Dry matter and energy partitioning in plants under climatic stress
Bolhar-Nordenkampf, H.R.; Postl, W.F.; Meister, M.H.; Ledl, D.; Nemeth, K. [Univ. of Vienna (Austria). Inst. of Plant Physiology; Ludlow, M.M. [CSIRO, Brisbane (Australia). Div. of Tropical Crops and Pastures
1996-12-31
During ontogenesis plants distribute assimilates quite differently among their organs depending on the environmental conditions. In case of high sink capacity energetically cheap storing compounds such as carbohydrates and/or organic acids are formed, whereas during periods with low demand proteins and lipids may be accumulated. Besides ontogenesis, drought and increased CO{sub 2} are able to modify sink capacity and by this transients in the partitioning pattern of carbon are induced. Plants, well adapted to several dry seasons during the year are able to allocate carbon predominantly to below ground organs. During this period many leaves become senescent. In any case stems and remaining green leaves will loose dry matter and energy. With 80% of plants under investigation CO{sub 2} enrichment was shown to induce an enforced allocation of carbon to below ground organs. Roots and Rhizomes, beets and tubers act as a sink for the additionally fixed carbon. It was demonstrated that sink capacity is controlling photosynthetic activity. With respect to agricultural production, to ecosystems and to single plants, climatic change will modify productivity and plants distribution pattern as a consequence of quite different metabolic changes. These responses are depending on the effect of natural and anthropogenic stress factors on the use of enhanced CO{sub 2} and on the allocation of additionally formed assimilates.
Physical stress, mass, and energy for non-relativistic spinful matter
Geracie, Michael; Roberts, Matthew M
2016-01-01
For theories of relativistic matter fields with spin there exist two possible definitions of the stress-energy tensor, one defined by a variation of the action with the coframes at fixed connection, and the other at fixed torsion. These two stress-energy tensors do not necessarily coincide and it is the latter that corresponds to the Cauchy stress measured in the lab. In this note we discuss the corresponding issue for non-relativistic matter theories. We point out that while the physical non-relativistic stress, momentum, and mass currents are defined by a variation of the action at fixed torsion, the energy current does not admit such a description and is naturally defined at fixed connection. Any attempt to define an energy current at fixed torsion results in an ambiguity which cannot be resolved from the background spacetime data or conservation laws. We also provide computations of these quantities for some simple non-relativistic actions.
Gobato, Ricardo; Fedrigo, Desire Francine Gobato
2015-01-01
Our work is an approach between matter and energy. Using the famous equation E = mc^2, Einstein and the Law of Universal Gravitation of Newton, we estimate that a small amount matter converted into energy is needed to lift, using the gravitational potential energy equation on the surface, a mountain of solid iron or even Mount Everest.
None
2002-03-01
Quarterly newsletter from DOE's Industrial Technologies Program to promote the use of energy-efficient industrial systems. The focus of the Spring 2002 Issue of Energy Matters focuses on premium energy efficiency systems, with articles on new gas technologies, steam efficiency, the Augusta Newsprint Showcase, and more.
A matter of energy stress:p38β meets mTORC1
Adem Kalender; Anand Selvaraj; George Thomas
2011-01-01
@@ Throughout evolution, cells have developed sophisticated signaling mechanisms to balance the production and expenditure of energy to maintain energy homeostasis.During an energy crisis, cells suppress energy consuming anabolic processes and up-regulate basic catabolic routes to maintain the energy currency of the cell, Adenosine Triphosphate (ATP).The main paths of ATP generation are through glycolysis in the cytoplasm and oxidative phosphorylation in mitochondria.
Yan, Fangquan; Xue, Bai; Song, Liangrong; Xiao, Jun; Ding, Siyan; Hu, Xiaofei; Bu, Dengpan; Yan, Tianhai
2016-11-01
This study aimed to determine the net energy requirement of Holstein cows in mid-lactation under heat stress. Twenty-five multiparous Holstein cows were randomly allocated to five groups corresponding to five isonitrogenous total mixed rations, with net energy for lactation (NEL ) content of 6.15 (NE-6.15), 6.36 (NE-6.36), 6.64 (NE-6.64), 6.95 (NE-6.95), 7.36 (NE-7.36) MJ/kg of dry matter (DM), respectively. Throughout the experimental period the average temperature humidity index at 07.00, 14.00 and 22.00 hours was 72.1, 88.7, and 77.6, respectively. DM intake decreased significantly with the elevated dietary NEL concentration. Fat corrected milk increased quadratically, and milk fat content and milk energy (MJ/kg) reached the greatest in the NE-6.95 group with increasing dietary NEL content. Strong correlations were found between dietary NEL content and: (i) DM intake; (ii) NEL intake; (iii) milk energy (El ); (iv) El /metabolizable energy intake (MEI); (v) El /NEL intake, as well as between NEL intake and fat corrected milk yield (FCM). The suitable net energy required for dairy cows producing 1 kg FCM ranged from 5.01 to 5.03 MJ, was concluded from the above-stated regressions. Correlation between heat production (HP) and MEI could be expressed as: Log (HP) = -0.4304 + 0.2963*MEI (n = 15, R(2) = 0.99, Root Mean Square Error (RMSE) = 0.18). Fasting HP was 0.3712 MJ/kg(0.75) when extrapolating MEI to zero.
Caldwell, Robert
2009-01-01
"Observations continue to indicate that the Universe is dominated by invisible components - dark matter and dark energy. Shedding light on this cosmic darkness is a priority for astronomers and physicists" (3 pages)
2012-01-01
What can we hope for from studies of information related to energy/matter (as it appears for us in space/time)? Information is a concept known for its ambiguity in both common, everyday use and in its specific technical applications throughout different fields of research and technology. However, most people are unaware that matter/energy today is also a concept surrounded by a disquieting uncertainty. What for Democritus were building blocks of the whole universe appear today to constitute o...
Decoupling Dark Energy from Matter
Brax, Philippe; Martin, Jerome; Davis, Anne-Christine
2009-01-01
We examine the embedding of dark energy in high energy models based upon supergravity and extend the usual phenomenological setting comprising an observable sector and a hidden supersymmetry breaking sector by including a third sector leading to the acceleration of the expansion of the universe. We find that gravitational constraints on the non-existence of a fifth force naturally imply that the dark energy sector must possess an approximate shift symmetry. When exact, the shift symmetry provides an example of a dark energy sector with a runaway potential and a nearly massless dark energy field whose coupling to matter is very weak, contrary to the usual lore that dark energy fields must couple strongly to matter and lead to gravitational inconsistencies. Moreover, the shape of the potential is stable under one-loop radiative corrections. When the shift symmetry is slightly broken by higher order terms in the Kahler potential, the coupling to matter remains small. However, the cosmological dynamics are largel...
Albareti, F. D.; Cembranos, J. A. R.; Maroto, A. L.
2014-12-01
We consider the vacuum energy of massive quantum fields in an expanding universe. We define a conserved renormalized energy-momentum tensor by means of a comoving cutoff regularization. Using exact solutions for de Sitter space-time, we show that in a certain range of mass and renormalization scales there is a contribution to the vacuum energy density that scales as nonrelativistic matter and that such a contribution becomes dominant at late times. By means of the WKB approximation, we find that these results can be extended to arbitrary Robertson-Walker geometries. We study the range of parameters in which the vacuum energy density would be compatible with current limits on dark matter abundance. Finally, by calculating the vacuum energy in a perturbed Robertson-Walker background, we obtain the speed of sound of density perturbations and show that the vacuum energy density contrast can grow on sub-Hubble scales as in standard cold dark matter scenarios.
Albareti, F D; Maroto, A L
2014-01-01
We consider the vacuum energy of massive quantum fields in an expanding universe. We define a conserved renormalized energy-momentum tensor by means of a comoving cutoff regularization. Using exact solutions for de Sitter space-time, we show that in a certain range of mass and renormalization scales there is a contribution to the vacuum energy density that scales as non-relativistic matter and that such a contribution becomes dominant at late times. By means of the WKB approximation, we find that these results can be extended to arbitrary Robertson-Walker geometries. We study the range of parameters in which the vacuum energy density would be compatible with current limits on dark matter abundance. Finally, by calculating the vacuum energy in a perturbed Robertson-Walker background, we obtain the speed of sound of density perturbations and show that the vacuum energy density contrast can grow on sub-Hubble scales as in standard cold dark matter scenarios.
None
2002-06-01
Quarterly newsletter from DOE's Industrial Technologies Program to promote the use of energy-efficient industrial systems. This issue focuses on reaching emerging managers. Find articles titled: The Human Side of Energy Efficiency: The Value of Training; IACs Benefit Industry and Young Engineers; New Steam Sourcebook; and others.
PARTICULATE MATTER, OXIDATIVE STRESS AND ...
Particulate matter (PM), a component of air pollution has been epidemiologically associated with sudden deaths, cardiovascular and respiratory illnesses. The effects are more pronounced in patients with pre-existing conditions such as asthma, diabetes or obstructive pulmonary disorders. Clinical and experimental studies have historically focused on the cardiopulmonary effects of PM. However, since PM particles carry numerous biocontaminants that are capable of triggering free radical production and cytokine release, the possibility that PM may affect organs systems sensitive to oxidative stress must be considered. Four independent studies that summarize the neurochemical and neuropathological changes found in the brains of PM exposed animals are described here. These were recently presented at two 2007 symposia sponsored by the Society of Toxicology (Charlotte, NC) and the International Neurotoxicology Association (Monterey, CA). Particulates are covered with biocontaminants (e.g., endotoxins, mold, pollen) which convey free radical activity that can damage the lipids, nucleic acids, and proteins of target cells on contact and stimulate inflammatory cytokine release. Although, the historical focus of PM toxicity has been cardiopulmonary targets, it is now appreciated that inhaled nano-size (liver, kidneys, testes, lymph nodes) (Takenaka et aI
Dark Energy from Quantum Matter
Dappiaggi, Claudio; Möller, Jan; Pinamonti, Nicola
2010-01-01
We study the backreaction of free quantum fields on a flat Robertson-Walker spacetime. Apart from renormalization freedom, the vacuum energy receives contributions from both the trace anomaly and the thermal nature of the quantum state. The former represents a dynamical realisation of dark energy, while the latter mimics an effective dark matter component. The semiclassical dynamics yield two classes of asymptotically stable solutions. The first reproduces the concordance model in a suitable regime. The second lacks a classical counterpart, but is in excellent agreement with recent observations.
Dark energy from quantum matter
Dappiaggi, Claudio; Hack, Thomas-Paul [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Moeller, Jan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie; Pinamonti, Nicola [Rome-2 Univ. (Italy). Dipt. di Matematica
2010-07-15
We study the backreaction of free quantum fields on a flat Robertson-Walker spacetime. Apart from renormalization freedom, the vacuum energy receives contributions from both the trace anomaly and the thermal nature of the quantum state. The former represents a dynamical realisation of dark energy, while the latter mimics an effective dark matter component. The semiclassical dynamics yield two classes of asymptotically stable solutions. The first reproduces the CDM model in a suitable regime. The second lacks a classical counterpart, but is in excellent agreement with recent observations. (orig.)
Strongly Interacting Matter at High Energy Density
McLerran,L.
2008-09-07
This lecture concerns the properties of strongly interacting matter (which is described by Quantum Chromodynamics) at very high energy density. I review the properties of matter at high temperature, discussing the deconfinement phase transition. At high baryon density and low temperature, large N{sub c} arguments are developed which suggest that high baryonic density matter is a third form of matter, Quarkyonic Matter, that is distinct from confined hadronic matter and deconfined matter. I finally discuss the Color Glass Condensate which controls the high energy limit of QCD, and forms the low x part of a hadron wavefunction. The Glasma is introduced as matter formed by the Color Glass Condensate which eventually thermalizes into a Quark Gluon Plasma.
Swim pressure: stress generation in active matter.
Takatori, S C; Yan, W; Brady, J F
2014-07-11
We discover a new contribution to the pressure (or stress) exerted by a suspension of self-propelled bodies. Through their self-motion, all active matter systems generate a unique swim pressure that is entirely athermal in origin. The origin of the swim pressure is based upon the notion that an active body would swim away in space unless confined by boundaries-this confinement pressure is precisely the swim pressure. Here we give the micromechanical basis for the swim stress and use this new perspective to study self-assembly and phase separation in active soft matter. The swim pressure gives rise to a nonequilibrium equation of state for active matter with pressure-volume phase diagrams that resemble a van der Waals loop from equilibrium gas-liquid coexistence. Theoretical predictions are corroborated by Brownian dynamics simulations. Our new swim stress perspective can help analyze and exploit a wide class of active soft matter, from swimming bacteria to catalytic nanobots to molecular motors that activate the cellular cytoskeleton.
Swim Pressure: Stress Generation in Active Matter
Takatori, S. C.; Yan, W.; Brady, J. F.
2014-07-01
We discover a new contribution to the pressure (or stress) exerted by a suspension of self-propelled bodies. Through their self-motion, all active matter systems generate a unique swim pressure that is entirely athermal in origin. The origin of the swim pressure is based upon the notion that an active body would swim away in space unless confined by boundaries—this confinement pressure is precisely the swim pressure. Here we give the micromechanical basis for the swim stress and use this new perspective to study self-assembly and phase separation in active soft matter. The swim pressure gives rise to a nonequilibrium equation of state for active matter with pressure-volume phase diagrams that resemble a van der Waals loop from equilibrium gas-liquid coexistence. Theoretical predictions are corroborated by Brownian dynamics simulations. Our new swim stress perspective can help analyze and exploit a wide class of active soft matter, from swimming bacteria to catalytic nanobots to molecular motors that activate the cellular cytoskeleton.
The magnetic stress tensor in magnetized matter
Espinosa, Olivier R; Espinosa, Olivier; Reisenegger, Andreas
2003-01-01
We derive the form of the magnetic stress tensor in a completely general, stationary magnetic medium, with an arbitrary magnetization field $vec M(vec r)$ and free current density $vec j(vec r)$. We start with the magnetic force density $vec f$ acting on a matter element, modelled as a collection of microscopic magnetic dipoles in addition to the free currents. We show that there is a unique tensor ${bf T}$ quadratic in the magnetic flux density $vec B(vec r)$ and the magnetic field $vec H(vec r)=vec B-4pivec M$ whose divergence is $nablacdot{bf T}=vec f$. In the limit $vec M=0$, the well-known vacuum magnetic stress tensor is recovered. However, the general form of the tensor is asymmetric, leading to a divergent angular acceleration for matter elements of vanishing size. We argue that this is not inconsistent, because it occurs only if $vec M$ and $vec B$ are not parallel, in which case the macroscopic field does indeed exert a torque on each of the microscopic dipoles, so this state is only possible if the...
High energy electrodynamics in matter
Akhiezer, A I
1996-01-01
This study presents an interpretation of classical and quantum theories of fast charged particle radiation in an external field. Various methods describing the process of particle interaction with substance and external fields are analyzed, such as Born approximation, the Schwinger operator method and different versions of the quasi-classical approximation. Such problems as time evolution of an electromagnetic field applied to and emitting electrons, coherence length, radiation in the simplest external fields, Vavilov-Cherenkov radiation and the correspondence of different methods describing the interaction between fast particles and matter are also considered.
Deformed Matter Bounce with Dark Energy Epoch
Odintsov, S D
2016-01-01
We extend the Loop Quantum Cosmology matter bounce scenario in order to include a dark energy era, which ends abruptly at a Rip singularity where the scale factor and the Hubble rate diverge. In the "deformed matter bounce scenario", the Universe is contracting from an initial non-causal matter dominated era until it reaches a minimal radius. After that it expands in a decelerating way, until at late times, where it expands in an accelerating way, thus the model is described by a dark energy era that follows the matter dominated era. Depending on the choice of the free parameters of the model, the dark energy era is quintessential like which follows the matter domination era, and eventually it crosses the phantom divide line and becomes phantom. At the end of the dark energy era, a Rip singularity exists, where the scale factor and Hubble rate diverge, however the physical system cannot reach the singularity, since the effective energy density and pressure become complex. This indicates two things, firstly th...
Dark Matter and Energy as Antimatter
Lundberg, Wayne
2005-04-01
A new interpretation of dark matter observations via gravitational lensing through galaxy clusters is proposed. Gravitational lensing studies of SDSS J1004+4112 by Williams and Saha (astro-ph/0412445) indicate that any dark matter contribution to lensing is smoothly distributed in space. All particle theories (i.e WIMPs) which propose to explain dark matter inevitably yield gravitational clumping. Note that string theory requires that matter at radii, R, less than the Planck scale, α', is equivalent to matter at distance D=α'/R. The proposed interpretation involves antimatter existing within anti-deSitter spaces to explain the unexpected smoothness. This proposal asserts that a (non-Hawking) black hole exists with an AdS space at its singularity. Antimatter interactions also explain Galactic Annihilation Fountain(s) and similar observed phenomena. Non-temporal matter is thereby defined as matter which exists in 4-space, either advanced or retarded wrt the present. A `radical' form of cosmology is then developed in which the curvature tensor of Einstein's general relativity is treated as complex. FRW cosmology plus dark matter and energy results. Theories regarding the black hole ``end state'' and Seiberg's chronology protection lend support to this approach. Previous work (http://www-astro-theory.fnal.gov/Conferences/cosmo02/poster/lundberg.pdfhttp://www-astro-theory.fnal.gov/Conferences/cosmo02/poster/lundberg.pdf) to establish the architecture of a comprehensive theory is thus modified.
Unified Description of Dark Energy and Dark Matter
Petry, Walter
2008-01-01
Dark energy in the universe is assumed to be vacuum energy. The energy-momentum of vacuum is described by a scale-dependent cosmological constant. The equations of motion imply for the density of matter (dust) the sum of the usual matter density (luminous matter) and an additional matter density (dark matter) similar to the dark energy. The scale-dependent cosmological constant is given up to an exponent which is approximated by the experimentally decided density parameters of dark matter and...
Deformed matter bounce with dark energy epoch
Odintsov, S. D.; Oikonomou, V. K.
2016-09-01
We extend the loop quantum cosmology matter bounce scenario in order to include a dark energy era, which ends abruptly at a rip singularity where the scale factor and the Hubble rate diverge. In the "deformed matter bounce scenario," the Universe is contracting from an initial noncausal matter dominated era until it reaches a minimal radius. After that it expands in a decelerating way, until at late times, where it expands in an accelerating way, and thus the model is described by a dark energy era that follows the matter dominated era. Depending on the choice of the free parameters of the model, the dark energy era is quintessential as what follows the matter domination era, and eventually it crosses the phantom divide line and becomes phantom. At the end of the dark energy era, a rip singularity exists, where the scale factor and Hubble rate diverge; however, the physical system cannot reach the singularity, since the effective energy density and pressure become complex. This indicates two things, first that the ordinary loop quantum cosmology matter bounce evolution stops, thus ending the infinite repetition of the ordinary matter bounce scenario. Second, the fact that both the pressure and the density become complex probably indicates that the description of the cosmic evolution within the theoretical context of loop quantum cosmology ceases to describe the physics of the system and possibly a more fundamental theory of quantum gravity is needed near the would be rip singularity. We describe the qualitative features of the model, and we also investigate how this cosmology could be realized by a viscous fluid in the context of loop quantum cosmology. In addition to this, we show how this deformed model can be realized by a canonical scalar field filled Universe, in the context of loop quantum cosmology. Finally, we demonstrate how the model can be generated by a vacuum F (R ) gravity.
Neutron stars as probes of extreme energy density matter
Madappa Prakash
2015-05-01
Neutron stars have long been regarded as extraterrestrial laboratories from which we can learn about extreme energy density matter at low temperatures. In this article, some of the recent advances made in astrophysical observations and related theory are highlighted. Although the focus is on the much needed information on masses and radii of several individual neutron stars, the need for additional knowledge about the many facets of neutron stars is stressed. The extent to which quark matter can be present in neutron stars is summarized with emphasis on the requirement of non-perturbative treatments. Some longstanding and new questions, answers to which will advance our current status of knowledge, are posed.
Conformal Gravity: Dark Matter and Dark Energy
Robert K. Nesbet
2013-01-01
Full Text Available This short review examines recent progress in understanding dark matter, dark energy, and galactic halos using theory that departs minimally from standard particle physics and cosmology. Strict conformal symmetry (local Weyl scaling covariance, postulated for all elementary massless fields, retains standard fermion and gauge boson theory but modifies Einstein–Hilbert general relativity and the Higgs scalar field model, with no new physical fields. Subgalactic phenomenology is retained. Without invoking dark matter, conformal gravity and a conformal Higgs model fit empirical data on galactic rotational velocities, galactic halos, and Hubble expansion including dark energy.
Interactions between dark energy and dark matter
Baldi, Marco
2009-03-20
We have investigated interacting dark energy cosmologies both concerning their impact on the background evolution of the Universe and their effects on cosmological structure growth. For the former aspect, we have developed a cosmological model featuring a matter species consisting of particles with a mass that increases with time. In such model the appearance of a Growing Matter component, which is negligible in early cosmology, dramatically slows down the evolution of the dark energy scalar field at a redshift around six, and triggers the onset of the accelerated expansion of the Universe, therefore addressing the Coincidence Problem. We propose to identify this Growing Matter component with cosmic neutrinos, in which case the present dark energy density can be related to the measured average mass of neutrinos. For the latter aspect, we have implemented the new physical features of interacting dark energy models into the cosmological N-body code GADGET-2, and we present the results of a series of high-resolution simulations for a simple realization of dark energy interaction. As a consequence of the new physics, cold dark matter and baryon distributions evolve differently both in the linear and in the non-linear regime of structure formation. Already on large scales, a linear bias develops between these two components, which is further enhanced by the non-linear evolution. We also find, in contrast with previous work, that the density profiles of cold dark matter halos are less concentrated in coupled dark energy cosmologies compared with {lambda}{sub CDM}. Also, the baryon fraction in halos in the coupled models is significantly reduced below the universal baryon fraction. These features alleviate tensions between observations and the {lambda}{sub CDM} model on small scales. Our methodology is ideally suited to explore the predictions of coupled dark energy models in the fully non-linear regime, which can provide powerful constraints for the viable parameter
Symmetry energy of dilute warm nuclear matter.
Natowitz, J B; Röpke, G; Typel, S; Blaschke, D; Bonasera, A; Hagel, K; Klähn, T; Kowalski, S; Qin, L; Shlomo, S; Wada, R; Wolter, H H
2010-05-21
The symmetry energy of nuclear matter is a fundamental ingredient in the investigation of exotic nuclei, heavy-ion collisions, and astrophysical phenomena. New data from heavy-ion collisions can be used to extract the free symmetry energy and the internal symmetry energy at subsaturation densities and temperatures below 10 MeV. Conventional theoretical calculations of the symmetry energy based on mean-field approaches fail to give the correct low-temperature, low-density limit that is governed by correlations, in particular, by the appearance of bound states. A recently developed quantum-statistical approach that takes the formation of clusters into account predicts symmetry energies that are in very good agreement with the experimental data. A consistent description of the symmetry energy is given that joins the correct low-density limit with quasiparticle approaches valid near the saturation density.
How clustering dark energy affects matter perturbations
Mehrabi, A; Pace, F
2015-01-01
The rate of structure formation in the Universe is different in homogeneous and clustered dark energy models. The degree of dark energy clustering depends on the magnitude of its effective sound speed $c^{2}_{\\rm eff}$ and for $c_{\\rm eff}=0$ dark energy clusters in a similar fashion to dark matter while for $c_{\\rm eff}=1$ it stays (approximately) homogeneous. In this paper we consider two distinct equations of state for the dark energy component, $w_{\\rm d}=const$ and $w_{\\rm d}=w_0+w_1\\left(\\frac{z}{1+z}\\right)$ with $c_{\\rm eff}$ as a free parameter and we try to constrain the dark energy effective sound speed using current available data including SnIa, Baryon Acoustic Oscillation, CMB shift parameter ({\\em Planck} and {\\em WMAP}), Hubble parameter, Big Bang Nucleosynthesis and the growth rate of structures $f\\sigma_{8}(z)$. At first we derive the most general form of the equations governing dark matter and dark energy clustering under the assumption that $c_{\\rm eff}=const$. Finally we constrain the mod...
High Energy Physics. Ultimate Structure of Matter and Energy.
1979-04-01
Some of the principle discoveries and insights and their development up to today are sketched. It is shown how one layer after another was discovered by penetrating farther into the structure of matter. covered are the mounting energy scale, discoveries at thigh energy frontier, the families of quarks and leptons, the four forces of nature, some achievements of the past few years, particle accelerators and experimental apparatus. A glossary of terms is included.
Holographic dark energy interacting with dark matter
Forte, Mónica I
2012-01-01
We investigate a spatially flat Friedmann-Robertson-Walker (FRW) cosmological model with cold dark matter coupled to a dark energy which is given by the modified holographic Ricci cutoff. The interaction used is linear in both dark energy densities, the total energy density and its derivative. Using the statistical method of $\\chi^2$-function for the Hubble data, we obtain $H_0=73.6km/sMpc$, $\\omega_s=\\gamma_s -1=-0.842$ for the asymptotic equation of state and $ z_{acc}= 0.89 $. The estimated values of $\\Omega_{c0}$ which fulfill the current observational bounds corresponds to a dark energy density varying in the range $0.25R < \\ro_x < 0.27R$.
Dark energy and extended dark matter halos
Chernin, A. D.; Teerikorpi, P.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Byrd, G. G.
2012-03-01
The cosmological mean matter (dark and baryonic) density measured in the units of the critical density is Ωm = 0.27. Independently, the local mean density is estimated to be Ωloc = 0.08-0.23 from recent data on galaxy groups at redshifts up to z = 0.01-0.03 (as published by Crook et al. 2007, ApJ, 655, 790 and Makarov & Karachentsev 2011, MNRAS, 412, 2498). If the lower values of Ωloc are reliable, as Makarov & Karachentsev and some other observers prefer, does this mean that the Local Universe of 100-300 Mpc across is an underdensity in the cosmic matter distribution? Or could it nevertheless be representative of the mean cosmic density or even be an overdensity due to the Local Supercluster therein. We focus on dark matter halos of groups of galaxies and check how much dark mass the invisible outer layers of the halos are able to host. The outer layers are usually devoid of bright galaxies and cannot be seen at large distances. The key factor which bounds the size of an isolated halo is the local antigravity produced by the omnipresent background of dark energy. A gravitationally bound halo does not extend beyond the zero-gravity surface where the gravity of matter and the antigravity of dark energy balance, thus defining a natural upper size of a system. We use our theory of local dynamical effects of dark energy to estimate the maximal sizes and masses of the extended dark halos. Using data from three recent catalogs of galaxy groups, we show that the calculated mass bounds conform with the assumption that a significant amount of dark matter is located in the invisible outer parts of the extended halos, sufficient to fill the gap between the observed and expected local matter density. Nearby groups of galaxies and the Virgo cluster have dark halos which seem to extend up to their zero-gravity surfaces. If the extended halo is a common feature of gravitationally bound systems on scales of galaxy groups and clusters, the Local Universe could be typical or even
Global Geopotential Energy & Stress Field
Schiffer, Christian; Nielsen, S.B.
in the lithosphere, induced by lateral density variation. The leading quantity is the Geopotential Energy, the integrated lithostatic pressure in a rock column, which is related to horizontal stresses by the Equations of Equilibrium. The Geopotential Energy can be furthermore linearly related to the Geoid under...... assumption of local isostasy. Satellite Geoid measurements contain, however, deeper mantle responses of most likely longwavelength. Still after filtering, the Geoid can't be satisfyingly corrected. Existing shallow signals can be hereby extinguished as well, for instance the somewhat age dependent signal...... response to Geopotential Energy and the Geoid. A linearized inverse method fits a lithospheric reference model to reproduce measured data sets, such as topography and surface heat flow, while assuming isostasy and solving the steady state heat equation. A FEM code solves the equations of equilibrium...
PARTICULATE MATTER, OXIDATIVE STRESS AND NEUROTOXICITY
Particulate matter (PM), a component of air pollution has been epidemiologically associated with sudden deaths, cardiovascular and respiratory illnesses. The effects are more pronounced in patients with pre-existing conditions such as asthma, diabetes or obstructive pulmonary dis...
Neutron stars as probes of extreme energy density matter
Prakash, Madappa
2014-01-01
Neutron stars have long been regarded as extra-terrestrial laboratories from which we can learn about extreme energy density matter at low temperatures. In this article, I highlight some of the recent advances made in astrophysical observations and related theory. Although the focus is on the much needed information on masses and radii of several individual neutron stars, the need for additional knowledge about the many facets of neutron stars is stressed. The extent to which quark matter can be present in neutron stars is summarized with emphasis on the requirement of non-perturbative treatments. Some longstanding and new questions, answers to which will advance our current status of knowledge, are posed.
Symmetry energy in cold dense matter
Jeong, Kie Sang, E-mail: k.s.jeong@yonsei.ac.kr; Lee, Su Houng, E-mail: suhoung@yonsei.ac.kr
2016-01-15
We calculate the symmetry energy in cold dense matter both in the normal quark phase and in the 2-color superconductor (2SC) phase. For the normal phase, the thermodynamic potential is calculated by using hard dense loop (HDL) resummation to leading order, where the dominant contribution comes from the longitudinal gluon rest mass. The effect of gluonic interaction on the symmetry energy, obtained from the thermodynamic potential, was found to be small. In the 2SC phase, the non-perturbative BCS paring gives enhanced symmetry energy as the gapped states are forced to be in the common Fermi sea reducing the number of available quarks that can contribute to the asymmetry. We used high density effective field theory to estimate the contribution of gluon interaction to the symmetry energy. Among the gluon rest masses in 2SC phase, only the Meissner mass has iso-spin dependence although the magnitude is much smaller than the Debye mass. As the iso-spin dependence of gluon rest masses is even smaller than the case in the normal phase, we expect that the contribution of gluonic interaction to the symmetry energy in the 2SC phase will be minimal. The different value of symmetry energy in each phase will lead to different prediction for the particle yields in heavy ion collision experiment.
Quantum Haplodynamics, Dark Matter, and Dark Energy
Harald Fritzsch
2014-01-01
of the associated gauge group SU(2h is of the order of Λh≃0.3 TeV. One scalar state has zero haplon number and is the resonance observed at the LHC. In addition, there exist new bound states of haplons with no counterpart in the SM, having a mass of the order of 0.5 TeV up to a few TeV. In particular, a neutral scalar state with haplon number 4 is stable and can provide the dark matter in the universe. The QHD, QCD, and QED couplings can unify at the Planck scale. If this scale changes slowly with cosmic time, all of the fundamental couplings, the masses of the nucleons and of the DM particles, including the cosmological term (or vacuum energy density, will evolve with time. This could explain the dark energy of the universe.
Dark Energy Scaling from Dark Matter to Acceleration
Bielefeld, Jannis; Caldwell, Robert R.; Linder, Eric V.
2014-01-01
The dark sector of the Universe need not be completely separable into distinct dark matter and dark energy components. We consider a model of early dark energy in which the dark energy mimics a dark matter component in both evolution and perturbations at early times. Barotropic aether dark energy scales as a fixed fraction, possibly greater than one, of the dark matter density and has vanishing sound speed at early times before undergoing a transition. This gives signatures not only in cosmic...
The symmetry energy in cold dense matter
Jeong, Kie Sang
2015-01-01
We calculate the symmetry energy in cold dense matter both in the normal quark phase and in the 2-color superconductor (2SC) phase. For the normal phase, the thermodynamic potential is calculated by using hard dense loop (HDL) resummation to leading order, where the dominant contribution comes from the longitudinal gluon rest mass. The effect of gluonic interaction to the symmetry energy, obtained from the thermodynamic potential, was found to be small. In the 2SC phase, the non-perturbative BCS paring gives enhanced symmetry energy as the gapped states are forced to be in the common Fermi sea reducing the number of available quarks that can contribute to the asymmetry. We used high density effective field theory to estimate the contribution of gluon interaction to the symmetry energy. Among the gluon rest masses in 2SC phase, only the Meissner mass has iso-spin dependence although the magnitude is much smaller than the Debye mass. As the iso-spin dependence of gluon rest masses is even smaller than the case ...
On residual stresses and homeostasis: an elastic theory of functional adaptation in living matter
Ciarletta, P.; Destrade, M.; Gower, A. L.
2016-04-01
Living matter can functionally adapt to external physical factors by developing internal tensions, easily revealed by cutting experiments. Nonetheless, residual stresses intrinsically have a complex spatial distribution, and destructive techniques cannot be used to identify a natural stress-free configuration. This work proposes a novel elastic theory of pre-stressed materials. Imposing physical compatibility and symmetry arguments, we define a new class of free energies explicitly depending on the internal stresses. This theory is finally applied to the study of arterial remodelling, proving its potential for the non-destructive determination of the residual tensions within biological materials.
Dark matter interacts with variable vacuum energy
G, Iván E Sánchez
2014-01-01
We investigate a spatially flat Friedmann-Robertson-Walker (FRW) scenario with two interacting components, dark matter and variable vacuum energy (VVE) densities, plus two decoupled components, one is a baryon term while the other behaves as a radiation component. We consider a linear interaction in the derivative dark component density. We apply the $\\chi^2$ method to the observational Hubble data for constraining the cosmological parameters and analyze the amount of dark energy in the radiation era for the model. It turns out that our model fulfills the severe bound of $\\Omega_{x}(z\\simeq 1100)<0.009$ at $2\\sigma$ level, so is consistent with the recent analysis that includes cosmic microwave background anisotropy measurements from Planck survey, the future constraints achievable by Euclid and CMBPol experiments, reported for the behavior of the dark energy at early times, and fulfills the stringent bound $\\Omega_{x}(z\\simeq 10^{10})<0.04$ at $2\\sigma$ level in the big-bang nucleosynthesis epoch. We a...
Stress Matters: Effects of Anticipated Lexical Stress on Silent Reading
Breen, Mara; Clifton, Charles, Jr.
2011-01-01
This paper presents findings from two eye-tracking studies designed to investigate the role of metrical prosody in silent reading. In Experiment 1, participants read stress-alternating noun-verb or noun-adjective homographs (e.g. "PREsent", "preSENT") embedded in limericks, such that the lexical stress of the homograph, as determined by context,…
Global Geopotential Energy & Stress Field
Schiffer, Christian; Nielsen, S.B.
2012-01-01
Knowledge about the Earth's stress field and its sources can provide better understanding and interpretation of geodynamic and tectonic processes and regimes in the Earth's lithosphere. Stresses can be measured with different in-situ techniques and analysed by the study of focal mechanisms and stress induced geological structures. Quantifying single stress sources however remains a difficult and not uncommonly vague procedure. Modelling stress contributions can provide principle insight into ...
Facts at your fingertips introducing physics : matter, energy, and heat
Bateman, Graham
2011-01-01
This series explains and illustrates the science of physics and its everyday applications. Physics is concerned with matter - the stuff from which everything is made - and with energy in all its forms. Matter is everything that surrounds us and this book looks at the different states of matter (solid, liquid, or gas) and how matter behaves under various conditions. Explanatory diagrams, key science words, and simple practical experiments to try at home help to provide a perfect introduction to this fascinating subject.
Microscopic calculations and energy expansions for neutron-rich matter
Drischler, Christian; Soma, Vittorio [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany); ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany); Schwenk, Achim [ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany); Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany)
2014-07-01
We investigate the properties of asymmetric nuclear matter with two- and three-nucleon interactions based on chiral effective field theory. Focusing on neutron-rich matter, we calculate the energy for different proton fractions and include estimates of the theoretical uncertainty. We use our ab-initio results to test the quadratic expansion around symmetric matter with the symmetry energy term, and confirm its validity for highly asymmetric systems. Our calculated energy densities are in remarkable agreement with an empirical parameterization, developed to interpolate between pure neutron and symmetric nuclear matter. These findings are very useful for astrophysical applications and for developing new equations of state.
Unified description of dark energy and dark matter in mimetic matter model
Matsumoto, Jiro
2016-01-01
The existence of dark matter and dark energy in cosmology is implied by various observations, however, they are still unclear because they have not been directly detected. In this Letter, an unified model of dark energy and dark matter that can explain the evolution history of the Universe later than inflationary era, the time evolution of the growth rate function of the matter density contrast, the flat rotation curves of the spiral galaxies, and the gravitational experiments in the solar sy...
Stress-energy of a quantized scalar field in static wormhole spacetimes
Taylor, B E; Anderson, P R; Taylor, Brett E.; Hiscock, William A.; Anderson, Paul R.
1997-01-01
Static traversable wormhole solutions of the Einstein equations require ``exotic'' matter which violates the weak energy condition. The vacuum stress-energy of quantized fields has been proposed as the source for this matter. Using the Dewitt-Schwinger approximation, analytic expressions for the stress-energy of a quantized massive scalar field are calculated in five static spherically symmetric Lorentzian wormhole spacetimes. We find that in all cases, for both minimally and conformally coupled scalar fields, the stress-energy does not have the properties needed to support the wormhole geometry.
Interacting dark energy collapse with matter components separation
Delliou, Morgan Le
2012-01-01
We use the spherical collapse model of structure formation to investigate the separation in the collapse of uncoupled matter (including dark matter and baryons) and coupled dark matter in an interacting dark energy scenario. Following the usual assumption of a single radius of collapse for all species, we show that we only need to evolve the uncoupled matter sector to obtain the evolution for all matter components. This gives us more information on the collapse with a simplified set of evolution equations compared with the usual approaches. We then apply these results to five quintessence potentials and show how we can discriminate between different quintessence models.
Bouncing Cosmologies with Dark Matter and Dark Energy
Yi-Fu Cai
2016-12-01
Full Text Available We review matter bounce scenarios where the matter content is dark matter and dark energy. These cosmologies predict a nearly scale-invariant power spectrum with a slightly red tilt for scalar perturbations and a small tensor-to-scalar ratio. Importantly, these models predict a positive running of the scalar index, contrary to the predictions of the simplest inflationary and ekpyrotic models, and hence, could potentially be falsified by future observations. We also review how bouncing cosmological space-times can arise in theories where either the Einstein equations are modified or where matter fields that violate the null energy condition are included.
Bouncing Cosmologies with Dark Matter and Dark Energy
Cai, Yi-Fu; Marcianò, Antonino; Wang, Dong-Gang; Wilson-Ewing, Edward
2017-01-01
We review matter bounce scenarios where the matter content is dark matter and dark energy. These cosmologies predict a nearly scale-invariant power spectrum with a slightly red tilt for scalar perturbations and a small tensor-to-scalar ratio. Importantly, these models predict a positive running of the scalar index, contrary to the predictions of the simplest inflationary and ekpyrotic models, and hence could potentially be falsified by future observations. We also review how bouncing cosmological space-times can arise in theories where either the Einstein equations are modified or where matter fields that violate the null energy condition are included.
Bouncing cosmologies with dark matter and dark energy
Cai, Yi-Fu; Wang, Dong-Gang; Wilson-Ewing, Edward
2016-01-01
We review matter bounce scenarios where the matter content is dark matter and dark energy. These cosmologies predict a nearly scale-invariant power spectrum with a slightly red tilt for scalar perturbations and a small tensor-to-scalar ratio. Importantly, these models predict a positive running of the scalar index, contrary to the predictions of the simplest inflationary and ekpyrotic models, and hence could potentially be falsified by future observations. We also review how bouncing cosmological space-times can arise in theories where either the Einstein equations are modified or where matter fields that violate the null energy condition are included.
Strongly Interacting Matter Matter at Very High Energy Density: 3 Lectures in Zakopane
McLerran, L.
2010-06-09
These lectures concern the properties of strongly interacting matter at very high energy density. I begin with the Color Glass Condensate and the Glasma, matter that controls the earliest times in hadronic collisions. I then describe the Quark Gluon Plasma, matter produced from the thermalized remnants of the Glasma. Finally, I describe high density baryonic matter, in particular Quarkyonic matter. The discussion will be intuitive and based on simple structural aspects of QCD. There will be some discussion of experimental tests of these ideas.
Unified description of dark energy and dark matter in mimetic matter model
Matsumoto, Jiro
2016-01-01
The existence of dark matter and dark energy in cosmology is implied by various observations, however, they are still unclear because they have not been directly detected. In this Letter, an unified model of dark energy and dark matter that can explain the evolution history of the Universe later than inflationary era, the time evolution of the growth rate function of the matter density contrast, the flat rotation curves of the spiral galaxies, and the gravitational experiments in the solar system is proposed in mimetic matter model.
Equivalence of Stress and Energy Calculations of Mean Stress
Pedersen, Ole Bøcker; Brown, L. M.
1977-01-01
Calculations of the mean stress in a plastically deformed matrix containing randomly distributed elastic inclusions are considered. The mean stress for an elastically homogeneous material is calculated on the basis of an energy consideration which completely accounts for elastic interactions....... The result is shown to be identical to that obtained from a stress calculation. The possibility of including elastic interactions in the case of elastic inhomogeneity is discussed....
The symmetry energy in nuclei and in nuclear matter
Dieperink, A. E. L.; Van Isacker, P.
We discuss to what extent information on ground-state properties of finite nuclei ( energies and radii) can be used to obtain constraints on the symmetry energy in nuclear matter and its dependence on the density. The starting point is a generalized Weizsacker formula for ground-state energies. In
The symmetry energy in nuclei and in nuclear matter
Van Isacker, P.; Dieperink, A. E. L.
2006-01-01
We discuss to what extent information on ground-state properties of finite nuclei (energies and radii) can be used to obtain constraints on the symmetry energy in nuclear matter and its dependence on the density. The starting point is a generalized Weizsacker formula for ground-state energies. In
Dark Energy Coupled with Dark Matter in the Accelerating Universe
ZHANG Yang
2004-01-01
@@ To model the observed Universe containing both dark energy and dark matter, we study the effective Yang-Mills condensate model of dark energy and add a non-relativistic matter component as the dark matter, which is generated out of the decaying dark energy at a constant rate Г, a parameter of our model. For the Universe driven by these two components, the dynamic evolution still has asymptotic behaviour: the expansion of the Universe is accelerating with an asymptotically constant rate H, and the densities of both components approach to finite constant values. Moreover, ΩA≈ 0.7 for dark energy and Ωm ≈ 0.3 for dark matter are achieved if the decay rate Г is chosen such that Г/H～ 1.
The dark side of cosmology: dark matter and dark energy.
Spergel, David N
2015-03-06
A simple model with only six parameters (the age of the universe, the density of atoms, the density of matter, the amplitude of the initial fluctuations, the scale dependence of this amplitude, and the epoch of first star formation) fits all of our cosmological data . Although simple, this standard model is strange. The model implies that most of the matter in our Galaxy is in the form of "dark matter," a new type of particle not yet detected in the laboratory, and most of the energy in the universe is in the form of "dark energy," energy associated with empty space. Both dark matter and dark energy require extensions to our current understanding of particle physics or point toward a breakdown of general relativity on cosmological scales.
Interacting dark energy collapse with matter components separation
Delliou, M. Le [Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66.318 — 05314-970, São Paulo, SP (Brazil); Barreiro, T., E-mail: delliou@cii.fc.ul.pt, E-mail: tmbarreiro@ulusofona.pt [Departamento de Matemática da FFMCC, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande, 376 — 1749-024 Lisboa (Portugal)
2013-02-01
We use the spherical collapse model of structure formation to investigate the separation in the collapse of uncoupled matter (essentially baryons) and coupled dark matter in an interacting dark energy scenario. Following the usual assumption of a single radius of collapse for all species, we show that we only need to evolve the uncoupled matter sector to obtain the evolution for all matter components. This gives us more information on the collapse with a simplified set of evolution equations compared with the usual approaches. We then apply these results to four quintessence potentials and show how we can discriminate between different quintessence models.
Dark energy and dark matter from primordial QGP
Vaidya, Vaishali, E-mail: vaidvavaishali24@gmail.com; Upadhyaya, G. K., E-mail: gopalujiain@yahoo.co.in [School of Studies in Physics, Vikram University Ujjain (India)
2015-07-31
Coloured relics servived after hadronization might have given birth to dark matter and dark energy. Theoretical ideas to solve mystery of cosmic acceleration, its origin and its status with reference to recent past are of much interest and are being proposed by many workers. In the present paper, we present a critical review of work done to understand the earliest appearance of dark matter and dark energy in the scenario of primordial quark gluon plasma (QGP) phase after Big Bang.
Dark Matter and Dark Energy: Summary and Future Directions
Ellis, John
2003-01-01
This paper reviews the progress reported at this Royal Society Discussion Meeting and advertizes some possible future directions in our drive to understand dark matter and dark energy. Additionally, a first attempt is made to place in context the exciting new results from the WMAP satellite, which were published shortly after this Meeting. In the first part of this review, pieces of observational evidence shown here that bear on the amounts of dark matter and dark energy are reviewed. Subsequ...
Dark Energy vs. Dark Matter: Towards a Unifying Scalar Field?
Arbey, A.
2008-01-01
The standard model of cosmology suggests the existence of two components, "dark matter" and "dark energy", which determine the fate of the Universe. Their nature is still under investigation, and no direct proof of their existences has emerged yet. There exist alternative models which reinterpret the cosmological observations, for example by replacing the dark energy/dark matter hypothesis by the existence of a unique dark component, the dark fluid, which is able to mimic the behaviour of bot...
Interactive Unified Dark Energy and Dark Matter from Scalar Fields
Benisty, David; Guendelman, E. I.
2017-01-01
Here we generalize ideas of unified Dark Matter Dark Energy in the context of Two Measure Theories and of Dynamical space time Theories. In Two Measure Theories one uses metric independent volume elements and this allows to construct unified Dark Matter Dark Energy, where the cosmological constant appears as an integration constant associated to the eq. of motion of the measure fields. The Dynamical space time Theories generalize the Two Measure Theories by introducing a vector field whose eq...
Gravity effects of the quantum vacuum. Dark energy and dark matter
Santos, Emilio
2015-01-01
The stress-energy tensor of the quantum vacuum is studied for the particular case of quantum electrodynamics (QED), that is a fictituous universe where only the electromagnetic and the electron-positron fields exist. The integrals involved are ultraviolet divergent but it is suggested that a natural cut-off may exist. It is shown that, in spite of the fact that the stress-energy tensor of the electromagnetic field alone is traceless (i.e the pressure P equals 1/3 the energy density u), the total QED tensor is proportional to the metric tensor to a good approximation (i. e. P = -u). It is proposed that there is a cosmological constant in Einstein equation that exactly balances the stress-energy of the vacuum. It is shown that vacuum fluctuations give rise to a modified spacetime metric able to explain dark energy. Particular excitations of the vacuum are studied that might explain dark matter.
Energy-range relations for hadrons in nuclear matter
Strugalski, Z.
1985-01-01
Range-energy relations for hadrons in nuclear matter exist similarly to the range-energy relations for charged particles in materials. When hadrons of GeV kinetic energies collide with atomic nuclei massive enough, events occur in which incident hadron is stopped completely inside the target nucleus without causing particle production - without pion production in particular. The stoppings are always accompanied by intensive emission of nucleons with kinetic energy from about 20 up to about 400 MeV. It was shown experimentally that the mean number of the emitted nucleons is a measure of the mean path in nuclear matter in nucleons on which the incident hadrons are stopped.
Dark Energy Coupled with Relativistic Dark Matter in Accelerating Universe
张杨
2003-01-01
Recent observations favour an accelerating Universe dominated by the dark energy. We take the effective YangMills condensate as the dark energy and couple it to a relativistic matter which is created by the decaying condensate. The dynamic evolution has asymptotic behaviour with finite constant energy densities, and the fractional densities Ω∧～ 0.7 for dark energy and Ωm ～ 0.3 for relativistic matter are achieved at proper values of the decay rate. The resulting expansion of the Universe is in the de Sitter acceleration.
Unified dark energy-dark matter model with inverse quintessence
Ansoldi, Stefano [ICRA — International Center for Relativistic Astrophysics, INFN — Istituto Nazionale di Fisica Nucleare, and Dipartimento di Matematica e Informatica, Università degli Studi di Udine, via delle Scienze 206, I-33100 Udine (UD) (Italy); Guendelman, Eduardo I., E-mail: ansoldi@fulbrightmail.org, E-mail: guendel@bgu.ac.il [Department of Physics, Ben-Gurion University of the Negeev, Beer-Sheva 84105 (Israel)
2013-05-01
We consider a model where both dark energy and dark matter originate from the coupling of a scalar field with a non-canonical kinetic term to, both, a metric measure and a non-metric measure. An interacting dark energy/dark matter scenario can be obtained by introducing an additional scalar that can produce non constant vacuum energy and associated variations in dark matter. The phenomenology is most interesting when the kinetic term of the additional scalar field is ghost-type, since in this case the dark energy vanishes in the early universe and then grows with time. This constitutes an ''inverse quintessence scenario'', where the universe starts from a zero vacuum energy density state, instead of approaching it in the future.
A Physical Source of Dark Energy and Dark Matter
Gontijo, I
2012-01-01
A physical mechanism that produces three energy components is proposed as the common origin of dark energy and dark matter. The first two have equations of state W ~ 0 and act like dark matter, while the last has W ~ -1 at low redshifts making it a candidate for dark energy. These are used to model the supernovae Union2 data resulting in a curve fitting identical to the LAMBDACDM model. This model opens new avenues for Cosmology research and implies a re-interpretation of the dark components as a scalar field stored in the metric of spacetime.
Dynamics of dark energy with a coupling to dark matter
Boehmer, Christian G; Lazkoz, Ruth; Maartens, Roy
2008-01-01
Dark energy and dark matter are the dominant sources in the evolution of the late universe. They are currently only indirectly detected via their gravitational effects, and there could be a coupling between them without violating observational constraints. We investigate the background dynamics when dark energy is modelled as exponential quintessence, and is coupled to dark matter via simple models of energy exchange. We introduce a new form of dark sector coupling, which leads to a more complicated dynamical phase space and has a better physical motivation than previous mathematically similar couplings.
Self-energy Effects in the Superfluidity of Neutron Matter
Lombardo, U; Zuo, W
2001-01-01
The superfluidity of neutron matter in the channel $^1 S_0$ is studied by taking into account the effect of the ground-state correlations in the self-energy. To this purpose the gap equation has been solved within the generalized Gorkov approach. A sizeable suppression of the energy gap is driven by the quasi-particle strength around the Fermi surface.
Quintessence interacting dark energy from induced matter theory of gravity
Reyes, L M
2009-01-01
In the context of the induced matter theory of gravity, we investigate the possibility of deriving a 4D quintessential scenario where an interaction between dark energy and dark matter is allowed, and the dark energy component is modeled by a minimally coupled scalar field. Regarding the Ponce de Leon metric, we found that it is possible to obtain such scenario on which the energy densities of dark matter and dark energy, are both depending of the fifth extra coordinate. We obtain that the 4D induced scalar potential for the quintessence scalar field, has the same algebraic form to the one found by Zimdahl and Pavon in the context of usual 4D cosmology.
Spinor Lie derivatives and Fermion stress-energies
Helfer, Adam D
2016-01-01
Stress-energies for Fermi fields are derived from the principle of general covariance. This is done by developing a notion of Lie derivatives of spinors along arbitrary vector fields. A substantial theory of such derivatives was first introduced by Kosmann; here I show how an apparent conflict in the literature on this is due to a difference in the definitions of spinors, and that tracking the Lie derivative of the Infeld-van der Waerden symbol, as well as the spinor fields under consideration, gives a fuller picture of the geometry and leads to the Fermion stress-energy. The differences in the definitions of spinors do not affect the results here, but could matter in certain quantum-gravity programs and for spinor transformations under discrete symmetries.
Sourcing Dark Matter and Dark Energy from $\\alpha$-attractors
Mishra, Swagat S.; Sahni, Varun; Shtanov, Yuri(Department of Physics, Taras Shevchenko National University, Kiev, Ukraine)
2017-01-01
Recently, Kallosh and Linde have drawn attention to a new family of superconformal inflationary potentials, subsequently called $\\alpha$-attractors. The $\\alpha$-attractor family can interpolate between a large class of inflationary models. It also has an important theoretical underpinning within the framework of supergravity. We demonstrate that the $\\alpha$-attractors have an even wider appeal since they may describe dark matter and perhaps even dark energy. The dark matter associated with ...
Matter-Antimatter Asymmetry - Aspects at Low Energy
Willmann, Lorenz
2015-01-01
The apparent dominance of matter over antimatter in our universe is an obvious and puzzling fact which cannot be adequately explained in present physical frameworks that assume matter-antimatter symmetry at the big bang. However, our present knowledge of starting conditions and of known sources of CP violation are both insufficient to explain the observed asymmetry. Therefore ongoing research on matter-antimatter differences is strongly motivated as well as attempts to identify viable new mechanisms that could create the present asymmetry. Here we concentrate on possible precision experiments at low energies towards a resolution of this puzzle.
Windows in Low Energy Houses. Size Matters
Persson, Mari-Louise
2004-06-01
A generally accepted way of building passive houses has been to have small windows facing north and a large glass facade to the south. This is to minimize losses on the north side while gaining as much solar heat as possible on the south. In spring 2001, twenty terraced houses were built outside Goeteborg partly in this way. The indoor temperature is kept at a comfortable level by passive methods, using solar gains and internal gains from household appliances and occupants. Heat losses are very low, since the building envelope is well insulated and since modern coated triple-glazed windows have been installed. The purpose of this work is to investigate how decreasing the window size facing south and increasing the window size facing north in low energy houses will influence the energy consumption and maximum power needed to keep the indoor temperature between 23 and 26 deg C. Different climates and orientations have been investigated and so have the influence of occupancy and window type. A dynamic building simulation tool, DEROB, has been used and the simulations indicate an extremely low energy demand for the houses. The results show that the size of the energy efficient windows does not have a major influence on the heating demand in winter, but is of relevant signification looking at the cooling need in summer. This indicates that instead of the traditional technique of building passive houses it is possible to enlarge the window area facing north and get better lighting conditions. To decrease the energy need for cooling, there is an optimal window size facing south that is smaller than the original size of the investigated buildings.
Coupling q-deformed dark energy to dark matter
Dil, Emre
2016-01-01
We propose a novel coupled dark energy model which is assumed to occur as a q-deformed scalar field and investigate whether it will provide an expanding universe phase. We consider the q-deformed dark energy as coupled to dark matter inhomogeneities. We perform the phase-space analysis of the model by numerical methods and find the late-time accelerated attractor solutions. The attractor solutions imply that the coupled q-deformed dark energy model is consistent with the conventional dark energy models satisfying an acceleration phase of universe. At the end, we compare the cosmological parameters of deformed and standard dark energy models and interpret the implications.
Cosmological Evolution With Interaction Between Dark Energy And Dark Matter
Bolotin, Yu L; Lemets, O A; Yerokhin, D A
2013-01-01
In this review we consider in detail different theoretical topics associated with interaction in the dark sector. We study linear and nonlinear interactions which depend on the dark matter and dark energy densities. We consider a number of different models (including the holographic dark energy and dark energy in a fractal universe) with interacting dark energy (DE) and dark matter (DM), have done a thorough analysis of these models. The main task of this review was not only to give an idea about the modern set of different models of dark energy, but to show how much can be diverse dynamics of the universe in these models. We find that the dynamics of a Universe that contains interaction in the dark sector can differ significantly from the Standard Cosmological Model (SCM).
Lorentz symmetry violation, dark matter and dark energy
Gonzalez-Mestres, Luis
2009-01-01
Taking into account the experimental results of the HiRes and AUGER collaborations, the present status of bounds on Lorentz symmetry violation (LSV) patterns is discussed. Although significant constraints will emerge, a wide range of models and values of parameters will still be left open. Cosmological implications of allowed LSV patterns are discussed focusing on the origin of our Universe, the cosmological constant, dark matter and dark energy. Superbradyons (superluminal preons) may be the actual constituents of vacuum and of standard particles, and form equally a cosmological sea leading to new forms of dark matter and dark energy.
Dark Matter and Dark Energy The Critical Questions
Turner, M S
2002-01-01
Stars account for only about 0.5% of the content of the Universe; the bulk of the Universe is optically dark. The dark side of the Universe is comprised of: at least 0.1% light neutrinos; 3.5% +/- 1% baryons; 29% +/- 4% cold dark matter; and 66% +/- 6% dark energy. Now that we have characterized the dark side of the Universe, the challenge is to understand it. The critical questions are: (1) What form do the dark baryons take? (2) What is (are) the constituent(s) of the cold dark matter? (3) What is the nature of the mysterious dark energy that is causing the Universe to speed up.
Linear response of homogeneous nuclear matter with energy density functionals
Pastore, A. [Institut d’Astronomie et d’Astrophysique, CP 226, Université Libre de Bruxelles, B-1050 Bruxelles (Belgium); Davesne, D., E-mail: davesne@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon, CNRS-IN2P3, UMR 5822, Université Lyon 1, F-69622 Villeurbanne (France); Navarro, J. [IFIC (CSIC University of Valencia), Apdo. Postal 22085, E-46071 Valencia (Spain)
2015-03-01
Response functions of infinite nuclear matter with arbitrary isospin asymmetry are studied in the framework of the random phase approximation. The residual interaction is derived from a general nuclear Skyrme energy density functional. Besides the usual central, spin–orbit and tensor terms it could also include other components as new density-dependent terms or three-body terms. Algebraic expressions for the response functions are obtained from the Bethe–Salpeter equation for the particle–hole propagator. Applications to symmetric nuclear matter, pure neutron matter and asymmetric nuclear matter are presented and discussed. Spin–isospin strength functions are analyzed for varying conditions of density, momentum transfer, isospin asymmetry, and temperature for some representative Skyrme functionals. Particular attention is paid to the discussion of instabilities, either real or unphysical, which could manifest in finite nuclei.
Determination of Dark Matter Properties at High-Energy Colliders
Baltz, Edward A.; Battaglia, Marco; Peskin, Michael E.; Wizansky, Tommer
2006-11-05
If the cosmic dark matter consists of weakly-interacting massive particles, these particles should be produced in reactions at the nextgeneration of high-energy accelerators. Measurements at these accelerators can then be used to determine the microscopic properties of the dark matter. From this, we can predict the cosmic density, the annihilation cross sections, and the cross sections relevant to direct detection. In this paper, we present studies in supersymmetry models with neutralino dark matter that give quantitative estimates of the accuracy that can be expected. We show that these are well matched to the requirements of anticipated astrophysical observations of dark matter. The capabilities of the proposed International Linear Collider (ILC) are expected to play a particularly important role in this study.
Determination of Dark Matter Properties at High-Energy Collider
Baltz, Edward A.; Battaglia, Marco; Peskin, Michael E.; Wizansky, Tommer
2006-02-24
If the cosmic dark matter consists of weakly-interacting massive particles, these particles should be produced in reactions at the next generation of high-energy accelerators. Measurements at these accelerators can then be used to determine the microscopic properties of the dark matter. From this, we can predict the cosmic density, the annihilation cross sections, and the cross sections relevant to direct detection. In this paper, we present studies in supersymmetry models with neutralino dark matter that give quantitative estimates of the accuracy that can be expected. We show that these are well matched to the requirements of anticipated astrophysical observations of dark matter. The capabilities of the proposed International Linear Collider (ILC) are expected to play a particularly important role in this study.
On the Energy Required to Eject Processed Matter from Galaxies
Tenorio-Tagle, G
2001-01-01
We evaluate the minimum energy input rate that starbursts require for expelling their newly processed matter from their host galaxies. Special attention is given to the pressure caused by the environment in which a galaxy is situated, as well as to the intrinsic rotation of the gaseous component. We account for these factors and for a massive dark matter distribution, and develop a self-consistent solution for the interstellar matter gas distribution. Our results are in excellent agreement with the results of Mac Low & Ferrara (1999) for galaxies with a flattened disk-like ISM density distribution and a low intergalactic gas pressure ($P_{IGM}/k$ $\\leq $ 1 cm$^{-3}$ K). However, our solution also requires a much larger energy input rate threshold when one takes into consideration both a larger intergalactic pressure and the possible existence of a low-density, non-rotating, extended gaseous halo component.
Excitation energy transfer processes in condensed matter theory and applications
Singh, Jai
1994-01-01
Applying a unified quantum approach, contributors offer fresh insights into the theoretical developments in the excitation energy transfer processes in condensed matter This comprehensive volume examines Frenkel and Wannier excitonic processes; rates of excitonic processes; theory of laser sputter and polymer ablation; and polarons, excitonic polarons and self-trapping
Polytropic dark matter flows illuminate dark energy and accelerated expansion
Kleidis, K
2014-01-01
Currently, a large amount of data implies that the matter constituents of the cosmological dark sector might be collisional. An attractive feature of such a possibility is that, it can reconcile dark matter (DM) and dark energy (DE) in terms of a single component, accommodated in the context of a polytropic-DM fluid. Accordingly, we explore the time evolution and the dynamical characteristics of a spatially-flat cosmological model, in which, in principle, there is no DE at all. Instead, in this model, the DM itself possesses some sort of fluid-like properties, i.e., the fundamental units of the Universe matter-energy content are the volume elements of a DM fluid, performing polytropic flows. In this case, the energy of this fluid's internal motions is also taken into account as a source of the universal gravitational field. This form of energy can compensate for the extra energy needed to compromise spatial flatness, namely, to justify that, today, the total-energy density parameter is exactly unity. The poly...
Inelastic frontier: Discovering dark matter at high recoil energy
Bramante, Joseph; Fox, Patrick J.; Kribs, Graham D.; Martin, Adam
2016-12-01
There exist well-motivated models of particle dark matter which predominantly scatter inelastically off nuclei in direct detection experiments. This inelastic transition causes the dark matter to upscatter in terrestrial experiments into an excited state up to 550 keV heavier than the dark matter itself. An inelastic transition of this size is highly suppressed by both kinematics and nuclear form factors. In this paper, we extend previous studies of inelastic dark matter to determine the present bounds on the scattering cross section and the prospects for improvements in sensitivity. Three scenarios provide illustrative examples: nearly pure Higgsino supersymmetric dark matter, magnetic inelastic dark matter, and inelastic models with dark photon exchange. We determine the elastic scattering rate (through loop diagrams involving the heavy state) as well as verify that exothermic transitions are negligible (in the parameter space we consider). Presently, the strongest bounds on the cross section are from xenon at LUX-PandaX (when the mass splitting δ ≲160 keV ), iodine at PICO (when 160 ≲δ ≲300 keV ), and tungsten at CRESST (when δ ≳300 keV ). Amusingly, once δ ≳200 keV , weak scale (and larger) dark matter-nucleon scattering cross sections are allowed. The relative competitiveness of these diverse experiments is governed by the upper bound on the recoil energies employed by each experiment, as well as strong sensitivity to the mass of the heaviest element in the detector. Several implications, including sizable recoil energy-dependent annual modulation and improvements for future experiments, are discussed. We show that the xenon experiments can improve on the PICO results, if they were to analyze their existing data over a larger range of recoil energies, i.e., 20-500 keV Intriguingly, CRESST has reported several events in the recoil energy range 45-100 keV that, if interpreted as dark matter scattering, is compatible with δ ˜200 keV and an
Matter power spectra in dynamical-Dark Energy cosmologies
Fedeli, C; Moscardini, L
2011-01-01
(abridged) We used a suite of numerical cosmological simulations in order to investigate the effect of gas cooling and star formation on the large scale matter distribution. The simulations follow the formation of cosmic structures in five different Dark Energy models: the fiducial $\\Lambda$CDM cosmology and four models where the Dark Energy density is allowed to have a non-trivial redshift evolution. For each cosmology we have a control run with dark matter only, in order to allow a direct assessment of the impact of baryonic processes. We found that the power spectra of gas and stars, as well as the total matter power spectrum, are in qualitative agreement with the results of previous works in the framework of the fiducial model, although several quantitative differences exist. We used the halo model in order to investigate the backreaction of gas and stars on the dark matter distribution, finding that it is very well reproduced by increasing the average dark matter halo concentration by 17%, irrespective o...
Cosmic vacuum energy decay and creation of cosmic matter
Fahr, H J
2016-01-01
In the more recent literature on cosmological evolutions of the universe the cosmic vacuum energy has become a non-renouncable ingredient. The cosmological constant $\\Lambda$, first invented by Einstein, but later also rejected by him, presently experiences an astonishing revival. Interestingly enough it acts, like a constant vacuum energy density would also do. Namely, it has an accelerating action on cosmic dynamics without which, as it appears, presently obtained cosmological data cannot be conciliated with theory. As we are going to show in this review, however, the concept of a constant vacuum energy density is unsatisfactory for very basic reasons, since it would claim for a physical reality that acts upon spacetime and matter dynamics without itself being acted upon by spacetime or matter.
INTERNATIONAL CONFERENCE ON ULTRASHORT HIGH-ENERGY RADIATION AND MATTER
Wootton, A J
2004-01-15
The workshop is intended as a forum to discuss the latest experimental, theoretical and computational results related to the interaction of high energy radiation with matter. High energy is intended to mean soft x-ray and beyond, but important new results from visible systems will be incorporated. The workshop will be interdisciplinary amongst scientists from many fields, including: plasma physics; x-ray physics and optics; solid state physics and material science; biology ; quantum optics. Topics will include, among other subjects: understanding damage thresholds for x-ray interactions with matter developing {approx} 5 keV x-ray sources to investigate damage; developing {approx} 100 keV Thomsom sources for material studies; developing short pulse (100 fs and less) x-ray diagnostics; developing novel X-ray optics; and developing models for the response of biological samples to ultra intense, sub ps x-rays high-energy radiation.
Coupling q-deformed dark energy to dark matter
Emre Dil
2016-01-01
We propose a novel coupled dark energy model which is assumed to occur as a q-deformed scalar field and investigate whether it will provide an expanding universe phase. We consider the q-deformed dark energy as coupled to dark matter inhomogeneities. We perform the phase-space analysis of the model by numerical methods and find the late-time accelerated attractor solutions. The attractor solutions imply that the coupled q-deformed dark energy model is consistent with the conventional dark ene...
Strongly Interacting Matter at Very High Energy Density
McLerran, L.
2011-06-05
The authors discuss the study of matter at very high energy density. In particular: what are the scientific questions; what are the opportunities to makes significant progress in the study of such matter and what facilities are now or might be available in the future to answer the scientific questions? The theoretical and experimental study of new forms of high energy density matter is still very much a 'wild west' field. There is much freedom for developing new concepts which can have order one effects on the way we think about such matter. It is also a largely 'lawless' field, in that concepts and methods are being developed as new information is generated. There is also great possibility for new experimental discovery. Most of the exciting results from RHIC experiments were unanticipated. The methods used for studying various effects like flow, jet quenching, the ridge, two particle correlations etc. were developed as experiments evolved. I believe this will continue to be the case at LHC and as we use existing and proposed accelerators to turn theoretical conjecture into tangible reality. At some point this will no doubt evolve into a precision science, and that will make the field more respectable, but for my taste, the 'wild west' times are the most fun.
Coherent $\\rho^0$ photoproduction in bulk matter at high energies
Couderc, Elsa
2009-01-01
The momentum transfer $\\Delta k$ required for a photon to scatter from a target and emerge as a $\\rho^0$ decreases as the photon energy $k$ rises. For $k>3\\times10^{14}$ eV, $\\Delta k$ is small enough that the interaction cannot be localized to a single nucleus. At still higher energies, photons may coherently scatter elastically from bulk matter and emerge as a $\\rho^0$, in a manner akin to kaon regeneration. Constructive interference from the different nuclei coherently raises the cross section and the interaction probability rises linearly with energy. At energies above $10^{23}$ eV, coherent conversion is the dominant process; photons interact predominantly as $\\rho^0$. We compute the coherent scattering probabilities in slabs of lead, water and rock, and discuss the implications of the increased hadronic interaction probabilities for photons on ultra-high energy shower development.
Coherent rho 0 photoproduction in bulk matter at high energies
Couderc, Elsa; Klein, Spencer
2009-01-09
The momentum transfer {Delta}k required for a photon to scatter from a target and emerge as a {rho}{sup 0} decreases as the photon energy k rises. For k > 3 x 10{sup 14} eV, {Delta}k is small enough that the interaction cannot be localized to a single nucleus. At still higher energies, photons may coherently scatter elastically from bulk matter and emerge as a {rho}{sup 0}, in a manner akin to kaon regeneration. Constructive interference from the different nuclei coherently raises the cross section and the interaction probability rises linearly with energy. At energies above 10{sup 23} eV, coherent conversion is the dominant process; photons interact predominantly as {rho}{sup 0}. We compute the coherent scattering probabilities in slabs of lead, water and rock, and discuss the implications of the increased hadronic interaction probabilities for photons on ultra-high energy shower development.
Coupling q-Deformed Dark Energy to Dark Matter
Emre Dil
2016-01-01
Full Text Available We propose a novel coupled dark energy model which is assumed to occur as a q-deformed scalar field and investigate whether it will provide an expanding universe phase. We consider the q-deformed dark energy as coupled to dark matter inhomogeneities. We perform the phase-space analysis of the model by numerical methods and find the late-time accelerated attractor solutions. The attractor solutions imply that the coupled q-deformed dark energy model is consistent with the conventional dark energy models satisfying an acceleration phase of universe. At the end, we compare the cosmological parameters of deformed and standard dark energy models and interpret the implications.
On Dark Energy and Matter of the Expanding Universe
Lehnert B.
2009-04-01
Full Text Available At present the expanding universe is observed to be dominated by the not fully under- stood concepts of dark energy and matter, in a conceived almost flat Euclidian geometry. As one of the possible efforts to understand the global behaviour of the expanding uni- verse, the present paper attempts to explain these concepts in terms of the pressure force and gravity of a spherical photon gas cloud of zero point energy, in a flat geometry. A difficult point of the conventional theory concerns the frequency distribution of the zero point energy oscillations which leads to the unacceptable result of an infinite total en- ergy per unit volume. A modification of this distribution is therefore proposed which results in finite energy density. A corresponding equilibrium state is investigated, as well as small dynamic deviations from it, to form a basis for a model of the expanding universe. Provided that the crucial points of the present approach hold true, the model satisfies the requirements of cosmic linear dimensions, results in an estimated accelera- tion of the expansion being of the order of the observed one, presents a possible solution of the coincidence problem of dark energy and matter, and provides one of the possible explanations of the observed excess of high-energy electrons and positrons in recent balloon and satellite experiments.
A two measure model of dark energy and dark matter
Guendelman, Eduardo [Department of Physics, Ben-Gurion University, Beer-Sheva (Israel); Singleton, Douglas; Yongram, N., E-mail: guendel@bgu.ac.il, E-mail: dougs@csufresno.edu, E-mail: nattapongy@nu.ac.th [Physics Department, California State University Fresno, Fresno, CA 93740 (United States)
2012-11-01
In this work we construct a unified model of dark energy and dark matter. This is done with the following three elements: a gravitating scalar field, φ with a non-conventional kinetic term, as in the string theory tachyon; an arbitrary potential, V(φ); two measures — a metric measure ((−g){sup 1/2}) and a non-metric measure (Φ). The model has two interesting features: (i) For potentials which are unstable and would give rise to tachyonic scalar field, this model can stabilize the scalar field. (ii) The form of the dark energy and dark matter that results from this model is fairly insensitive to the exact form of the scalar field potential.
Coupled dark energy and dark matter from dilatation anomaly
Beyer, Joschka; Wetterich, Christof
2010-01-01
Cosmological runaway solutions may exhibit an exact dilatation symmetry in the asymptotic limit of infinite time. In this limit, the massless dilaton or cosmon could be accompanied by another massless scalar field - the geon. At finite time, small time-dependent masses for both the cosmon and geon are still present due to imperfect dilatation symmetry. For a sufficiently large mass the geon will start oscillating and play the role of dark matter, while the cosmon is responsible for dark energy. The common origin of the mass of both fields leads to an effective interaction between dark matter and dark energy. Realistic cosmologies are possible for a simple form of the effective cosmon-geon-potential. We find an inverse geon mass of a size where it could reduce subgalactic structure formation.
Unifying dark energy and dark matter with a scalar field
Arbey, A.
2005-01-01
The standard model of cosmology considers the existence of two components of unknown nature, ``dark matter'' and ``dark energy'', which determine the cosmological evolution. Their nature remains unknown, and other models can also be considered. In particular, it may be possible to reinterpret the recent cosmological observations so that the Universe does not contain two fluids of unknown natures, but only one fluid with particular properties. After a brief review of constraints on this unifyi...
Ways of knowing about the relationship of matter and energy
Carter-Cohn, Karen L.
2000-10-01
This study used qualitative interviews, with manipulatives, to investigate understanding and construction of knowledge about the relationship of matter and energy. The participants ranged in age and expertise from elementary aged children to renowned physicists. Results indicated that all participants manifested nonverbal indicators of relational ideas. Verbal expression and knowledge of a relationship, including that given by special relativity, varied. The importance of sensory-motor perception and unification of perception in concept development was evidenced.
Exactly solved models of interacting dark matter and dark energy
Chimento, Luis P
2012-01-01
We introduce an effective one-fluid description of the interacting dark sector in a spatially flat Friedmann-Robertson-Walker space-time and investigate the stability of the power-law solutions. We find the "source equation" for the total energy density and determine the energy density of each dark component. We study linear and nonlinear interactions which depend on the dark matter and dark energy densities, their first derivatives, the total energy density with its derivatives up to second order and the scale factor. We solve the evolution equations of the dark components for both interactions, examine exhaustively several examples and show cases where the problem of the coincidence is alleviated. We show that a generic nonlinear interaction gives rise to the "relaxed Chaplygin gas model" whose effective equation of state includes the variable modified Chaplygin gas model while some others nonlinear interactions yield de Sitter and power-law scenarios.
Fluid Mechanics Explains Cosmology, Dark Matter, Dark Energy, and Life
Gibson, Carl H
2012-01-01
Observations of the interstellar medium by the Herschel, Planck etc. infrared satellites throw doubt on standard {\\Lambda}CDMHC cosmological processes to form gravitational structures. According to the Hydro-Gravitational-Dynamics (HGD) cosmology of Gibson (1996), and the quasar microlensing observations of Schild (1996), the dark matter of galaxies consists of Proto-Globular-star-Cluster (PGC) clumps of Earth-mass primordial gas planets in metastable equilibrium since PGCs began star production at 0.3 Myr by planet mergers. Dark energy and the accelerating expansion of the universe inferred from SuperNovae Ia are systematic dimming errors produced as frozen gas dark matter planets evaporate to form stars. Collisionless cold dark matter that clumps and hierarchically clusters does not exist. Clumps of PGCs began diffusion from the Milky Way Proto-Galaxy upon freezing at 14 Myr to give the Magellanic Clouds and the faint dwarf galaxies of the 10^22 m diameter baryonic dark matter Galaxy halo. The first stars p...
High-Energy Neutron Backgrounds for Underground Dark Matter Experiments
Chen, Yu [Syracuse Univ., NY (United States)
2016-01-01
Direct dark matter detection experiments usually have excellent capability to distinguish nuclear recoils, expected interactions with Weakly Interacting Massive Particle (WIMP) dark matter, and electronic recoils, so that they can efficiently reject background events such as gamma-rays and charged particles. However, both WIMPs and neutrons can induce nuclear recoils. Neutrons are then the most crucial background for direct dark matter detection. It is important to understand and account for all sources of neutron backgrounds when claiming a discovery of dark matter detection or reporting limits on the WIMP-nucleon cross section. One type of neutron background that is not well understood is the cosmogenic neutrons from muons interacting with the underground cavern rock and materials surrounding a dark matter detector. The Neutron Multiplicity Meter (NMM) is a water Cherenkov detector capable of measuring the cosmogenic neutron flux at the Soudan Underground Laboratory, which has an overburden of 2090 meters water equivalent. The NMM consists of two 2.2-tonne gadolinium-doped water tanks situated atop a 20-tonne lead target. It detects a high-energy (>~ 50 MeV) neutron via moderation and capture of the multiple secondary neutrons released when the former interacts in the lead target. The multiplicity of secondary neutrons for the high-energy neutron provides a benchmark for comparison to the current Monte Carlo predictions. Combining with the Monte Carlo simulation, the muon-induced high-energy neutron flux above 50 MeV is measured to be (1.3 ± 0.2) ~ 10-9 cm-2s-1, in reasonable agreement with the model prediction. The measured multiplicity spectrum agrees well with that of Monte Carlo simulation for multiplicity below 10, but shows an excess of approximately a factor of three over Monte Carlo prediction for multiplicities ~ 10 - 20. In an effort to reduce neutron backgrounds for the dark matter experiment SuperCDMS SNO- LAB, an active neutron veto was developed
Ultra High Energy Cosmic Rays & Super-heavy Dark Matter
Marzola, Luca
2016-01-01
We reanalyse the prospects for upcoming Ultra-High Energy Cosmic Ray experiments in connection with the phenomenology of Super-heavy Dark Matter. We identify a set of observables well suited to reveal a possible anisotropy in the High Energy Cosmic Ray flux induced by the decays of these particles, and quantify their performance via Monte Carlo simulations that mimic the outcome of near-future and next-generation experiments. The spherical and circular dipoles are able to tell isotropic and anisotropic fluxes apart at a confidence level as large as $4\\sigma$ or $5\\sigma$, depending on the Dark Matter profile. The forward-to-backward flux ratio yields a comparable result for relatively large opening angles of about 40~deg, but it is less performing once a very large number of events is considered. We also find that an actual experiment employing these observables and collecting 300~events at 60~EeV would have a $50\\%$ chance of excluding isotropy against Super-heavy Dark Matter at a significance of at least $3...
Nonlinear cosmological consistency relations and effective matter stresses
Ballesteros, Guillermo [Museo Storico della Fisica e Centro Studi e Ricerche ' ' Enrico Fermi' ' , Piazza del Viminale 1, I-00184 Rome (Italy); Hollenstein, Lukas; Jain, Rajeev Kumar; Kunz, Martin, E-mail: guillermo.ballesteros@pd.infn.it, E-mail: lukas.hollenstein@unige.ch, E-mail: rajeev.jain@unige.ch, E-mail: martin.kunz@unige.ch [Département de Physique Théorique and Center for Astroparticle Physics, Université de Genève, Quai E. Ansermet 24, CH-1211 Genève 4 (Switzerland)
2012-05-01
We propose a fully nonlinear framework to construct consistency relations for testing generic cosmological scenarios using the evolution of large scale structure. It is based on the covariant approach in combination with a frame that is purely given by the metric, the normal frame. As an example, we apply this framework to the ΛCDM model, by extending the usual first order conditions on the metric potentials to second order, where the two potentials start to differ from each other. We argue that working in the normal frame is not only a practical choice but also helps with the physical interpretation of nonlinear dynamics. In this frame, effective pressures and anisotropic stresses appear at second order in perturbation theory, even for ''pressureless'' dust. We quantify their effect and compare them, for illustration, to the pressure of a generic clustering dark energy fluid and the anisotropic stress in the DGP model. Besides, we also discuss the effect of a mismatch of the potentials on the determination of galaxy bias.
Spintessence! New Models for Dark Matter and Dark Energy
Boyle, L A; Kamionkowski, M P; Boyle, Latham A.; Caldwell, Robert R.; Kamionkowski, Marc
2002-01-01
We propose a new class of ``spintessence'' models for dark matter and/or negative-pressure, dynamical dark energy consisting of a complex scalar field $\\phi$ spinning in a U(1)-symmetric potential $V(\\phi)=V(|\\phi|)$. As the Universe expands, the field spirals slowly toward the origin. The choice of $V(\\phi)$ determines the equation-of-state parameter ${w}$, which may be either constant or evolving with time. Spintessence models can introduce a variety of novel effects in the growth of density perturbations. We discuss connections with quintessence and self-interacting and fuzzy cold dark matter, possible implications for the coincidence problem, baryogenesis, and cosmological birefringence, as well as generalizations of spintessence to models with higher global symmetry and models in which the symmetry is not exact.
Fermion field as inflaton, dark energy and dark matter
Grams, Guilherme; Kremer, Gilberto M
2014-01-01
The search for constituents that can explain the periods of accelerating expansion of the Universe is a fundamental topic in cosmology. In this context, we investigate how fermionic fields minimally and non-minimally coupled with the gravitational field may be responsible for accelerated regimes during the evolution of the Universe. The forms of the potential and coupling of the model are determined through the technique of the Noether symmetry for two cases. The first case comprises a Universe filled only with the fermion field. Cosmological solutions are straightforwardly obtained for this case and an exponential inflation mediated by the fermion field is possible with a non-minimal coupling. The second case takes account of the contributions of radiation and baryonic matter in the presence of the fermion field. In this case the fermion field plays the role of dark energy and dark matter, and when a non-minimal coupling is allowed, it mediates a power-law inflation.
Dark Matter and Dark Energy: Breaking the Continuum Hypothesis?
Casuso Romate E.
2006-07-01
Full Text Available In the present paper an attempt is made to develop a fractional integral and differential, deterministic and projective method based on the assumption of the essential discontinuity observed in real systems (note that more than 99% of the volume occupied by an atom in real space has no matter. The differential treatment assumes continuous behaviour (in the form of averaging over the recent past of the system to predict the future time evolution, such that the real history of the system is "forgotten". So it is easy to understand how problems such as unpredictability (chaos arise for many dynamical systems, as well as the great difficulty to connecting Quantum Mechanics (a probabilistic differential theory with General Relativity (a deterministic differential theory. I focus here on showing how the present theory can throw light on crucial astrophysical problems like dark matter and dark energy.
Dark Matter and Dark Energy: Breaking the Continuum Hypothesis?
Casuso Romate E.
2006-07-01
Full Text Available In the present paper an attempt is made to develop a fractional integral and differential, deterministic and projective method based on the assumption of the essential discontinuity observed in real systems (note that more than 99 % of the volume occupied by an atom in real space has no matter. The differential treatment assumes continuous behaviour (in the form of averaging over the recent past of the system to predict the future time evolution, such that the real history of the system is “forgotten”. So it is easy to understand how problems such as unpredictability (chaos arise for many dynamical systems, as well as the great difficulty to connecting Quantum Mechanics (a probabilistic differential theory with General Relativity (a deterministic differential theory. I focus here on showing how the present theory can throw light on crucial astrophysical problems like dark matter and dark energy.
Dark Matter and Dark Energy - Fact or Fantasy?
Mannheim, Philip
We show that the origin of the dark matter and dark energy problems originates in the assumption of standard Einstein gravity that Newton's constant is fundamental. We discuss an alternate, conformal invariant, metric theory of gravity in which Newton's constant is induced dynamically, with the global induced one which is effective for cosmology being altogether weaker than the local induced one needed for the solar system. We find that in the theory dark matter is no longer needed, and that the accelerating universe data can be fitted without fine-tuning using a cosmological constant as large as particle physics suggests. In the conformal theory then it is not the cosmological constant which is quenched but rather the amount of gravity that it produces.
Rayle, Andrea Dixon; Chung, Kuo-Yi
2008-01-01
In this study, Nancy Schlossberg's (1989) theory of college students' mattering to others was revisited. Mattering is the experience of others depending on us, being interested in us, and being concerned with our fate. The relationships of gender, mattering to college friends and the college environment, and friend and family social support with…
Dark Energy: The Shadowy Reflection of Dark Matter?
Kleidis, Kostas
2016-01-01
In this article, we review a series of recent theoretical results regarding a conventional approach to the dark energy (DE) concept. This approach is distinguished among others for its simplicity and its physical relevance. By compromising General Relativity (GR) and Thermodynamics at cosmological scale, we end up with a model without DE. Instead, the Universe we are proposing is filled with a perfect fluid of self-interacting dark matter (DM), the volume elements of which perform hydrodynamic flows. To the best of our knowledge, it is the first time in a cosmological framework that the energy of the cosmic fluid internal motions is also taken into account as a source of the universal gravitational field. As we demonstrate, this form of energy may compensate for the DE needed to compromise spatial flatness, while, depending on the particular type of thermodynamic processes occurring in the interior of the DM fluid (isothermal or polytropic), the Universe depicts itself as either decelerating or accelerating (...
Dark matter and dark energy induced by condensates
Capolupo, Antonio
2016-01-01
It is shown that the vacuum condensate induced by many phenomena behaves as a perfect fluid which, under particular conditions, has zero or negative pressure. In particular, the condensates of thermal states, of fields in curved space and of mixed particles have been analyzed. It is shown that the thermal states with the cosmic microwave radiation temperature, the Unruh and the Hawking radiations give negligible contributions to the critical energy density of the universe, while the thermal vacuum of the intercluster medium could contribute to the dark matter, together with the vacuum energy of fields in curved space-time and of mixed neutrinos. Moreover, a component of the dark energy can be represented by the vacuum of axion-like particles mixed with photons and superpartners of neutrinos. The formal analogy among the systems characterized by the condensates can open new scenarios in the possibility to detect the dark components of the universe in table top experiments.
Dark Matter and Dark Energy Induced by Condensates
Antonio Capolupo
2016-01-01
Full Text Available It is shown that the vacuum condensate induced by many phenomena behaves as a perfect fluid which, under particular conditions, has zero or negative pressure. In particular, the condensates of thermal states of fields in curved space and of mixed particles have been analyzed. It is shown that the thermal states with the cosmic microwave radiation temperature and the Unruh and the Hawking radiations give negligible contributions to the critical energy density of the universe, while the thermal vacuum of the intercluster medium could contribute to the dark matter, together with the vacuum energy of fields in curved space-time and of mixed neutrinos. Moreover, a component of the dark energy can be represented by the vacuum of axion-like particles mixed with photons and superpartners of neutrinos. The formal analogy among the systems characterized by the condensates can open new scenarios in the possibility of detecting the dark components of the universe in table top experiments.
Füzfa, A.; Alimi, J.-M.
2007-06-01
The abnormally weighting energy hypothesis consists of assuming that the dark sector of cosmology violates the weak equivalence principle (WEP) on cosmological scales, which implies a violation of the strong equivalence principle for ordinary matter. In this paper, dark energy is shown to result from the violation of WEP by pressureless (dark) matter. This allows us to build a new cosmological framework in which general relativity is satisfied at low scales, as WEP violation depends on the ratio of the ordinary matter over dark matter densities, but at large scales, we obtain a general relativity-like theory with a different value of the gravitational coupling. This explanation is formulated in terms of a tensor-scalar theory of gravitation without WEP for which there exists a revisited convergence mechanism toward general relativity. The consequent dark energy mechanism build upon the anomalous gravity of dark matter (i) does not require any violation of the strong energy condition pfairly for supernovae data from various simple couplings and with density parameters very close to the ones of the concordance model ΛCDM, and therefore suggests an explanation to its remarkable adequacy. Finally, (iv) this mechanism ends up in the future with an Einstein de Sitter expansion regime once the attractor is reached.
Dark Energy, Dark Matter and Science with Constellation-X
Cardiff, Ann Hornschemeier
2005-01-01
Constellation-X, with more than 100 times the collecting area of any previous spectroscopic mission operating in the 0.25-40 keV bandpass, will enable highthroughput, high spectral resolution studies of sources ranging from the most luminous accreting supermassive black holes in the Universe to the disks around young stars where planets form. This talk will review the updated Constellation-X science case, released in booklet form during summer 2005. The science areas where Constellation-X will have major impact include the exploration of the space-time geometry of black holes spanning nine orders of magnitude in mass and the nature of the dark energy and dark matter which govern the expansion and ultimate fate of the Universe. Constellation-X will also explore processes referred to as "cosmic feedback" whereby mechanical energy, radiation, and chemical elements from star formation and black holes are returned to interstellar and intergalactic medium, profoundly affecting the development of structure in the Universe, and will also probe all the important life cycles of matter, from stellar and planetary birth to stellar death via supernova to stellar endpoints in the form of accreting binaries and supernova remnants. This talk will touch upon all these areas, with particular emphasis on Constellation-X's role in the study of Dark Energy.
Investigation of dark matter-dark energy interaction cosmological model
Wang, J S
2014-01-01
In this paper, we test the dark matter-dark energy interacting cosmological model with a dynamic equation of state $w_{DE}(z)=w_{0}+w_{1}z/(1+z)$, using type Ia supernovae (SNe Ia), Hubble parameter data, baryonic acoustic oscillation (BAO) measurements, and the cosmic microwave background (CMB) observation. This interacting cosmological model has not been studied before. The best-fitted parameters with $1 \\sigma$ uncertainties are $\\delta=-0.022 \\pm 0.006$, $\\Omega_{DM}^{0}=0.213 \\pm 0.008$, $w_0 =-1.210 \\pm 0.033$ and $w_1=0.872 \\pm 0.072$ with $\\chi^2_{min}/dof = 0.990$. At the $1 \\sigma$ confidence level, we find $\\delta<0$, which means that the energy transfer prefers from dark matter to dark energy. We also find that the SNe Ia are in tension with the combination of CMB, BAO and Hubble parameter data. The evolution of $\\rho_{DM}/\\rho_{DE}$ indicates that this interacting model is a good approach to solve the coincidence problem, because the $\\rho_{DE}$ decrease with scale factor $a$. The transition r...
Ambient particulate matter (PM) damages biological targets through oxidative stress (OS) pathways. Several reports indicate that the brain is one of those targets. Since microglia (brain macrophage) are critical to OS-mediated neurodegeneration, their response to concentrated amb...
Origin of cancer: an information, energy and matter disease
Rainer Günter Hanselmann
2016-11-01
Full Text Available Cells are open, highly ordered systems far away from equilibrium. For that reason, the first function of any cell is to prevent the permanent threat of disintegration described by thermo-dynamic laws and to preserve highly ordered cell characteristics like structures, cell cycle and metabolism. In that context, three basic categories play a central role - energy, matter and information. Every single of these three categories is equally important to the cell and depends on the others reciprocally. For that reason, we suggest that either energy loss (e.g. by disturbed mitochondria or disturbance of information (e.g. mutations, aneuploidy or changes in matter composition or exposition (e.g. micro-environmental changes, toxic agents can irreversibly disturb molecular mechanisms leading to increased local entropy of cellular functions and structures. In terms of physics, changes to these normally highly ordered reaction probabilities lead to a biologically irreversibly, imbalanced but thermodynamically more stable state. This primary change independent of the initiator now provokes and drives a complex interplay between energy availability, matter exposition and increasing information disturbance depending on reactions that try to overcome or stabilize this intra-cellular, irreversible disorder described by entropy. Because the return to the original ordered state is not possible due to the thermodynamic reasons cells die, or persist in an meta-stable state and enter into a self-driven adaptive and evolutionary process that generates progressive, disordered cells resulting in a broad spectrum of progeny with different characteristics, and maybe one day one of these cells will show an autonomous and aggressive behavior – a cancer cell.
Origin of Cancer: An Information, Energy, and Matter Disease
Hanselmann, Rainer G.; Welter, Cornelius
2016-01-01
Cells are open, highly ordered systems that are far away from equilibrium. For this reason, the first function of any cell is to prevent the permanent threat of disintegration that is described by thermodynamic laws and to preserve highly ordered cell characteristics such as structures, the cell cycle, or metabolism. In this context, three basic categories play a central role: energy, information, and matter. Each of these three categories is equally important to the cell and they are reciprocally dependent. We therefore suggest that energy loss (e.g., through impaired mitochondria) or disturbance of information (e.g., through mutations or aneuploidy) or changes in the composition or distribution of matter (e.g., through micro-environmental changes or toxic agents) can irreversibly disturb molecular mechanisms, leading to increased local entropy of cellular functions and structures. In terms of physics, changes to these normally highly ordered reaction probabilities lead to a state that is irreversibly biologically imbalanced, but that is thermodynamically more stable. This primary change—independent of the initiator—now provokes and drives a complex interplay between the availability of energy, the composition, and distribution of matter and increasing information disturbance that is dependent upon reactions that try to overcome or stabilize this intracellular, irreversible disorder described by entropy. Because a return to the original ordered state is not possible for thermodynamic reasons, the cells either die or else they persist in a metastable state. In the latter case, they enter into a self-driven adaptive and evolutionary process that generates a progression of disordered cells and that results in a broad spectrum of progeny with different characteristics. Possibly, 1 day, one of these cells will show an autonomous and aggressive behavior—it will be a cancer cell. PMID:27909692
Gamma-Ray Bursts and Dark Energy - Dark Matter interaction
Barreiro, T; Torres, P
2010-01-01
In this work Gamma Ray Burst (GRB) data is used to place constraints on a putative coupling between dark energy and dark matter. Type Ia supernovae (SNe Ia) constraints from the Sloan Digital Sky Survey II (SDSS-II) first-year results, the cosmic microwave background radiation (CMBR) shift parameter from WMAP seven year results and the baryon acoustic oscillation (BAO) peak from the Sloan Digital Sky Survey (SDSS) are also discussed. The prospects for the field are assessed, as more GRB events become available.
Physics understanding the properties of matter and energy
2015-01-01
Without physics, modern life would not exist. Instead of electric light, we would read by the light of candles. We couldn''t build skyscrapers. We could not possibly bridge rivers, much less build a jet or interplanetary craft. Computers and smartphones would be unimaginable. Physics is concerned with the most fundamental aspects of matter and energy and how they interact to make the physical universe work. In accessible language and with explanatory graphics and visual aids, this book introduces readers to the science that is at the very center of all other sciences and essential to our very
Cognitive correlates of white matter growth and stress hormones in female squirrel monkey adults.
Lyons, David M; Yang, Chou; Eliez, Stephan; Reiss, Allan L; Schatzberg, Alan F
2004-04-07
Neurobiological studies of stress and cognitive aging seldom consider white matter despite indications that complex brain processes depend on networks and white matter interconnections. Frontal and temporal lobe white matter volumes increase throughout midlife adulthood in humans, and this aspect of aging is thought to enhance distributed brain functions. Here, we examine spatial learning and memory, neuroendocrine responses to psychological stress, and regional volumes of gray and white matter determined by magnetic resonance imaging in 31 female squirrel monkeys between the ages of 5 and 17 years. This period of lifespan development corresponds to the years 18-60 in humans. Older adults responded to stress with greater increases in plasma levels of adrenocorticotropic hormone and modest reductions in glucocorticoid feedback sensitivity relative to young adults. Learning and memory did not differ with age during the initial cognitive test sessions, but older adults more often failed to inhibit the initial learned response after subsequent spatial reversals. Impaired cognitive response inhibition correlated with the expansion of white matter volume statistically controlling for age, stress hormones, gray matter, and CSF volumes. These results indicate that instead of enhancing cognitive control during midlife adulthood, white matter volume expansion contributes to aspects of cognitive decline. Cellular and molecular research combined with brain imaging is needed to determine the basis of white matter growth in adults, elucidate its functions during lifespan development, and provide potential new targets for therapies aimed at maintaining in humans cognitive vitality with aging.
Stress in Business Communication: A Matter of Perception.
Smith, Douglas C.; Nelson, Sandra J.
1990-01-01
Reports the results of a study on perceptions of stress among business communication students, from a questionnaire completed by students and an alternate form completed by faculty. Finds that faculty perceived students to be more stressed than students reported. (SR)
Extreme states of matter high energy density physics
Fortov, Vladimir E
2016-01-01
With its many beautiful colour pictures, this book gives fascinating insights into the unusual forms and behaviour of matter under extremely high pressures and temperatures. These extreme states are generated, among other things, by strong shock, detonation and electric explosion waves, dense laser beams,electron and ion beams, hypersonic entry of spacecraft into dense atmospheres of planets, and in many other situations characterized by extremely high pressures and temperatures.Written by one of the world's foremost experts on the topic, this book will inform and fascinate all scientists dealing with materials properties and physics, and also serve as an excellent introduction to plasma-, shock-wave and high-energy-density physics for students and newcomers seeking an overview. This second edition is thoroughly revised and expanded, in particular with new material on high energy-density physics, nuclear explosions and other nuclear transformation processes.
Scalar field with the source in the form of the stress-energy tensor trace as a dark energy model
Dudko, I G
2016-01-01
We consider a scalar-tensor theory of gravitation with the scalar source being the trace of the stress-energy tensor of the scalar field itself and matter. We obtain an example of a numerical solution of the cosmological equations which shows that under some special choice of the scalar parameters, there exists a slow-roll regime in which the modern values of the Hubble and deceleration parameters may be obtained.
Quantum Field Theory of Interacting Dark Matter/Dark Energy: Dark Monodromies
D'Amico, Guido; Hamill, Teresa; Kaloper, Nemanja
2016-01-01
We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dar...
Timing matters: temporal dynamics of stress effects on memory retrieval.
Schwabe, Lars; Wolf, Oliver T
2014-09-01
Stress may impair memory retrieval. This retrieval impairment has been attributed to the action of the stress hormone cortisol, which is released with a delay of several minutes after a stressful encounter. Hence, most studies tested memory retrieval 20-30 min after stress, when the stress-induced cortisol increase peaks. In the present experiment, we investigated whether retrieval impairments can also be found at later intervals after stress. To this end, participants learned a list of words on day 1. Twenty-four hours later, they were first exposed to a stressor or a nonstressful control manipulation and completed a recognition test for the words either immediately thereafter, 25 min later, or 90 min later. Our findings showed that stress did not impair memory retrieval when memory was tested immediately after the stressor, before cortisol levels were elevated. However, retrieval performance was impaired 25 min after stress, when cortisol levels peaked, as well as 90 min after the stressor, when cortisol levels had already returned to baseline. The retrieval impairment 90 min after stress appeared to be even stronger than the one after 25 min. These findings suggest that the detrimental effects of stress on retrieval performance may last longer than is usually assumed.
Dilepton Spectroscopy of QCD Matter at Collider Energies
Ralf Rapp
2013-01-01
Full Text Available Low-mass dilepton spectra as measured in high-energy heavy-ion collisions are a unique tool to obtain spectroscopic information about the strongly interacting medium produced in these reactions. Specifically, in-medium modifications of the vector spectral function, which is well known in the vacuum, can be deduced from the thermal radiation off the expanding QCD fireball. This, in particular, allows to investigate the fate of the ρ resonance in the dense medium and possibly infer from it signatures of the (partial restoration of chiral symmetry, which is spontaneously broken in the QCD vacuum. After briefly reviewing calculations of thermal dilepton emission rates from hot QCD matter, utilizing effective hadronic theory, lattice QCD, or resummed perturbative QCD, we focus on applications to dilepton spectra at heavy-ion collider experiments at RHIC and LHC. This includes invariant-mass spectra at full RHIC energy with transverse-momentum dependencies and azimuthal asymmetries, as well as a systematic investigation of the excitation function down to fixed-target energies, thus making contact to previous precision measurements at the SPS. Furthermore, predictions for the energy frontier at the LHC are presented in both dielectron and dimuon channels.
Dark Energy: The Shadowy Reflection of Dark Matter?
Kostas Kleidis
2016-03-01
Full Text Available In this article, we review a series of recent theoretical results regarding a conventional approach to the dark energy (DE concept. This approach is distinguished among others for its simplicity and its physical relevance. By compromising General Relativity (GR and Thermodynamics at cosmological scale, we end up with a model without DE. Instead, the Universe we are proposing is filled with a perfect fluid of self-interacting dark matter (DM, the volume elements of which perform hydrodynamic flows. To the best of our knowledge, it is the first time in a cosmological framework that the energy of the cosmic fluid internal motions is also taken into account as a source of the universal gravitational field. As we demonstrate, this form of energy may compensate for the DE needed to compromise spatial flatness, while, depending on the particular type of thermodynamic processes occurring in the interior of the DM fluid (isothermal or polytropic, the Universe depicts itself as either decelerating or accelerating (respectively. In both cases, there is no disagreement between observations and the theoretical prediction of the distant supernovae (SNe Type Ia distribution. In fact, the cosmological model with matter content in the form of a thermodynamically-involved DM fluid not only interprets the observational data associated with the recent history of Universe expansion, but also confronts successfully with every major cosmological issue (such as the age and the coincidence problems. In this way, depending on the type of thermodynamic processes in it, such a model may serve either for a conventional DE cosmology or for a viable alternative one.
Dark Energy and Dark Matter from the same Vacuum Condensate
Sarfatti, Jack
2003-04-01
The micro-quantum Dirac negative energy electron Fermi sphere with Planck scale cutoff is unstable to the formation of off-mass-shell Cooper pairs of virtual electrons and positrons from their static Coulomb attraction. The resulting virtual BEC complex macro-quantum coherent local order parameter (0|e+e-|0) gives rise to both spin 2 gravity guv and spin 0 quintessence / from the Goldstone and Higgs oscillations respectively, Susskind's "world hologram" conjecture replaces the Planck scale Lp with Lp^2/3L^1/3 at scale L. Hagen Kleinert's strain tensor for the "world crystal" is Einstein's geometrodynamic field: guv = nuv + Lp^4/3L^2/3Du,Dvarg(0|e+e-|0)/2 nuv = Minkowski metric, = anti-commutator Du = ,u + TaAu^a is the spin 1 gauge covariant derivative for Lie group P with Lie algebra [Ta,Tb] = Cab^cTc / = Lp-4/3L-2/3[1 - Lp^2L|(0|e+e-|0)|^2] When L = size of visible universe 10^28 cm, Lp^2/3L^1/3 1 fermi / > 0 is anti-gravitating zero point vacuum dark energy, i.e. Kip Thorne's "exotic matter" for traversable wormhole time machines. / < 0 is gravitating zero point vacuum dark matter The non-perturbative BCS energy gap equation for a basic vacuum polarization closed loop with one virtual photon Feynman diagram is: z^2 = ge^-(1/gz) z = (Lp/L)^1/3 and the dimensionless coupling vertex is g^1/2 http://stardrive.org/Jack/nambu.pdf http://stardrive.org/Jack/Lambda1.pdf
Dark Energy and Dark Matter from an additional adiabatic fluid
Dunsby, Peter K S; Reverberi, Lorenzo
2016-01-01
The Dark Sector is described by an additional barotropic fluid which evolves adiabatically during the universe's history and whose adiabatic exponent $\\gamma$ is derived from the standard definitions of specific heats. Although in general $\\gamma$ is a function of the redshift, the Hubble parameter and its derivatives, we find that our assumptions lead necessarily to solutions with $\\gamma = $ constant in a FLRW universe. The adiabatic fluid acts effectively as the sum of two distinct components, one evolving like non-relativistic matter and the other depending on the value of the adiabatic index. This makes the model particularly interesting as a way of simultaneously explaining the nature of both Dark Energy and Dark Matter, at least at the level of the background cosmology. The $\\Lambda$CDM model is included in this family of theories when $\\gamma = 0$. We fit our model to SNIa, $H(z)$ and BAO data, discussing the model selection criteria. The implications for the early-universe and the growth of small per...
Dark energy and dark matter from an additional adiabatic fluid
Dunsby, Peter K. S.; Luongo, Orlando; Reverberi, Lorenzo
2016-10-01
The dark sector is described by an additional barotropic fluid which evolves adiabatically during the Universe's history and whose adiabatic exponent γ is derived from the standard definitions of specific heats. Although in general γ is a function of the redshift, the Hubble parameter and its derivatives, we find that our assumptions lead necessarily to solutions with γ =constant in a Friedmann-Lemaître-Robertson-Walker universe. The adiabatic fluid acts effectively as the sum of two distinct components, one evolving like nonrelativistic matter and the other depending on the value of the adiabatic index. This makes the model particularly interesting as a way of simultaneously explaining the nature of both dark energy and dark matter, at least at the level of the background cosmology. The Λ CDM model is included in this family of theories when γ =0 . We fit our model to supernovae Ia, H (z ) and baryonic acoustic oscillation data, discussing the model selection criteria. The implications for the early Universe and the growth of small perturbations in this model are also discussed.
Reconstructing the interaction term between dark matter and dark energy
Cueva, Freddy
2010-01-01
We apply a parametric reconstruction method to a homogeneous, isotropic and spatially flat Friedmann-Robertson-Walker (FRW) cosmological model filled of a fluid of dark energy (DE) with constant equation of state parameter interacting with dark matter (DM). The reconstruction method is based on expansions of the general interaction term and the relevant cosmological variables in terms of Chebyshev polynomials which form a complete set orthonormal functions. This interaction term describes an exchange of energy flow between the DE and DM within dark sector. To show how the method works we do the reconstruction of the interaction function expanding it in terms of only the first three Chebyshev polynomials and obtain the best estimation for the coefficients of the expansion as well as for the DE equation of the state constant parameter w using the type Ia Supernova SCP Union data set (307 SNe-Ia). The preliminary reconstruction shows that in the best scenario there is an energy transfer from DM to DE which worse...
Dark Energy and Dark Matter in a Superfluid Universe
Huang, Kerson
2013-01-01
The vacuum is filled with complex scalar fields, such as the Higgs field. These fields serve as order parameters for superfluidity (quantum phase coherence over macroscopic distances), making the entire universe a superfluid. We review a mathematical model consisting of two aspects: (a) emergence of the superfluid during the big bang; (b) observable manifestations of superfluidity in the present universe. The creation aspect requires a self-interacting scalar field that is asymptotically free, i.e., the interaction must grow from zero during the big bang, and this singles out the Halpern-Huang potential, which has exponential behavior for large fields. It leads to an equivalent cosmological constant that decays like a power law, and this gives dark energy without "fine-tuning". Quantum turbulence (chaotic vorticity) in the early universe was able to create all the matter in the universe, fulfilling the inflation scenario. In the present universe, the superfluid can be phenomenologically described by a nonline...
Ostrikov, Kostya
2010-11-01
This presentation focuses on the plasma issues related to the solution of the grand challenge of directing energy and matter at nanoscales. This ability is critical for the renewable energy and energy-efficient technologies for sustainable future development. It will be discussed how to use environmentally and human health benign non-equilibrium plasma-solid systems and control the elementary processes of plasma-surface interactions to direct the fluxes of energy and matter at multiple temporal and spatial scales. In turn, this makes it possible to achieve the deterministic synthesis of self- organised arrays of metastable nanostructures in the size range beyond the reach of the present-day nanofabrication. Such structures have tantalising prospects to enhance performance of nanomaterials in virtually any area of human activity yet remain almost inaccessible because the Nature's energy minimisation rules allow only a small number of stable equilibrium states. By using precisely controlled and kinetically fast nanoscale transfer of energy and matter under non-equilibrium conditions and harnessing numerous plasma- specific controls of species creation, delivery to the surface, nucleation and large-scale self-organisation of nuclei and nanostructures, the arrays of metastable nanostructures can be created, arranged, stabilised, and further processed to meet the specific requirements of the envisaged applications. These approaches will eventually lead to faster, unprecedentedly- clean, human-health-friendly, and energy-efficient nanoscale synthesis and processing technologies for the next-generation renewable energy and light sources, biomedical devices, information and communication systems, as well as advanced functional materials for applications ranging from basic food, water, health and clean environment needs to national security and space missions.
Ultra low energy results and their impact to dark matter and low energy neutrino physics
Bougamont, E; Derre, J; Giomataris, I; Gerbier, G; Gros, M; Magnier, P; Navick, X F; Salin, P; Savvidis, I; Tsiledakis, G; Vergados, J D
2010-01-01
We present ultra low energy results taken with the novel Spherical Proportional Counter. The energy threshold has been pushed down to about 25 eV and single electrons are clearly collected and detected. To reach such performance low energy calibration systems have been successfully developed: - A pulsed UV lamp extracting photoelectrons from the inner surface of the detector - Various radioactive sources allowing low energy peaks through fluorescence processes. The bench mark result is the observation of a well resolved peak at 270 eV due to carbon fluorescence which is unique performance for such large-massive detector. It opens a new window in dark matter and low energy neutrino search and may allow detection of neutrinos from a nuclear reactor or from supernova via neutrino-nucleus elastic scattering
Gravity Resonance Spectroscopy Constrains Dark Energy and Dark Matter Scenarios
Jenke, T; Burgdörfer, J; Chizhova, L A; Geltenbort, P; Ivanov, A N; Lauer, T; Lins, T; Rotter, S; Saul, H; Schmidt, U; Abele, H
2014-01-01
We report on precision resonance spectroscopy measurements of quantum states of ultracold neutrons confined above the surface of a horizontal mirror by the gravity potential of the Earth. Resonant transitions between several of the lowest quantum states are observed for the first time. These measurements demonstrate, that Newton's inverse square law of Gravity is understood at micron distances on an energy scale of~$10^{-14}$~eV. At this level of precision we are able to provide constraints on any possible gravity-like interaction. In particular, a dark energy chameleon field is excluded for values of the coupling constant~$\\beta > 5.8\\times10^8$ at~95% confidence level~(C.L.), and an attractive (repulsive) dark matter axion-like spin-mass coupling is excluded for the coupling strength $g_sg_p > 3.7\\times10^{-16}$~($5.3\\times10^{-16}$)~at a Yukawa length of~$\\lambda = 20$~{\\textmu}m~(95% (C.L.).
Oikonomou, V K; Park, Miok
2014-01-01
We study some aspects of cosmological evolution in a universe described by a viable curvature corrected exponential $F(R)$ gravity model, in the presence of matter fluids consisting of collisional matter and radiation. Particularly, we express the Friedmann-Robertson-Walker equations of motion in terms of parameters that are appropriate for describing the dark energy oscillations and compare the dark energy density and the dark energy equation of state parameter corresponding to collisional and non-collisional matter. In addition to these, and owing to the fact that the cosmological evolution of collisional and non-collisional matter universes, when quantified in terms of the Hubble parameter and the effective equation of states parameters, is very much alike, we further scrutinize the cosmological evolution study by extending the analysis to the study of matter perturbations in the matter domination era. We quantify this analysis in terms of the growth factor of matter perturbations, in which case the result...
Evolution of matter and energy on a cosmic and planetary scale
Taube, M.
1985-01-01
This book covers the following topics: matter and energy; the interplay of elementary particles and elementary forces; the universe; how is it observed here and now; its past and possible future; the origin and nuclear evolution of matter; chemical evolution and the evolution of life; the cosmic phenomena; the eternal cycle of matter on the earth; the flow of energy on the earth; the biosphere; the coupling of matter and the flow of free energy; is the future development of mankind on this planet possible, and the distant future of mankind: terrestrial or cosmic.
Hadronically decaying heavy dark matter and high-energy neutrino limits
Kuznetsov, M Yu
2016-01-01
We consider dark matter consisting of long-living particles with masses $10^{7}~\\lesssim~M~\\lesssim~10^{16}$ GeV decaying through hadronic channel as a source of high energy neutrinos. Using recent data on high energy neutrino from IceCube and Pierre Auger experiments we derive the upper-limits on neutrino flux from dark matter decay and constraints on dark matter parameter space. The constraints derived are weaker that these obtained for the same dark matter models using the high energy gamma-ray limits.
Can Brans-Dicke Scalar Field Account for Dark Energy and Dark Matter?
Arik, M.; Çalik, M. C.
By using a linearized non-vacuum late time solution in Brans-Dicke cosmology, we account for the 75% dark energy contribution but not for approximately 23% dark matter contribution to the present day energy density of the universe.
Response and energy dissipation of rock under stochastic stress waves
DENG Jian; BIAN Li
2007-01-01
The response and energy dissipation of rock under stochastic stress waves were analyzed based on dynamic fracture criterion of brittle materials integrating with Fourier transform methods of spectral analysis When the stochastic stress waves transnut through rocks,the frequency and energy ratio of harmonic components were calculated by analytical and discrete analysis methods.The stress waves in shale, malmstone and liparite were taken as examples to illustrate the proposed analysis methods.The results show the harder the rock, the less absorption of energy,the more the useless elastic waves transmitting through rock, and the narrower the cutoff frequency to fracture rock.When the whole stress energy doubles either by doubling the duration time or byincreasing the amplitude of stress wave, ratio of the energy of elastic waves transmitting through rock to me whole stress energy (i.e.energy dissipation ratio)is decreased to 10%-15%. When doubling the duration time.the cutoff frequency to fracture rock remains constant.However, with the increase of the amplitude of stress wave. the cutoff frequency increases accordingly.
Shao, Tianyun; Li, Lingling; Wu, Yawen; Chen, Manxia; Long, Xiaohua; Shao, Hongbo; Liu, Zhaopu; Rengel, Zed
2016-10-15
Salinity is one of the most serious environmental stresses limiting agricultural production. Production of Jerusalem artichoke on saline land is strategically important for using saline land resources. The interaction between plant hormones and salinity stress in governing Jerusalem artichoke (Helianthus tuberosus) growth is unclear. Jerusalem artichoke (variety Nanyu-1) was grown under variable salinity stress in the field, and a role of endogenous hormones [zeatin (ZT), auxins (IAA), gibberellins (GA3) and abscisic acid (ABA)] in regulating sugar and dry matter accumulation in tubers was characterized. Under mild salt stress (≤2.2gNaClkg(-1) soil), Nanyu-1 grew well with no significant alteration of dry matter distribution to stems and tubers. In contrast, under moderate salt stress (2.7gNaClkg(-1) soil), the distribution to stem decreased and to tubers decreased significantly. Mild salt stress induced sugar accumulation in tubers at the beginning of the tuber-expansion period, but significantly inhibited (i) transfer of non-reducing sugars to tubers, and (ii) polymerization and accumulation of fructan during the tuber-expansion stage. Under different salinity stress, before the stolon growth, the ratio of IAA/ABA in leaves increased significantly and that of GA3/ABA increased slightly; during tuber development, these ratios continued to decrease and reached the minimum late in the tuber-expansion period. While, salt stress inhibited (i) underground dry matter accumulation, (ii) tuber dry matter accumulation efficiency, (iii) transport of non-reducing sugars to tubers, and (iv) fructan accumulation efficiency during the tuber-expansion period; these effects were accompanied by significantly decreased tuber yield with an increase in salinity. With soil salinity increasing, the synthesis of IAA and GA3 was inhibited in leaves and tubers, while ABA synthesis was stimulated. In brief, tuber yield would significantly decreased with the increase of salinity.
Dark Energy-Dark Matter Interaction from the Abell Cluster A586
Bertolami, Orfeu; Delliou, Morgan Le
2008-01-01
We find that deviation from the virial equilibrium of the Abell Cluster A586 yields evidence of the interaction between dark matter and dark energy. We argue that this interaction might imply a violation of the Equivalence Principle. Our analysis show that evidence is found in the context of two different models of dark energy-dark matter interaction.
Challenges in Cosmology from the Big Bang to Dark Energy, Dark Matter and Galaxy Formation
Silk, Joseph
2016-01-01
I review the current status of Big Bang Cosmology, with emphasis on current issues in dark matter, dark energy, and galaxy formation. These topics motivate many of the current goals of experimental cosmology which range from targeting the nature of dark energy and dark matter to probing the epoch of the first stars and galaxies.
CMB bounds on dark matter annihilation: Nucleon energy losses after recombination
Weniger, C.; Serpico, P.D.; Iocco, F.; Bertone, G.
2013-01-01
We consider the propagation and energy losses of protons and antiprotons produced by dark matter annihilation at redshifts 100
Dixon, Sarah K.; Kurpius, Sharon E. Robinson
2008-01-01
Depression and college stress, major concerns among undergraduates, are potentially related to self-esteem and mattering. This study investigated the interrelationships among these four variables. Participants included college students (199 males and 256 females) between the ages of 18 and 23. Significant sex differences were found with women…
Dixon, Sarah K.; Kurpius, Sharon E. Robinson
2008-01-01
Depression and college stress, major concerns among undergraduates, are potentially related to self-esteem and mattering. This study investigated the interrelationships among these four variables. Participants included college students (199 males and 256 females) between the ages of 18 and 23. Significant sex differences were found with women…
Black Hole Formation from Collapsing Dark Matter in the Background of Dark Energy
Cai, R G; Cai, Rong-Gen; Wang, Anzhong
2006-01-01
The gravitational collapse of a spherically symmetric cloud, made of both dark matter, $\\rho_{DM}$, and dark energy, $p = w\\rho, (w < -1/3)$, is studied. It is found that when only dark energy is present, black holes can never be formed. When both of them are present, balck holes can be formed, due to the condensation of the dark matter. Initially the dark matter may not play an important role, but, as time increases, it will dominate the collapse and finally leads to formation of black holes. This result remains true even when the interaction between the dark matter and dark energy does not vanish. When $w < -1$ (phantoms), some models can also be interpreted as representing the death of a white hole that ejects both dark matter and phantoms. The ejected matter re-collapses to form a black hole.
Matter-antimatter asymmetry - aspects at low energy
Willmann, Lorenz; Jungmann, Klaus
2015-01-01
The apparent dominance of matter over antimatter in our universe is an obvious and puzzling fact which cannot be adequately explained in present physical frameworks that assume matter-antimatter symmetry at the big bang. However, our present knowledge of starting conditions and of known sources of
Non-minimal coupling of torsion-matter satisfying null energy condition for wormhole solutions
Jawad, Abdul; Rani, Shamaila [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan)
2016-12-15
We explore wormhole solutions in a non-minimal torsion-matter coupled gravity by taking an explicit non-minimal coupling between the matter Lagrangian density and an arbitrary function of the torsion scalar. This coupling describes the transfer of energy and momentum between matter and torsion scalar terms. The violation of the null energy condition occurred through an effective energy-momentum tensor incorporating the torsion-matter non-minimal coupling, while normal matter is responsible for supporting the respective wormhole geometries. We consider the energy density in the form of non-monotonically decreasing function along with two types of models. The first model is analogous to the curvature-matter coupling scenario, that is, the torsion scalar with T-matter coupling, while the second one involves a quadratic torsion term. In both cases, we obtain wormhole solutions satisfying the null energy condition. Also, we find that the increasing value of the coupling constant minimizes or vanishes on the violation of the null energy condition through matter. (orig.)
Bordbar, G H; Taghizade, M
2015-01-01
In this work, we have done a completely microscopic calculation using a many-body variational method based on the cluster expansion of energy to compute the asymmetry energy of nuclear matter. In our calculations, we have employed the $AV_{18}$ nuclear potential. We have also investigated the temperature and density dependence of asymmetry energy. Our results show that the asymmetry energy of nuclear matter depends on both density and temperature. We have also studied the effects of different terms in the asymmetry energy of nuclear matter. These investigations indicate that at different densities and temperatures, the contribution of parabolic term is very substantial with respect to the other terms. Therefore, we can conclude that the parabolic approximation is a relatively good estimation, and our calculated binding energy of asymmetric nuclear matter is in a relatively good agreement with that of semi-empirical mass formula. However, for the accurate calculations, it is better to consider the effects of o...
Supplying Dark Energy from Scalar Field Dark Matter
Gogberashvili, Merab; Sakharov, Alexander S.
2017-01-01
We consider the hypothesis that the dark matter consists of ultra-light bosons residing in the state of a Bose-Einstein condensate, which behaves as a single coherent wave rather than as individual particles. In galaxies, spatial distribution of scalar field dark matter can be described by the relativistic Klein-Gordon equation on a background space-time with Schwarzschild metric. In such a setup, the equation of state of scalar field dark matter is found to be changing along with galactocent...
Constraints on the Coupling between Dark Energy and Dark Matter from CMB data
Murgia, Riccardo; Gariazzo, Stefano; Fornengo, Nicolao
2016-01-01
We investigate a phenomenological non-gravitational coupling between dark energy and dark matter, where the interaction in the dark sector is parameterized as an energy transfer either from dark matter to dark energy or the opposite. The models are constrained by a whole host of updated cosmological data: cosmic microwave background temperature anisotropies and polarization, high-redshift supernovae, baryon acoustic oscillations, redshift space distortions and gravitational lensing. Both mode...
2012-12-04
... COMMISSION In the Matter of Encore Clean Energy, Inc., Energy & Engine Technology Corp., Equity Media Holdings Corporation, eTotalSource, Inc., Extensions, Inc., Firepond, Inc., and GNC Energy Corporation... that there is a lack of current and accurate information concerning the securities of Encore Clean...
Sexual dimorphism and thyroid dysfunction: a matter of oxidative stress?
Fortunato, Rodrigo S; Ferreira, Andrea C F; Hecht, Fabio; Dupuy, Corinne; Carvalho, Denise P
2014-05-01
Thyroid diseases, such as autoimmune disease and benign and malignant nodules, are more prevalent in women than in men, but the mechanisms involved in this sex difference is still poorly defined. H₂O₂ is produced at high levels in the thyroid gland and regulates parameters such as cell proliferation, migration, survival, and death; an imbalance in the cellular oxidant-antioxidant system in the thyroid may contribute to the greater incidence of thyroid disease among women. Recently, we demonstrated the existence of a sexual dimorphism in the thyrocyte redox balance, characterized by higher H₂O₂ production, due to higher NOX4 and Poldip2 expression, and weakened enzymatic antioxidant defense in the thyroid of adult female rats compared with male rats. In addition, 17β-estradiol administration increased NOX4 mRNA expression and H₂O₂ production in thyroid PCCL3 cells. In this review, we discuss the possible involvement of oxidative stress in estrogen-related thyroid pathophysiology. Our current hypothesis suggests that a redox imbalance elicited by estrogen could be involved in the sex differences found in the prevalence of thyroid dysfunctions.
Social context matters: Ethnicity, discrimination and stress reactivity.
Busse, David; Yim, Ilona S; Campos, Belinda
2017-09-01
Exposure to chronic discrimination is associated with increased morbidity and mortality. The study of biobehavioral pathways linking discrimination with health outcomes has mostly focused on the cardiovascular system, with fewer studies addressing the hypothalamus-pituitary-adrenal (HPA) axis. In this study we tested associations between Latino ethnicity, experiences of discrimination, and cortisol responses to an acute laboratory stressor. One hundred fifty eight individuals (92 female, 66 male) between the ages of 18 and 29 years participated in the study. Salivary cortisol was measured once before and eight times after administration of a laboratory stressor (the Trier Social Stress Test). Past experiences of discrimination were measured with the Experiences of Discrimination Scale. Findings from conditional process modeling suggest that Latino ethnicity predicted a) heightened cortisol reactivity and b) more pronounced cortisol recovery through discrimination experiences (mediator), and that this effect was further moderated by sex with a significant indirect effect only among males. The direct path from Latino ethnicity to cortisol reactivity or cortisol recovery was, however, not significant. In sum, findings suggest that Latino ethnicity and discrimination interact to predict cortisol dysregulation, which implies that an appropriate model for understanding minority health discrepancies must incorporate interactive processes and cannot simply rely on the effects of ethnicity or discrimination alone. Copyright © 2017 Elsevier Ltd. All rights reserved.
Modelling of the Global Geopotential Energy & Stress Field
Schiffer, Christian; Nielsen, S.B.
Lateral density and topography variations yield in and important contribution to the lithospheric stress field. The leading quantity is the Geopotential Energy, the integrated lithostatic pressure in a rock column. The horizontal gradient of this quantity is related to horizontal stresses through...... the Equations of equilibrium of stresses. The Geopotential Energy furthermore can be linearly related to the Geoid under assumption of local isostasy. Satellite Geoid measurements contain, however, also non-isostatic deeper mantle responses of long wavelength. Unfortunately, high-pass filtering of the Geoid...... flow in the presence of local isostasy and a steady state geotherm. Subsequently we use a FEM code to solve the Equations of equilibrium of stresses for a three dimensional elastic shell. The modelled results are shown and compared with the global stress field and other publications....
Suresh Kumar; Lixin Xu
2014-01-01
In this paper, we study a cosmological model in general relativity within the framework of spatially flat Friedmann–Robertson–Walker space–time filled with ordinary matter (baryonic), radiation, dark matter and dark energy, where the latter two components are described by Chevallier–Polarski–Linder equation of state parameters. We utilize the observational data sets from SNLS3, BAO and Planck + WMAP9 + WiggleZ measurements of matter power spectrum to constrain the model parameters. We find th...
Fluid Dynamical Consequences of Current and Stress-Energy Conservation
Scofield, Dillon; Huq, Pablo
The dynamical consequences of fluid current conservation combined with the conservation of fluid stress-energy are used to develop the geometrodynamical theory of fluid flow (GTF). In the derivation of the GTF, we highlight the fact the continuity equation, equivalently the conservation of current density, implies the existence of the fluid dynamical vortex field. The vortex field transports part of the stress-energy; the other part of the stress-energy is transported by the fluid inertia field. Two channels of energy dissipation are determined by the GTF. One is an analog of the Joule heating found in electrodynamics. This follows from the conservation of stress-energy. The other dissipation channel arises from mechanisms leading to complex-valued constitutive parameters described in the electrodynamical analogy as due to a lossy medium. The dynamical consequences of the continuity equation, combined with the conservation of total stress-energy, then lead to a causal, covariant, theory of fluid flow, consistent with thermodynamics for all physically possible flow rates.
Experimental High Energy Physics Research: Direct Detection of Dark Matter
Witherell, Michael S.
2014-10-02
The grant supported research on an experimental search for evidence of dark matter interactions with normal matter. The PI carried out the research as a member of the LUX and LZ collaborations. The LUX research team collected a first data set with the LUX experiment, a large liquid xenon detector installed in the Sanford Underground Research Facility (SURF). The first results were published in Physical Review Letters on March 4, 2014. The journal Nature named the LUX result a scientific highlight of the year for 2013. In addition, the LZ collaboration submitted the full proposal for the Lux Zeplin experiment, which has since been approved by DOE-HEP as a second-generation dark matter experiment. Witherell is the Level 2 manager for the Outer Detector System on the LUX-Zeplin experiment.
The eras of radiation, matter, and dark energy: new information from the Planck Collaboration
Cahill, Kevin
2016-01-01
Data released by the Planck Collaboration in 2015 imply new dates for the era of radiation, the era of matter, and the era of dark energy. The era of radiation ended, and the era of matter began, when the density of radiation dropped below that of matter. This happened 51,953 \\pm 2236 years after the time of infinite redshift when the ratio a(t)/a_0 of scale factors was (2.9332 \\pm 0.0711) x 10^{-4}. The era of matter ended, and the era of dark energy began, when the density of matter dropped below that of dark energy (assumed constant). This happened 10.1928 \\pm 0.0375 Gyr after the time of infinite redshift when the scale-factor ratio was 0.7646 \\pm 0.0168. The era of dark energy started 3.606 billion years ago. In this pedagogical paper, five figures trace the evolution of the densities of radiation and matter, the scale factor, and the redshift through the eras of radiation, matter, and dark energy.
Quantum field theory of interacting dark matter and dark energy: Dark monodromies
D'Amico, Guido; Hamill, Teresa; Kaloper, Nemanja
2016-11-01
We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long-range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dark matter are very light axions, they can have significant mixings which are radiatively stable and perfectly consistent with quantum field theory. Such models can naturally occur in multi-axion realizations of monodromies. The mixings yield interesting signatures which are observable and are within current cosmological limits but could be constrained further by future observations.
Quantum Field Theory of Interacting Dark Matter/Dark Energy: Dark Monodromies
D'Amico, Guido; Kaloper, Nemanja
2016-01-01
We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dark matter are very light axions, they can have significant mixings which are radiatively stable and perfectly consistent with quantum field theory. Such models can naturally occur in multi-axion realizations of monodromies. The mixings yield interesting signatures which are observable and are within current cosmological limits but could be constrained further by future observations.
Stress-Energy Tensors for Higher Dimensional Gravity
De Benedictis, A
1999-01-01
We calculate, in the context of higher dimensional gravity, the stress-energy tensor and Weyl anomaly associated with anti-de Sitter and anti-de Sitter black hole solutions. The boundary counter-term method is used to regularize the action and the resulting stress-energy tensor yields both the correct black hole energies as well as a vacuum energy contribution which is interpreted as a Casimir energy. This calculation is done up to d = 8 (d being the boundary dimension). We confirm some results for d < 8 as well as comment on some new results (some of which are relevant to (2,0) theory). All results for d=8 are new.
Pechurkin, N S; Shuvaev, A N
2015-01-01
The paper presents the idea of transparent evolution through the long-term reaction of the planet Earth on the external flow of radiant energy from the Sun. Due to limitations of matter on Earth, as well as on any other planet, the continuous pumping flow of radiant energy was shown to lead to cyclization and transport of substance on emerging gradients. The evolution of energy-matter interaction follows the path of capturing and transferring more energy by the fewer matter, i.e., the path of growth of the amount of energy used by each unit mass. For this indicator, the least effective mass transfer is a simple mass transfer as vortices of gases, in the gradients of temperature and pressure, which occurred on the primary surface of the planet. A long-term natural selection related to the accumulation of water on the planet has played a special role in developing the interaction of energy and matter. Phase transformations (ice, water, vapor) and mechanical transfers are the most common energy-matter processes. Based on water cycles, cyclic transports and transformations, chemical transformation of substances became possible developing over time into a biological transformation. This kind of the interaction of energy and matter is most efficient. In particular, during photosynthesis the energy of our star "is captured and utilized" in the most active part of the spectrum of its radiation. In the process of biological evolution of heterotrophs, a rise (by a factor of hundreds) in the coefficient that characterizes the intensity of energy exchange from protozoa to mammals is most illustratory. The development and the current dominance of humans as the most energy-using active species in capturing the energy and meaningful organization of its new flows especially on the basis of organic debris of former biospheres is admirable, but quite natural from the energy positions. In the course of technological evolution of humankind, the measure of the intensity of energy for
General engineering ethics and multiple stress of atomic energy engineering
Takeda, Kunihiko [Shibaura Inst. of Tech., Tokyo (Japan)
1999-08-01
The factors, by which the modern engineering ethics has been profoundly affected, were classified to three categories, namely mental blow, the destruction of human function and environment damage. The role of atomic energy engineering in the ethic field has been shown in the first place. It is pointed out that it has brought about the mental blow by the elucidation of universal truth and discipline and the functional disorder by the power supply. However, the direct effect of radiation to the human kinds is only a part of the stresses comparing to the accumulation of the social stress which should be taken into account of by the possibility of disaster and the suspicion of the atomic energy politics. An increase in the multiple stresses as well as the restriction of criticism will place obstacles on the promotion of atomic energy. (author)
Constraining heavy decaying dark matter with the high energy gamma-ray limits
Kalashev, O. E.; Kuznetsov, M. Yu.
2016-09-01
We consider decaying dark matter with masses 1 07≲M ≲1 016 GeV as a source of ultrahigh energy (UHE) gamma rays. Using recent limits on UHE gamma-ray flux for energies Eγ>2 ×1 014 eV , provided by extensive air shower observatories, we put limits on masses and lifetimes of the dark matter. We also discuss possible dark matter decay origin of tentative 100 PeV photon flux detected with the EAS-MSU experiment.
Dark matter distribution in the universe and ultra-high energy cosmic rays
Blasi, P
2000-01-01
Two of the greatest mysteries of modern physics are the origin of the dark matter in the universe and the nature of the highest energy particles in the cosmic ray spectrum. We discuss here possible direct and indirect connections between these two problems, with particular attention to two cases: in the first we study the local clustering of possible sources of ultra-high energy cosmic rays (UHECRs) driven by the local dark matter overdensity. In the second case we study the possibility that UHECRs are directly generated by the decay of weakly unstable super heavy dark matter.
Modelling of the Global Geopotential Energy & Stress Field
Schiffer, C.; Nielsen, S. B.
2012-04-01
Lateral density and topography variations yield in and important contribution to the lithospheric stress field. The leading quantity is the Geopotential Energy, the integrated lithostatic pressure in a rock column. The horizontal gradient of this quantity is related to horizontal stresses through the Equations of equilibrium of stresses. The Geopotential Energy furthermore can be linearly related to the Geoid under assumption of local isostasy. Satellite Geoid measurements contain, however, also non-isostatic deeper mantle responses of long wavelength. Unfortunately, high-pass filtering of the Geoid does not suppress only the deeper sources. The age-dependent signal of the oceanic lithosphere, for instance, is of long wave length and a prominent representative of in-plane stress, derived from the horizontal gradient of isostatic Geoid anomalies and responsible for the ridge push effect. Therefore a global lithospheric density model is required in order to isolate the shallow Geoid signal and calculate the stress pattern from isostatically compensated lithospheric sources. We use a linearized inverse method to fit a lithospheric reference model to observations such as topography and surface heat flow in the presence of local isostasy and a steady state geotherm. Subsequently we use a FEM code to solve the Equations of equilibrium of stresses for a three dimensional elastic shell. The modelled results are shown and compared with the global stress field and other publications.
Range fluctuations of high energy muons passing through matter
Minorikawa, Y.; Mitsui, K.
1985-01-01
The information about energy spectrum of sea level muons at high energies beyond magnetic spectrographs can be obtained from the underground intensity measurements if the fluctuations problems are solved. The correction factor R for the range fluctuations of high energy muons were calculated by analytical method of Zatsepin, where most probable energy loss parameter are used. It is shown that by using the R at great depth together with the slope, lambda, of the vertical depth-intensity (D-I) curve in the form of exp(-t/lambda), the spectral index, gamma, in the power law energy spectrum of muons at sea level can be obtained.
Understanding 'energy insecurity' and why it matters to health.
Hernández, Diana
2016-10-01
Energy insecurity is a multi-dimensional construct that describes the interplay between physical conditions of housing, household energy expenditures and energy-related coping strategies. The present study uses an adapted grounded theory approach based on in-depth interviews with 72 low-income families to advance the concept of energy insecurity. Study results illustrate the layered components of energy insecurity by providing rich and nuanced narratives of the lived experiences of affected households. Defined as an inability to adequately meet basic household energy needs, this paper outlines the key dimensions of energy insecurity-economic, physical and behavioral- and related adverse environmental, health and social consequences. By thoroughly examining this understudied phenomenon, this article serves to raise awareness of an increasingly relevant issue that merits more attention in research and policy.
Holographic dark matter and dark energy with second order invariants
Aviles, Alejandro; Luongo, Orlando; Quevedo, Hernando
2011-01-01
The main goal of modern cosmology remains to summon up a self consistent policy, able to explain, in the framework of the Einstein's theory, the cosmic speed up and the presence of Dark Matter in the Universe. Accordingly to the Holographic principle, which postulates the existence of a minimal size of a physical region, we argue, in this paper, that if this size exists for the Universe and it is accrued from the independent geometrical second order invariants, it would be possible to ensure a surprising source for Dark Matter and a viable candidate for explaining the late acceleration of the Universe. Along the work, we develop low redshift tests, such as Supernovae Ia and kinematical analysis complied by the use of Cosmography and we compare the outcomes with higher redshift tests, such as CMB peak and anisotropy of the cosmic power spectrum. All the upshots are in agreement with the chance that our overture would be undertaken to be an unified one, being able as well to explain both the Dark Matter and Dar...
Evolution of density and velocity profiles of dark matter and dark energy in spherical voids
Novosyadlyj, Bohdan; Kulinich, Yurij
2016-01-01
We analyse the evolution of cosmological perturbations which leads to the formation of large isolated voids in the Universe. We assume that initial perturbations are spherical and all components of the Universe (radiation, matter and dark energy) are continuous media with perfect fluid energy-momentum tensors, which interact only gravitationally. Equations of the evolution of perturbations for every component in the comoving to cosmological background reference frame are obtained from equations of energy and momentum conservation and Einstein's ones and are integrated numerically. Initial conditions are set at the early stage of evolution in the radiation-dominated epoch, when the scale of perturbation is much larger than the particle horizon. Results show how the profiles of density and velocity of matter and dark energy are formed and how they depend on parameters of dark energy and initial conditions. In particular, it is shown that final matter density and velocity amplitudes change within range $\\sim$4-7...
Stochastic stresses in granular matter simulated by dripping identical ellipses into plane silo
Berntsen, Kasper Nikolaj; Ditlevsen, Ove Dalager
2000-01-01
A two-dimensional silo pressure model-problem is investigated by molecular dynamics simulations. A plane silo container is filled by a granular matter consisting of congruent elliptic particles dropped one by one into the silo. A suitable energy absorbing contact force mechanism is activatedduring...... the granular matter in the silo are compared to thesolution of a stochastic equilibrium differential equation. In this equation the stochasticity source is a homogeneouswhite noise gamma-distributed side pressure factor field along the walls. This is a generalization of the deterministic side pressure factor...
White Matter Abnormalities in Post-traumatic Stress Disorder Following a Specific Traumatic Event
Lei Li
2016-02-01
Full Text Available Studies of posttraumatic stress disorder (PTSD are complicated by wide variability in the intensity and duration of prior stressors in patient participants, secondary effects of chronic psychiatric illness, and a variable history of treatment with psychiatric medications. In magnetic resonance imaging (MRI studies, patient samples have often been small, and they were not often compared to similarly stressed patients without PTSD in order to control for general stress effects. Findings from these studies have been inconsistent. The present study investigated whole-brain microstructural alterations of white matter in a large drug-naive population who survived a specific, severe traumatic event (a major 8.0-magnitude earthquake. Using diffusion tensor imaging (DTI, we explored group differences between 88 PTSD patients and 91 matched traumatized non-PTSD controls in fractional anisotropy (FA, as well as its component elements axial diffusivity (AD and radial diffusivity (RD, and examined these findings in relation to findings from deterministic DTI tractography. Relations between white matter alterations and psychiatric symptom severity were examined. PTSD patients, relative to similarly stressed controls, showed an FA increase as well as AD and RD changes in the white matter beneath left dorsolateral prefrontal cortex and forceps major. The observation of increased FA in the PTSD group suggests that the pathophysiology of PTSD after a specific acute traumatic event is distinct from what has been reported in patients with several years duration of illness. Alterations in dorsolateral prefrontal cortex may be an important aspect of illness pathophysiology, possibly via the region's established role in fear extinction circuitry. Use-dependent myelination or other secondary compensatory changes in response to heightened demands for threat appraisal and emotion regulation may be involved.
Schaeffer, C.; Smits, M.
2015-01-01
As demand for energy is growing and resources become scarcer, energy increasingly becomes the site of heated controversies. In Latour’s terms, energy turns from a “matter of fact” into a “matter of concern”. In these energy controversies, environmental movements frequently play a central role, highl
Chaining Mimes in the Dark: Dark Energy Scaling from Dark Matter to Acceleration
Bielefeld, Jannis; Linder, Eric V
2014-01-01
The dark sector of the Universe need not be completely separable into distinct dark matter and dark energy components. We consider a model of early dark energy in which the dark energy mimics a dark matter component in both evolution and perturbations at early times. Barotropic aether dark energy scales as a fixed fraction, possibly greater than one, of the dark matter density and has vanishing sound speed at early times before undergoing a transition. This gives signatures not only in cosmic expansion but in sound speed and inhomogeneities, and in number of effective neutrino species. Model parameters describe the timing, sharpness of the transition, and the relative abundance at early times. Upon comparison with current data, we find viable regimes in which the dark energy behaves like dark matter at early times: for transitions well before recombination the dark energy to dark matter fraction can equal or exceed unity, while for transitions near recombination the ratio can only be a few percent. After the ...
Unified dark matter and dark energy description in a chiral cosmological model
Abbyazov, Renat R
2014-01-01
We show the way of dark matter and dark energy presentation via ansatzs on the kinetic energies of the fields in the two-component chiral cosmological model. To connect a kinetic interaction of dark matter and dark energy with observational data the reconstruction procedure for the chiral metric component $h_{22}$ and the potential of (self)interaction $V$ has been developed. The reconstruction of $h_{22}$ and $V$ for the early and later inflation have been performed. The proposed model is confronted to $\\Lambda CDM$ model as well.
The nuclear symmetry energy and stability of matter in neutron star
Kubis, S
2006-01-01
It is shown that behavior of the nuclear symmetry energy is the key quantity in the stability consideration in neutron star matter. The symmetry energy controls the position of crust-core transition and also may lead to new effects in the inner core of neutron star.
Interacting diffusive unified dark energy and dark matter from scalar fields
Benisty, David; Guendelman, E. I.
2017-06-01
Here we generalize ideas of unified dark matter-dark energy in the context of two measure theories and of dynamical space time theories. In two measure theories one uses metric independent volume elements and this allows one to construct unified dark matter-dark energy, where the cosmological constant appears as an integration constant associated with the equation of motion of the measure fields. The dynamical space-time theories generalize the two measure theories by introducing a vector field whose equation of motion guarantees the conservation of a certain Energy Momentum tensor, which may be related, but in general is not the same as the gravitational Energy Momentum tensor. We propose two formulations of this idea: (I) by demanding that this vector field be the gradient of a scalar, (II) by considering the dynamical space field appearing in another part of the action. Then the dynamical space time theory becomes a theory of Diffusive Unified dark energy and dark matter. These generalizations produce non-conserved energy momentum tensors instead of conserved energy momentum tensors which leads at the end to a formulation of interacting DE-DM dust models in the form of a diffusive type interacting Unified dark energy and dark matter scenario. We solved analytically the theories for perturbative solution and asymptotic solution, and we show that the Λ CDM is a fixed point of these theories at large times. Also a preliminary argument as regards the good behavior of the theory at the quantum level is proposed for both theories.
Can Brans-Dicke scalar field account for dark energy and dark matter?
Calik, M A M C
2005-01-01
By using a linearized non-vacuum late time solution in Brans-Dicke cosmology we account for the seventy five percent dark energy contribution but not for approximately twenty-three percent dark matter contribution to the present day energy density of the universe.
Dark energy and dust matter phases from an exact f(R)-cosmology model
Capozziello, S. [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' and INFN Sezioze di Napoli, Complesso Universitario di Monte S. Angelo, Ed. N, Via Cinthia, I-80126 Napoli (Italy)], E-mail: capozziello@na.infn.it; Martin-Moruno, P. [Colina de los Chopos, Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 121, 28006 Madrid (Spain); Rubano, C. [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' and INFN Sezioze di Napoli, Complesso Universitario di Monte S. Angelo, Ed. N, Via Cinthia, I-80126 Napoli (Italy)
2008-06-12
We show that dust matter-dark energy combined phases can be achieved by the exact solution derived from a power law f(R) cosmological model. This example answers the query by which a dust-dominated decelerated phase, before dark-energy accelerated phase, is needed in order to form large scale structures.
Thermodynamics of the symmetry energy and the equation of state of isospin-asymmetric nuclear matter
Wellenhofer, Corbinian; Kaiser, Norbert [Physik Department, Technische Universitaet Muenchen (Germany); Holt, Jeremy W. [Department of Physics, University of Washington, Seattle (United States); Weise, Wolfram [Physik Department, Technische Universitaet Muenchen (Germany); ECT, Villa Tambosi, Trento (Italy)
2015-07-01
Knowledge of the thermodynamic properties of the nuclear symmetry energy is essential for the study of heavy-ion collisions and a multitude of astrophysical phenomena. In this work, we investigate the density and temperature dependence of the symmetry energy using many-body perturbation theory with microscopic chiral nuclear forces. The calculational methods and nuclear force models are benchmarked against empirical constraints for isospin-symmetric nuclear matter and the virial expansion of low-density neutron matter. It is found that whereas the symmetry free energy and entropy both increase uniformly with temperature, the symmetry energy exhibits almost universal behavior. Moreover, we show results for the equation of state of isospin-asymmetric nuclear matter, obtained from the parabolic approximation. The different thermodynamic instabilities at subsaturation densities are examined, and we construct the equation of state corresponding to an equilibrium liquid-gas phase transition by means of the generalized Maxwell construction for two-component fluids.
Dynamical system analysis for DBI dark energy interacting with dark matter
Mahata, Nilanjana
2015-01-01
A dynamical system analysis related to Dirac Born Infeld (DBI) cosmological model has been investigated in this present work. For spatially flat FRW space time, the Einstein field equation for DBI scenario has been used to study the dynamics of DBI dark energy interacting with dark matter. The DBI dark energy model is considered as a scalar field with a nonstandard kinetic energy term. An interaction between the DBI dark energy and dark matter is considered through a phenomenological interaction between DBI scalar field and the dark matter fluid. The field equations are reduced to an autonomous dynamical system by a suitable redefinition of the basic variables. The potential of the DBI scalar field is assumed to be exponential. Finally, critical points are determined, their nature have been analyzed and corresponding cosmological scenario has been discussed.
Stress of urban energy consumption on air environment
Gang YAN; Li LI; Bin CHEN
2009-01-01
With rapid urbanization and heavy industria-lization as well as the rapid increase of cars in China, the effect of energy consumption on urban air environment is increasingly becoming serious, and has become a hot topic for both scholars and decision-makers. This paper explores the effect mechanism and regulation of urban energy consumption on the air environment, and summarizes the framework of the stress effect relationship and the evolutionary process. In accordance with the effect relationship of the internal factors between the two, analytic approaches studying the stress effect of urban energy consumption on air environment are proposed, including the analysis of air environment effects caused by urban energy consumption structure change, and the analysis of air environment effects caused by urban energy economic efficiency change, as well as a decomposition analysis of air pollutant emission caused by urban energy consumption. Applying the above-mentioned approaches into a case study on Beijing City, this paper analyzes the effect relationship among urban energy consumption structure improvement, energy economic efficiency increase and air quality change since the period when Beijing City officially proposed to bid for the 2008 Olympic Games in 1998. In addition, it further analyzes the effect and contribution of urban industrial activity level, industrial economic structure, industrial energy intensity, and industrial energy structure as well as emission coefficients on the change in industrial SO2 emission, which can provide valuable information to the government for making comPrehensive environmental policies, with the use of the logarithmic mean Divisia index (LMDI) method. It is shown that under the precondition that the industrial economy maintain a continuous and rapid increase, improvements in energy intensity and a decline in emission coefficients are the main means for reducing Beijing's industrial SO2 emissions.
The Inelastic Frontier: Discovering Dark Matter at High Recoil Energy
Bramante, Joseph; Kribs, Graham D; Martin, Adam
2016-01-01
There exist well motivated models of particle dark matter which predominantly scatter inelastically off nuclei in direct detection experiments. This inelastic transition causes the DM to up-scatter in terrestrial experiments into an excited state up to 550 keV heavier than the DM itself. An inelastic transition of this size is highly suppressed by both kinematics and nuclear form factors. We extend previous studies of inelastic DM to determine the present bounds on the scattering cross section, and the prospects for improvements in sensitivity. Three scenarios provide illustrative examples: nearly pure Higgsino DM; magnetic inelastic DM; and inelastic models with dark photon exchange. We determine the elastic scattering rate as well as verify that exothermic transitions are negligible. Presently, the strongest bounds on the cross section are from xenon at LUX-PandaX (\\delta 300 keV). Amusingly, once \\delta > 200 keV, weak scale (and larger) DM - nucleon scattering cross sections are allowed. The relative com...
Time-evolution of dense hadronic matter in high energy heavy ion reactions
Otuka, Naohiko; Ohnishi, Akira [Hokkaido Univ., Sapporo (Japan). Dept. of Physics; Nara, Yasushi; Maruyama, Tomoyuki; Niita, Koji
1997-05-01
Time evolution of hadronic resonance matter in ultrarelativistic nucleus-nucleus collisions are studied in the framework of cascade models. We investigate the role of higher baryonic resonances during the time evolution of hot and dense hadronic matter at AGS energies. Although final hadronic spectrum can reproduced well with and without higher baryonic resonances, the inclusion of higher resonances is shown to prevent the temperature from going beyond 200 MeV. (author)
Triple Unification of Inflation, Dark matter and Dark energy in Chaotic Braneworld Inflation
Lin, Chia-Min(Department of Physics, Chuo University, Bunkyo-ku, Tokyo, 112 Japan)
2009-01-01
In this paper, we show that in the framework of chaotic braneworld inflation, after preheating, the remaining oscillating inflaton field can play the role of dark matter with the observed level. Augmented by a non-zero effective cosmological constant $\\Lambda_4$ on the brane, triple unification of inflation, dark matter and dark energy by a single field is realized. Our model perhaps is the simplest one in the market of theories to achieve triple unification.
Powers, Anne S.; Myers, Jane E.; Tingle, Lynne R.; Powers, John C.
2004-01-01
Numerous studies document that medical education is demanding and stressful, yet few studies have examined the effects of medical training on spouses and medical marriages. Eighty-three individuals (42 couples) living in medical marriages completed questionnaires measuring marital satisfaction, perceived stress, general mattering, and wellness.…
Reciprocity invariance of the Friedmann equation, Missing Matter and double Dark Energy
Vazquez, J Alberto; Lasenby, A N; Ibison, M; Bridges, M
2012-01-01
The current concordance model of cosmology is dominated by two mysterious ingredients: dark matter and dark energy. In this paper, we explore the possibility that, in fact, there exist two dark-energy components: the cosmological constant \\Lambda, with equation-of-state parameter w_\\Lambda=-1, and a `missing matter' component X with w_X=-2/3, which we introduce here to allow the Friedmann equation written in terms of conformal time \\eta to be form-invariant under the reciprocity transformation a(\\eta)\\to 1/a(\\eta) of the scale factor. Using recent cosmological observations, we constrain the present-day energy density of missing matter to be \\Omega_{X,0}=-0.11\\pm 0.14. This is consistent with the standard LCDM model, but constraints on the energy densities of all the components are considerably broadened by the introduction of missing matter; significant relative probability exists even for \\Omega_{X,0}\\sim 0.2, and so the presence of a missing matter component cannot be ruled out. Nonetheless, a Bayesian mode...
About Dark Energy and Dark Matter in a Three-Dimensional Quantum Vacuum Model
Fiscaletti, Davide
2016-10-01
A model of a three-dimensional quantum vacuum based on Planck energy density as a universal property of a granular space is suggested. The possibility to provide an unifying explanation of dark matter and dark energy as phenomena linked with the fluctuations of the three-dimensional quantum vacuum is explored. The changes and fluctuations of the quantum vacuum energy density generate a curvature of space-time similar to the curvature produced by a "dark energy" density. The formation of large scale structures in the universe associated to the flattening of the orbital speeds of the spiral galaxies can be explained in terms of primary fluctuations of the quantum vacuum energy density without attracting the idea of dark matter.
The Imaginary Part of Nucleon Self-energy in hot nuclear matter
Alvarez-Ruso, L; Oset, E
1996-01-01
A semiphenomenological approach to the nucleon self-energy in nuclear matter at finite temperatures is followed. It combines elements of Thermo Field Dynamics for the treatment of finite temperature with a model for the self-energy, which evaluates the second order diagrams taking the needed dynamics of the NN interaction from experiment. The approach proved to be accurate at zero temperature to reproduce Im(Sigma) and other properties of nucleons in matter. In the present case we apply it to determine Im(Sigma) at finite temperatures. An effective NN cross section is deduced which can be easily used in analyses of heavy ion reactions.
Dark matter and dark energy induced by condensates
Antonio Capolupo
2016-01-01
It is shown that the vacuum condensate induced by many phenomena behaves as a perfect fluid which, under particular conditions, has zero or negative pressure. In particular, the condensates of thermal states of fields in curved space and of mixed particles have been analyzed. It is shown that the thermal states with the cosmic microwave radiation temperature and the Unruh and the Hawking radiations give negligible contributions to the critical energy density of the universe, while the thermal...
Social representations and choice energy: a matter of education?
Farias, Luciana Aparecida; Ayllon, Rafaella Menezes, E-mail: lufarias2@yahoo.com.br [Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP (Brazil); Favaro, Deborah I.T., E-mail: defavaro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2013-07-01
The development and use of Nuclear Energy in the history of mankind's many different energy matrixes is one of the most interesting. From the scientific standpoint, it was most definitely a success, however, from the political and public opinion standpoint, not so much. From its discovery until now, the risk perception of this power source has varied greatly in the opinion of the public and even in the scientific community in a direct relationship with the structuring and restructuring of the Social Representations (SR) of the population over time. Is it possible for education to convey the social object 'Nuclear Energy' in a less negative way? Or to prevent emotional reactions of more aversion and developing unfavorable attitudes towards this technology? What is the influence of education on these SRs? With this in mind, this study aims at analyzing the restructuring of the SRs in this area by interviewing students of the Federal University of Sao Paulo (UNIFESP), future professors, in order to better understand the constructed SRs and, therefore, point to important information for the rethinking of practices for scientific and learning disclosure. The methodology used was free word association technique, which allows us to obtain the frequency in which each element was retrieved and the average order of retrievals, as well as a questionnaire with close-ended questions. (author)
MINDFULNESS – MAY DIMINISH STRESS AND INCREASE ENERGY
Andronicus TORP
2015-06-01
Full Text Available Mindfulness is increasingly being applied in companies as a means to increase, among others, employee wellbeing and energy, and in the same time to diminish stress. This paper argues that there seems to be scientific evidence showing that certain mindfulness techniques may diminish stress and increase energy, yet it seems that there is a period in the beginning of the mindfulness practice where the techniques have the opposite effects. These findings seem to be contradictory to past findings, which indicated that only two thirds of people practicing mindfulness techniques have positive effects from that practice. It may be that everybody can have positive effects from the practice of the mentioned techniques, just that some need to practice for a longer period before obtaining these positive effects. Further scientific studies seem to be needed in order to clarify the full spectrum of effects and consequences of practicing different mindfulness techniques, and just as important, if these effects are valid for everybody.
Haroon I. Sheikh
2014-01-01
Full Text Available Activity of the hypothalamic–pituitary–adrenal axis (measured via cortisol reactivity may be a biological marker of risk for depression and anxiety, possibly even early in development. However, the structural neural correlates of early cortisol reactivity are not well known, although these would potentially inform broader models of mechanisms of risk, especially if the early environment further shapes these relationships. Therefore, we examined links between white matter architecture and young girls' cortisol reactivity and whether early caregiving moderated these links. We recruited 45 6-year-old girls based on whether they had previously shown high or low cortisol reactivity to a stress task at age 3. White matter integrity was assessed by calculating fractional anisotropy (FA of diffusion-weighted magnetic resonance imaging scans. Parenting styles were measured via a standardized parent–child interaction task. Significant associations were found between FA in white matter regions adjacent to the left thalamus, the right anterior cingulate cortex, and the right superior frontal gyrus (all ps < .001. Further, positive early caregiving moderated the effect of high cortisol reactivity on white matter FA (all ps ≤ .05, with high stress reactive girls who received greater parent positive affect showing white matter structure more similar to that of low stress reactive girls. Results show associations between white matter integrity of various limbic regions of the brain and early cortisol reactivity to stress and provide preliminary support for the notion that parenting may moderate associations.
Mind over matter: exploring job stress among female blue-collar workers.
Griffin-Blake, C Shannon; Tucker, Pattie J; Liburd, Leandris
2006-12-01
Although overall health has been defined holistically as the integration of a person's optimal mental, physical, social, intellectual, and spiritual well-being, a mental health focus remains on the fringe of many public health efforts. This report describes recent efforts by the Centers for Disease Control and Prevention (CDC) to explore job stress among female blue-collar workers. Using a more holistic approach to understand its impact on blue-collar women's overall health, health-related quality of life (HRQOL) was used to assess optimal human performance. Attempting to encapsulate how overall health affects one's ability to participate and fulfill daily personal/professional tasks, HRQOL yields a broader understanding of the interaction between psychological well-being (mind) and physical functioning (matter). Embedding CDC HRQOL-4 measures into a questionnaire used as part of a larger mixed methods project, blue-collar women responded to questions about their health, including both mental and physical. For these female workers, mental health appeared to be of greater consequence, which could be interpreted as mind being more significant than matter. This paper highlights the findings related to HRQOL issues experienced by these female blue-collar workers and summarizes recommendations for effective individual and organizational approaches to address job stress.
High Energy Electron Signals from Dark Matter Annihilation in the Sun
Schuster, Philip; /SLAC; Toro, Natalia; /Stanford U., ITP; Weiner, Neal; Yavin, Itay; /New York U., CCPP
2012-04-09
In this paper we discuss two mechanisms by which high energy electrons resulting from dark matter annihilations in or near the Sun can arrive at the Earth. Specifically, electrons can escape the sun if DM annihilates into long-lived states, or if dark matter scatters inelastically, which would leave a halo of dark matter outside of the sun. Such a localized source of electrons may affect the spectra observed by experiments with narrower fields of view oriented towards the sun, such as ATIC, differently from those with larger fields of view such as Fermi. We suggest a simple test of these possibilities with existing Fermi data that is more sensitive than limits from final state radiation. If observed, such a signal will constitute an unequivocal signature of dark matter.
Fradkin, Eduardo [Univ. of Illinois, Urbana, IL (United States); Maldacena, Juan [Inst. for Advanced Study, Princeton, NJ (United States); Chatterjee, Lali [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Office of High Energy Physics; Davenport, James W [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Office of Basic Energy Sciences
2015-02-02
On February 2, 2015 the Offices of High Energy Physics (HEP) and Basic Energy Sciences (BES) convened a Round Table discussion among a group of physicists on ‘Common Problems in Condensed Matter and High Energy Physics’. This was motivated by the realization that both fields deal with quantum many body problems, share many of the same challenges, use quantum field theoretical approaches and have productively interacted in the past. The meeting brought together physicists with intersecting interests to explore recent developments and identify possible areas of collaboration.... Several topics were identified as offering great opportunity for discovery and advancement in both condensed matter physics and particle physics research. These included topological phases of matter, the use of entanglement as a tool to study nontrivial quantum systems in condensed matter and gravity, the gauge-gravity duality, non-Fermi liquids, the interplay of transport and anomalies, and strongly interacting disordered systems. Many of the condensed matter problems are realizable in laboratory experiments, where new methods beyond the usual quasi-particle approximation are needed to explain the observed exotic and anomalous results. Tools and techniques such as lattice gauge theories, numerical simulations of many-body systems, and tensor networks are seen as valuable to both communities and will likely benefit from collaborative development.
GAPS - Dark matter search with low-energy cosmic-ray antideuterons and antiprotons
von Doetinchem, P; Boggs, S; Fuke, H; Hailey, C J; Mognet, S I; Ong, R A; Perez, K; Zweerink, J
2015-01-01
The GAPS experiment is foreseen to carry out a dark matter search by measuring low-energy cosmic-ray antideuterons and antiprotons with a novel detection approach. It will provide a new avenue to access a wide range of different dark matter models and masses from about 10GeV to 1TeV. The theoretically predicted antideuteron flux resulting from secondary interactions of primary cosmic rays is very low. Well-motivated theories beyond the Standard Model contain viable dark matter candidates, which could lead to a significant enhancement of the antideuteron flux due to annihilation or decay of dark matter particles. This flux contribution is believed to be especially large at low energies, which leads to a high discovery potential for GAPS. The GAPS low-energy antiproton search will provide some of the most stringent constraints on ~30GeV dark matter, will provide the best limits on primordial black hole evaporation on galactic length scales, and explore new discovery space in cosmic-ray physics. GAPS is designed...
Resource Handbook--Matter and Energy. A Supplement to Basic Curriculum Guide--Science, Grades K-6.
Starr, John W., 3rd., Ed.
GRADES OR AGES: Grades K-6. SUBJECT MATTER: Science; matter and energy. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is divided into the following six units: 1) Composition of Matter, with 27 concepts; 2) Light, with 20 concepts; 3) Heat, with 14 concepts; 4) Sound, with 12 concepts; 5) Electricity and Magnetism, with 17 concepts; and 6)…
Evolution of density and velocity profiles of dark matter and dark energy in spherical voids
Novosyadlyj, Bohdan; Tsizh, Maksym; Kulinich, Yurij
2017-02-01
We analyse the evolution of cosmological perturbations which leads to the formation of large isolated voids in the Universe. We assume that initial perturbations are spherical and all components of the Universe (radiation, matter and dark energy) are continuous media with ideal fluid energy-momentum tensors, which interact only gravitationally. Equations of the evolution of perturbations for every component in the comoving to cosmological background reference frame are obtained from equations of energy and momentum conservation and Einstein's ones and are integrated numerically. Initial conditions are set at the early stage of evolution in the radiation-dominated epoch, when the scale of perturbation is much larger than the particle horizon. Results show how the profiles of density and velocity of matter and dark energy are formed and how they depend on parameters of dark energy and initial conditions. In particular, it is shown that final matter density and velocity amplitudes change within range ˜4-7 per cent when the value of equation-of-state parameter of dark energy w vary in the range from -0.8 to -1.2, and change within ˜1 per cent only when the value of effective sound speed of dark energy vary over all allowable range of its values.
Charged Particle Transport in High-Energy-Density Matter
Stanton, Liam; Murillo, Michael
2016-10-01
Transport coefficients for dense plasmas have been numerically computed using an effective Boltzmann approach. We have developed a simplified effective potential approach that yields accurate fits for all of the relevant cross sections and collision integrals. Our results have been validated with molecular dynamics simulations for self-diffusion, interdiffusion, viscosity, thermal conductivity and stopping power. Molecular dynamics has also been used to examine the underlying assumptions of the Boltzmann approach through a categorization of behaviors of the velocity autocorrelation function in the Yukawa phase diagram. Using a velocity-dependent screening model, we examine the role of dynamical screening in transport as well. Implications of these results for Coulomb logarithm approaches are discussed. This work is performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Interaction of Repetitively Pulsed High Energy Laser Radiation With Matter
Hugenschmidt, Manfred
1986-10-01
The paper is concerned with laser target interaction processes involving new methods of improving the overall energy balance. As expected theoretically, this can be achieved with high repetition rate pulsed lasers even for initially highly reflecting materials, such as metals. Experiments were performed by using a pulsed CO2 laser at mean powers up to 2 kW and repetition rates up to 100 Hz. The rates of temperature rise of aluminium for example were thereby increased by lore than a factor of 3 as compared to cw-radiation of comparable power density. Similar improvements were found for the overall absorptivities that were increased by this method by more than an order of magnitude.
The Standard Model, Dark Matter, and Dark Energy: From the Sublime to the Ridiculous
Krauss, L M
2004-01-01
The Standard Model of cosmology of the 1980's was based on a remarkable interplay of ideas from particle theory, experiment and astrophysical observations. That model is now dead, and has been replaced by something far more bizarre. Interestingly, the aspect that has survived involves perhaps the most exotic component: dark matter that dominates the gravitational dynamics of all galaxies, and appears to be composed of a sea of new weakly interacting elementary particles. But this sea of dark matter appears to play second fiddle to an unknown energy density that appears to permeate all of space, causing the expansion of the Universe to accelerate. We are left with many more questions than answers, and our vision of the future of the Universe has completely changed. (Lectures Given at the XIV Canary Islands Winter School in Astrophysics 2002: Dark Matter and Dark Energy in the Universe. Nov 2002 To Appear in the Proceedings)
Dark Matter interpretation of low energy IceCube MESE excess
Chianese, M; Morisi, S
2016-01-01
The 2-years MESE IceCube events show a slightly excess in the energy range 10-100 TeV with a maximum local statistical significance of 2.3$\\sigma$, once a hard astrophysical power-law is assumed. A spectral index smaller than 2.2 is indeed suggested by multi-messenger studies related to $p$-$p$ sources and by the recent IceCube analysis regarding 6-years up-going muon neutrinos. In the present paper, we propose a two-components scenario where the extraterrestrial neutrinos are explained in terms of an astrophysical power-law and a Dark Matter signal. We consider both decaying and annihilating Dark Matter candidates with different final states (quarks and leptons) and different halo density profiles. We perform a likelihood-ratio analysis that provides a statistical significance up to 3.9$\\sigma$ for a Dark Matter interpretation of the IceCube low energy excess.
Laing, Suzette; Wang, Guohui; Briazova, Tamara; Zhang, Chunbin; Wang, Aixia; Zheng, Ze; Gow, Alexander; Chen, Alex F; Rajagopalan, Sanjay; Chen, Lung Chi; Sun, Qinghua; Zhang, Kezhong
2010-10-01
Recent studies have suggested a link between inhaled particulate matter (PM) exposure and increased mortality and morbidity associated with pulmonary and cardiovascular diseases. However, a precise understanding of the biological mechanism underlying PM-associated toxicity and pathogenesis remains elusive. Here, we investigated the impact of PM exposure in intracellular stress signaling pathways with animal models and cultured cells. Inhalation exposure of the mice to environmentally relevant fine particulate matter (aerodynamic diameter liver tissues as well as in the mouse macrophage cell line RAW264.7. Ambient PM(2.5) exposure activates double-strand RNA-activated protein kinase-like ER kinase (PERK), leading to phosphorylation of translation initiation factor eIF2α and induction of C/EBP homologous transcription factor CHOP/GADD153. Activation of PERK-mediated UPR pathway relies on the production of reactive oxygen species (ROS) and is critical for PM(2.5)-induced apoptosis. Furthermore, PM(2.5) exposure can activate ER stress sensor IRE1α, but it decreases the activity of IRE1α in splicing the mRNA encoding the UPR trans-activator X-box binding protein 1 (XBP1). Together, our study suggests that PM(2.5) exposure differentially activates the UPR branches, leading to ER stress-induced apoptosis through the PERK-eIF2α-CHOP UPR branch. This work provides novel insights into the cellular and molecular basis by which ambient PM(2.5) exposure elicits its cytotoxic effects that may be related to air pollution-associated pathogenesis.
Alam, N.; Pais, H.; Providência, C.; Agrawal, B. K.
2017-05-01
The spinodal instabilities in hot asymmetric nuclear matter and some important critical parameters derived thereof are studied by using six different families of relativistic mean-field models. The slopes of the symmetry energy coefficient vary over a wide range within each family. The critical densities and proton fractions are more sensitive to the symmetry energy slope parameter at temperatures much below its critical value (Tc˜14 -16 MeV ). The spread in the critical proton fraction at a given symmetry energy slope parameter is noticeably larger near Tc, indicating that the equation of state of warm asymmetric nuclear matter at subsaturation densities is not sufficiently constrained. The distillation effects are sensitive to the density dependence of the symmetry energy at low temperatures which tend to wash out with increasing temperature.
Constraining a dark matter and dark energy interaction scenario with a dynamical equation of state
Yang, Weiqiang; Banerjee, Narayan; Pan, Supriya
2017-06-01
In this work we have used the recent cosmic chronometer data along with the latest estimation of the local Hubble parameter value, H0 at 2.4% precision as well as the standard dark energy probes, such as the Supernovae Type Ia, baryon acoustic oscillation distance measurements, and cosmic microwave background measurements (PlanckTT+ lowP ) to constrain a dark energy model where the dark energy is allowed to interact with the dark matter. A general equation of state of dark energy parametrized by a dimensionless parameter "β " is utilized. From our analysis, we find that the interaction is compatible with zero within the 1 σ confidence limit. We also show that the same evolution history can be reproduced by a small pressure of the dark matter.
Dark energy interacting with neutrinos and dark matter: a phenomenological theory
Kremer, G M
2007-01-01
A model for a flat homogeneous and isotropic Universe composed of dark energy, dark matter, neutrinos, radiation and baryons is analyzed. The fields of dark matter and neutrinos are supposed to interact with the dark energy. The dark energy is considered to obey either the van der Waals or the Chaplygin equations of state. The ratio between the pressure and the energy density of the neutrinos varies with the red-shift simulating massive and non-relativistic neutrinos at small red-shifts and non-massive relativistic neutrinos at high red-shifts. The model can reproduce the expected red-shift behaviors of the deceleration parameter and of the density parameters of each constituent.
Foundations of high-energy-density physics physical processes of matter at extreme conditions
Larsen, Jon
2017-01-01
High-energy-density physics explores the dynamics of matter at extreme conditions. This encompasses temperatures and densities far greater than we experience on Earth. It applies to normal stars, exploding stars, active galaxies, and planetary interiors. High-energy-density matter is found on Earth in the explosion of nuclear weapons and in laboratories with high-powered lasers or pulsed-power machines. The physics explored in this book is the basis for large-scale simulation codes needed to interpret experimental results whether from astrophysical observations or laboratory-scale experiments. The key elements of high-energy-density physics covered are gas dynamics, ionization, thermal energy transport, and radiation transfer, intense electromagnetic waves, and their dynamical coupling. Implicit in this is a fundamental understanding of hydrodynamics, plasma physics, atomic physics, quantum mechanics, and electromagnetic theory. Beginning with a summary of the topics and exploring the major ones in depth, thi...
PREFACE: XXX International Conference on Interaction of Intense Energy Fluxes with Matter
Fortov, V. E.; Khishchenko, K. V.; Karamurzov, B. S.; Efremov, V. P.; Sultanov, V. G.
2015-11-01
This paper is a preface to the proceedings of the XXX International Conference on Interaction of Intense Energy Fluxes with Matter, which was held in Elbrus settlement, in the Kabardino-Balkar Republic of the Russian Federation, from March 1-6, 2015.
2012-07-16
... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION In the Matter of Alternative Energy Sources, Inc., Arlington Hospitality, Inc., Consolidated Oil... securities of Arlington Hospitality, Inc. because it has not filed any periodic reports since the period...
Testing the Interaction between Dark Energy and Dark Matter with Planck Data
Costa, André A; Wang, Bin; Ferreira, Elisa G M; Abdalla, E
2013-01-01
Interacting Dark Energy and Dark Matter is used to go beyond the standard cosmology. We base our arguments on Planck data and conclude that an interaction is compatible with the observations and can provide a strong argument towards consistency of different values of cosmological parameters.
2010-10-15
... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION In the Matter of: Camera Platforms International, Inc., Castleguard Energy, Inc., CD Warehouse... information concerning the securities of CD Warehouse, Inc. because it has not filed any periodic...
High Energy Cosmic Electrons: Messengers from Nearby Cosmic Ray Sources or Dark Matter?
Moiseev, Alexander
2011-01-01
This slide presentation reviews the recent discoveries by the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-Ray Telescope in reference to high energy cosmic electrons, and whether their source is cosmic rays or dark matter. Specific interest is devoted to Cosmic Ray electrons anisotropy,
Interacting diffusive unified dark energy and dark matter from scalar fields
Benisty, David; Guendelman, E.I. [Ben Gurion University of the Negev, Department of Physics, Beersheba (Israel)
2017-06-15
Here we generalize ideas of unified dark matter-dark energy in the context of two measure theories and of dynamical space time theories. In two measure theories one uses metric independent volume elements and this allows one to construct unified dark matter-dark energy, where the cosmological constant appears as an integration constant associated with the equation of motion of the measure fields. The dynamical space-time theories generalize the two measure theories by introducing a vector field whose equation of motion guarantees the conservation of a certain Energy Momentum tensor, which may be related, but in general is not the same as the gravitational Energy Momentum tensor. We propose two formulations of this idea: (I) by demanding that this vector field be the gradient of a scalar, (II) by considering the dynamical space field appearing in another part of the action. Then the dynamical space time theory becomes a theory of Diffusive Unified dark energy and dark matter. These generalizations produce non-conserved energy momentum tensors instead of conserved energy momentum tensors which leads at the end to a formulation of interacting DE-DM dust models in the form of a diffusive type interacting Unified dark energy and dark matter scenario. We solved analytically the theories for perturbative solution and asymptotic solution, and we show that the ΛCDM is a fixed point of these theories at large times. Also a preliminary argument as regards the good behavior of the theory at the quantum level is proposed for both theories. (orig.)
Wei-Ming Lin
2014-01-01
Full Text Available The oxidative stress is believed to be one of the mechanisms involved in the neuronal damage after acute traumatic brain injury (TBI. However, the disease severity correlation between oxidative stress biomarker level and deep brain microstructural changes in acute TBI remains unknown. In present study, twenty-four patients with acute TBI and 24 healthy volunteers underwent DTI. The peripheral blood oxidative biomarkers, like serum thiol and thiobarbituric acid-reactive substances (TBARS concentrations, were also obtained. The DTI metrics of the deep brain regions, as well as the fractional anisotropy (FA and apparent diffusion coefficient, were measured and correlated with disease severity, serum thiol, and TBARS levels. We found that patients with TBI displayed lower FAs in deep brain regions with abundant WMs and further correlated with increased serum TBARS level. Our study has shown a level of anatomic detail to the relationship between white matter (WM damage and increased systemic oxidative stress in TBI which suggests common inflammatory processes that covary in both the peripheral and central reactions after TBI.
Real-world exposure of airborne particulate matter triggers oxidative stress in an animal model
Wan, Guohui; Rajagopalan, Sanjay; Sun, Qinghua; Zhang, Kezhong
2010-01-01
Epidemiological studies have shown a strong link between air pollution and the increase of cardio-pulmonary mortality and morbidity. In particular, inhaled airborne particulate matter (PM) exposure is closely associated with the pathogenesis of air pollution-induced systemic diseases. In this study, we exposed C57BIV6 mice to environmentally relevant PM in fine and ultra fine ranges (diameter < 2.5 μm, PM2.5) using a “real-world” airborne PM exposure system. We investigated the pathophysiologic impact of PM2.5 exposure in the animal model and in cultured primary pulmonary macrophages. We demonstrated that PM2.5 exposure increased the production of reactive oxygen species (ROS) in blood vessels in vivo. Furthermore, in vitro PM2.5 exposure experiment suggested that PM2.5 could trigger oxidative stress response, reflected by an increased expression of the anti-oxidative stress enzymes superoxide dismutase-1 (SOD-1) and heme oxygenase-1(HO-1), in mouse primary macrophages. Together, the results obtained through our “real-world” PM exposure approach demonstrated the pathophysiologic effect of ambient PM2.5 exposure on triggering oxidative stress in the specialized organ and cell type of an animal model. Our results and approach will be informative for the research in air pollution-associated physiology and pathology. PMID:21383899
Energy crises and cooperation: Do international institutions matter?
Chakarova, Vessela P.
The risk of an oil supply disruption still exists. Oil reserves are increasingly concentrated in a handful of unreliable regimes, plagued by piracy and terrorism. Natural disasters and chokepoint incidents have increased in frequency. In addition, oil is expected to remain a significant part of the energy mix up until 2030. By that time Europe will be importing 90% of its oil. Thus, oil supply security will become an increasingly important feature of European politics. One way to counter the noxious consequences of an oil disruption is to cooperate. International cooperation is a critical factor in any type of crisis, however, it is especially important when it comes to a finite, highly concentrated and critical commodity like oil. The lack of coordination might lead to scrambling and oil hoarding, which dramatically exacerbate the crisis. Yet cooperation in the oil issue-area has been the subject of only a few studies, none of which provides a systematic and comprehensive analysis. They are also limited in their scope and findings. This dissertation aims to partially fill this lacuna. It employs a structured focused comparison to study European consumer countries' cooperation in times of oil supply shortages. There have been fifteen such crises since the Second World War, three of which with dramatic consequences for the world economy. The analysis evaluates European cooperative efforts in seven of these cases, starting with the Abadan crisis in 1951. The cases are selected on the basis of their magnitude and economic impact. In particular, I look at intergovernmental negotiations within existing international bodies prior to, during and immediately after the crisis. The findings suggest that institutions are more likely to facilitate interstate cooperation in the presence of a strong leader (a hegemon) - a role, which in the case of the oil issue-area was assumed by the US until the early 1970s.
Braghin, F L
2004-01-01
Symmetry energy terms from macroscopic mass formulae are investigated as generalized polarizabilities of nuclear matter. Besides the neutron-proton (n-p) symmetry energy the spin dependent symmetry energies and a scalar one are also defined. They depend on the nuclear densities ($\\rho$), neutron-proton asymmetry ($b$), temperature ($T$) and exchanged energy and momentum ($q$). Based on a standard expression for the generalized polarizabilities, a differential equation is proposed to constrain the dependence of the symmetry energy on the n-p asymmetry and on the density. Some solutions are discussed. The q-dependence (zero frequence) of the symmetry energy coefficients with Skyrme-type forces is investigated in the four channels of the particle-hole interaction. Spin dependent symmetry energies are also investigated indicating much stronger differences in behavior with $q$ for each Skyrme force than the results for the neutron-proton one.
Non-Radiative Energy Transfer Mediated by Hybrid Light-Matter States.
Zhong, Xiaolan; Chervy, Thibault; Wang, Shaojun; George, Jino; Thomas, Anoop; Hutchison, James A; Devaux, Eloise; Genet, Cyriaque; Ebbesen, Thomas W
2016-05-17
We present direct evidence of enhanced non-radiative energy transfer between two J-aggregated cyanine dyes strongly coupled to the vacuum field of a cavity. Excitation spectroscopy and femtosecond pump-probe measurements show that the energy transfer is highly efficient when both the donor and acceptor form light-matter hybrid states with the vacuum field. The rate of energy transfer is increased by a factor of seven under those conditions as compared to the normal situation outside the cavity, with a corresponding effect on the energy transfer efficiency. The delocalized hybrid states connect the donor and acceptor molecules and clearly play the role of a bridge to enhance the rate of energy transfer. This finding has fundamental implications for coherent energy transport and light-energy harvesting.
Zhijie Tian
2016-06-01
Full Text Available Salt-alkaline stress generally leads to soil compaction and fertility decline. It also restricts rice growth and phosphorus acquisition. In this pot experiment, two relatively salt-alkaline tolerant (Dongdao-4 and Changbai-9 and sensitive (Changbai-25 and Tongyu-315 rice genotypes were planted in sandy (control and salt-alkaline soil to evaluate the characteristics of dry matter and phosphorus assimilation and translocation in rice. The results showed that dry matter and phosphorus assimilation in rice greatly decreased under salt-alkaline stress as the plants grew. The translocation and contribution of dry matter and phosphorus to the grains also increased markedly; different performances were observed between genotypes under salt-alkaline stress. D4 and C9 showed higher dry matter translocation, translocation efficiency and contribution of dry matter assimilation to panicles than those of C25 and T315. These changes in D4 and C9 indexes occurred at low levels of salt-alkaline treatment. Higher phosphorus acquisition efficiency of D4 and C9 were also found under salt-alkaline conditions. Additionally, the phosphorus translocation significantly decreased in C25 and T315 in the stress treatment. In conclusion, the results indicated that salt-alkaline-tolerant rice genotypes may have stronger abilities to assimilate and transfer biomass and phosphorus than sensitive genotypes, especially in salt-alkaline conditions.
Abdel-Rahman, W., E-mail: wabdel@medphys.mcgill.c [Department of Medical Physics, McGill University Health Centre, Medical Physics Unit, 1650 avenue Cedar, Montreal, Quebec, H3G 1A4 (Canada); Podgorsak, E.B. [Department of Medical Physics, McGill University Health Centre, Medical Physics Unit, 1650 avenue Cedar, Montreal, Quebec, H3G 1A4 (Canada)
2010-05-15
A clear understanding of energy transfer and energy absorption in photon interactions with matter is essential for the understanding of radiation dosimetry and development of new dosimetry techniques. The concepts behind the two quantities have been enunciated many years ago and described in many scientific papers, review articles, and textbooks. Data dealing with energy transfer and energy absorption as well as the associated mass energy transfer coefficient and the mass energy absorption coefficient are readily available in web-based tabular forms. However, tables, even when available in detailed and easy to access form, do not lend themselves to serve as visual aid to promote better understanding of the dosimetric quantities related to energy transfer and energy absorption as well as their relationship to the photon energy and absorber atomic number. This paper uses graphs and illustrations, in addition to well-known mathematical relationships, to guide the reader in a systematic manner through the various stages involved in the derivation of energy absorbed in medium and its associated quantity, the mass energy absorption coefficient, from the mass attenuation coefficient.
Abdel-Rahman, W.; Podgorsak, E. B.
2010-05-01
A clear understanding of energy transfer and energy absorption in photon interactions with matter is essential for the understanding of radiation dosimetry and development of new dosimetry techniques. The concepts behind the two quantities have been enunciated many years ago and described in many scientific papers, review articles, and textbooks. Data dealing with energy transfer and energy absorption as well as the associated mass energy transfer coefficient and the mass energy absorption coefficient are readily available in web-based tabular forms. However, tables, even when available in detailed and easy to access form, do not lend themselves to serve as visual aid to promote better understanding of the dosimetric quantities related to energy transfer and energy absorption as well as their relationship to the photon energy and absorber atomic number. This paper uses graphs and illustrations, in addition to well-known mathematical relationships, to guide the reader in a systematic manner through the various stages involved in the derivation of energy absorbed in medium and its associated quantity, the mass energy absorption coefficient, from the mass attenuation coefficient.
Modelling moisture content and dry matter loss during storage of logging residues for energy
Filbakk, Tore; Hoeiboe, Olav Albert (Dept. of Ecology and Natural Resource Management, Norwegian Univ. of Life Sciences, Aas (Norway)); Dibdiakova, Janka (Norwegian Forest and Landscape Inst., Aas (Norway)); Nurmi, Juha (Finnish Forest Research Inst., Kannus (Finland))
2011-04-15
To achieve optimal utilisation of logging residues for energy, it is important to know how different handling and storage methods affect fuel properties. The aim of this study was to model how the moisture content and dry matter losses of logging residues develop during storage. Logging residues were collected from five different stands of spruce and pine during different seasons of the year and stored in the same location. The logging residues were stored in covered piles of bundled residues and loose residues. Only minor differences were found in the moisture content profiles between piles of bundles and loose residues. Logging residues located in the centre of both types of piles had considerably lower moisture content than the outer parts. The moisture content significantly affected dry matter loss, with the highest dry matter losses being found in the samples with the least favourable drying conditions. The dry matter losses varied between 1 and 3% per month. Significantly higher dry matter losses were found in the spruce bundles than in the pine bundles. Seasoned logging residues had the lowest dry matter loss, while the logging residues harvested and piled in the autumn had the highest loss
Sterile neutrinos, dark matter, and resonant effects in ultra high energy regimes
Miranda, O.G., E-mail: omr@fis.cinvestav.mx [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740 07000 México, D.F. (Mexico); Moura, C.A., E-mail: celio.moura@ufabc.edu.br [Universidade Federal do ABC (UFABC), Centro de Ciências Naturais e Humanas, Rua Santa Adélia, 166, 09210-170 Santo André, SP (Brazil); Parada, A., E-mail: alexander.parada00@usc.edu.co [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Apdo. Postal 14-740 07000 México, D.F. (Mexico)
2015-05-11
Interest in light dark matter candidates has recently increased in the literature; some of these works consider the role of additional neutrinos, either active or sterile. Furthermore, extragalactic neutrinos have been detected with energies higher than have ever been reported before. This opens a new window of opportunities to the study of neutrino properties that were unreachable up to now. We investigate how an interaction potential between neutrinos and dark matter might induce a resonant enhancement in the oscillation probability, an effect that may be tested with future neutrino data.
The force density and the kinetic energy-momentum tensor of electromagnetic fields in matter
Medina, Rodrigo
2014-01-01
We determine the invariant expression for the force density that the electromagnetic field exerts on dipolar matter. We construct the non-symmetric energy-momentum tensor of the electromagnetic field in matter which is consistent with that force and with Maxwell equations. We recover Minkowski's expression for the momentum density. We use our results to discuss momentum exchange of an electromagnetic wave-packet which falls into a dielectric block. In particular we show that the wave-packet pulls the block when it enters and drags it when it leaves.
A Two Scalar Field Model for the Interaction of Dark Energy and Dark Matter
Bertolami, Orfeu; Páramos, Jorge
2012-01-01
In this letter, we study the effects of an interaction between dark matter and dark energy through a two scalar field model with a potential $V(\\phi,\\chi)=e^{-\\lambda\\phi}P(\\phi,\\chi)$, where $P(\\phi,\\chi)$ is a polynomial. We show that features of the present Universe are reproduced for a large range of the bare mass of the dark matter field. Simple modifications of the potential are studied, revealing important implications of the interaction, including the possibility of transient acceleration solutions.
Interaction between Dark Matter and Dark Energy and the Cosmological Coincidence Problem
Kourosh Nozari
2014-01-01
Full Text Available We consider a quintessence model of dark energy inspired by scalar-tensor theories of gravity where the scalar field is nonminimally coupled to gravity and dark matter. By considering exponential potential as self-interaction potential, the stability and existence of the critical points are discussed in details. With nonminimally coupled dark sector with gravity, we obtain scaling solutions to address the coincidence problem by considering complex velocity for dark matter. The statefinder diagnostic shows that the equation of state reaches ΛCDM model in the future.
Sterile neutrinos, dark matter, and resonant effects in ultra high energy regimes
O.G. Miranda
2015-05-01
Full Text Available Interest in light dark matter candidates has recently increased in the literature; some of these works consider the role of additional neutrinos, either active or sterile. Furthermore, extragalactic neutrinos have been detected with energies higher than have ever been reported before. This opens a new window of opportunities to the study of neutrino properties that were unreachable up to now. We investigate how an interaction potential between neutrinos and dark matter might induce a resonant enhancement in the oscillation probability, an effect that may be tested with future neutrino data.
Static Universe model existing due to the Matter-Dark Energy coupling
Bizet, Alejandro Cabo
2007-01-01
The work investigate a static, isotropic and almost homogeneous Universe containing a real scalar field modeling the Dark-Energy (quintaessence) interacting with pressureless matter. It is argued that the interaction between matter and the Dark Energy, is essential for the very existence of the considered solution. Assuming the possibility that Dark-Energy can be furnished by the Dilaton (a scalar field reflecting the condensation of string states with zero angular momentum) we fix the value of scalar field at the origin to the Planck scale. It became possible to fix the ratio of the amount of Dark Energy to matter energy, in the currently estimated value 0.7/0.3, and also the observed magnitude of the Hubble constant. The value of the mass for the scalar field chosen for fixing the above ratio and Hubble effect strength, results to be of the order of 10^{-29}cm^{-1}, a small mass which seems to be compatible with the zero mass of the Dilaton in the lowest approximations.
The Logotropic Dark Fluid as a unification of dark matter and dark energy
Chavanis, Pierre-Henri
2015-01-01
We propose a heuristic unification of dark matter and dark energy in terms of a single dark fluid with a logotropic equation of state $P=A\\ln(\\rho/\\rho_P)$, where $\\rho$ is the rest-mass density, $\\rho_P$ is the Planck density, and $A$ is the logotropic temperature. The energy density $\\epsilon$ is the sum of a rest-mass energy term $\\rho c^2$ mimicking dark matter and an internal energy term $u(\\rho)=-P(\\rho)-A$ mimicking dark energy. The logotropic temperature is approximately given by $A \\simeq \\rho_{\\Lambda}c^2/\\ln(\\rho_P/\\rho_{\\Lambda})\\simeq\\rho_{\\Lambda}c^2/[123 \\ln(10)]$, where $\\rho_{\\Lambda}$ is the cosmological density. More precisely, we obtain $A=2.13\\times 10^{-9} \\, {\\rm g}\\, {\\rm m}^{-1}\\, {\\rm s}^{-2}$ that we interpret as a fundamental constant. At the cosmological scale, this model fullfills the same observational constraints as the $\\Lambda$CDM model. However, it has a nonzero velocity of sound and a nonzero Jeans length which, at the beginning of the matter era, is about $\\lambda_J=40.4\\,...
Violation of energy-per-hadron scaling in a resonance matter
Bravina, L V; Fuchs, C; Lu, Z D; Zabrodin, E E; Faessler, Amand
2002-01-01
Yields of hadrons, their average masses and energies per hadron at the stage of chemical freeze-out in (ultra)relativistic heavy-ion collisions are analyzed within the statistical model. The violation of the scaling / = 1 GeV observed in Au+Au collisions at $\\sqrt{s}$ = 130 AGeV is linked to the formation of resonance-rich matter with a considerable fraction of baryons and antibaryons. The rise of the energy-per-hadron ratio in baryon-dominated matter is discussed. A violation of the scaling condition is predicted for a very central zone of heavy-ion collisions at energies around 40 AGeV.
Ghaffary, Tooraj
2016-01-01
In this research, the production cross sections for QCD matter, neutrino and dark energy due to acceleration of Universe is calculated. To obtain these cross sections, the Universe production cross section is multiplied by the particle or dark energy distribution in accelerating Universe. Also missing cross section for each matter and dark energy due to formation of event horizon, is calculated. It is clear that the cross section of particles produced near event horizon of Universe is much larger for higher acceleration of Universe. This is because as the acceleration of Universe becomes larger, the Unruh temperature becomes larger and the thermal radiations of particles are enhanced. There are different channels for producing Higgs boson in accelerating Universe. Universe maybe decay to quark and gluons, and then these particles interact with each other and Higgs boson is produced. Also, some Higgs boson are emitted directly from event horizon of Universe. Comparing Higgs boson cross sections via different c...
Shape transformations of soft matter governed by bi-axial stresses.
Thérien-Aubin, Héloïse; Moshe, Michael; Sharon, Eran; Kumacheva, Eugenia
2015-06-21
Rational design of the programmable soft matter requires understanding of the effect of a complex metric on shape transformations of thin non-Euclidean sheets. In the present work, we explored experimentally and using simulations how simultaneous or consecutive application of two orthogonal perturbations to thin patterned stimuli-responsive hydrogel sheets affects their three-dimensional shape transformations. The final shape of the sheet is governed by the metric, but not the order, in which the perturbations are applied to the system, and is determined by the competition of small-scale bidirectional stresses. In addition, a new, unexpected transition from a planar state to an equilibrium helical shape of the hydrogel sheet is observed via a mechanism that is yet to be explained.
On the Origin of the Dark Matter/Energy in the Universe and the Pioneer Anomaly
Abraham A. Ungar
2008-07-01
Full Text Available Einstein's special relativity is a theory rich of paradoxes, one of which is the recently discovered Relativistic Invariant Mass Paradox. According to this Paradox, the relativistic invariant mass of a galaxy of moving stars exceeds the sum of the relativistic invariant masses of the constituent stars owing to their motion relative to each other. This excess of mass is the mass of virtual matter that has no physical properties other than positive relativistic invariant mass and, hence, that reveals its presence by no means other than gravity. As such, this virtual matter is the dark matter that cosmologists believe is necessary in order to supply the missing gravity that keeps galaxies stable. Based on the Relativistic Invariant Mass Paradox we offer in this article a model which quantifies the anomalous acceleration of Pioneer 10 and 11 spacecrafts and other deep space missions, and explains the presence of dark matter and dark energy in the universe. It turns out that the origin of dark matter and dark energy in the Universe lies in the Paradox, and that the origin of the Pioneer anomaly results from neglecting the Paradox. In order to appreciate the physical significance of the Paradox within the frame of Einstein's special theory of relativity, following the presentation of the Paradox we demonstrate that the Paradox is responsible for the extension of the kinetic energy theorem and of the additivity of energy and momentum from classical to relativistic mechanics. Clearly, the claim that the acceleration of Pioneer 10 and 11 spacecrafts is anomalous is incomplete, within the frame of Einstein's special relativity, since those who made the claim did not take into account the presence of the Relativistic Invariant Mass Paradox (which is understandable since the Paradox, published in the author's 2008 book, was discovered by the author only recently. It remains to test how well the Paradox accords with observations.
On the Origin of the Dark Matter/Energy in the Universe and the Pioneer Anomaly
Ungar A. A.
2008-07-01
Full Text Available Einstein’s special relativity is a theory rich of paradoxes, one of which is the recently discovered Relativistic Invariant Mass Paradox . According to this Paradox, the rela- tivistic invariant mass of a galaxy of moving stars exceeds the sum of the relativistic invariant masses of the constituent stars owing to their motion relative to each other. This excess of mass is the mass of virtual matter that has no physical properties other than positive relativistic invariant mass and, hence, that reveals its presence by no means other than gravity. As such, this virtual matter is the dark matter that cosmologists be- lieve is necessary in order to supply the missing gravity that keeps galaxies stable. Based on the Relativistic Invariant Mass Paradox we offer in this article a model which quan- tifies the anomalous acceleration of Pioneer 10 and 11 spacecrafts and other deep space missions, and explains the presence of dark matter and dark energy in the universe. It turns out that the origin of dark matter and dark energy in the Universe lies in the Para- dox, and that the origin of the Pioneer anomaly results from neglecting the Paradox. In order to appreciate the physical significance of the Paradox within the frame of Ein- stein’s special theory of relativity, following the presentation of the Paradox we demon- strate that the Paradox is responsible for the extension of the kinetic energy theorem and of the additivity of energy and momentum from classical to relativistic mechanics. Clearly, the claim that the acceleration of Pioneer 10 and 11 spacecrafts is anomalous is incomplete, within the frame of Einstein’s special relativity, since those who made the claim did not take into account the presence of the Relativistic Invariant Mass Paradox (which is understandable since the Paradox, published in the author’s 2008 book, was discovered by the author only recently. It remains to test how well the Paradox accords with observations.
An Uneven Vacuum Energy Fluid as $\\Lambda$, Dark Matter, MOND and Lens
Zhao, Hongsheng
2008-01-01
Various TeVeS-inspired and f(R)-inspired theories of gravity have added an interesting twist to the search for dark matter and vacuum energy, modifying the landscape of astrophysics day by day. These theories can be together called a {\\bf N}on-{\\bf u}niform Dark Energy fluid (a Nu-Lambda fluid or a ${\\mathbf V\\Lambda}$ fluid); a common thread of these theories, according of an up-to-date summary by HZL \\cite{Halle}, is a non-uniform vector field, describing an uneven vacuum energy fluid. The ...
BALANCE OF MATTER AND ENERGY FOR DETERMINATION OF THERMAL EFFICIENCY BOILERS
Armijo C., Javier; Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos,Lima,Perú.
2014-01-01
We are showing solutions of equations matter and energy conservation steday state for calculate thermal efíiciency of steam generators. The analysis of freedom degree show results are functions of variables chosen as input data. The results indicate chemical reactions contribute with 90 per cent of energy neccesary and expense energy share to steam and exit gas. Se presenta la solución de las ecuaciones de conservación de materia y de energía. en estado estacionario, para estimar la eficie...
BALANCE OF MATTER AND ENERGY FOR DETERMINATION OF THERMAL EFFICIENCY BOILERS
Armijo C., Javier; Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos. Lima, Perú
2014-01-01
We are showing solutions of equations matter and energy conservation steday state for calculate thermal efíiciency of steam generators. The analysis of freedom degree show results are functions of variables chosen as input data. The results indicate chemical reactions contribute with 90 per cent of energy neccesary and expense energy share to steam and exit gas. Se presenta la solución de las ecuaciones de conservación de materia y de energía. en estado estacionario, para estimar la eficie...
Nuclear recoil energy scale in liquid xenon with application to the direct detection of dark matter
Sorensen, P; Dahl, C E
2011-02-14
We show for the first time that the quenching of electronic excitation from nuclear recoils in liquid xenon is well-described by Lindhard theory, if the nuclear recoil energy is reconstructed using the combined (scintillation and ionization) energy scale proposed by Shutt et al.. We argue for the adoption of this perspective in favor of the existing preference for reconstructing nuclear recoil energy solely from primary scintillation. We show that signal partitioning into scintillation and ionization is well-described by the Thomas-Imel box model. We discuss the implications for liquid xenon detectors aimed at the direct detection of dark matter.
Holographic dark energy interacting with dark matter in a closed Universe
Cruz, Norman [Departamento de Fisica, Facultad de Ciencia, Universidad de Santiago, Casilla 307, Santiago (Chile); Lepe, Samuel [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4950, Valparaiso (Chile); Pena, Francisco [Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Universidad de La Frontera, Avda. Francisco Salazar 01145, Casilla 54-D Temuco (Chile); Saavedra, Joel [Instituto de Fisica, Pontificia Universidad Catolica de Valparaiso, Casilla 4950, Valparaiso (Chile)], E-mail: joel.saavedra@ucv.cl
2008-11-27
A cosmological model of an holographic dark energy interacting with dark matter throughout a decaying term of the form Q=3({lambda}{sub 1}{rho}{sub DE}+{lambda}{sub 2}{rho}{sub m})H is investigated. General constraint on the parameters of the model are found when accelerated expansion is imposed and we found a phantom scenario, without any reference to a specific equation of state for the dark energy. The behavior of equation of state for dark energy is also discussed.
Relationship between quark-antiquark potential and quark-antiquark free energy in hadronic matter
SHEN Zhen-Yu; XU Xiao-Ming
2015-01-01
In high-temperature quark-gluon plasma and its subsequent hadronic matter created in a high-energy nucleus-nucleus collision,the quark-antiquark potential depends on the temperature.The temperature-dependent potential is expected to be derived from the free energy obtained in lattice gauge theory calculations.This requires one to study the relationship between the quark-antiquark potential and the quark-antiquark free energy.When the system's temperature is above the critical temperature,the potential of a heavy quark and a heavy antiquark almost equals the free energy,but the potential of a light quark and a light antiquark,of a heavy quark and a light antiquark and of a light quark and a heavy antiquark is substantially larger than the free energy.When the system's temperature is below the critical temperature,the quark-antiquark free energy can be taken as the quark-antiquark potential.This allows one to apply the quark-antiquark free energy to study hadron properties and hadron-hadron reactions in hadronic matter.
Higher-order symmetry energy of nuclear matter and the inner edge of neutron star crusts
Seif, W M
2014-01-01
The parabolic approximation to the equation of state of the isospin asymmetric nuclear matter (ANM) is widely used in the literature to make predictions for the nuclear structure and the neutron star properties. Based on the realistic M3Y-Paris and M3Y-Reid nucleon-nucleon interactions, we investigate the effects of the higher-order symmetry energy on the proton fraction in neutron stars and the location of the inner edge of their crusts and their core-crust transition density and pressure, thermodynamically. Analytical expressions for different-order symmetry energy coefficients of ANM are derived using the realistic interactions mentioned above. It is found that the higher-order terms of the symmetry energy coefficients up to its eighth-order (E$_{sym8}$) contributes substantially to the proton fraction in $\\beta$ stable neutron star matter at different nuclear matter densities, the core-crust transition density and pressure. Even by considering the symmetry energy coefficients up to E$_{sym8}$, we obtain a...
Effect of electromagnetic dipole dark matter on energy transport in the solar interior
Geytenbeek, Ben; Rao, Soumya; Scott, Pat; Serenelli, Aldo; Vincent, Aaron C.; White, Martin; Williams, Anthony G.
2017-03-01
In recent years, a revised set of solar abundances has led to a discrepancy in the sound-speed profile between helioseismology and theoretical solar models. Conventional solutions require additional mechanisms for energy transport within the Sun. Vincent et al. have recently suggested that dark matter with a momentum or velocity dependent cross section could provide a solution. In this work, we consider three models of dark matter with such cross sections and their effect on the stellar structure. In particular, the three models incorporate dark matter particles interacting through an electromagnetic dipole moment: an electric dipole, a magnetic dipole or an anapole. Each model is implemented in the DarkStec stellar evolution program, which incorporates the effects of dark matter capture and heat transport within the solar interior. We show that dark matter with an anapole moment of ~ 1 GeV‑2 or magnetic dipole moment of ~ 10‑3μp can improve the sound-speed profile, small frequency separations and convective zone radius with respect to the Standard Solar Model. However, the required dipole moments are strongly excluded by direct detection experiments.
Effect of electromagnetic dipole dark matter on energy transport in the solar interior
Geytenbeek, Ben; Scott, Pat; Serenelli, Aldo; Vincent, Aaron C; White, Martin; Williams, Anthony G
2016-01-01
In recent years, a revised set of solar abundances has led to a discrepancy in the sound-speed profile between helioseismology and theoretical solar models. Conventional solutions require additional mechanisms for energy transport within the Sun. Vincent et al. have recently suggested that dark matter with a momentum or velocity dependent cross section could provide a solution. In this work, we consider three models of dark matter with such cross sections and their effect on the stellar structure. In particular, the three models incorporate dark matter particles interacting through an electromagnetic dipole moment: an electric dipole, a magnetic dipole or an anapole. Each model is implemented in the DarkStec stellar evolution program, which incorporates the effects of dark matter capture and heat transport within the solar interior. We show that dark matter with a mass of 3 GeV and an electric dipole moment $\\sim3\\times10^{-10} e-cm$ or an anapole moment of $\\sim10^3 GeV^{-2}$ can improve the sound-speed prof...
Does the diffusion dark matter-dark energy interaction model solve cosmological puzzles?
Szydłowski, Marek; Stachowski, Aleksander
2016-08-01
We study dynamics of cosmological models with diffusion effects modeling dark matter and dark energy interactions. We show the simple model with diffusion between the cosmological constant sector and dark matter, where the canonical scaling law of dark matter (ρd m ,0a-3(t )) is modified by an additive ɛ (t )=γ t a-3(t ) to the form ρd m=ρd m ,0a-3(t )+ɛ (t ). We reduced this model to the autonomous dynamical system and investigate it using dynamical system methods. This system possesses a two-dimensional invariant submanifold on which the dark matter-dark energy (DM-DE) interaction can be analyzed on the phase plane. The state variables are density parameter for matter (dark and visible) and parameter δ characterizing the rate of growth of energy transfer between the dark sectors. A corresponding dynamical system belongs to a general class of jungle type of cosmologies represented by coupled cosmological models in a Lotka-Volterra framework. We demonstrate that the de Sitter solution is a global attractor for all trajectories in the phase space and there are two repellers: the Einstein-de Sitter universe and the de Sitter universe state dominating by the diffusion effects. We distinguish in the phase space trajectories, which become in good agreement with the data. They should intersect a rectangle with sides of Ωm ,0∈[0.2724 ,0.3624 ] , δ ∈[0.0000 ,0.0364 ] at the 95% CL. Our model could solve some of the puzzles of the Λ CDM model, such as the coincidence and fine-tuning problems. In the context of the coincidence problem, our model can explain the present ratio of ρm to ρd e, which is equal 0.457 6-0.0831+0.1109 at a 2 σ confidence level.
Unified dark energy and dust dark matter dual to quadratic purely kinetic K-essence
Guendelman, Eduardo; Nissimov, Emil; Pacheva, Svetlana
2016-02-01
We consider a modified gravity plus single scalar-field model, where the scalar Lagrangian couples symmetrically both to the standard Riemannian volume-form (spacetime integration measure density) given by the square root of the determinant of the Riemannian metric, as well as to another non-Riemannian volume-form in terms of an auxiliary maximal-rank antisymmetric tensor gauge field. As shown in a previous paper, the pertinent scalar-field dynamics provides an exact unified description of both dark energy via dynamical generation of a cosmological constant, and dark matter as a "dust" fluid with geodesic flow as a result of a hidden Noether symmetry. Here we extend the discussion by considering a non-trivial modification of the purely gravitational action in the form of f(R) = R - α R^2 generalized gravity. Upon deriving the corresponding "Einstein-frame" effective action of the latter modified gravity-scalar-field theory we find explicit duality (in the sense of weak versus strong coupling) between the original model of unified dynamical dark energy and dust fluid dark matter, on one hand, and a specific quadratic purely kinetic "k-essence" gravity-matter model with special dependence of its coupling constants on only two independent parameters, on the other hand. The canonical Hamiltonian treatment and Wheeler-DeWitt quantization of the dual purely kinetic "k-essence" gravity-matter model is also briefly discussed.
Hunting for dark matter coannihilation by mixing dijet resonances and missing transverse energy
Buschmann, Malte; El Hedri, Sonia; Kaminska, Anna; Liu, Jia; de Vries, Maikel; Wang, Xiao-Ping; Yu, Felix; Zurita, José
2016-09-01
Simplified models of the dark matter (co)annihilation mechanism predict striking new collider signatures untested by current searches. These models, which were codified in the coannihilation codex, provide the basis for a dark matter (DM) discovery program at the Large Hadron Collider (LHC) driven by the measured DM relic density. In this work, we study an exemplary model featuring s-channel DM coannihilation through a scalar diquark mediator as a representative case study of scenarios with strongly interacting coannihilation partners. We discuss the full phenomenology of the model, ranging from low energy flavor constraints, vacuum stability requirements, and precision Higgs effects to direct detection and indirect detection prospects. Moreover, motivated by the relic density calculation, we find significant portions of parameter space are compatible with current collider constraints and can be probed by future searches, including a proposed analysis for the novel signature of a dijet resonance accompanied by missing transverse energy (MET). Our results show that the 13 TeV LHC with 100 fb-1 luminosity should be sensitive to mediators as heavy as 1 TeV and dark matter in the 400-500 GeV range. The combination of searches for single and paired dijet peaks, non-resonant jets + MET excesses, and our novel resonant dijet + MET signature have strong coverage of the motivated relic density region, reflecting the tight connections between particles determining the dark matter abundance and their experimental signatures at the LHC.
Chuan-Jun Zhuo
2016-01-01
Conclusions: Although the results of the present study suggest the absence of significant differences in brain gray matter volume between female drug-naive patients after the first episode of major depression with and without SLEs after FDR correction, the study provides useful information for exploring the definitive role of stress in the onset of depression.
Epidemiological studies have linked ultrafine particulate matter (PM) exposure and adverse cardiovascular events. PM-induced oxidative stress is believed to be a key mechanism contributing to the adverse short-term vascular effects of air pollution exposure. Advanced age is one ...
Epidemiological studies have linked ultrafine particulate matter (PM) exposure and adverse cardiovascular events. PM-induced oxidative stress is believed to be a key mechanism contributing to the adverse short-term vascular effects of air pollution exposure. Advanced age is one ...
Hong, Zhicong; Guo, Zhiqiang; Zhang, Ruxin; Xu, Jian; Dong, Weiyang; Zhuang, Guoshun; Deng, Congrui
2016-01-01
Airborne fine particulate matter with an aerodynamic diameter equal to or smaller than 2.5 μm is abbreviated as PM2.5, which is one of the main components in air pollution. Exposure to PM2.5 is associated with increased risk of many human diseases, including chronic and allergic rhinitis, but the underlying molecular mechanism for its toxicity has not been fully elucidated. We have hypothesized that PM2.5 may cause oxidative stress and enhance inflammatory responses in nasal epithelial cells. Accordingly, we used human RPMI 2650 cells, derived from squamous cell carcinoma of the nasal septum, as a model of nasal epithelial cells, and exposed them to PM2.5 that was collected at Fudan University (31.3°N, 121.5°E) in Shanghai, China. PM2.5 exposure decreased the viability of RPMI 2650 cells, suggesting that PM2.5 may impair the barrier function of nasal epithelial cells. Moreover, PM2.5 increased the levels of intracellular reactive oxygen species (ROS) and the nuclear translocation of NF-E2-related factor-2 (Nrf2). Importantly, PM2.5 also decreased the activities of superoxide dismutase, catalase and glutathione peroxidase. Pretreatment with N-Acetyl-L-cysteine (an anti-oxidant) reduced the degree of the PM2.5-induced oxidative stress in RPMI 2650 cells. In addition, PM2.5 increased the production of granulocyte-macrophage colony-stimulating factor, tumor necrosis factor-α, interleukin-13 and eotaxin (C-C motif chemokine ligand 11), each of which initiates and/or augments local inflammation. These results suggest that PM2.5 may induce oxidative stress and inflammatory responses in human nasal epithelial cells, thereby leading to nasal inflammatory diseases. The present study provides insights into cellular injury induced by PM2.5.
The Logotropic Dark Fluid as a unification of dark matter and dark energy
Chavanis, Pierre-Henri
2016-07-01
We propose a heuristic unification of dark matter and dark energy in terms of a single ;dark fluid; with a logotropic equation of state P = Aln (ρ /ρP), where ρ is the rest-mass density, ρP = 5.16 ×1099gm-3 is the Planck density, and A is the logotropic temperature. The energy density ɛ is the sum of a rest-mass energy term ρc2 ∝a-3 mimicking dark matter and an internal energy term u (ρ) = - P (ρ) - A = 3 Aln a + C mimicking dark energy (a is the scale factor). The logotropic temperature is approximately given by A ≃ρΛc2 / ln (ρP /ρΛ) ≃ρΛc2 / [ 123 ln (10) ], where ρΛ = 6.72 ×10-24gm-3 is the cosmological density and 123 is the famous number appearing in the ratio ρP /ρΛ ∼10123 between the Planck density and the cosmological density. More precisely, we obtain A = 2.13 ×10-9gm-1s-2 that we interpret as a fundamental constant. At the cosmological scale, our model fulfills the same observational constraints as the ΛCDM model (they will differ in about 25 Gyrs when the logotropic universe becomes phantom). However, the logotropic dark fluid has a nonzero speed of sound and a nonzero Jeans length which, at the beginning of the matter era, is about λJ = 40.4pc, in agreement with the minimum size of the dark matter halos observed in the universe. The existence of a nonzero Jeans length may solve the missing satellite problem. At the galactic scale, the logotropic pressure balances the gravitational attraction, providing halo cores instead of cusps. This may solve the cusp problem. The logotropic equation of state generates a universal rotation curve that agrees with the empirical Burkert profile of dark matter halos up to the halo radius. In addition, it implies that all the dark matter halos have the same surface density Σ0 =ρ0rh = 141M⊙ /pc2 and that the mass of dwarf galaxies enclosed within a sphere of fixed radius ru = 300pc has the same value M300 = 1.93 ×107M⊙, in remarkable agreement with the observations
The Logotropic Dark Fluid as a unification of dark matter and dark energy
Pierre-Henri Chavanis
2016-07-01
Full Text Available We propose a heuristic unification of dark matter and dark energy in terms of a single “dark fluid” with a logotropic equation of state P=Aln(ρ/ρP, where ρ is the rest-mass density, ρP=5.16×1099gm−3 is the Planck density, and A is the logotropic temperature. The energy density ϵ is the sum of a rest-mass energy term ρc2∝a−3 mimicking dark matter and an internal energy term u(ρ=−P(ρ−A=3Alna+C mimicking dark energy (a is the scale factor. The logotropic temperature is approximately given by A≃ρΛc2/ln(ρP/ρΛ≃ρΛc2/[123ln(10], where ρΛ=6.72×10−24gm−3 is the cosmological density and 123 is the famous number appearing in the ratio ρP/ρΛ∼10123 between the Planck density and the cosmological density. More precisely, we obtain A=2.13×10−9gm−1s−2 that we interpret as a fundamental constant. At the cosmological scale, our model fulfills the same observational constraints as the ΛCDM model (they will differ in about 25 Gyrs when the logotropic universe becomes phantom. However, the logotropic dark fluid has a nonzero speed of sound and a nonzero Jeans length which, at the beginning of the matter era, is about λJ=40.4pc, in agreement with the minimum size of the dark matter halos observed in the universe. The existence of a nonzero Jeans length may solve the missing satellite problem. At the galactic scale, the logotropic pressure balances the gravitational attraction, providing halo cores instead of cusps. This may solve the cusp problem. The logotropic equation of state generates a universal rotation curve that agrees with the empirical Burkert profile of dark matter halos up to the halo radius. In addition, it implies that all the dark matter halos have the same surface density Σ0=ρ0rh=141M⊙/pc2 and that the mass of dwarf galaxies enclosed within a sphere of fixed radius ru=300pc has the same value M300=1.93×107M⊙, in remarkable agreement with the observations [Donato et al. [10
An Uneven Vacuum Energy Fluid as Λ, Dark Matter, MOND and Lens
Zhao, Hong Sheng
Various TeVeS-inspired and f(R)-inspired theories of gravity have added an interesting twist to the search for dark matter and vacuum energy, modifying the landscape of astrophysics day by day. These theories can be together called a Non-uniform Dark Energy fluid (a Nu-Lambda fluid or a VΛ fluid); a common thread of these theories, according of an up-to-date summary by HZL1, is a non-uniform vector field, describing an uneven vacuum energy fluid. The so-called "alternative" gravity theories are in fact in the standard GR gravity framework except that the cosmological "constant" is replaced by a nontrivial non-uniform vacuum energy, which couples the effects of Dark Matter and Dark Energy together by a single field. Built initially bottom-up rather than top-down as most gravity theories, TeVeS-inspired theories are healthily rooted on empirical facts. Here we attempt a review of some sanity checks of these fast-developing theories from galaxy rotation curves, solar system constraints, and gravitational lensing. We will also discuss some theoretical aspects of these theories related to the vacuum energy, and point out some analogies with electromagnetism and the Casimir effect.
Measurement of Quark Energy Loss in Cold Nuclear Matter at Fermilab E906/SeaQuest
Lin, Po-Ju [Colorado U.
2017-01-01
Parton energy loss is a process within QCD that draws considerable interest. The measurement of parton energy loss can provide valuable information for other hard-scattering processes in nuclei, and also serves as an important tool for exploring the properties of the quark-gluon plasma (QGP). Quantifying the energy loss in cold nuclear matter will help to set a baseline relative to energy loss in the QGP. With the Drell-Yan process, the energy loss of incoming quarks in cold nuclear matter can be ideally investigated since the final state interaction is expected to be minimal. E906/SeaQuest is a fixed-target experiment using the 120 GeV proton beam from the Fermilab Main Injector and has been collecting data from p+p, p+d, p+C, p+Fe, and p+W collisions. Within the E906 kinematic coverage of Drell-Yan production via the dimuon channel, the quark energy loss can be measured in a regime where other nuclear effects are expected to be small. In this thesis, the study of quark ener gy loss from different cold nuclear targets is presented.
Mead, Alexander; Lombriser, Lucas; Peacock, John; Steele, Olivia; Winther, Hans
2016-01-01
We present an accurate non-linear matter power spectrum prediction scheme for a variety of extensions to the standard cosmological paradigm, which uses the tuned halo model previously developed in Mead (2015b). We consider dark energy models that are both minimally and non-minimally coupled, massive neutrinos and modified gravitational forces with chameleon and Vainshtein screening mechanisms. In all cases we compare halo-model power spectra to measurements from high-resolution simulations. We show that the tuned halo model method can predict the non-linear matter power spectrum measured from simulations of parameterised $w(a)$ dark energy models at the few per cent level for $k0.5\\,h\\mathrm{Mpc}^{-1}$. An updated version of our publicly available HMcode can be found at https://github.com/alexander-mead/HMcode
ION BEAM HEATED TARGET SIMULATIONS FOR WARM DENSE MATTER PHYSICS AND INERTIAL FUSION ENERGY
Barnard, J.J.; Armijo, J.; Bailey, D.S.; Friedman, A.; Bieniosek, F.M.; Henestroza, E.; Kaganovich, I.; Leung, P.T.; Logan, B.G.; Marinak, M.M.; More, R.M.; Ng, S.F.; Penn, G.E.; Perkins, L.J.; Veitzer, S.; Wurtele, J.S.; Yu, S.S.; Zylstra, A.B.
2008-08-01
Hydrodynamic simulations have been carried out using the multi-physics radiation hydrodynamics code HYDRA and the simplified one-dimensional hydrodynamics code DISH. We simulate possible targets for a near-term experiment at LBNL (the Neutralized Drift Compression Experiment, NDCX) and possible later experiments on a proposed facility (NDCX-II) for studies of warm dense matter and inertial fusion energy related beam-target coupling. Simulations of various target materials (including solids and foams) are presented. Experimental configurations include single pulse planar metallic solid and foam foils. Concepts for double-pulsed and ramped-energy pulses on cryogenic targets and foams have been simulated for exploring direct drive beam target coupling, and concepts and simulations for collapsing cylindrical and spherical bubbles to enhance temperature and pressure for warm dense matter studies are described.
Ion Beam Heated Target Simulations for Warm Dense Matter Physics and Inertial Fusion Energy
Barnard, J J; Armijo, J; Bailey, D S; Friedman, A; Bieniosek, F M; Henestroza, E; Kaganovich, I; Leung, P T; Logan, B G; Marinak, M M; More, R M; Ng, S F; Penn, G E; Perkins, L J; Veitzer, S; Wurtele, J S; Yu, S S; Zylstra, A B
2008-08-12
Hydrodynamic simulations have been carried out using the multi-physics radiation hydrodynamics code HYDRA and the simplified one-dimensional hydrodynamics code DISH. We simulate possible targets for a near-term experiment at LBNL (the Neutralized Drift Compression Experiment, NDCX) and possible later experiments on a proposed facility (NDCX-II) for studies of warm dense matter and inertial fusion energy related beam-target coupling. Simulations of various target materials (including solids and foams) are presented. Experimental configurations include single pulse planar metallic solid and foam foils. Concepts for double-pulsed and ramped-energy pulses on cryogenic targets and foams have been simulated for exploring direct drive beam target coupling, and concepts and simulations for collapsing cylindrical and spherical bubbles to enhance temperature and pressure for warm dense matter studies are described.
Mead, A. J.; Heymans, C.; Lombriser, L.; Peacock, J. A.; Steele, O. I.; Winther, H. A.
2016-06-01
We present an accurate non-linear matter power spectrum prediction scheme for a variety of extensions to the standard cosmological paradigm, which uses the tuned halo model previously developed in Mead et al. We consider dark energy models that are both minimally and non-minimally coupled, massive neutrinos and modified gravitational forces with chameleon and Vainshtein screening mechanisms. In all cases, we compare halo-model power spectra to measurements from high-resolution simulations. We show that the tuned halo-model method can predict the non-linear matter power spectrum measured from simulations of parametrized w(a) dark energy models at the few per cent level for k 0.5 h Mpc-1. An updated version of our publicly available HMCODE can be found at https://github.com/alexander-mead/hmcode.
Neutron-star matter within the energy-density functional theory and neutron-star structure
Fantina, A. F.; Chamel, N.; Goriely, S. [Institut d' Astronomie et d' Astrophysique, CP226, Université Libre de Bruxelles (ULB), 1050 Brussels (Belgium); Pearson, J. M. [Dépt. de Physique, Université de Montréal, Montréal (Québec), H3C 3J7 (Canada)
2015-02-24
In this lecture, we will present some nucleonic equations of state of neutron-star matter calculated within the nuclear energy-density functional theory using generalized Skyrme functionals developed by the Brussels-Montreal collaboration. These equations of state provide a consistent description of all regions of a neutron star. The global structure of neutron stars predicted by these equations of state will be discussed in connection with recent astrophysical observations.
Metric-Independent Spacetime Volume-Forms and Dark Energy/Dark Matter Unification
Guendelman, Eduardo; Pacheva, Svetlana
2015-01-01
The method of non-Riemannian (metric-independent) spacetime volume-forms (alternative generally-covariant integration measure densities) is applied to construct a modified model of gravity coupled to a single scalar field providing an explicit unification of dark energy (as a dynamically generated cosmological constant) and dust fluid dark matter flowing along geodesics as an exact sum of two separate terms in the scalar field energy-momentum tensor. The fundamental reason for the dark species unification is the presence of a non-Riemannian volume-form in the scalar field action which both triggers the dynamical generation of the cosmological constant as well as gives rise to a hidden nonlinear Noether symmetry underlying the dust dark matter fluid nature. Upon adding appropriate perturbation breaking the hidden "dust" Noether symmetry we preserve the geodesic flow property of the dark matter while we suggest a way to get growing dark energy in the present universe' epoch free of evolution pathologies. Also, ...
Wang, Rui; Chen, Lie-Wen
2017-10-01
We establish a relation between the equation of state of nuclear matter and the fourth-order symmetry energy asym,4 (A) of finite nuclei in a semi-empirical nuclear mass formula by self-consistently considering the bulk, surface and Coulomb contributions to the nuclear mass. Such a relation allows us to extract information on nuclear matter fourth-order symmetry energy Esym,4 (ρ0) at normal nuclear density ρ0 from analyzing nuclear mass data. Based on the recent precise extraction of asym,4 (A) via the double difference of the ;experimental; symmetry energy extracted from nuclear masses, for the first time, we estimate a value of Esym,4 (ρ0) = 20.0 ± 4.6 MeV. Such a value of Esym,4 (ρ0) is significantly larger than the predictions from mean-field models and thus suggests the importance of considering the effects of beyond the mean-field approximation in nuclear matter calculations.
Vacuum Energy Sequestering and Graviton Loops
Kaloper, Nemanja
2016-01-01
We recently formulated a local mechanism of vacuum energy sequester. This mechanism automatically removes all matter loop contributions to vacuum energy from the stress energy tensor which sources the curvature. Here we adapt the local vacuum energy sequestering mechanism to also cancel all the vacuum energy loops involving virtual gravitons, in addition to the vacuum energy generated by matter fields alone.
Vacuum Energy Sequestering and Graviton Loops
Kaloper, Nemanja; Padilla, Antonio
2016-01-01
We recently formulated a local mechanism of vacuum energy sequester. This mechanism automatically removes all matter loop contributions to vacuum energy from the stress energy tensor which sources the curvature. Here we adapt the local vacuum energy sequestering mechanism to also cancel all the vacuum energy loops involving virtual gravitons, in addition to the vacuum energy generated by matter fields alone.
Ping, Y.; Fernandez-Panella, A.; Correa, A.; Shepherd, R.; Landen, O.; London, R. A.; Sterne, P. A.; Whitley, H. D.; Fratanduono, D.; Collins, G. W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Sio, H. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Boehly, T. R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)
2015-09-15
We propose a method for thermal conductivity measurements of high energy density matter based on differential heating. A temperature gradient is created either by surface heating of one material or at an interface between two materials by different energy deposition. The subsequent heat conduction across the temperature gradient is observed by various time-resolved probing techniques. Conceptual designs of such measurements using laser heating, proton heating, and x-ray heating are presented. The sensitivity of the measurements to thermal conductivity is confirmed by simulations.
Directing Matter and Energy: Five Challenges for Science and the Imagination
Hemminger, J.; Fleming, G.; Ratner, M.
2007-12-20
The twin aspects of energy and control (or direction) are the underlying concepts. Matter and energy are closely linked, and their understanding and control will have overwhelming importance for our civilization, our planet, our science, and our technology. This importance ranges even beyond the large portfolio of BES, both because these truly significant Grand Challenges confront many other realms of science and because even partial solutions to these challenges will enrich scientists’ collective imagination and ability to solve problems with new ideas and new methods.
Li, En-Kun; Geng, Jin-Ling
2014-01-01
The modified holographic Ricci dark energy coupled to interacting relativistic and non-relativistic dark matter is considered in the nonflat Friedmann-Robertson-Walker universe. Through examining the deceleration parameter, one can find that the transition time of the Universe from decelerating to accelerating phase in the interacting holographic Ricci dark energy model is close to that in the $\\Lambda$ cold dark matter model. The evolution of modified holographic Ricci dark energy's state parameter and the evolution of dark matter and dark energy's densities shows that the dark energy holds the dominant position from the near past to the future. By studying the statefinder diagnostic and the evolution of the total pressure, one can find that this model could explain the Universe's transition from the radiation to accelerating expansion stage through the dust stage. According to the $Om$ diagnostic, it is easy to find that when the interaction is weak and the proportion of relativistic dark matter in total da...
Reconstructing interaction between dark energy and dark matter using Gaussian Processes
Cai, Rong-Gen; Yang, Tao
2015-01-01
We present a non-parametric approach to reconstruct the interaction between dark energy and dark matter directly from SNIa Union 2.1 data using Gaussian Processes, which is a fully Bayesian approach for smoothing data. In this method, once the equation of state ($w$) of dark energy is specified, the interaction can be reconstructed with respect to redshift. For the decaying vacuum energy case with $w=-1$, the reconstructed interaction is consistent with the $\\Lambda$CDM model, namely, there is no evidence for the interaction. This also holds for the constant $w$ cases from $-0.9$ to $-1.1$ and for the CPL parameterization case. If the equation of state deviates obviously from $-1$, the reconstructed interaction exits at $95\\%$ confidence level. This shows the degeneracy between the interaction and the equation of state of dark energy when they get constraints from the observational data.
Interacting agegraphic dark energy model in tachyon cosmology coupled to matter
Farajollahi, H., E-mail: hosseinf@guilan.ac.ir [Department of Physics, University of Guilan, Rasht (Iran, Islamic Republic of); School of Physics, University of New South Wales, Sydney, NSW, 2052 (Australia); Ravanpak, A., E-mail: aravanpak@guilan.ac.ir [Department of Physics, University of Guilan, Rasht (Iran, Islamic Republic of); Fadakar, G.F., E-mail: gfadakar@guilan.ac.ir [Department of Physics, University of Guilan, Rasht (Iran, Islamic Republic of)
2012-05-15
Scalar-field dark energy models for tachyon fields are often regarded as an effective description of an underlying theory of dark energy. In this Letter, we propose the agegraphic dark energy model in tachyon cosmology by interaction between the components of the dark sectors. In the formalism, the interaction term emerges from the tachyon field nonminimally coupled to the matter Lagrangian in the model rather than being inserted into the formalism as an external source. The model is constrained by the observational data. Based on the best fitted parameters in both original and new agegraphic dark energy scenarios, the model is tested by Sne Ia data. The tachyon potential and tachyon field are reconstructed and coincidence problem is revisited.
Renormalized stress-energy tensor for stationary black holes
Levi, Adam
2017-01-01
We continue the presentation of the pragmatic mode-sum regularization (PMR) method for computing the renormalized stress-energy tensor (RSET). We show in detail how to employ the t -splitting variant of the method, which was first presented for ⟨ϕ2⟩ren , to compute the RSET in a stationary, asymptotically flat background. This variant of the PMR method was recently used to compute the RSET for an evaporating spinning black hole. As an example for regularization, we demonstrate here the computation of the RSET for a minimally coupled, massless scalar field on Schwarzschild background in all three vacuum states. We discuss future work and possible improvements of the regularization schemes in the PMR method.
Renormalized stress-energy tensor for stationary black holes
Levi, Adam
2016-01-01
We continue the presentation of the pragmatic mode-sum regularization (PMR) method for computing the renormalized stress-energy tensor (RSET). We show in detail how to employ the $t$-splitting variant of the method, which was first presented for $\\left\\langle\\phi^{2}\\right\\rangle_{ren}$, to compute the RSET in a stationary, asymptotically-flat background. This variant of the PMR method was recently used to compute the RSET for an evaporating spinning black hole. As an example for regularization, we demonstrate here the computation of the RSET for a minimally-coupled, massless scalar field on Schwarzschild background in all three vacuum states. We discuss future work and possible improvements of the regularization schemes in the PMR method.
Peng, Bin; Lai, Shang-kun; Li, Pan-lin; Wang, Yun-xia; Zhu, Jian-guo; Yang, Lian-xin; Wang, Yu-long
2015-01-01
In order to investigate the effects of ozone stress on photosynthesis, dry matter production, non-structural carbohydrate and yield formation of rice, a free air ozone concentration enrichment (FACE) experiment was conducted. A super hybrid rice cultivar II-you 084 with 3 spacing levels, low plant density (LD, 16 hills per m2), medium (MD, 24 hills per m2) and high plant density (HD, 32 hills per m2), was grown in the field at current and elevated ozone concentrations (current × 1.5). The results were as follows: Elevated ozone significantly reduced leaf SPAD value of UI-you 084 by 6%, 11% and 13%, at 63, 77, and 86 days after transplanting, respectively. The declines in leaf net photosynthetic rate, stomatal conductance and transpiration rate at filling stage increased significantly on ozone stress over time. Ozone stress decreased dry matter production of rice by 46% from heading stage to plant maturity, thus reduced biomass yield by 25%. Elevated ozone decreased the concentration and accumulation of soluble carbohydrate and starch in stem of II-you 084 at jointing, heading and plant maturity, but significantly increased the dry matter transportation rate. No significant interaction was observed between ozone and planting density for photosynthesis, dry matter production and non-structural carbohydrate of rice. The above results indicated that elevated ozone reduced photosynthesis and growth of rice II-you 084 at late growth stage, which had no relationship with planting density.
Nuclear matter fourth-order symmetry energy in relativistic mean field models
Cai, Bao-Jun
2011-01-01
Within the nonlinear relativistic mean field model, we derive the analytical expression of the nuclear matter fourth-order symmetry energy $E_{4}(\\rho)$. Our results show that the value of $E_{4}(\\rho)$ at normal nuclear matter density $\\rho_{0}$ is generally less than 1 MeV, confirming the empirical parabolic approximation to the equation of state for asymmetric nuclear matter at $\\rho_{0}$. On the other hand, we find that the $E_{4}(\\rho)$ may become nonnegligible at high densities. Furthermore, the analytical form of the $E_{4}(\\rho)$ provides the possibility to study the higher-order effects on the isobaric incompressibility of asymmetric nuclear matter, i.e., $K_{\\mathrm{sat}}(\\delta)=K_{0}+K_{\\mathrm{{sat},2}}\\delta ^{2}+K_{\\mathrm{{sat},4}}\\delta ^{4}+\\mathcal{O}(\\delta ^{6})$ where $\\delta =(\\rho_{n}-\\rho_{p})/\\rho $ is the isospin asymmetry, and we find that the value of $K_{\\mathrm{{sat},4}}$ is generally comparable with that of the $K_{\\mathrm{{sat},2}}$. In addition, we study the effects of the $E...
Sekine, Yusuke; Zyryanova, Alisa; Crespillo-Casado, Ana; Amin-Wetzel, Niko; Harding, Heather P; Ron, David
2016-01-01
The eukaryotic translation initiation factor eIF2B promotes mRNA translation as a guanine nucleotide exchange factor (GEF) for translation initiation factor 2 (eIF2). Endoplasmic reticulum (ER) stress-mediated activation of the kinase PERK and the resultant phosphorylation of eIF2's alpha subunit (eIF2α) attenuates eIF2B GEF activity thereby inducing an integrated stress response (ISR) that defends against protein misfolding in the ER. Mutations in all five subunits of human eIF2B cause an inherited leukoencephalopathy with vanishing white matter (VWM), but the role of the ISR in its pathogenesis remains unclear. Using CRISPR-Cas9 genome editing we introduced the most severe known VWM mutation, EIF2B4A391D, into CHO cells. Compared to isogenic wildtype cells, GEF activity of cells with the VWM mutation was impaired and the mutant cells experienced modest enhancement of the ISR. However, despite their enhanced ISR, imposed by the intrinsic defect in eIF2B, disrupting the inhibitory effect of phosphorylated eIF2α on GEF by a contravening EIF2S1/eIF2αS51A mutation that functions upstream of eIF2B, selectively enfeebled both EIF2B4A391D and the related severe VWM EIF2B4R483W cells. The basis for paradoxical dependence of cells with the VWM mutations on an intact eIF2α genotype remains unclear, as both translation rates and survival from stressors that normally activate the ISR were not reproducibly affected by the VWM mutations. Nonetheless, our findings support an additional layer of complexity in the development of VWM, beyond a hyperactive ISR.
Multiple scattering of low energy ions in matter: Influence of energy loss and interaction potential
Mekhtiche, A. [Laboratoire SNIRM, Faculté de Physique, Université des Sciences et de la Technologie Houari Boumediene (USTHB), BP 32 El Alia, Bab Ezzouar, Algiers (Algeria); Faculté des Sciences et de la Technologie, Université Yahia Farès de Médéa (Algeria); Khalal-Kouache, K., E-mail: kkouache@yahoo.fr [Laboratoire SNIRM, Faculté de Physique, Université des Sciences et de la Technologie Houari Boumediene (USTHB), BP 32 El Alia, Bab Ezzouar, Algiers (Algeria)
2015-07-01
In this paper, the effect of inelastic energy loss and interaction potential on transmitted ions at low energy is studied. For this purpose, angular distributions of slow He{sup +} ions transmitted through thin Ag films are calculated using the theory of multiple scattering. Thin films (20–50 Å at 2 keV and 50–200 Å at 10 keV) are considered so that the total path length of transmitted ions can be approximated by the value of the target thickness in this calculation. The corresponding values of the relative energy loss ΔE/E are comprised between 0.04 and 0.17. We show that even if low values of the thickness are considered, the total energy loss of ions in the target should be included in the calculation. These calculated angular distributions are also influenced by the potential used to describe the interaction between the incident ion and the target atom.
The General Antiparticle Spectrometer (GAPS) - Hunt for dark matter using low-energy antideuterons
von Doetinchem, Ph; Boggs, St; Craig, W; Fuke, H; Gahbauer, F; Hailey, Ch; Koglin, J; Madden, N; Mognet, I; Mori, K; Ong, R; Yoshida, T; Zhang, T; Zweerink, J
2010-01-01
The GAPS experiment is foreseen to carry out a dark matter search using a novel detection approach to detect low-energy cosmic-ray antideuterons. The theoretically predicted antideuteron flux resulting from secondary interactions of primary cosmic rays with the interstellar medium is very low. So far not a single cosmic antideuteron has been detected by any experiment, but well-motivated theories beyond the standard model of particle physics, e.g., supersymmetry or universal extra dimensions, contain viable dark matter candidates, which could led to a significant enhancement of the antideuteron flux due to self-annihilation of the dark matter particles.This flux contribution is believed to be especially large at small energies, which leads to a high discovery potential for GAPS. GAPS is designed to achieve its goals via a series of ultra-long duration balloon flights at high altitude in Antarctica, starting in 2014. The detector itself will consist of 13 planes of Si(Li) solid state detectors and a time of fl...
Energy Harvesting Utilizing Stress Induced Phase Transformation in Ferroelectric Piezocrystals
2013-03-14
of a phase change transducer configured as a Tonpilz transducer employing mechanical pre- stress, adjustable electronic pre-stress and a single...of another transducer 70 utilizing a Tonpilz configuration with a magnetostrictive pre-stress component 72. Magnetostrictive pre- stress component...entitled “Crystalline Relaxor-Ferroelectric Phase Transition Transducer .” STATEMENT OF GOVERNMENT INTEREST [0002] The invention described herein
Buchert, Thomas
2010-01-01
We outline the key-steps towards the construction of a physical, fully relativistic cosmology, in which we aim to trace Dark Energy and Dark Matter back to physical properties of space. The influence of inhomogeneities on the effective evolution history of the Universe is encoded in backreaction terms and expressed through spatially averaged geometrical invariants. These are absent and interpreted as missing dark fundamental sources in the standard model. In the inhomogeneous case they can be interpreted as energies of an emerging scalar field (the morphon). These averaged invariants vanish for a homogeneous geometry, where the morphon is in an unstable equilibrium state. If this state is perturbed, the morphon can act as a classical inflaton in the Early Universe and its de-balanced energies can mimic the dark sources in the Late Universe, depending on spatial scale as Dark Energy or as Dark Matter, respectively. We lay down a line of arguments that is qualitatively conclusive, and we outline open problems o...
Covariant energy density functionals: nuclear matter constraints and global ground state properties
Afanasjev, A V
2016-01-01
The correlations between global description of the ground state properties (binding energies, charge radii) and nuclear matter properties of the state-of-the-art covariant energy density functionals have been studied. It was concluded that the strict enforcement of the constraints on the nuclear matter properties (NMP) defined in Ref.\\ \\cite{RMF-nm} will not necessary lead to the functionals with good description of the binding energies and other ground and excited state properties. In addition, it will not substantially reduce the uncertainties in the predictions of the binding energies in neutron-rich systems. It turns out that the functionals, which come close to satisfying these NMP constraints, have some problems in the description of existing data. On the other hand, these problems are either absent or much smaller in the functionals which are carefully fitted to finite nuclei but which violate some NMP constraints. This is a consequence of the fact that the properties of finite nuclei are defined not o...
DING Li-ren; WANG Kai; Baher Fahmy; SHEN Hua-hao; Cormier Stephania
2010-01-01
Background Airborne fine particulate matter (PM) can induce pulmonary inflammation which may adversely affect human health, but very few reports about its effect on the neonate rats are available. This study aimed to observe the potential impact and toxicity of fine PMs on the airway in neonate rats.Methods Pulmonary inflammation, cytotoxicity, histopathology, and antioxidants as well as oxidant products were assessed 24 hours after intratracheal instillation of fine PM consecutively for 3 days. Cytotoxicity of fine PM was measured in Hep-2 cells.Results Rats treated with high dose fine PM developed significant pulmonary inflammation characterized by neutrophiland macrophage infiltration. The inflammatory process was related to elevated level of TNF-α and prooxidant/antioxidant imbalance in the lung. Cytotoxicity studies performed in human epithelial cells indicated that high dose fine PM significantly reduced cell viability.Conclusion The study demonstrated acute exposure to fine PM induced airway inflammation as well as increased oxidative stress in addition to its direct toxic effect on airway epithelium cells.
Flavour Fields in Steady State: Stress Tensor and Free Energy
Banerjee, Avik; Kundu, Sandipan
2015-01-01
The dynamics of a probe brane in a given gravitational background is governed by the Dirac-Born-Infeld action. The corresponding open string metric arises naturally in studying the fluctuations on the probe. In Gauge-String duality, it is known that in the presence of a constant electric field on the worldvolume of the probe, the open string metric acquires an event horizon and therefore the fluctuation modes on the probe experience an effective temperature. In this article, we bring together various properties of such a system to a formal definition and a subsequent narration of the effective thermodynamics and the stress tensor of the corresponding flavour fields, also including a non-vanishing chemical potential. In doing so, we point out a potentially infinitely-degenerate scheme-dependence of regularizing the free energy, which nevertheless yields a universal contribution in certain cases. This universal piece appears as the coefficient of a log-divergence in free energy when a space-filling probe brane ...
Wins Pierre
2008-01-01
Full Text Available Abstract Background Thiamine triphosphate (ThTP exists in most organisms and might play a role in cellular stress responses. In E. coli, ThTP is accumulated in response to amino acid starvation but the mechanism of its synthesis is still a matter of controversy. It has been suggested that ThTP is synthesized by an ATP-dependent specific thiamine diphosphate kinase. However, it is also known that vertebrate adenylate kinase 1 catalyzes ThTP synthesis at a very low rate and it has been postulated that this enzyme is responsible for ThTP synthesis in vivo. Results Here we show that bacterial, as vertebrate adenylate kinases are able to catalyze ThTP synthesis, but at a rate more than 106-fold lower than ATP synthesis. This activity is too low to explain the high rate of ThTP accumulation observed in E. coli during amino acid starvation. Moreover, bacteria from the heat-sensitive CV2 strain accumulate high amounts of ThTP (>50% of total thiamine at 37°C despite complete inactivation of adenylate kinase and a subsequent drop in cellular ATP. Conclusion These results clearly demonstrate that adenylate kinase is not responsible for ThTP synthesis in vivo. Furthermore, they show that E. coli accumulate large amounts of ThTP under severe energy stress when ATP levels are very low, an observation not in favor of an ATP-dependent mechanisms for ThTP synthesis.
Reconstruction of the interaction term between dark matter and dark energy using SNe Ia
Solano, Freddy Cueva; Nucamendi, Ulises, E-mail: freddy@ifm.umich.mx, E-mail: ulises@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, CP. 58040, Morelia, Michoacán (Mexico)
2012-04-01
We apply a parametric reconstruction method to a homogeneous, isotropic and spatially flat Friedmann-Robertson-Walker (FRW) cosmological model filled of a fluid of dark energy (DE) with constant equation of state (EOS) parameter interacting with dark matter (DM)\\@. The reconstruction method is based on expansions of the general interaction term and the relevant cosmological variables in terms of Chebyshev polynomials which form a complete set orthonormal functions. This interaction term describes an exchange of energy flow between the DE and DM within dark sector. To show how the method works we do the reconstruction of the interaction function expanding it in terms of only the first six Chebyshev polynomials and obtain the best estimation for the coefficients of the expansion assuming three models: (a) a DE equation of the state parameter w = −1 (an interacting cosmological Λ), (b) a DE equation of the state parameter w = constant with a dark matter density parameter fixed, (c) a DE equation of the state parameter w = constant with a free constant dark matter density parameter to be estimated, and using the Union2 SNe Ia data set from ''The Supernova Cosmology Project'' (SCP) composed by 557 type Ia supernovae. In both cases, the preliminary reconstruction shows that in the best scenario there exist the possibility of a crossing of the noninteracting line Q = 0 in the recent past within the 1σ and 2σ errors from positive values at early times to negative values at late times. This means that, in this reconstruction, there is an energy transfer from DE to DM at early times and an energy transfer from DM to DE at late times. We conclude that this fact is an indication of the possible existence of a crossing behavior in a general interaction coupling between dark components.
2012-02-24
... License] In the Matter of Exelon Corporation; Constellation Energy Group, Inc.; R.E. Ginna Nuclear Power... (Exelon), and Exelon Ventures Company, LLC (Exelon Ventures), and Constellation Energy Nuclear Group, LLC... Advisory Committee of Constellation Energy Nuclear Group, LLC, shall prepare an Annual Report regarding the...
2013-05-28
.... IW017, IW029, XW010, XW018, XW020, XCOM1211, XSOU8825] In the Matter of Energy Solutions Inc.; Order Approving Indirect Transfer of Import and Export Licenses I EnergySolutions Services, Inc. (ES Services... Energy Capital Partners II, LLC (ECP II). ES, Inc. represents that the indirect transfer will not...
Clustering GCG: a viable option for unified dark matter-dark energy?
Kumar, Sumit; Sen, Anjan A, E-mail: sumit@ctp-jamia.res.in, E-mail: aasen@jmi.ac.in [Centre For Theoretical Physics, Jamia Millia Islamia, New Delhi-110025 (India)
2014-10-01
We study the clustering Generalized Chaplygin Gas (GCG) as a possible candidate for dark matter-dark energy unification. The vanishing speed of sound 0c{sub s}{sup 2} = ) for the GCG fluid can be obtained by incorporating higher derivative operator in the original K-essence Lagrangian. The evolution of the density fluctuations in the GCG+Baryon fluid is studied in the linear regime. The observational constraints on the model are obtained using latest data from SNIa, H(z), BAO and also for the fσ{sub 8} measurements. The matter power spectra for the allowed parameter values are well behaved without any unphysical features.
Hunting for Dark Matter Coannihilation by Mixing Dijet Resonances and Missing Transverse Energy
Buschmann, Malte; Kaminska, Anna; Liu, Jia; de Vries, Maikel; Wang, Xiao-Ping; Yu, Felix; Zurita, Jose
2016-01-01
Simplified models of the dark matter (co)annihilation mechanism predict striking new collider signatures untested by current searches. These models, which were codified in the coannihilation codex, provide the basis for a dark matter (DM) discovery program at the Large Hadron Collider (LHC) driven by the measured DM relic density. In this work, we study an exemplary model featuring $s$-channel DM coannihilation through a scalar diquark mediator as a representative case study of scenarios with strongly interacting coannihilation partners. We discuss the full phenomenology of the model, ranging from low energy flavor constraints, vacuum stability requirements, and precision Higgs effects to direct detection and indirect detection prospects. Moreover, motivated by the relic density calculation, we find significant portions of parameter space are compatible with current collider constraints and can be probed by future searches, including a proposed analysis for the novel signature of a dijet resonance accompanied...
Diagramas de energía, fuerza y materia = Diagrams of energy, force and matter
Josep Maria Montaner
2013-10-01
Full Text Available ResumenEn este ensayo se va a tratar sobre arquitectura a partir de la definición de forma como “estructura esencial e interna, como construcción del espacio y de la materia”. Para ello, podemos establecer, como punto de partida, que el proceso de la arquitectura va de la energía, las fuerzas y la materia hacia la forma. Por tanto, teorizar sobre la forma en arquitectura nos lleva a reflexionar sobre tres fenómenos previos a su configuración: la energía, las fuerzas y la materia. Para seguir estos procesos físicos es útil remitirse al pensamiento postestructuralista de Gilles Deleuze y Félix Guattari, especialmente a su texto Mil Mesetas. Capitalismo y esquizofrenia (1980 y a conceptos como “rizoma” y “agenciamiento” y, sobre todo, utilizar la herramienta interpretativa y creativa del “diagrama”.Palabras claveenergía, fuerza, materia, forma, Deleuze, GuattariAbstractThis essay will deal on architecture from the defi nition of form as "critical and internal structure as construction of space and matter." For that, we can establish, as a starting point, that the process of architecture goes from energy, forces and matter to form. Thus, theorizing about form in architecture leads us to refl ect on three prior phenomena to its confi guration: energy, forces and matter. To follow these physical processes is useful to refer the poststructuralist thought´s Gilles Deleuze and Felix Guattari, especially his text A Thousand Plateaus. Capitalism and Schizophrenia (1980 and concepts such as "rhizome" and "assemblage" and, above all, to use the creative and interpretative tool of "diagramme".Key wordsenergy, force, matter, form, Deleuze, Guattari
Unified dark energy and dust dark matter dual to quadratic purely kinetic K-essence
Guendelman, Eduardo [Ben-Gurion University of the Negev, Department of Physics, Beersheba (Israel); Nissimov, Emil; Pacheva, Svetlana [Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria)
2016-02-15
We consider a modified gravity plus single scalar-field model, where the scalar Lagrangian couples symmetrically both to the standard Riemannian volume-form (spacetime integration measure density) given by the square root of the determinant of the Riemannian metric, as well as to another non-Riemannian volume-form in terms of an auxiliary maximal-rank antisymmetric tensor gauge field. As shown in a previous paper, the pertinent scalar-field dynamics provides an exact unified description of both dark energy via dynamical generation of a cosmological constant, and dark matter as a ''dust'' fluid with geodesic flow as a result of a hidden Noether symmetry. Here we extend the discussion by considering a non-trivial modification of the purely gravitational action in the form of f(R) = R -αR{sup 2} generalized gravity. Upon deriving the corresponding ''Einstein-frame'' effective action of the latter modified gravity-scalar-field theory we find explicit duality (in the sense of weak versus strong coupling) between the original model of unified dynamical dark energy and dust fluid dark matter, on one hand, and a specific quadratic purely kinetic ''k-essence'' gravity-matter model with special dependence of its coupling constants on only two independent parameters, on the other hand. The canonical Hamiltonian treatment and Wheeler-DeWitt quantization of the dual purely kinetic ''k-essence'' gravity-matter model is also briefly discussed. (orig.)
Low-energy pions in nuclear matter and 2pi photoproduction within a BUU transport model
Buss, O; Mosel, U; Mühlich, P; Alvarez-Ruso, Luis; Buss, Oliver; Mosel, Ulrich; Muehlich, Pascal
2006-01-01
A description of low-energy scattering of pions and nuclei within a BUU transport model is presented. Implementing different scenarios of medium modifications, the mean free path of pions in nuclear matter at low momenta and pion absorption reactions on nuclei have been studied and compared to data and to results obtained via quantum mechanical scattering theory. We show that even in a regime of a long pionic wave length the semi-classical transport model is still a reliable framework for pion kinetic energies greater than ~20-30 MeV. Results are presented on pion-absorption cross sections in the regime of 10 MeV < E(kin) < 130 MeV and on photon-induced double-pion production at incident beam energies of 400-500 MeV.
Machine Protection and High Energy Density States in Matter for High Energy Hadron Accelerators
Blanco Sancho, Juan; Schmidt, R
The Large Hadron Collider (LHC) is the largest accelerator in the world. It is designed to collide two proton beams with unprecedented particle energy of 7TeV. The energy stored in each beam is 362MJ, sufficient to melt 500kg of copper. An accidental release of even a small fraction of the beam energy can result in severe damage to the equipment. Machine protection systems are essential to safely operate the accelerator and handle all possible accidents. This thesis deals with the study of different failure scenarios and its possible consequences. It addresses failure scenarios ranging from low intensity losses on high-Z materials and superconductors to high intensity losses on carbon and copper collimators. Low beam losses are sufficient to quench the superconducting magnets and the stabilized superconducting cables (bus-bars) that connects the main magnets. If this occurs and the energy from the bus-bar is not extracted fast enough it can lead to a situation similar to the accident in 2008 at LHC during pow...
Baldi, Marco; Maccio, Andrea V
2011-01-01
We investigate the effects of a coupled Dark Energy (cDE) scalar field on the alignment between satellites and matter distributions in galaxy clusters. Using high-resolution N-body simulations for LCDM and cDE cosmological models, we compute the probability density distribution for the alignment angle between the satellite galaxies and underlying matter distributions, finding a difference between the two scenarios. With respect to LCDM, in cDE cosmologies the satellite galaxies are less preferentially located along the major axis of the matter distribution, possibly reducing the tension with obersevational data. A physical explanation is that the coupling between dark matter and dark energy acts as an additional tidal force on the satellite galaxies diminishing the alignments between their distribution and the matter one. Through a likelihood ratio test based on the generalized chi square statistics, the null hypothesis that the two probability distributions come from the same parent population is rejected at...
Challenges at the Frontiers of Matter and Energy: Transformative Opportunities for Discovery Science
Hemminger, John C. [Univ. of California, Irvine, CA (United States); Sarrao, John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Crabtree, George [Argonne National Lab. (ANL), Argonne, IL (United States); University of Illinois, Chicago; Flemming, Graham [Univ. of California, Berkeley, CA (United States); Ratner, Mark [Northwestern Univ., Evanston, IL (United States)
2015-11-01
FIVE TRANSFORMATIVE OPPORTUNITIES FOR DISCOVERY SCIENCE As a result of this effort, it has become clear that the progress made to date on the five Grand Challenges has created a springboard for seizing five new Transformative Opportunities that have the potential to further transform key technologies involving matter and energy. These five new Transformative Opportunities and the evidence supporting them are discussed in this new report, “Challenges at the Frontiers of Matter and Energy: Transformative Opportunities for Discovery Science.” Mastering Hierarchical Architectures and Beyond-Equilibrium Matter Complex materials and chemical processes transmute matter and energy, for example from CO2 and water to chemical fuel in photosynthesis, from visible light to electricity in solar cells and from electricity to light in light emitting diodes (LEDs) Such functionality requires complex assemblies of heterogeneous materials in hierarchical architectures that display time-dependent away-from-equilibrium behaviors. Much of the foundation of our understanding of such transformations however, is based on monolithic single- phase materials operating at or near thermodynamic equilibrium. The emergent functionalities enabling next-generation disruptive energy technologies require mastering the design, synthesis, and control of complex hierarchical materials employing dynamic far-from-equilibrium behavior. A key guide in this pursuit is nature, for biological systems prove the power of hierarchical assembly and far- from-equilibrium behavior. The challenges here are many: a description of the functionality of hierarchical assemblies in terms of their constituent parts, a blueprint of atomic and molecular positions for each constituent part, and a synthesis strategy for (a) placing the atoms and molecules in the proper positions for the component parts and (b) arranging the component parts into the required hierarchical structure. Targeted functionality will open the door
Evolution of matter and energy on a cosmic and planetary scale
Taube, M
1985-01-01
My intention in this book is to describe in simple language, using a minimum of mathematics but a maximum of numerical values, the most important developments of science dealing with matter and energy on cosmic and global scales. In the conventional literature all of these findings are distributed among books and journals on physics, astronomy, chemistry, geology, biology, energy, engineering, and the environmental sciences. The main purpose here is to attempt to give a unified description of Nature from the elementary particles to the Universe as a whole. This is used as a basis for analysing the future development of mankind. The future evolution of the Universe, galaxies, stars, and planets gives some hope for the destiny of mankind. The problem of matter and energy flow on the Earth appears soluble even for the distant future. There seems to be no reason why a long period of human development on this planet should not be possible. The book has been prepared based on my lectures at the Warsaw University fr...
Constraints on the decay of dark matter to dark energy from weak lensing bispectrum tomography
Schaefer, Bjoern Malte; Maartens, Roy
2008-01-01
We consider a phenomenological model for a coupling between the dark matter and dark energy fluids and investigate the sensitivity of a weak lensing measurement for constraining the size of this coupling term. Physically, the functional form of the coupling term in our model describes the decay of dark matter into dark energy. We present forecasts for tomographic measurements of the weak shear bispectrum for the DUNE experiment in a Fisher-matrix formalism, where we describe the nonlinearities in structure formation by hyper-extended perturbation theory. Physically, CDM decay tends to increase the growth rate of density perturbations due to higher values for the CDM density at early times, and amplifies the lensing signal because of stronger fluctuations in the gravitational potential. We focus on degeneracies between the dark energy equation of state properties and the CDM decay constant relevant for structure formation and weak lensing. A typical lower bound on the CDM decay time ~7.7/H_0 = 75.3 Gyr/h$ whic...
Interacting dark matter and q-deformed dark energy with particle creation and annihilation
Kolay, Erdinc
2016-01-01
We propose a new model for studying the dark constituents of the universe by regarding the dark energy as a q-deformed scalar field interacting with the dark matter, in the framework of standard general relativity. Here we assume the number of particles in each mode of the q-deformed scalar field varies in time by the particle creation and annihilation. We first describe the q-deformed scalar field dark energy quantum field theoretically, then construct the action and the dynamical structure of these interacting dark sector, in order to study the dynamics of the model. In the following section, we perform the phase space analysis of the model to confirm and interpret our proposal by searching the stable attractor solutions implying the late-time accelerating phase of the universe. We then obtain the result that when interaction and equation of state parameter of the dark matter evolves from the present day values into a particular value, the dark energy turns out to be a q-deformed scalar field.
Exploring a new interaction between dark matter and dark energy using the growth rate of structure
Richarte, Martín G
2015-01-01
We present a phenomenological interaction with a scale factor power law form which leads to the appearance of two kinds of perturbed terms, a scale factor spatial variation along with perturbed Hubble expansion rate. We study both the background and the perturbation evolution within the parametrized post-Friedmann scheme, obtaining that the exchange of energy-momentum can flow from dark energy to dark matter in order to keep dark energy and dark matter densities well defined at all times. We combine several measures of the cosmic microwave background (WMAP9+Planck) data, baryon acoustic oscillation measurements, redshift-space distortion data, JLA sample of supernovae, and Hubble constant for constraining the coupling constant and the exponent provided both parametrized the interaction itself. The joint analysis of ${\\rm Planck+WMAP9+BAO}$ ${\\rm +RSD+JLA+HST}$ data seems to favor large coupling constant, $\\xi_c = 0.34403427_{- 0.18907353}^{+ 0.14430125}$ at 1 $\\sigma$ level, and prefers a power law interactio...
Sussman, Roberto A.
2009-01-01
A numerical approach is considered for spherically symmetric spacetimes that generalize Lemaître Tolman Bondi dust solutions to nonzero pressure (“LTB spacetimes”). We introduce quasilocal (QL) variables that are covariant LTB objects satisfying evolution equations of Friedman Lemaître Robertson Walker (FLRW) cosmologies. We prove rigorously that relative deviations of the local covariant scalars from the QL scalars are nonlinear, gauge invariant and covariant perturbations on a FLRW formal background given by the QL scalars. The dynamics of LTB spacetimes is completely determined by the QL scalars and these exact perturbations. Since LTB spacetimes are compatible with a wide variety of “equations of state,” either single fluids or mixtures, a large number of known solutions with dark matter and dark energy sources in a FLRW framework (or with linear perturbations) can be readily examined under idealized but nontrivial inhomogeneous conditions. Coordinate choices and initial conditions are derived for a numerical treatment of the perturbation equations, allowing us to study nonlinear effects in a variety of phenomena, such as gravitational collapse, nonlocal effects, void formation, dark matter and dark energy couplings, and particle creation. In particular, the embedding of inhomogeneous regions can be performed by a smooth matching with a suitable FLRW solution, thus generalizing the Newtonian “top hat” models that are widely used in astrophysical literature. As examples of the application of the formalism, we examine numerically the formation of a black hole in an expanding Chaplygin gas FLRW universe, as well as the evolution of density clumps and voids in an interactive mixture of cold dark matter and dark energy.
Chuan-Jun Zhuo; Hai-Man Bian; Yan-Jie Gao; Xiao-Lei Ma; Sheng-Zhang Ji; Meng-Yuan Yao; Ning Zhai
2016-01-01
Background: This study aimed to observe the differences in brain gray matter volume in drug-naive female patients after the first episode of major depression with and without stressful life events (SLEs) before the onset of depression.Methods: Forty-three drug-naive female patients voluntarily participated in the present study after the first major depressive episode.The life event scale was used to evaluate the severity of the impact of SLEs during 6 months before the onset of the major depressive episode.High-field magnetic resonance imaging (MRI) scans were obtained, and the VBM and SPM8 software process were used to process and analyze the MRI.Results: Compared to that in patients without SLEs, the volume of brain gray matter was lower in the bilateral temporal lobe, right occipital lobe, and right limbic lobe in the SLE group.However, the gray matter volume did not differ significantly between the two groups after the application of false discovery rate (FDR) correction.Conclusions: Although the results of the present study suggest the absence of significant differences in brain gray matter volume between female drug-naive patients after the first episode of major depression with and without SLEs after FDR correction, the study provides useful information for exploring the definitive role of stress in the onset of depression.
Neutral current interactions of low-energy neutrinos in dense neutron matter
Lovato, Alessandro; Gandolfi, Stefano; Losa, Cristina
2013-01-01
We report the results of a calculation of the response of cold neutron matter to neutral-current interactions with low energy neutrinos, carried out using an effective interaction and effective operators consistently derived within the formalism of Correlated Basis Functions. The neutrino mean free path obtained from the calculated responses turns out to be strongly affected by both short and long range correlations, leading to a sizable increase with respect to the prediction of the Fermi gas model. The consistency between the proposed approach and Landau theory of normal Fermi liquids also has been investigated, using a set of Landau parameters obtained from the matrix elements of the effective interaction.
Wang, B.; Abdalla, E.; Atrio-Barandela, F.; Pavón, D.
2016-09-01
Models where dark matter and dark energy interact with each other have been proposed to solve the coincidence problem. We review the motivations underlying the need to introduce such interaction, its influence on the background dynamics and how it modifies the evolution of linear perturbations. We test models using the most recent observational data and we find that the interaction is compatible with the current astronomical and cosmological data. Finally, we describe the forthcoming data sets from current and future facilities that are being constructed or designed that will allow a clearer understanding of the physics of the dark sector.
Search for dark matter with jets and missing transverse energy at 13 TeV
Vannerom, David
2016-01-01
A search for new physics is performed using events having large missing transverse momentum and one or more jets with high transverse momenta in a data sample of proton-proton interactions at the centre-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 2.3 fb-1 collected in 2015 by the CMS detector, during the Run2 of the LHC. Results are presented in terms of limits on dark matter production based on simplified models.
Wong, Henry T
2008-01-01
The status and plans of a research program on the development of ultra-low-energy germanium detectors with sub-keV sensitivities are reported. We survey the scientific goals which include the observation of neutrino-nucleus coherent scattering, the studies of neutrino magnetic moments, as well as the searches of WIMP dark matter. In particular, a threshold of 100-200 eV and a sub-keV background comparable to underground experiments were achieved with prototype detectors. New limits were set for WIMPs with mass between 3-6 GeV. The prospects of the realization of full-scale experiments are discussed.
Wang, B; Atrio-Barandela, F; Pavon, D
2016-01-01
Models where Dark Matter and Dark Energy interact with each other have been proposed to solve the coincidence problem. We review the motivations underlying the need to introduce such interaction, its influence on the background dynamics and how it modifies the evolution of linear perturbations. We test models using the most recent observational data and we find that the interaction is compatible with the current astronomical and cosmological data. Finally, we describe the forthcoming data sets from current and future facilities that are being constructed or designed that will allow a clearer understanding of the physics of the dark sector.
Wang, B; Abdalla, E; Atrio-Barandela, F; Pavón, D
2016-09-01
Models where dark matter and dark energy interact with each other have been proposed to solve the coincidence problem. We review the motivations underlying the need to introduce such interaction, its influence on the background dynamics and how it modifies the evolution of linear perturbations. We test models using the most recent observational data and we find that the interaction is compatible with the current astronomical and cosmological data. Finally, we describe the forthcoming data sets from current and future facilities that are being constructed or designed that will allow a clearer understanding of the physics of the dark sector.
Harvey, Omar R.; Myers-Pigg, Allison N.; Kuo, Li-Jung; Singh, Bhupinder Pal; Kuehn, Kevin A.; Louchouarn, Patrick
2016-08-16
A fundamental understanding of biodegradability is central to elucidating the role(s) of pyrogenic organic matter (PyOM) in biogeochemical cycles. Since microbial community and ecosystem dynamics are driven by net energy flows, then a quantitative assessment of energy value versus energy requirement for oxidation of PyOM should yield important insights into their biodegradability. We used bomb calorimetry, step-wise isothermal thermogravimetric analysis (isoTGA) and 5-year in-situ bidegradation data, to develop energy-biodegradability relationships for a suite of plant- and manure-derived PyOM (n = 10). The net energy value (ΔE) for PyOM was between 4.0 and 175 kJ mol-1; with manure-derived PyOM having the highest ΔE. Thermal-oxidation activation energy (Ea) requirements ranged from 51 to 125 kJ mol-1, with wood-derived PyOM having the highest Ea requirements. We propose a return-on-investment (ROI) parameter (ΔE/Ea) for differentiating short-to-medium term biodegradability of PyOM and deciphering if biodegradation will most likely proceed via co-metabolism (ROI < 1) or direct metabolism (ROI ≥ 1). The ROI-biodegradability relationship was sigmoidal with higher biodegradability associated with PyOM of higher ROI; indicating that microbes exhibit a higher preference for “high investment value” PyOM.
A Comprehensive Study of Low-Energy Response for Xenon-Based Dark Matter Experiments
Wang, L
2016-01-01
We report a comprehensive study of the energy response to low-energy recoils in dual-phase xenon-based dark matter experiments. The average energy expended per electron-ion (e-ion) pair ($W_{i}$-value), quenching factors, and recombination involving energy response are extracted through the physics mechanisms behind each process. We derive the variation of the $W_{i}$-value using the exciton-to-ion ratio ($\\frac{N_{ex}}{N_{i}}$) as a function of recoil energy with the mean ionization potential. We show the scintillation quenching follows the form of Birks' law for electronic recoils at zero field. A recombination model is developed to explain the recombination probability as a function of recoil energy at zero field and non-zero field. The role of e-ion recombination is discussed for both parent recombination and volume recombination. We find that the volume recombination under non-zero field is constrained by a plasma effect, which is caused by a high density of charge carriers along the ionization track for...
Energy transfer during stress relaxation of contracting frog muscle fibres.
Mantovani, M; Heglund, N C; Cavagna, G A
2001-12-15
1. A contracting muscle resists stretching with a force greater than the force it can exert at a constant length, T(o). If the muscle is kept active at the stretched length, the excess tension disappears, at first rapidly and then more slowly (stress relaxation). The present study is concerned with the first, fast tension decay. In particular, it is still debated if and to what extent the fast tension decay after a ramp stretch involves a conservation of the elastic energy stored during stretching into cross-bridge states of higher chemical energy. 2. Single muscle fibres of Rana temporaria and Rana esculenta were subjected to a short ramp stretch (approximately 15 nm per half-sarcomere at either 1.4 or 0.04 sarcomere lengths s(-1)) on the plateau of the force-length relation at temperatures of 4 and 14 degrees C. Immediately after the end of the stretch, or after discrete time intervals of fixed-end contraction and stress relaxation at the stretched length (Delta t(isom) = 0.5-300 ms), the fibre was released against a force ~T(o). Fibre and sarcomere stiffness during the elastic recoil to T(o) (phase 1) and the subsequent transient shortening against T(o) (phase 2), which is expression of the work enhancement by stretch, were measured after different Delta t(isom) and compared with the corresponding fast tension decay during Delta t(isom). 3. The amplitude of fast tension decay is large after the fast stretch, and small or nil after the slow stretch. Two exponential terms are necessary to fit the fast tension decay after the fast stretch at 4 degrees C, whereas one is sufficient in the other cases. The rate constant of the dominant exponential term (0.1-0.2 ms(-1) at 4 degrees C) increases with temperature with a temperature coefficient (Q(10)) of approximately 3. 4. After fast stretch, the fast tension decay during Delta t(isom) is accompanied in both species and at both temperatures by a corresponding increase in the amplitude of phase 2 shortening against T
Large Hadron Collider at CERN: Beams generating high-energy-density matter.
Tahir, N A; Schmidt, R; Shutov, A; Lomonosov, I V; Piriz, A R; Hoffmann, D H H; Deutsch, C; Fortov, V E
2009-04-01
This paper presents numerical simulations that have been carried out to study the thermodynamic and hydrodynamic responses of a solid copper cylindrical target that is facially irradiated along the axis by one of the two Large Hadron Collider (LHC) 7 TeV/ c proton beams. The energy deposition by protons in solid copper has been calculated using an established particle interaction and Monte Carlo code, FLUKA, which is capable of simulating all components of the particle cascades in matter, up to multi-TeV energies. These data have been used as input to a sophisticated two-dimensional hydrodynamic computer code BIG2 that has been employed to study this problem. The prime purpose of these investigations was to assess the damage caused to the equipment if the entire LHC beam is lost at a single place. The FLUKA calculations show that the energy of protons will be deposited in solid copper within about 1 m assuming constant material parameters. Nevertheless, our hydrodynamic simulations have shown that the energy deposition region will extend to a length of about 35 m over the beam duration. This is due to the fact that first few tens of bunches deposit sufficient energy that leads to high pressure that generates an outgoing radial shock wave. Shock propagation leads to continuous reduction in the density at the target center that allows the protons delivered in subsequent bunches to penetrate deeper and deeper into the target. This phenomenon has also been seen in case of heavy-ion heated targets [N. A. Tahir, A. Kozyreva, P. Spiller, D. H. H. Hoffmann, and A. Shutov, Phys. Rev. E 63, 036407 (2001)]. This effect needs to be considered in the design of a sacrificial beam stopper. These simulations have also shown that the target is severely damaged and is converted into a huge sample of high-energy density (HED) matter. In fact, the inner part of the target is transformed into a strongly coupled plasma with fairly uniform physical conditions. This work, therefore, has
Matter Non-conservation in the Universe and Dynamical Dark Energy
Fritzsch, Harald
2012-01-01
In an expanding universe the vacuum energy density \\rho_{\\Lambda} is expected to be a dynamical quantity. In quantum field theory in curved space-time \\rho_{\\Lambda} should exhibit a slow evolution, determined by the expansion rate of the universe H. Recent measurements on the time variation of the fine structure constant and of the proton-electron mass ratio suggest that basic quantities of the Standard Model, such as the QCD scale parameter \\Lambda_{QCD}, may not be conserved in the course of the cosmological evolution. The masses of the nucleons m_N and of the atomic nuclei would also be affected. Matter is not conserved in such a universe. These measurements can be interpreted as a leakage of matter into vacuum or vice versa. We point out that the amount of leakage necessary to explain the measured value of \\dot{m}_N/m_N could be of the same order of magnitude as the observationally allowed value of \\dot\\rho_{\\Lambda}/\\rho_{\\Lambda}, with a possible contribution from the dark matter particles. The dark en...
Low energy gamma ray excess confronting a singlet scalar extended inert doublet dark matter model
Amit Dutta Banik
2015-04-01
Full Text Available Recent study of gamma rays originating from the region of galactic centre has confirmed an anomalous γ-ray excess within the energy range 1–3 GeV. This can be explained as the consequence of pair annihilation of a 31–40 GeV dark matter into bb¯ with thermal annihilation cross-section σv∼1.4–2.0×10−26 cm3/s. In this work we revisit the Inert Doublet Model (IDM in order to explain this gamma ray excess. Taking the lightest inert particle (LIP as a stable DM candidate we show that a 31–40 GeV dark matter derived from IDM will fail to satisfy experimental limits on dark matter direct detection cross-section obtained from ongoing direct detection experiments and is also inconsistent with LHC findings. We show that a singlet extended inert doublet model can easily explain the reported γ-ray excess which is as well in agreement with Higgs search results at LHC and other observed results like DM relic density and direct detection constraints.
The Future of the Local Large Scale Structure: the roles of Dark Matter and Dark Energy
Hoffman, Yehuda; Yepes, Gustavo; Dover, Yaniv
2007-01-01
We study the distinct effects of Dark Matter and Dark Energy on the future evolution of nearby large scale structures using constrained N-body simulations. We contrast a model of Cold Dark Matter and a Cosmological Constant (LCDM) with an Open CDM (OCDM) model with the same matter density Omega_m =0.3 and the same Hubble constant h=0.7. Already by the time the scale factor increased by a factor of 6 (29 Gyr from now in LCDM; 78 Gyr from now in OCDM) the comoving position of the Local Group is frozen. Well before that epoch the two most massive members of the Local Group, the Milky Way and Andromeda (M31), will merge. However, as the expansion rates of the scale factor in the two models are different, the Local Group will be receding in physical coordinates from Virgo exponentially in a LCDM model and at a roughly constant velocity in an OCDM model. More generally, in comoving coordinates the future large scale structure will look like a sharpened image of the present structure: the skeleton of the cosmic web ...
Quintessential Inflation, Unified Dark Energy and Dark Matter, and Higgs Mechanism
Guendelman, Eduardo; Pacheva, Svetlana
2016-01-01
We describe a new type of gravity-matter models where gravity couples in a non-conventional way to two distinct scalar fields providing a unified Lagrangian action principle description of: (a) the evolution of both "early" and "late" Universe - by the "inflaton" scalar field; (b) dark energy and dark matter as a unified manifestation of a single material entity - the "darkon" scalar field. The essential non-standard feature of our models is employing the formalism of non-Riemannian space-time volume forms - alternative generally covariant integration measure densities (volume elements) defined in terms of auxiliary antisymmetric tensor gauge fields. Although being (almost) pure-gauge degrees of freedom, the non-Riemannian space-time volume forms trigger a series of important features unavailable in ordinary gravity-matter models. When including in addition interactions with the electro-weak model bosonic sector we obtain a gravity-assisted generation of electro-weak spontaneous gauge symmetry breaking in the...
Nuclear matter incompressibility from a semi-empirical analysis of breathing-mode energies
Sharma, M. M.; Stocker, W.; Gleissl, P.; Brack, M.
1989-11-01
We check the validity and applicability of a liquid-drop model type expansion for the incompressibility KA of finite nuclei: K A = K V + K SA {-1}/{3} + (higher-order terms). Our theoretical considerations are based upon calculations of breathing-mode energies following from a density variational framework taking into account various Skyrme interactions. Using a semi-empirical procedure based upon this expansion of KA, we corroborate that new precision data for the monopole energies favour a volume coefficient KV (300±25) MeV and an appreciable surface coefficient KS (-750±80) MeV. We discuss the implication of this result for the incompressibility K∞ of infinite nuclear matter.
Low-energy pions in nuclear matter and pi pi photoproduction within a BUU transport model
Buss, O; Mühlich, P; Mosel, U; Shyam, R; Buss, Oliver; Alvarez-Ruso, Luis; Muehlich, Pascal; Mosel, Ulrich; Shyam, Radhey
2006-01-01
In the present paper we investigate a method to describe low-energy scattering events of pions and nuclei within a Boltzmann-Uehling-Uhlenbeck (BUU) transport model. Implementing different scenarios of medium modifications, we studied the mean free path of pions in nuclear matter at low momenta and compared pion absorption simulations to data. Pursuing these studies we have shown, that also in a regime of a long pionic wave length the semi-classical BUU model still generates reasonable results. We present results on pi-induced events in the regime of 10 MeV < Tkin < 130 MeV and photo-induced pi pi production at incident beam energies of 400-460 MeV.
Nandi, Rana
2016-01-01
We study the effect of isospin-dependent nuclear forces on the pasta phase in the inner crust of neutron stars. To this end we model the crust within the framework of quantum molecular dynamics (QMD). For maximizing the numerical performance, the newly developed code has been implemented on GPU processors. As a first application of the crust studies we investigate the dependence of the particular pasta phases on the slope of the symmetry energy slope L. To isolate the effect of different values of L, we adopt an established QMD Hamiltonian and extend it to include non-linear terms in the isospin-dependent interaction. The strengths of the isospin-dependent forces are used to adjust the asymmetry energy and slope of the matter. Our results indicate that in contrast to earlier studies the phase diagram of the pasta phase is not very sensitive to the value of L.
Precise analytical description of the Earth matter effect on oscillations of low energy neutrinos
Ioannisian, A. N.; Kazarian, N. A.; Smirnov, A. Yu.; Wyler, D.
2005-02-01
We present a formalism for the matter effects in the Earth on low energy neutrino fluxes which is both accurate and has all the advantages of a full analytic treatment. The oscillation probabilities are calculated up to the second order term in ɛ(x)≡2V(x)E/Δm2, where V(x) is the neutrino potential at position x. We show the absence of large undamped phases which makes the expansion in ɛ well behaved. An improved expansion is presented in terms of the variation of V(x) around a suitable mean value which allows one to treat energies up to those relevant for supernova neutrinos. We discuss also the case of three-neutrino mixing.
A precise analytical description of the Earth matter effect on oscillations of low energy neutrinos
Ioannisian, A N; Smirnov, A Yu; Wyler, D
2004-01-01
We present a formalism for the matter effects in the Earth on low energy neutrino beams which is both accurate and has all advantages of a full analytic treatment. The oscillation probabilities are calculated up to second order term in $\\epsilon(x) \\equiv 2V(x)E/\\Delta m^2$ where $V(x)$ is the neutrino potential at position $x$. We show the absence of large undamped phases which makes the expansion in $\\epsilon$ well behaved. An improved expansion is presented in terms of the variation of $V(x)$ around a suitable mean value which allows to treat energies up to those relevant for Supernova neutrinos. We discuss also the case of three-neutrino mixing.
Thermodynamics of Interacting new Agegraphic Dark Energy and Dark Matter Due to Bianchi Type I Model
Hossienkhani, Hossien
2016-11-01
We study a thermodynamical description of the interaction between new agegraphic dark energy (NADE) and dark matter (DM) in an anisotropic universe. We find expressions for the entropy changes of these dark energy (DE) candidates. In addition, considering thermal fluctuations, thermodynamics of the DE component interacting with a DM sector is addressed. We also show that if one wants to solve the coincidence problem by using this mutual interaction, then the coupling constants of the interaction will be constrained. Finally, we obtain a physical expression for the interaction which is consistent with phenomenological descriptions and passes reasonably well the observational tests. Our study shows that, with the local equilibrium assumption, the generalized second law of thermodynamics is fulfilled in a region enclosed by the apparent horizon.
Reconstruction of the interaction term between dark matter and dark energy using SNe Ia
Solano, Freddy Cueva
2011-01-01
We apply a parametric reconstruction method to a homogeneous, isotropic and spatially flat Friedmann-Robertson-Walker (FRW) cosmological model filled of a fluid of dark energy (DE) with constant equation of state (EOS) parameter interacting with dark matter (DM). The reconstruction method is based on expansions of the general interaction term and the relevant cosmological variables in terms of Chebyshev polynomials which form a complete set orthonormal functions. This interaction term describes an exchange of energy flow between the DE and DM within dark sector. To show how the method works we do the reconstruction of the interaction function expanding it in terms of only the first six Chebyshev polynomials and obtain the best estimation for the coefficients of the expansion assuming two models: (a) a DE equation of the state parameter w =-1 (an interacting cosmological constant), (b) a DE equation of the state parameter w = constant, and using the Union2 SNe Ia data set from "The Supernova Cosmology Project"...
From dilute matter to the equilibrium point in the energy--density--functional theory
Yang, C J; Lacroix, D
2016-01-01
Due to the large value of the scattering length in nuclear systems, standard density--functional theories based on effective interactions usually fail to reproduce the nuclear Fermi liquid behavior both at very low densities and close to equilibrium. Guided on one side by the success of the Skyrme density functional and, on the other side, by resummation techniques used in Effective Field Theories for systems with large scattering lengths, a new energy--density functional is proposed. This functional, adjusted on microscopic calculations, reproduces the nuclear equations of state of neutron and symmetric matter at various densities. Furthermore, it provides reasonable saturation properties as well as an appropriate density dependence for the symmetry energy.
Interacting Dark Matter and q-Deformed Dark Energy Nonminimally Coupled to Gravity
Emre Dil
2016-01-01
Full Text Available In this paper, we propose a new approach to study the dark sector of the universe by considering the dark energy as an emerging q-deformed bosonic scalar field which is not only interacting with the dark matter, but also nonminimally coupled to gravity, in the framework of standard Einsteinian gravity. In order to analyze the dynamic of the system, we first give the quantum field theoretical description of the q-deformed scalar field dark energy and then construct the action and the dynamical structure of this interacting and nonminimally coupled dark sector. As a second issue, we perform the phase-space analysis of the model to check the reliability of our proposal by searching the stable attractor solutions implying the late-time accelerating expansion phase of the universe.
Input energy measurement toward warm dense matter generation using intense pulsed power generator
Hayashi, R.; Ito, T.; Ishitani, T.; Tamura, F.; Kudo, T.; Takakura, N.; Kashine, K.; Takahashi, K.; Sasaki, T.; Kikuchi, T.; Harada, Nob.; Jiang, W.; Tokuchi, A.
2016-05-01
In order to investigate properties of warm dense matter (WDM) in inertial confinement fusion (ICF), evaluation method for the WDM with isochoric heating on the implosion time-scale using an intense pulsed power generator ETIGO-II (∼1 TW, ∼50 ns) has been considered. In this study, the history of input energy into the sample is measured from the voltage and the current waveforms. To achieve isochoric heating, a foamed aluminum with pore sizes 600 μm and with 90% porosity was packed into a hollow glass capillary (ø 5 mm × 10 mm). The temperature of the sample is calculated from the numerical calculation using the measured input power. According to the above measurements, the input energy into a sample and the achievable temperature are estimated to be 300 J and 6000 K. It indicates that the WDM state is generated using the proposed method with ICF implosion time-scale.
Shantappa, A.; Hanagodimath, S. M.
2014-01-01
Effective atomic numbers, electron densities of some vitamins (Retinol, Riboflavin, Niacin, Biotin, Folic acid, Cobalamin, Phylloquinone and Flavonoids) composed of C, H, O, N, Co, P and S have been calculated for total and partial photon interactions by the direct method for energy range 1 keV-100 GeV by using WinXCOM and kinetic energy released in matter (Kerma) relative to air is calculated in energy range of 1 keV-20 MeV. Change in effective atomic number and electron density with energy is calculated for all photon interactions. Variation of photon mass attenuation coefficients with energy are shown graphically only for total photon interaction. It is observed that change in mass attenuation coefficient with composition of different chemicals is very large below 100 keV and moderate between 100 keV and 10 MeV and negligible above 10 MeV. Behaviour of vitamins is almost indistinguishable except biotin and cobalamin because of large range of atomic numbers from 1(H) to 16 (S) and 1(H) to 27(Co) respectively. K a value shows a peak due to the photoelectric effect around K-absorption edge of high- Z constituent of compound for biotin and cobalamin.
Aramaki, T; von Doetinchem, P; Fuke, H; Hailey, C J; Mognet, S A I; Ong, R A; Perez, K M; Zweerink, J
2014-01-01
The general antiparticle spectrometer (GAPS) experiment is an indirect dark matter search focusing on antiparticles produced by WIMP annihilation and decay in the Galactic halo. In addition to the very powerful search channel provided by antideuterons, GAPS has a strong capability to measure low-energy antiprotons (0.07 $\\le$ E $\\le$ 0.25 GeV) as dark matter signatures. This is an especially effective means for probing light dark matter, whose existence has been hinted at in the direct dark matter searches, including the recent result from the CDMS-II experiment. While severely constrained by LUX and other direct dark matter searches, light dark matter candidates are still viable in an isospin- violating dark matter scenario and halo-independent analysis. Along with the excellent antideuteron sensitivity, GAPS will be able to detect an order of magnitude more low-energy antiprotons, compared to BESS and PAMELA, providing a precision measurement of low-energy antiproton flux and a unique channel for probing li...
,
2014-01-01
The evolution of the universe is studied in exactly solvable dynamical quantum model with the Robertson-Walker metric. It is shown that the equation of motion which describes the expansion or contraction of the universe can be represented in the form of the law of conservation of zero total energy for a particle with arbitrary mass being an analogue of the universe. The analogue particle moves in the potential well under the action of the internal force produced by the curvature of space, matter, and pressures of classical and quantum gravitational sources. This force has two components: one performs the positive work on the universe which is equivalent to the work of the repulsive forces of dark energy, and the other component does the negative work analogous to the work of the attractive forces of dark matter. Their competition determines the regime of the expansion of the universe: whether the universe would be accelerating or decelerating. It is demonstrated that predictions of the quantum model do not co...
Challenges at the Frontiers of Matter and Energy: Transformative Opportunities for Discovery Science
Hemminger, John C. [Univ. of California, Irvine, CA (United States); Sarrao, John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Crabtree, George [Argonne National Lab. (ANL), Argonne, IL (United States); University of Illinois, Chicago; Flemming, Graham [Univ. of California, Berkeley, CA (United States); Ratner, Mark [Northwestern Univ., Evanston, IL (United States)
2015-11-01
FIVE TRANSFORMATIVE OPPORTUNITIES FOR DISCOVERY SCIENCE As a result of this effort, it has become clear that the progress made to date on the five Grand Challenges has created a springboard for seizing five new Transformative Opportunities that have the potential to further transform key technologies involving matter and energy. These five new Transformative Opportunities and the evidence supporting them are discussed in this new report, “Challenges at the Frontiers of Matter and Energy: Transformative Opportunities for Discovery Science.” Mastering Hierarchical Architectures and Beyond-Equilibrium Matter Complex materials and chemical processes transmute matter and energy, for example from CO2 and water to chemical fuel in photosynthesis, from visible light to electricity in solar cells and from electricity to light in light emitting diodes (LEDs) Such functionality requires complex assemblies of heterogeneous materials in hierarchical architectures that display time-dependent away-from-equilibrium behaviors. Much of the foundation of our understanding of such transformations however, is based on monolithic single- phase materials operating at or near thermodynamic equilibrium. The emergent functionalities enabling next-generation disruptive energy technologies require mastering the design, synthesis, and control of complex hierarchical materials employing dynamic far-from-equilibrium behavior. A key guide in this pursuit is nature, for biological systems prove the power of hierarchical assembly and far- from-equilibrium behavior. The challenges here are many: a description of the functionality of hierarchical assemblies in terms of their constituent parts, a blueprint of atomic and molecular positions for each constituent part, and a synthesis strategy for (a) placing the atoms and molecules in the proper positions for the component parts and (b) arranging the component parts into the required hierarchical structure. Targeted functionality will open the door
Bioelectromagnetic and subtle energy medicine: the interface between mind and matter.
Rosch, Paul J
2009-08-01
The concept of a "life energy" can be found in many cultures in the present time, as well as in past eras reaching back to the ancients. Variously called qi (chi), ki, the "four humors,"prana, "archaeus,"cosmic aether,"universal fluid,"animal magnetism," and "odic force," among other names, this purported biofield is beginning to yield its properties and interactions to the scientific method. Subtle energy is the term used in this chapter, which traces the recent history of subtle energy studies from Harold Saxton Burr and Björn Nordenström to Jim Oschman and Jacques Benveniste. This work takes signaling in living systems from the chemical/molecular to the physical/atomic level of communication. Effects on heart rate variability, stress response, inflammation, and the vagus nerve have been demonstrated and raise the question--Can the power of subtle energies be harnessed for health enhancement? It is fully accepted that good health depends on good communication both within the organism and between the organism and its environment. Sophisticated imaging procedures brought to bear on telomere, stem cell, and genetic research are confirming the ability of meditation and some other traditional practices to promote optimal health through stress reduction.
A Review of Effects of Heat Stress on Substance and Energy Metabolism in Muscle
Shiyong WU; Zhi FANG; Bo XUE; Longzhou LIU; Ye YANG
2015-01-01
Environmental temperature is a major factor affecting animal performance in South China. With global warming, heat stress wil become more and more seri-ous. This paper reviewed the effects of heat stress on metabolism of proteins, glu-cose, fat and energy in skeletal muscle and related mechanisms so as to provide theoretical guidance for al eviating heat stress and improving production performance of animal suffering from heat stress.
Tchitchekova, Deyana S. [IRSN, PSN, SEMIA, LPTM, Saint-Paul-Lez-Durance (France); Univ. Lyon, INSA Lyon, MATEIS, UMR CNRS 5510, Villeurbanne (France); Morthomas, Julien; Perez, Michel [Univ. Lyon, INSA Lyon, MATEIS, UMR CNRS 5510, Villeurbanne (France); Ribeiro, Fabienne [IRSN, PSN, SEMIA, LPTM, Saint-Paul-Lez-Durance (France); Ducher, Roland [IRSN, PSN, SAG, LETR, Saint-Paul-Lez-Durance (France)
2014-07-21
A novel method for accurate and efficient evaluation of the change in energy barriers for carbon diffusion in ferrite under heterogeneous stress is introduced. This method, called Linear Combination of Stress States, is based on the knowledge of the effects of simple stresses (uniaxial or shear) on these diffusion barriers. Then, it is assumed that the change in energy barriers under a complex stress can be expressed as a linear combination of these already known simple stress effects. The modifications of energy barriers by either uniaxial traction/compression and shear stress are determined by means of atomistic simulations with the Climbing Image-Nudge Elastic Band method and are stored as a set of functions. The results of this method are compared to the predictions of anisotropic elasticity theory. It is shown that, linear anisotropic elasticity fails to predict the correct energy barrier variation with stress (especially with shear stress) whereas the proposed method provides correct energy barrier variation for stresses up to ∼3 GPa. This study provides a basis for the development of multiscale models of diffusion under non-uniform stress.
Tchitchekova, Deyana S.; Morthomas, Julien; Ribeiro, Fabienne; Ducher, Roland; Perez, Michel
2014-07-01
A novel method for accurate and efficient evaluation of the change in energy barriers for carbon diffusion in ferrite under heterogeneous stress is introduced. This method, called Linear Combination of Stress States, is based on the knowledge of the effects of simple stresses (uniaxial or shear) on these diffusion barriers. Then, it is assumed that the change in energy barriers under a complex stress can be expressed as a linear combination of these already known simple stress effects. The modifications of energy barriers by either uniaxial traction/compression and shear stress are determined by means of atomistic simulations with the Climbing Image-Nudge Elastic Band method and are stored as a set of functions. The results of this method are compared to the predictions of anisotropic elasticity theory. It is shown that, linear anisotropic elasticity fails to predict the correct energy barrier variation with stress (especially with shear stress) whereas the proposed method provides correct energy barrier variation for stresses up to ˜3 GPa. This study provides a basis for the development of multiscale models of diffusion under non-uniform stress.
Tchitchekova, Deyana S; Morthomas, Julien; Ribeiro, Fabienne; Ducher, Roland; Perez, Michel
2014-07-21
A novel method for accurate and efficient evaluation of the change in energy barriers for carbon diffusion in ferrite under heterogeneous stress is introduced. This method, called Linear Combination of Stress States, is based on the knowledge of the effects of simple stresses (uniaxial or shear) on these diffusion barriers. Then, it is assumed that the change in energy barriers under a complex stress can be expressed as a linear combination of these already known simple stress effects. The modifications of energy barriers by either uniaxial traction/compression and shear stress are determined by means of atomistic simulations with the Climbing Image-Nudge Elastic Band method and are stored as a set of functions. The results of this method are compared to the predictions of anisotropic elasticity theory. It is shown that, linear anisotropic elasticity fails to predict the correct energy barrier variation with stress (especially with shear stress) whereas the proposed method provides correct energy barrier variation for stresses up to ∼3 GPa. This study provides a basis for the development of multiscale models of diffusion under non-uniform stress.
2011-12-13
... COMMISSION In the Matter of: Brendan Technologies, Inc., CenterStaging Corp., PGMI, Inc., Thermal Energy... concerning the securities of Brendan Technologies, Inc. because it has not filed any periodic reports since... information concerning the securities of Thermal Energy Storage, Inc. because it has not filed any...
2012-10-01
... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION In the Matter of Diomed Holdings, Inc., Dominion Minerals Corp., EnerLume Energy Management Corp... current and accurate information concerning the securities of EnerLume Energy Management Corp. because...
2013-07-10
...; EA-13-010] In the Matter of Duke Energy Carolinas, LLC; (Oconee Nuclear Station, Units 1, 2, and 3... Energy Carolinas, LLC, Oconee Nuclear Station, 7800 Rochester Highway, Seneca, SC 29672. Filing is... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY...
Large Hadron Collider at CERN: Beams Generating High-Energy-Density Matter
Tahir, N A; Shutov, A; Lomonosov, IV; Piriz, A R; Hoffmann, D H H; Deutsch, C; Fortov, V E
2009-01-01
This paper presents numerical simulations that have been carried out to study the thermodynamic and hydrodynamic response of a solid copper cylindrical target that is facially irradiated along the axis by one of the two Large Hadron Collider (LHC) 7 TeV/c proton beams. The energy deposition by protons in solid copper has been calculated using an established particle interaction and Monte Carlo code, FLUKA, which is capable of simulating all components of the particle cascades in matter, up to multi-TeV energies. This data has been used as input to a sophisticated two--dimensional hydrodynamic computer code, BIG2 that has been employed to study this problem. The prime purpose of these investigations was to assess the damage caused to the equipment if the entire LHC beam is lost at a single place. The FLUKA calculations show that the energy of protons will be deposited in solid copper within about 1~m assuming constant material parameters. Nevertheless, our hydrodynamic simulations have shown that the energy de...
Dark radiation and dark matter coupled to holographic Ricci dark energy
Chimento, Luis P
2013-01-01
We investigate a universe filled with interacting dark matter, holographic dark energy, and dark radiation for the spatially flat Friedmann-Robertson-Walker (FRW) spacetime. We use a linear interaction to reconstruct all the component energy densities in terms of the scale factor by directly solving the balance's equations along with the source equation. We apply the $\\chi^{2}$ method to the observational Hubble data for constraining the cosmic parameters, contrast with the Union 2 sample of supernovae, and analyze the amount of dark energy in the radiation era. It turns out that our model exhibits an excess of dark energy in the recombination era whereas the stringent bound $\\Omega_{\\rm x}(z\\simeq 10^{10})<0.21$ at big-bang nucleosynthesis is fulfilled. We find that the interaction provides a physical mechanism for alleviating the triple cosmic coincidence and this leads to $\\Omega_{\\rm m0}/\\Omega_{\\rm x0} \\simeq \\Omega_{\\rm r0}/\\Omega_{\\rm x0} \\simeq {\\cal O}(1)$.
A Beheshti
2011-02-01
Full Text Available Abstract Production, remobilization and accumulation of assimilates in crops especially under water stress are essential factors for determination and studying the yield differences of species and cultivars. Field experiment was conducted using a split plot design based on a randomized complete block design with 3 replication s during 2007 growing season in agricultural research station (Khorasan Agricultural and Natural Resource Research Center, Mashhad-Iran. Main plots were consisted of 2 levels of water, water deficit after anthesis and normal condition (with out water stress and factorial arrangement of photosynthesis status (non desiccation and chemical desiccation with potassium iodide and 3 grain sorghum genotypes (Sepide, M5 and M2 promising lines were assigned to sub plots. Results of variance analysis showed, that the effects of water stress on dry matter accumulation, efficiency of remobilization (REE, percent of remobilization (REP, biologic yield were significant in (p≤0.01 (and grain yield (economic yield was significant in p≤0.05, respectively. Water deficit caused an increase of 10.08%, 24.45 % and 12.43% in dry matter accumulation, percent of remobilization and efficiency of remobilization, respectively as compared to normal conditions. This in turn was led to decrease in seed yield, biological yield and harvest index by 36.38%, 5.43% and 31.60%, respectively. The effect of disturbance in current photosynthesis was significant in all of traits and caused the increase of 15.58%, 17.5% and 36.62% in dry matter accumulation, efficiency of remobilization and percent of remobilization, respectively. The role of remobilization was crucial in sorghum genotypes. Interaction between factors showed that highest dry matter accumulation, percentage of remobilization and efficiency of remobilization was in drought stress and disturbance in current photosynthesis and was 16.62%, 62.54 and 24.60%, respectively and was significantly
Attosecond nonlinear polarization and light-matter energy transfer in solids.
Sommer, A; Bothschafter, E M; Sato, S A; Jakubeit, C; Latka, T; Razskazovskaya, O; Fattahi, H; Jobst, M; Schweinberger, W; Shirvanyan, V; Yakovlev, V S; Kienberger, R; Yabana, K; Karpowicz, N; Schultze, M; Krausz, F
2016-05-23
Electric-field-induced charge separation (polarization) is the most fundamental manifestation of the interaction of light with matter and a phenomenon of great technological relevance. Nonlinear optical polarization produces coherent radiation in spectral ranges inaccessible by lasers and constitutes the key to ultimate-speed signal manipulation. Terahertz techniques have provided experimental access to this important observable up to frequencies of several terahertz. Here we demonstrate that attosecond metrology extends the resolution to petahertz frequencies of visible light. Attosecond polarization spectroscopy allows measurement of the response of the electronic system of silica to strong (more than one volt per ångström) few-cycle optical (about 750 nanometres) fields. Our proof-of-concept study provides time-resolved insight into the attosecond nonlinear polarization and the light-matter energy transfer dynamics behind the optical Kerr effect and multi-photon absorption. Timing the nonlinear polarization relative to the driving laser electric field with sub-30-attosecond accuracy yields direct quantitative access to both the reversible and irreversible energy exchange between visible-infrared light and electrons. Quantitative determination of dissipation within a signal manipulation cycle of only a few femtoseconds duration (by measurement and ab initio calculation) reveals the feasibility of dielectric optical switching at clock rates above 100 terahertz. The observed sub-femtosecond rise of energy transfer from the field to the material (for a peak electric field strength exceeding 2.5 volts per ångström) in turn indicates the viability of petahertz-bandwidth metrology with a solid-state device.
Attosecond nonlinear polarization and light-matter energy transfer in solids
Sommer, A.; Bothschafter, E. M.; Sato, S. A.; Jakubeit, C.; Latka, T.; Razskazovskaya, O.; Fattahi, H.; Jobst, M.; Schweinberger, W.; Shirvanyan, V.; Yakovlev, V. S.; Kienberger, R.; Yabana, K.; Karpowicz, N.; Schultze, M.; Krausz, F.
2016-06-01
Electric-field-induced charge separation (polarization) is the most fundamental manifestation of the interaction of light with matter and a phenomenon of great technological relevance. Nonlinear optical polarization produces coherent radiation in spectral ranges inaccessible by lasers and constitutes the key to ultimate-speed signal manipulation. Terahertz techniques have provided experimental access to this important observable up to frequencies of several terahertz. Here we demonstrate that attosecond metrology extends the resolution to petahertz frequencies of visible light. Attosecond polarization spectroscopy allows measurement of the response of the electronic system of silica to strong (more than one volt per ångström) few-cycle optical (about 750 nanometres) fields. Our proof-of-concept study provides time-resolved insight into the attosecond nonlinear polarization and the light-matter energy transfer dynamics behind the optical Kerr effect and multi-photon absorption. Timing the nonlinear polarization relative to the driving laser electric field with sub-30-attosecond accuracy yields direct quantitative access to both the reversible and irreversible energy exchange between visible-infrared light and electrons. Quantitative determination of dissipation within a signal manipulation cycle of only a few femtoseconds duration (by measurement and ab initio calculation) reveals the feasibility of dielectric optical switching at clock rates above 100 terahertz. The observed sub-femtosecond rise of energy transfer from the field to the material (for a peak electric field strength exceeding 2.5 volts per ångström) in turn indicates the viability of petahertz-bandwidth metrology with a solid-state device.
Does the perception that stress affects health matter? The association with health and mortality.
Keller, Abiola; Litzelman, Kristin; Wisk, Lauren E; Maddox, Torsheika; Cheng, Erika Rose; Creswell, Paul D; Witt, Whitney P
2012-09-01
This study sought to examine the relationship among the amount of stress, the perception that stress affects health, and health and mortality outcomes in a nationally representative sample of U.S. adults. Data from the 1998 National Health Interview Survey were linked to prospective National Death Index mortality data through 2006. Separate logistic regression models were used to examine the factors associated with current health status and psychological distress. Cox proportional hazard models were used to determine the impact of perceiving that stress affects health on all-cause mortality. Each model specifically examined the interaction between the amount of stress and the perception that stress affects health, controlling for sociodemographic, health behavior, and access to health care factors. 33.7% of nearly 186 million (unweighted n = 28,753) U.S. adults perceived that stress affected their health a lot or to some extent. Both higher levels of reported stress and the perception that stress affects health were independently associated with an increased likelihood of worse health and mental health outcomes. The amount of stress and the perception that stress affects health interacted such that those who reported a lot of stress and that stress impacted their health a lot had a 43% increased risk of premature death (HR = 1.43, 95% CI [1.2, 1.7]). High amounts of stress and the perception that stress impacts health are each associated with poor health and mental health. Individuals who perceived that stress affects their health and reported a large amount of stress had an increased risk of premature death. PsycINFO Database Record (c) 2012 APA, all rights reserved.
Dark Energy and Dark Matter Phenomena and the Universe with Variable Gravitational Mass
Gorkavyi, N.
2005-12-01
Generation of high-frequency gravitational waves near the singularity is a crucial factor for understanding the origin and dynamics of the Universe. Emission of gravitational waves increases with a decreasing radius of collapsed object much faster than a gravitational force itself. Gravitationally unstable matter of the Universe will be completely converted into gravitational radiation during the Big Crunch. According to Misner, Thorne & Wheeler (Gravitation, 1977, p.959) plane gravitational waves have not gravitational mass or spacetime is flat everywhere outside the pulse. We can propose that the gravitational mass of the Universe is vanished after converting matter into gravitational waves. This hypothesis in the framework of Einstein's theory of gravitation can solve the problem of singularity without contradiction with theorems by Penrose-Hawking; explain the acceleration of our Universe as the effect of a retarded gravitational potential (Gorkavyi, BAAS, 2003, 35, #3) and the low quadrupole in fluctuations in CMB as result of blue-shift effect in a gravitational field. Proposed solution of dark energy problem free from coincidence problems. The hypothesis keeps best parts of Big Bang theory and inflation model without any unknown physical fields or new dimensions. According to this hypothesis a relic sea of high-frequency gravitational radiation in our Universe can be very dense. Interaction of relic gravitational waves with gravitational fields of galaxies and stars can create an additional dynamical effects like pressure of relic radiation that proportional to gravitational potential GM/(Rc2). This effect can be responsible for dark matter phenomena in galaxies and the Pioneer acceleration in the solar system (Gorkavyi, BAAS, 2005, 37, #2).
Equation of state of the neutron star matter, and the nuclear symmetry energy
Loan, Doan Thi; Khoa, Dao T; Margueron, Jerome
2011-01-01
The nuclear mean-field potentials obtained in the Hartree-Fock method with different choices of the in-medium nucleon-nucleon (NN) interaction have been used to study the equation of state (EOS) of the neutron star (NS) matter. The EOS of the uniform NS core has been calculated for the np$e\\mu$ composition in the $\\beta$-equilibrium at zero temperature, using version Sly4 of the Skyrme interaction as well as two density-dependent versions of the finite-range M3Y interaction (CDM3Y$n$ and M3Y-P$n$), and versions D1S and D1N of the Gogny interaction. Although the considered effective NN interactions were proven to be quite realistic in numerous nuclear structure and/or reaction studies, they give quite different behaviors of the symmetry energy of nuclear matter at supranuclear densities that lead to the \\emph{soft} and \\emph{stiff} scenarios discussed recently in the literature. Different EOS's of the NS core and the EOS of the NS crust given by the compressible liquid drop model have been used as input of the...
In search of the dark matter dark energy interaction: a kinematic approach
Mukherjee, Ankan
2016-01-01
The present work deals with a kinematic approach to the modelling the late time dynamics of the universe. This approach is based upon the assumption of constant value of cosmological jerk parameter, which is the dimensionless representation of the 3rd order time derivative of the scale factor. For the $\\Lambda$CDM model, the value of jerk parameter is -1 throughout the evolution history. Now any model dependent estimation of the value of the jerk parameter would indicate the deviation of the model from the cosmological constant. In the present work, it has also been shown that for a constant jerk parameter model, any deviation of its value from -1 would not allow the dark matter to have an independent conservation, thus indicating towards an interaction between dark matter and dark energy. Statistical analysis with different observational data sets (namely the observational Hubble parameter data (OHD), the type Ia supernova data (SNe), and the baryon acoustic oscillation data (BAO)) along with the cosmic micr...
$\\phi$ meson self-energy in nuclear matter from $\\phi N$ resonant interactions
Cabrera, D; Vacas, M J Vicente
2016-01-01
The $\\phi$-meson properties in cold nuclear matter are investigated by implementing resonant $\\phi N$ interactions as described in effective approaches including the unitarization of scattering amplitudes. Several $N^*$-like states are dynamically generated in these models around $2$ GeV, in the vicinity of the $\\phi N$ threshold. We find that both these states and the non-resonant part of the amplitude contribute sizably to the $\\phi$ collisional self-energy at finite nuclear density. These contributions are of a similar strength as the widely studied medium effects from the $\\bar K K$ cloud. Depending on model details (position of the resonances and strength of the coupling to $\\phi N$) we report a $\\phi$ broadening up to about $40$-$50$ MeV, to be added to the $\\phi\\to\\bar K K$ in-medium decay width, and an attractive optical potential at threshold up to about $35$ MeV at normal matter density. The $\\phi$ spectral function develops a double peak structure as a consequence of the mixing of resonance-hole mo...
In search of the dark matter dark energy interaction: a kinematic approach
Mukherjee, Ankan; Banerjee, Narayan
2017-02-01
The present work deals with a kinematic approach to modelling the late time dynamics of the universe. This approach is based upon the assumption of constant value of cosmological jerk parameter, which is the dimensionless representation of the third order time derivative of the scale factor. For the Λ CDM model, the value of jerk parameter is ‑1 throughout the evolution history. Now any model dependent estimation of the value of the jerk parameter would indicate the deviation of the model from the cosmological constant. In the present work, it has also been shown that for a constant jerk parameter model, any deviation of its value from ‑1 would not allow the dark matter to have an independent conservation, thus indicating an interaction between dark matter and dark energy. Statistical analysis with different observational data sets (namely the observational Hubble parameter data (OHD), the type Ia supernova data (SNe), and the baryon acoustic oscillation data (BAO)) lead to well constrained values of the jerk parameter and the model remains at a very close proximity of the Λ CDM. The possibility of interaction is found to be more likely at high redshift rather than at the present epoch.
ϕ meson self-energy in nuclear matter from ϕ N resonant interactions
Cabrera, D.; Hiller Blin, A. N.; Vicente Vacas, M. J.
2017-01-01
The ϕ -meson properties in cold nuclear matter are investigated by implementing resonant ϕ N interactions as described in effective approaches including the unitarization of scattering amplitudes. Several N*-like states are dynamically generated in these models around 2 GeV, in the vicinity of the ϕ N threshold. We find that both these states and the non-resonant part of the amplitude contribute sizably to the ϕ collisional self-energy at finite nuclear density. These contributions are of a similar strength as the widely studied medium effects from the K ¯K cloud. Depending on model details (position of the resonances and strength of the coupling to ϕ N ) we report a ϕ broadening up to about 40-50 MeV, to be added to the ϕ →K ¯K in-medium decay width, and an attractive optical potential at threshold up to about 35 MeV at normal matter density. The ϕ spectral function develops a double peak structure as a consequence of the mixing of resonance-hole modes with the ϕ quasiparticle peak. The former results point in the direction of making up for missing absorption as reported in ϕ nuclear production experiments.
Dark energy interacting with dark matter and a third fluid: Possible EoS for this component
Cruz, Norman, E-mail: ncruz@lauca.usach.c [Departamento de Fisica, Facultad de Ciencia, Universidad de Santiago, Casilla 307, Santiago (Chile); Lepe, Samuel, E-mail: slepe@ucv.c [Instituto de Fisica, Facultad de Ciencias, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile); Pena, Francisco, E-mail: fcampos@ufro.c [Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Universidad de La Frontera, Avda. Francisco Salazar 01145, Casilla 54-D, Temuco (Chile)
2011-05-09
A cosmological model of dark energy interacting with dark matter and another general component of the universe is considered. The equations for the coincidence parameters r and s, which represent the ratios between dark energy and dark matter and the other cosmic fluid respectively, are analyzed in terms of the stability of stationary solutions. The obtained general results allow to shed some light on the equations of state of the three interacting fluids, due to the constraints imposed by the stability of the solutions. We found that for an interaction proportional to the sum of the dark energy density and the third fluid density, the hypothetical fluid must have positive pressure, which leads naturally to a cosmological scenario with radiation, unparticle or even some form of warm dark matter as the third interacting fluid.
Effective equation of state of hot and dense matter in nuclear collisions around FAIR energy
Bravina L.
2015-01-01
Full Text Available The chemical and thermal equilibration in the central zone of heavy-ion collisions at energies around FAIR is studied within two microscopic models. Two systems are utilized for the analysis: (i central cubic cell of fixed volume V = 125 fm3 and (ii expanding central area of uniformly distributed energy density. It is found that kinetic, thermal, and chemical equilibration of the expanding hadronic matter are nearly approached in both systems for the period of 10–18 fm/c. The expansion proceeds almost isentropically. The extracted equation of state (EOS in P − ɛ plane has a linear dependence P = aɛ, where a ≡ c2s slightly increases with the collision energy from 0.12 to 0.145. Linear dependencies for the EOS are found also in T − μB and T − μS planes. The characteristic kinks observed in the last two phase diagrams are linked to inelastic freeze-out in the expanding fireball.
The CERN Large Hadron Collider as a tool to study high-energy density matter
Tahir, N A; Gryaznov, V; Hoffmann, Dieter H H; Kain, V; Lomonosov, I V; Piriz, A R; Schmidt, R; Shutov, A; Temporal, M
2005-01-01
The Large Hadron Collider (LHC) at CERN will generate two extremely powerful 7 TeV proton beams. Each beam will consist of 2808 bunches with an intensity per bunch of 1.15*10/sup 11/ protons so that the total number of protons in one beam will be about 3*10/sup 14/ and the total energy will be 362 MJ. Each bunch will have a duration of 0.5 ns and two successive bunches will be separated by 25 ns, while the power distribution in the radial direction will be Gaussian with a standard deviation, sigma =0.2 mm. The total duration of the beam will be about 89 mu s. Using a 2D hydrodynamic code, we have carried out numerical simulations of the thermodynamic and hydrodynamic response of a solid copper target that is irradiated with one of the LHC beams. These calculations show that only the first few hundred proton bunches will deposit a high specific energy of 400 kJ/g that will induce exotic states of high energy density in matter.
Gravitational Collapse With Dark Energy And Dark Matter In Ho\\v{r}ava-Lifshitz Gravity
Rudra, Prabir
2013-01-01
In this work, the collapsing process of a spherically symmetric star, made of dust cloud, is studied in Ho\\v{r}ava Lifshitz gravity in the background of Chaplygin gas dark energy. Two different classes of Chaplygin gas, namely, New variable modified Chaplygin gas and generalized cosmic Chaplygin gas are considered for the collapse study. Graphs are drawn to characterize the nature and to determine the possible outcome of gravitational collapse. A comparative study is done between the collapsing process in the two different dark energy models. It is found that for open and closed universe, collapse proceeds with an increase in black hole mass, the only constraint being that, relatively smaller values of $\\Lambda$ has to be considered in comparison to $\\lambda$. But in case of flat universe, possibility of the star undergoing a collapse in highly unlikely. Moreover it is seen that the most favourable environment for collapse is achieved when a combination of dark energy and dark matter is considered, both in th...
In-medium effects for nuclear matter in the Fermi energy domain
Lopez, O; Lehaut, G; Borderie, B; Rivet, M F; Bougault, R; Galichet, E; Guinet, D; Neindre, N Le; Marini, P; Napolitani, P; Pârlog, M; Rosato, E; Spadaccini, G; Vient, E; Vigilante, M
2014-01-01
We study nuclear stopping in central collisions for heavy-ion induced reactions in the Fermi energy domain, between $15$ and $100$ A\\,\\textrm{MeV}. Using the large dataset of exclusive measurements provided by the $4\\pi$ array \\emph{INDRA}, we determine the relative degree of stopping as a function of system mass and bombarding energy. We show that the stopping can be directly related to the transport properties in the nuclear medium. By looking specifically at free nucleons (here protons), we present for the first time a comprehensive body of experimental results concerning the mean free path, the nucleon-nucleon cross-section and in-medium effects in nuclear matter. It is shown that the mean free path exhibits a maximum at $\\lambda_{NN}=9.5 \\pm 2$ \\textrm{fm}, around $E_{inc}=35-40$ A\\,\\textrm{MeV} incident energy and decreases toward an asymptotic value $\\lambda_{NN}= 4.5 \\pm 1$ \\textrm{fm} at $E_{inc} = 100$ A\\,\\textrm{MeV}. After accounting for Pauli blocking of elastic nucleon-nucleon collisions, it is ...
An Alternative Approach to Vacuum Energy, Dark Matter and Gravitational Lensing
Zhao, HongSheng
2008-01-01
Various TeVeS-like and f(R)-like theories of gravity have added an interesting twist to the search for dark matter and vacuum energy, modifying the landscape of astrophysics day by day. A common thread of various theories is a non-uniform vector field fluid in the vacuum (see an up-to-date summary of relations between various theories by Halle, Zhao & Li, arXiv0711.0958 \\cite{Halle}). These "alternative" theories are in fact in the standard GR framework except that the cosmological "constant" is replaced by a non-trivial non-uniform vacuum energy. Built initially bottom-up rather than top-down as most gravity theories, TeVeS-like theories are healthily rooted on empirical facts. Here I attempt a review of some sanity checks of these fast-developing theories from galaxy rotation curves, solar system constraints, and gravitational lensing. I will also discuss some theoretical aspects of the theories related to the vacuum energy, and point out some analogies with electromagnetism and the Casimir effect.
The CERN Large Hadron Collider as a tool to study high-energy density matter.
Tahir, N A; Kain, V; Schmidt, R; Shutov, A; Lomonosov, I V; Gryaznov, V; Piriz, A R; Temporal, M; Hoffmann, D H H; Fortov, V E
2005-04-08
The Large Hadron Collider (LHC) at CERN will generate two extremely powerful 7 TeV proton beams. Each beam will consist of 2808 bunches with an intensity per bunch of 1.15x10(11) protons so that the total number of protons in one beam will be about 3x10(14) and the total energy will be 362 MJ. Each bunch will have a duration of 0.5 ns and two successive bunches will be separated by 25 ns, while the power distribution in the radial direction will be Gaussian with a standard deviation, sigma=0.2 mm. The total duration of the beam will be about 89 mus. Using a 2D hydrodynamic code, we have carried out numerical simulations of the thermodynamic and hydrodynamic response of a solid copper target that is irradiated with one of the LHC beams. These calculations show that only the first few hundred proton bunches will deposit a high specific energy of 400 kJ/g that will induce exotic states of high energy density in matter.
Ginzel, Rainer
2010-06-09
The thesis presented herein deals with experimental studies of the interaction between highly charged ions and neutral matter at low collision energies. The energy range investigated is of great interest for the understanding of both charge exchange reactions between ions comprising the solar wind and various astrophysical gases, as well as the creation of near-surface nanostructures. Over the course of this thesis an experimental setup was constructed, capable of reducing the kinetic energy of incoming ions by two orders of magnitude and finally focussing the decelerated ion beam onto a solid or gaseous target. A coincidence method was employed for the simultaneous detection of photons emitted during the charge exchange process together with the corresponding projectile ions. In this manner, it was possible to separate reaction channels, whose superposition presumably propagated large uncertainties and systematic errors in previous measurements. This work has unveiled unexpectedly strong contributions of slow radiative decay channels and clear evidence of previously only postulated decay processes in charge exchange-induced X-ray spectra. (orig.)
Large Number, Dark Matter, Dark Energy, and Superstructures in the Universe
HUANG Wu-Liang; HUANG Xiao-Dong
2009-01-01
Since there may exist dark matter particles v and 5 with mass ～ 10-1 eV in the universe, the superstructures with a scale of 1019 solar masses (large number A ～ 1019) appeared during the era near and before the hydrogen recombination. Since there are superstructures in the universe, there may be no necessity for the existence of dark energy. For checking the superstructure in the universe by CMB anisotropy, we need to measure CMB angular power spectrum -especially around ten degrees across the sky - in more details. While neutrino v is related to electroweak unification, the fourth stable elementary particle δ may be related to strong-gravity unification, which suggests p + p →, n + δ and that some new baryons appeared in the TeV region.
Li, Jun; Yang, Rongjia; Chen, Bohai, E-mail: litianshiiiii@163.com, E-mail: yangrj08@gmail.com, E-mail: bchenphy@163.com [College of Physical Science and Technology, Hebei University, No. 180, Wusi East Road, Baoding, 071002 China (China)
2014-12-01
We apply the Statefinder hierarchy and the growth rate of matter perturbations to discriminate modified Chaplygin gas (MCG), generalized Chaplygin gas (GCG), superfluid Chaplygin gas (SCG), purely kinetic k-essence (PKK), and ΛCDM model. We plot the evolutional trajectories of these models in the Statefinder plane and in the composite diagnostic plane. We find that GCG, MCG, SCG, PKK, and ΛCDM can be distinguished well from each other at the present epoch by using the composite diagnostic (ε(z), S{sup (1)}{sub 5}). Using other combinations, such as (S{sup (1)}{sub 3}, S{sup (1)}{sub 4}), (S{sup (1)}{sub 3}, S{sub 5}), (ε(z), S{sup (1)}{sub 3}), and (ε(z), S{sub 4}), some of these five dark energy models cannot be distinguished.
Li, Jun; Yang, Rongjia; Chen, Bohai
2014-12-01
We apply the Statefinder hierarchy and the growth rate of matter perturbations to discriminate modified Chaplygin gas (MCG), generalized Chaplygin gas (GCG), superfluid Chaplygin gas (SCG), purely kinetic k-essence (PKK), and ΛCDM model. We plot the evolutional trajectories of these models in the Statefinder plane and in the composite diagnostic plane. We find that GCG, MCG, SCG, PKK, and ΛCDM can be distinguished well from each other at the present epoch by using the composite diagnostic {epsilon(z), S(1)5}. Using other combinations, such as {S(1)3, S(1)4}, {S(1)3, S5}, {epsilon(z), S(1)3}, and {epsilon(z), S4}, some of these five dark energy models cannot be distinguished.
Prospects of cold dark matter searches with an ultra-low-energy germanium detector
Wong, H T
2007-01-01
The report describes the research program on the development of ultra-low-energy germanium detectors, with emphasis on WIMP dark matter searches. A threshold of 100 eV is achieved with a 20 g detector array, providing a unique probe to the low-mas WIMP. Present data at a surface laboratory is expected to give rise to comparable sensitivities with the existing limits at the $\\rm{5 - 10 GeV}$ WIMP-mass range. The projected parameter space to be probed with a full-scale, kilogram mass-range experiment is presented. Such a detector would also allow the studies of neutrino-nucleus coherent scattering and neutrino magnetic moments.
Quartet-metric general relativity: scalar graviton, dark matter, and dark energy
Pirogov, Yury F. [SRC Institute for High Energy Physics of NRC Kurchatov Institute, Protvino (Russian Federation)
2016-04-15
General relativity extended through a dynamical scalar quartet is proposed as a theory of the scalar-vector-tensor gravity, generically describing the unified gravitational dark matter (DM) and dark energy (DE). The implementation in the weak-field limit of the Higgs mechanism for the extended gravity, with a redefinition of metric field, is exposed in a generally covariant form. Under a natural restriction on the parameters, the redefined theory possesses in the linearized approximation a residual transverse-diffeomorphism invariance, and consistently comprises the massless tensor graviton and a massive scalar one as a DM particle. The number of adjustable parameters in the full nonlinear theory and a partial decoupling of the latter from its weak-field limit noticeably extend the perspectives for the unified description of the gravity DM and DE in the various phenomena at the different scales. (orig.)
Cosmological aspects of a unified dark energy and dust dark matter mode
Staicova, Denitsa
2016-01-01
Recently, a model of modified gravity plus single scalar field model was proposed, in which the scalar couples both to the standard Riemannian volume form given by the square root of the determinant of the Riemannian metric, as well as to another non-Riemannian volume form given in terms of an auxiliary maximal rank antisymmetric tensor gauge field. This model provides an exact unified description of both dark energy (via dynamically generated cosmological constant) and dark matter (as a "dust" fluid due to a hidden nonlinear Noether symmetry). In this paper we test the model against Supernovae type Ia experimental data and investigate the future Universe evolution which follows from it. Our results show that this model has very interesting features allowing various scenarios of Universe evolution and in the same time perfectly fits contemporary observational data. It can describe exponentially expanding or finite expanding Universe and moreover, a Universe with phase transition of first kind. The phase trans...
A Critical SUMO1 Modification of LKB1 Regulates AMPK Activity during Energy Stress
Ritho, Joan
2015-07-23
SUMOylation has been implicated in cellular stress adaptation, but its role in regulating liver kinase B1 (LKB1), a major upstream kinase of the energy sensor AMP-activated protein kinase (AMPK), is unknown. Here, we show that energy stress triggers an increase in SUMO1 modification of LKB1, despite a global reduction in both SUMO1 and SUMO2/3 conjugates. During metabolic stress, SUMO1 modification of LKB1 lysine 178 is essential in promoting its interaction with AMPK via a SUMO-interacting motif (SIM) essential for AMPK activation. The LKB1 K178R SUMO mutant had defective AMPK signaling and mitochondrial function, inducing death in energy-deprived cells. These results provide additional insight into how LKB1-AMPK signaling is regulated during energy stress, and they highlight the critical role of SUMOylation in maintaining the cell’s energy equilibrium.
Dark energy and dark matter from hidden symmetry of gravity model with a non-Riemannian volume form
Guendelman, Eduardo [Ben-Gurion University of the Negev, Department of Physics, Beersheba (Israel); Nissimov, Emil; Pacheva, Svetlana [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria)
2015-10-15
We show that dark energy and dark matter can be described simultaneously by ordinary Einstein gravity interacting with a single scalar field provided the scalar field Lagrangian couples in a symmetric fashion to two different spacetime volume forms (covariant integration measure densities) on the spacetime manifold - one standard Riemannian given by √(-g) (square root of the determinant of the pertinent Riemannian metric) and another non-Riemannian volume form independent of the Riemannian metric, defined in terms of an auxiliary antisymmetric tensor gauge field of maximal rank. Integration of the equations of motion of the latter auxiliary gauge field produce an a priori arbitrary integration constant that plays the role of a dynamically generated cosmological constant or dark energy. Moreover, the above modified scalar field action turns out to possess a hidden Noether symmetry whose associated conserved current describes a pressureless ''dust'' fluid which we can identify with the dark matter completely decoupled from the dark energy. The form of both the dark energy and dark matter that results from the above class of models is insensitive to the specific form of the scalar field Lagrangian. By adding an appropriate perturbation, which breaks the above hidden symmetry and along with this couples dark matter and dark energy, we also suggest a way to obtain growing dark energy in the present universe's epoch without evolution pathologies. (orig.)
Alam, N.; Agrawal, B. K.; Fortin, M.; Pais, H.; Providência, C.; Raduta, Ad. R.; Sulaksono, A.
2016-11-01
We examine the correlations of neutron star radii with the nuclear matter incompressibility, symmetry energy, and their slopes, which are the key parameters of the equation of state (EoS) of asymmetric nuclear matter. The neutron star radii and the EoS parameters are evaluated using a representative set of 24 Skyrme-type effective forces and 18 relativistic mean field models, and two microscopic calculations, all describing 2 M⊙ neutron stars. Unified EoSs for the inner-crust-core region have been built for all the phenomenological models, both relativistic and nonrelativistic. Our investigation shows the existence of a strong correlation of the neutron star radii with the linear combination of the slopes of the nuclear matter incompressibility and the symmetry energy coefficients at the saturation density. Such correlations are found to be almost independent of the neutron star mass in the range 0.6 -1.8 M⊙ . This correlation can be linked to the empirical relation existing between the star radius and the pressure at a nucleonic density between one and two times saturation density, and the dependence of the pressure on the nuclear matter incompressibility, its slope, and the symmetry energy slope. The slopes of the nuclear matter incompressibility and the symmetry energy coefficients as estimated from the finite nuclei data yield the radius of a 1.4 M⊙ neutron star in the range 11.09 -12.86 km.
2012-01-01
Particle Physics Foundations of Dark Matter, Dark Energy, and Inflation (1/3), by Dr. Edward (Rocky) Kolb (University of Chicago). Wednesday, May 9, 2012 from 11:00 to 12:00 (Europe/Zurich) at CERN ( 500-1-001 - Main Auditorium ) Ninety-five percent of the present mass-energy density of the Universe is dark. Twenty-five percent is in the form of dark matter holding together galaxies and other large scale structures, and 70% is in the form of dark energy driving an accelerated expansion of the universe. Dark matter and dark energy cannot be explained within the standard model of particle physics. In the first lecture I will review the evidence for dark matter and the observations that point to an explanation in the form of cold dark matter. I will then describe the expected properties of a hypothetical Weakly-Interacting Massive Particle, or WIMP, and review experimental and observational approaches to test the hypothesis. Finally, I will discus...
A stress tensor eigenvector projection space for the (H2O)5 potential energy surface
Xu, Tianlv; Farrell, James; Momen, Roya; Azizi, Alireza; Kirk, Steven R.; Jenkins, Samantha; Wales, David J.
2017-01-01
A stress tensor eigenvector projection space is created to describe reaction pathways on the (H2O)5 MP2 potential energy surface. Evidence for the stabilizing role of the O--O bonding interactions is found from the length of the recently introduced stress tensor trajectory in the stress tensor eigenvector projection space. The stress tensor trajectories demonstrate coupling behavior of the adjoining covalent (σ) O-H and hydrogen bonds due to sharing of covalent character. Additionally, the stress tensor trajectories can show dynamic coupling effects of pairs of σ bonds and of pairs of hydrogen bonds.
Grahame Thomas J
2012-06-01
Full Text Available Abstract Particulate matter (PM pollution is responsible for hundreds of thousands of deaths worldwide, the majority due to cardiovascular disease (CVD. While many potential pathophysiological mechanisms have been proposed, there is not yet a consensus as to which are most important in causing pollution-related morbidity/mortality. Nor is there consensus regarding which specific types of PM are most likely to affect public health in this regard. One toxicological mechanism linking exposure to airborne PM with CVD outcomes is oxidative stress, a contributor to the development of CVD risk factors including atherosclerosis. Recent work suggests that accelerated shortening of telomeres and, thus, early senescence of cells may be an important pathway by which oxidative stress may accelerate biological aging and the resultant development of age-related morbidity. This pathway may explain a significant proportion of PM-related adverse health outcomes, since shortened telomeres accelerate the progression of many diseases. There is limited but consistent evidence that vehicular emissions produce oxidative stress in humans. Given that oxidative stress is associated with accelerated erosion of telomeres, and that shortened telomeres are linked with acceleration of biological ageing and greater incidence of various age-related pathology, including CVD, it is hypothesized that associations noted between certain pollution types and sources and oxidative stress may reflect a mechanism by which these pollutants result in CVD-related morbidity and mortality, namely accelerated aging via enhanced erosion of telomeres. This paper reviews the literature providing links among oxidative stress, accelerated erosion of telomeres, CVD, and specific sources and types of air pollutants. If certain PM species/sources might be responsible for adverse health outcomes via the proposed mechanism, perhaps the pathway to reducing mortality/morbidity from PM would become clearer
Saenen, Nelly D; Vrijens, Karen; Janssen, Bram G; Roels, Harry A; Neven, Kristof Y; Vanden Berghe, Wim; Gyselaers, Wilfried; Vanpoucke, Charlotte; Lefebvre, Wouter; De Boever, Patrick; Nawrot, Tim S
2017-02-01
Particulate matter with a diameter ≤ 2.5 μm (PM2.5) affects human fetal development during pregnancy. Oxidative stress is a putative mechanism by which PM2.5 may exert its effects. Leptin (LEP) is an energy-regulating hormone involved in fetal growth and development. We investigated in placental tissue whether DNA methylation of the LEP promoter is associated with PM2.5 and whether the oxidative/nitrosative stress biomarker 3-nitrotyrosine (3-NTp) is involved. LEP DNA methylation status of 361 placentas from the ENVIRONAGE birth cohort was assessed using bisulfite-PCR-pyrosequencing. Placental 3-NTp (n = 313) was determined with an ELISA assay. Daily PM2.5 exposure levels were estimated for each mother's residence, accounting for residential mobility during pregnancy, using a spatiotemporal interpolation model. After adjustment for a priori chosen covariates, placental LEP methylation was 1.4% lower (95% CI: -2.7, -0.19%) in association with an interquartile range increment (7.5 μg/m3) in second-trimester PM2.5 exposure and 0.43% lower (95% CI: -0.85, -0.02%) in association with a doubling of placental 3-NTp content. LEP methylation status in the placenta was negatively associated with PM2.5 exposure during the second trimester, and with placental 3-NTp, a marker of oxidative/nitrosative stress. Additional research is needed to confirm our findings and to assess whether oxidative/nitrosative stress might contribute to associations between PM2.5 and placental epigenetic events. Potential consequences for health during the neonatal period and later in life warrant further exploration. Citation: Saenen ND, Vrijens K, Janssen BG, Roels HA, Neven KY, Vanden Berghe W, Gyselaers W, Vanpoucke C, Lefebvre W, De Boever P, Nawrot TS. 2017. Lower placental leptin promoter methylation in association with fine particulate matter air pollution during pregnancy and placental nitrosative stress at birth in the ENVIRONAGE cohort. Environ Health Perspect 125:262-268;
Update in the methodology of the chronic stress paradigm: internal control matters.
Strekalova, Tatyana; Couch, Yvonne; Kholod, Natalia; Boyks, Marco; Malin, Dmitry; Leprince, Pierre; Steinbusch, Harry Mw
2011-04-27
To date, the reliability of induction of a depressive-like state using chronic stress models is confronted by many methodological limitations. We believe that the modifications to the stress paradigm in mice proposed herein allow some of these limitations to be overcome. Here, we discuss a variant of the standard stress paradigm, which results in anhedonia. This anhedonic state was defined by a decrease in sucrose preference that was not exhibited by all animals. As such, we propose the use of non-anhedonic, stressed mice as an internal control in experimental mouse models of depression. The application of an internal control for the effects of stress, along with optimized behavioural testing, can enable the analysis of biological correlates of stress-induced anhedonia versus the consequences of stress alone in a chronic-stress depression model. This is illustrated, for instance, by distinct physiological and molecular profiles in anhedonic and non-anhedonic groups subjected to stress. These results argue for the use of a subgroup of individuals who are negative for the induction of a depressive phenotype during experimental paradigms of depression as an internal control, for more refined modeling of this disorder in animals.
Does Stress-Related Growth Really Matter for Adolescents' Day-to-Day Adaptive Functioning?
Mansfield, Cade D.; Diamond, Lisa M.
2017-01-01
Adolescent stress-related growth refers to enhancement in an adolescent's cognitive-affective or social resources as a result of experiencing stressors. We tested whether adolescents reporting high levels of stress-related growth showed superior adaptation outcomes on a day-to-day basis. Participants (n = 91; females = 46, age = 14) completed a…
Schmidt, Laura I.; Sieverding, Monika; Scheiter, Fabian; Obergfell, Julia
2015-01-01
University students often report high stress levels, and studies even suggest a recent increase. However, there is a lack of theoretically based research on the structural conditions that influence students' perceived stress. The current study compared the effects of Karasek's demand-control dimensions with the influence of neuroticism to address…
Schmidt, Laura I.; Sieverding, Monika; Scheiter, Fabian; Obergfell, Julia
2015-01-01
University students often report high stress levels, and studies even suggest a recent increase. However, there is a lack of theoretically based research on the structural conditions that influence students' perceived stress. The current study compared the effects of Karasek's demand-control dimensions with the influence of neuroticism to address…
Stress Levels of Kuwaiti Mothers of Children with SLD: Does Work and Educational Status Matter?
Alazemi, Saad S.; Hadadian, Azar; Merbler, John B.; Wang, Cen
2015-01-01
Existing research literature indicates that parents of children with disabilities have higher stress. The purpose of this study was to examine differences in stress levels between mothers in relation to their children with specific learning disabilities (SLD). A sub sample of 91 mothers participated in the study. The outcome of the research…
Montiel, Ariadna, E-mail: amontiel@fis.cinvestav.mx [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, 07000 México DF (Mexico); Salzano, Vincenzo, E-mail: vincenzo.salzano@ehu.es [Departamento de Física Teórica e Historia de la Ciencia, Universidad del País Vasco (UPV/EHU), Apdo. 644, E-48080 Bilbao (Spain); Lazkoz, Ruth, E-mail: ruth.lazkoz@ehu.es [Departamento de Física Teórica e Historia de la Ciencia, Universidad del País Vasco (UPV/EHU), Apdo. 644, E-48080 Bilbao (Spain)
2014-06-02
In this work we investigate if a small fraction of quarks and gluons, which escaped hadronization and survived as a uniformly spread perfect fluid, can play the role of both dark matter and dark energy. This fluid, as developed in [1], is characterized by two main parameters: β, related to the amount of quarks and gluons which act as dark matter; and γ, acting as the cosmological constant. We explore the feasibility of this model at cosmological scales using data from type Ia Supernovae (SNeIa), Long Gamma-Ray Bursts (LGRB) and direct observational Hubble data. We find that: (i) in general, β cannot be constrained by SNeIa data nor by LGRB or H(z) data; (ii) γ can be constrained quite well by all three data sets, contributing with ≈78% to the energy–matter content; (iii) when a strong prior on (only) baryonic matter is assumed, the two parameters of the model are constrained successfully.
Duarte, P.; Fernández-Reiriz, M. J.; Labarta, U.
2012-01-01
The environmental and the economic importance of shellfish stimulated a great deal of studies on their physiology over the last decades, with many attempts to model their growth. The first models developed to simulate bivalve growth were predominantly based on the Scope For Growth ( SFG) paradigm. In the last years there has been a shift towards the Dynamic Energy Budget ( DEB) paradigm. The general objective of this work is contributing to the evaluation of different approaches to simulate bivalve growth in low seston waters by: (i) implementing a model to simulate mussel growth in low suspended matter ecosystems based on the DEB theory (Kooijman, S.A.L.M., 2000. Dynamic and energy mass budgets in biological systems, Cambridge University Press); (ii) comparing and discussing different approaches to simulate feeding processes, in the light of recently published works both on experimental physiology and physiology modeling; (iii) comparing and discussing results obtained with a model based on EMMY ( Scholten and Smaal, 1998). The model implemented allowed to successfully simulate mussel feeding and shell length growth in two different Galician Rias. Obtained results together with literature data suggest that modeling of bivalve feeding should incorporate physiologic feed-backs related with food digestibility. In spite of considerable advances in bivalve modeling a number of issues is yet to be resolved, with emphasis on the way food sources are represented and feeding processes formulated.
Cosmological aspects of a unified dark energy and dust dark matter model
Staicova, Denitsa; Stoilov, Michail
2017-01-01
Recently, a model of modified gravity plus single scalar field was proposed, in which the scalar couples both to the standard Riemannian volume form given by the square root of the determinant of the Riemannian metric, as well as to another non-Riemannian volume form given in terms of an auxiliary maximal rank antisymmetric tensor gauge field. This model provides an exact unified description of both dark energy (via dynamically generated cosmological constant) and dark matter (as a “dust” fluid due to a hidden nonlinear Noether symmetry). In this paper, we test the model against Supernovae type Ia experimental data and investigate the future Universe evolution which follows from it. Our results show that this model has very interesting features allowing various scenarios of Universe evolution and in the same time perfectly fits contemporary observational data. It can describe exponentially expanding or finite expanding Universe and moreover, a Universe with phase transition of first kind. The phase transition occurs to a new, emerging at some time ground state with lower energy density, which affects significantly the Universe evolution.
Simplified Models for Dark Matter and Missing Energy Searches at the LHC
Abdallah, Jalal [Academia Sinica, Taipei (Taiwan). Inst. of Physics; Ashkenazi, Adi [Tel Aviv Univ. (Israel). Dept. of Physics; Boveia, Antonio [Univ. of Chicago, IL (United States). Enrico Fermi Inst.; Busoni, Giorgio [International School for Advanced Studies (SISSA), Trieste (Italy); National Inst. for Nuclear Physics (INFN), Trieste (Italy); De Simone, Andrea [International School for Advanced Studies (SISSA), Trieste (Italy); National Inst. for Nuclear Physics (INFN), Trieste (Italy); Doglioni, Caterina [Univ. of Geneva (Switzerland). Physics Dept.; Efrati, Aielet [Weizmann Inst. of Science, Rehovot (Israel). Dept. of Particle Physics and Astrophysics; Etzion, Erez [Tel Aviv Univ. (Israel). Dept. of Physics; Gramling, Johanna [Univ. of Geneva (Switzerland). Physics Dept.; Jacques, Thomas [Univ. of Geneva (Switzerland). Physics Dept.; Lin, Tongyan [Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics. Enrico Fermi Inst.; Morgante, Enrico [Univ. of Geneva (Switzerland). Physics Dept.; Papucci, Michele [Univ. of California, Berkeley, CA (United States). Berkeley Center for Theoretical Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Theoretical Physics Group; Penning, Bjoern [Univ. of Chicago, IL (United States). Enrico Fermi Inst.; Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Riotto, Antonio Walter [Univ. of Geneva (Switzerland). Physics Dept.; Rizzo, Thomas [SLAC National Accelerator Lab., Menlo Park, CA (United States); Salek, David [National Inst. for Subatomic Physics (NIKHEF), Amsterdam (Netherlands); Gravitation and AstroParticle Physics in Amsterdam (GRAPPA), Amsterdam (Netherlands); Schramm, Steven [Univ. of Toronto, ON (Canada). Dept. of Physics; Slone, Oren [Tel Aviv Univ. (Israel). Dept. of Physics; Soreq, Yotam [Weizmann Inst. of Science, Rehovot (Israel). Dept. of Particle Physics and Astrophysics; Vichi, Alessandro [Univ. of California, Berkeley, CA (United States). Berkeley Center for Theoretical Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Theoretical Physics Group; Volansky, Tomer [Tel Aviv Univ. (Israel). Dept. of Physics; Yavin, Itay [Perimeter Inst. for Theoretical Physics, Waterloo, ON (Canada); McMaster Univ., Hamilton, ON (Canada). Dept. of Physics; Zhou, Ning [Univ. of California, Irvine, CA (United States). Dept. of Physics and Astronomy; Zurek, Kathryn [Univ. of California, Berkeley, CA (United States). Berkeley Center for Theoretical Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Theoretical Physics Group
2014-10-01
The study of collision events with missing energy as searches for the dark matter (DM) component of the Universe are an essential part of the extensive program looking for new physics at the LHC. Given the unknown nature of DM, the interpretation of such searches should be made broad and inclusive. This report reviews the usage of simplified models in the interpretation of missing energy searches. We begin with a brief discussion of the utility and limitation of the effective field theory approach to this problem. The bulk of the report is then devoted to several different simplified models and their signatures, including s-channel and t-channel processes. A common feature of simplified models for DM is the presence of additional particles that mediate the interactions between the Standard Model and the particle that makes up DM. We consider these in detail and emphasize the importance of their inclusion as final states in any coherent interpretation. We also review some of the experimental progress in the field, new signatures, and other aspects of the searches themselves. We conclude with comments and recommendations regarding the use of simplified models in Run-II of the LHC.
Lino-de-Oliveira, Cilene; de Oliveira, Rúbia M W; Pádua Carobrez, Antonio; de Lima, Thereza C M; del Bel, Elaine Aparecida; Guimarães, Francisco Silveira
2006-10-16
Antidepressant treatment attenuates behavioral changes induced by uncontrollable stress. The periaqueductal gray matter (PAG) is proposed to be a brain site involved in the behavioral responses to uncontrollable stress and antidepressant effects. The main goal of the present study was to investigate the effect of antidepressant treatment on the pattern of neural activation of the PAG along its mediolateral and rostrocaudal subregions after a forced swim stress episode. Male Wistar rats were sub-acutely treated with desipramine (a selective noradrenaline re-uptake blocker, three injections of 10 mg/kg in 24 h) or clomipramine (a non-selective serotonin and noradrenaline re-uptake blocker, three injections of 10 mg/kg in 24 h) and submitted to the forced swimming test (FST). Two hours after the test their brain were removed for Fos immunohistochemistry. Fos-like immunoreactivity (FLI) in rostral, intermediate and caudal portions of dorsomedial (dmPAG), dorsolateral (dlPAG), lateral (lPAG) and ventrolateral (vlPAG) PAG were quantified by a computerized system. The FST session increased FLI in most parts of the PAG. Previous treatment with desipramine or clomipramine reduced FLI in all columns of the PAG. FLI in the PAG correlated positively with to the immobility time and negatively with to climbing behavior scored during the test. These results indicate that neurons in the PAG are activated by uncontrollable stress. Moreover, inhibitory action of antidepressants on this activity may be associated with the anti-immobility effects of these drugs in the FST.
Perceived Stress, Energy Drink Consumption, and Academic Performance among College Students
Pettit, Michele L.; DeBarr, Kathy A.
2011-01-01
Objective: This study explored relationships regarding perceived stress, energy drink consumption, and academic performance among college students. Participants: Participants included 136 undergraduates attending a large southern plains university. Methods: Participants completed surveys including items from the Perceived Stress Scale and items to…
Santos, G.A.; Schrama, J.W.; Capelle, J.; Rombout, J.H.W.M.; Verreth, J.A.J.
2013-01-01
Elevated carbon dioxide concentrations reduce feed intake and growth in several fish species and induce stress responses. In this study, the effects of moderately elevated CO2 levels on performance, energy partitioning, swimming activity and stress response in European seabass were assessed. Europea
Perceived Stress, Energy Drink Consumption, and Academic Performance among College Students
Pettit, Michele L.; DeBarr, Kathy A.
2011-01-01
Objective: This study explored relationships regarding perceived stress, energy drink consumption, and academic performance among college students. Participants: Participants included 136 undergraduates attending a large southern plains university. Methods: Participants completed surveys including items from the Perceived Stress Scale and items to…
Approximate stress-energy tensor of the massless spin-1/2 field in Schwarzschild spacetime
Matyjasek, J
2005-01-01
The approximate stress-energy tensor of the conformally invariant massless spin-1/2 field in the Hartle-Hawking state in the Schwarzschild spacetime is constructed. It is shown that by solving the conservation equation in conformal space and utilizing the regularity conditions in a physical metric one obtains the stress-energy tensor that is in a good agreement with the numerical calculations. The back reaction of the quantized field upon the spacetime metric is briefly discussed.
Stress-energy-momentum of affine-metric gravity generalized Komar superpotential
Giachetta, G
1995-01-01
In case of the Einstein's gravitation theory and its first order Palatini reformulation, the stress-energy-momentum of gravity has been proved to reduce to the Komar superpotential. We generalize this result to the affine-metric theory of gravity in case of general connections and arbitrary Lagrangian densities invariant under general covariant transformations. In this case, the stress-energy-momentum of gravity comes to the generalized Komar superpotential depending on a Lagrangian density in a precise way.
Stress drops and radiated energies of aftershocks of the 1994 Northridge, California, earthquake
Mori, Jim; Abercrombie, Rachel E.; Kanamori, Hiroo
2003-01-01
We study stress levels and radiated energy to infer the rupture characteristics and scaling relationships of aftershocks and other southern California earthquakes. We use empirical Green functions to obtain source time functions for 47 of the larger (M ≥ 4.0) aftershocks of the 1994 Northridge, California earthquake (M6.7). We estimate static and dynamic stress drops from the source time functions and compare them to well-calibrated estimates of the radiated energy. Our measurements of radiat...
A Cognitive Approach to Stress and the Working Couple: Looking at What Really Matters.
Colapietro, Elly; Rockwell, Barbara
1985-01-01
Provides an outline for a work/family workshop that has its philosophical roots in the works of three important cultural analysts: Alvin Toffler, Daniel Yankelovich, and Maxine Schnall. Elements of the workshop (cognitive shift, new information, getting in touch with what really matters, conclusion) are examined. (CT)
O. Buchmueller; S.A. Malik; C. McCabe; B. Penning
2015-01-01
The monojet search, looking for events involving missing transverse energy (E-T) plus one or two jets, is the most prominent collider dark matter search. We show that multijet searches, which look for E-T plus two or more jets, are significantly more sensitive than the monojet search for pseudoscala
2013-05-17
... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION In the Matter of Griffin Mining, Inc., Power Sports Factory, Inc., Star Energy Corp., TransNet... Factory, Inc. because it has not filed any periodic reports since the period ended March 31, 2010....
2010-12-01
... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION In the Matter of Toshiba America Nuclear Energy Corporation and All Other Persons Who Seek or... U.S. Nuclear Regulatory Commission (the Commission or NRC) published a rulemaking in the...
Hartley, Laurel M.; Momsen, Jennifer; Maskiewicz, April; D'Avanzo, Charlene
2012-01-01
Biology majors often take introductory biology, chemistry, and physics courses during their first two years of college. The various and sometimes conflicting discourse about and explanations of matter and energy in these courses may contribute to confusion and alternative conceptions (those that differ from scientific consensus) in biology…
2010-10-07
... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION In the Matter of Certain Energy Drink Products; Notice of Issuance of a Corrected General Exclusion Order AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby...
2011-04-06
... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION File No. 500-1 In the Matter of Circuit Systems, Inc., Global Energy Group, Inc., Integrated... information concerning the securities of Circuit Systems, Inc. because it has not filed any periodic...
Hartley, Laurel M.; Momsen, Jennifer; Maskiewicz, April; D'Avanzo, Charlene
2012-01-01
Biology majors often take introductory biology, chemistry, and physics courses during their first two years of college. The various and sometimes conflicting discourse about and explanations of matter and energy in these courses may contribute to confusion and alternative conceptions (those that differ from scientific consensus) in biology…
Aguiar, Joana G.; Correia, Paulo R. M.
2016-01-01
In this paper, we explore the use of concept maps (Cmaps) as instructional materials prepared by teachers, to foster the understanding of chemistry. We choose fireworks as a macroscopic event to teach basic chemical principles related to the Bohr atomic model and matter-energy interaction. During teachers' Cmap navigation, students can experience…
2011-03-02
... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION In the Matter of Progress Energy Florida, Inc. (Combined License Application, Levy County Nuclear... relating to pending appeal filed by the Nuclear Regulatory Commission staff in this case. Mr. Dehmel has...
Lorentz invariance and the zero-point stress-energy tensor
Visser, Matt
2016-01-01
Some 65 years ago (1951) Wolfgang Pauli noted that the zero-point energy density could be set to zero by a carefully fine-tuned cancellation between bosons and fermions. In the current article I will argue in a slightly different direction: The zero-point energy density is only one component of the zero-point stress energy tensor, and it is this tensor quantity that is in many ways the more fundamental object of interest. I shall demonstrate that Lorentz invariance of the zero-point stress energy tensor implies finiteness of the zero-point stress energy tensor, and vice versa. I shall then relate the discussion to BSM physics, to the cosmological constant, and to Sakharov-style induced gravity.
Money Matters: Recommendations for Financial Stress Research in Occupational Health Psychology.
Sinclair, Robert R; Cheung, Janelle H
2016-08-01
Money is arguably the most important resource derived from work and the most important source of stress for contemporary employees. A substantial body of research supports the relationship between access to financial resources and health and well-being, both at individual and aggregated (e.g. national) levels of analysis. Yet, surprisingly little occupational health psychology research has paid attention to financial issues experienced specifically by those in the labour force. With these issues in mind, the overarching goal of the present paper was to address conceptual and measurement issues in the study of objective and subjective aspects of financial stress and review several assessment options available to occupational health psychology researchers for both aspects of financial stress. Where appropriate, we offer guidance to researchers about choices among various financial stress measures and identify issues that require further research attention. Copyright © 2016 John Wiley & Sons, Ltd.
DOU Xiu-Ming; SUN Bao-Quan; WANG Bao-Rui; MA Shan-Shan; ZHOU Rong; HUANG She-Song; NI Hai-Qiao; NIU Zhi-Chuan
2008-01-01
@@ We report a photoluminescence (PL) energy red-shift of single quantum dots(QDs)by applying an in-plane compressive uniaxial stress along the[110]direction at a liquid nitrogen temperature.Uniaxial stress has an effect not only on the confinement potential in the growth direction which results in the PL shift,but also on the cylindrical symmetry of QDs which can be reflected by the change of the full width at half maximum of PL peak.This implies that uniaxial stress has an important role in tuning PL energy and fine structure splitting of QDs.
Cheng, Hank; Saffari, Arian; Sioutas, Constantinos; Forman, Henry J.; Morgan, Todd E.; Finch, Caleb E.
2016-01-01
Background: Rodent models for urban air pollution show consistent induction of inflammatory responses in major brain regions. However, the initial impact of air pollution particulate material on olfactory gateways has not been reported. Objective: We evaluated the olfactory neuroepithelium (OE) and brain regional responses to a nanosized subfraction of urban traffic ultrafine particulate matter (nPM, < 200 nm) in vivo, ex vivo, and in vitro. Methods: Adult mice were exposed to reaerosolized nPM for 5, 20, and 45 cumulative hours over 3 weeks. The OE, the olfactory bulb (OB), the cerebral cortex, and the cerebellum were analyzed for oxidative stress and inflammatory responses. Acute responses of the OE to liquid nPM suspensions were studied with ex vivo and primary OE cultures. Results: After exposure to nPM, the OE and OB had rapid increases of 4-hydroxy-2-nonenal (4-HNE) and 3-nitrotyrosine (3-NT) protein adducts, whereas the cerebral cortex and cerebellum did not respond at any time. All brain regions showed increased levels of tumor necrosis factor-α (TNFα) protein by 45 hr, with earlier induction of TNFα mRNA in OE and OB. These responses corresponded to in vitro OE and mixed glial responses, with rapid induction of nitrite and inducible nitric oxide synthase (iNOS), followed by induction of TNFα. Conclusions: These findings show the differential time course of oxidative stress and inflammatory responses to nPM between the OE and the brain. Slow cumulative transport of inhaled nPM into the brain may contribute to delayed responses of proximal and distal brain regions, with potential input from systemic factors. Citation: Cheng H, Saffari A, Sioutas C, Forman HJ, Morgan TE, Finch CE. 2016. Nanoscale particulate matter from urban traffic rapidly induces oxidative stress and inflammation in olfactory epithelium with concomitant effects on brain. Environ Health Perspect 124:1537–1546; http://dx.doi.org/10.1289/EHP134 PMID:27187980
Low energy IceCube data and a possible Dark Matter related excess
Chianese, M.; Miele, G.; Morisi, S.; Vitagliano, E.
2016-06-01
In this Letter we focus our attention on the IceCube events in the energy range between 60 and 100 TeV, which show an order 2-sigma excess with respect to a power-law with spectral index 2. We analyze the possible origin of such an excess by comparing the distribution of the arrival directions of IceCube events with the angular distributions of simply distributed astrophysical galactic/extragalactic sources, as well as with the expected flux coming from DM interactions (decay and annihilation) for different DM profiles. The statistical analysis performed seems to disfavor the correlation with the galactic plane, whereas rules out the DM annihilation scenario only in case of small clumpiness effect. The small statistics till now collected does not allow to scrutinize the cases of astrophysical isotropic distribution and DM decay scenarios. For this reason we perform a forecast analysis in order to stress the role of future Neutrino Telescopes.
Exploring the Housing and Household Energy Pathways to Stress: A Mixed Methods Study
Diana Hernández
2016-09-01
Full Text Available Chronic stress, known to contribute to negative physical and mental health outcomes, is closely associated with broader issues of material hardship, poor neighborhood conditions, residential instability, and inadequate housing conditions. However, few studies have comprehensively explored pathways to stress in a low-income housing environment. A mixed-methods pilot study investigated the concept of energy insecurity by looking at the impacts of weatherization and energy efficiency interventions on low-income households in the South Bronx neighborhood of New York City. In-depth interviews were conducted with 20 low-income heads of household; participants also completed health, housing and budget assessments. Physical deficiencies, economic hardship, and health issues all interacted to directly and indirectly produce living conditions that contribute to chronic stress. Households with higher stress reported more health problems. Poor quality housing led to coping responses that increased expenses, which in turn increased stress around housing and energy affordability. This study provides further support for the connections between both health and the built environment and between low socio-economic status populations and net negative health outcomes. Energy insecurity is an important contributor to chronic stress in low-income households, and isolating pathways to stress where there is potential for interventions is important for future policy and housing-based strategies.
Exploring the Housing and Household Energy Pathways to Stress: A Mixed Methods Study
Hernández, Diana; Phillips, Douglas; Siegel, Eva Laura
2016-01-01
Chronic stress, known to contribute to negative physical and mental health outcomes, is closely associated with broader issues of material hardship, poor neighborhood conditions, residential instability, and inadequate housing conditions. However, few studies have comprehensively explored pathways to stress in a low-income housing environment. A mixed-methods pilot study investigated the concept of energy insecurity by looking at the impacts of weatherization and energy efficiency interventions on low-income households in the South Bronx neighborhood of New York City. In-depth interviews were conducted with 20 low-income heads of household; participants also completed health, housing and budget assessments. Physical deficiencies, economic hardship, and health issues all interacted to directly and indirectly produce living conditions that contribute to chronic stress. Households with higher stress reported more health problems. Poor quality housing led to coping responses that increased expenses, which in turn increased stress around housing and energy affordability. This study provides further support for the connections between both health and the built environment and between low socio-economic status populations and net negative health outcomes. Energy insecurity is an important contributor to chronic stress in low-income households, and isolating pathways to stress where there is potential for interventions is important for future policy and housing-based strategies. PMID:27649222
Stress drops and radiated energies of aftershocks of the 1994 Northridge, California, earthquake
Mori, Jim; Abercrombie, Rachel E.; Kanamori, Hiroo
2003-11-01
We study stress levels and radiated energy to infer the rupture characteristics and scaling relationships of aftershocks and other southern California earthquakes. We use empirical Green functions to obtain source time functions for 47 of the larger (M ≥ 4.0) aftershocks of the 1994 Northridge, California earthquake (M6.7). We estimate static and dynamic stress drops from the source time functions and compare them to well-calibrated estimates of the radiated energy. Our measurements of radiated energy are relatively low compared to the static stress drops, indicating that the static and dynamic stress drops are of similar magnitude. This is confirmed by our direct estimates of the dynamic stress drops. Combining our results for the Northridge aftershocks with data from other southern California earthquakes appears to show an increase in the ratio of radiated energy to moment, with increasing moment. There is no corresponding increase in the static stress drop. This systematic change in earthquake scaling from smaller to larger (M3 to M7) earthquakes suggests differences in rupture properties that may be attributed to differences of dynamic friction or stress levels on the faults.
Particulate matter and atherosclerosis: role of particle size, composition and oxidative stress
2009-01-01
Abstract Air Pollution has been associated with significant adverse health effects leading to increased morbidity and mortality. Cumulative epidemiological and experimental data have shown that exposure to air pollutants lead to increased cardiovascular ischemic events and enhanced atherosclerosis. It appears that these associations are much stronger with the air particulate matter (PM) component and that in urban areas, the smaller particles could be more pathogenic, as a result of their gre...
Alam, D.S.; Raaij, van J.M.A.; Hautvast, J.G.A.J.; Yunus, M.; Fuchs, G.J.
2003-01-01
Objective: To assess the relationship of energy stress during pregnancy and lactation to maternal body stores in marginally nourished rural Bangladeshi women. Subjects and methods: Two-hundred and fifty-two women were followed from 5 - 7 months of pregnancy until 6 months postpartum. Energy intake w
Tolley-Henry, L.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)
1986-01-01
The study tested the hypothesis that resupplying nitrogen after a period of nitrogen stress leads to restoration of the balance between root and shoot growth and normal functional activity. Nonnodulated soybean plants were grown hydroponically for 14 days with 1.0 mM NO3- in a complete nutrient solution. One set of plants was continued on the complete nutrient solution for 25 days; a second set was given 0.0 mM NO3- for 25 days; and the third set was given 0.0 mM NO3- for 10 days followed by transfer to the complete solution with 1.0 mM NO3- for 15 days. In continuously nitrogen-stressed plants, emergence and expansion of main-stem and branch leaves were severely inhibited as low nitrogen content limited further growth. This was followed by a shift in partitioning of dry matter from the leaves to the roots, resulting in an initial stimulation of root growth and a decreased shoot:root ratio. Reduced nitrogen also was redistributed from the leaves into the stem and roots. When nitrogen stress was relieved, leaf initiation and expansion were renewed. With the restoration of the balance between root and shoot function, the shoot:root ratio and distribution of reduced nitrogen within the plant organs returned to levels similar to those of nonstressed plants.
Matthew J Harke
Full Text Available Whole transcriptome shotgun sequencing (RNA-seq was used to assess the transcriptomic response of the toxic cyanobacterium Microcystis aeruginosa during growth with low levels of dissolved inorganic nitrogen (low N, low levels of dissolved inorganic phosphorus (low P, and in the presence of high levels of high molecular weight dissolved organic matter (HMWDOM. Under low N, one third of the genome was differentially expressed, with significant increases in transcripts observed among genes within the nir operon, urea transport genes (urtBCDE, and amino acid transporters while significant decreases in transcripts were observed in genes related to photosynthesis. There was also a significant decrease in the transcription of the microcystin synthetase gene set under low N and a significant decrease in microcystin content per Microcystis cell demonstrating that N supply influences cellular toxicity. Under low P, 27% of the genome was differentially expressed. The Pho regulon was induced leading to large increases in transcript levels of the alkaline phosphatase phoX, the Pst transport system (pstABC, and the sphX gene, and transcripts of multiple sulfate transporter were also significantly more abundant. While the transcriptional response to growth on HMWDOM was smaller (5-22% of genes differentially expressed, transcripts of multiple genes specifically associated with the transport and degradation of organic compounds were significantly more abundant within HMWDOM treatments and thus may be recruited by Microcystis to utilize these substrates. Collectively, these findings provide a comprehensive understanding of the nutritional physiology of this toxic, bloom-forming cyanobacterium and the role of N in controlling microcystin synthesis.
Harke, Matthew J; Gobler, Christopher J
2013-01-01
Whole transcriptome shotgun sequencing (RNA-seq) was used to assess the transcriptomic response of the toxic cyanobacterium Microcystis aeruginosa during growth with low levels of dissolved inorganic nitrogen (low N), low levels of dissolved inorganic phosphorus (low P), and in the presence of high levels of high molecular weight dissolved organic matter (HMWDOM). Under low N, one third of the genome was differentially expressed, with significant increases in transcripts observed among genes within the nir operon, urea transport genes (urtBCDE), and amino acid transporters while significant decreases in transcripts were observed in genes related to photosynthesis. There was also a significant decrease in the transcription of the microcystin synthetase gene set under low N and a significant decrease in microcystin content per Microcystis cell demonstrating that N supply influences cellular toxicity. Under low P, 27% of the genome was differentially expressed. The Pho regulon was induced leading to large increases in transcript levels of the alkaline phosphatase phoX, the Pst transport system (pstABC), and the sphX gene, and transcripts of multiple sulfate transporter were also significantly more abundant. While the transcriptional response to growth on HMWDOM was smaller (5-22% of genes differentially expressed), transcripts of multiple genes specifically associated with the transport and degradation of organic compounds were significantly more abundant within HMWDOM treatments and thus may be recruited by Microcystis to utilize these substrates. Collectively, these findings provide a comprehensive understanding of the nutritional physiology of this toxic, bloom-forming cyanobacterium and the role of N in controlling microcystin synthesis.
Non-virialised clusters for detection of Dark Energy-Dark Matter interaction
Delliou, Morgan Le; Neto, Gastao B Lima; Abdalla, Elcio
2014-01-01
In a $\\Lambda$CDM universe it is expected that clusters of galaxies are not in equilibrium. In this work, we investigate the possibility to evaluate the departure from virial equilibrium in order to detect, in that balance, effects from a Dark matter--Dark energy interaction. We continue, from previous works, using a simple model of interacting dark sector, the Layzer--Irvine equation for dynamical virial evolution, and employ optical observations in order to obtain the mass profiles through weak lensing and X-ray observations giving the intracluster gas temperatures. Through a Monte Carlo method, we generate, for a set of clusters, measurements of observed virial ratios, interaction strength, rest virial ratio and departure from equilibrium factors. We found a compounded interaction strength of $-1.61^{+2.23}_{-16.34}$, compatible with no interaction, but also a compounded rest virial ratio of $-0.78 \\pm 0.13$, which would entail a $2\\sigma$ detection. We confirm quantitatively that clusters of galaxies are ...
Unified Dark Energy and Dust Dark Matter Dual to Quadratic Purely Kinetic K-Essence
Guendelman, Eduardo; Pacheva, Svetlana
2015-01-01
We consider a modified gravity plus single-scalar-field model, where the scalar Lagrangian couples symmetrically both to the standard Riemannian volume-form (spacetime integration measure density) given by the square-root of the determinant of the Riemannian metric, as well as to another non-Riemannian volume-form in terms of an auxiliary maximal-rank antisymmetric tensor gauge field. As shown in a previous paper, the pertinent scalar field dynamics provides an exact unified description of both dark energy via dynamical generation of a cosmological constant, and dark matter as a "dust" fluid with geodesic flow as a result of a hidden Noether symmetry. Here we extend the discussion by considering a non-trivial modification of the purely gravitational action in the form of f(R) = R - \\alpha R^2 generalized gravity. Upon deriving the corresponding "Einstein-frame" effective action of the latter modified gravity-scalar-field theory we find explicit duality (in the sense of weak versus strong coupling) between the...
Bethune-Waddell, Max; Chau, Kenneth J
2015-12-01
Consensus on a single electrodynamic theory has yet to be reached. Discord was seeded over a century ago when Abraham and Minkowski proposed different forms of electromagnetic momentum density and has since expanded in scope with the gradual introduction of other forms of momentum and force densities. Although degenerate sets of electrodynamic postulates can be fashioned to comply with global energy and momentum conservation, hope remains to isolate a single theory based on detailed comparison between force density predictions and radiation pressure experiments. This comparison is two-fold challenging because there are just a handful of quantitative radiation pressure measurements over the past century and the solutions developed from different postulates, which consist of approximate expressions and inferential deductions, are scattered throughout the literature. For these reasons, it is appropriate to conduct a consolidated and comprehensive re-analysis of past experiments under the assumption that the momentum and energy of light in matter are degenerate. We create a combined electrodynamic/fluid dynamic simulation testbed that uses five historically significant sets of electrodynamic postulates, including those by Abraham and Minkowski, to model radiation pressure under diverse configurations with minimal assumptions. This leads to new interpretations of landmark investigations of light momentum, including the Balazs thought experiment, the Jones-Richards and Jones-Leslie measurements of radiation pressure on submerged mirrors, observations of laser-deformed fluid surfaces, and experiments on optical trapping and tractor beaming of dielectric particles. We discuss the merits and demerits of each set of postulates when compared to available experimental evidence and fundamental conservation laws. Of the five sets of postulates, the Abraham and Einstein-Laub postulates provide the greatest consistency with observations and the most physically plausible
Effect of a strong magnetic field on the energy yield of nuclear reactions in dense nuclear matter
Sekerzhitskii, V.S. [Pushkin Pedagogical Institute, Brest (Belarus)
1995-01-01
According to modern concepts, the electron-neutron-nuclear (Aen) phase of dense highly degenerate matter can be realized in the shells of neutron stars. This phase has relatively stable and absolutely stable states of thermodynamic equilibrium. Strong magnetic fields can exist in neutron stars. For this reason, analysis of their effect on the characteristics of the Aen phase is of great interest. It is specially important to study the influence of strong magnetic fields on the energy yield of nuclear reactions in dense nuclear matter because the transition to the absolute equilibrium state proceeds through these reactions.
Impact of Crust Matter on Properties of Neutron Star with Supersoft Symmetry Energy
HUANG Qi-Zhi; WEN De-Hua
2011-01-01
By employing three typical equations of states (EOSs) of the crust matter, the effect of the crust on the structure and properties are investigated, where the core matter is described by the MDIxl model and the non-Newtonian gravity (described by the Yukawa contribution) is considered.It is shown that the EOSs of the crust matter have a notable effect on the mass-radius relation and the moment of inertia.
The association between education and work stress: does the policy context matter?
Thorsten Lunau
Full Text Available Several studies report socioeconomic differences in work stress, where people in lower socioeconomic positions (SEP are more likely to experience this burden. In the current study, we analyse associations between education and work stress in a large sample of workers from 16 European countries. In addition we explore whether distinct national labour market policies are related to smaller inequalities in work stress according to educational attainment.We use data collected in 2010/11 in two comparative studies ('Survey of Health, Ageing and Retirement in Europe' and the 'English Longitudinal Study of Ageing'; N = 13695, with samples of men and women aged 50 to 64 from 16 European countries. We measure highest educational degree according to the international standard classification of education (ISCED and assess work stress in terms of the demand-control and the effort-reward imbalance model. National labour market policies are measured on the basis of policy indicators which are divided into (1 'protective' policies offering financial compensation to those excluded from the labour market (e.g. replacement rate, and (2 'integrative' policies supporting disadvantaged individuals on the labour market (e.g. investments into active labour market policies or possibilities for further qualification in later life. In addition to country-specific analyses, we estimate multilevel models and test for interactions between the indicators of national policies and individual education.Main findings demonstrate consistent associations between lower education and higher levels of work stress in all countries. The strength of this association, however, varies across countries and is comparatively small in countries offering pronounced 'integrative' policies, in terms of high investments into measures of an active labor market policy and high participation rates in lifelong learning activities.Our results point to different types of policies that may help to
The association between education and work stress: does the policy context matter?
Lunau, Thorsten; Siegrist, Johannes; Dragano, Nico; Wahrendorf, Morten
2015-01-01
Several studies report socioeconomic differences in work stress, where people in lower socioeconomic positions (SEP) are more likely to experience this burden. In the current study, we analyse associations between education and work stress in a large sample of workers from 16 European countries. In addition we explore whether distinct national labour market policies are related to smaller inequalities in work stress according to educational attainment. We use data collected in 2010/11 in two comparative studies ('Survey of Health, Ageing and Retirement in Europe' and the 'English Longitudinal Study of Ageing'; N = 13695), with samples of men and women aged 50 to 64 from 16 European countries. We measure highest educational degree according to the international standard classification of education (ISCED) and assess work stress in terms of the demand-control and the effort-reward imbalance model. National labour market policies are measured on the basis of policy indicators which are divided into (1) 'protective' policies offering financial compensation to those excluded from the labour market (e.g. replacement rate), and (2) 'integrative' policies supporting disadvantaged individuals on the labour market (e.g. investments into active labour market policies or possibilities for further qualification in later life). In addition to country-specific analyses, we estimate multilevel models and test for interactions between the indicators of national policies and individual education. Main findings demonstrate consistent associations between lower education and higher levels of work stress in all countries. The strength of this association, however, varies across countries and is comparatively small in countries offering pronounced 'integrative' policies, in terms of high investments into measures of an active labor market policy and high participation rates in lifelong learning activities. Our results point to different types of policies that may help to reduce
Clarifying the links between social support and health: culture, stress, and neuroticism matter.
Park, Jiyoung; Kitayama, Shinobu; Karasawa, Mayumi; Curhan, Katherine; Markus, Hazel R; Kawakami, Norito; Miyamoto, Yuri; Love, Gayle D; Coe, Christopher L; Ryff, Carol D
2013-02-01
Although it is commonly assumed that social support positively predicts health, the empirical evidence has been inconsistent. We argue that three moderating factors must be considered: (1) support-approving norms (cultural context); (2) support-requiring situations (stressful events); and (3) support-accepting personal style (low neuroticism). Our large-scale cross-cultural survey of Japanese and US adults found significant associations between perceived support and health. The association was more strongly evident among Japanese (from a support-approving cultural context) who reported high life stress (in a support-requiring situation). Moreover, the link between support and health was especially pronounced if these Japanese were low in neuroticism.
Sekine, Yusuke; Zyryanova, Alisa; Crespillo-Casado, Ana; Amin-Wetzel, Niko; Harding, Heather P; Ron, D
2016-01-01
The eukaryotic translation initiation factor eIF2B promotes mRNA translation as a guanine nucleotide exchange factor (GEF) for translation initiation factor 2 (eIF2). Endoplasmic reticulum (ER) stress-mediated activation of the kinase PERK and the resultant phosphorylation of eIF2’s alpha subunit (eIF2α) attenuates eIF2B GEF activity thereby inducing an integrated stress response (ISR) that defends against protein misfolding in the ER. Mutations in all five subunits of human eIF2B cause an in...
New generation low-energy probes for ultralight axion and scalar dark matter
Stadnik, Yevgeny V
2015-01-01
We present a brief overview of a new generation of high-precision laboratory and astrophysical measurements to search for ultralight (sub-eV) axion, axion-like pseudoscalar and scalar dark matter, which form either a coherent condensate or topological defects (solitons). In these new detection methods, the sought effects are linear in the interaction constant between dark matter and ordinary matter, which is in stark contrast to traditional searches for dark matter, where the sought effects are quadratic or higher order in the underlying interaction constants (which are extremely small).
Analytic study of the effect of dark energy-dark matter interaction on the growth of structures
Marcondes, Rafael J F; Costa, André A; Wang, Bin; Abdalla, Elcio
2016-01-01
Large-scale structure has been shown as a promising cosmic probe for distinguishing and constraining dark energy models. Using the growth index parametrization, we obtain an analytic formula for the growth rate of structures in a coupled dark energy model in which the exchange of energy-momentum is proportional to the dark energy density. We find that the evolution of $f \\sigma_8$ can be determined analytically once we know the coupling, the dark energy equation of state, the present value of the dark energy density parameter and the current mean amplitude of dark matter fluctuations. We use our analytic result to confront the interacting model to observations of redshift-space distortions.
Slatyer, Tracy R
2015-01-01
Any injection of electromagnetically interacting particles during the cosmic dark ages will lead to increased ionization, heating, production of Lyman-alpha photons and distortions to the energy spectrum of the cosmic microwave background, with potentially observable consequences. In this note we describe numerical results for the low-energy electrons and photons produced by the cooling of particles injected at energies from keV to multi-TeV scales, at arbitrary injection redshifts (but focusing on the post-recombination epoch). We use these data, combined with existing calculations modeling the cooling of these low-energy particles, to estimate the resulting contributions to ionization, excitation and heating of the gas, and production of low-energy photons below the threshold for excitation and ionization. We compute corrected deposition-efficiency curves for annihilating dark matter, and demonstrate how to compute equivalent curves for arbitrary energy-injection histories. These calculations provide the ne...
Changes in proinflammatory cytokines and white matter in chronically stressed rats
Yang P
2015-03-01
Full Text Available Ping Yang,1 Zhenyong Gao,1 Handi Zhang,1 Zeman Fang,1 Cairu Wu,1 Haiyun Xu,1,2 Qing-Jun Huang1 1Mental Health Center, 2Department of Anatomy, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China Abstract: Although the pathogenesis of depression, an incapacitating psychiatric ailment, remains largely unknown, previous human and animal studies have suggested that both proinflammatory cytokines and altered oligodendrocytes play important roles in the condition. This study examined these two factors in the brains of rats following unpredictable chronic mild stress for 4 weeks, with the hypothesis that chronic stress may affect oligodendrocytes and elevate proinflammatory cytokines in the brain. After suffering unpredictable stressors for 4 weeks, the rats showed depression-like behaviors, including decreased locomotion in the open field, increased immobility time in the forced swim test, and decreased sucrose consumption and less sucrose preference when compared with controls. Immunohistochemical staining of brain sections showed higher immunoreactivity of proinflammatory cytokines in certain brain regions of stressed rats compared with controls; lower immunoreactivity of myelin basic protein and fewer mature oligodendrocytes were seen in the prefrontal cortex, but no demyelination was detected. These results are interpreted and discussed in the context of recent findings from human and animal studies. Keywords: cytokines, depression, myelination, oligodendrocytes, stress
Starcke, K.; Holst, R.J. van; Brink, W. van den; Veltman, D.J.; Goudriaan, A.E.
2013-01-01
BACKGROUND: Recent research findings suggest that heavy alcohol use is associated with alterations of the hypothalamic-pituitary-adrenal axis and autonomic nervous system function and that early abstinence is associated with blunted stress responsiveness. METHODS: This study investigated abstinent a
Stress and Depression among Older Residents in Religious Monasteries: Do Friends and God Matter?
Bishop, Bishop J.
2008-01-01
The purpose of this investigation was to explore how friendship and attachment to God provide protective benefits against stress and depression. Participants included 235 men and women, age 64 and older, residing in religious monasteries affiliated with the Order of St. Benedict. Hierarchical multiple regression analyses were completed to assess…
Learning, memory and brain plasticity in posttraumatic stress disorder: context matters.
Flor, Herta; Nees, Frauke
2014-01-01
We review evidence from our laboratory that suggests that in addition to enhanced cue conditioning and delayed cue extinction disturbed contextual learning may play an important role in the development and maintenance of posttraumatic stress disorder. Based on data from a longitudinal sample of rescue workers at high risk for posttraumatic stress disorder and data on single trauma exposed persons with and without posttraumatic stress disorder we show the crucial role of the hippocampus for contextual memory and impaired contextual learning along with enhanced cue conditioning and delayed extinction in PTSD. Using structural and functional magnetic resonance imaging we confirmed animal data on the role of the hippocampus in contextual and the importance of the amygdala in cue conditioning and the role of the frontal cortex in extinction. Genetic variants related to the modulation of the hypothalamus-pituitary-adrenal axis are associated with cue and genetic variants related to calcium signaling and memory processes and the regulation of the stress response are associated with context conditioning. These genes also play a role in PTSD. Further research needs to identify the predictive nature of these learning processes and plastic brain changes and their interaction with genetic characteristics changes for the transition into PTSD and its maintenance. A further focus needs to be on the identification of learning and memory mechanisms and the associated brain plasticity across disorders.
Puterman, E; Lin, J; Krauss, J; Blackburn, E H; Epel, E S
2015-04-01
Telomere length, a reliable predictor of disease pathogenesis, can be affected by genetics, chronic stress and health behaviors. Cross-sectionally, highly stressed postmenopausal women have shorter telomeres, but only if they are inactive. However, no studies have prospectively examined telomere length change over a short period, and if rate of attrition is affected by naturalistic factors such as stress and engagement in healthy behaviors, including diet, exercise, and sleep. Here we followed healthy women over 1 year to test if major stressors that occurred over the year predicted telomere shortening, and whether engaging in healthy behaviors during this period mitigates this effect. In 239 postmenopausal, non-smoking, disease-free women, accumulation of major life stressors across a 1-year period predicted telomere attrition over the same period-for every major life stressor that occurred during the year, there was a significantly greater decline in telomere length over the year of 35 bp (P<0.05). Yet, these effects were moderated by health behaviors (interaction B=0.19, P=0.04). Women who maintained relatively higher levels of health behaviors (1 s.d. above the mean) appeared to be protected when exposed to stress. This finding has implications for understanding malleability of telomere length, as well as expectations for possible intervention effects. This is the first study to identify predictors of telomere length change over the short period of a year.
Puterman, Eli; Lin, Jue; Krauss, Jeffrey; Blackburn, Elizabeth H.; Epel, Elissa S.
2014-01-01
Telomere length, a reliable predictor of disease pathogenesis, can be affected by genetics, chronic stress, and health behaviors. Cross-sectionally, highly stressed post-menopausal women have shorter telomeres, but only if they are inactive. However, no studies have prospectively examined telomere length change over a short period, and if rate of attrition is affected by naturalistic factors such as stress and engagement in healthy behaviors. Here we followed healthy women over one year to test if major stressors that occurred over the year predicted telomere shortening, and whether engaging in healthy behaviors during this period mitigates this effect. In 239 post-menopausal, non-smoking, disease-free women, accumulation of major life stressors across a one-year period predicted telomere attrition over the same period - for every major life stressor that occurred during the year, there was a significantly greater decline in telomere length over the year of 35 base pairs (p < .05). Yet, these effects were moderated by health behaviors (interaction B = 0.19, p = .04). Women who maintained relatively higher levels of health behaviors (one standard deviation above the mean) appeared to be protected when exposed to stress. This finding has implications for understanding malleability of telomere length, as well as expectations for possible intervention effects. This is the first study to identify predictors of telomere length change over the short period of a year. PMID:25070535
Valli, I; Crossley, N A; Day, F; Stone, J; Tognin, S; Mondelli, V; Howes, O; Valmaggia, L; Pariante, C; McGuire, P
2016-05-03
The onset of psychosis is thought to involve interactions between environmental stressors and the brain, with cortisol as a putative mediator. We examined the relationship between the cortisol stress response and brain structure in subjects at ultra-high risk (UHR) for psychosis. Waking salivary cortisol was measured in 22 individuals at UHR for psychosis and 17 healthy controls. Grey matter volume was assessed using magnetic resonance imaging at 3 T. The relationship between the stress response and grey matter volume was investigated using voxel-based analyses. Our predictions of the topography of cortisol action as a structural brain modulator were informed by measures of brain glucocorticoid and mineralcorticoid receptor distribution obtained from the multimodal neuroanatomical and genetic Allen Brain Atlas. Across all subjects, reduced responsivity of the hypothalamus-pituitary-adrenal (HPA) axis was correlated with smaller grey matter volumes in the frontal, parietal and temporal cortex and in the hippocampus. This relationship was particularly marked in the UHR subjects in the right prefrontal, left parahippocampal/fusiform and parietal cortices. The subgroup that subsequently developed psychosis showed a significant blunting of HPA stress response, observed at trend level also in the whole UHR sample. Altered responses to stress in people at high risk of psychosis are related to reductions in grey matter volume in areas implicated in the vulnerability to psychotic disorders. These areas may represent the neural components of a stress vulnerability model.
Debnath, Ujjal
2015-01-01
We have studied accretion of the dark matter and dark energy onto of $(n+2)$-dimensional Schwarzschild black hole and Morris-Thorne wormhole. The mass and the rate of change of mass for $(n+2)$-dimensional Schwarzschild black hole and Morris-Thorne wormhole have been found. We have assumed some candidates of dark energy like holographic dark energy, new agegraphic dark energy, quintessence, tachyon, DBI-essence, etc. The black hole mass and the wormhole mass have been calculated in term of redshift when dark matter and above types of dark energies accrete onto them separately. We have shown that the black hole mass increases and wormhole mass decreases for holographic dark energy, new agegraphic dark energy, quintessence, tachyon accretion and the slope of increasing/decreasing of mass sensitively depends on the dimension. But for DBI-essence accretion, the black hole mass first increases and then decreases and the wormhole mass first decreases and then increases and the slope of increasing/decreasing of mass...
Oxidative stress and energy crises in neuronal dysfunction.
Nicholls, David G
2008-12-01
Mitochondrial dysfunction is implicated in many forms of cell death, particularly in the central nervous system. The mitochondria are required at the same time to generate adenosine 5'-triphosphate (ATP) for the cell, sequester excess cytoplasmic Ca(2+), and both produce and detoxify superoxide free radicals. The electron transport chain and proton circuit are central in keeping these three balls in the air at the same time. We have investigated the bioenergetics of the in situ mitochondria in cultured neurons exposed to pathological glutamate concentrations to model glutamate excitotoxicity and have revised the conventional view that mitochondrial calcium loading results in increased oxidative stress that damages the mitochondrion and ultimately the cell. Instead, a central role is played under these conditions by limitations in mitochondrial and cellular ATP generating capacity. Sodium and calcium entering via the N-methyl-D-aspartate receptor impose a large energetic load on cells and can use the entire respiratory capacity of the in situ mitochondria. As a result, even modest restrictions in mitochondrial capacity -- caused by low concentrations of electron transport chain inhibitors such as rotenone, as in models of Parkinson's disease; low concentrations of uncouplers, to test the so-called neuroprotective mild uncoupling hypothesis; or preexisting oxidative stress -- greatly potentiate glutamate excitotoxicity. Our findings may lead to a reevaluation of the potential for mild uncoupling to provide a neuroprotective role in aging-related neurodegenerative disorders because the deleterious consequences of restricting ATP generating capacity greatly outweigh the negligible effects on the levels of mitochondrial superoxide radicals in intact neurons.
Stress Points to Energy Saving and Environmental Protection
Fang Weizhong; Jin Wen
2007-01-01
@@ GDP growth of 10.5% in 2006 can't be admired without analysis. The growth of 2.5 percentage points beyond the state's plan was achieved on the costs that energy consumption remained at a high increase rate of 11% and the total discharge amount of main pollutants increased but decreased. To balance out the gain against the loss,the gain is unlikely to outweigh the loss.
Impact of shear stress and pH changes on floc size and removal of dissolved organic matter (DOM).
Slavik, Irene; Müller, Susanne; Mokosch, Regina; Azongbilla, Joseph Abanga; Uhl, Wolfgang
2012-12-01
The impact of shear stress and increases in pH on the release of natural dissolved organic matter (DOM) from Fe-DOM and Al-DOM flocs was investigated for a high organic matter, low turbidity raw water by application of a dynamic extinction probe (DEP) and liquid chromatography organic carbon detection (LC-OCD). It was shown that high shear forces resulted in a breakage of Fe-DOM flocs. Re-growth took place during subsequent low shear phases. However, re-growth was limited. The flocs regained a size of about 50% of the size after initial coagulation. Cyclic shearing resulted in slower re-growth rates. A new insight was that when enough time was given, similar sizes of the re-grown flocs were regained. As shown by bulk DOC, only an insignificant release of DOM took place when flocs were exposed to shear. Increase in shear stress resulted in smaller flocs with higher specific outer surface area. However, DOM removal did not change. Thus, there was no increase in adsorption capacity due to floc breakage. Consequently, DOM must be adsorbed inside the amorphous flocs rather than on the outer surface. Also, as shear results in more compact flocs, compaction does not have an effect on DOM removal. A pH increase of 0.5, as it can happen during water treatment after coagulation, resulted in a release of DOM. Humic substances accounted for the largest proportion of total DOM released. The increase in pH did not affect floc size. Consequently, DOM removal is mainly governed by the dependence of DOM properties on pH with the final pH determining the degree of DOM removal and not the path on which this pH is reached. The physical properties of the flocs have no impact on DOM removal. Copyright © 2012 Elsevier Ltd. All rights reserved.
Global Stress Classification System for Materials Used in Solar Energy Applications
Slamova, Karolina; Schill, Christian; Herrmann, Jan; Datta, Pawan; Chih Wang, Chien
2016-08-01
Depending on the geographical location, the individual or combined impact of environmental stress factors and corresponding performance losses for solar applications varies significantly. Therefore, as a strategy to reduce investment risks and operating and maintenance costs, it is necessary to adapt the materials and components of solar energy systems specifically to regional environmental conditions. The project «GloBe Solar» supports this strategy by focusing on the development of a global stress classification system for materials in solar energy applications. The aim of this classification system is to assist in the identification of the individual stress conditions for every location on the earth's surface. The stress classification system could serve as a decision support tool for the industry (manufacturers, investors, lenders and project developers) and help to improve knowledge and services that can provide higher confidence to solar power systems.
Effect of stress on energy flux deviation of ultrasonic waves in GR/EP composites
Prosser, William H.; Kriz, R. D.; Fitting, Dale W.
1990-01-01
Ultrasonic waves suffer energy flux deviation in graphite/epoxy because of the large anisotropy. The angle of deviation is a function of the elastic coefficients. For nonlinear solids, these coefficients and thus the angle of deviation is a function of stress. Acoustoelastic theory was used to model the effect of stress on flux deviation for unidirectional T300/5208 using previously measured elastic coefficients. Computations were made for uniaxial stress along the x3 axis (fiber axis) and the x1 for waves propagating in the x1x3 plane. These results predict a shift as large as three degrees for the quasi-transverse wave. The shift in energy flux offers a new nondestructive technique of evaluating stress in composites.
Montiel, Ariadna; Lazkoz, Ruth
2014-01-01
In this work we investigate if a small fraction of quarks and gluons, which escaped hadronization and survived as a uniformly spread perfect fluid, can play the role of both dark matter and dark energy. This fluid, as developed in \\citep{Brilenkov}, is characterized by two main parameters: $\\beta$, related to the amount of quarks and gluons which act as dark matter; and $\\gamma$, acting as the cosmological constant. We explore the feasibility of this model at cosmological scales using data from type Ia Supernovae (SNeIa), Long Gamma-Ray Bursts (LGRB) and direct observational Hubble data. We find that: (i) in general, $\\beta$ cannot be constrained by SNeIa data nor by LGRB or H(z) data; (ii) $\\gamma$ can be constrained quite well by all three data sets, contributing with $\\approx78\\%$ to the energy-matter content; (iii) when a strong prior on (only) baryonic matter is assumed, the two parameters of the model are constrained successfully.
Four-point correlation function of stress-energy tensors in N=4 superconformal theories
Korchemsky, G P
2015-01-01
We derive the explicit expression for the four-point correlation function of stress-energy tensors in four-dimensional N=4 superconformal theory. We show that it has a remarkably simple and suggestive form allowing us to predict a large class of four-point correlation functions involving the stress-energy tensor and other conserved currents. We then apply the obtained results on the correlation functions to computing the energy-energy correlations, which measure the flow of energy in the final states created from the vacuum by a source. We demonstrate that they are given by a universal function independent of the choice of the source. Our analysis relies only on N=4 superconformal symmetry and does not use the dynamics of the theory.
Genetics of grass dry matter intake, energy balance, and digestibility in grazing irish dairy cows.
Berry, D P; Horan, B; O'Donovan, M; Buckley, F; Kennedy, E; McEvoy, M; Dillon, P
2007-10-01
The objective of this study was to estimate genetic parameters for grass dry matter intake (DMI), energy balance (EB), and cow internal digestibility (IDG) in grazing Holstein-Friesian dairy cows. Grass DMI was estimated up to 4 times per lactation on 1,588 lactations from 755 cows on 2 research farms in southern Ireland. Simultaneously measured milk production and BW records were used to calculate EB. Cow IDG, measured as the ratio of feed and fecal concentrations of the natural odd carbon-chain n-alkane pentatriacontane, was available on 583 lactations from 238 cows. Random regression and multitrait animal models were used to estimate residual, additive genetic and permanent environmental (co)variances across lactations. Results were similar for both models. Heritability for DMI, EB, and IDG across lactation varied from 0.10 [8 days in milk (DIM)] to 0.30 (169 DIM), from 0.06 (29 DIM) to 0.29 (305 DIM), and from 0.08 (50 DIM) to 0.45 (305 DIM), respectively, when estimated using the random regression model. Genetic correlations within each trait tended to decrease as the interval between periods compared increased for DMI and EB, whereas the correlations with IDG in early lactation were weakest when measured midlactation. The lowest correlation between any 2 periods was 0.10, -0.36, and -0.04 for DMI, EB, and IDG, respectively, suggesting the effect of different genes at different stages of lactations. Eigenvalues and associated eigenfunctions of the additive genetic covariance matrix revealed considerable genetic variation among animals in the shape of the lactation profiles for DMI, EB, and IDG. Genetic parameters presented are the first estimates from dairy cows fed predominantly grazed grass and imply that genetic improvement in DMI, EB, and IDG in Holstein-Friesian cows fed predominantly grazed grass is possible.
Yarushkina, N I; Filaretova, L P
2015-01-01
Periaqueductal gray matter of the midbrain (PAGM) plays a crucial role in the regulation of pain sensitivity under stress, involving in the stress-induced analgesia. A key hormonal system of adaptation under stress is the hypothalamic-pituitary-adrenocortical (HPA) axis. HPA axis's hormones, corticotropin-releasing factor (CRF) and glucocorticoids, are involved in stress-induced analgesia. Exogenous hormones of the HPA axis, similarly to the hormones produced under stress, may cause an analgesic effect. CRF-induced analgesia may be provided by glucocorticoid hormones. CRF and glucocorticoids-induced effects on somatic pain sensitivity may be mediated by PAGM. The aim of the review was to analyze the data of literature on the role of PAGM in the regulation of somatic pain sensitivity under stress and in providing of CRF and glucocorticoid-induced analgesia.
Conservation Laws and Stress-energy-momentum Tensors for Systems with Background Fields
Gratus, Jonathan; Tucker, Robin W
2012-01-01
This article attempts to delineate the roles played by non-dynamical background structures and Killing symmetries in the construction of stress-energy-momentum tensors generated from a diffeomorphism invariant action density. An intrinsic coordinate independent approach puts into perspective a number of spurious arguments that have historically lead to the main contenders, viz the Belinfante-Rosenfeld stress-energy-momentum tensor derived from a Noether current and the Einstein-Hilbert stress-energy-momentum tensor derived in the context of Einstein's theory of general relativity. Emphasis is placed on the role played by non-dynamical background (phenomenological) structures that discriminate between properties of these tensors particularly in the context of electrodynamics in media. These tensors are used to construct conservation laws in the presence of Killing Lie-symmetric background fields.
Plastic incompatibility stresses and stored elastic energy in plastically deformed copper
Baczmanski, A. [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland)], E-mail: baczman@ftj.agh.edu.pl; Hfaiedh, N.; Francois, M. [LASMIS, Universite de Technologie de Troyes, 11 rue Marie Curie, B.P. 2060, 10010 Troyes (France); Wierzbanowski, K. [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland)
2009-02-15
The X-ray diffraction method and theoretical model of elastoplastic deformation were used to examine the residual stresses in polycrystalline copper. To this end, the {l_brace}2 2 0{r_brace} strain pole figures were determined for samples subjected to different magnitudes of tensile deformation. Using diffraction data and the self-consistent model, the tensor of plastic incompatibility stress was found for each orientation of a polycrystalline grain. Crystallographic textures, macroscopic and second-order residual stresses were considered in the analysis. As a result, the distributions of elastic stored energy and von Mises equivalent stress were presented in Euler space and correlated with the preferred orientations of grains. Moreover, using the model prediction, the variation of the critical resolved shear stress with grain orientation was determined.
Xing, Zhi-zhong
2016-01-01
The strength of CP violation in an accelerator-based neutrino oscillation experiment is characterized by the matter-corrected parameter \\widetilde{\\cal J}, a counterpart of the fundamental Jarlskog invariant \\cal J. We find a unique range of the neutrino beam energy, E \\lesssim 0.3 GeV, in which the size of \\widetilde{\\cal J} can be amplified as compared with that of {\\cal J}. The ratio \\widetilde{\\cal J}/{\\cal J} peaks at the resonance energy E_* \\simeq 0.14 GeV (or 0.12 GeV) for the normal (or inverted) neutrino mass hierarchy. In the complex plane we show how the three Dirac unitarity triangles of lepton flavor mixing are deformed due to the matter corrections. The probabilities of \
Dark Energy and Dark Matter in a Model of an Axion Coupled to a Non-Abelian Gauge Field
Alexander, Stephon; Froehlich, Juerg
2016-01-01
We study cosmological field configurations (solutions) in a model in which the pseudo-scalar phase of a complex field couples to the Pontryagin density of a massive non-abelian gauge field, in analogy to how the Peccei-Quinn axion field couples to the $SU(3)$-color gauge field of QCD. Assuming that the self-interaction potential of the complex scalar field has the typical {\\it Mexican hat} form, we find that the radial fluctuations of this field can act as {\\it Dark Matter}, while its phase may give rise to tracking {\\it Dark Energy}. In our model, Dark-Energy domination will, however, not continue for ever. A new component of dark matter, namely the one originating from the gauge field, will dominate in the future.
Dark Energy and Dark Matter From Hidden Symmetry of Gravity Model with a Non-Riemannian Volume Form
Guendelman, Eduardo; Pacheva, Svetlana
2015-01-01
We show that dark energy and dark matter can be described simultaneously by ordinary Einstein gravity interacting with a single scalar field provided the scalar field Lagrangian couples in a symmetric fashion to two different spacetime volume-forms (covariant integration measure densities) on the spacetime manifold - one standard Riemannian given by the square-root of the determinant of the pertinent Riemannian metric and another non-Riemannian volume-form independent of the Riemannian metric, defined in terms of an auxiliary antisymmetric tensor gauge field of maximal rank. Integration of the equations of motion of the latter auxiliary gauge field produce an a priori arbitrary integration constant that plays the role of a dynamically generated cosmological constant or dark energy. Moreover, the above modified scalar field action turns out to possess a hidden Noether symmetry whose associated conserved current describes a pressureless "dust" fluid which we can identify with the dark matter completely decouple...
Lin, Zih-Chan; Lee, Chiang-Wen; Tsai, Ming-Horng; Ko, Horng-Huey; Fang, Jia-You; Chiang, Yao-Chang; Liang, Chan-Jung; Hsu, Lee-Fen; Hu, Stephen Chu-Sung; Yen, Feng-Lin
2016-01-01
Exposure to particulate matter (PM), a major form of air pollution, can induce oxidative stress and inflammation and may lead to many diseases in various organ systems including the skin. Eupafolin, a flavonoid compound derived from Phyla nodiflora, has been previously shown to exhibit various pharmacological activities, including antioxidant and anti-inflammatory effects. Unfortunately, eupafolin is characterized by poor water solubility and skin penetration, which limits its clinical applications. To address these issues, we successfully synthesized a eupafolin nanoparticle delivery system (ENDS). Our findings showed that ENDS could overcome the physicochemical drawbacks of raw eupafolin with respect to water solubility and skin penetration, through reduction of particle size and formation of an amorphous state with hydrogen bonding. Moreover, ENDS was superior to raw eupafolin in attenuating PM-induced oxidative stress and inflammation in HaCaT keratinocytes, by mediating the antioxidant pathway (decreased reactive oxygen species production and nicotinamide adenine dinucleotide phosphate oxidase activity) and anti-inflammation pathway (decreased cyclooxygenase-2 expression and prostaglandin E2 production through downregulation of mitogen-activated protein kinase and nuclear factor-κB signaling). In summary, ENDS shows better antioxidant and anti-inflammatory activities than raw eupafolin through improvement of water solubility and skin penetration. Therefore, ENDS may potentially be used as a medicinal drug and/or cosmeceutical product to prevent PM-induced skin inflammation.
Lin, Zih-Chan; Lee, Chiang-Wen; Tsai, Ming-Horng; Ko, Horng-Huey; Fang, Jia-You; Chiang, Yao-Chang; Liang, Chan-Jung; Hsu, Lee-Fen; Hu, Stephen Chu-Sung; Yen, Feng-Lin
2016-01-01
Exposure to particulate matter (PM), a major form of air pollution, can induce oxidative stress and inflammation and may lead to many diseases in various organ systems including the skin. Eupafolin, a flavonoid compound derived from Phyla nodiflora, has been previously shown to exhibit various pharmacological activities, including antioxidant and anti-inflammatory effects. Unfortunately, eupafolin is characterized by poor water solubility and skin penetration, which limits its clinical applications. To address these issues, we successfully synthesized a eupafolin nanoparticle delivery system (ENDS). Our findings showed that ENDS could overcome the physicochemical drawbacks of raw eupafolin with respect to water solubility and skin penetration, through reduction of particle size and formation of an amorphous state with hydrogen bonding. Moreover, ENDS was superior to raw eupafolin in attenuating PM-induced oxidative stress and inflammation in HaCaT keratinocytes, by mediating the antioxidant pathway (decreased reactive oxygen species production and nicotinamide adenine dinucleotide phosphate oxidase activity) and anti-inflammation pathway (decreased cyclooxygenase-2 expression and prostaglandin E2 production through downregulation of mitogen-activated protein kinase and nuclear factor-κB signaling). In summary, ENDS shows better antioxidant and anti-inflammatory activities than raw eupafolin through improvement of water solubility and skin penetration. Therefore, ENDS may potentially be used as a medicinal drug and/or cosmeceutical product to prevent PM-induced skin inflammation. PMID:27570454
Theoretical study of atoms by the electronic kinetic energy density and stress tensor density
Nozaki, Hiroo; Tachibana, Akitomo
2016-01-01
We analyze the electronic structure of atoms in the first, second and third periods using the electronic kinetic energy density and stress tensor density, which are local quantities motivated by quantum field theoretic consideration, specifically the rigged quantum electrodynamics. We compute the zero surfaces of the electronic kinetic energy density, which we call the electronic interfaces, of the atoms. We find that their sizes exhibit clear periodicity and are comparable to the conventional atomic and ionic radii. We also compute the electronic stress tensor density and its divergence, tension density, of the atoms, and discuss how their electronic structures are characterized by them.
Nozaki, Hiroo; Ichikawa, Kazuhide; Watanabe, Taku; Aihara, Yuichi; Tachibana, Akitomo
2016-01-01
We analyze the electronic structure of lithium ionic conductors, ${\\rm Li_3PO_4}$ and ${\\rm Li_3PS_4}$, using the electronic stress tensor density and kinetic energy density with special focus on the ionic bonds among them. We find that, as long as we examine the pattern of the eigenvalues of the electronic stress tensor density, we cannot distinguish between the ionic bonds and bonds among metalloid atoms. We then show that they can be distinguished by looking at the morphology of the electronic interface, the zero surface of the electronic kinetic energy density.
Buchmueller, Oliver; Malik, Sarah A; McCabe, Christopher; Penning, Bjoern
2015-10-30
The monojet search, looking for events involving missing transverse energy (E_{T}) plus one or two jets, is the most prominent collider dark matter search. We show that multijet searches, which look for E_{T} plus two or more jets, are significantly more sensitive than the monojet search for pseudoscalar- and scalar-mediated interactions. We demonstrate this in the context of a simplified model with a pseudoscalar interaction that explains the excess in GeV energy gamma rays observed by the Fermi Large Area Telescope. We show that multijet searches already constrain a pseudoscalar interpretation of the excess in much of the parameter space where the mass of the mediator M_{A} is more than twice the dark matter mass m_{DM}. With the forthcoming run of the Large Hadron Collider at higher energies, the remaining regions of the parameter space where M_{A}>2m_{DM} will be fully explored. Furthermore, we highlight the importance of complementing the monojet final state with multijet final states to maximize the sensitivity of the search for the production of dark matter at colliders.
3D map of Universe bolsters case for dark energy and dark matter
2003-01-01
"Astronomers from the Sloan Digital Sky Survey (SDSS) have made the most precise measurement to date of the cosmic clustering of galaxies and dark matter, refining our understanding of the structure and evolution of the Universe" (1 page).
Hanslin, Hans Martin; Przybysz, Arkadiusz; Slimestad, Rune; Sæbø, Arne
2017-09-01
To predict how the function of urban vegetation and the provision of ecosystem services respond to combinations of natural and anthropogenic drivers, a better understanding of multiple stress interactions is required. This study tested combined effects of moderate levels of drought, soil salinity and exposure to diesel exhaust on parameters of physiology, metabolism, morphology and growth of Pinus sylvestris L. saplings. We found that plant responses were primarily dominated by single stressors and a few two-way interactions. Stressor combinations did not have considerable additional negative effects on plant performance compared to single stressors. Hence, synergistic and antagonistic interactions were rare and additive effects frequent. Drought cycles caused most negative effects, from chlorophyll a fluorescence and epicuticular wax content to growth responses, while soil salinity caused fewer negative effects but contributed to reduction in fine root growth and fluorescence parameters at low air contamination. Interestingly, the air contamination alone had only marginal effects on plant morphology and growth, but contributed an antagonistic effect, dampening the negative effect of drought and salinity on the maximum quantum efficiency of PSII photochemistry (Fv/Fm) and fine root biomass. Although, these effects were moderate, it appears that exhaust exposure had a cross-acclimation effect on plant responses to drought and salinity. We also found that salinity had a negative effect on the accumulation of particulate matter on shoots, illustrating that the plant stress situation can affect the provisioning of certain ecosystem services like pollution attenuation. These findings have implications for the understanding of the complex natural and anthropogenic stress situation of urban, and how to maintain the ecological functions and delivery of ecosystem services. Copyright © 2017 Elsevier B.V. All rights reserved.
Holographic stress-energy tensor near the Cauchy horizon inside a rotating black hole
Ishibashi, Akihiro; Maeda, Kengo; Mefford, Eric
2017-07-01
We investigate a stress-energy tensor for a conformal field theory (CFT) at strong coupling inside a small five-dimensional rotating Myers-Perry black hole with equal angular momenta by using the holographic method. As a gravitational dual, we perturbatively construct a black droplet solution by applying the "derivative expansion" method, generalizing the work of Haddad [Classical Quantum Gravity 29, 245001 (2012), 10.1088/0264-9381/29/24/245001] and analytically compute the holographic stress-energy tensor for our solution. We find that the stress-energy tensor is finite at both the future and past outer (event) horizons and that the energy density is negative just outside the event horizons due to the Hawking effect. Furthermore, we apply the holographic method to the question of quantum instability of the Cauchy horizon since, by construction, our black droplet solution also admits a Cauchy horizon inside. We analytically show that the null-null component of the holographic stress-energy tensor negatively diverges at the Cauchy horizon, suggesting that a singularity appears there, in favor of strong cosmic censorship.
Particulate matter and atherosclerosis: role of particle size, composition and oxidative stress
Nel Andre E
2009-09-01
Full Text Available Abstract Air Pollution has been associated with significant adverse health effects leading to increased morbidity and mortality. Cumulative epidemiological and experimental data have shown that exposure to air pollutants lead to increased cardiovascular ischemic events and enhanced atherosclerosis. It appears that these associations are much stronger with the air particulate matter (PM component and that in urban areas, the smaller particles could be more pathogenic, as a result of their greater propensity to induce systemic prooxidant and proinflammatory effects. Much is still unknown about the toxicology of ambient particulates as well as the pathogenic mechanisms responsible for the induction of adverse cardiovascular health effects. It is expected that better understanding of these effects will have large implications and may lead to the formulation and implementation of new regulatory policies. Indeed, we have found that ultrafine particles ( Extensive epidemiological evidence supports the association of air pollution with adverse health effects 123. It is increasingly being recognized that such effects lead to enhanced morbidity and mortality, mostly due to exacerbation of cardiovascular diseases and predominantly those of ischemic character 4. Indeed, in addition to the classical risk factors such as serum lipids, smoking, hypertension, aging, gender, family history, physical inactivity and diet, recent data have implicated air pollution as an important additional risk factor for atherosclerosis. This has been the subject of extensive reviews 56 and a consensus statement from the American Heart Association 7. This article reviews the supporting epidemiological and animal data, possible pathogenic mechanisms and future perspectives.
Benvenuto, O.G. [La Plata Univ. (Argentina). Fac. of Astron. and Geophys.; Civitarese, O. [Dept. of Physics, Univ. of La Plata (Argentina); Reboiro, M. [Dept. of Physics, Univ. of La Plata (Argentina)
1997-05-01
Effects due to the temperature dependence of the nuclear binding energy upon the equation of state (EOS) for hot nuclear matter are studied. Nuclear contributions to the free energy are represented by temperature dependent liquid drop model terms. Phase coexistence is assumed for temperatures of the order of 1 MeV {<=} T {<=} 6 MeV, baryon number densities {rho} of the order of 10{sup -4}fm{sup -3} {<=} {rho} {<=} 10{sup -1}fm{sup -3} and lepton fractions of the order of 0.2 {<=} y{sub 1} {<=} 0.4. It is found that the total pressure of the system is not affected by the temperature dependence of the nuclear free energy, in spite of changes observed in the nuclear pressure due to the different parametrizations used to represent the nuclear binding energy. (orig.).
F508del-CFTR rescue: a matter of cell stress response.
Nieddu, Erika; Pollarolo, Benedetta; Merello, Luisa; Schenone, Silvia; Mazzei, Mauro
2013-01-01
Cystic fibrosis (CF) is a common inherited fatal disease affecting 70,000 people worldwide, with a median predicted age of survival of approximately 38 years. The deletion of Phenylalanine in position 508 of the Cystic Fibrosis Transmembrane conductance Regulator (F508del-CFTR) is the most common mutation in CF patients: the deleted protein, not properly folded, is degraded. To date no commercial drugs are available. Low temperature, some osmolytes and conditions able to induce heat shock protein 70 (Hsp70) expression and heat shock cognate 70 (Hsc70) inhibition result in F508del-CFTR rescue, hence restoring its physiological function: this review sheds light on the correlation between these several evidences. Interestingly, all these approaches have a role in the cell stress response (CSR), a set of cell reactions to stress. In addition, unpredictably, F508del-CFTR rescue has to be considered in the frame of CSR: entities that induce - or are induced during - the CSR are, in general, also able to correct trafficking defect of CFTR. Specifically, the low temperature induces, by definition, a CSR; osmolytes, such as glycerol and trimethylamine N-oxide (TMAO), are products of the CSR; pharmacological correctors, such as Matrine and 4-phenylbutirric acid (4PBA), down-regulate the constitutive Hsc70 in favor of an up-regulation of the inducible chaperone Hsp70, another component of the CSR. The identification of a common mechanism of action for different types of correctors could drive the discovery of new active molecules in CF, overcoming methods clinically inapplicable, such as the low temperature.
Basilakos, Spyros; Nesseris, Savvas
2016-12-01
The growth index of matter fluctuations is computed for ten distinct accelerating cosmological models and confronted by the latest growth-rate data via a two-step process. First, we implement a joint statistical analysis in order to place constraints on the free parameters of all models using solely background data. Second, using the observed growth rate of clustering from various galaxy surveys we test the performance of the current cosmological models at the perturbation level while either marginalizing over σ8 or having it as a free parameter. As a result, we find that at a statistical level, i.e., after considering the best-fit χ2 or the value of the Akaike information criterion, most models are in very good agreement with the growth-rate data and are practically indistinguishable from Λ CDM . However, when we also consider the internal consistency of the models by comparing the theoretically predicted values of (γ0,γ1), i.e., the value of the growth index γ (z ) and its derivative today, with the best-fit ones, we find that the predictions of three out of ten dark energy models are in mild tension with the best-fit ones when σ8 is marginalized over. When σ8 is free we find that most models are not only in mild tension, but also predict low values for σ8. This could be attributed to either a systematic problem with the growth-rate data or the emergence of new physics at low redshifts, with the latter possibly being related to the well-known issue of the lack of power at small scales. Finally, by utilizing mock data based on an large synoptic survey telescope-like survey we show that with future surveys and by using the growth index parametrization, it will be possible to resolve the issue of the low σ8 but also the tension between the fitted and theoretically predicted values of (γ0,γ1).
Tachibana, Naoya; Nagasawa, Kenya; Wang, Binhui; Nishiya, Kazuki; Fukushima, Masami; Kanno, Hikari; Shinano, Takuro; Okazaki, Keiki
2013-10-01
The effects of water-extractable organic matter (WEOM) from compost-like materials on peroxidative stress were investigated for hydroponic culture of barley exposed to Cd. In the presence of WEOM, lipoxygenase activity and malondialdehyde, indices of peroxidative stress in barley, were significantly reduced, compared to those with Cd alone (5 μM) for a 30-d culture (pcomplexed with WEOM, indicating that the complexation of Cd with WEOM is a minor factor in reducing Cd-induced stress in barley. The WEOM sample was purified by cation-exchange column and ultrafiltration to remove the nutrient minerals, such as Ca, Mg and Fe. When the purified WEOM was employed for hydroponic culture in the presence of Cd, significant decreases in peroxidative stress and Cd uptake were observed (p<0.05). These results show that the organic components in WEOM contribute to the mitigation of peroxidative stress in barley exposed to Cd.
Dolgov, A. D.
These lectures have been given to particle physicists, mostly experimentalists and very briefly and at a pedestrian level review the problems of dark matter. The content of the lectures is the following: 1. Introduction. 2. Cosmological background. 3. Luminous matter. 4. Primordial nucleosynthesis and the total amount of baryons. 5. Gravitating invisible matter. 6. Baryonic crisis. 7. Inflationary omega. 8. Intermediate summary. 9. Possible forms of dark matter. 10. Structure formation: basic assumptions. 11. Structure formations: basics of the theory. 12. Evolution of perturbations with different forms of dark matter. 13. Conclusion. The presentation and conclusion reflect personal view of the author that a considerable amount of invisible energy in the universe is in the form of vacuum energy (cosmological constant) and possibly in the form of a classical field which adjusts vacuum energy to the value permitted and requested by astronomical data.
Inhomogeneity-related cutoff dependence of the Casimir energy and stress
Bao, F; Fang, M; He, S
2015-01-01
The cutoff dependence of the Casimir energy and stress is studied using the Green's function method for a system that is piecewise-smoothly inhomogeneous along one dimension. The asymptotic cylinder kernel expansions of the energy and stress are obtained, with some extra cutoff terms that are induced by the inhomogeneity. Introducing interfaces to the system one by one shows how those cutoff terms emerge and illuminates their physical interpretations. Based on that, we propose a subtraction scheme to address the problem of the remaining cutoff dependence in the Casimir stress in an inhomogeneous medium, and show that the nontouching Casimir force between two separated bodies is cutoff independent. The cancellation of the electric and magnetic contributions to the surface divergence near a perfectly conducting wall is found to be incomplete in the case of inhomogeneity.
Comments on the Stress-Energy Tensor Operator in Curved Spacetime
Moretti, V
2003-01-01
The technique based on the *-algebra of local Wick products of (formal) field operators in curved spacetime proposed by Hollands and Wald, is implemented and developed in order to define the stress-energy tensor operator in terms of local Wick products of (derived) field operators only. It shows that, within the proposed formalism, there may be room to accomplish all of physical requirements provided the known problems concerning the conservation property are assumed to be related to the interface between quantum and classical formalisms. Indeed, a stress-energy tensor operator is proposed which, written using local Wick products of fields only, is conserved and it reduces to the classical form when operators are replaced by classical fields satisfying the equation of the motion. The definition is based on the existence of convenient local Wick products of derived fields. These terms are independent from the arbitrary length scale and the quantum state and they classically vanish. Considering averaged stress-...
Conservation laws and stress-energy-momentum tensors for systems with background fields
Gratus, Jonathan, E-mail: j.gratus@lancaster.ac.uk [Lancaster University, Lancaster LA1 4YB (United Kingdom); The Cockcroft Institute, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Obukhov, Yuri N., E-mail: yo@thp.uni-koeln.de [Institute for Theoretical Physics, University of Cologne, 50923 Koeln (Germany); Tucker, Robin W., E-mail: r.tucker@lancaster.ac.uk [Lancaster University, Lancaster LA1 4YB (United Kingdom); The Cockcroft Institute, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom)
2012-10-15
This article attempts to delineate the roles played by non-dynamical background structures and Killing symmetries in the construction of stress-energy-momentum tensors generated from a diffeomorphism invariant action density. An intrinsic coordinate independent approach puts into perspective a number of spurious arguments that have historically lead to the main contenders, viz the Belinfante-Rosenfeld stress-energy-momentum tensor derived from a Noether current and the Einstein-Hilbert stress-energy-momentum tensor derived in the context of Einstein's theory of general relativity. Emphasis is placed on the role played by non-dynamical background (phenomenological) structures that discriminate between properties of these tensors particularly in the context of electrodynamics in media. These tensors are used to construct conservation laws in the presence of Killing Lie-symmetric background fields. - Highlights: Black-Right-Pointing-Pointer The role of background fields in diffeomorphism invariant actions is demonstrated. Black-Right-Pointing-Pointer Interrelations between different stress-energy-momentum tensors are emphasised. Black-Right-Pointing-Pointer The Abraham and Minkowski electromagnetic tensors are discussed in this context. Black-Right-Pointing-Pointer Conservation laws in the presence of nondynamic background fields are formulated. Black-Right-Pointing-Pointer The discussion is facilitated by the development of a new variational calculus.
Moyer, E. L.; Al-Shayeb, B.; Baer, L. A.; Ronca, A. E.
2016-01-01
Exposure to stress in the womb shapes neurobiological and physiological outcomes of offspring in later life, including body weight regulation and metabolic profiles. Our previous work utilizing a centrifugation-induced hyper-gravity demonstrated significantly increased (8-15%) body mass in male, but not female, rats exposed throughout gestation to chronic 2-g from conception to birth. We reported a similar outcome in adult offspring exposed throughout gestation to Unpredictable Variable Prenatal Stress (UVPS). Here we examine gene expression changes and the plasma of animals treated with our UVPS model to identify a potential role for prenatal stress in this hypergravity programming effect. Specifically we focused on appetite control and energy expenditure pathways in prenatally stressed adult (90-day-old) male Sprague-Dawley rats.
Denks, I. A.; Genzel, Ch.
2007-08-01
The effects of the germanium detector electronics on diffraction line patterns is investigated. It is shown that not only the detector resolution and the throughput but also the energy stability depend on both the specific detector settings and the dead time. For a moderate resolution versus throughput setting a correction function is proposed and applied to the near-surface residual stress analysis of three samples with considerably different stress states. It is demonstrated that without the correction function ghost stresses up to hundreds of MPa in the near-surface region are obtained. The correction procedure is verified by conventional X-ray measurements. In conclusion, the authors strongly suggest quantifying the electronic shifts of any individual detector systems prior to the analysis of residual stresses.
Park, Hyelim [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University, Seoul (Korea, Republic of); Park, Sanghoon; Jeon, Hyunju [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Song, Byeong-Wook [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University, Seoul (Korea, Republic of); Kim, Jin-Bae [Division of Cardiology, Kyung Hee University College of Medicine, Seoul (Korea, Republic of); Kim, Chang-Soo [The Department of Preventive Medicine, Yonsei University College of Medicine, Seoul (Korea, Republic of); Pak, Hui-Nam [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Hwang, Ki-Chul [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University, Seoul (Korea, Republic of); Lee, Moon-Hyoung [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Chung, Ji Hyung, E-mail: jhchung@yuhs.ac [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Joung, Boyoung, E-mail: cby6908@yuhs.ac [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University, Seoul (Korea, Republic of)
2013-01-15
Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) is activated by particulate matter (PM) isolated from ambient air and linked to prolonged repolarization and cardiac arrhythmia. We evaluated whether alpha B-crystallin (CryAB), a heat shock protein, could prevent the arrhythmogenic effects of PM by preventing CaMKII activation. CryAB was delivered into cardiac cells using a TAT-protein transduction domain (TAT-CryAB). ECGs were measured before and after tracheal exposure of diesel exhaust particles (DEP) and each intervention in adult Sprague–Dawley rats. After endotracheal exposure of DEP (200 μg/mL for 30 minutes, n = 11), QT intervals were prolonged from 115 ± 14 ms to 144 ± 20 ms (p = 0.03), and premature ventricular contractions were observed more frequently (0% vs. 44%) than control (n = 5) and TAT-Cry (n = 5). However, DEP-induced arrhythmia was not observed in TAT-CryAB (1 mg/kg) pretreated rats (n = 5). In optical mapping of Langendorff-perfused rat heats, compared with baseline, DEP infusion of 12.5 μg/mL (n = 12) increased apicobasal action potential duration (APD) differences from 2 ± 6 ms to 36 ± 15 ms (p < 0.001), APD restitution slope from 0.26 ± 0.07 to 1.19 ± 0.11 (p < 0.001) and ventricular tachycardia (VT) from 0% to 75% (p < 0.001). DEP infusion easily induced spatially discordant alternans. However, the effects of DEP were prevented by TAT-CryAB (1 mg/kg, n = 9). In rat myocytes, while DEP increased reactive oxygen species (ROS) generation and phosphated CaMKII, TAT-CryAB prevented these effects. In conclusion, CryAB, a small heat shock protein, might prevent the arrhythmogenic effects of PM by attenuating ROS generation and CaMKII activation. -- Highlights: ► Particulate matter (PM) increases arrhythmia. ► PM induced arrhythmias are related with oxidative stress and CaMKII activation. ► Alpha B-crystallin (CryAB) could attenuate the arrhythmogenic effect of PM. ► CryAB decreases oxidative stress and CaMKII activation
Alam, N; Fortin, M; Pais, H; Providência, C; Raduta, Ad R; Sulaksono, A
2016-01-01
We examine the correlations of neutron star radii with the nuclear matter incompressibility, symmetry energy, and their slopes, which are the key parameters of the equation of state (EoS) of asymmetric nuclear matter. The neutron star radii and the EoS parameters are evaluated using a representative set of 24 Skyrme-type effective forces and 18 relativistic mean field models, and two microscopic calculations, all describing 2$M_\\odot$ neutron stars. Unified EoSs for the inner-crust-core region have been built for all the phenomenological models, both relativistic and non-relativistic. Our investigation shows the existence of a strong correlation of the neutron star radii with the linear combination of the slopes of the nuclear matter incompressibility and the symmetry energy coefficients at the saturation density. Such correlations are found to be almost independent of the neutron star mass in the range $0.6\\text{-}1.8M_{\\odot}$. This correlation can be linked to the empirical relation existing between the st...
Evidence for disrupted gray matter structural connectivity in posttraumatic stress disorder.
Mueller, Susanne G; Ng, Peter; Neylan, Thomas; Mackin, Scott; Wolkowitz, Owen; Mellon, Synthia; Yan, Xiaodan; Flory, Janine; Yehuda, Rachel; Marmar, Charles R; Weiner, Michael W
2015-11-30
Posttraumatic stress disorder (PTSD) is characterized by atrophy within the prefrontal-limbic network. Graph analysis was used to investigate to what degree atrophy in PTSD is associated with impaired structural connectivity within prefrontal limbic network (restricted) and how this affects the integration of the prefrontal limbic network with the rest of the brain (whole-brain). 85 male veterans (45 PTSD neg, 40 PTSD pos) underwent volumetric MRI on a 3T MR. Subfield volumes were obtained using a manual labeling scheme and cortical thickness measurements and subcortical volumes from FreeSurfer. Regression analysis was used to identify regions with volume loss. Graph analytical Toolbox (GAT) was used for graph-analysis. PTSD pos had a thinner rostral anterior cingulate and insular cortex but no hippocampal volume loss. PTSD was characterized by decreased nodal degree (orbitofrontal, anterior cingulate) and clustering coefficients (thalamus) but increased nodal betweenness (insula, orbitofrontal) and a reduced small world index in the whole brain analysis and by orbitofrontal and insular nodes with increased nodal degree, clustering coefficient and nodal betweenness in the restricted analysis. PTSD associated atrophy in the prefrontal-limbic network results in an increased structural connectivity within that network that negatively affected its integration with the rest of the brain.
Kaiser, M.; Kleber, M.; Berhe, A. A.
2010-12-01
Aggregates play important roles in soil carbon storage and stabilization. Identification of scale-dependent mechanisms of soil aggregate formation and stability is necessary to predict and eventually manage the flow of carbon through terrestrial ecosystems. Application of ultrasonic energy is a common tool to disperse soil aggregates. In this study, we used ultra sonic energy (100 to 2000 J cm-3) to determine the amount of polyvalent cations and organic matter involved in aggregation processes in three arable and three forest soils that varied in soil mineral composition. To determine the amount of organic matter and cations released after application of different amount of ultrasonic energy, we removed the coarse fraction (>250 µm). The remaining residue (solid residue freeze dried before we analyzed the amounts of water-extracted organic carbon (OC), Fe, Al, Ca, Mn, and Mg in the filtrates. The extracted OM and solid residues were further characterized by Fourier Transformed Infra Red spectroscopy and Scanning Electron Microscopy. Our results show a linear increase in amount of dissolved OC with increasing amounts of ultra sonic energy up to 1500 J cm-3 indicating maximum dispersion of soil aggregates at this energy level independent from soil type or land use. In contrast to Mn, and Mg, the amounts of dissolved Ca, Fe, and Al increase with increasing ultra sonic energy up to 1500 J cm-3. At 1500 J cm-3, the absolute amounts of OC, Ca, Fe, and Al released were specific for each soil type, likely indicating differences in type of OM-mineral interactions involved in micro-scaled aggregation processes. The amounts of dissolved Fe, and Al released after an application of 1500 J cm-3 are not related to oxalate- and dithionite- extractable, or total Al content indicating less disintegration of pedogenic oxides or clay minerals due to high levels of ultrasonic energy.
Low-energy neutrino and dark matter physics with sub-keV germanium detectors
A K Soma; L Singh; M K Singh; V Singh; H T Wong
2012-11-01
The TEXONO-CDEX Collaboration (Taiwan experiment on neutrino–China dark matter experiment) explores high-purity germanium (HPGe) detection technology to develop a sub-keV threshold detector for pursuing studies on low mass weakly interacting massive particles (WIMPs), properties of neutrino and the possibilities of neutrino-nucleus coherent scattering observation. This article will introduce the facilities of newly established China Jing-Ping Underground Laboratory (CJPL), preliminary result of cosmic ray background studies at CJPL, the dark matter studies pursued at Kuo-Sheng Neutrino Laboratory (KSNL) and research efforts to accomplish our physics goals.
SunYongsheng; MengXujun
1990-01-01
Schroedinger's wave equation is solved in Thomas-Fermi potential including the self-interaction modification of elctrons for arbitrary matter density and temperature,In order to describe relativistic effects,the mass-velocity correction,the Darwin correction and the spin-orbit coupling terms are included in the wave equation.Calculations are presented for the Fe26 and Rb37 atoms at a few temperatures and matter densities.Comparisons of present results with other more accurate one[9] are given in Table.The data obtained by the present method are not bad.
Thermalization of Quark Matter Produced at the Highest Energy of a Relativistic Heavy-Ion Collider
XU Xiao-Ming
2005-01-01
@@ Thermalization of quark matter is studied via a transport equation, which includes triple-quark elastic scattering amplitudes calculated in perturbative QCD. The triple-quark scatterings are demonstrated to be important for an anisotropic initial quark distribution produced in central Au-Au collisions at √sNN = 200 GeV. By examining momentum isotropy to which the transport equation leads, we can determine a thermalization time of 2.2fm/c for quark matter itself to thermalize by the two-quark and the triple-quark elastic scatterings. Meanwhile, an initial thermal quark distribution function is obtained.
Shutian Li
2014-11-01
Full Text Available Glutaredoxins (GRXs are small ubiquitous glutathione (GSH-dependent oxidoreductases that catalyze the reversible reduction of protein disulfide bridges or protein-GSH mixed disulfide bonds via a dithiol or monothiol mechanism, respectively. Three major classes of GRXs, with the CPYC-type, the CGFS-type or the CC-type active site, have been identified in many plant species. In spite of the well-characterized roles for GRXs in Escherichia coli, yeast and humans, the biological functions of plant GRXs have been largely enigmatic. The CPYC-type and CGFS-type GRXs exist in all organisms, from prokaryotes to eukaryotes, whereas the CC-type class has thus far been solely identified in land plants. Only the number of the CC-type GRXs has enlarged dramatically during the evolution of land plants, suggesting their participation in the formation of more complex plants adapted to life on land. A growing body of evidence indicates that plant GRXs are involved in numerous cellular pathways. In this review, emphasis is placed on the recently emerging functions for GRXs in floral organ development and disease resistance. Notably, CC-type GRXs have been recruited to participate in these two seemingly unrelated processes. Besides, the current knowledge of plant GRXs in the assembly and delivery of iron-sulfur clusters, oxidative stress responses and arsenic resistance is also presented. As GRXs require GSH as an electron donor to reduce their target proteins, GSH-related developmental processes, including the control of flowering time and the development of postembryonic roots and shoots, are further discussed. Profiling the thiol redox proteome using high-throughput proteomic approaches and measuring cellular redox changes with fluorescent redox biosensors will help to further unravel the redox-regulated physiological processes in plants.
Flow under standing waves Part 1. Shear stress distribution, energy flux and steady streaming
Gislason, Kjartan; Fredsøe, Jørgen; Deigaard, Rolf
2009-01-01
The conditions for energy flux, momentum flux and the resulting streaming velocity are analysed for standing waves formed in front of a fully reflecting wall. The exchange of energy between the outer wave motion and the near bed oscillatory boundary layer is considered, determining the horizontal...... energy flux inside and outside the boundary layer. The momentum balance, the mean shear stress and the resulting time averaged streaming velocities are determined. For a laminar bed boundary layer the analysis of the wave drift gives results similar to the original work of Longuet-Higgins from 1953....... The work is extended to turbulent bed boundary layers by application of a numerical model. The similarities and differences between laminar and turbulent flow conditions are discussed, and quantitative results for the magnitude of the mean shear stress and drift velocity are presented. Full two...
Fiber bundle models for stress release and energy bursts during granular shearing
Michlmayr, Gernot; Or, Dani; Cohen, Denis
2012-12-01
Fiber bundle models (FBMs) offer a versatile framework for representing transitions from progressive to abrupt failure in disordered material. We report a FBM-based description of mechanical interactions and associated energy bursts during shear deformation of granular materials. For strain-controlled shearing, where elements fail in a sequential order, we present analytical expressions for strain energy release and failure statistics. Results suggest that frequency-magnitude characteristics of fiber failure vary considerably throughout progressive shearing. Predicted failure distributions were in good agreement with experimentally observed shear stress fluctuations and associated bursts of acoustic emissions. Experiments also confirm a delayed release of acoustic emission energy relative to shear stress buildup, as anticipated by the model. Combined with data-rich acoustic emission measurements, the modified FBM offers highly resolved contact-scale insights into granular media dynamics of shearing processes.
An analysis of the stress formula for energy-momentum methods in nonlinear elastodynamics
Romero, Ignacio
2012-11-01
The energy-momentum method, a space-time discretization strategy for elastic problems in nonlinear solid, structural, and multibody mechanics relies critically on a discrete derivative operation that defines an approximation of the internal forces that guarantees the discrete conservation of energy and momenta. In the case of nonlinear elastodynamics, the formulation for general hyperelastic materials is due to Simo and Gonzalez, dating back to the mid-nineties. In this work we show that there are actually infinite second order energy-momentum methods for elastodynamics, all of them deriving from a modified midpoint integrator by an appropriate redefinition of the stress tensor at equilibrium. Such stress tensors can be interpreted as the solutions to local convex projections, whose precise definitions lead to different methods. The mathematical requirements of such projections are identified. Based on this geometrical interpretation several conserving methods are examined.
Quantum corrections to the stress-energy tensor in thermodynamic equilibrium with acceleration
Becattini, F
2015-01-01
We show that the stress-energy tensor has additional terms with respect to the ideal form in states of global thermodynamic equilibrium in flat spacetime with non-vanishing acceleration and vorticity. These corrections are of quantum origin and their leading terms are of second order in the gradients of the thermodynamic fields. The relevant coefficients can be expressed in terms of correlators of the stress-energy tensor operator and the generators of the Lorentz group. With respect to previous assessments, we find that there are more second order coefficients and that all thermodynamic functions including energy density receive acceleration and vorticity dependent corrections. Notably, also the relation between \\rho and p, that is the equation of state, is affected by acceleration and vorticity. We have calculated the corrections for a free real scalar field -- both massive and massless -- and we have found that they increase, particularly for a massive field, at very high acceleration and vorticity and ver...
Low-energy pions in nuclear matter and {pi}{pi} photoproduction within a BUU transport model
Buss, O.; Alvarez-Ruso, L.; Muehlich, P.; Mosel, U. [Universitaet Giessen, Institut fuer Theoretische Physik (Germany)
2006-08-15
A description of the low-energy scattering of pions and nuclei within a BUU transport model is presented. Implementing different scenarios of medium modifications, the mean free path of pions in nuclear matter at low momenta and pion absorption reactions on nuclei have been studied and compared to data and to results obtained via quantum-mechanical scattering theory. We show that even in a regime of a long pionic wavelength the semi-classical transport model is still a reliable framework for pion kinetic energies greater than {approx}20-30 MeV. Results are presented on {pi}-absorption cross-sections in the regime of 10 MeV{<=}T{sup {pi}}{sub kin}{<=}130 MeV and on photon-induced {pi}{pi} production at incident beam energies of 400-500 MeV. (orig.)
Mansuripur, Masud
2016-09-01
Interactions between light and material media generally involve an exchange of energy and momentum. Whereas packets of electromagnetic radiation (i.e., photons) are known to carry energy as well as momentum, the eigen-modes of mechanical vibration (i.e., phonons) do not carry any momentum of their own. Considering that, in light-matter interactions, not only the total energy but also the total momentum (i.e., electromagnetic plus mechanical momentum) must be conserved, it becomes necessary to examine the momentum exchange mechanism in some detail. In this presentation, we describe the intricate means by which mechanical momentum is taken up and carried away by material media during reflection, refraction, and absorption of light pulses, thereby ensuring the conservation of linear momentum. Particular attention will be paid to periodically-structured media, which are capable of supporting acoustic as well as optical phonons.
White-matter astrocytes, axonal energy metabolism, and axonal degeneration in multiple sclerosis
Cambron, Melissa; D'haeseleer, Miguel; Laureys, Guy; Clinckers, Ralph; Debruyne, Jan; De Keyser, Jacques
2012-01-01
In patients with multiple sclerosis (MS), a diffuse axonal degeneration occurring throughout the white matter of the central nervous system causes progressive neurologic disability. The underlying mechanism is unclear. This review describes a number of pathways by which dysfunctional astrocytes in M
Cerebral white matter blood flow and energy metabolism in multiple sclerosis
Steen, Christel; D'haeseleer, Miguel; Hoogduin, Johannes M.; Fierens, Yves; Cambron, Melissa; Mostert, Jop P.; Heersema, Dorothea J.; Koch, Marcus W.; De Keyser, Jacques
2013-01-01
Background: Cerebral blood flow (CBF) is reduced in normal-appearing white matter (NAWM) of subjects with multiple sclerosis (MS), but the underlying mechanism is unknown. Objective: The objective of this article is to assess the relationship between reduced NAWM CBF and both axonal mitochondrial me
暗物质暗能量与地球动力学%Dark Matter Dark Energy and Geodynamics
袁学诚; 姜枚; 耿树方
2015-01-01
Dark matter and dark energy are the top topics in scientific research progress in recent years.Dark matter cannot be seen by the naked eyes,because it cannot emit electromagnetic wave,it can be perceived only by its gravitational effect.Dark energy is a kind of energy which is invisible,filled with is space,and has a strong negative pressure.According to the theory of relativity,the strong negative pressure in long distance is similar to anti-gravity.In cosmology,the movement of all the fixed stars and planets are impeled by dark energy and gravity.Despite great success in dark matter and dark energy achieved by astrophysics, and despite dark matter and dark energy closely correlated with earth science,few geoscientists care for these field,Based on previonsly published papers,this study summarized a short explanation of dark matter and dark energy,and further discussed the geodynamics of evolution of the earth.We consist that the primary force to drive the evolution of the Earth is dark energy,which expanded the earth and funther initiated the action of another effect.We take theTibet plateau,the Qinling orogen and the SE Asia west Pacific area for example to show that there is no evidence for subduction in these orogens,they might be formed by expanding of the Earth drived by dark energy.%近年来世界重大科技进展中，”暗物质”与”暗能量”始终是关注的焦点。暗物质无法用肉眼看见，意味着它们不能发射电磁波，只能通过引力产生的效应知道它的存在。暗能量是一种不可见的、充溢空间、具有负压强的能量。这种负压强在长距离类似于一种反引力。宇宙中所有的恒星和行星的运动都是由暗能量与万有引力来推动的。但是虽然天体物理对暗物质与暗能量的研究有长足进步，并且尽管它与地球科学密切相关，但是在国内地学界对这个问题却少人顾及。本文引用、抄录、梳理已有暗物质与暗能量文献
Levitas, Valery I.; Warren, James A.
2016-06-01
A thermodynamically consistent, large-strain, multi-phase field approach (with consequent interface stresses) is generalized for the case with anisotropic interface (gradient) energy (e.g. an energy density that depends both on the magnitude and direction of the gradients in the phase fields). Such a generalization, if done in the "usual" manner, yields a theory that can be shown to be manifestly unphysical. These theories consider the gradient energy as anisotropic in the deformed configuration, and, due to this supposition, several fundamental contradictions arise. First, the Cauchy stress tensor is non-symmetric and, consequently, violates the moment of momentum principle, in essence the Herring (thermodynamic) torque is imparting an unphysical angular momentum to the system. In addition, this non-symmetric stress implies a violation of the principle of material objectivity. These problems in the formulation can be resolved by insisting that the gradient energy is an isotropic function of the gradient of the order parameters in the deformed configuration, but depends on the direction of the gradient of the order parameters (is anisotropic) in the undeformed configuration. We find that for a propagating nonequilibrium interface, the structural part of the interfacial Cauchy stress is symmetric and reduces to a biaxial tension with the magnitude equal to the temperature- and orientation-dependent interface energy. Ginzburg-Landau equations for the evolution of the order parameters and temperature evolution equation, as well as the boundary conditions for the order parameters are derived. Small strain simplifications are presented. Remarkably, this anisotropy yields a first order correction in the Ginzburg-Landau equation for small strains, which has been neglected in prior works. The next strain-related term is third order. For concreteness, specific orientation dependencies of the gradient energy coefficients are examined, using published molecular dynamics
Cheng, Bochao; Huang, Xiaoqi; Li, Shiguang; Hu, Xinyu; Luo, Ya; Wang, Xiuli; Yang, Xun; Qiu, Changjian; Yang, Yanchun; Zhang, Wei; Bi, Feng; Roberts, Neil; Gong, Qiyong
2015-01-01
Post-traumatic stress disorder (PTSD), obsessive-compulsive disorder (OCD), and social anxiety disorder (SAD) all bear the core symptom of anxiety and are separately classified in the new DSM-5 system. The aim of the present study is to obtain evidence for neuroanatomical difference for these disorders. We applied voxel-based morphometry (VBM) with Diffeomorphic Anatomical Registration Through Exponentiated Lie to compare gray matter volume (GMV) in magnetic resonance images obtained for 30 patients with PTSD, 29 patients with OCD, 20 patients with SAD, and 30 healthy controls. GMV across all four groups differed in left hypothalamus and left inferior parietal lobule and post hoc analyses revealed that this difference is primarily due to reduced GMV in the PTSD group relative to the other groups. Further analysis revealed that the PTSD group also showed reduced GMV in frontal lobe, temporal lobe, and cerebellum compared to the OCD group, and reduced GMV in frontal lobes bilaterally compared to SAD group. A significant negative correlation with anxiety symptoms is observed for GMV in left hypothalamus in three disorder groups. We have thus found evidence for brain structure differences that in future could provide biomarkers to potentially support classification of these disorders using MRI.
Bochao eCheng
2015-08-01
Full Text Available Post-traumatic stress disorder (PTSD, obsessive-compulsive disorder (OCD and social anxiety disorder (SAD all bear the core symptom of anxiety and are separately classified in the new DSM-5 system. The aim of the present study is to obtain evidence for neuroanatomical difference for these disorders. We applied voxel-based morphometry (VBM with Diffeomorphic Anatomic Registration Through Exponentiated Lie (DARTEL to compare grey matter volume (GMV in Magnetic Resonance (MR images obtained for thirty patients with PTSD, twenty nine patients with OCD, twenty patients with SAD and thirty healthy controls. GMV across all four groups differed in left hypothalamus and left inferior parietal lobule and post hoc analyses revealed that this difference is primarily due to reduced GMV in the PTSD group relative to the other groups. Further analysis revealed that the PTSD group also showed reduced GMV in frontal lobe, temporal lobe and cerebellum compared to the OCD group, and reduced GMV in frontal lobes bilaterally compared to SAD group. A significant negative correlation with anxiety symptoms is observed for GMV in left hypothalamus in three disorder groups. We have thus found evidence for brain structure differences that in future could provide biomarkers to potentially support classification of these disorders using MRI.
Xiaozhi Wu; Shaofeng Wang
2007-01-01
Applying the parametric derivation method, Peierls energy and Peierls stress are calculated with a non-sinusoidal force law in the lattice theory, while the results obtained by the power-series expansion according to sinusoidal law can be deduced as a limiting case of nonsinusoidal law. The simplified expressions of Peierls energy and Peierls stress are obtained for the limit of wide and narrow. Peierls energy and Peierls stress decrease monotonically with the factor of modification of force law. Present results can be used expediently for prediction of the correct order of magnitude of Peierls stress for materials.
Matter Scatter and Energy Anarchy. The Second Law of Thermodynamics is Simply Common Experience.
Ross, Keith A.
1988-01-01
Shows that the second law of thermodynamics is in the common experience of many people and if taught first, before the law of conservation, can result in fewer misconceptions among pupils. Stresses the use of common experiences in teaching. (CW)
Tahir, N A; Shutov, A; Lomonosov, I V; Gryaznov, V; Piriz, A R; Wouchuk, G; Deutsch, C; Fortov, V E; Hoffmann, D H H; Schmidt, R
2007-01-01
This paper presents an overview of the theoretical work that has been carried out during the past few years to assess the capabilities of intense heavy ion beams to induce states of High-Energy Density (HED) in matter. This work has shown that two different experimental schemes can be used to study HED physics employing intense ion beams. These schemes have been named HIHEX [Heavy Ion Heating and EXpansion] and LAPLAS [LAboratory PLAnetary Sciences], respectively. The first scheme involves isochoric and uniform heating and subsequent isentropic expansion of matter while the latter deals with low entropy compression of matter using multiple shock reflection technique. This work has been done within the framework of the HEDgeHOB [High Energy Density Matter Generated by Heavy Ion Beams] collaboration that has been formed to organize and facilitate construction of experimental facilities and later to perform experimental work in the field of HED matter at the future accelerator facility, FAIR [Facility for Antipr...
Tahir, N.A. [Gesellschaft fuer Schwerionenforschung Darmstadt, 64291 Darmstadt (Germany)]. E-mail: n.tahir@gsi.de; Spiller, P. [Gesellschaft fuer Schwerionenforschung Darmstadt, 64291 Darmstadt (Germany); Udrea, S. [Institut fuer Kernphysik, TU Darmstadt, 64289 Darmstadt (Germany); Cortazar, O.D. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Deutsch, C. [LPGP, Universite Paris-Sud, 91405 Orsay (France); Fortov, V.E. [Institute for Problems in Chemical Physics, Chernogolovka (Russian Federation); Gryaznov, V. [Institute for Problems in Chemical Physics, Chernogolovka (Russian Federation); Hoffmann, D.H.H. [Gesellschaft fuer Schwerionenforschung Darmstadt, 64291 Darmstadt (Germany); Institut fuer Kernphysik, TU Darmstadt, 64289 Darmstadt (Germany); Lomonosov, I.V. [Institute for Problems in Chemical Physics, Chernogolovka (Russian Federation); Ni, P. [Institut fuer Kernphysik, TU Darmstadt, 64289 Darmstadt (Germany); Piriz, A.R. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Shutov, A. [Institute for Problems in Chemical Physics, Chernogolovka (Russian Federation); Temporal, M. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Varentsov, D. [Institut fuer Kernphysik, TU Darmstadt, 64289 Darmstadt (Germany)
2006-04-15
This paper shows with the help of numerical simulations the capabilities of intense heavy ion beams to induce states of high-energy density (HED) in matter. Two different experimental schemes are considered, namely, HIHEX (heavy ion heating and expansion) and LAPLAS (laboratory planetary sciences). The first scheme considers isochoric heating and subsequent isentropic expansion of matter while the latter deals with low entropy compression of matter using multiple shock reflection technique. This work has been done within the framework of the HEDgeHOB (high-energy density matter generated by heavy ion beams) collaboration that has been formed to organize and facilitate construction of experimental facilities and later to perform experimental work in the field of HED matter at the future FAIR (facility for antiprotons and ion research) facility.
Tahir, N. A.; Spiller, P.; Udrea, S.; Cortazar, O. D.; Deutsch, C.; Fortov, V. E.; Gryaznov, V.; Hoffmann, D. H. H.; Lomonosov, I. V.; Ni, P.; Piriz, A. R.; Shutov, A.; Temporal, M.; Varentsov, D.
2006-04-01
This paper shows with the help of numerical simulations the capabilities of intense heavy ion beams to induce states of high-energy density (HED) in matter. Two different experimental schemes are considered, namely, HIHEX (heavy ion heating and expansion) and LAPLAS (laboratory planetary sciences). The first scheme considers isochoric heating and subsequent isentropic expansion of matter while the latter deals with low entropy compression of matter using multiple shock reflection technique. This work has been done within the framework of the HEDgeHOB (high-energy density matter generated by heavy ion beams) collaboration that has been formed to organize and facilitate construction of experimental facilities and later to perform experimental work in the field of HED matter at the future FAIR (facility for antiprotons and ion research) facility.
Huang, Wenming; Tian, Yujia; Wang, Yajing; Simayi, Aminamu; Yasheng, Amingguli; Wu, Zhaohai; Li, Shengli; Cao, Zhijun
2014-01-01
Energy intake prepartum is critically important to health, milk performance, and profitability of dairy cows. The objective of this study was to determine the effect of reduced energy density of close-up diets on dry matter intake (DMI), lactation performance and energy balance (EB) in multiparous Holstein cows which were housed in a free-stall barn and fed for ad libitum intake. Thirty-nine dry cows were blocked and assigned randomly to three groups fed a high energy density diet [HD, n = 13; 6.8 MJ of net energy for lactation (NEL)/kg; 14.0% crude protein (CP) ], or a middle energy density diet (MD, n = 13; 6.2 MJ NEL/kg; 14.0% CP), or a low energy density diet (LD, n = 13; 5.4 MJ NEL/kg; 14.0% CP) from d 21 before expected day of calving. After parturition, all cows were fed the same lactation diet to d 70 in milk (DIM). The DMI and NEL intake prepartum were decreased by the reduced energy density diets (P consumption for HD, MD and LD groups were 149.8%, 126.2% and 101.1% of their calculated energy requirements prepartum (P < 0.05), and 72.7%, 73.1% and 75.2% during the first 4 wk postpartum, respectively. In conclusion, the low energy density prepartum diet was effective in controlling NEL intake prepartum, and was beneficial in increasing DMI and milk yield, and alleviating negative EB postpartum.
Boddy, Kimberly K.
2017-01-01
Many models currently exist which attempt to interpret the excess of gamma rays emanating from the Galactic Center in terms of annihilating or decaying dark matter. These models typically exhibit a variety of complicated cascade mechanisms for photon production, leading to a non-trivial kinematics which obscures the physics of the underlying dark sector. In this paper, by contrast, we observe that the spectrum of the gamma-ray excess may actually exhibit an intriguing "energy-duality" invariance under $E_\\gamma \\rightarrow E_\\ast^2/E_\\gamma$ for some $E_\\ast$. As we shall discuss, such an energy duality points back to a remarkably simple alternative kinematics which in turn is realized naturally within the Dynamical Dark Matter framework. Observation of this energy duality could therefore provide considerable information about the properties of the dark sector from which the Galactic-Center gamma-ray excess might arise, and highlights the importance of acquiring more complete data for the Galactic-Center exce...
Tong, Zhengrong
2014-07-01
1. The hard facts we given in text prove that, relativity theory is the fallacy from mathematical errors and experimental perjuries. 2. Conclusion of the study show that one called "fundamental gravitino" (the theoretical mass-energy value given at mw = 3.636 x 10-45 kg) is the Material composition of dark matter in the universe and also it's the material composition of all the elementary particles too. This is the root cause that the gravitation has universality. In-depth research, the results show that the fundamental gravitino" in all space is the material foundation of the electromagnetic interaction and propagation of light and other physical phenomena. Furthermore it shows that Stable elementary particles are the "droplets" under the strong gravitino pressure (strength calculated are consistent with the strong interaction) in the entire universe, similar to the droplets in the saturated gas. There are steady-state solutions in Mathematical models corresponding to the proton, the electron and the neutron.The theory for topics such as the dark matter, the dark energy, and the Higgs particle has the perfect explanation and reasonable conclusion... It seems, Chinese began to keep up with the world's physical trend, started a new physics era of fundamental gravitino the mass energy source of the universe.
Di Bari, Pasquale; Ludl, Patrick Otto; Palomares-Ruiz, Sergio
2016-11-01
We revisit a model in which neutrino masses and mixing are described by a two right-handed (RH) neutrino seesaw scenario, implying a strictly hierarchical light neutrino spectrum. A third decoupled RH neutrino, NDM with mass MDM, plays the role of cold dark matter (DM) and is produced by the mixing with a source RH neutrino, NS with mass MS, induced by Higgs portal interactions. The same interactions are also responsible for NDM decays. We discuss in detail the constraints coming from DM abundance and stability conditions showing that in the hierarchical case, for MDM gg MS, there is an allowed window on MDM values necessarily implying a contribution, from DM decays, to the high-energy neutrino flux recently detected by IceCube. We also show how the model can explain the matter-antimatter asymmetry of the Universe via leptogenesis in the quasi-degenerate limit. In this case, the DM mass should be within the range 300 GeV lesssim MS source of high-energy neutrinos could reasonably explain some potential features in the observed spectrum. In this way, this represents a unified scenario for leptogenesis and DM that could be tested during the next years with more high-energy neutrino events.
Lin ZC
2016-08-01
Full Text Available Zih-Chan Lin,1,* Chiang-Wen Lee,2,3,* Ming-Horng Tsai,4 Horng-Huey Ko,5 Jia-You Fang,1,2 Yao-Chang Chiang,6,7 Chan-Jung Liang,8,9 Lee-Fen Hsu,10 Stephen Chu-Sung Hu,11,12 Feng-Lin Yen5,8,13 1Graduate Institute of BioMedical Sciences, Chang Gung University, 2Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan, 3Division of Basic Medical Sciences, Department of Nursing, Chang Gung Institute of Technology and Chronic Diseases and Health Promotion Research Center, Chiayi, 4Division of Neonatology and Pediatric Hematology/Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, Yunlin, 5Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 6Center for Drug Abuse and Addiction, China Medical University Hospital, 7Center for Drug Abuse and Addiction, China Medical University, Taichung, 8Center for Lipid and Glycomedicine Research, Kaohsiung Medical University, Kaohsiung, 9Center for Lipid Biosciences, Kaohsiung Medical University Hospital, 10Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi Campus, Chiayi, 11Department of Dermatology, College of Medicine, Kaohsiung Medical University, 12Department of Dermatology, Kaohsiung Medical University Hospital, 13Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan, Republic of China *These authors contributed equally to this work Abstract: Exposure to particulate matter (PM, a major form of air pollution, can induce oxidative stress and inflammation and may lead to many diseases in various organ systems including the skin. Eupafolin, a flavonoid compound derived from Phyla nodiflora, has been previously shown to exhibit various pharmacological activities, including antioxidant and anti-inflammatory effects. Unfortunately, eupafolin is characterized by poor water solubility and skin penetration, which limits its clinical
Stress-energy-momentum tensors in Lagrangian field theory; 1, superpotentials
Giachetta, G
1995-01-01
Differential conservation laws in Lagrangian field theory are usually related to symmetries of a Lagrangian density and are obtained if the Lie derivative of a Lagrangian density by a certain class of vector fields on a fiber bundle vanishes. However, only two field models meet this property in fact. In gauge theory of exact internal symmetries, the Lie derivative by vertical vector fields corresponding to gauge transformations is equal to zero. The corresponding N\\"oether current is reduced to a superpotential that provides invariance of the N\\"oether conservation law under gauge transformations. In the gravitation theory, we meet the phenomenon of "hidden energy". Only the superpotential part of energy-momentum of gravity and matter is observed when the general covariant transformations are exact. Other parts of energy-momentum display themselves if the invariance under general covariance transformations is broken, e.g., by a background world metric. In this case, the Lie derivatives of Lagrangian densities...
Money Matters: Mitigating risk to spark private investments in energy efficiency
NONE
2010-07-01
Scaling-up investment in energy efficiency is essential to achieving a sustainable energy future. Despite energy efficiency's recognised advantages as a bankable investment with immense climate change mitigation benefits, most of the energy efficiency potential remains untapped and the investment gap to achieve climate goals is tremendous. This report seeks to improve understanding as to why this is so, and what can be done about it.
Effective Gravitational Wave Stress-energy Tensor in Alternative Theories of Gravity
Stein, Leo C; Hughes, Scott A
2010-01-01
The inspiral of binary systems in vacuum is controlled by the rate of change of the system's energy, angular momentum and Carter constant. In alternative theories, such a change is induced by the effective stress-energy carried away by gravitational radiation and any other propagating degrees of freedom. We employ perturbation theory and the short-wavelength approximation to compute this stress-energy tensor in a wide class of alternative theories. We find that this tensor is generally a modification of that first computed by Isaacson, where the corrections can dominate over the general relativistic term. In a wide class of theories, however, these corrections identically vanish at asymptotically flat, future, null infinity, reducing the stress-energy tensor to Isaacson's. We exemplify this phenomenon by first considering dynamical Chern-Simons modified gravity, which corrects the action via a scalar field and the contraction of the Riemann tensor and its dual. We then consider a wide class of theories with d...
Pirogov, Yury F
2016-01-01
In the framework of the minimal quartet-metric gravity/systogravity, a scalar graviton/systolon is stated as a universal dark component, with supplementary manifestations in the different contexts either as dark matter or dark energy. An ensuing extension to the standard {\\Lambda}CDM model is developed. A modification of the late expansion of the Universe, with an attractor of a scalar master equation defining an effective cosmological constant, which supersedes the true one, is proposed. A new partial solution to the cosmological constant problem is discussed.
Lovley, Derek R
2012-12-28
The goal of this research was to provide computational tools to predictively model the behavior of two microbial communities of direct relevance to Department of Energy interests: 1) the microbial community responsible for in situ bioremediation of uranium in contaminated subsurface environments; and 2) the microbial community capable of harvesting electricity from waste organic matter and renewable biomass. During this project the concept of microbial electrosynthesis, a novel form of artificial photosynthesis for the direct production of fuels and other organic commodities from carbon dioxide and water was also developed and research was expanded into this area as well.
Huang, Weiwei; Chu, Huaqiang; Dong, Bingzhi
2014-10-01
Fouling caused by algogenic organic matter (AOM) in membrane filtration is a critical problem in algae-rich waters, and understanding fouling mechanisms, particularly by identifying the predominant membrane foulants, could have significant effects on algal fouling prediction and pretreatment. In this work, the fouling behavior of Aphanizomenon flos-aquae (APF)- and Anabaena flos-aquae (ANF)-AOM fractions was analyzed using the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory. The results show that the interfacial energy of membranes and foulants could be used for AOM membrane fouling analysis. The attractive energy was highest between the membrane and the neutral hydrophilic fractions (N-HPI) on clean membrane surfaces, followed by the energy associated with the hydrophobic fractions (HPO) and the transphilic fractions (TPI) in both of the AOMs; on the other hand, the negatively charged hydrophilic organics (C-HPI) in the APF-AOM suffered from repulsive interactions when nearing the membrane surface, which was consistent with their initial filtration flux. After the formation of an initial fouling layer on the membrane surface, membrane fouling was controlled mainly by the cohesion free energy between the approaching foulants and the foulants on the fouled membranes. In addition, it was observed that the interfacial energy between foulants was the dominant factor controlling membrane fouling in AOM filtration. Finally, the interfacial energies between the N-HPI fractions had the greatest effect on both APF-AOM and ANF-AOM membrane fouling. Copyright © 2014 Elsevier B.V. All rights reserved.