WorldWideScience

Sample records for mauna loa lavas

  1. Lava inundation zone maps for Mauna Loa, Island of Hawaiʻi, Hawaii

    Science.gov (United States)

    Trusdell, Frank A.; Zoeller, Michael H.

    2017-10-12

    Lava flows from Mauna Loa volcano, on the Island of Hawaiʻi, constitute a significant hazard to people and property. This report addresses those lava flow hazards, mapping 18 potential lava inundation zones on the island.

  2. Perception of Lava Flow Hazards and Risk at Mauna Loa and Hualalai Volcanoes, Kona, Hawaii

    Science.gov (United States)

    Gregg, C. E.; Houghton, B. F.; Johnston, D. M.; Paton, D.; Swanson, D. A.

    2001-12-01

    The island of Hawaii is composed of five sub-aerially exposed volcanoes, three of which have been active since 1801 (Kilauea, Mauna Loa, Hualalai). Hawaii has the fastest population growth in the state and the local economy in the Kona districts (i.e., western portion of the island) is driven by tourism. Kona is directly vulnerable to future lava flows from Mauna Loa and Hualalai volcanoes, as well as indirectly from the effects of lava flows elsewhere that may sever the few roads that connect Kona to other vital areas on the island. A number of factors such as steep slopes, high volume eruptions, and high effusion rates, combine to mean that lava flows from Hualalai and Mauna Loa can be fast-moving and hence unusually hazardous. The proximity of lifelines and structures to potential eruptive sources exacerbates societies' risk to future lava flows. Approximately \\$2.3 billion has been invested on the flanks of Mauna Loa since its last eruption in 1984 (Trusdell 1995). An equivalent figure has not yet been determined for Hualalai, but an international airport, several large resort complexes, and Kailua-Kona, the second largest town on the island, are down-slope and within 15km of potential eruptive Hualalai vents. Public and perhaps official understanding of specific lava flow hazards and the perceptions of risk from renewed volcanism at each volcano are proportional to the time lapsed since the most recent eruption that impacted Kona, rather than a quantitative assessment of risk that takes into account recent growth patterns. Lava flows from Mauna Loa and Hualalai last directly impacted upon Kona during the notorious 1950 and circa 1801 eruptions, respectively. Various non-profit organizations; local, state and federal government entities; and academic institutions have disseminated natural hazard information in Kona but despite the intuitive appeal that increased hazard understanding and risk perception results in increased hazard adjustment adoption, this

  3. Mauna Loa lava accumulation rates at the Hilo drill site: Formation of lava deltas during a period of declining overall volcanic growth

    Science.gov (United States)

    Lipman, P.W.; Moore, J.G.

    1996-01-01

    Accumulation rates for lava flows erupted from Mauna Loa, as sampled in the uppermost 280 m of the Hilo drill hole, vary widely for short time intervals (several thousand years), but overall are broadly similar to those documented elsewhere on this volcano since 100 ka. Thickness variations and accumulation rates for Mauna Loa lavas at the Hilo drill site have been strongly affected by local paleotopography, including funneling and ponding between Mauna Kea and Kilauea. In addition, gentle submerged slopes of Mauna Kea in Hilo Bay have permitted large shoreline displacements by Mauna Loa flows. Ages of eruptive intervals have been determined from published isotopic data and from eustatic sea level curves modified to include the isostatic subsidence of the island of Hawaii at 2.2-2.6 mm/yr. Prior to 10 ka, rates of Mauna Loa lava accumulation at the drill site varied from 0.6 to 4.3 mm/yr for dateable intervals, with an overall rate of 1.8 mm/yr. Major eruptive pulses at about 1.3 and 10 ka, each probably representing a single long-lived eruption based on lack of weathering between flow units, increase the overall accumulation rate to 2.4 mm/yr. The higher rate since 10 ka reflects construction of thick near-shoreline lava deltas as postglacial sea levels rose rapidly. Large lava deltas form only along coastal segments where initially subaerial slopes have been submerged by the combined effects of eustatic sea level rise, isostatic subsidence, or spreading of volcano flanks. Overall accumulation of 239 m of lava at the drill site since 100-120 ka closely balances submergence of the Hilo area, suggesting that processes of coastal lava deposition have been modulated by rise in sea level. The Hilo accumulation rate is slightly higher than average rates of 1-2 mm/yr determined elsewhere along the Mauna Loa coast, based on rates of shoreline coverage and dated sea cliff and fault scarp exposures. Low rates of coastal lava accumulation since 100 ka, near or below the rate

  4. Inflation Features of the Distal Pahoehoe Portion of the 1859 Mauna Loa Flow, Hawaii; Implications for Evaluating Planetary Lava Flows

    Science.gov (United States)

    Zimbelman, J. R.; Garry, W. B.; Bleacher, Jacob E.; Crumpler, L S.

    2011-01-01

    The 1859 eruption of Mauna Loa, Hawaii, resulted in the longest subaerial lava flow on the Big Island. Detailed descriptions were made of the eruption both from ships and following hikes by groups of observers; the first three weeks of the eruption produced an `a`a flow that reached the ocean, and the following 10 months produced a pahoehoe flow that also eventually reached the ocean. The distal portion of the 1859 pahoehoe flow component includes many distinctive features indicative of flow inflation. Field work was conducted on the distal 1859 pahoehoe flow during 2/09 and 3/10, which allowed us to document several inflation features, in or-der evaluate how well inflated landforms might be detected in remote sensing data of lava flows on other planets.

  5. Perspectives on basaltic magma crystallization and differentiation: Lava-lake blocks erupted at Mauna Loa volcano summit, Hawaii

    Science.gov (United States)

    McCarter, Renee L.; Fodor, R.V.; Trusdell, Frank A.

    2006-01-01

    Explosive eruptions at Mauna Loa summit ejected coarse-grained blocks (free of lava coatings) from Moku'aweoweo caldera. Most are gabbronorites and gabbros that have 0–26 vol.% olivine and 1–29 vol.% oikocrystic orthopyroxene. Some blocks are ferrogabbros and diorites with micrographic matrices, and diorite veins (≤2 cm) cross-cut some gabbronorites and gabbros. One block is an open-textured dunite.The MgO of the gabbronorites and gabbros ranges ∼ 7–21 wt.%. Those with MgO >10 wt.% have some incompatible-element abundances (Zr, Y, REE; positive Eu anomalies) lower than those in Mauna Loa lavas of comparable MgO; gabbros (MgO <10 wt.%) generally overlap lava compositions. Olivines range Fo83–58, clinopyroxenes have Mg#s ∼83–62, and orthopyroxene Mg#s are 84–63 — all evolved beyond the mineral-Mg#s of Mauna Loa lavas. Plagioclase is An75–50. Ferrogabbro and diorite blocks have ∼ 3–5 wt.% MgO (TiO2 3.2–5.4%; K2O 0.8–1.3%; La 16–27 ppm), and a diorite vein is the most evolved (SiO2 59%, K2O 1.5%, La 38 ppm). They have clinopyroxene Mg#s 67–46, and plagioclase An57–40. The open-textured dunite has olivine ∼ Fo83.5. Seven isotope ratios are 87Sr/86Sr 0.70394–0.70374 and 143Nd/144Nd 0.51293–0.51286, and identify the suite as belonging to the Mauna Loa system.Gabbronorites and gabbros originated in solidification zones of Moku'aweoweo lava lakes where they acquired orthocumulate textures and incompatible-element depletions. These features suggest deeper and slower cooling lakes than the lava lake paradigm, Kilauea Iki, which is basalt and picrite. Clinopyroxene geobarometry suggests crystallization at <1 kbar P. Highly evolved mineral Mg#s, <75, are largely explained by cumulus phases exposed to evolving intercumulus liquids causing compositional ‘shifts.’ Ferrogabbro and diorite represent segregation veins from differentiated intercumulus liquids filter pressed into rigid zones of cooling lakes. Clinopyroxene

  6. Radiocarbon dates for lava flows from northeast rift zone of Mauna Loa Volcano, Hilo 7 1/2 minute quadrangle, Island of Hawaii

    Science.gov (United States)

    Buchanan-Banks, J. M.; Lockwood, J.P.; Rubin, M.

    1989-01-01

    Twenty-eight 14C analyses are reported for carbonized roots and other plant material collected from beneath 15 prehistoric lava flows erupted from the northeast rift zone (NERZ) of Mauna Loa Volcano (ML). The new 14C dates establish ages for 13 previously undated lava flows, and correct or add to information previously reported. Limiting ages on other flows that lie either above or below the dated flows are also established. These dates help to unravel the eruptive history of ML's NERZ. -from Authors

  7. Space radar image of Mauna Loa, Hawaii

    Science.gov (United States)

    1995-01-01

    This image of the Mauna Loa volcano on the Big Island of Hawaii shows the capability of imaging radar to map lava flows and other volcanic structures. Mauna Loa has erupted more than 35 times since the island was first visited by westerners in the early 1800s. The large summit crater, called Mokuaweoweo Caldera, is clearly visible near the center of the image. Leading away from the caldera (towards top right and lower center) are the two main rift zones shown here in orange. Rift zones are areas of weakness within the upper part of the volcano that are often ripped open as new magma (molten rock) approaches the surface at the start of an eruption. The most recent eruption of Mauna Loa was in March and April 1984, when segments of the northeast rift zones were active. If the height of the volcano was measured from its base on the ocean floor instead of from sea level, Mauna Loa would be the tallest mountain on Earth. Its peak (center of the image) rises more than 8 kilometers (5 miles) above the ocean floor. The South Kona District, known for cultivation of macadamia nuts and coffee, can be seen in the lower left as white and blue areas along the coast. North is toward the upper left. The area shown is 41.5 by 75 kilometers (25.7 by 46.5 miles), centered at 19.5 degrees north latitude and 155.6 degrees west longitude. The image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/ X-SAR) aboard the space shuttle Endeavour on its 36th orbit on October 2, 1994. The radar illumination is from the left of the image. The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted, vertically received); blue represents the C-band (horizontally transmitted, vertically received). The resulting color combinations in this radar image are caused by differences in surface roughness of the lava flows. Smoother flows

  8. Isotopic evolution of Mauna Loa volcano

    International Nuclear Information System (INIS)

    Kurz, M.D.; Kammer, D.P.

    1991-01-01

    In an effort to understand the temporal helium isotopic variations in Mauna Loa volcano, we have measured helium, strontium and lead isotopes in a suite of Mauna Loa lavas that span most of the subaerial eruptive history of the volcano. The lavas range in age from historical flows to Ninole basalt which are thought to be several hundred thousand years old. Most of the samples younger than 30 ka in age (Kau Basalt) are radiocarbon-dated flows, while the samples older than 30 ka are stratigraphically controlled (Kahuku and Ninole Basalt). The data reveal a striking change in the geochemistry of the lavas approximately 10 ka before present. The lavas older than 10 ka are characterized by high 3 He/ 4 He (≅ 16-20 times atmospheric), higher 206 Pb/ 204 Pb (≅ 18.2), and lower 87 Sr/ 86 Sr(≅ 0.70365) ratios than the younger Kau samples (having He, Pb and Sr ratios of approximately 8.5 x atmospheric, 18.1 and 0.70390, respectively). The historical lavas are distinct in having intermediate Sr and Pb isotopic compositions with 3 He/ 4 He ratios similar to the other young Kau basalt (≅ 8.5 x atmospheric). The isotopic variations are on a shorter time scale (100 to 10,000 years) than has previously been observed for Hawaiian volcanoes, and demonstrate the importance of geochronology and stratigraphy to geochemical studies. The data show consistency between all three isotope systems, which suggests that the variations are not related to magma chamber degassing processes, and that helium is not decoupled from the other isotopes. However, the complex temporal evolution suggests that three distinct mantle sources are required to explain the isotopic data. Most of the Mauna Loa isotopic variations could be explained by mixing between a plume type source, similar to Loihi, and an asthenospheric source with helium isotopic composition close to MORB and elevated Sr isotopic values. (orig./WL)

  9. 1984 Mauna Loa eruption and planetary geolgoy

    International Nuclear Information System (INIS)

    Moore, H.J.

    1987-01-01

    In planetary geology, lava flows on the Moon and Mars are commonly treated as relatively simple systems. Some of the complexities of actual lava flows are illustrated using the main flow system of the 1984 Mauna Loa eruption. The outline, brief narrative, and results given are based on a number of sources. The implications of the results to planetary geology are clear. Volume flow rates during an eruption depend, in part, on the volatile content of the lava. These differ from the volume flow rates calculated from post eruption flow dimensions and the duration of the eruption and from those using models that assume a constant density. Mass flow rates might be more appropriate because the masses of volatiles in lavas are usually small, but variable and sometimes unknown densities impose severe restrictions on mass estimates

  10. Radon at the Mauna Loa Observatory: transport from distant continents

    International Nuclear Information System (INIS)

    Whittlestone, S.; Robinson, E.; Ryan, S.

    1992-01-01

    Continuous measurements of radon have been made at an altitude of 3400m at the Mauna Loa Observatory, Hawaii. Concentrations ranged from about 20 to more than 700mBq m -3 . These were similar to values at remote Macquarie I., some 2000 km south of Australia in the Southern Ocean. At Mauna Loa, the radon concentrations could usually be separated into free tropospheric and island influenced categories on the basis of local meteorological observations. On one occasion a long range transport event from Asia brought relatively high radon concentrations to Mauna Loa and persisted for several days. The Asian origin of this event was supported by wind trajectories. This measurement program demonstrates the value of radon data in evaluating air transport models and the influence of transport from distant continents on baseline atmospheric measurements. (author)

  11. Long, paired A'A/Pahoehoe flows of Mauna Loa: Volcanological significance and insights they provide into volcano plumbing systems

    Science.gov (United States)

    Rowland, Scott K.; Walker, George P. L.

    1987-01-01

    The long lava flows of Mauna Loa, Hawaii have been cited as Earth's closed analogs to the large Martian flows. It is therefore important to understand the flow mechanics and characteristics of the Mauna Loa flows and to make use of these in an attempt to gain insights into Martian eruptive processes. Two fundamentally different kinds of long lava flows can be distinguished on Hawaiian volcanoes as in Martian flows. The two kinds may have identical initial viscosities, chemical compositions, flow lengths, and flow volumes, but their flow mechanisms and thermal energy budgets are radically different. One travels a distance set by the discharge rate as envisaged by Walker and Wadge, and the other travels a distance set mainly by the eruption duration and ground slope. In the Mauna Loa lavas, yield strength becomes an important flow morphology control only in the distal part of a'a lavas. The occurrence of paired flows on Mauna Loa yields insights into the internal plumbing systems of the volcano, and it is significant that all of the volume of the a'a flow must be stored in a magma chamber before eruption, while none of the volume of the pahoehoe needs to be so stored. Differentiation between the two kinds of flows on images of Martian volcanoes is possible and hence an improved understanding of these huge structures is acquired.

  12. Long, paired A'A/Pahoehoe flows of Mauna Loa: Volcanological significance and insights they provide into volcano plumbing systems

    International Nuclear Information System (INIS)

    Rowland, S.K.; Walker, G.P.L.

    1987-01-01

    The long lava flows of Mauna Loa, Hawaii have been cited as Earth's closed analogs to the large Martian flows. It is therefore important to understand the flow mechanics and characteristics of the Mauna Loa flows and to make use of these in an attempt to gain insights into Martian eruptive processes. Two fundamentally different kinds of long lava flows can be distinguished on Hawaiian volcanoes as in Martian flows. The two kinds may have identical initial viscosities, chemical compositions, flow lengths, and flow volumes, but their flow mechanisms and thermal energy budgets are radically different. One travels a distance set by the discharge rate as envisaged by Walker and Wadge, and the other travels a distance set mainly by the eruption duration and ground slope. In the Mauna Loa lavas, yield strength becomes an important flow morphology control only in the distal part of a'a lavas. The occurrence of paired flows on Mauna Loa yields insights into the internal plumbing systems of the volcano, and it is significant that all of the volume of the a'a flow must be stored in a magma chamber before eruption, while none of the volume of the pahoehoe needs to be so stored. Differentiation between the two kinds of flows on images of Martian volcanoes is possible and hence an improved understanding of these huge structures is acquired

  13. Mauna Loa--history, hazards and risk of living with the world's largest volcano

    Science.gov (United States)

    Trusdell, Frank A.

    2012-01-01

    Mauna Loa on the Island Hawaiʻi is the world’s largest volcano. People residing on its flanks face many hazards that come with living on or near an active volcano, including lava flows, explosive eruptions, volcanic smog, damaging earthquakes, and local tsunami (giant seawaves). The County of Hawaiʻi (Island of Hawaiʻi) is the fastest growing County in the State of Hawaii. Its expanding population and increasing development mean that risk from volcano hazards will continue to grow. U.S. Geological Survey (USGS) scientists at the Hawaiian Volcano Observatory (HVO) closely monitor and study Mauna Loa Volcano to enable timely warning of hazardous activity and help protect lives and property.

  14. Geologic map of the northeast flank of Mauna Loa volcano, Island of Hawai'i, Hawaii

    Science.gov (United States)

    Trusdell, Frank A.; Lockwood, John P.

    2017-05-01

    SummaryMauna Loa, the largest volcano on Earth, has erupted 33 times since written descriptions became available in 1832. Some eruptions were preceded by only brief seismic unrest, while others followed several months to a year of increased seismicity.The majority of the eruptions of Mauna Loa began in the summit area (>12,000-ft elevation; Lockwood and Lipman, 1987); yet the Northeast Rift Zone (NERZ) was the source of eight flank eruptions since 1843 (table 1). This zone extends from the 13,680-ft-high summit towards Hilo (population ~60,000), the second largest city in the State of Hawaii. Although most of the source vents are farther than 30 km away, the 1880 flow from one of the vents extends into Hilo, nearly reaching Hilo Bay. The city is built entirely on flows erupted from the NERZ, most older than that erupted in 1843.Once underway, Mauna Loa's eruptions can produce lava flows that reach the sea in less than 24 hours, severing roads and utilities in their path. For example, lava flows erupted from the Southwest Rift Zone (SWRZ) in 1950 advanced at an average rate of 9.3 km per hour, and all three lobes reached the ocean within approximately 24 hours (Finch and Macdonald, 1953). The flows near the eruptive vents must have traveled even faster.In terms of eruption frequency, pre-eruption warning, and rapid flow emplacement, Mauna Loa poses an enormous volcanic-hazard threat to the Island of Hawai‘i. By documenting past activity and by alerting the public and local government officials of our findings, we can anticipate the volcanic hazards and substantially mitigate the risks associated with an eruption of this massive edifice.From the geologic record, we can deduce several generalized facts about the geologic history of the NERZ. The middle to the uppermost section of the rift zone were more active in the past 4,000 years than the lower part, perhaps due to buttressing of the lower east rift zone by Mauna Kea and Kīlauea volcanoes. The historical flows

  15. NOAA carbon dioxide measurements at Mauna Loa Observatory, 1974-1976

    International Nuclear Information System (INIS)

    Peterson, J.T.; Komhyr, W.D.; Harris, T.B.; Chin, J.F.S.

    1977-01-01

    The Geophysical Monitoring for Climatic Change program of NOAA's Environmental Research Laboratories has measured atmospheric carbon dioxide concentrations at Mauna Loa Observatory, Hawaii, continuously since June 1974. The measurements through 1976 have been analyzed for recent secular concentration changes and show a continuing increase of about 0.9 ppm/year

  16. Coupling at Mauna Loa and Kīlauea by stress transfer in an asthenospheric melt layer

    Science.gov (United States)

    Gonnermann, Helge M.; Foster, James H.; Poland, Michael; Wolfe, Cecily J.; Brooks, Benjamin A.; Miklius, Asta

    2012-01-01

    The eruptive activity at the neighbouring Hawaiian volcanoes, Kīlauea and Mauna Loa, is thought to be linked despite both having separate lithospheric magmatic plumbing systems. Over the past century, activity at the two volcanoes has been anti-correlated, which could reflect a competition for the same magma supply. Yet, during the past decade Kīlauea and Mauna Loa have inflated simultaneously. Linked activity between adjacent volcanoes in general remains controversial. Here we present a numerical model for the dynamical interaction between Kīlauea and Mauna Loa, where both volcanoes are coupled by pore-pressure diffusion, occurring within a common, asthenospheric magma supply system. The model is constrained by measurements of gas emission rates indicative of eruptive activity, and it is calibrated to match geodetic measurements of surface deformation at both volcanoes, inferred to reflect changes in shallow magma storage. Although an increase in the asthenospheric magma supply can cause simultaneous inflation of Kīlauea and Mauna Loa, we find that eruptive activity at one volcano may inhibit eruptions of the adjacent volcano, if there is no concurrent increase in magma supply. We conclude that dynamic stress transfer by asthenospheric pore pressure is a viable mechanism for volcano coupling at Hawai‘i, and perhaps for adjacent volcanoes elsewhere.

  17. Record annual increase of carbon dioxide observed at Mauna Loa for 2015 |

    Science.gov (United States)

    Climate Oceans & Coasts Fisheries Satellites Research Marine & Aviation Charting Sanctuaries Research Record annual increase of carbon dioxide observed at Mauna Loa for 2015 Climate Research Share Niño weather pattern, as forests, plantlife and other terrestrial systems responded to changes in

  18. The Perception of Volcanic Risk in Kona Communities from Mauna Loa and Hualalai Volcanoes, Hawai`i

    Science.gov (United States)

    Gregg, C. E.; Houghton, B. F.; Johnston, D. M.; Paton, D.; Swanson, D. A.

    2002-12-01

    Hawai`i's coastal communities are becoming increasingly vulnerable to natural hazards as a consequence of increasing population and infrastructure. Volcanic hazards in Kona (i.e., western side of the island) stem primarily from Mauna Loa and Hualalai volcanoes. The former has erupted thirty-nine times since 1832. Lava flows were emplaced in Kona during six of these, but last impacted Kona in 1950. Hualalai last erupted in c. 1800. The most recent eruptions at each volcano were damaging to society, but future eruptions would exact much greater impacts. The second largest city on the island, several resort complexes, and an international airport are located within 15 km of vents. Society's proximity to potential eruptive sources, a potential for relatively fast moving lavas, and the relatively long time intervals since the last eruptions in Kona, are the stimuli for this study of risk perception. Target populations were high school students and their parents, and the greater adult public (n=462). Using this data, we discuss threat knowledge as an influence on risk perception and perceptions as a driving mechanism for preparedness. Threat knowledge and perception of risk were found to be low to moderate. On average less than two-thirds of residents were aware of the most recent eruptions that impacted Kona and a minority felt that Mauna Loa and Hualalai could erupt again. Furthermore, only about one-third were aware that lava flows could reach the coast in Kona in under three hours. Lava flows and ash fall were perceived to be among the least likely hazards to affect the respondent's community. Not unexpectedly, individual preparedness measures were found to be limited to simple tasks, while measures specific to infrequent hazard events such as volcanic eruptions and earthquakes were seldom adopted. Respondents exhibit an "unrealistic optimism bias" and infer that responsibility for community preparedness for future eruptions rests primarily with officials. Hazard

  19. Application of Earthquake Subspace Detectors at Kilauea and Mauna Loa Volcanoes, Hawai`i

    Science.gov (United States)

    Okubo, P.; Benz, H.; Yeck, W.

    2016-12-01

    Recent studies have demonstrated the capabilities of earthquake subspace detectors for detailed cataloging and tracking of seismicity in a number of regions and settings. We are exploring the application of subspace detectors at the United States Geological Survey's Hawaiian Volcano Observatory (HVO) to analyze seismicity at Kilauea and Mauna Loa volcanoes. Elevated levels of microseismicity and occasional swarms of earthquakes associated with active volcanism here present cataloging challenges due the sheer numbers of earthquakes and an intrinsically low signal-to-noise environment featuring oceanic microseism and volcanic tremor in the ambient seismic background. With high-quality continuous recording of seismic data at HVO, we apply subspace detectors (Harris and Dodge, 2011, Bull. Seismol. Soc. Am., doi: 10.1785/0120100103) during intervals of noteworthy seismicity. Waveform templates are drawn from Magnitude 2 and larger earthquakes within clusters of earthquakes cataloged in the HVO seismic database. At Kilauea, we focus on seismic swarms in the summit caldera region where, despite continuing eruptions from vents in the summit region and in the east rift zone, geodetic measurements reflect a relatively inflated volcanic state. We also focus on seismicity beneath and adjacent to Mauna Loa's summit caldera that appears to be associated with geodetic expressions of gradual volcanic inflation, and where precursory seismicity clustered prior to both Mauna Loa's most recent eruptions in 1975 and 1984. We recover several times more earthquakes with the subspace detectors - down to roughly 2 magnitude units below the templates, based on relative amplitudes - compared to the numbers of cataloged earthquakes. The increased numbers of detected earthquakes in these clusters, and the ability to associate and locate them, allow us to infer details of the spatial and temporal distributions and possible variations in stresses within these key regions of the volcanoes.

  20. The origin of Mauna Loa's Nīnole Hills: Evidence of rift zone reorganization

    Science.gov (United States)

    Zurek, Jeffrey; Williams-Jones, Glyn; Trusdell, Frank A.; Martin, Simon

    2015-01-01

    In order to identify the origin of Mauna Loa volcano's Nīnole Hills, Bouguer gravity was used to delineate density contrasts within the edifice. Our survey identified two residual anomalies beneath the Southwest Rift Zone (SWRZ) and the Nīnole Hills. The Nīnole Hills anomaly is elongated, striking northeast, and in inversions both anomalies merge at approximately −7 km above sea level. The positive anomaly, modeled as a rock volume of ~1200 km3 beneath the Nīnole Hills, is associated with old eruptive vents. Based on the geologic and geophysical data, we propose that the gravity anomaly under the Nīnole Hills records an early SWRZ orientation, now abandoned due to geologically rapid rift-zone reorganization. Catastrophic submarine landslides from Mauna Loa's western flank are the most likely cause for the concurrent abandonment of the Nīnole Hills section of the SWRZ. Rift zone reorganization induced by mass wasting is likely more common than currently recognized.

  1. The perception of volcanic risk in Kona communities from Mauna Loa and Hualālai volcanoes, Hawai'i

    Science.gov (United States)

    Gregg, Chris E.; Houghton, Bruce F.; Johnston, David M.; Paton, Douglas; Swanson, D.A.

    2004-01-01

    Volcanic hazards in Kona (i.e. the western side of the island of Hawai'i) stem primarily from Mauna Loa and Huala??lai volcanoes. The former has erupted 39 times since 1832. Lava flows were emplaced in Kona during seven of these eruptions and last impacted Kona in 1950. Huala??lai last erupted in ca. 1800. Society's proximity to potential eruptive sources and the potential for relatively fast-moving lava flows, coupled with relatively long time intervals since the last eruptions in Kona, are the underlying stimuli for this study of risk perception. Target populations were high-school students and adults ( n =462). Using these data, we discuss threat knowledge as an influence on risk perception, and perception as a driving mechanism for preparedness. Threat knowledge and perception of risk were found to be low to moderate. On average, fewer than two-thirds of the residents were aware of the most recent eruptions that impacted Kona, and a minority felt that Mauna Loa and Huala??lai could ever erupt again. Furthermore, only about one-third were aware that lava flows could reach the coast in Kona in less than 3 h. Lava flows and ash fall were perceived to be among the least likely hazards to affect the respondent's community within the next 10 years, whereas vog (volcanic smog) was ranked the most likely. Less than 18% identified volcanic hazards as amongst the most likely hazards to affect them at home, school, or work. Not surprisingly, individual preparedness measures were found on average to be limited to simple tasks of value in frequently occurring domestic emergencies, whereas measures specific to infrequent hazard events such as volcanic eruptions were seldom adopted. Furthermore, our data show that respondents exhibit an 'unrealistic optimism bias' and infer that responsibility for community preparedness for future eruptions primarily rests with officials. We infer that these respondents may be less likely to attend to hazard information, react to warnings as

  2. Assessing individual and organizational response to volcanic crisis and unrest at Kīlauea and Mauna Loa volcanoes, Hawai'i

    Science.gov (United States)

    Reeves, Ashleigh; Gregg, Chris; Lindell, Michael; Prater, Carla; Joyner, Timothy; Eggert, Sarah

    2017-04-01

    This study describes response to and preparedness for eruption and unrest at Kīlauea and Mauna Loa volcanoes, respectively. The on-going 1983-present eruption of Kīlauea's East Rift Zone (ERZ) has generated a series of lava flow crises, the latest occurring in 2014 and 2015 when lava from a new vent flowed northeast and into the perimeter of developed areas in the lower Puna District, some 20km distant. It took ca. 2 months for the June 27 lava flow to advance a distance to which scientists reported it might be a concern to people downslope, but this prompted widespread formal and informal responses and culminated in improvements to infrastructure, voluntary evacuations of residents and businesses and closure of schools. Unlike Kīlauea, which has had frequent crises since the mid-20th century, the last eruption of nearby Mauna Loa occurred in 1984 and the last eruption and crisis on its Southwest Rift Zone (SWZ) was in 1950, so residents there are less familiar with eruptions than in Puna. In September 2015, the US Geological Survey, Hawaiian Volcano Observatory upgraded Mauna Loa's Alert Level from Normal to Advisory due to increases in unrest above known background levels. A crisis on Mauna Loa's SWZ would likely be much different than the recent 2014-15 crisis at Kīlauea as steep topography downslope of the SWZ and typical high discharge rates mean lava flows move fast, posing increased risk to areas downslope. Typically, volcanic eruptions have significant economic consequences out of proportion with their magnitudes. Furthermore, uncertainties regarding the physical and organizational communication of risk information amplify these economic losses. One significant impediment to risk communication is limited knowledge about the most effective ways to verbally, numerically and graphically communicate scientific uncertainty. This was a challenge in the recent lava flow crisis on Kīlauea. The public's demand for near-real time information updates, including

  3. Comparison of Inflation Processes at the 1859 Mauna Loa Flow, HI, and the McCartys Flow Field, NM

    Science.gov (United States)

    Bleacher, Jacob E.; Garry, W. Brent; Zimbelman, James R.; Crumpler, Larry S.

    2012-01-01

    Basaltic lavas typically form channels or tubes during flow emplacement. However, the importance of sheet flow in the development of basalt ic terrains received recognition over the last 15 years. George Walke r?s research on the 1859 Mauna Loa Flow was published posthumously in 2009. In this paper he discusses the concept of endogenous growth, or inflation, for the distal portion of this otherwise channeldominated lava flow. We used this work as a guide when visiting the 1859 flow to help us better interpret the inflation history of the McCartys flow field in NM. Both well preserved flows display similar clues about the process of inflation. The McCartys lava flow field is among the you ngest (approx.3000 yrs) basaltic lava flows in the continental United States. It was emplaced over slopes of <1 degree, which is similar to the location within the 1859 flow where inflation occurred. Although older than the 1859 flow, the McCartys is located in an arid environ ment and is among the most pristine examples of sheet flow morphologies. At the meter scale the flow surface typically forms smooth, undula ting swales that create a polygonal terrain. The literature for simil ar features includes multiple explanatory hypotheses, original breakouts from adjacent lobes, or inflation related upwarping of crust or sa gging along fractures that enable gas release. It is not clear which of these processes is responsible for polygonal terrains, and it is po ssible that one explanation is not the sole cause of this morphology between all inflated flows. Often, these smooth surfaces within an inflated sheet display lineated surfaces and occasional squeeze-ups alon g swale contacts. We interpret the lineations to preserve original fl ow direction and have begun mapping these orientations to better interpret the emplacement history. At the scale of 10s to 100s of meters t he flow comprises multiple topographic plateaus and depressions. Some depressions display level floors with

  4. Technical Note: Long-term memory effect in the atmospheric CO2 concentration at Mauna Loa

    Directory of Open Access Journals (Sweden)

    C. Varotsos

    2007-01-01

    Full Text Available The monthly mean values of the atmospheric carbon dioxide concentration derived from in-situ air samples collected at Mauna Loa Observatory, Hawaii, USA during 1958–2004 (the longest continuous record available in the world are analyzed by employing the detrended fluctuation analysis to detect scaling behavior in this time series. The main result is that the fluctuations of carbon dioxide concentrations exhibit long-range power-law correlations (long memory with lag times ranging from four months to eleven years, which correspond to 1/f noise. This result indicates that random perturbations in the carbon dioxide concentrations give rise to noise, characterized by a frequency spectrum following a power-law with exponent that approaches to one; the latter shows that the correlation times grow strongly. This feature is pointing out that a correctly rescaled subset of the original time series of the carbon dioxide concentrations resembles the original time series. Finally, the power-law relationship derived from the real measurements of the carbon dioxide concentrations could also serve as a tool to improve the confidence of the atmospheric chemistry-transport and global climate models.

  5. COR1 Engineering Test Unit Measurements at the Mauna Loa Solar Observatory, September 2003

    Science.gov (United States)

    Thompson, William; Reginald, Nelson; Streander, Kim

    2003-01-01

    The COR1 Engineering Test Unit (ETU), which had been previously tested at the NCAR/HAO and NRL test facilities, was modified into an instrument capable of observing the Sun. It was then taken to the Mauna Loa Solar Observatory to observe the corona. The changes made to observe the Sun were as follows: 1. The plate scale was changed to accommodate the smaller Apogee camera. This change had already been made for the NRL tests. 2. The previous Oriel polarizer was replaced with a commercial Polarcor polarizer from Newport to be more flight-like. However, because of cost and availability considerations, this polarizer was smaller than those which will be used for flight. 3. A structure was placed around the back section of the instrument, to protect it from stray light. 4. A pointing spar borrowed from HAO was used to track the Sun. A few days into the test, it became evident that some artifacts were appearing in the data, and these artifacts were changing as the polarizer was rotated. It was decided to test two other polarizers, the Oriel polarizer which had been used in the previous tests at HAO and NRL, and a Nikon polarizer which was borrowed from a camera belonging to one of the observatory staff members. These three polarizers had much different qualities are shown.

  6. Automatic near-real-time detection of CMEs in Mauna Loa K-Cor coronagraph images

    Science.gov (United States)

    Thompson, W. T.; St Cyr, O. C.; Burkepile, J.; Posner, A.

    2017-12-01

    A simple algorithm has been developed to detect the onset of coronal massejections (CMEs), together with an estimate of their speed, in near-real-timeusing images of the linearly polarized white-light solar corona taken by theK-Cor telescope at the Mauna Loa Solar Observatory (MLSO). The algorithm usedis a variation on the Solar Eruptive Event Detection System (SEEDS) developedat George Mason University. The algorithm was tested against K-Cor data takenbetween 29 April 2014 and 20 February 2017, on days which the MLSO websitemarked as containing CMEs. This resulted in testing of 139 days worth of datacontaining 171 CMEs. The detection rate varied from close to 80% in 2014-2015when solar activity was high, down to as low as 20-30% in 2017 when activitywas low. The difference in effectiveness with solar cycle is attributed to thedifference in relative prevalance of strong CMEs between active and quietperiods. There were also twelve false detections during this time period,leading to an average false detection rate of 8.6% on any given day. However,half of the false detections were clustered into two short periods of a fewdays each when special conditions prevailed to increase the false detectionrate. The K-Cor data were also compared with major Solar Energetic Particle(SEP) storms during this time period. There were three SEP events detectedeither at Earth or at one of the two STEREO spacecraft where K-Cor wasobserving during the relevant time period. The K-Cor CME detection algorithmsuccessfully generated alerts for two of these events, with lead times of 1-3hours before the SEP onset at 1 AU. The third event was not detected by theautomatic algorithm because of the unusually broad width of the CME in positionangle.

  7. Three-dimensional seismic velocity structure of Mauna Loa and Kilauea volcanoes in Hawaii from local seismic tomography

    Science.gov (United States)

    Lin, Guoqing; Shearer, Peter M.; Matoza, Robin S.; Okubo, Paul G.; Amelung, Falk

    2016-01-01

    We present a new three-dimensional seismic velocity model of the crustal and upper mantle structure for Mauna Loa and Kilauea volcanoes in Hawaii. Our model is derived from the first-arrival times of the compressional and shear waves from about 53,000 events on and near the Island of Hawaii between 1992 and 2009 recorded by the Hawaiian Volcano Observatory stations. The Vp model generally agrees with previous studies, showing high-velocity anomalies near the calderas and rift zones and low-velocity anomalies in the fault systems. The most significant difference from previous models is in Vp/Vs structure. The high-Vp and high-Vp/Vs anomalies below Mauna Loa caldera are interpreted as mafic magmatic cumulates. The observed low-Vp and high-Vp/Vs bodies in the Kaoiki seismic zone between 5 and 15 km depth are attributed to the underlying volcaniclastic sediments. The high-Vp and moderate- to low-Vp/Vs anomalies beneath Kilauea caldera can be explained by a combination of different mafic compositions, likely to be olivine-rich gabbro and dunite. The systematically low-Vp and low-Vp/Vs bodies in the southeast flank of Kilauea may be caused by the presence of volatiles. Another difference between this study and previous ones is the improved Vp model resolution in deeper layers, owing to the inclusion of events with large epicentral distances. The new velocity model is used to relocate the seismicity of Mauna Loa and Kilauea for improved absolute locations and ultimately to develop a high-precision earthquake catalog using waveform cross-correlation data.

  8. New insights into the magma chamber activity under Mauna Loa inferred from SBAS-InSAR and geodetic inversion modelling

    Science.gov (United States)

    Varugu, B. K.; Amelung, F.

    2017-12-01

    Mauna Loa volcano, located on the Big Island, Hawaii, is the largest volcano on the earth and historically been one of the most active volcanoes on the earth. Since its last eruption in 1984, there was a decrease in the magmatic activity, yet episodic inflations with increased seismicity sparks interests in the scientific community and there is strong need to monitor the volcano with growing infrastructure close to the flanks of the volcano. Geodetic modelling of the previous inflations illustrate that the magma activity is due to inflation of hydraulically connected dike and magma chamber located from 4-8km beneath the summit (Amelung et al. 2007). Most of the seismicity observed on Mauna Loa is due to the movement along a decollement fault situated at the base of the volcano. Magma inflation under Mauna Loa has started again during the last quarter of 2013 and is continuing still with an increased seismicity. In this study, we used 140 images form COSMO SkyMED between 2013-2017 to derive and model the ground deformation. We carried out time series InSAR analysis using Small Baseline (SB) approach. While the deformation pattern seems similar in many ways to the previous inflation periods, geodetic modelling for inversion of source parameters indicate a significant propagation of the dike ( 1 km) into the South West Rift Zone(SWRZ) and a decreased depth of the dike top from summit, compared to the previous inflations. Such propagation needs to be studied further in view of the steep slope of SWRZ. In understanding the dynamics of this propagating dike, we also observed an increased seismic activity since 2014 in the vicinity of the modelled dike. Here in this study we attempt to characterize the stresses induced by the propagating dike and seaward slipping movement along the basal decollement, to explain the increased seismicity using a finite element model.

  9. The isotopic composition of postshield lavas from Mauna Kea volcano, Hawaii

    International Nuclear Information System (INIS)

    Kennedy, A.K.; Fray, F.A.; Kwon, S.T.; West, H.B.

    1991-01-01

    The postshield eruptive stage of Mauna Kea volcano, Hawaii, can be divided into an early basaltic substage, the Hamakua Volcanics, containing picrites, ankaramites, alkalic and tholeiitic basalt, and a hawaiite substage, the Laupahoehoe Volcanics, containing only hawaiites and rare mugearites. Cumulate gabbroic xenoliths in Laupahoehoe Volcanics have isotopic ratios similar to the Hamakua Volcanics, and these gabbros provide constaints on the crustal evolution of Mauna Kea lavas. Because of the small variation in 87 Sr/ 86 Sr (0.70335-0.70362), 143 Nd/ 144 Nd (0.51297-0.51308) and 206 Pb/ 204 Pb (18.306-18.440), lavas from both substages must contain relatively fixed proportions of depleted, enriched and primitive mantle components. In addition, there is Sr, Nd and Pb isotopic overlap between tholeiitic and alkalic Hamakua basalts. However, the steep 207 Pb/ 204 Pb vs. 206 Pb/ 204 Pb arrays of postshield lavas from Mauna Kea, West Maui and Haleakala volcanoes and the existence of rare samples with high 207 Pb/ 204 Pb, up to 15.548, requires an unusual component in some Hawaiian lavas. This component is unlikely to be derived from sediments or MORB lithosphere, and it may be a minor plume component. Lavas erupted during the postshield stage of Mauna Kea volcano do not define a systematic temporal trend of varying 87 Sr/ 86 Sr and 143 Nd/ 144 Nd. This result contrasts with the temporal trend defined by lavas from Haleakala Volcano and provides evidence for important differences between the origin and evolution of different Hawaiian volcanoes. However, the Laupahoehoe Volcanics trend to lower 206 Pb/ 204 Pb ratios than the Hamakua Volcanics. (orig./WL)

  10. Development of lava tubes in the light of observations at Mauna Ulu, Kilauea Volcano, Hawaii

    Science.gov (United States)

    Peterson, D.W.; Holcomb, R.T.; Tilling, R.I.; Christiansen, R.L.

    1994-01-01

    During the 1969-1974 Mauna Ulu eruption on Kilauea's upper east rift zone, lava tubes were observed to develop by four principal processes: (1) flat, rooted crusts grew across streams within confined channels; (2) overflows and spatter accreted to levees to build arched roofs across streams; (3) plates of solidified crust floating downstream coalesced to form a roof; and (4) pahoehoe lobes progressively extended, fed by networks of distributaries beneath a solidified crust. Still another tube-forming process operated when pahoehoe entered the ocean; large waves would abruptly chill a crust across the entire surface of a molten stream crossing through the surf zone. These littoral lava tubes formed abruptly, in contrast to subaerial tubes, which formed gradually. All tube-forming processes were favored by low to moderate volume-rates of flow for sustained periods of time. Tubes thereby became ubiquitous within the pahoehoe flows and distributed a very large proportionof the lava that was produced during this prolonged eruption. Tubes transport lava efficiently. Once formed, the roofs of tubes insulate the active streams within, allowing the lava to retain its fluidity for a longer time than if exposed directly to ambient air temperature. Thus the flows can travel greater distances and spread over wider areas. Even though supply rates during most of 1970-1974 were moderate, ranging from 1 to 5 m3/s, large tube systems conducted lava as far as the coast, 12-13 km distant, where they fed extensive pahoehoe fields on the coastal flats. Some flows entered the sea to build lava deltas and add new land to the island. The largest and most efficient tubes developed during periods of sustained extrusion, when new lava was being supplied at nearly constant rates. Tubes can play a major role in building volcanic edifices with gentle slopes because they can deliver a substantial fraction of lava erupted at low to moderate rates to sites far down the flank of a volcano. We

  11. Variability of the 2014-present inflation source at Mauna Loa volcano revealed using time-dependent modeling

    Science.gov (United States)

    Johanson, I. A.; Miklius, A.; Okubo, P.; Montgomery-Brown, E. K.

    2017-12-01

    Mauna Loa volcano is the largest active volcano on earth and in the 20thcentury produced roughly one eruption every seven years. The 33-year quiescence since its last eruption 1984 has been punctuated by three inflation episodes where magma likely entered the shallow plumbing system, but was not erupted. The most recent began in 2014 and is ongoing. Unlike prior inflation episodes, the current one is accompanied by a significant increase in shallow seismicity, a pattern that is similar to earlier pre-eruptive periods. We apply the Kalman filter based Network Inversion Filter (NIF) to the 2014-present inflation episode using data from a 27 station continuous GPS network on Mauna Loa. The model geometry consists of a point volume source and tabular, dike-like body, which have previously been shown to provide a good fit to deformation data from a 2004-2009 inflation episode. The tabular body is discretized into 1km x 1km segments. For each day, the NIF solves for the rates of opening on the tabular body segments (subject to smoothing and positivity constraints), volume change rate in the point source, and slip rate on a deep décollement fault surface, which is constrained to a constant (no transient slip allowed). The Kalman filter in the NIF provides for smoothing both forwards and backwards in time. The model shows that the 2014-present inflation episode occurred as several sub-events, rather than steady inflation. It shows some spatial variability in the location of the inflation sub-events. In the model, opening in the tabular body is initially concentrated below the volcano's summit, in an area roughly outlined by shallow seismicity. In October, 2015 opening in the tabular body shifts to be centered beneath the southwest portion of the summit and seismicity becomes concentrated in this area. By late 2016, the opening rate on the tabular body decreases and is once again under the central part of summit. This modeling approach has allowed us to track these

  12. Concentric cylinder viscometry at subliquidus conditions on Mauna Ulu lavas, Kilauea Volcano, Hawaii

    Science.gov (United States)

    Sehlke, A.; Robert, B.; Harris, A. J.; gurioli, L.; Whittington, A. G.

    2013-12-01

    The morphology of lava flows is controlled by the physical properties of the lava and its effusion rates, as well as environmental influences such as surface medium, slope and ambient temperature and pressure conditions. The important physical properties of lavas include viscosity (η), yield strength (σy), thermal diffusivity (κ) and heat capacity (CP), all of which strongly depend on temperature (T), composition (Χ), crystal fraction (φc) and vesicularity (φb). The crystal fraction (φc) typically increase as temperature decreases, and therefore is temperature dependent itself and influences the residual liquid composition (Χ). The rheological behavior of multi-phase lavas in lava flows is expressed as different flow types, forced from a smooth pahoehoe to a blocky ';a'a within a transition zone. Recent field studies of overflow units at the Muliwai a Pele lava flow erupted from Mauna Ulu in 1974 on Kilauea volcano (Hawaii) reveal a transition zone in a distance approximately 4.5 km from the vent as a result of a cooling gradient of 6 °C/km, crystallization rates of 0.05/km and a density increase from 1010 × 150 kg/m3 near to 1410 × 120 kg/m3 6 km distant from the vent due to degassing. Concentric cylinder viscometry under atmospheric conditions has been conducted in order to investigate the rheological response of crystal-liquid lava suspensions at different equilibrium temperatures for Mauna Ulu lavas. We detect first solid phases around 1230 °C being clinopyroxene, olivine and spinel, followed by plagioclase appearing as microlites as observed in natural rock samples. Measured apparent viscosities (ηapp) with applied strain rates between 50 s-1 and 0.3 s-1 at 1201 °C, 1192 °C and 1181 °C show a strong stress-strain rate dependency, classifying our 2-phase suspensions as Herschel-Bulkey fluids with an extrapolated apparent yield strength (τ0) around 200 to 150 Pa in presence of different crystal fractions, resulting in a 2.5 fold increase of

  13. Quality assurance of the UV irradiances of the UV-B Monitoring and Research Program: the Mauna Loa test case

    Science.gov (United States)

    Zempila, Melina Maria; Davis, John; Janson, George; Olson, Becky; Chen, Maosi; Durham, Bill; Simpson, Scott; Straube, Jonathan; Sun, Zhibin; Gao, Wei

    2017-09-01

    The USDA UV-B Monitoring and Research Program (UVMRP) is an ongoing effort aiming to establish a valuable, longstanding database of ground-based ultraviolet (UV) solar radiation measurements over the US. Furthermore, the program aims to achieve a better understanding of UV variations through time, and develop a UV climatology for the Northern American section. By providing high quality radiometric measurements of UV solar radiation, UVMRP is also focusing on advancing science for agricultural, forest, and range systems in order to mitigate climate impacts. Within these foci, the goal of the present study is to investigate, analyze, and validate the accuracy of the measurements of the UV multi-filter rotating shadowband radiometer (UV-MFRSR) and Yankee (YES) UVB-1 sensor at the high altitude, pristine site at Mauna Loa, Hawaii. The response-weighted irradiances at 7 UV channels of the UV-MFRSR along with the erythemal dose rates from the UVB-1 radiometer are discussed, and evaluated for the period 2006-2015. Uncertainties during the calibration procedures are also analyzed, while collocated groundbased measurements from a Brewer spectrophotometer along with model simulations are used as a baseline for the validation of the data. Besides this quantitative research, the limitations and merits of the existing UVMRP methods are considered and further improvements are introduced.

  14. Estimate of the biotic contribution to the atmospheric CO2 increase based on direct measurements at Mauna Loa Observatory

    International Nuclear Information System (INIS)

    Elliott, W.P.; Machta, L.; Keeling, C.D.

    1985-01-01

    The CO 2 concentrations recorded at Mauna Loa Observatory from 1958-1983 were examined to detect the existence of any significant sources of CO 2 other than fossil fuel combustion. The observed annual CO 2 concentrations were compared with concentrations calculated assuming a number of hypothetical constant, nonfossil fuel emission scenarios added to the fossil fuel emissions. It was found that constant nonfossil fuel sources must have been 10% or less of the fossil fuel sources. This conclusion assumes that a constant fraction of the total emissions went into the oceans and that the nonfossil fuel emissions were invariant from year to year. When this latter restriction was relaxed, almost any nonfossil fuel source was possible if its history closely matched that of the fossil fuel emissions. We conclude that it is unlikely that biotic or other nonfossil fuel sources could have exceeded about 0.5 GT of carbon per year except in the unlikely event that they grew at a rate close to that of the fossil fuel emissions

  15. Prevalence of pox-like lesions and malaria in forest bird communitites on leeward Mauna Loa volcano, Hawaii

    Science.gov (United States)

    Atkinson, C.T.; Lease, J.K.; Dusek, Robert J.; Samuel, M.D.

    2005-01-01

    Introduced avian pox virus and malaria have had devastating impacts on native Hawaiian forest birds, yet little has been published about their prevalence and distribution in forest bird communities outside of windward Hawaii Island. We surveyed native and non-native forest birds for these two diseases at three different elevations on leeward Mauna Loa Volcano at the Kona Forest Unit of Hakalau Forest National Wildlife Refuge. Prevalence of malaria by both serology and microscopy varied by elevation and ranged from 28% at 710 m to 13% at 1830 m. Prevalence of pox-like lesions also varied by altitude, ranging in native species from 10% at 710 m to 2% at 1830 m. Native species at all elevations had the highest prevalence of malarial antibody and pox-like lesions. By contrast, pox-like lesions were not detected in individuals of four non-native species and only 5% of Japanese White-eye (Zosterops japonicus) was positive for malaria. A significantly high proportion of birds with pox-like lesions also had serological evidence of concurrent, chronic malarial infections, suggesting an interaction between these diseases, dual transmission of both diseases by the primary mosquito vector (Culex quinquefasciatus) or complete recovery of some pox-infected birds without loss of toes. Results from this study document high prevalence of malaria and pox at this refuge. Development of effective disease control strategies will be important for restoration of remnant populations of the endangered 'Akiapola'au (Hemignathus munroi), Hawaii Creeper (Oreomystis mana), and Hawaii 'Akepa (Loxops coccineus coccineus) that still occur on the refuge.

  16. Penguin Bank: A Loa-Trend Hawaiian Volcano

    Science.gov (United States)

    Xu, G.; Blichert-Toft, J.; Clague, D. A.; Cousens, B.; Frey, F. A.; Moore, J. G.

    2007-12-01

    Hawaiian volcanoes along the Hawaiian Ridge from Molokai Island in the northwest to the Big Island in the southeast, define two parallel trends of volcanoes known as the Loa and Kea spatial trends. In general, lavas erupted along these two trends have distinctive geochemical characteristics that have been used to define the spatial distribution of geochemical heterogeneities in the Hawaiian plume (e.g., Abouchami et al., 2005). These geochemical differences are well established for the volcanoes forming the Big Island. The longevity of the Loa- Kea geochemical differences can be assessed by studying East and West Molokai volcanoes and Penguin Bank which form a volcanic ridge perpendicular to the Loa and Kea spatial trends. Previously we showed that East Molokai volcano (~1.5 Ma) is exclusively Kea-like and that West Molokai volcano (~1.8 Ma) includes lavas that are both Loa- and Kea-like (Xu et al., 2005 and 2007).The submarine Penguin Bank (~2.2 Ma), probably an independent volcano constructed west of West Molokai volcano, should be dominantly Loa-like if the systematic Loa and Kea geochemical differences were present at ~2.2 Ma. We have studied 20 samples from Penguin Bank including both submarine and subaerially-erupted lavas recovered by dive and dredging. All lavas are tholeiitic basalt representing shield-stage lavas. Trace element ratios, such as Sr/Nb and Zr/Nb, and isotopic ratios of Sr and Nd clearly are Loa-like. On an ɛNd-ɛHf plot, Penguin Bank lavas fall within the field defined by Mauna Loa lavas. Pb isotopic data lie near the Loa-Kea boundary line defined by Abouchami et al. (2005). In conclusion, we find that from NE to SW, i.e., perpendicular to the Loa and Kea spatial trend, there is a shift from Kea-like East Molokai lavas to Loa-like Penguin Bank lavas with the intermediate West Molokai volcano having lavas with both Loa- and Kea-like geochemical features. Therefore, the Loa and Kea geochemical dichotomy exhibited by Big Island volcanoes

  17. Characterizing the influence of anthropogenic emissions and transport variability on sulfate aerosol concentrations at Mauna Loa Observatory

    Science.gov (United States)

    Potter, Lauren E.

    Sulfate aerosol in the atmosphere has substantial impacts on human health and environmental quality. Most notably, atmospheric sulfate has the potential to modify the earth's climate system through both direct and indirect radiative forcing mechanisms (Meehl et al., 2007). Emissions of sulfur dioxide, the primary precursor of sulfate aerosol, are now globally dominated by anthropogenic sources as a result of widespread fossil fuel combustion. Economic development in Asian countries since 1990 has contributed considerably to atmospheric sulfur loading, particularly China, which currently emits approximately 1/3 of global anthropogenic SO2 (Klimont et al., 2013). Observational and modeling studies have confirmed that anthropogenic pollutants from Asian sources can be transported long distances with important implications for future air quality and global climate change. Located in the remote Pacific Ocean (19.54°N, 155.58°W) at an elevation of 3.4 kilometers above sea level, Mauna Loa Observatory (MLO) is an ideal measurement site for ground-based, free tropospheric observations and is well situated to experience influence from springtime Asian outflow. This study makes use of a 14-year data set of aerosol ionic composition, obtained at MLO by the University of Hawaii at Manoa. Daily filter samples of total aerosol concentrations were made during nighttime downslope (free-tropospheric) transport conditions, from 1995 to 2008, and were analyzed for aerosol-phase concentrations of the following species: nitrate (NO3-), sulfate (SO42-), methanesulfonate (MSA), chloride (Cl-), oxalate, sodium (Na+), ammonium (NH 4+), potassium (K+), magnesium (Mg 2+), and calcium (Ca2+). An understanding of the factors controlling seasonal and interannual variations in aerosol speciation and concentrations at this site is complicated by the relatively short lifetimes of aerosols, compared with greenhouse gases which have also been sampled over long time periods at MLO. Aerosol filter

  18. Population estimates of the Endangered Hawaiʻi ʻĀkepa (Loxops coccineus) in different habitats on windward Mauna Loa

    Science.gov (United States)

    Judge, Seth W.; Camp, Richard J.; Hart, Patrick J.; Kichman, Scott T.

    2018-01-01

    Endangered Hawai‘i ʻĀkepas (Loxops coccineus) are endemic to Hawai‘i island, where they occur in five spatially distinct populations. Data concerning the status and population trends of these unique Hawaiian honeycreepers are crucial for assessing the effectiveness of recovery and management actions. In 2016, we used point‐transect distance sampling to estimate the abundance of Hawai‘i ʻĀkepas in portions of Hawai‘i Volcanoes National Park (HAVO) and the Kaʻū Forest Reserve (KFR) on Mauna Loa volcano. We then compiled the survey data from four other populations to provide a global population estimate. In our HAVO and KFR study area, we mapped habitat classes to determine the population densities in each habitat. Densities were highest (1.03 birds/ha) in open‐canopy montane ʻōhiʻa (Metrosideros polymorpha) woodland. In contrast, densities of the largest ʻĀkepa population on Mauna Kea volcano were highest in closed‐canopy ʻōhiʻa and koa (Acacia koa) forest where the species is dependent on nest cavities in tall (> 15 m), large (> 50‐cm diameter at breast height) trees. We surveyed potential nesting habitat in HAVO and KFR and found only one cavity in the short‐stature montane ʻōhiʻa woodland and five cavities in the tall‐stature forest. Differences in densities between the Mauna Kea and Mauna Loa populations suggest that Hawai‘i ʻĀkepas may exhibit different foraging and nesting behaviors in the two habitats. The estimated overall population density in the HAVO and KFR study area was 0.52 birds/ha, which equates to 3663 (95% CI 1725–6961) birds in their 11,377‐ha population range. We calculated a global population of 16,428 (95% CI 10,065–25,198) birds, which is similar to an estimate of 13,892 (95% CI 10,315–17,469) birds made in 1986. Our results suggest that populations are stable to increasing in the two largest populations, but the three other populations are smaller (range = 77–1443 birds) and trends

  19. Observations of carbon dioxide, methane, and carbon monoxide at Tae-Ahn peninsula (Korea), Mount Waliguan (China), Ulaan Uul (Mongolia) and at Mauna Loa (Hawaii USA)

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y.S. [Korea National Univ. of Education, Chongwon (Korea, Republic of); Tans, P.P.; Conway, T.J.; Dlugokencky, E.J. [Climate Monitoring and Diagnostics Lab., Bouler (United States); Novelli, P.C.; Tolier, M. [Colorado Univ. (United States). Cooperative Inst. for Research in Environmental Sciences; Wen, Y. [Chinese Academy of Meteorological Sciences, Beijing (China); Dagvadorj, D. [Mongolian Hydrometeorological Research Inst., Ulaan Batar (Mongolia)

    1995-12-31

    It has been discussed that the greenhouse gases, e.g. carbon dioxide (CO{sub 2}) methane (CH{sub 4}), enhance warming in the biosphere. Many scientists are therefore interested in monitoring the minor constituents of the atmosphere and in the carbon cycle. In cooperation with the Climate Monitoring and Diagnostics Laboratory (CMDL) of U.S. National Oceanic and Atmospheric Administration (NOAA), CO{sub 2}, CH{sub 4} and carbon monoxide (CO) at the western tip of the Tae-ahn Peninsula (TAP) in central Korea since October 1990 has been measured. Shortly thereafter, two more sites were added for the measurement of greenhouse gases in East Asia; one at Mount Waliguar Qinghai Province (QPC) in China and another at Ulaan Uul (UUM), the Gobi Desert in Mongolia. Also, trace gas data obtained at Mauna Loa (MLO) in Hawaii in the USA has been used. The Hawaiian data represent the world`s longest period of CO{sub 2} monitoring since 1958. The present monitoring is a part of the Global Air Sampling Network the WMO`s Global Atmospheric Watch. The method of collecting and measuring CO{sub 2}, CO and CH{sub 4} have been described else where. Here the four year monitoring of the trace gases at the three sites in East Asia is reported. The results are also compared with the measured values obtained at the free troposphere background site at MLO in Hawaii

  20. Shifts in bryophyte carbon isotope ratio across an elevation × soil age matrix on Mauna Loa, Hawaii: do bryophytes behave like vascular plants?

    Science.gov (United States)

    Waite, Mashuri; Sack, Lawren

    2011-05-01

    The carbon isotope ratio (δ(13)C) of vascular plant leaf tissue is determined by isotope discrimination, primarily mediated by stomatal and mesophyll diffusion resistances and by photosynthetic rate. These effects lead to predictable trends in leaf δ(13)C across natural gradients of elevation, irradiance and nutrient supply. Less is known about shifts in δ(13)C for bryophytes at landscape scale, as bryophytes lack stomata in the dominant gametophyte phase, and thus lack active control over CO(2) diffusion. Twelve bryophyte species were sampled across a matrix of elevation and soil ages on Mauna Loa, Hawaii Island. We tested hypotheses based on previous findings for vascular plants, which tend to have less negative δ(13)C at higher elevations or irradiances, and for leaves with higher leaf mass per area (LMA). Across the matrix, bryophytes spanned the range of δ(13)C values typical of C(3) vascular plants. Bryophytes were remarkably similar to vascular plants in exhibiting less negative δ(13)C with increasing elevation, and with lower overstory cover; additionally δ(13)C was related to bryophyte canopy projected mass per area, a trait analogous to LMA in vascular plants, also correlated negatively with overstory cover. The similarity of responses of δ(13)C in bryophytes and vascular plants to environmental factors, despite differing morphologies and diffusion pathways, points to a strong direct role of photosynthetic rate in determining δ(13)C variation at the landscape scale.

  1. Observations of carbon dioxide, methane, and carbon monoxide at Tae-Ahn peninsula (Korea), Mount Waliguan (China), Ulaan Uul (Mongolia) and at Mauna Loa (Hawaii USA)

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y S [Korea National Univ. of Education, Chongwon (Korea, Republic of); Tans, P P; Conway, T J; Dlugokencky, E J [Climate Monitoring and Diagnostics Lab., Bouler (United States); Novelli, P C; Tolier, M [Colorado Univ. (United States). Cooperative Inst. for Research in Environmental Sciences; Wen, Y [Chinese Academy of Meteorological Sciences, Beijing (China); Dagvadorj, D [Mongolian Hydrometeorological Research Inst., Ulaan Batar (Mongolia)

    1996-12-31

    It has been discussed that the greenhouse gases, e.g. carbon dioxide (CO{sub 2}) methane (CH{sub 4}), enhance warming in the biosphere. Many scientists are therefore interested in monitoring the minor constituents of the atmosphere and in the carbon cycle. In cooperation with the Climate Monitoring and Diagnostics Laboratory (CMDL) of U.S. National Oceanic and Atmospheric Administration (NOAA), CO{sub 2}, CH{sub 4} and carbon monoxide (CO) at the western tip of the Tae-ahn Peninsula (TAP) in central Korea since October 1990 has been measured. Shortly thereafter, two more sites were added for the measurement of greenhouse gases in East Asia; one at Mount Waliguar Qinghai Province (QPC) in China and another at Ulaan Uul (UUM), the Gobi Desert in Mongolia. Also, trace gas data obtained at Mauna Loa (MLO) in Hawaii in the USA has been used. The Hawaiian data represent the world`s longest period of CO{sub 2} monitoring since 1958. The present monitoring is a part of the Global Air Sampling Network the WMO`s Global Atmospheric Watch. The method of collecting and measuring CO{sub 2}, CO and CH{sub 4} have been described else where. Here the four year monitoring of the trace gases at the three sites in East Asia is reported. The results are also compared with the measured values obtained at the free troposphere background site at MLO in Hawaii

  2. Organizational preparedness for and management of volcanic crises at Kīlauea and Mauna Loa volcanoes, Hawaii

    Science.gov (United States)

    Gregg, C. E.; Reeves, A.; Lindell, M. K.; Prater, C.; Joyner, T. A.; Eggert, S.

    2016-12-01

    The eruption of Kīlauea volcano since 1983 has produced a series of crises, the latest one occurring in 2014 and 2015 when a new vent sent lava flows northeastward toward developed areas in the lower Puna District of Kīlauea. The June 27 lava flow took about 2 months to advance to the edge of developed areas in Puna, prompting widespread reaction. Volcanic eruptions often have large economic consequences out of proportion with their magnitudes, and uncertainties about the physical and organizational communication of risk information amplify these losses. This study aims to improve tools to communicate uncertainty of volcanic activity and organizational and individual response, offering clearer and more reliable information to guide civic leaders in issuing appropriate warnings. One significant impediment to risk communication is limited knowledge about the most effective ways to communicate scientific uncertainty through verbal, numeric and graphic methods. The public's demand for near-real time information updates during the June 27 lava crisis, including both written messages and graphics, required some agencies to provide information at a faster rate than in any previous eruption. In order to understand how these and other stakeholders involved with the crisis can better plan for and manage future crises, including implementing evacuation decisions, we conducted a series of interviews and a mental model exercise with stakeholders. We explored their knowledge of local risk communication messages and hazard mitigation efforts and their experiences during the June 27 lava flow crisis. Stakeholders represented county, state and federal agencies and included elected officials, emergency managers, scientists, and other professionals involved with the crisis (traffic engineers, land use planners, police officers, fire fighters). We also assessed factors that influence individual and household preparedness to implement officials' protective action recommendations

  3. Hydrogen isotope correction for laser instrument measurement bias at low water vapor concentration using conventional isotope analyses: application to measurements from Mauna Loa Observatory, Hawaii.

    Science.gov (United States)

    Johnson, L R; Sharp, Z D; Galewsky, J; Strong, M; Van Pelt, A D; Dong, F; Noone, D

    2011-03-15

    The hydrogen and oxygen isotope ratios of water vapor can be measured with commercially available laser spectroscopy analyzers in real time. Operation of the laser systems in relatively dry air is difficult because measurements are non-linear as a function of humidity at low water concentrations. Here we use field-based sampling coupled with traditional mass spectrometry techniques for assessing linearity and calibrating laser spectroscopy systems at low water vapor concentrations. Air samples are collected in an evacuated 2 L glass flask and the water is separated from the non-condensable gases cryogenically. Approximately 2 µL of water are reduced to H(2) gas and measured on an isotope ratio mass spectrometer. In a field experiment at the Mauna Loa Observatory (MLO), we ran Picarro and Los Gatos Research (LGR) laser analyzers for a period of 25 days in addition to periodic sample collection in evacuated flasks. When the two laser systems are corrected to the flask data, they are strongly coincident over the entire 25 days. The δ(2)H values were found to change by over 200‰ over 2.5 min as the boundary layer elevation changed relative to MLO. The δ(2)H values ranged from -106 to -332‰, and the δ(18)O values (uncorrected) ranged from -12 to -50‰. Raw data from laser analyzers in environments with low water vapor concentrations can be normalized to the international V-SMOW scale by calibration to the flask data measured conventionally. Bias correction is especially critical for the accurate determination of deuterium excess in dry air. Copyright © 2011 John Wiley & Sons, Ltd.

  4. Statistical analysis of the mesospheric inversion layers over two symmetrical tropical sites: Réunion (20.8° S, 55.5° E) and Mauna Loa (19.5° N, 155.6° W)

    Science.gov (United States)

    Bègue, Nelson; Mbatha, Nkanyiso; Bencherif, Hassan; Tato Loua, René; Sivakumar, Venkataraman; Leblanc, Thierry

    2017-11-01

    In this investigation a statistical analysis of the characteristics of mesospheric inversion layers (MILs) over tropical regions is presented. This study involves the analysis of 16 years of lidar observations recorded at Réunion (20.8° S, 55.5° E) and 21 years of lidar observations recorded at Mauna Loa (19.5° N, 155.6° W) together with SABER observations at these two locations. MILs appear in 10 and 9.3 % of the observed temperature profiles recorded by Rayleigh lidar at Réunion and Mauna Loa, respectively. The parameters defining MILs show a semi-annual cycle over the two selected sites with maxima occurring near the equinoxes and minima occurring during the solstices. Over both sites, the maximum mean amplitude is observed in April and October, and this corresponds to a value greater than 35 K. According to lidar observations, the maximum and minimum mean of the base height ranged from 79 to 80.5 km and from 76 to 77.5 km, respectively. The MILs at Réunion appear on average ˜ 1 km thinner and ˜ 1 km lower, with an amplitude of ˜ 2 K higher than Mauna Loa. Generally, the statistical results for these two tropical locations as presented in this investigation are in fairly good agreement with previous studies. When compared to lidar measurements, on average SABER observations show MILs with greater amplitude, thickness and base altitudes of 4 K, 0.75 and 1.1 km, respectively. Taking into account the temperature error by SABER in the mesosphere, it can therefore be concluded that the measurements obtained from lidar and SABER observations are in significant agreement. The frequency spectrum analysis based on the lidar profiles and the 60-day averaged profile from SABER confirms the presence of the semi-annual oscillation where the magnitude maximum is found to coincide with the height range of the temperature inversion zone. This connection between increases in the semi-annual component close to the inversion zone is in agreement with most previously

  5. Evidence for contamination of recent Hawaiian lavas from 230Th-238U data

    International Nuclear Information System (INIS)

    Condomines, M.; Bernat, M.; Allegre, C.J.

    1976-01-01

    230 Th- 238 U radioactive disequilibrium was studied in the historical lava flows of the Mauna Loa and Kilauea, Hawaii. Large variations of the ( 230 Th/ 232 Th) ratio among lavas of the same volcano that were erupted at a few years' interval are interpreted as due to contamination. The contamination probably occurs by assimilation of zeolitic minerals formed by seawater interaction while the magma resides in a superficial chamber. (Auth.)

  6. LiDAR-derived surface roughness signatures of basaltic lava types at the Muliwai a Pele Lava Channel, Mauna Ulu, Hawai`i

    Science.gov (United States)

    Whelley, Patrick L.; Garry, W. Brent; Hamilton, Christopher W.; Bleacher, Jacob E.

    2017-11-01

    We used light detection and ranging (LiDAR) data to calculate roughness patterns (homogeneity, mean-roughness, and entropy) for five lava types at two different resolutions (1.5 and 0.1 m/pixel). We found that end-member types (´áā and pāhoehoe) are separable (with 95% confidence) at both scales, indicating that roughness patterns are well suited for analyzing types of lava. Intermediate lavas were also explored, and we found that slabby-pāhoehoe is separable from the other end-members using 1.5 m/pixel data, but not in the 0.1 m/pixel analysis. This suggests that the conversion from pāhoehoe to slabby-pāhoehoe is a meter-scale process, and the finer roughness characteristics of pāhoehoe, such as ropes and toes, are not significantly affected. Furthermore, we introduce the ratio ENT/HOM (derived from lava roughness) as a proxy for assessing local lava flow rate from topographic data. High entropy and low homogeneity regions correlate with high flow rate while low entropy and high homogeneity regions correlate with low flow rate. We suggest that this relationship is not directional, rather it is apparent through roughness differences of the associated lava type emplaced at the high and low rates, respectively.

  7. LiDAR-Derived Surface Roughness Signatures of Basaltic Lava Types at the Muliwai a Pele Lava Channel, Mauna Ulu, Hawai'i

    Science.gov (United States)

    Whelley, Patrick L.; Garry, W. Brent; Hamilton, Christopher W.; Bleacher, Jacob E.

    2017-01-01

    We used light detection and ranging (LiDAR) data to calculate roughness patterns (homogeneity, mean-roughness, and entropy) for five lava types at two different resolutions (1.5 and 0.1 m/pixel). We found that end-member types (a a and pahoehoe) are separable (with 95% confidence) at both scales, indicating that roughness patterns are well suited for analyzing types of lava. Intermediate lavas were also explored, and we found that slabby-pahoehoe is separable from the other end-members using 1.5 m/pixel data, but not in the 0.1 m/pixel analysis. This suggests that the conversion from pahoehoe to slabby-pahoehoe is a meter-scale process, and the finer roughness characteristics of pahoehoe, such as ropes and toes, are not significantly affected. Furthermore, we introduce the ratio ENT/HOM (derived from lava roughness) as a proxy for assessing local lava flow rate from topographic data. High entropy and low homogeneity regions correlate with high flow rate while low entropy and high homogeneity regions correlate with low flow rate.We suggest that this relationship is not directional, rather it is apparent through roughness differences of the associated lava type emplaced at the high and low rates, respectively.

  8. Propuesta de proyecto de estadística: un modelo de regresión lineal simple para pronosticar la concentración de co2 del volcán Mauna Loa

    Directory of Open Access Journals (Sweden)

    Claudio Alfredo López Miranda

    2014-12-01

    Full Text Available Este trabajo aplica un modelo predictivo de regresión lineal para analizar la contaminación atmosférica de dióxido de carbono (CO2 producida por el volcán Mauna Loa de Hawái. Los datos fueron extraídos de un repositorio de internet que contiene múltiples casos de geología, climatología, física, etcétera. El modelo se utilizó para predecir la tendencia de emisiones de CO2 con respecto al tiempo; se estimó la contaminación promedio de dicha tendencia, la cual descubrimos ha crecido aproximadamente 0.1 partes por millón por mes; así como también se obtuvieron los intervalos de predicción para una emisión puntual que existió en un momento determinado. Se recomienda el trabajo para estudiantes de ciencias exactas y naturales, como prototipo de artículo de investigación donde se aplique específicamente el modelo de regresión lineal simple; aunque la estructura también puede servir en otras áreas donde se enseñen los modelos de regresión.

  9. Combined U-Th/He and 40Ar/39Ar geochronology of post-shield lavas from the Mauna Kea and Kohala volcanoes, Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Aciego, S.M.; Jourdan, F.; DePaolo, D.J.; Kennedy, B.M.; Renne, P.R.; Sims, K.W.W.

    2009-10-01

    Late Quaternary, post-shield lavas from the Mauna Kea and Kohala volcanoes on the Big Island of Hawaii have been dated using the {sup 40}Ar/{sup 39}Ar and U-Th/He methods. The objective of the study is to compare the recently demonstrated U-Th/He age method, which uses basaltic olivine phenocrysts, with {sup 40}Ar/{sup 39}Ar ages measured on groundmass from the same samples. As a corollary, the age data also increase the precision of the chronology of volcanism on the Big Island. For the U-Th/He ages, U, Th and He concentrations and isotopes were measured to account for U-series disequilibrium and initial He. Single analyses U-Th/He ages for Hamakua lavas from Mauna Kea are 87 {+-} 40 ka to 119 {+-} 23 ka (2{sigma} uncertainties), which are in general equal to or younger than {sup 40}Ar/{sup 39}Ar ages. Basalt from the Polulu sequence on Kohala gives a U-Th/He age of 354 {+-} 54 ka and a {sup 40}Ar/{sup 39}Ar age of 450 {+-} 40 ka. All of the U-Th/He ages, and all but one spurious {sup 40}Ar/{sup 39}Ar ages conform to the previously proposed stratigraphy and published {sup 14}C and K-Ar ages. The ages also compare favorably to U-Th whole rock-olivine ages calculated from {sup 238}U - {sup 230}Th disequilibria. The U-Th/He and {sup 40}Ar/{sup 39}Ar results agree best where there is a relatively large amount of radiogenic {sup 40}Ar (>10%), and where the {sup 40}Ar/{sup 36}Ar intercept calculated from the Ar isochron diagram is close to the atmospheric value. In two cases, it is not clear why U-Th/He and {sup 40}Ar/{sup 39}Ar ages do not agree within uncertainty. U-Th/He and {sup 40}Ar/{sup 39}Ar results diverge the most on a low-K transitional tholeiitic basalt with abundant olivine. For the most alkalic basalts with negligible olivine phenocrysts, U-Th/He ages were unattainable while {sup 40}Ar/{sup 39}Ar results provide good precision even on ages as low as 19 {+-} 4 ka. Hence, the strengths and weaknesses of the U-Th/He and {sup 40}Ar/{sup 39}Ar methods are

  10. Metrology of the Solar Spectral Irradiance at the Top Of Atmosphere in the Near Infrared using Ground Based Instruments. Final results of the PYR-ILIOS campaign (Mauna Loa Observatory, June-July 2016).

    Science.gov (United States)

    Cessateur, G.; Bolsée, D.; Pereira, N.; Sperfeld, P.; Pape, S.

    2017-12-01

    The availability of reference spectra for the Solar Spectral Irradiance (SSI) is important for the solar physics, the studies of planetary atmospheres and climatology. The near infrared (NIR) part of these spectra is of great interest for its main role for example, in the Earth's radiative budget. Until recently, some large and unsolved discrepancies (up to 10 %) were observed in the 1.6 μm region between space instruments, models and ground-based measurements. We designed a ground-based instrumentation for SSI measurements at the Top Of Atmosphere (TOA) through atmospheric NIR windows using the Bouguer-Langley technique. The main instrument is a double NIR spectroradiometer designed by Bentham (UK), radiometrically characterized at the Royal Belgian Institute for Space Aeronomy. It was absolute calibrated against a high-temperature blackbody as primary standard for spectral irradiance at the Physikalisch-Technische Bundesanstalt (Germany). The PYR-ILIOS campaign was carried out in June to July 2016 at the Mauna Loa Observatory (Hawaii, USA, 3396 m a.s.l.) follows the four-month IRESPERAD campaign which was carried out in the summer 2011 at the Izaña Atmospheric Observatory (Canary Islands, 2367 m a.s.l.). We present here the results of the 3'week PYR-ILIOS campaign and compare them with the ATLAS 3 spectrum as well as from recently reprocessed NIR solar spectra obtained with SOLAR/SOLSPEC on ISS and SCIAMACHY on ENVISAT. The uncertainty budget of the PYR-ILIOS results will be discussed.

  11. Infrared Solar Spectroscopic Measurements of Free Tropospheric CO, C2H6, and HCN above Mauna Loa, Hawaii: Seasonal Variations and Evidence for Enhanced Emissions from the Southeast Asian Tropical Fires of 1997-1998

    Science.gov (United States)

    Rinsland, C. P.; Goldman, A.; Murcray, F. J.; Stephen, T. M.; Pougatchev, N. S.; Fishman, J.; David, S. J.; Blatherwick, R. D.; Novelli, P. C.; Jones, N. B.

    1999-01-01

    High spectral resolution (0.003 per cm) infrared solar absorption measurements of CO, C2H6, and HCN have been recorded at the Network for the Detection of Stratospheric Change station on Mauna Loa, Hawaii, (19.5N, 155.6W, altitude 3.4 km). The observations were obtained on over 250 days between August 1995 and February 1998. Column measurements are reported for the 3.4-16 km altitude region, which corresponds approximately to the free troposphere above the station. Average CO mixing ratios computed for this layer have been compared with flask sampling CO measurements obtained in situ at the station during the same time period. Both show asymmetrical seasonal cycles superimposed on significant variability. The first 2 years of observations exhibit a broad January-April maximum and a sharper CO minimum during late summer. The C2H6 and CO 3.4-16 km columns were highly correlated throughout the observing period with the C2H6/CO slope intermediate between higher and lower values derived from similar infrared spectroscopic measurements at 32'N and 45'S latitude, respectively. Variable enhancements in CO, C2H6, and particularly HCN were observed beginning in about September 1997. The maximum HCN free tropospheric monthly mean column observed in November 1997 corresponds to an average 3.4-16 km mixing ratio of 0.7 ppbv (1 ppbv = 10(exp -9) per unit volume), more than a factor of 3 above the background level. The HCN enhancements continued through the end of the observational series. Back-trajectory calculations suggest that the emissions originated at low northern latitudes in southeast Asia. Surface CO mixing ratios and the C2H6 tropospheric columns measured during the same time also showed anomalous autumn 1997 maxima. The intense and widespread tropical wild fires that burned during the strong El Nino warm phase of 1997- 1998 are the likely source of the elevated emission products.

  12. Statistical analysis of the mesospheric inversion layers over two symmetrical tropical sites: Réunion (20.8° S, 55.5° E and Mauna Loa (19.5° N, 155.6° W

    Directory of Open Access Journals (Sweden)

    N. Bègue

    2017-11-01

    Full Text Available In this investigation a statistical analysis of the characteristics of mesospheric inversion layers (MILs over tropical regions is presented. This study involves the analysis of 16 years of lidar observations recorded at Réunion (20.8° S, 55.5° E and 21 years of lidar observations recorded at Mauna Loa (19.5° N, 155.6° W together with SABER observations at these two locations. MILs appear in 10 and 9.3 % of the observed temperature profiles recorded by Rayleigh lidar at Réunion and Mauna Loa, respectively. The parameters defining MILs show a semi-annual cycle over the two selected sites with maxima occurring near the equinoxes and minima occurring during the solstices. Over both sites, the maximum mean amplitude is observed in April and October, and this corresponds to a value greater than 35 K. According to lidar observations, the maximum and minimum mean of the base height ranged from 79 to 80.5 km and from 76 to 77.5 km, respectively. The MILs at Réunion appear on average ∼ 1 km thinner and ∼ 1 km lower, with an amplitude of ∼ 2 K higher than Mauna Loa. Generally, the statistical results for these two tropical locations as presented in this investigation are in fairly good agreement with previous studies. When compared to lidar measurements, on average SABER observations show MILs with greater amplitude, thickness and base altitudes of 4 K, 0.75 and 1.1 km, respectively. Taking into account the temperature error by SABER in the mesosphere, it can therefore be concluded that the measurements obtained from lidar and SABER observations are in significant agreement. The frequency spectrum analysis based on the lidar profiles and the 60-day averaged profile from SABER confirms the presence of the semi-annual oscillation where the magnitude maximum is found to coincide with the height range of the temperature inversion zone. This connection between increases in the semi-annual component close to the

  13. The Global Land-Ocean Temperature Index in Relation to Sunspot Number, the Atlantic Multidecadal Oscillation Index, the Mauna Loa Atmospheric Concentration of CO2, and Anthropogenic Carbon Emissions

    Science.gov (United States)

    Wilson, Robert M.

    2013-01-01

    Global warming/climate change has been a subject of scientific interest since the early 19th century. In particular, increases in the atmospheric concentration of carbon dioxide (CO2) have long been thought to account for Earth's increased warming, although the lack of a dependable set of observational data was apparent as late as the mid 1950s. However, beginning in the late 1950s, being associated with the International Geophysical Year, the opportunity arose to begin accurate continuous monitoring of the Earth's atmospheric concentration of CO2. Consequently, it is now well established that the atmospheric concentration of CO2, while varying seasonally within any particular year, has steadily increased over time. Associated with this rising trend in the atmospheric concentration of CO2 is a rising trend in the surface-air and sea-surface temperatures (SSTs). This Technical Publication (TP) examines the statistical relationships between 10-year moving averages (10-yma) of the Global Land-Ocean Temperature Index (GLOTI), sunspot number (SSN), the Atlantic Multidecadal Oscillation (AMO) index, and the Mauna Loa CO2 (MLCO2) index for the common interval 1964-2006, where the 10-yma values are used to indicate trends in the data. Scatter plots using the 10-yma values between GLOTI and each of the other parameters are determined, both as single-variate and multivariate fits. Scatter plots are also determined for MLCO2 using single-variate and bivariate (BV) fits, based on the GLOTI alone and the GLOTI in combination with the AMO index. On the basis of the inferred preferential fits for MLCO2, estimates for MLCO2 are determined for the interval 1885-1964, thereby yielding an estimate of the preindustrial level of atmospheric concentration of CO2. Lastly, 10-yma values of MLCO2 are compared against 10-yma estimates of the total carbon emissions (TCE) to determine the likelihood that manmade sources of carbon emissions are indeed responsible for the recent warming now

  14. Design and Characterization of the 4STAR Sun-Sky Spectrometer with Results from 4- Way Intercomparison of 4STAR, AATS-14, Prede, and Cimel Photometers at Mauna Loa Observatory.

    Science.gov (United States)

    Flynn, C. J.; Dunagan, S. E.; Johnson, R. R.; Schmid, B.; Shinozuka, Y.; Ramachandran, S.; Livingston, J. M.; Russell, P. B.; Redemann, J.; Tran, A. K.; Holben, B. N.

    2008-12-01

    including field of view (FOV) scans, repeatability testing of the fiber optic coupler, calibration of diffuse sky radiance with integrating sphere, and calibration of solar irradiance via Langley retrievals. Recent results from an intercomparison on Mauna Loa Observatory involving 4STAR, AATS-14, AERONET Cimel sun-sky photometers, and a Prede sun-sky photometer will be presented.

  15. Redox variations in Mauna Kea lavas, the oxygen fugacity of the Hawaiian plume, and the role of volcanic gases in Earth's oxygenation.

    Science.gov (United States)

    Brounce, Maryjo; Stolper, Edward; Eiler, John

    2017-08-22

    The behavior of C, H, and S in the solid Earth depends on their oxidation states, which are related to oxygen fugacity ( f O 2 ). Volcanic degassing is a source of these elements to Earth's surface; therefore, variations in mantle f O 2 may influence the f O 2 at Earth's surface. However, degassing can impact magmatic f O 2 before or during eruption, potentially obscuring relationships between the f O 2 of the solid Earth and of emitted gases and their impact on surface f O 2 We show that low-pressure degassing resulted in reduction of the f O 2 of Mauna Kea magmas by more than an order of magnitude. The least degassed magmas from Mauna Kea are more oxidized than midocean ridge basalt (MORB) magmas, suggesting that the upper mantle sources of Hawaiian magmas have higher f O 2 than MORB sources. One explanation for this difference is recycling of material from the oxidized surface to the deep mantle, which is then returned to the surface as a component of buoyant plumes. It has been proposed that a decreasing pressure of volcanic eruptions led to the oxygenation of the atmosphere. Extension of our findings via modeling of degassing trends suggests that a decrease in eruption pressure would not produce this effect. If degassing of basalts were responsible for the rise in oxygen, it requires that Archean magmas had at least two orders of magnitude lower f O 2 than modern magmas. Estimates of f O 2 of Archean magmas are not this low, arguing for alternative explanations for the oxygenation of the atmosphere.

  16. Redox variations in Mauna Kea lavas, the oxygen fugacity of the Hawaiian plume, and the role of volcanic gases in Earth’s oxygenation

    Energy Technology Data Exchange (ETDEWEB)

    Brounce, Maryjo; Stolper, Edward; Eiler, John

    2017-08-07

    The behavior of C, H, and S in the solid Earth depends on their oxidation states, which are related to oxygen fugacity (fO2). Volcanic degassing is a source of these elements to Earth’s surface; therefore, variations in mantle fO2 may influence the fO2 at Earth’s surface. However, degassing can impact magmatic fO2 before or during eruption, potentially obscuring relationships between the fO2 of the solid Earth and of emitted gases and their impact on surface fO2. We show that low-pressure degassing resulted in reduction of the fO2 of Mauna Kea magmas by more than an order of magnitude. The least degassed magmas from Mauna Kea are more oxidized than midocean ridge basalt (MORB) magmas, suggesting that the upper mantle sources of Hawaiian magmas have higher fO2 than MORB sources. One explanation for this difference is recycling of material from the oxidized surface to the deep mantle, which is then returned to the surface as a component of buoyant plumes. It has been proposed that a decreasing pressure of volcanic eruptions led to the oxygenation of the atmosphere. Extension of our findings via modeling of degassing trends suggests that a decrease in eruption pressure would not produce this effect. If degassing of basalts were responsible for the rise in oxygen, it requires that Archean magmas had at least two orders of magnitude lower fO2 than modern magmas. Estimates of fO2 of Archean magmas are not this low, arguing for alternative explanations for the oxygenation of the atmosphere.

  17. Intraocular live male filarial Loa loa worm

    Directory of Open Access Journals (Sweden)

    André Omgbwa Eballe

    2009-02-01

    Full Text Available André Omgbwa Eballe1, Emillienne Epée2, Godefroy Koki2, Didier Owono2, Côme Ebana Mvogo2, Assumpta Lucienne Bella21Gynaeco Obstetric and Paediatric Hospital of Yaoundé, Yaoundé, Cameroon; 2Faculty of Medicine and Biomedical Sciences, University of Yaoundé, Yaoundé, CameroonAbstract: We report a case of Loa loa filariasis in an 8-month-old child who presented with a 3-month history of irritated acute red eye and insomnia. Examination revealed a living and active adult Loa loa worm in the anterior chamber of the left eye. The worm was extracted under general anesthetic.Keywords: Loa loa, red eye, Cameroon

  18. Historical note on Loa loa: a reinterpretation.

    Science.gov (United States)

    Grützig, J; Jennes, B

    1977-07-01

    Loa loa, also known as the African eye worm, is a common parasite in the central part of West Africa. As Chrysops silacea and C. dimidiata, the only important vectors of loaiasis, are found exclusively in the tropical rain forests of West Africa, the parasite's transmission is confined to this region. References by early writers to the extraction of Loa loa from the eye of a man on the Island of Ormus (today known as Hormuz or Hormus) in the Persian Gulf apparently were based on a misinterpretation of an illustration by de Bry (1595) of the blinding of a royal relative.

  19. Terraced margins of inflated lava flows on Earth and Mars

    Science.gov (United States)

    Zimbelman, J. R.; Garry, W. B.; Bleacher, J. E.; Crumpler, L. S.

    2011-12-01

    When fluid basaltic lava flows are emplaced over a shallow regional slope (typically much less than one degree), the lava flows often display impressive characteristics of inflation. Here we describe a distinctive marginal characteristic that is often developed along the margins of endogenously inflated basaltic lava flows; discreet topographic levels of the emplaced lava that are here termed 'terraced margins'. Terraced margins were first noted at the distal end of the Carrizozo lava flow in central New Mexico, where they are particularly well expressed, but terraces have also been observed along some margins of the McCartys lava flow (NM), the distal end of the 1859 Mauna Loa lava flow (HI), and lava flows at Craters of the Moon (ID). Differential Global Positioning System surveys across several terraced margins reveal consistent topographic characteristics: the upper surface of each terrace level is at roughly one half the height of the sheet lobe from which it emerges; when a terrace becomes the source of an additional outbreak, the upper surface of the second terrace is at roughly one half the height of the source terrace; often a subtle topographic depression is present along the contact between a terrace and its source sheet lobe, suggesting that the terrace outflow starts at a level roughly one-third the height of the source lobe; the upper surfaces of both the source sheet lobe and associated terraces are level to within tens of centimeters across length scales of many tens to hundreds of meters, indicative of inflation of all components. The field observations will be used as the constraints for modeling of the inflation and terracing mechanisms, an effort that has only recently started. The multiple imaging data sets now available for Mars have revealed the presence of terraced margins on some lava flows on Mars. Although detailed topographic data are not currently available for the Martian examples identified so far, the presence of terraced margins for

  20. Calculated viscosity-distance dependence for some actively flowing lavas

    International Nuclear Information System (INIS)

    Pieri, D.

    1987-01-01

    The importance of viscosity as a gauge of the various energy and momentum dissipation regimes of lava flows has been realized for a long time. Nevertheless, despite its central role in lava dynamics and kinematics, it remains among the most difficult of flow physical properties to measure in situ during an eruption. Attempts at reconstructing the actual emplacement viscosities of lava flows from their solidified topographic form are difficult. Where data are available on the position of an advancing flow front as a function of time, it is possible to calculate the effective viscosity of the front as a function of distance from the vent, under the assumptions of a steady state regime. As an application and test of an equation given, relevant parameters from five recent flows on Mauna Loa and Kilauea were utilized to infer the dynamic structure of their aggregate flow front viscosity as they advanced, up to cessation. The observed form of the viscosity-distance relation for the five active Hawaiian flows examined appears to be exponential, with a rapid increase just before the flows stopped as one would expect

  1. New and revised 14C dates for Hawaiian surface lava flows: Paleomagnetic and geomagnetic implications

    Science.gov (United States)

    Pressline, N.; Trusdell, F.A.; Gubbins, David

    2009-01-01

    Radiocarbon dates have been obtained for 30 charcoal samples corresponding to 27 surface lava flows from the Mauna Loa and Kilauea volcanoes on the Island of Hawaii. The submitted charcoal was a mixture of fresh and archived material. Preparation and analysis was undertaken at the NERC Radiocarbon Laboratory in Glasgow, Scotland, and the associated SUERC Accelerator Mass Spectrometry facility. The resulting dates range from 390 years B.P. to 12,910 years B.P. with corresponding error bars an order of magnitude smaller than previously obtained using the gas-counting method. The new and revised 14C data set can aid hazard and risk assessment on the island. The data presented here also have implications for geomagnetic modelling, which at present is limited by large dating errors. Copyright 2009 by the American Geophysical Union.

  2. Permit.LOA table

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This table includes the effective dates by vessel and permit number for each issued letter of authorization (LOA) by the Permit Office (APSD)

  3. Isotopic constraints on the genesis and evolution of basanitic lavas at Haleakala, Island of Maui, Hawaii

    Science.gov (United States)

    Phillips, Erin H.; Sims, K.W.W.; Sherrod, David R.; Salters, Vincent; Blusztajn, Jurek; Dulaiova, Henrieta

    2016-01-01

    To understand the dynamics of solid mantle upwelling and melting in the Hawaiian plume, we present new major and trace element data, Nd, Sr, Hf, and Pb isotopic compositions, and 238U–230Th–226Ra and 235U–231Pa–227Ac activities for 13 Haleakala Crater nepheline normative basanites with ages ranging from ∼900 to 4100 yr B.P. These basanites of the Hana Volcanics exhibit an enrichment in incompatible trace elements and a more depleted isotopic signature than similarly aged Hawaiian shield lavas from Kilauea and Mauna Loa. Here we posit that as the Pacific lithosphere beneath the active shield volcanoes moves away from the center of the Hawaiian plume, increased incorporation of an intrinsic depleted component with relatively low 206Pb/204Pb produces the source of the basanites of the Hana Volcanics. Haleakala Crater basanites have average (230Th/238U) of 1.23 (n = 13), average age-corrected (226Ra/230Th) of 1.25 (n = 13), and average (231Pa/235U) of 1.67 (n = 4), significantly higher than Kilauea and Mauna Loa tholeiites. U-series modeling shows that solid mantle upwelling velocity for Haleakala Crater basanites ranges from ∼0.7 to 1.0 cm/yr, compared to ∼10 to 20 cm/yr for tholeiites and ∼1 to 2 cm/yr for alkali basalts. These modeling results indicate that solid mantle upwelling rates and porosity of the melting zone are lower for Hana Volcanics basanites than for shield-stage tholeiites from Kilauea and Mauna Loa and alkali basalts from Hualalai. The melting rate, which is directly proportional to both the solid mantle upwelling rate and the degree of melting, is therefore greatest in the center of the Hawaiian plume and lower on its periphery. Our results indicate that solid mantle upwelling velocity is at least 10 times higher at the center of the plume than at its periphery under Haleakala.

  4. The 40Ar/39Ar and K/Ar dating of lavas from the Hilo 1-km core hole, Hawaii Scientific Drilling Project

    Science.gov (United States)

    Sharp, W.D.; Turrin, B.D.; Renne, P.R.; Lanphere, M.A.

    1996-01-01

    Mauna Kea lava flows cored in the HilIo hole range in age from <200 ka to about 400 ka based on 40Ar/39Ar incremental heating and K-Ar analyses of 16 groundmass samples and one coexisting plagioclase. The lavas, all subaerially deposited, include a lower section consisting only of tholeiitic basalts and an upper section of interbedded alkalic, transitional tholeiitic, and tholeiitic basalts. The lower section has yielded predominantly complex, discordant 40Ar/39Ar age spectra that result from mobility of 40Ar and perhaps K, the presence of excess 40Ar, and redistribution of 39Ar by recoil. Comparison of K-Ar ages with 40Ar/39Ar integrated ages indicates that some of these samples have also lost 39Ar. Nevertheless, two plateau ages of 391 ?? 40 and 400 ?? 26 ka from deep in the hole, combined with data from the upper section, show that the tholeiitic section accumulated at an average rate of about 7 to 8 m/kyr and has an mean recurrence interval of 0.5 kyr/flow unit. Samples from the upper section yield relatively precise 40Ar/39Ar plateau and isotope correlation ages of 326 ?? 23, 241 ?? 5, 232 ?? 4, and 199 ?? 9 ka for depths of -415.7 m to -299.2 m. Within their uncertainty, these ages define a linear relationship with depth, with an average accumulation rate of 0.9 m/kyr and an average recurrence interval of 4.8 kyr/flow unit. The top of the Mauna Kea sequence at -280 m must be older than the plateau age of 132 ?? 32 ka, obtained for the basal Mauna Loa flow in the corehole. The upward decrease in lava accumulation rate is a consequence of the decreasing magma supply available to Mauna Kea as it rode the Pacific plate away from its magma source, the Hawaiian mantle plume. The age-depth relation in the core hole may be used to test and refine models that relate the growth of Mauna Kea to the thermal and compositional structure of the mantle plume.

  5. Hawaiian lavas: a window into mantle dynamics

    Science.gov (United States)

    Jones, Tim; Davies, Rhodri; Campbell, Ian

    2017-04-01

    The emergence of double track volcanism at Hawaii has traditionally posed two problems: (i) the physical emergence of two parallel chains of volcanoes at around 3 Ma, named the Loa and Kea tracks after the largest volcanoes in their sequence, and (ii) the systematic geochemical differences between the erupted lavas along each track. In this study, we dissolve this distinction by providing a geodynamical explanation for the physical emergence of double track volcanism at 3 Ma and use numerical models of the Hawaiian plume to illustrate how this process naturally leads to each volcanic track sampling distinct mantle compositions, which accounts for much of the geochemical characteristics of the Loa and Kea trends.

  6. The Summer 1997 Eruption at Pillan Patera on Io: Implications for Ultrabasic Lava Flow Emplacement

    Science.gov (United States)

    Williams, David A.; Davies, Ashley G.; Keszthelyi, Laszlo P.; Greeley, Ronald

    2001-01-01

    than those for typical Mauna Loa/Kilaueaq flows but comparable to those for the (1783) Laki eruption and the inferred flow rates of the Roza flows in the Columbia River flood basalts. The differences in ultrabasic eruption styles on Earth and Io appear to be controlled by the different eruption environments; Plumes at sites of ultrabasic eruptions on Io suggest strong magma-volatile interactions on a low-gravity body lacking an atmosphere, whereas the geology at sites of komatiite eruptions on Earth suggest mostly submarine emplacement of thick flows with a pronounced lack of subaerial explosive activity.

  7. Moon over Mauna Loa - a review of hypotheses of formation of earth's moon

    International Nuclear Information System (INIS)

    Wood, J.A.

    1986-01-01

    The present paper examines five models of lunar formation after considering the following constraints: (1) the large mass of the moon and the substantial prograde angular momentum of the earth-moon system; (2) the moon's depletion in volatile elements and iron, (3) the correspondence of oxygen isotope signatures in earth and moon, and (4) the lunar magma ocean. The models considered are: (1) capture from an independent heliocentric orbit, (2) coaccretion from a swarm of planetesimals in geocentric orbit, (3) fission from a rapidly rotating earth, (4) collisional ejection, and (5) disintegrative capture. 99 references

  8. Electron Microscopy Characterization of Aerosols Collected at Mauna Loa Observatory During Asian Dust Storm Event

    Science.gov (United States)

    Atmospheric aerosol particles have a significant influence on global climate due to their ability to absorb and scatter incoming solar radiation. Size, composition, and morphology affect a particle’s radiative properties and these can be characterized by electron microscopy. Lo...

  9. Formation of perched lava ponds on basaltic volcanoes: Interaction between cooling rate and flow geometry allows estimation of lava effusion rates

    Science.gov (United States)

    Wilson, L.; Parfitt, E. A.

    1993-01-01

    Perched lava ponds are infrequent but distinctive topographic features formed during some basaltic eruptions. Two such ponds, each approximately 150 m in diameter, formed during the 1968 eruption at Napau Crater and the 1974 eruption of Mauna Ulu, both on Kilauea Volcano, Hawaii. Each one formed where a channelized, high volume flux lava flow encountered a sharp reduction of slope: the flow spread out radially and stalled, forming a well-defined terminal levee enclosing a nearly circular lava pond. We describe a model of how cooling limits the motion of lava spreading radially into a pond and compare this with the case of a channelized flow. The difference in geometry has a major effect, such that the size of a pond is a good indicator of the volume flux of the lava forming it. Lateral spreading on distal shallow slopes is a major factor limiting the lengths of lava flows.

  10. Loa loa in the anterior chamber of the eye: A case report

    Directory of Open Access Journals (Sweden)

    Barua P

    2005-01-01

    Full Text Available An unusual case of loiasis from Assam is reported here. Loa loa is a subcutaneous filarial parasite of man and is transmitted to humans by chrysops flies. The patient presented with foreign body sensation and visual disturbances of the right eye. Examination revealed a white coiled structure in the cornea.. Routine blood and other investigations were within normal limits. A live adult worm was extracted and identity was confirmed by microscopy to be Loa loa. Patient was treated with diethylcarbamazine and steroid. We found this case interesting as the worm was present in the anterior chamber - an unusual site and there were no other positive findings besides the lone worm.

  11. Cosmic ray exposure dating with in situ produced cosmogenic 3He: results from young Hawaiian lava flows

    Science.gov (United States)

    Kurz, M.D.; Colodner, D.; Trull, T.W.; Moore, R.B.; O'Brien, K.

    1990-01-01

    In an effort to determine the in situ production rate of spallation-produced cosmogenic 3He, and evaluate its use as a surface exposure chronometer, we have measured cosmogenic helium contents in a suite of Hawaiian radiocarbon-dated lava flows. The lava flows, ranging in age from 600 to 13,000 years, were collected from Hualalai and Mauna Loa volcanoes on the island of Hawaii. Because cosmic ray surface-exposure dating requires the complete absence of erosion or soil cover, these lava flows were selected specifically for this purpose. The 3He production rate, measured within olivine phenocrysts, was found to vary significantly, ranging from 47 to 150 atoms g-1 yr-1 (normalized to sea level). Although there is considerable scatter in the data, the samples younger than 10,000 years are well-preserved and exposed, and the production rate variations are therefore not related to erosion or soil cover. Data averaged over the past 2000 years indicate a sea-level 3He production rate of 125 ?? 30 atoms g-1 yr-1, which agrees well with previous estimates. The longer record suggests a minimum in sea level normalized 3He production rate between 2000 and 7000 years (55 ?? 15 atoms g-1 yr-1), as compared to samples younger than 2000 years (125 ?? 30 atoms g-1 yr-1), and those between 7000 and 10,000 years (127 ?? 19 atoms g-1 yr-1). The minimum in production rate is similar in age to that which would be produced by variations in geomagnetic field strength, as indicated by archeomagnetic data. However, the production rate variations (a factor of 2.3 ?? 0.8) are poorly determined due to the large uncertainties in the youngest samples and questions of surface preservation for the older samples. Calculations using the atmospheric production model of O'Brien (1979) [35], and the method of Lal and Peters (1967) [11], predict smaller production rate variations for similar variation in dipole moment (a factor of 1.15-1.65). Because the production rate variations, archeomagnetic data

  12. Lunar Lava Tube Sensing

    Science.gov (United States)

    York, Cheryl Lynn; Walden, Bryce; Billings, Thomas L.; Reeder, P. Douglas

    1992-01-01

    Large (greater than 300 m diameter) lava tube caverns appear to exist on the Moon and could provide substantial safety and cost benefits for lunar bases. Over 40 m of basalt and regolith constitute the lava tube roof and would protect both construction and operations. Constant temperatures of -20 C reduce thermal stress on structures and machines. Base designs need not incorporate heavy shielding, so lightweight materials can be used and construction can be expedited. Identification and characterization of lava tube caverns can be incorporated into current precursor lunar mission plans. Some searches can even be done from Earth. Specific recommendations for lunar lava tube search and exploration are (1) an Earth-based radar interferometer, (2) an Earth-penetrating radar (EPR) orbiter, (3) kinetic penetrators for lunar lava tube confirmation, (4) a 'Moon Bat' hovering rocket vehicle, and (5) the use of other proposed landers and orbiters to help find lunar lava tubes.

  13. Absence of Loa loa Microfilaremia among Newly Arrived Congolese Refugees in Texas.

    Science.gov (United States)

    Montour, Jessica; Lee, Deborah; Snider, Cathy; Jentes, Emily S; Stauffer, William

    2017-12-01

    The Centers for Disease Control and Prevention recommends that refugees at risk of Loa loa infection be tested for microfilaria before treatment with ivermectin. We report observational results of this approach in African refugees in Texas. Daytime blood smears were performed for microfilaria on at-risk African refugees who arrived in Texas from July 1, 2014 through December 30, 2016. Clinics were asked if there were any adverse events reported among those who received ivermectin. Of the 422 persons screened, 346 (82%) were born in L. loa -endemic countries, with 332 (96%) of these being born in the Democratic Republic of Congo. No smears detected microfilaria, and all received presumptive ivermectin with no reports of significant adverse events. In this investigation, the prevalence of significant microfilarial load in sub-Saharan African refugees appeared to be low, and ivermectin treatment was safe and well tolerated.

  14. Lava flow field emplacement studies of Manua Ulu (Kilauea Volcano, Hawai'i, United States) and Venus, using field and remote sensing analyses

    Science.gov (United States)

    Byrnes, Jeffrey Myer

    2002-04-01

    This work examines lava emplacement processes by characterizing surface units using field and remote sensing analyses in order to understand the development of lava flow fields. Specific study areas are the 1969--1974 Mauna Ulu compound flow field, (Kilauea Volcano, Hawai'i, USA), and five lava flow fields on Venus: Turgmam Fluctus, Zipaltonal Fluctus, the Tuli Mons/Uilata Fluctus flow complex, the Var Mons flow field, and Mylitta Fluctus. Lava surface units have been examined in the field and with visible-, thermal-, and radar-wavelength remote sensing datasets for Mauna Ulu, and with radar data for the Venusian study areas. For the Mauna Ulu flow field, visible characteristics are related to color, glass abundance, and dm- to m-scale surface irregularities, which reflect the lava flow regime, cooling, and modification due to processes such as coalescence and inflation. Thermal characteristics are primarily affected by the abundance of glass and small-scale roughness elements (such as vesicles), and reflect the history of cooling, vesiculation and degassing, and crystallization of the lava. Radar characteristics are primarily affected by unit topography and fracturing, which are related to flow inflation, remobilization, and collapse, and reflect the local supply of lava during and after unit emplacement. Mauna Ulu surface units are correlated with pre-eruption topography, lack a simple relationship to the main feeder lava tubes, and are distributed with respect to their position within compound flow lobes and with distance from the vent. The Venusian lava flow fields appear to have developed through emplacement of numerous, thin, simple and compound flows, presumably over extended periods of time, and show a wider range of radar roughness than is observed at Mauna Ulu. A potential correlation is suggested between flow rheology and surface roughness. Distributary flow morphologies may result from tube-fed flows, and flow inflation is consistent with observed

  15. Introducing Kansas Lava

    Science.gov (United States)

    Gill, Andy; Bull, Tristan; Kimmell, Garrin; Perrins, Erik; Komp, Ed; Werling, Brett

    Kansas Lava is a domain specific language for hardware description. Though there have been a number of previous implementations of Lava, we have found the design space rich, with unexplored choices. We use a direct (Chalmers style) specification of circuits, and make significant use of Haskell overloading of standard classes, leading to concise circuit descriptions. Kansas Lava supports both simulation (inside GHCi), and execution via VHDL, by having a dual shallow and deep embedding inside our Signal type. We also have a lightweight sized-type mechanism, allowing for MATLAB style matrix based specifications to be directly expressed in Kansas Lava.

  16. Development of a highly sensitive loop-mediated isothermal amplification (LAMP) method for the detection of Loa loa.

    Science.gov (United States)

    Fernández-Soto, Pedro; Mvoulouga, Prosper Obolo; Akue, Jean Paul; Abán, Julio López; Santiago, Belén Vicente; Sánchez, Miguel Cordero; Muro, Antonio

    2014-01-01

    The filarial parasite Loa loa, the causative agent of loiasis, is endemic in Central and Western Africa infecting 3-13 million people. L. loa has been associated with fatal encephalopathic reactions in high Loa-infected individuals receiving ivermectin during mass drug administration programs for the control of onchocerciasis and lymphatic filariasis. In endemic areas, the only diagnostic method routinely used is the microscopic examination of mid-day blood samples by thick blood film. Improved methods for detection of L. loa are needed in endemic regions with limited resources, where delayed diagnosis results in high mortality. We have investigated the use of a loop-mediated isothermal amplification (LAMP) assay to facilitate rapid, inexpensive, molecular diagnosis of loiasis. Primers for LAMP were designed from a species-specific repetitive DNA sequence from L. loa retrieved from GenBank. Genomic DNA of a L. loa adult worm was used to optimize the LAMP conditions using a thermocycler or a conventional heating block. Amplification of DNA in the LAMP mixture was visually inspected for turbidity as well as addition of fluorescent dye. LAMP specificity was evaluated using DNA from other parasites; sensitivity was evaluated using DNA from L. loa 10-fold serially diluted. Simulated human blood samples spiked with DNA from L. loa were also tested for sensitivity. Upon addition of fluorescent dye, all positive reactions turned green while the negative controls remained orange under ambient light. After electrophoresis on agarose gels, a ladder of multiple bands of different sizes could be observed in positive samples. The detection limit of the assay was found to be as little as 0.5 ag of L. loa genomic DNA when using a heating block. We have designed, for the first time, a highly sensitive LAMP assay for the detection of L. loa which is potentially adaptable for field diagnosis and disease surveillance in loiasis-endemic areas.

  17. Hawaii Volcanism: Lava Forms

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Over the last several million years the Hawaiian Islands have been built of successive lava flows. They are the most recent additions in a long line of volcanoes...

  18. Carbone_et_al_2016_ambient_data - Sea surface temperature variation linked to elemental mercury concentrationsmeasured on Mauna Loa

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data set has two sets of gaseous elemental mercury data. The first column contains all Hg related data some of which may have been affected by the upslope...

  19. Mauna Kea volcano's ongoing 18-year swarm

    Science.gov (United States)

    Wech, A.; Thelen, W. A.

    2017-12-01

    Mauna Kea is a large postshield-stage volcano that forms the highest peak on Hawaii Island. The 4,205-meter high volcano erupted most recently between 6,000 and 4,500 years ago and exhibits relatively low rates of seismicity, which are mostly tectonic in origin resulting from lithospheric flexure under the weight of the volcano. Here we identify deep repeating earthquakes occurring beneath the summit of Mauna Kea. These earthquakes, which are not part of the Hawaiian Volcano Observatory's regional network catalog, were initially detected through a systematic search for coherent seismicity using envelope cross-correlation, and subsequent analysis revealed the presence of a long-term, ongoing swarm. The events have energy concentrated at 2-7 Hz, and can be seen in filtered waveforms dating back to the earliest continuous data from a single station archived at IRIS from November 1999. We use a single-station (3 component) match-filter analysis to create a catalog of the repeating earthquakes for the past 18 years. Using two templates created through phase-weighted stacking of thousands of sta/lta-triggers, we find hundreds of thousands of M1.3-1.6 earthquakes repeating every 7-12 minutes throughout this entire time period, with many smaller events occurring in between. The earthquakes occur at 28-31 km depth directly beneath the summit within a conspicuous gap in seismicity surrounding the flanks of the volcano. Magnitudes and periodicity are remarkably stable long-term, but do exhibit slight variability and occasionally display higher variability on shorter time scales. Network geometry precludes obtaining a reliable focal mechanism, but we interpret the frequency content and hypocenters to infer a volcanic source distinct from the regional tectonic seismicity responding to the load of the island. In this model, the earthquakes may result from the slow, persistent degassing of a relic magma chamber at depth.

  20. Filaricidal activities on Onchocerca ochengi and Loa loa, toxicity and phytochemical screening of extracts of Tragia benthami and Piper umbellatum.

    Science.gov (United States)

    Cho-Ngwa, Fidelis; Monya, Elvis; Azantsa, Boris K; Manfo, Faustin Pascal T; Babiaka, Smith B; Mbah, James A; Samje, Moses

    2016-08-30

    Onchocerciasis is the world's second leading infectious cause of blindness. Its control is currently hampered by the lack of a macrofilaricidal drug and by severe adverse events observed when the lone recommended microfilaricide, ivermectin is administered to individuals co-infected with Loa loa. Therefore, there is the need for a safe and effective macrofilaricidal drug that will be able to cure the infection and break transmission cycles, or at least, an alternative microfilaricide that does not kill L. loa microfilariae (mf). Fourteen extracts from two medicinal plants, Tragia benthami and Piper umbellatum were screened in vitro against Onchocerca ochengi parasite and L. loa mf. Activities of extracts on male worms and microfilariae were assessed by motility reduction, while MTT/Formazan assay was used to assess biochemically the death of female worms. Cytotoxicity and acute toxicity of active extracts were tested on monkey kidney cells and Balb/c mice, respectively. At 500 μg/mL, all extracts showed 100 % activity on Onchocerca ochengi males and microfilariae, while 9 showed 100 % activity on female worms. The methylene chloride extract of Piper umbellatum leaves was the most active on adult male and female worms (IC50s: 16.63 μg/mL and 35.65 μg/mL, respectively). The three most active extracts on Onchocerca ochengi females were also highly active on Loa loa microfilariae, with IC50s of 35.12 - 13.9 μg/mL. Active extracts were generally more toxic to the worms than to cells and showed no acute toxicity to Balb/c mice. Phytochemical screening revealed the presence of saponins, steroids, tannins and flavanoids in the promising extracts. These results unfold potential sources of novel anti-Onchocerca lead compounds and validate the traditional use of the plants in onchocerciasis treatment.

  1. Calcifications in the breast in Filaria loa infection

    Energy Technology Data Exchange (ETDEWEB)

    Novak, R. (Karolinska Sjukhuset, Stockholm (Sweden). Dept. of Diagnostic Radiology)

    A 40-year-old patient underwent mammography for evaluation of a mass. Atypical calcifications were observed in the opposite breast. Two types of calcification were observed: One type was spiral-shaped and the other type rod-shaped. These calcifications were caused by Filaria loa. Parasitic calcifications in the breast are uncommon. (orig.).

  2. Gazprom sai loa ehitada Peterburi pilvelõhkuja / Kaivo Kopli

    Index Scriptorium Estoniae

    Kopli, Kaivo

    2009-01-01

    Kuberner Valentina Matvijenko andis UNESCO vastuseisust hoolimata loa ehitada Peterburisse 403 meetri kõrgune pilvelõhkuja. Gazpromi torni ehk Ohta keskuse projekteeris Briti arhitektibüroo RMJM. Viieküljeline hoone peaks muutuvas päikesevalguses värvi vahetama

  3. Evaluation of in vitro culture systems for the maintenance of microfilariae and infective larvae of Loa loa.

    Science.gov (United States)

    Zofou, Denis; Fombad, Fanny Fri; Gandjui, Narcisse V T; Njouendou, Abdel Jelil; Kengne-Ouafo, Arnaud Jonas; Chounna Ndongmo, Patrick W; Datchoua-Poutcheu, Fabrice R; Enyong, Peter A; Bita, Dizzle Tayong; Taylor, Mark J; Turner, Joseph D; Wanji, Samuel

    2018-05-02

    Suitable and scalable in vitro culture conditions for parasite maintenance are needed to foster drug research for loiasis, one of the neglected tropical diseases which has attracted only limited attention over recent years, despite having important public health impacts. The present work aims to develop adequate in vitro culture systems for drug screening against both microfilariae (mf) and infective third-stage larvae (L3) of Loa loa. In vitro culture conditions were evaluated by varying three basic culture media: Roswell Park Memorial Institute (RPMI-1640), Dulbecco's modified Eagle's medium (DMEM) and Iscove's modified Dulbecco's medium (IMDM); four sera/proteins: newborn calf serum (NCS), foetal bovine serum (FBS), bovine serum albumin (BSA) and the lipid-enriched BSA (AlbuMax® II, ALB); and co-culture with the Monkey Kidney Epithelial Cell line (LLC-MK2) as a feeder layer. The various culture systems were tested on both mf and L3, using survival (% motile), motility (T 90 = mean duration (days) at which at least 90% of parasites were fully active) and moulting rates of L3 as the major criteria. The general linear model regression analysis was performed to assess the contribution of each variable on the viability of Loa loa L3 and microfilarie. All statistical tests were performed at 95% confidence interval. Of the three different media tested, DMEM and IMDM were the most suitable sustaining the maintenance of both L. loa L3 and mf. IMDM alone could sustain L3 for more than 5 days (T 90 = 6.5 ± 1.1 day). Serum supplements and LLC-MK2 co-cultures significantly improved the survival of parasites in DMEM and IMDM. In co-cultures with LLC-MK2 cells, L. loa mf were maintained in each of the three basic media (T 90 of 16.4-19.5 days) without any serum supplement. The most effective culture systems promoting significant moulting rate of L3 into L4 (at least 25%) with substantial maintenance time were: DMEM + BSA, DMEM + NCS, DMEM-AlbuMax®II, DMEM + FBS all in co

  4. Hawaii Lava Flows

    Science.gov (United States)

    2001-01-01

    This sequence of ASTER nighttime thermal images shows the Pu'u O'o lava flows entering the sea at Kamokuna on the southeast side of the Island of Hawaii. Each image covers an area of 9 x 12 km. The acquisition dates are April 4 2000, May 13 2000, May 22 2000 (upper row) and June 30 2000, August 1 2000 and January 1 2001 (lower row). Thermal band 14 has been color coded from black (coldest) through blue, red, yellow and white (hottest). The first 5 images show a time sequence of a single eruptive phase; the last image shows flows from a later eruptive phase. The images are located at 19.3 degrees north latitude, 155 degrees west longitude. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  5. Constraining the timescale of magma stagnation beneath Mauna Kea volcano, Hawaii,using diffusion profiles in olivine phenocrysts

    Science.gov (United States)

    Bloch, E. M.; Ganguly, J.

    2009-12-01

    Fe-Mg diffusion profiles have been measured in olivine xenocrysts within alkalic basalts in order to constrain the timescales of magma stagnation beneath Mauna Kea volcano, Hawaii. It has been suggested that during the main tholeiitic shield-building stage, and postshield eruptive stages of Mauna Kea, magmas were stalled and stagnated near the Moho, at a depth of ~15 km. Evidence in support of this hypothesis comes from cumulates formed by gravity-settling and in situ crystallization within magma chambers (Fodor and Galar, 1997), and from clinopyroxene-wholerock thermobarometry on Hamakua basalts (Putirka, in press). The cumulates represent a ‘fossil’ magma chamber which formed primarily from tholeiitic basalts; during the later capping-lava stage of Mauna Kea, alkalic basalts tore off chunks of these cumulates during ascent to the surface. We have measured several diffusion profiles in olivine xenocrysts from a single basalt sample. Because these xenocrysts have homogenous core compositions identical to a neighboring dunite cumulate, and because they are much larger and texturally distinct from compositionally dissimilar olivine phenocrysts, they are interpreted to be cumulate olivines which were dislodged during magma recharge/mixing in the stagnation zone. Although the orientations of the phenocrysts are not yet known, the diffusion profiles have been fit using diffusion coefficients parallel to the c and a crystallographic axes (i.e. minimum and maximum values). Modeling diffusion profiles yields ∫Ddt ≤4.5 x 10-5 cm2. Assuming that the xenocrysts were broken off from the cumulate immediately when the magma chamber was recharged, it is possible to calculate the maximum stagnation time of the basalts. Thus, the retrieved ∫Ddt value yields a maximum stagnation time of ~0.7 years. References: Fodor RV, Galar, PA (1997). A View into the Subsurface of Mauna Kea Volcano, Hawaii: Crystallization Processes Interpreted through the Petrology and Petrography of

  6. Terrestrial analogs to lunar sinuous rilles - Kauhako Crater and channel, Kalaupapa, Molokai, and other Hawaiian lava conduit systems

    International Nuclear Information System (INIS)

    Coombs, C.R.; Hawke, B.R.; Wilson, L.

    1990-01-01

    Two source vents, one explosive and one effusive erupted to form a cinder cone and low lava shield that together compose the Kalaupapa peninsula of Molokai, Hawaii, A 50-100-m-wide channel/tube system extends 2.3 km northward from kauhako crater in the center of the shield. Based on modeling, a volume of up to about 0.2 cu km of lava erupted at a rate of 260 cu m/sec to flow through the Kauhako conduit system in one of the last eruptive episodes on the peninsula. Channel downcutting by thermal erosion occurred at a rate of about 10 micron/sec to help form the 30-m-deep conduit. Two smaller, secondary tube systems formed east of the main lava channel/tube. Several other lava conduit systems on the islands of Oahu and Hawaii were also compared to the Kauhako and lunar sinuous rille systems. These other lava conduits include Whittington, Kupaianaha, and Mauna Ulu lava tubes. Morphologically, the Hawaiian tube systems studied are very similar to lunar sinuous rilles in that they have deep head craters, sinuous channels, and gentle slopes. Thermal erosion is postulated to be an important factor in the formation of these terrestrial channel systems and by analogy is inferred to be an important process involved in the formation of lunar sinuous rilles. 28 refs

  7. Loa loa vectors Chrysops spp.: perspectives on research, distribution, bionomics, and implications for elimination of lymphatic filariasis and onchocerciasis.

    Science.gov (United States)

    Kelly-Hope, Louise; Paulo, Rossely; Thomas, Brent; Brito, Miguel; Unnasch, Thomas R; Molyneux, David

    2017-04-05

    Loiasis is a filarial disease caused Loa loa. The main vectors are Chrysops silacea and C. dimidiata which are confined to the tropical rainforests of Central and West Africa. Loiasis is a mild disease, but individuals with high microfilaria loads may suffer from severe adverse events if treated with ivermectin during mass drug administration campaigns for the elimination of lymphatic filariasis and onchocerciasis. This poses significant challenges for elimination programmes and alternative interventions are required in L. loa co-endemic areas. The control of Chrysops has not been considered as a viable cost-effective intervention; we reviewed the current knowledge of Chrysops vectors to assess the potential for control as well as identified areas for future research. We identified 89 primary published documents on the two main L. loa vectors C. silacea and C dimidiata. These were collated into a database summarising the publication, field and laboratory procedures, species distributions, ecology, habitats and methods of vector control. The majority of articles were from the 1950-1960s. Field studies conducted in Cameroon, Democratic Republic of Congo, Equatorial Guinea, Nigeria and Sudan highlighted that C. silacea is the most important and widespread vector. This species breeds in muddy streams or swampy areas of forests or plantations, descends from forest canopies to feed on humans during the day, is more readily adapted to human dwellings and attracted to wood fires. Main vector targeted measures proposed to impact on L. loa transmission included personal repellents, household screening, indoor residual spraying, community-based environmental management, adulticiding and larviciding. This is the first comprehensive review of the major L. loa vectors for several decades. It highlights key vector transmission characteristics that may be targeted for vector control providing insights into the potential for integrated vector management, with multiple diseases

  8. LAVA Pressure Transducer Trade Study

    Science.gov (United States)

    Oltman, Samuel B.

    2016-01-01

    The Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE) payload will transport the (LAVA) subsystem to hydrogen-rich locations on the moon supporting NASA's in-situ resource utilization (ISRU) programs. There, the LAVA subsystem will analyze volatiles that evolve from heated regolith samples in order to quantify how much water is present. To do this, the system needs resilient pressure transducers (PTs) to calculate the moles in the gas samples. The PT trade study includes a comparison of newly-procured models to a baseline unit with prior flight history in order to determine the PT model with the best survivability in flight-forward conditions.

  9. Controls on carbon storage and weathering in volcanic ash soils across a climate gradient on Mauna Kea, Hawaii

    Science.gov (United States)

    Kramer, M. G.; Chadwick, O.

    2017-12-01

    Volcanic ash soils retain the largest and most persistent soil carbon pools of any ecosystem. However, the mechanisms governing soil carbon accumulation and weathering during initial phases of weathering are not well understood. We examined soil organic matter dynamics and weathering across a high altitude (3563 - 3013 m) 20 ky climate gradient on Mauna Kea in Hawaii. Four elevation sites were selected ( 250-500 mm rainfall) which range from arid-periglacial to sites which contain a mix of shrubs and grasses. At each site, between 2-3 pits were dug and major diagnostic horizons down to bedrock (in-tact lava) were sampled. Soils were analyzed for particle size, organic C and N, soil pH, exchangeable cations, base saturation, NaF pH, phosphorous sorption and bulk elements. Mass loss and pedogenic metal accumulation (hydroxlamine Fe, Al and Si extractions) were used to measure extent of weathering, leaching, changes in soil mineralogy and carbon accumulation with the short-range-ordered (SRO) minerals. Reactive-phase (SRO) minerals show a general trend of increasing abundance through the soil depth profile with increasing rainfall. However carbon accumulation patterns across the climate gradient are largely decoupled from these trends. The results suggest that after 20ky, pedogenic processes have altered the nature and composition of the volcanic ash such that it is capable of retaining soil C even where organic acid influences from plant material and leaching from rainfall is severely limited. Comparisons with lower elevation soils on Mauna Kea and other moist mesic (2500mm rainfall) sites on Hawaii suggest that these soils have reached only between 1-15 % of their capacity to retain carbon. Our results suggest that in low rainfall and a cold climate, after 20ky, weathering has advanced but is decoupled from soil carbon accumulation patterns and the associated influence of vegetation on soil development. Changes in soil carbon composition and amount across the entire

  10. Textural and rheological evolution of basalt flowing down a lava channel

    Science.gov (United States)

    Robert, Bénédicte; Harris, Andrew; Gurioli, Lucia; Médard, Etienne; Sehlke, Alexander; Whittington, Alan

    2014-06-01

    The Muliwai a Pele lava channel was emplaced during the final stage of Mauna Ulu's 1969-1974 eruption (Kilauea, Hawaii). The event was fountain-fed and lasted for around 50 h, during which time a channelized flow system developed, in which a 6-km channel fed a zone of dispersed flow that extended a further 2.6 km. The channel was surrounded by initial rubble levees of 'a'a, capped by overflow units of limited extent. We sampled the uppermost overflow unit every 250 m down the entire channel length, collecting, and analyzing 27 air-quenched samples. Bulk chemistry, density and textural analyses were carried out on the sample interior, and glass chemistry and microlite crystallization analyses were completed on the quenched crust. Thermal and rheological parameters (cooling, crystallization rate, viscosity, and yield strength) were also calculated. Results show that all parameters experience a change around 4.5 km from the vent. At this point, there is a lava surface transition from pahoehoe to 'a'a. Lava density, microlite content, viscosity, and yield strength all increase down channel, but vesicle content and lava temperature decrease. Cooling rates were 6.7 °C/km, with crystallization rates increasing from 0.03 Фc/km proximally, to 0.14 Фc/km distally. Modeling of the channel was carried out using the FLOWGO thermo-rheological model and allowed fits for temperature, microlite content, and channel width when run using a three-phase viscosity model based on a temperature-dependent viscosity relation derived for this lava. The down flow velocity profile suggests an initial velocity of 27 m/s, declining to 1 m/s at the end of the channel. Down-channel, lava underwent cooling that induced crystallization, causing both the lava viscosity and yield strength to increase. Moreover, lava underwent degassing and a subsequent vesicularity decrease. This aided in increasing viscosity, with the subsequent increase in shearing promoting a transition to 'a'a.

  11. The OmpA-like protein Loa22 is essential for leptospiral virulence.

    Directory of Open Access Journals (Sweden)

    Paula Ristow

    2007-07-01

    Full Text Available Pathogenic mechanisms of Leptospira interrogans, the causal agent of leptospirosis, remain largely unknown. This is mainly due to the lack of tools for genetic manipulations of pathogenic species. In this study, we characterized a mutant obtained by insertion of the transposon Himar1 into a gene encoding a putative lipoprotein, Loa22, which has a predicted OmpA domain based on sequence identity. The resulting mutant did not express Loa22 and was attenuated in virulence in the guinea pig and hamster models of leptospirosis, whereas the genetically complemented strain was restored in Loa22 expression and virulence. Our results show that Loa22 was expressed during host infection and exposed on the cell surface. Loa22 is therefore necessary for virulence of L. interrogans in the animal model and represents, to our knowledge, the first genetically defined virulence factor in Leptospira species.

  12. Lava Flow at Kilauea, Hawaii

    Science.gov (United States)

    2007-01-01

    On July 21, 2007, the world's most active volcano, Kilauea on Hawaii's Big Island, produced a new fissure eruption from the Pu'u O'o vent, which fed an open lava channel and lava flows toward the east. Access to the Kahauale'a Natural Area Reserve was closed due to fire and gas hazards. The two Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) nighttime thermal infrared images were acquired on August 21 and August 30, 2007. The brightest areas are the hottest lava flows from the recent fissure eruption. The large lava field extending down to the ocean is part of the Kupaianaha field. The most recent activity there ceased on June 20, but the lava is still hot and appears bright on the images. Magenta areas are cold lava flows from eruptions that occurred between 1969 and 2006. Clouds are cold (black) and the ocean is a uniform warm temperature, and light gray in color. These images are being used by volcanologists at the U.S. Geological Survey Hawaii Volcano Observatory to help monitor the progress of the lava flows. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra spacecraft. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties

  13. Hawaiian fissure fountains: Quantifying vent and shallow conduit geometry, episode 1 of the 1969-1974 Mauna Ulu eruption: Chapter 17

    Science.gov (United States)

    Parcheta, Carolyn; Fagents, Sarah; Swanson, Donald A.; Houghton, Bruce F.; Ericksen, Todd; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique

    2015-01-01

    Geometries of shallow magmatic pathways feeding volcanic eruptions are poorly constrained, yet many key interpretations about eruption dynamics depend on knowledge of these geometries. Direct quantification is difficult because vents typically become blocked with lava at the end of eruptions. Indirect geophysical techniques have shed light on some volcanic conduit geometries, but the scales are too coarse to resolve narrow fissures (widths typically 1 m). Kīlauea's Mauna Ulu eruption, which started with 30 m. Direct measurements at the ground surface were augmented by tripod-mounted lidar measurements to quantify the shallow conduit geometry for three vents at a resolution eruptive behavior, especially if incorporated into computer models.

  14. Mariner 9 photographs of small-scale volcanic structures on Mars

    Science.gov (United States)

    Greeley, R.

    1972-01-01

    Surface features on the flanks of Martian shield volcanoes photographed by Mariner 9 are identified as lava flow channels, rift zones, and partly collapsed lava tubes by comparisons with similar structures on the flanks of Mauna Loa shield volcano, Hawaii. From these identifications, the composition of the Martian lava flows is interpreted to be basaltic, with viscosities ranging from those of fluid pahoehoe to more viscous aa.

  15. Mariner 9 photographs of small volcanic structures on Mars

    Science.gov (United States)

    Greeley, R.

    1973-01-01

    Surface features on the flanks of martian shield volcanoes photographed by Mariner 9 are identified as lava flow channels, rift zones, and partly collapsed lava tubes by comparisons with similar structures on the flanks of Mauna Loa shield volcano, Hawaii. From these identification, the composition of the martian lava flows in interpreted to be basaltic, with viscosities ranging from those of fluid pahoehoe to more viscous aa.

  16. LavaSIM: the effect of heat transfer in 3D on lava flow characteristics (Invited)

    Science.gov (United States)

    Fujita, E.

    2013-12-01

    Characteristics of lava flow are governed by many parameters like lava viscosity, effusion rate, ground topography, etc. The accuracy and applicability of lava flow simulation code is evaluated whether the numerical simulation can reproduce these features quantitatively, which is important from both strategic and scientific points of views. Many lava flow simulation codes are so far proposed, and they are classified into two categories, i.e., the deterministic and the probabilistic models. LavaSIM is one of the former category models, and has a disadvantage of time consuming. But LavaSIM can solves the equations of continuity, motion, energy by step and has an advantage in the calculation of three-dimensional analysis with solid-liquid two phase flow, including the heat transfer between lava, solidified crust, air, water and ground, and three-dimensional convection in liquid lava. In other word, we can check the detailed structure of lava flow by LavaSIM. Therefore, this code can produce both channeled and fan-dispersive flows. The margin of the flow is solidified by cooling and these solidified crusts control the behavior of successive lava flow. In case of a channel flow, the solidified margin supports the stable central main flow and elongates the lava flow distance. The cross section of lava flow shows that the liquid lava flows between solidified crusts. As for the lava extrusion flow rate, LavaSIM can include the time function as well as the location of the vents. In some cases, some parts of the solidified wall may be broken by the pressure of successive flow and/or re-melting. These mechanisms could characterize complex features of the observed lava flows at many volcanoes in the world. To apply LavaSIM to the benchmark tests organized by V-hub is important to improve the lava flow evaluation technique.

  17. Further evidence of the cross-reactivity of the Binax NOW® Filariasis ICT cards to non-Wuchereria bancrofti filariae: experimental studies with Loa loa and Onchocerca ochengi.

    Science.gov (United States)

    Wanji, Samuel; Amvongo-Adjia, Nathalie; Njouendou, Abdel Jelil; Kengne-Ouafo, Jonas Arnaud; Ndongmo, Winston Patrick Chounna; Fombad, Fanny Fri; Koudou, Benjamin; Enyong, Peter A; Bockarie, Moses

    2016-05-05

    The immunochromatographic test (ICT) for lymphatic filariasis is a serological test designed for unequivocal detection of circulating Wuchereria bancrofti antigen. It was validated and promoted by WHO as the primary diagnostic tool for mapping and impact monitoring for disease elimination following interventions. The initial tests for specificity and sensitivity were based on samples collected in areas free of loiasis and the results suggested a near 100% specificity for W. bancrofti. The possibility of cross-reactivity with non-Wuchereria bancrofti antigens was not investigated until recently, when false positive results were observed in three independent studies carried out in Central Africa. Associations were demonstrated between ICT positivity and Loa loa microfilaraemia, but it was not clearly established if these false positive results were due to L. loa or can be extended to other filarial nematodes. This study brought further evidences of the cross-reactivity of ICT card with L. loa and Onchocerca ochengi (related to O. volvulus parasite) using in vivo and in vitro systems. Two filarial/host experimental systems (L. loa-baboon and O. ochengi-cattle) and the in vitro maintenance of different stages (microfilariae, infective larvae and adult worm) of the two filariae were used in three experiments per filarial species. First, whole blood and sera samples were prepared from venous blood of patent baboons and cattle, and applied on ICT cards to detect circulating filarial antigens. Secondly, larval stages of L. loa and O. ochengi as well as O. ochengi adult males were maintained in vitro. Culture supernatants were collected and applied on ICT cards after 6, 12 and 24 h of in vitro maintenance. Finally, total worm extracts (TWE) were prepared using L. loa microfilariae (Mf) and O. ochengi microfilariae, infective larvae and adult male worms. TWE were also tested on ICT cards. For each experiment, control assays (whole blood and sera from uninfected babon

  18. Probabilistically modeling lava flows with MOLASSES

    Science.gov (United States)

    Richardson, J. A.; Connor, L.; Connor, C.; Gallant, E.

    2017-12-01

    Modeling lava flows through Cellular Automata methods enables a computationally inexpensive means to quickly forecast lava flow paths and ultimate areal extents. We have developed a lava flow simulator, MOLASSES, that forecasts lava flow inundation over an elevation model from a point source eruption. This modular code can be implemented in a deterministic fashion with given user inputs that will produce a single lava flow simulation. MOLASSES can also be implemented in a probabilistic fashion where given user inputs define parameter distributions that are randomly sampled to create many lava flow simulations. This probabilistic approach enables uncertainty in input data to be expressed in the model results and MOLASSES outputs a probability map of inundation instead of a determined lava flow extent. Since the code is comparatively fast, we use it probabilistically to investigate where potential vents are located that may impact specific sites and areas, as well as the unconditional probability of lava flow inundation of sites or areas from any vent. We have validated the MOLASSES code to community-defined benchmark tests and to the real world lava flows at Tolbachik (2012-2013) and Pico do Fogo (2014-2015). To determine the efficacy of the MOLASSES simulator at accurately and precisely mimicking the inundation area of real flows, we report goodness of fit using both model sensitivity and the Positive Predictive Value, the latter of which is a Bayesian posterior statistic. Model sensitivity is often used in evaluating lava flow simulators, as it describes how much of the lava flow was successfully modeled by the simulation. We argue that the positive predictive value is equally important in determining how good a simulator is, as it describes the percentage of the simulation space that was actually inundated by lava.

  19. Modeling Submarine Lava Flow with ASPECT

    Science.gov (United States)

    Storvick, E. R.; Lu, H.; Choi, E.

    2017-12-01

    Submarine lava flow is not easily observed and experimented on due to limited accessibility and challenges posed by the fast solidification of lava and the associated drastic changes in rheology. However, recent advances in numerical modeling techniques might address some of these challenges and provide unprecedented insight into the mechanics of submarine lava flow and conditions determining its wide-ranging morphologies. In this study, we explore the applicability ASPECT, Advanced Solver for Problems in Earth's ConvecTion, to submarine lava flow. ASPECT is a parallel finite element code that solves problems of thermal convection in the Earth's mantle. We will assess ASPECT's capability to model submarine lava flow by observing models of lava flow morphology simulated with GALE, a long-term tectonics finite element analysis code, with models created using comparable settings and parameters in ASPECT. From these observations we will contrast the differing models in order to identify the benefits of each code. While doing so, we anticipate we will learn about the conditions required for end-members of lava flow morphology, for example, pillows and sheet flows. With ASPECT specifically we focus on 1) whether the lava rheology can be implemented; 2) how effective the AMR is in resolving morphologies of the solidified crust; 3) whether and under what conditions the end-members of the lava flow morphologies, pillows and sheets, can be reproduced.

  20. Lava tubes - Potential shelters for habitats

    Science.gov (United States)

    Horz, F.

    Natural caverns occur on the moon in the form of 'lava tubes', which are the drained conduits of underground lava rivers. The inside dimensions of these tubes measure tens to hundreds of meters, and their roofs are expected to be thicker than 10 meters. Consequently, lava tube interiors offer an environment that is naturally protected from the hazards of radiation and meteorite impact. Further, constant, relatively benign temperatures of -20 C prevail. These are extremely favorable environmental conditions for human activities and industrial operations. Significant operational, technological, and economical benefits might result if a lunar base were constructed inside a lava tube.

  1. What factors control superficial lava dome explosivity?

    Science.gov (United States)

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoît; Morgan, Daniel J

    2015-09-30

    Dome-forming eruption is a frequent eruptive style and a major hazard on numerous volcanoes worldwide. Lava domes are built by slow extrusion of degassed, viscous magma and may be destroyed by gravitational collapse or explosion. The triggering of lava dome explosions is poorly understood: here we propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite precipitation. Both processes generate an impermeable and rigid carapace allowing overpressurisation of the inner parts of the lava dome by the rapid input of vesiculated magma batches. The relative thickness of the cristobalite-rich carapace is an inverse function of the external lava dome surface area. Explosive activity is thus more likely to occur at the onset of lava dome extrusion, in agreement with observations, as the likelihood of superficial lava dome explosions depends inversely on lava dome volume. This new result is of interest for the whole volcanological community and for risk management.

  2. Feasibility Study of Earthquake Early Warning in Hawai`i For the Mauna Kea Thirty Meter Telescope

    Science.gov (United States)

    Okubo, P.; Hotovec-Ellis, A. J.; Thelen, W. A.; Bodin, P.; Vidale, J. E.

    2014-12-01

    Earthquakes, including large damaging events, are as central to the geologic evolution of the Island of Hawai`i as its more famous volcanic eruptions and lava flows. Increasing and expanding development of facilities and infrastructure on the island continues to increase exposure and risk associated with strong ground shaking resulting from future large local earthquakes. Damaging earthquakes over the last fifty years have shaken the most heavily developed areas and critical infrastructure of the island to levels corresponding to at least Modified Mercalli Intensity VII. Hawai`i's most recent damaging earthquakes, the M6.7 Kiholo Bay and M6.0 Mahukona earthquakes, struck within seven minutes of one another off of the northwest coast of the island in October 2006. These earthquakes resulted in damage at all thirteen of the telescopes near the summit of Mauna Kea that led to gaps in telescope operations ranging from days up to four months. With the experiences of 2006 and Hawai`i's history of damaging earthquakes, we have begun a study to explore the feasibility of implementing earthquake early warning systems to provide advanced warnings to the Thirty Meter Telescope of imminent strong ground shaking from future local earthquakes. One of the major challenges for earthquake early warning in Hawai`i is the variety of earthquake sources, from shallow crustal faults to deeper mantle sources, including the basal decollement separating the volcanic pile from the ancient oceanic crust. Infrastructure on the Island of Hawai`i may only be tens of kilometers from these sources, allowing warning times of only 20 s or less. We assess the capability of the current seismic network to produce alerts for major historic earthquakes, and we will provide recommendations for upgrades to improve performance.

  3. RESOLVE's Field Demonstration on Mauna Kea, Hawaii 2010

    Science.gov (United States)

    Captain, Janine; Quinn, Jacqueline; Moss, Thomas; Weis, Kyle

    2010-01-01

    In cooperation with the Canadian Space Agency, and the Northern Centre for Advanced Technology, Inc., NASA has undertaken the In-Situ Resource Utilization (ISRU) project called RESOLVE (Regolith and Environment Science & Oxygen and Lunar Volatile Extraction). This project is an Earth-based lunar precursor demonstration of a system that could be sent to explore permanently shadowed polar lunar craters, where it would drill into regolith, quantify the volatiles that are present, and extract oxygen by hydrogen reduction of iron oxides. The resulting water could be electrolyzed into oxygen to support exploration and hydrogen, which would be recycled through the process. The RESOLVE chemical processing system was mounted on a Canadian Space Agency mobility chasis and successfully demonstrated on Hawaii's Mauna Kea volcano in February 2010. The RESOLVE unit is the initial prototype of a robotic prospecting mission to the Moon. RESOLVE is designed to go to the poles of the Moon to "ground truth" the form and concentration of the hydrogen/water/hydroxyl that has been seen from orbit (M3, Lunar Prospector and LRO) and to test technologies to extract oxygen from the lunar regolith. RESOLVE has the ability to capture a one-meter core sample of lunar regolith and heat it to determine the volatiles that may be released and then demonstrate the production of oxygen from minerals found in the regolith. The RESOLVE project, which is led by KSC, is a multi-center and multi-organizational effort that includes representatives from KSC, JSC, GRC, the Canadian Space Agency, and the Northern Center for Advanced Technology (NORCAT). This paper details the results obtained from four days of lunar analog testing that included gas chromatograph analysis for volatile components, remote control of chemistry and drilling operations via satalite communications, and real-time water quantification using a novel capacitance measurement technique.

  4. Compositional variation within thick (>10 m) flow units of Mauna Kea Volcano cored by the Hawaii Scientific Drilling Project

    Science.gov (United States)

    Huang, Shichun; Vollinger, Michael J.; Frey, Frederick A.; Rhodes, J. Michael; Zhang, Qun

    2016-07-01

    Geochemical analyses of stratigraphic sequences of lava flows are necessary to understand how a volcano works. Typically one sample from each lava flow is collected and studied with the assumption that this sample is representative of the flow composition. This assumption may not be valid. The thickness of flows ranges from 100 m. Geochemical heterogeneity in thin flows may be created by interaction with the surficial environment whereas magmatic processes occurring during emplacement may create geochemical heterogeneities in thick flows. The Hawaii Scientific Drilling Project (HSDP) cored ∼3.3 km of basalt erupted at Mauna Kea Volcano. In order to determine geochemical heterogeneities in a flow, multiple samples from four thick (9.3-98.4 m) HSDP flow units were analyzed for major and trace elements. We found that major element abundances in three submarine flow units are controlled by the varying proportion of olivine, the primary phenocryst phase in these samples. Post-magmatic alteration of a subaerial flow led to loss of SiO2, CaO, Na2O, K2O and P2O5, and as a consequence, contents of immobile elements, such as Fe2O3 and Al2O3, increase. The mobility of SiO2 is important because Mauma Kea shield lavas divide into two groups that differ in SiO2 content. Post-magmatic mobility of SiO2 adds complexity to determining if these groups reflect differences in source or process. The most mobile elements during post-magmatic subaerial and submarine alteration are K and Rb, and Ba, Sr and U were also mobile, but their abundances are not highly correlated with K and Rb. The Ba/Th ratio has been used to document an important role for a plagioclase-rich source component for basalt from the Galapagos, Iceland and Hawaii. Although Ba/Th is anomalously high in Hawaiian basalt, variation in Ba abundance within a single flow shows that it is not a reliable indicator of a deep source component. In contrast, ratios involving elements that are typically immobile, such as La/Nb, La

  5. Geomagnetic polarity zones for icelandic lavas

    Science.gov (United States)

    Dagley, P.; Wilson, R.L.; Ade-Hall, J. M.; Walker, G.P.L.; Haggerty, S.E.; Sigurgeirsson, T.; Watkins, N.D.; Smith, P.J.; Edwards, J.; Grasty, R.L.

    1967-01-01

    Analysis of cores collected from a sequence of lavas in Eastern Iceland has made possible an accurate calculation of the average rate of reversal of the Earth's magnetic field. ?? 1967 Nature Publishing Group.

  6. Taylor instability in rhyolite lava flows

    Science.gov (United States)

    Baum, B. A.; Krantz, W. B.; Fink, J. H.; Dickinson, R. E.

    1989-01-01

    A refined Taylor instability model is developed to describe the surface morphology of rhyolite lava flows. The effect of the downslope flow of the lava on the structures resulting from the Taylor instability mechanism is considered. Squire's (1933) transformation is developed for this flow in order to extend the results to three-dimensional modes. This permits assessing why ridges thought to arise from the Taylor instability mechanism are preferentially oriented transverse to the direction of lava flow. Measured diapir and ridge spacings for the Little and Big Glass Mountain rhyolite flows in northern California are used in conjunction with the model in order to explore the implications of the Taylor instability for flow emplacement. The model suggests additional lava flow features that can be measured in order to test whether the Taylor instability mechanism has influenced the flows surface morphology.

  7. Internal fabric development in complex lava domes

    Czech Academy of Sciences Publication Activity Database

    Závada, Prokop; Kratinová, Zuzana; Kusbach, V.; Schulmann, K.

    2009-01-01

    Roč. 466, č. 1-2 (2009), s. 101-113 ISSN 0040-1951 R&D Projects: GA AV ČR KJB301110703; GA AV ČR KJB300120702 Grant - others:GA ČR(CZ) GA205/03/0204 Institutional research plan: CEZ:AV0Z30120515 Keywords : analogue modeling * lava extrusion * exogenous growth * crystal-rich lava * AMS Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.935, year: 2009

  8. Changes in Mauna Kea Dry Forest Structure 2000-2014

    Science.gov (United States)

    Banko, Paul C.; Brinck, Kevin W.

    2014-01-01

    Changes in the structure of the subalpine vegetation of Palila Critical Habitat on the southwestern slope of Mauna Kea Volcano, Hawai‘i, were analyzed using 12 metrics of change in māmane (Sophora chrysophylla) and naio (Myoporum sandwicense) trees surveyed on plots in 2000 and 2014. These two dominant species were analyzed separately, and changes in their structure indicated changes in the forest’s health. There was a significant increase in māmane minimum crown height (indicating a higher ungulate “browse line”), canopy area, canopy volume, percentage of trees with ungulate damage, and percentage of dead trees. No significant changes were observed in māmane maximum crown height, proportion of plots with trees, sapling density, proportion of plots with saplings, or the height distribution of trees. The only significant positive change was for māmane tree density. Significantly negative changes were observed for naio minimum crown height, tree height, canopy area, canopy volume, and percentage of dead trees. No significant changes were observed in naio tree density, proportion of plots with trees, proportion of plots with saplings, or percentage of trees with ungulate damage. Significantly positive changes were observed in naio sapling density and the height distribution of trees. There was also a significant increase in the proportion of māmane vs. naio trees in the survey area. The survey methods did not allow us to distinguish among potential factors driving these changes for metrics other than the percentage of trees with ungulate damage. Continued ungulate browsing and prolonged drought are likely the factors contributing most to the observed changes in vegetation, but tree disease or insect infestation of māmane, or naio, and competition from alien grasses and other weeds could also be causing or exacerbating the impacts to the forest. Although māmane tree density has increased since 2000, this study also demonstrates that efforts by managers

  9. SEB sai loa intresse väänata / Kadrin Karner

    Index Scriptorium Estoniae

    Karner, Kadrin

    2008-01-01

    Ilmunud ka: Delovõje Vedomosti 23. juuli lk. 4. Finantsinspektsioon andis SEB Pangale loa rakendada uut meetodit Basel II krediidi- ja operatsiooniriski kapitalinõude arvutamisel. Sama meetodit kasutavad ka mitmed teised Eesti pangad. Lisa: Basel II; Tasub teada. Vt. samas: Intervjuu SEB Eesti juhi Ahti Asmanniga

  10. Nornahraun lava morphology and mode of emplacement

    Science.gov (United States)

    Pedersen, Gro B. M.; Höskuldsson, Armann; Riishuus, Morten S.; Jónsdóttir, Ingibjörg; Gudmundsson, Magnús T.; Sigmundsson, Freysteinn; Óskarsson, Birgir V.; Drouin, Vincent; Gallagher, Catherine; Askew, Rob; Moreland, William M.; Dürig, Tobias; Dumont, Stephanie; Þórdarson, Þór

    2015-04-01

    The ongoing Nornahraun eruption is the largest effusive eruption in Iceland since the Laki eruption in 1783-84, with an estimated lava volume of ~1.15 km3 covering an area of ~83.4 km2 (as of 5 JAN 2015). The eruption provides an unprecedented opportunity to study i) lava morphologies and their emplacement styles, ii) the transition from from open to closed lava pathways and iii) lava pond formation. Tracking of the lava advancement and morphology has been performed by GPS and GoPro cameras installed in 4×4 vehicles as well as video footage. Complimentary observations have been provided from aircraft platforms and by satellite data. Of particular importance for lava morphology observations are 1-12 m/pixel airborne SAR images (x-band). The Nornahraun flow field comprises a continuum of morphologies from pāhoehoe to 'a'ā, which have varied tem-porally and spatially. At the onset of the eruption 31 AUG, lava flows advanced rapidly (400-800 m/hr) from the 1.5 km long fissure as large slabby pāhoehoe [1-3] sheet lobes, 100-500 m wide and 0.3-1 m thick at the flow fronts. By 1 SEPT, the flows began channeling towards the NE constrained by the older Holuhraun I lava field and the to-pography of flood plain itself. A central open channel developed, feeding a 1-2 km wide active 'a'ā frontal lobe that advanced 1-2 km/day. In addition to its own caterpillar motion, the frontal lobe advanced in a series of 30-50 m long breakouts, predominantly slabby and rubbly pāhoehoe [4,5]. These breakouts had initial velocities of 10-30 m/hr and reached their full length within tens of minutes and subsequently inflated over hours. With the continuous advancement of the 'a'ā flow front, the breakouts were incorporated into the 'a'ā flow fronts and seldom preserved. At the margins of the frontal lava lobe, the breakouts were more sporadic, but predominantly rubbly pāhoehoe and slabby pāhoehoe, as at the flow front. The lava flow advanced ENE into Jökulsá á Fjöllum on 7 SEPT

  11. Long-term response of the mamane forest to feral herbivore management on Mauna Kea, Hawaii

    Science.gov (United States)

    E. Reddy; D. H. Van Vuren; P. G. Scowcroft; J. B. Kauffman; L. Perry

    2012-01-01

    Seven exclosure sites located on Mauna Kea, Hawaii and established in the 1960s and 70s were sampled to characterize long-term response of the mamane (Sophora chrysophylla) forest to protection from feral sheep grazing, and to assess impacts of non-native plant species and recurrent sheep presence on forest recovery. The forest provides essential...

  12. Spherulitic (c-axis) Growth for Terrestrial (Mauna Kea, Hawaii) and Martian Hematite "blueberries"

    Science.gov (United States)

    Golden, D. C.; Ming, D. W.; Morris, R. V.

    2006-01-01

    Hematite concentrations observed by Thermal Emission Spectrometer (TES) onboard Mars Global Surveyor were considered a possible indicator for aqueous processes on Mars. Observations made by Opportunity show that the hematite at Meridiani Planum is present as spherules ( blueberries) and their fragments. The internal structure of the hematite spherules is not discernable at the resolution limit (approx.30 m/pixel) of Opportunity s Microscopic Imager (MI). A terrestrial analog for martian hematite spherules are spherules from hydrothermally altered and sulfate-rich tephra from the summit region of Mauna Kea volcano, Hawaii. The objective of this study is to determine the crystal growth fabric of the Mauna Kea hematite spherules using transmission electron microscopy (TEM) techniques and to relate that crystalline fabric to the observed TES signature of Meridiani Planum "blueberries." TEM analysis of Mauna Kea spherules exhibited a radial growth pattern consisting of "fibrous" hematite with the c-axis of hematite particles aligned along the elongation direction of the hematite fibers. The individual fibers appear to be made of coalesced nano-particles of hematite arranged with their c-axis oriented radially to form a spherical structure. Lattice fringes suggest long-range order across particles and along fibers. According to interpretations of thermal emission spectra for Meridian Planum hematite, the absence of a band at approx. 390/cm implies a geometry where c-face emission dominates. Because the c-face is perpendicular to the c-axis, this is precisely the geometry for the Mauna Kea spherules because the c-axis is aligned parallel to their radial growth direction. Therefore, we conclude as a working hypothesis that the martian spherules also have radial, c-axis growth pattern on a scale that is too small to be detected by the MER MI. Furthermore, by analogy with the Mauna Kea spherules, the martian blueberries could have formed during hydrothermal alteration of

  13. The Payun-Matru lava field: a source of analogues for Martian long lava flows

    Science.gov (United States)

    Giacomini, L.; Pasquarè, G.; Massironi, M.; Frigeri, A.; Bistacchi, A.; Frederico, C.

    2007-08-01

    The Payun Matru Volcanic complex is a Quaternary fissural structure belonging to the back-arc extensional area of the Andes in the Mendoza Province (Argentina). The eastern portion of the volcanic structure is covered by a basaltic field of pahoehoe lava flows advanced over more than 180 km from the fissural feeding vents that are aligned with a E-W fault system (Carbonilla fault). Thanks to their widespread extension, these flows represent some of the largest lava flows in the world and the Pampas Onduladas flow can be considered the longest sub-aerial individual lava flow on the Earth surface [1,2]. These gigantic flows propagated over the nearly flat surface of the Pampean foreland, moving on a 0.3 degree slope. The very low viscosity of the olivine basalt lavas, coupled with the inflation process and an extensive system of lava tubes are the most probable explanation for their considerable length. The inflation process likely develop under a steady flow rate sustained for a long time [3]. A thin viscoelastic crust, built up at an early stage, is later inflated by the underlying fluid core, which remains hot and fluid thanks to the thermal-shield effect of the crust. The crust is progressively thickened by accretion from below and spreading is due to the continuous creation of new inflated lobes, which develop at the front of the flow. Certain morphological features are considered to be "fingerprints" of inflation [4, 5, 6]; these include tumuli, lava rises, lava lobes and ridges. All these morphologies are present in the more widespread Payun Matru lava flows that, where they form extensive sheetflows, can reach a maximum thickness of more than 20 meters. After the emplacement of the major flows, a second eruptive cycle involved the Payun Matru volcanic structure. During this stage thick and channelized flows of andesitic and dacitic lavas, accompanied the formation of two trachitic and trachiandesitic strato-volcanoes (Payun Matru and Payun Liso) culminated

  14. Macrofilaricidal activity after doxycycline only treatment of Onchocerca volvulus in an area of Loa loa co-endemicity: a randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Joseph D Turner

    2010-04-01

    Full Text Available The risk of severe adverse events following treatment of onchocerciasis with ivermectin in areas co-endemic with loiasis currently compromises the development of control programmes and the treatment of co-infected individuals. We therefore assessed whether doxycycline treatment could be used without subsequent ivermectin administration to effectively deliver sustained effects on Onchocerca volvulus microfilaridermia and adult viability. Furthermore we assessed the safety of doxycycline treatment prior to ivermectin administration in a subset of onchocerciasis individuals co-infected with low to moderate intensities of Loa loa microfilaraemia.A double-blind, randomized, field trial was conducted of 6 weeks of doxycycline (200 mg/day alone, doxycycline in combination with ivermectin (150 microg/kg at +4 months or placebo matching doxycycline + ivermectin at +4 months in 150 individuals infected with Onchocerca volvulus. A further 22 individuals infected with O. volvulus and low to moderate intensities of Loa loa infection were administered with a course of 6 weeks doxycycline with ivermectin at +4 months. Treatment efficacy was determined at 4, 12 and 21 months after the start of doxycycline treatment together with the frequency and severity of adverse events.One hundred and four (60.5% participants completed all treatment allocations and follow up assessments over the 21-month trial period. At 12 months, doxycycline/ivermectin treated individuals had lower levels of microfilaridermia and higher frequency of amicrofilaridermia compared with ivermectin or doxycycline only groups. At 21 months, microfilaridermia in doxycycline/ivermectin and doxycycline only groups was significantly reduced compared to the ivermectin only group. 89% of the doxycycline/ivermectin group and 67% of the doxycycline only group were amicrofilaridermic, compared with 21% in the ivermectin only group. O. volvulus from doxycycline groups were depleted of Wolbachia and all

  15. Effect of Two or Six Doses 800 mg of Albendazole Every Two Months on Loa loa Microfilaraemia: A Double Blind, Randomized, Placebo-Controlled Trial.

    Science.gov (United States)

    Kamgno, Joseph; Nguipdop-Djomo, Patrick; Gounoue, Raceline; Téjiokem, Mathurin; Kuesel, Annette C

    2016-03-01

    Loiasis is a parasitic infection endemic in the African rain forest caused by the filarial nematode Loa loa. Loiasis can be co-endemic with onchocerciasis and/or lymphatic filariasis. Ivermectin, the drug used in the control of these diseases, can induce serious adverse reactions in patients with high L loa microfilaraemia (LLM). A drug is needed which can lower LLM below the level that represents a risk so that ivermectin mass treatment to support onchocerciasis and lymphatic filariasis elimination can be implemented safely. Sixty men and women from a loiasis endemic area in Cameroon were randomized after stratification by screening LLM (≤ 30000, 30001-50000, >50000) to three treatment arms: two doses albendazole followed by 4 doses matching placebo (n = 20), six doses albendazole (n = 20) albendazole or 6 doses matching placebo (n = 20) administered every two months. LLM was measured before each treatment and 14, 18, 21 and 24 months after the first treatment. Monitoring for adverse events occurred three and seven days as well as 2 months after each treatment. None of the adverse events recorded were considered treatment related. The percentages of participants with ≥ 50% decrease in LLM from pre-treatment for ≥ 4 months were 53%, 17% and 11% in the 6-dose, 2-dose and placebo treatment arms, respectively. The difference between the 6-dose and the placebo arm was significant (p = 0.01). The percentages of participants with LLM < 8100 mf/ml for ≥ 4 months were 21%, 11% and 0% in the 6-dose, 2-dose and placebo treatment arms, respectively. The 6-dose regimen reduced LLM significantly, but the reduction was insufficient to eliminate the risk of severe and/or serious adverse reactions during ivermectin mass drug administration in loiasis co-endemic areas.

  16. Ridge-like lava tube systems in southeast Tharsis, Mars

    Science.gov (United States)

    Zhao, Jiannan; Huang, Jun; Kraft, Michael D.; Xiao, Long; Jiang, Yun

    2017-10-01

    Lava tubes are widely distributed in volcanic fields on a planetary surface and they are important means of lava transportation. We have identified 38 sinuous ridges with a lava-tube origin in southeast Tharsis. The lengths vary between 14 and 740 km, and most of them occur in areas with slopes rate, low lava viscosity, and sustained magma supply during a long period. Besides, lava flow inflation is also important in the formation of the ridge-like lava tubes and some associated features. These lava tubes provide efficient lateral pathways for magma transportation over the relatively low topographic slopes in southeast Tharsis, and they are important for the formation of long lava flows in this region. The findings of this study provide an alternative formation mechanism for sinuous ridges on the martian surface.

  17. Diverting lava flows in the lab

    Science.gov (United States)

    Dietterich, Hannah; Cashman, Katharine V.; Rust, Alison C.; Lev, Einat

    2015-01-01

    Recent volcanic eruptions in Hawai'i, Iceland and Cape Verde highlight the challenges of mitigating hazards when lava flows threaten infrastructure. Diversion barriers are the most common form of intervention, but historical attempts to divert lava flows have met with mixed success and there has been little systematic analysis of optimal barrier design. We examine the interaction of viscous flows of syrup and molten basalt with barriers in the laboratory. We find that flows thicken immediately upslope of an obstacle, forming a localized bow wave that can overtop barriers. Larger bow waves are generated by faster flows and by obstacles oriented at a high angle to the flow direction. The geometry of barriers also influences flow behaviour. Barriers designed to split or dam flows will slow flow advance, but cause the flow to widen, whereas oblique barriers can effectively divert flows, but may also accelerate flow advance. We argue that to be successful, mitigation of lava-flow hazards must incorporate the dynamics of lava flow–obstacle interactions into barrier design. The same generalizations apply to the effect of natural topographic features on flow geometry and advance rates.

  18. Possible lava tube system in a hummocky lava flow at Daund ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    The presence of a branching and meandering lava tube system in the Daund flow, which represents the ..... is entirely related to the process of differential ero- sion and exhumation. Thus ... illuminating and thought provoking. References.

  19. Parasitological and immunological effects induced by immunization of Mandrillus sphinx against the human filarial Loa loa using infective stage larvae irradiated at 40 krad

    Directory of Open Access Journals (Sweden)

    Akue J.P

    2003-09-01

    Full Text Available Six mandrills were immunized with 150 Loa loa infective stage larvae (L3 irradiated with 40 Krad, and challenged with 100 L3, 60 days after initial vaccination. The parasitological outcome of this immunization was compared to results from six mandrills infected with normal L3. No clear association was seen between vaccination and microfilaremia until day 245 when a significant drop in the level of microfilaria occured in vaccinated compared to infected animals (5 vs 10 mf/ml; p = 0.012. A one-year follow-up of the humoral immune response showed a strong adult, microfilariae (Mf and L3 specific IgG response, with distinct profiles for each extract. In immunized animal a significant decrease in antibody level was systematically observed between days 90-145 for the anti-L3 and anti-adult IgG. However, in the same group anti-Mf antibody levels that peaked around 160-175 days post-challenge, were inversely correlated with the decrease in Mf density between day 200 and day 386. These results suggest that immunization with irradiated L3 using these specific conditions may affect the appearance of Mf.

  20. LAVA: Large scale Automated Vulnerability Addition

    Science.gov (United States)

    2016-05-23

    LAVA: Large-scale Automated Vulnerability Addition Brendan Dolan -Gavitt∗, Patrick Hulin†, Tim Leek†, Fredrich Ulrich†, Ryan Whelan† (Authors listed...released, and thus rapidly become stale. We can expect tools to have been trained to detect bugs that have been released. Given the commercial price tag...low TCN) and dead (low liveness) program data is a powerful one for vulnera- bility injection. The DUAs it identifies are internal program quantities

  1. Modeling steam pressure under martian lava flows

    Science.gov (United States)

    Dundas, Colin M.; Keszthelyi, Laszlo P.

    2013-01-01

    Rootless cones on Mars are a valuable indicator of past interactions between lava and water. However, the details of the lava–water interactions are not fully understood, limiting the ability to use these features to infer new information about past water on Mars. We have developed a model for the pressurization of a dry layer of porous regolith by melting and boiling ground ice in the shallow subsurface. This model builds on previous models of lava cooling and melting of subsurface ice. We find that for reasonable regolith properties and ice depths of decimeters, explosive pressures can be reached. However, the energy stored within such lags is insufficient to excavate thick flows unless they draw steam from a broader region than the local eruption site. These results indicate that lag pressurization can drive rootless cone formation under favorable circumstances, but in other instances molten fuel–coolant interactions are probably required. We use the model results to consider a range of scenarios for rootless cone formation in Athabasca Valles. Pressure buildup by melting and boiling ice under a desiccated lag is possible in some locations, consistent with the expected distribution of ice implanted from atmospheric water vapor. However, it is uncertain whether such ice has existed in the vicinity of Athabasca Valles in recent history. Plausible alternative sources include surface snow or an aqueous flood shortly before the emplacement of the lava flow.

  2. Island of Hawaii, State of Hawaii seen from Skylab

    Science.gov (United States)

    1974-01-01

    A vertical view of the Island of Hawaii, State of Hawaii (19.5N, 155.5W), as photographed from the Skylab space station in Earth orbit by a Skylab 4 crewman. This photograph, taken on January 8, 1974, is very useful in studies of volcanic areas. Prominent volcanic features such as the summit caldera on Mauna Loa, the extinct volcano Mauna Kea, the Kilauea caldera, and the pit crater at Halo Mau Mau within the caldera are easily identified. Kilauea was undergoing frequent eruption during the mission. Detailed features such as the extent and delineation of historic lava flows on Mauna Loa can be determined and are important parameters in volcanic studies.

  3. Selected caves and lava-tube systems in and near Lava Beds National Monument, California

    Science.gov (United States)

    Waters, Aaron Clement; Donnelly-Nolan, Julie M.; Rogers, Bruce W.

    1990-01-01

    Lava Beds National Monument (fig. 1) lies on the north slope of the huge Medicine Lake shield (fig. 2), a complex volcanic edifice of greater volume than the steep-sided Mount Shasta volcanic cone, which towers as a snowclad land mark 40 mi southwest of the monument (fig. 3).

  4. Cross-Reactivity of Filariais ICT Cards in Areas of Contrasting Endemicity of Loa loa and Mansonella perstans in Cameroon: Implications for Shrinking of the Lymphatic Filariasis Map in the Central African Region.

    Directory of Open Access Journals (Sweden)

    Samuel Wanji

    2015-11-01

    Full Text Available Immunochromatographic card test (ICT is a tool to map the distribution of Wuchereria bancrofti. In areas highly endemic for loaisis in DRC and Cameroon, a relationship has been envisaged between high L. loa microfilaria (Mf loads and ICT positivity. However, similar associations have not been demonstrated from other areas with contrasting levels of L. loa endemicity. This study investigated the cross-reactivity of ICT when mapping lymphatic filariasis (LF in areas with contrasting endemicity levels of loiasis and mansonellosis in Cameroon.A cross-sectional study to assess the prevalence and intensity of W. bancrofti, L. loa and M. perstans was carried out in 42 villages across three regions (East, North-west and South-west of the Cameroon rainforest domain. Diurnal blood was collected from participants for the detection of circulating filarial antigen (CFA by ICT and assessment of Mf using a thick blood smear. Clinical manifestations of LF were also assessed. ICT positives and patients clinically diagnosed with lymphoedema were further subjected to night blood collection for the detection of W. bancrofti Mf. Overall, 2190 individuals took part in the study. Overall, 24 individuals residing in 14 communities were tested positive by ICT, with prevalence rates ranging from 0% in the South-west to 2.1% in the North-west. Lymphoedema were diagnosed in 20 individuals with the majority of cases found in the North-west (11/20, and none of them were tested positive by ICT. No Mf of W. bancrofti were found in the night blood of any individual with a positive ICT result or clinical lymphoedema. Positive ICT results were strongly associated with high L. loa Mf intensity with 21 subjects having more than 8,000 L. loa Mf ml/blood (Odds ratio = 15.4; 95%CI: 6.1-39.0; p < 0.001. Similarly, a strong positive association (Spearman's rho = 0.900; p = 0.037 was observed between the prevalence of L. loa and ICT positivity by area: a rate of 1% or more of positive

  5. Eruptive behavior of the Marum/Mbwelesu lava lake, Vanuatu and comparisons with lava lakes on Earth and Io

    Science.gov (United States)

    Radebaugh, Jani; Lopes, Rosaly M.; Howell, Robert R.; Lorenz, Ralph D.; Turtle, Elizabeth P.

    2016-08-01

    Observations from field remote sensing of the morphology, kinematics and temperature of the Marum/Mbwelesu lava lake in the Vanuatu archipelago in 2014 reveal a highly active, vigorously erupting lava lake. Active degassing and fountaining observed at the 50 m lava lake led to large areas of fully exposed lavas and rapid ( 5 m/s) movement of lava from the centers of upwelling outwards to the lake margins. These rapid lava speeds precluded the formation of thick crust; there was never more than 30% non-translucent crust. The lava lake was observed with several portable, handheld, low-cost, near-infrared imagers, all of which measured temperatures near 1000 °C and one as high as 1022 °C, consistent with basaltic temperatures. Fine-scale structure in the lava fountains and cooled crust was visible in the near infrared at 5 cm/pixel from 300 m above the lake surface. The temperature distribution across the lake surface is much broader than at more quiescent lava lakes, peaking 850 °C, and is attributed to the highly exposed nature of the rapidly circulating lake. This lava lake has many characteristics in common with other active lava lakes, such as Erta Ale in Ethiopia, being confined, persistent and high-temperature; however it was much more active than is typical for Erta Ale, which often has > 90% crust. Furthermore, it is a good analogue for the persistent, high-temperature lava lakes contained within volcanic depressions on Jupiter's moon Io, such as Pele, also believed from spacecraft and ground-based observations to exhibit similar behavior of gas emission, rapid overturn and fountaining.

  6. Rapid integrated clinical survey to determine prevalence and co-distribution patterns of lymphatic filariasis and onchocerciasis in a Loa loa co-endemic area: The Angolan experience

    Directory of Open Access Journals (Sweden)

    Miguel Brito

    2017-08-01

    Full Text Available The Republic of Angola is a priority country for onchocerciasis and lymphatic filariasis (LF elimination, however, the co-distribution of the filarial parasite Loa loa (loiasis is a significant impediment, due to the risk of severe adverse events (SAEs associated with ivermectin used in mass drug administration (MDA campaigns. Angola has a high risk loiasis zone identified in Bengo Province where alternative interventions may need to be implemented; however, the presence and geographical overlap of the three filarial infections/diseases are not well defined. Therefore, this study conducted a rapid integrated filarial mapping survey based on readily identifiable clinical conditions of each disease in this risk zone to help determine prevalence and co-distribution patterns in a timely manner with limited resources. In total, 2007 individuals from 29 communities in five provincial municipalities were surveyed. Community prevalence estimates were determined by the rapid assessment procedure for loiasis (RAPLOA and rapid epidemiological mapping of onchocerciasis (REMO together with two questions on LF clinical manifestations (presence of lymphoedema, hydrocoele. Overall low levels of endemicity, with different overlapping distributions were found. Loiasis was found in 18 communities with a prevalence of 2.0% (31/1571, which contrasted to previous results defining the area as a high risk zone. Onchocerciasis prevalence was 5.3% (49/922 in eight communities, and LF prevalence was 0.4% for lymphoedema (8/2007 and 2.6% for hydrocoeles (20/761 males in seven and 12 communities respectively. The clinical mapping survey method helped to highlight that all three filarial infections are present in this zone of Bengo Province. However, the significant difference in loiasis prevalence found between the past and this current survey suggests that further studies including serological and parasitological confirmation are required. This will help determine levels

  7. Lava tube shatter rings and their correlation with lava flux increases at Kīlauea Volcano, Hawai‘i

    Science.gov (United States)

    Orr, T.R.

    2011-01-01

    Shatter rings are circular to elliptical volcanic features, typically tens of meters in diameter, which form over active lava tubes. They are typified by an upraised rim of blocky rubble and a central depression. Prior to this study, shatter rings had not been observed forming, and, thus, were interpreted in many ways. This paper describes the process of formation for shatter rings observed at Kīlauea Volcano during November 2005–July 2006. During this period, tilt data, time-lapse images, and field observations showed that episodic tilt changes at the nearby Pu‘u ‘Ō‘ō cone, the shallow magmatic source reservoir, were directly related to fluctuations in the level of lava in the active lava tube, with periods of deflation at Pu‘u ‘Ō‘ō correlating with increases in the level of the lava stream surface. Increases in lava level are interpreted as increases in lava flux, and were coincident with lava breakouts from shatter rings constructed over the lava tube. The repetitive behavior of the lava flux changes, inferred from the nearly continuous tilt oscillations, suggests that shatter rings form from the repeated rise and fall of a portion of a lava tube roof. The locations of shatter rings along the active lava tube suggest that they form where there is an abrupt decrease in flow velocity through the tube, e.g., large increase in tube width, abrupt decrease in tube slope, and (or) sudden change in tube direction. To conserve volume, this necessitates an abrupt increase in lava stream depth and causes over-pressurization of the tube. More than a hundred shatter rings have been identified on volcanoes on Hawai‘i and Maui, and dozens have been reported from basaltic lava fields in Iceland, Australia, Italy, Samoa, and the mainland United States. A quick study of other basaltic lava fields worldwide, using freely available satellite imagery, suggests that they might be even more common than previously thought. If so, this confirms that episodic

  8. What factors control the superficial lava dome explosivity?

    Science.gov (United States)

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoit; Morgan, Daniel J.

    2015-04-01

    Dome-forming eruption is a frequent eruptive style; lava domes result from intermittent, slow extrusion of viscous lava. Most dome-forming eruptions produce highly microcrystallized and highly- to almost totally-degassed magmas which have a low explosive potential. During lava dome growth, recurrent collapses of unstable parts are the main destructive process of the lava dome, generating concentrated pyroclastic density currents (C-PDC) channelized in valleys. These C-PDC have a high, but localized, damage potential that largely depends on the collapsed volume. Sometimes, a dilute ash cloud surge develops at the top of the concentrated flow with an increased destructive effect because it may overflow ridges and affect larger areas. In some cases, large lava dome collapses can induce a depressurization of the magma within the conduit, leading to vulcanian explosions. By contrast, violent, laterally directed, explosions may occur at the base of a growing lava dome: this activity generates dilute and turbulent, highly-destructive, pyroclastic density currents (D-PDC), with a high velocity and propagation poorly dependent on the topography. Numerous studies on lava dome behaviors exist, but the triggering of lava dome explosions is poorly understood. Here, seven dome-forming eruptions are investigated: in the Lesser Antilles arc: Montagne Pelée, Martinique (1902-1905, 1929-1932 and 650 y. BP eruptions), Soufrière Hills, Montserrat; in Guatemala, Santiaguito (1929 eruption); in La Chaîne des Puys, France (Puy de Dome and Puy Chopine eruptions). We propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by these key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite

  9. A flexible open-source toolkit for lava flow simulations

    Science.gov (United States)

    Mossoux, Sophie; Feltz, Adelin; Poppe, Sam; Canters, Frank; Kervyn, Matthieu

    2014-05-01

    Lava flow hazard modeling is a useful tool for scientists and stakeholders confronted with imminent or long term hazard from basaltic volcanoes. It can improve their understanding of the spatial distribution of volcanic hazard, influence their land use decisions and improve the city evacuation during a volcanic crisis. Although a range of empirical, stochastic and physically-based lava flow models exists, these models are rarely available or require a large amount of physical constraints. We present a GIS toolkit which models lava flow propagation from one or multiple eruptive vents, defined interactively on a Digital Elevation Model (DEM). It combines existing probabilistic (VORIS) and deterministic (FLOWGO) models in order to improve the simulation of lava flow spatial spread and terminal length. Not only is this toolkit open-source, running in Python, which allows users to adapt the code to their needs, but it also allows users to combine the models included in different ways. The lava flow paths are determined based on the probabilistic steepest slope (VORIS model - Felpeto et al., 2001) which can be constrained in order to favour concentrated or dispersed flow fields. Moreover, the toolkit allows including a corrective factor in order for the lava to overcome small topographical obstacles or pits. The lava flow terminal length can be constrained using a fixed length value, a Gaussian probability density function or can be calculated based on the thermo-rheological properties of the open-channel lava flow (FLOWGO model - Harris and Rowland, 2001). These slope-constrained properties allow estimating the velocity of the flow and its heat losses. The lava flow stops when its velocity is zero or the lava temperature reaches the solidus. Recent lava flows of Karthala volcano (Comoros islands) are here used to demonstrate the quality of lava flow simulations with the toolkit, using a quantitative assessment of the match of the simulation with the real lava flows. The

  10. Cross-Reactivity of Filariais ICT Cards in Areas of Contrasting Endemicity of Loa loa and Mansonella perstans in Cameroon: Implications for Shrinking of the Lymphatic Filariasis Map in the Central African Region.

    Science.gov (United States)

    Wanji, Samuel; Amvongo-Adjia, Nathalie; Koudou, Benjamin; Njouendou, Abdel Jelil; Chounna Ndongmo, Patrick W; Kengne-Ouafo, Jonas A; Datchoua-Poutcheu, Fabrice R; Fovennso, Bridget Adzemye; Tayong, Dizzle Bita; Fombad, Fanny Fri; Fischer, Peter U; Enyong, Peter I; Bockarie, Moses

    2015-11-01

    Immunochromatographic card test (ICT) is a tool to map the distribution of Wuchereria bancrofti. In areas highly endemic for loaisis in DRC and Cameroon, a relationship has been envisaged between high L. loa microfilaria (Mf) loads and ICT positivity. However, similar associations have not been demonstrated from other areas with contrasting levels of L. loa endemicity. This study investigated the cross-reactivity of ICT when mapping lymphatic filariasis (LF) in areas with contrasting endemicity levels of loiasis and mansonellosis in Cameroon. A cross-sectional study to assess the prevalence and intensity of W. bancrofti, L. loa and M. perstans was carried out in 42 villages across three regions (East, North-west and South-west) of the Cameroon rainforest domain. Diurnal blood was collected from participants for the detection of circulating filarial antigen (CFA) by ICT and assessment of Mf using a thick blood smear. Clinical manifestations of LF were also assessed. ICT positives and patients clinically diagnosed with lymphoedema were further subjected to night blood collection for the detection of W. bancrofti Mf. Overall, 2190 individuals took part in the study. Overall, 24 individuals residing in 14 communities were tested positive by ICT, with prevalence rates ranging from 0% in the South-west to 2.1% in the North-west. Lymphoedema were diagnosed in 20 individuals with the majority of cases found in the North-west (11/20), and none of them were tested positive by ICT. No Mf of W. bancrofti were found in the night blood of any individual with a positive ICT result or clinical lymphoedema. Positive ICT results were strongly associated with high L. loa Mf intensity with 21 subjects having more than 8,000 L. loa Mf ml/blood (Odds ratio = 15.4; 95%CI: 6.1-39.0; p ICT positivity by area: a rate of 1% or more of positive ICT results was found only in areas with an L. loa Mf prevalence above 15%. In contrast, there was no association between ICT positivity and M

  11. Characteristics and genesis of porphyroclastic lava rock in Xiangshan

    International Nuclear Information System (INIS)

    Zhou Xiaohua; Wang Zhuning

    2012-01-01

    Due to the transitional characteristics of porphyroclastic lava rock in Xiangshan of Jiangxi province, there are a variety of views on its genesis, petrographic attribution. This is because the marginal facies of the porphyroclastic lava is with ignimbrite and tuff characteristics, its transition phase has the characteristics of lava, and its intermediate phase has the feature of sub-volcanic rocks, further more, different texture of the rocks bears transition relationship. By the study of mineral composition, REE pattern, trace elements, isotopes, we put forward that the porphyroclastic lava is formed by the remelting of basement metamorphic rocks. The rocks was believed to be formed in the environment similar to volcanics and subvolcanics, and quite different to plutonic rocks due to the features of low-structure of potassium feldspar phenocrysts and solution mechanism, because the porphyroclastic lava phenocrysts occurs as fragments and maybe related to cryptoexplosion. Therefore the rocks was believed to belong to the volcano extrusive facies. (authors)

  12. Remote sensing evidence of lava-ground ice interactions associated with the Lost Jim Lava Flow, Seward Peninsula, Alaska

    Science.gov (United States)

    Marcucci, Emma C.; Hamilton, Christopher W.; Herrick, Robert R.

    2017-12-01

    Thermokarst terrains develop when ice-bearing permafrost melts and causes the overlying surface to subside or collapse. This process occurs widely throughout Arctic regions due to environmental and climatological factors, but can also be induced by localized melting of ground ice by active lava flows. The Lost Jim Lava Flow (LJLF) on the Seward Peninsula of Alaska provides evidence of former lava-ground ice interactions. Associated geomorphic features, on the scale of meters to tens of meters, were identified using satellite orthoimages and stereo-derived digital terrain models. The flow exhibits positive- and mixed-relief features, including tumuli ( N = 26) and shatter rings ( N = 4), as well as negative-relief features, such as lava tube skylights ( N = 100) and irregularly shaped topographic depressions ( N = 1188) that are interpreted to include lava-rise pits and lava-induced thermokarst terrain. Along the margins of the flow, there are also clusters of small peripheral pits that may be the products of meltwater or steam escape. On Mars, we observed morphologically similar pits near lava flow margins in northeastern Elysium Planitia, which suggests a common formation mechanism. Investigating the LJLF may therefore help to elucidate processes of lava-ground ice interaction on both Earth and Mars.

  13. Moonshot Laboratories' Lava Relief Google Mapping Project

    Science.gov (United States)

    Brennan, B.; Tomita, M.

    2016-12-01

    The Moonshot Laboratories were conceived at the University Laboratory School (ULS) on Oahu, Hawaii as way to develop creative problem solvers able to resourcefully apply 21st century technologies to respond to the problems and needs of their communities. One example of this was involved students from ULS using modern mapping and imaging technologies to assist peers who had been displaced from their own school in Pahoe on the Big Island of Hawaii. During 2015, lava flows from the eruption of Kilauea Volcano were slowly encroaching into the district of Puna in 2015. The lava flow was cutting the main town of Pahoa in half, leaving no safe routes of passage into or out of the town. One elementary school in the path of the flow was closed entirely and a new one was erected north of the flow for students living on that side. Pahoa High School students and teachers living to the north were been forced to leave their school and transfer to Kea'au High School. These students were separated from friends, family and the community they grew up in and were being thrust into a foreign environment that until then had been their local rival. Using Google Mapping technologies, Moonshot Laboratories students created a dynamic map to introduce the incoming Pahoa students to their new school in Kea'au. Elements included a stylized My Maps basemap, YouTube video descriptions of the building, videos recorded by Google Glass showing first person experiences, and immersive images of classrooms were created using 360 cameras. During the first day of orientation at Kea'au for the 200 Pahoa students, each of them were given a tablet to view the map as they toured and got to know their new campus. The methods and technologies, and more importantly innovative thinking, used to create this map have enormous potential for how to educate all students about the world around us, and the issues facing it. http://www.moonshotincubator.com/

  14. Correlation of the Deccan and Rajahmundry Trap lavas: Are these the longest and largest lava flows on Earth?

    Science.gov (United States)

    Self, S.; Jay, A. E.; Widdowson, M.; Keszthelyi, L. P.

    2008-05-01

    We propose that the Rajahmundry Trap lavas, found near the east coast of peninsular India , are remnants of the longest lava flows yet recognized on Earth (˜ 1000 km long). These outlying Deccan-like lavas are shown to belong to the main Deccan Traps. Several previous studies have already suggested this correlation, but have not demonstrated it categorically. The exposed Rajahmundry lavas are interpreted to be the distal parts of two very-large-volume pāhoehoe flow fields, one each from the Ambenali and Mahabaleshwar Formations of the Wai Sub-group in the Deccan Basalt Group. Eruptive conditions required to emplace such long flows are met by plausible values for cooling and eruption rates, and this is shown by applying a model for the formation of inflated pāhoehoe sheet flow lobes. The model predicts flow lobe thicknesses similar to those observed in the Rajahmundry lavas. For the last 400 km of flow, the lava flows were confined to the pre-existing Krishna valley drainage system that existed in the basement beyond the edge of the gradually expanding Deccan lava field, allowing the flows to extend across the subcontinent to the eastern margin where they were emplaced into a littoral and/or shallow marine environment. These lavas and other individual flow fields in the Wai Sub-group may exceed eruptive volumes of 5000 km 3, which would place them amongst the largest magnitude effusive eruptive units yet known. We suggest that the length of flood basalt lava flows on Earth is restricted mainly by the size of land masses and topography. In the case of the Rajahmundry lavas, the flows reached estuaries and the sea, where their advance was perhaps effectively terminated by cooling and/or disruption. However, it is only during large igneous province basaltic volcanism that such huge volumes of lava are erupted in single events, and when the magma supply rate is sufficiently high and maintained to allow the formation of very long lava flows. The Rajahmundry lava

  15. An example of measurement and reporting of periodontal loss of attachment (LOA) in epidemiological studies: smoking and periodontal tissue destruction.

    Science.gov (United States)

    Paidi, S; Pack, A R; Thomson, W M

    1999-12-01

    The measurement and reporting of periodontal disease in epidemiological studies can be complex, with the common indices having well-recognised shortcomings. The aim of this study was to illustrate the use of the periodontal loss of attachment (LOA) approach in investigating the association between cigarette smoking and loss of periodontal attachment in a convenience sample of adults, in order to determine whether or not smoking was a risk indicator for periodontal disease. All participants were given a detailed periodontal clinical examination in two randomly assigned contralateral diagonal quadrants, with LOA measurements made at six sites per tooth. Information was also collected on participants' socio-demographic characteristics, oral hygiene practices, smoking history, and attitudes towards smoking. The 240 participants examined comprised 81 current smokers (CS), 79 former smokers (FS) and 80 nonsmokers (NS). Substantial differences and a gradient in disease existed for LOA among the three groups. CS exhibited the greatest (and NS the least) prevalence, extent, and severity of LOA. CS had more plaque and calculus than either of the other two groups, but the groups did not differ with respect to bleeding on probing. Overall, smoking was associated with the disease outcome, and this persisted after potential confounders were controlled using multivariate analysis. Although the observed differences may have been due to the self-selected nature of the sample, the gradient evident across the three smoking exposure groups suggests that smoking cessation can slow the progression of the disease. The LOA approach appears to be a versatile and informative method for recording, analysing, and presenting data on periodontitis in epidemiological studies.

  16. Hazard Monitoring of Growing Lava Flow Fields Using Seismic Tremor

    Science.gov (United States)

    Eibl, E. P. S.; Bean, C. J.; Jónsdottir, I.; Hoskuldsson, A.; Thordarson, T.; Coppola, D.; Witt, T.; Walter, T. R.

    2017-12-01

    An effusive eruption in 2014/15 created a 85 km2 large lava flow field in a remote location in the Icelandic highlands. The lava flows did not threaten any settlements or paved roads but they were nevertheless interdisciplinarily monitored in detail. Images from satellites and aircraft, ground based video monitoring, GPS and seismic recordings allowed the monitoring and reconstruction of a detailed time series of the growing lava flow field. While the use of satellite images and probabilistic modelling of lava flows are quite common tools to monitor the current and forecast the future growth direction, here we show that seismic recordings can be of use too. We installed a cluster of seismometers at 15 km from the vents and recorded the ground vibrations associated with the eruption. This seismic tremor was not only generated below the vents, but also at the edges of the growing lava flow field and indicated the parts of the lava flow field that were most actively growing. Whilst the time resolution is in the range of days for satellites, seismic stations easily sample continuously at 100 Hz and could therefore provide a much better resolution and estimate of the lava flow hazard in real-time.

  17. Origin and depositional environment of clastic deposits in the Hilo drill hole, Hawaii

    Science.gov (United States)

    Beeson, M.H.; Clague, D.A.; Lockwood, J.P.

    1996-01-01

    Volcaniclastic units cored at depths of about 87, 164, 178, 226, and 246 m below sea level and carbonate units located between depths of 27 and 53 m below sea level in the Hilo drill core were found to be deposited at or near sea level. Four of these units are hydroclastic deposits, formed when subaerially erupted Mauna Loa lava flows entered the ocean and fragmented to produce quenched, glassy fragments during hydrovolcanic explosions. Ash units 24 and 26, at 178 m depth, accumulated at sea level in a freshwater bog. They contain pyroxenes crystallized from tholeiitic magma that we infer erupted explosively at the summit of Kilauea volcano. Two carbon-rich layers from these ashes have a weighted average radiocarbon age of 38.6 ?? 0.9 ka; the ashes probably correlate with the oldest and thickest part of the Pahala ash. Ash unit 44, at the transition from Mauna Kea to Mauna Loa lava flows, was probably nearly 3.2 m thick and is inferred to be equivalent to the lower thick part of the composite Homelani ash mapped in Hilo and on the flanks of Mauna Kea. The age of this part of Homelani ash is between 128 ?? 33 and 200 ?? 10 ka; it may have erupted subglacially during the Pohakuloa glacial maxima on Mauna Kea. Beach sand units 12 and 22 were derived from nearby Mauna Loa and Mauna Kea lava flows. The middle of beach sand unit 38 was derived mainly from lava erupted near the distal end of the subaerial east rift zone of Kilauea volcano; these sands were transported about 33 km northwest to Hilo Bay by prevailing longshore currents. Combined age, depth, and sea level markers in the core allow us to determine that lava flow recurrence intervals averaged one flow every 4 kyr during the past 86 kyr and one flow every 16 kyr between 86 and 200 ka at the drill site and that major explosive eruptions that deposit thick ash in Hilo have occurred only twice in the last 400 kyr. These recurrence intervals support the moderate lava flow hazard zonation (zone 3) for coastal Hilo

  18. Heat transfer measurements of the 1983 kilauea lava flow.

    Science.gov (United States)

    Hardee, H C

    1983-10-07

    Convective heat flow measurements of a basaltic lava flow were made during the 1983 eruption of Kilauea volcano in Hawaii. Eight field measurements of induced natural convection were made, giving heat flux values that ranged from 1.78 to 8.09 kilowatts per square meter at lava temperatures of 1088 and 1128 degrees Celsius, respectively. These field measurements of convective heat flux at subliquidus temperatures agree with previous laboratory measurements in furnace-melted samples of molten lava, and are useful for predicting heat transfer in magma bodies and for estimating heat extraction rates for magma energy.

  19. Hardened Lava Meets Wind on Mars

    Science.gov (United States)

    2006-01-01

    NASA's Mars Exploration Rover Spirit used its microscopic imager to capture this spectacular, jagged mini-landscape on a rock called 'GongGong.' Measuring only 3 centimeters (1.2 inches) across, this surface records two of the most important and violent forces in the history of Mars -- volcanoes and wind. GongGong formed billions of years ago in a seething, stirring mass of molten rock. It captured bubbles of gases that were trapped at great depth but had separated from the main body of lava as it rose to the surface. Like taffy being stretched and tumbled, the molten rock was deformed as it moved across an ancient Martian landscape. The tiny bubbles of gas were deformed as well, becoming elongated. When the molten lava solidified, the rock looked like a frozen sponge. Far from finished with its life, the rock then withstood billions of years of pelting by small sand grains carried by Martian dust storms that sometimes blanketed the planet. The sand wore away the surface until, little by little, the delicate strands that enclosed the bubbles of gas were breached and the spiny texture we see today emerged. Even now, wind continues to deposit sand and dust in the holes and crevices of the rock. Similar rocks can be found on Earth where the same complex interplay of volcanoes and weathering occur, whether it be the pelting of rocks by sand grains in the Mojave desert or by ice crystals in the frigid Antarctic. GongGong is one of a group of rocks studied by Spirit and informally named by the Athena Science Team to honor the Chinese New Year (the Year of the Dog). In Chinese mythology, GongGong was the god-king of water in the North Land. When he sacrificed his life to knock down Mount BuZhou, he defeated the bad Emperor in Heaven, freed the sun, moon and stars to go from east to west, and caused all the rivers in China to flow from west to east. Spirit's microscopic imager took this image during on the rover's 736th day, or sol, of exploring Mars (Jan. 28, 2006). The

  20. Taking the Temperature of a Lava Planet

    Science.gov (United States)

    Kreidberg, Laura; Lopez, Eric; Cowan, Nick; Lupu, Roxana; Stevenson, Kevin; Louden, Tom; Malavolta, Luca

    2018-05-01

    Ultra-short period rocky planets (USPs) are an exotic class of planet found around less than 1% of stars. With orbital periods shorter than 24 hours, these worlds are blasted with stellar radiation that is expected to obliterate any traces of a primordial atmosphere and melt the dayside surface into a magma ocean. Observations of USPs have yielded several surprising results, including the measurement of an offset hotspot in the thermal phase curve of 55 Cancri e (which may indicate a thick atmosphere has survived), and a high Bond albedo for Kepler-10b, which suggests the presence of unusually reflective lava on its surface. To further explore the properties of USPs and put these results in context, we propose to observe a thermal phase curve of the newly discovered USP K2- 141b. This planet is a rocky world in a 6.7 hour orbit around a bright, nearby star. When combined with optical phase curve measured by K2, our observations will uniquely determine the planet's Bond albedo, precisely measure the offset of the thermal curve, and determine the temperature of the dayside surface. These results will cement Spitzer's role as a pioneer in the study of terrestrial planets beyond the Solar System, and provide a critical foundation for pursuing the optimal follow-up strategy for K2-141b with JWST.

  1. The Disruption of Tephra Fall Deposits by Basaltic Lava Flows

    Science.gov (United States)

    Brown, R. J.; Thordarson, T.; Self, S.; Blake, S.

    2010-12-01

    Complex physical and stratigraphic relationships between lava and proximal tephra fall deposits around vents of the Roza Member in the Columbia River Basalt Province, (CRBP), USA, illustrate how basaltic lavas can disrupt, dissect (spatially and temporally) and alter tephra fall deposits. Thin pahoehoe lobes and sheet lobes occur intercalated with tephra deposits and provide evidence for synchronous effusive and explosive activity. Tephra that accumulated on the tops of inflating pahoehoe flows became disrupted by tumuli, which dissected the overlying sheet into a series of mounds. During inflation of subjacent tumuli tephra percolated down into the clefts and rubble at the top of the lava, and in some cases came into contact with lava hot enough to thermally alter it. Lava breakouts from the tumuli intruded up through the overlying tephra deposit and fed pahoehoe flows that spread across the surface of the aggrading tephra fall deposit. Non-welded scoria fall deposits were compacted and welded to a depth of ~50 cm underneath thick sheet lobes. These processes, deduced from the field relationships, have resulted in considerable stratigraphic complexity in proximal regions. We also demonstrate that, when the advance of lava and the fallout of tephra are synchronous, the contacts of some tephra sheets can be diachronous across their extent. The net effect is to reduce the usefulness of pyroclastic deposits in reconstructing eruption dynamics.

  2. Lava delta deformation as a proxy for submarine slope instability

    Science.gov (United States)

    Di Traglia, Federico; Nolesini, Teresa; Solari, Lorenzo; Ciampalini, Andrea; Frodella, William; Steri, Damiano; Allotta, Benedetto; Rindi, Andrea; Marini, Lorenzo; Monni, Niccolò; Galardi, Emanuele; Casagli, Nicola

    2018-04-01

    The instability of lava deltas is a recurrent phenomenon affecting volcanic islands, which can potentially cause secondary events such as littoral explosions (due to interactions between hot lava and seawater) and tsunamis. It has been shown that Interferometric Synthetic Aperture Radar (InSAR) is a powerful technique to forecast the collapse of newly emplaced lava deltas. This work goes further, demonstrating that the monitoring of lava deltas is a successful strategy by which to observe the long-term deformation of subaerial-submarine landslide systems on unstable volcanic flanks. In this paper, displacement measurements derived from Synthetic Aperture Radar (SAR) imagery were used to detect lava delta instability at Stromboli volcano (Italy). Recent flank eruptions (2002-2003, 2007 and 2014) affected the Sciara del Fuoco (SdF) depression, created a "stacked" lava delta, which overlies a pre-existing scar produced by a submarine-subaerial tsunamigenic landslide that occurred on 30 December 2002. Space-borne X-band COSMO-SkyMED (CSK) and C-band SENTINEL-1A (SNT) SAR data collected between February 2010 and October 2016 were processed using the SqueeSAR algorithm. The obtained ground displacement maps revealed the differential ground motion of the lava delta in both CSK and SNT datasets, identifying a stable area (characterized by less than 2 mm/y in both datasets) within the northern sector of the SdF and an unstable area (characterized by velocity fields on the order of 30 mm/y and 160 mm/y in the CSK and SNT datasets, respectively) in the central sector of the SdF. The slope stability of the offshore part of the SdF, as reconstructed based on a recently performed multibeam bathymetric survey, was evaluated using a 3D Limit Equilibrium Method (LEM). In all the simulations, Factor of Safety (F) values between 0.9 and 1.1 always characterized the submarine slope between the coastline and -250 m a.s.l. The critical surfaces for all the search volumes corresponded to

  3. Gypsum speleothems in lava tubes from Lanzarote, Canary Islands. Did you say gypsum?

    OpenAIRE

    Huerta, Pedro; Martín-García, Rebeca; Rodríguez-Berriguete, Álvaro; Iglesia, A. la; Martín-Pérez, Andrea; Alonso-Zarza, Ana María

    2015-01-01

    Lanzarote is the easternmost island of the volcanic Canary archipielago considered together with Fuerteventura the low relief islands of the archipielago. These island receive less rain than 300 mm/year. Basaltic lava flows preserves lava tubes formed during cooling and solidification of external parts of lava, while internal parts were still hot and flowing. When lava flow stopped the lava abandoned the tubes, and the tubes preserved empty. These tubes actuate as caves and som...

  4. Astrobiology Training in Lava Tubes (ATiLT): Characterizing coralloid speleothems in basaltic lava tubes as a Mars analogue

    Science.gov (United States)

    Ni, J.; Leveille, R. J.; Douglas, P.

    2017-12-01

    Coralloid speleothems or cave corals are small mineralised nodes that can take a variety of forms, and which develop through groundwater seepage and water-rock interaction in caves. They are found commonly on Earth in a plethora of caves, including lava tubes. Since lava tubes have been identified on the surface of Mars from remotely sensed images, there has been interest in studying Earth's lava tube systems as an analogue for understanding Martian lava environments. If cave minerals were found on Mars, they could indicate past or present water-rock interaction in the Martian subsurface. Martian lava tubes could also provide insights into habitable subsurface environments as well as conditions favourable for the synthesis and preservation of biosignatures. One of the aims of the Astrobiology Training in Lava Tubes (ATiLT) project is to analyze biosignatures and paleoenvironmental indicators in secondary cave minerals, which will be looked at in-situ and compared to collected field samples. In this study, secondary mineralization in lava cave systems from Lava Beds National Monument, CA is examined. In the field, coralloid speleothems have been observed growing on all surfaces of the caves, including cave ceilings, floors, walls and overhangs. They are also observed growing adjacent to biofilms, which sometimes fill in the cracks of the coralloid nodes. Preliminary results show the presence of opal, calcite, quartz and other minor minerals in the speleothems. This study seeks to understand the formation mechanism and source of these secondary minerals, as well as determine their possible relation to the biofilms. This will be done through the analysis of the water chemistry, isotope geochemistry and microscale mineralogy.

  5. The 40Ar/39Ar dating of core recovered by the Hawaii Scientific Drilling Project (phase 2), Hilo, Hawaii

    Science.gov (United States)

    Sharp, Warren D.; Renne, Paul R.

    2005-04-01

    The Hawaii Scientific Drilling Project, phase 2 (HSDP-2), recovered core from a ˜3.1-km-thick section through the eastern flanks of Mauna Loa and Mauna Kea volcanoes. We report results of 40Ar/39Ar incremental heating by broad-beam infrared laser of 16 basaltic groundmass samples and 1 plagioclase separate, mostly from K-poor tholeiites. The tholeiites generally have mean radiogenic 40Ar enrichments of 1-3%, and some contain excess 40Ar; however, isochron ages of glass-poor samples preserve stratigraphic order in all cases. A 246-m-thick sequence of Mauna Loa tholeiitic lavas yields an isochron age of 122 ± 86 kyr (all errors 2σ) at its base. Beneath the Mauna Loa overlap sequence lie Mauna Kea's postshield and shield sequences. A postshield alkalic lava yields an age of 236 ± 16 kyr, in agreement with an age of 240 ± 14 kyr for a geochemically correlative flow in the nearby HSDP-1 core hole, where more complete dating of the postshield sequence shows it to have accumulated at 0.9 ± 0.4 m/kyr, from about 330 to <200 ka. Mauna Kea's shield consists of subaerial tholeiitic flows to a depth of 1079 m below sea level, then shallow submarine flows, hyaloclastites, pillow lavas, and minor intrusions to core bottom at 3098 m. Most subaerial tholeiitic flows fail to form isochrons; however, a sample at 984 m yields an age of 370 ± 180 kyr, consistent with ages from similar levels in HSDP-1. Submarine tholeiites including shallow marine vitrophyres, clasts from hyaloclastites, and pillow lavas were analyzed; however, only pillow lava cores from 2243, 2614, and 2789 m yield reliable ages of 482 ± 67, 560 ± 150, and 683 ± 82 kyr, respectively. A linear fit to ages for shield samples defines a mean accumulation rate of 8.6 ± 3.1 m/kyr and extrapolates to ˜635 kyr at core bottom. Alternatively, a model relating Mauna Kea's growth to transport across the Hawaiian hot spot that predicts downward accelerating accumulation rates that reach ˜20 m/kyr at core bottom (De

  6. Rover-Based Instrumentation and Scientific Investigations During the 2012 Analog Field Test on Mauna Kea Volcano, Hawaii

    Science.gov (United States)

    Graham, L. D.; Graff, T. G.

    2013-01-01

    Rover-based 2012 Moon and Mars Analog Mission Activities (MMAMA) were recently completed on Mauna Kea Volcano, Hawaii. Scientific investigations, scientific input, and operational constraints were tested in the context of existing project and protocols for the field activities designed to help NASA achieve the Vision for Space Exploration [1]. Several investigations were conducted by the rover mounted instruments to determine key geophysical and geochemical properties of the site, as well as capture the geological context of the area and the samples investigated. The rover traverse and associated science investigations were conducted over a three day period on the southeast flank of the Mauna Kea Volcano, Hawaii. The test area was at an elevation of 11,500 feet and is known as "Apollo Valley" (Fig. 1). Here we report the integration and operation of the rover-mounted instruments, as well as the scientific investigations that were conducted.

  7. The Influence of Topographic Obstacles on Basaltic Lava Flow Morphologies

    Science.gov (United States)

    von Meerscheidt, H. C.; Brand, B. D.; deWet, A. P.; Bleacher, J. E.; Hamilton, C. W.; Samuels, R.

    2014-12-01

    Smooth pāhoehoe and jagged ´áā represent two end-members of a textural spectrum that reflects the emplacement characteristics of basaltic lava flows. However, many additional textures (e.g., rubbly and slabby pāhoehoe) reflect a range of different process due to lava flow dynamics or interaction with topography. Unfortunately the influence of topography on the distribution of textures in basaltic lava flows is not well-understood. The 18 ± 1.0 ka Twin Craters lava flow in the Zuni-Bandera field (New Mexico, USA) provides an excellent site to study the morphological changes of a lava flow that encountered topographic obstacles. The flow field is 0.2-3.8 km wide with a prominent central tube system that intersects and wraps around a 1000 m long ridge, oriented perpendicular to flow. Upstream of the ridge, the flow has low-relief inflation features extending out and around the ridge. This area includes mildly to heavily disrupted pāhoehoe with interdispersed agglutinated masses, irregularly shaped rubble and lava balls. Breakouts of ´áā and collapse features are also common. These observations suggest crustal disruption due to flow-thickening upstream from the ridge and the movement of lava out and around the obstacle. While the ridge influenced the path of the tube, which wraps around the southern end of the ridge, the series of collapse features and breakouts of ´áā along the tube system are more likely a result of changes in flux throughout the tube system because these features are found both upstream and downstream of the obstacle. This work demonstrates that topography can significantly influence the formation history and surface disruption of a flow field, and in some cases the influence of topography can be separated from the influences of changes in flux along a tube system.

  8. A Mechanism for Stratifying Lava Flows

    Science.gov (United States)

    Rice, A.

    2005-12-01

    Relict lava flows (e.g., komatiites) are often reported to be zoned in the vertical, each zone separated by a sharp contact. Such stratifications in igneous flows, both intrusive and extrusive, can be treated as analogues of suspended loads of sediments in rivers and streams, and hence amenable to quantitative treatment derived for the hydraulic environment as long as dynamic similitude is assured. Situations typically encountered in the hydraulic environment are streams carrying a bed load at the bottom of the stream, the bed load separated by a sharp horizon from a sediment load carried above it. This sediment load may be topped by others of decreasing density as one moves to the surface of the flow, with perhaps the uppermost layer clear of any suspended matter. Rules exist for estimating the thickness D of these loads: one of them is given by D ~ 4.4V3/rgcvs where V is the shear velocity or average velocity of the flow, r = (ρs - ρl)/ρl where ρs is the density of the suspended solid matter, ρl the density of the fluid, g the acceleration of gravity, c the concentration of the particulate content and vs the settling velocity. The settling velocity is secured through Stoke's Law and the velocity of the flow is given by V = R2/3S1/2/n where R is the hydraulic radius, S the gradient along which the fluid flows and n is the Manning Coefficient. In the igneous case, the bed load would be composed of primocrysts, i.e., of the first crystals to come out of solution as the flow cools along its run. This would leave the upper portions of the flow more evolved except perhaps for a quenched crust riding atop the flow. As the viscosity of the flow is dependent not only on temperature but on composition and crystal content, the mean velocity of each layer will be different from the layer above and below it. This requires shear at the interface of adjoining stratifications, which brings into play another mechanism: dispersive pressure (the Bagnold effect). Dispersive

  9. Petrogenesis of basalt-trachyte lavas from Olmoti Crater, Tanzania

    Science.gov (United States)

    Mollel, Godwin F.; Swisher, Carl C., III; McHenry, Lindsay J.; Feigenson, Mark D.; Carr, Michael J.

    2009-08-01

    Olmoti Crater is part of the Plio-Pleistocene Ngorongoro Volcanic Highland (NVH) in northern Tanzania to the south of Gregory Rift. The Gregory Rift is part of the eastern branch of the East African Rift System (EARS) that stretches some 4000 km from the Read Sea and Gulf of Aden in the north to the Zambezi River in Mozambique. Here, we (1) characterize the chemistry and mineral compositions of lavas from Olmoti Crater, (2) determine the age and duration of Olmoti volcanic activity through 40Ar/ 39Ar dating of Olmoti Crater wall lavas and (3) determine the genesis of Olmoti lavas and the relationship to other NVH and EARS volcanics and (4) their correlation with volcanics in the Olduvai and Laetoli stratigraphic sequences. Olmoti lavas collected from the lower part of the exposed crater wall section (OLS) range from basalt to trachyandesite whereas the upper part of the section (OUS) is trachytic. Petrography and major and trace element data reflect a very low degree partial melt origin for the Olmoti lavas, presumably of peridotite, followed by extensive fractionation. The 87Sr/ 86Sr data overlap whereas Nd and Pb isotope data are distinct between OLS and OUS samples. Interpretation of the isotope data suggests mixing of enriched mantle (EM I) with high-μ-like reservoirs, consistent with the model of Bell and Blenkinsop [Bell, K., Blenkinsop, J., 1987. Nd and Sr isotopic compositions of East African carbonatites: implications for mantle heterogeneity. Geology 5, 99-102] for East African carbonatite lavas. The isotope ratios are within the range of values defined by Oceanic Island Basalt (OIB) globally and moderate normalized Tb/Yb ratios (2.3-1.6) in these lavas suggest melting in the lithospheric mantle consistent with other studies in the region. 40Ar/ 39Ar incremental-heating analyses of matrix and anorthoclase separates from Olmoti OLS and OUS lavas indicate that volcanic activity was short in duration, lasting ˜200 kyr from 2.01 ± 0.03 Ma to 1.80 ± 0

  10. Analogue experiments as benchmarks for models of lava flow emplacement

    Science.gov (United States)

    Garel, F.; Kaminski, E. C.; Tait, S.; Limare, A.

    2013-12-01

    During an effusive volcanic eruption, the crisis management is mainly based on the prediction of lava flow advance and its velocity. The spreading of a lava flow, seen as a gravity current, depends on its "effective rheology" and on the effusion rate. Fast-computing models have arisen in the past decade in order to predict in near real time lava flow path and rate of advance. This type of model, crucial to mitigate volcanic hazards and organize potential evacuation, has been mainly compared a posteriori to real cases of emplaced lava flows. The input parameters of such simulations applied to natural eruptions, especially effusion rate and topography, are often not known precisely, and are difficult to evaluate after the eruption. It is therefore not straightforward to identify the causes of discrepancies between model outputs and observed lava emplacement, whereas the comparison of models with controlled laboratory experiments appears easier. The challenge for numerical simulations of lava flow emplacement is to model the simultaneous advance and thermal structure of viscous lava flows. To provide original constraints later to be used in benchmark numerical simulations, we have performed lab-scale experiments investigating the cooling of isoviscous gravity currents. The simplest experimental set-up is as follows: silicone oil, whose viscosity, around 5 Pa.s, varies less than a factor of 2 in the temperature range studied, is injected from a point source onto a horizontal plate and spreads axisymmetrically. The oil is injected hot, and progressively cools down to ambient temperature away from the source. Once the flow is developed, it presents a stationary radial thermal structure whose characteristics depend on the input flow rate. In addition to the experimental observations, we have developed in Garel et al., JGR, 2012 a theoretical model confirming the relationship between supply rate, flow advance and stationary surface thermal structure. We also provide

  11. The Influence of Slope Breaks on Lava Flow Surface Disruption

    Science.gov (United States)

    Glaze, Lori S.; Baloga, Stephen M.; Fagents, Sarah A.; Wright, Robert

    2014-01-01

    Changes in the underlying slope of a lava flow impart a significant fraction of rotational energy beyond the slope break. The eddies, circulation and vortices caused by this rotational energy can disrupt the flow surface, having a significant impact on heat loss and thus the distance the flow can travel. A basic mechanics model is used to compute the rotational energy caused by a slope change. The gain in rotational energy is deposited into an eddy of radius R whose energy is dissipated as it travels downstream. A model of eddy friction with the ambient lava is used to compute the time-rate of energy dissipation. The key parameter of the dissipation rate is shown to be rho R(sup 2/)mu, where ? is the lava density and mu is the viscosity, which can vary by orders of magnitude for different flows. The potential spatial disruption of the lava flow surface is investigated by introducing steady-state models for the main flow beyond the steepening slope break. One model applies to slow-moving flows with both gravity and pressure as the driving forces. The other model applies to fast-moving, low-viscosity, turbulent flows. These models provide the flow velocity that establishes the downstream transport distance of disrupting eddies before they dissipate. The potential influence of slope breaks is discussed in connection with field studies of lava flows from the 1801 Hualalai and 1823 Keaiwa Kilauea, Hawaii, and 2004 Etna eruptions.

  12. Home range and movements of Feral cats on Mauna Kea, Hawai'i

    Science.gov (United States)

    Goltz, Dan M.; Hess, S.C.; Brinck, K.W.; Banko, P.C.; Danner, R.M.

    2008-01-01

    Feral cats Felis catus in dry subalpine woodland of Mauna Kea, Hawai'i, live in low density and exhibit some of the largest reported home ranges in the literature. While 95% fixed kemel home range estimates for three females averaged 772 ha, four males averaged 1 418 ha, and one male maintained a home range of 2 050 ha. Mean daily movement rates between sexes overlapped widely and did not differ significantly (P = 0.083). Log-transformed 95% kernel home ranges for males were significantly larger than those of females (P = 0.024), but 25% kernel home ranges for females were larger than those of males (P = 0.017). Moreover, log-transformed home ranges of males were also significantly larger than those of females in this and seven other studies from the Pacific region (P = 0.044). Feral cats present a major threat to endangered Hawaiian birds, but knowledge of their ecology can be used for management by optimizing trap spacing and creating buffer zones around conservation areas.

  13. Factors structuring the phytoplankton community in the upwelling site off El Loa River in northern Chile

    Science.gov (United States)

    Herrera, Liliana; Escribano, Ruben

    2006-06-01

    Understanding processes affecting the structure of the autotrophic community in marine ecosystems is relevant because species-dependent characters may affect productivity and carbon fluxes of the ocean. In this work, we studied the influence of oceanographic variability on phytoplankton species composition at a coastal upwelling site off northern Chile. Four seasonal cruises carried out during 2003 off El Loa River (21°S) showed that upwelling occurs year-round supporting a large number of diatoms, dinoflagellates, naked nanoflagellates, and silicoflagellates. The analysis of species composition showed that changes in the structure of the autotrophic community are expressed both in abundance and in differences in species assemblages. These changes occurred not only over the seasonal scale but also over the spatial pattern of distribution, and they correlated well to temporal variability of upwelling and spatial variation of upwelling conditions over the cross-shelf axis. A K-means clustering and principal component analyses showed that species assemblages can be represented by few dominant species strongly coupled to alternate upwelling vs. non-upwelling conditions. Both conditions are well defined, and mostly explained by changes in depth of the upper boundary of the oxygen minimum zone (OMZ) (a prominent feature in northern Chile), surface temperature and water column stratification. Abundance of dominant phytoplankton species were strongly correlated to both OMZ depth and water column stratification. Processes through which OMZ depth might influence species abundance and composition are unknown, although they may relate to changes in redox conditions which affect the nutrient field. Another explanation may relate to changes in grazing pressure derived from the effect of low oxygen water on zooplankton vertical distribution.

  14. Relative ages of lava flows at Alba Patera, Mars

    International Nuclear Information System (INIS)

    Schneeberger, D.M.; Pieri, D.C.

    1987-01-01

    Many large lava flows on the flanks of Alba Patera are astonishing in their volume and length. As a suite, these flows suggest tremendously voluminous and sustained eruptions, and provide dimensional boundary conditions typically a factor of 100 larger than terrestrial flows. One of the most striking features associated with Alba Patera is the large, radially oriented lava flows that exhibit a variety of flow morphologies. These include sheet flows, tube fed and tube channel flows, and undifferentiated flows. Three groups of flows were studied; flows on the northwest flank, southeast flank, and the intracaldera region. The lava flows discussed probably were erupted as a group during the same major volcanic episode as suggested by the data presented. Absolute ages are poorly constrained for both the individual flows and shield, due in part to disagreement as to which absolute age curve is representative for Mars. A relative age sequence is implied but lacks precision due to the closeness of the size frequency curves

  15. Morphometric study of pillow-size spectrum among pillow lavas

    Science.gov (United States)

    Walker, George P. L.

    1992-08-01

    Measurements of H and V (dimensions in the horizontal and vertical directions of pillows exposed in vertical cross-section) were made on 19 pillow lavas from the Azores, Cyprus, Iceland, New Zealand, Tasmania, the western USA and Wales. The median values of H and V plot on a straight line that defines a spectrum of pillow sizes, having linear dimensions five times greater at one end than at the other, basaltic toward the small-size end and andesitic toward the large-size end. The pillow median size is interpreted to reflect a control exercised by lava viscosity. Pillows erupted on a steep flow-foot slope in lava deltas can, however, have a significantly smaller size than pillows in tabular pillowed flows (inferred to have been erupted on a small depositonal slope), indicating that the slope angle also exercised a control. Pipe vesicles, generally abundant in the tabular pillowed flows and absent from the flow-foot pillows, have potential as a paleoslope indicator. Pillows toward the small-size end of the spectrum are smooth-surfaced and grew mainly by stretching of their skin, whereas disruption of the skin and spreading were important toward the large-size end. Disruption involved increasing skin thicknesses with increasing pillow size, and pillows toward the large-size end are more analogous with toothpaste lava than with pahoehoe and are inferred from their thick multiple selvages to have taken hours to grow. Pseudo-pillow structure is also locally developed. An example of endogenous pillow-lava growth, that formed intrusive pillows between ‘normal’ pillows, is described from Sicily. Isolated pillow-like bodies in certain andesitic breccias described from Iceland were previously interpreted to be pillows but have anomalously small sizes for their compositions; it is now proposed that they may lack an essential attribute of pillows, namely, the development of bulbous forms by the inflation of a chilled skin, and are hence not true pillows. Para-pillow lava is

  16. Recent flood lavas in the Elysium region of Mars

    International Nuclear Information System (INIS)

    Plescia, J.B.

    1990-01-01

    A volcanic origin is presently suggested for the Cerberus Formation region of smooth plains in the southeastern Elysium region of Mars, on the basis of its surface morphology, lobate edges, vents, and an embayment relation of the unit with adjacent, older units. The low viscosity lavas that filled a topographic depression in southeastern Elysium subsequently flowed into western Amazonic Planitia via channels formed by an earlier fluvial episode. A young, upper Amazonian dating is indicated by crater frequencies and stratigraphic relations, implying that large-scale eruptions of low-viscosity lava were still possible late in Martian history. 34 refs

  17. Deformation at Lava Lake Volcanoes: Lessons from Karthala

    Science.gov (United States)

    Biggs, J.; Rust, A.; Owens, C.

    2014-12-01

    To remain hot, permanent lava lakes require a continuous connection to a magma reservoir. Depending on the state of the conduit, changes in magma pressure could result in changes in the lake level (hydraulic head) or be accommodated elastically leading to surface deformation. Observing deformation is therefore key to understanding the plumbing system associated with lava lakes. However, the majority of the world's lava lakes lie in difficult socio-economic or remote locations meaning that there are few ground-based observations, and it is often necessary to rely on satellite imagery. Karthala volcano experienced a sequence of eruptions in April 2005, Nov 2005, May 2006 and Jan 2007. The first 3 took place at the Choungou Chahale crater, which typically contains either a water or lava lake; the last formed a new pit crater to the north. Satellite thermal imagery (Hirn et al, 2008) does not show an anomaly during the first eruption, which had a phreatomagmatic component, but large thermal anomalies, associated with an ephemeral lava lake were detected during the Nov 2005 and May 2006 eruptions. The final eruption produced a smaller anomaly attributed to a minor lava flow. Here we present InSAR observations from 2004-2010. We find no significant deformation associated with the first three eruptions, but the January 2007 eruption was associated with ~25 cm of deformation near the volcano's summit, characteristic of a dyke intrusion aligned with the northern rift zone. We also observe an unusual pattern deformation along the coast which may be attributed to rapid settling of soft sediment or recent volcanic deposits triggered by seismic activity. We propose that the first eruption cleared the reservoir-summit connection and interacted with the water in Choungou Chahale. The following eruptions formed a lava lake, but without causing deformation. By the final eruption, the conduit had become blocked and magma intruded along the rift zone causing deformation but no

  18. Hacia una interpretación comprensiva de Sor Juana. Tres loas y la cifra del mundo

    OpenAIRE

    Cortijo Ocaña, Antonio

    2016-01-01

    Sor Juana Inés de la Cruz dedica gran parte de su obra al desciframiento del aparente laberinto de la realidad. Como intelectual, se imagina a sí misma como una segunda Proba, en sus funciones de intérprete, traductora y transmisora que, como Atanasio Kircher, ha de establecer correspondencias y similitudes. En Sor Juana América se convierte en tema de análisis y estudio, como puede apreciarse en particular en su Neptuno alegórico y en las loas a sus tres autos sacramentales: El divino Narcis...

  19. Habitat and food preferences of the endangered Palila (Loxioides bailleui) on Mauna Kea, Hawai'i

    Science.gov (United States)

    Hess, Steven C.; Banko, Paul C.; Miller, Linda J.; Laniawe, Leona P.

    2014-01-01

    Seeds and flowers of the leguminous māmane (Sophora chrysophylla) tree are the primary food resource of the federally endangered Palila (Loxioides bailleui; Fringillidae: Drepanidinae), which is now restricted to dry subalpine woodland on Mauna Kea Volcano on the island of Hawai'i because of centuries of habitat degradation by non-native ungulates. Palila are morphologically and behaviorally adapted to consume māmane seeds by grasping seed pods with their feet and opening pods with stout bills and demonstrate limited ability to exploit alternative food resources. This degree of single species dependency is rare among birds and illustrates unique adaptations that also occurred in other Hawaiian species that are now extinct. In mixed-woodland with co-dominant naio (Myoporum sandwicense), Palila spent 1.7-3.9 times longer in māmane than in naio during foraging observations where naio was 1.3-4.6 times as dense as māmane. Naio fruit was readily available, but it comprised proportionally food items taken by Palila. Although māmane flowers were more abundant than māmane pods throughout this study except at one lower-elevation mixed-woodland site, Palila spent more time foraging on pods than flowers in both māmane woodland and mixed-woodland, but consumed more flowers than pods in mixed-woodland. Insects, which have been reported as an important component of the diet of Palila, were apparently taken rarely in this study. Protecting and restoring māmane in woodlands adjacent to the current range of Palila will benefit their recovery, allowing them to exploit increased food availability in areas of their former range.

  20. Geomorphometric variability of "monogenetic" volcanic cones: Evidence from Mauna Kea, Lanzarote and experimental cones

    Science.gov (United States)

    Kervyn, M.; Ernst, G. G. J.; Carracedo, J.-C.; Jacobs, P.

    2012-01-01

    Volcanic cones are the most common volcanic constructs on Earth. Their shape can be quantified using two morphometric ratios: the crater/cone base ratio (W cr/W co) and the cone height/width ratio (H co/W co). The average values for these ratios obtained over entire cone fields have been explained by the repose angle of loose granular material (i.e. scoria) controlling cone slopes. The observed variability in these ratios between individual cones has been attributed to the effect of erosional processes or contrasting eruptive conditions on cone morphometry. Using a GIS-based approach, high spatial resolution Digital Elevation Models and airphotos, two new geomorphometry datasets for cone fields at Mauna Kea (Hawaii, USA) and Lanzarote (Canary Islands, Spain) are extracted and analyzed here. The key observation in these datasets is the great variability in morphometric ratios, even for simple-shape and well-preserved cones. Simple analog experiments are presented to analyze factors influencing the morphometric ratios. The formation of a crater is simulated within an analog cone (i.e. a sand pile) by opening a drainage conduit at the cone base. Results from experiments show that variability in the morphometric ratios can be attributed to variations in the width, height and horizontal offset of the drainage point relative to the cone symmetry axis, to the dip of the underlying slope or to the influence of a small proportion of fine cohesive material. GIS analysis and analog experiments, together with specific examples of cones documented in the field, suggest that the morphometric ratios for well-preserved volcanic cones are controlled by a combination of 1) the intrinsic cone material properties, 2) time-dependent eruption conditions, 3) the local setting, and 4) the method used to estimate the cone height. Implications for interpreting cone morphometry solely as either an age or as an eruption condition indicator are highlighted.

  1. Thermophysical properties of the Lipari lavas (Southern Tyrrhenian Sea

    Directory of Open Access Journals (Sweden)

    D. Russo

    1997-06-01

    Full Text Available Results of thermophysical investigations into the lavas of the island of Lipari (Southern Tyrrhenian Sea are presented. Samples selected for laboratory measurements belong to four main magmatic cycles, which produced basaltic-andesitic, andesitic and rhyolitic lavas. The wet-bulk density and the thermal conductivity measured on 69 specimens range from 1900 to 2760 kg m-3 and from 1.02 to 2.88 W m-1 K-1, respectively. Porosity is never negligible and its influence on density is maximum in rhyolites of the third cycle. The thermal conductivity is also influenced by the amount of glass. Rhyolitic obsidians show values lower than other rhyolites, although the latter rocks have a larger average porosity. The radioactive heat production determined on 36 specimens varies with the rock type, depending on the amount of U, Th and K. In basic lavas of the first cycle its value is 0.95°± 0.30 mW m-3, while in rhyolites of the fourth cycle it attains 6.68°±0.61 mW m-3. A comparison between results of g-ray spectrometry and X-ray fluorescence points out that the assumption of equilibrium in the decay series of the isotopic elements seems fulfilled. The information obtained is useful not only for the interpretation of geophysical surveys but also for the understanding of the geochemical characteristics of lavas.

  2. Moessbauer/XRF MIMOS Instrumentation and Operation During the 2012 Analog Field Test on Mauna Kea Volcano, Hawaii

    Science.gov (United States)

    Graff, Trevor G.; Morris, R. V.; Klingelhofer, G.; Blumers, M.

    2013-01-01

    Field testing and scientific investigations were conducted on the Mauna Kea Volcano, Hawaii, as part of the 2012 Moon and Mars Analog Mission Activities (MMAMA). Measurements were conducted using both stand-alone and rover-mounted instruments to determine the geophysical and geochemical properties of the field site, as well as provide operational constraints and science considerations for future robotic and human missions [1]. Reported here are the results from the two MIMOS instruments deployed as part of this planetary analog field test.

  3. Using Lava Tube Skylight Thermal Emission Spectra to Determine Lava Composition on Io: Quantitative Constraints for Observations by Future Missions to the Jovian System.

    Science.gov (United States)

    Davies, A. G.

    2008-12-01

    Deriving the composition of Io's dominant lavas (mafic or ultramafic?) is a major objective of the next missions to the jovian system. The best opportunities for making this determination are from observations of thermal emission from skylights, holes in the roof of a lava tube through which incandescent lava radiates, and Io thermal outbursts, where lava fountaining is taking place [1]. Allowing for lava cooling across the skylight, the expected thermal emission spectra from skylights of different sizes have been calculated for laminar and turbulent tube flow and for mafic and ultramafic composition lavas. The difference between the resulting mafic and ultramafic lava spectra has been quantified, as has the instrument sensitivity needed to acquire the necessary data to determine lava eruption temperature, both from Europa orbit and during an Io flyby. A skylight is an excellent target to observe lava that has cooled very little since eruption (California Institute of Technology, under contract to NASA. AGD is supported by a grant from the NASA OPR Program. References: [1] Davies, A. G., 1996, Icarus, 124, 45-61. [2] Keszthelyi, L., et al., 2006, JGS, 163, 253-264. [3] Davies, A. G., 2007, Volcanism on Io, Cambridge University Press. [4] Keszthelyi, L., et al., 2007, Icarus, 192, 491-502. [5] Davies, A. G., et al., 2006, Icarus, 184, 460-477.

  4. Lava flooding of ancient planetary crusts: geometry, thickness, and volumes of flooded lunar impact basins

    International Nuclear Information System (INIS)

    Head, J.W.

    1982-01-01

    Estimates of lava volumes on planetary surfaces provide important data on the lava flooding history and thermal evolution of a planet. Lack of information concerning the configuration of the topography prior to volcanic flooding requires the use of a variety of techniques to estimate lava thicknesses and volumes. A technique is described and developed which provides volume estimates by artificially flooding unflooded lunar topography characteristic of certain geological environments, and tracking the area covered, lava thicknesses, and lava volumes. Comparisons of map patterns of incompletely buried topography in these artificially flooded areas are then made to lava-flooded topography on the Moon in order to estimate the actual lava volumes. This technique is applied to two areas related to lunar impact basins; the relatively unflooded Orientale basin, and the Archimedes-Apennine Bench region of the Imbrium basin. (Auth.)

  5. Pāhoehoe, `a`ā, and block lava: an illustrated history of the nomenclature

    Science.gov (United States)

    Harris, Andrew J. L.; Rowland, Scott K.; Villeneuve, Nicolas; Thordarson, Thor

    2017-01-01

    Lava flows occur worldwide, and throughout history, various cultures (and geologists) have described flows based on their surface textures. As a result, surface morphology-based nomenclature schemes have been proposed in most languages to aid in the classification and distinction of lava surface types. One of the first to be published was likely the nine-class, Italian-language description-based classification proposed by Mario Gemmellaro in 1858. By far, the most commonly used terms to describe lava surfaces today are not descriptive but, instead, are merely words, specifically the Hawaiian words `a`ā (rough brecciated basalt lava) and pāhoehoe (smooth glassy basalt lava), plus block lava (thick brecciated lavas that are typically more silicic than basalt). `A`ā and pāhoehoe were introduced into the Western geological vocabulary by American geologists working in Hawai`i during the 1800s. They and other nineteenth century geologists proposed formal lava-type classification schemes for scientific use, and most of them used the Hawaiian words. In 1933, Ruy Finch added the third lava type, block lava, to the classification scheme, with the tripartite system being formalized in 1953 by Gordon Macdonald. More recently, particularly since the 1980s and based largely on studies of lava flow interiors, a number of sub-types and transitional forms of all three major lava types have been defined. This paper reviews the early history of the development of the pāhoehoe, `a`ā, and block lava-naming system and presents a new descriptive classification so as to break out the three parental lava types into their many morphological sub-types.

  6. Lava Tubes as Martian Analog sites on Hawaii Island

    Science.gov (United States)

    Andersen, Christian; Hamilton, J. C.; Adams, M.

    2013-10-01

    The existence of geologic features similar to skylights seen in Mars Reconnaissance Orbiter HIRISE imagery suggest Martian lava tube networks. Along with pit craters, these features are evidence of a past era of vulcanism. If these were contemporary with the wet Mars eras, then it is suggestive that any Martian life may have retreated into these subsurface oases. Hawaii island has numerous lava tubes of differing ages, humidity, lengths and sizes that make ideal analog test environments for future Mars exploration. PISCES has surveyed multiple candidate sites during the past summer with a team of University of Hawaii at Hilo student interns. It should be noted that Lunar features have also been similarly discovered via Lunar Reconnaissance Orbiter LROC imagery.

  7. Numerical simulation of lava flow using a GPU SPH model

    Directory of Open Access Journals (Sweden)

    Eugenio Rustico

    2011-12-01

    Full Text Available A smoothed particle hydrodynamics (SPH method for lava-flow modeling was implemented on a graphical processing unit (GPU using the compute unified device architecture (CUDA developed by NVIDIA. This resulted in speed-ups of up to two orders of magnitude. The three-dimensional model can simulate lava flow on a real topography with free-surface, non-Newtonian fluids, and with phase change. The entire SPH code has three main components, neighbor list construction, force computation, and integration of the equation of motion, and it is computed on the GPU, fully exploiting the computational power. The simulation speed achieved is one to two orders of magnitude faster than the equivalent central processing unit (CPU code. This GPU implementation of SPH allows high resolution SPH modeling in hours and days, rather than in weeks and months, on inexpensive and readily available hardware.

  8. Wisata Bencana : Sebuah Studi Kasus Lava Tour Gunung Merapi

    Directory of Open Access Journals (Sweden)

    Zein Mufarrih Muktaf

    2017-09-01

    ABSTRACK The emergence of ecotourism trends as part of nature tourism to be an offer for tourists who want to feel the sensation of different tourist. In addition to the emergence of ecotourism, also appeared many other sort of tourism, such as dark tourism and disaster tourism. Dark tourism and disaster tourism is interesting enough to be discussion. The quention of this research is how the phenomenon of disaster tourism on Lava Tour in Mount Merapi? The purpose of this research is to know the practice of disaster tour “Lava Tour” Mount Merapi. The object of research is community-based tourism in Lava Tour area located in Disaster Prone Area (Kawasan Rawan Bencana III. Research method using case study approach. The conclusion of this research is, first, disaster tour is educational tour which destruction, death and back a life as tourist attraction. Secondly, that disaster tour presents a trip or tour because tourists can direct to see the disaster site. Third, the role of communication between the community-based tourism to the tourists are very important, such as telling the chronology of events to the tourists. It is better if the source of information teller is a direct victim or a direct eye witness, because it is more authentic and convincing. Fourth, disaster tourism prefers the interaction between witnesses and tourists. Fifth, disaster tours can be part of disaster literacy, as witnesses or victims explain a lot about disaster. Keywod : disaster tourism; tour; Mount Merapi; Tourism Communication; disaster literacy

  9. Modeling risk assessment for nuclear processing plants with LAVA

    International Nuclear Information System (INIS)

    Smith, S.T.; Tisinger, R.M.

    1988-01-01

    Using the Los Alamos Vulnerability and Risk Assessment (LAVA) methodology, the authors developed a model for assessing risks associated with nuclear processing plants. LAVA is a three-part systematic approach to risk assessment. The first part is the mathematical methodology; the second is the general personal computer-based software engine; and the third is the application itself. The methodology provides a framework for creating applications for the software engine to operate upon; all application-specific information is data. Using LAVA, the authors build knowledge-based expert systems to assess risks in applications systems comprising a subject system and a safeguards system. The subject system model is sets of threats, assets, and undesirable outcomes. The safeguards system model is sets of safeguards functions for protecting the assets from the threats by preventing or ameliorating the undesirable outcomes, sets of safeguards subfunctions whose performance determine whether the function is adequate and complete, and sets of issues, appearing as interactive questionnaires, whose measures (in both monetary and linguistic terms) define both the weaknesses in the safeguards system and the potential costs of an undesirable outcome occurring

  10. Palæomagnetism of Hawaiian lava flows

    Science.gov (United States)

    Doell, Richard R.; Cox, Allan

    1961-01-01

    PALÆOMAGNETIC investigations of volcanic rocks extruded in various parts of the world during the past several million years have generally revealed a younger sequence of lava flows magnetized nearly parallel to the field of a theoretical geocentric axial dipole, underlain by a sequence of older flows with exactly the opposite direction of remanent magnetization. A 180-degree reversal of the geomagnetic field, occurring near the middle of the Pleistocene epoch, has been inferred by many workers from such results1–3. This is a preliminary report of an investigation of 755 oriented samples collected from 152 lava flows on the island of Hawaii, selected to represent as many stratigraphic horizons as possible. (Sampling details are indicated in Table 1.) This work was undertaken because Hawaii's numerous thick sequences of lava flows, previously mapped as Pliocene to Historic by Stearns and Macdonald4, and afterwards assigned ages ranging from later Tertiary to Recent, by Macdonald and Davis5, appeared to offer an ideal opportunity to examine the most recent reversal of Earth's field.

  11. LAVA: a conceptual framework for automated risk assessment

    International Nuclear Information System (INIS)

    Smith, S.T.; Brown, D.C.; Erkkila, T.H.; FitzGerald, P.D.; Lim, J.J.; Massagli, L.; Phillips, J.R.; Tisinger, R.M.

    1986-01-01

    At the Los Alamos National Laboratory we are developing the framework for generating knowledge-based systems that perform automated risk analyses on an organization's assets. An organization's assets can be subdivided into tangible and intangible assets. Tangible assets include facilities, materiel, personnel, and time, while intangible assets include such factors as reputation, employee morale, and technical knowledge. The potential loss exposure of an asset is dependent upon the threats (both static and dynamic), the vulnerabilities in the mechanisms protecting the assets from the threats, and the consequences of the threats successfully exploiting the protective systems vulnerabilities. The methodology is based upon decision analysis, fuzzy set theory, natural-language processing, and event-tree structures. The Los Alamos Vulnerability and Risk Assessment (LAVA) methodology has been applied to computer security. LAVA is modeled using an interactive questionnaire in natural language and is fully automated on a personal computer. The program generates both summary reports for use by both management personnel and detailed reports for use by operations staff. LAVA has been in use by the Nuclear Regulatory Commission and the National Bureau of Standards for nearly two years and is presently under evaluation by other governmental agencies. 7 refs

  12. Study of the thermoluminescent properties of lava from different origins

    International Nuclear Information System (INIS)

    Molina, D.; Correcher, V.; Delgado, A.; Garcia G, J.

    2002-01-01

    In this work has been studied the thermoluminescent signal (Tl) of lava from different geographical area (Costa Rica, the Canary Islands, Hawaii, Iceland and Italy) and originating in distinct eruptions, for its possible use such as in the dating field (geological and archaeological) as in retrospective dosimetry. Due that the light emission is intimately related with the punctual defects existent in the structure of material associated to the presence of different mineral phases, it was realized a study by X-ray diffraction for determining the main components of the lava observing the presence, in distinct proportions of cristobalite, plagioclases (chalcosodic feldspars) and philosilicates (augite, montmorillonite, forsterite and actinolite). All the detected mineral components present Tl emission in the blue region. Each one of the lava were artificially irradiated for proving the dependence of the luminescent signal with the dose in the range 1 to 25 Gy, observing a linear response with the dose in all the cases and not appreciating saturation in the Tl emission. Such the appropriate signal of natural samples (TLN) as the irradiated samples in the laboratory (TLI) show a complex structure associated with a continuous distribution of traps at temperature higher than 100 C which could be explained as consequence of the dynamic formation-annihilation of centers [AlO 4 /alkali] + and [AlO 4 ] 0 . In TLI was observed that a nearer to 85 C appeared a maximum whose structure correspond a discrete distribution of traps, coexisting therefore the two types of traps structure. (Author)

  13. Observations of obsidian lava flow emplacement at Puyehue-Cordón Caulle, Chile

    Science.gov (United States)

    Tuffen, H.; Castro, J. M.; Schipper, C. I.; James, M. R.

    2012-04-01

    The dynamics of obsidian lava flow emplacement remain poorly understood as active obsidian lavas are seldom seen. In contrast with well-documented basaltic lavas, we lack observational data on obsidian flow advance and temporal evolution. The ongoing silicic eruption at Puyehue-Cordón Caulle volcanic complex (PCCVC), southern Chile provides an unprecedented opportunity to witness and study obsidian lava on the move. The eruption, which started explosively on June 4th 2011, has since June 20 generated an active obsidian flow field that remains active at the time of writing (January 2012), with an area of ~6 km2, and estimated volume of ~0.18 km3. We report on observations, imaging and sampling of the north-western lava flow field on January 4th and 10th 2012, when vent activity was characterised by near-continuous ash venting and Vulcanian explosions (Schipper et al, this session) and was simultaneously feeding the advancing obsidian flow (Castro et al, this session). On January 4th the north-western lava flow front was characterised by two dominant facies: predominant rubbly lava approximately 30-40 m thick and mantled by unstable talus aprons, and smoother, thinner lobes of more continuous lava ~50 m in length that extended roughly perpendicular to the overall flow direction, forming lobes that protrude from the flow margin, and lacked talus aprons. The latter lava facies closely resembled squeeze-up structures in basaltic lava flows[1] and appeared to originate from and overlie the talus apron of the rubbly lava. Its upper surface consisted of smooth, gently folded lava domains cut by crevasse-like tension gashes. During ~2 hours of observation the squeeze-up lava lobe was the most frequent location of small-volume rockfalls, which occurred at ~1-10 minute intervals from the flow front and indicated a locus of lava advance. On January 10th the squeeze-up lava lobes had evolved significantly, with disruption and breakage of smooth continuous lava surfaces to form

  14. Key variables influencing patterns of lava dome growth and collapse

    Science.gov (United States)

    Husain, T.; Elsworth, D.; Voight, B.; Mattioli, G. S.; Jansma, P. E.

    2013-12-01

    Lava domes are conical structures that grow by the infusion of viscous silicic or intermediate composition magma from a central volcanic conduit. Dome growth can be characterized by repeated cycles of growth punctuated by collapse, as the structure becomes oversized for its composite strength. Within these cycles, deformation ranges from slow long term deformation to sudden deep-seated collapses. Collapses may range from small raveling failures to voluminous and fast-moving pyroclastic flows with rapid and long-downslope-reach from the edifice. Infusion rate and magma rheology together with crystallization temperature and volatile content govern the spatial distribution of strength in the structure. Solidification, driven by degassing-induced crystallization of magma leads to the formation of a continuously evolving frictional talus as a hard outer shell. This shell encapsulates the cohesion-dominated soft ductile core. Here we explore the mechanics of lava dome growth and failure using a two-dimensional particle-dynamics model. This meshless model follows the natural evolution of a brittle carapace formed by loss of volatiles and rheological stiffening and avoids difficulties of hour-glassing and mesh-entangelment typical in meshed models. We test the fidelity of the model against existing experimental and observational models of lava dome growth. The particle-dynamics model follows the natural development of dome growth and collapse which is infeasible using simple analytical models. The model provides insight into the triggers that lead to the transition in collapse mechasnism from shallow flank collapse to deep seated sector collapse. Increase in material stiffness due to decrease in infusion rate results in the transition of growth pattern from endogenous to exogenous. The material stiffness and strength are strongly controlled by the magma infusion rate. Increase in infusion rate decreases the time available for degassing induced crystallization leading to a

  15. [Construction and expression of recombinant Mycobacterium bovis BCG with the ompA-like membrane protein gene Loa22 of Leptospira interrogans serovar].

    Science.gov (United States)

    Li, Dao-kun; Bao, Lang; Zhang, Ying; Sun, Zhan

    2010-03-01

    To study the immunity of Loa22 from Leptospira interrogans serovar Lai strain 56601 by expressing its protein in BCG. Amplified the mature peptide of Loa22 gene from the genome of of Leptospira interrogans serovar Lai strain 56601 and constructed recombinant plasmid rpMV36l-1oa22 with the E. coli-BCG integrating shuttle plasmid pMV361 and the Loa22 mature peptide gene. The rpMV36l-1oa22 plasmid was transformed into BCG by electroporation. The rBCG bearing rpMV36l-1oa22 was induced by high temperature of 45 degrees C and expressed protein was identified by SDS-PAGE and Western Blotting. Fifth 6-week-old BALB/c mice were randomly divided into five groups, which were inoculated intraperitoneally two times at 0-day and 21-day with BCG, rBCG-pMV361, rI3CG-1oa22, Loa22 and killed whole-leptospires respectively. All animals were dislocated from cervical vertebra on the 14Ih day after the last immunization. The proliferative reaction of splenic lymphocyte in tuitro were tested by XTT. The rpMV36l-1oa22 plasmid was constructed successfully and transformed into BCG. The rBCG expressed a 19 X io specifical protein identified by SDS-PAGE and Western Blotting. The splenic lymphocyte proliferate activity (SI) in rBCG-ioa22 group in intro was significantly higher than those in BCG group and rBCG-pMV361 group. We explored the expressing feasibility of Loa22 in Mycobacterium bovis BCG. may therefore make further researches on the induction of protective immunity against human and animal leptospirosis.

  16. Disruption of tephra fall deposits caused by lava flows during basaltic eruptions

    Science.gov (United States)

    Brown, R. J.; Thordarson, T.; Self, S.; Blake, S.

    2015-10-01

    Observations in the USA, Iceland and Tenerife, Canary Islands reveal how processes occurring during basaltic eruptions can result in complex physical and stratigraphic relationships between lava and proximal tephra fall deposits around vents. Observations illustrate how basaltic lavas can disrupt, dissect (spatially and temporally) and alter sheet-form fall deposits. Complexity arises through synchronous and alternating effusive and explosive activity that results in intercalated lavas and tephra deposits. Tephra deposits can become disrupted into mounds and ridges by lateral and vertical displacement caused by movement (including inflation) of underlying pāhoehoe lavas and clastogenic lavas. Mounds of tephra can be rafted away over distances of 100 s to 1,000 s m from proximal pyroclastic constructs on top of lava flows. Draping of irregular topography by fall deposits and subsequent partial burial of topographic depressions by later lavas can result in apparent complexity of tephra layers. These processes, deduced from field relationships, have resulted in considerable stratigraphic complexity in the studied proximal regions where fallout was synchronous or alternated with inflation of subjacent lava sheets. These mechanisms may lead to diachronous contact relationships between fall deposits and lava flows. Such complexities may remain cryptic due to textural and geochemical quasi-homogeneity within sequences of interbedded basaltic fall deposits and lavas. The net effect of these processes may be to reduce the usefulness of data collected from proximal fall deposits for reconstructing basaltic eruption dynamics.

  17. Erosion by flowing lava: Geochemical evidence in the Cave Basalt, Mount St. Helens, Washington

    Science.gov (United States)

    Williams, D.A.; Kadel, S.D.; Greeley, R.; Lesher, C.M.; Clynne, M.A.

    2004-01-01

    We sampled basaltic lava flows and underlying dacitic tuff deposits in or near lava tubes of the Cave Basalt, Mount St. Helens, Washington to determine whether the Cave Basalt lavas contain geochemical evidence of substrate contamination by lava erosion. The samples were analyzed using a combination of wavelength-dispersive X-ray fluorescence spectrometry and inductively-coupled plasma mass spectrometry. The results indicate that the oldest, outer lava tube linings in direct contact with the dacitic substrate are contaminated, whereas the younger, inner lava tube linings are uncontaminated and apparently either more evolved or enriched in residual liquid. The most heavily contaminated lavas occur closer to the vent and in steeper parts of the tube system, and the amount of contamination decreases with increasing distance downstream. These results suggest that erosion by lava and contamination were limited to only the initially emplaced flows and that erosion was localized and enhanced by vigorous laminar flow over steeper slopes. After cooling, the initial Cave Basalt lava flows formed an insulating lining within the tubes that prevented further erosion by later flows. This interpretation is consistent with models of lava erosion that predict higher erosion rates closer to sources and over steeper slopes. A greater abundance of xenoliths and xenocrysts relative to xenomelts in hand samples indicates that mechanical erosion rather than thermal erosion was the dominant erosional process in the Cave Basalt, but further sampling and petrographic analyses must be performed to verify this hypothesis. ?? Springer-Verlag 2003.

  18. The Anatomy of the Blue Dragon: Changes in Lava Flow Morphology and Physical Properties Observed in an Open Channel Lava Flow as a Planetary Analogue

    Science.gov (United States)

    Sehlke, A.; Kobs-Nawotniak, S. E.; Hughes, S. S.; Sears, D. W. G.; Downs, M.; Whittington, A. G.; Lim, D. S. S.; Heldmann, J. L.

    2017-12-01

    Lava terrains on other planets and moons exhibit morphologies similar to those found on Earth, such as smooth pāhoehoe transitioning to rough `a`ā terrains based on the viscosity - strain rate relationship of the lava. Therefore, the morphology of lava flows is governed by eruptive conditions such as effusion rate, underlying slope, and the fundamental thermo-physical properties of the lava, including temperature (T), composition (X), viscosity (η), fraction of crystals (φc) and vesicles (φb), as well as bulk density (ρ). These textural and rheological changes were previously studied for Hawaiian lava, where the lava flow started as channelized pāhoehoe and transitioned into `a`ā, demonstrating a systematic trend in T, X, η, φc, φb, and ρ. NASA's FINESSE focuses on Science and Exploration through analogue research. One of the field sites is Craters of the Moon, Idaho. We present field work done at a 3.0 km long lava flow belonging to the Blue Dragon lavas erupted from a chain of spatter cones, which then coalesced into channelized flows. We acquired UAV imagery along the entire length of the flow, and generated a high resolution DTM of 5 cm/pixel, from which we derived height profiles and surface roughness values. Field work included mapping the change in surface morphology and sample collection every 150 meters. In the laboratory, we measured φc, φb, and ρ for all collected samples. Viscosity measurements were carried out by concentric cylinder viscometry at subliquidus temperatures between 1310ºC to 1160ºC to study the rheology of the lava, enabling us to relate changes in flow behavior to T and φc. Our results are consistent with observations made for Hawaiian lava, including increasing bulk density downflow, and porosity changing from connected to isolated pore space. Crystallinity increases downflow, and the transition from pāhoehoe to `a`ā occurs between 1230ºC to 1150ºC, which is prompted by nucleation and growth of plagioclase

  19. Natural-Scale Lava Flow Experiments on Video: Variations with Temperature, Slope, and Effusion Rate

    Science.gov (United States)

    Karson, J. A.; Wysocki, R.; Edwards, B. R.; Lev, E.

    2013-12-01

    Investigations of active basaltic lava flows and analog materials show that flow dynamics and final flow morphology are strongly determined by the rapidly evolving rheology of the lava crust which constrains the downslope advance of the lava flow. The non-dimensional factor Ψ (ratio of the time scale of crust formation to advective heat loss) provides a useful means of comparing different flows. The key parameters that control Ψ include the melt viscosity, temperature, effusion rate, and slope. Experimental lava flows, up to several meters long created in the Syracuse University Lava Project permit these variables to be investigated independently and in combination in volume-limited flows (Pele), that provide additional information on lava crust development. New, continuous flow (cooling-limited) experiments show downslope variations under constant flow conditions.

  20. A meta-analysis of aneurysm formation in laser assisted vascular anastomosis (LAVA)

    Science.gov (United States)

    Chen, Chen; Peng, Fei; Xu, Dahai; Cheng, Qinghua

    2009-08-01

    Laser assisted vascular anastomosis (LAVA) is looked as a particularly promising non-suture method in future. However, aneurysm formation is one of the main reasons delay the clinical application of LAVA. Some scientists investigated the incidence of aneurysms in animal model. To systematically analyze the literature on reported incidence of aneurysm formation in LAVA therapy, we performed a meta-analysis comparing LAVA with conventional suture anastomosis (CSA) in animal model. Data were systematically retrieved and selected from PUBMED. In total, 23 studies were retrieved. 18 studies were excluded, and 5 studies involving 647 animals were included. Analysis suggested no statistically significant difference between LAVA and CSA (OR 1.24, 95%CI 0.66-2.32, P=0.51). Result of meta analysis shows that the technology of LAVA is very close to clinical application.

  1. Field Testing of a Pneumatic Regolith Feed System During a 2010 ISRU Field Campaign on Mauna Kea, Hawaii

    Science.gov (United States)

    Craft, Jack; Zacny, Kris; Chu, Philip; Wilson, Jack; Santoro, Chris; Carlson, Lee; Maksymuk, Michael; Townsend, Ivan I.; Mueller, Robert P.; Mantovani, James G.

    2010-01-01

    Lunar In Situ Resource Utilization (ISRU) consists of a number of tasks starting with mining of lunar regolith, followed by the transfer of regolith to an oxygen extraction reactor and finally processing the regolith and storing of extracted oxygen. The transfer of regolith from the regolith hopper at the ground level to an oxygen extraction reactor many feet above the surface could be accomplished in different ways, including using a mechanical auger, bucket ladder system or a pneumatic system. The latter system is commonly used on earth when moving granular materials since it offers high reliability and simplicity of operation. In this paper, we describe a pneumatic regolith feed system, delivering feedstock to a Carbothermal reactor and lessons learned from deploying the system during the 2010 ISRU field campaign on the Mauna Kea, Hawaii.

  2. Evidence of feline immunodeficiency virus, feline leukemia virus, and Toxoplasma gondii in feral cats on Mauna Kea, Hawaii.

    Science.gov (United States)

    Danner, Raymond M; Goltz, Daniel M; Hess, Steven C; Banko, Paul C

    2007-04-01

    We determined prevalence to feline immunodeficiency virus (FIV) antibodies, feline leukemia virus (FeLV) antigen, and Toxoplasma gondii antibodies in feral cats (Felis catus) on Mauna Kea Hawaii from April 2002 to May 2004. Six of 68 (8.8%) and 11 of 68 (16.2%) cats were antibody positive to FIV and antigen positive for FeLV, respectively; 25 of 67 (37.3%) cats were seropositive to T. gondii. Antibodies to FeLV and T. gondii occurred in all age and sex classes, but FIV occurred only in adult males. Evidence of current or previous infections with two of these infectious agents was detected in eight of 64 cats (12.5%). Despite exposure to these infectious agents, feral cats remain abundant throughout the Hawaiian Islands.

  3. Evidence of feline immunodeficiency virus, feline leukemia virus, and Toxoplasma gondii in feral cats on Mauna Kea, Hawaii

    Science.gov (United States)

    Danner, R.M.; Goltz, Dan M.; Hess, S.C.; Banko, P.C.

    2007-01-01

    We determined prevalence to feline immunodeficiency virus (FIV) antibodies, feline leukemia virus (FeLV) antigen, and Toxoplasma gondii antibodies in feral cats (Felis catus) on Mauna Kea Hawaii from April 2002 to May 2004. Six of 68 (8.8%) and 11 of 68 (16.2%) cats were antibody positive to FIV and antigen positive for FeLV, respectively; 25 of 67 (37.3%) cats were seropositive to T. gondii. Antibodies to FeLV and T. gondii occurred in all age and sex classes, but FIV occurred only in adult males. Evidence of current or previous infections with two of these infectious agents was detected in eight of 64 cats (12.5%). Despite exposure to these infectious agents, feral cats remain abundant throughout the Hawaiian Islands. ?? Wildlife Disease Association 2007.

  4. Contrasting patterns of vesiculation in low, intermediate, and high Hawaiian fountains: A case study of the 1969 Mauna Ulu eruption

    Science.gov (United States)

    Parcheta, Carolyn E.; Houghton, Bruce F.; Swanson, Donald A.

    2013-01-01

    Hawaiian-style eruptions, or Hawaiian fountains, typically occur at basaltic volcanoes and are sustained, weakly explosive jets of gas and dominantly coarse, juvenile ejecta (dense spatter to delicate reticulite). Almost the entire range of styles and mass eruption rates within Hawaiian fountaining occurred during twelve fountaining episodes recorded at Mauna Ulu, Kīlauea between May and December 1969. Such diversity in intensity and style is controlled during magma ascent by many processes that can be constrained by the size and shape of vesicles in the 1969 pyroclasts. This paper describes pyroclast vesicularity from high, intermediate, and low fountaining episodes with eruption rates from 0.05 to 1.3 × 106 m3 h− 1. As each eruptive episode progressed, magma ascent slowed in and around the vent system, offering extended time for bubbles to grow and coalesce. Late ejected pyroclasts are thus characterized by populations of fewer and larger vesicles with relaxed shapes. This progression continued in the intervals between episodes after termination of fountain activity. The time scale for this process of shallow growth, coalescence and relaxation of bubbles is typically tens of hours. Rims and cores of pumiceous pyroclasts from moderate to high fountaining episodes record a second post-fragmentation form of vesicle maturation. Partially thermally insulated pyroclasts can have internal bubble populations evolve more dynamically with continued growth and coalescence, on a time scale of only minutes, during transport in the fountains. Reticulite, which formed in a short-lived fountain 540 m in height, underwent late, short-lived bubble nucleation followed by rapid growth of a uniform bubble population in a thermally insulated fountain, and quenched at the onset of permeability before significant coalescence. These contrasting patterns of shallow degassing and outgassing were the dominant controls in determining both the form and duration of fountaining

  5. Geology of the Tyrrhenus Mons Lava Flow Field, Mars

    Science.gov (United States)

    Crown, David A.; Mest, Scott C.

    2014-11-01

    The ancient, eroded Martian volcano Tyrrhenus Mons exhibits a central caldera complex, layered flank deposits dissected by radial valleys, and a 1000+ km-long flow field extending to the southwest toward Hellas Planitia. Past studies suggested an early phase of volcanism dominated by large explosive eruptions followed by subsequent effusive activity at the summit and to the southwest. As part of a new geologic mapping study of northeast Hellas, we are examining the volcanic landforms and geologic evolution of the Tyrrhenus Mons flow field, including the timing and nature of fluvial activity and effects on volcanic units. New digital geologic mapping incorporates THEMIS IR (100 m/pixel) and CTX (5 m/pixel) images as well as constraints from MOLA topography.Mapping results to-date include delineation of the boundaries of the flow field, identification and mapping of volcanic and erosional channels within the flow field, and mapping and analysis of lava flow lobes. THEMIS IR and CTX images allow improved discrimination of the numerous flow lobes that are observed in the flow field, including refinement of the margins of previously known flows and identification of additional and smaller lobes. A prominent sinuous rille extending from Tyrrhenus Mons’ summit caldera is a major feature that supplied lava to the flow field. Smaller volcanic channels are common throughout the flow field; some occur in segments along crests of local topographic highs and may delineate lava tubes. In addition to volcanic channels, the flow field surface is characterized by several types of erosional channels, including wide troughs with scour marks, elongate sinuous channels, and discontinuous chains of elongate pits and troughs. High-resolution images reveal the widespread and significant effects of fluvial activity in the region, and further mapping studies will examine spatial and temporal interactions between volcanism and fluvial processes.

  6. NVP melt/magma viscosity: insight on Mercury lava flows

    Science.gov (United States)

    Rossi, Stefano; Morgavi, Daniele; Namur, Olivier; Vetere, Francesco; Perugini, Diego; Mancinelli, Paolo; Pauselli, Cristina

    2016-04-01

    After more than four years of orbiting Mercury, NASA's MESSENGER spacecraft came to an end in late April 2015. MESSENGER has provided many new and surprising results. This session will again highlight the latest results on Mercury based on MESSENGER observations or updated modelling. The session will further address instrument calibration and science performance both retrospective on MESSENGER and on the ESA/JAXA BepiColombo mission. Papers covering additional themes related to Mercury are also welcomed. Please be aware that this session will be held as a PICO session. This will allow an intensive exchange of expertise and experience between the individual instruments and mission. NVP melt/magma viscosity: insight on Mercury lava flows S. Rossi1, D. Morgavi1, O. Namur2, D. Perugini1, F.Vetere1, P. Mancinelli1 and C. Pauselli1 1 Dipartimento di Fisica e Geologia, Università di Perugia, piazza Università 1, 06123 Perugia, Italy 2 Uni Hannover Institut für Mineralogie, Leibniz Universität Hannover, Callinstraβe 3, 30167 Hannover, Germany In this contribution we report new measurements of viscosity of synthetic komatitic melts, used the behaviour of silicate melts erupted at the surface of Mercury. Composition of Mercurian surface magmas was calculated using the most recent maps produced from MESSENGER XRS data (Weider et al., 2015). We focused on the northern hemisphere (Northern Volcanic Province, NVP, the largest lava flow on Mercury and possibly in the Solar System) for which the spatial resolution of MESSENGER measurements is high and individual maps of Mg/Si, Ca/Si, Al/Si and S/Si were combined. The experimental starting material contains high Na2O content (≈7 wt.%) that strongly influences viscosity. High temperature viscosity measurements were carried out at 1 atm using a concentric cylinder apparatus equipped with an Anton Paar RheolabQC viscometer head at the Department of Physics and Geology (PVRG_lab) at the University of Perugia (Perugia, Italy

  7. Multifractal characterization of Vesuvio lava-flow margins and its implications

    Science.gov (United States)

    Luongo, G.; Mazzarella, A.; Di Donna, G.

    2000-09-01

    The digitized lava-flow margins of well-defined extended eruptions occurring at Vesuvio in 1760, 1794, 1861, 1906, 1929 and 1944 are found to follow fractal behaviours inside a scaling region enclosed between 50 and 400 m. Although the invariance region is well respected, the fractal dimension D varies from one lava flow to another: the more irregular the lava-flow margin, the larger the value of D. The ascertained dependence of D on the duration of premonitory activity, preceding the emission of lavas, might provide some insight into the inner volcanic processes before the eruption and into the dynamical processes operating during flow emplacement.

  8. Drained Lava Tubes and Lobes From Eocretaceous Paraná-Etendeka Province, Brazil

    Science.gov (United States)

    Waichel, B. L.; Lima, E. F. D.; Mouro, L. D.; Briske, D. R.; Tratz, E. B.

    2017-12-01

    The identification of lava tubes in continental flood basalt provinces (CFBP) is difficult and reports of preserved drained tubes and lobes are rare. The large extension of CFBP must be related to an efficient transport of lava and tubes are the most efficient mechanism to transport lava in insulated pathways, like observed in modern volcanic fields. Looking for caves in the central portion of Paraná-Etendeka Province, we discovered drained lava tubes (4) and lobes (6) in a volcanic sequence constituted by pahoehoe flows. Lava tubes are: Casa de Pedra, Perau Branco, Dal Pae and Pinhão. The Casa de Pedra tube system is composed of two principal chambers with similar dimensions, reaching up to 10 m long and 4.0 m high connected by a narrow passage. The general form of the chamber is hemispherical, with re-entrances of ellipsoidal shape probably formed by small lava lobes and collapse structures in the roof. The second chamber is connected with three secondary lava tubes. Columns in the cave are formed when the flowing lava separates in two lava channels that join again further down the system, forming and anastomosing tube network. Lateral lava benches and lava drainings at the walls are observed in secondary tubes. The general lava flow is to SW. The Perau Branco system is composed of five tubes with ellipsoidal openings. The main features are the long tubes that emerge from the small flattened chambers. One tube is more than 20 m long, with alternating circular and flattened ellipsoidal sections. The general lava flow is to NE. Pinhão tube is spherical with 3 meters diameter and 15 m long, with lava flow orientation to NW. This tube has a bottleneck shape with linings (up to 3 cm thick), which are observed in the roof and walls. Dal Pae Tube is 10 m long with an ellipsoidal opening, bottleneck shape and orientation to NE. The lava flow directions measured in the tubes is to SW (Casa de Pedra, Pinhão) and NE (Perau Branco, Dal Pae) and this pattern is related to

  9. Extinction and recolonization of local populations on a growing shield volcano.

    Science.gov (United States)

    Carson, H L; Lockwood, J P; Craddock, E M

    1990-01-01

    Volcanic action has resulted in the burial of the surfaces of Mauna Loa and Kilauea, Hawaii, by new lava flows at rates as high as 90% per 1000 years. Local populations of organisms on such volcanoes are continually being exterminated; survival of the species requires colonization of younger flows. Certain populations of the endemic Hawaiian species Drosophila silvestris exemplify such events in microcosm. Local populations at the base of an altitudinal cline were destroyed by two explosive eruptions within the last 2100 years. Natural recolonization restored the cline except for one young population that is genetically discordant with altitude. Images PMID:11607102

  10. Study of the thermoluminescent properties of lava from different origins; Estudio de las propiedades termoluminiscentes de lavas de diferentes origenes

    Energy Technology Data Exchange (ETDEWEB)

    Molina, D. [Centro de Proteccion e Higiene de las Radiaciones, A.P. 6195, C.P. 10600, La Habana (Cuba); Correcher, V.; Delgado, A. [CIEMAT. Dosimetria de Radiaciones, Av. Complutense 22, Madrid 28040 (Spain); Garcia G, J. [CSIC. Museo Nacional de Ciencias Naturales, C/Jose Gutierrez Abascal 2. Madrid 28006 (Spain)

    2002-07-01

    In this work has been studied the thermoluminescent signal (Tl) of lava from different geographical area (Costa Rica, the Canary Islands, Hawaii, Iceland and Italy) and originating in distinct eruptions, for its possible use such as in the dating field (geological and archaeological) as in retrospective dosimetry. Due that the light emission is intimately related with the punctual defects existent in the structure of material associated to the presence of different mineral phases, it was realized a study by X-ray diffraction for determining the main components of the lava observing the presence, in distinct proportions of cristobalite, plagioclases (chalcosodic feldspars) and philosilicates (augite, montmorillonite, forsterite and actinolite). All the detected mineral components present Tl emission in the blue region. Each one of the lava were artificially irradiated for proving the dependence of the luminescent signal with the dose in the range 1 to 25 Gy, observing a linear response with the dose in all the cases and not appreciating saturation in the Tl emission. Such the appropriate signal of natural samples (TLN) as the irradiated samples in the laboratory (TLI) show a complex structure associated with a continuous distribution of traps at temperature higher than 100 C which could be explained as consequence of the dynamic formation-annihilation of centers [AlO{sub 4}/alkali]{sup +} and [AlO{sub 4}]{sup 0}. In TLI was observed that a nearer to 85 C appeared a maximum whose structure correspond a discrete distribution of traps, coexisting therefore the two types of traps structure. (Author)

  11. Volcanic eruptions on Io: Heat flow, resurfacing, and lava composition

    Science.gov (United States)

    Blaney, Diana L.; Johnson, Torrence V.; Matson, Dennis L.; Veeder, Glenn J.

    1995-01-01

    We model an infrared outburst on Io as being due to a large, erupting lava flow which increased its area at a rate of 1.5 x 10(exp 5)/sq m and cooled from 1225 to 555 K over the 2.583-hr period of observation. The inferred effusion rate of 3 x 10(exp 5) cu m/sec for this eruption is very high, but is not unprece- dented on the Earth and is similar to the high eruption rates suggested for early lunar volcanism. Eruptions occur approxi- mately 6% of the time on Io. These eruptions provide ample resurfacing to explain Io's lack of impact craters. We suggest that the large total radiometric heat flow, 10(exp 14) W, and the size and temperature distribution of the thermal anomalies (McEwen et al. 1992; Veeder et al. 1994) can be accounted for by a series of silicate lava flows in various stages of cooling. We propose that the whole suite of Io's currently observed thermal anomalies was produced by multiple, high-eruptive-rate silicate flows within the past century.

  12. Remagnetization of lava flows spanning the last geomagnetic reversal

    Science.gov (United States)

    Vella, Jérôme; Carlut, Julie; Valet, Jean-Pierre; Goff, Maxime Le; Soler, Vicente; Lopes, Fernando

    2017-08-01

    Large directional changes of remanent magnetization within lava flows that cooled during geomagnetic reversals have been reported in several studies. A geomagnetic scenario implies extremely rapid geomagnetic changes of several degrees per day, thus difficult to reconcile with the rate of the earth's core liquid motions. So far, no complete rock magnetic model provides a clear explanation. We revisited lava flows sandwiched between an underlying reverse and an overlying normal polarity flow marking the last reversal in three distinct volcanic sequences of the La Palma Island (Canary archipelago, Spain) that are characterized by a gradual evolution of the direction of their remanent magnetization from bottom to top. Cleaning efficiency of thermal demagnetization was not improved by very rapid heating and cooling rates as well as by continuous demagnetization using a Triaxe magnetometer. We did not observe partial self-reversals and minor changes in magnetic grain sizes are not related to the within-flow directional changes. Microscopic observations indicate poor exsolution, which suggests post-cooling thermochemical remagnetization processes. This scenario is strongly reinforced by laboratory experiments that show large resistance to thermal demagnetization when thermoremanence was acquired over a long time period. We speculate that in the present situation exsolution was reactivated during in field reheating and yielded formation of new magnetite, yet magnetic domain state rearrangements could also play a role. Initial reheating when the overlying flow took place, albeit moderate (less than 200-300 °C), was enough to produce overlying components with significantly higher unblocking temperatures.

  13. Mapping gullies, dunes, lava fields, and landslides via surface roughness

    Science.gov (United States)

    Korzeniowska, Karolina; Pfeifer, Norbert; Landtwing, Stephan

    2018-01-01

    Gully erosion is a widespread and significant process involved in soil and land degradation. Mapping gullies helps to quantify past, and anticipate future, soil losses. Digital terrain models offer promising data for automatically detecting and mapping gullies especially in vegetated areas, although methods vary widely measures of local terrain roughness are the most varied and debated among these methods. Rarely do studies test the performance of roughness metrics for mapping gullies, limiting their applicability to small training areas. To this end, we systematically explored how local terrain roughness derived from high-resolution Light Detection And Ranging (LiDAR) data can aid in the unsupervised detection of gullies over a large area. We also tested expanding this method for other landforms diagnostic of similarly abrupt land-surface changes, including lava fields, dunes, and landslides, as well as investigating the influence of different roughness thresholds, resolutions of kernels, and input data resolution, and comparing our method with previously published roughness algorithms. Our results show that total curvature is a suitable metric for recognising analysed gullies and lava fields from LiDAR data, with comparable success to that of more sophisticated roughness metrics. Tested dunes or landslides remain difficult to distinguish from the surrounding landscape, partly because they are not easily defined in terms of their topographic signature.

  14. Disclosing the temperature of columnar jointing in lavas.

    Science.gov (United States)

    Lamur, Anthony; Lavallée, Yan; Iddon, Fiona E; Hornby, Adrian J; Kendrick, Jackie E; von Aulock, Felix W; Wadsworth, Fabian B

    2018-04-12

    Columnar joints form by cracking during cooling-induced contraction of lava, allowing hydrothermal fluid circulation. A lack of direct observations of their formation has led to ambiguity about the temperature window of jointing and its impact on fluid flow. Here we develop a novel thermo-mechanical experiment to disclose the temperature of columnar jointing in lavas. Using basalts from Eyjafjallajökull volcano (Iceland) we show that contraction during cooling induces stress build-up below the solidus temperature (980 °C), resulting in localised macroscopic failure between 890 and 840 °C. This temperature window for incipient columnar jointing is supported by modelling informed by mechanical testing and thermal expansivity measurements. We demonstrate that columnar jointing takes place well within the solid state of volcanic rocks, and is followed by a nonlinear increase in system permeability of <9 orders of magnitude during cooling. Columnar jointing may promote advective cooling in magmatic-hydrothermal environments and fluid loss during geothermal drilling and thermal stimulation.

  15. Owyhee River intracanyon lava flows: does the river give a dam?

    Science.gov (United States)

    Ely, Lisa L.; Brossy, Cooper C.; House, P. Kyle; Safran, Elizabeth B.; O'Connor, Jim E.; Champion, Duane E.; Fenton, Cassandra R.; Bondre, Ninad R.; Orem, Caitlin A.; Grant, Gordon E.; Henry, Christopher D.; Turrin, Brent D.

    2013-01-01

    Rivers carved into uplifted plateaus are commonly disrupted by discrete events from the surrounding landscape, such as lava flows or large mass movements. These disruptions are independent of slope, basin area, or channel discharge, and can dominate aspects of valley morphology and channel behavior for many kilometers. We document and assess the effects of one type of disruptive event, lava dams, on river valley morphology and incision rates at a variety of time scales, using examples from the Owyhee River in southeastern Oregon. Six sets of basaltic lava flows entered and dammed the river canyon during two periods in the late Cenozoic ca. 2 Ma–780 ka and 250–70 ka. The dams are strongly asymmetric, with steep, blunt escarpments facing up valley and long, low slopes down valley. None of the dams shows evidence of catastrophic failure; all blocked the river and diverted water over or around the dam crest. The net effect of the dams was therefore to inhibit rather than promote incision. Once incision resumed, most of the intracanyon flows were incised relatively rapidly and therefore did not exert a lasting impact on the river valley profile over time scales >106 yr. The net long-term incision rate from the time of the oldest documented lava dam, the Bogus Rim lava dam (≤1.7 Ma), to present was 0.18 mm/yr, but incision rates through or around individual lava dams were up to an order of magnitude greater. At least three lava dams (Bogus Rim, Saddle Butte, and West Crater) show evidence that incision initiated only after the impounded lakes filled completely with sediment and there was gravel transport across the dams. The most recent lava dam, formed by the West Crater lava flow around 70 ka, persisted for at least 25 k.y. before incision began, and the dam was largely removed within another 35 k.y. The time scale over which the lava dams inhibit incision is therefore directly affected by both the volume of lava forming the dam and the time required for sediment

  16. Paleomagnetism of Holocene lava flows from the Reykjanes Peninsula and the Tungnaá lava sequence (Iceland): implications for flow correlation and ages

    Science.gov (United States)

    Pinton, Annamaria; Giordano, Guido; Speranza, Fabio; Þórðarson, Þorvaldur

    2018-01-01

    The impact of Holocene eruptive events from hot spots like Iceland may have had significant global implications; thus, dating and knowledge of past eruptions chronology is important. However, at high-latitude volcanic islands, the paucity of soils severely limits 14C dating, while the poor K content of basalts strongly restricts the use of K/Ar and Ar/Ar methods. Even tephrochronology, based on 14C age determinations, refers to layers that rarely lie directly above lava flows to be dated. We report on the paleomagnetic dating of 25 sites from the Reykjanes Peninsula and the Tungnaá lava sequence of Iceland. The gathered paleomagnetic directions were compared with the available reference paleosecular variation curves of the Earth magnetic field to obtain the possible emplacement age intervals. To test the method's validity, we sampled the precisely dated Laki (1783-1784 AD) and Eldgjà (934-938 AD) lavas. The age windows obtained for these events encompass the true flow ages. For sites from the Reykjanes peninsula and the Tugnaá lava sequence, we derived multiple possible eruption events and ages. In the Reykjanes peninsula, we propose an older emplacement age (immediately following the 870 AD Iceland Settlement age) for Ogmundarhraun and Kapelluhraun lava fields. For pre-historical (older than the settlement age) Tugnaá eruptions, the method has a dating precision of 300-400 years which allows an increase of the detail in the chronostratigraphy and distribution of lavas in the Tugnaá sequence.

  17. LAVA: An Open-Source Approach To Designing LAMP (Loop-Mediated Isothermal Amplification DNA Signatures

    Directory of Open Access Journals (Sweden)

    Gardner Shea N

    2011-06-01

    Full Text Available Abstract Background We developed an extendable open-source Loop-mediated isothermal AMPlification (LAMP signature design program called LAVA (LAMP Assay Versatile Analysis. LAVA was created in response to limitations of existing LAMP signature programs. Results LAVA identifies combinations of six primer regions for basic LAMP signatures, or combinations of eight primer regions for LAMP signatures with loop primers, which can be used as LAMP signatures. The identified primers are conserved among target organism sequences. Primer combinations are optimized based on lengths, melting temperatures, and spacing among primer sites. We compare LAMP signature candidates for Staphylococcus aureus created both by LAVA and by PrimerExplorer. We also include signatures from a sample run targeting all strains of Mycobacterium tuberculosis. Conclusions We have designed and demonstrated new software for identifying signature candidates appropriate for LAMP assays. The software is available for download at http://lava-dna.googlecode.com/.

  18. The genesis of a lava cave in the Deccan Volcanic Province (Maharashtra, India

    Directory of Open Access Journals (Sweden)

    Nikhil R. Pawar

    2016-01-01

    Full Text Available Lava tubes and channels forming lava distributaries have been recognized from different parts of western Deccan Volcanic Province (DVP. Openings of smaller dimension have been documented from the pāhoehoe flows around Pune, in the western DVP. A small lava cave is exposed in Ghoradeshwar hill, near Pune. Detailed field studies of the physical characteristics, structure and morphology of the flows hosting the lava tube has been carried out. This is the first detailed documentation of a lava cave from the DVP. The lava cave occurs in a compound pāhoehoe flow of Karla Formation, characterized by the presence of lobes, toes and small scale features like squeeze-ups. Field observations and measurements reveal that the dimensions of the cave are small, with low roof and a maximum width of 108 cm. The cave morphology along the 20 m passage varies from circular to semi-circular, with a twilight zone to the north. The gentle micro-topography at Ghoradeshwar controlled the advancement of pāhoehoe lobes and toes within the sheet lobe. The pre-flow gradients towards the north led to the progression of flow from the east, where the cave opening is presently seen. Dimensions and related morphology of the lava cave suggest that it can be best described as a small sub-crustal cave formed by draining of an inflated of pāhoehoe lava lobe. At Ghoradeshwar, besides the natural lava cave, Buddhist caves carved in pāhoehoe lava flows are also observed, indicating that early man took advantage of the existing openings in pāhoehoe flows and sculpted the caves to suit their requirements.

  19. Chemical and Mineralogical Characterization of a Hematite-bearing Ridge on Mauna Kea, Hawaii: A Potential Mineralogical Process Analog for the Mount Sharp Hematite Ridge

    Science.gov (United States)

    Graff, T. G.; Morris, R. V.; Ming, D. W.; Hamilton, J. C.; Adams, M.; Fraeman, A. A.; Arvidson, R. E.; Catalano, J. G.; Mertzman, S. A.

    2014-01-01

    The Mars Science Laboratory (MSL) rover Curiosity landed in Gale Crater in August 2012 and is currently roving towards the layered central mound known as Mount Sharp [1]. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) hyperspectral data indicate Mount Sharp contains an 5 km stratigraphic sequence including Fe-Mg smectites, hematite, and hydrated sulfates in the lower layers separated by an unconformity from the overlying anhydrous strata [1,2,3]. Hematite was initially detected in CRISM data to occur in the lower sulfate layers on the north side of the mound [2]. [3] further mapped a distinct hematite detection occurring as part of a 200 m wide ridge that extends 6.5 km NE-SW, approximately parallel with the base of Mount Sharp. It is likely a target for in-situ analyses by Curiosity. We document here the occurrence of a stratum of hematite-bearing breccia that is exposed on the Puu Poliahu cinder cone near the summit of Mauna Kea volcano (Hawaii) (Fig.1). The stratum is more resistant to weathering than surrounding material, giving it the appearance of a ridge. The Mauna Kea hematite ridge is thus arguably a potential terrestrial mineralogical and process analog for the Gale Crater hematite ridge. We are acquiring a variety of chemical and mineralogical data on the Mauna Kea samples, with a focus on the chemical and mineralogical information already available or planned for the Gale hematite ridge.

  20. LAVA: A conceptual framework for automated risk assessment

    International Nuclear Information System (INIS)

    Smith, S.T.; Brown, D.C.; Erkkila, T.H.; FitzGerald, P.D.; Lim, J.J.; Massagli, L.; Phillips, J.R.; Tisinger, R.M.

    1986-01-01

    At the Los Alamos National Laboratory the authors are developing the framework for generating knowledge-based systems that perform automated risk analyses on an organizations's assets. An organization's assets can be subdivided into tangible and intangible assets. Tangible assets include facilities, material, personnel, and time, while intangible assets include such factors as reputation, employee morale, and technical knowledge. The potential loss exposure of an asset is dependent upon the threats (both static and dynamic), the vulnerabilities in the mechanisms protecting the assets from the threats, and the consequences of the threats successfully exploiting the protective systems vulnerabilities. The methodology is based upon decision analysis, fuzzy set theory, natural language processing, and event tree structures. The Los Alamos Vulnerability and Risk Assessment (LAVA) methodology has been applied to computer security. The program generates both summary reports for use by both management personnel and detailed reports for use by operations staff

  1. Observation of Possible Lava Tube Skylights by SELENE cameras

    Science.gov (United States)

    Haruyama, Junichi; Hiesinger, Harald; van der Bogert, Carolyn

    We have discovered three deep hole-structures on the Moon in the Terrain Camera and Multi-band Imager on the SELENE. These holes are large depth to diameter ratios: Marius Hills Hole (MHH) is 65 m in diameter and 88-90 m in depth, Mare Tranquillitatis Hole (MTH) is 120 x 110 m in diameter and 180 m in depth, and Mare Ingenii Hole (MIH) is 140 x 110 m in diameter and deeper than 90 m. No volcanic material from the holes nor dike-relating pit craters is seen around the holes. They are possible lava tube skylights. These holes and possibly connected tubes have a lot of scientific interests and high potentialities as lunar bases.

  2. Intraflow width variations in Martian and terrestrial lava flows

    Science.gov (United States)

    Peitersen, Matthew N.; Crown, David A.

    1997-03-01

    Flow morphology is used to interpret emplacement processes for lava flows on Earth and Mars. Accurate measurements of flow geometry are essential, particularly for planetary flows where neither compositional sampling nor direct observations of active flows may be possible. Width behavior may indicate a flow's response to topography, its emplacement regime, and its physical properties. Variations in width with downflow distance from the vent may therefore provide critical clues to flow emplacement processes. Flow width is also one of the few characteristics that can be readily measured from planetary mission data with accuracy. Recent analyses of individual flows at two terrestrial and four Martian sites show that widths within an individual flow vary by up to an order of magnitude. Width is generally thought to be correlated to topography; however, recent studies show that this relationship is neither straightforward nor easily quantifiable.

  3. Magnetic property zonation in a thick lava flow

    Science.gov (United States)

    Audunsson, Haraldur; Levi, Shaul; Hodges, Floyd

    1992-04-01

    Intraflow structures and magmatic evolution in an extensive and thick (30-60 m) basaltic lava flow are examined on the basis of grain size and composition-dependent magnetic properties of titanomagnetite materials. Microprobe data indicate that the intraflow oxidation state Fe(3+)/Fe(2+) of the initially precipitated primary titanomagnetites increases with falling equilibrium temperature from the flow margins to a maximum near the center, the position of lowest equilibrium temperature. In contrast, Curie temperature measurements indicate that titanomagnetite oxidation increases with height in the flow. Modification of the initially symmetric equilibrium titanomagnetite compositions was caused by subsolidus high-temperature oxidation possibly due to hydrogen loss produced by dissociation of magmatic water, as well as unknown contributions of circulating air and percolating water from above. The titanomagnetites of the basal layer of the flow remain essentially unaltered.

  4. 230Th-238U disequilibria in historical lavas from Iceland

    International Nuclear Information System (INIS)

    Condomines, M.; Morand, P.; Alleegre, C.J.; Sigvaldason, G.

    1981-01-01

    The 230 Th- 238 U disequilibrium studies on historical lavas from Iceland show a relative homogeneity for Th/U ratios and also a variation for ( 230 Th/ 232 Th) activity ratios at the scale of the island. The ( 230 Th/ 238 U) disequilibrium ratio is always greater than 1 which indicates that partial melting produces magmas with Th/U ratios greater than those of the mantle source. Furthermore, there seems to be a correlation between the variations of ( 230 Th/ 232 Th) (and delta 18 O) ratios and the geographical location of the samples along the active zones of Iceland. We develop and discuss several models in order to explain these variations. (orig.)

  5. Dynamics of a fluid flow on Mars: Lava or mud?

    Science.gov (United States)

    Wilson, Lionel; Mouginis-Mark, Peter J.

    2014-05-01

    A distinctive flow deposit southwest of Cerberus Fossae on Mars is analyzed. The flow source is a ∼20 m deep, ∼12 × 1.5 km wide depression within a yardang associated with the Medusae Fossae Formation. The flow traveled for ∼40 km following topographic lows to leave a deposit on average 3-4 km wide. The surface morphology of the deposit suggests that it was produced by the emplacement of a fluid flowing in a laminar fashion and possessing a finite yield strength. We use topographic data from a digital elevation model (DEM) to model the dynamics of the motion and infer that the fluid had a Bingham rheology with a plastic viscosity of ∼1 Pa s and a yield strength of ∼185 Pa. Although the low viscosity is consistent with the properties of komatiite-like lava, the combination of values of viscosity and yield strength, as well as the surface morphology of the flow, suggests that this was a mud flow. Comparison with published experimental data implies a solids content close to 60% by volume and a grain size dominated by silt-size particles. Comparison of the ∼1.5 km3 deposit volume with the ∼0.03 km3 volume of the source depression implies that ∼98% of the flow material was derived from depth in the crust. There are similarities between the deposit studied here, which we infer to be mud, and other flow deposits on Mars currently widely held to be lavas. This suggests that a re-appraisal of many of these deposits is now in order.

  6. A century of studying effusive eruptions in Hawai'i: Chapter 9 in Characteristics of Hawaiian volcanoes

    Science.gov (United States)

    Cashman, Katherine V.; Mangan, Margaret T.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    The Hawaiian Volcano Observatory (HVO) was established as a natural laboratory to study volcanic processes. Since the most frequent form of volcanic activity in Hawai‘i is effusive, a major contribution of the past century of research at HVO has been to describe and quantify lava flow emplacement processes. Lava flow research has taken many forms; first and foremost it has been a collection of basic observational data on active lava flows from both Mauna Loa and Kīlauea volcanoes that have occurred over the past 100 years. Both the types and quantities of observational data have changed with changing technology; thus, another important contribution of HVO to lava flow studies has been the application of new observational techniques. Also important has been a long-term effort to measure the physical properties (temperature, viscosity, crystallinity, and so on) of flowing lava. Field measurements of these properties have both motivated laboratory experiments and presaged the results of those experiments, particularly with respect to understanding the rheology of complex fluids. Finally, studies of the dynamics of lava flow emplacement have combined detailed field measurements with theoretical models to build a framework for the interpretation of lava flows in numerous other terrestrial, submarine, and planetary environments. Here, we attempt to review all these aspects of lava flow studies and place them into a coherent framework that we hope will motivate future research.

  7. Lava Eruption and Emplacement: Using Clues from Hawaii and Iceland to Probe the Lunar Past

    Science.gov (United States)

    Needham, Debra Hurwitz; Hamilton, C. W.; Bleacher, J. E.; Whelley, P. L.; Young, K. E.; Scheidt, S. P.; Richardson, J. A.; Sutton, S. S.

    2017-01-01

    Investigating recent eruptions on Earth is crucial to improving understanding of relationships between eruption dynamics and final lava flow morphologies. In this study, we investigated eruptions in Holuhraun, Iceland, and Kilauea, Hawaii to gain insight into the lava dynamics near the source vent, the initiation of lava channels, and the origin of down-channel features. Insights are applied to Rima Bode on the lunar nearside to deduce the sequence of events that formed this lunar sinuous rille system. These insights are crucial to correctly interpreting whether the volcanic features associated with Rima Bode directly relate to eruption conditions at the vent and, thus, can help us understand those eruption dynamics, or, alternatively, whether the features formed as a result of more localized influences on lava flow dynamics. For example, if the lava channel developed early in the eruption and was linked to pulses in vent activity, its morphology can be analyzed to interpret the flux and duration of the eruption. Conversely, if the lava channel initiated late in the eruption as the result of a catastrophic breaching of lava that had previously pooled within the vent [e.g., 1], then the final channel morphology will not indicate eruption dynamics but rather local dynamics associated with that breach event. Distinguishing between these two scenarios is crucial for correctly interpreting the intensity and duration of volcanic history on the Moon.

  8. Geochronology and geochemistry of lavas from the 1996 North Gorda Ridge eruption

    Science.gov (United States)

    Rubin, K. H.; Smith, M. C.; Perfit, M. R.; Christie, D. M.; Sacks, L. F.

    1998-12-01

    Radiometric dating of three North Gorda Ridge lavas by the 210Po- 210Pb method confirms that an eruption occurred during a period of increased seismic activity along the ridge during late February/early March 1996. These lavas were collected following detection of enhanced T-phase seismicity and subsequent ocean bottom photographs documented the existence of a large pillow mound of fresh-appearing lavas. 210Po- 210Pb dating of these lavas indicates that an eruption coinciding with this seismicity did occur (within analytical error) and that followup efforts to sample the recent lava flows were successful. Compositions of the three confirmed young lavas and eleven other samples of this contiguous "new flow" sequence are distinct from older lavas from this area but are variable at a level outside analytical uncertainty. These intraflow variations can not easily be related to a single, common parent magma. Compositional variability within the new flow is compared to that of other recently documented individual flow sequences, and this comparison reveals a strong positive correlation of compositional variance with flow volumes spanning a range of >2 orders of magnitude. The geochemical heterogeneity in the North Gorda new flow probably reflects incomplete mixing of magmas generated from a heterogeneous mantle source or from slightly different melting conditions of a single source. The compositional variability, range in sample ages (up to 6 weeks) and range in active seismicity (4 weeks) imply that this relatively large flow was erupted over an interval of several weeks.

  9. Geochemical discrimination of five pleistocene Lava-Dam outburst-flood deposits, western Grand Canyon, Arizona

    Science.gov (United States)

    Fenton, C.R.; Poreda, R.J.; Nash, B.P.; Webb, R.H.; Cerling, T.E.

    2004-01-01

    Pleistocene basaltic lava dams and outburst-flood deposits in the western Grand Canyon, Arizona, have been correlated by means of cosmogenic 3He (3Hec) ages and concentrations of SiO2, Na2O, K2O, and rare earth elements. These data indicate that basalt clasts and vitroclasts in a given outburst-flood deposit came from a common source, a lava dam. With these data, it is possible to distinguish individual dam-flood events and improve our understanding of the interrelations of volcanism and river processes. At least five lava dams on the Colorado River failed catastrophically between 100 and 525 ka; subsequent outburst floods emplaced basalt-rich deposits preserved on benches as high as 200 m above the current river and up to 53 km downstream of dam sites. Chemical data also distinguishes individual lava flows that were collectively mapped in the past as large long-lasting dam complexes. These chemical data, in combination with age constraints, increase our ability to correlate lava dams and outburst-flood deposits and increase our understanding of the longevity of lava dams. Bases of correlated lava dams and flood deposits approximate the elevation of the ancestral river during each flood event. Water surface profiles are reconstructed and can be used in future hydraulic models to estimate the magnitude of these large-scale floods.

  10. A Sinuous Tumulus over an Active Lava Tube at Klauea Volcano: Evolution, Analogs, and Hazard Forecasts

    Science.gov (United States)

    Orr, Tim R.; Bleacher, Jacob E.; Patrick, Matthew R.; Wooten, Kelly M.

    2015-01-01

    Inflation of narrow tube-fed basaltic lava flows (tens of meters across), such as those confined by topography, can be focused predominantly along the roof of a lava tube. This can lead to the development of an unusually long tumulus, its shape matching the sinuosity of the underlying lava tube. Such a situation occurred during Klauea Volcanos (Hawaii, USA) ongoing East Rift Zone eruption on a lava tube active from July through November 2010. Short-lived breakouts from the tube buried the flanks of the sinuous, ridge-like tumulus, while the tumulus crest, its surface composed of lava formed very early in the flows emplacement history, remained poised above the surrounding younger flows. At least several of these breakouts resulted in irrecoverable uplift of the tube roof. Confined sections of the prehistoric Carrizozo and McCartys flows (New Mexico, USA) display similar sinuous, ridge-like features with comparable surface age relationships. We contend that these distinct features formed in a fashion equivalent to that of the sinuous tumulus that formed at Kilauea in 2010. Moreover, these sinuous tumuli may be analogs for some sinuous ridges evident in orbital images of the Tharsis volcanic province on Mars. The short-lived breakouts from the sinuous tumulus at Kilauea were caused by surges in discharge through the lava tube, in response to cycles of deflation and inflation (DI events) at Kilauea's summit. The correlation between DI events and subsequent breakouts aided in lava flow forecasting. Breakouts from the sinuous tumulus advanced repeatedly toward the sparsely populated Kalapana Gardens subdivision, destroying two homes and threatening others. Hazard assessments, including flow occurrence and advance forecasts, were relayed regularly to the Hawai?i County Civil Defense to aid their lava flow hazard mitigation efforts while this lava tube was active.

  11. Degassing driving crystallization of plagioclase phenocrysts in lava tube stalactites on Mount Etna (Sicily, Italy)

    Science.gov (United States)

    Lanzafame, Gabriele; Ferlito, Carmelo

    2014-10-01

    Basaltic lava flows can form tubes in response to the cooling of the outer surface. We collected lava stalactites (frozen lava tears) and sampled lava from the ceilings of three lava tubes on Mount Etna. Comparison of the petrographic characters between ceiling lavas and relative stalactites reveals surprising differences in the groundmass textures and crystal compositions. Major and trace element contents in stalactites show only a slight increase in alkali and SiO2 compared to ceiling lava, whereas significant differences exist in composition and textures between plagioclases within the ceiling lava and those within the stalactites, being in the last case definitively more An-rich. We advance the hypothesis that the high temperature reached in the cave caused the exsolution of the volatiles still trapped in the dripping melt. The volatiles, mainly H2O, formed bubbles and escaped from the melt; such a water-loss might have promoted the silicate polymerization in the stalactites resulting in the growth of An-rich plagioclase phenocrysts. Our results have important implications: in fact plagioclase phenocrysts are usually associated with intratelluric growth and are often considered as the main petrologic evidence for the existence of a magma chamber. The textural and chemical features of plagioclases in stalactites prove that phenocryst growth in syn to post-eruptive conditions is plausible and clearly explains the relatively low viscosity of many phenocryst-rich lava flows on Mount Etna, as well as on many other volcanoes around the world. Therefore, we can conclude that plagioclase phenocrysts cannot exclusively be considered as having originated within a magma chamber.

  12. Formation processes of the 1909 Tarumai and the 1944 Usu lava domesin Hokkaido, Japan

    Directory of Open Access Journals (Sweden)

    I. Yokoyama

    2004-06-01

    Full Text Available The formation of the two particular lava domes in Hokkaido, Japan is described and interpreted mainly from geophysical viewpoints. The 1909 eruption of Tarumai volcano was not violent but produced a lava dome over four days. The growth rate of the dome is discussed under the assumption that the lava flow was viscous and plastic fluid during its effusion. By Hagen-Poiseuille?s Law, the length of the conduit of the lava dome is rather ambiguously determined as a function of viscosity of the magma and diameter of the conduit. The 1944 Usu dome extruded as a parasitic cone of Usu volcano, not in the crater, but in a flat cornfield at the foot of the volcano. From the beginning to the end for more than 17 months, seismometric and geodetic observations of the dome activity were carried out by several pioneering geophysicists. Utilizing their data, pseudo growth curves of the dome at each stage can be drawn. The lava ascended rather uniformly, causing uplift of the ground surface until half-solidified lava reached the surface six months after the deformation began. Thereafter, the lava dome added lateral displacements and finally achieved its onion structure. These two lava domes are of contrasting character, one is andesitic and formed quickly while the other is dacitic and formed slowly, but both of them behaved as viscous and plastic flows during effusion. It is concluded that both the lava domes formed by uplift of magma forced to flow through the conduits, analogous to squeezing toothpaste out of a tube.

  13. Explosive Volcanism in Io's Lava Lakes - The Key To Constraining Eruption Temperature?

    Science.gov (United States)

    Davies, A. G.; Keszthelyi, L. P.; McEwen, A. S.

    2010-12-01

    Active lava lakes are open volcanic systems, where lava circulates between a magma chamber and the surface. Rare on Earth, lava lakes may be common on Io, the highly volcanic jovian moon (e.g., [1]). Io’s low atmospheric pressure means that activity within Io’s lava lakes may be explosive, exposing lava at near-liquid temperatures (currently poorly constrained for Io). Lava lakes are therefore important targets for future missions to Io [2, 3]. With this in mind, hand-held infrared imagers were used to collect thermal emission data from the phonolite Erebus (Antarctica) lava lake [4] and the basalt lava lake at Erta’Ale (Ethiopia). Temperature-area distributions and the integrated thermal emission spectra for each lava lake were determined from the data. These calculated spectra have been used to test models developed for analysis of remote sensing data of lava lakes and lava flows on both Earth and Io, where no ground-truth exists. The silicate cooling model [5] assumes, for the lava lake model variant, that the existing surface crust has been created at a fixed rate. Model output consists of a synthesized thermal emission spectrum, estimate of surface age range, and a rate of surface crust area formation. The cooling model provides accurate reproductions of actual thermal spectra and the total emitting area to within a few percent of actual emitting area. Model resurfacing rates broadly agree with observed behaviour at both lakes. Despite different composition lavas, the short-wavelength infrared thermal emission spectra from the two terrestrial lava lakes studied are very similar in shape, and, importantly, bear a striking similarity to spectra of Pele, an Io volcano that has been proposed to be a persistent, active lava lake [6] and which is the source of a 300-km high dust and gas plume. Our study of the cooling of the hottest lava exposed at Erta’Ale yields constraints on the ability of multispectral imagers to determine eruption temperature. We find

  14. Effect of the radiation in the thermoluminescent properties of lava

    CERN Document Server

    Correcher, V; García, J

    2003-01-01

    Blue thermoluminescence (Tl) emission from different lavas of many places (Costa Rica, Canary Islands, Hawaii Islands, Iceland and Italy) corresponding to different eruptions has been studied to know its potential use in the field of dating and retrospective dosimetry. Due to the light emission is linked to the point defects of the crystalline lattice structure, X-ray diffraction analyses were performed to determine the components of this poly mineral material that mostly are cristobalite, plagioclase and phyllosilicates. Exposures to different doses (in a range of 1-25 Gy) were given to each sample to determine the evolution of the Tl signal with the irradiation under laboratory conditions. In all cases, a linear response could be observed and no saturation has been detected in this range of doses. Both natural (NTL) and induced (ITL) Tl signal exhibit a complex glow curve structure associated to a continuous trap distribution over 100 C that could be attributed to the formation-annihilation [Al0 sub 4 /alka...

  15. Nature and Significance of the High-Sr Aleutian Lavas

    Science.gov (United States)

    Yogodzinski, G. M.; Arndt, S.; Turka, J. R.; Kelemen, P. B.; Vervoort, J. D.; Portnyagin, M.; Hoernle, K.

    2011-12-01

    Results of the Western Aleutian Volcano Expedition and German-Russian KALMAR cruises include the discovery of seafloor volcanism at the Ingenstrem Depression and at unnamed seamounts 300 km west of Buldir, the westernmost emergent volcano in the Aleutian arc. These discoveries indicate that the surface expression of active Aleutian volcanism goes below sea level just west of Buldir, but is otherwise continuous along the full length of the arc. Many lavas dredged from western Aleutian seamounts are basalts, geochemically similar to basalts from elsewhere in Aleutians and other arcs (La/Yb 4-8, Sr/Y700 ppm Sr), which are mostly plagioclase-hornblende andesites and dacites with low Y and middle-heavy rare-earth elements, fractionated trace element patterns (Sr/Y=50-200, La/Yb=9-25) and MORB-like isotopes (87Sr/86Sr 0.65) with 1250-1700 ppm Sr, 4-7 ppm Y, low abundances of all rare-earth elements (LaMexico. [1] Zimmer et al., 2010, J. Petrology, v. 51, p. 2411

  16. Dielectric properties of lava flows west of Ascraeus Mons, Mars

    Science.gov (United States)

    Carter, L.M.; Campbell, B.A.; Holt, J.W.; Phillips, R.J.; Putzig, N.E.; Mattei, S.; Seu, R.; Okubo, C.H.; Egan, A.F.

    2009-01-01

    The SHARAD instrument on the Mars Reconnaissance Orbiter detects subsurface interfaces beneath lava flow fields northwest of Ascraeus Mons. The interfaces occur in two locations; a northern flow that originates south of Alba Patera, and a southern flow that originates at the rift zone between Ascraeus and Pavonis Montes. The northern flow has permittivity values, estimated from the time delay of echoes from the basal interface, between 6.2 and 17.3, with an average of 12.2. The southern flow has permittivity values of 7.0 to 14.0, with an average of 9.8. The average permittivity values for the northern and southern flows imply densities of 3.7 and 3.4 g cm-3, respectively. Loss tangent values for both flows range from 0.01 to 0.03. The measured bulk permittivity and loss tangent values are consistent with those of terrestrial and lunar basalts, and represent the first measurement of these properties for dense rock on Mars. Copyright 2009 by the American Geophysical Union.

  17. Lava lake level as a gauge of magma reservoir pressure and eruptive hazard

    Science.gov (United States)

    Patrick, Matthew R.; Anderson, Kyle R.; Poland, Michael P.; Orr, Tim R.; Swanson, Donald A.

    2015-01-01

    Forecasting volcanic activity relies fundamentally on tracking magma pressure through the use of proxies, such as ground surface deformation and earthquake rates. Lava lakes at open-vent basaltic volcanoes provide a window into the uppermost magma system for gauging reservoir pressure changes more directly. At Kīlauea Volcano (Hawaiʻi, USA) the surface height of the summit lava lake in Halemaʻumaʻu Crater fluctuates with surface deformation over short (hours to days) and long (weeks to months) time scales. This correlation implies that the lake behaves as a simple piezometer of the subsurface magma reservoir. Changes in lava level and summit deformation scale with (and shortly precede) changes in eruption rate from Kīlauea's East Rift Zone, indicating that summit lava level can be used for short-term forecasting of rift zone activity and associated hazards at Kīlauea.

  18. Evidence for Amazonian highly viscous lavas in the southern highlands on Mars

    Czech Academy of Sciences Publication Activity Database

    Brož, Petr; Hauber, E.; Platz, T.; Balme, M.

    2015-01-01

    Roč. 415, 1 April (2015), s. 200-212 ISSN 0012-821X Institutional support: RVO:67985530 Keywords : Mars surface * volcanology * lava dome Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 4.326, year: 2015

  19. Extensive young silicic volcanism produces large deep submarine lava flows in the NE Lau Basin

    Science.gov (United States)

    Embley, Robert W.; Rubin, Kenneth H.

    2018-04-01

    New field observations reveal that extensive (up to 402 km2) aphyric, glassy dacite lavas were erupted at multiple sites in the recent past in the NE Lau basin, located about 200 km southwest of Samoa. This discovery of volumetrically significant and widespread submarine dacite lava flows extends the domain for siliceous effusive volcanism into the deep seafloor. Although several lava flow fields were discovered on the flank of a large silicic seamount, Niuatahi, two of the largest lava fields and several smaller ones ("northern lava flow fields") were found well north of the seamount. The most distal portion of the northernmost of these fields is 60 km north of the center of Niuatahi caldera. We estimate that lava flow lengths from probable eruptive vents to the distal ends of flows range from a few km to more than 10 km. Camera tows on the shallower, near-vent areas show complex lava morphology that includes anastomosing tube-like pillow flows and ropey surfaces, endogenous domes and/or ridges, some with "crease-like" extrusion ridges, and inflated lobes with extrusion structures. A 2 × 1.5 km, 30-m deep depression could be an eruption center for one of the lava flow fields. The Lau lava flow fields appear to have erupted at presumptive high effusion rates and possibly reduced viscosity induced by presumptive high magmatic water content and/or a high eruption temperature, consistent with both erupted composition ( 66% SiO2) and glassy low crystallinity groundmass textures. The large areal extent (236 km2) and relatively small range of compositional variation ( σ = 0.60 for wt% Si02%) within the northern lava flow fields imply the existence of large, eruptible batches of differentiated melt in the upper mantle or lower crust of the NE Lau basin. At this site, the volcanism could be controlled by deep crustal fractures caused by the long-term extension in this rear-arc region. Submarine dacite flows exhibiting similar morphology have been described in ancient

  20. The Chaitén rhyolite lava dome: Eruption sequence, lava dome volumes, rapid effusion rates and source of the rhyolite magma

    Science.gov (United States)

    Pallister, John S.; Diefenbach, Angela K.; Burton, William C.; Munoz, Jorge; Griswold, Julia P.; Lara, Luis E.; Lowenstern, Jacob B.; Valenzuela, Carolina E.

    2013-01-01

    We use geologic field mapping and sampling, photogrammetric analysis of oblique aerial photographs, and digital elevation models to document the 2008-2009 eruptive sequence at Chaitén Volcano and to estimate volumes and effusion rates for the lava dome. We also present geochemical and petrologic data that contribute to understanding the source of the rhyolite and its unusually rapid effusion rates. The eruption consisted of five major phases: 1. An explosive phase (1-11 May 2008); 2. A transitional phase (11-31 May 2008) in which low-altitude tephra columns and simultaneous lava extrusion took place; 3. An exogenous lava flow phase (June-September 2008); 4. A spine extrusion and endogenous growth phase (October 2008-February 2009); and 5. A mainly endogenous growth phase that began after the collapse of a prominent Peléean spine on 19 February 2009 and continued until the end of the eruption (late 2009 or possibly earliest 2010). The 2008-2009 rhyolite lava dome has a total volume of approximately 0.8 km3. The effusion rate averaged 66 m3s-1 during the first two weeks and averaged 45 m3s-1 for the first four months of the eruption, during which 0.5 km3 of rhyolite lava was erupted. These are among the highest rates measured world-wide for historical eruptions of silicic lava. Chaitén’s 2008-2009 lava is phenocryst-poor obsidian and microcrystalline rhyolite with 75.3±0.3% SiO2. The lava was erupted at relatively high temperature and is remarkably similar in composition and petrography to Chaitén’s pre-historic rhyolite. The rhyolite’s normative composition plots close to that of low pressure (100-200 MPa) minimum melts in the granite system, consistent with estimates of approximately 5 to 10 km source depths based on phase equilibria and geodetic studies. Calcic plagioclase, magnesian orthopyroxene and aluminous amphibole among the sparse phenocrysts suggest derivation of the rhyolite by melt extraction from a more mafic magmatic mush. High temperature

  1. Measuring effusion rates of obsidian lava flows by means of satellite thermal data

    Science.gov (United States)

    Coppola, D.; Laiolo, M.; Franchi, A.; Massimetti, F.; Cigolini, C.; Lara, L. E.

    2017-11-01

    Space-based thermal data are increasingly used for monitoring effusive eruptions, especially for calculating lava discharge rates and forecasting hazards related to basaltic lava flows. The application of this methodology to silicic, more viscous lava bodies (such as obsidian lava flows) is much less frequent, with only few examples documented in the last decades. The 2011-2012 eruption of Cordón Caulle volcano (Chile) produced a voluminous obsidian lava flow ( 0.6 km3) and offers an exceptional opportunity to analyze the relationship between heat and volumetric flux for such type of viscous lava bodies. Based on a retrospective analysis of MODIS infrared data (MIROVA system), we found that the energy radiated by the active lava flow is robustly correlated with the erupted lava volume, measured independently. We found that after a transient time of about 15 days, the coefficient of proportionality between radiant and volumetric flux becomes almost steady, and stabilizes around a value of 5 × 106 J m- 3. This coefficient (i.e. radiant density) is much lower than those found for basalts ( 1 × 108 J m- 3) and likely reflects the appropriate spreading and cooling properties of the highly-insulated, viscous flows. The effusion rates trend inferred from MODIS data correlates well with the tremor amplitude and with the plume elevation recorded throughout the eruption, thus suggesting a link between the effusive and the coeval explosive activity. Modelling of the eruptive trend indicates that the Cordón Caulle eruption occurred in two stages, either incompletely draining a single magma reservoir or more probably tapping multiple interconnected magmatic compartments.

  2. Analysis of Active Lava Flows on Kilauea Volcano, Hawaii, Using SIR-C Radar Correlation Measurements

    Science.gov (United States)

    Zebker, H. A.; Rosen, P.; Hensley, S.; Mouginis-Mark, P. J.

    1995-01-01

    Precise eruption rates of active pahoehoe lava flows on Kilauea volcano, Hawaii, have been determined using spaceborne radar data acquired by the Space Shuttle Imaging Radar-C (SIR-C). Measurement of the rate of lava flow advance, and the determination of the volume of new material erupted in a given period of time, are among the most important observations that can be made when studying a volcano.

  3. Geochemistry of tholeiitic and alkalic lavas from the Koolau Range, Oahu, Hawaii

    International Nuclear Information System (INIS)

    Roden, M.F.; Frey, F.A.

    1984-01-01

    Lavas of the post-erosional, alkalic Honolulu Volcanics have significantly lower 87 Sr/ 86 Sr and higher 143 Nd/ 144 Nd than the older and underlying Koolau tholeiites which form the Koolau shield of eastern Oahu, Hawaii. Despite significant compositional variation within lavas forming the Honolulu Volcanics, these lavas are isotopically (Sr, Nd, Pb) very similar which contrasts with the isotopic heterogeneity of the Koolau tholeiites. Among Hawaiian tholeiitic suites, the Koolau lavas are geochemically distinct because of their lower iron contents and Sr and Nd isotopic ratios which range to bulk earth values. These geochemical data preclude simple models such as derivation of the Honolulu Volcanics and Koolau tholeiites from a common source by different degrees of melting or by mixing of two geochemically distinct sources. There may be no genetic relationship between the origin and evolution of these two lava suites; however, the trend shown by Koolau Range lavas of increasing 143 Nd/ 144 Nd and decreasing 87 Sr/ 86 Sr with decreasing eruption age and increasing alkalinity also occurs at Haleakala, East Molokai and Kauai volcaneoes. A complex mixing model proposed for Haleakala lavas can account for the variations in Sr and Nd isotopic ratios and processes occurring during ascent of relatively enriched mantle through relatively depleted MORB-related lithosphere. Although two isotopically distinct components may be sufficient to explain Sr and Nd isotopic variations at individual Hawaiian volcaneoes, more than two isotopically distinct materials are required to explain variations of Sr, Nd and Pb isotopic ratios in all Hawaiian lavas. (orig.)

  4. Emplacement and erosive effects of the south Kasei Valles lava on Mars

    Science.gov (United States)

    Dundas, Colin M.; Keszthelyi, Laszlo P.

    2014-01-01

    Although it has generally been accepted that the Martian outflow channels were carved by floods of water, observations of large channels on Venus and Mercury demonstrate that lava flows can cause substantial erosion. Recent observations of large lava flows within outflow channels on Mars have revived discussion of the hypothesis that the Martian channels are also produced by lava. An excellent example is found in south Kasei Valles (SKV), where the most recent major event was emplacement of a large lava flow. Calculations using high-resolution Digital Terrain Models (DTMs) demonstrate that this flow was locally turbulent, similar to a previously described flood lava flow in Athabasca Valles. The modeled peak local flux of approximately 106 m3 s−1 was approximately an order of magnitude lower than that in Athabasca, which may be due to distance from the vent. Fluxes close to 107 m3 s−1 are estimated in some reaches but these values are probably records of local surges caused by a dam-breach event within the flow. The SKV lava was locally erosive and likely caused significant (kilometer-scale) headwall retreat at several cataracts with tens to hundreds of meters of relief. However, in other places the net effect of the flow was unambiguously aggradational, and these are more representative of most of the flow. The larger outflow channels have lengths of thousands of kilometers and incision of a kilometer or more. Therefore, lava flows comparable to the SKV flow did not carve the major Martian outflow channels, although the SKV flow was among the largest and highest-flux lava flows known in the Solar System.

  5. Shallow and deep controls on lava lake surface motion at Kīlauea Volcano

    Science.gov (United States)

    Patrick, Matthew R.; Orr, Tim R.; Swanson, Don; Lev, Einat

    2016-01-01

    Lava lakes provide a rare window into magmatic behavior, and lake surface motion has been used to infer deeper properties of the magmatic system. At Halema'uma'u Crater, at the summit of Kīlauea Volcano, multidisciplinary observations for the past several years indicate that lava lake surface motion can be broadly divided into two regimes: 1) stable and 2) unstable. Stable behavior is driven by lava upwelling from deeper in the lake (presumably directly from the conduit) and is an intrinsic process that drives lava lake surface motion most of the time. This stable behavior can be interrupted by periods of unstable flow (often reversals) driven by spattering – a shallowly-rooted process often extrinsically triggered by small rockfalls from the crater wall. The bursting bubbles at spatter sources create void spaces and a localized surface depression which draws and consumes surrounding surface crust. Spattering is therefore a location of lava downwelling, not upwelling. Stable (i.e. deep, upwelling-driven) and unstable (i.e. shallow, spattering-driven) behavior often alternate through time, have characteristic surface velocities, flow directions and surface temperature regimes, and also correspond to changes in spattering intensity, outgassing rates, lava level and seismic tremor. These results highlight that several processes, originating at different depths, can control the motion of the lava lake surface, and long-term interdisciplinary monitoring is required to separate these influences. These observations indicate that lake surface motion is not always a reliable proxy for deeper lake or magmatic processes. From these observations, we suggest that shallow outgassing (spattering), not lake convection, drives the variations in lake motion reported at Erta 'Ale lava lake.

  6. The Etendeka lavas SWA/Namibia: geology, chemistry and spatial and temporal relationships

    International Nuclear Information System (INIS)

    Marsh, J.S.; Erlank, A.J.; Duncan, A.R.; Miller, R.McG.; Rex, D.C.

    1981-01-01

    The paper discusses a geologic survey on the Etendeka lavas in South West Africa/Namibia with special attention to the geology, chemistry and spatial and temporal relationships in the area. K/Ar age data indicate that the bulk of the Etendeka lavas are about 120 m.y. old. In the study use was also made of 87 Sr/ 86 Sr, 143 Nd/ 144 Nd, 206 Pb/ 204 Pb, 207 Pb/ 204 Pb and 208 Pb/ 204 Pb isotope ratios

  7. Subaqueous rhyolite block lavas in the Miocene Ushikiri Formation, Shimane Peninsula, SW Japan

    Science.gov (United States)

    Kano, Kazuhiko; Takeuchi, Keiji; Yamamoto, Takahiro; Hoshizumi, Hideo

    1991-06-01

    A rhyolite mass of the Miocene Ushikiri Formation in the western part of the Shimane Peninsula, SW Japan, is a small subaqueous edifice about 600 m high and 4 km wide, formed at water depths between 200 and 1000 m. It consists mainly of three relatively flat, lava-flow units 50-300 m in maximum thickness, each of which includes lobes and their polyhedral fragments. The lava lobes are poorly to well vesiculated, glassy to microcrystalline and flow-banded and -folded. Compared with mafic pillows, they are large, having thick, quenched and brecciated, glassy crusts because of their high viscosity, surface tension and thermal conductivity. Their surfaces disintegrate into polyhedral fragments and grade into massive volcanic breccia. The massive volcanic breccia composed of the lobe fragments is poorly sorted and covered with stratified volcanic breccia of the same rock type. The rhyolite lavas commonly bifurcate in a manner similar to mafic pillow lavas. However, they are highly silicic with 1-5 vol.% phenocrysts and have elongated vesicles and flow-folds, implying that they were visco-plastic during flowage. Their surface features are similar to those of subaerial block lava. With respect to rheological and morphological features, they are subaqueous equivalents of block lava.

  8. Monitoring the cooling of the 1959 Kīlauea Iki lava lake using surface magnetic measurements

    Science.gov (United States)

    Gailler, Lydie; Kauahikaua, James P.

    2017-01-01

    Lava lakes can be considered as proxies for small magma chambers, offering a unique opportunity to investigate magma evolution and solidification. Repeated magnetic ground surveys over more than 50 years each show a large vertical magnetic intensity anomaly associated with Kīlauea Iki Crater, partly filled with a lava lake during the 1959 eruption of Kīlauea Volcano (Island of Hawai’i). The magnetic field values recorded across the Kīlauea Iki crater floor and the cooling lava lake below result from three simple effects: the static remnant magnetization of the rocks forming the steep crater walls, the solidifying lava lake crust, and the hot, but shrinking, paramagnetic non-magnetic lens (>540 °C). We calculate 2D magnetic models to reconstruct the temporal evolution of the geometry of this non-magnetic body, its depth below the surface, and its thickness. Our results are in good agreement with the theoretical increase in thickness of the solidifying crust with time. Using the 2D magnetic models and the theoretical curve for crustal growth over a lava lake, we estimate that the former lava lake will be totally cooled below the Curie temperature in about 20 years. This study shows the potential of magnetic methods for detecting and monitoring magmatic intrusions at various scales.

  9. Retrospective validation of a lava-flow hazard map for Mount Etna volcano

    Directory of Open Access Journals (Sweden)

    Ciro Del Negro

    2011-12-01

    Full Text Available This report presents a retrospective methodology to validate a long-term hazard map related to lava-flow invasion at Mount Etna, the most active volcano in Europe. A lava-flow hazard map provides the probability that a specific point will be affected by potential destructive volcanic processes over the time period considered. We constructed this lava-flow hazard map for Mount Etna volcano through the identification of the emission regions with the highest probabilities of eruptive vents and through characterization of the event types for the numerical simulations and the computation of the eruptive probabilities. Numerical simulations of lava-flow paths were carried out using the MAGFLOW cellular automata model. To validate the methodology developed, a hazard map was built by considering only the eruptions that occurred at Mount Etna before 1981. On the basis of the probability of coverage by lava flows, the map was divided into ten classes, and two fitting scores were calculated to measure the overlap between the hazard classes and the actual shapes of the lava flows that occurred after 1981.

  10. Influence of conduit flow mechanics on magma rheology and the growth style of lava domes

    Science.gov (United States)

    Husain, Taha; Elsworth, Derek; Voight, Barry; Mattioli, Glen; Jansma, Pamela

    2018-06-01

    We develop a 2-D particle-mechanics model to explore different lava-dome growth styles. These range from endogenous lava dome growth comprising expansion of a ductile dome core to the exogenous extrusion of a degassed lava plug resulting in generation of a lava spine. We couple conduit flow dynamics with surface growth of the evolving lava dome, fuelled by an open-system magma chamber undergoing continuous replenishment. The conduit flow model accounts for the variation in rheology of ascending magma that results from degassing-induced crystallization. A period of reduced effusive flow rates promote enhanced degassing-induced crystallization. A degassed lava plug extrudes exogenously for magmas with crystal contents (ϕ) of 78 per cent, yield strength >1.62 MPa, and at flow rates of 3 m3 s-1) for magma with lower relative yield strengths (p = 3 MPa) at the conduit exit is forced out by the high discharge rate pulse (2 process, which has been observed at Mount St. Helens and other locations, largely reflects gravitational loading of dome with a viscous core, with retardation by yield strength and talus friction.

  11. The ISRU Field Tests 2010 and 2012 at Mauna Kea, Hawaii: Results from the Miniaturised Mossbauer Spectrometers Mimos II and Mimos IIA

    Science.gov (United States)

    Klingelhoefer, G.; Morris, R. V.; Blumers, M; Bernhardt, B.; Graff, T.

    2014-01-01

    The 2010 and 2012 In-Situ Resource Utilization Analogue Test (ISRU) [1] on the Mauna Kea volcano in Hawai'i was coordinated by the Northern Centre for Advanced Technology (NORCAT) in collaboration with the Canadian Space Agency (CSA), the German Aerospace Center (DLR), and the National Aeronautics and Space Administration (NASA), through the PISCES program. Several instruments were tested as reference candidates for future analogue testing at the new field test site at the Mauna Kea volcano in Hawai'i. The fine-grained, volcanic nature of the material is a suitable lunar and martian analogue, and can be used to test excavation, site preparation, and resource utilization techniques. The 2010 location Pu'u Hiwahine, a cinder cone located below the summit of Mauna Kea (19deg45'39.29" N, 155deg28'14.56" W) at an elevation of 2800 m, provides a large number of slopes, rock avalanches, etc. to perform mobility tests, site preparation or resource prospecting. Besides hardware testing of technologies and systems related to resource identification, also in situ science measurements played a significant role in integration of ISRU and science instruments. For the advanced Mössbauer instrument MIMOS IIA, the new detector technologies and electronic components increase sensitivity and performance significantly. In combination with the high energy resolution of the SDD it is possible to perform Xray fluorescence analysis simultaneously to Mössbauer spectroscopy. In addition to the Fe-mineralogy, information on the sample's elemental composition will be gathered. The 2010 and 2012 field campaigns demonstrated that in-situ Mössbauer spectroscopy is an effective tool for both science and feedstock exploration and process monitoring. Engineering tests showed that a compact nickel metal hydride battery provided sufficient power for over 12 hr of continuous operation for the MIMOS instruments.

  12. Performance of Regolith Feed Systems for Analog Field Tests of In-Situ Resource Utilization Oxygen Production Plants in Mauna Kea, Hawaii

    Science.gov (United States)

    Townsend, Ivan I.; Mueller, Robert P.; Mantovani, James G.; Zacny, Kris A.; Craft, Jack

    2010-01-01

    This paper focuses on practical aspects of mechanical auger and pneumatic regolith conveying system feeding In-Situ Resource Utilization Oxygen production plants. The subsystems of these feedstock delivery systems include an enclosed auger device, pneumatic venturi educator, jet-lift regolith transfer, innovative electro-cyclone gas-particle separation/filtration systems, and compressors capable of dealing with hot hydrogen and/or methane gas re-circulating in the system. Lessons learned from terrestrial laboratory, reduced gravity and field testing on Mauna Kea Volcano in Hawaii during NASA lunar analog field tests will be discussed and practical design tips will be presented.

  13. Experimental Insights on Natural Lava-Ice/Snow Interactions and Their Implications for Glaciovolcanic and Submarine Eruptions

    Science.gov (United States)

    Edwards, B. R.; Karson, J.; Wysocki, R.; Lev, E.; Bindeman, I. N.; Kueppers, U.

    2012-12-01

    Lava-ice-snow interactions have recently gained global attention through the eruptions of ice-covered volcanoes, particularly from Eyjafjallajokull in south-central Iceland, with dramatic effects on local communities and global air travel. However, as with most submarine eruptions, direct observations of lava-ice/snow interactions are rare. Only a few hundred potentially active volcanoes are presently ice-covered, these volcanoes are generally in remote places, and their associated hazards make close observation and measurements dangerous. Here we report the results of the first large-scale experiments designed to provide new constraints on natural interactions between lava and ice/snow. The experiments comprised controlled effusion of tens of kilograms of melted basalt on top of ice/snow, and provide insights about observations from natural lava-ice-snow interactions including new constraints for: 1) rapid lava advance along the ice-lava interface; 2) rapid downwards melting of lava flows through ice; 3) lava flow exploitation of pre-existing discontinuities to travel laterally beneath and within ice; and 4) formation of abundant limu o Pele and non-explosive vapor transport from the base to the top of the lava flow with minor O isotope exchange. The experiments are consistent with observations from eruptions showing that lava is more efficient at melting ice when emplaced on top of the ice as opposed to beneath the ice, as well as the efficacy of tephra cover for slowing melting. The experimental extrusion rates are as within the range of those for submarine eruptions as well, and reproduce some features seen in submarine eruptions including voluminous production of gas rich cavities within initially anhydrous lavas and limu on lava surfaces. Our initial results raise questions about the possibility of secondary ingestion of water by submarine and glaciovolcanic lava flows, and the origins of apparent primary gas cavities in those flows. Basaltic melt moving down

  14. Geochemistry of southern Pagan Island lavas, Mariana arc: The role of subduction zone processes

    Science.gov (United States)

    Marske, J.P.; Pietruszka, A.J.; Trusdell, F.A.; Garcia, M.O.

    2011-01-01

    New major and trace element abundances, and Pb, Sr, and Nd isotopic ratios of Quaternary lavas from two adjacent volcanoes (South Pagan and the Central Volcanic Region, or CVR) located on Pagan Island allow us to investigate the mantle source (i.e., slab components) and melting dynamics within the Mariana intra-oceanic arc. Geologic mapping reveals a pre-caldera (780-9.4ka) and post-caldera (<9.4ka) eruptive stage for South Pagan, whereas the eruptive history of the older CVR is poorly constrained. Crystal fractionation and magma mixing were important crustal processes for lavas from both volcanoes. Geochemical and isotopic variations indicate that South Pagan and CVR lavas, and lavas from the northern volcano on the island, Mt. Pagan, originated from compositionally distinct parental magmas due to variations in slab contributions (sediment and aqueous fluid) to the mantle wedge and the extent of mantle partial melting. A mixing model based on Pb and Nd isotopic ratios suggests that the average amount of sediment in the source of CVR (~2.1%) and South Pagan (~1.8%) lavas is slightly higher than Mt. Pagan (~1.4%) lavas. These estimates span the range of sediment-poor Guguan (~1.3%) and sediment-rich Agrigan (~2.0%) lavas for the Mariana arc. Melt modeling demonstrates that the saucer-shaped normalized rare earth element (REE) patterns observed in Pagan lavas can arise from partial melting of a mixed source of depleted mantle and enriched sediment, and do not require amphibole interaction or fractionation to depress the middle REE abundances of the lavas. The modeled degree of mantle partial melting for Agrigan (2-5%), Pagan (3-7%), and Guguan (9-15%) lavas correlates with indicators of fluid addition (e.g., Ba/Th). This relationship suggests that the fluid flux to the mantle wedge is the dominant control on the extent of partial melting beneath Mariana arc volcanoes. A decrease in the amount of fluid addition (lower Ba/Th) and extent of melting (higher Sm/Yb), and

  15. King's Bowl Pit Crater, Lava Field and Eruptive Fissure, Idaho - A Multipurpose Volcanic Planetary Analog

    Science.gov (United States)

    Hughes, S. S.; Garry, B.; Kobs-Nawotniak, S. E.; Sears, D. W. G.; Borg, C.; Elphic, R. C.; Haberle, C. W.; Kobayashi, L.; Lim, D. S. S.; Sears, H.; Skok, J. R.; Heldmann, J. L.

    2014-12-01

    King's Bowl (KB) and its associated eruptive fissure and lava field on the eastern Snake River Plain, is being investigated by the NASA SSERVI FINESSE (Field Investigations to Enable Solar System Science and Exploration) team as a planetary analog to similar pits on the Moon, Mars and Vesta. The 2,220 ± 100 BP basaltic eruption in Craters of the Moon National Monument and Preserve represents early stages of low shield growth, which was aborted when magma supply was cut off. Compared to mature shields, KB is miniscule, with ~0.02 km3 of lava over ~3 km2, yet the ~6 km long series of fissures, cracks and pits are well-preserved for analog studies of volcanic processes. The termination of eruption was likely related to proximity of the 2,270 ± 50 BP eruption of the much larger Wapi lava field (~5.5 km3 over 325 km2 area) on the same rift. Our investigation extends early work by R. Greeley and colleagues, focusing on imagery, compositional variations, ejecta distribution, dGPS profiles and LiDAR scans of features related to: (1) fissure eruptions - spatter ramparts, cones, feeder dikes, extension cracks; (2) lava lake formation - surface morphology, squeeze-ups, slab pahoehoe lava mounds, lava drain-back, flow lobe overlaps; and (3) phreatic steam blasts - explosion pits, ejecta blankets of ash and blocks. Preliminary results indicate multiple fissure eruptions and growth of a basin-filled lava lake up to ~ 10 m thick with outflow sheet lava flows. Remnant mounds of original lake crust reveal an early high lava lake level, which subsided as much as 5 m as the molten interior drained back into the fissure system. Rapid loss of magma supply led to the collapse of fissure walls allowing groundwater influx that triggered multiple steam blasts along at least 500 m. Early blasts occurred while lake magma pressure was still high enough to produce squeeze-ups when penetrated by ejecta blocks. The King's Bowl pit crater exemplifies processes of a small, but highly energetic

  16. Morphologic and thermophysical characteristics of lava flows southwest of Arsia Mons, Mars

    Science.gov (United States)

    Crown, David A.; Ramsey, Michael S.

    2017-08-01

    The morphologic and thermophysical characteristics of part of the extensive lava flow fields southwest of Arsia Mons (22.5-27.5°S, 120-130°W) have been examined using a combination of orbital VNIR and TIR datasets. THEMIS images provide context for the regional geology and record diurnal temperature variability that is diverse and unusual for flow surfaces in such close proximity. CTX images were used to distinguish dominant flow types and assess local age relationships between individual lava flows. CTX and HiRISE images provide detailed information on flow surface textures and document aeolian effects as they reveal fine-grained deposits in many low-lying areas of the flow surfaces as well as small patches of transverse aeolian ridges. Although this region is generally dust-covered and has a lower overall thermal inertia, the THEMIS data indicate subtle spectral variations within the population of lava flows studied. These variations could be due to compositional differences among the flows or related to mixing of flow and aeolian materials. Specific results regarding flow morphology include: a) Two main lava flow types (bright, rugged and dark, smooth as observed in CTX images) dominate the southwest Arsia Mons/NE Daedalia Planum region; b) the bright, rugged flows have knobby, ridged, and/or platy surface textures, commonly have medial channel/levee systems, and may have broad distal lobes; c) the dark, smooth flows extend from distributary systems that consist of combinations of lava channels, lava tubes, and/or sinuous ridges and plateaus; and d) steep-sided, terraced margins, digitate breakout lobes, and smooth-surfaced plateaus along lava channel/tube systems are interpreted as signatures of flow inflation within the dark, smooth flow type. These flows exhibit smoother upper surfaces, are thinner, and have more numerous, smaller lobes, which, along with their the channel-/tube-fed nature, indicate a lower viscosity lava than for the bright, rugged flows

  17. UAV-based remote sensing surveys of lava flow fields: a case study from Etna's 1974 channel-fed lava flows

    Science.gov (United States)

    Favalli, Massimiliano; Fornaciai, Alessandro; Nannipieri, Luca; Harris, Andrew; Calvari, Sonia; Lormand, Charline

    2018-03-01

    During an eruption, time scales of topographic change are fast and involve vertical and planimetric evolution of millimeters to meters as the event progresses. Repeat production of high spatial resolution terrain models of lava flow fields over time scales of a few hours is thus a high-value capability in tracking the buildup of the deposit. Among the wide range of terrestrial and aerial methods available to collect such topographic data, the use of an unmanned aerial vehicle (UAV) as an acquisition platform, together with structure from motion (SfM) photogrammetry, has become especially useful. This approach allows high-frequency production of centimeter-scale terrain models over kilometer-scale areas, including dangerous and inaccessible zones, with low cost and minimal hazard to personnel. This study presents the application of such an integrated UAV-SfM method to generate a high spatial resolution digital terrain model and orthomosaic of Mount Etna's January-February 1974 lava flow field. The SfM method, applied to images acquired using a UAV platform, enabled the extraction of a very high spatial resolution (20 cm) digital elevation model and the generation of a 3-cm orthomosaic covering an area of 1.35 km2. This spatial resolution enabled us to analyze the morphology of sub-meter-scale features, such as folds, blocks, and cracks, over kilometer-scale areas. The 3-cm orthomosaic allowed us to further push the analysis to centimeter-scale grain size distribution of the lava surface. Using these data, we define three types of crust structure and relate them to positions within a channel-fed ´áā flow system. These crust structures are (i) flow parallel shear lines, (ii) raft zones, and (iii) folded zones. Flow parallel shear lines are found at the channel edges, and are 2-m-wide and 0.25-m-deep zones running along the levee base and in which cracking is intense. They result from intense shearing between the moving channel lava and the static levee lava. In

  18. Sensibility analysis of VORIS lava-flow simulations: application to Nyamulagira volcano, Democratic Republic of Congo

    Science.gov (United States)

    Syavulisembo, A. M.; Havenith, H.-B.; Smets, B.; d'Oreye, N.; Marti, J.

    2015-03-01

    Assessment and management of volcanic risk are important scientific, economic, and political issues, especially in densely populated areas threatened by volcanoes. The Virunga area in the Democratic Republic of Congo, with over 1 million inhabitants, has to cope permanently with the threat posed by the active Nyamulagira and Nyiragongo volcanoes. During the past century, Nyamulagira erupted at intervals of 1-4 years - mostly in the form of lava flows - at least 30 times. Its summit and flank eruptions lasted for periods of a few days up to more than two years, and produced lava flows sometimes reaching distances of over 20 km from the volcano, thereby affecting very large areas and having a serious impact on the region of Virunga. In order to identify a useful tool for lava flow hazard assessment at the Goma Volcano Observatory (GVO), we tested VORIS 2.0.1 (Felpeto et al., 2007), a freely available software (http://www.gvb-csic.es) based on a probabilistic model that considers topography as the main parameter controlling lava flow propagation. We tested different Digital Elevation Models (DEM) - SRTM1, SRTM3, and ASTER GDEM - to analyze the sensibility of the input parameters of VORIS 2.0.1 in simulation of recent historical lava-flow for which the pre-eruption topography is known. The results obtained show that VORIS 2.0.1 is a quick, easy-to-use tool for simulating lava-flow eruptions and replicates to a high degree of accuracy the eruptions tested. In practice, these results will be used by GVO to calibrate VORIS model for lava flow path forecasting during new eruptions, hence contributing to a better volcanic crisis management.

  19. Diagnostic value of the fluoroscopic triggering 3D LAVA technique for primary liver cancer.

    Science.gov (United States)

    Shen, Xiao-Yong; Chai, Chun-Hua; Xiao, Wen-Bo; Wang, Qi-Dong

    2010-04-01

    Primary liver cancer (PLC) is one of the common malignant tumors. Liver acquisition with acceleration volume acquisition (LAVA), which allows simultaneous dynamic enhancement of the hepatic parenchyma and vasculature imaging, is of great help in the diagnosis of PLC. This study aimed to evaluate application of the fluoroscopic triggering 3D LAVA technique in the imaging of PLC and liver vasculature. The clinical data and imaging findings of 38 adults with PLC (22 men and 16 women; average age 52 years), pathologically confirmed by surgical resection or biopsy, were collected and analyzed. All magnetic resonance images were obtained with a 1.5-T system (General Electrics Medical Systems) with an eight-element body array coil and application of the fluoroscopic triggering 3D LAVA technique. Overall image quality was assessed on a 5-point scale by two experienced radiologists. All the nodules and blood vessel were recorded and compared. The diagnostic accuracy and feasibility of LAVA were evaluated. Thirty-eight patients gave high quality images of 72 nodules in the liver for diagnosis. The accuracy of LAVA was 97.2% (70/72), and the coincidence rate between the extent of tumor judged by dynamic enhancement and pathological examination was 87.5% (63/72). Displayed by the maximum intensity projection reconstruction, nearly all cases gave satisfactory images of branches III and IV of the hepatic artery. Furthermore, small early-stage enhancing hepatic lesions and the parallel portal vein were also well displayed. Sequence of LAVA provides good multi-phase dynamic enhancement scanning of hepatic lesions. Combined with conventional scanning technology, LAVA effectively and safely displays focal hepatic lesions and the relationship between tumor and normal tissues, especially blood vessels.

  20. Limited role for thermal erosion by turbulent lava in proximal Athabasca Valles, Mars

    Science.gov (United States)

    Cataldo, Vincenzo; Williams, David A.; Dundas, Colin M.; Kestay, Laszlo P.

    2015-01-01

    The Athabasca Valles flood lava is among the most recent (Mars and was probably emplaced turbulently. The Williams et al. (2005) model of thermal erosion by lava has been applied to what we term “proximal Athabasca,” the 75 km long upstream portion of Athabasca Valles. For emplacement volumes of 5000 and 7500 km3and average flow thicknesses of 20 and 30 m, the duration of the eruption varies between ~11 and ~37 days. The erosion of the lava flow substrate is investigated for three eruption temperatures (1270°C, 1260°C, and 1250°C), and volatile contents equivalent to 0–65 vol % bubbles. The largest erosion depths of ~3.8–7.5 m are at the lava source, for 20 m thick and bubble-free flows that erupted at their liquidus temperature (1270°C). A substrate containing 25 vol % ice leads to maximum erosion. A lava temperature 20°C below liquidus reduces erosion depths by a factor of ~2.2. If flow viscosity increases with increasing bubble content in the lava, the presence of 30–50 vol % bubbles leads to erosion depths lower than those relative to bubble-free lava by a factor of ~2.4. The presence of 25 vol % ice in the substrate increases erosion depths by a factor of 1.3. Nevertheless, modeled erosion depths, consistent with the emplacement volume and flow duration constraints, are far less than the depth of the channel (~35–100 m). We conclude that thermal erosion does not appear to have had a major role in excavating Athabasca Valles.

  1. Benchmarking computational fluid dynamics models of lava flow simulation for hazard assessment, forecasting, and risk management

    Science.gov (United States)

    Dietterich, Hannah; Lev, Einat; Chen, Jiangzhi; Richardson, Jacob A.; Cashman, Katharine V.

    2017-01-01

    Numerical simulations of lava flow emplacement are valuable for assessing lava flow hazards, forecasting active flows, designing flow mitigation measures, interpreting past eruptions, and understanding the controls on lava flow behavior. Existing lava flow models vary in simplifying assumptions, physics, dimensionality, and the degree to which they have been validated against analytical solutions, experiments, and natural observations. In order to assess existing models and guide the development of new codes, we conduct a benchmarking study of computational fluid dynamics (CFD) models for lava flow emplacement, including VolcFlow, OpenFOAM, FLOW-3D, COMSOL, and MOLASSES. We model viscous, cooling, and solidifying flows over horizontal planes, sloping surfaces, and into topographic obstacles. We compare model results to physical observations made during well-controlled analogue and molten basalt experiments, and to analytical theory when available. Overall, the models accurately simulate viscous flow with some variability in flow thickness where flows intersect obstacles. OpenFOAM, COMSOL, and FLOW-3D can each reproduce experimental measurements of cooling viscous flows, and OpenFOAM and FLOW-3D simulations with temperature-dependent rheology match results from molten basalt experiments. We assess the goodness-of-fit of the simulation results and the computational cost. Our results guide the selection of numerical simulation codes for different applications, including inferring emplacement conditions of past lava flows, modeling the temporal evolution of ongoing flows during eruption, and probabilistic assessment of lava flow hazard prior to eruption. Finally, we outline potential experiments and desired key observational data from future flows that would extend existing benchmarking data sets.

  2. Simulation of core melt spreading with lava: theoretical background and status of validation

    International Nuclear Information System (INIS)

    Allelein, H.-J.; Breest, A.; Spengler, C.

    2000-01-01

    The goal of this paper is to present the GRS R and D achievements and perspectives of its approach to simulate ex-vessel core melt spreading. The basic idea followed by GRS is the analogy of core melt spreading to volcanic lava flows. A fact first proposed by Robson (1967) and now widely accepted is that lava rheologically behaves as a Bingham fluid, which is characterized by yield stress and plastic viscosity. Recent experimental investigations by Epstein (1996) reveal that corium-concrete mixtures may be described as Bingham fluids. The GRS code LAVA is based on a successful lava flow model, but is adapted to prototypic corium and corium-simulation spreading. Furthermore some detailed physical models such as a thermal crust model on the free melt surface and a model for heat conduction into the substratum are added. Heat losses of the bulk, which is represented by one mean temperature, are now determined by radiation and by temperature profiles in the upper crust and in the substratum. In order to reduce the weak mesh dependence of the original algorithm, a random space method of cellular automata is integrated, which removes the mesh bias without increasing calculation time. LAVA is successfully validated against a lot of experiments using different materials spread. The validation process has shown that LAVA is a robust and fast running code to simulate corium-type spreading. LAVA provides all integral information of practical interest (spreading length, height of the melt after stabilization) and seems to be an appropriate tool for handling large core melt masses within a plant application. (orig.)

  3. Constraining Controls on the Emplacement of Long Lava Flows on Earth and Mars Through Modeling in ArcGIS

    Science.gov (United States)

    Golder, K.; Burr, D. M.; Tran, L.

    2017-12-01

    Regional volcanic processes shaped many planetary surfaces in the Solar System, often through the emplacement of long, voluminous lava flows. Terrestrial examples of this type of lava flow have been used as analogues for extensive martian flows, including those within the circum-Cerberus outflow channels. This analogy is based on similarities in morphology, extent, and inferred eruptive style between terrestrial and martian flows, which raises the question of how these lava flows appear comparable in size and morphology on different planets. The parameters that influence the areal extent of silicate lavas during emplacement may be categorized as either inherent or external to the lava. The inherent parameters include the lava yield strength, density, composition, water content, crystallinity, exsolved gas content, pressure, and temperature. Each inherent parameter affects the overall viscosity of the lava, and for this work can be considered a subset of the viscosity parameter. External parameters include the effusion rate, total erupted volume, regional slope, and gravity. To investigate which parameter(s) may control(s) the development of long lava flows on Mars, we are applying a computational numerical-modelling to reproduce the observed lava flow morphologies. Using a matrix of boundary conditions in the model enables us to investigate the possible range of emplacement conditions that can yield the observed morphologies. We have constructed the basic model framework in Model Builder within ArcMap, including all governing equations and parameters that we seek to test, and initial implementation and calibration has been performed. The base model is currently capable of generating a lava flow that propagates along a pathway governed by the local topography. At AGU, the results of model calibration using the Eldgá and Laki lava flows in Iceland will be presented, along with the application of the model to lava flows within the Cerberus plains on Mars. We then

  4. Thermal Remote Sensing of Lava Lakes on Io and Earth (Invited)

    Science.gov (United States)

    Davies, A. G.; Keszthelyi, L. P.; McEwen, A. S.

    2013-12-01

    Volcanology has been transformed by remote sensing. For decades, Earth's volcanoes have been studied in the infrared by a wide variety of instruments on spacecraft at widely varying spectral, spatial and temporal resolutions, for which techniques have been developed to interpret and understand ongoing volcanic eruptions. The study of volcanism on Io, the only Solar System body besides Earth known to have ongoing, high temperature, silicate-based effusive and explosive volcanic eruptions, requires new remote sensing techniques. The extraordinary volcanism allows us to examine Io's interior and composition from the material erupted onto the surface. For Io, the biggest question in the wake of NASA's Galileo mission concerns the eruption temperature of Io's dominant silicate lavas [1,2]. Constraining eruption temperature constrains magma composition, in turn a reflection of the composition, physical state and tidal heating within Io. However, the extraction of lava eruption temperature from remote sensing data is difficult. Detector saturation is likely except when the hot material fills a tiny fraction of a resolution element, unless instruments are designed for this objective. High temperature lava surfaces cool rapidly, so remote observations can miss the peak temperature. Observations at different wavelengths must be acquired nearly simultaneously to derive accurate temperatures of very hot and dynamic sources [3]. Uncertainties regarding hot lava emissivity [4] also reduce the confidence in derived temperatures. From studying thermal emission data from different styles of volcanic activity on Earth by remote sensing in conjunction with contemporaneous observations on the ground, it is found that only certain styles of volcanic activity are suitable for deriving liquid lava temperatures [3]. Active lava lakes are particularly useful, especially during a phase of lava fountaining. Examination and analysis of FLIR data obtained at the Erta'Ale (Ethiopia) basaltic

  5. Shatter Complex Formation in the Twin Craters Lava Flow, Zuni-Bandera Field, New Mexico

    Science.gov (United States)

    von Meerscheidt, H. C.; Bleacher, J. E.; Brand, B. D.; deWet, A.; Samuels, R.; Hamilton, C.; Garry, W. B.; Bandfield, J. L.

    2013-12-01

    Lava channels, tubes and sheets are transport structures that deliver flowing lava to a flow front. The type of structure can vary within a flow field and evolve throughout an eruption. The 18.0 × 1.0 ka Twin Craters lava flow in the Zuni-Bandera lava field provides a unique opportunity to study morphological changes of a lava flow partly attributable to interaction with a topographic obstacle. Facies mapping and airborne image analysis were performed on an area of the Twin Craters flow that includes a network of channels, lava tubes, shatter features, and disrupted pahoehoe flows surrounding a 45 m tall limestone bluff. The bluff is 1000 m long (oriented perpendicular to flow.) The general flow characteristics upstream from the bluff include smooth, lobate pahoehoe flows and a >2.5 km long lava tube (see Samuels et al., this meeting.) Emplacement characteristics change abruptly where the flow encountered the bluff, to include many localized areas of disrupted pahoehoe and several pahoehoe-floored depressions. Each depression is fully or partly surrounded by a raised rim of blocky material up to 4 m higher than the surrounding terrain. The rim is composed of 0.05 - 4 m diameter blocks, some of which form a breccia that is welded by lava, and some of which exhibit original flow textures. The rim-depression features are interpreted as shatter rings based on morphological similarity to those described by Orr (2011.Bul Volcanol.73.335-346) in Hawai';i. Orr suggests that shatter rings develop when fluctuations in the lava supply rate over-pressurize the tube, causing the tube roof to repeatedly uplift and subside. A rim of shattered blocks and breccias remains surrounding the sunken tube roof after the final lava withdraws from the system. One of these depressions in the Twin Craters flow is 240 m wide and includes six mounds of shattered material equal in height to the surrounding undisturbed terrain. Several mounds have depressed centers floored with rubbly pahoehoe

  6. Phreatic explosions during basaltic fissure eruptions: Kings Bowl lava field, Snake River Plain, USA

    Science.gov (United States)

    Hughes, Scott S.; Kobs Nawotniak, Shannon E.; Sears, Derek W. G.; Borg, Christian; Garry, William Brent; Christiansen, Eric H.; Haberle, Christopher W.; Lim, Darlene S. S.; Heldmann, Jennifer L.

    2018-02-01

    Physical and compositional measurements are made at the 7 km-long ( 2200 years B.P.) Kings Bowl basaltic fissure system and surrounding lava field in order to further understand the interaction of fissure-fed lavas with phreatic explosive events. These assessments are intended to elucidate the cause and potential for hazards associated with phreatic phases that occur during basaltic fissure eruptions. In the present paper we focus on a general understanding of the geological history of the site. We utilize geospatial analysis of lava surfaces, lithologic and geochemical signatures of lava flows and explosively ejected blocks, and surveys via ground observation and remote sensing. Lithologic and geochemical signatures readily distinguish between Kings Bowl and underlying pre-Kings Bowl lava flows, both of which comprise phreatic ejecta from the Kings Bowl fissure. These basalt types, as well as neighboring lava flows from the contemporaneous Wapi lava field and the older Inferno Chasm vent and outflow channel, fall compositionally within the framework of eastern Snake River Plain olivine tholeiites. Total volume of lava in the Kings Bowl field is estimated to be 0.0125 km3, compared to a previous estimate of 0.005 km3. The main (central) lava lake lost a total of 0.0018 km3 of magma by either drain-back into the fissure system or breakout flows from breached levees. Phreatic explosions along the Kings Bowl fissure system occurred after magma supply was cut off, leading to fissure evacuation, and were triggered by magma withdrawal. The fissure system produced multiple phreatic explosions and the main pit is accompanied by others that occur as subordinate pits and linear blast corridors along the fissure. The drop in magma supply and the concomitant influx of groundwater were necessary processes that led to the formation of Kings Bowl and other pits along the fissure. A conceptual model is presented that has relevance to the broader range of low-volume, monogenetic

  7. In situ NIR reflectance and LIBS measurements in lava tubes in preparation for future Mars missions

    Science.gov (United States)

    Leveille, R.; Sobron, P.

    2017-12-01

    The ATiLT (Astrobiology Training in Lava Tubes) program addresses Mars astrobiology exploration objectives by performing field work and instrumental analyses in lava tubes as high fidelity analog environments to putative lava tubes on Mars. The main field location for ATiLT is the Lava Beds National Monument (LABE) in Northern California. LABE is situated on the lower north flank of the Medicine Lake Volcano of the Cascade arc. This location features hundreds of caves, most of which are relatively shallow, typically well above the water table, reaching 20-45m below land surface at their maximum depth. Some LABE caves feature `cold sinks' where cold air sinks and becomes trapped in deeper cave passages, thus allowing perennial ice to accumulate despite above freezing surface temperatures. Several lava tube caves in LABE also contain seasonal or perennial ice accumulations, which makes them excellent analogs to Mars lava tubes where the presence of ice has been predicted. While lava tubes are very attractive systems to test hypotheses related to habitability and the possibility for life on Mars, at present there are no comprehensive in-situ instrument-driven characterizations of the mineralogy and geochemistry of lava tubes. ATiLT fills this gap by providing detailed, in-situ investigations with scientific instruments relevant to Mars exploration. Our aim is to help constrain future exploration targets on Mars and define future mission operations and requirements. For this purpose, in May 2017 we carried out a field campaign in several lava tubes at LABE. We deployed two miniature spectroscopic sensors suitable for dark, humid, cave conditions: NIR reflectance (1-5 μm) and LIBS (300-900 nm). The advantages of combining NIR reflectance and LIBS are evident: LIBS can reveal the relative concentration of major (and often trace) elements present in a bulk sample, whereas NIR reflectance yields information on the individual mineral species and their chemical and

  8. Rheology of arc dacite lavas: experimental determination at low strain rates

    Science.gov (United States)

    Avard, Geoffroy; Whittington, Alan G.

    2012-07-01

    Andesitic-dacitic volcanoes exhibit a large variety of eruption styles, including explosive eruptions, endogenous and exogenous dome growth, and kilometer-long lava flows. The rheology of these lavas can be investigated through field observations of flow and dome morphology, but this approach integrates the properties of lava over a wide range of temperatures. Another approach is through laboratory experiments; however, previous studies have used higher shear stresses and strain rates than are appropriate to lava flows. We measured the apparent viscosity of several lavas from Santiaguito and Bezymianny volcanoes by uniaxial compression, between 1,109 and 1,315 K, at low shear stress (0.085 to 0.42 MPa), low strain rate (between 1.1 × 10-8 and 1.9 × 10-5 s-1), and up to 43.7 % total deformation. The results show a strong variability of the apparent viscosity between different samples, which can be ascribed to differences in initial porosity and crystallinity. Deformation occurs primarily by compaction, with some cracking and/or vesicle coalescence. Our experiments yield apparent viscosities more than 1 order of magnitude lower than predicted by models based on experiments at higher strain rates. At lava flow conditions, no evidence of a yield strength is observed, and the apparent viscosity is best approached by a strain rate- and temperature-dependent power law equation. The best fit for Santiaguito lava, for temperatures between 1,164 and 1,226 K and strain rates lower than 1.8 × 10-4 s-1, is log {η_{{app}}} = - 0.738 + 9.24 × {10^3}{/}T(K) - 0.654 \\cdot log dot{\\varepsilon } where η app is apparent viscosity and dot{\\varepsilon } is strain rate. This equation also reproduced 45 data for a sample from Bezymianny with a root mean square deviation of 0.19 log unit Pa s. Applying the rheological model to lava flow conditions at Santiaguito yields calculated apparent viscosities that are in reasonable agreement with field observations and suggests that

  9. Lava tubes and aquifer vulnerability in the upper Actopan River basin, Veracruz, México

    Science.gov (United States)

    Espinasa-Pereña, R.; Delgado Granados, H.

    2011-12-01

    Rapid infiltration leads to very dry conditions on the surface of some volcanic terrains, with large allogenic streams sometimes sinking underground upon reaching a lava flow. Aquifers in lava flows tend to be heterogeneous and discontinuous, generally unconfined and fissured, and have high transmissivity. Springs associated with basalts may be very large but are typically restricted to lava-flow margins. Concern has been expressed regarding the potential for lava-tube caves to facilitate groundwater contamination similar to that afflicting some karst aquifers (Kempe et al., 2003; Kiernan et al., 2002; Halliday 2003). The upper Actopan River basin is a series of narrow valleys excavated in Tertiary volcanic brechias. Several extensive Holocene basaltic tube-fed lava flows have partially filled these valleys. The youngest and longest flow originates at El Volcancillo, a 780 ybP monogenetic volcano. It is over 50 km long, and was fed through a major master tube, the remains of which form several lava-tube caves (Gassos and Espinasa-Pereña, 2008). Another tube-fed flow initiates at a vent at the bottom of Barranca Huichila and can be followed for 7 km to where it is covered by the Volcancillo flow. The Huichila River is captured by this system of lava tubes and can be followed through several underground sections. In dry weather the stream disappears at a sump in one of these caves, although during hurricanes it overflows the tube, floods the Tengonapa plain, and finally sinks through a series of skylights into the master tube of the Volcancillo flow. Near villages, the cave entrances are used as trash dumps, which are mobilized during floods. These include household garbage, organic materials associated with agriculture and even medical supplies. This is a relatively recent phenomenon, caused by population growth and the building of houses above the lava flows. The water resurges at El Descabezadero, gushing from fractures in the lava above the underlying brechias

  10. Operational tracking of lava lake surface motion at Kīlauea Volcano, Hawai‘i

    Science.gov (United States)

    Patrick, Matthew R.; Orr, Tim R.

    2018-03-08

    Surface motion is an important component of lava lake behavior, but previous studies of lake motion have been focused on short time intervals. In this study, we implement the first continuous, real-time operational routine for tracking lava lake surface motion, applying the technique to the persistent lava lake in Halema‘uma‘u Crater at the summit of Kīlauea Volcano, Hawai‘i. We measure lake motion by using images from a fixed thermal camera positioned on the crater rim, transmitting images to the Hawaiian Volcano Observatory (HVO) in real time. We use an existing optical flow toolbox in Matlab to calculate motion vectors, and we track the position of lava upwelling in the lake, as well as the intensity of spattering on the lake surface. Over the past 2 years, real-time tracking of lava lake surface motion at Halema‘uma‘u has been an important part of monitoring the lake’s activity, serving as another valuable tool in the volcano monitoring suite at HVO.

  11. Volcanic styles at Alba Patera, Mars: implications of lava flow morphology to the volcanic history

    International Nuclear Information System (INIS)

    Schneeberger, D.M.; Pieri, D.C.

    1988-01-01

    Alba Patera presents styles of volcanism that are unique to Mars. Its very low profile, large areal extent, unusually long and voluminous lava flows, and circumferential graben make it among Mars' most interesting volcanic features. Clues to Alba's volcanic history are preserved in its morphology and stratigraphy. Understanding the relationship of lava flow morphology to emplacement processes should enable estimates of viscosity, effusion rate, and gross composition to be made. Lava flows, with dimensions considered enormous by terrestrial standards, account for a major portion of the exposed surface of Alba Patera. These flows exhibit a range of morphologies. While most previous works have focused on the planimetric characteristics, attention was drawn to the important morphological attributes, paying particular attention to what the features suggest about the emplacement process

  12. Infrasound reveals transition to oscillatory discharge regime during lava fountaining: Implication for early warning

    Science.gov (United States)

    Ulivieri, Giacomo; Ripepe, Maurizio; Marchetti, Emanuele

    2013-06-01

    present the analysis of ~4 million infrasonic signals which include 39 episodes of lava fountains recorded at 5.5 km from the active vents. We show that each eruptive episode is characterized by a distinctive trend in the amplitude, waveform, and frequency content of the acoustic signals, reflecting different explosive levels. Lava fountain starts with an ~93 min long violent phase of acoustic transients at ~1.25 Hz repeating every 2-5 s. Infrasound suddenly evolves into a persistent low-frequency quasi-monochromatic pressure oscillation at ~0.4 Hz. We interpret this shift as induced by the transition from the slug (discrete Strombolian) to churn flow (sustained lava fountain) regime that is reflecting an increase in the gas discharge rate. We calculate that infrasonic transition can occur at a gas superficial velocity of ≤76 m/s and it can be used to define infrasonic-based thresholds for an efficient early warning system.

  13. Susceptibility of lava domes to erosion and collapse by toppling on cooling joints

    Science.gov (United States)

    Smith, John V.

    2018-01-01

    The shape of lava domes typically leads to the formation of radial patterns of cooling joints. These cooling joints define the orientation of the columnar blocks which plunge toward the center of the dome. In the lower parts of the dome the columns plunge into the dome at low angles and are relatively stable. Higher in the dome the columns plunge into the dome at steep angles. These steeply plunging columns are susceptible to toppling and, if the lower part of a dome is partially removed by erosion or collapse, the unstable part of the dome becomes exposed leading to toppling failure. Examples of this process are provided from coastal erosion of lava domes at Katsura Island, Shimane Peninsula, western Japan. An analogue model is presented to demonstrate the mechanism. It is proposed that the mechanism can contribute to collapse of lava domes during or after emplacement.

  14. Geochemistry of axial seamount lavas: Magmatic relationship between the Cobb Hotspot and the Juan de Fuca Ridge

    Science.gov (United States)

    Rhodes, J. M.; Morgan, C.; Liias, R. A.

    1990-08-01

    Axial Seamount, located along the central portion of the Juan de Fuca Ridge axis and at the eastern end of the Cobb-Eickelberg Seamount Chain, is the current center of the Cobb Hotspot. The Axial Seamount lavas are transitional between N-type and E-type mid-ocean ridge basalt (MORB), characteristics that they share with lavas along the rest of the Juan de Fuca Ridge. There are, however, subtle, but distinct, differences between the seamount lavas and those of the adjoining ridge segments. These include higher Na2O, CaO, and Sr at a given MgO content and lower silica saturation in the seamount lavas as compared with the ridge lavas. Lava chemistry and bathymetry indicate that Axial Seamount is a discrete volcanic unit, with a more productive shallow magmatic plumbing system separate from the adjacent ridge segments. These high magma supply rates have sustained a continuously replenished, steady state magma reservoir that has erupted remarkably homogeneous lavas over a long time period. Despite this classic association of spreading center and hotspot volcanic activity, there is no evidence in the lavas for geochemical or isotopic enrichment typical of hotspot or mantle plume activity. The differences in composition between the Axial Seamount lavas and the Juan de Fuca Ridge lavas are attributed to melting processes rather than to any fundamental differences in their mantle source compositions. The higher magma production rates, higher Sr, and lower silica saturation in the seamount lavas relative to the ridge lavas are thought to be a consequence of melt initiation at greater depths. The melting column producing the seamount lavas is thought to be initiated in the stability field of spinel peridotite, whereas the ridge lavas are produced from a melting column initiated at shallower levels, possibly within or close to the stability field of plagioclase peridotite. Implicit in this interpretation is the conclusion that the Juan de Fuca Ridge lavas, and by analogy most

  15. Basaltic lava flows covering active aeolian dunes in the Paraná Basin in southern Brazil: Features and emplacement aspects

    Science.gov (United States)

    Waichel, Breno L.; Scherer, Claiton M. S.; Frank, Heinrich T.

    2008-03-01

    Burial of active aeolian dunes by lava flows can preserve the morphology of the dunes and generate diverse features related to interaction between unconsolidated sediments and lavas. In the study area, located in southern Brazil, burial of aeolian deposits by Cretaceous basaltic lava flows completely preserved dunes, and generate sand-deformation features, sand diapirs and peperite-like breccia. The preserved dunes are crescentic and linear at the main contact with basalts, and smaller crescentic where interlayered with lavas. The various feature types formed on sediment surfaces by the advance of the flows reflect the emplacement style of the lavas which are compound pahoehoe type. Four feature types can be recognized: (a) type 1 features are related to the advance of sheet flows in dune-interdune areas with slopes > 5°, (b) type 2 is formed where the lava flows advance in lobes and climb the stoss slope of crescentic dunes (slopes 8-12°), (c) type 3 is generated by toes that descend the face of linear dunes (slopes 17-23°) and (d) type 4 occurs when lava lobes descend the stoss slope of crescentic dunes (slopes 10-15°). The direction of the flows, the disposition and morphology of the dunes and the ground slope are the main factors controlling formation of the features. The injection of unconsolidated sand in lava lobes forms diapirs and peperite-like breccias. Sand diapirs occur at the basal portion of lobes where the lava was more solidified. Peperite-like breccias occur in the inner portion where lava was more plastic, favoring the mingling of the components. The generation of both features is related to a mechanical process: the weight of the lava causes the injection of sand into the lava and the warming of the air in the pores of the sand facilitates this process. The lava-sediment interaction features presented here are consistent with previous reports of basalt lavas with unconsolidated arid sediments, and additional new sand-deformation features

  16. Eruption and emplacement dynamics of a thick trachytic lava flow of the Sancy volcano (France)

    Science.gov (United States)

    Latutrie, Benjamin; Harris, Andrew; Médard, Etienne; Gurioli, Lucia

    2017-01-01

    A 70-m-thick, 2200-m-long (51 × 106 m3) trachytic lava flow unit underlies the Puy de Cliergue (Mt. Dore, France). Excellent exposure along a 400-m-long and 60- to 85-m-high section allows the flow interior to be accessed on two sides of a glacial valley that cuts through the unit. We completed an integrated morphological, structural, textural, and chemical analysis of the unit to gain insights into eruption and flow processes during emplacement of this thick silicic lava flow, so as to elucidate the chamber and flow dynamic processed that operate during the emplacement of such systems. The unit is characterized by an inverse chemical stratification, where there is primitive lava beneath the evolved lava. The interior is plug dominated with a thin basal shear zone overlying a thick basal breccia, with ramping affecting the entire flow thickness. To understand these characteristics, we propose an eruption model that first involves processes operating in the magma chamber whereby a primitive melt is injected into an evolved magma to create a mixed zone at the chamber base. The eruption triggered by this event first emplaced a trachytic dome, into which banded lava from the chamber base was injected. Subsequent endogenous dome growth led to flow down the shallow slope to the east on which the highly viscous (1012 Pa s) coulée was emplaced. The flow likely moved extremely slowly, being emplaced over a period of 4-10 years in a glacial manner, where a thick (>60-m) plug slid over a thin (5-m-thick) basal shear zone. Excellent exposure means that the Puy de Cliergue complex can be viewed as a case type location for understanding and defining the eruption and emplacement of thick, high-viscosity, silicic lava flow systems.

  17. Vertical Structural Variation and Their Development of the Sanukayama Rhyolite Lava in Kozushima Island, Japan

    Science.gov (United States)

    Furukawa, K.; Uno, K.; Kanamaru, T.; Nakai, K.

    2017-12-01

    We revealed structural development of the Pleistocene Sanukayama rhyolite lava of Kozushima Island, Japan. The good exposure, with about 130 m thick, provides valuable opportunity to understand the vertical structural variation. This exposure corresponds to the upper half of the lava. The paleomagnetic results show that the lava emplaced in subaerial condition at least in the exposed part. The vertical lithofacies are divided into the pumiceous (25-40 m thick), obsidian (40-60 m), spherulitic (30-50 m) layers from top to base. The pumiceous layer is characterized by massive foliated pumice. The foliation dips are gradually changed from gentle (10-30°) in lower part to steep (around 90°) in upper part. This shows the balloon-like morphology. The massive pumiceous layer would be generated from late stage diapiric inflation of the lava (Fink and Manley, 1987). The obsidian layer is composed of massive and welded-brecciated parts. The ductile-deformed light-colored veins, with a few mm thick, are frequently developed. In the microscopic observation, the veins are composed of broken crystals and obsidian clasts indicating fracturing of the lava followed by ductile deformation such as the RFH process (Tuffen et al., 2003). In this layer, extensive vesiculation and microlite development must have been prevented by higher load pressure and faster cooling, respectively. Consequently, they resulted in formation of the obsidian. The spherulitic layer is characterized by development of the ductile-deformed flow banding. The microscopic observation shows that the bands are formed by the spherulite trail. Furthermore, the microlites are aligned within the spherulites. In the heat-retained inner part of the lava, microlites would be developed around the healed fractures. The microlites acted as nucleation site of spherulite. In transition layer between obsidian and spherulitic layers (obsidian layer. This would be caused by high flow-induced shear arising from their rheological

  18. L-Band Polarimetric SAR Signatures of Lava Flows in the Northern Volcanic Zone, Iceland

    DEFF Research Database (Denmark)

    Dierking, Wolfgang; Haack, Henning

    1998-01-01

    Studies of radar scattering signatures typical for lava surfaces are needed in order to interprete SAR images of volcanic terrain on the Earth and on other planets, and to establish a physical basis for the choice of optimal radar configurations for geological mapping. The authors focus on a study...... of different morphologic types within a flow. The largest contrasts are observed at cross-polarization. The phase difference between the VV- and HH-channels may provide information about a vegetation cover on the lava. The radar signal scattered from the flows is dominated by surface scattering contributions...

  19. Lava channel formation during the 2001 eruption on Mount Etna: evidence for mechanical erosion.

    Science.gov (United States)

    Ferlito, Carmelo; Siewert, Jens

    2006-01-20

    We report the direct observation of a peculiar lava channel that was formed near the base of a parasitic cone during the 2001 eruption on Mount Etna. Erosive processes by flowing lava are commonly attributed to thermal erosion. However, field evidence strongly suggests that models of thermal erosion cannot explain the formation of this channel. Here, we put forward the idea that the essential erosion mechanism was abrasive wear. By applying a simple model from tribology we demonstrate that the available data agree favorably with our hypothesis. Consequently, we propose that erosional processes resembling the wear phenomena in glacial erosion are possible in a volcanic environment.

  20. Studies of Young Hawai'ian Lava Tubes: Implications for Planetary Habitability and Human Exploration

    Science.gov (United States)

    McAdam, Amy; Bleacher, Jacob; Young, Kelsey; Johnson, Sarah Stewart; Needham, Debra; Schmerr, Nicholas; Shiro, Brian; Garry, Brent; Whelley, Patrick; Knudson, Christine; hide

    2017-01-01

    Habitability: Subsurface environments may preserve records of habitability or biosignatures, with more stable environmental conditions compared to surface (e.g., smaller variations in temperature and humidity) and reduced exposure to radiation; Lava tubes are expected on Mars, and candidates are observed from orbit; Few detailed studies of microbial populations in terrestrial lava caves; Also contain a variety of secondary minerals; Microbial activity may play a role in mineral formation or be preserved in these minerals; Minerals can provide insight into fluids (e.g., pH, temperature).

  1. Kīlauea summit eruption—Lava returns to Halemaʻumaʻu

    Science.gov (United States)

    Babb, Janet L.; Wessells, Stephen M.; Neal, Christina A.

    2017-10-06

    In March 2008, a new volcanic vent opened within Halemaʻumaʻu, a crater at the summit of Kīlauea Volcano in Hawaiʻi Volcanoes National Park on the Island of Hawaiʻi. This new vent is one of two ongoing eruptions on the volcano. The other is on Kīlauea’s East Rift Zone, where vents have been erupting nearly nonstop since 1983. The duration of these simultaneous summit and rift zone eruptions on Kīlauea is unmatched in at least 200 years.Since 2008, Kīlauea’s summit eruption has consisted of continuous degassing, occasional explosive events, and an active, circulating lava lake. Because of ongoing volcanic hazards associated with the summit vent, including the emission of high levels of sulfur dioxide gas and fragments of hot lava and rock explosively hurled onto the crater rim, the area around Halemaʻumaʻu remains closed to the public as of 2017.Through historical photos of past Halemaʻumaʻu eruptions and stunning 4K imagery of the current eruption, this 24-minute program tells the story of Kīlauea Volcano’s summit lava lake—now one of the two largest lava lakes in the world. It begins with a Hawaiian chant that expresses traditional observations of a bubbling lava lake and reflects the connections between science and culture that continue on Kīlauea today.The video briefly recounts the eruptive history of Halemaʻumaʻu and describes the formation and continued growth of the current summit vent and lava lake. It features USGS Hawaiian Volcano Observatory scientists sharing their insights on the summit eruption—how they monitor the lava lake, how and why the lake level rises and falls, why explosive events occur, the connection between Kīlauea’s ongoing summit and East Rift Zone eruptions, and the impacts of the summit eruption on the Island of Hawaiʻi and beyond. The video is also available at the following U.S. Geological Survey Multimedia Gallery link (video hosted on YouTube): Kīlauea summit eruption—Lava returns to Halemaʻumaʻu

  2. Dynamics of lava flow - Thickness growth characteristics of steady two-dimensional flow

    Science.gov (United States)

    Park, S.; Iversen, J. D.

    1984-01-01

    The thickness growth characteristics of flowing lava are investigated using a heat balance model and a two-dimensional model for flow of a Bingham plastic fluid down an inclined plane. It is found that yield strength plays a crucial role in the thickening of a lava flow of given flow rate. To illustrate this point, downstream thickness profiles and yield strength distributions were calculated for flows with mass flow rates of 10,000 and 100,000 kg/m-sec. Higher flow rates led to slow cooling rates which resulted in slow rate of increase of yield strength and thus greater flow lengths.

  3. Evolution of - and Core-Dominated Lava Flows Using Scaling Analysis

    Science.gov (United States)

    Castruccio, A.; Rust, A.; Sparks, R. S.

    2010-12-01

    We investigated the front evolution of simple lava flows on a slope using scaling arguments. For the retarding force acting against gravity, we analyzed three different cases: a flow controlled by a Newtonian viscosity, a flow controlled by the yield strength of a diffusively growing crust and a flow controlled by its core yield strength. These models were tested using previously published data of front evolution and volume discharge of 10 lava flow eruptions from 6 different volcanoes. Our analysis suggests that for basaltic eruptions with high effusion rate and low crystal content, (Hawaiian eruptions), the best fit of the data is with a Newtonian viscosity. For basaltic eruptions with lower effusion rates (Etna eruptions) or long duration andesitic eruptions (Lonquimay eruption, Chile) the flow is controlled by the yield strength of a growing crust. Finally, for very high crystalline lavas (Colima, Santiaguito) the flow is controlled by its core yield strength. The order of magnitude of the viscosities from our analysis is in the same range as previous studies using field measurements on the same lavas. The yield strength values for the growing crust and core of the flow are similar and with an order of magnitude of 10^5 Pa. This number is similar to yield strength values found in lava domes by different authors. The consistency of yield strength ~10^5 Pa is because larger stresses cause fracturing of very crystalline magma, which drastically reduces its effective strength. Furthermore, we used a 2-D analysis of a Bingham fluid flow on a slope to conclude that, for lower yield strength values, the flow is controlled mainly by its plastic viscosity and the lava can be effectively modelled as Newtonian. Our analysis provides a simple tool to evaluate the main controlling forces in the evolution of a lava flow, as well as the magnitude of its rheological properties, for eruptions of different compositions and conditions and may be useful to predict the evolution of

  4. PEMAHAMAN SUMBER DAYA MANUSIA KESEHATAN DI PUSKESMAS TENTANG MANAJEMEN DATA HUBUNGAN PELANGGAN: Studi Kasus Di Puskesmas Sebulu dan Puskesmas Loa Ipuh Kabupaten Kutai Kartanegara, Provinsi Kalimantan Timur

    Directory of Open Access Journals (Sweden)

    Evie Sopacua

    2012-11-01

    Full Text Available Health centres (HCs were in the period of transition into business institutions and therefore it needs marketing strategy such as Customer Relationship Marketing by managing data of patients as customers. Understanding the customer relationship data management was conducted through implementation of module 'Entrepreneurship in Health Services with Customer Relationship Marketing'. The objective of this study was to identify the understanding of human health resources in HCs about customer relationship data management through module implementation. The locations of the study were in Loa Ipuh and Sebulu 1 HCs in Kutai Kartanegara District, East Kalimantan Province. Respondents were human health resources of HCs who participated in the implementation process. Data were collected by conformity of the module contents with its standards of six variables on customer relationship data management in the learning and coachmg processes. The results showed that in learning process the respondents in Loa Ipuh and Sebulu 1 HCs were on the category of less understood. But in the coaching process, the category of respondents in both HCs was of understood. One of the reasons was that coaching process helps to understand the data management in the implementation process through discusston which followed by problem solving. The implementation of the customer relationship data managing needs a change in the human resources mindset not only in the HCs but also in the supra sytem as the District Health Office and District Governments. Therefore customer relationship data management should be represented among them to achieve the same perseption in striving HCs into busniess institutions.   Keywords: customer relationship data management

  5. A combined study of gas geochemistry, petrology, and lava effusion at Bagana, a unique persistently active lava cone in Papua New Guinea

    Science.gov (United States)

    McCormick, B. T.; Salem, L. C.; Edmonds, M.; D'Aleo, R. N. M.; Aiuppa, A.; Arellano, S. R.; Wallius, J.; Galle, B.; Barry, P. H.; Ballentine, C. J.; Mulina, K.; Sindang, M.; Itikarai, I.; Wadge, G.; Lopez, T. M.; Fischer, T. P.

    2016-12-01

    Bagana volcano (Bougainville Island, Papua New Guinea) has exhibited nearly continuous extrusion of andesitic lava for over a century, but has largely been studied by satellite remote sensing. Satellite UV spectroscopy has revealed Bagana to be among the largest volcanic sources of sulfur dioxide worldwide. Satellite radar measurements of lava extrusion rate suggest that the entire edifice could have been built in only a few centuries. Bagana is dominantly constructed from lava flows, but also exhibits violent PDC-forming explosive eruptions, which threaten local populations.We present new multi-parameter data from fieldwork on Bagana in September 2016. UV spectrometers were deployed to ground-truth satellite observations of SO2 emissions, and track sub-daily variations in gas output. In situ measurements and sampling of emissions provide the first gas composition data for this volcano. Aerial imagery filmed by UAV was obtained to generate a high resolution DEM of the edifice for use in calibrating ongoing satellite radar studies of deformation and extrusion rate. Lava and tephra samples were gathered, with the aim of comparing melt composition and volatile content between eruptions of different style. The combination of gas geochemistry, geophysical monitoring from space, and petrology will be used to build a model framework to understand the pulsatory nature of Bagana's lava extrusion, and transitions to explosive activity.A campaign to a continuously active but poorly-studied volcano affords many opportunities for education and outreach. The campaign participants included early career scientists from five countries, who planned and carried out the fieldwork and exchanged expertise in a range of techniques. All work was undertaken in close collaboration with Rabaul Volcano Observatory, and was informed by their strategic monitoring goals, a valuable experience for the field team of synergising research activities with more operational concerns. Footage obtained

  6. Lava Fountaining Discharge Regime driven by Slug-to-Churn Flow Transition. (Invited)

    Science.gov (United States)

    Ripepe, M.; Pioli, L.; Marchetti, E.; Ulivieri, G.

    2013-12-01

    Lava fountaining episodes at Etna volcano appear characterized by the transition between Strombolian and Hawaiian end-member eruptive styles. There is no evidence for this transition in the seismic (i.e. seismic tremor) signal. However, infrasonic records provide unprecedented evidence on this flow transition. Each eruptive episode is characterized by distinctive common trend in the amplitude, waveform and frequency content of the infrasonic wavefield, which evidences the shift from discrete, and transient, strombolian to sustained, and oscillatory, lava fountain dynamics. Large scale experiments on the dynamics of two-phase flow of basaltic magmas show how the transition between different regimes mainly depends on gas volume flow, which in turn controls pressure distribution within the conduit and also magma vesicularity. In particular, while regular large bubble bursting is associated with slug flow regime, large amplitude and low frequency column oscillations are associated with churn flow. In large pipes, transition from slug to churn flow regime is independent on conduit diameter and it is reached at high superficial gas velocity. Lava fountaining episodes at Etna can be thus interpreted as induced by the transition from the slug (discrete strombolian) to churn flow (sustained lava fountain) regimes that is reflecting an increase in the gas discharge rate. Based on laboratory experiments, we calculate that transition between these two end-member explosive regimes at Etna occurs when gas superficial velocity is 76 m/s for near-the-vent stagnant magma conditions.

  7. Persistent growth of a young andesite lava cone: Bagana volcano, Papua New Guinea

    Science.gov (United States)

    Wadge, G.; McCormick Kilbride, B. T.; Edmonds, M.; Johnson, R. W.

    2018-05-01

    Bagana, an andesite lava cone on Bougainville Island, Papua New Guinea, is thought to be a very young central volcano. We have tested this idea by estimating the volumes of lava extruded over different time intervals (1-, 2-, 3-, 9-, 15-, 70-years) using digital elevation models (DEMs), mainly created from satellite data. Our results show that the long-term extrusion rate at Bagana, measured over years to decades, has remained at about 1.0 m3 s-1. We present models of the total edifice volume, and show that, if our measured extrusion rates are representative, the volcano could have been built in only 300 years. It could also possibly have been built at a slower rate during a longer, earlier period of growth. Six kilometres NNW of Bagana, an andesite-dacite volcano, Billy Mitchell, had a large, caldera-forming plinian eruption 437 years ago. We consider the possibility that, as a result of this eruption, the magma supply was diverted from Billy Mitchell to Bagana. It seems that Bagana is a rare example of a very youthful, polygenetic, andesite volcano. The characteristics of such a volcano, based on the example of Bagana, are: a preponderance of lava products over pyroclastic products, a high rate of lava extrusion maintained for decades, a very high rate of SO2 emission, evidence of magma batch fractionation and location in a trans-tensional setting at the end of an arc segment above a very steeply dipping and rapidly converging subduction zone.

  8. A rock- and paleomagnetic study of a Holocene lava flow in Central Mexico

    NARCIS (Netherlands)

    Vlag, P.; Alva-Valdivia, L.; Boer, C.B. de; Gonzalez, S.; Urrutia-Fucugauchi, J.

    1999-01-01

    Magnetic measurements of the Tres Cruces lava flow (ca. 8500 years BP, Central Mexico) show the presence of two remanence carriers, a Ti-rich titanomagnetite with a Curie temperature between 350 and 400 °C and a Ti-poor magnetite with a Curie temperature close to 580°C. Magnetic changes after

  9. Reconstruction of the dynamics of the 1800-1801 Hualalai eruption: Implications for planetary lava flows

    Science.gov (United States)

    Baloga, Stephen; Spudis, Paul

    1993-01-01

    The 1800-1801 eruption of alkalic basalt from the Hualalai volcano, Hawaii provides a unique opportunity for investigating the dynamics of lava flow emplacement with eruption rates and compositions comparable to those that have been suggested for planetary eruptions. Field observations suggest new considerations must be used to reconstruct the emplacement of these lava flows. These observations are: (1) the flow traversed the 15 km from the vent to the sea so rapidly that no significant crust formed and an observation of the eruption reported that the flow reach the sea from the vent in approximately 1 hour; (2) the drainage of beds of xenolith nodules indicates a highly fluid, low viscosity lava; (3) overspills and other morphologic evidence for a very low viscosity host fluid; (4) no significant longitudinal increase in flow thickness that might be associated with an increase in the rheological properties of the lava; and (5) the relatively large size of channels associated with the flow, up to 80 meters across and several km long. Models for many geologic mass movements and fast moving fluids with various loadings and suspensions are discussed.

  10. Structural and temporal requirements for geomagnetic field reversal deduced from lava flows.

    Science.gov (United States)

    Singer, Brad S; Hoffman, Kenneth A; Coe, Robert S; Brown, Laurie L; Jicha, Brian R; Pringle, Malcolm S; Chauvin, Annick

    2005-03-31

    Reversals of the Earth's magnetic field reflect changes in the geodynamo--flow within the outer core--that generates the field. Constraining core processes or mantle properties that induce or modulate reversals requires knowing the timing and morphology of field changes that precede and accompany these reversals. But the short duration of transitional field states and fragmentary nature of even the best palaeomagnetic records make it difficult to provide a timeline for the reversal process. 40Ar/39Ar dating of lavas on Tahiti, long thought to record the primary part of the most recent 'Matuyama-Brunhes' reversal, gives an age of 795 +/- 7 kyr, indistinguishable from that of lavas in Chile and La Palma that record a transition in the Earth's magnetic field, but older than the accepted age for the reversal. Only the 'transitional' lavas on Maui and one from La Palma (dated at 776 +/- 2 kyr), agree with the astronomical age for the reversal. Here we propose that the older lavas record the onset of a geodynamo process, which only on occasion would result in polarity change. This initial instability, associated with the first of two decreases in field intensity, began approximately 18 kyr before the actual polarity switch. These data support the claim that complete reversals require a significant period for magnetic flux to escape from the solid inner core and sufficiently weaken its stabilizing effect.

  11. Sill and lava geochemistry of the mid-Norway and NE Greenland conjugate margins

    DEFF Research Database (Denmark)

    Neumann, Else-Ragnhild; Svensen, Henrik; Tegner, Christian

    2013-01-01

    This paper presents major, trace-elements, and Sr-Nd isotopes for two prominent sills formed during the opening of the North Atlantic, sampled by the Utgard borehole (6607/5-2) in the VOring Plateau. The Utgard sills are compared to opening-related lavas recovered from ODP Leg 104 Hole 642E farth...

  12. Piiriäärne lava valmistub taas esietenduseks / Margus Haav

    Index Scriptorium Estoniae

    Haav, Margus, 1969-

    2008-01-01

    Lõuna-Eestis Lilli külas algaval Nava lava festivalil tuuakse publiku ette Nava talu peremehe Jaak Kõdari näidend "Jukra", lavastaja Silvia Soro. Üht kandvat rolli mängib näitleja Lembit Eelmäe

  13. Paleomagnetism and geochronology of the Pliocene-Pleistocene lavas in Iceland

    NARCIS (Netherlands)

    McDougall, Ian; Wensink, H.

    Potassium-argon dates are reported on five basalt samples from the Pliocene-Pleistocene sequence of lavas in the Jökuldalur area, northeastern Iceland. These dates confirm the correlations previously made with the geological time scale by means of paleomagnetic stratigraphy. The R1 and N2 polarity

  14. Catchment response to lava damming: integrating field observation, geochronology and landscape evolution modelling

    NARCIS (Netherlands)

    Van Gorp, Wouter; Schoorl, Jeroen M.; Temme, Arnaud J. A. M.; Reimann, Tony; Wijbrans, Jan R.; Maddy, Darrel; Demir, Tuncer; Veldkamp, Tom

    2016-01-01

    Combining field reconstruction and landscape evolution modelling can be useful to investigate the relative role of different drivers on catchment response. The Geren Catchment (~45 km2) in western Turkey is suitable for such a study, as it has been influenced by uplift, climate change and lava

  15. Paleomagnetism of Eocene Talerua Member Lavas on Hareøen Island, West Greenland

    DEFF Research Database (Denmark)

    Abrahamsen, N.; Schmidt, Anne G.; Riisager, P.

    2005-01-01

    The results of a palaeomagnetic sampling carried out along two vertical profiles (altogether 19 lavaflows, 126 samples) covering the entire stratigraphy of the Talerua Member lavas (~39 Myr old) that outcrop on the island Hareøen are presented and represent some of the youngest volcanism in the W...

  16. Nerillidae (Annelida) from the Corona lava tube, Lanzarote, with description of Meganerilla cesari, n. sp

    DEFF Research Database (Denmark)

    Worsaae, Katrine; Martínez, A; Núñez, J

    2009-01-01

    Five species of Nerillidae are previously known from Atlantic cave systems. Another four species of Nerillidae are reported here from the Corona lava tube (Lanzarote, Canary Islands) presenting the first records of Mesonerilla and Meganerilla from anchialine environments. We here describe...

  17. Anchialine fauna of the Corona lava tunnel (Lanzarote,Canary Islands): diversity, endemism and distribution

    DEFF Research Database (Denmark)

    Martínez, Alexandro; Palmero, A M; Brito, M C

    2009-01-01

    A checklist of 77 taxa recorded from the anchialine sections of the Corona lava tube is provided, including information on habitats, faunal distribution within the cave, and main references. Of the nine major groups recorded, Crustacea shows the highest diversity with 31 species and the highest d...

  18. Silica-poor, mafic alkaline lavas from ocean islands and continents

    Indian Academy of Sciences (India)

    Strongly silica-poor (ne-normative), mafic alkaline lavas generally represented by olivine nephelinites, nephelinites, melilitites, and olivine melilitites have erupted at various locations during Earth's history. On the basis of bulk-rock Mg#, high concentrations of Na2O, TiO2, and K2O, and trace element geochemistry, it has ...

  19. Communicating Science to Officials and People at Risk During a Slow-Motion Lava Flow Crisis

    Science.gov (United States)

    Neal, C. A.; Babb, J.; Brantley, S.; Kauahikaua, J. P.

    2015-12-01

    From June 2014 through March 2015, Kīlauea Volcano's Púu ´Ō´ō vent on the East Rift Zone produced a tube-fed pāhoehoe lava flow -the "June 27th flow" - that extended 20 km downslope. Within 2 months of onset, flow trajectory towards populated areas in the Puna District caused much concern. The USGS Hawaiian Volcano Observatory (HVO) issued a news release of increased hazard on August 22 and began participating in public meetings organized by Hawai`i County Mayor and Civil Defense two days later. On September 4, HVO upgraded the volcano alert level to WARNING based on an increased potential for lava to reach homes and infrastructure. Ultimately, direct impacts were modest: lava destroyed one unoccupied home and one utility pole, crossed a rural roadway, and partially inundated a waste transfer station, a cemetery, and agricultural land. Anticipation that lava could reach Pāhoa Village and cross the only major access highway, however, caused significant disruption. HVO scientists employed numerous methods to communicate science and hazard information to officials and the at-risk public: daily (or more frequent) written updates of the lava activity, flow front locations and advance rates; frequent updates of web-hosted maps and images; use of the 'lines of steepest descent' method to indicate likely lava flow paths; consistent participation in well-attended community meetings; bi-weekly briefings to County, State, and Federal officials; correspondence with the public via email and recorded phone messages; participation in press conferences and congressional briefings; and weekly newspaper articles (Volcano Watch). Communication lessons both learned and reinforced include: (1) direct, frequent interaction between scientists and officials and at-risk public builds critical trust and understanding; (2) images, maps, and presentations must be tailored to audience needs; (3) many people are unfamiliar with maps (oblique aerial photographs were more effective); (4

  20. Lava Simulation and Risk Assessment During The July 2001 Etnean Eruption

    Science.gov (United States)

    Crisci, G. M.; di Gregorio, S.; Rongo, R.; Spataro, W.

    SCIARA, a two-dimensional cellular automata model for the simulation of lava flows, has been in the past validated on real cases of Etnean eruptions. Its lastest release, SCIARA-hex1 was applied on the 1991-93 Etnean eruption in validation phase. The simulation results are satisfying within limits to forecast the lava flow path. The pre- sented version isnSt more sophisticated than the previous version, because it does- nSt manage lava layers at different temperatures in the same cell and their distinct outflows, but its speed permitted to generate a large number of scenarios in quickly evolving emergence situation. Moreover, SCIARA-hex1 was applied recently during the Etnean crisis in the summer of 2001, when a new eruption threatened the town of Nicolosi. The emission, that started on July 18th 2001, represented during the cri- sis the main danger for the towns of Nicolosi and Belpasso; it was, in its maximum extension, only four kilometres away from the Nicolosi. The study was done in collab- oration with the Italian National Institute of Geophysics and Vulcanology of Catania. This Sreal timeT application proved that SCIARA is a reliable and flexible tool for & cedil;forecasting lava flow paths and for assessing hazard in the Etnean area, besides being useful for the creation of real scenarios. In SCIARA, lava flows are viewed as a dy- namic system based on local interactions with discrete time and space, where space is represented by hexagonal cells, which specification (state) describes the character- istics (substates) of the corresponding piece of space. The neighbouring of a cell c, specifying the interacting cells, is given by its adjacent cells. The computation of the new values of the substates in the cells gives the evolution of the phenomenon. The distribution of the lava is crucial in the definition of the model: it is based on a proce- dure of minimisation of the differences. Moreover, with respect to previous SCIARA models, spurious symmetries

  1. Mantle sources and magma evolution of the Rooiberg lavas, Bushveld Large Igneous Province, South Africa

    Science.gov (United States)

    Günther, T.; Haase, K. M.; Klemd, R.; Teschner, C.

    2018-06-01

    We report a new whole-rock dataset of major and trace element abundances and 87Sr/86Sr-143Nd/144Nd isotope ratios for basaltic to rhyolitic lavas from the Rooiberg continental large igneous province (LIP). The formation of the Paleoproterozoic Rooiberg Group is contemporaneous with and spatially related to the layered intrusion of the Bushveld Complex, which stratigraphically separates the volcanic succession. Our new data confirm the presence of low- and high-Ti mafic and intermediate lavas (basaltic—andesitic compositions) with > 4 wt% MgO, as well as evolved rocks (andesitic—rhyolitic compositions), characterized by MgO contents of N, Nb/Y and Ti/Y), indicating a different petrogenesis. MELTS modelling shows that the evolved lavas are formed by fractional crystallization from the mafic low-Ti lavas at low-to-moderate pressures ( 4 kbar). Primitive mantle-normalized trace element patterns of the Rooiberg rocks show an enrichment of large ion lithophile elements (LILE), rare-earth elements (REE) and pronounced negative anomalies of Nb, Ta, P, Ti and a positive Pb anomaly. Unaltered Rooiberg lavas have negative ɛNdi (- 5.2 to - 9.4) and radiogenic ɛSri (6.6 to 105) ratios (at 2061 Ma). These data overlap with isotope and trace element compositions of purported parental melts to the Bushveld Complex, especially for the lower zone. We suggest that the Rooiberg suite originated from a source similar to the composition of the B1-magma suggested as parental to the Bushveld Lower Zone, or that the lavas represent eruptive successions of fractional crystallization products related to the ultramafic cumulates that were forming at depth. The Rooiberg magmas may have formed by 10-20% crustal assimilation by the fractionation of a very primitive mantle-derived melt within the upper crust of the Kaapvaal Craton. Alternatively, the magmas represent mixtures of melts from a primitive, sub-lithospheric mantle plume and an enriched sub-continental lithospheric mantle (SCLM

  2. The role of unsteady effusion rates on inflation in long-lived lava flow fields

    Science.gov (United States)

    Rader, E.; Vanderkluysen, L.; Clarke, A.

    2017-11-01

    The emission of volcanic gases and particles can have global and lasting environmental effects, but their timing, tempo, and duration can be problematic to quantify for ancient eruptions where real-time measurements are absent. Lava flows, for example, may be long-lasting, and their impact is controlled by the rate, tempo, and vigor of effusion. These factors are currently difficult to derive from the geologic record but can have large implications for the atmospheric impact of an eruption. We conducted a set of analogue experiments on lava flow inflation aiming at connecting lava morphologies preserved in the rock record to eruption tempo and dynamics through pulsating effusion rates. Inflation, a process where molten material is injected beneath the crust of an active lava flow and lifts it upwards, is a common phenomenon in basaltic volcanic systems. This mechanism requires three components: a) a coherent, insulating crust; b) a wide-spread molten core; and c) pressure built up beneath the crust from a sustained supply of molten material. Inflation can result in a lava flow growing tens of meters thick, even in flow fields that expand hundreds of square kilometers. It has been documented that rapid effusion rates tend to create channels and tubes, isolating the active part of the flow from the stagnant part, while slow effusion rates may cause crust to form quickly and seize up, forcing lava to overtop the crust. However, the conditions that allow for inflation of large flow fields have not previously been evaluated in terms of effusion rate. By using PEG 600 wax and a programmable pump, we observe how, by pulsating effusion rate, inflation occurs even in very low viscosity basaltic eruptions. We show that observations from inflating Hawaiian lava flows correlate well with experimental data and indicate that instantaneous effusion rates may have been 3 times higher than average effusion rates during the emplacement of the 23 January 1988 flow at Kīlauea (Hawai

  3. Blowing off steam: Tuffisite formation as a regulator for lava dome eruptions

    Directory of Open Access Journals (Sweden)

    Jackie Evan Kendrick

    2016-04-01

    Full Text Available Tuffisites are veins of variably sintered, pyroclastic particles that form in conduits and lava domes as a result of localized fragmentation events during gas-and-ash explosions. Those observed in-situ on the active 2012 lava dome of Volcán de Colima range from voids with intra-clasts showing little movement and interpreted to be failure-nuclei, to sub-parallel lenses of sintered granular aggregate interpreted as fragmentation horizons, through to infilled fractures with evidence of viscous remobilization. All tuffisites show evidence of sintering. Further examination of the complex fracture-and-channel patterns reveals viscous backfill by surrounding magma, suggesting that lava fragmentation was followed by stress relaxation and continued viscous deformation as the tuffisites formed. The natural tuffisites are more permeable than the host andesite, and have a wide range of porosity and permeability compared to a narrower window for the host rock, and gauging from their significant distribution across the dome, we posit that the tuffisite veins may act as important outgassing pathways. To investigate tuffisite formation we crushed and sieved andesite from the lava dome and sintered it at magmatic temperatures for different times. We then assessed the healing and sealing ability by measuring porosity and permeability, showing that sintering reduces both over time. During sintering the porosity-permeability reduction occurs due to the formation of viscous necks between adjacent grains, a process described by the neck-formation model of Frenkel (1945. This process leads the granular starting material to a porosity-permeability regime anticipated for effusive lavas, and which describes the natural host lava as well as the most impervious of natural tuffisites. This suggests that tuffisite formation at Volcán de Colima constructed a permeable network that enabled gas to bleed passively from the magma. We postulate that this progressively reduced

  4. Submarine Rejuvenated-Stage Lavas Offshore Molokai, Oahu, Kauai, and Niihau, Hawaii

    Science.gov (United States)

    Clague, D. A.; Cousens, B. L.; Davis, A. S.; Dixon, J. E.; Hon, K.; Moore, J. G.; Reynolds, J. R.

    2003-12-01

    Rejuvenated-stage lavas from the Hawaiian Islands form many distinctive landmarks, such as Diamond Head. They have been relatively well studied due to their primitive, strongly alkaline compositions (alkalic basalt, basanite, nephelinite, melilitite, phonolite). More recently, compositionally similar lavas have been mapped and sampled on the deep seafloor around the islands. Rejuvenated-stage cones also occur on the submarine flanks of the islands. A Pisces V submersible dive collected samples from the only submarine cone on the north slope of East Molokai. The alkalic basalt to basanite composition lava is similar to the subaerial Kalaupapa basalt (Clague and Moore, 2003). MBARI Tiburon ROV dives recovered nephelinite from a lone steep cone on the northeast slope of Oahu, alkalic basalt from two shallow steep cones just west of the Koko Rift, and alkalic basalt from the submarine flank of Diamond Head on Oahu's south flank. These lavas are generally similar to subaerial Honolulu Volcanics, although the isotopic data extend to higher Sr isotopic values. Other MBARI Tiburon ROV dives recovered alkalic basalt and basanite from 8 separate steep cones on the south flank of Kauai. Once again, these lavas are chemically similar to those from the subaerial Koloa Volcanics. Samples from one of these cones contained common xenoliths of upper mantle lherzolite and harzburgite. Seven MBARI Tiburon ROV dives on the northwest flank of Niihau sampled 6 flat-topped cones and 5 pointed cones. The lavas from the flat-topped cones are alkalic basalt similar to rejuvenated Kiekie Basalt on Niihau Island whereas the lavas from the pointed cones are basanite, hawaiite, and tephrophonolite that are chemically distinct from the Kiekie Basalt, but similar to rejuvenated-stage lavas on Kauai and Oahu. Volcaniclastic deposits were observed and sampled at many of the sites offshore Niihau, Kauai, and Oahu, as well as the North Arch. Breadcrust and spindle bombs and spatter were found

  5. Geologic field-trip guide to Medicine Lake Volcano, northern California, including Lava Beds National Monument

    Science.gov (United States)

    Donnelly-Nolan, Julie M.; Grove, Timothy L.

    2017-08-17

    Medicine Lake volcano is among the very best places in the United States to see and walk on a variety of well-exposed young lava flows that range in composition from basalt to rhyolite. This field-trip guide to the volcano and to Lava Beds National Monument, which occupies part of the north flank, directs visitors to a wide range of lava flow compositions and volcanic phenomena, many of them well exposed and Holocene in age. The writing of the guide was prompted by a field trip to the California Cascades Arc organized in conjunction with the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) quadrennial meeting in Portland, Oregon, in August of 2017. This report is one of a group of three guides describing the three major volcanic centers of the southern Cascades Volcanic Arc. The guides describing the Mount Shasta and Lassen Volcanic Center parts of the trip share an introduction, written as an overview to the IAVCEI field trip. However, this guide to Medicine Lake volcano has descriptions of many more stops than are included in the 2017 field trip. The 23 stops described here feature a range of compositions and volcanic phenomena. Many other stops are possible and some have been previously described, but these 23 have been selected to highlight the variety of volcanic phenomena at this rear-arc center, the range of compositions, and for the practical reason that they are readily accessible. Open ground cracks, various vent features, tuffs, lava-tube caves, evidence for glaciation, and lava flows that contain inclusions and show visible evidence of compositional zonation are described and visited along the route.

  6. The airborne lava-seawater interaction plume at Kilauea Volcano, Hawai'i

    Science.gov (United States)

    Edmonds, M.; Gerlach, T.M.

    2006-01-01

    Lava flows into the sea at Kīlauea Volcano, Hawaiʻi, and generates an airborne gas and aerosol plume. Water (H2O), hydrogen chloride (HCl), carbon dioxide (CO2), nitrogen dioxide (NO2) and sulphur dioxide (SO2) gases were quantified in the plume in 2004–2005, using Open Path Fourier Transform infra-red Spectroscopy. The molar abundances of these species and thermodynamic modelling are used to discuss their generation. The range in molar HCl / H2O confirms that HCl is generated when seawater is boiled dry and magnesium salts are hydrolysed (as proposed by [T.M. Gerlach, J.L. Krumhansl, R.O. Fournier, J. Kjargaard, Acid rain from the heating and evaporation of seawater by molten lava: a new volcanic hazard, EOS (Trans. Am. Geophys. Un.) 70 (1989) 1421–1422]), in contrast to models of Na-metasomatism. Airborne droplets of boiled seawater brine form nucleii for subsequent H2O and HCl condensation, which acidifies the droplets and liberates CO2 gas from bicarbonate and carbonate. NO2 is derived from the thermal decomposition of nitrates in coastal seawater, which takes place as the lava heats droplets of boiled seawater brine to 350–400 °C. SO2 is derived from the degassing of subaerial lava flows on the coastal plain. The calculated mass flux of HCl from a moderate-sized ocean entry significantly increases the total HCl emission at Kīlauea (including magmatic sources) and is comparable to industrial HCl emitters in the United States. For larger lava ocean entries, the flux of HCl will cause intense local environmental hazards, such as high localised HCl concentrations and acid rain.

  7. Petrogenesis of Rinjani Post-1257-Caldera-Forming-Eruption Lava Flows

    Directory of Open Access Journals (Sweden)

    Heryadi Rachmat

    2016-06-01

    Full Text Available DOI:10.17014/ijog.3.2.107-126After the catastrophic 1257 caldera-forming eruption, a new chapter of Old Rinjani volcanic activity beganwith the appearance of Rombongan and Barujari Volcanoes within the caldera. However, no published petrogeneticstudy focuses mainly on these products. The Rombongan eruption in 1944 and Barujari eruptions in pre-1944, 1966,1994, 2004, and 2009 produced basaltic andesite pyroclastic materials and lava flows. A total of thirty-one sampleswere analyzed, including six samples for each period of eruption except from 2004 (only one sample. The sampleswere used for petrography, whole-rock geochemistry, and trace and rare earth element analyses. The Rombonganand Barujari lavas are composed of calc-alkaline and high K calc-alkaline porphyritic basaltic andesite. The magmashows narrow variation of SiO2 content that implies small changes during its generation. The magma that formedRombongan and Barujari lavas is island-arc alkaline basalt. Generally, data show that the rocks are enriched in LargeIon Lithophile Elements (LILE: K, Rb, Ba, Sr, and Ba and depleted in High Field Strength Elements (HFSE: Y, Ti,and Nb which are typically a suite from a subduction zone. The pattern shows a medium enrichment in Light REEand relatively depleted in Heavy REE. The processes are dominantly controlled by fractional crystallization andmagma mixing. All of the Barujari and Rombongan lavas would have been produced by the same source of magmawith little variation in composition caused by host rock filter process. New flux of magma would likely have occurredfrom pre-1944 until 2009 period that indicates slightly decrease and increase of SiO2 content. The Rombongan andBarujari lava generations show an arc magma differentiation trend.

  8. A novel technology for measuring the eruption temperature of silicate lavas with remote sensing: Application to Io and other planets

    Science.gov (United States)

    Davies, Ashley Gerard; Gunapala, Sarath; Soibel, Alexander; Ting, David; Rafol, Sir; Blackwell, Megan; Hayne, Paul O.; Kelly, Michael

    2017-09-01

    The highly variable and unpredictable magnitude of thermal emission from evolving volcanic eruptions creates saturation problems for remote sensing instruments observing eruptions on Earth and on Io, the highly volcanic moon of Jupiter. For Io, it is desirable to determine the temperature of the erupting lavas as this measurement constrains lava composition. One method of determining lava eruption temperature is by measuring radiant flux at two or more wavelengths and fitting a blackbody thermal emission function. Only certain styles of volcanic activity are suitable, those where detectable thermal emission is from a restricted range of surface temperatures close to the eruption temperature. Volcanic processes where this occurs include large lava fountains; smaller lava fountains common in active lava lakes; and lava tube skylights. Problems that must be overcome to obtain usable data are: (1) the rapid cooling of the lava between data acquisitions at different wavelengths, (2) the unknown magnitude of thermal emission, which has often led to detector saturation, and (3) thermal emission changing on a shorter timescale than the observation integration time. We can overcome these problems by using the HOT-BIRD detector and a novel, advanced digital readout circuit (D-ROIC) to achieve a wide dynamic range sufficient to image lava on Io without saturating. We have created an instrument model that allows various instrument parameters (including mirror diameter, number of signal splits, exposure duration, filter band pass, and optics transmissivity) to be tested to determine the detectability of thermal sources on Io's surface. We find that a short-wavelength infrared instrument on an Io flyby mission can achieve simultaneity of observations by splitting the incoming signal for all relevant eruption processes and still obtain data fast enough to remove uncertainties in accurate determination of the highest lava surface temperatures. Observations at 1 and 1.5 μm are

  9. Emplacement dynamics and lava field evolution of the flood basalt eruption at Holuhraun, Iceland: Observations from field and remote sensing data

    Science.gov (United States)

    Pedersen, Gro; Höskuldsson, Armann; Riishuus, Morten S.; Jónsdóttir, Ingibjörg; Thórdarson, Thorvaldur; Dürig, Tobias; Gudmundsson, Magnus T.; Durmont, Stephanie

    2016-04-01

    The Holuhraun eruption (Aug 2014- Feb 2015) is the largest effusive eruption in Iceland since the Laki eruption in 1783-84, with an estimated lava volume of ~1.6 km3 covering an area of ~83 km2. The eruption provides an unprecedented opportunity to study i) lava morphologies and their emplacement styles, ii) Morphological transitions iii) the transition from open to closed lava pathways and iv) the implication of lava pond formation. This study is based on three different categories of data; field data, airborne data and satellite data. The field data include tracking of the lava advancement by Global Positioning System (GPS) measurements and georeferenced GoPro cameras allowing classification of the lava margin morphology. Furthermore, video footage on-site documented lava emplacement. Complimentary observations have been provided from aircraft platforms and by satellite data. Of particular importance for lava morphology observations are 1-12 m/pixel airborne Synthetic Aperture Radar (SAR) images (x-band), as well as SAR data from TerraSAR-X and COSMO-SkyMed satellites. The Holuhraun lava field comprises a continuum of morphologies from pāhoehoe to 'a'ā, which have varied temporally and spatially. Shelly pāhoehoe lava was the first morphology to be observed (08-29). Spatially, this lava type was not widely distributed, but was emplaced throughout the eruption close to the vent area and the lava channels. Slabby pāhoehoe lava was initially observed the 08-31 and was observed throughout most of the eruption during the high-lava-flux phase of new lava lobe emplacement. 'A'ā lavas were the dominating morphology the first three months of the eruption and was first observed 09-01 like Rubbly pāhoehoe lava. Finally, Spiny pāhoehoe lava was first observed the 09-05 as a few marginal outbreaks along the fairly inactive parts of the 'a'ā lava lobe. However, throughout the eruption this morphology became more important and from mid-November/beginning of December the

  10. A sinuous tumulus over an active lava tube at Kīlauea Volcano: evolution, analogs, and hazard forecasts

    Science.gov (United States)

    Orr, Tim R.; Bleacher, Jacob E.; Patrick, Matthew R.; Wooten, Kelly M.

    2015-01-01

    Inflation of narrow tube-fed basaltic lava flows (tens of meters across), such as those confined by topography, can be focused predominantly along the roof of a lava tube. This can lead to the development of an unusually long tumulus, its shape matching the sinuosity of the underlying lava tube. Such a situation occurred during Kīlauea Volcano's (Hawai'i, USA) ongoing East Rift Zone eruption on a lava tube active from July through November 2010. Short-lived breakouts from the tube buried the flanks of the sinuous, ridge-like tumulus, while the tumulus crest, its surface composed of lava formed very early in the flow's emplacement history, remained poised above the surrounding younger flows. At least several of these breakouts resulted in irrecoverable uplift of the tube roof. Confined sections of the prehistoric Carrizozo and McCartys flows (New Mexico, USA) display similar sinuous, ridge-like features with comparable surface age relationships. We contend that these distinct features formed in a fashion equivalent to that of the sinuous tumulus that formed at Kīlauea in 2010. Moreover, these sinuous tumuli may be analogs for some sinuous ridges evident in orbital images of the Tharsis volcanic province on Mars. The short-lived breakouts from the sinuous tumulus at Kīlauea were caused by surges in discharge through the lava tube, in response to cycles of deflation and inflation (DI events) at Kīlauea's summit. The correlation between DI events and subsequent breakouts aided in lava flow forecasting. Breakouts from the sinuous tumulus advanced repeatedly toward the sparsely populated Kalapana Gardens subdivision, destroying two homes and threatening others. Hazard assessments, including flow occurrence and advance forecasts, were relayed regularly to the Hawai'i County Civil Defense to aid their lava flow hazard mitigation efforts while this lava tube was active.

  11. A sinuous tumulus over an active lava tube at Kīlauea Volcano: Evolution, analogs, and hazard forecasts

    Science.gov (United States)

    Orr, Tim R.; Bleacher, Jacob E.; Patrick, Matthew R.; Wooten, Kelly M.

    2015-01-01

    Inflation of narrow tube-fed basaltic lava flows (tens of meters across), such as those confined by topography, can be focused predominantly along the roof of a lava tube. This can lead to the development of an unusually long tumulus, its shape matching the sinuosity of the underlying lava tube. Such a situation occurred during Kīlauea Volcano's (Hawai'i, USA) ongoing East Rift Zone eruption on a lava tube active from July through November 2010. Short-lived breakouts from the tube buried the flanks of the sinuous, ridge-like tumulus, while the tumulus crest, its surface composed of lava formed very early in the flow's emplacement history, remained poised above the surrounding younger flows. At least several of these breakouts resulted in irrecoverable uplift of the tube roof. Confined sections of the prehistoric Carrizozo and McCartys flows (New Mexico, USA) display similar sinuous, ridge-like features with comparable surface age relationships. We contend that these distinct features formed in a fashion equivalent to that of the sinuous tumulus that formed at Kīlauea in 2010. Moreover, these sinuous tumuli may be analogs for some sinuous ridges evident in orbital images of the Tharsis volcanic province on Mars. The short-lived breakouts from the sinuous tumulus at Kīlauea were caused by surges in discharge through the lava tube, in response to cycles of deflation and inflation (DI events) at Kīlauea's summit. The correlation between DI events and subsequent breakouts aided in lava flow forecasting. Breakouts from the sinuous tumulus advanced repeatedly toward the sparsely populated Kalapana Gardens subdivision, destroying two homes and threatening others. Hazard assessments, including flow occurrence and advance forecasts, were relayed regularly to the Hawai'i County Civil Defense to aid their lava flow hazard mitigation efforts while this lava tube was active.

  12. Continuous gravity measurements reveal a low-density lava lake at Kīlauea Volcano, Hawai‘i

    Science.gov (United States)

    Carbone, Daniele; Poland, Michael P.; Patrick, Matthew R.; Orr, Tim R.

    2013-01-01

    On 5 March 2011, the lava lake within the summit eruptive vent at Kīlauea Volcano, Hawai‘i, began to drain as magma withdrew to feed a dike intrusion and fissure eruption on the volcanoʼs east rift zone. The draining was monitored by a variety of continuous geological and geophysical measurements, including deformation, thermal and visual imagery, and gravity. Over the first ∼14 hours of the draining, the ground near the eruptive vent subsided by about 0.15 m, gravity dropped by more than 100 μGal, and the lava lake retreated by over 120 m. We used GPS data to correct the gravity signal for the effects of subsurface mass loss and vertical deformation in order to isolate the change in gravity due to draining of the lava lake alone. Using a model of the eruptive vent geometry based on visual observations and the lava level over time determined from thermal camera data, we calculated the best-fit lava density to the observed gravity decrease — to our knowledge, the first geophysical determination of the density of a lava lake anywhere in the world. Our result, 950 +/- 300 kg m-3, suggests a lava density less than that of water and indicates that Kīlaueaʼs lava lake is gas-rich, which can explain why rockfalls that impact the lake trigger small explosions. Knowledge of such a fundamental material property as density is also critical to investigations of lava-lake convection and degassing and can inform calculations of pressure change in the subsurface magma plumbing system.

  13. Influence of sediment recycling on the trace element composition of primitive arc lavas

    Science.gov (United States)

    Collinet, M.; Jagoutz, O. E.

    2017-12-01

    Primitive calc-alkaline lavas from continental arcs are, on average, enriched in incompatible elements compared to those from intra-oceanic arcs. This relative enrichment is observed in different groups of trace elements: LILE (e.g. K, Rb), LREE to MREE (La-Dy) and HFSE (e.g.Zr, Nb) and is thought to result from (1) a transfer of material from the subducting slab to the mantle wedge at higher temperature than in intra-oceanic margins and/or (2) lower average degrees of melting in the mantle wedge, as a consequence of thicker overlying crusts and higher average pressures of melting. In addition to thicker overlying crusts and generally higher slab temperatures, continental margins are characterized by larger volumes of rock exposed above sea level and enhanced erosion rates compared to intra-oceanic arcs. As several geochemical signatures of arc lavas attest to the importance of sediment recycling in subduction zones, we explore the possibility that the high concentrations of incompatible elements in primitive lavas from continental arcs directly reflect a larger input of sediment to the subduction system. Previous efforts to quantify the sediment flux to oceanic trenches focused on the thickness of pelagic and hemipelagic sediments on top of the plate entering the subduction zone (Plank and Langmuir, 1993, Nature). These estimates primarily relied on the sediment layer drilled outboard from the subduction system and likely underestimate the volume of sediment derived from the arc itself. Accordingly, we find that such estimates of sediment flux do not correlate with the concentration of incompatible elements in primitive arc lavas. To account for regional contributions of coarser detrital sediments, usually delivered to oceanic trenches by turbidity currents, we apply to arc segments a model that quantifies the sediment load of rivers based on the average relief, area, temperature and runoff of their respective drainage areas (Syvitski et al., 2003, Sediment. Geol

  14. Numerical analysis of pressure and porosity evolution in lava domes during periodic degassing conditions

    Science.gov (United States)

    Hyman, D.; Bursik, M. I.; Pitman, E. B.

    2017-12-01

    The collapse or explosive breakup of growing and degassing lava domes presents a significant hazard due to the generation of dense, mobile pyroclastic flows as well as the wide dispersal of dense ballistic blocks. Lava dome stability is in large part governed by the balance of transport and storage of gas within the pore space. Because pore pressurization reduces the effective stress within a dome, the transient distribution of elevated gas pressure is critically important to understanding dome break up. We combine mathematical and numerical analyses to gain a better understanding of the temporal variation in gas flow and storage within the dome system. In doing so, we develop and analyze new governing equations describing nonlinear gas pressure diffusion in a deforming dome with an evolving porosity field. By relating porosity, permeability, and pressure, we show that the flux of gas through a dome is highly sensitive to the porosity distribution and viscosity of the lava, as well as the timescale and magnitude of the gas supply. The numerical results suggest that the diffusion of pressure and porosity variations play an integral role in the cyclic growth and destruction of small domes.The nearly continuous cycles of lava dome growth, pressurization, and failure that have characterized the last two decades of eruptive history at Volcán Popocatépetl, Mexico provide excellent natural data with which to compare new models of transient dome pressurization. At Popocatépetl, periodic pressure increases brought on by changes in gas supply into the base of the dome may play a role in its cyclic growth and destruction behavior. We compare our model of cyclic pressurization with lava dome survival data from Popocatépetl. We show that transient changes in pore pressure explain how small lava domes evolve to a state of criticality before explosion or collapse. Additionally, numerical analyses presented here suggest that short-term oscillations cannot arise within the dome

  15. Lava lake activity at the summit of Kīlauea Volcano in 2016

    Science.gov (United States)

    Patrick, Matthew R.; Orr, Tim R.; Swanson, Donald A.; Elias, Tamar; Shiro, Brian

    2018-04-10

    The ongoing summit eruption at Kīlauea Volcano, Hawai‘i, began in March 2008 with the formation of the Overlook crater, within Halema‘uma‘u Crater. As of late 2016, the Overlook crater contained a large, persistently active lava lake (250 × 190 meters). The accessibility of the lake allows frequent direct observations, and a robust geophysical monitoring network closely tracks subtle changes at the summit. These conditions present one of the best opportunities worldwide for understanding persistent lava lake behavior and the geophysical signals associated with open-vent basaltic eruptions. In this report, we provide a descriptive and visual summary of lava lake activity during 2016, a year consisting of continuous lava lake activity. The lake surface was composed of large black crustal plates separated by narrow incandescent spreading zones. The dominant motion of the surface was normally from north to south, but spattering produced transient disruptions to this steady motion. Spattering in the lake was common, consisting of one or more sites on the lake margin. The Overlook crater was continuously modified by the deposition of spatter (often as a thin veneer) on the crater walls, with frequent collapses of this adhered lava into the lake. Larger collapses, involving lithic material from the crater walls, triggered several small explosive events that deposited bombs and lapilli around the Halema‘uma‘u Crater rim, but these did not threaten public areas. The lava lake level varied over several tens of meters, controlled primarily by changes in summit magma reservoir pressure (in part driven by magma supply rates) and secondarily by fluctuations in spattering and gas release from the lake (commonly involving gas pistoning). The lake emitted a persistent gas plume, normally averaging 1,000–8,000 metric tons per day (t/d) of sulfur dioxide (SO2), as well as a constant fallout of small juvenile and lithic particles, including Pele’s hair and tears. The

  16. Terrestrial Lava Lake Physical Parameter Estimation Using a Silicate Cooling Model - Implications for a Return to the Volcanic Moon, Io

    Science.gov (United States)

    Davies, Ashley

    2010-05-01

    Active lava lakes are open volcanic systems, where lava circulates between a magma chamber and the surface. Rare on Earth, lava lakes may be common on Io, the highly volcanic moon of Jupiter (see [1]). Lava lakes are important targets for future missions to Io [2, 3] as they provide excellent targets at which to measure lava eruption temperature (see [2] for other targets). With this in mind, hand-held infrared imagers were used to collect in-situ thermal emission data from the anorthoclase phonolite lava lake at Erebus volcano (Antarctica) in December 2005 [1, 3] and the basalt lava lake at Erta'Ale volcano (Ethiopia) in September 2009. These data have been analysed to establish surface temperature and area distributions and the integrated thermal emission spectra for each lava lake. These spectra have been used to test models developed for analysis of remote sensing data of lava lakes and lava flows on both Earth and Io, where no ground-truth exists. The silicate cooling model [4] assumes, for the lava lake model variant, that the existing surface crust has been created at a fixed rate. Model output consists of a synthesized thermal emission spectrum, estimate of surface age range, and a rate of surface crust area formation. The cooling model provides accurate reproductions of actual thermal spectra and the total emitting area to within a few percent of actual emitting area. Despite different composition lavas, the integrated thermal emission spectra from the two terrestrial lava lakes studied are very similar in shape, and, importantly, bear a striking similarity to spectra of Pele, a feature on Io that has been proposed to be a persistent, active lava lake [1]. The 2005 Erebus lava lake had an area of ~820 m2 and a measured surface temperature distribution of 1090 K to 575 K with a broad peak from 730 K to 850 K [5]. Total heat loss was estimated to be 23.5 MW [5]. The model fit yielded an area of ~820 m2, temperatures from 1475 K to 699 K, and an average

  17. Computational modeling of lava domes using particle dynamics to investigate the effect of conduit flow mechanics on flow patterns

    Science.gov (United States)

    Husain, Taha Murtuza

    Large (1--4 x 106 m3) to major (> 4 x 106 m3) dome collapses for andesitic lava domes such as Soufriere Hills Volcano, Montserrat are observed for elevated magma discharge rates (6--13 m3/s). The gas rich magma pulses lead to pressure build up in the lava dome that result in structural failure of the over steepened canyon-like walls which may lead to rockfall or pyroclastic flow. This indicates that dome collapse intimately related to magma extrusion rate. Variation in magma extrusion rate for open-system magma chambers is observed to follow alternating periods of high and low activity. Periodic behavior of magma exhibits a rich diversity in the nature of its eruptive history due to variation in magma chamber size, total crystal content, linear crystal growth rate and magma replenishment rate. Distinguished patterns of growth were observed at different magma flow rates ranging from endogenous to exogenous dome growth for magma with varying strengths. Determining the key parameters that control the transition in flow pattern of the magma during its lava dome building eruption is the main focus. This dissertation examines the mechanical effects on the morphology of the evolving lava dome on the extrusion of magma from a central vent using a 2D particle dynamics model. The particle dynamics model is coupled with a conduit flow model that incorporates the kinetics of crystallization and rheological stiffening to investigate important mechanisms during lava dome building eruptions. Chapter I of this dissertation explores lava dome growth and failure mechanics using a two-dimensional particle-dynamics model. The model follows the evolution of fractured lava, with solidification driven by degassing induced crystallization of magma. The particle-dynamics model emulates the natural development of dome growth and rearrangement of the lava dome which is difficult in mesh-based analyses due to mesh entanglement effects. The deformable talus evolves naturally as a frictional

  18. Channelized lava flows at the East Pacific Rise crest 9°-10°N: the importance of off-axis lava transport in developing the architecture of young oceanic crust

    Science.gov (United States)

    Soule, S.A.; Fornari, D.J.; Perfit, M.R.; Tivey, M.A.; Ridley, W.I.; Schouten, Hans

    2005-01-01

     Submarine lava flows are the building blocks of young oceanic crust. Lava erupted at the ridge axis is transported across the ridge crest in a manner dictated by the rheology of the lava, the characteristics of the eruption, and the topography it encounters. The resulting lava flows can vary dramatically in form and consequently in their impact on the physical characteristics of the seafloor and the architecture of the upper 50–500 m of the oceanic crust. We have mapped and measured numerous submarine channelized lava flows at the East Pacific Rise (EPR) crest 9°–10°N that reflect the high-effusion-rate and high-flow-velocity end-member of lava eruption and transport at mid-ocean ridges. Channel systems composed of identifiable segments 50–1000 m in length extend up to 3 km from the axial summit trough (AST) and have widths of 10–50 m and depths of 2–3 m. Samples collected within the channels are N-MORB with Mg# indicating eruption from the AST. We produce detailed maps of lava surface morphology across the channel surface from mosaics of digital images that show lineated or flat sheets at the channel center bounded by brecciated lava at the channel margins. Modeled velocity profiles across the channel surface allow us to determine flux through the channels from 0.4 to 4.7 × 103m3/s, and modeled shear rates help explain the surface morphology variation. We suggest that channelized lava flows are a primary mechanism by which lava accumulates in the off-axis region (1–3 km) and produces the layer 2A thickening that is observed at fast and superfast spreading ridges. In addition, the rapid, high-volume-flux eruptions necessary to produce channelized flows may act as an indicator of the local magma budget along the EPR. We find that high concentrations of channelized lava flows correlate with local, across-axis ridge morphology indicative of an elevated magma budget. Additionally, in locations where channelized flows are located dominantly to the east

  19. Structural Analysis of Silicic Lavas Reveals the Importance of Endogenous Flow During Emplacement

    Science.gov (United States)

    Andrews, G. D.; Martens, A.; Isom, S.; Maxwell, A.; Brown, S. R.

    2017-12-01

    Recent observations of silicic lava flows in Chile strongly suggest sustained, endogeneous flow beneath an insulating carapace, where the flow advances through breakouts at the flow margin. New mapping of vertical exposures around the margin of Obsidian Dome, California, has identified discreet lobe structures in cross-section, suggesting that flow-front breakouts occured there during emplacement. The flow lobes are identified through structural measurements of flow-banding orientation and the stretching directions of vesicles. Newly acquired lidar of the Inyo Domes, including Obsidian Dome, is being analyzed to better understand the patterns of folding on the upper surface of the lavas, and to test for fold vergence patterns that may distinguish between endogenous and exogenous flow.

  20. Perched Lava Pond Complex on South Rift of Axial Volcano Revealed in AUV Mapping

    Science.gov (United States)

    Paduan, J. B.; Clague, D. A.; Caress, D. W.; Thomas, H. J.

    2013-12-01

    An extraordinary lava pond complex is located on Axial Volcano's distal south rift. It was discovered in EM300 multibeam bathymetry collected in 1998, and explored and sampled with ROVs Tiburon in 2005 and Doc Ricketts in 2013. It was surveyed with the MBARI Mapping AUV D. Allan B. in 2011, in a complicated mission first flying above the levees at constant depth, then skimming ~5 m over the levees at a different constant depth to survey the floors, then twice switching to constant altitude mode to map outside the ponds. The AUV navigation was adjusted using the MB-System tool mbnavadjust so that bathymetric features match in overlapping and crossing swaths. The ~1-m resolution AUV bathymetry reveals extremely rough terrain, where low-resolution EM300 data had averaged acoustic returns and obscured details of walls, floors, a breach and surrounding flows, and gives context to the ROV observations and samples. The 6 x 1.5 km pond complex has 4 large and several smaller drained ponds with rims 67 to 106 m above the floors. The combined volume before draining was 0.56 km3. The ponds overflowed to build lobate-flow levees with elongate pillows draping outer flanks, then drained, leaving lava veneer on vertical inner walls. Levee rim depths vary by only 10 m and are deeper around the southern ponds. Deep collapse-pits in the levees suggest porosity of pond walls. The eastern levee of the northeastern pond breached, draining the interconnected ponds, and fed thick, rapidly-emplaced, sheet-flows along the complex's east side. These flows travelled at least 5.5 km down-rift and have 19-33 m deep drained ponds. They extended up-rift as well, forming a 10 x 2.5 km ponded flow with level 'bathtub rings' as high as 35 m above the floor marking that flow's high-stand. Despite the breach, at least 0.066 km3 of the molten interior of the large ponds also drained back down the eruptive fissures, as the pond floors are deeper than the sill and sea floor outside the complex. Tumulus

  1. Partial pressures of oxygen, phosphorus and fluorine in some lunar lavas

    Science.gov (United States)

    Nash, W. P.; Hausel, W. D.

    1973-01-01

    Lunar sample 14310 is a feldspar-rich basalt which shows no evidence of shock deformation or recrystallization. Pyroxenes include Mg-rich orthopyroxene, pigeonite and augite; pyroxferroite occurs in the interstitial residuum. Plagioclase feldspars are zoned from An(96) to An(67), and variations in feldspar compositions do not necessarily indicate loss of Na during eruption of the lava. Opaque phases include ilmenite, ulvospinel, metallic iron, troilite, and schreibersite. Both whitlockite and apatite are present, and the interstitial residua contain baddeleyite, tranquillityite and barium-rich sanidine. Theoretical calculations provide estimates of partial pressures of oxygen, phosphorus, and fluorine in lunar magmas. In general, partial pressures of oxygen are restricted by the limiting assemblages of iron-wuestite and ilmenite-iron-rutile; phosphorus partial pressures are higher in lunar magmas than in terrestrial lavas. The occurrence of whitlockite indicates significantly lower fugacities of fluorine in lunar magmas than in terrestrial magmas.

  2. Hadley Rille, lava tubes and mare volcanism at the Apollo 15 site

    International Nuclear Information System (INIS)

    Greeley, R.; Spudis, P.D.

    1985-01-01

    Hadley Rille appears to be a collapsed lava tube/channel, whose formation history may be more intimately related to the mare units sampled at 15 than was previously thought. More work is needed relating samples and observations from Apollo 15 to the rille and its geologic evolution. As the only sinuous rille visited during the Apollo missions, Hadley Rille represents a data source that is directly applicable to the deciphering of processes involved in lunar mare volcanism

  3. The mechanism of flow and fabric development in mechanically anisotropic trachyte lava

    Czech Academy of Sciences Publication Activity Database

    Závada, Prokop; Schulmann, K.; Lexa, O.; Hrouda, F.; Haloda, J.; Týcová, P.

    2009-01-01

    Roč. 31, č. 11 (2009), s. 1295-1307 ISSN 0191-8141 R&D Projects: GA AV ČR KJB301110703 Grant - others:GA ČR(CZ) GA205/03/0204 Institutional research plan: CEZ:AV0Z30120515 Keywords : trachyte * anisotropy of magnetic susceptibility * fibre-slip mechanism * lava dome * mechanical anisotropy * sanidine Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.732, year: 2009

  4. Resolution of lava tubes with ground penetrating radar: preliminary results from the TubeX project

    Science.gov (United States)

    Esmaeili, S.; Kruse, S.; Garry, W. B.; Whelley, P.; Young, K.; Jazayeri, S.; Bell, E.; Paylor, R.

    2017-12-01

    As early as the mid 1970's it was postulated that planetary tubes or caves on other planetary bodies (i.e., the Moon or Mars) could provide safe havens for human crews, protect life and shield equipment from harmful radiation, rapidly fluctuating surface temperatures, and even meteorite impacts. What is not clear, however, are the exploration methods necessary to evaluate a potential tube-rich environment to locate suitable tubes suitable for human habitation. We seek to address this knowledge gap using a suite of instruments to detect and document tubes in a terrestrial analog study at Lava Beds National Monument, California, USA. Here we describe the results of ground penetrating radar (GPR) profiles and light detection and ranging (LiDAR) scans. Surveys were conducted from the surface and within four lava tubes (Hercules Leg, Skull, Valentine and, Indian Well Caves) with varying flow composition, shape, and complexity. Results are shown across segments of these tubes where the tubes are 10 m in height and the ceilings are 1 - 10 m below the surface. The GPR profiles over the tubes are, as expected, complex, due to scattering from fractures in roof material and three-dimensional heterogeneities. Point clouds derived from the LiDAR scans of both the interior and exterior of the lava tubes provide precise positioning of the tube geometry and depth of the ceiling and floor with respect to the surface topography. GPR profiles over LiDAR-mapped tube cross-sections are presented and compared against synthetic models of radar response to the measured geometry. This comparison will help to better understand the origins of characteristic features in the radar profiles. We seek to identify the optimal data processing and migration approaches to aid lava tube exploration of planetary surfaces.

  5. Automated tracking of lava lake level using thermal images at Kīlauea Volcano, Hawai’i

    Science.gov (United States)

    Patrick, Matthew R.; Swanson, Don; Orr, Tim R.

    2016-01-01

    Tracking the level of the lava lake in Halema‘uma‘u Crater, at the summit of Kīlauea Volcano, Hawai’i, is an essential part of monitoring the ongoing eruption and forecasting potentially hazardous changes in activity. We describe a simple automated image processing routine that analyzes continuously-acquired thermal images of the lava lake and measures lava level. The method uses three image segmentation approaches, based on edge detection, short-term change analysis, and composite temperature thresholding, to identify and track the lake margin in the images. These relative measurements from the images are periodically calibrated with laser rangefinder measurements to produce real-time estimates of lake elevation. Continuous, automated tracking of the lava level has been an important tool used by the U.S. Geological Survey’s Hawaiian Volcano Observatory since 2012 in real-time operational monitoring of the volcano and its hazard potential.

  6. Chemical and Mineralogical Characterization of Acid-Sulfate Alteration of Basaltic Material on Mauna Kea Volcano, Hawaii: Jarosite and Hydrated Halloysite

    Science.gov (United States)

    Graff, Trevor G.; Morris, R. V.; Archilles C. N.; Agresti, D. G.; Ming, D. W.; Hamilton, J. C.; Mertzman, S. A.; Smith, J.

    2012-01-01

    Sulfates have been identified on the martian surface during robotic surface exploration and by orbital remote sensing. Measurements at Meridiani Planum (MP) by the Alpha-Particle X-ray Spectrometer (APXS) and Mossbauer (MB) instruments on the Mars Exploration Rover Opportunity document the presence of a ubiquitous sulfate-rich outcrop (20-40% SO3) that has jarosite as an anhydrous Fe3+-sulfate [1- 3]. The presence of jarosite implies a highly acidic (pH <3) formation environment [4]. Jarosite and other sulfate minerals, including kieserite, gypsum, and alunite have also been identified in several locations in orbital remote sensing data from the MEx OMEGA and MRO CRISM instruments [e.g. 5-8]. Acid sulfate weathering of basaltic materials is an obvious pathway for formation of sulfate-bearing phases on Mars [e.g. 4, 9, 10]. In order to constrain acid-sulfate pathways on Mars, we are studying the mineralogical and chemical manifestations of acid-sulfate alteration of basaltic compositions in terrestrial environments. We have previously shown that acidsulfate alteration of tephra under hydrothermal conditions on the Puu Poliahu cone (summit region of Mauna Kea volcano, Hawaii) resulted in jarosite and alunite as sulfate-bearing alteration products [11-14]. Other, more soluble, sulfates may have formed, but were leached away by rain and melting snow. Acidsulfate processes on Puu Poliahu also formed hematite spherules similar (except in size) to the hematite spherules observed at MP as an alteration product [14]. Phyllosilicates, usually smectite }minor kaolinite are also present as alteration products [13]. We discuss here an occurrence of acid-sulfate alteration on Mauna Kea Volcano (Hawaii). We report VNIR spectra (0.35-2.5 microns ASD spectrometer), Mossbauer spectra (MER-like ESPI backscatter spectrometer), powder XRD (PANalytical), and major element chemical compositions (XRF with LOI and Fe redox) for comparison to similar data acquired or to be acquired by MRO

  7. Subduction Contributions in the Trans-Mexican Volcanic Belt: Implications from Lava Chemistry and Hf-Nd-Pb Isotopes

    Science.gov (United States)

    Cai, Y.; Goldstein, S. L.; Langmuir, C. H.; Gómez-Tuena, A.; Lagatta, A.; Straub, S. M.; Martín Del Pozzo, A.

    2007-05-01

    Despite thick continental crust, near primitive lavas erupt throughout the Trans-Mexican Volcanic Belt (TMVB). In order to distinguish and better constrain subduction contributions and effects of crustal contamination, we analyzed samples representing subducting sediments from DSDP Site 487, and Quaternary lavas from stratovolcanoes and cinder cones, including alkaline "high-Nb" lavas from the Sierra Chichinautzin Volcanic Field (SCVF) showing negligible subduction signature in its trace element chemistry and representing melts of the mantle wedge. Our primary observations and implications are: (1) The high-Nb SCVF `intraplate' lavas define a linear trend along the "Nd-Hf mantle-crust array", defining the composition of the mantle wedge. (2) Popocatepetl and Nevado de Toluca stratovolcanoes show the highest Nd and Hf isotope ratios, higher than the `intraplate' lavas, indicating their sources are more "depleted mantle-like" than the regional mantle wedge. (3) The Popo and Toluca chemical and isotopic trends sharply contrast with Pico de Orizaba, which shows classic indications of crustal contamination (e.g. high 207Pb/204Pb, low Nd-Hf isotope ratios), consistent with contamination by local Precambrian crust. (4) Higher Nd-Hf isotopes in Popo and Toluca lavas also correlate with lower Pb isotope ratios, and lower Lu/Hf and Zr/Hf. Together, these data indicate contributions from subducted Pacific oceanic crust and hydrothermal sediment. (5) Popo and Toluca are also enriched in Th/LREE compared with `intraplate' lavas, reflecting subducted sediment contributions. (6) Nd-Hf isotope ratios of hydrothermal sediment from DSDP Site 487 lie on the "seawater array", with high Hf isotope ratios compared to the "mantle-crust array". Popo and Toluca Nd-Hf isotopes display a shallower slope than the "intraplate lava Nd-Hf array", reflecting contributions from hydrothermal sediment. Popocatepetl and Toluca lavas therefore avoid substantial crustal contamination of mantle wedge

  8. Emplacement of Xenolith Nodules in the Kaupulehu Lava Flow, Hualalai Volcano, Hawaii

    Science.gov (United States)

    Guest, J. E.; Spudis, P. D.; Greeley, R.; Taylor, G. J.; Baloga, S. M.

    1995-01-01

    The basaltic Kaupulehu 1800-1801 lava flow of Hualalai Volcano, Hawaii contains abundant ultramafic xenoliths. Many of these xenoliths occur as bedded layers of semi-rounded nodules, each thinly coated with a veneer (typically 1 mm thick) of lava. The nodule beds are analogous to cobble deposits of fluvial sedimentary systems. Although several mechanisms have been proposed for the formation of the nodule beds, it was found that, at more than one locality, the nodule beds are overbank levee deposits. The geological occurrence of the nodules, certain diagnostic aspects of the flow morphology and consideration of the inferred emplacement process indicate that the Kaupulehu flow had an exceptionally low viscosity on eruption and that the flow of the lava stream was extremely rapid, with flow velocities of at least 10 m/s (more than 40 km/h. This flow is the youngest on Hualalai Volcano and future eruptions of a similar type would pose considerable hazard to life as well as property.

  9. Lava-flow hazard on the SE flank of Mt. Etna (Southern Italy)

    Science.gov (United States)

    Crisci, G. M.; Iovine, G.; Di Gregorio, S.; Lupiano, V.

    2008-11-01

    A method for mapping lava-flow hazard on the SE flank of Mt. Etna (Sicily, Southern Italy) by applying the Cellular Automata model SCIARA -fv is described, together with employed techniques of calibration and validation through a parallel Genetic Algorithm. The study area is partly urbanised; it has repeatedly been affected by lava flows from flank eruptions in historical time, and shows evidence of a dominant SSE-trending fracture system. Moreover, a dormant deep-seated gravitational deformation, associated with a larger volcano-tectonic phenomenon, affects the whole south-eastern flank of the volcano. The Etnean 2001 Mt. Calcarazzi lava-flow event has been selected for model calibration, while validation has been performed by considering the 2002 Linguaglossa and the 1991-93 Valle del Bove events — suitable data for back analysis being available for these recent eruptions. Quantitative evaluation of the simulations, with respect to the real events, has been performed by means of a couple of fitness functions, which consider either the areas affected by the lava flows, or areas and eruption duration. Sensitivity analyses are in progress for thoroughly evaluating the role of parameters, topographic input data, and mesh geometry on model performance; though, preliminary results have already given encouraging responses on model robustness. In order to evaluate lava-flow hazard in the study area, a regular grid of n.340 possible vents, uniformly covering the study area and located at 500 m intervals, has been hypothesised. For each vent, a statistically-significant number of simulations has been planned, by adopting combinations of durations, lava volumes, and effusion-rate functions, selected by considering available volcanological data. Performed simulations have been stored in a GIS environment for successive analyses and map elaboration. Probabilities of activation, empirically based on past behaviour of the volcano, can be assigned to each vent of the grid, by

  10. Gas bubble dimensions in Archean lava flows indicate low air pressure at 2.7 Ga

    Science.gov (United States)

    Som, S. M.; Buick, R.; Hagadorn, J.; Blake, T.; Perreault, J.; Harnmeijer, J.; Catling, D. C.

    2014-12-01

    Air pressure constrains atmospheric composition, which, in turn, is linked to the Earth system through biogeochemical cycles and fluxes of volatiles from and to the Earth's interior. Previous studies have only placed maximum levels on surface air pressure for the early Earth [1]. Here, we calculate an absolute value for Archean barometric pressure using gas bubble size (vesicle) distributions in uninflated basaltic lava flows that solidified at sea level 2.7 billion years ago in the Pilbara Craton, Western Australia. These vesicles have been filled in by secondary minerals deposited during metasomatism and so are now amydules, but thin sections show that infilling did not change vesicle dimensions. Amygdule dimensions are measured using high-resolution X-ray tomography from core samples obtained from the top and bottom of the lava flows. The modal size expressed at the top and at the bottom of an uninflated flow can be linked to atmospheric pressure using the ideal gas law. Such a technique has been verified as a paleoaltimeter using Hawaiian Quaternary lava flows [2]. We use statistical methods to estimate the mean and standard deviation of the volumetric size of the amygdules by applying 'bootstrap'resampling and the Central Limit Theorem. Our data indicate a surprisingly low atmospheric pressure. Greater nitrogen burial under anaerobic conditions likely explains lower pressure. Refs: [1] Som et al. (2012) Nature 484, 359-262. D. L. Sahagian et al. (2002) J. Geol., 110, 671-685.

  11. Hekla Volcano, Iceland, in the 20th Century: Lava Volumes, Production Rates, and Effusion Rates

    Science.gov (United States)

    Pedersen, G. B. M.; Belart, J. M. C.; Magnússon, E.; Vilmundardóttir, O. K.; Kizel, F.; Sigurmundsson, F. S.; Gísladóttir, G.; Benediktsson, J. A.

    2018-02-01

    Lava flow thicknesses, volumes, and effusion rates provide essential information for understanding the behavior of eruptions and their associated deformation signals. Preeruption and posteruption elevation models were generated from historical stereo photographs to produce the lava flow thickness maps for the last five eruptions at Hekla volcano, Iceland. These results provide precise estimation of lava bulk volumes: V1947-1948 = 0.742 ± 0.138 km3, V1970 = 0.205 ± 0.012 km3, V1980-1981 = 0.169 ± 0.016 km3, V1991 = 0.241 ± 0.019 km3, and V2000 = 0.095 ± 0.005 km3 and reveal variable production rate through the 20th century. These new volumes improve the linear correlation between erupted volume and coeruption tilt change, indicating that tilt may be used to determine eruption volume. During eruptions the active vents migrate 325-480 m downhill, suggesting rough excess pressures of 8-12 MPa and that the gradient of this excess pressure increases from 0.4 to 11 Pa s-1 during the 20th century. We suggest that this is related to increased resistance along the eruptive conduit.

  12. The origin of Venusian channels: Modelling of thermal erosion by lava

    Science.gov (United States)

    Bussey, D. B. J.; Sorensen, S-A.; Guest, J. E.

    1993-01-01

    Magellan imagery has revealed that channels, apparently volcanic in origin, are abundant on the surface of Venus. There has been much debate about the origin of these channels. Are they the result of erosional (either thermal or mechanical) or constructional processes? A common characteristic of the simple sinuous channels is that they show evidence of erosion near their source and then become purely constructional, forming levees and in some cases roofing over completely. One method of showing that thermal erosion is capable of producing the type of channels seen is to use computer modeling incorporating the physical conditions on Venus and the physical characteristics of the different types of lava that may have been erupted. It is possible to calculate, relatively easily, two channel parameters. The first is the erosion rate, which combined with eruption duration, gives depth. The second is for how long after leaving the source the erupted lava will continue to be capable of thermal erosion before constructional processes dominate. Making assumptions about the rheology of the lava (e.g., assume it behaves as a Bingham plastic) along with the slope angle yields a flow velocity and therefore a distance over which thermal erosion will take place. Due to the resolution (both vertical and horizontal) of the Magellan altimetric data, the distance from the source that the channel is erosional can be much more accurately measured than the depth of the channel. This will remain the case until stereo imagery becomes available for large areas of the planet.

  13. A frozen record of density-driven crustal overturn in lava lakes: The example of Kilauea Iki 1959

    Science.gov (United States)

    Stovall, W.K.; Houghton, Bruce F.; Harris, A.J.L.; Swanson, D.A.

    2009-01-01

    Lava lakes are found at basaltic volcanoes on Earth and other planetary bodies. Density-driven crustal foundering leading to surface renewal occurs repeatedly throughout the life of a lava lake. This process has been observed and described in a qualitative sense, but due to dangerous conditions, no data has been acquired to evaluate the densities of the units involved. Kilauea Iki pit crater in Hawai'i houses a lava lake erupted during a 2 month period in 1959. Part of the surface of the Kilauea Iki lake now preserves the frozen record of a final, incomplete, crustal-overturn cycle. We mapped this region and sampled portions of the foundering crust, as well as overriding and underlying lava, to constrain the density of the units involved in the overturn process. Overturn is driven by the advance of a flow front of fresh, low-density lava over an older, higher density surface crust. The advance of the front causes the older crust to break up, founder, and dive downwards into the lake to expose new, hot, low-density lava. We find density differences of 200 to 740 kg/m3 between the foundering crust and over-riding and under-lying lava respectively. In this case, crustal overturn is driven by large density differences between the foundering and resurfacing units. These differences lead, inevitably, to frequent crustal renewal: simple density differences between the surface crust and underlying lake lava make the upper layers of the lake highly unstable. ?? Springer-Verlag 2008.

  14. THE AESTHETICS AND DYNAMICS OF LAVA: An interdisciplinary course in which the volcano is brought to the students.

    Science.gov (United States)

    Wysocki, R.; Karson, J. A.

    2017-12-01

    The power, fury, and nearly indescribably beauty of flowing lava has permeated the entirety of human existence. Being in the presence of flowing lava redefines the educational experience magnitudes beyond that of the classroom, online and/or an analog experiment. For the last 8 years the Syracuse University Lava Project (SULP) has presented this unique immersive experience nearly weekly year-round. It is through this intensely direct education experience that Pre-K to Post Doc students are exposed to a fundamental geomorphic mechanism: flowing lava. The SULP facility is located in the Syracuse Sculpture Studio and 1.1 Ga basalt is turned into 1200°C molten lava flowing from a reconfigured bronze furnace. Originally conceived as a means to find art material via scientific experiment the project has evolved into a truly one-of-a-kind interdisciplinary course "The Aesthetics and Dynamics of Lava," a course populated by students from across the academic spectrum. Students in this cross-listed course design their own investigations with lava- art or science or some combination - in the context of our background presentations as a launching point. Key benefits include interacting with faculty from very different backgrounds and with very different scholarly/funding systems and students with different outlooks, to engage in multiple modes of learning. Students use scientific tools and processes (FLIR camera, microprobe, thin sections, etc.) as well as those from art and design to produce reports in a variety of formats: traditional written reports, video projects, computer modeling, online presentations, sculpture, photography, etc. Our collaboration has truly blurred the lines between science and art, creating a learning environment in which students from across all academic disciplines work together to share their diverse impressions of lava flow events through shared projects, broadening their perspectives and enabling them to see one another's worlds from new points

  15. LAV@HAZARD: a Web-GIS Framework for Real-Time Forecasting of Lava Flow Hazards

    Science.gov (United States)

    Del Negro, C.; Bilotta, G.; Cappello, A.; Ganci, G.; Herault, A.

    2014-12-01

    Crucial to lava flow hazard assessment is the development of tools for real-time prediction of flow paths, flow advance rates, and final flow lengths. Accurate prediction of flow paths and advance rates requires not only rapid assessment of eruption conditions (especially effusion rate) but also improved models of lava flow emplacement. Here we present the LAV@HAZARD web-GIS framework, which combines spaceborne remote sensing techniques and numerical simulations for real-time forecasting of lava flow hazards. By using satellite-derived discharge rates to drive a lava flow emplacement model, LAV@HAZARD allows timely definition of parameters and maps essential for hazard assessment, including the propagation time of lava flows and the maximum run-out distance. We take advantage of the flexibility of the HOTSAT thermal monitoring system to process satellite images coming from sensors with different spatial, temporal and spectral resolutions. HOTSAT was designed to ingest infrared satellite data acquired by the MODIS and SEVIRI sensors to output hot spot location, lava thermal flux and discharge rate. We use LAV@HAZARD to merge this output with the MAGFLOW physics-based model to simulate lava flow paths and to update, in a timely manner, flow simulations. Thus, any significant changes in lava discharge rate are included in the predictions. A significant benefit in terms of computational speed was obtained thanks to the parallel implementation of MAGFLOW on graphic processing units (GPUs). All this useful information has been gathered into the LAV@HAZARD platform which, due to the high degree of interactivity, allows generation of easily readable maps and a fast way to explore alternative scenarios. We will describe and demonstrate the operation of this framework using a variety of case studies pertaining to Mt Etna, Sicily. Although this study was conducted on Mt Etna, the approach used is designed to be applicable to other volcanic areas around the world.

  16. Rapid fluvial incision of a late Holocene lava flow: Insights from LiDAR, alluvial stratigraphy, and numerical modeling

    Science.gov (United States)

    Sweeney, Kristin; Roering, Joshua J.

    2016-01-01

    Volcanic eruptions fundamentally alter landscapes, paving over channels, decimating biota, and emplacing fresh, unweathered material. The fluvial incision of blocky lava flows is a geomorphic puzzle. First, high surface permeability and lack of sediment should preclude geomorphically effective surface runoff and dissection. Furthermore, past work has demonstrated the importance of extreme floods in driving incision via column toppling and plucking in columnar basalt, but it is unclear how incision occurs in systems where surface blocks are readily mobile. We examine rapid fluvial incision of the Collier lava flow, an andesitic Holocene lava flow in the High Cascades of Oregon. Since lava flow emplacement ∼1600 yr ago, White Branch Creek has incised bedrock gorges up to 8 m deep into the coherent core of the lava flow and deposited >0.2 km3 of sediment on the lava flow surface. Field observation points to a bimodal discharge regime in the channel, with evidence for both annual snowmelt runoff and outburst floods from Collier glacier, as well as historical evidence of vigorous glacial meltwater. To determine the range of discharge events capable of incision in White Branch Creek, we used a mechanistic model of fluvial abrasion. We show that the observed incision implies that moderate flows are capable of both initiating channel formation and sustaining incision. Our results have implications for the evolution of volcanic systems worldwide, where glaciation and/or mass wasting may accelerate fluvial processes by providing large amounts of sediment to otherwise porous, sediment-starved landscapes.

  17. Tracking lava flow emplacement on the east rift zone of Kilauea, Hawai’i with synthetic aperture radar (SAR) coherence

    Science.gov (United States)

    Dietterich, Hannah R.; Poland, Michael P.; Schmidt, David; Cashman, Katharine V.; Sherrod, David R.; Espinosa, Arkin Tapia

    2012-01-01

    Lava flow mapping is both an essential component of volcano monitoring and a valuable tool for investigating lava flow behavior. Although maps are traditionally created through field surveys, remote sensing allows an extraordinary view of active lava flows while avoiding the difficulties of mapping on location. Synthetic aperture radar (SAR) imagery, in particular, can detect changes in a flow field by comparing two images collected at different times with SAR coherence. New lava flows radically alter the scattering properties of the surface, making the radar signal decorrelated in SAR coherence images. We describe a new technique, SAR Coherence Mapping (SCM), to map lava flows automatically from coherence images independent of look angle or satellite path. We use this approach to map lava flow emplacement during the Pu‘u ‘Ō‘ō-Kupaianaha eruption at Kīlauea, Hawai‘i. The resulting flow maps correspond well with field mapping and better resolve the internal structure of surface flows, as well as the locations of active flow paths. However, the SCM technique is only moderately successful at mapping flows that enter vegetation, which is also often decorrelated between successive SAR images. Along with measurements of planform morphology, we are able to show that the length of time a flow stays decorrelated after initial emplacement is linearly related to the flow thickness. Finally, we use interferograms obtained after flow surfaces become correlated to show that persistent decorrelation is caused by post-emplacement flow subsidence.

  18. Controls on Lava Flow Morphology and Propagation: Using Laboratory Analogue Experiments

    Science.gov (United States)

    Peters, S.; Clarke, A. B.

    2017-12-01

    The morphology of lava flows is controlled by eruption rate, composition, cooling rate, and topography [Fink and Griffiths, 1990; Gregg and Fink, 2000, 2006]. Lava flows are used to understand how volcanoes, volcanic fields, and igneous provinces formed and evolved [Gregg and Fink., 1996; Sheth, 2006]. This is particularly important for other planets where compositional data is limited and historical context is nonexistent. Numerical modeling of lava flows remains challenging, but has been aided by laboratory analog experiments [Gregg and Keszrthelyi, 2004; Soule and Cashman, 2004]. Experiments using polyethylene glycol (PEG) 600 wax have been performed to understand lava flow emplacement [Fink and Griffiths, 1990, 1992; Gregg and Fink, 2000]. These experiments established psi (hereafter denoted by Ψ), a dimensionless parameter that relates crust formation and advection timescales of a viscous gravity current. Four primary flow morphologies corresponding to discreet Ψ ranges were observed. Gregg and Fink [2000] also investigated flows on slopes and found that steeper slopes increase the effective effusion rate producing predicted morphologies at lower Ψ values. Additional work is needed to constrain the Ψ parameter space, evaluate the predictive capability of Ψ, and determine if the preserved flow morphology can be used to indicate the initial flow conditions. We performed 514 experiments to address the following controls on lava flow morphology: slope (n = 282), unsteadiness/pulsations (n = 58), slope & unsteadiness/pulsations (n = 174), distal processes, and emplacement vs. post-emplacement morphologies. Our slope experiments reveal a similar trend to Gregg and Fink [2000] with the caveat that very high and very low local & source eruption rates can reduce the apparent predictive capability of Ψ. Predicted Ψ morphologies were often produced halfway through the eruption. Our pulse experiments are expected to produce morphologies unique to each eruption rate

  19. Distinctly different parental magmas for plutons and lavas in the central Aleutian arc

    Science.gov (United States)

    Cai, Y.; Rioux, M. E.; Kelemen, P. B.; Goldstein, S. L.; Bolge, L.; Kylander-Clark, A. R.

    2014-12-01

    While it is generally agreed that continental crust is generated by arc magmatism, average arc lavas are basaltic while the bulk continental crust is andesitic, and this has led to many models for secondary reprocessing of the arc crust in order to form continental crust. We report new data on calc-alkaline plutons in the central Aleutians showing that they have distinctly different sources compared to Holocene tholeiitic lavas. Therefore the lavas are not representative of the net magmatic transfer from the mantle into the arc crust. Eocene to Miocene (9-39 Ma) intermediate to felsic plutonic rocks from the central Aleutian arc show higher SiO2 at a given Mg#, higher ɛNd- and ɛHf-values, and lower Pb isotope ratios than Holocene volcanic rocks from the same region. Instead, the plutonic rocks resemble volcanics from the western Aleutians isotopically, and have chemical compositions similar to bulk continental crust. These data could reflect temporal variation of Aleutian magma source compositions, from Eocene-Miocene "isotopically depleted" and predominantly calc-alkaline to Holocene "isotopically enriched" and predominantly tholeiitic. Alternatively, they may reflect different transport and emplacement processes for the magmas that form plutons and lavas: calc-alkaline magmas with higher Si content and high viscosity may preferentially form plutons, perhaps after extensive mid-crustal degassing of initially high water contents. The latter case implies that the upper and middle arc crust is more like the calc-alkaline bulk composition of the continental crust than the lavas alone. Crustal reprocessing mechanisms that preserve upper and middle arc crust, while removing lower arc crust, can account for the genesis and evolution of continental crust. Since gabbroic lower arc crust extends from ca 20-40 km depth, and is density stable over most of this depth range, "delamination" of dense lithologies [1] may not be sufficient to accomplish this. Alternatively

  20. Lateral Variability of Lava flow Morphologies in the Deccan Traps Large Igneous Province (India)

    Science.gov (United States)

    Vanderkluysen, L.; Rader, E. L.; Self, S.; Clarke, A. B.; Sheth, H.; Moyer, D. K.

    2016-12-01

    In continental flood basalt provinces (CFBs), lava flow morphologies have traditionally been classified in two distinct groups recognizable in the field, expressing two different modes of lava flow emplacement mechanisms: (a) compound lava flow fields dominated by meter-sized pāhoehoe toes and lobes; and (b) inflated sheet lobes tens to hundreds of meters in width and meters to tens of meters in height. Temporal transitions between these two emplacement styles have been recognized in many mafic large igneous provinces worldwide and seem to be a fundamental feature of CFBs. However, lateral variations in these morphologies remain poorly studied and understood. In the Deccan CFB of India, two principal hypotheses have been proposed to account for possible lateral variations in lava flow facies: that smaller toes and lobes occur in distal regions of flow fields, representing breakouts at the edges of larger inflated lavas; or on the contrary that smaller toes and lobes represent proximal facies. We conducted a field study focusing on two of the Deccan's formations, the Khandala and the Poladpur, located in the middle and upper sections of the province's defined chemostratigraphy. We studied nine sections along a 600 km long E-W transect, with the easternmost sections representing the most distal outcrops, ≥ 500 km away from inferred vents. The Khandala Formation is traditionally described as a sequence of three thick inflated sheet lobes in the well-exposed sections of the western Deccan. However, in the central Deccan, we find the Khandala to be much thicker overall, with half of its thickness dominated by small, meter-sized toes and lobes. Inflated sheet lobes of the Khandala are thinner on average in the central Deccan than further to the east or west. We document this transition as occurring progressively in outcrops only 80 km apart. In the Poladpur, the average thickness of inflated sheet lobes increases in distal outcrops of the eastern Deccan. We interpret

  1. Crystal-rich lava dome extrusion during vesiculation: An experimental study

    Science.gov (United States)

    Pistone, Mattia; Whittington, Alan G.; Andrews, Benjamin J.; Cottrell, Elizabeth

    2017-11-01

    Lava dome-forming eruptions represent a common eruptive style and a major hazard at numerous active volcanoes worldwide. The extrusion mechanics of crystal-rich lava domes and the influence of volatiles on the transition from viscous to brittle behaviour during lava dome extrusion remain unclear. Understanding how gas exsolution and crystallinity control effusive versus explosive eruption behaviour is essential. Here, we present new experimental results on the rheology of synthesised, crystal-rich (50 to 80 vol% quartz crystals), hydrous (4.2 wt% H2O in the glass) dacite samples, which vesiculate from 5 to 27 vol% gas bubbles at high temperatures (from glass transition temperature to 797 °C) during deformation conducted in a parallel plate viscometer (constant stress at 0.63-0.64 MPa, and variable strain-rates ranging from 8.32·10- 8 to 3.58·10- 5 s- 1). The experiments reproduce certain aspects of lava dome deformation in volcanic conduits during vesiculation of the residual melt, instigated in the experiments by increasing temperature. During gas exsolution (i.e. nucleation and growth of gas-pressurised bubbles) and volume inflation, we find that the rheological lubrication of the system during deformation is strongly dictated by the initial crystallinity. At crystal contents < 60 vol%, gas bubbles form and coalesce during expansion and viscous deformation, favouring strain localisation and gas permeability within shear bands, which control the overall sample rheology. At crystallinities of 60 to 70 vol%, gas exsolution generates pressurisation (i.e. pore pressure increase) within the bubbles trapped in the solid crystal clusters, and embryonic formation of microscopic fractures through melt and crystals drives the system to a brittle behaviour. At higher crystallinity (80 vol%) vesiculation leads to large pressurisation, which then triggers extensive brittle fragmentation. Through macroscopic fractures, outgassing determines the rheological stalling of the

  2. Continuous terrestrial geodetic monitoring of the 2007 Lava Fan in the Sciara de Fuoco (Stromboli volcano, Italy)

    Science.gov (United States)

    Puglisi, G.; Bonforte, A.; Cantarero, M.; Spata, A.

    2009-12-01

    At the end of the 2002-2003 eruption, a terrestrial monitoring system was set up to regularly measure the movements of benchmarks installed inside the Sciara del Fuoco (hereafter SdF) (Puglisi et al., 2005). This system, named THEODOROS, is based on a remotely controlled robotized Total Station installed near Punta Labronzo, on the northern border of the SdF. The 2007 eruption caused a dramatic change in the operations of THEODOROS. Indeed, the 2007 lava flows destroyed all the benchmarks installed on the northern part of the SdF, leaving only those on its central part. This eruption produced a lava fan at the base of the SdF, due to the rapid cooling of the lava flows on entering the sea. The continuous overlapping of several flows during the eruption built a thick lava body (the fan); it was emplaced on a very steep slope, partially originated during the landslides occurring in December 2002, producing a hazardous condition due to the potential sudden sliding of this fan into the sea. In order to monitor the stability of this lava fan, a new terrestrial geodetic network, was implemented on 6 April 2007, by installing 5 reflectors along a profile crossing the lava body, approximately over the old coastline. Later, in June 2007, 4 more reflectors were installed at higher and lower altitudes with respect to the previous profile, to obtain more information on the overall deformation of the lava body. Measurements were rather noisy during the first months, but a better definition of the reference system strongly improved the quality of the data. The position of the 9 benchmarks over the lava fan enable the areal distribution of the deformation to be drawn. The measurements carried out every 10 minutes allow following their motion with high temporal detail. The data collected since the end of the eruption highlighted a significant downslope motion of the entire lava fan, decreasing from the South to the North, where the body is buttressed by the rocky northern wall of

  3. Temporal and Spatial Variability in the Geochemistry of Axial and CoAxial Segment Lavas and their Mantle Sources

    Science.gov (United States)

    Smith, M. C.; Perfit, M. R.; Davis, C.; Kamenov, G. D.

    2011-12-01

    Three spatially related volcanic eruptions along the CoAxial Segment of the Juan de Fuca Ridge (JdFR) have documented emplacements between 1981 and 1993. Two of the historic flows outcrop at the "Flow Site" and were emplaced within less than 12 years and 500 m from one another. The third was emplaced at the "Floc Site" to the south in the 1980s. Previous studies have documented that CoAxial lavas are among the most incompatible element and isotopically depleted lavas along the entire JdFR, whereas the Axial Seamount segment immediately south of CoAxial has erupted the most chemically enriched lavas south of the Endeavor Segment. Geochemical studies have shown little temporal change in the chemistry of recent Axial Seamount eruptives, whereas CoAxial lavas exhibit distinct chemical differences over short time periods. Significant chemical differences observed among depleted CoAxial lavas emplaced close to one another in space and time are in marked contrast to the relatively constant chemical characteristics of enriched lavas erupted at the magmatically more robust Axial segment only 10's of kilometers to the south and west. New trace element and isotopic (Sr, Nd, Pb) geochemical analyses of historic and older CoAxial lavas have resulted in better documentation of interflow and intraflow chemical variation providing an improved understanding of spatial/temporal chemical variability in lavas, and further insight into JdFR magmatic processes. Modeling of major and trace element abundances suggest that the observed intraflow chemical variation within CoAxial lavas is largely due to shallow-level fractional crystallization but that a single fractional crystallization model cannot account for all interflow chemical variation. In fact, elemental and isotopic data require different parental magmas for each of the three recent CoAxial Segment lava flows suggesting very short-term differences or changes in the chemical character of the mantle source region. In particular

  4. American pika in a low-elevation lava landscape: expanding the known distribution of a temperature-sensitive species.

    Science.gov (United States)

    Shinderman, Matt

    2015-09-01

    In 2010, the American pika (Ochotona princeps fenisex) was denied federal protection based on limited evidence of persistence in low-elevation environments. Studies in nonalpine areas have been limited to relatively few environments, and it is unclear whether patterns observed elsewhere (e.g., Bodie, CA) represent other nonalpine habitats. This study was designed to establish pika presence in a new location, determine distribution within the surveyed area, and evaluate influences of elevation, vegetation, lava complexity, and distance to habitat edge on pika site occupancy. In 2011 and 2012, we conducted surveys for American pika on four distinct subalpine lava flows of Newberry National Volcanic Monument, Oregon, USA. Field surveys were conducted at predetermined locations within lava flows via silent observation and active searching for pika sign. Site habitat characteristics were included as predictors of occupancy in multinomial regression models. Above and belowground temperatures were recorded at a subsample of pika detection sites. Pika were detected in 26% (2011) and 19% (2012) of survey plots. Seventy-four pika were detected outside survey plot boundaries. Lava complexity was the strongest predictor of pika occurrence, where pika were up to seven times more likely to occur in the most complicated lava formations. Pika were two times more likely to occur with increasing elevation, although they were found at all elevations in the study area. This study expands the known distribution of the species and provides additional evidence for persistence in nonalpine habitats. Results partially support the predictive occupancy model developed for pika at Craters of the Moon National Monument, another lava environment. Characteristics of the lava environment clearly influence pika site occupancy, but habitat variables reported as important in other studies were inconclusive here. Further work is needed to gain a better understanding of the species' current

  5. Modeling mechanical and thermo-mechanical erosion by flowing lava at Raglan, Cape Smith Belt, New Québec, Canada

    Science.gov (United States)

    Cataldo, V.; Williams, D. A.; Lesher, C. M.

    2015-12-01

    The 1.5-D Williams et al. model of thermal erosion by turbulent lava was recently applied to the Athabasca Valles lava channel on Mars, in an attempt to establish the importance of thermal erosion in excavating this ~80-100 m deep outflow channel. The modeled erosion depths (0.4-7.5 m) are far less than the depth of the channel which, combined with the short duration of the eruption, suggests that mechanical erosion may have had a greater role. Several studies suggest that mechanical erosion by lava is more important in channel-tube formation than previously thought, under certain circumstances. How would we be able to distinguish between mechanical and thermal erosion? By investigating model results when substrate properties change, as we move from a consolidated, mechanically strong substrate to a partially consolidated or unconsolidated, mechanically weaker substrate. The Proterozoic Raglan komatiitic basalt lava channel of the Cape Smith Belt, New Québec, Canada is a complex erosional environment involving invasive erosion of both sediment and gabbro substrates - which makes it a critical test case. The lava eroded an upper layer of soft sediment, with erosion at the tops, bottoms, and sides of the conduit, through underlying gabbro, and then burrowed laterally into underlying sediment, a scenario requiring a two-dimensional modeling approach. Using the available field data, we will simulate two-dimensional thermomechanical and mechanical erosion interfaces on all sides of a turbulent lava flow by creating a finite-element mesh. The mesh will be defined by the geometry of the lava flow at those lava conduits for which data on lava and substrate composition, lava thickness, slope of the ground, conduit area and volume, and lava flow length are available. Ultimately, this model will be applied to lunar sinuous rilles and martian lava channels for which the use of a two-dimensional approach is needed.

  6. Lava and Life: New investigations into the Carson Volcanics, lower Kimberley Basin, north Western Australia

    Science.gov (United States)

    Orth, Karin; Phillips, Chris; Hollis, Julie

    2014-05-01

    The Carson Volcanics are the only volcanic unit in the Paleoproterozoic Kimberley Basin and are part of a poorly studied Large Igneous Province (LIP) that was active at 1790 Ma. New work focussing on this LIP in 2012 and 2013 involved helicopter-supported traverses and sampling of the Carson Volcanics in remote areas near Kalumburu in far north Western Australia's Kimberley region. The succession is widespread and flat lying to gently dipping. It consists of three to six basalt units with intercalated sandstone and siltstone. The basalts are 20-40 m thick, but can be traced up to 60 km along strike. The basalt can be massive or amygdaloidal and commonly display polygonal to subhorizontal and rare vertical columnar jointing. Features of the basalt include ropy lava tops and basal pipe vesicles consistent with pahoehoe lavas. The intercalated cross-bedded quartzofeldspathic sandstone and siltstone vary in thickness up to 40 m and can be traced up to 40 km along strike. Peperite is common and indicates interaction between wet, unconsolidated sediment and hot lava. Stromatolitic chert at the top of the formation represents the oldest life found within the Kimberley region. Mud cracks evident in the sedimentary rocks, and stromatolites suggest an emergent broad tidal flat environment. The volcanics were extruded onto a wide marginal margin setting subject to frequent flooding events. Thickening of the volcanic succession south and the palaeocurrents in the underlying King Leopold Sandstone and the overlying Warton Sandstone suggest that this shelf sloped to the south. The type of basalt and the basalt morphology indicate a low slope gradient of about 1°.

  7. Contenidos de uranio de lavas recientes en el sector sur de los Andes centrales

    Directory of Open Access Journals (Sweden)

    Guerra, N.

    1984-12-01

    Full Text Available We have studied the distribution of U in modern lava -flows of the southern part from the Central Andes (16°-28° S. For a given SiO2, content of the rocks, U abundance increases from west to east in a transects to the Andean Belt, while the depth of the subduction zone increases and the thickness of the continental curst decreases. Besides, U content tends to inerease steadly with the latitude, while the thick of the continental crust and the depth of the seismic zone decreases southward. Thus, on the basis of the available data, we are in a position to suggest that the U behavior in the studied lavas depends on the alkalanity and magmatic history of each volcanic center.

    Se presenta un estudio de distribución de U en lavas modernas del sector sur de los Andes centrales (16°-28° S. Para rocas de contenidos similares en SiO2 la abundancia de U crece de oeste a este en un perfil transversal al cordón andino, mientras que aumenta la profundidad de subducción, y disminuye la potencia de la corteza continental. Además, mientras la potencia de la corteza continental y la profundidad de la zona sísmica de Benioff disminuyen hacia el sur, U tiende a aumentar con la latitud. Así, y basado en los datos disponibles, estamos en posición de sugerir que el comportamiento de U en las rocas estudiadas, depende de la alcalinidad y de la historia magmática de cada centro volcánico.

  8. Thermoluminescence age determination of Mt. Fuji lava dome, Takahara volcano, North Kanto, Central Japan

    International Nuclear Information System (INIS)

    Takashima, Isao

    1999-01-01

    Mt. Fuji lava dome thought to be formed by recent action of Takahara volcano, is reported to be due to eruption at the Holocene epoch age on 1,000 or 6,500 years ago. However, on either of them the lava dome did not directly conduct its age measurement, and its age is obtained indirectly from eruption age of tephra estimated to be same age. Recently, precision thermo-luminescence (TL) method is improved and upgraded, by using which formulation of the Mayu-yama in the Unzen volcano was cleared to be about 4,000 years ago which corresponded to be very young. In this paper, by using the TL method for lava dome racks, it was attempted to remove uncertainty forming an indirect age estimation shown as previously. As a result, adopted samples showed 6.5 to 7.4 ka in age value, which showed a good agreement under considering of error. This result was older than 1,000 and some years, and was younger than 20,000 to 25,000 years, which showed a good agreement with 6,500 years ago, obtained by combining closed layer order survey and 14-C age. It is thought to be an important contribution in future forecasting of volcano eruption that the last period action of the Takahara volcano must be at the Holocene epoch age. And, as limited to a quartz containing sample, this can be said to show priority of TL method for a method to directly obtain age of younger dome rock than 10,000 years. (G.K.)

  9. Nature and extent of lava-flow aquifers beneath Pahute Mesa, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Prothro, L.B.; Drellack, S.L. Jr.

    1997-09-01

    Work is currently underway within the Underground Test Area subproject of the US Department of Energy/Nevada Operations Office Environmental Restoration Program to develop corrective action plans in support of the overall corrective action strategy for the Nevada Test Site as established in the Federal Facility Agreement and Consent Order (FFACO, 1996). A closure plan is currently being developed for Pahute Mesa, which has been identified in the FFACO as consisting of the Western and Central Pahute Mesa Corrective Action Units. Part of this effort requires that hydrogeologic data be compiled for inclusion in a regional model that will be used to predict a contaminant boundary for these Corrective Action Units. Hydrogeologic maps have been prepared for use in the model to define the nature and extent of aquifers and confining units that might influence the flow of contaminated groundwater from underground nuclear tests conducted at Pahute Mesa. Much of the groundwater flow beneath Pahute Mesa occurs within lava-flow aquifers. An understanding of the distribution and hydraulic character of these important hydrogeologic units is necessary to accurately model groundwater flow beneath Pahute Mesa. This report summarizes the results of a study by Bechtel Nevada geologists to better define the hydrogeology of lava-flow aquifers at Pahute Mesa. The purpose of this study was twofold: (1) aid in the development of the hydrostratigraphic framework for Pahute Mesa, and (2) provide information on the distribution and hydraulic character of lava-flow aquifers beneath Pahute Mesa for more accurate computer modeling of the Western and Central Pahute Mesa Corrective Action Units.

  10. Morphological and structural changes at the Merapi lava dome monitored using Unmanned Aerial Vehicles (UAVs)

    Science.gov (United States)

    Darmawan, H.; Walter, T. R.; Brotopuspito, K. S.; Subandriyo, S.; Nandaka, M. A.

    2017-12-01

    Six gas-driven explosions between 2012 and 2014 had changed the morphology and structures of the Merapi lava dome. The explosions mostly occurred during rainfall season and caused NW-SE elongated open fissures that dissected the lava dome. In this study, we conducted UAVs photogrammetry before and after the explosions to investigate the morphological and structural changes and to assess the quality of the UAV photogrammetry. The first UAV photogrammetry was conducted on 26 April 2012. After the explosions, we conducted Terrestrial Laser Scanning (TLS) survey on 18 September 2014 and repeated UAV photogrammetry on 6 October 2015. We applied Structure from Motion (SfM) algorithm to reconstruct 3D SfM point clouds and photomosaics of the 2012 and 2015 UAVs images. Topography changes has been analyzed by calculating height difference between the 2012 and 2015 SfM point clouds, while structural changes has been investigated by visual comparison between the 2012 and 2015 photo mosaics. Moreover, a quality assessment of the results of UAV photogrammetry has been done by comparing the 3D SfM point clouds to TLS dataset. Result shows that the 2012 and 2015 SfM point clouds have 0.19 and 0.57 m difference compared to the TLS point cloud. Furthermore, topography, and structural changes reveal that the 2012-14 explosions were controlled by pre-existing structures. The volume of the 2012-14 explosions is 26.400 ± 1320 m3 DRE. In addition, we find a structurally delineated unstable block at the southern front of the dome which potentially collapses in the future. We concluded that the 2012-14 explosions occurred due to interaction between magma intrusion and rain water and were facilitated by pre-existing structures. The unstable block potentially leads to a rock avalanche hazard. Furthermore, our drone photogrammetry results show very promising and therefore we recommend to use drone for topography mapping in lava dome building volcanoes.

  11. The peculiar geochemical signatures of São Miguel (Azores) lavas: Metasomatised or recycled mantle sources?

    Science.gov (United States)

    Beier, Christoph; Stracke, Andreas; Haase, Karsten M.

    2007-07-01

    The island of São Miguel, Azores consists of four large volcanic systems that exhibit a large systematic intra-island Sr-Nd-Pb-Hf isotope and trace element variability. The westernmost Sete Cidades volcano has moderately enriched Sr-Nd-Pb-Hf isotope ratios. In contrast, lavas from the easternmost Nordeste volcano have unusually high Sr and Pb and low Nd and Hf isotope ratios suggesting a long-term evolution with high Rb/Sr, U/Pb, Th/Pb, Th/U and low Sm/Nd and Lu/Hf parent-daughter ratios. They have trace element concentrations similar to those of the HIMU islands, with the exception of notably higher alkali element (Cs, Rb, K, Ba) and Th concentrations. The time-integrated parent-daughter element evolution of both the Sete Cidades and Nordeste source matches the incompatibility sequence commonly observed during mantle melting and consequently suggests that the mantle source enrichment is caused by a basaltic melt, either as a metasomatic agent or as recycled oceanic crust. Our calculations show that a metasomatic model involving a small degree basaltic melt is able to explain the isotopic enrichment but, invariably, produces far too enriched trace element signatures. We therefore favour a simple recycling model. The trace element and isotopic signatures of the Sete Cidades lavas are consistent with the presence of ancient recycled oceanic crust that has experienced some Pb loss during sub-arc alteration. The coherent correlation of the parent-daughter ratios (e.g. Rb/Sr, Th/U, U/Pb) and incompatible element ratios (e.g. Nb/Zr, Ba/Rb, La/Nb) with the isotope ratios in lavas from the entire island suggest that the Sete Cidades and Nordeste source share a similar genetic origin. The more enriched trace element and isotopic variations of Nordeste can be reproduced by recycled oceanic crust in the Nordeste source that contains small amounts of evolved lavas (˜ 1-2%), possibly from a subducted seamount. The rare occurrence of enriched source signatures comparable to

  12. MRCP and 3D LAVA imaging of extrahepatic cholangiocarcinoma at 3 T MRI

    Energy Technology Data Exchange (ETDEWEB)

    Li, N.; Liu, C.; Bi, W.; Lin, X.; Jiao, H. [Shandong Medical Imaging Research Institute, Shandong University, Jinan (China); Zhao, P., E-mail: Gavinsdu@163.com [Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan (China)

    2012-06-15

    Extrahepatic cholangiocarcinoma (CCA) is a primary bile duct malignant tumour with poor prognosis. Familiarity with their varied imaging characteristics can be helpful in developing a correct diagnosis and in optimal treatment planning, and thus contribute to a better prognosis. The purpose of this article is to illustrate the typical appearances of extrahepatic CCA on magnetic resonance cholangiopancreatography (MRCP) and three-dimensional (3D) LAVA (liver acquisition with volume acceleration) sequences at 3 T magnetic resonance imaging (MRI), and to discuss the superiority of the two techniques in the diagnosis of CCA.

  13. Misalignment of Lava Flows from Topographic Slope Directions Reveals Late Amazonian Deformation at Arsia Mons, Mars

    Science.gov (United States)

    Waring, B. A.; Chadwick, J.; McGovern, P. J., Jr.; Tucker, W.

    2017-12-01

    Arsia Mons is the southernmost of the three large Tharsis Montes near the equator of Mars and one of the largest volcanoes in the solar system. The main edifice of Arsia is about 440 km in diameter, the summit is over 9 km above the surrounding plains and has a pronounced 110 km caldera. Like the other Tharsis volcanoes, Arsia has a large, Late Amazonian glacial deposit on its NW flank. Previous crater retention studies for lava flows on Arsia have shown that the volcano experienced significant volcanic activity in the past 200 Ma. In this study, numerous long (>25 km), thin lava flows on the plains surrounding Arsia were mapped and used as indicators of the topographic slope direction at the time of their emplacement. The azimuthal orientation of each flow was compared with the present-day slope directions on the surrounding plains, derived from Mars Orbiter Laser Altimeter (MOLA) topographic data. The results reveal regions around Arsia where the flows no longer conform to the topography, indicating deformation in the time since the flows where emplaced. In a region of Daedalia Planum to the SE of Arsia, modern slope directions adjacent to 40 long lava flows are consistently misaligned from the paleo-slopes indicated by the lava flow orientations, with an angular offset that averages 7.2° in the clockwise direction. Crater size-frequency measurements for these tilted plains using CraterStats software indicate that the deformation responsible for the misaligned flows took place since 330 ± 10 Ma. Conversely, part of Daedalia Planum to the southwest of Arsia is younger, with a crater retention age of 160 ± 6 Ma, and this area shows no consistent flow-topography misalignments. These observations suggest that extensive regional deformation occurred between the two dates, consistent with other evidence for significant volcanism at Arsia in the Late Amazonian at about 200 Ma. Geophysical modelling using the finite element program COMSOL Multiphysics is planned to

  14. Evidence for komatiite-type lavas on Mars from Phobos ISM data and other observations

    Science.gov (United States)

    Reyes, David P.; Christensen, Philip R.

    1994-01-01

    Data from the Phobos 2 Imaging Spectrometer for Mars (ISM), compiled by Mustard et al. (1993), and other observations support the existence of komatiitic lavas on Mars. Mustard et al. (1993) determined from ISM data that the composition of the low-albedo materials covering the Syrtis Major plateau originally consisted of augite-bearing basalt containing both augite and pigeonite, with no appreciable amount of olivine. This description is consistent with a komatiitic basalt. Komatiite is significant for the Earth because it contains a high amount of MgO, implying generation under unique circumstances compared to more typical basaltic compositions and may be similarly important for Mars.

  15. The Influence of Topography on the Emplacement Dynamics of Martian Lava flows

    Science.gov (United States)

    Tremblay, J.; Fitch, E. P.; Fagents, S. A.

    2017-12-01

    Lava flows on the Martian surface exhibit a diverse array of complex morphologies. Previous emplacement models, based on terrestrial flows, do not fully account for these observed complex morphologies. We assert that the topography encountered by the flow can exert substantial control over the thermal, rheological, and morphological evolution of the flow, and that these effects can be better incorporated into flow models to predict Martian flow morphologies. Our development of an updated model can be used to account for these topographical effects and better constrain flow parameters. The model predicts that a slope break or flow meander induces eddy currents within the flow, resulting in the disruption of the flow surface crust. The exposure of the flow core results in accelerated cooling of the flow and a resultant increase in viscosity, leading to slowing of the flow. A constant source lava flux and a stagnated flow channel would then result in observable morphological changes, such as overflowing of channel levees. We have identified five morphological types of Martian flows, representing a range of effusion rates, eruption durations and topographic settings, which are suitable for application of our model. To characterize flow morphology, we used imaging and topographic data sets to collect data on flow dimensions. For eight large (50 to hundreds of km long) channelized flows in the Tharsis region, we used the MOLA 128 ppd DEM and/or individual MOLA shot points to derive flow cross-sectional thickness profiles, from which we calculated the cross-sectional area of the flow margins adjacent to the main channel. We found that the largest flow margin cross sectional areas (excluding the channel) occur in association with a channel bend, typically near the bend apex. Analysis of high-resolution images indicates that these widened flow margins are the result of repeated overflows of the channel levees and emplacement of short flow lobes adjacent to the main flow. In

  16. Lava ultimate resin nano ceramic for CAD/ CAM: customization case study.

    Science.gov (United States)

    Koller, M; Arnetzl, G V; Holly, L; Arnetzl, G

    2012-01-01

    Lava Ultimate Resin Nano Ceramic (RNC) blocks are innovative new CAD/CAM materials that make it possible to achieve superior esthetic results in easy steps. The blocks are made of nano ceramic particles embedded in a highly cured resin matrix. Therefore, composite materials can be used to characterize and adjust resin nano ceramic restorations after milling. The milled RNC restorations can be individualized intra-orally or extra-orally, either before or after insertion. Unlike conventional ceramic restorations, customization and glaze firing is neither necessary nor possible with RNC restorations. This opens up the opportunity for intraoral individualization and adaptation of the restorations.

  17. Remotely Characterizing the Topographic and Thermal Evolution of Kīlauea's Lava Flow Field

    Science.gov (United States)

    Rumpf, M. E.; Vaughan, R. G.; Poland, M. P.

    2017-12-01

    New technologies in satellite data acquisition and the continuous development of analysis software capabilities are greatly improving the ability of scientists to monitor volcanoes in near-real-time. Satellite-based thermal infrared (TIR) data are used to monitor and analyze new and ongoing volcanic activity by identifying and quantifying surface thermal characteristics and lava flow discharge rates. Improved detector sensitivities provide unprecedented spatial detail in visible to shortwave infrared (VSWIR) satellite imagery. The acquisition of stereo and tri-stereo visible imagery, as well as SAR, by an increasing number of satellite systems enables the creation of digital elevation models (DEMs) at higher temporal frequencies and resolutions than in the past. Free, user-friendly software programs, such as NASA's Ames Stereo Pipeline and Google Earth Engine, ease the accessibility and usability of satellite data to users unfamiliar with traditional analysis techniques. An effective and efficient integration of these technologies can be utilized towards volcano monitoring.Here, we use the active lava flows from the East Rift Zone vents of Kīlauea Volcano, Hawai`i as a testing ground for developing new techniques in multi-sensor volcano remote sensing. We use DEMs generated from stereo and tri-stereo images captured by the WorldView3 and Pleiades satellite systems to assess topographic changes over time at the active flow fields. Time-series data of lava flow area, thickness, and discharge rate developed from thermal emission measurements collected by ASTER, Landsat 8, and WorldView3 are compared to satellite-detected topographic changes and to ground observations of flow development to identify behavioral patterns and to monitor flow field evolution. We explore methods of combining these visual and TIR data sets collected by multiple satellite systems with a variety of resolutions and repeat times. Our ultimate goal is to develop integrative tools for near

  18. The dynamics of a channel-fed lava flow on Pico Partido volcano, Lanzarote

    Science.gov (United States)

    Woodcock, Duncan; Harris, Andrew

    2006-09-01

    A short length of channel on Pico Partido volcano, Lanzarote, provides us the opportunity to examine the dynamics of lava flowing in a channel that extends over a sudden break in slope. The 1 2-m-wide, 0.5 2-m-deep channel was built during the 1730 1736 eruptions on Lanzarote and exhibits a sinuous, well-formed channel over a steep (11° slope) 100-m-long proximal section. Over-flow units comprising smooth pahoehoe sheet flow, as well as evidence on the inner channel walls for multiple (at least 11) flow levels, attest to unsteady flow in the channel. In addition, superelevation is apparent at each of the six bends along the proximal channel section. Superelevation results from banking of the lava as it moves around the bend thus causing preferential construction of the outer bank. As a result, the channel profile at each bend is asymmetric with an outer bank that is higher than the inner bank. Analysis of superelevation indicates flow velocities of ~8 m s 1. Our analysis of the superelevation features is based on an inertia-gravity balance, which we show is appropriate, even though the down-channel flow is in laminar flow. We use a viscosity-gravity balance model, together with the velocities calculated from superelevation, to obtain viscosities in the range 25 60 Pa s (assuming that the lava behaved as a Newtonian liquid). Estimated volume fluxes are in the range 7 12 m3 s 1. An apparent down-flow increase in derived volume flux may have resulted from variable supply or bulking up of the flow due to vesiculation. Where the channel moves over a sharp break in slope and onto slopes of ~6°, the channel becomes less well defined and widens considerably. At the break of slope, an elongate ridge extends across the channel. We speculate that this ridge was formed as a result of a reduction in velocity immediately below the break of slope to allow deposition of entrained material or accretion of lava to the channel bed as a result of a change in flow regime or depth.

  19. Mauna Kea, Hawaii as an Analogue Site for Future Planetary Resource Exploration: Results from the 2010 ILSO-ISRU Field-Testing Campaign

    Science.gov (United States)

    ten Kate, I. L.; Armstrong, R.; Bernhardt, B.; Blummers, M.; Boucher, D.; Caillibot, E.; Captain, J.; Deleuterio, G.; Farmer, J. D.; Glavin, D. P.; hide

    2010-01-01

    Within the framework of the International Lunar Surface Operation - In-Situ Resource Utilization Analogue Test held on January 27 - February 11, 2010 on the Mauna Kea volcano in Hawaii, a number of scientific instrument teams collaborated to characterize the field site and test instrument capabilities outside laboratory environments. In this paper, we provide a geological setting for this new field-test site, a description of the instruments that were tested during the 2010 ILSO-ISRU field campaign, and a short discussion for each instrument about the validity and use of the results obtained during the test. These results will form a catalogue that may serve as reference for future test campaigns. In this paper we provide a description and regional geological setting for a new field analogue test site for lunar resource exploration, and discuss results obtained from the 2010 ILSO-ISRU field campaign as a reference for future field-testing at this site. The following instruments were tested: a multispectral microscopic imager, MMI, a Mossbauer spectrometer, an evolved gas analyzer, VAPoR, and an oxygen and volatile extractor called RESOLVE. Preliminary results show that the sediments change from dry, organic-poor, poorly-sorted volcaniclastic sand on the surface, containing basalt, iron oxides and clays, to more water- and organic-rich, fine grained, well-sorted volcaniclastic sand, primarily consisting of iron oxides and depleted of basalt and clays. Furthermore, drilling experiments showed a very close correlation between drilling on the Moon and drilling at the test site. The ILSO-ISRU test site was an ideal location for testing strategies for in situ resource exploration at the lunar or martian surface.

  20. Comportamiento mecánico y funcional de mezclas asfálticas reductoras de ruido tipo SMA 8 LA (Stone Mastic Asphalt Low-Noise) y LOA 5 D (Noise-reducing asphalt)

    OpenAIRE

    Chamorro Ramos, Alberto

    2011-01-01

    El presente estudio tiene por objeto el estudio del comportamiento mecánico y funcional de las mezclas asfálticas SMA 8LA y LOA5D, originarias de Alemania, destinadas a ofrecer una reducción sonora en la interacción neumático-pavimento, al tener una alta absorción acústica, garantizando la seguridad y confort que se debe prestar a los usuarios de las vías, así como una mayor durabilidad que la las mezclas porosas. En España no están normalizadas y son un tipo de mezclas muy modern...

  1. Wintering bats of the upper Snake River Plain: occurrence in lava-tube caves

    Energy Technology Data Exchange (ETDEWEB)

    Genter, D.L.

    1986-04-30

    Distribution and habitat selection of hibernating bats at the Idaho National Engineering Laboratory (INEL) and adjacent area are reported. Exploration of over 30 lava-tube caves revealed that two species, Myotis leibii and Plecotus townsendii, hibernate in the upper Snake River Plain. Five species, M. lucifugus, M. evotis, Eptesicus fuscus, Lasionycteris noctivagans, and Lasiurus cinereus are considered migratory. Myotis leibii and P. townsendii hibernate throughout much of the area, occasionally in mixed-species groups. Myotis leibii uses the dark and protected regions of the cave, usually wedged into tiny pockets and crevices near or at the highest portion of the ceiling. Individuals of P. townsendii may be found at any height or depth in the cave. Temperature appears to be primary limiting factor in habitat selection. Myotis leibii was found in significantly cooler air temperatures than P. townsendii. Neither species tolerated continuous temperatures below 1.5 C. Relative humidity does not seem to be a significant factor in the distribution or habitat selection of the two species in lava-tube caves. 18 references, 1 figure, 1 table.

  2. Identification of gap cooling phenomena from LAVA-4 experiment using MELCOR

    International Nuclear Information System (INIS)

    Park, Jong-Hwa; Kim, Dong-Ha; Kim, See-Darl; Kim, Sang-Baik; Kim, Hee-Dong

    2000-01-01

    During the severe accident, whether the hot debris in. lower head will be cool-down or not is the important issue concerning the plant safety. KAERI has launched the 'LAVA' experimental program to examine the existence of initial gap and its effect on the cooling of hot debris. The objective of this study is to identify the gap cooling phenomena from the analysis of simulation results on LAVA-4 experiment using MELCOR1.8.4 code. Three parameters on the debris coolability in MELCOR are the quenching heat transfer coefficient for the interaction between molten Al 2 O 3 and water, the heat transfer coefficient from debris to wall and the diameter of the particulate debris for calculating the available heat transfer area with water. The sensitivity study was performed with these three parameters. However it was believed that there must be a gap between debris and inside wall during the transient. MELCOR1.8.4 does not consider these gap-cooling phenomena. Therefore a conceptual gap-cooling model has been developed and implemented into the lower plenum model in MELCOR to take into account the gap effect in the lower plenum. When the 'gap model' is implemented, the peak temperature of the vessel wall was reduced and its cooling rate was increased. (author)

  3. Emergence of Lava Dome from the Crater Lake of Kelud Volcano, East Java

    Directory of Open Access Journals (Sweden)

    Sri Hidayati

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v4i4.83Kelud Volcano (+1731 m in East Java is one of the most active and dangerous volcanoes in Indonesia. A large lake occupies the summit crater. Historical eruptions generally only lasted for a very short time, mostly no longer than a few hours. The outburst is usually accompanied by pyroclastic flows. On August 2007, the activity of the volcano was initiated by the increase of the temperature of lake water and the change of the colour from typical green to yellow. Activities of the volcano are discussed following the swarms of volcano-tectonic (VT earthquakes on September 10th, September 26th to 29th, and October 24th to November 2nd. On September 26th to 29th, hypocentral distribution of those VT shifted from 5 km deep to just beneath the crater. The highest number of VT earthquakes occurred on November 1st attaining 50 events, then followed by a swarm of B-type events, where the number reached 1437 events in a day. The volcanic activity peaked on November 3rd when seismic records became saturated, which then was preceded by a sharp increase of lake temperature and a sudden deflation of radial tilt. It suggests that the lava extrusion forming a lava dome was taking place.

  4. Viewing lava safely: an epidemiology of hiker injury and illness in Hawaii Volcanoes National Park.

    Science.gov (United States)

    Heggie, Travis W; Heggie, Tracey M

    2004-01-01

    To report the injuries and illnesses encountered by wilderness hikers in Hawaii Volcanoes National Park attempting to hike to active lava flows and to investigate the roles that demographics, prior hiking experience, hiking behavior, and preparedness play in hiker vulnerability to injury and illness. During an 8-week period, daily on-site exit interviews of lava hikers were conducted by a uniformed park ranger and park volunteer. Information about the hiker's home residence, wilderness hiking experience, preparedness, health status, and health problems encountered during the hike was collected from a total of 804 hikers. A high rate of injury and illness was found among the study population. Scrapes and abrasions (59%), blisters (51%), and muscle strains and sprains (47%) were the most common injuries. Dehydration (77%) and respiratory irritation (46%) were the most common illnesses. Lower extremities were the most common site of injuries, and beginning hikers were the most vulnerable to injury and illness. Many hikers were inexperienced tourists willing to disregard warning signs and enter high-risk areas. Hawaii Volcanoes National Park is one of 22 US national park units with volcanic resources. The injuries and illnesses reported by the study group identify the impact that this type of environment can have on the safety of wilderness users in areas with similar resources. Recreating in remote and severe areas has inherent risks, but the high rate of injuries and illnesses sustained by the hikers of this study can potentially be reduced through the development of more direct risk management methods.

  5. Proximal Monitoring of the 2011–2015 Etna Lava Fountains Using MSG-SEVIRI Data

    Directory of Open Access Journals (Sweden)

    Stefano Corradini

    2018-04-01

    Full Text Available From 2011 to 2015, 49 lava fountains occurred at Etna volcano. In this work, the measurements carried out from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI instrument, on board the Meteosat Second Generation (MSG geostationary satellite, are processed to realize a proximal monitoring of the eruptive activity for each event. The SEVIRI measurements are managed to provide the time series of start and duration of eruption and fountains, Time Averaged Discharge Rate (TADR and Volcanic Plume Top Height (VPTH. Due to its temperature responsivity, the eruptions start and duration, fountains start and duration and TADR are realized by exploiting the SEVIRI 3.9 μm channel, while the VPTH is carried out by applying a simplified procedure based on the SEVIRI 10.8 μm brightness temperature computation. For each event, the start, duration and TADR have been compared with ground-based observations. The VPTH time series is compared with the results obtained from a procedures-based on the volcanic cloud center of mass tracking in combination with the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT back-trajectories. The results indicate that SEVIRI is generally able to detect the start of the lava emission few hours before the ground measurements. A good agreement is found for both the start and the duration of the fountains and the VPTH with mean differences of about 1 h, 50 min and 1 km respectively.

  6. Pisgah Lava Cave Communication Test: Science Case Study for the Networked Constellations Initiative

    Science.gov (United States)

    Belov, K.; Ellison, D.; Fraeman, A.

    2017-01-01

    As part of the science case study for the Networked Constellations initiative, a team of JPL scientists explore the possibility of a mission to study the lava caves on Mars. Natural caves on Mars and the Moon present a unique opportunity to learn about the planetary geology and to provide a shelter for human explorers. Due to power and communication challenges, a network of assets has significant advantages over a single asset sent inside a cave. However, communication between the assets and the data downlink present significant difficulties due to the presence of rough walls, boulders, and other obstacles with unknown dielectric constant inside a typical cave, disturbing the propagation of the radio waves. A detailed study is needed to establish the limitations of the current communication technologies and to develop requirements for the new communication technology applicable to the cave environment. On May 4 of 2017, Konstantin Belov, Doug Ellison, and Abby Fraeman visited a lava cave in Pisgah, CA. The purpose of the visit was to build a 3D map of the cave, which could be used to create a model of radio wave propagation, and to conduct a series of communication tests using off-the-shelf equipment to verify the in-cave communication challenges. This experiment should be considered as a simple 'proof of concept' and is the subject of this report.

  7. Seismic experiments on Showa-Shinzan lava dome using firework shots

    Science.gov (United States)

    Miyamachi, Hiroki; Watanabe, Hidefumi; Moriya, Takeo; Okada, Hiromu

    1987-11-01

    Seismic experiments were conducted on Showa-Shinzan, a parasitic lava dome of volcano Usu, Hokkaido, which was formed during 1943 1945 activity. Since we found that firework shots fired on the ground can effectively produce seismic waves, we placed many seismometers on and around the dome during the summer festivals in 1984 and 1985. The internal structure had been previously studied using a prospecting technique employing dynamite blasts in 1954. The measured interval velocity across the dome in 1984 ranges 1.8 2.2 km/s drastically low compared to the results (3.0 4.0 km/s) in 1954; in addition, the velocity is 0.3 0.5 km/s higher than that in the surrounding area. The variation of the observed first arrival amplitudes can be explained by geometrical spreading in the high velocity lava dome. These observations show a marked change in the internal physical state of the dome corresponding to a drop in the measured highest temperature at fumaroles on the dome from 800°C in 1947 to 310°C in 1986.

  8. Winter distribution and use of high elevation caves as foraging sites by the endangered Hawaiian hoary bat, Lasiurus cinereus semotus

    Science.gov (United States)

    Bonaccorso, Frank; Montoya-Aiona, Kristina; Pinzari, Corinna A.; Todd, Christopher M.

    2016-01-01

    We examine altitudinal movements involving unusual use of caves by Hawaiian hoary bats, Lasiurus cinereus semotus, during winter and spring in the Mauna Loa Forest Reserve (MLFR), Hawai‘i Island. Acoustic detection of hoary bat vocalizations, were recorded with regularity outside 13 lava tube cave entrances situated between 2,200 to 3,600 m asl from November 2012 to April 2013. Vocalizations were most numerous in November and December with the number of call events and echolocation pulses decreasing through the following months. Bat activity was positively correlated with air temperature and negatively correlated with wind speed. Visual searches found no evidence of hibernacula nor do Hawaiian hoary bats appear to shelter by day in these caves. Nevertheless, bats fly deep into caves as evidenced by numerous carcasses found in cave interiors. The occurrence of feeding buzzes around cave entrances and visual observations of bats flying in acrobatic fashion in cave interiors point to the use of these spaces as foraging sites. Peridroma moth species (Noctuidae), the only abundant nocturnal, flying insect sheltering in large numbers in rock rubble and on cave walls in the MLFR, apparently serve as the principal prey attracting hoary bats during winter to lava tube caves in the upper MLFR. Caves above 3,000 m on Mauna Loa harbor temperatures suitable for Pseudogymnoascus destructansfungi, the causative agent of White-nose Syndrome that is highly lethal to some species of North American cave-dwelling bats. We discuss the potential for White-nose Syndrome to establish and affect Hawaiian hoary bats.

  9. Assessing the origin of unusual organic formations in lava caves from Canary Islands (Spain)

    Science.gov (United States)

    Miller, Ana Z.; de la Rosa, Jose M.; Garcia-Sanchez, Angela M.; Pereira, Manuel F. C.; Jurado, Valme; Fernández, Octavio; Knicker, Heike; Saiz-Jimenez, Cesareo

    2016-04-01

    Lava tubes, like other caves, contain a variety of speleothems formed in the initial stage of a lava tube formation or due to leaching and subsequent precipitation of secondary minerals. Primary and secondary mineral formations in lava caves are mainly composed of silicate minerals, although secondary minerals common in limestone caves have been also reported in this type of caves. In addition, unusual colored deposits have been found on the walls and ceilings of lava tubes, some of them of unknown origin and composition. A brown to black-colored mud-like deposits was observed in "Llano de los Caños" Cave, La Palma Island, Canary Islands, Spain. These black deposits coat the wall and ceiling of the lava tube where sub-horizontal fractures occur. FESEM-EDS, X-ray micro-computed tomography and mineralogical analyses were conducted for morphological, 3D microstructural and compositional characterization of these unusual speleothem samples. These techniques revealed that they are mainly composed of amorphous materials, suggesting an organic carbon composition. Hence, analytical pyrolysis (Py-GC/MS), solid-state 13C Nuclear Magnetic Resonance (NMR) and stable isotope analysis were applied to assess the nature and origin of the black deposits. The combination of these analytical tools permits the identification of specific biomarkers (di- and triterpenoids) for tracing the potential sources of the organic compounds in the speleothems. For comparison purposes, samples from the topsoil and overlaying vegetation were also analyzed. Chromatograms resulting from the Py-GC/MS showed an abundance of polysaccharides, lipids and terpenoids typically derived from the vegetation of the area (Erica arborea). In addition, levoglucosan, polycyclic aromatic hydrocarbons and N-containing heterocyclic compounds were detected. They probably derived from the leaching of charred vegetation resulting from a wildfire occurred in the area in 2012. The lack of the typical pattern of odd

  10. Radon-222 in boundary layer and free tropospheric continental outflow events at three ACE-Asia sites

    OpenAIRE

    Zahorowski, Wlodek; Chambers, Scott; Wang, Tao; Kang, Chang-Hee; Uno, Itsushi; Poon, Steven; Oh, Sung-Nam; Werczynski, Sylvester; Kim, Jiyoung; Henderson-Sellers, Ann

    2011-01-01

    A 1-year record of hourly atmospheric radon-222 concentration observations at three ACE-Asia network sites—Hok Tsui (Hong Kong), Gosan (Jeju Island) and Mauna Loa Observatory (Hawaii)—is presented and discussed. The observations include the spring 2001 ACE-Asia intensive operation period. Site locations were chosen for the experimental characterization of both boundary layer (Hok Tsui, Gosan) and free tropospheric (Mauna Loa) continental outflow to the Pacific. A significant seasonal variabil...

  11. Flow banding in basaltic pillow lavas from the Early Archean Hooggenoeg Formation, Barberton Greenstone Belt, South Africa

    Science.gov (United States)

    Robins, Brian; Sandstå, Nils Rune; Furnes, Harald; de Wit, Maarten

    2010-07-01

    Well-preserved pillow lavas in the uppermost part of the Early Archean volcanic sequence of the Hooggenoeg Formation in the Barberton Greenstone Belt exhibit pronounced flow banding. The banding is defined by mm to several cm thick alternations of pale green and a dark green, conspicuously variolitic variety of aphyric metabasalt. Concentrations of relatively immobile TiO2, Al2O3 and Cr in both varieties of lava are basaltic. Compositional differences between bands and variations in the lavas in general have been modified by alteration, but indicate mingling of two different basalts, one richer in TiO2, Al2O3, MgO, FeOt and probably Ni and Cr than the other, as the cause of the banding. The occurrence in certain pillows of blebs of dark metabasalt enclosed in pale green metabasalt, as well as cores of faintly banded or massive dark metabasalt, suggest that breakup into drops and slugs in the feeder channel to the lava flow initiated mingling. The inhomogeneous mixture was subsequently stretched and folded together during laminar shear flow through tubular pillows, while diffusion between bands led to partial homogenisation. The most common internal pattern defined by the flow banding in pillows is concentric. In some pillows the banding defines curious mushroom-like structures, commonly cored by dark, variolitic metabasalt, which we interpret as the result of secondary lateral flow due to counter-rotating, transverse (Dean) vortices induced by the axial flow of lava towards the flow front through bends, generally downward, in the tubular pillows. Other pillows exhibit weakly-banded or massive, dark, variolitic cores that are continuous with wedge-shaped apophyses and veins that intrude the flow banded carapace. These cores represent the flow of hotter and less viscous slugs of the dark lava type into cooled and stiffened pillows.

  12. Osmium isotope variations accompanying the eruption of a single lava flow field in the Columbia River Flood Basalt Province

    Science.gov (United States)

    Vye-Brown, C.; Gannoun, A.; Barry, T. L.; Self, S.; Burton, K. W.

    2013-04-01

    Geochemical interpretations of continental flood basalts usually assume that individual lava flows represent compositionally homogenous and rapidly erupted products of large well-mixed magma reservoirs. However, inflated pāhoehoe lavas may develop over considerable periods of time and preserve chemical variations that can be temporally linked through flow formation to eruption sequence thus providing an understanding of magma evolution over the timescale of a single eruption. This study presents comprehensive major, trace element and Re-Os isotope data for a single eruption that formed the 2660 km3 Sand Hollow flow field in the Columbia River Basalt Province, USA. Major and trace element variations accompanying flow emplacement (e.g. MgO 3.09-4.55 wt%, Ni 17.5-25.6 ppm) are consistent with fractional crystallisation, but other petrogenetic processes or variable sources cannot be distinguished. However, there is a systematic shift in the initial 187Os/188Os isotope composition of the magma (age corrected to 15.27 Ma), from 0.174 (lava core) to 1.444 (lava crust) within a single 35 m thick sheet lobe. Lava crust values are more radiogenic than any known mantle source, consistent with previous data indicating that neither an enriched reservoir nor the sub-continental lithospheric mantle are likely to have sourced these basalts. Rather, these data indicate that lavas emplaced during the earliest stages of eruption have higher degrees of crustal contamination. These results highlight the limitations of applying chemostratigraphic correlation across continental flood basalt provinces, the use of single data points to define melt sources and magmatic processes, and the dangers of using conventional isochron techniques in such basalt sequences for absolute chronology.

  13. Field and experimental constraints on the rheology of arc basaltic lavas: the January 2014 Eruption of Pacaya (Guatemala)

    Science.gov (United States)

    Soldati, A.; Sehlke, A.; Chigna, G.; Whittington, A.

    2016-06-01

    We estimated the rheology of an active basaltic lava flow in the field, and compared it with experimental measurements carried out in the laboratory. In the field we mapped, sampled, and recorded videos of the 2014 flow on the southern flank of Pacaya, Guatemala. Velocimetry data extracted from videos allowed us to determine that lava traveled at ˜2.8 m/s on the steep ˜45° slope 50 m from the vent, while 550 m further downflow it was moving at only ˜0.3 m/s on a ˜4° slope. Estimates of effective viscosity based on Jeffreys' equation increased from ˜7600 Pa s near the vent to ˜28,000 Pa s downflow. In the laboratory, we measured the viscosity of a representative lava composition using a concentric cylinder viscometer, at five different temperatures between 1234 and 1199 °C, with crystallinity increasing from 0.1 to 40 vol%. The rheological data were best fit by power law equations, with the flow index decreasing as crystal fraction increased, and no detectable yield strength. Although field-based estimates are based on lava characterized by a lower temperature, higher crystal and bubble fraction, and with a more complex petrographic texture, field estimates and laboratory measurements are mutually consistent and both indicate shear-thinning behavior. The complementary field and laboratory data sets allowed us to isolate the effects of different factors in determining the rheological evolution of the 2014 Pacaya flows. We assess the contributions of cooling, crystallization, and changing ground slope to the 3.7-fold increase in effective viscosity observed in the field over 550 m, and conclude that decreasing slope is the single most important factor over that distance. It follows that the complex relations between slope, flow velocity, and non-Newtonian lava rheology need to be incorporated into models of lava flow emplacement.

  14. Abdominal MRI at 3.0 T: LAVA-Flex compared with conventional fat suppression T1-weighted images.

    Science.gov (United States)

    Li, Xing Hui; Zhu, Jiang; Zhang, Xiao Ming; Ji, Yi Fan; Chen, Tian Wu; Huang, Xiao Hua; Yang, Lin; Zeng, Nan Lin

    2014-07-01

    To study liver imaging with volume acceleration-flexible (LAVA-Flex) for abdominal magnetic resonance imaging (MRI) at 3.0 T and compare the image quality of abdominal organs between LAVA-Flex and fast spoiled gradient-recalled (FSPGR) T1-weighted imaging. Our Institutional Review Board approval was obtained in this retrospective study. Sixty-nine subjects had both FSPGR and LAVA-Flex sequences. Two radiologists independently scored the acquisitions for image quality, fat suppression quality, and artifacts and the values obtained were compared with the Wilcoxon signed rank test. According to the signal intensity (SI) measurements, the uniformity of fat suppression, the contrast between muscle and fat and normal liver and liver lesions were compared by the paired t-test. The liver and spleen SI on the fat-only phase were analyzed in the fatty liver patients. Compared with FSPGR imaging, LAVA-Flex images had better and more homogenous fat suppression and lower susceptibility artifact (qualitative scores: 4.70 vs. 4.00, 4.86% vs. 7.14%, 4.60 and 4.10, respectively). The contrast between muscle and fat and between the liver and pathologic lesions was significantly improved on the LAVA-Flex sequence. The contrast value of the fatty liver and spleen was higher than that of the liver and spleen. The LAVA-Flex sequence offers superior and more homogenous fat suppression of the abdomen than does the FSPGR sequence. The fat-only phase can be a simple and effective method of assessing fatty liver. © 2013 Wiley Periodicals, Inc.

  15. Interferometric synthetic aperture radar study of Okmok volcano, Alaska, 1992-2003: Magma supply dynamics and postemplacement lava flow deformation

    Science.gov (United States)

    Lu, Z.; Masterlark, Timothy; Dzurisin, Daniel

    2005-01-01

    Okmok volcano, located in the central Aleutian arc, Alaska, is a dominantly basaltic complex topped with a 10-km-wide caldera that formed circa 2.05 ka. Okmok erupted several times during the 20th century, most recently in 1997; eruptions in 1945, 1958, and 1997 produced lava flows within the caldera. We used 80 interferometric synthetic aperture radar (InSAR) images (interferograms) to study transient deformation of the volcano before, during, and after the 1997 eruption. Point source models suggest that a magma reservoir at a depth of 3.2 km below sea level, located beneath the center of the caldera and about 5 km northeast of the 1997 vent, is responsible for observed volcano-wide deformation. The preeruption uplift rate decreased from about 10 cm yr−1 during 1992–1993 to 2 ∼ 3 cm yr−1 during 1993–1995 and then to about −1 ∼ −2 cm yr−1 during 1995–1996. The posteruption inflation rate generally decreased with time during 1997–2001, but increased significantly during 2001–2003. By the summer of 2003, 30 ∼ 60% of the magma volume lost from the reservoir in the 1997 eruption had been replenished. Interferograms for periods before the 1997 eruption indicate consistent subsidence of the surface of the 1958 lava flows, most likely due to thermal contraction. Interferograms for periods after the eruption suggest at least four distinct deformation processes: (1) volcano-wide inflation due to replenishment of the shallow magma reservoir, (2) subsidence of the 1997 lava flows, most likely due to thermal contraction, (3) deformation of the 1958 lava flows due to loading by the 1997 flows, and (4) continuing subsidence of 1958 lava flows buried beneath 1997 flows. Our results provide insights into the postemplacement behavior of lava flows and have cautionary implications for the interpretation of inflation patterns at active volcanoes.

  16. Mineralogy and Petrology of Lava Flows (Tertiary-Quaternary) In Southeastern Idaho and at Black Mountain, Rich County, Utah

    OpenAIRE

    Puchy, Barbara J.

    1981-01-01

    Lava flows of Tertiary-Quaternary age occur in Enoch Valley, Upper Valley, and Slug Valley in southeastern Idaho. The basalts in Upper Valley and Enoch Valley contain olivine (Fo69 to Fo37), plagioclase (An62 to An39), augite and Fe-Ti oxides. The lava in Slug Valley lacks plagioclase, but contains sanidine (Or70 to Or56) with a trace of biotite and amphibole, and thus, has been termed alkali trachyte. Black Mountain, on the eastern side of Bear Lake, northeastern Utah, is capped by basalt...

  17. Experimental study of the surface thermal signature of gravity currents: application to the assessment of lava flow effusion rate

    Science.gov (United States)

    Garel, F.; Kaminski, E.; Tait, S.; Limare, A.

    2011-12-01

    During an effusive volcanic eruption, the crisis management is mainly based on the prediction of lava flows advance and its velocity. As the spreading of lava flows is mainly controlled by its rheology and the eruptive mass flux, the key question is how to evaluate them during the eruption (rather than afterwards.) A relationship between the heat flux lost by the lava at its surface and the eruption rate is likely to exist, based on the first-order argument that higher eruption rates should correspond to larger power radiated by a lava flow. The semi-empirical formula developed by Harris and co-workers (e.g. Harris et al., Bull. Volc. 2007) is currently used to estimate lava flow rate from satellite surveys yielding the surface temperatures and area of the lava flow field. However, this approach is derived from a static thermal budget of the lava flow and does not explicitly model the time-evolution of the surface thermal signal. Here we propose laboratory experiments and theoretical studies of the cooling of a viscous axisymmetric gravity current fed at constant flux rate. We first consider the isoviscous case, for which the spreading is well-know. The experiments using silicon oil and the theoretical model both reveal the establishment of a steady surface thermal structure after a transient time. The steady state is a balance between surface cooling and heat advection in the flow. The radiated heat flux in the steady regime, a few days for a basaltic lava flow, depends mainly on the effusion rate rather than on the viscosity. In this regime, one thermal survey of the radiated power could provide a consistent estimate of the flow rate if the external cooling conditions (wind) are reasonably well constrained. We continue to investigate the relationship between the thermal radiated heat flux and the effusion rate by using in the experiments fluids with temperature-dependent viscosity (glucose syrup) or undergoing solidification while cooling (PEG wax). We observe a

  18. Do Mensalão à Lava Jato: a ascensão da barganha e da colaboração premiada no Processo Penal

    OpenAIRE

    Renato de Souza Matos Filho

    2017-01-01

    DO MENSALÃO À LAVA JATO: A ASCENSÃO DA BARGANHA E DA COLABORAÇÃO PREMIADA NO PROCESSO PENAL FROM MENSALÃO TO LAVA JATO: THE RISE OF BARGAINING AND AWARD-WINNING COLLABORATION IN CRIMINAL PROCEDURE Renato de Souza Matos Filho

  19. Do Mensalão à Lava Jato: a ascensão da barganha e da colaboração premiada no Processo Penal

    OpenAIRE

    Matos Filho, Renato de Souza

    2017-01-01

    DO MENSALÃO À LAVA JATO: A ASCENSÃO DA BARGANHA E DACOLABORAÇÃO PREMIADA NO PROCESSO PENALFROM MENSALÃO TO LAVA JATO: THE RISE OF BARGAINING AND AWARD-WINNING COLLABORATION IN CRIMINAL PROCEDURERenato de Souza Matos Filho

  20. Factors influencing the height of Hawaiian lava fountains: implications for the use of fountain height as an indicator of magma gas content

    Science.gov (United States)

    Parfitt, E.A.; Wilson, L.; Neal, C.A.

    1995-01-01

    The heights of lava fountains formed in Hawaiian-style eruptions are controlled by magma gas content, volume flux and the amounts of lava re-entrainment and gas bubble coalescence. Theoretical models of lava fountaining are used to analyse data on lava fountain height variations collected during the 1983-1986 Pu'u 'O'o vent of Kilauea volcano, Hawaii. The results show that the variable fountain heights can be largely explained by the impact of variations in volume flux and amount of lava re-entrainment on erupting magmas with a constant gas content of ???0.32 wt.% H2O. However, the gas content of the magma apparently declined by ???0.05 wt.% during the last 10 episodes of the eruption series and this decline is attributed to more extensive pre-eruption degassing due to a shallowing of the sub-vent feeder dike. It is concluded that variations in lava fountain height cannot be simply interpreted as variations in gas content, as has previously been suggested, but that fountain height can still be a useful guide to minimum gas contents. Where sufficient data are available on eruptive volume fluxes and extent of lava entrainment, greatly improved estimates can be made of magma gas content from lava fountain height. ?? 1995 Springer-Verlag.

  1. An evaluation of the influence of the experimental cooling rate along with other thermomagnetic effects to explain anomalously low paleointensities obtained for historic lavas of Mt. Etna (Italy)

    NARCIS (Netherlands)

    de Groot, L.V.; Mullender, T.A.T.; Dekkers, M.J.

    2013-01-01

    Methodological aspects in obtaining reliable absolute palaeointensity estimates have attracted renewed attention in recent years. Obtaining a reliable palaeointensity from lavas, however, still is notoriously difficult: in many cases lavas have been shown to be a non-ideal recorder of the

  2. Ejército y Nación. Un estudio sobre las estrategias de inscripción de lo/as oficiales del Ejército Argentino en la comunidad nacional

    Directory of Open Access Journals (Sweden)

    Valentina Salvi

    2013-10-01

    Full Text Available Figuras tales como “reserva moral de la nación” o “salvadores de la patria” dan cuenta no sólo del lugar privilegiado que el ejército mantuvo en su vínculo con la nación sino también de un tipo legítimo de agencia que debía ejercer. Luego del terrorismo de Estado y de la derrota de guerra de Malvinas, en un contexto de pérdida de prestigio y declinación de la elite militar, lo/as oficiales se ven obligados a gestionar las relaciones de reconocimiento mutuo que establecen con la sociedad y la nación de las que son parte. A partir del análisis e interpretación de las representaciones, creencias y valores que lo/as oficiales actualizan en el ejercicio cotidiano de su profesión, el propósito de este trabajo es dar cuenta de los sentidos que, provenientes del pasado pero también sujetos a los cambios y necesidades del presente, enmarcan, alimentan y sostienen un tipo de inscripción de la agencia histórica de la fuerza en la comunidad nacional

  3. Late Neoproterozoic adakitic lavas in the Arabian-Nubian shield, Sinai Peninsula, Egypt

    Science.gov (United States)

    Abdelfadil, Khaled M.; Obeid, Mohamed A.; Azer, Mokhles K.; Asimow, Paul D.

    2018-06-01

    The Sahiya and Khashabi volcano-sedimentary successions are exposed near the southern tip of the Sinai Peninsula, the northernmost segment of the Arabian-Nubian Shield (ANS). These Neoproterozoic successions include a series of intermediate to acidic lavas and associated pyroclastic deposits. Field observations and geochemical data reveal two distinct eruptive phases. The lavas representing each phase are intercalated with volcaniclastic greywackes and siltstones. The first eruptive phase, well exposed at Wadi Sahiya, includes basaltic andesite, andesite and dacite with minor rhyolite. The rocks of this sequence are at most weakly deformed and slightly metamorphosed. The second eruptive phase, well exposed at Wadi Khashabi, includes only undeformed and unmetamorphosed dacite and rhyolite. The two volcano-sedimentary successions were separated and dismembered during intrusion of post-collisional calc-alkaline and alkaline granites. Geochemical compositions of the Sahiya and Khashabi volcanic rocks confirm the field data indicating discrete phases of magmatism, however all the compositions observed might plausibly be derived from a common source and be related to one another dominantly through fractional crystallization. The low and variable Mg# values (55-33) measured in the basaltic andesites and andesites preclude their equilibration with a mantle source. Rather, even the most primitive observed lavas are already the products of significant fractional crystallization, dominated by removal of amphibole and plagioclase. Continued fractionation eventually produced dacite and rhyolite marked by significant depletion in Y and HREE. The gradual appearance of negative Nb-Ta anomalies with increasing SiO2 through both suites suggests at least some component of progressive crustal contamination. The medium- to high-K calc-alkaline character of the Sahiya and Khashabi volcanics could be explained either by their formation at an active continental margin or by a two

  4. Investigating lava flows at Quizapu Volcano, on the ground and in the air

    Science.gov (United States)

    Lev, E.; Ruprecht, P.; Moon, R. S.

    2017-12-01

    The emplacement of silicic and intermediate lava flows is not often witnessed directly, and thus quantitative assessment of existing flows is a critical step in the interpretation of flow dynamics and eruption conditions. Two key parameters - lava rheology and effusion rate - are both difficult to assess many years after the eruption ended. Yet both are reflected in observables such as flow morphology (including roughness, folding and inflation structures), and micro-texture (including vesicularity, crystallinity, and microlite content). Therefore, it is important to collect data sets of high spatial resolution of both samples and topography of a target flow. We present a case study from Quizapu volcano (Chile), where an 1846 effusive eruption emplaced a suite of large lava flows, spanning composition from silicis andesitic to dacite. We focus on two major flow lobes, which, despite originating from the same eruption, and traversing similar topography, exhibit different large-scale structure: The southern flow (SF) has a uniform, smooth, almost straight geometry, while the northern flow (NF) has undulating boundaries and irregular width and thickness. We collected and utilized two sets of data: 1) thousands of aerial photos collected during 12 UAV flights, and 2) 68 hand samples which covered both the main channels and the levees of both flows in a systematic grid pattern. We present outcomes from analysis of samples for 3D structure, crystallinity, and vesicularity using X-ray microtomography, for micrstructure using thin sections and SEM, and for major and trace element composition using XRF. The aerial photographs were used to construct high-resolution (few cm) digital elevation models (DEMs) of several segments of each flow. From the DEMs we extracted along- and across-flow profiles which reveal morphological differences between NF and SF, with pressure ridges at NF wider and taller than those of SF. However, both flows share a common trend line in the

  5. In Situ Resource Utilization (ISRU) on the Moon: Moessbauer Spectroscopy as a Process Monitor for Oxygen Production. Results from a Field Test on Mauna Kea Volcano, Hawaii

    Science.gov (United States)

    Morris, R.V.; Schroder, C.; Graff, T.G.; Sanders, G.B.; Lee, K.A.; Simon, T.M.; Larson, W.E.; Quinn, J.W.; Clark, L.D.; Caruso, J.J.

    2009-01-01

    Essential consumables like oxygen must to be produced from materials on the lunar surface to enable a sustained, long-term presence of humans on the Moon. The Outpost Precursor for ISRU and Modular Architecture (OPTIMA) field test on Mauna Kea, Hawaii, facilitated by the Pacific International Space Center for Exploration Systems (PISCES) of the University of Hawaii at Hilo, was designed to test the implementation of three hardware concepts to extract oxygen from the lunar regolith: Precursor ISRU Lunar Oxygen Testbed (PILOT) developed by Lockheed Martin in Littleton, CO; Regolith & Environmental Science and Oxygen & Lunar Volatiles Extraction (RESOLVE) developed at the NASA Kennedy Space Center in Cape Canaveral, FL; and ROxygen developed at the NASA Johnson Space Center in Houston, TX. The three concepts differ in design, but all rely on the same general principle: hydrogen reduction of metal cations (primarily Fe2+) bonded to oxygen to metal (e.g., Fe0) with the production of water. The hydrogen source is residual hydrogen in the fuel tanks of lunar landers. Electrolysis of the water produces oxygen and hydrogen (which is recycled). We used the miniaturized M ssbauer spectrometer MIMOS II to quantify the yield of this process on the basis of the quantity of Fe0 produced. Iron M ssbauer spectroscopy identifies iron-bearing phases, determines iron oxidation states, and quantifies the distribution of iron between mineral phases and oxidation states. The oxygen yield can be calculated by quantitative measurements of the distribution of Fe among oxidation states in the regolith before and after hydrogen reduction. A M ssbauer spectrometer can also be used as a prospecting tool to select the optimum feedstock for the oxygen production plants (e.g., high total Fe content and easily reduced phases). As a demonstration, a MIMOS II backscatter spectrometer (SPESI, Germany) was mounted on the Cratos rover (NASA Glenn Research Center in Cleveland, OH), which is one of

  6. Major, Trace, and Volatile (CO2, H2O, S, F, and Cl) Elements from 1000+ Hawaiian Olivine-hosted Melt Inclusions Reveal the Dynamics of Crustal Recycling

    Science.gov (United States)

    Marske, J. P.; Hauri, E. H.; Trusdell, F.; Garcia, M. O.; Pietruszka, A. J.

    2015-12-01

    Global cycling of volatile elements (H2O, CO2, F, S, Cl) via subduction to deep mantle followed by entrainment and melting within ascending mantle plumes is an enigmatic process that controls key aspects of hot spot volcanism (i.e. melting rate, magma supply, degassing, eruptive style). Variations in radiogenic isotope ratios (e.g.187Os/188Os) at hot spots such as Hawaii reveal magmatic processes within deep-seated mantle plumes (e.g. mantle heterogeneity, lithology, and melt transport). Shield-stage lavas from Hawaii likely originate from a mixed plume source containing peridotite and recycled oceanic crust (pyroxenite) based on variations of radiogenic isotopes. Hawaiian lavas display correlations among isotopes, major and trace elements [1] that might be expected to have an expression in the volatile elements. To investigate this link, we present Os isotopic ratios (n=51), and major, trace, and volatile elements from 1003 olivine-hosted melt inclusions (MI) and their host minerals from tephra from Koolau, Mauna Loa, Hualalai, Kilauea, and Loihi volcanoes. The data show a strong correlation between MI volatile contents and incompatible trace element ratios (La/Yb) with Os isotopes of the same host olivines and reveal large-scale volatile heterogeneity and zonation exists within the Hawaiian plume. 'Loa' chain lavas, which are thought to originate from greater proportions of recycled oceanic crust/pyroxenite, have MIs with lower H2O, S, F, and Cl contents compared to 'Kea' chain lavas that were derived from more peridotite-rich sources. The depletion of volatile elements in the 'Loa' volcano MIs can be explained if they tapped an ancient dehydrated oceanic crust component within the Hawaiian plume. Higher extents of melting beneath 'Loa' volcanoes can also explain these depletions. The presence of dehydrated recycled mafic material in the plume source suggests that subduction effectively devolatilizes part of the oceanic crust. These results are similar to the

  7. Areally Extensive Surface Bedrock Exposures on Mars: Many Are Clastic Rocks, Not Lavas

    Science.gov (United States)

    Rogers, A. Deanne; Warner, Nicholas H.; Golombek, Matthew P.; Head, James W.; Cowart, Justin C.

    2018-02-01

    Areally extensive exposures of intact olivine/pyroxene-enriched rock, as well as feldspar-enriched rock, are found in isolated locations throughout the Martian highlands. The petrogenetic origin(s) of these rock units are not well understood, but some previous studies favored an effusive volcanic origin partly on the basis of distinctive composition and relatively high thermal inertia. Here we show that the regolith development, crater retention, and morphological characteristics for many of these "bedrock plains" are not consistent with competent lavas and reinterpret the high thermal inertia orbital signatures to represent friable materials that are more easily kept free of comminution products through eolian activity. Candidate origins include pyroclastic rocks, impact-generated materials, or detrital sedimentary rocks. Olivine/pyroxene enrichments in bedrock plains relative to surrounding materials could have potentially formed through deflation and preferential removal of plagioclase.

  8. Alkaline lavas from southern Mendoza, Argentina, extend the Patagonian DUPAL mantle field to the north

    Science.gov (United States)

    Soager, N.; Holm, P. M.; Llambias, E.

    2010-12-01

    The lavas sampled around Río Colorado ~37°S at the border of Mendoza and Neuquén provinces, Argentina, define an OIB-like end-member composition for the Pleistocene and Holocene activity in the Payún Matrú volcanic field. Although positioned in the far back-arc of the Andes, only a few lavas show signs of involvement of slab fluids or crustal contamination such as relatively high LILEs relative to Nb. The very low La/Nb (~0.66) and Zr/Nb (~5) and high U/Pb (0.3-0.4) of the end-member composition clearly distinguish the source from normal MORB mantle, while high Ba/Nb (~10) and K/Nb (370-400) compared to FOZO and HIMU type OIBs suggest an EM type of mantle. Overall, the trace element patterns of the Río Colorado lavas are similar to the central and north Patagonian intraplate basalts and to South Atlantic E-MORB affected by the Discovery plume and the LOMU component (le Roux et al., 2002, EPSL 203). The isotopic composition of the Río Colorado component has a 206Pb/204Pb = 18.4, 207Pb/204Pb = 15.58, 208Pb/204Pb = 38.3, 87Sr/86Sr = 0.70353 and 143Nd/144Nd = 0.51285. This composition overlaps the central and north Patagonian intraplate basalts in Pb-isotopic space but is slightly less enriched in Sr and Nd-isotopes. It is distinctly different from the FOZO like composition of the south Patagonian intraplate basalts and the nearby Juan Fernandéz plume but similar to the South Atlantic N-MORB and MORB from the southern Chile Ridge segment 4 (Sturm et al., 1999, JGR 104) described as DUPAL type. The DUPAL-MORB type isotopic composition and the plume-like trace element patterns of the Río Colorado lavas suggest the presence of a weak plume beneath the area. The eruption of the large Payún Matrú volcano and the gigantic Pleistocene flood basalts also calls for a thermal anomaly to produce these melts during a weakly compressive tectonic regime with no significant addition of slab fluids. This was supported by Burd et al. (2008, Abstr., 7th Int. Sym. And. Geo

  9. Paleomagnetism and geochronology from the Lunayyir and Khaybar lava fields, Saudi Arabia

    Science.gov (United States)

    Vigliotti, Luigi; Cai, Yue; Rasul, Najeeb M. A.; Ligi, Marco

    2017-04-01

    The Arabian Peninsula was one of the first plates to be investigated using paleomagnetic data (Irving & Tarling, 1961). However, very few additional results appeared in the literature since then and the available information are far from sufficient to explain the tectonics of the Red Sea region. In order to better constrain the tectonic history of the Arabian craton in the Tertiary, we carried out a combined paleomagnetic and Ar/Ar geochronological study on volcanic rocks from the Khaybar and Lunayyir Harrats (lava fields) plus a site of sediments deposited below the Miocene rocks in the former area. 86 hand-oriented samples were collected from 17 sites and progressive thermal or alternating field demagnetization isolated stable characteristic magnetizations (ChRM) that are consistent with a primary magnetization only in the Late Quaternary lava flows from the Lunayyir. Whole rock 39Ar/40Ar step-heating analyses yield whole-rock plateau ages of 12.8 to 16.3 Ma for four alkaline lava flows from Khaybar area, which is consistent with the estimated age range of the region-wide late Cenozoic alkaline volcanism in western Saudi Arabia. The paleomagnetic data from the rocks collected in this region appear to be affected by lightning and weathering and no significant tectonic/plate movement can be inferred from the obtained results. The direction of the high coercivity chemical remanent magnetization (CRM) isolated after thermal cleaning from the Pre-Miocene siltstones (D=169.6°, I=-44.8°; α95=5.4°) is consistent with the existing paleomagnetic results. The associated VGP (314.4°E, 80.6°N, A95=6.8°) is close to the Pliocene VGP of the Arabian Plate and CCW rotated (R=14.86°±6.38°) with respect to the Oligocene African VGP. The Lunayyir paleomagnetic data set of 11 Quaternary lava flows (D=0.31°, I=36.9°, α95=10.5) is statistically indistinguishable from the present field and the virtual geomagnetic poles (VGP: 214.1°E, 85.1°N; A95=12.3°) indicate a

  10. Sedimentary input into the source of Martinique lavas: a Li perspective

    Science.gov (United States)

    Tang, M.; Chauvel, C.; Rudnick, R. L.

    2013-12-01

    The Lesser Antilles arc is known for the prominent continental crustal signatures in its lavas. It thus provides an ideal target for studying crustal recycling in subduction zones. Martinique Island, located in the middle of the Lesser Antilles arc, has been well characterized for its elemental and radiogenic isotope geochemistry (Labanieh et al., 2012). We measured Li isotopes in the Martinique lavas as well as sediments cored at the southern (Site 144) and northern part (Site 543) of the subducting slab. The sediments show a large isotopic variation (δ7Li ~ -4.2‰ to +3.2‰) but the average δ7Li of -1.1 × 2.4‰ (1 σ, n = 15) is significantly lower than that of N-MORB (δ7Li = + 3.4 × 0.7‰, 1 σ, Tomascak et al., 2008), reflecting the influence of chemical weathering in the continental provenance. Although the subducting sediments display marked mineralogical and chemical shifts from south to north due to different deposition distances to the continental platform (Carpentier et al., 2009), their average Li isotopic compositions are indiscernible from each other. With a few exceptions, the Li isotopic compositions of the Martinique lavas are systematically lighter than MORB, giving an average δ7Li of 1.6 × 1.4‰ (1 σ, n = 25, 4 exceptions excluded). The δ7Li values show no correlation with any radiogenic isotope ratios (206Pb/204Pb, 87Sr/86Sr, 143Nd/144Nd and 176Hf/177Hf), Li/Y ratio, La/Sm ratio and SiO2 content. Therefore, the light Li isotopic composition likely reflects the source characteristics rather than contamination within the arc crust. Incorporation of the isotopically light sediments from Site 144 and 543 in the source may explain the depletion of 7Li in the Martinique lavas. A two-end-member mixing model requires 2-5% addition of the sediments into the depleted mantle source, compared with 1-10% sediments constrained by radiogenic isotopes (Carpentier et al., 2008). References Carpentier, M., Chauvel, C., & Mattielli, N., 2008. Pb

  11. Parallel Genetic Algorithms for calibrating Cellular Automata models: Application to lava flows

    International Nuclear Information System (INIS)

    D'Ambrosio, D.; Spataro, W.; Di Gregorio, S.; Calabria Univ., Cosenza; Crisci, G.M.; Rongo, R.; Calabria Univ., Cosenza

    2005-01-01

    Cellular Automata are highly nonlinear dynamical systems which are suitable far simulating natural phenomena whose behaviour may be specified in terms of local interactions. The Cellular Automata model SCIARA, developed far the simulation of lava flows, demonstrated to be able to reproduce the behaviour of Etnean events. However, in order to apply the model far the prediction of future scenarios, a thorough calibrating phase is required. This work presents the application of Genetic Algorithms, general-purpose search algorithms inspired to natural selection and genetics, far the parameters optimisation of the model SCIARA. Difficulties due to the elevated computational time suggested the adoption a Master-Slave Parallel Genetic Algorithm far the calibration of the model with respect to the 2001 Mt. Etna eruption. Results demonstrated the usefulness of the approach, both in terms of computing time and quality of performed simulations

  12. Electrical resistivity tomography applied to a complex lava dome: 2D and 3D models comparison

    Science.gov (United States)

    Portal, Angélie; Fargier, Yannick; Lénat, Jean-François; Labazuy, Philippe

    2015-04-01

    The study of volcanic domes growth (e.g. St. Helens, Unzen, Montserrat) shows that it is often characterized by a succession of extrusion phases, dome explosions and collapse events. Lava dome eruptive activity may last from days to decades. Therefore, their internal structure, at the end of the eruption, is complex and includes massive extrusions and lava lobes, talus and pyroclastic deposits as well as hydrothermal alteration. The electrical resistivity tomography (ERT) method, initially developed for environmental and engineering exploration, is now commonly used for volcano structure imaging. Because a large range of resistivity values is often observed in volcanic environments, the method is well suited to study the internal structure of volcanic edifices. We performed an ERT survey on an 11ka years old trachytic lava dome, the Puy de Dôme volcano (French Massif Central). The analysis of a recent high resolution DEM (LiDAR 0.5 m), as well as other geophysical data, strongly suggest that the Puy de Dôme is a composite dome. 11 ERT profiles have been carried out, both at the scale of the entire dome (base diameter of ~2 km and height of 400 m) on the one hand, and at a smaller scale on the summit part on the other hand. Each profile is composed of 64 electrodes. Three different electrode spacing have been used depending on the study area (35 m for the entire dome, 10 m and 5 m for its summit part). Some profiles were performed with half-length roll-along acquisitions, in order to keep a good trade-off between depth of investigation and resolution. Both Wenner-alpha and Wenner-Schlumberger protocols were used. 2-D models of the electrical resistivity distribution were computed using RES2DINV software. In order to constrain inversion models interpretation, the depth of investigation (DOI) method was applied to those results. It aims to compute a sensitivity index on inversion results, illustrating how the data influence the model and constraining models

  13. Petrology and age of alkalic lava from the Ratak Chain of the Marshall Islands

    Science.gov (United States)

    Davis, A.S.; Pringle, M.S.; Pickthorn, L.-B.G.; Clague, D.A.; Schwab, W.C.

    1989-01-01

    Volcanic rock dredged from the flanks of four volcanic edifices in the Ratak chain of the Marshall Islands consist of alkalic lava that erupted above sea level or in shallow water. Compositions of recovered samples are predominantly differentiated alkalic basalt and hawaiite but include strongly alkalic melilitite. Whole rock 40Ar/39Ar total fusion and incremental heating ages of 87.3 ?? 0.6 Ma and 82.2 ?? 1.6 Ma determined for samples from Erikub Seamount and Ratak Guyot, respectively, are within the range predicted by plate rotation models but show no age progression consistent with a simple hot spot model. Variations in isotopic and some incompatible element ratios suggest interisland heterogeneity. -from Authors

  14. Cooling and crystallization of rhyolite-obsidian lava: Insights from micron-scale projections on plagioclase microlites

    Science.gov (United States)

    Sano, Kyohei; Toramaru, Atsushi

    2017-07-01

    To reveal the cooling process of a rhyolite-obsidian flow, we studied the morphology of plagioclase microlites in the Tokachi-Ishizawa lava of Shirataki, northern Hokkaido, Japan, where the structure of the lava can be observed from obsidian at the base of the flow to the innermost rhyolite. Needle-like micron-scale textures, known as "projections", occur on the short side surfaces of the plagioclase microlites. Using FE-SEM we discovered a positive correlation between the lengths and spacings of these projections. On the basis of the instability theory of an interface between melt and crystal, and to understand the length and spacing data, we developed a model that explains the positive correlation and allows us to simultaneously estimate growth rates and growth times. Applying the model to our morphological data and the estimated growth rates and growth times, we suggest that the characteristics of the projections reflect the degree of undercooling, which in turn correlates with lava structure (the obsidian at the margin of the flow experienced a higher degree of undercooling than the interior rhyolite). The newly developed method provides insights into the degree of undercooling during the final stages of crystallization of a rhyolitic lava flow.

  15. Physical Volcanological and Petrogenetic Implications of Intra-lava Flow Geochemical Heterogeneity in the Columbia River Flood Basalt Province, USA.

    Science.gov (United States)

    Vye, C. L.; Barry, T. L.; Self, S.; Gannoun, A.; Burton, K. W.

    2007-12-01

    Continental flood basalt lava flows are widely assumed to represent compositionally uniform and rapidly erupted products of large well-mixed magma reservoirs. However, this study presents new data to illustrate systematic element and isotope variations within the flow field formed by an individual flood basalt eruption, both vertically within each sheet lobe and laterally between the constituent lobes. Such variation is significant in chemostratigraphic correlation of flood basalt lava units, in identifying source variability during one eruption, and in petrogenetic modeling. We investigate the extent and cause of compositional variation through tracing lava sheet lobes in a 2,660 cubic kilometer pahoehoe flow field formed during a single eruption in the Columbia River Basalt Province, USA. This is based on features related to emplacement by the inflation mechanism. This method of emplacement is supported by small but statistically significant and systematic major and trace element variation e.g. MgO 3.09- 4.55 wt%, Ni 17.5-25.6 ppm, indicative of fractional crystallisation. Re-Os isotopes indicate progressive crustal contamination of the magma over the timescale of a single flood basalt eruption. By establishing this physical volcanological framework, we determine a temporal link with the supply of lava from the vent(s) and apply it to investigate sequential magmatic evolution during the timescale of one eruption.

  16. LAVA Subsystem Integration and Testing for the RESOLVE Payload of the Resource Prospector Mission: Mass Spectrometers and Gas Chromatography

    Science.gov (United States)

    Coan, Mary R.; Stewart, Elaine M.

    2015-01-01

    The Regolith and Environment Science & Oxygen and Lunar Volatile Extraction (RESOLVE) payload is part of Resource Prospector (RP) along with a rover and a lander that are expected to launch in 2020. RP will identify volatile elements that may be combined and collected to be used for fuel, air, and water in order to enable deeper space exploration. The Resource Prospector mission is a key part of In-Situ Resource Utilization (ISRU). The demand for this method of utilizing resources at the site of exploration is increasing due to the cost of resupply missions and deep space exploration goals. The RESOLVE payload includes the Lunar Advanced Volatile Analysis (LAVA) subsystem. The main instrument used to identify the volatiles evolved from the lunar regolith is the Gas Chromatograph-Mass Spectrometer (GC-MS). LAVA analyzes the volatiles emitted from the Oxygen and Volatile Extraction Node (OVEN) Subsystem. The objective of OVEN is to obtain, weigh, heat and transfer evolved gases to LAVA through the connection between the two subsystems called the LOVEN line. This paper highlights the work completed during a ten week internship that involved the integration, testing, data analysis, and procedure documentation of two candidate mass spectrometers for the LAVA subsystem in order to aid in determining which model to use for flight. Additionally, the examination of data from the integrated Resource Prospector '15 (RP' 15) field test will be presented in order to characterize the amount of water detected from water doped regolith samples.

  17. On a classification of central Eruptions according to Gas Pressure of the Magma and Viscosity of the Lava

    NARCIS (Netherlands)

    Escher, B.G.

    1933-01-01

    In the above title the word magma is used to signify the solution plus the gas disolved in it under pressure and the word lava for the magma that has partially or entirety lost its content of gas. A clear differentiation of the types of eruptions is not easy, because the character of an eruption

  18. Field-based description of rhyolite lava flows of the Calico Hills Formation, Nevada National Security Site, Nevada

    Science.gov (United States)

    Sweetkind, Donald S.; Bova, Shiera C.

    2015-01-01

    Contaminants introduced into the subsurface of Pahute Mesa, Nevada National Security Site, by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. The potential for contaminant movement away from the underground test areas at Pahute Mesa and into the accessible environment is greatest by groundwater transport through fractured volcanic rocks. The 12.9 Ma (mega-annums, million years) Calico Hills Formation, which consists of a mixture of rhyolite lava flows and intercalated nonwelded and bedded tuff and pyroclastic flow deposits, occurs in two areas of the Nevada National Security Site. One area is north of the Rainier Mesa caldera, buried beneath Pahute Mesa, and serves as a heterogeneous volcanic-rock aquifer but is only available to study through drilling and is not described in this report. A second accumulation of the formation is south of the Rainier Mesa caldera and is exposed in outcrop along the western boundary of the Nevada National Security Site at the Calico Hills near Yucca Mountain. These outcrops expose in three dimensions an interlayered sequence of tuff and lava flows similar to those intercepted in the subsurface beneath Pahute Mesa. Field description and geologic mapping of these exposures described lithostratigraphic variations within lava flows and assisted in, or at least corroborated, conceptualization of the rhyolite lava-bearing parts of the formation.

  19. PyFLOWGO: An open-source platform for simulation of channelized lava thermo-rheological properties

    Science.gov (United States)

    Chevrel, Magdalena Oryaëlle; Labroquère, Jérémie; Harris, Andrew J. L.; Rowland, Scott K.

    2018-02-01

    Lava flow advance can be modeled through tracking the evolution of the thermo-rheological properties of a control volume of lava as it cools and crystallizes. An example of such a model was conceived by Harris and Rowland (2001) who developed a 1-D model, FLOWGO, in which the velocity of a control volume flowing down a channel depends on rheological properties computed following the thermal path estimated via a heat balance box model. We provide here an updated version of FLOWGO written in Python that is an open-source, modern and flexible language. Our software, named PyFLOWGO, allows selection of heat fluxes and rheological models of the user's choice to simulate the thermo-rheological evolution of the lava control volume. We describe its architecture which offers more flexibility while reducing the risk of making error when changing models in comparison to the previous FLOWGO version. Three cases are tested using actual data from channel-fed lava flow systems and results are discussed in terms of model validation and convergence. PyFLOWGO is open-source and packaged in a Python library to be imported and reused in any Python program (https://github.com/pyflowgo/pyflowgo)

  20. Lithologic combinations in Romanesque churches of Álava, northern Spain

    Directory of Open Access Journals (Sweden)

    Martínez-Torres, L. M.

    2014-03-01

    Full Text Available Certain windows and doorways on twenty five Romanesque churches of Álava (XII–XIII centuries were built using six types of rock in nine different combinations. These compositions were intended to highlight the contrast in colour between different rocks, from which it can be deduced that the openings were not hewn to be painted. After almost seven centuries during which the use of stone was anecdotal, Romanesque artists burst in with colourful blends, demonstrating a broad knowledge of the characteristics of each rock and its availability. The uniqueness of these openings is represented on lithologic maps which, in addition to facilitating its analysis and dissemination, serve as a reference in its restoration.Algunas ventanas y portadas de veinticinco iglesias románicas de Álava (siglos XII-XIII fueron construidas con hasta seis tipos de rocas en nueve combinaciones diferentes. Estas composiciones pretendían resaltar el contraste cromático entre rocas distintas, de lo que se deduce que los vanos no fueron tallados para ser policromados. Después de casi siete siglos en los que el uso de la piedra fuera anecdótico, los artistas románicos irrumpen con mezclas coloristas, mostrando un amplio conocimiento de las características de cada roca y su disponibilidad. La singularidad de estos vanos está representada en mapas litológicos que, además de facilitar su análisis y divulgación, servirán de referencia en su restauración

  1. Paleosecular Variation of Plio-Pleistocene Lavas from the Loiyangalani Region of Kenya

    Science.gov (United States)

    Opdyke, N. D.; Kent, D. V.; Huang, K.; Foster, D.; Patel, J.

    2008-12-01

    The data reported here is part of a study of Pliocene-Pleistocene lavas in Kenya to document the paleosecular variation and time-averaged geomagnetic field direction near to the Equator. We sampled 32 sites (10 oriented cores each) in lavas to the south and the northeast of Loiyangalani that are mapped and dated as Plio-Pleistocene in age (less than ~5 Ma) and associated with Mt. Kulal and the Longipi eruption centers. The samples from this collection were returned to the US, sliced into samples and progressively demagnetized using alternating field demagnetization. The Loiyangalani sites yielded excellent results and are seemingly unaffected by lightning, which seems to be infrequent at this latitude, in this arid environment; all but one site gave acceptable data with an alpha95 of 10° or less. There are 17 reverse sites (Dec = 183.4°, Inc = 0.9°, alpha95 = 6.7°) and 15 normal sites (Dec = 358.4°, Inc = -1.2°, alpha95 = 4.7°). The reversal test is positive suggesting that the normal and reverse polarity populations both represent a reasonable time average. The site means were combined yielding an overall mean direction of Dec = 1.1°, Inc = -1.1°, alpha95 = 4.1°. The inclination is shallower than expected for a geocentric axial dipole field (delta I = -6°); accordingly, the site VGPs give a mean pole position at Lon = 205.1° E, Lat = 86.8° N, Alpha95 = 3°, which is significantly far-sided with respect to the geographic axis. The angular standard deviation of the VGPs is 9.3°, which is a relatively low angular dispersion compared to most PSVL models such as Model G.

  2. Transitions in Lava Emplacement Recorded in the Deccan Traps Sequence (India)

    Science.gov (United States)

    Vanderkluysen, L.; Self, S.; Jay, A. E.; Sheth, H. C.; Clarke, A. B.

    2015-12-01

    Transitions in the style of lava flow emplacement are recognized in the stratigraphic sequence of several mafic large igneous provinces (LIPs), including the Etendeka (Namibia), the Faeroe Islands (North Atlantic LIP), the Ethiopian Traps, and the Deccan Traps (India). These transitions, from units dominated by meter-sized pāhoehoe toes and lobes to those dominated by inflated sheet lobes tens to hundreds of meters in width and meters to tens of meters in height, seems to be a fundamental feature of LIP emplacement. In the Deccan, this volcanological transition is thought to coincide with deeper changes to the volcano-magmatic system expressed, notably, in the trace element and isotopic signature of erupted flows. We investigated this transition in the Deccan Traps by logging eight sequences along the Western Ghats, an escarpment in western India where the Deccan province is thickest and best exposed. The Deccan province, which once covered ~1 million km2 of west-central India, is subdivided in eleven chemo-stratigraphic formations in the type sections of the Western Ghats. Where the lower Deccan formations are exposed, we found that as much as 65% of the exposed thickness (below the Khandala Formation) is made up of sheet lobes, from 40% in the Bhimashankar Formation to 75% in the Thakurvadi Formation. Near the bottom of the sequence, 25% of the Neral Formation is composed of sheet lobes ≥15 m in thickness. On this basis, the traditional view that inflated sheet lobes are an exclusive feature of the upper part of the stratigraphy must be challenged. Several mechanisms have been proposed to explain the development of compound flows and inflated sheet lobes, involving one or more of the following factors: underlying slope, varying effusion rate, and source geometry. Analogue experiments are currently under way to test the relative influence of each of these factors in the development of different lava flow morphologies in LIPs.

  3. Influence of extrusion rate and magma rheology on the growth of lava domes: Insights from particle-dynamics modeling

    Science.gov (United States)

    Husain, Taha; Elsworth, Derek; Voight, Barry; Mattioli, Glen; Jansma, Pamela

    2014-09-01

    Lava domes are structures that grow by the extrusion of viscous silicic or intermediate composition magma from a central volcanic conduit. Repeated cycles of growth are punctuated by collapse, as the structure becomes oversized for the strength of the composite magma that rheologically stiffens and strengthens at its surface. Here we explore lava dome growth and failure mechanics using a two-dimensional particle-dynamics model. The model follows the evolution of fractured lava, with solidification driven by degassing induced crystallization of magma. The particle-dynamics model emulates the natural development of dome growth and rearrangement of the lava dome which is difficult in mesh-based analyses due to mesh entanglement effects. The deformable talus evolves naturally as a frictional carapace that caps a ductile magma core. Extrusion rate and magma rheology together with crystallization temperature and volatile content govern the distribution of strength in the composite structure. This new model is calibrated against existing observational models of lava dome growth. Results show that the shape and extent of the ductile core and the overall structure of the lava dome are strongly controlled by the infusion rate. The effects of extrusion rate on magma rheology are sensitive to material stiffness, which in turn is a function of volatile content and crystallinity. Material stiffness and material strength are key model parameters which govern magma rheology and subsequently the morphological character of the lava dome and in turn stability. Degassing induced crystallization causes material stiffening and enhances material strength reflected in non-Newtonian magma behavior. The increase in stiffness and strength of the injected magma causes a transition in the style of dome growth, from endogenous expansion of a ductile core, to stiffer and stronger intruding material capable of punching through the overlying material and resulting in the development of a spine or

  4. Assessing the effusion rate of lava flows from their thermal radiated energy: theoretical study and lab-scale experiments

    Science.gov (United States)

    Garel, F.; Kaminski, E.; Tait, S.; Limare, A.

    2010-12-01

    A quantitative monitoring of lava flow is required to manage a volcanic crisis, in order to assess where the flow will go, and when will it stop. As the spreading of lava flows is mainly controlled by its rheology and the eruptive mass flux, the key question is how to evaluate them during the eruption (rather than afterwards.) A relationship between the lava flow temperature and the eruption rate is likely to exist, based on the first-order argument that higher eruption rates should correspond to larger energy radiated by a lava flow. The semi-empirical formula developed by Harris and co-workers (e.g. Harris et al., 2007) is used to estimate lava flow rate from satellite observations. However, the complete theoretical bases of this technique, especially its domain of validity, remain to be firmly established. Here we propose a theoretical study of the cooling of a viscous axisymmetric gravity current fed at constant flux rate to investigate whether or not this approach can and/or should be refined and/or modify to better assess flow rates. Our study focuses on the influence of boundary conditions at the surface of the flow, where cooling can occur both by radiation and convection, and at the base of the flow. Dimensionless numbers are introduced to quantify the relative interplay between the model parameters, such as the lava flow rate and the efficiency of the various cooling processes (conduction, convection, radiation.) We obtain that the thermal evolution of the flow can be described as a two-stage evolution. After a transient phase of dynamic cooling, the flow reaches a steady state, characterized by a balance between surface and base cooling and heat advection in the flow, in which the surface temperature structure is constant. The duration of the transient phase and the radiated energy in the steady regime are shown to be a function of the dimensionless numbers. In the case of lava flows, we obtain that the steady state regime is reached after a few days. In

  5. Plateaus and sinuous ridges as the fingerprints of lava flow inflation in the Eastern Tharsis Plains of Mars

    Science.gov (United States)

    Bleacher, Jacob E.; Orr, Tim R.; de Wet, Andrew P.; Zimbelman, James R.; Hamilton, Christopher W.; Brent Garry, W.; Crumpler, Larry S.; Williams, David A.

    2017-08-01

    The Tharsis Montes rift aprons are composed of outpourings of lava from chaotic terrains to the northeast and southwest flank of each volcano. Sinuous and branching channel networks that are present on the rift aprons suggest the possibility of fluvial processes in their development, or erosion by rapidly emplaced lavas, but the style of lava flow emplacement throughout rift apron development is not clearly understood. To better characterize the style of lava emplacement and role of fluvial processes in rift apron development, we conducted morphological mapping of the Pavonis Mons southwest rift apron and the eastern Tharsis plains using images from the High Resolution Imaging Science Experiment (HiRISE), Mars Orbiter Camera (MOC), Context Camera (CTX), Thermal Emission Imaging System (THEMIS), and High Resolution Stereo Camera (HRSC) along with the Mars Orbiter Laser Altimeter (MOLA) Precision Experiment Data Records (PEDRs) and gridded data. Our approach was to: (1) search for depositional fans at the slope break between the rift apron and adjacent low slope plains; (2) determine if there is evidence that previously formed deposits might have been buried by plains units; (3) characterize the Tharsis plains morphologies east of Pavonis Mons; and (4) assess their relationship to the rift apron units. We have not identified topographically significant depositional fans, nor did we observe evidence to suggest that plains units have buried older rift apron units. Flow features associated with the rift apron are observed to continue across the slope break onto the plains. In this area, the plains are composed of a variety of small fissures and low shield vents around which broad channel-fed and tube-fed flows have been identified. We also find broad, flat-topped plateaus and sinuous ridges mixed among the channels, tubes and vents. Flat-topped plateaus and sinuous ridges are morphologies that are analogous to those observed on the coastal plain of Hawai'i, where lava

  6. Decline of Ohia (Metrosideros polymorpha) in Hawaii: a review

    Science.gov (United States)

    Charles S. Hodges; Ken T. Adee; John D. Stein; Hulton B. Wood; Robert D. Doty

    1986-01-01

    Portions of the ohia (Metrosideros polymorpha) forests on the windward slopes of Mauna Loa and Mauna Kea on the island of Hawaii began dying in 1952. Little mortality has occurred since 1972. About 50,000 ha are affected by the decline. Individual trees exhibit several symptoms, from slow progressive dieback to rapid death. Seven types of decline...

  7. Emplacement model of obsidian-rhyolite magma deduced from complete internal section of the Akaishiyama lava, Shirataki, northern Hokkaido, Japan

    Science.gov (United States)

    Wada, K.; Sano, K.

    2016-12-01

    Simultaneously explosive and effusive eruptions of silicic magmas has shed light on the vesiculation and outgassing history of ascending magmas in the conduit and emplacement model of obsidian-rhyolite lavas (Castro et al., 2014; Shipper et al, 2013). As well as the knowledge of newly erupted products such as 2008-2009 Chaitén and 2011-2012 Cordón Caule eruptions, field and micro-textural evidences of well-exposed internal structure of obsidian-rhyolite lava leads to reveal eruption processes of silicic magmas. The Shirataki monogenetic volcano field, 2.2 million year age, northern Hokkaido, Japan, contains many outcrops of obsidian and vesiculated rhyolite zones (SiO2=76.7-77.4 wt.%). Among their outcrops, Akaishiyama lava shows good exposures of internal sections from the top to the bottom along the Kyukasawa valley with thickness of about 190 meters, showing the symmetrical structure comprising a upper clastic zone (UCZ; 5m thick), an upper dense obsidian zone (UDO; 15m), an upper banded obsidian zone (UBO; 70-80m), a central rhyolite zone (CR; 65m), a lower banded obsidian zone (LBO; 15m), a lower dense obsidian zone (LDO; 20m), and a lower clastic zone (LCZ; 3m). The upper banded obsidian zone is characterized by existence of spherulite concentration layers with tuffisite veins and rhyolite enclaves. Spherulites consisting of albite, cristobalaite and obsidian glass, are clustered in the dense obsidian. Tuffisite veins show brecciated obsidians in tuffaceous matrix, showing an outgassing path during the emplacement of obsidian lava. Perpendicular dip of spherulite parallel rows indicates the banded zone itself was the domain of vent area. From the observation of these occurrences in the internal section and rock texture, we show the qualitative formation model of Shirataki obsidian-rhyolite lava.

  8. Monitoring Inflation and Emplacement During the 2014-2015 Kilauea Lava Flow With an Unmanned Aerial Vehicle

    Science.gov (United States)

    Perroy, R. L.; Turner, N.; Hon, K. A.; Rasgado, V.

    2015-12-01

    Unmanned aerial vehicles (UAVs) provide a powerful new tool for collecting high resolution on-demand spatial data over volcanic eruptions and other active geomorphic processes. These data can be used to improve hazard forecasts and emergency response efforts, and also allow users to economically and safely observe and quantify lava flow inflation and emplacement on spatially and temporally useful scales. We used a small fixed-wing UAV with a modified point-and-shoot camera to repeatedly map the active front of the 2014-2015 Kīlauea lava flow over a one-month period in late 2014, at times with a two-hour repeat interval. An additional subsequent flight was added in July, 2015. We used the imagery from these flights to generate a time-series of 5-cm resolution RGB and near-infrared orthoimagery mosaics and associated digital surface models using structure from motion. Survey-grade positional control was provided by ground control points with differential GPS. Two topographic transects were repeatedly surveyed across the flow surface, contemporaneously with UAV flights, to independently confirm topographic changes observed in the UAV-derived surface models. Vertical errors were generally 10 cm. Inside our 50 hectare study site, the flow advanced at a rate of 0.47 hectares/day during the first three weeks of observations before abruptly stalling out 4 m. New outbreak areas, both on the existing flow surface and along the flow margins, were readily mapped across the study area. We detected sinuous growing inflation ridges within the flow surface that correlated with subsequent outbreaks of new lava, suggesting that repeat UAV flights can provide a means of better predicting pahoehoe lava flow behavior over flat or uneven topography. Our results show that UAVs can generate accurate and digital surface models quickly and inexpensively over rapidly changing active pahoehoe lava flows.

  9. Discovery of modern (post-1850 CE) lavas in south-central British Columbia, Canada: Origin from coal fires or intraplate volcanism?

    Science.gov (United States)

    Canil, Dante; Mihalynuk, Mitch; Lacourse, Terri

    2018-01-01

    We describe three unusual lavas in the Northern Cordillera in south-central British Columbia, Canada, occurring as spatter, scoria and blocks over small 400 m2 areas. The lavas coat and weld cobbles and pebbles in glacial till and are vesicular and glassy with microlites of clinopyroxene and plagioclase, and xenocrysts of quartz, feldspar or clinopyroxene. Chemically the lavas are basaltic trachyandesite (55-61 wt% SiO2) with trace element patterns similar to average British Columbia upper crust, except for having higher V and lower Zr, Hf, Nb, Th and U. Melting experiments and plagioclase-melt thermometry on the glasses, and phase equilibrium in simple systems, require liquidus temperatures of 1150-1300 °C. Interaction of the liquids with carbonaceous matter at low pressure formed Fe metal spherules and SiC. Radiocarbon ages of charcoal and dendrochronology show the lavas are modern, emplaced in the last 120 years. The similar bulk composition of these lavas to several other Quaternary-aged volcanic centers in the North American Cordillera, some of which show recent seismic activity, could suggest a possible tectonic origin, but the deposits are unusually small and show no central vent for emplacement. Conversely, the balance of evidence would suggest an origin from coal fires or hot gas venting, but is less consistent with the observed calc- and per-alkaline lava compositions, and the lack of known local coal-bearing strata as a heat source. Other anthropogenic origins for the lavas are considered less plausible.

  10. Primary vesicles, vesicle-rich segregation structures and recognition of primary and secondary porosities in lava flows from the Paraná igneous province, southern Brazil

    Science.gov (United States)

    Barreto, Carla Joana S.; de Lima, Evandro F.; Goldberg, Karin

    2017-04-01

    This study focuses on a volcanic succession of pāhoehoe to rubbly lavas of the Paraná-Etendeka Province exposed in a single road profile in southernmost Brazil. This work provides an integrated approach for examining primary vesicles and vesicle-rich segregation structures at the mesoscopic scale. In addition, this study provides a quantitative analysis of pore types in thin section. We documented distinct distribution patterns of vesicle and vesicle-rich segregation structures according to lava thickness. In compound pāhoehoe lavas, the cooling allows only vesicles (pipe vesicles to be frozen into place. In inflated pāhoehoe lavas, vesicles of different sizes are common, including pipe vesicles, and also segregation structures such as proto-cylinders, cylinders, cylinder sheets, vesicle sheets, and pods. In rubbly lavas, only vesicles of varying sizes occur. Gas release from melt caused the formation of primary porosity, while hydrothermal alteration and tectonic fracturing are the main processes that generated secondary porosity. Although several forms of porosity were created in the basaltic lava flows, the precipitation of secondary minerals within the pores has tended to reduce the original porosities. Late-stage fractures could create efficient channel networks for possible hydrocarbon/groundwater migration and entrapment owing to their ability to connect single pores. Quantitative permeability data should be gathered in future studies to confirm the potential of these lavas for store hydrocarbons or groundwater.

  11. Siliceous alterations of the Montana Senalo lavas, Timanfaya eruption (1730-1736) (Lanzarote, Canary Islands); Las alteraciones siliceas de las lavas de Montana Senalo, eruption de Timanfaya (1730-1736) (Lanzarote, Islas Canarias)

    Energy Technology Data Exchange (ETDEWEB)

    Carmona, J.; Romero, C.; Doniz, J.; Garcia, A.

    2009-07-01

    The presence of hydrothermal alterations within the lavas of Timanfaya eruption (1730-1736), with high proportions of quartz and opal, suggests the effective circulation of hot fluids. The source of these fluids would be located under the island, where silica would be dissolved from sandstones and radiolarites, moving this way towards the surface as Si(OH){sub 4} colloids. Study of opal indicates the presence of A-initial CT and C phases in the collected samples, which, considering the time needed for producing this phase transformations in the diagenetic evolution of opal (10,000-50,000 years), suggests an accelerating process, probably related with either the presence of fluid circulation or weathering processes. Such circumstances are necessary for explaining the presence of such components affecting 300 years old lavas. (Author) 36 refs.

  12. Memories of Earth Formation in the Modern Mantle: W Isotopic Composition of Flood Basalt Lavas

    Science.gov (United States)

    Rizo Garza, H. L.; Walker, R. J.; Carlson, R.; Horan, M. F.; Mukhopadhyay, S.; Francis, D.; Jackson, M. G.

    2015-12-01

    Four and a half billion years of geologic activity has overprinted much of the direct evidence for processes involved in Earth's formation and its initial chemical differentiation. Xenon isotopic ratios [1] and 3He/22Ne ratios [2] suggest that heterogeneities formed during Earth's accretion have been preserved to the present time. New opportunities to learn about early Earth history have opened up with the development of analytical techniques that allow high precision analysis of short-lived isotopic systems. The Hf-W system (t½ = 8.9 Ma) is particularly valuable for studying events that occurred during the first ~50 Ma of Solar System history. Here we report new data for ~ 60 Ma Baffin Bay and ~ 120 Ma Ontong Java Plateau lava samples. Both are large igneous provinces that may have sampled a primitive, less degassed deep mantle reservoir that has remained isolated since shortly after Earth formation [3,4]. Three samples analyzed have 182W/184W ratios that are 10 to 48 ppm higher than our terrestrial standard. These excesses in 182W are the highest ever measured in terrestrial rocks, and may reflect 182W ingrowth in an early-formed high Hf/W mantle domain that was produced by magma ocean differentiation [5]. Long and short-lived Sm-Nd systematics in these samples, however, are inconsistent with this hypothesis. The 182W excessses could rather reflect the derivation of these lavas from a mantle reservoir that was isolated from late accretionary additions [6]. The chondritic initial Os isotopic compositions and highly siderophile element abundances of these samples, however, are inconsistent with this interpretation. Tungsten concentrations for the Baffin Bay and Ontong Java Plateau samples range from 23 ppb to 62 ppb, and are negatively correlated with their 182W/184W ratios. We propose that the source reservoirs for these flood basalts likely formed through Hf/W fractionation caused by core-forming events occuring over a protacted time interval during Earth

  13. Preliminary results from an integrated, multi-parameter, experiment at the Santiaguito lava dome complex, Guatemala

    Science.gov (United States)

    De Angelis, S.; Rietbrock, A.; Lavallée, Y.; Lamb, O. D.; Lamur, A.; Kendrick, J. E.; Hornby, A. J.; von Aulock, F. W.; Chigna, G.

    2016-12-01

    Understanding the complex processes that drive volcanic unrest is crucial to effective risk mitigation. Characterization of these processes, and the mechanisms of volcanic eruptions, is only possible when high-resolution geophysical and geological observations are available over comparatively long periods of time. In November 2014, the Liverpool Earth Observatory, UK, in collaboration with the Instituto Nacional de Sismologia, Meteorologia e Hidrologia (INSIVUMEH), Guatemala, established a multi-parameter geophysical network at Santiaguito, one of the most active volcanoes in Guatemala. Activity at Santiaguito throughout the past decade, until the summer of 2015, was characterized by nearly continuous lava dome extrusion accompanied by frequent and regular small-to-moderate gas or gas-and-ash explosions. Over the past two years our network collected a wealth of seismic, acoustic and deformation data, complemented by campaign visual and thermal infrared measurements, and rock and ash samples. Here we present preliminary results from the analysis of this unique dataset. Using acoustic and thermal data collected during 2014-2015 we were able to assess volume fractions of ash and gas in the eruptive plumes. The small proportion of ash inferred in the plumes confirms estimates from previous, independent, studies, and suggests that these events did not involve significant magma fragmentation in the conduit. The results also agree with the suggestion that sacrificial fragmentation along fault zones in the conduit region, due to shear-induced thermal vesiculation, may be at the origin of such events. Finally, starting in the summer of 2015, our experiment captured the transition to a new phase of activity characterized by vigorous vulcanian-style explosions producing large, ash-rich, plumes and frequent hazardous pyroclastic flows, as well as the formation a large summit crater. We present evidence of this transition in the geophysical and geological data, and discuss its

  14. Investigating the Early Atmospheres of Earth and Mars through Rivers, Raindrops, and Lava Flows

    Science.gov (United States)

    Som, Sanjoy M.

    2010-11-01

    twice present levels and perhaps well below present levels. To constrain this further, I re-evaluate a published paleobarometry technique using the vesicle size-distribution in simply emplaced lava flows and apply it to sea-level erupted lava flows from the 2.7 billion year old Fortescue group of Western Australia. Results from three flows suggest a range for atmospheric pressure 0.07 history of the nitrogen cycle by implying that the development of the nitrogenase enzyme necessary for nitrogen fixation happened very early on in the development of life.

  15. Satellite Geodesy Captures Offset Magma Supply Associated With Lava Lake Appearance at Masaya Volcano, Nicaragua

    Science.gov (United States)

    Stephens, K. J.; Wauthier, C.

    2018-03-01

    Ascending and descending Interferometric Synthetic Aperture Radar data sets from various satellites (CSK, RSAT-2, ALOS-2, and Sentinel-1) show a maximum of ˜8 cm ground inflation in Masaya caldera over a 15 month period (6 November 2015 to 1 September 2016). The center of inflation is located in the NW part of the caldera, north of the active Santiago vent which has hosted a new lava lake since 11 December 2015. Simultaneous inversions of those Interferometric Synthetic Aperture Radar data sets using a neighbourhood algorithm demonstrate that a spherical magma reservoir explains the geodetic data, with a horizontal location ˜3 km north of the active Santiago vent and a depth-to-center ˜3 km. The associated modeled volume increase (˜0.0042 km3) is lower than the "excess" magma volume inferred from gas measurements from November 2015 to February 2016. The magma reservoir offset from the current center of eruptive activity may be the result of preexisting caldera structures.

  16. Managing uncertainty: Lessons from volcanic lava disruption of transportation infrastructure in Puna, Hawaii.

    Science.gov (United States)

    Kim, Karl; Pant, Pradip; Yamashita, Eric

    A recent lava flow in Puna, Hawaii, threatened to close one of the major highways serving the region. This article provides background information on the volcanic hazards and describes events, responses, and challenges associated with managing a complex, long-duration disaster. In addition to the need to better understand geologic hazards and threats, there is a need for timely information and effective response and recovery of transportation infrastructure. This requires coordination and sharing of information between scientists, emergency managers, transportation planners, government agencies, and community organizations. Transportation assets play a critical role in terms of problem definition, response, and recovery. The challenges with managing a long-duration event include: (1) determining when a sufficient threat level exists to close roads; (2) identifying transportation alternatives; (3) assessing impacts on communities including the direct threats to homes, businesses, structures, and infrastructure; (4) engaging communities in planning and deliberation of choices and alternatives; and (5) managing uncertainties and different reactions to hazards, threats, and risks. The transportation planning process provides a pathway for addressing initial community concerns. Focusing not just on roadways but also on travel behavior before, during, and after disasters is a vital aspect of building resilience. The experience in Puna with the volcano crisis is relevant to other communities seeking to adapt and manage long-term threats such as climate change, sea level risk, and other long-duration events.

  17. Electromagnetic Simulations of Ground-Penetrating Radar Propagation near Lunar Pits and Lava Tubes

    Science.gov (United States)

    Zimmerman, M. I.; Carter, L. M.; Farrell, W. M.; Bleacher, J. E.; Petro, N. E.

    2013-01-01

    Placing an Orion capsule at the Earth-Moon L2 point (EML2) would potentially enable telerobotic operation of a rover on the lunar surface. The Human Exploration Virtual Institute (HEVI) is proposing that rover operations be carried out near one of the recently discovered lunar pits, which may provide radiation shielding for long duration human stays as well as a cross-disciplinary, science-rich target for nearer-term telerobotic exploration. Ground penetrating radar (GPR) instrumentation included onboard a rover has the potential to reveal many details of underground geologic structures near a pit, as well as characteristics of the pit itself. In the present work we employ the full-wave electromagnetic code MEEP to simulate such GPR reflections from a lunar pit and other subsurface features including lava tubes. These simulations will feed forward to mission concepts requiring knowledge of where to hide from harmful radiation and other environmental hazards such as plama charging and extreme diurnal temperatures.

  18. Correlation of cycles in Lava Lake motion and degassing at Erebus Volcano, Antarctica

    Science.gov (United States)

    Peters, Nial; Oppenheimer, Clive; Killingsworth, Drea Rae; Frechette, Jed; Kyle, Philip

    2014-08-01

    Several studies at Erebus volcano have recorded pulsatory behavior in many of the observable properties of its active lava lake. A strong correlation between the variations in surface speed of the lake and the composition of gas emitted has previously been noted. While previous studies have shown that the SO2 flux and the surface elevation exhibit pulsatory behavior with a similar period to that of the surface speed and gas composition, suggesting they are linked, a lack of overlap between the different measurements has prevented direct comparisons from being made. Using high time-resolution measurements of surface elevation, surface speed, gas composition, and SO2 flux, we demonstrate for the first time an unambiguous link between the cyclic behavior in each of these properties. We also show that the variation in gas composition may be explained by a subtle change in oxygen fugacity. The cycles are found to be in-phase with each other, with a small but consistent lag of 1-3 min between the peaks in surface elevation and surface speed. Explosive events are found to have no observable effect on the pulsatory behavior beyond the ˜5 min period required for lake refill. The close correspondences between the varying lake surface motion, gas flux and composition, and modeled oxygen fugacity suggest strong links between magma degassing, redox change, and the fluid dynamics of the shallow magmatic system.

  19. Muerte violenta en 1822: una fosa común en Ocio (Zambrana, Álava

    Directory of Open Access Journals (Sweden)

    Berjón, M.A.

    2012-01-01

    Full Text Available En la excavación llevada a cabo en el suelo de la Ermita de Nuestra Señora de Asunción en Ocio (Zambrana, Álava en 2010, se expusieron un total de 48 enterramientos individuales y uno de tipo colectivo. Este último corresponde a una fosa común en la que se hallaban 13 individuos de sexo masculino que murieron en un mismo episodio de carácter violento. Todos los individuos presentan lesiones en cráneo o/y en el cuerpo compatibles con el paso de proyectil de arma de fuego de plomo, así como heridas incisas provocadas por arma cortante, además de traumas directos. En la investigación histórica realizada se ha podido saber que en un enfrentamiento bélico en 1822 se produjo la muerte simultánea de 13 vecinos de la localidad de Brinas (próxima a Ocio. Este suceso estaría relacionado con las luchas entre absolutistas o realistas y liberales o constitucionalistas, en los prolegómenos de la Primera Guerra Carlista.

  20. Peak discharge of a Pleistocene lava-dam outburst flood in Grand Canyon, Arizona, USA

    Science.gov (United States)

    Fenton, Cassandra R.; Webb, Robert H.; Cerling, Thure E.

    2006-03-01

    The failure of a lava dam 165,000 yr ago produced the largest known flood on the Colorado River in Grand Canyon. The Hyaloclastite Dam was up to 366 m high, and geochemical evidence linked this structure to outburst-flood deposits that occurred for 32 km downstream. Using the Hyaloclastite outburst-flood deposits as paleostage indicators, we used dam-failure and unsteady flow modeling to estimate a peak discharge and flow hydrograph. Failure of the Hyaloclastite Dam released a maximum 11 × 10 9 m 3 of water in 31 h. Peak discharges, estimated from uncertainty in channel geometry, dam height, and hydraulic characteristics, ranged from 2.3 to 5.3 × 10 5 m 3 s -1 for the Hyaloclastite outburst flood. This discharge is an order of magnitude greater than the largest known discharge on the Colorado River (1.4 × 10 4 m 3 s -1) and the largest peak discharge resulting from failure of a constructed dam in the USA (6.5 × 10 4 m 3 s -1). Moreover, the Hyaloclastite outburst flood is the oldest documented Quaternary flood and one of the largest to have occurred in the continental USA. The peak discharge for this flood ranks in the top 30 floods (>10 5 m 3 s -1) known worldwide and in the top ten largest floods in North America.

  1. Mafic inclusions in Yosemite granites and Lassen Pk lavas: records of complex crust-mantle interactions

    Energy Technology Data Exchange (ETDEWEB)

    Reid, J.B. Jr.; Flinn, J.E.

    1985-01-01

    This study compares three small-scale magmatic systems dominated by mafic/felsic interaction that appear to be analogs to the evolution of their larger host systems: mafic inclusions from modern Lassen Pk lavas along with inclusions and related synplutonic dike materials from granitoids in the Tuolumne Intrusive Series. Each system represents quickly chilled mafic melt previously contaminated by digestion of rewarmed, super-solidus felsic hosts. Contaminants occur in part as megacrysts of reworked oligoclase with lesser hb and biot. Within each group MgO-variation diagrams for Fe, Ca, Ti, Si are strikingly linear (r>.96); alkalis are decidedly less regular, and many hybrid rocks show a curious, pronounced Na enrichment. Field data, petrography, and best fit modeling suggests this may result from flow concentration of oligoclase xenocrysts within contaminated synplutonic dikes, and is preserved in the inclusions when dike cores chill as pillows in their felsic host. Dissolution of mafic inclusions erases these anomalies and creates a more regular series of two-component mafic-felsic mixtures in the large host system. The inclusions and dikes thus appear to record a variety of late-stage mafic-felsic interactive processes that earlier and on a larger scale created much of the compositional variety of their intermediate host rocks.

  2. Dismantling the Deep Earth: Geochemical Constraints from Hotspot Lavas for the Origin and Lengthscales of Mantle Heterogeneity

    Science.gov (United States)

    2008-02-01

    inclusions fi-rm a recently discovered high ’He/ 4 H the ielt source but that is not detectable in whole basalt from Samoa [25]. Our strategy is to...can compare: canl be inferred fi-om the neat-uniforma ratios obtained thlem to similarly corrected Samoan whole-rock lavas oit) ielt inclusijons from...Rb correction. Although the number,ftlataluintsis limited, the data are consistent 3.2. Major and frace element characteristics /i mwlt with Ielt

  3. Emplacement of Holocene silicic lava flows and domes at Newberry, South Sister, and Medicine Lake volcanoes, California and Oregon

    Science.gov (United States)

    Fink, Jonathan H.; Anderson, Steven W.

    2017-07-19

    This field guide for the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) Scientific Assembly 2017 focuses on Holocene glassy silicic lava flows and domes on three volcanoes in the Cascade Range in Oregon and California: Newberry, South Sister, and Medicine Lake volcanoes. Although obsidian-rich lava flows have been of interest to geologists, archaeologists, pumice miners, and rock hounds for more than a century, many of their emplacement characteristics had not been scientifically observed until two very recent eruptions in Chile. Even with the new observations, several eruptive processes discussed in this field trip guide can only be inferred from their final products. This makes for lively debates at outcrops, just as there have been in the literature for the past 30 years.Of the three volcanoes discussed in this field guide, one (South Sister) lies along the main axis defined by major peaks of the Cascade Range, whereas the other two lie in extensional tectonic settings east of the axis. These two tectonic environments influence volcano morphology and the magmatic and volcanic processes that form silicic lava flows and domes. The geomorphic and textural features of glass-rich extrusions provide many clues about their emplacement and the magma bodies that fed them.The scope of this field guide does not include a full geologic history or comprehensive explanation of hazards associated with a particular volcano or volcanic field. The geochemistry, petrology, tectonics, and eruption history of Newberry, South Sister, and Medicine Lake volcanic centers have been extensively studied and are discussed on other field excursions. Instead, we seek to explore the structural, textural, and geochemical evolution of well-preserved individual lava flows—the goal is to understand the geologic processes, rather than the development, of a specific volcano.

  4. Hematite Spherules in Basaltic Tephra Altered Under Aqueous, Acid-Sulfate Conditions on Mauna Kea Volcano, Hawaii: Possible Clues for the Occurrence of Hematite-Rich Spherules in the Burns Formation at Meridiani Planum, Mars

    Science.gov (United States)

    Morris, R. V.; Ming, D. W.; Graff, T. G.; Arvidson, R. E.; Bell, J. F., III; Squyres, S. W.; Mertzman, S. A.; Gruener, J. E.; Golden, D. C.; Robinson, G. A.

    2005-01-01

    Iron-rich spherules (>90% Fe2O3 from electron microprobe analyses) approx.10-100 microns in diameter are found within sulfate-rich rocks formed by aqueous, acid-sulfate alteration of basaltic tephra on Mauna Kea volcano, Hawaii. Although some spherules are nearly pure Fe, most have two concentric compositional zones, with the core having a higher Fe/Al ratio than the rim. Oxide totals less than 100% (93-99%) suggest structural H2O and/or /OH. The transmission Moessbauer spectrum of a spherule-rich separate is dominated by a hematite (alpha-Fe2O3) sextet whose peaks are skewed toward zero velocity. Skewing is consistent with Al(3+) for Fe(3+) substitution and structural H2O and/or /OH. The grey color of the spherules implies specular hematite. Whole-rock powder X-ray diffraction spectra are dominated by peaks from smectite and the hydroxy sulfate mineral natroalunite as alteration products and plagioclase feldspar that was present in the precursor basaltic tephra. Whether spherule formation proceeded directly from basaltic material in one event (dissolution of basaltic material and precipitation of hematite spherules) or whether spherule formation required more than one event (formation of Fe-bearing sulfate rock and subsequent hydrolysis to hematite) is not currently constrained. By analogy, a formation pathway for the hematite spherules in sulfate-rich outcrops at Meridiani Planum on Mars (the Burns formation) is aqueous alteration of basaltic precursor material under acid-sulfate conditions. Although hydrothermal conditions are present on Mauna Kea, such conditions may not be required for spherule formation on Mars if the time interval for hydrolysis at lower temperatures is sufficiently long.

  5. Temporal geochemical trends in northern Luzon arc lavas (Philippines): implications on metasomatic processes in the island arc mantle

    International Nuclear Information System (INIS)

    Maury, R.C.; Bellon, H.; Jacques, D.; Defant, J.; Joron, J.L.; Mcdermott, F.; Vidal, Ph.

    1998-01-01

    Neogene and Quaternary lavas from Batan, Babuyan de Claro, Camiguin and Calayan islands (northern Luzon arc) display temporal increases in incompatible elements including Cs, Rb, Ba, K, La, Ce, Th, U, Ta, Hf and Zr from volcanoes older than 3 Ma to younger ones. These enrichments occur either within a single island (Batan) or within an island group (from Calayan to Camiguin and Babuyan). We show that these enrichments result from incompatible element input into the mantle wedge rather than from partial melting or fractionation effects. The fact that highly incompatible elements display temporal enrichment patterns in Batan lavas whatever their chemical properties indicates that hydrous fluids are not the only metasomatic agents operating in the mantle wedge and that slab-derived melts (adakitic magmas) may also be involved. The coupled temporal variation patterns of large ion lithophile elements and Sr-Nd isotopes suggest that the metasomatic budgets beneath the southern group of islands are mainly controlled by hydrous fluids inputs. In contrast, young Batan lavas likely derive from a mantle source mostly metasomatized by adakitic magmas. (authors)

  6. Grand Sarcoui volcano (Chaîne des Puys, Massif Central, France), a case study for monogenetic trachytic lava domes

    Science.gov (United States)

    Miallier, D.; Pilleyre, T.; Boivin, P.; Labazuy, P.; Gailler, L.-S.; Rico, J.

    2017-10-01

    The Grand Sarcoui is a prominent trachytic volcano of the intraplate Quaternary volcanic field of Chaîne des Puys (Massif Central, France), which fulfills basic requirements for being qualified as monogenetic. Grand Sarcoui looks like a simple axisymmetric lava dome, but close observation reveals a complex and dissymmetric structure and composition. The construction of the dome, about 12.5 ka ago, combined both endogenous and exogenous growth which resulted in variable modes of emplacement and textures of the lava. One of its most interesting features is a large ( 0.29 106 m2) fan of deposits bearing hummocks and secondary hydro-eruption craters. Cross sections of these deposits demonstrate that they originated from a sector collapse accompanied by a blast-like event. The dome is covered by a thin layer of lapilli and ash, attributed to a delayed summit eruption which occurred about 10.6 ka ago, surprisingly late after its construction. So, this volcano has, at a reduced scale, features that are more usually observed in large composite volcanoes. However, some of these features differ slightly from those that have been documented to date, and they remain partly unexplained. This shows that monogenetic, well preserved, trachytic lava domes, are uncommon and poorly known, unlike rhyolitic, andesitic and dacitic domes.

  7. Compositional and volumetric development of a monogenetic lava flow field: The historical case of Paricutin (Michoacán, Mexico)

    Science.gov (United States)

    Larrea, Patricia; Salinas, Sergio; Widom, Elisabeth; Siebe, Claus; Abbitt, Robbyn J. F.

    2017-12-01

    Paricutin volcano is the youngest and most studied monogenetic volcano in the Michoacán-Guanajuato volcanic field (Mexico), with an excellent historical record of its nine years (February 1943 to March 1952) of eruptive activity. This eruption offered a unique opportunity to observe the birth of a new volcano and document its entire eruption. Geologists surveyed all of the eruptive phases in progress, providing maps depicting the volcano's sequential growth. We have combined all of those previous results and present a new methodological approach, which utilizes state of the art GIS mapping tools to outline and identify the 23 different eruptive phases as originally defined by Luhr and Simkin (1993). Using these detailed lava flow distribution maps, the volume of each of the flows was estimated with the aid of pre- and post-eruption digital elevation models. Our procedure yielded a total lava flow volume ranging between 1.59 and 1.68 km3 DRE, which is larger than previous estimates based on simpler methods. In addition, compositional data allowed us to estimate magma effusion rates and to determine variations in the relative proportions of the different magma compositions issued during the eruption. These results represent the first comprehensive documentation of the combined chemical, temporal, and volumetric evolution of the Paricutin lava field and provide key constraints for petrological interpretations of the nature of the magmatic plumbing system that fed the eruption.

  8. Lava cave microbial communities within mats and secondary mineral deposits: implications for life detection on other planets.

    Science.gov (United States)

    Northup, D E; Melim, L A; Spilde, M N; Hathaway, J J M; Garcia, M G; Moya, M; Stone, F D; Boston, P J; Dapkevicius, M L N E; Riquelme, C

    2011-09-01

    Lava caves contain a wealth of yellow, white, pink, tan, and gold-colored microbial mats; but in addition to these clearly biological mats, there are many secondary mineral deposits that are nonbiological in appearance. Secondary mineral deposits examined include an amorphous copper-silicate deposit (Hawai'i) that is blue-green in color and contains reticulated and fuzzy filament morphologies. In the Azores, lava tubes contain iron-oxide formations, a soft ooze-like coating, and pink hexagons on basaltic glass, while gold-colored deposits are found in lava caves in New Mexico and Hawai'i. A combination of scanning electron microscopy (SEM) and molecular techniques was used to analyze these communities. Molecular analyses of the microbial mats and secondary mineral deposits revealed a community that contains 14 phyla of bacteria across three locations: the Azores, New Mexico, and Hawai'i. Similarities exist between bacterial phyla found in microbial mats and secondary minerals, but marked differences also occur, such as the lack of Actinobacteria in two-thirds of the secondary mineral deposits. The discovery that such deposits contain abundant life can help guide our detection of life on extraterrestrial bodies.

  9. The morphology and evolution of the Stromboli 2002-2003 lava flow field--An example of a basaltic flow field emplaced on a steep slope

    Science.gov (United States)

    Lodato, Luigi; Harris, A.; Spampinato, L.; Calvari, Sonia; Dehn, J.; Patrick, M.

    2007-01-01

    The use of a hand-held thermal camera during the 2002–2003 Stromboli effusive eruption proved essential in tracking the development of flow field structures and in measuring related eruption parameters, such as the number of active vents and flow lengths. The steep underlying slope on which the flow field was emplaced resulted in a characteristic flow field morphology. This comprised a proximal shield, where flow stacking and inflation caused piling up of lava on the relatively flat ground of the vent zone, that fed a medial–distal lava flow field. This zone was characterized by the formation of lava tubes and tumuli forming a complex network of tumuli and flows linked by tubes. Most of the flow field was emplaced on extremely steep slopes and this had two effects. It caused flows to slide, as well as flow, and flow fronts to fail frequently, persistent flow front crumbling resulted in the production of an extensive debris field. Channel-fed flows were also characterized by development of excavated debris levees in this zone (Calvari et al. 2005). Collapse of lava flow fronts and inflation of the upper proximal lava shield made volume calculation very difficult. Comparison of the final field volume with that expecta by integrating the lava effusion rates through time suggests a loss of ~70% erupted lava by flow front crumbling and accumulation as debris flows below sea level. Derived relationships between effusion rate, flow length, and number of active vents showed systematic and correlated variations with time where spreading of volume between numerous flows caused an otherwise good correlation between effusion rate, flow length to break down. Observations collected during this eruption are useful in helping to understand lava flow processes on steep slopes, as well as in interpreting old lava–debris sequences found in other steep-sided volcanoes subject to effusive activity.

  10. Continuous gravity and tilt reveal anomalous pressure and density changes associated with gas pistoning within the summit lava lake of Kīlauea Volcano, Hawaiʻi

    Science.gov (United States)

    Poland, Michael; Carbone, Daniele

    2018-01-01

    Gas piston events within the summit eruptive vent of Kīlauea Volcano, Hawai‘i, are characterized by increases in lava level and by decreases in seismic energy release, spattering, and degassing. During 2010–2011, gas piston events were especially well manifested, with lava level rises of tens of meters over the course of several hours, followed by a sudden drop to preevent levels. The changes in lava level were accompanied by directly proportional changes in gravity, but ground deformation determined from tilt was anticorrelative. The small magnitude of the gravity changes, compared to the large changes in volume within the vent during gas pistons, suggests that pistoning involves the accumulation of a very low‐density (100–200 kg/m3) foam at the top of the lava column. Co‐event ground tilt indicates that rise in lava level is paradoxically associated with deflation (the opposite is usually true), which can be modeled as an increase in the gas content of the magma column between the source reservoir and the surface. Gas pistoning behavior is therefore associated with not only accumulation of a shallow magmatic foam but also more bubbles within the feeder conduit, probably due to the overall decrease in gas emissions from the lava lake during piston events.

  11. Tracking lava flow emplacement on the east rift zone of Kīlauea, Hawai‘i, with synthetic aperture radar coherence

    Science.gov (United States)

    Dietterich, Hannah R.; Poland, Michael P.; Schmidt, David A.; Cashman, Katharine V.; Sherrod, David R.; Espinosa, Arkin Tapia

    2012-05-01

    Lava flow mapping is both an essential component of volcano monitoring and a valuable tool for investigating lava flow behavior. Although maps are traditionally created through field surveys, remote sensing allows an extraordinary view of active lava flows while avoiding the difficulties of mapping on location. Synthetic aperture radar (SAR) imagery, in particular, can detect changes in a flow field by comparing two images collected at different times with SAR coherence. New lava flows radically alter the scattering properties of the surface, making the radar signal decorrelated in SAR coherence images. We describe a new technique, SAR Coherence Mapping (SCM), to map lava flows automatically from coherence images independent of look angle or satellite path. We use this approach to map lava flow emplacement during the Pu`u `Ō`ō-Kupaianaha eruption at Kīlauea, Hawai`i. The resulting flow maps correspond well with field mapping and better resolve the internal structure of surface flows, as well as the locations of active flow paths. However, the SCM technique is only moderately successful at mapping flows that enter vegetation, which is also often decorrelated between successive SAR images. Along with measurements of planform morphology, we are able to show that the length of time a flow stays decorrelated after initial emplacement is linearly related to the flow thickness. Finally, we use interferograms obtained after flow surfaces become correlated to show that persistent decorrelation is caused by post-emplacement flow subsidence.

  12. Correlations between topography and intraflow width behavior in Martian and terrestrial lava flows

    Science.gov (United States)

    Peitersen, Matthew N.; Crown, David A.

    2000-02-01

    Local correlations between topography and width behavior within lava flows at Puu Oo, Mount Etna, Glass Mountain, Cerro Bayo, Alba Patera, Tyrrhena Patera, Elysium Mons, and Olympus Mons were investigated. For each flow, width and slope data were both referenced via downflow distance as a sequence of points; the data were then divided into collections of adjacent three-point features and two-point segments. Four discrete types of analyses were conducted: (1) Three-point analysis examined positional correlations between width and slope features, (2) two-point analysis did the same for flow segments, (3) mean slope analysis included segment slope comparisons, and (4) sudden width behavior analysis measured abruptness of width changes. The distribution of types of correlations compared to random combinations of features and segments does not suggest a significant correlation between flow widths and local underlying slopes and indicates that for these flows at least, other factors have more influence on changes in width than changes in underlying topography. Mean slopes underlying narrowing, widening, and constant flow width segments were calculated. An inverse correlation between slope and width was found only at Mount Etna, where slopes underlying narrowing segments were greater than those underlying widening in 62% of the examined flows. For the majority of flows at Mount Etna, Puu Oo, and Olympus Mons, slopes were actually greatest under constant width segments; this may imply a topographically dependent resistance to width changes. The rate of change of width was also examined. Sudden width changes are relatively common at Puu Oo, Mount Etna, Elysium Mons, and Tyrrhena Patera and relatively rare at Glass Mountain, Cerro Bayo, Olympus Mons, and Alba Patera. After correction for mapping scale, Puu Oo, Mount Etna, Olympus Mons, and Alba Patera appear to fall on the same trend; Glass Mount exhibits unusually small amounts of sudden width behavior, and Tyrrhena Patera

  13. Cognate xenoliths in Mt. Etna lavas: witnesses of the high-velocity body beneath the volcano

    Science.gov (United States)

    Corsaro, Rosa Anna; Rotolo, Silvio Giuseppe; Cocina, Ornella; Tumbarello, Gianvito

    2014-01-01

    Various xenoliths have been found in lavas of the 1763 ("La Montagnola"), 2001, and 2002-03 eruptions at Mt. Etna whose petrographic evidence and mineral chemistry exclude a mantle origin and clearly point to a cognate nature. Consequently, cognate xenoliths might represent a proxy to infer the nature of the high-velocity body (HVB) imaged beneath the volcano by seismic tomography. Petrography allows us to group the cognate xenoliths as follows: i) gabbros with amphibole and amphibole-bearing mela-gabbros, ii) olivine-bearing leuco-gabbros, iii) leuco-gabbros with amphibole, and iv) Plg-rich leuco gabbros. Geobarometry estimates the crystallization pressure of the cognate xenoliths between 1.9 and 4.1 kbar. The bulk density of the cognate xenoliths varies from 2.6 to 3.0 g/cm3. P wave velocities (V P ), calculated in relation to xenolith density, range from 4.9 to 6.1 km/s. The integration of mineralogical, compositional, geobarometric data, and density-dependent V P with recent literature data on 3D V P seismic tomography enabled us to formulate the first hypothesis about the nature of the HVB which, in the depth range of 3-13 km b.s.l., is likely made of intrusive gabbroic rocks. These are believed to have formed at the "solidification front", a marginal zone that encompasses a deep region (>5 km b.s.l.) of Mt. Etna's plumbing system, within which magma crystallization takes place. The intrusive rocks were afterwards fragmented and transported as cognate xenoliths by the volatile-rich and fast-ascending magmas of the 1763 "La Montagnola", 2001 and 2002-03 eruptions.

  14. Carbonatite and silicate melt metasomatism of the mantle surrounding the Hawaiian plume: Evidence from volatiles, trace elements, and radiogenic isotopes in rejuvenated-stage lavas from Niihau, Hawaii

    Science.gov (United States)

    Dixon, Jacqueline; Clague, David A.; Cousens, Brian; Monsalve, Maria Luisa; Uhl, Jessika

    2008-09-01

    We present new volatile, trace element, and radiogenic isotopic compositions for rejuvenated-stage lavas erupted on Niihau and its submarine northwest flank. Niihau rejuvenated-stage Kiekie Basalt lavas are mildly alkalic and are isotopically similar to, though shifted to higher 87Sr/86Sr and lower 206Pb/204Pb than, rejuvenated-stage lavas erupted on other islands and marginal seafloor settings. Kiekie lavas display trace element heterogeneity greater than that of other rejuvenated-stage lavas, with enrichments in Ba, Sr, and light-rare earth elements resulting in high and highly variable Ba/Th and Sr/Ce. The high Ba/Th lavas are among the least silica-undersaturated of the rejuvenated-stage suite, implying that the greatest enrichments are associated with the largest extents of melting. Kiekie lavas also have high and variable H2O/Ce and Cl/La, up to 620 and 39, respectively. We model the trace element concentrations of most rejuvenated-stage lavas by small degrees (˜1% to 9%) of melting of depleted peridotite recently metasomatized by a few percent of an enriched incipient melt (0.5% melting) of the Hawaiian plume. Kiekie lavas are best explained by 4% to 13% partial melting of a peridotite source metasomatized by up to 0.2% carbonatite, similar in composition to oceanic carbonatites from the Canary and Cape Verde Islands, with lower proportion of incipient melt than that for other rejuvenated-stage lavas. Primary H2O and Cl of the carbonatite component must be high, but variability in the volatile data may be caused by heterogeneity in the carbonatite composition and/or interaction with seawater. Our model is consistent with predictions based on carbonated eclogite and peridotite melting experiments in which (1) carbonated eclogite and peridotite within the Hawaiian plume are the first to melt during plume ascent; (2) carbonatite melt metasomatizes plume and surrounding depleted peridotite; (3) as the plume rises, silica-undersaturated silicate melts are also

  15. Permanent terrestrial geodetic system for monitoring the stability of the 2007 Lava Fan in the Sciara de Fuoco (Stromboli volcano, Italy)

    Science.gov (United States)

    Bonforte, A.; Cantarero, M.; Puglisi, G.; Spata, A.

    2009-04-01

    At the end of the 2002-2003 eruption, a terrestrial monitoring system was installed for routinely measuring the movements of benchmarks installed inside the Sciara del Fuoco (hereafter SdF) (Puglisi et al., 2005). This system, named THEODOROS, is based on a remotely controlled robotized Total Station installed near Punta Labronzo, on the northern border of the SdF. The 2007 eruption caused a dramatic change in the operations of THEODOROS. The 2007 lava flows, indeed, destroyed all benchmarks installed on the northern part of the SdF, leaving only those on its central part. This eruption produced a lava fan at the base of the SdF, due to the rapid cooling of the lava flows when entering into the sea. the continuous overlapping of several flows during the eruption, indeed, build a thick lava body (the fan); it was emplaced on a very steep slope, partially originated during the landslides occurred on December 2002, producing an hazard condition due to the possible fast sliding of this fan into the sea. In order to monitor the stability of this lava fan, a new terrestrial geodetic network, was implemented on 6 April 2007, by installing 5 reflectors along a profile crossing the lava body, approximately over the old coastline. Later on, in June 2007, 4 further reflectors were installed at higher and lower altitude with respect to the previous profile, to obtain more information on the overall deformation of the lava body. Measurements were rather noisy during the first months, but a better definition of the reference system strongly improved the quality of the data. The position of the 9 benchmarks over the lava fan allows the areal distribution of the deformation to be drawn. The measurements carried out every 10 minutes allow us to follow with high temporal detail their motion. The data collected since the end of the eruption highlighted a significant downslope motion of the entire lava fan, decreasing from the South to the North, where the body is buttressed by the

  16. Mitigation of lava flow invasion hazard through optimized barrier configuration aided by numerical simulation: The case of the 2001 Etna eruption

    Science.gov (United States)

    Scifoni, S.; Coltelli, M.; Marsella, M.; Proietti, C.; Napoleoni, Q.; Vicari, A.; Del Negro, C.

    2010-04-01

    Lava flow spreading along the flanks of Etna volcano often produces damages to the land and proprieties. The impact of these eruptions could be mitigated by building artificial barriers for controlling and slowing down the lava, as recently experienced in 1983, 1991-1993, 2001 and 2002. This study investigates how numerical simulations can be adopted for evaluating the effectiveness of barrier construction and for optimizing their geometry, considering as test case the lava flows emplaced on Etna's south flank during 2001. The flow temporal evolutions were reconstructed deriving the effusion rate trends, together with the pre-eruption topography were adopted as input data of the MAGFLOW simulation code. Three simulations were then conducted to simulate lava flow with and without barriers. The first aimed at verifying the reconstruction of the effusion rate trends, while the others at assessing the performance of the barrier system realized during the eruption in comparison with an alternative solution here proposed. A quantitative analysis carried out on the first simulation confirms the suitability of the selected test case. The comparison of the three simulated thickness distributions showed both the effectiveness of the barriers in slowing down the lava flow and the sensitivity of the MAGFLOW code to the topographical variations represented by the barriers. Finally, for reducing both the time necessary to erect the barrier and the barrier environmental impact, the gabion's barrier construction was analyzed. The implemented and tested procedure enforces the capability of using numerical simulations for designing optimized lava flow barriers aimed at making swifter mitigatory actions upon lava flows and improving the effectiveness of civil protection interventions during emergencies.

  17. A glassy lava flow from Toconce volcano and its relation with the Altiplano-Puna Magma Body in Central Andes

    Science.gov (United States)

    Godoy, B.; Rodriguez, I.; Aguilera, F.

    2012-12-01

    Toconce is a composite stratovolcano located at the San Pedro - Linzor volcanic chain (SPLVC). This volcanic chain distributes within the Altiplano-Puna region (Central Andes) which is characterized by extensive rhyodacitic-to-rhyolitic ignimbritic fields, and voluminous domes of dacitic-to-rhyolitic composition (de Silva, 1989). The felsic melts that gave origin to ignimbrites and domes at this area were generated by mixing of mantle-derived magmas and anatectic melts assimilated during their ascent through the thick crust. Thus, partially molten layers exist in the upper crust below the APVC (de Silva et al., 2006). Evidence of large volumes of such melts has been also proposed by geophysical methods (i.e. the Altiplano-Puna Magma Body; Chmielowsky et al., 1999) In this work, petrography and whole rock, mineralogical and melt inclusions geochemistry of a glassy lava flow of Toconce volcano are presented. Petrographically, this lava flow shows a porphyric texture, with euhdral to subhedral plagioclase, ortho- and clino-pyroxene phenocrysts immersed in a glassy groundmass. Geochemically, the lava flow has 64.7% wt. SiO2. The glassy groundmass (~70% wt. SiO2) is more felsic than all the lavas in the volcanic chain (47-68% wt., Godoy et al., 2011). Analyzed orthopyroxene-hosted melt inclusions show an even higher SiO2 content (72-75% wt.), and a decreasing on Al2O3, Na2O, and CaO content with differentiation. Crystallization pressures of this lava flow, obtained using Putirka's two-pyroxene and clinopyroxene-liquid models (Putirka, 2008), range between 6 and 9 kbar. According to crystallization pressures, and major element composition, a felsic source located at shallow crustal pressures - where plagioclase is a stable mineralogical phase - originated the inclusions. This could be related to the presence of the Altiplano-Puna Magma Body (APMB) located below SPLVC. On the other hand, glassy groundmass, and disequilibrium textures in minerals of this lava flow could

  18. Thermal history of Hawaiian pāhoehoe lava crusts at the glass transition: implications for flow rheology and emplacement

    Science.gov (United States)

    Gottsmann, Joachim; Harris, Andrew J. L.; Dingwell, Donald B.

    2004-12-01

    We have investigated the thermal history of glassy pāhoehoe crusts across their glass transition. Ten different samples obtained between 1993 and 2003 from the active flow field of the Pu'u 'O'o-Kupaianaha eruption on Hawaii (USA) have been analysed using relaxation geospeedometry. This method employs differential scanning calorimetry to quantify the enthalpic relaxation of the glass to monitor the natural time-temperature (t-T) path followed by the melt during cooling across its glass transition. Cooling rates across the glass transition interval (at 1000- 900 K) have been found to vary between 8 and 140 K/min. The associated glass transition temperatures are up to 400 K, lower than previously anticipated by others. Melt viscosities at the glass transition for these crusts range from 10 9.4 to 10 10.7 Pa s. We have compared the t-T paths quantified via relaxation geospeedometry with those obtained from direct measurements on the active flow field. The calorimetrically determined cooling rates are consistent with either simple cooling from eruption temperatures to temperatures below the glass transition or more complex cooling paths, including periods of reheating and short-term annealing within the glass transition interval. By quantifying the relaxation times associated with these contrasting cooling histories, we show that secondary vesiculation of pāhoehoe flow crusts may be favoured by complex, nonlinear t-T paths within the glass transition. These constraints also allow us to evaluate the time scales associated with the crystallisation and inflation of flow lobes at the glass transition for different pāhoehoe lava flow types. Our results provide important quantifications of rheological parameters at the lower temperature range of viscoelastic deformation in basaltic lava flows. As such, the results may be helpful in refining models for the generation of continental flood basalt flows, as well as models of basaltic lava flow propagation for hazard

  19. The Use of Surveillance Cameras for the Rapid Mapping of Lava Flows: An Application to Mount Etna Volcano

    Directory of Open Access Journals (Sweden)

    Mauro Coltelli

    2017-02-01

    Full Text Available In order to improve the observation capability in one of the most active volcanic areas in the world, Mt. Etna, we developed a processing method to use the surveillance cameras for a quasi real-time mapping of syn-eruptive processes. Following an evaluation of the current performance of the Etna permanent ground NEtwork of Thermal and Visible Sensors (Etna_NETVIS, its possible implementation and optimization was investigated to determine the locations of additional observation sites to be rapidly set up during emergencies. A tool was then devised to process time series of ground-acquired images and extract a coherent multi-temporal dataset of georeferenced map. The processed datasets can be used to extract 2D features such as evolution maps of active lava flows. The tool was validated on ad-hoc test fields and then adopted to map the evolution of two recent lava flows. The achievable accuracy (about three times the original pixel size and the short processing time makes the tool suitable for rapidly assessing lava flow evolutions, especially in the case of recurrent eruptions, such as those of the 2011–2015 Etna activity. The tool can be used both in standard monitoring activities and during emergency phases (eventually improving the present network with additional mobile stations when it is mandatory to carry out a quasi-real-time mapping to support civil protection actions. The developed tool could be integrated in the control room of the Osservatorio Etneo, thus enabling the Etna_NETVIS for mapping purposes and not only for video surveillance.

  20. Geomorphology and petrography of the Angeles lava flow and the Monte de la Cruz cinder cone, Barva Volcano, Costa Rica

    International Nuclear Information System (INIS)

    Rojas, Vanessa; Barahona, Dione; Alvarado, Guillermo E

    2017-01-01

    A geomorphological and pretrographic study was carried out at the lava flow Angeles and the Monte de la Cruz cone in the foothills of the Volcan Barva in Costa Rica. The 1967 aerial photographs at scale 1: 17,000 and 1: 13,000, 1992 at scale 1: 60,000 and TERRA 1997 at scale 1: 40,000 were used for the photogeological study, supplemented with the analysis of the eastern sector of the Hoja Topografica Barva (1: 50 000) of the Instituto Geografico Nacional (IGN) and other topographic maps at different scales (1: 25 000 and 1: 10 000), in addition to the digital elevation models developed through Sistemas de Informacion Geografica (SIG). The information extracted from the wells of the Sistema Nacional de Aguas Subterraneas, Riego y Avenamiento (SENARA) for underground control was reinterpreted. In the field work thicknesses were measured and an estimation of the volumes, dimensions of the cast and other associated geoforms was made. Likewise, 9 samples of rock were selected for the elaboration of thin sections and for their respective petrographic analysis, which allowed to define the main lava flow units and their possible flows. As a result of the volcanic activity of the cone, two flow units of the Angeles wash were identified, the Lower Angels unit and the Superior Angels unit. Petrographically, Angeles Inferior was reciprocated with an andesitic vesical basaltic lava with a porphyritic to slightly glomeroporphyric hypocrystalline texture, with plagioclase, clinopyroxene, orthopyroxene, olivine and opaque phenocrysts. On the other hand, Superior Angeles has been vesicular andesitic with a hypocrystalline texture, glomeroporfiritica to serial glomeroporfiritica, with plagioclase, clinopyroxene, orthopyroxene, olivine and opaque phenocrysts. Morphologically, kipukas and levees were observed. Regionally, it was observed that the Monte de la Cruz cone, along with other smaller satellite cones, are aligned N19 O W along 8.5 km, evidencing an origin associated with a

  1. Isotopic patterns in silicic ignimbrites and lava flows of the Mogan and lower Fataga Formations, Gran Canaria, Canary Islands

    International Nuclear Information System (INIS)

    Cousens, B.L.; Tilton, G.R.; Spera, F.J.

    1990-01-01

    We report the Sr, Pb, and Nd isotopic composition of thirty-six intercalated extracaldera silicic ignimbrites and basaltic lavas of the Miocene Hogarzales, Mogan, and Fataga Formations, Gran Canaria, Canary Islands. The aims are to constrain petrogenetic models for the silicic volcanics, and determine mantle source characteristics and temporal variations between 14.2 and ≅ 12.1 Ma. Feldspars from the extracaldera silicic ignimbrites are identical in isotopic composition to coeval extracaldera basaltic lavas, supporting a fractional crystallization model for the evolved lavas from parental Hogarzales basalts. 87 Sr/ 86 Sr ratios range from 0.70306 to 0.70341, 206 Pb/ 204 Pb from 19.32 to 19.90, 207 Pb/ 204 Pb from 15.56 to 15.65, and 208 Pb/ 204 Pb from 38.82 to 39.65. 143 Nd/ 144 Nd ratios are nearly constant at 0.512913±15. The source of Gran Canaria magmas is heterogeneous on small scales of both time and distance. Isotope-isotope and isotope-incompatible element plots suggest mixing between well-mixed, slightly enriched mantle (similar to PREMA as defined by Zindler and Hart) and the HIMU mantle component. The proportion of HIMU component (low 87 Sr/ 86 Sr, high 206 Pb/ 204 Pb) increases upsection. Stratigraphic patterns in major, trace element, and isotopic compositions may be explained by the influx of a geochemically distinct ''Fataga'' magma into the Tejeda magma chamber, which mixed with and/or finally completely displaced existing ''Lower Mogan'' magmas. Alternatively, mixing of these two end members could occur in the mantle, prior to injection into the chamber. There is no evidence of lithospheric/asthenospheric contamination in the late-stage shield magmas on Gran Canaria. (orig.)

  2. Simulating the lava flow formed during the 2014-2015 Holuhraun eruption (Bardarbunga volcanic system, Iceland) by using the new F-L probabilistic code

    Science.gov (United States)

    Tarquini, Simone; de'Michieli Vitturi, Mattia; Jensen, Esther H.; Barsotti, Sara; Pedersen, Gro B. M.; Coppola, Diego

    2015-04-01

    The 2014-2015 fissure eruption in Holuhraun started when a new code (named F-L) was being developed. The availability of several digital Elevation Models of the area inundated by the lava and the availability of continuously updated maps of the flow (collected in the field and through remote sensing imagery) provided an excellent opportunity for testing and calibrating the new code against an evolving flow field. Remote sensing data also provided a constrain on the effusion rate. Existing numerical codes for the simulation of lava flow emplacement are based either on the solution of some simplification of the physical governing equations of this phenomenon (the so-called "deterministic codes" - e.g. Hidaka et al. 2005; Crisci et al. 2010), or, instead, on the evidence that lava flows tend to follow the steepest descent path from the vent downhill (the so-called "probabilistic codes" - e.g. Favalli et al. 2005). F-L is a new code for the simulation of lava flows, which rests on an approach similar to the one introduced by Glaze and Baloga (2013), and can be ascribed to the "probabilistic family" of lava flow simulation codes. Nevertheless, in contrast with other probabilistic codes (e.g. Favalli et al. 2005), this code explicitly tackles not only the direction of expansion of the growing flow and the area covered, but also the volume of the emplaced lava over time, and hence the supply rate. As a result, this approach bridges the stochastic point of view of a plain probabilistic code with one of the most critical among the input parameters considered by deterministic codes, which is the effusion rate during the course of an eruption. As such, a similar code, in principle, can tackle several aspects which were previously not addressed within the probabilistic approach, which are: (i) the 3D morphology of the flow field (i.e. thickness), (ii) the implications of the effusion rate in the growth of the flow field, and (iii) the evolution of the lava coverage over time

  3. Synthetic analyses of the LAVA experimental results on in-vessel corium retention through gap cooling

    International Nuclear Information System (INIS)

    Kang, Kyoung Ho; Cho, Young Ro; Koo, Kil Mo; Park, Rae Joon; Kim, Jong Hwan; Kim, Jong Tae; Ha, Kwang Sun; Kim, Sang Baik; Kim, Hee Dong

    2001-03-01

    LAVA(Lower-plenum Arrested Vessel Attack) has been performed to gather proof of gap formation between the debris and lower head vessel and to evaluate the effect of the gap formation on in-vessel cooling. Through the total of 12 tests, the analyses on the melt relocation process, gap formation and the thermal and mechanical behaviors of the vessel were performed. The thermal behaviors of the lower head vessel were affected by the formation of the fragmented particles and melt pool during the melt relocation process depending on mass and composition of melt and subcooling and depth of water. During the melt relocation process 10.0 to 20.0 % of the melt mass was fragmented and also 15.5 to 47.5 % of the thermal energy of the melt was transferred to water. The experimental results address the non-adherence of the debris to the lower head vessel and the consequent gap formation between the debris and the lower head vessel in case there was an internal pressure load across the vessel abreast with the thermal load induced by the thermite melt. The thermal behaviors of the lower head vessel during the cooldown period were mainly affected by the heat removal characteristics through this gap, which were determined by the possibilities of the water ingression into the gap depending on the melt composition of the corium simulant. The enhanced cooling capacity through the gap was distinguished in the Al 2 O 3 melt tests. It could be inferred from the analyses on the heat removal capacity through the gap that the lower head vessel could effectively cooldown via heat removal in the gap governed by counter current flow limits(CCFL) even if 2mm thick gap should form in the 30 kg Al 2 O 3 melt tests, which was also confirmed through the variations of the conduction heat flux in the vessel and rapid cool down of the vessel outer surface in the Al 2 O 3 melt tests. In the case of large melt mass of 70 kg Al 2 O 3 melt, however, the infinite possibility of heat removal through the

  4. Evidence from lava flows for complex polarity transitions: The new composite Steens Mountain reversal record

    Science.gov (United States)

    Jarboe, Nicholas A.; Coe, Robert S.; Glen, Jonathan M. G.

    2011-01-01

    Geomagnetic polarity transitions may be significantly more complex than are currently depicted in many sedimentary and lava-flow records. By splicing together paleomagnetic results from earlier studies at Steens Mountain with those from three newly studied sections of Oregon Plateau flood basalts at Catlow Peak and Poker Jim Ridge 70–90 km to the southeast and west, respectively, we provide support for this interpretation with the most detailed account of a magnetic field reversal yet observed in volcanic rocks. Forty-five new distinguishable transitional (T) directions together with 30 earlier ones reveal a much more complex and detailed record of the 16.7 Ma reversed (R)-to-normal (N) polarity transition that marks the end of Chron C5Cr. Compared to the earlier R-T-N-T-N reversal record, the new record can be described as R-T-N-T-N-T-R-T-N. The composite record confirms earlier features, adds new west and up directions and an entire large N-T-R-T segment to the path, and fills in directions on the path between earlier directional jumps. Persistent virtual geomagnetic pole (VGP) clusters and separate VGPs have a preference for previously described longitudinal bands from transition study compilations, which suggests the presence of features at the core–mantle boundary that influence the flow of core fluid and distribution of magnetic flux. Overall the record is consistent with the generalization that VGP paths vary greatly from reversal to reversal and depend on the location of the observer. Rates of secular variation confirm that the flows comprising these sections were erupted rapidly, with maximum rates estimated to be 85–120 m ka−1 at Catlow and 130–195 m ka−1 at Poker Jim South. Paleomagnetic poles from other studies are combined with 32 non-transitional poles found here to give a clockwise rotation of the Oregon Plateau of 11.4°± 5.6° with respect to the younger Columbia River Basalt Group flows to the north and 14.5°± 4.6° with respect

  5. Integrated, multi-parameter, investigation of eruptive dynamics at Santiaguito lava dome, Guatemala

    Science.gov (United States)

    Lavallée, Yan; De Angelis, Silvio; Rietbrock, Andreas; Lamb, Oliver; Hornby, Adrian; Lamur, Anthony; Kendrick, Jackie E.; von Aulock, Felix W.; Chigna, Gustavo

    2016-04-01

    Understanding the nature of the signals generated at volcanoes is central to hazard mitigation efforts. Systematic identification and understanding of the processes responsible for the signals associated with volcanic activity are only possible when high-resolution data are available over relatively long periods of time. For this reason, in November 2014, the Liverpool Earth Observatory (LEO), UK, in collaboration with colleagues of the Instituto Nacional de Sismologia, Meteorologia e Hidrologia (INSIVUMEH), Guatemala, installed a large multi-parameter geophysical monitoring network at Santiaguito - the most active volcano in Guatemala. The network, which is to date the largest temporary deployment on Santiaguito, includes nine three-component broadband seismometers, three tiltmeters, and five infrasound microphones. Further, during the initial installation campaign we conducted visual and thermal infrared measurements of surface explosive activity and collected numerous rock samples for geochemical, geophysical and rheological characterisation. Activity at Santiaguito began in 1922, with the extrusion of a series of lava domes. In recent years, persistent dome extrusion has yielded spectacularly episodic piston-like motion displayed by characteristic tilt/seismic patterns (Johnson et al, 2014). This cyclicity episodically concludes with gas emissions or gas-and-ash explosions, observed to progress along a complex fault system in the dome. The explosive activity is associated with distinct geophysical signals characterised by the presence of very-long period earthquakes as well as more rapid inflation/deflation cycles; the erupted ash further evidences partial melting and thermal vesiculation resulting from fault processes (Lavallée et al., 2015). One year of data demonstrates the regularity of the periodicity and intensity of the explosions; analysis of infrasound data suggests that each explosion expulses on the order of 10,000-100,000 kg of gas and ash. We

  6. Changes in Mass Flux of Tephra from the Lava Lake in Overlook Crater, Kīlauea Volcano, Hawai`i

    Science.gov (United States)

    Swanson, D. A.; Orr, T. R.; Patrick, M. R.

    2016-12-01

    The mass flux of tephra (mostly Pele's hair and tears, hollow spherules, and lithic clasts) from the lava lake in Overlook crater varies on short (seconds-minutes), intermediate (hours-days), and long (months) time scales. The tephra is collected almost daily from a network of 10 buckets within 400 m of, and 100-150 m above, the lava lake; bucket locations have not changed during the eruption. A mass accumulation rate (AR) is calculated for the network; since April 2008, the AR averages 0.17 g/m2/h ( 5×10-8 kg/m2/s). The tephra forms during almost constant spattering at the SE sink (the main downwelling site) and ephemeral sites along the crater wall, as well as from sporadic, rockfall-induced violent outgassing that can eject decimeter-size spatter clots onto the crater rim; the average AR excludes these violent events. The rockfalls, and nearly constant raveling from the crater wall, introduce lithic clasts into the tephra. The lithic content of the tephra has decreased with time, reflecting both greater wall stability and higher lake level, and was usually 7 m/s). At intermediate and long time scales, juvenile AR shows no correlation with measured SO2 output and only weak or no correlation with wind speed, but it often tracks the elevation of the lake surface—higher when lava is nearer the buckets. For example, both lava level and juvenile AR were unusually high in January-July 2016. Before 2016, however, 7-9 periods of heightened juvenile production (see figure below), each lasting several months, show no correlation with other monitored parameters—lake level, SO2, wind speed and direction, or downwelling location. Often AR gradually increased to a peak before falling off, sometimes to nearly zero. We speculate that such long-term variations result from changes in magma supply rate, gas concentration, or rise frequency of decoupled gas slugs. These changes may be too small or slow to detect by current geodetic and gas monitoring. They suggest a slowly

  7. Use of joint-growth directions and rock textures to infer thermal regimes during solidification of basaltic lava flows

    Science.gov (United States)

    Degraff, James M.; Long, Philip E.; Aydin, Atilla

    1989-09-01

    Thermal contraction joints form in the upper and lower solidifying crusts of basaltic lava flows and grow toward the interior as the crusts thicken. Lava flows are thus divided by vertical joints that, by changes in joint spacing and form, define horizontal intraflow layers known as tiers. Entablatures are tiers with joint spacings less than about 40 cm, whereas colonnades have larger joint spacings. We use structural and petrographic methods to infer heat-transfer processes and to constrain environmental conditions that produce these contrasting tiers. Joint-surface morphology indicates overall joint-growth direction and thus identifies the level in a flow where the upper and lower crusts met. Rock texture provides information on relative cooling rates in the tiers of a flow. Lava flows without entablature have textures that develop by relatively slow cooling, and two joint sets that usually meet near their middles, which indicate mostly conductive cooling. Entablature-bearing flows have two main joint sets that meet well below their middles, and textures that indicate fast cooling of entablatures and slow cooling of colonnades. Entablatures always occur in the upper joint sets and sometimes alternate several times with colonnades. Solidification times of entablature-bearing flows, constrained by lower joint-set thicknesses, are much less than those predicted by a purely conductive cooling model. These results are best explained by a cooling model based on conductive heat transfer near a flow base and water-steam convection in the upper part of an entablature-bearing flow. Calculated solidification rates in the upper parts of such flows exceed that of the upper crust of Kilauea Iki lava lake, where water-steam convection is documented. Use of the solidification rates in an available model of water-steam convection yields permeability values that agree with measured values for fractured crystalline rock. We conclude, therefore, that an entablature forms when part

  8. Miocene Basaltic Lava Flows and Dikes of the Intervening Area Between Picture Gorge and Steens Basalt of the CRBG, Eastern Oregon

    Science.gov (United States)

    Cahoon, E. B.; Streck, M. J.

    2016-12-01

    Mid-Miocene basaltic lavas and dikes are exposed in the area between the southern extent of the Picture Gorge Basalt (PGB) and the northern extent of Steens Basalt in a wide corridor of the Malheur National Forest, eastern Oregon. An approximate mid-Miocene age of sampled basaltic units is indicated by stratigraphic relationships to the 16 Ma Dinner Creek Tuff. Lavas provide an opportunity to extend and/or revise distribution areas of either CRBG unit and explore the petrologic transition between them. The PGB and the Steens Basalt largely represent geochemically distinct tholeiitic units of the CRBG; although each unit displays internal complexity. Lavas of PGB are relatively primitive (MgO 5-9 wt.%) while Steens Basalt ranges in MgO from >9 to 3 wt.% but both units are commonly coarsely porphyritic. Conversely, Steens Basalt compositions are on average more enriched in highly incompatible elements (e.g. Rb, Th) and relatively enriched in the lesser incompatible elements (e.g. Y, Yb) compared to the Picture Gorge basalts. These compositional signatures produce inclined and flat patterns on mantle-normalized incompatible trace element plots but with similar troughs and spikes, respectively. New compositional data from our study area indicate basaltic lavas can be assigned as PGB lava flows and dikes, and also to a compositional group chemically distinct between Steens Basalt and PGB. Distribution of lava flows with PGB composition extend this CRBG unit significantly south/southeast closing the exposure gap between PGB and Steens Basalt. We await data that match Steens Basalt compositions but basaltic lavas with petrographic features akin to Steens Basalt have been identified in the study area. Lavas of the transitional unit share characteristics with Upper Steens and Picture Gorge basalt types, but identify a new seemingly unique composition. This composition is slightly more depleted in the lesser incompatible elements (i.e. steeper pattern) on mantle normalized

  9. Volcano morphometry and volume scaling on Venus

    Science.gov (United States)

    Garvin, J. B.; Williams, R. S., Jr.

    1994-01-01

    A broad variety of volcanic edifices have been observed on Venus. They ranged in size from the limits of resolution of the Magellan SAR (i.e., hundreds of meters) to landforms over 500 km in basal diameter. One of the key questions pertaining to volcanism on Venus concerns the volume eruption rate or VER, which is linked to crustal productivity over time. While less than 3 percent of the surface area of Venus is manifested as discrete edifices larger than 50 km in diameter, a substantial component of the total crustal volume of the planet over the past 0.5 Ga is related to isolated volcanoes, which are certainly more easily studied than the relatively diffusely defined plains volcanic flow units. Thus, we have focused our efforts on constraining the volume productivity of major volcanic edifices larger than 100 km in basal diameter. Our approach takes advantage of the topographic data returned by Magellan, as well as our database of morphometric statistics for the 20 best known lava shields of Iceland, plus Mauna Loa of Hawaii. As part of this investigation, we have quantified the detailed morphometry of nearly 50 intermediate to large scale edifices, with particular attention to their shape systematics. We found that a set of venusian edifices which include Maat, Sapas, Tepev, Sif, Gula, a feature at 46 deg S, 215 deg E, as well as the shield-like structure at 10 deg N, 275 deg E are broadly representative of the approx. 400 volcanic landforms larger than 50 km. The cross-sectional shapes of these 7 representative edifices range from flattened cones (i.e., Sif) similar to classic terrestrial lava shields such as Mauna Loa and Skjaldbreidur, to rather dome-like structures which include Maat and Sapas. The majority of these larger volcanoes surveyed as part of our study displayed cross-sectional topographies with paraboloidal shaped, in sharp contrast with the cone-like appearance of most simple terrestrial lava shields. In order to more fully explore the

  10. Diet of feral cats in Hawai'i Volcanoes National Park

    Science.gov (United States)

    Hess, S.C.; Hansen, H.; Nelson, D.; Swift, R.; Banko, P.C.

    2007-01-01

    We documented the diet of feral cats by analysing the contents of 42 digestive tracts from Kilauea and Mauna Loa in Hawai'i Volcanoes National Park. Small mammals, invertebrates, and birds were the most common prey types consumed by feral cats. Birds occurred in 27.8-29.2% of digestive tracts. The total number of bird, small mammal, and invertebrate prey differed between Kilauea and Mauna Loa. On Mauna Loa, significantly more (89%) feral cats consumed small mammals, primarily rodents, than on Kilauea Volcano (50%). Mice (Mus musculus) were the major component of the feral cat diet on Mauna Loa, whereas Orthoptera were the major component of the diet on Kilauea. We recovered a mandible set, feathers, and bones of an endangered Hawaiian Petrel (Pterodroma sandwichensis) from a digestive tract from Mauna Loa. This specimen represents the first well-documented endangered seabird to be recovered from the digestive tract of a feral cat in Hawai'i and suggests that feral cats prey on this species.

  11. Mantle amphibole control on arc and within-plate chemical signatures: Quaternary lavas from Kurdistan Province, Iran

    Science.gov (United States)

    Kheirkhah, M.; Allen, M. B.; Neill, I.; Emami, M. H.; McLeod, C.

    2012-04-01

    New analyses of Quaternary lavas from Kurdistan Province in west Iran shed light on the nature of collision zone magmatism. The rocks are from the Turkish-Iranian plateau within the Arabia-Eurasia collision. Compositions are typically basanite, hawaiite and alkali basalt. Sr-Nd isotope values are close to BSE, which is similar to Quaternary alkali basalts of NW Iran, but distinct from a depleted source melting under Mount Ararat. The chemical signatures suggests variable melting of two distinct sources. One inferred source produced melts with La/Nb from~3.5 to~1.2, which we model as the result of depletion of amphibole during ≤1% melting in the garnet stability field. We infer phlogopite in the source of potassic lavas from Takab. Lithosphere delamination or slab break-off mechanisms for triggering melting are problematic, as the lithosphere is~150-200km thick. It is possible that the negative dT/dP section of the amphibole peridotite solidus was crossed as a result of lithospheric thickening in the collision zone. This explanation is conditional upon the mantle source being weakly hydrated and so only containing a small proportion of amphibole, which can be exhausted during small degrees of partial melting. Our model maybe viable for other magmatic areas within orogenic plateaux, e.g. northern Tibet. Depletion of mantle amphibole may also help explain larger scale transitions from arc to within-plate chemistry in orogens, such as the Palaeogene Arabia-Eurasia system.

  12. Investigation of volcanic gas analyses and magma outgassing from Erta' Ale lava lake, Afar, Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, T.M.

    1980-05-01

    The analyses of 18 volcanic gas samples collected over a two-hour period at 1075/sup 0/C from Erta' Ale lava lake in December 1971 and of 18 samples taken over a half-hour period at 1125 to 1135/sup 0/C in 1974 display moderately to intensely variable compositions. These variations result from imposed modifications caused by (1) atmospheric contamination and oxidation, (2) condensation and re-evaporation of water during collection, (3) analytical errors, and (4) chemical reactions between the erupted gases and a steel lead-in tube. Detailed examinations of the analyses indicate the erupted gases were at chemical equilibrium before collection. This condition was partially destroyed by the imposed modifications. High-temperature reaction equilibria were more completely preserved in the 1974 samples. Numerical procedures based on thermodynamic calculations have been used to restore each analysis to a composition representative of the erupted gases. These procedures have also been used to restore the anhydrous mean compositions reported for two series of collections taken at the lava lake in January 1973.

  13. Geochronology and petrology of OIB-type lavas from the central part of the Mexican Volcanic Belt

    International Nuclear Information System (INIS)

    Hasenaka, Toshiaki; Yoshida, Takeyoshi; Uto, Kozo; Uchiumi, Shigeru

    1995-01-01

    In Mexican Volcanic Belt, typical continental margin arc volcanic activities have occurred accompanying the subduction of Rivera Plate and Cocos Plate into North American Plate. It has been known by recent geochemical research that the oceanic island type magma which does not show the characteristic chemical composition of subduction zone has extruded. In order to investigate the relation of the development of volcanic belt in continental margin are with the change of wide area tectonics, and to impose important limit on magma formation models, it is important to know the state of production of oceanic island type magma in continental margin arc and the age of its activities. In this report, the results of the K-Ar age measurement for the oceanic island type lava produced in the middle of Mexican Volcanic Belt are shown, and the geochemical features of those samples are clarified. The state of production and the petrography of oceanic island type igneous rock samples are explained. The K-Ar age measurement experiment and the results are reported. The chemical composition of oceanic island type lava determined by photon activation process and fluorescent X-ray analysis is shown. (K.I.)

  14. A long-scale biodiversity monitoring methodology for Spanish national forest inventory. Application to Álava region

    Directory of Open Access Journals (Sweden)

    Iciar Alberdi

    2014-04-01

    Full Text Available Aim of study: In this study, a methodology has been designed to assess biodiversity in the frame of the Spanish National Forest Inventory with the aim of evaluating the conservation status of Spanish forests and their future evolution. This methodology takes into account the different national and international initiatives together with the different types and characteristics of forests in Spain. Area of study: Álava province (Basque country, Spain.Material and methods: To analyse the contribution of each of the different indices to the biodiversity assessment, a statistical analysis using PCA multivariate techniques was performed for structure, composition and dead wood indicators. Main Results: The selected biodiversity indicators (based on field measurements are presented along with an analysis of the results from four representative forest types in Álava by way of an example of the potential of this methodology. Research highlights: The statistical analysis revealed the important information contribution of Mingling index to the composition indicators. Regarding the structure indicators, it is remarkable the interest of using standard deviations and skewness of height and diameter as indicators. Finally it is interesting to point out the interest of assessing dead saplings since they provide additional information and their volume is a particularly useful parameter for analyzing the success of regeneration.Keywords: species richness; structural diversity; dead wood; NFI; PCA.

  15. The 2011 El Hierro submarine eruption: estimation of erupted lava flow volume on the basis of helicopter thermal surveys

    Science.gov (United States)

    Hernández, P. A.; Calvari, S.; Calvo, D.; Marquez, A.; Padron, E.; Pérez, N.; Melian, G.; Padilla, G.; Barrancos, J.; Dionis, S.; Rodríguez, F.; Nolasco, D.; Hernández, I.

    2012-04-01

    been collected each time in order to compare the temperature distribution with the features observed on the sea surface. Calculation of lava flow volume and effusion rate from thermal images collected by helicopter surveys has been largely used during the last decade for monitoring effusive eruptions at Etna, Stromboli, Kilauea, and other volcanoes. In this study, lava flow volume is calculated on the basis of temperature difference between the seawater contained within the dark patch, and the temperature of the seawater surface away from the eruption. These values have to be considered as minimum values, because they do not take into account the volume of lava isolated from the seawater by a thick crust that did not contribute to seawater warming. To calculate the lava volume we have used the model proposed by Harris et al. (1998) for the portion of the lava flow field spreading below sea level. Preliminary results indicate that during the period of study, about 5Mm3 of magma have been needed to heat the observed surface heated sea water at the submarine eruption site.

  16. Emplacement of pillow lavas from the ~ 2.8 Ga Chitradurga Greenstone Belt, South India: A physical volcanological, morphometric and geochemical perspective

    Science.gov (United States)

    Duraiswami, Raymond A.; Inamdar, Mustaqueem M.; Shaikh, Tahira N.

    2013-08-01

    The physical volcanology and morphometric analyses of pillowed lava flows from the Chitradurga basin of Chitradurga Greenstone Belt, South India have been undertaken. In the Chitradurga hills individual pillowed flows alternate with massive submarine sheet flows. The pillows from such flows are separated by chert and occur as spheroidal, elongated or reniform units that are devoid of vesicles, vesicle bands or pipe vesicles. The Mardihalli flow is exposed as a small elongated mound in the basin and consists of a massive core that is draped by pillows along the flow crest and flanks. The pillows from Mardihalli occur as spheroidal to elongate units with smooth, spalled or wrinkled surfaces with vesicular interiors. Repeated budding of larger pillows have produced a series of interconnected pillow units indicating fluid lava that was emplaced on steeply dipping flanks. Based on the morphological features the pillowed flows from the Chitradurga basin were emplaced at low effusion rates (≤ 5 m3/s). Pillows in these flows formed from low viscosity lavas that underwent negligible to moderate inflation due to rapid chilling. Sporadic occurrences of pillow breccias, hyaloclastite and chert breccias in the pillowed flow fields indicate disruption of pillows due to lava surges and slumping. It is envisaged that the Chitradurga basin witnessed distinct episodes of submarine tholeiite eruptions that produced pillowed lavas that variably interacted with sea water to produce geochemistries. The field and stratigraphic relationships of the volcanics and associated clastic sediments suggest that the pillow lavas were emplaced in a shallow marine marginal inter/back arc basin.

  17. Low-pressure differentiation of tholeiitic lavas as recorded in segregation veins from Reykjanes (Iceland), Lanzarote (Canary Islands) and Masaya (Nicaragua)

    Science.gov (United States)

    Martin, E.; Sigmarsson, O.

    2007-11-01

    Segregation veins are common in lava sheets and result from internal differentiation during lava emplacement and degassing. They consist of evolved liquid, most likely replaced by gas-filter pressing from a ˜50% crystallised host lava. Pairs of samples, host lavas and associated segregation veins from the Reykjanes Peninsula (Iceland), Lanzarote (Canary Islands) and the Masaya volcano (Nicaragua) show extreme mineralogical and compositional variations (MgO in host lava, segregation veins and interstitial glass ranges from 8-10 wt%, 3-6 wt%, and to less than 0.01 wt%, respectively). These samples allow the assessment of the internal lava flow differentiation mechanism, since both the parental and derived liquid are known in addition to the last magma drops in the form of late interstitial glasses. The mineralogical variation, mass-balance calculated from major- and trace element composition, and transitional metal partition between crystals and melts are all consistent with fractional crystallisation as the dominant differentiation mechanism. The interstitial glasses are highly silicic (SiO2 = 70-80 wt%) and represent a final product of high-degree (75-97%) fractional crystallisation of olivine tholeiite at a pressure close to one atmosphere. The tholeiitic liquid-line-of-decent and the composition of the residual melts are governed by the K2O/Na2O of the initial basaltic magma. The granitic minimum is reached if the initial liquid has a high K2O/Na2O whereas trondhjemitic composition is the final product of magma with low initial K2O/Na2O.

  18. A rock- and palaeomagnetic study of recent lavas and 1995 volcanic glass on Fogo (Cape Verde Islands)

    DEFF Research Database (Denmark)

    Knudsen, M.F.; Abrahamsen, N.; Riisager, P.

    2005-01-01

    Fogo is the only island in the Cape Verde archipelago with accounts of historical volcanic activity.Here we present palaeomagnetic data from seven geologically recent lava flows on Fogo, including one glassy, volcanic flow from the eruption in 1995. Almost all samples behaved well during alternat......Fogo is the only island in the Cape Verde archipelago with accounts of historical volcanic activity.Here we present palaeomagnetic data from seven geologically recent lava flows on Fogo, including one glassy, volcanic flow from the eruption in 1995. Almost all samples behaved well during...

  19. Geochemical studies of abyssal lavas recovered by DSRV Alvin from Eastern Galapagos Rift, Inca Transform, and Ecuador Rift: 2. Phase chemistry and crystallization history

    Science.gov (United States)

    Perfit, Michael R.; Fornari, Daniel J.

    1983-12-01

    A diverse suite of lavas recovered by DSRV Alvin from the eastern Galapagos rift and Inca transform includes mid-ocean ridge tholeiitic basalts (MORB), iron- and titanium-enriched basalts (FeTi basalts), and abyssal andesites. Rock types transitional in character (ferrobasalts and basaltic andesites) were also recovered. The most mafic glassy basalts contain plagioclase, augite, and olivine as near-liquidus phases, whereas in more fractionated basalts, pigeonite replaces olivine and iron-titanium oxides crystallize. Plagioclase crystallizes after pyroxenes and iron-titanium oxides in andesites, possibly due to increased water contents or cooling rates. Apatite phenocrysts are present in some andesitic glasses. Ovoid sulfide globules are also common in many lavas. Compositional variations of phenocrysts in glassy lavas reflect changes in magma chemistry, temperature of crystallization, and cooling rate. The overall chemical variations parallel the chemical evolution of the lava suite and are similar to those in other fractionated tholeiitic complexes. Elemental partitioning between plagioclase-, pyroxene-, and olivine-glass pairs suggests that equilibration occurred at low pressure in a rather restricted temperature range. Various geothermometers indicate that the most primitive MORB began to crystallize between 1150° and 1200°C with fo2 PH 2 o could have been as high as 1 kbar during andesite crystallization. Compositions of the lavas from the Galapagos rift follow the experimentally determined (1 atm-QFM) liquid line of descent. Least squares calculations for the major elements indicate that the entire suite of lavas can be produced by fractional crystallization of successive residual liquids from a MORB parent magma. FeTi basalts represent 30-65 cumulative weight percent crystallization of plagioclase, augite, and olivine. An additional 30-50% fractionation of pyroxenes, plagioclase, titanomagnetite, and possible apatite is required to generate andesite from Fe

  20. Geologic Mapping of the Olympus Mons Volcano, Mars

    Science.gov (United States)

    Bleacher, J. E.; Williams, D. A.; Shean, D.; Greeley, R.

    2012-01-01

    We are in the third year of a three-year Mars Data Analysis Program project to map the morphology of the Olympus Mons volcano, Mars, using ArcGIS by ESRI. The final product of this project is to be a 1:1,000,000-scale geologic map. The scientific questions upon which this mapping project is based include understanding the volcanic development and modification by structural, aeolian, and possibly glacial processes. The project s scientific objectives are based upon preliminary mapping by Bleacher et al. [1] along a approx.80-km-wide north-south swath of the volcano corresponding to High Resolution Stereo Camera (HRSC) image h0037. The preliminary project, which covered approx.20% of the volcano s surface, resulted in several significant findings, including: 1) channel-fed lava flow surfaces are areally more abundant than tube-fed surfaces by a ratio of 5:1, 2) channel-fed flows consistently embay tube-fed flows, 3) lava fans appear to be linked to tube-fed flows, 4) no volcanic vents were identified within the map region, and 5) a Hummocky unit surrounds the summit and is likely a combination of non-channelized flows, dust, ash, and/or frozen volatiles. These results led to the suggestion that the volcano had experienced a transition from long-lived tube-forming eruptions to more sporadic and shorter-lived, channel-forming eruptions, as seen at Hawaiian volcanoes between the tholeiitic shield building phase (Kilauea to Mauna Loa) and alkalic capping phase (Hualalai and Mauna Kea).

  1. New Insights to the Mid Miocene Calc-alkaline Lavas of the Strawberry Volcanics, NE Oregon Surrounded by the Coeval Tholeiitic Columbia River Basalt Province

    Science.gov (United States)

    Steiner, A. R.; Streck, M. J.

    2013-12-01

    The Strawberry Volcanics (SV) of NE Oregon were distributed over 3,400 km2 during the mid-Miocene and comprise a diverse volcanic suite, which span the range of compositions from basalt to rhyolite. The predominant composition of this volcanic suite is calc-alkaline (CA) basaltic andesite and andesite, although tholeiitic (TH) lavas of basalt to andesite occur as well. The coeval flood basalts of the Columbia River province surround the SV. Here we will discuss new ages and geochemical data, and present a new geologic map and stratigraphy of the SV. The SV are emplaced on top of pre-Tertiary accreted terranes of the Blue Mountain Province, Mesozoic plutonic rocks, and older Tertiary volcanic rocks thought to be mostly Oligocene of age. Massive rhyolites (~300 m thick) are exposed mainly along the western flank and underlie the intermediate composition lavas. In the southern portion of this study area, alkali basaltic lavas, thought to be late Miocene to early Pliocene in age, erupted and overlie the SV. In addition, several regional ignimbrites reach into the area. The 9.7 Ma Devine Canyon Tuff and the 7.1 Ma Rattlesnake Tuff also overlie the SV. The 15.9-15.4 Ma Dinner Creek Tuff is mid-Miocene, and clear stratigraphic relationships are found in areas where the tuff is intercalated between thick SV lava flows. All of the basalts of the SV are TH and are dominated by phenocryst-poor (≤2%) lithologies. These basalts have an ophitic texture dominated by plagioclase, clinopyroxene and olivine (often weathered to iddingsite). Basalts and basaltic andesites have olivine Fo #'s ranging from 44 at the rims (where weathered to iddingsite) and as high as 88 at cores. Pyroxene Mg #'s range from 65 to 85. Andesites of the SV are sub-alkaline, and like the basalts, are exceedingly phenocryst-poor (≤3%) with microphenocrysts of plagioclase and lesser pyroxene and olivine, which occasionally occur as crystal clots of ~1-3 mm instead of single crystals. In addition, minimal

  2. The effect of inflation on the morphology-derived rheological parameters of lava flows and its implications for interpreting remote sensing data - A case study on the 2014/2015 eruption at Holuhraun, Iceland

    Science.gov (United States)

    Kolzenburg, S.; Jaenicke, J.; Münzer, U.; Dingwell, D. B.

    2018-05-01

    Morphology-derived lava flow rheology is a frequently used tool in volcanology and planetary science to determine rheological parameters and deduce the composition of lavas on terrestrial planets and their moons. These calculations are usually based on physical equations incorporating 1) lava flow driving forces: gravity, slope and flow-rate and 2) morphological data such as lava flow geometry: flow-width, -height or shape of the flow outline. All available methods assume that no geometrical changes occur after emplacement and that the measured flow geometry reflects the lava's apparent viscosity and/or yield strength during emplacement. It is however well-established from terrestrial examples that lava flows may inflate significantly after the cessation of flow advance. This inflation affects, in turn, the width-to-height ratio upon which the rheological estimates are based and thus must result in uncertainties in the determination of flow rheology, as the flow height is one of the key parameters in the morphology-based deduction of flow properties. Previous studies have recognized this issue but, to date, no assessment of the magnitude of this error has been presented. This is likely due to a lack of digital elevation models (DEMs) at sufficiently high spatial and temporal resolution. The 2014/15 Holuhraun eruption in central Iceland represents one of the best monitored large volume (1.5 km3) lava flow fields (85 km2) to date. An abundance of scientific field and remote sensing data were collected during its emplacement. Moreover, inflation plays a key role in the emplacement dynamics of the late stage of the lava field. Here, we use a time series of high resolution DEMs acquired by the TanDEM-X satellite mission prior, during and after the eruption to evaluate the error associated with the most common methods of deriving lava flow rheology from morphological parameters used in planetary science. We can distinguish two dominant processes as sources of error in

  3. Morphological and structural changes at the Merapi lava dome monitored in 2012-15 using unmanned aerial vehicles (UAVs)

    Science.gov (United States)

    Darmawan, Herlan; Walter, Thomas R.; Brotopuspito, Kirbani Sri; Subandriyo; I Gusti Made Agung Nandaka

    2018-01-01

    Dome-building volcanoes undergo rapid and profound topographic changes that are important to quantify for the purposes of hazard assessment. However, as hazardous lava domes often develop on high-altitude volcanoes that exhibit steep-sided topography, it is challenging to obtain direct field access and thus to analyze these morphological and structural changes. Merapi Volcano in Indonesia is a type example of such a volcano, as soon after its 2010 eruption, a new lava dome developed. This dome was partially destroyed during six distinct steam-driven explosions that occurred between 2012 and 2014. Here, we investigate the topographic and structural changes associated with these six steam-driven explosions by comparing close-range photogrammetric data obtained before and after these explosions. To accomplish this, we performed two UAV campaigns in 2012 and 2015. By applying the Structure from Motion (SfM) technique, we are able to construct three-dimensional point clouds, assess their quality by comparing them to a terrestrial laser scanning (TLS) dataset, and generate high-resolution Digital Elevation Models (DEMs) and photomosaics. The comparison of these two DEMs and photomosaics reveals changes in topography and the appearance of fractures. In the 2012 dataset, we find a dense fracture network striking to the NNW-SSE. In the post-eruptive 2015 dataset, we see that this NNW-SSE fracture trend is much more strongly expressed; we also detect the formation of aligned and elongated explosion craters, which are associated with the removal of over 200,000 m3 of dome