpea, during the dry season, and the same plots were used for the cultivation of sunflower as succeeding crop during rainy season. The strategies of use of saline water in the salt tolerant growth stage (treatments T5, T6 and T7 or cyclically (treatments T8, T9 and T10 reduced the amount of good quality water used in the production of cowpea by 34 and 47%, respectively, without negative impacts on crop yield, and did not show the residual effects of salinity on sunflower as a succeeding crop. Thus, these strategies appear promising to be employed in areas with water salinity problems in the semiarid region of Brazil.

  20. Cover crop rotations in no-till system: short-term CO2 emissions and soybean yield

    Directory of Open Access Journals (Sweden)

    João Paulo Gonsiorkiewicz Rigon

    Full Text Available ABSTRACT: In addition to improving sustainability in cropping systems, the use of a spring and winter crop rotation system may be a viable option for mitigating soil CO2 emissions (ECO2. This study aimed to determine short-term ECO2 as affected by crop rotations and soil management over one soybean cycle in two no-till experiments, and to assess the soybean yields with the lowest ECO2. Two experiments were carried out in fall-winter as follows: i triticale and sunflower were grown in Typic Rhodudalf (TR, and ii ruzigrass, grain sorghum, and ruzigrass + grain sorghum were grown in Rhodic Hapludox (RH. In the spring, pearl millet, sunn hemp, and forage sorghum were grown in both experiments. In addition, in TR a fallow treatment was also applied in the spring. Soybean was grown every year in the summer, and ECO2 were recorded during the growing period. The average ECO2 was 0.58 and 0.84 g m2 h–1 with accumulated ECO2 of 5,268 and 7,813 kg ha–1 C-CO2 in TR and RH, respectively. Sunn hemp, when compared to pearl millet, resulted in lower ECO2 by up to 12 % and an increase in soybean yield of 9% in TR. In RH, under the winter crop Ruzigrazz+Sorghum, ECO2 were lower by 17%, although with the same soybean yield. Soil moisture and N content of crop residues are the main drivers of ECO2 and soil clay content seems to play an important role in ECO2 that is worthy of further studies. In conclusion, sunn hemp in crop rotation may be utilized to mitigate ECO2 and improve soybean yield.

  1. MAIZE YIELD AND ITS STABILITY AS AFFECTED BY TILLAGE AND CROP RESIDUE MANAGEMENT IN THE EASTERN ROMANIAN DANUBE PLAIN

    Directory of Open Access Journals (Sweden)

    Alexandru COCIU

    2015-10-01

    Full Text Available Rainfed crop management systems need to be optimized to provide more resilient options in order to cope with projected climatic scenarios which are forecasting a decrease in mean precipitation and more frequent extreme drought periods in the Eastern Romanian Danube Plain. This research, carried out in the period of 2011-2014, had as main purpose the determination of influence of tillage practices and residue management on rainfall use efficiency, maize yield and its stability, in order to evaluate the advantages of conservation agriculture (CA in the time of stabilization of direct seeding effects, in comparison with traditional chisel tillage. The maize grain yields are presented for each crop management practices, as follows: (1 chisel tillage, retained crop residues being chopped and incorporated (ciz; (2 zero tillage, retained crop residue chopped and kept on the field in short flat condition (rvt; (3 zero tillage, crop residues kept on the field in short root-anchored condition (1/2rva, and (4 zero tillage, crop residues kept on the field in tall root-anchored condition (1/1rva. In 2012, a year with prolonged drought during vegetative growth, yield differences between zero tillage with short root-anchored residue retention (1/2rva and chisel tillage with residue incorporation (ciz were positive, up to 840 kg ha-1. In average over 2011-2014, conservation agriculture (CA practices had a yield advantage over traditional chisel tillage practice. Zero tillage with residue retention used rainfall more efficiently so suggesting that it is a more resilient agronomic system than traditional (conventional practices involving chisel tillage with residue incorporation.

  2. Recent changes in county-level corn yield variability in the United States from observations and crop models

    Energy Technology Data Exchange (ETDEWEB)

    Leng, Guoyong

    2017-12-01

    The United States is responsible for 35% and 60% of global corn supply and exports. Enhanced supply stability through a reduction in the year-to-year variability of US corn yield would greatly benefit global food security. Important in this regard is to understand how corn yield variability has evolved geographically in the history and how it relates to climatic and non-climatic factors. Results showed that year-to-year variation of US corn yield has decreased significantly during 1980-2010, mainly in Midwest Corn Belt, Nebraska and western arid regions. Despite the country-scale decreasing variability, corn yield variability exhibited an increasing trend in South Dakota, Texas and Southeast growing regions, indicating the importance of considering spatial scales in estimating yield variability. The observed pattern is partly reproduced by process-based crop models, simulating larger areas experiencing increasing variability and underestimating the magnitude of decreasing variability. And 3 out of 11 models even produced a differing sign of change from observations. Hence, statistical model which produces closer agreement with observations is used to explore the contribution of climatic and non-climatic factors to the changes in yield variability. It is found that climate variability dominate the change trends of corn yield variability in the Midwest Corn Belt, while the ability of climate variability in controlling yield variability is low in southeastern and western arid regions. Irrigation has largely reduced the corn yield variability in regions (e.g. Nebraska) where separate estimates of irrigated and rain-fed corn yield exist, demonstrating the importance of non-climatic factors in governing the changes in corn yield variability. The results highlight the distinct spatial patterns of corn yield variability change as well as its influencing factors at the county scale. I also caution the use of process-based crop models, which have substantially underestimated

  3. Integrated remote sensing imagery and two-dimensional hydraulic modeling approach for impact evaluation of flood on crop yields

    Science.gov (United States)

    Chen, Huili; Liang, Zhongyao; Liu, Yong; Liang, Qiuhua; Xie, Shuguang

    2017-10-01

    The projected frequent occurrences of extreme flood events will cause significant losses to crops and will threaten food security. To reduce the potential risk and provide support for agricultural flood management, prevention, and mitigation, it is important to account for flood damage to crop production and to understand the relationship between flood characteristics and crop losses. A quantitative and effective evaluation tool is therefore essential to explore what and how flood characteristics will affect the associated crop loss, based on accurately understanding the spatiotemporal dynamics of flood evolution and crop growth. Current evaluation methods are generally integrally or qualitatively based on statistic data or ex-post survey with less diagnosis into the process and dynamics of historical flood events. Therefore, a quantitative and spatial evaluation framework is presented in this study that integrates remote sensing imagery and hydraulic model simulation to facilitate the identification of historical flood characteristics that influence crop losses. Remote sensing imagery can capture the spatial variation of crop yields and yield losses from floods on a grid scale over large areas; however, it is incapable of providing spatial information regarding flood progress. Two-dimensional hydraulic model can simulate the dynamics of surface runoff and accomplish spatial and temporal quantification of flood characteristics on a grid scale over watersheds, i.e., flow velocity and flood duration. The methodological framework developed herein includes the following: (a) Vegetation indices for the critical period of crop growth from mid-high temporal and spatial remote sensing imagery in association with agricultural statistics data were used to develop empirical models to monitor the crop yield and evaluate yield losses from flood; (b) The two-dimensional hydraulic model coupled with the SCS-CN hydrologic model was employed to simulate the flood evolution process

  4. Plant-based assessment of inherent soil productivity and contributions to China's cereal crop yield increase since 1980.

    Directory of Open Access Journals (Sweden)

    Mingsheng Fan

    Full Text Available OBJECTIVE: China's food production has increased 6-fold during the past half-century, thanks to increased yields resulting from the management intensification, accomplished through greater inputs of fertilizer, water, new crop strains, and other Green Revolution's technologies. Yet, changes in underlying quality of soils and their effects on yield increase remain to be determined. Here, we provide a first attempt to quantify historical changes in inherent soil productivity and their contributions to the increase in yield. METHODS: The assessment was conducted based on data-set derived from 7410 on-farm trials, 8 long-term experiments and an inventory of soil organic matter concentrations of arable land. RESULTS: Results show that even without organic and inorganic fertilizer addition crop yield from on-farm trials conducted in the 2000s was significantly higher compared with those in the 1980s - the increase ranged from 0.73 to 1.76 Mg/ha for China's major irrigated cereal-based cropping systems. The increase in on-farm yield in control plot since 1980s was due primarily to the enhancement of soil-related factors, and reflected inherent soil productivity improvement. The latter led to higher and stable yield with adoption of improved management practices, and contributed 43% to the increase in yield for wheat and 22% for maize in the north China, and, 31%, 35% and 22% for early and late rice in south China and for single rice crop in the Yangtze River Basin since 1980. CONCLUSIONS: Thus, without an improvement in inherent soil productivity, the 'Agricultural Miracle in China' would not have happened. A comprehensive strategy of inherent soil productivity improvement in China, accomplished through combining engineering-based measures with biological-approaches, may be an important lesson for the developing world. We propose that advancing food security in 21st century for both China and other parts of world will depend on continuously improving

  5. Impact of vetch cover crop on runoff, soil loss, soil chemical properties and yield of chickpea in North Gondar, Ethiopia

    Science.gov (United States)

    Demelash, Nigus; Klik, Andreas; Holzmann, Hubert; Ziadat, Feras; Strohmeier, Stefan; Bayu, Wondimu; Zucca, Claudio; Abera, Atikilt

    2016-04-01

    Cover crops improve the sustainability and quality of both natural system and agro ecosystem. In Gumara-Maksegnit watershed which is located in Lake Tana basin, farmers usually use fallow during the rainy season for the preceding chickpea production system. The fallowing period can lead to soil erosion and nutrient losses. A field experiment was conducted during growing seasons 2014 and 2015 to evaluate the effect of cover crops on runoff, soil loss, soil chemical properties and yield of chickpea in North Gondar, Ethiopia. The plot experiment contained four treatments arranged in Randomized Complete Block Design with three replications: 1) Control plot (Farmers' practice: fallowing- without cover crop), 2) Chickpea planted with Di-ammonium phosphate (DAP) fertilizer with 46 k ha-1 P2O5 and 23 k ha-1 nitrogen after harvesting vetch cover crop, 3) Chick pea planted with vetch cover crop incorporated with the soil as green manure without fertilizer, 4) Chick pea planted with vetch cover crop and incorporated with the soil as green manure and with 23 k ha-1 P2O5 and 12.5 k ha-1 nitrogen. Each plot with an area of 36 m² was equipped with a runoff monitoring system. Vetch (Vicia sativa L.) was planted as cover crop at the onset of the rain in June and used as green manure. The results of the experiment showed statistically significant (P plant, above ground biomass and grain yield of chick pea. However, there was no statistically significant difference (P > 0.05) on average plant height, average number of branches and hundred seed weight. Similarly, the results indicated that cover crop has a clear impact on runoff volume and sediment loss. Plots with vetch cover crop reduce the average runoff by 65% and the average soil loss decreased from 15.7 in the bare land plot to 8.6 t ha-1 with plots covered by vetch. In general, this result reveales that the cover crops, especially vetch, can be used to improve chickpea grain yield in addition to reduce soil erosion in the

  6. Effect of tillage and crop residues management on mungbean (vigna radiata (L.) wilczek) crop yield, nitrogen fixation and water use efficiency in rainfed areas

    International Nuclear Information System (INIS)

    Mohammad, W.; Shehzadi, S.; Shah, S.M.; Shah, Z.

    2010-01-01

    A field experiment was conducted to study the effect of crop residues and tillage practices on BNF, WUE and yield of mungbean (Vigna radiata (L.) Wilczek) under semi arid rainfed conditions at the Livestock Research Station, Surezai, Peshawar in North West Frontier Province (NWFP) of Pakistan. The experiment comprised of two tillage i) conventional tillage (T1) and ii) no-tillage (T0) and two residues i) wheat crop residues retained (+) and ii) wheat crop residues removed (-) treatments. Basal doses of N at the rate of 20: P at the rate of 60 kg ha-1 were applied to mungbean at sowing time in the form of urea and single super phosphate respectively. Labelled urea having 5% 15N atom excess was applied at the rate of 20 kg N ha-1 as aqueous solution in micro plots (1m2) in each treatment plot to assess BNF by mungbean. Similarly, maize and sorghum were grown as reference crops and were fertilized with 15N labelled urea as aqueous solution having 1% 15N atom excess at the rate of 90 kg N ha/sup -1/. The results obtained showed that mungbean yield (grain/straw) and WUE were improved in notillage treatment as compared to tillage treatment. Maximum mungbean grain yield (1224 kg ha/sup -1/) and WUE (6.61kg ha/sup -1 mm/sup -1/) were obtained in no-tillage (+ residues) treatment. The N concentration in mungbean straw and grain was not significantly influenced by tillage or crop residue treatments. The amount of fertilizer-N taken up by straw and grain of mungbean was higher under no-tillage with residues-retained treatment but the differences were not significant. The major proportion of N (60.03 to 76.51%) was derived by mungbean crop from atmospheric N2 fixation, the remaining (19.6 to 35.91%) was taken up from the soil and a small proportion (3.89 to 5.89%) was derived from the applied fertilizer in different treatments. The maximum amount of N fixed by mungbean (82.59 kg ha/sup -1/) was derived in no-tillage with wheat residue-retained treatment. By using sorghum as

  7. Winter cover crops on processing tomato yield, quality, pest pressure, nitrogen availability, and profit margins

    OpenAIRE

    Belfry, Kimberly D.; Trueman, Cheryl; Vyn, Richard J.; Loewen, Steven A.; Van Eerd, Laura L.

    2017-01-01

    Much of cover crop research to date focuses on key indicators of impact without considering the implications over multiple years, in the absence of a systems-based approach. To evaluate the effect of three years of autumn cover crops on subsequent processing tomato (Solanum lycopersicum L.) production in 2010 and 2011, a field split-split-plot factorial design trial with effects of cover crop type, urea ammonium nitrate fertilizer rate (0 or 140 kg N ha-1 preplant broadcast incorporated) and ...

  8. Comparison of crop yield sensitivity to ozone between open-top chamber and free-air experiments.

    Science.gov (United States)

    Feng, Zhaozhong; Uddling, Johan; Tang, Haoye; Zhu, Jianguo; Kobayashi, Kazuhiko

    2018-02-02

    Assessments of the impacts of ozone (O 3 ) on regional and global food production are currently based on results from experiments using open-top chambers (OTCs). However, there are concerns that these impact estimates might be biased due to the environmental artifacts imposed by this enclosure system. In this study, we collated O 3 exposure and yield data for three major crop species-wheat, rice, and soybean-for which O 3 experiments have been conducted with OTCs as well as the ecologically more realistic free-air O 3 elevation (O 3 -FACE) exposure system; both within the same cultivation region and country. For all three crops, we found that the sensitivity of crop yield to the O 3 metric AOT40 (accumulated hourly O 3 exposure above a cut-off threshold concentration of 40 ppb) significantly differed between OTC and O 3 -FACE experiments. In wheat and rice, O 3 sensitivity was higher in O 3 -FACE than OTC experiments, while the opposite was the case for soybean. In all three crops, these differences could be linked to factors influencing stomatal conductance (manipulation of water inputs, passive chamber warming, and cultivar differences in gas exchange). Our study thus highlights the importance of accounting for factors that control stomatal O 3 flux when applying experimental data to assess O 3 impacts on crops at large spatial scales. © 2018 John Wiley & Sons Ltd.

  9. Effect of Soybean and Wheat as Cover Crops on Corn Yield and Weed Control using Different Fertilizer Sources

    Directory of Open Access Journals (Sweden)

    F. Dadashi

    2016-02-01

    Full Text Available Introduction: According to the importance of corn in supplying the human food directly and indirectly, it is one of the most important plants among crops. One of the major problems in corn production systems, is competition with weeds that reduce corn yield significantly. Weeds not only reduce crop yields but also decrease the commercial quality and the feeding palatability of main crops. They enhance the soil seed bank of weeds, which may cause continuous weed infestation of field crops as well. Herbicide application is a reliable and highly effective method for weed control. However, demand for safe food products that have been produced with a minimum application of chemical inputs is increasing. Therefore, farmers interested in weed management have to rely on other control approaches. An alternative weed control method is the use of cover crops, which can suppress the growth of weeds by preventing them from light and by producing allelopathic compounds. Cover crops successfully have been integrated into conservational agriculture systems in many areas of the world. Legumes are used as cover crop because of their rapid growth, in addition their potential to provide further nitrogen,along with high ability to compete with weeds. Materials and Methods: In order to study the effect of cover crops (soybean and wheat and different fertilizers sources on yield of corn and weed control, a filed experiment was conducted in randomized complete block design with three replications in 2012. Treatments included two cover crop (wheat and soybean and three fertilizer (no fertilizer, chemical fertilizer and compost..Fertilizer treatments was used according to soil analysis and requirement of corn (as a main plant. Weed-infestation and weed-free plots were used as controls. Study cultivars of corn, wheat and soybean were NS-640, Milan and Sari, respectively. Planting of corn was in June and cover crop was planted with corn simultaneously and between corn rows

  10. Optical crop sensor for variable-rate nitrogen fertilization in corn: II - indices of fertilizer efficiency and corn yield

    Directory of Open Access Journals (Sweden)

    Jardes Bragagnolo

    2013-10-01

    Full Text Available Generally, in tropical and subtropical agroecosystems, the efficiency of nitrogen (N fertilization is low, inducing a temporal variability of crop yield, economic losses, and environmental impacts. Variable-rate N fertilization (VRF, based on optical spectrometry crop sensors, could increase the N use efficiency (NUE. The objective of this study was to evaluate the corn grain yield and N fertilization efficiency under VRF determined by an optical sensor in comparison to the traditional single-application N fertilization (TSF. With this purpose, three experiments with no-tillage corn were carried out in the 2008/09 and 2010/11 growing seasons on a Hapludox in South Brazil, in a completely randomized design, at three different sites that were analyzed separately. The following crop properties were evaluated: aboveground dry matter production and quantity of N uptake at corn flowering, grain yield, and vegetation index determined by an N-Sensor® ALS optical sensor. Across the sites, the corn N fertilizer had a positive effect on corn N uptake, resulting in increased corn dry matter and grain yield. However, N fertilization induced lower increases of corn grain yield at site 2, where there was a severe drought during the growing period. The VRF defined by the optical crop sensor increased the apparent N recovery (NRE and agronomic efficiency of N (NAE compared to the traditional fertilizer strategy. In the average of sites 1 and 3, which were not affected by drought, VRF promoted an increase of 28.0 and 41.3 % in NAE and NRE, respectively. Despite these results, no increases in corn grain yield were observed by the use of VRF compared to TSF.

  11. Non-enhanced phytoextraction of cadmium, zinc, and lead by high-yielding crops.

    Science.gov (United States)

    Mayerová, Markéta; Petrová, Šárka; Madaras, Mikuláš; Lipavský, Jan; Šimon, Tomáš; Vaněk, Tomáš

    2017-06-01

    Heavy metal soil contamination from mining and smelting has been reported in several regions around the world, and phytoextraction, using plants to accumulate risk elements in aboveground harvestable organs, is a useful method of substantially reducing this contamination. In our 3-year experiment, we tested the hypothesis that phytoextraction can be successful in local soil conditions without external fertilizer input. The phytoextraction efficiency of 15 high-yielding crop species was assessed in a field experiment performed at the Litavka River alluvium in the Příbram region of Czechia. This area is heavily polluted by Cd, Zn, and Pb from smelter installations which also polluted the river water and flood sediments. Heavy metal concentrations were analyzed in the herbaceous plants' aboveground and belowground biomass and in woody plants' leaves and branches. The highest Cd and Zn mean concentrations in the aboveground biomass were recorded in Salix x fragilis L. (10.14 and 343 mg kg -1 in twigs and 16.74 and 1188 mg kg -1 in leaves, respectively). The heavy metal content in woody plants was significantly higher in leaves than in twigs. In addition, Malva verticillata L. had the highest Cd, Pb, and Zn concentrations in herbaceous species (6.26, 12.44, and 207 mg kg -1 , respectively). The calculated heavy metal removal capacities in this study proved high phytoextraction efficiency in woody species; especially for Salix × fragilis L. In other tested plants, Sorghum bicolor L., Helianthus tuberosus L., Miscanthus sinensis Andersson, and Phalaris arundinacea L. species are also recommended for phytoextraction.

  12. Drought stress impact on vegetable crop yields in the Elbe River lowland between 1961 and 2014

    Czech Academy of Sciences Publication Activity Database

    Potopová, V.; Štěpánek, Petr; Farda, Aleš; Türkott, L.; Zahradníček, Pavel; Soukup, J.

    2016-01-01

    Roč. 42, č. 1 (2016), s. 127-143 ISSN 0211-6820 R&D Projects: GA MŠk(CZ) LD14043; GA ČR GA13-19831S Institutional support: RVO:67179843 Keywords : standardized precipitation evapotranspiration index * drought stress * reference evapotranspiration * crop evapotranspiration * crop coefficient * Czech Republic Subject RIV: EH - Ecology, Behaviour

  13. Enhancing water and fertilizer saving without compromising rice yield through integrated crop management

    NARCIS (Netherlands)

    Wardana, I.P.; Gani, A.; Abdulrachmann, S.; Bindraban, P.S.; Keulen, van H.

    2010-01-01

    Water and fertilizer scarcity amid the increasing need of rice production challenges today’s agriculture. Integrated crop management (ICM) is a combination of water, crop, and nutrient management that optimizes the synergistic interaction of these components aiming at improving resource use

  14. Vulnerability of field crops to midcentury temperature changes and yield effects in the Southwestern USA

    Science.gov (United States)

    Increased temperatures in the Southwestern United States will impact future crop production via multiple pathways. We used four methods to provide an illustrative analysis of midcentury temperature impacts to eight field crops. By midcentury, cropland area thermally suitable for maize cultivation is...

  15. Grazing winter rye cover crop in a cotton no-till system: yield and economics

    Science.gov (United States)

    Winter cover crop adoption in conservation management systems continues to be limited in the US but could be encouraged if establishment costs could be offset. A 4-yr field experiment was conducted near Watkinsville, Georgia in which a rye (Secale cereale L.) cover crop was either grazed by catt...

  16. 70-79 Effects of Crop Rotation and NP Fertilizer Rate on Grain Yield a

    African Journals Online (AJOL)

    Primary nutrient (N, P and K) composition of the ... Crop rotation with fertilizer amendment improved the pH of the soil. Crop rotation and ..... Soil organic carbon contents declined regardless of inputs application for continuously cultivated land (Kapkiyai, 1996). Higher. Organic carbon content next to before planting (1.98 %).

  17. Assessment of crop yield losses in Punjab and Haryana using 2 years of continuous in situ ozone measurements

    Science.gov (United States)

    Sinha, B.; Singh Sangwan, K.; Maurya, Y.; Kumar, V.; Sarkar, C.; Chandra, B. P.; Sinha, V.

    2015-08-01

    In this study we use a high-quality data set of in situ ozone measurements at a suburban site called Mohali in the state of Punjab to estimate ozone-related crop yield losses for wheat, rice, cotton and maize for Punjab and the neighbouring state Haryana for the years 2011-2013. We intercompare crop yield loss estimates according to different exposure metrics, such as AOT40 (accumulated ozone exposure over a threshold of 40) and M7 (mean 7-hour ozone mixing ratio from 09:00 to 15:59), for the two major crop growing seasons of kharif (June-October) and rabi (November-April) and establish a new crop-yield-exposure relationship for southern Asian wheat, maize and rice cultivars. These are a factor of 2 more sensitive to ozone-induced crop yield losses compared to their European and American counterparts. Relative yield losses based on the AOT40 metrics ranged from 27 to 41 % for wheat, 21 to 26 % for rice, 3 to 5 % for maize and 47 to 58 % for cotton. Crop production losses for wheat amounted to 20.8 ± 10.4 million t in the fiscal year of 2012-2013 and 10.3 ± 4.7 million t in the fiscal year of 2013-2014 for Punjab and Haryana taken together. Crop production losses for rice totalled 5.4 ± 1.2 million t in the fiscal year of 2012-2013 and 3.2 ± 0.8 million t in the year 2013-2014 for Punjab and Haryana taken together. The Indian National Food Security Ordinance entitles ~ 820 million of India's poor to purchase about 60 kg of rice or wheat per person annually at subsidized rates. The scheme requires 27.6 Mt of wheat and 33.6 Mt of rice per year. The mitigation of ozone-related crop production losses in Punjab and Haryana alone could provide > 50 % of the wheat and ~ 10 % of the rice required for the scheme. The total economic cost losses in Punjab and Haryana amounted to USD 6.5 ± 2.2 billion in the fiscal year of 2012-2013 and USD 3.7 ± 1.2 billion in the fiscal year of 2013-2014. This economic loss estimate represents a very conservative lower limit based on

  18. Effects of Watering and Nitrogen Fertilization on Yield and Water and Nitrogen Use Efficiency of Cropping Oil Sunflower

    Directory of Open Access Journals (Sweden)

    TAN Jian-xin

    2015-10-01

    Full Text Available The field experiment with split-plot design was conducted to study the effects of the interaction of water and nitrogen fertilization on the growth and yield of oil sunflower, water and nitrogen use efficiency of cropping oil sunflower. This experiment set three irrigation rate treatments, including high irrigation treatment (5 250 m3·hm-2, middle irrigation treatment (3 750 m3·hm-2, low irrigation treatment (2 250 m3·hm-2, and four nitrogen application rate treatments, covering no nitrogen fertilization treatment (0 kg·hm-2, low nitrogen application treatment (120 kg·hm-2, middle nitrogen application treatment (240 kg·hm-2 and high nitrogen application treatment (360 kg·hm-2. The results showed that the nitrogen absorption and nitrogen use efficiency of cropping oil sunflower increased as the irrigation rate increased. With the nitrogen application rate increased, the yield of cropping oil sunflower was increased when the nitrogen application rate was 0~240 kg·hm-2, but beyond the 240 kg·hm-2, there was no significant increase. With the irrigation rate increased, the water consumption amount of cropping oil sunflower increased all the time, but the water use efficiency increased first, and hen decreased. Besides there was no significant difference between 240 kg·hm-2 and 360 kg·hm-2 treatment. Under our experiment condition, during the cropping oil sunflower growth period, when the irrigation rate was 5 250 m3·hm-2 (high irrigation rate and the nitrogen ertilization was 360 m3·hm-2 (high nitrogen application rate, the yield of cropping oil sunflower was 3 598 kg·hm-2. When the irrigation rate was 3 750 m3·hm-2 (middle irrigation rate and the nitrogen fertilization was 240 m3·hm-2 (middle nitrogen application rate, the yield was 3 518 kg·hm-2, with the yield components similar with the high irrigation rate and high nitrogen application rate treatment. Considering various factors, middle irrigation rate and middle nitrogen

  19. Light- and water-use efficiency model synergy: a revised look at crop yield estimation for agricultural decision-making

    Science.gov (United States)

    Marshall, M.; Tu, K. P.

    2015-12-01

    Large-area crop yield models (LACMs) are commonly employed to address climate-driven changes in crop yield and inform policy makers concerned with climate change adaptation. Production efficiency models (PEMs), a class of LACMs that rely on the conservative response of carbon assimilation to incoming solar radiation absorbed by a crop contingent on environmental conditions, have increasingly been used over large areas with remote sensing spectral information to improve the spatial resolution of crop yield estimates and address important data gaps. Here, we present a new PEM that combines model principles from the remote sensing-based crop yield and evapotranspiration (ET) model literature. One of the major limitations of PEMs is that they are evaluated using data restricted in both space and time. To overcome this obstacle, we first validated the model using 2009-2014 eddy covariance flux tower Gross Primary Production data in a rice field in the Central Valley of California- a critical agro-ecosystem of the United States. This evaluation yielded a Willmot's D and mean absolute error of 0.81 and 5.24 g CO2/d, respectively, using CO2, leaf area, temperature, and moisture constraints from the MOD16 ET model, Priestley-Taylor ET model, and the Global Production Efficiency Model (GLOPEM). A Monte Carlo simulation revealed that the model was most sensitive to the Enhanced Vegetation Index (EVI) input, followed by Photosynthetically Active Radiation, vapor pressure deficit, and air temperature. The model will now be evaluated using 30 x 30m (Landsat resolution) biomass transects developed in 2011 and 2012 from spectroradiometric and other non-destructive in situ metrics for several cotton, maize, and rice fields across the Central Valley. Finally, the model will be driven by Daymet and MODIS data over the entire State of California and compared with county-level crop yield statistics. It is anticipated that the new model will facilitate agro-climatic decision-making in

  20. Vulnerability of Agriculture to Climate Change as Revealed by Relationships between Simulated Crop Yield and Climate Change Indices

    Science.gov (United States)

    King, A. W.; Absar, S. M.; Nair, S.; Preston, B. L.

    2012-12-01

    The vulnerability of agriculture is among the leading concerns surrounding climate change. Agricultural production is influenced by drought and other extremes in weather and climate. In regions of subsistence farming, worst case reductions in yield lead to malnutrition and famine. Reduced surplus contributes to poverty in agrarian economies. In more economically diverse and industrialized regions, variations in agricultural yield can influence the regional economy through market mechanisms. The latter grows in importance as agriculture increasingly services the energy market in addition to markets for food and fiber. Agriculture is historically a highly adaptive enterprise and will respond to future changes in climate with a variety of adaptive mechanisms. Nonetheless, the risk, if not expectation, of increases in climate extremes and hazards exceeding historical experience motivates scientifically based anticipatory assessment of the vulnerability of agriculture to climate change. We investigate the sensitivity component of that vulnerability using EPIC, a well established field-scale model of cropping systems that includes the simulation of economic yield. The core of our analysis is the relationship between simulated yield and various indices of climate change, including the CCI/CLIVAR/JCOM ETCCDI indices, calculated from weather inputs to the model. We complement this core with analysis using the DSSAT cropping system model and exploration of relationships between historical yield statistics and climate indices calculated from weather records. Our analyses are for sites in the Southeast/Gulf Coast region of the United States. We do find "tight" monotonic relationships between annual yield and climate for some indices, especially those associated with available water. More commonly, however, we find an increase in the variability of yield as the index value becomes more extreme. Our findings contribute to understanding the sensitivity of crop yield as part of

  1. Simulation of nitrous oxide effluxes, crop yields and soil physical properties using the LandscapeDNDC model in managed ecosystem

    Science.gov (United States)

    Nyckowiak, Jedrzej; Lesny, Jacek; Haas, Edwin; Juszczak, Radoslaw; Kiese, Ralf; Butterbach-Bahl, Klaus; Olejnik, Janusz

    2014-05-01

    Modeling of nitrous oxide emissions from soil is very complex. Many different biological and chemical processes take place in soils which determine the amount of emitted nitrous oxide. Additionaly, biogeochemical models contain many detailed factors which may determine fluxes and other simulated variables. We used the LandscapeDNDC model in order to simulate N2O emissions, crop yields and soil physical properties from mineral cultivated soils in Poland. Nitrous oxide emissions from soils were modeled for fields with winter wheat, winter rye, spring barley, triticale, potatoes and alfalfa crops. Simulations were carried out for the plots of the Brody arable experimental station of Poznan University of Life Science in western Poland and covered the period 2003 - 2012. The model accuracy and its efficiency was determined by comparing simulations result with measurements of nitrous oxide emissions (measured with static chambers) from about 40 field campaigns. N2O emissions are strongly dependent on temperature and soil water content, hence we compared also simulated soil temperature at 10cm depth and soil water content at the same depth with the daily measured values of these driving variables. We compared also simulated yield quantities for each individual experimental plots with yield quantities which were measured in the period 2003-2012. We conclude that the LandscapeDNDC model is capable to simulate soil N2O emissions, crop yields and physical properties of soil with satisfactorily good accuracy and efficiency.

  2. Winter wheat yield estimation of remote sensing research based on WOFOST crop model and leaf area index assimilation

    Science.gov (United States)

    Chen, Yanling; Gong, Adu; Li, Jing; Wang, Jingmei

    2017-04-01

    Accurate crop growth monitoring and yield predictive information are significant to improve the sustainable development of agriculture and ensure the security of national food. Remote sensing observation and crop growth simulation models are two new technologies, which have highly potential applications in crop growth monitoring and yield forecasting in recent years. However, both of them have limitations in mechanism or regional application respectively. Remote sensing information can not reveal crop growth and development, inner mechanism of yield formation and the affection of environmental meteorological conditions. Crop growth simulation models have difficulties in obtaining data and parameterization from single-point to regional application. In order to make good use of the advantages of these two technologies, the coupling technique of remote sensing information and crop growth simulation models has been studied. Filtering and optimizing model parameters are key to yield estimation by remote sensing and crop model based on regional crop assimilation. Winter wheat of GaoCheng was selected as the experiment object in this paper. And then the essential data was collected, such as biochemical data and farmland environmental data and meteorological data about several critical growing periods. Meanwhile, the image of environmental mitigation small satellite HJ-CCD was obtained. In this paper, research work and major conclusions are as follows. (1) Seven vegetation indexes were selected to retrieve LAI, and then linear regression model was built up between each of these indexes and the measured LAI. The result shows that the accuracy of EVI model was the highest (R2=0.964 at anthesis stage and R2=0.920 at filling stage). Thus, EVI as the most optimal vegetation index to predict LAI in this paper. (2) EFAST method was adopted in this paper to conduct the sensitive analysis to the 26 initial parameters of the WOFOST model and then a sensitivity index was constructed

  3. Maximizing Lipid Yield in Neochloris oleoabundans Algae Extraction by Stressing and Using Multiple Extraction Stages with N-Ethylbutylamine as Switchable Solvent

    NARCIS (Netherlands)

    Du, Ying; Schuur, Boelo; Brilman, Derk W.F.

    2017-01-01

    (Graph Presented) The extraction yield of lipids from nonbroken Neochloris oleoabundans was maximized by using multiple extraction stages and using stressed algae. Experimental parameters that affect the extraction were investigated. The study showed that with wet algae (at least) 18 h extraction

  4. Impacts of ozone air pollution and temperature extremes on crop yields: Spatial variability, adaptation and implications for future food security

    Science.gov (United States)

    Tai, Amos P. K.; Val Martin, Maria

    2017-11-01

    Ozone air pollution and climate change pose major threats to global crop production, with ramifications for future food security. Previous studies of ozone and warming impacts on crops typically do not account for the strong ozone-temperature correlation when interpreting crop-ozone or crop-temperature relationships, or the spatial variability of crop-to-ozone sensitivity arising from varietal and environmental differences, leading to potential biases in their estimated crop losses. Here we develop an empirical model, called the partial derivative-linear regression (PDLR) model, to estimate the spatial variations in the sensitivities of wheat, maize and soybean yields to ozone exposures and temperature extremes in the US and Europe using a composite of multidecadal datasets, fully correcting for ozone-temperature covariation. We find generally larger and more spatially varying sensitivities of all three crops to ozone exposures than are implied by experimentally derived concentration-response functions used in most previous studies. Stronger ozone tolerance is found in regions with high ozone levels and high consumptive crop water use, reflecting the existence of spatial adaptation and effect of water constraints. The spatially varying sensitivities to temperature extremes also indicate stronger heat tolerance in crops grown in warmer regions. The spatial adaptation of crops to ozone and temperature we find can serve as a surrogate for future adaptation. Using the PDLR-derived sensitivities and 2000-2050 ozone and temperature projections by the Community Earth System Model, we estimate that future warming and unmitigated ozone pollution can combine to cause an average decline in US wheat, maize and soybean production by 13%, 43% and 28%, respectively, and a smaller decline for European crops. Aggressive ozone regulation is shown to offset such decline to various extents, especially for wheat. Our findings demonstrate the importance of considering ozone regulation

  5. Fading positive effect of biochar on crop yield and soil acidity during five growth seasons in an Indonesian Ultisol.

    Science.gov (United States)

    Cornelissen, Gerard; Jubaedah; Nurida, Neneng L; Hale, Sarah E; Martinsen, Vegard; Silvani, Ludovica; Mulder, Jan

    2018-09-01

    Low fertility limits crop production on acidic soils dominating much of the humid tropics. Biochar may be used as a soil enhancer, but little consensus exists on its effect on crop yield. Here we use a controlled, replicated and long-term field study in Sumatra, Indonesia, to investigate the longevity and mechanism of the effects of two contrasting biochars (produced from rice husk and cacao shell, and applied at dosages of 5 and 15tha -1 ) on maize production in a highly acidic Ultisol (pH KCl 3.6). Compared to rice husk biochar, cacao shell biochar exhibited a higher pH (9.8 vs. 8.4), CEC (197 vs. 20cmol c kg -1 ) and acid neutralizing capacity (217 vs. 45cmol c kg -1 ) and thus had a greater liming potential. Crop yield effects of cacao shell biochar (15tha -1 ) were also much stronger than those of rice husk biochar, and could be related to more favorable Ca/Al ratios in response to cacao shell biochar (1.0 to 1.5) compared to rice husk biochar (0.3 to 0.6) and nonamended plots (0.15 to 0.6). The maize yield obtained with the cacao shell biochar peaked in season 2, continued to have a good effect in seasons 3-4, and faded in season 5. The yield effect of the rice husk biochar was less pronounced and already faded from season 2 onwards. Crop yields were correlated with the pH-related parameters Ca/Al ratio, base saturation and exchangeable K. The positive effects of cocoa shell biochar on crop yield in this Ultisol were at least in part related to alleviation of soil acidity. The fading effectiveness after multiple growth seasons, possibly due to leaching of the biochar-associated alkalinity, indicates that 15tha -1 of cocoa shell biochar needs to be applied approximately every third season in order to maintain positive effects on yield. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Impacts of Near-Term Climate Change on Irrigation Demands and Crop Yields in the Columbia River Basin

    Science.gov (United States)

    Rajagopalan, K.; Chinnayakanahalli, K. J.; Stockle, C. O.; Nelson, R. L.; Kruger, C. E.; Brady, M. P.; Malek, K.; Dinesh, S. T.; Barber, M. E.; Hamlet, A. F.; Yorgey, G. G.; Adam, J. C.

    2018-03-01

    Adaptation to a changing climate is critical to address future global food and water security challenges. While these challenges are global, successful adaptation strategies are often generated at regional scales; therefore, regional-scale studies are critical to inform adaptation decision making. While climate change affects both water supply and demand, water demand is relatively understudied, especially at regional scales. The goal of this work is to address this gap, and characterize the direct impacts of near-term (for the 2030s) climate change and elevated CO2 levels on regional-scale crop yields and irrigation demands for the Columbia River basin (CRB). This question is addressed through a coupled crop-hydrology model that accounts for site-specific and crop-specific characteristics that control regional-scale response to climate change. The overall near-term outlook for agricultural production in the CRB is largely positive, with yield increases for most crops and small overall increases in irrigation demand. However, there are crop-specific and location-specific negative impacts as well, and the aggregate regional response of irrigation demands to climate change is highly sensitive to the spatial crop mix. Low-value pasture/hay varieties of crops—typically not considered in climate change assessments—play a significant role in determining the regional response of irrigation demands to climate change, and thus cannot be overlooked. While, the overall near-term outlook for agriculture in the region is largely positive, there may be potential for a negative outlook further into the future, and it is important to consider this in long-term planning.

  7. one of the keys to attaining and sustaining higher crop yields

    African Journals Online (AJOL)

    Interim fertiliser recommendations for different crops at selected locations in Uganda. ... However, these recommendations (Table 5) need updating to reflect the decline in soil fertility ... and have longer residual effects in soil compared to high.

  8. Comparing the performance of 11 crop simulation models in predicting yield response to nitrogen fertilization

    OpenAIRE

    Salo , Tapio J.; Palosuo , Taru; Kersebaum , Kurt Christian; Nendel , Claas; Angulo , Carlos; Ewert , Frank; Bindi , Marco; Calanca , Pierluigi; Klein , Tommy; Moriondo , Marco; Ferrise , Roberto; Olesen , Jørgen Eivind; Patil , Rasmi H.; Ruget , Francoise; Takac , Jozef

    2016-01-01

    Eleven widely used crop simulation models (APSIM, CERES, CROPSYST, COUP, DAISY, EPIC, FASSET, HERMES, MONICA, STICS and WOFOST) were tested using spring barley (Hordeum vulgare L.) data set under varying nitrogen (N) fertilizer rates from three experimental years in the boreal climate of Jokioinen, Finland. This is the largest standardized crop model inter-comparison under different levels of N supply to date. The models were calibrated using data from 2002 and 2008, of which 2008 included si...

  9. Linking Land Cover Data and Crop Yields for Mapping and Assessment of Pollination Services in Europe

    OpenAIRE

    Grazia Zulian; Joachim Maes; Maria Luisa Paracchini

    2013-01-01

    Pollination is a key ecosystem service as many crops but in particular, fruits and vegetables are partially dependent on pollinating insects to produce food for human consumption. Here we assessed how pollination services are delivered at the European scale. We used this assessment to estimate the relative contribution of wild pollinators to crop production. We developed an index of relative pollination potential, which is defined as the relative potential or relative capacity of ecosystems t...

  10. Effects of crop rotation on weed density, biomass and yield of wheat (Titicum aestivum L.)

    OpenAIRE

    A. Zareafeizabadi; H.R. Rostamzadeh

    2016-01-01

    In order to study the weed populations in wheat, under different crop rotations an experiment was carried out at Agricultural Research Station of Jolgeh Rokh, Iran. During growing season this project was done in five years, based on Randomized Complete Bloch Design with three replications, on Crop rotations included: wheat monoculture for the whole period (WWWWW), wheat- wheat- wheat- canola- wheat (WWWCW), wheat- sugar beet- wheat-sugar beet- wheat (WSWSW), wheat- potato- wheat- potato- whea...

  11. Yield and water use efficiencies of maize and cowpea as affected by tillage and cropping systems in semi-arid Eastern Kenya

    International Nuclear Information System (INIS)

    Miriti, M.J; Kironchi, G; Gachene, K.K.C; Esilaba, O.A.; Mwangi, M.D; Heng, K.L

    2012-01-01

    Soil water conservation through tillage is widely accepted as one of the ways of improving crop yields in rainfed agriculture. Field experiments were conducted between 2007 and 2009 to evaluate the effects of conservation tillage on the yields and crop water use efficiency of maize (Zea mays L.) and cowpea (Vigna unguiculata L.) in eastern Kenya. Experimental treatments were a combination of three tillage practices and four cropping systems. Tillage practices were tied-ridges, subsoiling-ripping and ox-ploughing. The cropping systems were single crop maize, single crop cowpea, intercropped maize.cowpea and single crop maize with manure. The treatments were arranged in split plots with tillage practices as the main plots and cropping systems as the sub-plots in a Randomized Complete Block Design (RCBD). The results showed that tied-ridge tillage had the greatest plant available water content while subsoiling-ripping tillage had the least in all seasons. Averaged across seasons and cropping season, tillage did not have a significant effects on maize grain yield but it did have a significant effect on crop grain and dry matter water use efficiency (WUE). Nevertheless, maize grain yields and WUE values were generally greater under tied-ridge tillage than under subsoiling-ripping and ox-plough tillages. The yields and WUE of cowpea under subsoiling-ripping tillage were less than those of ox-plough tillage. When averaged across the seasons and tillage systems, the cropping system with the manure treatment increased (P.0.05) maize grain yield, grain WUE and dry matter WUE by 36%, 30%, 26% respectively, compared to treatments without manure. Maize and cowpea when intercropped under ox-plough and ripping tillage systems did not have any yield advantage over the single crop

  12. Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces

    Czech Academy of Sciences Publication Activity Database

    Pirttioja, N. K.; Carter, T. R.; Fronzek, S.; Bindi, M.; Hoffmann, H. D.; Palosuo, T.; Ruiz-Ramos, M.; Tao, F.; Trnka, Miroslav; Acutis, M.; Asseng, S.; Baranowski, P.; Basso, B.; Bodin, P.; Buis, S.; Cammarano, D.; Deligios, P.; Destain, M. F.; Dumont, B.; Ewert, F.; Ferrise, R.; Francois, L.; Gaiser, T.; Hlavinka, Petr; Jacquemin, I.; Kersebaum, K. C.; Kollas, C.; Krzyszczak, J.; Lorite, I. J.; Minet, J.; Minquez, M. I.; Montesino, M.; Moriondo, M.; Müller, C.; Nendel, C.; Öztürk, I.; Perego, A.; Rodriguez, A.; Ruane, A. C.; Ruget, F.; Sanna, M.; Semenov, M. A.; Slawinski, C.; Stratonovitch, P.; Supit, I.; Waha, K.; Wang, E.; Wu, L.; Zhao, Z.; Rötter, R. P.

    2015-01-01

    Roč. 65, č. 31 (2015), s. 87-105 ISSN 0936-577X R&D Projects: GA MZe QJ1310123; GA MŠk(CZ) LD13030 Grant - others:German Federal Ministries of Education and Research, and Food and Agriculture(DE) 2812ERA115 Institutional support: RVO:67179843 Keywords : climate * crop model * impact response surface * IRS * sensitivity analysis * wheat * yield Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.690, year: 2015

  13. EM.1 Compost and its effects on the nodulation, growth and yield of berseem (trifolium alexandrinum) crop

    International Nuclear Information System (INIS)

    Daur, I.; Abusuwar, A. O.

    2015-01-01

    To wisely utilize local organic resources and enhance their quality in order to effectively fertilize agricultural crops, a blend of organic resources, comprising cow manure, poultry manure, and kitchen waste (2:1:1 ratio by volume), was composted with (Compost EM.1) and without (Compost plain) effective microorganisms (EM.1). Various parameters including temperature, pH, carbon (C), nitrogen (N), and the C/N ratio were recorded during composting to assess the effects of EM.1 on this process. After completion of the composting process, the effects of the resultant composts on the nodulation, growth, and yield of berseem (Trifolium alexandrinum L.) crop were tested in a field trial. Temperature and pH were lower and the N content was higher in Compost EM.1 than in Compost plain throughout composting. C degradation was also faster in Compost EM.1 than in Compost plain. Consequently, the C/N ratio stabilized faster in Compost EM.1, leading to rapid completion of composting. In the field trial, composts showed no significant effect on nodulation or the shoot-to-root ratio. However, in comparison to Compost plain, Compost EM.1 significantly increased the leaf-to-stem ratio and the fresh and dry yields of berseem. We conclude that EM.1 enhances the composting process and the yield of berseem crop. (author)

  14. Crop Yield and Soil Properties in the First 3 Years After Biochar Application to a Calcareous Soil

    Institute of Scientific and Technical Information of China (English)

    LIANG Feng; LI Gui-tong; LIN Qi-mei; ZHAO Xiao-rong

    2014-01-01

    It remains unclear whether biochar applications to calcareous soils can improve soil fertility and crop yield. A long-term ifeld experiment was established in 2009 so as to determine the effect of biochar on crop yield and soil properties in a calcareous soil. Five treatments were: 1) straw incorporation; 2) straw incorporation with inorganic fertilizer; 3), 4) and 5) straw incorporation with inorganic fertilizer, and biochar at 30, 60, and 90 t ha-1, respectively. The annual yield of either winter wheat or summer maize was not increased signiifcantly following biochar application, whereas the cumulative yield over the ifrst 4 growing seasons was signiifcantly increased. Soil pH, measured in situ, was increased by a maximum of 0.35 units after 2 yr following biochar application. After 3 yr, soil bulk density signiifcantly decreased while soil water holding capacity increased with adding biochar of 90 t ha-1. Alkaline hydrolysable N decreased but exchangeable K increased due to biochar addition. Olsen-P did not change compared to the treatment without biochar. The results suggested that biochar could be used in calcareous soils without yield loss or signiifcant impacts on nutrient availability.

  15. Soil water regime and crop yields in relation to various technologies of cultivation in the Kulunda Steppe (Altai Krai

    Directory of Open Access Journals (Sweden)

    V. Beliaev

    2016-09-01

    Full Text Available This article presents the results of crop yield in areas with different technologies of cultivation based on the network of automatic stations that provide data on climatic and soil-hydrological monitoring in the dry steppe during the vegetation period of May–September 2013–2016 . These data  on regional ecological and climatic parameters are of great interest to the ecologists, plant physiologists, and farmers working in the Kulunda Plain (Altai Territory. We compared the following options for cropping technologies: the modern system, which is the "no-till", technology without autumn tillage;the intensive technology of deep autumn tillage by plough PG-3-5 at a depth of 22–24 cm. Cultivation of crops was carried out using the following scheme of crop rotation: the modern system: 1–2–3–4 (wheat – peas – wheat – rape; the intensive system: 5/6 – 7/8 – 9/10 (fallow – wheat – wheat. We believe that the use of modern technology in these conditions is better due to exchange between the different layers of soil. When  the ordinary Soviet system , the so-called "plow sole" , was used , at a depth of 24 cm , we observed that this creates a water conductivity barrier that seems to preclude the possibility of lifting water from the lower horizons. Results of the study of infiltration of soil moisture at the depth of 30 and 60 cm  have shown in some years the advantages of the modern technology over the ordinary Soviet system: in the version with the use of modern technology we can trace better exchange between the various horizons and , probably,  moisture replenishment from the lower horizons. Differences in individual observation periods are comparatively large due to the redistribution of soil moisture, depending on the weather conditions, the crops used in the crop rotations, and cultivation techniques. Moreover, the average moisture reserves within the one meter layer did not show any significant differences during the

  16. Analysis of relations between crop temperature indices and yield of different sunflower hybrids foliar treated by biopreparations

    Directory of Open Access Journals (Sweden)

    Kovár Marek

    2016-04-01

    Full Text Available The application of biological active preparations (BAPs and remote-sensing control in the management of agronomic intervention are an important part of successful crop cultivation. The effects of foliar application of two BAPs (containing amino acids or Abiestins® on yield and yield-forming, as well eco-physiological traits calculated from infrared thermographs data (crop water stress index, CWSI and index of stomatal conductance, Ig of three hybrids of sunflower were studied in field poly-factorial experiments, realised during two years (2012 and 2013. The results showed that the application of selected BAPs has contributed to an increase of the sunflower yield, in particular through an increase in the weight of thousand seeds (rp = 0.761, P < 0.001. Similarly, oil content in achenes was significantly higher in treatments with BAPs, mainly with preparation containing free amino acids. The study describes the quantitative relationship between yield and quality of sunflower production (rp = −0.41, P < 0.01. Selected hybrids of sunflower in two growth stages showed the significant differences in CWSI and Ig (both at P < 0.01, respectively. An analysis of negative linear relation between the yield of achenes and CWSI (rp = −0.654, P < 0.001 confirmed that higher value of plant stress resulted in a smaller yield and vice-versa. The opposite trend was observed between yield and Ig index (rp = 0.576, P < 0.001. The data obtained from IR thermography can be used for monitoring the physiological health of sunflower plants, as well in potential prediction and control of yield.

  17. Impacts of extreme heat and drought on crop yields in China: an assessment by using the DLEM-AG2 model

    Science.gov (United States)

    Zhang, J.; Yang, J.; Pan, S.; Tian, H.

    2016-12-01

    China is not only one of the major agricultural production countries with the largest population in the world, but it is also the most susceptible to climate change and extreme events. Much concern has been raised about how extreme climate has affected crop yield, which is crucial for China's food supply security. However, the quantitative assessment of extreme heat and drought impacts on crop yield in China has rarely been investigated. By using the Dynamic Land Ecosystem Model (DLEM-AG2), a highly integrated process-based ecosystem model with crop-specific simulation, here we quantified spatial and temporal patterns of extreme climatic heat and drought stress and their impacts on the yields of major food crops (rice, wheat, maize, and soybean) across China during 1981-2015, and further investigated the underlying mechanisms. Simulated results showed that extreme heat and drought stress significantly reduced national cereal production and increased the yield gaps between potential yield and rain-fed yield. The drought stress was the primary factor to reduce crop yields in the semi-arid and arid regions, and extreme heat stress slightly aggravated the yield loss. The yield gap between potential yield and rain-fed yield was larger at locations with lower precipitation. Our results suggest that a large exploitable yield gap in response to extreme climatic heat-drought stress offers an opportunity to increase productivity in China by optimizing agronomic practices, such as irrigation, fertilizer use, sowing density, and sowing date.

  18. 70-79 Effects of Crop Rotation and NP Fertilizer Rate on Grain Yield a

    African Journals Online (AJOL)

    amendment enabled maize yields and soil fertility to be maintained at a higher level. Multiple ... Higher grain yield and high net return of maize were realized following Niger seed, ...... Generation, Transfer and Gap Analysis Workshop. Nekemt ...

  19. Is current irrigation sustainable in the United States? An integrated assessment of climate change impact on water resources and irrigated crop yields

    Science.gov (United States)

    Blanc, Elodie; Caron, Justin; Fant, Charles; Monier, Erwan

    2017-08-01

    While climate change impacts on crop yields has been extensively studied, estimating the impact of water shortages on irrigated crop yields is challenging because the water resources management system is complex. To investigate this issue, we integrate a crop yield reduction module and a water resources model into the MIT Integrated Global System Modeling framework, an integrated assessment model linking a global economic model to an Earth system model. We assess the effects of climate and socioeconomic changes on water availability for irrigation in the U.S. as well as subsequent impacts on crop yields by 2050, while accounting for climate change projection uncertainty. We find that climate and socioeconomic changes will increase water shortages and strongly reduce irrigated yields for specific crops (i.e., cotton and forage), or in specific regions (i.e., the Southwest) where irrigation is not sustainable. Crop modeling studies that do not represent changes in irrigation availability can thus be misleading. Yet, since the most water-stressed basins represent a relatively small share of U.S. irrigated areas, the overall reduction in U.S. crop yields is small. The response of crop yields to climate change and water stress also suggests that some level of adaptation will be feasible, like relocating croplands to regions with sustainable irrigation or switching to less irrigation intensive crops. Finally, additional simulations show that greenhouse gas (GHG) mitigation can alleviate the effect of water stress on irrigated crop yields, enough to offset the reduced CO2 fertilization effect compared to an unconstrained GHG emission scenario.

  20. The influence of sowing period and seeding norm on autumn vegetation, winter hardiness and yield of winter cereal crops

    Directory of Open Access Journals (Sweden)

    Potapova G. N.

    2017-10-01

    Full Text Available the winter wheat and triticale in the middle part of the Ural Mountains haven’t been seeded before. The technology of winter crop cultivation should be improved due to the production of new varieties of winter rye. Winter hardiness and yield of winter rye are higher in comparison with winter triticale and especially with winter wheat. The sowing period and the seeding rate influence the amount of yield and winter hardiness. The winter hardiness of winter cereals and the yield of the rye variety Iset sowed on August 25 and the yield of the triticale variety Bashkir short-stalked and wheat Kazanskaya 560 sowed on August 15 were higher. It is important to sow winter grain in local conditions in the second half of August. The sowing this period allows to provide plants with the necessary amount of positive temperatures (450–500 °C. This helps the plants to form 3–4 shoots of tillering and a mass of 10 dry plants reaching 3–5 grams. The winter grain crops in the middle part of the Ural Mountains should be sown with seeding rates of 6 and 7 million of sprouting grains per 1 ha, and the seeds must be cultivated with fungicidal preparation before seeding.

  1. Residue management increases fallow water conservation and yield deficit irrigated crops grown in rotation with wheat

    Science.gov (United States)

    No-tillage (NT) residue management provides cover to increase precipitation capture compared with disk tillage (DT) or in the absence of a cover crop. Therefore, NT has the potential to reduce irrigation withdrawals from the declining Ogallala Aquifer. In a 4-year study, we quantified DT and NT effe...

  2. Evaluation of tillage, cover crop, and herbicide effects on weed control, yield, and grade in peanut

    Science.gov (United States)

    Peanut production plays a large role in agriculture in the Southeastern United States. Weeds are detrimental to their production because of the competition that they create; weeds will compete with crops for resources such as nutrients and sunlight, among others. Therefore, it is important to reduce...

  3. Effects of catch crop type and root depth on nitrogen leaching and yield of spring barley

    DEFF Research Database (Denmark)

    Sapkota, Tek Bahadur; Askegaard, Margrethe; Lægdsmand, Mette

    2012-01-01

    [chicory (Cichorium intybus L.), fodder radish (Raphanus sativus L.) and perennial ryegrass (Lolium perenne L.)] and their effect on soil mineral N (NO3− and NH4+) in different soil layers by using the FASSET model. The simulated results of catch crop biomass and root growth and mineral N in the soil...

  4. Combined Spectral and Spatial Modeling of Corn Yield Based on Aerial Images and Crop Surface Models Acquired with an Unmanned Aircraft System

    Directory of Open Access Journals (Sweden)

    Jakob Geipel

    2014-10-01

    Full Text Available Precision Farming (PF management strategies are commonly based on estimations of within-field yield potential, often derived from remotely-sensed products, e.g., Vegetation Index (VI maps. These well-established means, however, lack important information, like crop height. Combinations of VI-maps and detailed 3D Crop Surface Models (CSMs enable advanced methods for crop yield prediction. This work utilizes an Unmanned Aircraft System (UAS to capture standard RGB imagery datasets for corn grain yield prediction at three early- to mid-season growth stages. The imagery is processed into simple VI-orthoimages for crop/non-crop classification and 3D CSMs for crop height determination at different spatial resolutions. Three linear regression models are tested on their prediction ability using site-specific (i unclassified mean heights, (ii crop-classified mean heights and (iii a combination of crop-classified mean heights with according crop coverages. The models show determination coefficients \\({R}^{2}\\ of up to 0.74, whereas model (iii performs best with imagery captured at the end of stem elongation and intermediate spatial resolution (0.04m\\(\\cdot\\px\\(^{-1}\\.Following these results, combined spectral and spatial modeling, based on aerial images and CSMs, proves to be a suitable method for mid-season corn yield prediction.

  5. Effect of adding phosphogypsum to the soil on the growth, yields, radionuclides, trace elements and fluorine accumulation in some crops

    International Nuclear Information System (INIS)

    Al-Oudat, M.; Sharabi, N. E.; Kanacri, S.

    2001-12-01

    large quantities of phosphogypsum, a by-product of phosphate fertilizer industry, are stacked close to urban areas in Syria. This may pose negative impacts on the environment. Many studies have reported positive effects of phosphogypsum application on nutrient levels, physical and chemical properties of agricultural soils. There are some concerns that the application of phosphogypsum to agricultural lands may result in the uptake by plant of radionuclides, fluorine and trace elements. Phosphogypsum, which has a radioactivity of 430 Bq/Kg, was mixed with silty loam soil, at different rates (0, 10, 20, 40 and 80 t/ha), the experiments were carried out using chick pea, maize cotton and spinach. The results showed that adding phosphogypsum to the soil, at a rate ranging between 10 and 40 t/ha, increased the infiltration rate, electrical conductivity and concentration of available S, Mg, Ca, P. It also increased significantly the yields of studied crops. The radioactivities in the shoot systems and grains yields of crops grown on these soil-phosphogypsum mixtures were below detection level. In addition, phosphogypsum application did not cause accumulation of trace elements in soil or plants. The fluorine concentrations in plants increased but remained less than the allowable level (30 ppm). Therefor, adding phosphogypsum to agricultural soils (at a rate of 10-20 t/ha) can be considered an-effective way of improving soil properties, crop productivity and represents a way of phosphogypsum utilization which reduces its negative effects on the environment. (authors)

  6. Radiation utilization efficiency, nitrogen uptake and modeling crop growth and yield of rainfed rice under different nitrogen rates

    International Nuclear Information System (INIS)

    Gouranga, Kar; Ashwani Kumar; Mohapatra, Sucharita

    2014-01-01

    Optimum utilization of photosynthetically active radiation (PAR) along with proper nitrogen (N) management for sustainable rice production is still a promising management recommendation for sustainable rainfed rice cultivation in eastern India. The objective of this investigation was to study radiation utilization efficiency (RUE), N uptake and modeling growth and productivity of wet/rainy season rice (cv. Lalat and Gayatri) under 0, 50, 90, 120 and 150 kg ha -1 N application. Results showed that N rates significantly affected plant biomass, leaf area index (LAI), biological yield (straw and grain yield) and N uptake for both the varieties. The intercepted photosynthetically active radiation (IPAR) and spectral reflectance based vegetation indices (IR/R, NDVI) were also different between two varieties and among N rates. Higher rate of N increased the RUE significantly; averaged over years and varieties, mean values of RUE were 1.35, 1.70, 2.01, 2.15 and 2.17 g MJ -1 under 0, 50, 90, 120 and 150 kg N ha -1 , respectively. Though crop growth, yield, N uptake and RUE were higher at 150 kg N ha -1 but the results were at par with 120 kg N ha -1 . Agronomic N use efficiency (ANUE) was also low at 150 kg N ha -1 . The DSSAT v 4.5 model was applied to simulate crop growth, yield and phenology of the crop under different N rates. Model performance was found to be poor at low N rates (0, 50 kg N ha -1 ), but the model performed fairly well at higher N rates (90 kg ha -1 and above). (author)

  7. Crop Yield Predictions - High Resolution Statistical Model for Intra-season Forecasts Applied to Corn in the US

    Science.gov (United States)

    Cai, Y.

    2017-12-01

    Accurately forecasting crop yields has broad implications for economic trading, food production monitoring, and global food security. However, the variation of environmental variables presents challenges to model yields accurately, especially when the lack of highly accurate measurements creates difficulties in creating models that can succeed across space and time. In 2016, we developed a sequence of machine-learning based models forecasting end-of-season corn yields for the US at both the county and national levels. We combined machine learning algorithms in a hierarchical way, and used an understanding of physiological processes in temporal feature selection, to achieve high precision in our intra-season forecasts, including in very anomalous seasons. During the live run, we predicted the national corn yield within 1.40% of the final USDA number as early as August. In the backtesting of the 2000-2015 period, our model predicts national yield within 2.69% of the actual yield on average already by mid-August. At the county level, our model predicts 77% of the variation in final yield using data through the beginning of August and improves to 80% by the beginning of October, with the percentage of counties predicted within 10% of the average yield increasing from 68% to 73%. Further, the lowest errors are in the most significant producing regions, resulting in very high precision national-level forecasts. In addition, we identify the changes of important variables throughout the season, specifically early-season land surface temperature, and mid-season land surface temperature and vegetation index. For the 2017 season, we feed 2016 data to the training set, together with additional geospatial data sources, aiming to make the current model even more precise. We will show how our 2017 US corn yield forecasts converges in time, which factors affect the yield the most, as well as present our plans for 2018 model adjustments.

  8. Simulation of winter wheat yield and its variability in different climates of Europe: A comparison of eight crop growth models

    DEFF Research Database (Denmark)

    Palosuo, Taru; Kersebaum, Kurt Christian; Angulo, Carlos

    2011-01-01

    observations at all sites and in all years, and none could unequivocally be labelled robust and accurate in terms of yield prediction across different environments and crop cultivars with only minimum calibration. The best performance regarding yield estimation was for DAISY and DSSAT, for which the RMSE...... and WOFOST furnished high total above-ground biomass estimates, whereas CROPSYST, DSSAT and FASSET provided low total above-ground estimates. Consequently, DSSAT and FASSET produced very high harvest index values, followed by HERMES and WOFOST. APES and DAISY, on the other hand, returned low harvest index...... of grain yield estimates provided by the models for all sites and years reflects substantial uncertainties in model estimates achieved with only minimum calibration. Mean predictions from the eight models, on the other hand, were in good agreement with measured data. This applies to both results across all...

  9. Prediction of the competitive effects of weeds on crop yields based on the relative leaf area of weeds

    DEFF Research Database (Denmark)

    Lotz, L. A. P.; Christensen, Svend; Cloutier, D.

    1996-01-01

    . alba whereas the density model did not. A parameter that allows the maximum yield loss to be smaller than 100% was mostly not needed to describe the effects of weed competition. The parameter that denotes the competitiveness of the weed species with respect to the crop decreased the later the relative......For implementation of simple yield loss models into threshold-based weed management systems, a thorough validation is needed over a great diversity of sites. Yield losses by competition wsth Sinapis alba L. (white mustard) as a model weed, were studied in 12 experiments in sugar beet (Beta vulgaris...... L.) and in 11 experiments in spring wheat (Triticum aestivum L.). Most data sets were heller described by a model based on the relative leaf area of the weed than by a hyperbolic model based on weed density. This leaf area model accounted for (part of) the effect of different emerging times of the S...

  10. Maximizing Lipid Yield in Neochloris oleoabundans Algae Extraction by Stressing and Using Multiple Extraction Stages with N-Ethylbutylamine as Switchable Solvent

    Science.gov (United States)

    2017-01-01

    The extraction yield of lipids from nonbroken Neochloris oleoabundans was maximized by using multiple extraction stages and using stressed algae. Experimental parameters that affect the extraction were investigated. The study showed that with wet algae (at least) 18 h extraction time was required for maximum yield at room temperature and a solvent/feed ratio of 1:1 (w/w). For fresh water (FW), nonstressed, nonbroken Neochloris oleoabundans, 13.1 wt % of lipid extraction yield (based on dry algae mass) was achieved, which could be improved to 61.3 wt % for FW stressed algae after four extractions, illustrating that a combination of stressing the algae and applying the solvent N-ethylbutylamine in multiple stages of extraction results in almost 5 times higher yield and is very promising for further development of energy-efficient lipid extraction technology targeting nonbroken wet microalgae. PMID:28781427

  11. Agro-economic yield of taro clones in Brazil, propagated with different types of cuttings, in three crop seasons

    Directory of Open Access Journals (Sweden)

    NÉSTOR A. HEREDIA ZÁRATE

    2013-06-01

    Full Text Available The experimental studies were conducted in 2007-2008, 2008-2009 and 2009-2010 crop seasons, in order to know the agro-economic yield of 'Chinês' and "Macaquinho" taro clones, propagated using huge, extra, large, medium, small and tiny cormels. The harvest was done on average on 202 days after planting, in three crop seasons. Based on the joint analysis of variance carried out, it was observed that taro clones showed significant differences in the yield of fresh and dry weight of leaves, cormels, and commercial and non-commercial comels; besides, there were significant differences in yield of a crop season to another and the size of the cuttings induced significant differences in yield. In the conditions that the experiments were conducted, and considering the highest average yield of fresh weight of commercial cormels (28.69 t.ha-1 and highest net income (US $14,741.14 correspondent to the three crop seasons, it is recommended to cultivate 'Macaquinho' clone using small cuttings in propagation.Os trabalhos experimentais foram realizados nos anos agrícolas de 2007-2008, 2008-2009 e 2009-2010, com o objetivo de conhecer a produtividade agroeconômica dos clones de taro Chinês e Macaquinho, propagados usando rizomas-filhos graúdos, extras, grandes, médios, pequenos e muito pequenos. A colheita foi realizada em média aos 202 dias após o plantio, nos três anos agrícolas. Com base nas análises de vari ância conjuntas realizadas, observou-se que os clones de taro apresentaram diferenças significativas quanto à produtividade de massas frescas e secas de folhas, rizomas-mãe, rizomas-filho comerciais e rizomas-filho não-comerciais; que existiam diferenças significativas de produtividade de um ano agrícola para o outro; e o tamanho das mudas induziu diferenças significativas na produtividade. Nas condições em que foram conduzidos os experimentos e considerando a maior produtividade média de massa fresca de rizomas-filho comerciais (28

  12. Application of Regional Drought and Crop Yield Information System to enhance drought monitoring and forecasting in Lower Mekong region

    Science.gov (United States)

    Jayasinghe, S.; Dutta, R.; Basnayake, S. B.; Granger, S. L.; Andreadis, K. M.; Das, N.; Markert, K. N.; Cutter, P. G.; Towashiraporn, P.; Anderson, E.

    2017-12-01

    The Lower Mekong Region has been experiencing frequent and prolonged droughts resulting in severe damage to agricultural production leading to food insecurity and impacts on livelihoods of the farming communities. Climate variability further complicates the situation by making drought harder to forecast. The Regional Drought and Crop Yield Information System (RDCYIS), developed by SERVIR-Mekong, helps decision makers to take effective measures through monitoring, analyzing and forecasting of drought conditions and providing early warnings to farmers to make adjustments to cropping calendars. The RDCYIS is built on regionally calibrated Regional Hydrologic Extreme Assessment System (RHEAS) framework that integrates the Variable Infiltration Capacity (VIC) and Decision Support System for Agro-technology Transfer (DSSAT) models, allowing both nowcast and forecast of drought. The RHEAS allows ingestion of numerus freely available earth observation and ground observation data to generate and customize drought related indices, variables and crop yield information for better decision making. The Lower Mekong region has experienced severe drought in 2016 encompassing the region's worst drought in 90 years. This paper presents the simulation of the 2016 drought event using RDCYIS based on its hindcast and forecast capabilities. The regionally calibrated RDCYIS can help capture salient features of drought through a variety of drought indices, soil variables, energy balance variables and water balance variables. The RDCYIS is capable of assimilating soil moisture data from different satellite products and perform ensemble runs to further reduce the uncertainty of it outputs. The calibrated results have correlation coefficient around 0.73 and NSE between 0.4-0.5. Based on the acceptable results of the retrospective runs, the system has the potential to generate reliable drought monitoring and forecasting information to improve decision-makings at operational, technological and

  13. Bountiful crop with every drop: Using drip irrigation to increase yields and conserve water

    International Nuclear Information System (INIS)

    Quevenco, Rodolfo

    2015-01-01

    Cauliflower, broccoli, sweet pepper and many other nutritious vegetables used to be expensive in Mauritius. The island’s climate and traditional agricultural practices were not suitable for cultivating several high value vegetable crops, while importing them to the island state was prohibitively costly due to the long distances involved. This has all changed over the past few years, and local farms are now starting to supply the country’s growing population and burgeoning tourism industry with fresh, locally grown produce.

  14. Influence of a Phospho-Potassic fertilizer solution on yield and quality of Wheat Crops

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, C.; Tejada, M.; Gonzalez, J. L.; Benitez, C.

    2009-07-01

    There is currently interest in the use of industrial by-products to reduce the use of synthetic fertilizers. For this reason, in this paper the influence of a phospho-potassic fertilizer solution obtained from a aminoacid production process on wheat crops is studied. The positive influence on leaf potassium contents was most significant when the dosage of phospho-potassic fertilizer solution was applied to bread wheat. (Author)

  15. TILLAGE EFFECTS ON SUNFLOWER (HELIANTHUS ANNUUS, L. EMERGENCE, YIELD, QUALITY, AND FUEL CONSUMPTION IN DOUBLE CROPPING SYSTEM

    Directory of Open Access Journals (Sweden)

    ABDULLAH SESSIZ

    2009-06-01

    Full Text Available The relation between crop growing and soil tillage treatment are play important role in agricultural production. Soils under conventional tillage (CT generally have lower bulk density and associated higher total porosity within the plough layer than under no tillage (NT. No-till farming can reduce soil erosion, conserve soil moisture and minimize labor and fuel consumption. The aim of this study were to investigate the effects of conventional, reduced and notillage methods on soil physical properties, sunfl ower yield and yield components, protein and oil content and fuel consumption in Southeastern of Turkey. Six tillage methods for the second crop sunfl ower were tested and compared each other within after lentil harvesting at 2003 and 2004 years in a clay loam soil. According to results, the fi rst year, the bulk density had decreased from 1.29 to 1.09 g cm-3, the second year the δb had decreased from 1.41 to 1.23 g cm-3. Differences between years and tillage methods in terms of yield were found signifi cant (p<0.05. However, no differences were found between the NT and CT. There were also no signifi cance differences in content of protein, oil and ash among six tillage methods. The highest fuel consumption was measured in conventional method (CT whereas the lowest value was found in direct seeding method as 33.48 L ha-1 and 6.6 L ha-1, respectively.

  16. [Comparison of potential yield and resource utilization efficiency of main food crops in three provinces of Northeast China under climate change].

    Science.gov (United States)

    Wang, Xiao-yu; Yang, Xiao-guang; Sun, Shuang; Xie, Wen-juan

    2015-10-01

    Based on the daily data of 65 meteorological stations from 1961 to 2010 and the crop phenology data in the potential cultivation zones of thermophilic and chimonophilous crops in Northeast China, the crop potential yields were calculated through step-by-step correction method. The spatio-temporal distribution of the crop potential yields at different levels was analyzed. And then we quantified the limitations of temperature and precipitation on the crop potential yields and compared the differences in the climatic resource utilization efficiency. The results showed that the thermal potential yields of six crops (including maize, rice, spring wheat, sorghum, millet and soybean) during the period 1961-2010 deceased from west to east. The climatic potential yields of the five crops (spring wheat not included) were higher in the south than in the north. The potential yield loss rate due to temperature limitations of the six crops presented a spatial distribution pattern and was higher in the east than in the west. Among the six main crops, the yield potential loss rate due to temperature limitation of the soybean was the highest (51%), and those of the other crops fluctuated within the range of 33%-41%. The potential yield loss rate due to water limitation had an obvious regional difference, and was high in Songnen Plain and Changbai Mountains. The potential yield loss rate of spring wheat was the highest (50%), and those of the other four rainfed crops fluctuated within the range of 8%-10%. The solar energy utilization efficiency of the six main crops ranged from 0.9% to 2.7%, in the order of maize> sorghum>rice>millet>spring wheat>soybean. The precipitation utilization efficiency of the maize, sorghum, spring wheat, millet and soybean under rainfed conditions ranged from 8 to 35 kg . hm-2 . mm-1, in the order of maize>sorghum>spring wheat>millet>soybean. In those areas with lower efficiency of solar energy utilization and precipitation utilization, such as Changbai

  17. Development of estimation method for crop yield using MODIS satellite imagery data and process-based model for corn and soybean in US Corn-Belt region

    Science.gov (United States)

    Lee, J.; Kang, S.; Jang, K.; Ko, J.; Hong, S.

    2012-12-01

    Crop productivity is associated with the food security and hence, several models have been developed to estimate crop yield by combining remote sensing data with carbon cycle processes. In present study, we attempted to estimate crop GPP and NPP using algorithm based on the LUE model and a simplified respiration model. The state of Iowa and Illinois was chosen as the study site for estimating the crop yield for a period covering the 5 years (2006-2010), as it is the main Corn-Belt area in US. Present study focuses on developing crop-specific parameters for corn and soybean to estimate crop productivity and yield mapping using satellite remote sensing data. We utilized a 10 km spatial resolution daily meteorological data from WRF to provide cloudy-day meteorological variables but in clear-say days, MODIS-based meteorological data were utilized to estimate daily GPP, NPP, and biomass. County-level statistics on yield, area harvested, and productions were used to test model predicted crop yield. The estimated input meteorological variables from MODIS and WRF showed with good agreements with the ground observations from 6 Ameriflux tower sites in 2006. For examples, correlation coefficients ranged from 0.93 to 0.98 for Tmin and Tavg ; from 0.68 to 0.85 for daytime mean VPD; from 0.85 to 0.96 for daily shortwave radiation, respectively. We developed county-specific crop conversion coefficient, i.e. ratio of yield to biomass on 260 DOY and then, validated the estimated county-level crop yield with the statistical yield data. The estimated corn and soybean yields at the county level ranged from 671 gm-2 y-1 to 1393 gm-2 y-1 and from 213 gm-2 y-1 to 421 gm-2 y-1, respectively. The county-specific yield estimation mostly showed errors less than 10%. Furthermore, we estimated crop yields at the state level which were validated against the statistics data and showed errors less than 1%. Further analysis for crop conversion coefficient was conducted for 200 DOY and 280 DOY

  18. Cover cropping in Vitis vinifera L. cv. Manto Negro vineyards under Mediterranean conditions: effects on plant vigour, yield and grape quality

    Directory of Open Access Journals (Sweden)

    Alícia Pou

    2011-12-01

    Significance and impact of the study: This study showed that the use of specific cover crops in vineyards under Mediterranean climates helps to reduce vegetative vigour. Nevertheless, yield reduction and slight quality improvement suggest that cover crops should be adjusted in order to reduce competition for water and thus prevent these negative effects of water scarcity.

  19. Assessing the Performance of MODIS NDVI and EVI for Seasonal Crop Yield Forecasting at the Ecodistrict Scale

    Directory of Open Access Journals (Sweden)

    Louis Kouadio

    2014-10-01

    Full Text Available Crop yield forecasting plays a vital role in coping with the challenges of the impacts of climate change on agriculture. Improvements in the timeliness and accuracy of yield forecasting by incorporating near real-time remote sensing data and the use of sophisticated statistical methods can improve our capacity to respond effectively to these challenges. The objectives of this study were (i to investigate the use of derived vegetation indices for the yield forecasting of spring wheat (Triticum aestivum L. from the Moderate resolution Imaging Spectroradiometer (MODIS at the ecodistrict scale across Western Canada with the Integrated Canadian Crop Yield Forecaster (ICCYF; and (ii to compare the ICCYF-model based forecasts and their accuracy across two spatial scales-the ecodistrict and Census Agricultural Region (CAR, namely in CAR with previously reported ICCYF weak performance. Ecodistricts are areas with distinct climate, soil, landscape and ecological aspects, whereas CARs are census-based/statistically-delineated areas. Agroclimate variables combined respectively with MODIS-NDVI and MODIS-EVI indices were used as inputs for the in-season yield forecasting of spring wheat during the 2000–2010 period. Regression models were built based on a procedure of a leave-one-year-out. The results showed that both agroclimate + MODIS-NDVI and agroclimate + MODIS-EVI performed equally well predicting spring wheat yield at the ECD scale. The mean absolute error percentages (MAPE of the models selected from both the two data sets ranged from 2% to 33% over the study period. The model efficiency index (MEI varied between −1.1 and 0.99 and −1.8 and 0.99, respectively for the agroclimate + MODIS-NDVI and agroclimate + MODIS-EVI data sets. Moreover, significant improvement in forecasting skill (with decreasing MAPE of 40% and 5 times increasing MEI, on average was obtained at the finer, ecodistrict spatial scale, compared to the coarser CAR scale. Forecast

  20. New ways enhancing the vital activity of plants in order to increase crop yields and to suppress radionuclide accumulation

    International Nuclear Information System (INIS)

    Goncharova, N. V; Zebrakova, I. V.; Matsko, V. P.; Kislushko, P. M.

    1994-01-01

    After Chernobyl nuclear accident it has become very important to seek new ways of enhancing the vital activity of plants in order to increase crop yields and to suppress radionuclide accumulation. It is found that by optimizing the vital activity processes in plants, is possible to reduce radionuclide uptake. A great number of biologically active compounds have been tested, which increased the disease resistance of plants and simultaneously activated the physiological and biochemical processes that control the transport of micro- and macroelements (radionuclide included) and their 'soil-root-stem-leaf' redistribution. (author)

  1. Application of GIS to assess rainfall variability impacts on crop yield ...

    African Journals Online (AJOL)

    Sahara Africa. Hence, this study aim at examines and map spatio-temporal impacts of rainfall variability on water availability for maize yield using Geographic Information System (GIS). Major regions where maize is highly produced in Nigeria were ...

  2. Influences of North Atlantic Oscillation (NAO) on warm season temperature and crop yields in the southwestern US

    Science.gov (United States)

    Myoung, B.; Kim, S.; Kim, J.; Kafatos, M.

    2013-12-01

    Despite advancements in agricultural technology, agricultural productivity remains vulnerable to extreme meteorological conditions. This study has found significant impacts of North Atlantic Oscillation (NAO) on extreme temperatures and in turn on crop yields in the Southwestern United States (SW US) region. Analyses of multi-year data of observed temperatures and simulated maize yields reveal that NAO affects positively the daily temperature maxima and minima in the green-up periods (March-June) and that the response of maize yields to NAO varies according to the climatological mean temperatures. In warmer regions, a combination of above-normal NAO in the planting periods and below-normal NAO in the growing periods is favorable for high maize yields by reducing extremely cold days during the planting periods and extremely hot days in the later periods, respectively. In colder regions, continuously above-normal NAO conditions favor higher yields via above normal thermal conditions. Results in this study suggest that NAO predictions can benefit agricultural planning in SW US.

  3. Adaptive Effectiveness of Irrigated Area Expansion in Mitigating the Impacts of Climate Change on Crop Yields in Northern China

    Directory of Open Access Journals (Sweden)

    Tianyi Zhang

    2017-05-01

    Full Text Available To improve adaptive capacity and further strengthen the role of irrigation in mitigating climate change impacts, the Chinese government has planned to expand irrigated areas by 4.4% by the 2030s. Examining the adaptive potential of irrigated area expansion under climate change is therefore critical. Here, we assess the effects of irrigated area expansion on crop yields based on county-level data during 1980–2011 in northern China and estimate climate impacts under irrigated area scenarios in the 2030s. Based on regression analysis, there is a statistically significant effect of irrigated area expansion on reducing negative climate impacts. More irrigated areas indicate less heat and drought impacts. Irrigated area expansion will alleviate yield reduction by 0.7–0.8% in the future but associated yield benefits will still not compensate for greater adverse climate impacts. Yields are estimated to decrease by 4.0–6.5% under future climate conditions when an additional 4.4% of irrigated area is established, and no fundamental yield increase with an even further 10% or 15% expansion of irrigated area is predicted. This finding suggests that expected adverse climate change risks in the 2030s cannot be mitigated by expanding irrigated areas. A combination of this and other adaptation programs is needed to guarantee grain production under more serious drought stresses in the future.

  4. Impacts of varying agricultural intensification on crop yield and groundwater resources: comparison of the North China Plain and US High Plains

    International Nuclear Information System (INIS)

    Pei, Hongwei; Shen, Yanjun; Liu, Changming; Scanlon, Bridget R; Reedy, Robert C; Long, Di

    2015-01-01

    Agricultural intensification is often considered the primary approach to meet rising food demand. Here we compare impacts of intensive cultivation on crop yield in the North China Plain (NCP) with less intensive cultivation in the US High Plains (USHP) and associated effects on water resources using spatial datasets. Average crop yield during the past decade from intensive double cropping of wheat and corn in the NCP was only 15% higher than the yield from less intensive single cropping of corn in the USHP, although nitrogen fertilizer application and percent of cropland that was irrigated were both ∼2 times greater in the NCP than in the USHP. Irrigation and fertilization in both regions have depleted groundwater storage and resulted in widespread groundwater nitrate contamination. The limited response to intensive management in the NCP is attributed in part to the two month shorter growing season for corn to accommodate winter wheat than that for corn in the USHP. Previous field and modeling studies of crop yield in the NCP highlight over application of N and water resulting in low nitrogen and water use efficiencies and indicate that cultivars, plant densities, soil fertility and other factors had a much greater impact on crop yields over the past few decades. The NCP–USHP comparison along with previous field and modeling studies underscores the need to weigh the yield returns from intensive management relative to the negative impacts on water resources. Future crop management should consider the many factors that contribute to yield along with optimal fertilization and irrigation to further increase crop yields while reducing adverse impacts on water resources. (letter)

  5. Plutonium content in field crops yield at South-East of USA

    International Nuclear Information System (INIS)

    Adriano, D.S.; Korej, D.S.; Dalmen, R.S.

    1985-01-01

    Pu accumulation in crops grown in fields on the territory of Sovannah-River plant and territory of Oak-Ridge national laboratory is described; soil of these sections is characterized by Pu concentrations exceeding the level of global contamination. Pu accumulation in basic cereals (wheat, soy-beans, corn) in Savannah-River, where the main type of contamination is deposition from flows of effluents, with Pu content in basic vegetables in Oak-Ridge where root absorption is the main way of contamination

  6. Plantas de cobertura, manejo da palhada e produtividade da mamoneira no sistema plantio direto Cover crops, straw mulch management and castor bean yield in no-tillage system

    Directory of Open Access Journals (Sweden)

    Jayme Ferrari Neto

    2011-12-01

    Full Text Available Espécies de cobertura que apresentem elevada produção de fitomassa e reciclagem de nutrientes são essenciais para maximizar a produtividade das culturas em sucessão, no sistema plantio direto. O presente trabalho teve por objetivo avaliar a produção de massa de matéria seca e o acúmulo de nutrientes pelo guandu-anão (Cajanus cajan e o milheto (Pennisetum glaucum, em cultivo solteiro e consorciado, e o efeito do manejo mecânico da palhada na produtividade da mamoneira de safrinha, na fase de implantação do sistema plantio direto. O experimento foi instalado em um Nitossolo Vermelho, em Botucatu, SP. O delineamento foi o de blocos ao acaso, em parcelas subdivididas, com quatro repetições. As parcelas foram constituídas por três coberturas vegetais (guandu-anão, milheto e o cultivo consorciado das duas espécies e as subparcelas pela ausência ou presença do manejo mecânico da palhada com triturador horizontal, 20 dias após o manejo químico. O milheto solteiro produziu maior quantidade de massa de matéria seca (14.040 kg ha-1, apresentou maiores concentrações de K e Mg e acumulou maiores quantidades de macronutrientes na parte aérea. A mamoneira apresentou maior produtividade de grãos em sucessão ao consórcio guandu-anão + milheto. A produtividade de grãos da mamoneira foi maior na ausência do manejo mecânico da palhada.Cover crops that have high phytomass production and nutrient cycling are essential to maximize the crop yields in succession under no-tillage system. This study aimed to evaluate dry matter production and nutrients accumulation by pigeonpea (Cajanus cajan and pearl millet (Pennisetum glaucum, in sole crop and intercropped, and the effect of straw mulch mechanical management on out-of-season castor bean performance, in no-tillage system establishment. The experiment was carried out on a Rhodic Nitisol, in Botucatu, SP, Brazil. A randomized blocks design, in a split-plot scheme, with four replications

  7. Heavy metals effects on forage crops yields and estimation of elements accumulation in plants as affected by soil

    International Nuclear Information System (INIS)

    Grytsyuk, N.; Arapis, G.; Perepelyatnikova, L.; Ivanova, T.; Vynograds'ka, V.

    2006-01-01

    Heavy metals (Cu, Cd, Pb, Zn) effect on the productivity of forage crops (clover and perennial cereal grasses) and their accumulation in plants, depending on the concentration of these elements in a soil, has been studied in micro-field experiments on three types of soil. The principle objective was to determine regularities of heavy metals migration in a soil-plant system aiming the estimation of permissible levels of heavy metals content in soils with the following elaboration of methods, which regulate the toxicants transfer to plants. Methods of field experiments, agrochemical and atomic absorption analysis were used. Results were statistically treated by Statistica 6.0, S-Plus 6. Experimental results have shown that the intensity of heavy metals accumulation in plants depends on the type of the soil, the species of plants, the physicochemical properties of heavy metals and their content in the soil. Logarithmic interdependency of heavy metals concentration in soils and their accumulation in plants is suggested. However, the strong correlation between the different heavy metals concentrations in the various soils and the yield of crops was not observed. Toxicants accumulation in crops decreased in time

  8. Heavy metals effects on forage crops yields and estimation of elements accumulation in plants as affected by soil.

    Science.gov (United States)

    Grytsyuk, N; Arapis, G; Perepelyatnikova, L; Ivanova, T; Vynograds'ka, V

    2006-02-01

    Heavy metals (Cu, Cd, Pb, Zn) effect on the productivity of forage crops (clover and perennial cereal grasses) and their accumulation in plants, depending on the concentration of these elements in a soil, has been studied in micro-field experiments on three types of soil. The principle objective was to determine regularities of heavy metals migration in a soil-plant system aiming the estimation of permissible levels of heavy metals content in soils with the following elaboration of methods, which regulate the toxicants transfer to plants. Methods of field experiments, agrochemical and atomic absorption analysis were used. Results were statistically treated by Statistica 6.0, S-Plus 6. Experimental results have shown that the intensity of heavy metals accumulation in plants depends on the type of the soil, the species of plants, the physicochemical properties of heavy metals and their content in the soil. Logarithmic interdependency of heavy metals concentration in soils and their accumulation in plants is suggested. However, the strong correlation between the different heavy metals concentrations in the various soils and the yield of crops was not observed. Toxicants accumulation in crops decreased in time.

  9. Simulated Frosts At Different Phenological Stages of the Potato Crop and Their Impact On Yields Cv Ccompis: Preliminary Studies

    International Nuclear Information System (INIS)

    Fairlie, T. E.; Ortega, A

    1994-01-01

    The frost damages on the potato crop were simulated through an experiment in the Jiscuani community, in Southern Peru, Puno. Five levels of foliar damage (0, 25, 50, 75 and 100%) in different phenological stages were evaluated for their impact on tuber yield. The most significant phenological damages resulted at plant germination and at the early stolon formation, when foliar damage was higher than 50%. Moreover, the greatest effect on yield was caused at flowering stage (100 days after planting), recording reductions from 15 to 55 % at the different damage levels. The methodology for the frost simulation, cutting foliar sections according damage levels and making further rubbing on foliar area was apparently adequate. (author) [es

  10. Optimization of dilute sulfuric acid pretreatment to maximize combined sugar yield from sugarcane bagasse for ethanol production.

    Science.gov (United States)

    Benjamin, Y; Cheng, H; Görgens, J F

    2014-01-01

    Increasing fermentable sugar yields per gram of biomass depends strongly on optimal selection of varieties and optimization of pretreatment conditions. In this study, dilute acid pretreatment of bagasse from six varieties of sugarcane was investigated in connection with enzymatic hydrolysis for maximum combined sugar yield (CSY). The CSY from the varieties were also compared with the results from industrial bagasse. The results revealed considerable differences in CSY between the varieties. Up to 22.7 % differences in CSY at the optimal conditions was observed. The combined sugar yield difference between the best performing variety and the industrial bagasse was 34.1 %. High ratio of carbohydrates to lignin and low ash content favored the release of sugar from the substrates. At mild pretreatment conditions, the differences in bioconversion efficiency between varieties were greater than at severe condition. This observation suggests that under less severe conditions the glucose recovery was largely determined by chemical composition of biomass. The results from this study support the possibility of increasing sugar yields or improving the conversion efficiency when pretreatment optimization is performed on varieties with improved properties.

  11. Projected changes in crop yield mean and variability over West Africa in a world 1.5 K warmer than the pre-industrial era

    Science.gov (United States)

    Parkes, Ben; Defrance, Dimitri; Sultan, Benjamin; Ciais, Philippe; Wang, Xuhui

    2018-02-01

    The ability of a region to feed itself in the upcoming decades is an important issue. The West African population is expected to increase significantly in the next 30 years. The responses of crops to short-term climate change is critical to the population and the decision makers tasked with food security. This leads to three questions: how will crop yields change in the near future? What influence will climate change have on crop failures? Which adaptation methods should be employed to ameliorate undesirable changes? An ensemble of near-term climate projections are used to simulate maize, millet and sorghum in West Africa in the recent historic period (1986-2005) and a near-term future when global temperatures are 1.5 K above pre-industrial levels to assess the change in yield, yield variability and crop failure rate. Four crop models were used to simulate maize, millet and sorghum in West Africa in the historic and future climates. Across the majority of West Africa the maize, millet and sorghum yields are shown to fall. In the regions where yields increase, the variability also increases. This increase in variability increases the likelihood of crop failures, which are defined as yield negative anomalies beyond 1 standard deviation during the historic period. The increasing variability increases the frequency of crop failures across West Africa. The return time of crop failures falls from 8.8, 9.7 and 10.1 years to 5.2, 6.3 and 5.8 years for maize, millet and sorghum respectively. The adoption of heat-resistant cultivars and the use of captured rainwater have been investigated using one crop model as an idealized sensitivity test. The generalized doption of a cultivar resistant to high-temperature stress during flowering is shown to be more beneficial than using rainwater harvesting.

  12. Projected changes in crop yield mean and variability over West Africa in a world 1.5 K warmer than the pre-industrial era

    Directory of Open Access Journals (Sweden)

    B. Parkes

    2018-02-01

    Full Text Available The ability of a region to feed itself in the upcoming decades is an important issue. The West African population is expected to increase significantly in the next 30 years. The responses of crops to short-term climate change is critical to the population and the decision makers tasked with food security. This leads to three questions: how will crop yields change in the near future? What influence will climate change have on crop failures? Which adaptation methods should be employed to ameliorate undesirable changes? An ensemble of near-term climate projections are used to simulate maize, millet and sorghum in West Africa in the recent historic period (1986–2005 and a near-term future when global temperatures are 1.5 K above pre-industrial levels to assess the change in yield, yield variability and crop failure rate. Four crop models were used to simulate maize, millet and sorghum in West Africa in the historic and future climates. Across the majority of West Africa the maize, millet and sorghum yields are shown to fall. In the regions where yields increase, the variability also increases. This increase in variability increases the likelihood of crop failures, which are defined as yield negative anomalies beyond 1 standard deviation during the historic period. The increasing variability increases the frequency of crop failures across West Africa. The return time of crop failures falls from 8.8, 9.7 and 10.1 years to 5.2, 6.3 and 5.8 years for maize, millet and sorghum respectively. The adoption of heat-resistant cultivars and the use of captured rainwater have been investigated using one crop model as an idealized sensitivity test. The generalized doption of a cultivar resistant to high-temperature stress during flowering is shown to be more beneficial than using rainwater harvesting.

  13. Can deficit irrigation techniques be used to enhance phosphorus and water use efficiency and benefit crop yields?

    Science.gov (United States)

    Wright, Hannah R.; Dodd, Ian C.; Blackwell, Martin S. A.; Surridge, Ben W. J.

    2015-04-01

    Soil drying and rewetting (DRW) affects the forms and availability of phosphorus (P). Water soluble P has been reported to increase 1.8- to 19-fold after air-drying with the majority of the increase (56-100%) attributable to organic P. Similarly, in two contrasting soil types DRW increased concentrations of total P and reactive P in leachate, likely due to enhanced P mineralisation and physiochemical processes causing detachment of soil colloids, with faster rewetting rates related to higher concentrations of P. The intensity of drying as well as the rate of rewetting influences organic and inorganic P cycling. How these dynamics are driven by soil water status, and impact crop P acquisition and growth, remains unclear. Improving P and water use efficiencies and crop yields is globally important as both P and water resources become increasingly scarce, whilst demand for food increases. Irrigation supply below the water requirement for full crop evapotranspiration is employed by agricultural practitioners where water supply is limited. Regulated deficit irrigation describes the scheduling of water supply to correspond to the times of highest crop demand. Alternate wetting and drying (AWD) is applied in lowland irrigated rice production to avoid flooding at certain times of crop development, and has benefited P nutrition and yields. This research aims to optimise the benefits of P availability and uptake achieved by DRW by guiding deficit irrigation management strategies. Further determination of underlying processes driving P cycling at fluctuating soil moisture status is required. Presented here is a summary of the literature on DRW effects on soil P availability and plant P uptake and partitioning, in a range of soil types and cropping systems, with emphasis on alternate wetting and drying irrigation (AWD) compared to continuous flooding in lowland irrigated rice production. Soil water contents and matric potentials, and effects on P dynamics, are highly variable

  14. Soil properties, greenhouse gas emissions and crop yield under compost, biochar and co-composted biochar in two tropical agronomic systems

    Energy Technology Data Exchange (ETDEWEB)

    Bass, Adrian M., E-mail: adrian.bass@glasgow.ac.uk [Centre for Tropical Environmental and Sustainability Science, College of Science, Technology and Engineering, James Cook University, Cairns, Queensland 4870 (Australia); Bird, Michael I. [Centre for Tropical Environmental and Sustainability Science, College of Science, Technology and Engineering, James Cook University, Cairns, Queensland 4870 (Australia); Kay, Gavin [Terrain Natural Resource Management, 2 Stitt Street, Innisfail, Queensland 4860 (Australia); Muirhead, Brian [Northern Gulf Resource Management Group, 317 Byrnes Street, Mareeba, Queensland 4880 (Australia)

    2016-04-15

    ABSTRACT: The addition of organic amendments to agricultural soils has the potential to increase crop yields, reduce dependence on inorganic fertilizers and improve soil condition and resilience. We evaluated the effect of biochar (B), compost (C) and co-composted biochar (COMBI) on the soil properties, crop yield and greenhouse gas emissions from a banana and a papaya plantation in tropical Australia in the first harvest cycle. Biochar, compost and COMBI organic amendments improved soil properties, including significant increases in soil water content, CEC, K, Ca, NO{sub 3}, NH{sub 4} and soil carbon content. However, increases in soil nutrient content and improvements in physical properties did not translate to improved fruit yield. Counter to our expectations, banana crop yield (weight per bunch) was reduced by 18%, 12% and 24% by B, C and COMBI additions respectively, and no significant effect was observed on the papaya crop yield. Soil efflux of CO{sub 2} was elevated by addition of C and COMBI amendments, likely due to an increase in labile carbon for microbial processing. Our data indicate a reduction in N{sub 2}O flux in treatments containing biochar. The application of B, C and COMBI amendments had a generally positive effect on soil properties, but this did not translate into a crop productivity increase in this study. The benefits to soil nutrient content, soil carbon storage and N{sub 2}O emission reduction need to be carefully weighed against potentially deleterious effects on crop yield, at least in the short-term. - Highlights: • Biochar and compost amendment has potential to improve tropical agriculture. • We monitored soil health, gas fluxes and crop yield under biochar and compost. • Biochar improved soil nutrient content, water retention and reduced N{sub 2}O emissions. • Biochar significantly reduced banana yield performance and did not affect papaya yield. • Organic amendment is not an ‘always win’ scenario for tropical

  15. Soil properties, greenhouse gas emissions and crop yield under compost, biochar and co-composted biochar in two tropical agronomic systems

    International Nuclear Information System (INIS)

    Bass, Adrian M.; Bird, Michael I.; Kay, Gavin; Muirhead, Brian

    2016-01-01

    ABSTRACT: The addition of organic amendments to agricultural soils has the potential to increase crop yields, reduce dependence on inorganic fertilizers and improve soil condition and resilience. We evaluated the effect of biochar (B), compost (C) and co-composted biochar (COMBI) on the soil properties, crop yield and greenhouse gas emissions from a banana and a papaya plantation in tropical Australia in the first harvest cycle. Biochar, compost and COMBI organic amendments improved soil properties, including significant increases in soil water content, CEC, K, Ca, NO_3, NH_4 and soil carbon content. However, increases in soil nutrient content and improvements in physical properties did not translate to improved fruit yield. Counter to our expectations, banana crop yield (weight per bunch) was reduced by 18%, 12% and 24% by B, C and COMBI additions respectively, and no significant effect was observed on the papaya crop yield. Soil efflux of CO_2 was elevated by addition of C and COMBI amendments, likely due to an increase in labile carbon for microbial processing. Our data indicate a reduction in N_2O flux in treatments containing biochar. The application of B, C and COMBI amendments had a generally positive effect on soil properties, but this did not translate into a crop productivity increase in this study. The benefits to soil nutrient content, soil carbon storage and N_2O emission reduction need to be carefully weighed against potentially deleterious effects on crop yield, at least in the short-term. - Highlights: • Biochar and compost amendment has potential to improve tropical agriculture. • We monitored soil health, gas fluxes and crop yield under biochar and compost. • Biochar improved soil nutrient content, water retention and reduced N_2O emissions. • Biochar significantly reduced banana yield performance and did not affect papaya yield. • Organic amendment is not an ‘always win’ scenario for tropical agriculture.

  16. Crop yield and light/energy efficiency in a closed ecological system: Laboratory Biosphere experiments with wheat and sweet potato.

    Science.gov (United States)

    Nelson, M; Dempster, W F; Silverstone, S; Alling, A; Allen, J P; van Thillo, M

    2005-01-01

    Two crop growth experiments in the soil-based closed ecological facility, Laboratory Biosphere, were conducted from 2003 to 2004 with candidate space life support crops. Apogee wheat (Utah State University variety) was grown, planted at two densities, 400 and 800 seeds m-2. The lighting regime for the wheat crop was 16 h of light-8 h dark at a total light intensity of around 840 micromoles m-2 s-1 and 48.4 mol m-2 d-1 over 84 days. Average biomass was 1395 g m-2, 16.0 g m-2 d-1 and average seed production was 689 g m-2 and 7.9 g m-2 d-1. The less densely planted side was more productive than the denser planting, with 1634 g m-2 and 18.8 g m-2 d-1 of biomass vs. 1156 g m-2 and 13.3 g m-2 d-1; and a seed harvest of 812.3 g m-2 and 9.3 g m-2 d-1 vs. 566.5 g m-2 and 6.5 g m-2 d-1. Harvest index was 0.49 for the wheat crop. The experiment with sweet potato used TU-82-155 a compact variety developed at Tuskegee University. Light during the sweet potato experiment, on a 18 h on/6 h dark cycle, totaled 5568 total moles of light per square meter in 126 days for the sweet potatoes, or an average of 44.2 mol m-2 d-1. Temperature regime was 28 +/- 3 degrees C day/22 +/- 4 degrees C night. Sweet potato tuber yield was 39.7 kg wet weight, or an average of 7.4 kg m-2, and 7.7 kg dry weight of tubers since dry weight was about 18.6% wet weight. Average per day production was 58.7 g m-2 d-1 wet weight and 11.3 g m-2 d-1. For the wheat, average light efficiency was 0.34 g biomass per mole, and 0.17 g seed per mole. The best area of wheat had an efficiency of light utilization of 0.51 g biomass per mole and 0.22 g seed per mole. For the sweet potato crop, light efficiency per tuber wet weight was 1.33 g mol-1 and 0.34 g dry weight of tuber per mole of light. The best area of tuber production had 1.77 g mol-1 wet weight and 0.34 g mol-1 of light dry weight. The Laboratory Biosphere experiment's light efficiency was somewhat higher than the USU field results but somewhat below

  17. Modeling of Yield Estimation for The Main Crops in Iran Based on Mechanization Index (hp ha-1

    Directory of Open Access Journals (Sweden)

    K Abbasi

    2014-09-01

    Full Text Available Agricultural mechanization is a method for transiting from traditional agriculture towards industrial and sustainable one. Due to the limitation of natural resources and increasing population we need to have economical production of agricultural crops. For reaching this destination; agricultural mechanization has a remarkable role. So it is necessary to have an extensive view for mechanization, because with the help of mechanization the agricultural inputs such as seeds, fertilizer and even water and soil can effectively be managed for an economical and sustainable production. This study has been carried out in many provinces of Iran. The data of agricultural tractors and cereal combine harvesters were firstly gathered by means of questionnaire. The tractors were categorized in four power levels of less than 45, 45 to 80, 80 to 110, and more than 110 hp. In addition, it was also carried out for cereal combine harvesters; it was in three power levels, i.e. between 100 to 110, 110 to 155 and 155 to 210 horse-power in 3 ages, i.e. less than 13, between 13 to 20, and more than 20 years. Information regarding to cultivation areas, production volume, and yield of main crops gathered from statistics of Ministry of Jihad-e-Agriculture. Then agriculture mechanization level index (hp ha-1 in each province was calculated. Four main crops including irrigated and rain-fed wheat and irrigated and rain-fed barley, which met the required criteria to be used in the model, were statistically analyzed. Correlation analysis was carried out in order to get an effective model between yield of the four main crops in Iran and agriculture mechanization level index. Pearson correlation index showed that there is a direct and significant correlation between these variables. Subsequently, outliers were identified in order to get a model with necessary efficiency to predict the yield through mechanization level index, by scatter diagram and estimating regression lines in 1

  18. Reduction of CMIP5 models bias using Cumulative Distribution Function transform and impact on crops yields simulations across West Africa.

    Science.gov (United States)

    Moise Famien, Adjoua; Defrance, Dimitri; Sultan, Benjamin; Janicot, Serge; Vrac, Mathieu

    2017-04-01

    Different CMIP exercises show that the simulations of the future/current temperature and precipitation are complex with a high uncertainty degree. For example, the African monsoon system is not correctly simulated and most of the CMIP5 models underestimate the precipitation. Therefore, Global Climate Models (GCMs) show significant systematic biases that require bias correction before it can be used in impacts studies. Several methods of bias corrections have been developed for several years and are increasingly using more complex statistical methods. The aims of this work is to show the interest of the CDFt (Cumulative Distribution Function transfom (Michelangeli et al.,2009)) method to reduce the data bias from 29 CMIP5 GCMs over Africa and to assess the impact of bias corrected data on crop yields prediction by the end of the 21st century. In this work, we apply the CDFt to daily data covering the period from 1950 to 2099 (Historical and RCP8.5) and we correct the climate variables (temperature, precipitation, solar radiation, wind) by the use of the new daily database from the EU project WATer and global CHange (WATCH) available from 1979 to 2013 as reference data. The performance of the method is assessed in several cases. First, data are corrected based on different calibrations periods and are compared, on one hand, with observations to estimate the sensitivity of the method to the calibration period and, on other hand, with another bias-correction method used in the ISIMIP project. We find that, whatever the calibration period used, CDFt corrects well the mean state of variables and preserves their trend, as well as daily rainfall occurrence and intensity distributions. However, some differences appear when compared to the outputs obtained with the method used in ISIMIP and show that the quality of the correction is strongly related to the reference data. Secondly, we validate the bias correction method with the agronomic simulations (SARRA-H model (Kouressy

  19. Could the changes in regional crop yields be a pointer of climatic change?

    DEFF Research Database (Denmark)

    Trnka, M; Brázdil, R; Olesen, Jørgen E

    2012-01-01

    This study focuses on the changes in the yield stability of winter wheat and spring barley over the past 140 years and changes in the weather–yield relationships. The study area is located in the Czech Republic in eastern Central Europe between 48°37′–49°30′N and 15°29′–17°55′E and includes 4900 km...... (i.e., compared with the yield level), it showed no change or insignificant increases in the warmest and driest regions. The study also found that the sensitivity to inter-seasonal temperature increase was much more pronounced during 1961–2007 than at the end of the 19th century and that an increase...

  20. An innovative approach for Predicting Farmers' Adaptive Behavior at the Large Watershed Scale: Implications for Water Quality and Crop Yields

    Science.gov (United States)

    Valcu-Lisman, A. M.; Gassman, P. W.; Arritt, R. W.; Kling, C.; Arbuckle, J. G.; Roesch-McNally, G. E.; Panagopoulos, Y.

    2017-12-01

    Projected changes in the climatic patterns (higher temperatures, changes in extreme precipitation events, and higher levels of humidity) will affect agricultural cropping and management systems in major agricultural production areas. The concept of adaption to new climatic or economic conditions is an important aspect of the agricultural decision-making process. Adopting cover crops, reduced tillage, extending the drainage systems and adjusting crop management are only a few examples of adaptive actions. These actions can be easily implemented as long as they have private benefits (increased profits, reduced risk). However, each adaptive action has a different impact on water quality. Cover crops and no till usually have a positive impact on water quality, but increased tile drainage typically results in more degraded water quality due primarily to increased export of soluble nitrogen and phosphorus. The goal of this research is to determine the changes in water quality as well in crop yields as farmers undertake these adaptive measures. To answer this research question, we need to estimate the likelihood that these actions will occur, identify the agricultural areas where these actions are most likely to be implemented, and simulate the water quality impacts associated with each of these scenarios. We apply our modeling efforts to the whole Upper-Mississippi River Basin Basin (UMRB) and the Ohio-Tennessee River Basin (OTRB). These two areas are critical source regions for the re-occurring hypoxic zone in the gulf of Mexico. The likelihood of each adaptive agricultural action is estimated using data from a survey conducted in 2012. A large, representative sample of farmers in the Corn Belt was used in the survey to elicit behavioral intentions regarding three of the most important agricultural adaptation strategies (no-till, cover crops and tile drainage). We use these data to study the relationship between intent to adapt, farmer characteristics, farm

  1. Effect of pre-sowing soil tillage for wheat on the crop structure and the yield components in Dobrudzha region

    Directory of Open Access Journals (Sweden)

    P. Yankov

    2017-06-01

    Full Text Available Abstract. The investigation was carried out in the trial field of Dobrudzha Agricultural Institute on slightly leached chernozem soil. In order to clarify the effect of some types of pre-sowing soil tillage for wheat on the crop structure and certain yield components, the following variants of a stationary field experiment were analyzed: double disking at depth 10-12 cm (check variant; ploughing at 14-16 cm + disking; no-tillage (direct sowing – pre-sowing treatment of the area with total herbicides. Wheat was sown after previous crop grain maize and was fertilized with N P K . Wheat cultivar Enola was planted at norm 550 germinating 140 120 80 2 seeds/m . The number of emerging wheat plants was read using square sampling frames sized 50 cm x 50 cm. Using the same sampling frames, the tillering in autumn prior to the wintering of the crops was followed, and in spring – prior to booting stage. The number of productive tillers was also read using these sampling frames. To determine the length of spike, the number of grains in it, and their weight, 30 spikes from 8 replications of each variant were analyzed. The emerging of the wheat plants, under the conditions of slightly leached chernozem soil in Dobrudzha region, was more uniform after sowing following disking, and after direct sowing. The minimal pre-sowing tillage and no-tillage for wheat ensured better autumn development of the crop and the plants. In these variants, higher number of overwintering plants and productive tillers per unit area were registered. Spike length was the highest after ploughing as pre-sowing tillage. Significant variations in the number of grains per spike of the investigated variants were not found. Grain weight per spike was the lowest under direct sowing.

  2. Wheat Yield Trend and Soil Fertility Status in Long Term Rice-Rice-Wheat Cropping System

    Directory of Open Access Journals (Sweden)

    Nabin Rawal

    2015-12-01

    Full Text Available A long-term soil fertility experiment under rice-rice-wheat system was performed to evaluate the long term effects of inorganic fertilizer and manure applications on soil properties and grain yield of wheat. The experiment began since 1978 was laid out in randomized complete block design with 9 treatments replicated 3 times. From 1990 onwards, periodic modifications have been made in all the treatments splitting the plots in two equal halves of 4 x 3 m2 leaving one half as original. In the original treatments, recent data revealed that the use of Farm Yard Manure (FYM @10 t ha-1 gave significantly (P≤0.05 higher yield of 2.3 t ha-1 in wheat, whereas control plot gave the lowest grain yield of 277 kg ha-1. Similarly, in the modified treatments, the use of FYM @10 t ha-1 along with inorganic Nitrogen (N and Potassium oxide (K2O @ 50 kg ha-1 produced significantly (P≤0.05 the highest yield of 2.4 t/ha in wheat. The control plot with an indigenous nutrient supply only produced wheat yield of 277 kg ha-1 after 35th year completion of rice-rice-wheat system. A sharp decline in wheat yields was noted in minus N, phosphorus (P, Potassium (K treatments during recent years. Yields were consistently higher in the N:P2O5:K2O and FYM treatments than in treatments, where one or more nutrients were lacking. The application of P2O5 and K2O caused a partial recovery of yield in P and K deficient plots. There was significant (P≤0.05 effect of use of chemical fertilizers and manure on soil properties. The soil analysis data showed an improvement in soil pH (7.8, soil organic matter (4.1%, total N content (0.16%, available P (503.5 kg P2O5 ha-1 and exchangeable K (137.5 kg K2O ha-1 in FYM applied treatments over all other treatments. The findings showed that the productivity of the wheat can be increased and sustained by improving nutrient through the integrated use of organic and inorganic manures in long term.

  3. Research Results of Bioenergetics Factors Influence on Crop Production Yields Increase

    Directory of Open Access Journals (Sweden)

    A. P. Grishin

    2018-01-01

    Full Text Available The results of a fundamental research is presented confirming two hypotheses concerning the process of a crop harvest forming and transpiration as the two main bio-energetic factors of fertility. Transpiration is a thermodynamic process in an open self-organizing system, which has a dissipative random character. Transpiration consumes about 95 percent of the water consumed by the plant. (Purpose of research The research objective is to obtain results confirming two hypotheses, according to which the efficiency of the process of crop formation is due to transpiration as a bio-energy factor of fertility and its components: photosynthetic exergy and thermal exergy. (Methods and materials The basic principles of thermodynamic systems self-organization, as well as methods of experimental studies of the principle of subordination to the parameter of the order in which the system control variable is dependent on parameter of the order. The relation of the order parameter (thermal exergy of solar radiation (SR and the variable control (transpiration was determined. The values of the correlation coefficients of these two processes have a value close to one. This confirms that transpiration is a dissipative self-organizing process underlying the transpiration irrigation mechanism. It is revealed that a fractal dimension of a time series of transpiration of cucumber with natural light, a potato is artificial, and their probability haracteristics: the mathematical expectation, standard deviation and variance. (Results and discussion We received confirmation of the scientific hypothesis about the influence of limiting climatic factors on the theoretical limit of plant productivity and fractal dimension of transpiration as an indicator of production processes in crop production. (Conclusions We put forward supplemental scientific hypothesis about the influence of limiting climatic factors on the theoretical limit of plant productivity. It was showed that

  4. Long-term rotation and tillage effects on soil structure and crop yield

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl; Heck, R; Deen, B

    2013-01-01

    long-term rotation and tillage treatment experiment on a Canadian silt loam soil. Topsoil measurements were carried out for three different rotations: R1, (C–C–C–C) continuous corn (Zea mays L.), R6, (C–C–O(RC), B(RC)) corn, corn, oats (Avena fatua L.) and spring barley (Hordeum vulgare L.) and R8, (C......–C–S–S) corn, corn, soybean (Glycine max L.), soybean. A red clover (Trifolium pretense L.) cover crop was under seeded in oats and spring barley in R6. In 2010, first year corn was grown in R6 and R8. The tillage treatments included no tillage, NT and mouldboard ploughing, MP. Topsoil structural quality...

  5. Simulation of rice yield under different irrigation and nitrogen application managements by CropSyst model

    Directory of Open Access Journals (Sweden)

    Narjes ZARE

    2015-12-01

    Full Text Available The aim of this study was the calibration and validation of CropSyst model for rice in the city of Rasht. The necessary data were extracted from a field experiment which was carried out during 2005-2007 in a split-plot design. The main plots were irrigation regimes including continuous flooding irrigation and 5-day irrigation intervals. The subplots consisted of four nitrogen levels: zero N application, 45, 60 and 75 kg N ha-1. Normalized Root Mean Squared Error (nRMSE and Residual Mass Coefficient (Crm in calibration years were 9.3 % and 0.06, respectively. In validation year, nRMSE and Crm were 9.7 % and 0.11, respectively. According to other indices to assess irrigation regimes and fertilizer levels, the most suitable treatments regarding environmental aspect were 5-day irrigation regime and 45 kg N ha-1.

  6. Forecasting Andean rainfall and crop yield from the influence of El Nino on Pleiades visibility

    Science.gov (United States)

    Orlove; Chiang; Cane

    2000-01-06

    Farmers in drought-prone regions of Andean South America have historically made observations of changes in the apparent brightness of stars in the Pleiades around the time of the southern winter solstice in order to forecast interannual variations in summer rainfall and in autumn harvests. They moderate the effect of reduced rainfall by adjusting the planting dates of potatoes, their most important crop. Here we use data on cloud cover and water vapour from satellite imagery, agronomic data from the Andean altiplano and an index of El Nino variability to analyse this forecasting method. We find that poor visibility of the Pleiades in June-caused by an increase in subvisual high cirrus clouds-is indicative of an El Nino year, which is usually linked to reduced rainfall during the growing season several months later. Our results suggest that this centuries-old method of seasonal rainfall forecasting may be based on a simple indicator of El Nino variability.

  7. Effects of climate change on yield potential of wheat and maize crops in the European Union

    NARCIS (Netherlands)

    Wolf, J.; Diepen, van C.A.

    1995-01-01

    Yields of winter wheat, silage maize and grain maize in the main arable areas of the European Union (EU) were calculated with a simulation model, WOFOST, using historical weather data and average soil characteristics. The sensitivity of the model to individual weather variables was determined.

  8. New approach for regional crop yield gap analysis in the Borujen ...

    African Journals Online (AJOL)

    In general, simulated results matched well with the measured parameters in the calibration procedure. Calibrated results of WOFOST model are linked to a geographic information system, in order, to get easier their presentation and also to contribute to identification of hotspots for interventions aimed at yield improvements.