WorldWideScience

Sample records for matter production rates

  1. Production of Purely Gravitational Dark Matter

    OpenAIRE

    Ema, Yohei; Nakayama, Kazunori; Tang, Yong

    2018-01-01

    In the purely gravitational dark matter scenario, the dark matter particle does not have any interaction except for gravitational one. We study the gravitational particle production of dark matter particle in such a minimal setup and show that correct amount of dark matter can be produced depending on the inflation model and the dark matter mass. In particular, we carefully evaluate the particle production rate from the transition epoch to the inflaton oscillation epoch in a realistic inflati...

  2. Analysis and modeling of dry matter production rate by soybean [Glycine max] community: Curvilinear response to radiation intensity

    International Nuclear Information System (INIS)

    Sameshima, R.

    1996-01-01

    The linear relationship between the amount of absorbed radiation and dry matter production by crop communities has long been known, and the proportionality constant between them is known as the radiation use efficiency (RUE). To analyze and predict crop production using RUE, the assumption is often made that RUE is not sensitive to radiation intensity and that dry matter production rate (DMPR) is a linear function of radiation intensity.However, there is evidence in opposition to this assumption, including reports of increasing RUE in shade tests, and hyperbolic response of photosynthetic rate to radiation intensity. The following model was developed and used to analyze the response of DMPR and RUE to daily radiation R S : DMPR = DMPR max (R S ) * g(α) where DMPR max (R S ) is the DMPR of a hypothetical soybean community absorbing all radiation, and g(α) represents the effect of radiation absorptivity (α). A hyperbolic curve and a straight line were employed for DMPR max (R S ) and g(α), respectively. Field experimental data including shade tests were used to determine the parameters for the model. Two sets of parameters were required to cover the entire experimental period. DMPR max (R S ) had an apparent curvilinear relationship with R S . The model successfully described dry matter production under successive low radiation conditions, which could not be estimated by a model with RUE insensitive to radiation. (author)

  3. Gravitational production of superheavy dark matter

    International Nuclear Information System (INIS)

    Chung, Daniel J. H.; Crotty, Patrick; Kolb, Edward W.; Riotto, Antonio

    2001-01-01

    The dark matter in the universe can be in the form of a superheavy matter species (wimpzilla). Several mechanisms have been proposed for the production of wimpzilla particles during or immediately following the inflationary epoch. Perhaps the most attractive mechanism is through gravitational particle production, where particles are produced simply as a result of the expansion of the universe. In this paper we present a detailed numerical calculation of wimpzilla gravitational production in hybrid-inflation models and natural-inflation models. Generalizing these findings, we also explore the dependence of the gravitational production mechanism on various models of inflation. We show that superheavy dark matter production seems to be robust, with Omega X h 2 ∼(M X /10 11 GeV) 2 (T RH /10 9 GeV), so long as M X I , where M X is the wimpzilla mass, T RH is the reheat temperature, and H I is the expansion rate of the universe during inflation

  4. Dry matter production and chemical composition of Massai grass submitted to nitrogen rates and cutting heights

    Directory of Open Access Journals (Sweden)

    Giselle Abadia Campos Pereira

    2016-09-01

    Full Text Available The study was carried out in a greenhouse with a 4X4 factorial arrangement randomized block design in order to evaluate the effects of nitrogen rates (0, 50, 100 and 150 mg dm-3 associated with cutting heights (10, 15, 20 and 25 cm on dry matter production and the chemical composition of Massai grass. The seeding was done in pots with 11 kg of soil. 10 plants were kept per pot, and there were two cuts every 35 days. Nitrogen fertilization was split between the two cuts, where the first N application occurred after the uniformity cut and the second after the first cut. In each cut the plants were separated and weighed for botanical component evaluation: leaf blade and stem + sheath. After this, the samples were homogenized and analysed for dry matter (DM, crude protein (CP and neutral detergent fibre (NDF content. In the first cut, the N fertilization caused a linear increase in DM production of 0.058 g pot-1 per each 1 mg dm-3 of N applied, as well as causing an increase of 0.549% in CP percentage, a 0.0124 pot-1 g increase in CP production and a reduction of 0.055% in NDF. In the second cut, N rates promoted a quadratic effect on DM production. A maximum DM production of 16.48 g pot-1 with 107.27 mg dm-3 of N was observed while CP production content was increased by 0.0092 g pot-1 for each 1 mg dm-3 N applied. In terms of linear responses to DM and PB, as well as the use efficiency calculated for Massai grass, recommended N doses range between 50 and 100 g dm-3.

  5. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    International Nuclear Information System (INIS)

    Ebadian, M.A.; Dua, S.K.; Hillol Guha

    2001-01-01

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 microm) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 micro

  6. Notes on the production of matter in the Universe

    International Nuclear Information System (INIS)

    Kuzmichev, V.E.; Kuzmichev, V.V.

    2012-01-01

    A model of the production of ordinary and dark matter in the decay of a hypothetical antigravitating medium in the form of a condensate of spinless massive particles, which fills the Universe, is proposed. The decays of these particles into baryons, leptons, and dark matter particles are caused by some interaction with the mass scale between the electroweak interaction and the grand unification. The observed dark energy is identified with a portion of the condensate, which has not decayed up to the instant of a measurement. The decay rate of particles of the condensate is expressed through the three parameters - the coupling constant α X , the mass scale M X ; which defines the mass of an X-particle as a mediator of the interaction, and the energy imparted to the decay products. Under the assumption that the decay rate of particles of the condensate is of the same order of magnitude as the Hubble expansion rate, the limits of the possible values of the mass M X are obtained. The cross-sections of the reactions, in which dark matter particles can be produced, are calculated.

  7. Cosmogenic production of tritium in dark matter detectors

    Science.gov (United States)

    Amaré, J.; Castel, J.; Cebrián, S.; Coarasa, I.; Cuesta, C.; Dafni, T.; Galán, J.; García, E.; Garza, J. G.; Iguaz, F. J.; Irastorza, I. G.; Luzón, G.; Martínez, M.; Mirallas, H.; Oliván, M. A.; Ortigoza, Y.; Ortiz de Solórzano, A.; Puimedón, J.; Ruiz-Chóliz, E.; Sarsa, M. L.; Villar, J. A.; Villar, P.

    2018-01-01

    The direct detection of dark matter particles requires ultra-low background conditions at energies below a few tens of keV. Radioactive isotopes are produced via cosmogenic activation in detectors and other materials and those isotopes constitute a background source which has to be under control. In particular, tritium is specially relevant due to its decay properties (very low endpoint energy and long half-life) when induced in the detector medium, and because it can be generated in any material as a spallation product. Quantification of cosmogenic production of tritium is not straightforward, neither experimentally nor by calculations. In this work, a method for the calculation of production rates at sea level has been developed and applied to some of the materials typically used as targets in dark matter detectors (germanium, sodium iodide, argon and neon); it is based on a selected description of tritium production cross sections over the entire energy range of cosmic nucleons. Results have been compared to available data in the literature, either based on other calculations or from measurements. The obtained tritium production rates, ranging from a few tens to a few hundreds of nuclei per kg and per day at sea level, point to a significant contribution to the background in dark matter experiments, requiring the application of specific protocols for target material purification, material storing underground and limiting the time the detector is on surface during the building process in order to minimize the exposure to the most dangerous cosmic ray components.

  8. The weak conversion rate in quark matter

    International Nuclear Information System (INIS)

    Heiselberg, H.

    1992-01-01

    The weak conversion rate of strange to down quarks, s + u ↔ u + d, is calculated analytically for degenerate u, d and s quark matter to leading orders in temperature and deviations from chemical equilibrium. The rate is applied to burning of neutron matter into quark matter, to evaporation from quark nuggets in the early universe, for estimating the lifetime of strangelets, and to pulsar glitches

  9. Optical crop sensor for variable-rate nitrogen fertilization in corn: i - plant nutrition and dry matter production

    Directory of Open Access Journals (Sweden)

    Jardes Bragagnolo

    2013-10-01

    Full Text Available Variable-rate nitrogen fertilization (VRF based on optical spectrometry sensors of crops is a technological innovation capable of improving the nutrient use efficiency (NUE and mitigate environmental impacts. However, studies addressing fertilization based on crop sensors are still scarce in Brazilian agriculture. This study aims to evaluate the efficiency of an optical crop sensor to assess the nutritional status of corn and compare VRF with the standard strategy of traditional single-rate N fertilization (TSF used by farmers. With this purpose, three experiments were conducted at different locations in Southern Brazil, in the growing seasons 2008/09 and 2010/11. The following crop properties were evaluated: above-ground dry matter production, nitrogen (N content, N uptake, relative chlorophyll content (SPAD reading, and a vegetation index measured by the optical sensor N-Sensor® ALS. The plants were evaluated in the stages V4, V6, V8, V10, V12 and at corn flowering. The experiments had a completely randomized design at three different sites that were analyzed separately. The vegetation index was directly related to above-ground dry matter production (R² = 0.91; p<0.0001, total N uptake (R² = 0.87; p<0.0001 and SPAD reading (R² = 0.63; p<0.0001 and inversely related to plant N content (R² = 0.53; p<0.0001. The efficiency of VRF for plant nutrition was influenced by the specific climatic conditions of each site. Therefore, the efficiency of the VRF strategy was similar to that of the standard farmer fertilizer strategy at sites 1 and 2. However, at site 3 where the climatic conditions were favorable for corn growth, the use of optical sensors to determine VRF resulted in a 12 % increase in N plant uptake in relation to the standard fertilization, indicating the potential of this technology to improve NUE.

  10. Dark Matter Freeze-in Production in Fast-Expanding Universes

    Science.gov (United States)

    D'Eramo, Francesco; Fernandez, Nicolas; Profumo, Stefano

    2018-02-01

    If the dark matter is produced in the early universe prior to Big Bang nucleosynthesis, a modified cosmological history can drastically affect the abundance of relic dark matter particles. Here, we assume that an additional species to radiation dominates at early times, causing the expansion rate at a given temperature to be larger than in the standard radiation-dominated case. We demonstrate that, if this is the case, dark matter production via freeze-in (a scenario when dark matter interacts very weakly, and is dumped in the early universe out of equilibrium by decay or scattering processes involving particles in the thermal bath) is dramatically suppressed. We illustrate and quantitatively and analytically study this phenomenon for three different paradigmatic classes of freeze-in scenarios. For the frozen-in dark matter abundance to be as large as observations, couplings between the dark matter and visible-sector particles must be enhanced by several orders of magnitude. This sheds some optimistic prospects for the otherwise dire experimental and observational outlook of detecting dark matter produced by freeze-in.

  11. Production of volatile fatty acid in the rumen and its relationship with their concentration, intake of dry matter and digestible organic matter in buffalo (Bos bubalis) calves

    International Nuclear Information System (INIS)

    Verma, D.N.; Singh, U.B.

    1979-01-01

    The production rates of total volatile fatty acid (TVFA) in the rumen of buffalo (Bos bubalis) calves were estimated using a single injection isotope dilution technique. A series of twelve experiments were done with animals given wheat straw and concentrate mixture. The production rate of TVFA ranged from 19.77 to 24.84 moles/d depending upon the amount of food consumed by the animals. Highly significant correlations were observed between TVFA production and their concentration, dry matter and digestible organic matter intake. (auth.)

  12. Dry matter production, radiation interception and radiation use efficiency of potato in response to temperature and nitrogen application regimes

    DEFF Research Database (Denmark)

    Zhenjiang, Zhou; Plauborg, Finn; Kristensen, Kristian

    2017-01-01

    while N rate varied from 0 to 180 kg ha−1. Statistical analysis using mixed modelling detected two clear features: Both temperature and N supply were important factors for dry matter production. Higher temperatures were associated with decreased dry matter production mainly through its negative effect...... on radiation use efficiency (RUE) when comparing inter-annual variation in dry matter production. The loss of tuber dry matter was c. 10% per °C, which is higher than estimated in previous studies. Specifically, compared to mean air temperature from end of tuber initiation to maturity, mean air temperature...... from emergence to end of tuber initiation was more important for dry matter production. N supply promoted dry matter production (p

  13. Particulate organic matter predicts bacterial productivity in a river dominated estuary

    Science.gov (United States)

    Crump, B. C.

    2015-12-01

    Estuaries act as coastal filters for organic and inorganic fluvial materials in which microbial, biogeochemical, and ecological processes combine to transform organic matter and nutrients prior to export to the coastal ocean. The function of this estuarine 'bioreactor' is linked to the residence times of those materials and to rates of microbial heterotrophic activity. Our ability to forecast the impact of global change on estuarine bioreactor function requires an understanding of the basic controls on microbial community activity and diversity. In the Columbia River estuary, the microbial community undergoes a dramatic seasonal shift in species composition during which a spring bacterioplankton community, dominated by Flavobacteriaceae and Oceanospirillales, is replaced by a summer community, dominated by Rhodobacteraceae and several common marine taxa. This annual shift occurs in July, following the spring freshet, when river flow and river chlorophyll concentration decrease and when estuarine water residence time increases. Analysis of a large dataset from 17 research cruises (1990-2014) showed that the composition of particulate organic matter in the estuary changes after the freshet with decreasing organic carbon and nitrogen content, and increasing contribution of marine and autochthonous estuarine organic matter (based on PO13C and pigment ratios). Bacterial production rates (measured as leucine or thymidine incorporation rates) in the estuary respond to this change, and correlate strongly with labile particulate nitrogen concentration and temperature during individual sampling campaigns, and with the concentration of chlorophyll in the Columbia River across all seasons. Regression models suggest that the concentration of labile particulate nitrogen and the rate of bacterial production can be predicted from sensor measurements of turbidity, salinity, and temperature in the estuary and chlorophyll in the river. These results suggest that the quality of

  14. Production of Dissolved Organic Matter During Doliolid Feeding

    Science.gov (United States)

    Castellane, N. J.; Paffenhofer, G. A.; Stubbins, A.

    2016-02-01

    The biological carbon pump (BCP) draws carbon dioxide out of the atmosphere and buries it at the seafloor. The efficiency of the BCP is determined in part by the sinking rates of particulate organic carbon (POC) from ocean surface waters. Zooplankton can package POC into fecal pellets with higher sinking rates than their food source (e.g. phytoplankton), increasing the efficiency of the BCP. However, dissolved organic carbon (DOC) is also produced as zooplankton ingest and egest food, reducing the efficiency of BCP. The pelagic tunicate Dolioletta gegenbauri (doliolid) is a gelatinous zooplankton found at high concentrations in shelf waters, including our study site: the South Atlantic Bight. Doliolids are efficient grazers capable of stripping large quantities of phytoplankton from the water column. To determine the balance between pellet formation and DOC production during feeding, doliolids (6-7 mm gonozooids) were placed in natural seawater amended with a live phytoplankton food source and incubated on a plankton wheel. Dissolved organic matter (DOM) released directly to the water as well as the water soluble fraction of pellet organic matter were quantified and optically characterized. Colored dissolved organic matter (CDOM) absorbance and fluorescence spectra revealed that doliolid feeding produces DOM with optical properties that are commonly indicative of newly produced, highly biolabile DOM of microbial origin. Based upon these optical characteristics, doliolid-produced DOM is expected to be highly bio-labile in the environment and therefore rapidly degraded by surface ocean microbes shunting phytoplankton-derived organic carbon out of the BCP and back to dissolved inorganic carbon.

  15. Effect of Pot Size on Various Characteristics Related to Photosynthetic Matter Production in Soybean Plants

    Directory of Open Access Journals (Sweden)

    Minobu Kasai

    2012-01-01

    Full Text Available Despite the wide uses of potted plants, information on how pot size affects plant photosynthetic matter production is still considerably limited. This study investigated with soybean plants how transplantation into larger pots affects various characteristics related to photosynthetic matter production. The transplantation was analyzed to increase leaf photosynthetic rate, transpiration rate, and stomatal conductance without affecting significantly leaf intercellular CO2 concentration, implicating that the transplantation induced equal increases in the rate of CO2 diffusion via leaf stomata and the rate of CO2 fixation in leaf photosynthetic cells. Analyses of Rubisco activity and contents of a substrate (ribulose-1,5-bisphosphate (RuBP for Rubisco and total protein in leaf suggested that an increase in leaf Rubisco activity, which is likely to result from an increase in leaf Rubisco content, could contribute to the transplantation-induced increase in leaf photosynthetic rate. Analyses of leaf major photosynthetic carbohydrates and dry weights of source and sink organs revealed that transplantation increased plant sink capacity that uses leaf starch, inducing a decrease in leaf starch content and an increase in whole plant growth, particularly, growth of sink organs. Previously, in the same soybean species, it was demonstrated that negative correlation exists between leaf starch content and photosynthetic rate and that accumulation of starch in leaf decreases the rate of CO2 diffusion within leaf. Thus, it was suggested that the transplantation-induced increase in plant sink capacity decreasing leaf starch content could cause the transplantation-induced increase in leaf photosynthetic rate by inducing an increase in the rate of CO2 diffusion within leaf and thereby substantiating an increase in leaf Rubisco activity in vivo. It was therefore concluded that transplantation of soybean plants into larger pots attempted in this study increased the

  16. Dark matter from gravitational particle production at reheating

    Energy Technology Data Exchange (ETDEWEB)

    Markkanen, Tommi [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom); Nurmi, Sami, E-mail: tommi.markkanen@kcl.ac.uk, E-mail: sami.t.nurmi@jyu.fi [Department of Physics, University of Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä (Finland)

    2017-02-01

    We show that curvature induced particle production at reheating generates adiabatic dark matter if there are non-minimally coupled spectator scalars weakly coupled to visible matter. The observed dark matter abundance implies an upper bound on spectator masses m and non-minimal coupling values ξ. For example, assuming quadratic inflation, instant reheating and a single spectator scalar with only gravitational couplings, the observed dark matter abundance is obtained for m ∼ 0.1 GeV and ξ ∼ 1. Larger mass and coupling values of the spectator are excluded as they would lead to overproduction of dark matter.

  17. Dark matter from gravitational particle production at reheating

    International Nuclear Information System (INIS)

    Markkanen, Tommi; Nurmi, Sami

    2017-01-01

    We show that curvature induced particle production at reheating generates adiabatic dark matter if there are non-minimally coupled spectator scalars weakly coupled to visible matter. The observed dark matter abundance implies an upper bound on spectator masses m and non-minimal coupling values ξ. For example, assuming quadratic inflation, instant reheating and a single spectator scalar with only gravitational couplings, the observed dark matter abundance is obtained for m ∼ 0.1 GeV and ξ ∼ 1. Larger mass and coupling values of the spectator are excluded as they would lead to overproduction of dark matter.

  18. Influence of the organic matter and soil water deficit on the castor bean absolute growth rate

    Energy Technology Data Exchange (ETDEWEB)

    Lacerda, Rogerio Dantas de; Guerra, Hugo O. Carvallo; Chaves, Lucia Helena G. [Universidade Federal de Campina Grande (UAEAg/UFCG), PB (Brazil). Unidade Academica de Engenharia Agricola; Araujo, Ester Luiz de; Nascimento, Elka Costa Santos; Barros Junior, Genival [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2008-07-01

    Even when under low precipitations conditions, the castor bean production decrease, it constitutes a very good alternative. It has an elevated economical importance, because from the plant it is used their leaves, stem and seeds. From the stem it is obtained cellulose for the paper industry, from the leaves textile products and from the seeds oil and tort. The oil is the only glycerin soluble in alcohol and the base for several industrial products such as the biodiesel. The objective of the present work was to study the effect of different soil water and soil organic matter on the castor bean, BRS 188 cultivar rate growth. The experiment was conducted from April to August 2006 under greenhouse conditions using a randomized block 2x4 factorial design with two soil organic mater content (5.0 g.kg{sup -1} e 25.0 g.kg{sup -1}), four levels of available water (100, 90, 80 e 70% ) and three replicates. For this, 24 plastic containers, 75 kg capacity, were used on which was grown one plant 120 days after the seedling. At regular intervals the plant height was measured and the results analyzed statistically. For the qualitative treatments (with and without organic matter) the treatment means were compared through the Tukey test. For the quantitative ones (water levels) regressions were used. It was observed that both, organic matter and available water for plants proportionated benefit effects to the growth rate of the plant. (author)

  19. can Money Matter for Interest Rate Policy?

    NARCIS (Netherlands)

    Brueckner, M.; Schabert, A.

    2006-01-01

    In this paper it is shown that money can matter for macroeconomic stability under interest rate policy when transactions frictions are non-negligible. We develop a sticky price model with a shopping time function, which induces the marginal utility of consumption to depend on the (predetermined)

  20. Bilirubin and its oxidation products damage brain white matter

    Science.gov (United States)

    Lakovic, Katarina; Ai, Jinglu; D'Abbondanza, Josephine; Tariq, Asma; Sabri, Mohammed; Alarfaj, Abdullah K; Vasdev, Punarjot; Macdonald, Robert Loch

    2014-01-01

    Brain injury after intracerebral hemorrhage (ICH) occurs in cortex and white matter and may be mediated by blood breakdown products, including hemoglobin and heme. Effects of blood breakdown products, bilirubin and bilirubin oxidation products, have not been widely investigated in adult brain. Here, we first determined the effect of bilirubin and its oxidation products on the structure and function of white matter in vitro using brain slices. Subsequently, we determined whether these compounds have an effect on the structure and function of white matter in vivo. In all, 0.5 mmol/L bilirubin treatment significantly damaged both the function and the structure of myelinated axons but not the unmyelinated axons in brain slices. Toxicity of bilirubin in vitro was prevented by dimethyl sulfoxide. Bilirubin oxidation products (BOXes) may be responsible for the toxicity of bilirubin. In in vivo experiments, unmyelinated axons were found more susceptible to damage from bilirubin injection. These results suggest that unmyelinated axons may have a major role in white-matter damage in vivo. Since bilirubin and BOXes appear in a delayed manner after ICH, preventing their toxic effects may be worth investigating therapeutically. Dimethyl sulfoxide or its structurally related derivatives may have a potential therapeutic value at antagonizing axonal damage after hemorrhagic stroke. PMID:25160671

  1. Higher-order QCD predictions for dark matter production at the LHC in simplified models with s-channel mediators

    Energy Technology Data Exchange (ETDEWEB)

    Backovic, Mihailo; Maltoni, Fabio; Martini, Antony [Universite catholique de Louvain, Centre for Cosmology, Particle Physics and Phenomenology (CP3), Louvain-la-Neuve (Belgium); Kraemer, Michael; Pellen, Mathieu [RWTH Aachen University, Institute for Theoretical Particle Physics and Cosmology, Aachen (Germany); Mawatari, Kentarou [Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, and International Solvay Institutes, Brussels (Belgium)

    2015-10-15

    Weakly interacting dark matter particles can be pair-produced at colliders and detected through signatures featuring missing energy in association with either QCD/EW radiation or heavy quarks. In order to constrain the mass and the couplings to standard model particles, accurate and precise predictions for production cross sections and distributions are of prime importance. In this work, we consider various simplified models with s-channel mediators. We implement such models in the FeynRules/MadGraph5{sub a}MC rate at NLO framework, which allows to include higher-order QCD corrections in realistic simulations and to study their effect systematically. As a first phenomenological application, we present predictions for dark matter production in association with jets and with a top-quark pair at the LHC, at next-to-leading order accuracy in QCD, including matching/merging to parton showers. Our study shows that higher-order QCD corrections to dark matter production via s-channel mediators have a significant impact not only on total production rates, but also on shapes of distributions. We also show that the inclusion of next-to-leading order effects results in a sizeable reduction of the theoretical uncertainties. (orig.)

  2. Higher-order QCD predictions for dark matter production at the LHC in simplified models with s-channel mediators

    International Nuclear Information System (INIS)

    Backovic, Mihailo; Maltoni, Fabio; Martini, Antony; Kraemer, Michael; Pellen, Mathieu; Mawatari, Kentarou

    2015-01-01

    Weakly interacting dark matter particles can be pair-produced at colliders and detected through signatures featuring missing energy in association with either QCD/EW radiation or heavy quarks. In order to constrain the mass and the couplings to standard model particles, accurate and precise predictions for production cross sections and distributions are of prime importance. In this work, we consider various simplified models with s-channel mediators. We implement such models in the FeynRules/MadGraph5 a MC rate at NLO framework, which allows to include higher-order QCD corrections in realistic simulations and to study their effect systematically. As a first phenomenological application, we present predictions for dark matter production in association with jets and with a top-quark pair at the LHC, at next-to-leading order accuracy in QCD, including matching/merging to parton showers. Our study shows that higher-order QCD corrections to dark matter production via s-channel mediators have a significant impact not only on total production rates, but also on shapes of distributions. We also show that the inclusion of next-to-leading order effects results in a sizeable reduction of the theoretical uncertainties. (orig.)

  3. Effect of mineral matter on coal self-heating rate

    Energy Technology Data Exchange (ETDEWEB)

    B. Basil Beamish; Ahmet Arisoy [University of Queensland, Brisbane, Qld. (Australia). School of Engineering

    2008-01-15

    Adiabatic self-heating tests have been conducted on subbituminous coal cores from the same seam profile, which cover a mineral matter content range of 11.2-71.1%. In all cases the heat release rate does not conform to an Arrhenius kinetic model, but can best be described by a third order polynomial. Assessment of the theoretical heat sink effect of the mineral matter in each of the tests reveals that the coal is less reactive than predicted using a simple energy conservation equation. There is an additional effect of the mineral matter in these cases that cannot be explained by heat sink alone. The disseminated mineral matter in the coal is therefore inhibiting the oxidation reaction due to physicochemical effects. 14 refs., 5 figs., 5 tabs.

  4. Dark matter relics and the expansion rate in scalar-tensor theories

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Bhaskar; Jimenez, Esteban [Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); Zavala, Ivonne, E-mail: dutta@physics.tamu.edu, E-mail: este1985@physics.tamu.edu, E-mail: e.i.zavalacarrasco@swansea.ac.uk [Department of Physics, Swansea University, Singleton Park, Swansea, SA2 8PP (United Kingdom)

    2017-06-01

    We study the impact of a modified expansion rate on the dark matter relic abundance in a class of scalar-tensor theories. The scalar-tensor theories we consider are motivated from string theory constructions, which have conformal as well as disformally coupled matter to the scalar. We investigate the effects of such a conformal coupling to the dark matter relic abundance for a wide range of initial conditions, masses and cross-sections. We find that exploiting all possible initial conditions, the annihilation cross-section required to satisfy the dark matter content can differ from the thermal average cross-section in the standard case. We also study the expansion rate in the disformal case and find that physically relevant solutions require a nontrivial relation between the conformal and disformal functions. We study the effects of the disformal coupling in an explicit example where the disformal function is quadratic.

  5. Dynamic freeze-in: impact of thermal masses and cosmological phase transitions on dark matter production

    Science.gov (United States)

    Baker, Michael J.; Breitbach, Moritz; Kopp, Joachim; Mittnacht, Lukas

    2018-03-01

    The cosmological abundance of dark matter can be significantly influenced by the temperature dependence of particle masses and vacuum expectation values. We illustrate this point in three simple freeze-in models. The first one, which we call kinematically induced freeze-in, is based on the observation that the effective mass of a scalar temporarily becomes very small as the scalar potential undergoes a second order phase transition. This opens dark matter production channels that are otherwise forbidden. The second model we consider, dubbed vev-induced freeze-in, is a fermionic Higgs portal scenario. Its scalar sector is augmented compared to the Standard Model by an additional scalar singlet, S, which couples to dark matter and temporarily acquires a vacuum expectation value (a two-step phase transition or "vev flip-flop"). While ≠ 0, the modified coupling structure in the scalar sector implies that dark matter production is significantly enhanced compared to the = 0 phases realised at very early times and again today. The third model, which we call mixing-induced freeze-in, is similar in spirit, but here it is the mixing of dark sector fermions, induced by non-zero , that temporarily boosts the dark matter production rate. For all three scenarios, we carefully dissect the evolution of the dark sector in the early Universe. We compute the DM relic abundance as a function of the model parameters, emphasising the importance of thermal corrections and the proper treatment of phase transitions in the calculation.

  6. Photosynthetic rate, dry matter accumulation and yield inter-relationships jn genotypes of rice

    International Nuclear Information System (INIS)

    Devendra, R.; Udaya Kumar, M.; Krishna Sastry, K.S.

    1980-01-01

    The relationship between photosynthetic efficiency, dry matter accumulation and yield in five genotypes of paddy derived from a single cross between Jaya X Halubbalu was studied. Photosynthetic efficiency of younger leaves, on the main tiller was higher than in the older leaves. A significant positive correlation between RuDPcase activity and photosynthetic efficiency was observed in these genotypes. Also a similar positive correlation between dry matter production and photosynthetic efficiency during vegetative period but not during post-anthesis period was observed. Genotypes with high photosynthetic efficiency and also the genotypes with high LAD produced higher dry matter. A reduction in LAD or in photosynthetic efficiency during the post-anthesis period and thus a reduction in source capacity which occurred specially in late types resulted in a lesser ratio between productive and total tillers and also higher percent sterility. Differences in yield amongst the genotypes were not significant, since in the late types MR. 333 and MR. 335, the post-anthesis dry matter production was low due to lesser source capacity. But in the early types, though the total dry matter was less, the post-anthesis source capacity was high. The importance of post-anthesis leaf area of photo-synthetic efficiency in productivity in genotypes of rice is highlighted. (author)

  7. Feasibility of DEXA prediction of dry matter and mass for horticultural products

    International Nuclear Information System (INIS)

    Bartle, C.M.; West, J.G.

    2009-01-01

    Previously the DEXA system used in this research has been deployed commercially in meat processing plants with the objective of accurately determining the fat content of bulk and packaged meat, through a JV with ANZCO Foods and a partnership with Smiths Detection. This present research is aimed at demonstrating an ability to measure the dry matter distribution and in turn the net dry matter for individual horticultural products using DEXA. The DEXA images are obtained while scanning the products on a conveyor belt running at speeds representative of production grading situations. The products reported on here are primarily potatoes (because of a direct commercial interest), but also a butternut pumpkin and two rock melons. The grading and dry matter measurement capability is based on detecting change in the effective atomic number (EAN) with change in the elemental proportions within the product and there being effectively a binary mixture (e.g dry matter and water) present. Grading of fruit and vegetables on this basis is expected to be challenging. The commercial meat/fat grading already commercialised as a DEXA system is associated with 1.8 EAN units difference between fat (carbon rich Z eff =5.8) and fully-lean meat (oxygen rich Z eff =7.6) but this range is large compared to what is expected for horticultural products. The dry matter in horticultural products is primarily starch (plus minerals) and the EAN difference between starch (and minerals) and water is unknown here but calculations give the difference as little as 0.2 EAN units, dependant on the mineral content in the product. In this work we show that the dry matter sensitivities of the DEXA technology for horticultural products is discernable allowing measurement of dry matter distributions, and net dry matter values. The EAN range is indeed much smaller than for fat/meat mixtures, and consistent differences are yet to be demonstrated for an assembly of product, except for potatoes where consistency

  8. Maize dry matter production and macronutrient extraction model as a new approach for fertilizer rate estimation

    Directory of Open Access Journals (Sweden)

    KARLA V. MARTINS

    Full Text Available ABSTRACT Decision support for nutrient application remains an enigma if based on soil nutrient analysis. If the crop could be used as an auxiliary indicator, the plant nutrient status during different growth stages could complement the soil test, improving the fertilizer recommendation. Nutrient absorption and partitioning in the plant are here studied and described with mathematical models. The objective of this study considers the temporal variation of the nutrient uptake rate, which should define crop needs as compared to the critical content in soil solution. A uniform maize crop was grown to observe dry matter accumulation and nutrient content in the plant. The dry matter accumulation followed a sigmoidal model and the macronutrient content a power model. The maximum nutrient absorption occurred at the R4 growth stage, for which the sap concentration was successfully calculated. It is hoped that this new approach of evaluating nutrient sap concentration will help to develop more rational ways to estimate crop fertilizer needs. This new approach has great potential for on-the-go crop sensor-based nutrient application methods and its sensitivity to soil tillage and management systems need to be examined in following studies. If mathematical model reflects management impact adequately, resources for experiments can be saved.

  9. [Characteristics of dry matter production and nitrogen accumulation in barley genotypes with high nitrogen utilization efficiency].

    Science.gov (United States)

    Huang, Yi; Li, Ting-Xuan; Zhang, Xi-Zhou; Ji, Lin

    2014-07-01

    A pot experiment was conducted under low (125 mg x kg-1) and normal (250 mg x kg(-1)) nitrogen treatments. The nitrogen uptake and utilization efficiency of 22 barley cultivars were investigated, and the characteristics of dry matter production and nitrogen accumulation in barley were analyzed. The results showed that nitrogen uptake and utilization efficiency were different for barley under two nitrogen levels. The maximal values of grain yield, nitrogen utilization efficiency for grain and nitrogen harvest index were 2.87, 2.91 and 2.47 times as those of the lowest under the low nitrogen treatment. Grain yield and nitrogen utilization efficiency for grain and nitrogen harvest index of barley genotype with high nitrogen utilization efficiency were significantly greater than low nitrogen utilization efficiency, and the parameters of high nitrogen utilization efficiency genotype were 82.1%, 61.5% and 50.5% higher than low nitrogen utilization efficiency genotype under the low nitrogen treatment. Dry matter mass and nitrogen utilization of high nitrogen utilization efficiency was significantly higher than those of low nitrogen utilization efficiency. A peak of dry matter mass of high nitrogen utilization efficiency occurred during jointing to heading stage, while that of nitrogen accumulation appeared before jointing. Under the low nitrogen treatment, dry matter mass of DH61 and DH121+ was 34.4% and 38.3%, and nitrogen accumulation was 54. 8% and 58.0% higher than DH80, respectively. Dry matter mass and nitrogen accumulation seriously affected yield before jointing stage, and the contribution rates were 47.9% and 54.7% respectively under the low nitrogen treatment. The effect of dry matter and nitrogen accumulation on nitrogen utilization efficiency for grain was the largest during heading to mature stages, followed by sowing to jointing stages, with the contribution rate being 29.5% and 48.7%, 29.0% and 15.8%, respectively. In conclusion, barley genotype with high

  10. Nonthermal production of dark matter from primordial black holes

    Science.gov (United States)

    Allahverdi, Rouzbeh; Dent, James; Osinski, Jacek

    2018-03-01

    We present a scenario for nonthermal production of dark matter from evaporation of primordial black holes. A period of very early matter domination leads to formation of black holes with a maximum mass of ≃2 ×108 g , whose subsequent evaporation prior to big bang nucleosynthesis can produce all of the dark matter in the Universe. We show that the correct relic abundance can be obtained in this way for thermally underproduced dark matter in the 100 GeV-10 TeV mass range. To achieve this, the scalar power spectrum at small scales relevant for black hole formation should be enhanced by a factor of O (105) relative to the scales accessible by the cosmic microwave background experiments.

  11. Higher-order QCD predictions for dark matter production at the LHC in simplified models with s-channel mediators.

    Science.gov (United States)

    Backović, Mihailo; Krämer, Michael; Maltoni, Fabio; Martini, Antony; Mawatari, Kentarou; Pellen, Mathieu

    Weakly interacting dark matter particles can be pair-produced at colliders and detected through signatures featuring missing energy in association with either QCD/EW radiation or heavy quarks. In order to constrain the mass and the couplings to standard model particles, accurate and precise predictions for production cross sections and distributions are of prime importance. In this work, we consider various simplified models with s -channel mediators. We implement such models in the FeynRules/MadGraph5_aMC@NLO framework, which allows to include higher-order QCD corrections in realistic simulations and to study their effect systematically. As a first phenomenological application, we present predictions for dark matter production in association with jets and with a top-quark pair at the LHC, at next-to-leading order accuracy in QCD, including matching/merging to parton showers. Our study shows that higher-order QCD corrections to dark matter production via s -channel mediators have a significant impact not only on total production rates, but also on shapes of distributions. We also show that the inclusion of next-to-leading order effects results in a sizeable reduction of the theoretical uncertainties.

  12. Higher-order QCD predictions for dark matter production at the LHC in simplified models with s-channel mediators

    Energy Technology Data Exchange (ETDEWEB)

    Backović, Mihailo [Centre for Cosmology, Particle Physics and Phenomenology (CP3), Université catholique de Louvain, 1348, Louvain-la-Neuve (Belgium); Krämer, Michael [Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University, 52056, Aachen (Germany); Maltoni, Fabio; Martini, Antony [Centre for Cosmology, Particle Physics and Phenomenology (CP3), Université catholique de Louvain, 1348, Louvain-la-Neuve (Belgium); Mawatari, Kentarou, E-mail: kentarou.mawatari@vub.ac.be [Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, and International Solvay Institutes, Pleinlaan 2, 1050, Brussels (Belgium); Pellen, Mathieu [Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University, 52056, Aachen (Germany)

    2015-10-07

    Weakly interacting dark matter particles can be pair-produced at colliders and detected through signatures featuring missing energy in association with either QCD/EW radiation or heavy quarks. In order to constrain the mass and the couplings to standard model particles, accurate and precise predictions for production cross sections and distributions are of prime importance. In this work, we consider various simplified models with s-channel mediators. We implement such models in the FeynRules/MadGraph5{sub a}MC@NLO framework, which allows to include higher-order QCD corrections in realistic simulations and to study their effect systematically. As a first phenomenological application, we present predictions for dark matter production in association with jets and with a top-quark pair at the LHC, at next-to-leading order accuracy in QCD, including matching/merging to parton showers. Our study shows that higher-order QCD corrections to dark matter production via s-channel mediators have a significant impact not only on total production rates, but also on shapes of distributions. We also show that the inclusion of next-to-leading order effects results in a sizeable reduction of the theoretical uncertainties.

  13. Towards an understanding of feedbacks between plant productivity, acidity and dissolved organic matter

    Science.gov (United States)

    Rowe, Ed; Tipping, Ed; Davies, Jessica; Monteith, Don; Evans, Chris

    2014-05-01

    The recent origin of much dissolved organic carbon (DOC) (Tipping et al., 2010) implies that plant productivity is a major control on DOC fluxes. However, the flocculation, sorption and release of potentially-dissolved organic matter are governed by pH, and widespread increases in DOC concentrations observed in northern temperate freshwater systems seem to be primarily related to recovery from acidification (Monteith et al., 2007). We explore the relative importance of changes in productivity and pH using a model, MADOC, that incorporates both these effects (Rowe et al., 2014). The feedback whereby DOC affects pH is included. The model uses an annual timestep and relatively simple flow-routing, yet reproduces observed changes in DOC flux and pH in experimental (Evans et al., 2012) and survey data. However, the first version of the model probably over-estimated responses of plant productivity to nitrogen (N) deposition in upland semi-natural ecosystems. There is a strong case that plant productivity is an important regulator of DOC fluxes, and theoretical reasons for suspecting widespread productivity increases in recent years due not only to N deposition but to temperature and increased atmospheric CO2 concentrations. However, evidence that productivity has increased in upland semi-natural ecosystems is sparse, and few studies have assessed the major limitations to productivity in these habitats. In systems where phosphorus (P) limitation prevails, or which are co-limited, productivity responses to anthropogenic drivers will be limited. We present a revised version of the model that incorporates P cycling and appears to represent productivity responses to atmospheric N pollution more realistically. Over the long term, relatively small fluxes of nutrient elements into and out of ecosystems can profoundly affect productivity and the accumulation of organic matter. Dissolved organic N (DON) is less easily intercepted by plants and microbes than mineral N, and DON

  14. Processes controlling the production of aromatic water-soluble organic matter during litter decomposition

    NARCIS (Netherlands)

    Klotzbücher, T.; Kaiser, K.; Filley, T.R.; Kalbitz, K.

    2013-01-01

    Dissolved organic matter (DOM) plays a fundamental role for many soil processes. For instance, production, transport, and retention of DOM control properties and long-term storage of organic matter in mineral soils. Production of water-soluble compounds during the decomposition of plant litter is a

  15. Destroying lignocellulosic matters for enhancing methane production from excess sludge.

    Science.gov (United States)

    Hao, Xiaodi; Hu, Yuansheng; Cao, Daqi

    2016-01-01

    A lot of lignocellulosic matters are usually present in excess sludge, which are hardly degraded in anaerobic digestion (AD) and thus remains mostly in digested sludge. This is a reason why the conversion rate of sludge organics into energy (CH4) is often low. Obviously, the hydrolysis of AD cannot destruct the structure of lignocellulosic matters. Structural destruction of lignocellulosic matters has to be performed in AD. In this study, pretreatments with the same principles as cell disintegration of sludge were applied to destruct lignocellulosic matters so that these materials could be converted to CH4 via AD. Acid, alkali, thermal treatment and ultrasonic were used in the experiments to observe the destructed/degraded efficiency of lignocellulosic matters. Thermal treatment was found to be the most effective pretreatment. Under optimized conditions (T = 150 °C and t = 30  min), pretreated sludge had a degraded rate of 52.6% in AD, due to easy destruction and/or degradation of hemicelluloses and celluloses in pretreatment. The sludge pretreated by thermal treatment could enhance the CH4 yield (mL CH4 g(-1) VSS) by 53.6% compared to raw sludge. Economically, the thermal treatment can balance the input energy with the produced energy (steam and electricity).

  16. Axion-assisted production of sterile neutrino dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Berlin, Asher; Hooper, Dan

    2017-04-12

    Sterile neutrinos can be generated in the early universe through oscillations with active neutrinos and represent a popular and well-studied candidate for our universe's dark matter. Stringent constraints from X-ray and gamma-ray line searches, however, have excluded the simplest of such models. In this letter, we propose a novel alternative to the standard scenario in which the mixing angle between the sterile and active neutrinos is a dynamical quantity, induced through interactions with a light axion-like field. As the energy density of the axion-like particles is diluted by Hubble expansion, the degree of mixing is reduced at late times, suppressing the decay rate and easily alleviating any tension with X-ray or gamma-ray constraints. We present a simple model which illustrates the phenomenology of this scenario, and also describe a framework in which the QCD axion is responsible for the production of sterile neutrinos in the early universe.

  17. Direct SUSY dark matter detection-theoretical rates due to the spin

    International Nuclear Information System (INIS)

    Vergados, J D

    2004-01-01

    The recent WMAP data have confirmed that exotic dark matter together with the vacuum energy (cosmological constant) dominate in the flat Universe. Thus direct dark matter detection, consisting of detecting the recoiling nucleus, is central to particle physics and cosmology. Supersymmetry provides a natural dark matter candidate, the lightest supersymmetric particle (LSP). The relevant cross sections arise out of two mechanisms: (i) the coherent mode, due to the scalar interaction and (ii) the spin contribution arising from the axial current. In this paper we will focus on the spin contribution, which is expected to dominate for light targets. For both modes it is possible to obtain detectable rates, but in most models the expected rates are much lower than the present experimental goals. So one should exploit two characteristic signatures of the reaction, namely the modulation effect and in directional experiments the correlation of the event rates with the sun's motion. In standard non-directional experiments the modulation is small, less than 2 per cent. In the case of the directional event rates we would like to suggest that the experiments exploit two features of the process, which are essentially independent of the SUSY model employed, namely: (1) the forward-backward asymmetry, with respect to the sun's direction of motion, is very large and (2) the modulation is much larger, especially if the observation is made in a plane perpendicular to the sun's velocity. In this case the difference between maximum and minimum can be larger than 40 per cent and the phase of the earth at the maximum is direction dependent

  18. Entropy Production and Fluctuation Theorems for Active Matter

    Science.gov (United States)

    Mandal, Dibyendu; Klymko, Katherine; DeWeese, Michael R.

    2017-12-01

    Active biological systems reside far from equilibrium, dissipating heat even in their steady state, thus requiring an extension of conventional equilibrium thermodynamics and statistical mechanics. In this Letter, we have extended the emerging framework of stochastic thermodynamics to active matter. In particular, for the active Ornstein-Uhlenbeck model, we have provided consistent definitions of thermodynamic quantities such as work, energy, heat, entropy, and entropy production at the level of single, stochastic trajectories and derived related fluctuation relations. We have developed a generalization of the Clausius inequality, which is valid even in the presence of the non-Hamiltonian dynamics underlying active matter systems. We have illustrated our results with explicit numerical studies.

  19. Observing Higgs boson production through its decay into γ-rays: A messenger for dark matter candidates

    Energy Technology Data Exchange (ETDEWEB)

    Bernal, Nicolás, E-mail: nicolas@th.physik.uni-bonn.de [Bethe Center for Theoretical Physics and Physikalisches Institut, Universität Bonn, Nußallee 12, D-53115 Bonn (Germany); Boehm, Céline [Institute for Particle Physics Phenomenology, University of Durham, Durham, DH1 3LE (United Kingdom); LAPTH, U. de Savoie, CNRS, BP 110, 74941 Annecy-Le-Vieux (France); Palomares-Ruiz, Sergio [Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València, Apartado de Correos 22085, E-46071 Valencia (Spain); Silk, Joseph [UMR7095, Institut d' Astrophysique de Paris, 98 bis boulevard Arago, 75014 Paris (France); Toma, Takashi [Institute for Particle Physics Phenomenology, University of Durham, Durham, DH1 3LE (United Kingdom)

    2013-06-10

    In this Letter, we study the γ-ray signatures subsequent to the production of a Higgs boson in space by dark matter annihilations. We investigate the cases where the Higgs boson is produced at rest or slightly boosted and show that such configurations can produce characteristic bumps in the γ-ray data. These results are relevant in the case of the Standard Model-like Higgs boson provided that the dark matter mass is about 63 GeV, 109 GeV or 126 GeV, but can be generalized to any other Higgs boson masses. Here, we point out that it may be worth looking for a 63 GeV line since it could be the signature of the decay of a Standard Model-like Higgs boson produced in space, as in the case of a di-Higgs final state if m{sub χ}≃126 GeV. We show that one can set generic constraints on the Higgs boson production rates using its decay properties. In particular, using the Fermi-LAT data from the galactic center, we find that the dark matter annihilation cross section into γ+ a Standard Model-like Higgs boson produced at rest or near rest cannot exceed 〈σv〉∼a few 10{sup −25} cm{sup 3}/s or 〈σv〉∼a few 10{sup −27} cm{sup 3}/s respectively, providing us with information on the Higgs coupling to the dark matter particle. We conclude that Higgs bosons can indeed be used as messengers to explore the dark matter mass range.

  20. Phases of cannibal dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Farina, Marco [New High Energy Theory Center, Department of Physics, Rutgers University,136 Frelinghuisen Road, Piscataway, NJ 08854 (United States); Pappadopulo, Duccio; Ruderman, Joshua T.; Trevisan, Gabriele [Center for Cosmology and Particle Physics, Department of Physics, New York University,New York, NY 10003 (United States)

    2016-12-13

    A hidden sector with a mass gap undergoes an epoch of cannibalism if number changing interactions are active when the temperature drops below the mass of the lightest hidden particle. During cannibalism, the hidden sector temperature decreases only logarithmically with the scale factor. We consider the possibility that dark matter resides in a hidden sector that underwent cannibalism, and has relic density set by the freeze-out of two-to-two annihilations. We identify three novel phases, depending on the behavior of the hidden sector when dark matter freezes out. During the cannibal phase, dark matter annihilations decouple while the hidden sector is cannibalizing. During the chemical phase, only two-to-two interactions are active and the total number of hidden particles is conserved. During the one way phase, the dark matter annihilation products decay out of equilibrium, suppressing the production of dark matter from inverse annihilations. We map out the distinct phenomenology of each phase, which includes a boosted dark matter annihilation rate, new relativistic degrees of freedom, warm dark matter, and observable distortions to the spectrum of the cosmic microwave background.

  1. Mono-everything: Combined limits on dark matter production at colliders from multiple final states

    NARCIS (Netherlands)

    Zhou, N.; Berge, D.; Whiteson, D.

    2013-01-01

    Searches for dark matter production at particle colliders are complementary to direct-detection and indirect-detection experiments and especially powerful for small masses, mχ<100  GeV. An important collider dark matter signature is due to the production of a pair of these invisible particles with

  2. Influence of allochthonous dissolved organic matter on pelagic basal production in a northerly estuary

    Science.gov (United States)

    Andersson, A.; Brugel, S.; Paczkowska, J.; Rowe, O. F.; Figueroa, D.; Kratzer, S.; Legrand, C.

    2018-05-01

    Phytoplankton and heterotrophic bacteria are key groups at the base of aquatic food webs. In estuaries receiving riverine water with a high content of coloured allochthonous dissolved organic matter (ADOM), phytoplankton primary production may be reduced, while bacterial production is favoured. We tested this hypothesis by performing a field study in a northerly estuary receiving nutrient-poor, ADOM-rich riverine water, and analyzing results using multivariate statistics. Throughout the productive season, and especially during the spring river flush, the production and growth rate of heterotrophic bacteria were stimulated by the riverine inflow of dissolved organic carbon (DOC). In contrast, primary production and photosynthetic efficiency (i.e. phytoplankton growth rate) were negatively affected by DOC. Primary production related positively to phosphorus, which is the limiting nutrient in the area. In the upper estuary where DOC concentrations were the highest, the heterotrophic bacterial production constituted almost 100% of the basal production (sum of primary and bacterial production) during spring, while during summer the primary and bacterial production were approximately equal. Our study shows that riverine DOC had a strong negative influence on coastal phytoplankton production, likely due to light attenuation. On the other hand DOC showed a positive influence on bacterial production since it represents a supplementary food source. Thus, in boreal regions where climate change will cause increased river inflow to coastal waters, the balance between phytoplankton and bacterial production is likely to be changed, favouring bacteria. The pelagic food web structure and overall productivity will in turn be altered.

  3. Fuzzy production planning models for an unreliable production system with fuzzy production rate and stochastic/fuzzy demand rate

    Directory of Open Access Journals (Sweden)

    K. A. Halim

    2011-01-01

    Full Text Available In this article, we consider a single-unit unreliable production system which produces a single item. During a production run, the production process may shift from the in-control state to the out-of-control state at any random time when it produces some defective items. The defective item production rate is assumed to be imprecise and is characterized by a trapezoidal fuzzy number. The production rate is proportional to the demand rate where the proportionality constant is taken to be a fuzzy number. Two production planning models are developed on the basis of fuzzy and stochastic demand patterns. The expected cost per unit time in the fuzzy sense is derived in each model and defuzzified by using the graded mean integration representation method. Numerical examples are provided to illustrate the optimal results of the proposed fuzzy models.

  4. Strange particle production from quark matter droplets

    International Nuclear Information System (INIS)

    Werner, K.; Hladik, M.

    1995-01-01

    We recently introduced new methods to study ultrarelativistic nuclear scattering by providing a link between the string model approach and a thermal description. The string model is used to provide information about fluctuations in energy density. Regions of high energy density are considered to be quark matter droplets and treated macroscopically. At SPS energies, we find mainly medium size droplets---with energies up to few tens of Gev. A key issue is the microcanonical treatment of individual quark matter droplets. Each droplet hadronizes instantaneously according to the available n-body phase space. Due to the huge number of possible hadron configurations, special Monte Carlo techniques have been developed to calculate this disintegration. We present results concerning the production of strange particles from such a hadronization as compared to string decay. copyright 1995 American Institute of Physics

  5. Control of the flow rate in decreasing of the water load of peat production

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The retention capacity and control of the flow rate was studied in the Aqua-Peat research. The sedimentation ability of solid matter (peat particles), erosion, migration of the solid matter, and the functioning of the retention pipes located in the strip ditches and the sedimentation basins were measured in the research. Detection was also supplemented by laboratory scale models and by measurements made using them. A model, describing the solid matter erosion and migration on the mire, was compiled on the basis of the results. Migration of the solid matter is possible to reduce by pounding the water into the ditching. So there is more time for particles to settle before migration into watercources. By this method it is possible to reduce the solid matter loads caused by heavy rains and power-flows even by 88 %. If the flow control system is equipped with retainers and settling basins, the solid matter retention capacity can rise up to 93-97 %. The results have shown that the retention pipe retainers play more important role in reduction of solid matter load than sedimentation basins. A follow-up study was made using several types of retainers. A 5 cm thick siphon pipe appeared to be the best. The final selection of the retention pipes has, however, to be made as a compromise between the functioning of the drying process, production possibilities and solid matter retention. (1 ref., 2 figs.)

  6. Soil Organic Matter and Soil Productivity: Searching for the Missing Link

    Science.gov (United States)

    Felipe G. Sanchez

    1998-01-01

    Soil-organic matter (SOM) is a complex array of components including soil fauna and flora at different stages of decomposition (Berg et al., 1982). Its concentration in soils can vary from 0.5% in mineral soils to almost 100% in peat soils (Brady, 1974). Organic matter (OM) in the surface mineral soil is considered a major determinant of forest ecosystem productivity...

  7. Atmospheric Pb and Ti accumulation rates from Sphagnum moss: dependence upon plant productivity.

    Science.gov (United States)

    Kempter, H; Krachler, M; Shotyk, W

    2010-07-15

    The accumulation rates of atmospheric Pb and Ti were obtained using the production rates of Sphagnum mosses collected in four ombrotrophic bogs from two regions of southern Germany: Upper Bavaria (Oberbayern, OB) and the Northern Black Forest (Nordschwarzwald, NBF). Surfaces of Sphagnum carpets were marked with plastic mesh and one year later the production of plant matter was harvested. Metal concentrations were determined in acid digests using sector field ICP-MS employing well established analytical procedures. Up to 12 samples (40 x 40 cm) were collected per site, and 6-10 sites were investigated per bog. Variations within a given sampling site were in the range 2.3-4x for Pb concentrations, 1.8-2.5x for Ti concentrations, 3-8.3x for Pb/Ti, 5.6-7.8x for Pb accumulation rates, and 2.3-6.4x for Ti accumulation rates. However, the median values of these parameters for the sites (6-10 per bog) were quite consistent. The mosses from the bogs in NBF exhibited significantly greater productivity (187-202 g m(-2) a(-1)) compared to the OB peat bogs (71-91 g m(-2) a(-1)), and these differences had a pronounced effect on the Pb and Ti accumulation rates. Highly productive mosses showed no indication of a "dilution effect" of Pb or Ti concentrations, suggesting that more productive plants were simply able to accumulate more particles from the air. The median rates of net Pb accumulation by the mosses are in excellent agreement with the fluxes obtained by direct atmospheric measurements at nearby monitoring stations in both regions (EMEP and MAPESI data).

  8. Softness of Nuclear Matter and the Production of Strange Particles in Neutron Stars

    Institute of Scientific and Technical Information of China (English)

    陈伟; 文德华; 刘良钢

    2003-01-01

    In the various models, we study the influences of the softness of nuclear matter, the vacuum fluctuation ofnucleons and σ mesons on the production of strange particles in neutron stars. Wefind that the stiffer the nuclear matter is, the more easily the strange particles is produced in neutron stars. The vacuum fluctuation of nucleons has large effect on strange particle production while that of σ meson has little effect on it.

  9. Phenomenology of quintessino dark matter: Production of next lightest supersymmetric particles

    International Nuclear Information System (INIS)

    Bi Xiaojun; Wang Jianxiong; Zhang Chao; Zhang Xinmin

    2004-01-01

    In the model of quintessino as the dark matter particle, the dark matter and dark energy are unified in one superfield, where the dynamics of the Quintessence drives the Universe acceleration and its superpartner, quintessino, makes up the dark matter of the Universe. This scenario predicts the existence of long-lived τ-tilde as the next lightest supersymmetric particle. In this paper we study the possibility of detecting τ-tilde produced by the high energy cosmic neutrinos interacting with the earth matter. By a detailed calculation we find that the event rate is one to several hundred per year at a detector with an effective area of 1 km 2 . The study in this paper can be also applied to models of gravitino or axino dark matter particles

  10. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter

    KAUST Repository

    Logan, Bruce E.

    2008-12-01

    The use of electrochemically active bacteria to break down organic matter, combined with the addition of a small voltage (>0.2 V in practice) in specially designed microbial electrolysis cells (MECs), can result in a high yield of hydrogen gas. While microbial electrolysis was invented only a few years ago, rapid developments have led to hydrogen yields approaching 100%, energy yields based on electrical energy input many times greater than that possible by water electrolysis, and increased gas production rates. MECs used to make hydrogen gas are similar in design to microbial fuel cells (MFCs) that produce electricity, but there are important differences in architecture and analytical methods used to evaluate performance. We review here the materials, architectures, performance, and energy efficiencies of these MEC systems that show promise as a method for renewable and sustainable energy production, and wastewater treatment. © 2008 American Chemical Society.

  11. The economic production lot size model with several production rates

    DEFF Research Database (Denmark)

    Larsen, Christian

    should be chosen in the interval between the demand rate and the production rate, which minimize unit production costs, and should be used in an increasing order. Then, given the production rates, we derive closed form solutions for the optimal runtimes as well as the minimum average cost. Finally we...

  12. Evaluating the effect of exchange rate and labor productivity on import penetration of Brazilian manufacturing sectors

    Directory of Open Access Journals (Sweden)

    João Paulo Martin Faleiros

    2016-01-01

    Full Text Available In recent years, several economists have argued that the sharp loss of competitiveness of the Brazilian industry was caused by a strong exchange rate appreciation. However, other economists have attributed this loss of competitiveness to the dismal growth of labor productivity in the Brazilian industrial sector. The present paper proposes to estimate the differential impacts of variations in exchange rate and labor productivity on the Brazilian market share of imports measured by the coefficient of import penetration of total demand for manufacturing goods. We start by developing a simple theoretical model to investigate under what conditions the impacts of an exchange rate depreciation and an increase in labor productivity would differ. We test the theoretical implications of the model by means of a GMM panel data analysis focusing on 17 manufacturing sectors in the period between 1996 and 2011. Our results suggest that both variables matter to explain the coefficient of import penetration. Nevertheless, labor productivity has the strongest negative impact on the market share of imported goods, even after controlling for sector fixed-effects.

  13. In vitro organic matter digestibility and gas production of fish-meal ...

    African Journals Online (AJOL)

    In this study, an in vitro rumen gas production technique was utilized to evaluate fish-meal coated with different types and levels of fats for total gas production, Metabolizable energy (ME) and organic matter digestibility (OMD) contents. Approximately 200 mg of sample was weighed and inserted in glass syringes, then ...

  14. Mind the rate. Why rate global climate change matters, and how much

    International Nuclear Information System (INIS)

    Ambrosi, Ph.

    2006-01-01

    To assess climate policies in a cost-efficiency framework with constraints on the magnitude and rate of global climate change we have built RESPONSE, an optimal control integrated assessment model. Our results show that the uncertainty about climate sensitivity leads to significant short-term mitigation efforts all the more as the arrival of information regarding this parameter is belated. There exists thus a high opportunity cost to know before 2030 the true value of this parameter, which is not totally granted so far. Given this uncertainty, a +2 deg C objective could lead to rather stringent policy recommendations for the coming decades and might prove unacceptable. Furthermore, the uncertainty about climate sensitivity magnifies the influence of the rate constraint on short-term decision, leading to rather stringent policy recommendations for the coming decades. This result is particularly robust to the choice of discount rate and to the beliefs of the decision-maker about climate sensitivity. We finally show that the uncertainty about the rate constraint is even more important for short-term decision than the uncertainty about climate sensitivity or magnitude of warming. This means that the critical rate of climate change, i.e. a transient characteristic of climate risks, matters much more than the long-term objective of climate policy, i.e. the critical magnitude of climate change. Therefore, research should be aimed at better characterising climate change risks in view to help decision-makers in agreeing on a safe guardrail to limit the rate of global warming. (author)

  15. Direct dark matter searches—Test of the Big Bounce Cosmology

    International Nuclear Information System (INIS)

    Cheung, Yeuk-Kwan E.; Vergados, J.D.

    2015-01-01

    We consider the possibility of using dark matter particle's mass and its interaction cross section as a smoking gun signal of the existence of a Big Bounce at the early stage in the evolution of our currently observed universe. A study of dark matter production in the pre-bounce contraction and the post bounce expansion epochs of this universe reveals a new venue for achieving the observed relic abundance of our present universe. Specifically, it predicts a characteristic relation governing a dark matter mass and interaction cross section and a factor of 1/2 in thermally averaged cross section, as compared to the non-thermal production in standard cosmology, is needed for creating enough dark matter particle to satisfy the currently observed relic abundance because dark matter is being created during the pre-bounce contraction, in addition to the post-bounce expansion. As the production rate is lower than the Hubble expansion rate information of the bounce universe evolution is preserved. Therefore once the value of dark matter mass and interaction cross section are obtained by direct detection in laboratories, this alternative route becomes a signature prediction of the bounce universe scenario. This leads us to consider a scalar dark matter candidate, which if it is light, has important implications on dark matter searches

  16. Comparison of organic matter degradation in several feedstuffs in the rumen as determined with the nylon bag and gas production techniques

    NARCIS (Netherlands)

    Cone, John W.; Van Gelder, Antonie H.; Bachmann, Herwig; Hindle, Vincent A.

    2002-01-01

    Organic matter (OM) degradation of 21 feedstuffs was investigated with rumen fluid using a rumen in situ technique and a gas production technique. Fitting the nylon bag data to an exponential model showed that there was a high variation in the rate of OM degradation ranging from 1.7% h-1 for

  17. Effect of mixing digested slurry on the rate of biogas production from dairy manure in batch fermenter

    Energy Technology Data Exchange (ETDEWEB)

    Kalia, A.K.; Singh, S.P.

    2001-09-01

    Forty kilograms of pure cattle dung and cattle dung mixed with 10% digested slurry obtained from a field biogas plant was batch fermented in horizontal biogas digesters for 15 weeks under field conditions with mean ambient temperature 20-23{sup o}C. Compared to 821 l of biogas from digester I, containing cattle dung alone, 1457 l of biogas was obtained from digester II, containing cattle dung mixed with 10% digested slurry. Mixing of slurry not only speeded up the gas production but also enhanced its rate from 108 l/kg dry matter to 158 l/kg dry matter. It also resulted in 36.1% distraction of total volatile solid in digester II, compared to 23.93% observed in digester I. Mixing digested slurry is recommended for raising biogas production from cattle dung in dry fermenters. (author)

  18. Responses of young tea (Camellia sinensis) clones to drought and temperature. II. Dry matter production and partitioning

    International Nuclear Information System (INIS)

    Burgess, P.J.; Carr, M.K.V.

    1996-01-01

    The physiological basis for differences in yields from well-watered and draughted plants of four contrasting clones of tea was studied in terms of light interception, dry matter production and partitioning at a high altitude site in Southern Tanzania where there are marked seasonal variations in rainfall and temperature. The plant dry weights, including roots, were measured eight months after field planting and subsequently at intervals of three to four months, corresponding to the different seasons, during the following two years. Fully irrigated plants of one clone (S15/10) were also harvested after four years in the field. Clones differed in the rates of canopy spread and hence in their capacity to intercept solar radiation. The ‘radiation use efficiency’ (the net total dry matter production per unit of intercepted short-wave radiation) was similar for the four well-watered clones and ranged from 0.40 to 0.66 g MJ −1 , which corresponds closely to values reported for other woody tropical plants. A 16-week drought treatment imposed two years after planting reduced the mean light interception of the four clones by about 25% and the mean radiation use efficiency by 78% to 0.09 g MJ −1 . Clone S15/10, a cultivar from Kenya which produces large yields, partitioned a greater proportion of dry matter to leaves and harvested shoots than the other clones, and correspondingly less to large structural roots. This resulted in a maximum harvest index of 24%, substantially greater than other values reported in the literature. There were seasonal differences in partitioning, with more dry matter being diverted to roots and less to shoots during the cool season. Although the drought treatments had no significant effect on root growth, the amount of dry matter partitioned to leaves, stems and harvested shoots declined by 80–95%. The roots of all four clones extended in depth at similar rates (about 2 mm d −1 ), those of Clone S15/10 reaching 2.8m after four years

  19. Atmospheric production rate of 36Cl

    International Nuclear Information System (INIS)

    Parrat, Y.; Hajdas, W.; Baltensperger, U.; Synal, H.A.; Kubik, P.W.; Gaeggeler, H.W.; Suter, M.

    1997-01-01

    Using experimental cross sections, a new calculation of the atmospheric production rate of 36 Cl was carried out. A mean production rate of 20 atoms m -2 s -1 was obtained, which is lower than mean 36 Cl deposition rates. (author) 2 figs., 7 refs

  20. Warming and organic matter sources impact the proportion of dissolved to total activities in marine extracellular enzymatic rates

    KAUST Repository

    Baltar, Federico

    2017-04-19

    Extracellular enzymatic activities (EEAs) are the rate-limiting step in the degradation of organic matter. Extracellular enzymes can be found associated to cells or dissolved in the surrounding water. The proportion of cell-free EEA constitutes in many marine environments more than half of the total activity. This high proportion causes an uncoupling between hydrolysis rates and the actual bacterial activity. However, we do not know what factors control the proportion of dissolved relative to total EEA, nor how this may change in the future ocean. To resolve this, we performed laboratory experiments with water from the Great Barrier Reef (Australia) to study the effects of temperature and dissolved organic matter sources on EEA and the proportion of dissolved EEA. We found that warming increases the rates of organic matter hydrolysis and reduces the proportion of dissolved relative to total EEA. This suggests a potential increase of the coupling between organic matter hydrolysis and heterotrophic activities with increasing ocean temperatures, although strongly dependent on the organic matter substrates available. Our study suggests that local differences in the organic matter composition in tropical coastal ecosystems will strongly affect the proportion of dissolved EEA in response to ocean warming.

  1. Cell wall content and rumen dry matter disappearance of γ-irradiated wood by-products

    International Nuclear Information System (INIS)

    Flachowsky, G.; Baer, M.; Zuber, S.; Tiroke, K.

    1990-01-01

    Spruce sawdust and barks of spruce, pine and larch were irradiated with various doses of γ-rays (0; 0.1; 0.25; 0.5; 1.0 and 2.0 MGy). Cell wall constituents and rumen dry-matter disappearance (incubation time: 48 h) were determined. γ-Irradiation significantly reduced neutral detergent fibre and acid detergent fibre content of all by-products. The crude lignin of the wood by-products was not significantly influenced by γ-irradiation. Rumen dry-matter loss of untreated sawdust was 5.6%, that of barks between 18.2 (pine) and 64.6% (spruce). γ-Irradiation significantly increased rumen dry-matter loss. Increased washout due to solubilization and particle breakdown was mainly responsible for the higher dry-matter losses in the rumen after irradiation. The results do not justify practical use because of the high dose of irradiation required. (author)

  2. Radiotracers in the study of marine food chains. The use of compartmental analysis and analog modelling in measuring utilization rates of particulate organic matter by benthic invertebrates

    International Nuclear Information System (INIS)

    Gremare, A.; Amouroux, J.M.; Charles, F.

    1991-01-01

    The present study assesses the problem of recycling when using radiotracers to quantify ingestion and assimilation rates of particulate organic matter by benthic invertebrates. The rapid production of dissolved organic matter and its subsequent utilization by benthic invertebrates constitutes a major bias in this kind of study. However recycling processes may also concern POM through the production and reingestion of faeces. The present paper shows that compartmental analysis of the diffusion kinetics of the radiotracer between the different compartments of the system studied and the analog modelling of the exchanges of radioactivity between compartments may be used in order to determine ingestion and assimilation rates. This method is illustrated by the study of a system composed of the bacteria Lactobacillus sp. and the filter-feeding bivalve Venerupis decussata. The advantages and drawbacks of this approach relative to other existing methods are briefly discussed. (Author)

  3. Composition of structural fragments and the mineralization rate of organic matter in zonal soils

    Science.gov (United States)

    Larionova, A. A.; Zolotareva, B. N.; Kolyagin, Yu. G.; Kvitkina, A. K.; Kaganov, V. V.; Kudeyarov, V. N.

    2015-10-01

    Comparative analysis of the climatic characteristics and the recalcitrance against decomposition of organic matter in the zonal soil series of European Russia, from peat surface-gley tundra soil to brown semidesert soil, has assessed the relationships between the period of biological activity, the content of chemically stable functional groups, and the mineralization of humus. The stability of organic matter has been determined from the ratio of functional groups using the solid-state 13C NMR spectroscopy of soil samples and the direct measurements of organic matter mineralization from CO2 emission. A statistically significant correlation has been found between the period of biological activity and the humification indices: the CHA/CFA ratio, the aromaticity, and the alkyl/ O-alkyl ratio in organic matter. The closest correlation has been observed between the period of biological activity and the alkyl/ O-alkyl ratio; therefore, this parameter can be an important indicator of the soil humus status. A poor correlation between the mineralization rate and the content of chemically stable functional groups in soil organic matter has been revealed for the studied soil series. At the same time, the lowest rate of carbon mineralization has been observed in southern chernozem characterized by the maximum content of aromatic groups (21% Corg) and surface-gley peat tundra soil, where an extremely high content of unsubstituted CH2 and CH3 alkyl groups (41% Corg) has been noted.

  4. Development of a model for predicting the dry matter production of mulberry [Morus alba] based on meteorological factors

    International Nuclear Information System (INIS)

    Fukui, K.; Ito, D.

    1999-01-01

    It is necessary to predict mulberry growth and yield precisely at any time during the growing period, since mulberry trees are cut anytime along with the increase of the frequency of silkworm rearing per year. Therefore, in this study, attempts were made to develop a model to predict the dry matter production in mulberry fields with standard density with the cooperation of the prefectural experimental stations of Ibaraki, Tochigi, Gunma, Saitama, Tokyo and Gifu. To construct the model, we conducted three experiments. In the first year, we estimated the dry weight of mulberry new shoots based on the length and base width. Logarithm of leaf dry weight of a new shoot was regressed linearly on the logarithm of the product of length and base width. Stem dry weight was estimated with a linear regression of the logarithm on the logarithm of the product of length and base square width. In the next year, we evaluated the maximal effective radiation (Smax) of mulberry, over which mulberry cannot use radiation to produce dry matter. This experiment included shaded and control (non-shaded) plots, and the difference between these plots was analyzed. Shading treatment decreased the dry matter production, but did not affect the radiation conversion efficiency. Shoot dry matter production increased almost proportionally with intercepted radiation except for the later growth periods. Therefore, no Smax was revealed in mulberry fields with standard density. The effect of temperature and growth stage on the radiation conversion efficiency was investigated last year. Relation of temperature and radiation conversion efficiency was not clear for shoot dry matter production. However, there was a positive relation for stem dry mater production. Although the efficiency decreased with mulberry growth for leaf dry matter production, it increased at the early growth stage and decreased at the late stage for stem dry matter production

  5. Linking soil DOC production rates and transport processes from landscapes to sub-basin scales

    Science.gov (United States)

    Tian, Y. Q.; Yu, Q.; Li, J.; Ye, C.

    2014-12-01

    Recent research rejects the traditional perspective that dissolved organic carbon (DOC) component in global carbon cycle are simply trivial, and in fact evidence demonstrates that lakes likely mediate carbon dynamics on a global scale. Riverine and estuarine carbon fluxes play a critical role in transporting and recycling carbon and nutrients, not only within watersheds but in their receiving waters. However, the underlying mechanisms that drive carbon fluxes, from land to rivers, lake and oceans, remain poorly understood. This presentation will report a research result of the scale-dependent DOC production rate in coastal watersheds and DOC transport processes in estuarine regions. We conducted a series of controlled experiments and field measurements for examining biogeochemical, biological, and geospatial variables that regulate downstream processing on global-relevant carbon fluxes. Results showed that increased temperatures and raised soil moistures accelerate decomposition rates of organic matter with significant variations between vegetation types. The measurements at meso-scale ecosystem demonstrated a good correlation to bulk concentration of DOC monitored in receiving waters at the outlets of sub-basins (R2 > 0.65). These field and experimental measurements improved the model of daily carbon exports through below-ground processes as a function of the organic matter content of surface soils, forest litter supply, and temperature. The study demonstrated a potential improvement in modeling the co-variance of CDOM and DOC with the unique terrestrial sources. This improvement indicated a significant promise for monitoring riverine and estuarine carbon flux from satellite images. The technical innovations include deployments of 1) mini-ecosystem (mesocosms) with soil as replicate controlled experiments for DOC production and leaching rates, and 2) aquatic mesocosms for co-variances of DOC and CDOM endmembers, and an instrumented incubation experiment for

  6. Growth rate of matter perturbations as a probe of large-scale magnetism

    CERN Document Server

    Giovannini, Massimo

    2011-01-01

    The growth rate of matter perturbations is computed in a magnetized environment for the LambdaCDM and wCDM paradigms. It is argued that the baryons do not necessarily follow into the dark matter potential wells after they are released from the drag of the photons. The baryonic evolution equations inherit a forcing term whose explicit form depends on the plasma description and can be deduced, for instance, in the resistive magnetohydrodynamical approximation. After deriving an analytical expression for the growth rate applicable when dark energy does not cluster, the effects of relativistic corrections and of the inhomogeneities associated with the other species of the plasma are taken into account numerically. The spectral amplitudes and slopes of the stochastic magnetic background are selected to avoid appreciable distortions in the measured temperature and polarization anisotropies of the Cosmic Microwave Background. The growth of structures in the current paradigms of structure formation represents a compl...

  7. Global effects of scalar matter production in quantum cosmology

    International Nuclear Information System (INIS)

    Barvinskij, A.O.; Ponomarev, V.N.

    1978-01-01

    Within the framework of the geometrodynamical approach global effects of the production of scalar matter filling the closed uniform Friedman Universe are considered. The physical situation is discussed, which corresponds to such a scale of space-time intervals and energies, at which the matter is essentially quantum and the quantized gravitational field is within the quasi-classical limits when its spatial inhomogeneities are small and only global quantum effects are considerable. The only dynamic variable of the gravitational field is the Friedman Universe radius. The main principles of the formalism of the canonical superspace quantization of gravitational and material fields are considered. The method shows the applicability limits of the field theory on the background of classical geometry and leads to the principally new types of interaction

  8. Expanded calculation of weak-interaction-mediated neutrino cooling rates due to 56Ni in stellar matter

    International Nuclear Information System (INIS)

    Nabi, Jameel-Un

    2010-01-01

    An accurate estimate of the neutrino cooling rates is required in order to study the various stages of stellar evolution of massive stars. Neutrino losses from proto-neutron stars play a crucial role in deciding whether these stars would be crushed into black holes or explode as supernovae. Both pure leptonic and weak-interaction processes contribute to the neutrino energy losses in stellar matter. At low temperatures and densities, the characteristics of the early phase of presupernova evolution, cooling through neutrinos produced via the weak interaction, are important. Proton-neutron quasi-particle random phase approximation (pn-QRPA) theory has recently been used with success for the calculation of stellar weak-interaction rates of fp-shell nuclide. The lepton-to-baryon ratio (Y e ) during early phases of stellar evolution of massive stars changes substantially, mainly due to electron captures on 56 Ni. The stellar matter is transparent to the neutrinos produced during the presupernova evolution of massive stars. These neutrinos escape the site and assist the stellar core in maintaining a lower entropy. Here, an expanded calculation of weak-interaction-mediated neutrino and antineutrino cooling rates due to 56 Ni in stellar matter using the pn-QRPA theory is presented. This detailed scale is appropriate for interpolation purposes and is of greater utility for simulation codes. The calculated rates are compared with earlier calculations. During the relevant temperature and density regions of stellar matter the reported rates show few differences compared with the shell model rates and might contribute in fine-tuning of the lepton-to-baryon ratio during the presupernova phases of stellar evolution of massive stars.

  9. Superheavy dark matter through Higgs portal operators

    Science.gov (United States)

    Kolb, Edward W.; Long, Andrew J.

    2017-11-01

    The WIMPzilla hypothesis is that the dark matter is a super-weakly-interacting and superheavy particle. Conventionally, the WIMPzilla abundance is set by gravitational particle production during or at the end of inflation. In this study we allow the WIMPzilla to interact directly with Standard Model fields through the Higgs portal, and we calculate the thermal production (freeze-in) of WIMPzilla dark matter from the annihilation of Higgs boson pairs in the plasma. The two particle-physics model parameters are the WIMPzilla mass and the Higgs-WIMPzilla coupling. The two cosmological parameters are the reheating temperature and the expansion rate of the universe at the end of inflation. We delineate the regions of parameter space where either gravitational or thermal production is dominant, and within those regions we identify the parameters that predict the observed dark matter relic abundance. Allowing for thermal production opens up the parameter space, even for Planck-suppressed Higgs-WIMPzilla interactions.

  10. Smoothing expansion rate data to reconstruct cosmological matter perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, J.E.; Alcaniz, J.S.; Carvalho, J.C., E-mail: javierernesto@on.br, E-mail: alcaniz@on.br, E-mail: jcarvalho@on.br [Departamento de Astronomia, Observatório Nacional, Rua Gal. José Cristino, 77, Rio de Janeiro, RJ 20921-400 (Brazil)

    2017-08-01

    The existing degeneracy between different dark energy and modified gravity cosmologies at the background level may be broken by analyzing quantities at the perturbative level. In this work, we apply a non-parametric smoothing (NPS) method to reconstruct the expansion history of the Universe ( H ( z )) from model-independent cosmic chronometers and high- z quasar data. Assuming a homogeneous and isotropic flat universe and general relativity (GR) as the gravity theory, we calculate the non-relativistic matter perturbations in the linear regime using the H ( z ) reconstruction and realistic values of Ω {sub m} {sub 0} and σ{sub 8} from Planck and WMAP-9 collaborations. We find a good agreement between the measurements of the growth rate and f σ{sub 8}( z ) from current large-scale structure observations and the estimates obtained from the reconstruction of the cosmic expansion history. Considering a recently proposed null test for GR using matter perturbations, we also apply the NPS method to reconstruct f σ{sub 8}( z ). For this case, we find a ∼ 3σ tension (good agreement) with the standard relativistic cosmology when the Planck (WMAP-9) priors are used.

  11. Smoothing expansion rate data to reconstruct cosmological matter perturbations

    International Nuclear Information System (INIS)

    Gonzalez, J.E.; Alcaniz, J.S.; Carvalho, J.C.

    2017-01-01

    The existing degeneracy between different dark energy and modified gravity cosmologies at the background level may be broken by analyzing quantities at the perturbative level. In this work, we apply a non-parametric smoothing (NPS) method to reconstruct the expansion history of the Universe ( H ( z )) from model-independent cosmic chronometers and high- z quasar data. Assuming a homogeneous and isotropic flat universe and general relativity (GR) as the gravity theory, we calculate the non-relativistic matter perturbations in the linear regime using the H ( z ) reconstruction and realistic values of Ω m 0 and σ 8 from Planck and WMAP-9 collaborations. We find a good agreement between the measurements of the growth rate and f σ 8 ( z ) from current large-scale structure observations and the estimates obtained from the reconstruction of the cosmic expansion history. Considering a recently proposed null test for GR using matter perturbations, we also apply the NPS method to reconstruct f σ 8 ( z ). For this case, we find a ∼ 3σ tension (good agreement) with the standard relativistic cosmology when the Planck (WMAP-9) priors are used.

  12. The rates of carbon cycling in several soils from AMS14C measurements of fractionated soil organic matter

    International Nuclear Information System (INIS)

    Trumbore, S.E.; Bonani, G.; Wolfli, W.

    1990-01-01

    14 C mean residence times (MRT) of fractionated organic matter are reported for three pre-bomb soil profiles. Comparisons of organic matter extracted with acid and base showed that the longest MRTs were associated with the non-acid-hydrolysable fraction. The MRT of organic matter in a soil layer represents a combination of the rates of several processes, including decay to CO 2 and transport out of the layer. In some instances (notably in the A horizon of the Podzol soil studied in this paper), the MRT is dominated by the rate of transport, rather than the rate of decay. Thus it is important to use the distribution and balance of carbon in the soil profile to assess the meaning of the MRT with respect to influencing atmospheric CO 2

  13. Dark matter from decaying topological defects

    International Nuclear Information System (INIS)

    Hindmarsh, Mark; Kirk, Russell; West, Stephen M.

    2014-01-01

    We study dark matter production by decaying topological defects, in particular cosmic strings. In topological defect or ''top-down'' (TD) scenarios, the dark matter injection rate varies as a power law with time with exponent p−4. We find a formula in closed form for the yield for all p < 3/2, which accurately reproduces the solution of the Boltzmann equation. We investigate two scenarios (p = 1, p = 7/6) motivated by cosmic strings which decay into TeV-scale states with a high branching fraction into dark matter particles. For dark matter models annihilating either by s-wave or p-wave, we find the regions of parameter space where the TD model can account for the dark matter relic density as measured by Planck. We find that topological defects can be the principal source of dark matter, even when the standard freeze-out calculation under-predicts the relic density and hence can lead to potentially large ''boost factor'' enhancements in the dark matter annihilation rate. We examine dark matter model-independent limits on this scenario arising from unitarity and discuss example model-dependent limits coming from indirect dark matter search experiments. In the four cases studied, the upper bound on Gμ for strings with an appreciable channel into TeV-scale states is significantly more stringent than the current Cosmic Microwave Background limits

  14. Atmospheric production rate of {sup 36}Cl

    Energy Technology Data Exchange (ETDEWEB)

    Parrat, Y.; Hajdas, W.; Baltensperger, U.; Synal, H.A.; Kubik, P.W.; Gaeggeler, H.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Suter, M. [Eidgenoessische Technische Hochschule, Zurich (Switzerland)

    1997-09-01

    Using experimental cross sections, a new calculation of the atmospheric production rate of {sup 36}Cl was carried out. A mean production rate of 20 atoms m{sup -2}s{sup -1} was obtained, which is lower than mean {sup 36}Cl deposition rates. (author) 2 figs., 7 refs.

  15. Cold Nuclear Matter Effects on J/psi Production: Intrinsic and Extrinsic Transverse Momentum Effects

    Energy Technology Data Exchange (ETDEWEB)

    Ferreiro, E.G.; /Santiago de Compostela U.; Fleuret, F.; /Ecole Polytechnique; Lansberg, J.P.; /Heidelberg U.; Rakotozafindrabe, A.; /SPhN, DAPNIA, Saclay

    2010-08-26

    Cold nuclear matter effects on J/{psi} production in proton-nucleus and nucleus-nucleus collisions are evaluated taking into account the specific J/{psi}-production kinematics at the partonic level, the shadowing of the initial parton distributions and the absorption in the nuclear matter. We consider two different parton processes for the c{bar c}-pair production: one with collinear gluons and a recoiling gluon in the final state and the other with initial gluons carrying intrinsic transverse momentum. Our results are compared to RHIC observables. The smaller values of the nuclear modification factor R{sub AA} in the forward rapidity region (with respect to the mid rapidity region) are partially explained, therefore potentially reducing the need for recombination effects.

  16. Importance of Dissolved Neutral Hg-Sulfides, Energy Rich Organic Matter and total Hg Concentrations for Methyl Mercury Production in Sediments

    Science.gov (United States)

    Drott, A.; Skyllberg, U.

    2007-12-01

    Methyl mercury (MeHg) is the mercury form that biomagnifies to the greatest extent in aquatic food webs. Therefore information about factors determining MeHg concentrations is critical for accurate risk assessment of contaminated environments. The concentration of MeHg in wetlands and sediments is the net result of: 1) methylation rates, 2) demethylation rates, and 3) input/output processes. In this study, the main controls on Hg methylation rates and total concentrations of MeHg, were investigated at eight sites in Sweden with sediments that had been subjected to local Hg contamination either as Hg(0), or as phenyl-Hg. Sediments were selected to represent a gradient in total Hg concentration, temperature climate, salinity, primary productivity, and organic C content and quality. Most sediments were high in organic matter content due to wood fibre efflux from pulp and paper industry. The pore water was analysed for total Hg, MeHg, DOC, H2S(aq), pH, DOC, Cl and Br. The chemical speciation of Hg(II) and MeHg in pore water was calculated using equilibrium models. Potential methylation and demethylation rates in sediments were determined in incubation experiments at 23° C under N2(g) for 48 h, after addition of isotopically enriched 201Hg(II) and Me204Hg. In all surface (0-20 cm) sediments there was a significant (pdetermined specific potential methylation rate constant (Km, day-1) and % MeHg (concentrations of MeHg normalized to total Hg) in the sediment. This indicates that MeHg production overruled degradation and input/output processes of MeHg in surface sediments, and that % MeHg in surface sediments may be used as a proxy for net production of MeHg. To our knowledge, these are the first data showing significant positive relationships between short term (48 h) MeHg production and longer term accumulation of MeHg, across a range of sites with different properties (1). If MeHg was not normalized to total Hg, the relationship was not significant. For sub-sets of

  17. Oesophageal fistula/tritium-labelled water technique for determining dry matter intake and saliva secretion rates of grazing herbivores

    International Nuclear Information System (INIS)

    Luick, J.R.

    1982-01-01

    Seven assumptions on which the use of tritium-labelled water and oesophageal fistula depend, for determining the dry matter intake and saliva secretion rates of grazing herbivores, were tested experimentally. It is concluded that many of the possible sources of error can be ignored, but that a correction is necessary for the saliva dry matter content when calculating the dry matter of ingested food from fistula samples. (author)

  18. Astrophysical limitations to the identification of dark matter: Indirect neutrino signals vis-a-vis direct detection recoil rates

    International Nuclear Information System (INIS)

    Serpico, Pasquale D.; Bertone, Gianfranco

    2010-01-01

    A convincing identification of dark matter (DM) particles can probably be achieved only through a combined analysis of different detections strategies, which provides an effective way of removing degeneracies in the parameter space of DM models. In practice, however, this program is made complicated by the fact that different strategies depend on different physical quantities, or on the same quantities but in a different way, making the treatment of systematic errors rather tricky. We discuss here the uncertainties on the recoil rate in direct-detection experiments and on the muon rate induced by neutrinos from dark matter annihilations in the Sun, and we show that, contrarily to the local DM density or overall cross section scale, irreducible astrophysical uncertainties affect the two rates in a different fashion, therefore limiting our ability to reconstruct the parameters of the dark matter particles. By varying within their respective errors astrophysical parameters such as the escape velocity and the velocity dispersion of dark matter particles, we show that the uncertainty on the relative strength of the neutrino and direct-detection signal is as large as a factor of 2 for typical values of the parameters, but can be even larger in some circumstances.

  19. The fixed target experiment for studies of baryonic matter at the Nuclotron (BM rate at N)

    Energy Technology Data Exchange (ETDEWEB)

    Kapishin, Mikhail [Joint Institute for Nuclear Research, Dubna, Moscow region (Russian Federation)

    2016-08-15

    BM rate at N (Baryonic Matter at Nuclotron) is the first experiment to be realized at the accelerator complex of NICA-Nuclotron. The aim of the BM rate at N experiment is to study interactions of relativistic heavy-ion beams with fixed targets. The BM rate at N setup, results of Monte Carlo simulations and the BM rate at N experimental program are presented. (orig.)

  20. Search for vector mediator of dark matter production in invisible decay mode

    Science.gov (United States)

    Banerjee, D.; Burtsev, V. E.; Chumakov, A. G.; Cooke, D.; Crivelli, P.; Depero, E.; Dermenev, A. V.; Donskov, S. V.; Dubinin, F.; Dusaev, R. R.; Emmenegger, S.; Fabich, A.; Frolov, V. N.; Gardikiotis, A.; Gerassimov, S. G.; Gninenko, S. N.; Hösgen, M.; Karneyeu, A. E.; Ketzer, B.; Kirpichnikov, D. V.; Kirsanov, M. M.; Konorov, I. V.; Kovalenko, S. G.; Kramarenko, V. A.; Kravchuk, L. V.; Krasnikov, N. V.; Kuleshov, S. V.; Lyubovitskij, V. E.; Lysan, V.; Matveev, V. A.; Mikhailov, Yu. V.; Peshekhonov, D. V.; Polyakov, V. A.; Radics, B.; Rojas, R.; Rubbia, A.; Samoylenko, V. D.; Tikhomirov, V. O.; Tlisov, D. A.; Toropin, A. N.; Trifonov, A. Yu.; Vasilishin, B. I.; Vasquez Arenas, G.; Ulloa, P.; NA64 Collaboration

    2018-04-01

    A search is performed for a new sub-GeV vector boson (A') mediated production of dark matter (χ ) in the fixed-target experiment, NA64, at the CERN SPS. The A', called dark photon, can be generated in the reaction e-Z →e-Z A' of 100 GeV electrons dumped against an active target followed by its prompt invisible decay A'→χ χ ¯. The experimental signature of this process would be an event with an isolated electron and large missing energy in the detector. From the analysis of the data sample collected in 2016 corresponding to 4.3 ×1010 electrons on target no evidence of such a process has been found. New stringent constraints on the A' mixing strength with photons, 10-5≲ɛ ≲10-2, for the A' mass range mA'≲1 GeV are derived. For models considering scalar and fermionic thermal dark matter interacting with the visible sector through the vector portal the 90% C.L. limits 10-11≲y ≲10-6 on the dark-matter parameter y =ɛ2αD(m/χmA')4 are obtained for the dark coupling constant αD=0.5 and dark-matter masses 0.001 ≲mχ≲0.5 GeV . The lower limits αD≳10-3 for pseudo-Dirac dark matter in the mass region mχ≲0.05 GeV are more stringent than the corresponding bounds from beam dump experiments. The results are obtained by using exact tree level calculations of the A' production cross sections, which turn out to be significantly smaller compared to the one obtained in the Weizsäcker-Williams approximation for the mass region mA'≳0.1 GeV .

  1. Hydraulic conductance as well as nitrogen accumulation plays a role in the higher rate of leaf photosynthesis of the most productive variety of rice in Japan.

    Science.gov (United States)

    Taylaran, Renante D; Adachi, Shunsuke; Ookawa, Taiichiro; Usuda, Hideaki; Hirasawa, Tadashi

    2011-07-01

    An indica variety Takanari is known as one of the most productive rice varieties in Japan and consistently produces 20-30% heavier dry matter during ripening than Japanese commercial varieties in the field. The higher rate of photosynthesis of individual leaves during ripening has been recognized in Takanari. By using pot-grown plants under conditions of minimal mutual shading, it was confirmed that the higher rate of leaf photosynthesis is responsible for the higher dry matter production after heading in Takanari as compared with a japonica variety, Koshihikari. The rate of leaf photosynthesis and shoot dry weight became larger in Takanari after the panicle formation and heading stages, respectively, than in Koshihikari. Roots grew rapidly in the panicle formation stage until heading in Takanari compared with Koshihikari. The higher rate of leaf photosynthesis in Takanari resulted not only from the higher content of leaf nitrogen, which was caused by its elevated capacity for nitrogen accumulation, but also from higher stomatal conductance. When measured under light-saturated conditions, stomatal conductance was already decreased due to the reduction in leaf water potential in Koshihikari even under conditions of a relatively small difference in leaf-air vapour pressure difference. In contrast, the higher stomatal conductance was supported by the maintenance of higher leaf water potential through the higher hydraulic conductance in Takanari with the larger area of root surface. However, no increase in root hydraulic conductivity was expected in Takanari. The larger root surface area of Takanari might be a target trait in future rice breeding for increasing dry matter production.

  2. Airborne particulate matter from livestock production systems: A review of an air pollution problem

    International Nuclear Information System (INIS)

    Cambra-Lopez, Maria; Aarnink, Andre J.A.; Zhao Yang; Calvet, Salvador; Torres, Antonio G.

    2010-01-01

    Livestock housing is an important source of emissions of particulate matter (PM). High concentrations of PM can threaten the environment, as well as the health and welfare of humans and animals. Particulate matter in livestock houses is mainly coarse, primary in origin, and organic; it can adsorb and contain gases, odorous compounds, and micro-organisms, which can enhance its biological effect. Levels of PM in livestock houses are high, influenced by kind of housing and feeding, animal type, and environmental factors. Improved knowledge on particle morphology, primarily size, composition, levels, and the factors influencing these can be useful to identify and quantify sources of PM more accurately, to evaluate their effects, and to propose adequate abatement strategies in livestock houses. This paper reviews the state-of-the-art of PM in and from livestock production systems. Future research to characterize and control PM in livestock houses is discussed. - Control of particulate matter emissions, a major challenge to modern livestock production.

  3. The economic production lot size model extended to include more than one production rate

    DEFF Research Database (Denmark)

    Larsen, Christian

    2005-01-01

    production rates should be chosen in the interval between the demand rate and the production rate which minimizes unit production costs, and should be used in an increasing order. Then, given the production rates, we derive closed-form expressions for all optimal runtimes as well as the minimum average cost....... This analysis reveals that it is the size of the setup cost that determines the need for being able to use several production rates. We also show how to derive a near-optimal solution of the general problem....

  4. Is the continuous matter creation cosmology an alternative to ΛCDM?

    International Nuclear Information System (INIS)

    Fabris, J.C.; Pacheco, J.A. de Freitas; Piattella, O.F.

    2014-01-01

    The matter creation cosmology is revisited, including the evolution of baryons and dark matter particles. The creation process affects only dark matter and not baryons. The dynamics of the ΛCDM model can be reproduced only if two conditions are satisfied: 1) the entropy density production rate and the particle density variation rate are equal and 2) the (negative) pressure associated to the creation process is constant. However, the matter creation model predicts a present dark matter-to-baryon ratio much larger than that observed in massive X-ray clusters of galaxies, representing a potential difficulty for the model. In the linear regime, a fully relativistic treatment indicates that baryons are not affected by the creation process but this is not the case for dark matter. Both components evolve together at early phases but lately the dark matter density contrast decreases since the background tends to a constant value. This behaviour produces a negative growth factor, in disagreement with observations, being a further problem for this cosmology

  5. Standing crop dry matter accumulation and quality patterns of ...

    African Journals Online (AJOL)

    Nine-week production curves and quality values of eight subtropical pasture species were studied under supplemental spray irrigation to characterize their productive capacity, periodicity and quality.All species exhibited a slow dry matter regrowth rate for two to three weeks after defoliation to 7,5 or 10 cm height. Thereafter ...

  6. Constraints on self interacting dark matter from IceCube results

    International Nuclear Information System (INIS)

    Albuquerque, Ivone F.M.; Robertson, Denis S.; Heros, Carlos Pérez de los

    2014-01-01

    If dark matter particles self-interact, their capture by astrophysical objects should be enhanced. As a consequence, the rate by which they annihilate at the center of the object will increase. If their self scattering is strong, it can be observed indirectly through an enhancement of the flux of their annihilation products. Here we investigate the effect of self-interaction on the neutrino flux produced by annihilating dark matter in the center of the Sun. We consider annihilation into two channels: W + W − (or τ + τ − for a dark matter mass below the W mass) and b b-bar . We estimate the event rate in the IceCube detector, using its 79-string configuration, and compare our prediction to their experimental results, hence probing dark matter self interacting models

  7. Effect of N-fertilizer rates on Dry Matter Yield (DMY) and quality of ...

    African Journals Online (AJOL)

    Effect of N-fertilizer rates on Dry Matter Yield (DMY) and quality of pinapple propagules (Ananas comosus) in the acid sands of cross river. W Ubi, M W Ubi, VE Osedeke. Abstract. No Abstract. Global Journal of Pure and Applied Physics Vol. 14 (1) 2008 pp. 1-4. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD ...

  8. NESDIS Blended Rain Rate (RR) Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The blended Rain Rate (RR) product is derived from multiple sensors/satellites. The blended products were merged from polar-orbiting and geostationary satellite...

  9. Nodulation, dry matter production and N2 fixation by fababean and chickpea as affected by soil moisture and potassium fertilizer

    International Nuclear Information System (INIS)

    Kurdali, F.; Al-Ain, F.; Al-Ahamma, M.

    2003-01-01

    The impact of three rates of K-fertilizer (0, 75, and 150 kg K 2 O/ha)on nodulation, dry matter production and N 2 fixation by fababean (Vicia faba L.) and chickpea (Cirer arietinum L.) was evaluated in a pot experiment. The plants were subjected to three soil moisture regimes (low, 45-50%; moderate, 55-60% and high 75-80% of field capacity). 15 N-isotope dilution method was employed to evaluate N 2 fixation using a non-fixing chickpea genotype as a reference crop. Water restriction drastically affected dry matter production, nodulation and N 2 fixation by both plant species. The negative effect of water stress on %N 2 fixed was more prominent in chickpea (11-58%) than in fababean (68-81%) under low and high % of field capacity, respectively. Plant species differed in their response to K-fertilizer as a mean to enhance growth and overcome the stress conditions. The higher level of K fertilizer increased both dry matter production and total N 2 fixed in fababean, but did not have any impact on chickpea. %N 2 fixed, however, appeared to be unaffected by K fertilizer as a mean of alleviating drought stress in both plant species. Therefore, it appears that, under the experimental conditions, the beneficial effect of potassium on water-stressed fababean resulted from stimulation the growth rather than improving the N 2 -fixation efficiency. However, under well-watered plants, a high requirement of the symbiotic system to potassium is needed to ensure and optimal growth and N 2 -fixation. (author)

  10. Temperature response of denitrification rate and greenhouse gas production in agricultural river marginal wetland soils.

    Science.gov (United States)

    Bonnett, S A F; Blackwell, M S A; Leah, R; Cook, V; O'Connor, M; Maltby, E

    2013-05-01

    Soils are predicted to exhibit significant feedback to global warming via the temperature response of greenhouse gas (GHG) production. However, the temperature response of hydromorphic wetland soils is complicated by confounding factors such as oxygen (O2 ), nitrate (NO3-) and soil carbon (C). We examined the effect of a temperature gradient (2-25 °C) on denitrification rates and net nitrous oxide (N2 O), methane (CH4 ) production and heterotrophic respiration in mineral (Eutric cambisol and Fluvisol) and organic (Histosol) soil types in a river marginal landscape of the Tamar catchment, Devon, UK, under non-flooded and flooded with enriched NO3- conditions. It was hypothesized that the temperature response is dependent on interactions with NO3--enriched flooding, and the physicochemical conditions of these soil types. Denitrification rate (mean, 746 ± 97.3 μg m(-2)  h(-1) ), net N2 O production (mean, 180 ± 26.6 μg m(-2)  h(-1) ) and net CH4 production (mean, 1065 ± 183 μg m(-2)  h(-1) ) were highest in the organic Histosol, with higher organic matter, ammonium and moisture, and lower NO3- concentrations. Heterotrophic respiration (mean, 127 ± 4.6 mg m(-2)  h(-1) ) was not significantly different between soil types and dominated total GHG (CO2 eq) production in all soil types. Generally, the temperature responses of denitrification rate and net N2 O production were exponential, whilst net CH4 production was unresponsive, possibly due to substrate limitation, and heterotrophic respiration was exponential but limited in summer at higher temperatures. Flooding with NO3- increased denitrification rate, net N2 O production and heterotrophic respiration, but a reduction in net CH4 production suggests inhibition of methanogenesis by NO3- or N2 O produced from denitrification. Implications for management and policy are that warming and flood events may promote microbial interactions in soil between distinct microbial communities and increase

  11. Bulk viscosity in 2SC quark matter

    International Nuclear Information System (INIS)

    Alford, Mark G; Schmitt, Andreas

    2007-01-01

    The bulk viscosity of three-flavour colour-superconducting quark matter originating from the nonleptonic process u + s ↔ u + d is computed. It is assumed that up and down quarks form Cooper pairs while the strange quark remains unpaired (2SC phase). A general derivation of the rate of strangeness production is presented, involving contributions from a multitude of different subprocesses, including subprocesses that involve different numbers of gapped quarks as well as creation and annihilation of particles in the condensate. The rate is then used to compute the bulk viscosity as a function of the temperature, for an external oscillation frequency typical of a compact star r-mode. We find that, for temperatures far below the critical temperature T c for 2SC pairing, the bulk viscosity of colour-superconducting quark matter is suppressed relative to that of unpaired quark matter, but for T ∼> T c /30 the colour-superconducting quark matter has a higher bulk viscosity. This is potentially relevant for the suppression of r-mode instabilities early in the life of a compact star

  12. Regulation of primary productivity rate in the equatorial Pacific

    International Nuclear Information System (INIS)

    Barber, R.T.; Chavez, F.P.

    1991-01-01

    Analysis of the Chl-specific rate of primary productivity (P B ) as a function of subsurface nutrient concentration at >300 equatorial stations provides an answer to the question: What processes regulate primary productivity rate in the high-nutrient, low-chlorophyll waters of the equatorial Pacific? In the western Pacific where there is a gradient in 60-m [NO 3 ] from 0 to ∼12 μM, the productivity rate is a linear function of nutrient concentration; in the eastern Pacific where the gradient is from 12 to 28 μM, the productivity rate is independent of nutrient concentration and limited to ∼36 mg C(mg Chl) -1 d -1 , or a mean euphotic zone C-specific growth rate (μ) of 0.47 d -1 . However, rates downstream of the Galapagos Islands are not limited; they are 46.4 mg C(mg Chl) -1 d -1 and μ = 0.57 d -1 , very close to the predicted nutrient-regulated rates in the absence of other limitation. This pattern of rate regulation can be accounted for by a combination of eolian Fe, subsurface nutrients, and sedimentary Fe derived from the Galapagos platform. In the low-nutrient western Pacific the eolian supply of Fe is adequate to allow productivity rate to be set by subsurface nutrient concentration. In the nutrient-rich easter equatorial region eolian Fe is inadequate to support productivity rates proportional to the higher nutrient concentrations, so in this region eolian Fe is rate limiting. Around the Galapagos Islands productivity rates reach levels consistent with nutrient concentrations; sedimentary Fe from the Galapagos platform seems adequate to support increased nutrient-regulated productivity rates in this region

  13. Seasonal Changes in Mycosporine-Like Amino Acid Production Rate with Respect to Natural Phytoplankton Species Composition

    Directory of Open Access Journals (Sweden)

    Sun-Yong Ha

    2015-11-01

    Full Text Available After in situ incubation at the site for a year, phytoplanktons in surface water were exposed to natural light in temperate lakes (every month; thereafter, the net production rate of photoprotective compounds (mycosporine-like amino acids, MAAs was calculated using 13C labeled tracer. This is the first report describing seasonal variation in the net production rate of individual MAAs in temperate lakes using a compound-specific stable isotope method. In the mid-latitude region of the Korean Peninsula, UV radiation (UVR usually peaks from July to August. In Lake Paldang and Lake Cheongpyeong, diatoms dominated among the phytoplankton throughout the year. The relative abundance of Cyanophyceae (Anabaena spiroides reached over 80% during July in Lake Cheongpyeong. Changes in phytoplankton abundance indicate that the phytoplankton community structure is influenced by seasonal changes in the net production rate and concentration of MAAs. Notably, particulate organic matter (POM showed a remarkable change based on the UV intensity occurring during that period; this was because of the fact that cyanobacteria that are highly sensitive to UV irradiance dominated the community. POM cultured in Lake Paldang had the greatest shinorine (SH production rate during October, i.e., 83.83 ± 10.47 fgC·L−1·h−1. The dominance of diatoms indicated that they had a long-term response to UVR. Evaluation of POM cultured in Lake Cheongpyeong revealed that there was an increase in the net MAA production in July (when UVR reached the maximum; a substantial amount of SH, i.e., 17.62 ± 18.34 fgC·L−1·h−1, was recorded during this period. Our results demonstrate that both the net production rate as well as the concentration of MAAs related to photoinduction depended on the phytoplankton community structure. In addition, seasonal changes in UVR also influenced the quantity and production of MAAs in phytoplanktons (especially Cyanophyceae.

  14. Entropy Production in Field Theories without Time-Reversal Symmetry: Quantifying the Non-Equilibrium Character of Active Matter

    Directory of Open Access Journals (Sweden)

    Cesare Nardini

    2017-04-01

    Full Text Available Active-matter systems operate far from equilibrium because of the continuous energy injection at the scale of constituent particles. At larger scales, described by coarse-grained models, the global entropy production rate S quantifies the probability ratio of forward and reversed dynamics and hence the importance of irreversibility at such scales: It vanishes whenever the coarse-grained dynamics of the active system reduces to that of an effective equilibrium model. We evaluate S for a class of scalar stochastic field theories describing the coarse-grained density of self-propelled particles without alignment interactions, capturing such key phenomena as motility-induced phase separation. We show how the entropy production can be decomposed locally (in real space or spectrally (in Fourier space, allowing detailed examination of the spatial structure and correlations that underly departures from equilibrium. For phase-separated systems, the local entropy production is concentrated mainly on interfaces, with a bulk contribution that tends to zero in the weak-noise limit. In homogeneous states, we find a generalized Harada-Sasa relation that directly expresses the entropy production in terms of the wave-vector-dependent deviation from the fluctuation-dissipation relation between response functions and correlators. We discuss extensions to the case where the particle density is coupled to a momentum-conserving solvent and to situations where the particle current, rather than the density, should be chosen as the dynamical field. We expect the new conceptual tools developed here to be broadly useful in the context of active matter, allowing one to distinguish when and where activity plays an essential role in the dynamics.

  15. Effect of incorporation of walnut cake (Juglans regia in concentrate mixture on degradation of dry matter, organic matter and production of microbial biomass in vitro in goat

    Directory of Open Access Journals (Sweden)

    Mohsin Ahmad Mir

    2015-10-01

    Full Text Available Aim: This study was carried out to investigate the effect of incorporation of different level of walnut cake in concentrate mixture on in vitro dry matter degradation in order to determine its level of supplementation in ruminant ration. Materials and Methods: Walnut cake was used @ 0, 10, 15, 20, 25 and 30% level to formulate an iso-nitrogenous concentrate mixtures and designated as T1, T2, T3, T4, T5 and T6 respectively. The different formulae of concentrate mixtures were used for in vitro gas production studies using goat rumen liquor with wheat straw in 40:60 ratio. Proximate composition, fiber fractionation and calcium and phosphrous content of walnut cake were estimated. Result: The per cent IVDMD value of T1 and T2 diets was 68.42 ± 1.20 and 67.25 ± 1.37 respectively which was found highest (P<0.05 T3, T4, T5 and T6. Similar trend was also found for TDOM and MBP. Inclusion of walnut cake at 10% level in the concentrate mixture does not affect in vitro dry matter digestibility (IVDMD, truly degradable organic matter (TDOM, mg/200 mg DM, total gas production, microbial biomass production (MBP and efficiency of microbial biomass production (EMP. Conclusion: It is concluded that walnut cake incorporation up to 10% level in the iso -nitrogenous concentrate mixture has no any negative effect on in vitro digestibility of dry matter (DM, TDOM, MBP, EMP and total gas production in goat.

  16. The economic production lot size model extended to include more than one production rate

    DEFF Research Database (Denmark)

    Larsen, Christian

    2001-01-01

    btween the demand rate and the production rate which minimizes unit production costs, and should be used in an increasing order. Then, given the production rates, we derive closed-form expressions for all optimal runtimes as well as the minimum average cost. This analysis reveals that it is the size...... of the setup cost that determines the need for being able to use several production rates. Finally, we show how to derive a near-optimal solution of the general problem....

  17. Proton-induced production cross-sections and production rates of 41Ca from Ni

    International Nuclear Information System (INIS)

    Schnabel, C.; Synal, H.-A.; Gartenmann, P.; Santos-Arevalo, F.J.; Gomez-Martinez, I.; Suter, M.; Tarabischi, A.; Bastian, T.; Sudbrock, F.; Herpers, U.; Leya, I.; Gloris, M.; Michel, R.

    2004-01-01

    Proton-induced production cross-sections of 41 Ca from Ni are presented. Moreover, depth-dependent production rates of 41 Ca from Ni were determined in a meteoroid simulation experiment. Based on these data, modelled production rates of 41 Ca from Ni in iron meteoroids are presented as a function of depth and size. These data are relevant for modelling the production rate ratio of 41 Ca/ 36 Cl in metal phases of meteoroids and thus for the application of the 41 Ca- 36 Cl method to determine terrestrial ages of meteorites

  18. Production of fluorescent dissolved organic matter in Arctic Ocean sediments

    Science.gov (United States)

    Chen, Meilian; Kim, Ji-Hoon; Nam, Seung-Il; Niessen, Frank; Hong, Wei-Li; Kang, Moo-Hee; Hur, Jin

    2016-12-01

    Little is known about the production of fluorescent dissolved organic matter (FDOM) in the anoxic oceanic sediments. In this study, sediment pore waters were sampled from four different sites in the Chukchi-East Siberian Seas area to examine the bulk dissolved organic carbon (DOC) and their optical properties. The production of FDOM, coupled with the increase of nutrients, was observed above the sulfate-methane-transition-zone (SMTZ). The presence of FDOM was concurrent with sulfate reduction and increased alkalinity (R2 > 0.96, p  0.95, p CDOM and FDOM to the overlying water column, unearthing a channel of generally bio-refractory and pre-aged DOM to the oceans.

  19. Initial water repellency affected organic matter depletion rates of manure amended soils in Sri Lanka

    Directory of Open Access Journals (Sweden)

    Leelamanie D.A.L.

    2014-12-01

    Full Text Available The wetting rate of soil is a measure of water repellency, which is a property of soils that prevents water from wetting or penetrating into dry soil. The objective of the present research was to examine the initial water repellency of organic manure amended soil, and its relation to the soil organic matter (SOM depletion rates in the laboratory. Soil collected from the Wilpita natural forest, Sri Lanka, was mixed with organic manure to prepare soil samples with 0, 5, 10, 25, and 50% organic manure contents. Locally available cattle manure (CM, goat manure (GM, and Casuarina equisetifolia leaves (CE were used as the organic manure amendments. Organic matter content of soils was measured in 1, 3, 7, 14, and 30 days intervals under the laboratory conditions with 74±5% relative humidity at 28±1°C. Initial water repellency of soil samples was measured as the wetting rates using the water drop penetration time (WDPT test. Initial water repellency increased with increasing SOM content showing higher increasing rate for hydrophobic CE amended samples compared with those amended with CM and GM. The relation between water repellency and SOM content was considered to be governed by the original hydrophobicities of added manures. The SOM contents of all the soil samples decreased with the time to reach almost steady level at about 30 d. The initial SOM depletion rates were negatively related with the initial water repellency. However, all the CE amended samples initially showed prominent low SOM depletion rates, which were not significantly differed with the amended manure content or the difference in initial water repellency. It is explicable that the original hydrophobicity of the manure as well has a potentially important effect on initiation of SOM decomposition. In contrast, the overall SOM depletion rate can be attributed to the initial water repellency of the manure amended sample, however, not to the original hydrophobicity of the amended manure

  20. Transient cultivation and fallow land in forests. Measurements of the specific activity of the carbon in organic matter fractions for the purpose of studying the renewal of the store of organic matter in an equatorial forest environment

    International Nuclear Information System (INIS)

    Turenne, J.F.; Rapaire, J.L.

    1979-01-01

    Different conditions of forest-type fallow land and of clearings in the equatorial forests of the Amazon region provide a basis for determining the nature, the direction and the magnitude of the transformations of the organic matter of the soil when cultivated, using the variations in the specific activity of atmospheric carbon. Calculations of the renewal rates of surface horizon organic matter show that there are two groups of products, (a) humin, a labile fraction with a high renewal rate, and (b) humic and fulvic products with a lower renewal rate. The effect of clearing is generally to retard these renewal rates. The dynamics which become established in forest fallow land mainly involve the fulvic products, and the return to forest equilibrium can be considered to occur between 60 and 100 years after clearing. (author)

  1. Lowering temperature to increase chemical oxidation efficiency: the effect of temperature on permanganate oxidation rates of five types of well defined organic matter, two natural soils, and three pure phase products.

    Science.gov (United States)

    de Weert, J P A; Keijzer, T J S; van Gaans, P F M

    2014-12-01

    In situ chemical oxidation (ISCO) is a soil remediation technique to remove organic pollutants from soil and groundwater with oxidants, like KMnO4. However, also natural organic compounds in soils are being oxidized, which makes the technique less efficient. Laboratory experiments were performed to investigate the influence of temperature on this efficiency, through its effect on the relative oxidation rates - by permanganate - of natural organic compounds and organic pollutants at 16 and 15°C. Specific types of organic matter used were cellulose, oak wood, anthracite, reed - and forest peat, in addition to two natural soils. Dense Non-Aqueous Phase Liquid-tetrachloroethene (DNAPL-PCE), DNAPL trichloroethene (DNAPL-TCE) and a mixture of DNAPL-PCE, -TCE and -hexachlorobutadiene were tested as pollutants. Compared to 16°C, oxidation was slower at 5°C for the specific types of organic matter and the natural soils, with exception of anthracite, which was unreactive. The oxidation rate of DNAPL TCE was lower at 5°C too. However, at this temperature oxidation was fast, implying that no competitive loss to natural organic compounds will be expected in field applications by lowering temperature. Oxidation of DNAPL-PCE and PCE in the mixture proceeded at equal rates at both temperatures, due to the dissolution rate as limiting factor. These results show that applying permanganate ISCO to DNAPL contamination at lower temperatures will limit the oxidation of natural organic matter, without substantially affecting the oxidation rate of the contaminant. This will make such remediation more effective and sustainable in view of protecting natural soil quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Long-term changes in primary production and mineralization of organic matter in the Neva Estuary (Baltic Sea)

    Science.gov (United States)

    Golubkov, Sergey; Golubkov, Mikhail; Tiunov, Alexei; Nikulina, Vera

    2017-07-01

    The Neva Estuary situated in the eastern part of the Gulf of Finland is one of the largest estuaries of the Baltic Sea. At present, heavy nutrient and organic matter loading, mainly from the Neva River and point sources in the upper estuary are the most serious environmental problem for the Neva Estuary and adjacent parts of the eastern Gulf of Finland. Long-term studies of mid-summer primary production and mineralization of organic matter were conducted in upper and middle parts of the Neva Estuary. A considerable increase of production and biomass of phytoplankton was observed in the middle part of the estuary during the last decades mainly due to an increase in biomass of cyanobacteria. However, they are mostly concentrated in the upper water layers and only a small part of them reached the near bottom water layers and may be used as a food by zoobenthos. The mineralization of organic matter in the water column was twice higher than primary production that indicates the importance of allochthonous organic matter in the carbon budget of the both parts of the estuary. The carbon isotope signature of seston and most of the zoobenthic species in the upper part of the estuary was close to the signature of allochthonous carbon leaking from watershed (- 27‰). Higher values of δ13C of seston in the upper mix layer of the Middle estuary indicate intensive primary production in mid-summer. The carbon isotopic signature of zoobenthos in this part of the estuary was also in general lower than in the Neva Bay reflected higher importance of autochthonous organic matter in food webs of the estuary.

  3. On finite density effects on cosmic reheating and moduli decay and implications for Dark Matter production

    International Nuclear Information System (INIS)

    Drewes, Marco

    2014-01-01

    We study the damping of an oscillating scalar field in a Friedmann-Robertson-Walker spacetime by perturbative processes, taking into account the back-reaction of the plasma of decay products on the damping rate. The scalar field may be identified with the inflaton, in which case this process resembles the reheating of the universe after inflation. It can also model a modulus that dominates the energy density of the universe at later times. We find that the finite density corrections to the damping rate can have a drastic effect on the thermal history and considerably increase both, the maximal temperature in the early universe and the reheating temperature at the onset of the radiation dominated era. As a result the abundance of some Dark Matter candidates may be considerably larger than previously estimated. We give improved analytic estimates for the maximal and the reheating temperatures and confirm them numerically in a simple model

  4. Real Exchange Rate and Productivity in an OLG Model

    OpenAIRE

    Thi Hong Thinh DOAN; Karine GENTE

    2013-01-01

    This article develops an overlapping generations model to show how demography and savings affect the relationship between real exchange rate (RER) and productivity. In high-saving (low-saving) countries and/or low-population-growth-rate countries, a rise in productivity leads to a real depreciation (appreciation) whereas the RER may appreciate or depreciate in highproduction-growth-rate. Using panel data, we conclude that a rise in productivity generally causes a real exchange rate appreciati...

  5. 76 FR 41521 - In the Matter of Certain Integrated Circuits, Chipsets, and Products Containing Same Including...

    Science.gov (United States)

    2011-07-14

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-786] In the Matter of Certain Integrated Circuits... sale within the United States after importation of certain integrated circuits, chipsets, and products... after importation of certain integrated circuits, chipsets, and products containing same including...

  6. 75 FR 49524 - In the Matter of Certain Integrated Circuits, Chipsets, and Products Containing Same Including...

    Science.gov (United States)

    2010-08-13

    ... the United States after importation of certain integrated circuits, chipsets, and products containing... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-709] In the Matter of Certain Integrated Circuits, Chipsets, and Products Containing Same Including Televisions, Media Players, and Cameras; Notice...

  7. 76 FR 34101 - In the Matter of Certain Integrated Circuits, Chipsets, and Products Containing Same Including...

    Science.gov (United States)

    2011-06-10

    ... within the United States after importation of certain integrated circuits, chipsets, and products... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-709] In the Matter of Certain Integrated Circuits, Chipsets, and Products Containing Same Including Televisions, Media Players, and Cameras; Notice...

  8. 75 FR 65654 - In the Matter of: Certain Integrated Circuits, Chipsets, and Products Containing Same Including...

    Science.gov (United States)

    2010-10-26

    ... within the United States after importation of certain integrated circuits, chipsets, and products... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-709] In the Matter of: Certain Integrated Circuits, Chipsets, and Products Containing Same Including Televisions, Media Players, and Cameras; Notice...

  9. Effects of composition of labile organic matter on biogenic production of methane in the coastal sediments of the Arabian Sea.

    Science.gov (United States)

    Gonsalves, Maria-Judith; Fernandes, Christabelle E G; Fernandes, Sheryl Oliveira; Kirchman, David L; Bharathi, P A Loka

    2011-11-01

    Coastal regions are potential zones for production of methane which could be governed by ecological/environmental differences or even sediment properties of a niche. In order to test the hypothesis that methanogenesis in most marine sediments could be driven more by proteins than by carbohydrates and lipid content of labile organic matter (LOM), incubation experiments were carried out with sediments from different environmental niches to measure methane production. The methane production rates were examined in relationship to the sediment biochemistry, i.e., carbohydrates, proteins, and lipids. The gas production measured by head space method ranged from 216 ng g( -1) day( -1) in the mangrove sediments to 3.1 μg g( -1) day( -1) in the shallow Arabian Sea. LOM ranged from 1.56 to 2.85 mg g( -1) in the shallow Arabian Sea, from 3.35 to 5.43 mg g( -1) in the mangrove estuary, and from 0.66 to 0.70 mg g( -1) in the sandy sediments with proteins contributing maximum to the LOM pool. Proteins influenced methane production in the clayey sediments of shallow depths of the Arabian Sea (r = 0.933, p methane production. The gas production was more pronounced in shallow and surface sediments and it decreased with depth apparently governed by the decrease in lability index. Thus, the lability index and protein content are important factors that determine methane production rates in these coastal ecosystems.

  10. Ammonium production off central Chile (36°S by photodegradation of phytoplankton-derived and marine dissolved organic matter.

    Directory of Open Access Journals (Sweden)

    Angel Rain-Franco

    Full Text Available We investigated the production of ammonium by the photodegradation of dissolved organic matter (DOM in the coastal upwelling system off central Chile (36°S. The mean penetration of solar radiation (Z1% between April 2011 and February 2012 was 9.4 m, 4.4 m and 3.2 m for Photosynthetically Active Radiation (PAR; 400-700 nm, UV-A (320-400 nm and UV-B (280-320 nm, respectively. Ammonium photoproduction experiments were carried out using exudates of DOM obtained from cultured diatom species (Chaetoceros muelleri and Thalassiosira minuscule as well as natural marine DOM. Diatom exudates showed net photoproduction of ammonium under exposure to UVR with a mean rate of 0.56±0.4 µmol L(-1 h(-1 and a maximum rate of 1.49 µmol L(-1 h(-1. Results from natural marine DOM showed net photoproduction of ammonium under exposure to PAR+UVR ranging between 0.06 and 0.2 µmol L(-1 h(-1. We estimated the potential contribution of photochemical ammonium production for phytoplankton ammonium demand. Photoammonification of diatom exudates could support between 117 and 453% of spring-summer NH4(+ assimilation, while rates obtained from natural samples could contribute to 50-178% of spring-summer phytoplankton NH4(+ requirements. These results have implications for local N budgets, as photochemical ammonium production can occur year-round in the first meters of the euphotic zone that are impacted by full sunlight.

  11. Production and nutrition rates of piatã grass and hybrid sorghum at different cutting ages - doi: 10.4025/actascianimsci.v35i3.18016

    Directory of Open Access Journals (Sweden)

    Luciano da Silva Cabral

    2013-07-01

    Full Text Available The influence of cutting age on yield and nutrition rates of piatã grass (Brachiaria brizantha cv. BRS Piatã and hybrid sorghum (Sorghum spp. cv. BRS 801 under an integrated crop-livestock system was evaluated. The trial was carried out at the Embrapa Beef Cattle (20°27¢ S; 54°37¢ W in Campo Grande, Mato Grosso do Sul State, Brazil, between April and October 2009. Experimental design consisted of randomized blocks with four replicates. Treatments were distributed across a split-plot design, which included three production systems (single piatã grass; single hybrid sorghum; mixed cultivation of sorghum and piatã grass. Half-plots consisted of three forage ages at harvest (with 70, 90 and 110 days after seeding. Variables included agronomical characteristics, productivity and nutrition value. Regardless of the evaluated systems, cutting age affected agronomical characteristics and in vitro digestibility of organic matter (IVDOM. Production was highest (4,048 kg ha-1 within the integrated system. Regardless of cutting age, monoculture sorghum had the highest crude protein level. Results showed that integrated sorghum and piatã grasses were an asset for forage productivity. Forages had higher rates in crude protein and in in vitro digestibility of organic matter on the 70th day after seeding.   

  12. Geochemical Tracers and Rates of Short-Chain Alkane Production in Gulf of Mexico Cold Seep Sediments

    Science.gov (United States)

    Sibert, R.; Bernard, B. B.; Brooks, J. M.; Hunter, K.; Joye, S. B.

    2014-12-01

    The organic-rich cold seep sediments in the deep Gulf of Mexico commonly contain mixtures of light hydrocarbon gases either dissolved in pore fluids, adsorbed to sediment particles, trapped in methane ice, or as free gas. The dominant component in these natural gas mixtures is typically methane (C1), but ethane (C2) and propane (C3) are nearly always present in trace or major amounts. The ratio of C1:C2:C3 varies but C2 and C3 are typically present at single digit percent levels, whereas methane usually dominates at >80%. Methane production proceeds by at least two well-studied mechanisms: either 1) by thermocatalytic cracking of fossil organic matter, or 2) as a direct product of microbial metabolism, methanogenesis. In contrast, ethane and propane production in deep-sea sediments has been historically attributed only to thermocatalytic processes. However, limited data suggests production of C2/C3 compounds through the activity of archaea. Such studies of microbial- driven dynamics of C2/C3 gases (i.e. 'alkanogenesis') in cold seep sediments are rare. Furthermore, the identities of potential substrates are poorly constrained and no attempt has been made to quantify production rates of C2/C3 gases. However, carbon isotopic data on ethane and propane from deep cores from the Gulf of Mexico suggest alkanogenesis at depth in the sediment column and alkane oxidation in uppermost oxidant-rich sediments. Here, we present the results of a series of incubation experiments using sediment slurries culled from GC600, one of the most prolific natural oil and gas seeps in the Gulf of Mexico. Rates of both alkane production and oxidation were measured under a variety of conditions to assess the net rates of alkane production and elucidate the driving microbiological mechanisms and controls on the central processes of >C1 alkane cycling in cold seep sediments. Microbial processes are important both in terms of alkane production and oxidation, raising many questions as to the

  13. Status of rates and rate equations for thermal leptogenesis

    Science.gov (United States)

    Biondini, S.; Bödeker, D.; Brambilla, N.; Garny, M.; Ghiglieri, J.; Hohenegger, A.; Laine, M.; Mendizabal, S.; Millington, P.; Salvio, A.; Vairo, A.

    2018-02-01

    In many realizations of leptogenesis, heavy right-handed neutrinos play the main role in the generation of an imbalance between matter and antimatter in the early Universe. Hence, it is relevant to address quantitatively their dynamics in a hot and dense environment by taking into account the various thermal aspects of the problem at hand. The strong washout regime offers an interesting framework to carry out calculations systematically and reduce theoretical uncertainties. Indeed, any matter-antimatter asymmetry generated when the temperature of the hot plasma T exceeds the right-handed neutrino mass scale M is efficiently erased, and one can focus on the temperature window T ≪ M. We review recent progress in the thermal field theoretic derivation of the key ingredients for the leptogenesis mechanism: the right-handed neutrino production rate, the CP asymmetry in the heavy-neutrino decays and the washout rates. The derivation of evolution equations for the heavy-neutrino and lepton-asymmetry number densities, their rigorous formulation and applicability are also discussed.

  14. Recommendations of the LHC Dark Matter Working Group: Comparing LHC searches for heavy mediators of dark matter production in visible and invisible decay channels arXiv

    CERN Document Server

    Albert, Andreas; Boveia, Antonio; Buchmueller, Oliver; Busoni, Giorgio; De Roeck,Albert; Doglioni, Caterina; DuPree, Tristan; Fairbairn, Malcolm; Genest, Marie-Hélène; Gori, Stefania; Gustavino, Giuliano; Hahn, Kristian; Haisch, Ulrich; Harris, Philip C.; Hayden, Dan; Ippolito, Valerio; John, Isabelle; Kahlhoefer, Felix; Kulkarni, Suchita; Landsberg, Greg; Lowette, Steven; Mawatari, Kentarou; Riotto, Antonio; Shepherd, William; Tait, Tim M.P.; Tolley, Emma; Tunney, Patrick; Zaldivar, Bryan; Zinser, Markus

    Weakly-coupled TeV-scale particles may mediate the interactions between normal matter and dark matter. If so, the LHC would produce dark matter through these mediators, leading to the familiar "mono-X" search signatures, but the mediators would also produce signals without missing momentum via the same vertices involved in their production. This document from the LHC Dark Matter Working Group suggests how to compare searches for these two types of signals in case of vector and axial-vector mediators, based on a workshop that took place on September 19/20, 2016 and subsequent discussions. These suggestions include how to extend the spin-1 mediated simplified models already in widespread use to include lepton couplings. This document also provides analytic calculations of the relic density in the simplified models and reports an issue that arose when ATLAS and CMS first began to use preliminary numerical calculations of the dark matter relic density in these models.

  15. Cold matter effects and quarkonium production at RHIC and LHC

    Energy Technology Data Exchange (ETDEWEB)

    Dos Santos, G. S.; Mariotto, C. B. [Instituto de Matematica, Estatistica e Fisica, Universidade Federal do Rio Grande, Caixa Postal 474, CEP 96203-900, Rio Grande, RS (Brazil); Goncalves, V. P. [Instituto de Fisica e Matematica, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96010-090, Pelotas, RS (Brazil)

    2013-03-25

    In this work we investigate two cold matter effects in J/{Psi} and {Upsilon} production in nuclear collisions at RHIC and LHC, namely the shadowing effect and nuclear absorption. We characterize these effects by estimating the rapidity dependence of some nuclear ratios in pA and AA collisions at RHIC and LHC, R{sub pA} = d{sigma}{sub pA}(J/{Psi},{Upsilon})/Ad{sigma}{sub pp}(J/{Psi},{Upsilon}) and R{sub AA} = d{sigma}{sub AA}(J/{Psi},{Upsilon})/A{sup 2}d{sigma}{sub pp}(J/{Psi},{Upsilon}).

  16. Multi-year evaluation of stocking rate and animal genotype on milk production per hectare within intensive pasture-based production systems.

    Science.gov (United States)

    Coffey, E L; Delaby, L; Fleming, C; Pierce, K M; Horan, B

    2018-03-01

    The objective of this experiment was to evaluate the effect of stocking rate (SR) and animal genotype (BR) on milk production, body weight (BW), and body condition score (BCS) within intensive pasture-based systems. A total of 533 lactation records, from 246 elite genetic merit dairy cows were available for analysis; 68 Holstein-Friesian (HF) and 71 Jersey × Holstein-Friesian (JxHF) crossbred cows in each of 4 consecutive years (2013-2016, inclusive). Cows from each BR were randomly allocated to 1 of 3 whole-farm comparative SR treatments, low (LSR; 1,200 kg of BW/ha), medium (MSR; 1,400 kg of BW/ha), and high (HSR; 1,600 kg of BW/ha), and remained in the same SR treatments for the duration of the experiment. The effects of SR, BR, and their interaction on milk production/cow and per hectare, BW, BCS, and grazing characteristics were analyzed. Total pasture utilization per hectare consumed in the form of grazed pasture increased linearly as SR increased: least in LSR (10,237 kg of dry matter/ha), intermediate in MSR (11,016 kg of dry matter/ha), and greatest in HSR (11,809 kg of dry matter/ha). Milk and milk solids (MS) yield per hectare was greatest for HSR (15,942 and 1,354 kg, respectively), intermediate for MSR (14,191 and 1,220 kg, respectively), and least for LSR (13,186 and 1,139 kg, respectively) with similar trends evident for fat, protein, and lactose yield/ha. At higher SR (MSR and HSR), MS yield per kg of BW per ha was reduced (0.85 and 0.82 kg of MS/kg of BW, respectively) compared with LSR (0.93 kg of MS/kg of BW/ha). Holstein-Friesian cows achieved fewer grazing days per hectare (-37 d), and produced more milk (+561 kg/ha) but less fat plus protein (-57 kg/ha) compared with JxHF cows; the JxHF cows were lighter. At similar BW per hectare, JxHF cows produced more fat plus protein/ha during the grazing season at low (1,164 vs. 1,113 kg), medium (1,254 vs. 1,185 kg), and high (1,327 vs. 1,380 kg) SR. In addition, JxHF cows produced more fat plus

  17. 75 FR 44283 - In the Matter of Certain Dynamic Random Access Memory Semiconductors and Products Containing Same...

    Science.gov (United States)

    2010-07-28

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-707] In the Matter of Certain Dynamic Random Access Memory Semiconductors and Products Containing Same, Including Memory Modules; Notice of a... importation of certain dynamic random access memory semiconductors and products containing same, including...

  18. Combination Of Organic Matter And Inorganic N Fertilizer For Enhancing Productivity And N Uptake Of Upland Rice

    International Nuclear Information System (INIS)

    Idawati; Haryanto

    2002-01-01

    Organic matter in soil plays very important roles in agriculture, especially in highly weathered soil like most soils in Indonesia. Inorganic fertilizer which is an instant N source, is still required, to supply plant demand. Combination of organic matter and inorganic N fertilizer would be the best solution to achieve high agricultural product. To study organic matter addition in combination with N fertilizer in upland rice cultivation, two experiments were conducted in The Agricultural Research Station, Citayam. One experiment was a field experiment and the other was a pot experiment conducted in the field in which the field experiment was performed, by installing pots in the center of plot experiment 15N technique was applied in the pot experiment The experiments were designed with Randomized Block Design. Prior to the experiment. N soil was extracted by planting blanket plant. i.e. corn. The treatments for field and pot experiments were the same, i.e.: 0 as Control I (without organic matter, without N fertilizer); N as Control 2 (without organic matter, 45 kg N/ha at planting + 45 kg N/ha a month after planting); GN-I (Gliricidia at planting; 45 kg N/ha at planting + 22,5 kg N/ha a month after planting); GN-2 (Gliricidia at planting + Gliricidia a month after planting; 45 kg N/ha at planting); GN-3 (Gliricidia at planting; 22,5 kg N/ha at planting + 22,5 kg N/ha a month after planting); JN-I (rice straw at planting; 90 kg N/ha at planting); JN-2 (rice straw at planting; 45 kg N/ha a planting + 45 kg N/ha a month after planting); JN-3 (rice straw at planting; 45 kg N/ha at planting + 22,5 kg N/ba month after planting); KN-I(long bean residue at planting; 45 kg N/ha at planting + 22,5 kg N/ha a month after planting); KN-2 (long bean residue at planting; 22,5 kg N/ha at planting + 22,5 kg N/ha a month after planting). Soil N was successfully depleted by blanket plant showed by very low rice production and N uptake of Control I. Result of the pot experiment

  19. Direct Detection Phenomenology in Models Where the Products of Dark Matter Annihilation Interact with Nuclei

    DEFF Research Database (Denmark)

    Cherry, John F.; Frandsen, Mads T.; Shoemaker, Ian M.

    2015-01-01

    We investigate the direct detection phenomenology of a class of dark matter (DM) models in which DM does not directly interact with nuclei, {but rather} the products of its annihilation do. When these annihilation products are very light compared to the DM mass, the scattering in direct detection...... to nuclei, the limit from annihilation to relativistic particles in the Sun can be stronger than that of conventional non-relativistic direct detection by more than three orders of magnitude for masses in a 2-7 GeV window.......We investigate the direct detection phenomenology of a class of dark matter (DM) models in which DM does not directly interact with nuclei, {but rather} the products of its annihilation do. When these annihilation products are very light compared to the DM mass, the scattering in direct detection...... experiments is controlled by relativistic kinematics. This results in a distinctive recoil spectrum, a non-standard and or even absent annual modulation, and the ability to probe DM masses as low as a $\\sim$10 MeV. We use current LUX data to show that experimental sensitivity to thermal relic annihilation...

  20. Effects of mineral matter on products and sulfur distributions in hydropyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Li, B.; Zhang, B. [Chinese Academy of Sciences, Taiyuan (China). Inst. of Coal Chemistry

    1999-05-01

    The effects of the mineral matter on the product yield and sulfur distribution in hydropyrolysis and pyrolysis of Chinese Hongmiao lignite were investigated using a fixed-bed reactor. The volatile sulfur-containing gases (H{sub 2}S, COS, CH{sub 3}SH) were also analyzed as a function of pyrolysis temperature. Coal samples were treated with HCl/HF or HCl/HF and CrCl{sub 2} solution to eliminate minerals and pyrite respectively. In hydropyrolysis, demineralized Hongmiao lignite showed lower yields of tar and water than the raw coal. Demineralization cannot only minimize the fixation effect of basic mineral matter on sulfur-containing gases, but also increase the sulfur distribution of the tar. Further, from the evolution profiles of sulfur-containing gases, it is possible to elucidate the contribution of minerals, pyrite and organic sulfur to the sulfur evolution. Pyrite may not be the only source of COS formation. 32 refs., 14 figs., 3 tabs.

  1. 76 FR 11275 - In the Matter of Certain Ceramic Capacitors and Products Containing Same; Notice of Commission...

    Science.gov (United States)

    2011-03-01

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-692] In the Matter of Certain Ceramic Capacitors and Products Containing Same; Notice of Commission Determination To Review in Part A Final Initial... importation of certain ceramic capacitors and products containing the same by reason of infringement of...

  2. Modeling Electric Discharges with Entropy Production Rate Principles

    Directory of Open Access Journals (Sweden)

    Thomas Christen

    2009-12-01

    Full Text Available Under which circumstances are variational principles based on entropy production rate useful tools for modeling steady states of electric (gas discharge systems far from equilibrium? It is first shown how various different approaches, as Steenbeck’s minimum voltage and Prigogine’s minimum entropy production rate principles are related to the maximum entropy production rate principle (MEPP. Secondly, three typical examples are discussed, which provide a certain insight in the structure of the models that are candidates for MEPP application. It is then thirdly argued that MEPP, although not being an exact physical law, may provide reasonable model parameter estimates, provided the constraints contain the relevant (nonlinear physical effects and the parameters to be determined are related to disregarded weak constraints that affect mainly global entropy production. Finally, it is additionally conjectured that a further reason for the success of MEPP in certain far from equilibrium systems might be based on a hidden linearity of the underlying kinetic equation(s.

  3. Searches for Dark Matter via Mono-W Production in Inert Doublet Model at the LHC

    Science.gov (United States)

    Wan, Neng; Li, Niu; Zhang, Bo; Yang, Huan; Zhao, Min-Fu; Song, Mao; Li, Gang; Guo, Jian-You

    2018-05-01

    The Inert Doublet Model (IDM) is one of the many beyond Standard Model scenarios with an extended scalar sector, which provide a suitable dark matter particle candidate. Dark matter associated visible particle production at high energy colliders provides a unique way to determine the microscopic properties of the dark matter particle. In this paper, we investigate that the mono-W + missing transverse energy production at the Large Hadron Collider (LHC), where W boson decay to a lepton and a neutrino. We perform the analysis for the signal of mono-W production in the IDM and the Standard Model (SM) backgrounds, and the optimized criteria employing suitable cuts are chosen in kinematic variables to maximize signal significance. We also investigate the discovery potential in several benchmark scenarios at the 14 TeV LHC. When the light Z2 odd scalar higgs of mass is about 65 GeV, charged Higgs is in the mass range from 120 GeV to 250 GeV, it provides the best possibility with a signal significance of about 3σ at an integrated luminosity of about 3000 fb‑1. Supported by the National Natural Science Foundation of China under Grant Nos. 11205003, 11305001, 11575002, the Key Research Foundation of Education Ministry of Anhui Province of China under Grant Nos. KJ2017A032, KJ2016A749, KJ2013A260, and Natural Science Foundation of West Anhui University under Grant No. WXZR201614

  4. 75 FR 62420 - In the Matter of: Certain Ground Fault Circuit Interrupters and Products Containing Same; Notice...

    Science.gov (United States)

    2010-10-08

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-739] In the Matter of: Certain Ground Fault... fault circuit interrupters and products containing same by reason of infringement of certain claims of U... certain ground fault circuit interrupters and products containing same that infringe one or more of claims...

  5. Dark production of carbon monoxide (CO) from dissolved organic matter in the St. Lawrence estuarine system: Implication for the global coastal and blue water CO budgets

    Science.gov (United States)

    Zhang, Yong; Xie, Huixiang; Fichot, CéDric G.; Chen, Guohua

    2008-12-01

    We investigated the thermal (dark) production of carbon monoxide (CO) from dissolved organic matter (DOM) in the water column of the St. Lawrence estuarine system in spring 2007. The production rate, Qco, decreased seaward horizontally and downward vertically. Qco exhibited a positive, linear correlation with the abundance of chromophoric dissolved organic matter (CDOM). Terrestrial DOM was more efficient at producing CO than marine DOM. The temperature dependence of Qco can be characterized by the Arrhenius equation with the activation energies of freshwater samples being higher than those of salty samples. Qco remained relatively constant between pH 4-6, increased slowly between pH 6-8 and then rapidly with further rising pH. Ionic strength and iron chemistry had little influence on Qco. An empirical equation, describing Qco as a function of CDOM abundance, temperature, pH, and salinity, was established to evaluate CO dark production in the global coastal waters (depth carbon from CO a-1). We speculated the global oceanic (coastal plus open ocean) CO dark production to be in the range from 4.87 to 15.8 Tg CO-C a-1 by extrapolating the coastal water-based results to blue waters (depth > 200 m). Both the coastal and global dark source strengths are significant compared to the corresponding photochemical CO source strengths (coastal: ˜2.9 Tg CO-C a-1; global: ˜50 Tg CO-C a-1). Steady state deepwater CO concentrations inferred from Qco and microbial CO uptake rates are <0.1 nmol L-1.

  6. Searching for dark matter with neutrino telescopes

    International Nuclear Information System (INIS)

    Hooper, Dan; Silk, Joseph

    2004-01-01

    One of the most interesting mysteries of astrophysics is the puzzle of dark matter. Although numerous techniques have been explored and developed to detect this elusive substance, its nature remains unknown. One such method uses large high-energy neutrino telescopes to look for the annihilation products of dark matter annihilations. In this paper, we briefly review this technique. We describe the calculations used to find the rate of capture of WIMPs in the Sun or Earth and the spectrum of neutrinos produced in the resulting dark matter annihilations. We will discuss these calculations within the context of supersymmetry and models with universal extra dimensions, the lightest supersymmetric particle and lightest Kaluza-Klein particle providing the WIMP candidate in these cases, respectively. We will also discuss the status of some of the experiments relevant to these searches: AMANDA, IceCube and ANTARES

  7. Copepod egg production, moulting and growth rates and secondary production in the Skagerrak in August 1988

    DEFF Research Database (Denmark)

    Peterson, W.T.; Tiselius, P.; Kiørboe, Thomas

    1991-01-01

    Measurements of hydrography, chlorophyll, moulting rates of juvenile copepods and egg production rates of adult female copepods were made at eight stations along a transect across the Skagerrak. The goals of the study were to determine (i) if there were correlations between spatial variations...... in hydrography, phytoplankton and copepod production rates, (ii) if copepod egg production rates were correlated with juvenile growth rates, and (iii) if there was evidence of food-niche separation among co-occurring female copepods. The 200 km wide Skagerrak had a stratified water column in the center...... is similar to maximum rates known from laboratory studies, thus were probably not food-limited. Egg production rates were food-limited with the degree of limitation varying among species: 75% of maximum for Centropages typicus, 50% for Calanus finmarchicus, 30% for Paracalanus parvus and 15% for Acartia...

  8. Resonant slepton production and right sneutrino dark matter in left-right supersymmetry

    Science.gov (United States)

    Frank, Mariana; Fuks, Benjamin; Huitu, Katri; Rai, Santosh Kumar; Waltari, Harri

    2017-05-01

    Right-handed sneutrinos are natural components of left-right symmetric supersymmetric models where the gauge sector is extended to include right-handed weak interactions. Unlike in other models where right-handed sneutrinos are gauge singlets, here the right sneutrino is part of a doublet and could be a dark matter candidate whose annihilation proceeds via gauge interactions. We investigate this possibility, and find that relic density, low-energy observable and direct supersymmetry search constraints can be satisfied when the lightest supersymmetric particle is a right-handed sneutrino. We introduce benchmarks for left-right supersymmetric realizations where either a sneutrino or a neutralino is the lightest superpartner. We then study the LHC signals arising through resonant right-handed slepton production via a W R gauge-boson exchange that lead to final states enriched in leptons, additionally containing a large amount of missing transverse momentum, and featuring a low jet multiplicity. We find that such a resonant production would boost the chances of discovering these weakly interacting supersymmetric particles for a mass range extending beyond 1 TeV already with a luminosity of 100 fb-1. Finally, we compare sneutrino versus neutralino scenarios, and comment on differences with other sneutrino dark matter models.

  9. Resonant slepton production and right sneutrino dark matter in left-right supersymmetry

    International Nuclear Information System (INIS)

    Frank, Mariana; Fuks, Benjamin; Huitu, Katri; Rai, Santosh Kumar; Waltari, Harri

    2017-01-01

    Right-handed sneutrinos are natural components of left-right symmetric supersymmetric models where the gauge sector is extended to include right-handed weak interactions. Unlike in other models where right-handed sneutrinos are gauge singlets, here the right sneutrino is part of a doublet and could be a dark matter candidate whose annihilation proceeds via gauge interactions. We investigate this possibility, and find that relic density, low-energy observable and direct supersymmetry search constraints can be satisfied when the lightest supersymmetric particle is a right-handed sneutrino. We introduce benchmarks for left-right supersymmetric realizations where either a sneutrino or a neutralino is the lightest superpartner. We then study the LHC signals arising through resonant right-handed slepton production via a W R gauge-boson exchange that lead to final states enriched in leptons, additionally containing a large amount of missing transverse momentum, and featuring a low jet multiplicity. We find that such a resonant production would boost the chances of discovering these weakly interacting supersymmetric particles for a mass range extending beyond 1 TeV already with a luminosity of 100 fb −1 . Finally, we compare sneutrino versus neutralino scenarios, and comment on differences with other sneutrino dark matter models.

  10. On thermal gravitational contribution to particle production and dark matter

    Directory of Open Access Journals (Sweden)

    Yong Tang

    2017-11-01

    Full Text Available We investigate the particle production from thermal gravitational annihilation in the very early universe, which is an important contribution for particles that might not be in thermal equilibrium or/and might only have gravitational interaction, such as dark matter (DM. For particles with spin 0,1/2 and 1 we calculate the relevant cross sections through gravitational annihilation and give the analytic formulas with full mass-dependent terms. We find that DM with mass between TeV and 1016 GeV could have the relic abundance that fits the observation, with small dependence on its spin. We also discuss the effects of gravitational annihilation from inflatons. Interestingly, contributions from inflatons could be dominant and have the same power dependence on Hubble parameter of inflation as that from vacuum fluctuation. Also, fermion production from inflaton, in comparison to boson, is suppressed by its mass due to helicity selection.

  11. Productivity Demand Shocks And Asia-Pacific Real Exchange Rates

    OpenAIRE

    Ordean Olson

    2011-01-01

    The evidence for a productivity-based explanation for real exchange rate behavior of East Asian currencies is examined using sectoral output and employment data, relative prices and relative productivities for China, Indonesia, Japan, Korea, Malaysia, Philippines, Singapore, Taiwan, and Thailand. Time series regressions of the real exchange rate on relative productivity ratios indicate significant relationships for the Philippines, Hong Kong, Thailand, Singapore, Taiwan and Korea. Only when a...

  12. arXiv Status of rates and rate equations for thermal leptogenesis

    CERN Document Server

    Biondini, Simone; Brambilla, Nora; Garny, Mathias; Ghiglieri, Jacopo; Hohenegger, Andreas; Laine, Mikko; Mendizabal, Sebastian; Millington, Peter; Salvio, Alberto; Vairo, Antonio

    2018-02-28

    In many realizations of leptogenesis, heavy right-handed neutrinos play the main role in the generation of an imbalance between matter and antimatter in the early Universe. Hence, it is relevant to address quantitatively their dynamics in a hot and dense environment by taking into account the various thermal aspects of the problem at hand. The strong washout regime offers an interesting framework to carry out calculations systematically and reduce theoretical uncertainties. Indeed, any matter-antimatter asymmetry generated when the temperature of the hot plasma $T$ exceeds the right-handed neutrino mass scale $M$ is efficiently erased, and one can focus on the temperature window $T \\ll M$. We review recent progresses in the thermal field theoretic derivation of the key ingredients for the leptogenesis mechanism: the right-handed neutrino production rate, the CP asymmetry in the heavy-neutrino decays and the washout rates. The derivation of evolution equations for the heavy-neutrino and lepton-asymmetry number...

  13. Single top quarks and dark matter

    Science.gov (United States)

    Pinna, Deborah; Zucchetta, Alberto; Buckley, Matthew R.; Canelli, Florencia

    2017-08-01

    Processes with dark matter interacting with the standard model fermions through new scalars or pseudoscalars with flavor-diagonal couplings proportional to fermion mass are well motivated theoretically, and provide a useful phenomenological model with which to interpret experimental results. Two modes of dark matter production from these models have been considered in the existing literature: pairs of dark matter produced through top quark loops with an associated monojet in the event, and pair production of dark matter with pairs of heavy flavored quarks (tops or bottoms). In this paper, we demonstrate that a third, previously overlooked channel yields a non-negligible contribution to LHC dark matter searches in these models. In spite of a generally lower production cross section at LHC when compared to the associated top-pair channel, non-flavor violating single top quark processes are kinematically favored and can significantly increase the sensitivity to these models. Including dark matter production in association with a single top quark through scalar or pseudoscalar mediators, the exclusion limit set by the LHC searches for dark matter can be improved by 30% up to a factor of two, depending on the mass assumed for the mediator particle.

  14. Dry Matter Production and Leaf Elemental Concentrations of Rambutan Grown on an Acid Ultisol

    Science.gov (United States)

    Little is known about the adaptability of rambutan (Nephelium lappaceum) to highly acidic soils rich in aluminum (Al). A 2-yr field study was conducted to determine the effects of various levels of soil Al on dry matter production, plant growth, and nutrient concentration in the leaves of four cult...

  15. Warming and organic matter sources impact the proportion of dissolved to total activities in marine extracellular enzymatic rates

    KAUST Repository

    Baltar, Federico; Moran, Xose Anxelu G.; Lø nborg, Christian

    2017-01-01

    Extracellular enzymatic activities (EEAs) are the rate-limiting step in the degradation of organic matter. Extracellular enzymes can be found associated to cells or dissolved in the surrounding water. The proportion of cell-free EEA constitutes

  16. Hybrid Dark Matter

    OpenAIRE

    Chao, Wei

    2018-01-01

    Dark matter can be produced in the early universe via the freeze-in or freeze-out mechanisms. Both scenarios were investigated in references, but the production of dark matters via the combination of these two mechanisms are not addressed. In this paper we propose a hybrid dark matter model where dark matters have two components with one component produced thermally and the other one produced non-thermally. We present for the first time the analytical calculation for the relic abundance of th...

  17. Soil organic matter

    International Nuclear Information System (INIS)

    1976-01-01

    The nature, content and behaviour of the organic matter, or humus, in soil are factors of fundamental importance for soil productivity and the development of optimum conditions for growth of crops under diverse temperate, tropical and arid climatic conditions. In the recent symposium on soil organic matter studies - as in the two preceding ones in 1963 and 1969 - due consideration was given to studies involving the use of radioactive and stable isotopes. However, the latest symposium was a departure from previous efforts in that non-isotopic approaches to research on soil organic matter were included. A number of papers dealt with the behaviour and functions of organic matter and suggested improved management practices, the use of which would contribute to increasing agricultural production. Other papers discussed the turnover of plant residues, the release of plant nutrients through the biodegradation of organic compounds, the nitrogen economy and the dynamics of transformation of organic forms of nitrogen. In addition, consideration was given to studies on the biochemical transformation of organic matter, characterization of humic acids, carbon-14 dating and the development of modern techniques and their impact on soil organic matter research

  18. Freeze-in production of sterile neutrino dark matter in U(1){sub B−L} model

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Anirban; Gupta, Aritra [Harish-Chandra Research Institute,Chhatnag Road, Jhunsi, Allahabad 211 019 (India)

    2016-09-27

    With the advent of new and more sensitive direct detection experiments, scope for a thermal WIMP explanation of dark matter (DM) has become extremely constricted. The non-observation of thermal WIMP in these experiments has put a strong upper bound on WIMP-nucleon scattering cross section and within a few years it is likely to overlap with the coherent neutrino-nucleon cross section. Hence in all probability, DM may have some non-thermal origin. In this work we explore in detail this possibility of a non-thermal sterile neutrino DM within the framework of U(1){sub B−L} model. The U(1){sub B−L} model on the other hand is a well-motivated and minimal way of extending the standard model so that it can explain the neutrino masses via Type-I see-saw mechanism. We have shown, besides explaining the neutrino mass, it can also accommodate a non-thermal sterile neutrino DM with correct relic density. In contrast with the existing literature, we have found that W{sup ±} decay can also be a dominant production mode of the sterile neutrino DM. To obtain the comoving number density of dark matter, we have solved here a coupled set of Boltzmann equations considering all possible decay as well as annihilation production modes of the sterile neutrino dark matter. The framework developed here though has been done for a U(1){sub B−L} model, can be applied quite generally for any models with an extra neutral gauge boson and a fermionic non-thermal dark matter.

  19. Investigating Photosensitized Properties of Natural Organic Matter and Effluent Organic Matter

    KAUST Repository

    Niu, Xi-Zhi

    2013-05-01

    The photosensitized processes significantly enhance photolysis of various chemicals in the aqueous system with dissolved organic matter (DOM) as sensitizer. The excitation of chromophores on the DOM molecule further generates reactive species as triplet states DOM, singlet oxygen, hydroxyl radical, carbonate radical etc. We investigated the photosensitization properties of Beaufort Fulvic Acid, Suwannee River Fulvic Acid, South Platte River Fulvic Acid, and Jeddah wastewater treatment plant effluent organic matter with a sunlight simulator. DOM photochemical properties were characterized by observing their performances in 3DOM*, singlet oxygen, hydroxyl radical production with indirect probing protocols. Sensitized degradation of 0.1 μM and 0.02 μM 2, 4, 6- Trimethylphenol exhibited higher pseudo-first-order rate constant than that of 10 μM. Pre-irradiated DOMs were found to be depressed in photochemical properties. Photolysis of 5 different contaminants: ibuprofen, bisphenol A, acetaminophen, cimetidine, and caffeine were found to be enhanced in the presence of sensitizers. The possible reaction pathways were revealed. Long time irradiance induced change in contaminants degradation kinetics in some DOM solutions, which was proposed to be due to the irradiation initiated indirect transformation of DOMs. Key Words: Photolysis Dissolved Organic Matter, Triplet State DOM, Singlet Oxygen, Hydroxyl Radical, Contaminants Degradation.

  20. A winter dinoflagellate bloom drives high rates of primary production in a Patagonian fjord ecosystem

    Science.gov (United States)

    Montero, P.; Pérez-Santos, I.; Daneri, G.; Gutiérrez, M. H.; Igor, G.; Seguel, R.; Purdie, D.; Crawford, D. W.

    2017-12-01

    A dense winter bloom of the dinoflagellate Heterocapsa triquetra was observed at a fixed station (44°35.3‧S; 72°43.6‧W) in the Puyuhuapi Fjord in Chilean Patagonia during July 2015. H. triquetra dominated the phytoplankton community in the surface waters between 2 and 15 m (13-58 × 109 cell m-2), with abundances some 3 to 15 times higher than the total abundance of the diatom assemblage, which was dominated by Skeletonema spp. The high abundance of dinoflagellates was reflected in high rates of gross primary production (GPP; 0.6-1.6 g C m-2 d-1) and chlorophyll-a concentration (Chl-a; 70-199.2 mg m-2) that are comparable to levels reported in spring diatom blooms in similar Patagonian fjords. We identify the main forcing factors behind a pulse of organic matter production during the non-productive winter season, and test the hypothesis that low irradiance levels are a key factor limiting phytoplankton blooms and subsequent productivity during winter. Principal Component Analysis (PCA) indicated that GPP rates were significantly correlated (r = -0.8, p bloom. The bloom occurred under low surface irradiance levels characteristic of austral winter and was accompanied by strong northern winds, associated with the passage of a low-pressure system, and a water column dominated by double diffusive layering. To our knowledge, this is the first report of a dense dinoflagellate bloom during deep austral winter in a Patagonian fjord, and our data challenge the paradigm of light limitation as a factor controlling phytoplankton blooms in this region in winter.

  1. Performance of cotton crop grown under surface irrigation and drip fertigation. I. seed cotton yield, dry matter production, and lint properties

    International Nuclear Information System (INIS)

    Janat, M.; Somi, G.

    2002-01-01

    Drip fertigation is a key factor in modern irrigated agriculture, where water and fertilizers are the most expensive inputs for this irrigation method. Drip fertigation experiments were carried out a Hama, north of Syria (Tezeen's Irrigation Research Station), for four consecutive years 1995 - 1998. Cotton (Gossypium hirsutim L.) variety Aleppo 33/1 was planted after unfertilized maize in order to deplete as much as possible the available N and reduce the field variability on the corresponding experimental units and irrigated thereafter. Treatments consisted of two irrigation methods (Surface irrigation and drip fertigation) and five N rates within drip fertigated cotton, including the control (N 0 = 0, N 1 = 60, N 2 = 120, N 3 = 180, N 4 240 kg N ha -1 ). The N fertilizer treatment for surface irrigated cotton was 180 kg N ha -1 in accordance with the recommended rate of ministry of Agriculture and Agrarian Reform. The experimental design was randomized block design with six replicates. Fertigation resulted in large water saving, and highly improved field water-use efficiency. Further, increasing N application rates under drip fertigation increased dry matter yield. The principal benefit of drip fertigation was the achievement of higher field water-use efficiencies, which were increased more than three-fold for both dry matter and seed cotton yield, relative to surface irrigation. The highest water-use efficiencies were obtained with the addition of 180 and 240 kg N ha -1 in 1995 and 1996 and 120 kg N ha -1 in 1997 and 1998. Dry matter production and partitioning among different plant parts at physiological maturity stage varied due to N input and irrigation methods. The overall dry matter distribution among different plant structures for drip fertigated-treatments was: Stems, 20.3 - 21.3%; leaves 26.3 - 28.7%; and fruiting forms, 50 - 53.2%. For the surface-irrigated treatment, the partitioning was stems, 23.1%; leaves, 28.3%; and fruiting form, 48.6%. The

  2. Strong constraints on self-interacting dark matter with light mediators

    International Nuclear Information System (INIS)

    Bringmann, Torsten; Walia, Parampreet

    2017-04-01

    Coupling dark matter to light new particles is an attractive way to combine thermal production with strong velocity-dependent self-interactions. Here we point out that in such models the dark matter annihilation rate is generically enhanced by the Sommerfeld effect, and we derive the resulting constraints from the Cosmic Microwave Background and other indirect detection probes. For the frequently studied case of s-wave annihilation these constraints exclude the entire parameter space where the self-interactions are large enough to address the small-scale problems of structure formation.

  3. Strong constraints on self-interacting dark matter with light mediators

    Energy Technology Data Exchange (ETDEWEB)

    Bringmann, Torsten; Walia, Parampreet [Oslo Univ. (Norway). Dept. of Physics; Kahlhoefer, Felix; Schmidt-Hoberg, Kai [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2017-04-15

    Coupling dark matter to light new particles is an attractive way to combine thermal production with strong velocity-dependent self-interactions. Here we point out that in such models the dark matter annihilation rate is generically enhanced by the Sommerfeld effect, and we derive the resulting constraints from the Cosmic Microwave Background and other indirect detection probes. For the frequently studied case of s-wave annihilation these constraints exclude the entire parameter space where the self-interactions are large enough to address the small-scale problems of structure formation.

  4. Hydrogenation of organic matter as a terminal electron sink sustains high CO 2 :CH 4 production ratios during anaerobic decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Rachel M.; Tfaily, Malak M.; Rich, Virginia I.; Keller, Jason K.; Bridgham, Scott D.; Zalman, Cassandra Medvedeff; Meredith, Laura; Hanson, Paul J.; Hines, Mark; Pfeifer-Meister, Laurel; Saleska, Scott R.; Crill, Patrick; Cooper, William T.; Chanton, Jeff P.; Kostka, Joel E.

    2017-10-01

    Once inorganic electron acceptors are depleted, organic matter in anoxic environments decomposes by hydrolysis, fermentation, and methanogenesis, requiring syntrophic interactions between microorganisms to achieve energetic favorability. In this classic anaerobic food chain, methanogenesis represents the terminal electron accepting (TEA) process, ultimately producing equimolar CO2 and CH4 for each molecule of organic matter degraded. However, CO2:CH4 production in Sphagnum-derived, mineral-poor, cellulosic peat often substantially exceeds this 1:1 ratio, even in the absence of measureable inorganic TEAs. Since the oxidation state of C in both cellulose-derived organic matter and acetate is 0, and CO2 has an oxidation state of +4, if CH4 (oxidation state -4) is not produced in equal ratio, then some other compound(s) must balance CO2 production by receiving 4 electrons. Here we present evidence for ubiquitous hydrogenation of diverse unsaturated compounds that appear to serve as organic TEAs in peat, thereby providing the necessary electron balance to sustain CO2:CH4 >1. While organic electron acceptors have previously been proposed to drive microbial respiration of organic matter through the reversible reduction of quinone moieties, the hydrogenation mechanism that we propose, by contrast, reduces C-C double bonds in organic matter thereby serving as 1) a terminal electron sink, 2) a mechanism for degrading complex unsaturated organic molecules, 3) a potential mechanism to regenerate electron-accepting quinones, and, in some cases, 4) a means to alleviate the toxicity of unsaturated aromatic acids. This mechanism for CO2 generation without concomitant CH4 production has the potential to regulate the global warming potential of peatlands by elevating CO2:CH4 production ratios.

  5. Analysis of two production inventory systems with buffer, retrials and different production rates

    Science.gov (United States)

    Jose, K. P.; Nair, Salini S.

    2017-09-01

    This paper considers the comparison of two ( {s,S} ) production inventory systems with retrials of unsatisfied customers. The time for producing and adding each item to the inventory is exponentially distributed with rate β. However, a production rate α β higher than β is used at the beginning of the production. The higher production rate will reduce customers' loss when inventory level approaches zero. The demand from customers is according to a Poisson process. Service times are exponentially distributed. Upon arrival, the customers enter into a buffer of finite capacity. An arriving customer, who finds the buffer full, moves to an orbit. They can retry from there and inter-retrial times are exponentially distributed. The two models differ in the capacity of the buffer. The aim is to find the minimum value of total cost by varying different parameters and compare the efficiency of the models. The optimum value of α corresponding to minimum total cost is an important evaluation. Matrix analytic method is used to find an algorithmic solution to the problem. We also provide several numerical or graphical illustrations.

  6. Rate of Decomposition of Organic Matter in Soil as Influenced by Repeated Air Drying-Rewetting and Repeated Additions of Organic Material

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst

    1974-01-01

    Repeated air drying and rewetting of three soils followed by incubation at 20°C resulted in an increase in the rate of decomposition of a fraction of 14C labeled organic matter in the soils. The labeled organic matter originated from labeled glucose, cellulose and straw, respectively, metabolized...... of the treatment was least in the soil which had been incubated with the labeled material for the longest time. Additions of unlabeled, decomposable organic material also increased the rate of decomposition of the labeled organic matter. The evolution of labeled CO2 during the 1st month of incubation after...... addition was in some cases 4–10 times larger than the evolution from the controls. During the continued incubation the evolution decreased almost to the level of the controls, indicating that the effect was related to the increased biological activity in the soils during decomposition of the added material...

  7. Mapping {sup 15}O Production Rate for Proton Therapy Verification

    Energy Technology Data Exchange (ETDEWEB)

    Grogg, Kira; Alpert, Nathaniel M.; Zhu, Xuping [Center for Advanced Radiological Sciences, Nuclear Medicine and Molecular Imaging, Radiology Department, Massachusetts General Hospital, Boston, Massachusetts (United States); Min, Chul Hee [Department of Radiological Science, College of Health Science, Yonsei University, Wonju, Kangwon (Korea, Republic of); Testa, Mauro; Winey, Brian [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Normandin, Marc D. [Center for Advanced Radiological Sciences, Nuclear Medicine and Molecular Imaging, Radiology Department, Massachusetts General Hospital, Boston, Massachusetts (United States); Shih, Helen A.; Paganetti, Harald; Bortfeld, Thomas [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); El Fakhri, Georges, E-mail: elfakhri@pet.mgh.harvard.edu [Center for Advanced Radiological Sciences, Nuclear Medicine and Molecular Imaging, Radiology Department, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2015-06-01

    Purpose: This work was a proof-of-principle study for the evaluation of oxygen-15 ({sup 15}O) production as an imaging target through the use of positron emission tomography (PET), to improve verification of proton treatment plans and to study the effects of perfusion. Methods and Materials: Dynamic PET measurements of irradiation-produced isotopes were made for a phantom and rabbit thigh muscles. The rabbit muscle was irradiated and imaged under both live and dead conditions. A differential equation was fitted to phantom and in vivo data, yielding estimates of {sup 15}O production and clearance rates, which were compared to live versus dead rates for the rabbit and to Monte Carlo predictions. Results: PET clearance rates agreed with decay constants of the dominant radionuclide species in 3 different phantom materials. In 2 oxygen-rich materials, the ratio of {sup 15}O production rates agreed with the expected ratio. In the dead rabbit thighs, the dynamic PET concentration histories were accurately described using {sup 15}O decay constant, whereas the live thigh activity decayed faster. Most importantly, the {sup 15}O production rates agreed within 2% (P>.5) between conditions. Conclusions: We developed a new method for quantitative measurement of {sup 15}O production and clearance rates in the period immediately following proton therapy. Measurements in the phantom and rabbits were well described in terms of {sup 15}O production and clearance rates, plus a correction for other isotopes. These proof-of-principle results support the feasibility of detailed verification of proton therapy treatment delivery. In addition, {sup 15}O clearance rates may be useful in monitoring permeability changes due to therapy.

  8. Constraints on particle dark matter from cosmic-ray antiprotons

    International Nuclear Information System (INIS)

    Fornengo, N.; Vittino, A.; Maccione, L.

    2014-01-01

    Cosmic-ray antiprotons represent an important channel for dark matter indirect-detection studies. Current measurements of the antiproton flux at the top of the atmosphere and theoretical determinations of the secondary antiproton production in the Galaxy are in good agreement, with no manifest deviation which could point to an exotic contribution in this channel. Therefore, antiprotons can be used as a powerful tool for constraining particle dark matter properties. By using the spectrum of PAMELA data from 50 MV to 180 GV in rigidity, we derive bounds on the dark matter annihilation cross section (or decay rate, for decaying dark matter) for the whole spectrum of dark matter annihilation (decay) channels and under different hypotheses of cosmic-rays transport in the Galaxy and in the heliosphere. For typical models of galactic propagation, the constraints are strong, setting a lower bound on the dark matter mass of a ''thermal'' relic at about 40–80 GeV for hadronic annihilation channels. These bounds are enhanced to about 150 GeV on the dark matter mass, when large cosmic-rays confinement volumes in the Galaxy are considered, and are reduced to 3–4 GeV for annihilation to light quarks (no bound for heavy-quark production) when the confinement volume is small. Bounds for dark matter lighter than few tens of GeV are due to the low energy part of the PAMELA spectrum, an energy region where solar modulation is relevant: to this aim, we have implemented a detailed solution of the transport equation in the heliosphere, which allowed us not only to extend bounds to light dark matter, but also to determine the uncertainty on the constraints arising from solar modulation modelling. Finally, we estimate the impact of soon-to-come AMS-02 data on the antiproton constraints

  9. Effect of pre-grazing herbage mass on dairy cow performance, grass dry matter production and output from perennial ryegrass (Lolium perenne L.) pastures.

    Science.gov (United States)

    Wims, C M; Delaby, L; Boland, T M; O'Donovan, M

    2014-01-01

    A grazing study was undertaken to examine the effect of maintaining three levels of pre-grazing herbage mass (HM) on dairy cow performance, grass dry matter (DM) production and output from perennial ryegrass (Lolium perenne L.) pastures. Cows were randomly assigned to one of three pre-grazing HM treatments: 1150 - Low HM (L), 1400 - Medium HM (M) or 2000 kg DM/ha - High HM (H). Herbage accumulation under grazing was lowest (Ppastures required more grass silage supplementation during the grazing season (+73 kg DM/cow) to overcome pasture deficits due to lower pasture growth rates (Ppasture intake, although cows grazing the L pastures had to graze a greater daily area (Ppasture reduces pasture DM production and at a system level may increase the requirement for imported feed.

  10. Organic matter loading affects lodgepole pine seedling growth.

    Science.gov (United States)

    Wei, Xiaohua; Li, Qinglin; Waterhouse, M J; Armleder, H M

    2012-06-01

    Organic matter plays important roles in returning nutrients to the soil, maintaining forest productivity and creating habitats in forest ecosystems. Forest biomass is in increasing demand for energy production, and organic matter has been considered as a potential supply. Thus, an important management question is how much organic matter should be retained after forest harvesting to maintain forest productivity. To address this question, an experimental trial was established in 1996 to evaluate the responses of lodgepole pine seedling growth to organic matter loading treatments. Four organic matter loading treatments were randomly assigned to each of four homogeneous pine sites: removal of all organic matter on the forest floor, organic matter loading quantity similar to whole-tree-harvesting residuals left on site, organic matter loading quantity similar to stem-only-harvesting residuals, and organic matter loading quantity more similar to what would be found in disease- or insect-killed stands. Our 10-year data showed that height and diameter had 29 and 35 % increase, respectively, comparing the treatment with the most organic matter loading to the treatment with the least organic matter loading. The positive response of seedling growth to organic matter loading may be associated with nutrients and/or microclimate change caused by organic matter, and requires further study. The dynamic response of seedling growth to organic matter loading treatments highlights the importance of long-term studies. Implications of those results on organic matter management are discussed in the context of forest productivity sustainability.

  11. Norwegian resource policy: The production rate for Norwegian petroleum resources

    International Nuclear Information System (INIS)

    Schreiner, P.

    1995-01-01

    Petroleum activities have become a large industry in Norway. This has led to extensive changes in Norwegian economy and society. In the public debate on this activity there has been little discussion of what would be the most profitable production rate. However, it is generally agreed that the great wealth implied by the petroleum resources must be managed in ways suitable to both present and coming generations. This report discusses the production rate based on the following questions: (1) How high can the production rate be before the petroleum activities and the expenditure of the income from them influence the remaining Norwegian economy too strongly? (2) How much of this wealth should reasonably be used by present generations and how much should be left for future generations? There is much to gain from a high tempo and from relocating some of the petroleum wealth. The possibilities of influencing the production rate are mainly connected with the allotments of production licences. The consequences of uncertainties in the petroleum activities for the choice of exploitation tempo are unclear. The environment is not much affected by the production rate. The contractor activity has become Norway's largest industry. 42 refs., 14 figs., 2 tabs

  12. Will enhanced turbulence in inland waters result in elevated production of autochthonous dissolved organic matter?

    Science.gov (United States)

    Zhou, Yongqiang; Zhou, Jian; Jeppesen, Erik; Zhang, Yunlin; Qin, Boqiang; Shi, Kun; Tang, Xiangming; Han, Xiaoxia

    2016-02-01

    Biological activity in lakes is strongly influenced by hydrodynamic conditions, not least turbulence intensity; which increases the encounter rate between plankter and nutrient patches. To investigate whether enhanced turbulence in shallow and eutrophic lakes may result in elevated biological production of autochthonous chromophoric dissolved organic matter (CDOM), a combination of field campaigns and mesocosm experiments was used. Parallel factor analysis identified seven components: four protein-like, one microbial humic-like and two terrestrial humic-like components. During our field campaigns, elevated production of autochthonous CDOM was recorded in open water with higher wind speed and wave height than in inner bays, implying that elevated turbulence resulted in increased production of autochthonous CDOM. Confirming the field campaign results, in the mesocosm experiment enhanced turbulence resulted in a remarkably higher microbial humic-like C1 and tryptophan-like C3 (pCDOM. This is consistent with the significantly higher mean concentrations of chlorophyll-a (Chl-a) and dissolved organic carbon (DOC) and the enhanced phytoplanktonic alkaline phosphatase activity (PAPA) recorded in the experimental turbulence groups than in the control group (pCDOM samples further suggested their probable autochthonous origin. Our results have implications for the understanding of CDOM cycling in shallow aquatic ecosystems influenced by wind-induced waves, in which the enhanced turbulence associated with extreme weather conditions may be further stimulated by the predicted global climate change. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Codecaying Dark Matter.

    Science.gov (United States)

    Dror, Jeff Asaf; Kuflik, Eric; Ng, Wee Hao

    2016-11-18

    We propose a new mechanism for thermal dark matter freeze-out, called codecaying dark matter. Multicomponent dark sectors with degenerate particles and out-of-equilibrium decays can codecay to obtain the observed relic density. The dark matter density is exponentially depleted through the decay of nearly degenerate particles rather than from Boltzmann suppression. The relic abundance is set by the dark matter annihilation cross section, which is predicted to be boosted, and the decay rate of the dark sector particles. The mechanism is viable in a broad range of dark matter parameter space, with a robust prediction of an enhanced indirect detection signal. Finally, we present a simple model that realizes codecaying dark matter.

  14. New production mechanism for keV sterile neutrino Dark Matter by decays of frozen-in scalars

    International Nuclear Information System (INIS)

    Merle, Alexander; Niro, Viviana; Schmidt, Daniel

    2014-01-01

    We propose a new production mechanism for keV sterile neutrino Dark Matter. In our setting, we assume the existence of a scalar singlet particle which never entered thermal equilibrium in the early Universe, since it only couples to the Standard Model fields by a really small Higgs portal interaction. For suitable values of this coupling, the scalar can undergo the so-called freeze-in process, and in this way be efficiently produced in the early Universe. These scalars can then decay into keV sterile neutrinos and produce the correct Dark Matter abundance. While similar settings in which the scalar does enter thermal equilibrium and then freezes out have been studied previously, the mechanism proposed here is new and represents a versatile extension of the known case. We perform a detailed numerical calculation of the DM production using a set of coupled Boltzmann equations, and we illustrate the successful regions in the parameter space. Our production mechanism notably can even work in models where active-sterile mixing is completely absent

  15. NPP ATMS Snowfall Rate Product

    Science.gov (United States)

    Meng, Huan; Ferraro, Ralph; Kongoli, Cezar; Wang, Nai-Yu; Dong, Jun; Zavodsky, Bradley; Yan, Banghua

    2015-01-01

    Passive microwave measurements at certain high frequencies are sensitive to the scattering effect of snow particles and can be utilized to retrieve snowfall properties. Some of the microwave sensors with snowfall sensitive channels are Advanced Microwave Sounding Unit (AMSU), Microwave Humidity Sounder (MHS) and Advance Technology Microwave Sounder (ATMS). ATMS is the follow-on sensor to AMSU and MHS. Currently, an AMSU and MHS based land snowfall rate (SFR) product is running operationally at NOAA/NESDIS. Based on the AMSU/MHS SFR, an ATMS SFR algorithm has been developed recently. The algorithm performs retrieval in three steps: snowfall detection, retrieval of cloud properties, and estimation of snow particle terminal velocity and snowfall rate. The snowfall detection component utilizes principal component analysis and a logistic regression model. The model employs a combination of temperature and water vapor sounding channels to detect the scattering signal from falling snow and derive the probability of snowfall (Kongoli et al., 2015). In addition, a set of NWP model based filters is also employed to improve the accuracy of snowfall detection. Cloud properties are retrieved using an inversion method with an iteration algorithm and a two-stream radiative transfer model (Yan et al., 2008). A method developed by Heymsfield and Westbrook (2010) is adopted to calculate snow particle terminal velocity. Finally, snowfall rate is computed by numerically solving a complex integral. NCEP CMORPH analysis has shown that integration of ATMS SFR has improved the performance of CMORPH-Snow. The ATMS SFR product is also being assessed at several NWS Weather Forecast Offices for its usefulness in weather forecast.

  16. Probing parton dynamics of QCD matter with Ω and ϕ production

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chatterjee, A.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A. I.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, X.; Huang, B.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jentsch, A.; Jia, J.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, X.; Li, Y.; Li, W.; Lin, T.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, R.; Ma, G. L.; Ma, Y. G.; Ma, L.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Matis, H. S.; McDonald, D.; McKinzie, S.; Meehan, K.; Mei, J. C.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, S.; Raniwala, R.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, B.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, Z.; Sun, X. M.; Sun, Y.; Surrow, B.; Svirida, D. N.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, F.; Wang, G.; Wang, J. S.; Wang, H.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xin, K.; Xu, Y. F.; Xu, Q. H.; Xu, N.; Xu, H.; Xu, Z.; Xu, J.; Yang, S.; Yang, Y.; Yang, Y.; Yang, C.; Yang, Y.; Yang, Q.; Ye, Z.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, Y.; Zhang, J.; Zhang, J.; Zhang, S.; Zhang, S.; Zhang, Z.; Zhang, J. B.; Zhao, F.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2016-02-01

    We present measurements of Ω and ϕ production at midrapidity from Au+Au collisions at nucleon-nucleon center-of-mass energies √{sN N}=7.7 , 11.5 , 19.6 , 27, and 39 GeV by the STAR experiment at the BNL Relativistic Heavy Ion Collider (RHIC). Motivated by the coalescence formation mechanism for these strange hadrons, we study the ratios of N (Ω-+Ω¯+) /[2 N (ϕ ) ] . These ratios as a function of transverse momentum pT fall on a consistent trend at high collision energies, but start to show deviations in peripheral collisions at √{sN N}=19.6 , 27, and 39 GeV, and in central collisions at 11.5 GeV in the intermediate pT region of 2.4 -3.6 GeV/c . We further evaluate empirically the strange quark pT distributions at hadronization by studying the Ω /ϕ ratios scaled by the number of constituent quarks (NCQ). The NCQ-scaled Ω /ϕ ratios show a suppression of strange quark production in central collisions at 11.5 GeV compared to √{sN N}≥19.6 GeV. The shapes of the presumably thermal strange quark distributions in 0-60% most central collisions at 7.7 GeV show significant deviations from those in 0-10% most central collisions at higher energies. These features suggest that there is likely a change of the underlying strange quark dynamics in the transition from quark matter to hadronic matter at collision energies below 19.6 GeV.

  17. Nonthermal Supermassive Dark Matter

    Science.gov (United States)

    Chung, Daniel J. H.; Kolb, Edward W.; Riotto, Antonio

    1999-01-01

    We discuss several cosmological production mechanisms for nonthermal supermassive dark matter and argue that dark matter may he elementary particles of mass much greater than the weak scale. Searches for dark matter should ma be limited to weakly interacting particles with mass of the order of the weak scale, but should extend into the supermassive range as well.

  18. Nonthermal Supermassive Dark Matter

    OpenAIRE

    Chung, Daniel J. H.; Kolb, Edward W.; Riotto, Antonio

    1998-01-01

    We discuss several cosmological production mechanisms for nonthermal supermassive dark matter and argue that dark matter may be elementary particles of mass much greater than the weak scale. Searches for dark matter should not be limited to weakly interacting particles with mass of the order of the weak scale, but should extend into the supermassive range as well.

  19. The impact of dry matter loss during herbaceous biomass storage on net greenhouse gas emissions from biofuels production

    International Nuclear Information System (INIS)

    Emery, Isaac R.; Mosier, Nathan S.

    2012-01-01

    Life cycle inventory models of greenhouse gas emissions from biofuel production have become tightly integrated into government mandates and other policies to encourage biofuel production. Current models do not include life cycle impacts of biomass storage or reflect current literature on emissions from soil and biomass decomposition. In this study, the GREET model framework was used to determine net greenhouse gas emissions during ethanol production from corn and switchgrass via three biomass storage systems: wet ensiling of whole corn, and indoor and outdoor dry bale storage of corn stover and switchgrass. Dry matter losses during storage were estimated from the literature and used to modify GREET inventory analysis. Results showed that biomass stability is a key parameter affecting fuel production per farmed hectare and life cycle greenhouse gas emissions. Corn silage may generate 5358 L/ha of ethanol at 26.5 g CO 2 eq/MJ, relative to 5654 L/ha at 52.3 g CO 2 eq/MJ from combined corn stover and conventional grain corn ethanol production, or 3919 L/ha at 21.3 g CO 2 eq/MJ from switchgrass. Dry matter losses can increase net emissions by 3–25% (ensiling), 5–53% (bales outdoors), or 1–12% (bales indoors), decreasing the net GHG reduction of ethanol over gasoline by up to 10.9%. Greater understanding of biomass storage losses and greenhouse gas fluxes during storage is necessary to accurately assess biomass storage options to ensure that the design of biomass supply logistics systems meet GHG reduction mandates for biofuel production. -- Highlights: ► Analyzed the impact of biomass loss during storage. ► Probable dry matter losses strongly depend on storage method and infrastructure. ► Assessed impact of storage losses on LCA for cellulosic ethanol production. ► Storage losses increase GHG emissions by 1–53% depending upon storage conditions.

  20. Influence of product thickness, chamber pressure and heating conditions on production rate of freeze-dried yoghurt

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, N.K. [G.B. Pant Univ., of Agriculture and Technology (India). Dept. of Mechanical Engineering; Arora, C.P. [Indian Inst. of Tech., New Delhi (India)

    1995-06-01

    The effects of product thickness, chamber pressure and heating conditions on product temperature profiles and production rate of freeze-dried yoghurt were investigated experimentally. Three sample thicknesses - 3.8 mm, 6.2 mm and 9.4 mm - were tested at chamber pressures of 0.01 and 0.5 mmHg. The production rate increased by decreasing product thickness in contact heating through the bottom of the frozen layer, whereas no significant change was observed in radiant heating. A reduction in chamber pressure from 0.50 to 0.01 mmHg increased the drying time in radiant heating. Maximum production rate was obtained when the thickness of dried product was 6.2 mm, when heat was transferred simultaneously through the frozen and dried layers, and the chamber pressure was at 0.01 mmHg. Use of the product tray developed in this study prevents the growth of dry layers at the contact surfaces. (Author)

  1. Effects of Variable Production Rate and Time-Dependent Holding Cost for Complementary Products in Supply Chain Model

    Directory of Open Access Journals (Sweden)

    Mitali Sarkar

    2017-01-01

    Full Text Available Recently, a major trend is going to redesign a production system by controlling or making variable the production rate within some fixed interval to maintain the optimal level. This strategy is more effective when the holding cost is time-dependent as it is interrelated with holding duration of products and rate of production. An effort is made to make a supply chain model (SCM to show the joint effect of variable production rate and time-varying holding cost for specific type of complementary products, where those products are made by two different manufacturers and a common retailer makes them bundle and sells bundles to end customers. Demand of each product is specified by stochastic reservation prices with a known potential market size. Those players of the SCM are considered with unequal power. Stackelberg game approach is employed to obtain global optimum solution of the model. An illustrative numerical example, graphical representation, and managerial insights are given to illustrate the model. Results prove that variable production rate and time-dependent holding cost save more than existing literature.

  2. Entropy, matter, and cosmology.

    Science.gov (United States)

    Prigogine, I; Géhéniau, J

    1986-09-01

    The role of irreversible processes corresponding to creation of matter in general relativity is investigated. The use of Landau-Lifshitz pseudotensors together with conformal (Minkowski) coordinates suggests that this creation took place in the early universe at the stage of the variation of the conformal factor. The entropy production in this creation process is calculated. It is shown that these dissipative processes lead to the possibility of cosmological models that start from empty conditions and gradually build up matter and entropy. Gravitational entropy takes a simple meaning as associated to the entropy that is necessary to produce matter. This leads to an extension of the third law of thermodynamics, as now the zero point of entropy becomes the space-time structure out of which matter is generated. The theory can be put into a convenient form using a supplementary "C" field in Einstein's field equations. The role of the C field is to express the coupling between gravitation and matter leading to irreversible entropy production.

  3. Relationship between rumen protozoal growth, intake of DM, TDN, N, DOM and VFA production rate in buffalo calves

    International Nuclear Information System (INIS)

    Verma, D.N.; Singh, U.B.

    1981-01-01

    Relationships between in vivo rumen protozoal growth and intakes of dry matter (DM), nitrogen, digestible organic matter (DOM), total digestible nutrients (TDN) and volatile fatty acid (VFA) production have been studied. Isotope dilution technique and 14 C-labelled rumen protozoa were used in the studies. (author)

  4. BIG-10 fission product generation and reaction rates

    International Nuclear Information System (INIS)

    Rogers, J.W.

    1976-01-01

    Fission product generation rates for high quality fission foils and reaction rates of nonfission foils have been measured by gamma ray activation analyses. These foils were irradiated in the BIG-10 facility and the activities were measured by NaI counting techniques

  5. Biological compost stability influences odor molecules production measured by electronic nose during food-waste high-rate composting

    International Nuclear Information System (INIS)

    D'Imporzano, Giuliana; Crivelli, Fernando; Adani, Fabrizio

    2008-01-01

    Composting is a technique that is used to convert organic waste into agriculturally useful products. Composting is an aerobic, solid-state biological process, which typically can be divided into two phases, a high-rate composting phase and a curing phase. High-rate composting plays an important role during the composting process, owing to the high microbial activity occurring during this phase. It requires an accurate plant design to prevent the formation of anaerobic conditions and odors. The formation of anaerobic conditions mainly depends on the rate of O 2 consumption needed to degrade the substrate, i.e., the biological stability of the substrate. In this study, we investigated the relationship between the biological activity, measured by the dynamic respiration index (DRI) and the odor molecules production, measured by an electronic nose (EN) during two food-waste high-rate composting processes. Although the O 2 concentration in the biomass free air space (FAS) was kept optimal (O 2 > 140 ml l -1 , v/v) during composting, strong anaerobic conditions developed. This was indicated by the high levels of sulfur compounds, methane, and hydrogen in the outlet air stream. Both the high level of O 2 consumption, needed to degrade the high-degradable water-soluble organic matter and the low water O 2 solubility, caused by high temperature reached in this stage (up to 60 deg. C), led to the anaerobic conditions observed in the biofilm-particle level. The application of the partial least square (PLS) analysis demonstrated a good regression between the DRI and the odor molecules produced that was detected by the EN (R 2 = 0.991; R 2 CV = 0.990), signifying the usefulness of the DRI as a parameter to estimate the potential production of odor molecules of the biomass

  6. The Compressed Baryonic Matter Experiment at FAIR

    International Nuclear Information System (INIS)

    Heuser, Johann M.

    2013-01-01

    The Compressed Baryonic Matter (CBM) experiment will explore the phase diagram of strongly interacting matter in the region of high net baryon densities. The experiment is being laid out for nuclear collision rates from 0.1 to 10 MHz to access a unique wide spectrum of probes, including rarest particles like hadrons containing charm quarks, or multi-strange hyperons. The physics programme will be performed with ion beams of energies up to 45 GeV/nucleon. Those will be delivered by the SIS-300 synchrotron at the completed FAIR accelerator complex. Parts of the research programme can already be addressed with the SIS-100 synchrotron at the start of FAIR operation in 2018. The initial energy range of up to 11 GeV/nucleon for heavy nuclei, 14 GeV/nucleon for light nuclei, and 29 GeV for protons, allows addressing the equation of state of compressed nuclear matter, the properties of hadrons in a dense medium, the production and propagation of charm near the production threshold, and exploring the third, strange dimension of the nuclide chart. In this article we summarize the CBM physics programme, the preparation of the detector, and give an outline of the recently begun construction of the Facility for Antiproton and Ion Research

  7. Search for dark matter in events with one jet and missing transverse energy in pp¯ collisions at √s=1.96 TeV.

    Science.gov (United States)

    Aaltonen, T; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Bai, Y; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bisello, D; Bizjak, I; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Calamba, A; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chung, W H; Chung, Y S; Ciocci, M A; Clark, A; Clarke, C; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuevas, J; Culbertson, R; Dagenhart, D; d'Ascenzo, N; Datta, M; de Barbaro, P; Dell'Orso, M; Demortier, L; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, M; Dorigo, T; Ebina, K; Elagin, A; Eppig, A; Erbacher, R; Errede, S; Ershaidat, N; Eusebi, R; Farrington, S; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Fox, P J; Frank, M J; Franklin, M; Freeman, J C; Funakoshi, Y; Furic, I; Gallinaro, M; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Halkiadakis, E; Hamaguchi, A; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harnik, R; Harr, R F; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Hewamanage, S; Hocker, A; Hopkins, W; Horn, D; Hou, S; Hughes, R E; Hurwitz, M; Husemann, U; Hussain, N; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kim, Y J; Kimura, N; Kirby, M; Klimenko, S; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Kruse, M; Krutelyov, V; Kuhr, T; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lecompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lin, C-J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maeshima, K; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Martínez, M; Mastrandrea, P; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Patrick, J; Pauletta, G; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Prokoshin, F; Pranko, A; Ptohos, F; Punzi, G; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Rescigno, M; Riddick, T; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sinervo, P; Sliwa, K; Smith, J R; Snider, F D; Soha, A; Sorin, V; Song, H; Squillacioti, P; Stancari, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Varganov, A; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wagner, R L; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Wick, F; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zhou, C; Zucchelli, S

    2012-05-25

    We present the results of a search for dark matter production in the monojet signature. We analyze a sample of Tevatron pp[over ¯] collisions at √s=1.96 TeV corresponding to an integrated luminosity of 6.7 fb(-1) recorded by the CDF II detector. In events with large missing transverse energy and one energetic jet, we find good agreement between the standard model prediction and the observed data. We set 90% confidence level upper limits on the dark matter production rate. The limits are translated into bounds on nucleon-dark matter scattering rates which are competitive with current direct detection bounds on spin-independent interaction below a dark matter candidate mass of 5 GeV/c(2), and on spin-dependent interactions up to masses of 200 GeV/c(2).

  8. 75 FR 16837 - In the Matter of Certain Integrated Circuits, Chipsets, and Products Containing Same Including...

    Science.gov (United States)

    2010-04-02

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-709] In the Matter of Certain Integrated Circuits... importation of certain integrated circuits, chipsets, and products containing same including televisions... importation, or the sale within the United States after importation of certain integrated circuits, chipsets...

  9. Biogas production from water hyacinth (eichhornia crassipes)

    International Nuclear Information System (INIS)

    Solly, R.K.; Goundar, D.; Singh, N.; Singh, M.K.

    1981-01-01

    The formation of biogas by anaerobic digestion of water hyacinth (Eichhornia crassipes) has been investigated in simple laboratory digesters. Seed material was obtained from the rumen contents of a goat. Under conditions where the mass of seed material exceeded the water hyacinth feed, the maximum rate of biogas production was obtained within one to two days of each addition of feed material. The maximum amount of biogas produced, 0.33 m 3 kg -1 dry matter was obtained at 40 deg. C with a slight decrease in total production at 35 deg. C. The total biogas produced at 45 deg. C (0.12 m 3 kg -1 dry matter) was less than that at 30 deg. C (0.16 m 3 kg -1 ). Regular additions of small amounts of feed material produced a more uniform rate of biogas production (author)

  10. Sensitivity of decomposition rates of soil organic matter with respect to simultaneous changes in temperature and moisture

    Science.gov (United States)

    Sierra, Carlos A.; Trumbore, Susan E.; Davidson, Eric A.; Vicca, Sara; Janssens, I.

    2015-03-01

    The sensitivity of soil organic matter decomposition to global environmental change is a topic of prominent relevance for the global carbon cycle. Decomposition depends on multiple factors that are being altered simultaneously as a result of global environmental change; therefore, it is important to study the sensitivity of the rates of soil organic matter decomposition with respect to multiple and interacting drivers. In this manuscript, we present an analysis of the potential response of decomposition rates to simultaneous changes in temperature and moisture. To address this problem, we first present a theoretical framework to study the sensitivity of soil organic matter decomposition when multiple driving factors change simultaneously. We then apply this framework to models and data at different levels of abstraction: (1) to a mechanistic model that addresses the limitation of enzyme activity by simultaneous effects of temperature and soil water content, the latter controlling substrate supply and oxygen concentration for microbial activity; (2) to different mathematical functions used to represent temperature and moisture effects on decomposition in biogeochemical models. To contrast model predictions at these two levels of organization, we compiled different data sets of observed responses in field and laboratory studies. Then we applied our conceptual framework to: (3) observations of heterotrophic respiration at the ecosystem level; (4) laboratory experiments looking at the response of heterotrophic respiration to independent changes in moisture and temperature; and (5) ecosystem-level experiments manipulating soil temperature and water content simultaneously.

  11. Thermalizing Sterile Neutrino Dark Matter.

    Science.gov (United States)

    Hansen, Rasmus S L; Vogl, Stefan

    2017-12-22

    Sterile neutrinos produced through oscillations are a well motivated dark matter candidate, but recent constraints from observations have ruled out most of the parameter space. We analyze the impact of new interactions on the evolution of keV sterile neutrino dark matter in the early Universe. Based on general considerations we find a mechanism which thermalizes the sterile neutrinos after an initial production by oscillations. The thermalization of sterile neutrinos is accompanied by dark entropy production which increases the yield of dark matter and leads to a lower characteristic momentum. This resolves the growing tensions with structure formation and x-ray observations and even revives simple nonresonant production as a viable way to produce sterile neutrino dark matter. We investigate the parameters required for the realization of the thermalization mechanism in a representative model and find that a simple estimate based on energy and entropy conservation describes the mechanism well.

  12. Thermalizing Sterile Neutrino Dark Matter

    Science.gov (United States)

    Hansen, Rasmus S. L.; Vogl, Stefan

    2017-12-01

    Sterile neutrinos produced through oscillations are a well motivated dark matter candidate, but recent constraints from observations have ruled out most of the parameter space. We analyze the impact of new interactions on the evolution of keV sterile neutrino dark matter in the early Universe. Based on general considerations we find a mechanism which thermalizes the sterile neutrinos after an initial production by oscillations. The thermalization of sterile neutrinos is accompanied by dark entropy production which increases the yield of dark matter and leads to a lower characteristic momentum. This resolves the growing tensions with structure formation and x-ray observations and even revives simple nonresonant production as a viable way to produce sterile neutrino dark matter. We investigate the parameters required for the realization of the thermalization mechanism in a representative model and find that a simple estimate based on energy and entropy conservation describes the mechanism well.

  13. Superball dark matter

    CERN Document Server

    Kusenko, A

    1999-01-01

    Supersymmetric models predict a natural dark-matter candidate, stable baryonic Q-balls. They could be copiously produced in the early Universe as a by-product of the Affleck-Dine baryogenesis. I review the cosmological and astrophysical implications, methods of detection, and the present limits on this form of dark matter.

  14. Inclusion of products of physicochemical oxidation of organic wastes in matter recycling of biological-technical life support systems.

    Science.gov (United States)

    Tikhomirov, Alexander A.; Kudenko, Yurii; Trifonov, Sergei; Ushakova, Sofya

    Inclusion of products of human and plant wastes' `wet' incineration in 22 medium using alter-nating current into matter recycling of biological-technical life support system (BTLSS) has been considered. Fluid and gaseous components have been shown to be the products of such processing. In particular, the final product contained all necessary for plant cultivation nitrogen forms: NO2, NO3, NH4+. As the base solution included urine than NH4+ form dominated. At human solid wastes' mineralization NO2 NH4+ were registered in approximately equal amount. Comparative analysis of mineral composition of oxidized human wastes' and standard Knop solutions has been carried out. On the grounds of that analysis the dilution methods of solutions prepared with addition of oxidized human wastes for their further use for plant irrigation have been suggested. Reasonable levels of wheat productivity cultivated at use of given solutions have been obtained. CO2, N2 and O2 have been determined to be the main gas components of the gas admixture emitted within the given process. These gases easily integrate in matter recycling process of closed ecosystem. The data of plants' cultivation feasibility in the atmosphere obtained after closing of gas loop including physicochemical facility and vegetation chamber with plants-representatives of LSS phototrophic unit has been received. Conclusion of advance research on creation of matter recycling process in the integrated physical-chemical-biological model system has been drawn.

  15. Greater carbon stocks and faster turnover rates with increasing agricultural productivity

    Science.gov (United States)

    Sanderman, J.; Fallon, S.; Baisden, T. W.

    2013-12-01

    H.H. Janzen (2006) eloquently argued that from an agricultural perspective there is a tradeoff between storing carbon as soil organic matter (SOM) and the soil nutrient and energy benefit provided during SOM mineralization. Here we report on results from the Permanent Rotation Trial at the Waite Agricultural Institute, South Australia, indicating that shifting to an agricultural management strategy which returns more carbon to the soil, not only leads to greater carbon stocks but also increases the rate of carbon cycling through the soil. The Permanent Rotation Trial was established on a red Chromosol in 1925 with upgrades made to several treatments in 1948. Decadal soil samples were collected starting in 1963 at two depths, 0-10 and 10-22.5 cm, by compositing 20 soil cores taken along the length of each plot. We have chosen to analyze five trials representing a gradient in productivity: permanent pasture (Pa), wheat-pasture rotation (2W4Pa), continuous wheat (WW), wheat-oats-fallow rotation (WOF) and wheat-fallow (WF). For each of the soil samples (40 in total), the radiocarbon activity in the bulk soil as well as size-fractionated samples was measured by accelerator mass spectrometry at ANU's Radiocarbon Dating Laboratory (Fallon et al. 2010). After nearly 70 years under each rotation, SOC stocks increased linearly with productivity data across the trials from 24 to 58 tC ha-1. Importantly, these differences were due to greater losses over time in the low productivity trials rather than gains in SOC in any of the trials. Uptake of the bomb-spike in atmospheric 14C into the soil was greatest in the trials with the greatest productivity. The coarse size fraction always had greater Δ14C values than the bulk soil samples. Several different multi-pool steady state and non-steady state models were used to interpret the Δ14C data in terms of SOC turnover rates. Regardless of model choice, either the decay rates of all pools needed to increase or the allocation of C to

  16. Automized squark-neutralino production to next-to-leading order

    International Nuclear Information System (INIS)

    Binoth, Thomas; Wigmore, Ioan; Netto, Dorival Goncalves; Lopez-Val, David; Plehn, Tilman; Mawatari, Kentarou

    2011-01-01

    The production of one hard jet in association with missing transverse energy is a major LHC search channel motivated by many scenarios for physics beyond the standard model. In scenarios with a weakly interacting dark matter candidate, like supersymmetry, it arises from the associated production of a quark partner with the dark matter agent. We present the next-to-leading-order cross section calculation as the first application of the fully automized MadGolem package. We find moderate corrections to the production rate with a strongly reduced theory uncertainty.

  17. Study of the energetic proton production in relativistic heavy ions Ne + nuclei collisions, using Diogene detector. Hadronic matter temperature

    International Nuclear Information System (INIS)

    Rahmani, A.

    1988-12-01

    The study of the proton's production differential cross sections, in the collision of relativistic heavy ions, allows to obtain the nuclear-matter temperature and gives information about the nucleons large burst pulses in the nucleus. The chosen thermodynamic model is a generalized approach of the R. Hagedorn model, applied to heavy ions collisions: the nuclear matter is divided in volume elements δV assumed to be in thermal and chemical equilibrium and emitting particles and fragments isotropically, inside their own system. The applied nuclear-matter velocity distribution depended only on the impact parameter and on the relationship between the chemical potential and the temperature. The predictions of this thermodynamic model were compared to the Saturne experimental results, using Diogene detector. The obtained temperature values are similar to those given by D. Hahn and H. Stoker. The proton production cross sections were measured for backward emitting angles. A relationship between the cross sections and the burst pulse distribution in the nuclei was settled [fr

  18. Inelastic dark matter

    International Nuclear Information System (INIS)

    Smith, David; Weiner, Neal

    2001-01-01

    Many observations suggest that much of the matter of the universe is nonbaryonic. Recently, the DAMA NaI dark matter direct detection experiment reported an annual modulation in their event rate consistent with a WIMP relic. However, the Cryogenic Dark Matter Search (CDMS) Ge experiment excludes most of the region preferred by DAMA. We demonstrate that if the dark matter can only scatter by making a transition to a slightly heavier state (Δm∼100 keV), the experiments are no longer in conflict. Moreover, differences in the energy spectrum of nuclear recoil events could distinguish such a scenario from the standard WIMP scenario. Finally, we discuss the sneutrino as a candidate for inelastic dark matter in supersymmetric theories

  19. Nonthermal Supermassive Dark Matter

    International Nuclear Information System (INIS)

    Chung, D.J.; Chung, D.J.; Kolb, E.W.; Kolb, E.W.; Riotto, A.

    1998-01-01

    We discuss several cosmological production mechanisms for nonthermal supermassive dark matter and argue that dark matter may be elementary particles of mass much greater than the weak scale. Searches for dark matter should not be limited to weakly interacting particles with mass of the order of the weak scale, but should extend into the supermassive range as well. copyright 1998 The American Physical Society

  20. Dark matter particle production in b→s transitions with missing energy

    International Nuclear Information System (INIS)

    Bird, Chris; Jackson, Paul; Kowalewski, Robert; Pospelov, Maxim

    2004-01-01

    Dedicated underground experiments searching for dark matter have little sensitivity to GeV and sub-GeV masses of dark matter particles. We show that the decay of B mesons to K(K * ) and missing energy in the final state can be an efficient probe of dark matter models in this mass range. We analyze the minimal scalar dark matter model to show that the width of the decay mode with two dark matter scalars B→KSS may exceed the decay width in the standard model channel, B→Kνν-bar, by up to 2 orders of magnitude. Existing data from B physics experiments almost entirely exclude dark matter scalars with masses less than 1 GeV. Expected data from B factories probe the range of dark matter masses up to 2 GeV

  1. Comparison of in situ dry matter degradation parameters with in vitro ...

    African Journals Online (AJOL)

    Adem Kamalak

    The rate and extent of fermentation of dry matter (DM) in the rumen are very important determinants ... kinetics of forages obtained by the in situ nylon bag technique and the in vitro gas production technique. (Blummel & Ørskov ..... not find any correlation between these parameters in barley and wheat straw. Beuvinik et al.

  2. Dry matter production of perennial pasture Tifton 85 (Cynodon spp under different doses of fertilization

    Directory of Open Access Journals (Sweden)

    Karlize Prigol

    2012-12-01

    Full Text Available Dairy farming is an activity that provides the small rural farmer the opportunity to earn income in small areas of land. The perennial pastures represent a source for a cheap and nutritious diet for the animals. The correct management of perennial pastures can be the key to sustainability in the dairy business, resulting in the preservation or recovery of the balance of a pasture system, starting with the pursuit of production with low costs and good pasture production per unit area. The correct choice of fertilizer is of great importance to ensure the continuous production of pasture both in quantity and in quality. The aim of this study was to evaluate the dry matter production of perennial pasture consisting of Tifton 85 (Cynodon spp under different nutrient sources on a typical dystrophic Red Latosol, presents in a region where the climate is characterized as humid-mesothermic with a hot summer, Cfa according to Köppen, with an average annual rainfall of 2039 mm, well distributed throughout the year and average annual temperatures around 18 º C, varying monthly from 14.1 to 23 º C. The treatments consisted of three nutrient sources: 1 organic manure, a base of chicken bedding (average values of reference NPK (02/03/02, 2 organic manure + mineral - organic mineral, with application of 606 kg ha-1 (04/10/10 Formula, aiming to adjust the same amounts of NPK supplied by mineral fertilizer and, 3 Mineral. The experimental design was a randomized blocks with nine replications. We collected five samples of each pasture treatment for determination of the average. After cutting the pasture of Tifton 85, the samples were subjected to weighing for determination of wet weight and then taken to the drying oven (temperature 65 ° C for 72 hours to determine dry matter production. The statistical analysis was performed with SAS for Windows computer system (SAS and the results submitted to the Tukey test at 5%. The highest dry matter yield (kg ha-1 was

  3. Rate of nova production in the Galaxy

    International Nuclear Information System (INIS)

    Liller, W.; Mayer, B.; PROBLICOM Sky Survey, Los Angeles, CA)

    1987-01-01

    The ongoing PROBLICOM program in the Southern Hemisphere now makes it possible to derive a reliable value for the overall production rate of Galactic novae. The results, 73 + or - 24/y, indicates that the Galaxy outproduces M 31 by a factor of two or three. It is estimated that the rate of supernova ejecta is one and a half orders of magnitude greater than that of novae in the Galaxy. 15 references

  4. Confinement and deconfinement of quarks in nuclear matter

    International Nuclear Information System (INIS)

    Baym, G.

    1982-01-01

    Nuclear matter at high baryon density or excitation energy is expected to undergo a transition to deconfined quark matter, a new state of matter, whose production and detection would be an exciting and basic advance in nuclear physics. These lectures summarize current understanding of quark matter and the deconfinement transition. Beginning with a review of elementary models of confinement, the basic properties of quark matter are described, estimates of the transition from hadronic to quark matter are made, and various ways one might see quark matter experimentally by production in nuclear collisions or in the form of metastable exotic nuclear objects are discussed. (author)

  5. Dissolved natural organic matter (NOM) impacts photosynthetic oxygen production and electron transport in coontail Ceratophyllum demersum

    International Nuclear Information System (INIS)

    Pflugmacher, S.; Pietsch, C.; Rieger, W.; Steinberg, C.E.W.

    2006-01-01

    Dissolved natural organic matter (NOM) is dead organic matter exceeding, in freshwater systems, the concentration of organic carbon in all living organisms by far. 80-90% (w/w) of the NOM is made up of humic substances (HS). Although NOM possesses several functional groups, a potential effect on aquatic organisms has not been studied. In this study, direct effects of NOM from various origins on physiological and biochemical functions in the aquatic plant Ceratophyllum demersum are presented. Environmentally relevant concentrations of NOM cause inhibitory effects on the photosynthetic oxygen production of C. demersum. Various NOM sources and the synthetic humic substance HS1500 inhibit the photosynthetic oxygen production of the plant as observed with 1-amino-anthraquinone, a known inhibitor of plant photosynthesis. 1-Aminoanthraquinone may serve as an analogue for the quinoid structures in NOM and HS. Most likely, the effects of NOM may be related to quinoid structures and work downstream of photosynthesis at photosystem (PS) II

  6. High-rate fermentative hydrogen production from beverage wastewater

    International Nuclear Information System (INIS)

    Sivagurunathan, Periyasamy; Sen, Biswarup; Lin, Chiu-Yue

    2015-01-01

    Highlights: • Hybrid immobilized-bacterial cells show stable operation over 175 days. • Low HRT of 1.5 h shows peak hydrogen production rate of 55 L/L-d. • Electricity generation is 9024 kW-d from 55 L/L-d hydrogen using beverage wastewater. • Granular sludge formed only at 2–3 h HRT with presence of Selenomonas sp. - Abstract: Hydrogen production from beverage industry wastewater (20 g/L hexose equivalent ) using an immobilized cell reactor with a continuous mode of operation was studied at various hydraulic retention times (HRT, 8–1.5 h). Maximum hydrogen production rate (HPR) of 55 L/L-d was obtained at HRT 1.5 h (an organic loading of 320 g/L-d hexose equivalent ). This HPR value is much higher than those of other industrial wastewaters employed in fermentative hydrogen production. The cell biomass concentration peaked at 3 h HRT with a volatile suspended solids (VSS) concentration of 6.31 g/L (with presence of self-flocculating Selenomonas sp.), but it dropped to 3.54 gVSS/L at 1.5 h HRT. With the shortening of HRT, lactate concentration increased but the concentration of the dominant metabolite butyrate did not vary significantly. The Clostridium species dynamics was not significantly affected, but total microbial community structure changed with respect to HRT variation as evident from PCR–DGGE analyses. Analysis of energy production rate suggests that beverage wastewater is a high energy yielding feedstock, and can replace 24% of electricity consumption in a model beverage industry

  7. CHLORPYRIFOS TRANSFORMATION BY AQUEOUS CHLORINE IN THE PRESENCE OF BROMIDE AND NATURAL ORGANIC MATTER

    Science.gov (United States)

    The aqueous chlorination of chlorpyrifos (CP) was investigated in the presence of bromide and natural organic matter (NOM), which were identified as naturally occurring aqueous constituents that could impact CP transformation rates to the toxic product chlorpyrifos oxon (CPO). Br...

  8. D-brane disformal coupling and thermal dark matter

    Science.gov (United States)

    Dutta, Bhaskar; Jimenez, Esteban; Zavala, Ivonne

    2017-11-01

    Conformal and disformal couplings between a scalar field and matter occur naturally in general scalar-tensor theories. In D-brane models of cosmology and particle physics, these couplings originate from the D-brane action describing the dynamics of its transverse (the scalar) and longitudinal (matter) fluctuations, which are thus coupled. During the post-inflationary regime and before the onset of big bang nucleosynthesis (BBN), these couplings can modify the expansion rate felt by matter, changing the predictions for the thermal relic abundance of dark matter particles and thus the annihilation rate required to satisfy the dark matter content today. We study the D-brane-like conformal and disformal couplings effect on the expansion rate of the Universe prior to BBN and its impact on the dark matter relic abundance and annihilation rate. For a purely disformal coupling, the expansion rate is always enhanced with respect to the standard one. This gives rise to larger cross sections when compared to the standard thermal prediction for a range of dark matter masses, which will be probed by future experiments. In a D-brane-like scenario, the scale at which the expansion rate enhancement occurs depends on the string coupling and the string scale.

  9. Situation of sources and management of organic matter in Alsace, perspectives of development of biogas production installations - Final report. Situation of organic matter sources and perspectives of methanization in Alsace - Synthesis. Call for projects 2016 methanization installations in Alsace

    International Nuclear Information System (INIS)

    Houillon, Gregory; Gambotti, Michel; Chabrier, Jean-Paul; L'Huillier, Marthe; Wolff, Virginie; Muller, Jonathan; Gintz, Christophe; Strehler, Jean-Francois; Monasson, Anne; Gartner, Nathalie

    2013-01-01

    This study aims at proposing answers to the issue of valorisation of organic matter, and of feasibility of development of a biogas production sector in Alsace. It addresses different sources of organic matter, except the wood energy sector. The study comprises an assessment of the present situation of the organic matter resource with respect to actors (agriculture, communities, industry). Different aspects are addressed: sector characterisation, regulation, resource assessment, resource mapping, existing processing sectors. It also comprises an assessment of additional resources related to the three types of actors, and then an assessment of the potential biogas production, a realistic assessment of potential biogas production according to resource availability and collection possibility criteria. Based on these elements, proposals are made for the development of methanization in Alsace

  10. Design and construction of a cryogenic distillation device for removal of krypton for liquid xenon dark matter detectors.

    Science.gov (United States)

    Wang, Zhou; Bao, Lei; Hao, Xihuan; Ju, Yonglin

    2014-01-01

    Liquid xenon (Xe) is one of the commendable detecting media for the dark matter detections. However, the small content of radioactive krypton-85 ((85)Kr) always exists in the commercial xenon products. An efficient cryogenic distillation system to remove this krypton (Kr) from commercial xenon products has been specifically designed, developed, and constructed in order to meet the requirements of the dark matter experiments with high- sensitivity and low-background. The content of krypton in regular commercial xenon products can be reduced from 10(-9) to 10(-12), with 99% xenon collection efficiency at maximum flow rate of 5 kg/h (15SLPM). The purified xenon gases produced by this distillation system can be used as the detecting media in the project of Panda X, which is the first dark matter detector developed in China.

  11. Impeded Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Joachim; Liu, Jia [PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,Johannes Gutenberg University,Staudingerweg 7, 55099 Mainz (Germany); Slatyer, Tracy R. [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States); Wang, Xiao-Ping [PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics,Johannes Gutenberg University,Staudingerweg 7, 55099 Mainz (Germany); Xue, Wei [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)

    2016-12-12

    We consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario “Impeded Dark Matter”. We demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.

  12. Impeded Dark Matter

    International Nuclear Information System (INIS)

    Kopp, Joachim; Liu, Jia; Slatyer, Tracy R.; Wang, Xiao-Ping; Xue, Wei

    2016-01-01

    We consider dark matter models in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. To emphasize this modification, we dub our scenario “Impeded Dark Matter”. We demonstrate that Impeded Dark Matter can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppressed by the small mass splitting, which helps light dark matter to survive increasingly stringent constraints from indirect searches. As specific realizations for Impeded Dark Matter, we introduce a model of vector dark matter from a hidden SU(2) sector, and a composite dark matter scenario based on a QCD-like dark sector.

  13. Production of CaWO{sub 4} crystals for direct dark matter search with CRESST

    Energy Technology Data Exchange (ETDEWEB)

    Muenster, Andrea [Physik-Department and Excellence Cluster Universe, Technische Universitaet Muenchen, D-85748 Garching (Germany); Collaboration: CRESST-Collaboration

    2016-07-01

    The direct dark matter search experiment CRESST (Cryogenic Rare Event Search with Superconducting Thermometers) uses scintillating CaWO{sub 4} single crystals as targets for possible recoils of dark matter particles. Since several years these CaWO{sub 4} crystals are produced directly at the Technische Universitaet Muenchen (TUM) including the CaWO{sub 4} powder production from the raw materials CaCO{sub 3} and WO{sub 3}, the CaWO{sub 4} crystal growth via the Czochralski method as well as the after-growth treatment of the crystals. In the recently finished CRESST-II Phase 2 (2013-2015), 4 TUM-grown crystals were installed in the main cryostat for the first time. Showing one of the best radiopurities of all installed crystals combined with an excellent detector performance the analysis of the crystal TUM40 resulted in the best sensitivity for low-mass dark matter particles in 2014. For the upcoming CRESST-III phase 2 we aim for a further improvement in radiopurity by a factor of 100. First results of a chemical purification of the raw materials as well as future plans to reduce the intrinsic background via recrystallization are presented.

  14. PPPC 4 DMν: a Poor Particle Physicist Cookbook for Neutrinos from Dark Matter annihilations in the Sun

    Energy Technology Data Exchange (ETDEWEB)

    Baratella, Pietro [Scuola Normale Superiore and INFN, Piazza dei Cavalieri 7, Pisa, 56126 (Italy); Cirelli, Marco [Institut de Physique Théorique, CNRS URA 2306 and CEA-Saclay, Gif-sur-Yvette, 91191 (France); Hektor, Andi; Pata, Joosep; Piibeleht, Morten; Strumia, Alessandro, E-mail: pietro.baratella@sissa.it, E-mail: marco.cirelli@cea.fr, E-mail: andi.hektor@cern.ch, E-mail: joosep.pata@cern.ch, E-mail: morten.piibeleht@cern.ch, E-mail: alessandro.strumia@cern.ch [National Institute of Chemical Physics and Biophysics, Ravala 10, Tallinn (Estonia)

    2014-03-01

    We provide ingredients and recipes for computing neutrino signals of TeV-scale Dark Matter (DM) annihilations in the Sun. For each annihilation channel and DM mass we present the energy spectra of neutrinos at production, including: state-of-the-art energy losses of primary particles in solar matter, secondary neutrinos, electroweak radiation. We then present the spectra after propagation to the Earth, including (vacuum and matter) flavor oscillations and interactions in solar matter. We also provide a numerical computation of the capture rate of DM particles in the Sun. These results are available in numerical form.

  15. Secretly asymmetric dark matter

    Science.gov (United States)

    Agrawal, Prateek; Kilic, Can; Swaminathan, Sivaramakrishnan; Trendafilova, Cynthia

    2017-01-01

    We study a mechanism where the dark matter number density today arises from asymmetries generated in the dark sector in the early Universe, even though the total dark matter number remains zero throughout the history of the Universe. The dark matter population today can be completely symmetric, with annihilation rates above those expected from thermal weakly interacting massive particles. We give a simple example of this mechanism using a benchmark model of flavored dark matter. We discuss the experimental signatures of this setup, which arise mainly from the sector that annihilates the symmetric component of dark matter.

  16. An allometric scaling law between gray matter and white matter of cerebral cortex

    International Nuclear Information System (INIS)

    He Jihuan

    2006-01-01

    An allometric scaling relationship between cortical white and gray volumes is derived from a general model that describes brain's remarkable efficiency and prodigious communications between brain areas. The model assumes that (1) a cell's metabolic rate depends upon cell's surface; (2) the overall basal metabolic rates of brain areas depend upon their fractal structures; (3) differential brain areas have same basal metabolic rate at slow wave sleep. The obtained allometric exponent scaling white matter to gray matter is 1.2, which is very much close to Zhang and Sejnowski's observation data

  17. Correlation of gene expression and protein production rate - a system wide study

    Directory of Open Access Journals (Sweden)

    Arvas Mikko

    2011-12-01

    Full Text Available Abstract Background Growth rate is a major determinant of intracellular function. However its effects can only be properly dissected with technically demanding chemostat cultivations in which it can be controlled. Recent work on Saccharomyces cerevisiae chemostat cultivations provided the first analysis on genome wide effects of growth rate. In this work we study the filamentous fungus Trichoderma reesei (Hypocrea jecorina that is an industrial protein production host known for its exceptional protein secretion capability. Interestingly, it exhibits a low growth rate protein production phenotype. Results We have used transcriptomics and proteomics to study the effect of growth rate and cell density on protein production in chemostat cultivations of T. reesei. Use of chemostat allowed control of growth rate and exact estimation of the extracellular specific protein production rate (SPPR. We find that major biosynthetic activities are all negatively correlated with SPPR. We also find that expression of many genes of secreted proteins and secondary metabolism, as well as various lineage specific, mostly unknown genes are positively correlated with SPPR. Finally, we enumerate possible regulators and regulatory mechanisms, arising from the data, for this response. Conclusions Based on these results it appears that in low growth rate protein production energy is very efficiently used primarly for protein production. Also, we propose that flux through early glycolysis or the TCA cycle is a more fundamental determining factor than growth rate for low growth rate protein production and we propose a novel eukaryotic response to this i.e. the lineage specific response (LSR.

  18. Hadrons in dense matter. Proceedings

    International Nuclear Information System (INIS)

    Buballa, M.; Noerenberg, W.; Schaefer, B.J.; Wambach, J.

    2000-03-01

    The following topics were dealt with: Elementary hadronic reactions, Delta dynamics in nuclei, in-medium s-wave ππ-correlations, strangeness in hot and dense matter, medium modifications of vector mesons and dilepton production, medium modifications of charmonium, thermal properties of hot and dense hadronic matter, nuclear matter, spectral functions and QCD sum rules

  19. Interaction of ionizing radiation with matter

    International Nuclear Information System (INIS)

    Calisto, Washington

    1994-01-01

    Definition of ionizing radiation,interaction of electrons with matter,physical model of collision,elastic and inelastic collisions,range of electron in matter,interaction of photon with matter.Photoelectric effect , Compton effect,pair production,consideration of interaction of various radiations with soft tissue

  20. Effect of Permanganate Preoxidation to Natural Organic Matter and Disinfection by-Products Formation Potential Removal

    Science.gov (United States)

    Hidayah, E. N.; Yeh, H. H.

    2018-01-01

    Laboratory scale experiments was conducted to examine effect of permanganate (KMnO4) peroxidation in characterizing and to remove natural organic matter (NOM) in source water. The experimental results shows that increasing permanganate dosage could decreased aromatic matter, as indicated by decreasing UV254 and SUVA value about 23% and 28%, respectively. It seems that permanganate preoxidation caused the breakdown of high molecular weight (MW) organics into low MW ones, as represented by increasing NPDOC about 10%. Further, disinfection by-products formation potential (DBPFP) in terms of trihalomethanes formation potential (THMFP) and haloacetic acid formation potential (HAAP) decreased about 15% and 23%, respectively. HAAFP removal is higher than THMFP removal and that DPBFP removal is consistent with UV254 and NPDOC removal.

  1. Novel dark matter phenomenology at colliders

    Science.gov (United States)

    Wardlow, Kyle Patrick

    While a suitable candidate particle for dark matter (DM) has yet to be discovered, it is possible one will be found by experiments currently investigating physics on the weak scale. If discovered on that energy scale, the dark matter will likely be producible in significant quantities at colliders like the LHC, allowing the properties of and underlying physical model characterizing the dark matter to be precisely determined. I assume that the dark matter will be produced as one of the decay products of a new massive resonance related to physics beyond the Standard Model, and using the energy distributions of the associated visible decay products, develop techniques for determining the symmetry protecting these potential dark matter candidates from decaying into lighter Standard Model (SM) particles and to simultaneously measure the masses of both the dark matter candidate and the particle from which it decays.

  2. Reaction rate and energy-loss rate for photopair production by relativistic nuclei

    Science.gov (United States)

    Chodorowski, Michal J.; Zdziarski, Andrzej A.; Sikora, Marek

    1992-01-01

    The process of e(+/-) pair production by relativistic nuclei on ambient photons is considered. The process is important for cosmic-ray nuclei in interstellar and intergalactic space as well as in galactic and extragalactic compact objects. The rate of this process is given by an integral of the cross section over the photon angular and energy distribution. In the case of isotropic photons, the angular integration is performed to provide an expression for the rate at given photon energy in the nucleus rest frame. The total rate then becomes a single integral of that rate over the photon energy distribution. Formulas are also given for the fractional energy loss of a relativistic nucleus colliding with a photon of a given energy in the rest frame. The nucleus energy-loss rate is integrated over the photon angular distribution in the case of isotropic photons, and simple fits are provided.

  3. 76 FR 2708 - In the Matter of Certain Ground Fault Circuit Interrupters and Products Containing Same; Notice...

    Science.gov (United States)

    2011-01-14

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-739] In the Matter of Certain Ground Fault Circuit Interrupters and Products Containing Same; Notice of Commission Determination Not To... importation, and the sale within the United States after importation of certain ground fault circuit...

  4. 75 FR 70289 - In the Matter of Certain Ground Fault Circuit Interrupters and Products Containing Same; Notice...

    Science.gov (United States)

    2010-11-17

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-739] In the Matter of Certain Ground Fault Circuit Interrupters and Products Containing Same; Notice of Commission Determination Not To... importation, and the sale within the United States after importation of certain ground fault circuit...

  5. Land use and soil organic matter in South Africa 1: A review on spatial variability and the influence of rangeland stock production

    Directory of Open Access Journals (Sweden)

    Pearson N.S. Mnkeni

    2011-05-01

    Full Text Available Degradation of soil as a consequence of land use poses a threat to sustainable agriculture in South Africa, resulting in the need for a soil protection strategy and policy. Development of such a strategy and policy require cognisance of the extent and impact of soil degradation processes. One of the identified processes is the decline of soil organic matter, which also plays a central role in soil health or quality. The spatial variability of organic matter and the impact of grazing and burning under rangeland stock production are addressed in this first part of the review. Data from uncoordinated studies showed that South African soils have low organic matter levels. About 58% of soils contain less than 0.5% organic carbon and only 4% contain more than 2% organic carbon. Furthermore, there are large differences in organic matter content within and between soil forms, depending on climatic conditions, vegetative cover, topographical position and soil texture. A countrywide baseline study to quantify organic matter contents within and between soil forms is suggested for future reference. Degradation of rangeland because of overgrazing has resulted in significant losses of soil organic matter, mainly as a result of lower biomass production. The use of fire in rangeland management decreases soil organic matter because litter is destroyed by burning. Maintaining or increasing organic matter levels in degraded rangeland soils by preventing overgrazing and restricting burning could contribute to the restoration of degraded rangelands. This restoration is of the utmost importance because stock farming uses the majority of land in South Africa.

  6. Little composite dark matter.

    Science.gov (United States)

    Balkin, Reuven; Perez, Gilad; Weiler, Andreas

    2018-01-01

    We examine the dark matter phenomenology of a composite electroweak singlet state. This singlet belongs to the Goldstone sector of a well-motivated extension of the Littlest Higgs with T -parity. A viable parameter space, consistent with the observed dark matter relic abundance as well as with the various collider, electroweak precision and dark matter direct detection experimental constraints is found for this scenario. T -parity implies a rich LHC phenomenology, which forms an interesting interplay between conventional natural SUSY type of signals involving third generation quarks and missing energy, from stop-like particle production and decay, and composite Higgs type of signals involving third generation quarks associated with Higgs and electroweak gauge boson, from vector-like top-partners production and decay. The composite features of the dark matter phenomenology allows the composite singlet to produce the correct relic abundance while interacting weakly with the Higgs via the usual Higgs portal coupling [Formula: see text], thus evading direct detection.

  7. Little composite dark matter

    Science.gov (United States)

    Balkin, Reuven; Perez, Gilad; Weiler, Andreas

    2018-02-01

    We examine the dark matter phenomenology of a composite electroweak singlet state. This singlet belongs to the Goldstone sector of a well-motivated extension of the Littlest Higgs with T-parity. A viable parameter space, consistent with the observed dark matter relic abundance as well as with the various collider, electroweak precision and dark matter direct detection experimental constraints is found for this scenario. T-parity implies a rich LHC phenomenology, which forms an interesting interplay between conventional natural SUSY type of signals involving third generation quarks and missing energy, from stop-like particle production and decay, and composite Higgs type of signals involving third generation quarks associated with Higgs and electroweak gauge boson, from vector-like top-partners production and decay. The composite features of the dark matter phenomenology allows the composite singlet to produce the correct relic abundance while interacting weakly with the Higgs via the usual Higgs portal coupling λ _{ {DM}}˜ O(1%), thus evading direct detection.

  8. Little composite dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Balkin, Reuven; Weiler, Andreas [Technische Universitaet Muenchen, First Physik-Department, Garching (Germany); Perez, Gilad [Weizmann Institute of Science, Department of Particle Physics and Astrophysics, Rehovot (Israel)

    2018-02-15

    We examine the dark matter phenomenology of a composite electroweak singlet state. This singlet belongs to the Goldstone sector of a well-motivated extension of the Littlest Higgs with T-parity. A viable parameter space, consistent with the observed dark matter relic abundance as well as with the various collider, electroweak precision and dark matter direct detection experimental constraints is found for this scenario. T-parity implies a rich LHC phenomenology, which forms an interesting interplay between conventional natural SUSY type of signals involving third generation quarks and missing energy, from stop-like particle production and decay, and composite Higgs type of signals involving third generation quarks associated with Higgs and electroweak gauge boson, from vector-like top-partners production and decay. The composite features of the dark matter phenomenology allows the composite singlet to produce the correct relic abundance while interacting weakly with the Higgs via the usual Higgs portal coupling λ{sub DM} ∝ O(1%), thus evading direct detection. (orig.)

  9. Maximum production rate optimization for sulphuric acid decomposition process in tubular plug-flow reactor

    International Nuclear Information System (INIS)

    Wang, Chao; Chen, Lingen; Xia, Shaojun; Sun, Fengrui

    2016-01-01

    A sulphuric acid decomposition process in a tubular plug-flow reactor with fixed inlet flow rate and completely controllable exterior wall temperature profile and reactants pressure profile is studied in this paper by using finite-time thermodynamics. The maximum production rate of the aimed product SO 2 and the optimal exterior wall temperature profile and reactants pressure profile are obtained by using nonlinear programming method. Then the optimal reactor with the maximum production rate is compared with the reference reactor with linear exterior wall temperature profile and the optimal reactor with minimum entropy generation rate. The result shows that the production rate of SO 2 of optimal reactor with the maximum production rate has an increase of more than 7%. The optimization of temperature profile has little influence on the production rate while the optimization of reactants pressure profile can significantly increase the production rate. The results obtained may provide some guidelines for the design of real tubular reactors. - Highlights: • Sulphuric acid decomposition process in tubular plug-flow reactor is studied. • Fixed inlet flow rate and controllable temperature and pressure profiles are set. • Maximum production rate of aimed product SO 2 is obtained. • Corresponding optimal temperature and pressure profiles are derived. • Production rate of SO 2 of optimal reactor increases by 7%.

  10. Pore water geochemistry and the oxidation of sedimentary organic matter: Hatteras Abyssal Plain 1981

    International Nuclear Information System (INIS)

    Heggie, D.; Lewis, T.; Graham, D.

    1985-01-01

    This report presents the pore water geochemistry from R/V an Endeavor cruise to an area of the Hatteras Abyssal Plain between 31 0 45' - 34 0 00'N and 69 0 37.5 - 72 0 07.5'W. The authors report on the down core variations of the products of organic matter oxidation, the stoichiometry of reactions and make a preliminary assessment of the rates of organic matter oxidation at several core locations. The authors found concentrations of total inorganic nitrogen species; nitrate, nitrite and ammonia in pore waters to be less than those predicted from a model of organic matter oxidation (Froelich et al. 1979) in sediments. The observations indicate that nitrogen is depleted over carbon as compared to typical marine organic matter. The down-core nitrate profiles over the study area were used to infer depths at which oxygen is near totally consumed in the sediments and hence to compute rates of oxygen consumption. The authors found oxygen consumption rates to vary by nearly an order of magnitude between core locations (1.7 - >15μmO 2 cm -2 yr -1 ). A simple model which combines the computed rates of oxidant consumption and the stoichiometry of organic matter oxidation was used to make estimates of organic carbon oxidation rates. These latter were found to vary between 1.3 and > 11.5 μm C cm -2 yr -1 . Highest carbon oxidation rates were found at the western boundary of the study area, and in all cases oxygen consumption was responsible for >85% of carbon oxidized. 11 references, 5 figures, 4 tables

  11. Meson production in nuclear collisions and the equation of state of hadronic matter

    International Nuclear Information System (INIS)

    Grosse, E.

    1993-01-01

    Whereas nuclear matter at saturation, i.e. at its ground state density [ρ o ≅ 1 nucleon per 6 fm 3 ] is realized in the center of nuclei, it is compressed to much higher density in neutron stars and during explosive stellar processes like novae and supernovae. The hard core repulsion in the nucleon-nucleon potential and also the Pauli principle counteract such a compression and the stiffness of the equation of state of this matter is determined by these two effects - at least up to a certain density. For very high density and temperature it is believed that the nucleons dissociate into a plasma of quarks and gluons. On the other hand there are detailed theoretical arguments and also experimental evidence shown here, that in the intermediate density range the equation of state is influenced by a different scenario. The conversion of nucleons into heavier baryons leads directly to an additional mass density and at the same time their different quantum numbers allow a higher particle number in a given volume of phase space. The heavy baryons in question are nucleon resonances (Δ,N*) and to smaller extent also hyperons; to conserve strangeness the formation of the latter is associated with the production of kaons whereas Δ's and N*'s are strongly coupled to the pions in the hadronic matter in the collision zone. (author)

  12. Gamow-Teller strength and lepton captures rates on 66-71Ni in stellar matter

    Science.gov (United States)

    Nabi, Jameel-Un; Majid, Muhammad

    Charge-changing transitions play a significant role in stellar weak-decay processes. The fate of the massive stars is decided by these weak-decay rates including lepton (positron and electron) captures rates, which play a consequential role in the dynamics of core collapse. As per previous simulation results, weak interaction rates on nickel (Ni) isotopes have significant influence on the stellar core vis-à-vis controlling the lepton content of stellar matter throughout the silicon shell burning phases of high mass stars up to the presupernova stages. In this paper, we perform a microscopic calculation of Gamow-Teller (GT) charge-changing transitions, in the β-decay and electron capture (EC) directions, for neutron-rich Ni isotopes (66-71Ni). We further compute the associated weak-decay rates for these selected Ni isotopes in stellar environment. The computations are accomplished by employing the deformed proton-neutron quasiparticle random phase approximation (pn-QRPA) model. A recent study showed that the deformed pn-QRPA theory is well suited for the estimation of GT transitions. The astral weak-decay rates are determined over densities in the range of 10-1011g/cm3 and temperatures in the range of 0.01 × 109-30 × 109K. The calculated lepton capture rates are compared with the previous calculation of Pruet and Fuller (PF). The overall comparison demonstrates that, at low stellar densities and high temperatures, our EC rates are bigger by as much as two orders of magnitude. Our results show that, at higher temperatures, the lepton capture rates are the dominant mode for the stellar weak rates and the corresponding lepton emission rates may be neglected.

  13. High production rate of IBAD-MgO buffered substrate

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizumi, M., E-mail: myoshizumi@istec.or.j [Superconductivity Research Laboratory, ISTEC, Shinonome 1-10-13, Koto-ku, Tokyo 135-0062 (Japan); Miyata, S.; Ibi, A.; Fukushima, H.; Yamada, Y.; Izumi, T.; Shiohara, Y. [Superconductivity Research Laboratory, ISTEC, Shinonome 1-10-13, Koto-ku, Tokyo 135-0062 (Japan)

    2009-10-15

    The conventional IBAD (Ion Beam Assisted Deposition) process using fluorite materials yields low production rates, resulting in high production cost, which reduces the motivation for practical application in spite of its high quality. The IBAD process using rock salt materials, e.g. MgO, is well known as a strong candidate of practical application due to its potential of high production rate and high in-plane grain alignment. In this work, the IBAD-MgO process was investigated for a newly developed architecture of PLD (Pulsed Laser Deposition)-CeO{sub 2}/sputter-LMO (LaMnO{sub 3})/IBAD-MgO/sputter-GZO (Gd{sub 2}Zr{sub 2}O{sub 7})/Hastelloy{sup TM} to make long buffered metal tapes with high properties and a high production rate. The 50 m-long IBAD-MgO substrates with about 4 deg. of DELTAphiCeO{sub 2} in an XRD phi scan could be fabricated repeatedly. A GdBCO (GdBa{sub 2}Cu{sub 3}O{sub x}) layer deposited on the buffered substrate showed the minimum I{sub c} value of 325 A/cm-w in a 41 m-long tape. Almost of the tape showed 500-600 A/cm-w of I{sub c} value. The deposition time for the IBAD-MgO layer was 60 s which was about 2 orders of magnitude shorter than the conventional IBAD process. The production rate of 24 m/h was realized at the IBAD-MgO process to fabricate the GdBCO coated conductor with high J{sub c} and I{sub c} properties.

  14. Photolysis of 2,4,6-trinitrotoluene in seawater and estuary water: Impact of pH, temperature, salinity, and dissolved organic matter

    International Nuclear Information System (INIS)

    Luning Prak, Dianne J.; Breuer, James E.T.; Rios, Evelyn A.; Jedlicka, Erin E.; O'Sullivan, Daniel W.

    2017-01-01

    The influence of salinity, pH, temperature, and dissolved organic matter on the photolysis rate of 2,4,6-trinitrotoluene (TNT) in marine, estuary, and laboratory-prepared waters was studied using a Suntest CPS +® solar simulator equipped with optical filters. TNT degradation rates were determined using HPLC analysis, and products were identified using LC/MS. Minimal or no TNT photolysis occurred under a 395-nm long pass filter, but under a 295-nm filter, first-order TNT degradation rate constants and apparent quantum yields increased with increasing salinity in both natural and artificial seawater. TNT rate constants increased slightly with increasing temperature (10 to 32 °C) but did not change significantly with pH (6.4 to 8.1). The addition of dissolved organic matter (up to 5 mg/L) to ultrapure water, artificial seawater, and natural seawater increased the TNT photolysis rate constant. Products formed by TNT photolysis in natural seawater were determined to be 2,4,6-trinitrobenzaldehyde, 1,3,5-trinitrobenzene, 2,4,6-trinitrobenzoic acid, and 2-amino-4,6-dinitrobenzoic acid. - Highlights: • 2,4,6-trinitrotoluene (TNT) was photolyzed in marine, estuary, & laboratory waters. • TNT photolysis rates increased with increasing salinity & dissolved organic matter. • Temperature and pH had minimal impact on TNT photolysis in marine waters. • In seawater, TNT photolysis produced 1,3,5-trinitrobenzene & trinitrobenzaldehyde. • Polar products were 2,4,6-trinobenzoic acid & 2-amino-4,6-dinitrobenzoic acid.

  15. A production inventory model with exponential demand rate and reverse logistics

    Directory of Open Access Journals (Sweden)

    Ritu Raj

    2014-08-01

    Full Text Available The objective of this paper is to develop an integrated production inventory model for reworkable items with exponential demand rate. This is a three-layer supply chain model with perspectives of supplier, producer and retailer. Supplier delivers raw material to the producer and finished goods to the retailer. We consider perfect and imperfect quality products, product reliability and reworking of imperfect items. After screening, defective items reworked at a cost just after the regular manufacturing schedule. At the beginning, the manufacturing system starts produce perfect items, after some time the manufacturing system can undergo into “out-of-control” situation from “in-control” situation, which is controlled by reverse logistic technique. This paper deliberates the effects of business strategies like optimum order size of raw material, exponential demand rate, production rate is demand dependent, idle times and reverse logistics for an integrated marketing system. Mathematica is used to develop the optimal solution of production rate and raw material order for maximum expected average profit. A numerical example and sensitivity analysis is illustrated to validate the model.

  16. Effects of seasonality and resource limitation on organic matter turnover by Chironomidae (Diptera) in southern Appalachian headwater streams

    Science.gov (United States)

    Angela Romito; Susan Eggert; Jeffrey Diez; J. Wallace

    2010-01-01

    Despite their high abundance, secondary production, and known reliance on detrital material, the role of chironomids (Diptera) in fine particulate organic matter (FPOM) dynamics has not been well quantified. We conducted field trials using fluorescent pigment markers to estimate seasonal rates of consumption, annual secondary production, assimilation efficiency (AE),...

  17. Agriculture Organic Matter and Chicken Manure

    Directory of Open Access Journals (Sweden)

    Süleyman Taban

    2013-11-01

    Full Text Available Undo ubtedly organic matter content of soils is one of theim portant factor for high quality and abundant crop production. In addition to improve the physical properties ofsoil, organic matter contributest ocrop production viabeing energy source formicro-organisms in soiland contained plantnutrients. Fiftypercent of theagri cultures oil contains 1-2 % organicmatter in Turkey.In addition to being a sourceof organic matter, organic poultry manurefertilizer isricherthan other organic fertilizerse specially nitrogen content. It is possible to eliminate poultry manure based salt stress and disease factors with composting process in proper conditions.

  18. Soil Production and Erosion Rates and Processes in Mountainous Landscapes

    Science.gov (United States)

    Heimsath, A. M.; DiBiase, R. A.; Whipple, K. X.

    2012-12-01

    We focus here on high-relief, steeply sloped landscapes from the Nepal Himalaya to the San Gabriels of California that are typically thought to be at a critical threshold of soil cover. Observations reveal that, instead, there are significant areas mantled with soil that fit the conceptual framework of a physically mobile layer derived from the underlying parent material with some locally-derived organic content. The extent and persistence of such soils depends on the long-term balance between soil production and erosion despite the perceived discrepancy between high erosion and low soil production rates. We present cosmogenic Be-10-derived soil production and erosion rates that show that soil production increases with catchment-averaged erosion, suggesting a feedback that enhances soil-cover persistence, even in threshold landscapes. Soil production rates do decline systematically with increasing soil thickness, but hint at the potential for separate soil production functions for different erosional regimes. We also show that a process transistion to landslide-dominated erosion results in thinner, patchier soils and rockier topography, but find that there is no sudden transition to bedrock landscapes. Our landslide modeling is combined with a detailed quantification of bedrock exposure for these steep, mountainous landscapes. We also draw an important conclusion connecting the physical processes producing and transporting soil and the chemical processes weathering the parent material by measuring parent material strength across three different field settings. We observe that parent material strength increases with overlying soil thickness and, therefore, the weathered extent of the saprolite. Soil production rates, thus, decrease with increasing parent material competence. These observation highlight the importance of quantifying hillslope hydrologic processes where such multi-facted measurements are made.

  19. 75 FR 8400 - In the Matter of Certain Notebook Computer Products and Components Thereof; Notice of Investigation

    Science.gov (United States)

    2010-02-24

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-705] In the Matter of Certain Notebook Computer... United States after importation of certain notebook computer products and components thereof by reason of... an industry in the United States exists as required by subsection (a)(2) of section 337. The...

  20. Non-thermal production of neutralino cold dark matter from cosmic string decays

    International Nuclear Information System (INIS)

    Jeannerot, R.; Zhang, X.; Brandenberger, R.

    1998-12-01

    We propose a mechanism of nonthermal production of a neutralino cold dark matter particle, χ, from the decay of cosmic strings which form from the spontaneous breaking of a U(1) gauge symmetry, such as U B-L (1), in an extension of the minimal supersymmetric standard model (MSSM). By explicit calculation, we point out that with a symmetry breaking scale η of around 10 8 GeV, the decay of cosmic strings can give rise to Ω χ ≅ 1. This gives a new constraint on supersymmetric models. For example, the dark matter produced from strings will over close the universe if η is near the electroweak symmetry breaking scale. To be consistent with Ω χ ≤ 1, the mass of the new U(1) gauge boson must be much larger than the Fermi scale which makes it unobservable in upcoming accelerator experiments. In a supersymmetric model with an extra U B-L (1) symmetry, the requirement of Ω χ ≤ 1 puts an upper bound on the neutrino mass of about 30eV provided neutrino masses are generated by the see-saw mechanisms. (author)

  1. PPPC 4 DMν: a Poor Particle Physicist Cookbook for Neutrinos from Dark Matter annihilations in the Sun

    International Nuclear Information System (INIS)

    Baratella, Pietro; Cirelli, Marco; Hektor, Andi; Pata, Joosep; Piibeleht, Morten; Strumia, Alessandro

    2014-01-01

    We provide ingredients and recipes for computing neutrino signals of TeV-scale Dark Matter (DM) annihilations in the Sun. For each annihilation channel and DM mass we present the energy spectra of neutrinos at production, including: state-of-the-art energy losses of primary particles in solar matter, secondary neutrinos, electroweak radiation. We then present the spectra after propagation to the Earth, including (vacuum and matter) flavor oscillations and interactions in solar matter. We also provide a numerical computation of the capture rate of DM particles in the Sun. These results are available in numerical form http://www.marcocirelli.net/PPPC4DMID.html

  2. PPPC 4 DMν: a Poor Particle Physicist Cookbook for Neutrinos from Dark Matter annihilations in the Sun

    Energy Technology Data Exchange (ETDEWEB)

    Baratella, Pietro [Scuola Normale Superiore and INFN, Piazza dei Cavalieri 7, Pisa, 56126 (Italy); Cirelli, Marco [Institut de Physique Théorique, CNRS URA 2306 & CEA-Saclay, Gif-sur-Yvette, 91191 (France); Hektor, Andi [National Institute of Chemical Physics and Biophysics, Ravala 10, Tallinn (Estonia); Helsinki Institute of Physics, P.O. Box 64, Helsinki, FI-00014 (Finland); Pata, Joosep; Piibeleht, Morten [National Institute of Chemical Physics and Biophysics, Ravala 10, Tallinn (Estonia); Strumia, Alessandro [National Institute of Chemical Physics and Biophysics, Ravala 10, Tallinn (Estonia); Dipartimento di Fisica dell’Università di Pisa and INFN, Largo Buonarroti 2, Pisa (Italy)

    2014-03-27

    We provide ingredients and recipes for computing neutrino signals of TeV-scale Dark Matter (DM) annihilations in the Sun. For each annihilation channel and DM mass we present the energy spectra of neutrinos at production, including: state-of-the-art energy losses of primary particles in solar matter, secondary neutrinos, electroweak radiation. We then present the spectra after propagation to the Earth, including (vacuum and matter) flavor oscillations and interactions in solar matter. We also provide a numerical computation of the capture rate of DM particles in the Sun. These results are available in numerical form http://www.marcocirelli.net/PPPC4DMID.html.

  3. Bacteria and fluorescent organic matter: processing and production.

    Science.gov (United States)

    Fox, B. G.; Thorn, R. M. S.; Reynolds, D. M.

    2017-12-01

    There is a need for a greater understanding of the importance of aquatic organic matter (OM) within global biogeochemical cycling. This need has prompted characterisation of OM using fluorescence spectroscopy. The origin, transformation and fate of fluorescent organic matter (FOM) is not fully understood within freshwater systems. This work demonstrates the importance of microbial processing in the creation and transformation of FOM, highlighting the dynamics of microbial-FOM interactions, using a model system. The FOM signature of different bacterial species common to surface freshwaters were analysed using a non-fluorescent media; Escherichia coli, Bacillus subtilis and Pseudomonas aeruginosa. By undertaking bacterial growth curves, alongside fluorescence spectroscopy, we have been able to determine FOM development in relation to population growth. Within this, we have identified that FOM peaks are associated with different species and driven by bacterial processes, such as cell multiplication or as metabolic by-products. The intracellular and extracellular fluorescence signature of each species has also been analysed to better understand how the microbial community structure may impact the FOM signal in aquatic systems. For example, Peak T develops within the growth curves of all the cultured species and has been identified as both intracellular and extracellular FOM. Whilst Peak T has been termed `microbially-derived' previously, other fluorescence peaks associated with terrestrial high molecular weight compounds, e.g. Peak C, have also been shown to be produced by bacteria throughout growth stages. Additionally, the notion that cell lysis is responsible for the presence of larger FOM compounds was also explored. Our work highlights the capacity of bacteria to not only utilise and process OM but to actively be a source of both labile and recalcitrant OM in situ. The bacteria fluorescence signatures seen are complex with comparable fluorescence peaks to those

  4. Enhancement of organic matter degradation and methane gas production of anaerobic granular sludge by degasification of dissolved hydrogen gas.

    Science.gov (United States)

    Satoh, Hisashi; Bandara, Wasala M K R T W; Sasakawa, Manabu; Nakahara, Yoshihito; Takahashi, Masahiro; Okabe, Satoshi

    2017-11-01

    A hollow fiber degassing membrane (DM) was applied to enhance organic matter degradation and methane gas production of anaerobic granular sludge process by reducing the dissolved hydrogen gas (D-H 2 ) concentration in the liquid phase. DM was installed in the bench-scale anaerobic granular sludge reactors and D-H 2 was removed through DM using a vacuum pump. Degasification improved the organic matter degradation efficiency to 79% while the efficiency was 62% without degasification at 12,000mgL -1 of the influent T-COD concentration. Measurement of D-H 2 concentrations in the liquid phase confirmed that D-H 2 was removed by degasification. Furthermore, the effect of acetate concentrations on the organic matter degradation efficiency was investigated. At acetate concentrations above 3gL -1 , organic matter degradation deteriorated. Degasification enhanced the propionate and acetate degradation. These results suggest that degasification reduced D-H 2 concentration and volatile fatty acids concentrations, prevented pH drop, and subsequent enhanced organic matter degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Constant rate natural gas production from a well in a hydrate reservoir

    International Nuclear Information System (INIS)

    Ji Chuang; Ahmadi, Goodarz; Smith, Duane H.

    2003-01-01

    Using a computational model, production of natural gas at a constant rate from a well that is drilled into a confined methane hydrate reservoir is studied. It is assumed that the pores in the reservoir are partially saturated with hydrate. A linearized model for an axisymmetric condition with a fixed well output is used in the analysis. For different reservoir temperatures and various well outputs, time evolutions of temperature and pressure profiles, as well as the gas flow rate in the hydrate zone and the gas region, are evaluated. The distance of the decomposition front from the well as a function of time is also computed. It is shown that to maintain a constant natural gas production rate, the well pressure must be decreased with time. A constant low production rate can be sustained for a long duration of time, but a high production rate demands unrealistically low pressure at the well after a relatively short production time. The simulation results show that the process of natural gas production in a hydrate reservoir is a sensitive function of reservoir temperature and hydrate zone permeability

  6. Stabilization of organic matter in the raised-bed soils of tidal swamplands is influenced by the types and the amounts of organic matter application

    Directory of Open Access Journals (Sweden)

    A R Saidy

    2015-05-01

    Full Text Available Farmers in tidal swamplands annually added organic matter (OM onto the raised beds to maintain organic matter contents and thereby maintain soil productivity of the raised beds. This experiment aimed to study the influence of the types and the amounts of OM on the stabilization of organic matter in the raised-bed soils. Four types of OM: rice straw, eceng gondok (Eichornia crassipes, purun tikus  (Eleocharis dulcis and mixed  rice straw-eceng gondok were added to a 27-year raised bed soil with 4 different rates: 0, 0.5, 1.0 and 2.0  of maximum sorption capacity (Qmax, and the OM stabilization was quantified after 10 weeks of OM addition.  Results of this study showed with the exception of rice straw, OM addition to soil resulted in increases in the mineralization of soil OM thereby inducing priming effect. Addition of rice straw at rate of 0.5 of Qmax resulted in stabilization of 46% added OM, while only 30% and 37% of added OM was stabilized when OM was added to soils at rates of 1.0 and 2.0 Qmax, respectively.  This study showed that the stabilization of OM in raised bed soils were influenced by the chemical composition of OM and the amount of added OM.

  7. Stabilization of organic matter in the raised-bed soils of tidal swamplands is influenced by the types and the amounts of organic matter application

    Directory of Open Access Journals (Sweden)

    A R Saidy

    2015-03-01

    Full Text Available Farmers in tidal swamplands annually added organic matter (OM onto the raised beds to maintain organic matter contents and thereby maintain soil productivity of the raised beds. This experiment aimed to study the influence of the types and the amounts of OM on the stabilization of organic matter in the raised-bed soils. Four types of OM: rice straw, eceng gondok (Eichornia crassipes, purun tikus  (Eleocharis dulcis and mixed  rice straw-eceng gondok were added to a 27-year raised bed soil with 4 different rates: 0, 0.5, 1.0 and 2.0  of maximum sorption capacity (Qmax, and the OM stabilization was quantified after 10 weeks of OM addition.  Results of this study showed with the exception of rice straw, OM addition to soil resulted in increases in the mineralization of soil OM thereby inducing priming effect. Addition of rice straw at rate of 0.5 of Qmax resulted in stabilization of 46% added OM, while only 30% and 37% of added OM was stabilized when OM was added to soils at rates of 1.0 and 2.0 Qmax, respectively.  This study showed that the stabilization of OM in raised bed soils were influenced by the chemical composition of OM and the amount of added OM.

  8. Experimental Determination of the Cosmogenic Ar Production Rate From Ca

    Science.gov (United States)

    Niedermann, S.; Schäfer, J. M.; Wieler, R.; Naumann, R.

    2005-12-01

    Cosmogenic 38Ar is produced in terrestrial surface rocks by spallation of target nuclides, in particular K and Ca. Though the presence of cosmogenic Ar in Ca-rich minerals has been demonstrated earlier [1], is has proven difficult to establish its production rate. To circumvent problems connected to 36Ar production by 35Cl neutron capture and different production rates from K and Ca, we have analyzed the noble gases in seven pyroxene separates (px) from the Antarctic Dry Valleys which are essentially free of Cl and K. The px were obtained from dolerite rocks, for which 3He and 21Ne exposure ages from 1.5 to 6.5 Ma have been reported [2]. The noble gases were extracted in two or three heating steps at GFZ Potsdam, yielding 38Ar/36Ar ratios up to 0.2283 ± 0.0008 (air: 0.1880). Ca (3.7-11.2 wt. %) is expected to be the only relevant target element for Ar production in the five pure px (ratio of 1.5 ± 0.2, we obtain cosmogenic 38Ar concentrations between 130 and 530x106 atoms/g. The 38Ar production rate was calculated based on 21Ne exposure ages [2], corrected for elevated nuclide production in Antarctica due to prevailing low air pressure and for the revised 21Ne production rate from Si. We obtain values between 188 ± 17 and 243 +110/-24 atoms (g Ca)-1 a-1 at sea level and high (northern) latitudes for four out of the five pure px, while one yields a very high value of 348 ± 70 atoms (g Ca)-1 a-1. Values above 250 atoms (g Ca)-1 a-1 are also obtained from two less pure px containing 0.3 and 0.9% K and from one feldspar/quartz accumulate, indicating that the production rate from K may be higher than that from Ca. The weighted mean (excluding the outlier) of ~200 atoms (g Ca)-1 a-1 is in excellent agreement with Lal's [3] theoretical estimate. [1] Renne et al., EPSL 188 (2001) 435. [2] Schäfer et al., EPSL 167 (1999) 215. [3] Lal, EPSL 104 (1991) 424.

  9. Organic matter production in an age series of Eucalyptus globulus plantations in Tamil Nadu

    Energy Technology Data Exchange (ETDEWEB)

    Negi, J D.S.; Bora, N K.S.; Tandon, V N; Thapliyal, H D

    1984-08-01

    The distribution of organic matter in an age series of Eucalyptus globulus plantations in Tamil Nadu is discussed. The total biomass ranges from 38 tonnes (5 years) to 220 tonnes (16 years) per ha with 85 to 88 percent being contributed by the aboveground parts and 15 to 12 percent by the roots and the average annual production of non-photosynthetic components is at its peak (19 tonnes/ha) at the age of 7 years. 17 references, 4 tables.

  10. 76 FR 5206 - In the Matter of Certain Game Devices, Components Thereof, and Products Containing the Same...

    Science.gov (United States)

    2011-01-28

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-757] In the Matter of Certain Game Devices... importation of certain game devices, components thereof, and products containing the same by reason of... alleges that an industry in the United States exists as required by subsection (a)(2) of section 337. The...

  11. Accelerated decay rates drive soil organic matter persistence and storage in temperate forests via greater mineral stabilization of microbial residues.

    Science.gov (United States)

    Phillips, R.; Craig, M.; Turner, B. L.; Liang, C.

    2017-12-01

    Climate predicts soil organic matter (SOM) stocks at the global scale, yet controls on SOM stocks at finer spatial scales are still debated. A current hypothesis predicts that carbon (C) and nitrogen (N) storage in soils should be greater when decomposition is slow owing to microbial competition for nutrients or the recalcitrance of organic substrates (hereafter the `slow decay' hypothesis). An alternative hypothesis predicts that soil C and N storage should be greater in soils with rapid decomposition, owing to the accelerated production of microbial residues and their stabilization on soil minerals (hereafter the `stabilization hypothesis'). To test these alternative hypotheses, we quantified soil C and N to 1-m depth in temperate forests across the Eastern and Midwestern US that varied in their biotic, climatic, and edaphic properties. At each site, we sampled (1) soils dominated by arbuscular mycorrhizal (AM) tree species, which typically have fast decay rates and accelerated N cycling, (2) soils dominated by ectomycorrhizal (ECM) tree species, which generally have slow decay rates and slow N cycling, and (3) soils supporting both AM and ECM trees. To the extent that trees and theor associated microbes reflect and reinforce soil conditions, support for the slow decay hypothesis would be greater SOM storage in ECM soils, whereas support for the stabilization hypothesis would be greater SOM storage in AM soils. We found support for both hypotheses, as slow decomposition in ECM soils increased C and N storage in topsoil, whereas fast decomposition in AM soils increased C and N storage in subsoil. However, at all sites we found 57% greater total C and N storage in the entire profile in AM- soils (P stabilization hypothesis. Amino sugar biomarkers (an indicator of microbial necromass) and particle size fractionation revealed that the greater SOM storage in AM soils was driven by an accumulation of microbial residues on clay minerals and metal oxides. Taken together

  12. Dark Matter Search in a Proton Beam Dump with MiniBooNE.

    Science.gov (United States)

    Aguilar-Arevalo, A A; Backfish, M; Bashyal, A; Batell, B; Brown, B C; Carr, R; Chatterjee, A; Cooper, R L; deNiverville, P; Dharmapalan, R; Djurcic, Z; Ford, R; Garcia, F G; Garvey, G T; Grange, J; Green, J A; Huelsnitz, W; de Icaza Astiz, I L; Karagiorgi, G; Katori, T; Ketchum, W; Kobilarcik, T; Liu, Q; Louis, W C; Marsh, W; Moore, C D; Mills, G B; Mirabal, J; Nienaber, P; Pavlovic, Z; Perevalov, D; Ray, H; Roe, B P; Shaevitz, M H; Shahsavarani, S; Stancu, I; Tayloe, R; Taylor, C; Thornton, R T; Van de Water, R; Wester, W; White, D H; Yu, J

    2017-06-02

    The MiniBooNE-DM Collaboration searched for vector-boson mediated production of dark matter using the Fermilab 8-GeV Booster proton beam in a dedicated run with 1.86×10^{20} protons delivered to a steel beam dump. The MiniBooNE detector, 490 m downstream, is sensitive to dark matter via elastic scattering with nucleons in the detector mineral oil. Analysis methods developed for previous MiniBooNE scattering results were employed, and several constraining data sets were simultaneously analyzed to minimize systematic errors from neutrino flux and interaction rates. No excess of events over background was observed, leading to a 90% confidence limit on the dark matter cross section parameter, Y=ε^{2}α_{D}(m_{χ}/m_{V})^{4}≲10^{-8}, for α_{D}=0.5 and for dark matter masses of 0.01dark matter. This is the best limit from a dedicated proton beam dump search in this mass and coupling range and extends below the mass range of direct dark matter searches. These results demonstrate a novel and powerful approach to dark matter searches with beam dump experiments.

  13. Peak capacity, peak-capacity production rate, and boiling point resolution for temperature-programmed GC with very high programming rates

    Science.gov (United States)

    Grall; Leonard; Sacks

    2000-02-01

    Recent advances in column heating technology have made possible very fast linear temperature programming for high-speed gas chromatography. A fused-silica capillary column is contained in a tubular metal jacket, which is resistively heated by a precision power supply. With very rapid column heating, the rate of peak-capacity production is significantly enhanced, but the total peak capacity and the boiling-point resolution (minimum boiling-point difference required for the separation of two nonpolar compounds on a nonpolar column) are reduced relative to more conventional heating rates used with convection-oven instruments. As temperature-programming rates increase, elution temperatures also increase with the result that retention may become insignificant prior to elution. This results in inefficient utilization of the down-stream end of the column and causes a loss in the rate of peak-capacity production. The rate of peak-capacity production is increased by the use of shorter columns and higher carrier gas velocities. With high programming rates (100-600 degrees C/min), column lengths of 6-12 m and average linear carrier gas velocities in the 100-150 cm/s range are satisfactory. In this study, the rate of peak-capacity production, the total peak capacity, and the boiling point resolution are determined for C10-C28 n-alkanes using 6-18 m long columns, 50-200 cm/s average carrier gas velocities, and 60-600 degrees C/min programming rates. It was found that with a 6-meter-long, 0.25-mm i.d. column programmed at a rate of 600 degrees C/min, a maximum peak-capacity production rate of 6.1 peaks/s was obtained. A total peak capacity of about 75 peaks was produced in a 37-s long separation spanning a boiling-point range from n-C10 (174 degrees C) to n-C28 (432 degrees C).

  14. Automated Production of High Rep Rate Foam Targets

    Science.gov (United States)

    Hall, F.; Spindloe, C.; Haddock, D.; Tolley, M.; Nazarov, W.

    2016-04-01

    Manufacturing low density targets in the numbers needed for high rep rate experiments is highly challenging. This report summarises advances from manual production to semiautomated and the improvements that follow both in terms of production time and target uniformity. The production process is described and shown to be improved by the integration of an xyz robot with dispensing capabilities. Results are obtained from manual and semiautomated production runs and compared. The variance in the foam thickness is reduced significantly which should decrease experimental variation due to target parameters and could allow for whole batches to be characterised by the measurement of a few samples. The work applies to both foil backed and free standing foam targets.

  15. Proportional relationship between intercepted solar radiation and dry matter production in a mulberry [Morus] field

    International Nuclear Information System (INIS)

    Aqueel, S.A.; Ito, D.; Naoi, T.

    1999-01-01

    In order to investigate the relationship between dry matter production (DMP) and the amount of intercepted solar radiation (S), and to analyze the fluctuations in the radiation conversion efficiency (DMP/S), summer-pruned mulberry (Morus alba L.) trees under a standard planting density were subjected to a shading treatment using a cheesecloth. Then, using a non-destructive method, DMP was examined for 5 plants from each plot every 15 days from July to September. DMP was also examined for mulberry trees under a high planting density. Rates of radiation that penetrated onto the ground and beneath the cheesecloth were measured to calculate S from the incoming solar radiation. In the shading plots, DMP decreased depending on the degree of shading throughout the experimental period. Compared with the control plot, 70 and 60 % DMP were produced finally under 71 and 53 % S. Therefore, DMP was considered to be almost proportional to S even in a broad-leaf population like mulberry. Radiation conversion efficiency gradually decreased with growth regardless of the planting density. At the late growth stage, radiation conversion efficiency was lower in the densely planted field than in the standard density field

  16. Modelling the bioconversion of cellulose into microbial products: rate limitations

    Energy Technology Data Exchange (ETDEWEB)

    Asenjo, J A

    1984-12-01

    The direct bioconversion of cellulose into microbial products carried out as a simultaneous saccharification and fermentation has a strong effect on the rates of cellulose degradation because cellobiose and glucose inhibition of the reaction are circumvented. A general mathematical model of the kinetics of this bioconversion has been developed. Its use in representing aerobic systems and in the analysis of the kinetic limitations has been investigated. Simulations have been carried out to find the rate limiting steps in slow fermentations and in rapid ones as determined by the specific rate of product formation. The requirements for solubilising and depolymerising enzyme activities (cellulase and cellobiase) in these systems has been determined. The activity that have been obtained for fungal cellulases are adequate for the kinetic requirements of the fastest fermentative strains. The results also show that for simultaneous bioconversions where strong cellobiose and glucose inhibition is overcome, no additional cellobiase is necessary to increase the rate of product formation. These results are useful for the selection of cellolytic micro-organisms and in the determination of enzymes to be cloned in recombinant strains. 17 references.

  17. Elucidating Microbial Species-Specific Effects on Organic Matter Transformation in Marine Sediments

    Science.gov (United States)

    Mahmoudi, N.; Enke, T. N.; Beaupre, S. R.; Teske, A.; Cordero, O. X.; Pearson, A.

    2017-12-01

    Microbial transformation and decomposition of organic matter in sediments constitutes one of the largest fluxes of carbon in marine environments. Mineralization of sedimentary organic matter by microorganisms results in selective degradation such that bioavailable or accessible compounds are rapidly metabolized while more recalcitrant, complex compounds are preserved and buried in sediment. Recent studies have found that the ability to use different carbon sources appears to vary among microorganisms, suggesting that the availability of certain pools of carbon can be specific to the taxa that utilize the pool. This implies that organic matter mineralization in marine environments may depend on the metabolic potential of the microbial populations that are present and active. The goal of our study was to investigate the extent to which organic matter availability and transformation may be species-specific using sediment from Guaymas Basin (Gulf of California). We carried out time-series incubations using bacterial isolates and sterilized sediment in the IsoCaRB system which allowed us to measure the production rates and natural isotopic signatures (δ13C and Δ14C) of microbially-respired CO2. Separate incubations using two different marine bacterial isolates (Vibrio sp. and Pseudoalteromonas sp.) and sterilized Guaymas Basin sediment under oxic conditions showed that the rate and total quantity of organic matter metabolized by these two species differs. Approximately twice as much CO2 was collected during the Vibrio sp. incubation compared to the Pseudoalteromonas sp. incubation. Moreover, the rate at which organic matter was metabolized by the Vibrio sp. was much higher than the Pseudoalteromonas sp. indicating the intrinsic availability of organic matter in sediments may depend on the species that is present and active. Isotopic analyses of microbially respired CO2 will be used to constrain the type and age of organic matter that is accessible to each species

  18. Production and degradation of fluorescent dissolved organic matter in surface waters of the eastern north Atlantic ocean

    Science.gov (United States)

    Lønborg, Christian; Yokokawa, Taichi; Herndl, Gerhard J.; Antón Álvarez-Salgado, Xosé

    2015-02-01

    The distribution and fate of coloured dissolved organic matter (CDOM) in the epipelagic Eastern North Atlantic was investigated during a cruise in the summer 2009 by combining field observations and culture experiments. Dissolved organic carbon (DOC) and nitrogen (DON), the absorption spectra of CDOM and the fluorescence intensity of proteins (Ex/Em 280/320 nm; F(280/320)) and marine humic-like substances (F(320/410)) were measured in the upper 200 m. DOC and DON showed higher concentrations in the top 20 m than below, and DOC increased southwards, while DON decreased. F(280/320) and F(320/410) showed maxima near the deep chlorophyll maximum (at about 50 m), suggesting that these fluorophores were linked to phytoplankton production and the metabolism of the associated microbial community. The coloured and fluorescent fractions of DOM showed low levels south of the Azores Front, at about 35 °N, likely due to the accumulated photobleaching of the waters transported eastwards by the Azores current into the study area (at 20°W). Twelve culture experiments were also conducted with surface water (5 m) to assess the impact of microbial degradation processes on the bulk, coloured and fluorescent fractions of DOM. After 72 h of incubation in the darkness, 14±9% (average±SD) of the initial DON was consumed at an average rate of 0.24±0.14 μmol l-1 d-1 and the protein-like fluorescence decayed by 29±9% at a net rate of 0.06±0.03 QSU d-1. These rates were significantly lower south of the Azores front, suggesting that DOM in this region was of a more recalcitrant nature. Conversely, the marine humic-like fluorescence increased at a net rate of 0.013±0.003 QSU d-1. The close linear relationship of DON uptake with F(280/320) consumption (R2= 0.91, p <0.0001, n=12) and F(320/410) production (R2= 0.52, p <0.008, n=12) that we found during these incubation experiments suggest that the protein-like fluorescence can be used as a proxy for the dynamics of the labile DON pool

  19. Dual substrate feedback control of specific growth-rate in vaccine production

    NARCIS (Netherlands)

    Neeleman, R.; Beuvery, E.C.; Vries, D.; Straten, van G.; Boxtel, van A.J.B.

    2004-01-01

    Abstract: Unexpectedly, primary concern of bio-pharmaceutical industry is not optimisation of product yield or cost reduction, but consistency in production and product quality. This paper describes the methodology and experimental results of specific growth-rate control for vaccine production. The

  20. Unified Origin for Baryonic Visible Matter and Antibaryonic Dark Matter

    International Nuclear Information System (INIS)

    Davoudiasl, Hooman; Morrissey, David E.; Tulin, Sean; Sigurdson, Kris

    2010-01-01

    We present a novel mechanism for generating both the baryon and dark matter densities of the Universe. A new Dirac fermion X carrying a conserved baryon number charge couples to the standard model quarks as well as a GeV-scale hidden sector. CP-violating decays of X, produced nonthermally in low-temperature reheating, sequester antibaryon number in the hidden sector, thereby leaving a baryon excess in the visible sector. The antibaryonic hidden states are stable dark matter. A spectacular signature of this mechanism is the baryon-destroying inelastic scattering of dark matter that can annihilate baryons at appreciable rates relevant for nucleon decay searches.

  1. Unified origin for baryonic visible matter and antibaryonic dark matter.

    Science.gov (United States)

    Davoudiasl, Hooman; Morrissey, David E; Sigurdson, Kris; Tulin, Sean

    2010-11-19

    We present a novel mechanism for generating both the baryon and dark matter densities of the Universe. A new Dirac fermion X carrying a conserved baryon number charge couples to the standard model quarks as well as a GeV-scale hidden sector. CP-violating decays of X, produced nonthermally in low-temperature reheating, sequester antibaryon number in the hidden sector, thereby leaving a baryon excess in the visible sector. The antibaryonic hidden states are stable dark matter. A spectacular signature of this mechanism is the baryon-destroying inelastic scattering of dark matter that can annihilate baryons at appreciable rates relevant for nucleon decay searches.

  2. Determining the CP nature of spin-0 mediators in associated production of dark matter and tt̄ pairs

    Energy Technology Data Exchange (ETDEWEB)

    Haisch, Ulrich [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,OX1 3NP Oxford (United Kingdom); CERN, Theoretical Physics Department,CH-1211 Geneva 23 (Switzerland); Pani, Priscilla [Department of Physics, Stockholm University,AlbaNova University Center, 106 91 Stockholm (Sweden); CERN, Experimental Physics Department,CH-1211 Geneva 23 (Switzerland); Polesello, Giacomo [INFN, Sezione di Pavia,Via Bassi 6, 27100 Pavia (Italy); CERN, Experimental Physics Department,CH-1211 Geneva 23 (Switzerland)

    2017-02-27

    In the framework of spin-0 s-channel simplified models, we explore the possibility of assessing the structure of dark matter interactions through the associate production of dark matter and tt̄ pairs. To this purpose, final states with two leptons are considered and the kinematic properties of the dilepton system is studied. We develop a realistic analysis strategy and provide a detailed evaluation of the achievable sensitivity for the dark matter signal assuming integrated luminosities of 300 fb{sup −1} and 3 ab{sup −1} at the 14 TeV LHC. Furthermore, upper limits on the mediator masses for which the two different CP hypotheses can be distinguished are derived. The obtained limits on the signal strengths are finally translated into constraints on the parameter space of two spin-0 simplified models including a scenario with an extended Higgs sector.

  3. Pan-Arctic Distribution of Bioavailable Dissolved Organic Matter and Linkages With Productivity in Ocean Margins

    Science.gov (United States)

    Shen, Yuan; Benner, Ronald; Kaiser, Karl; Fichot, Cédric G.; Whitledge, Terry E.

    2018-02-01

    Rapid environmental changes in the Arctic Ocean affect plankton productivity and the bioavailability of dissolved organic matter (DOM) that supports microbial food webs. We report concentrations of dissolved organic carbon (DOC) and yields of amino acids (indicators of labile DOM) in surface waters across major Arctic margins. Concentrations of DOC and bioavailability of DOM showed large pan-Arctic variability that corresponded to varying hydrological conditions and ecosystem productivity, respectively. Widespread hot spots of labile DOM were observed over productive inflow shelves (Chukchi and Barents Seas), in contrast to oligotrophic interior margins (Kara, Laptev, East Siberian, and Beaufort Seas). Amino acid yields in outflow gateways (Canadian Archipelago and Baffin Bay) indicated the prevalence of semilabile DOM in sea ice covered regions and sporadic production of labile DOM in ice-free waters. Comparing these observations with surface circulation patterns indicated varying shelf subsidies of bioavailable DOM to Arctic deep basins.

  4. Quantitative study of the production rate of droplets in a T-junction microdroplet generator

    Science.gov (United States)

    Fu, Hai; Zeng, Wen; Li, Songjing

    2017-12-01

    In a T-junction microdroplet generator, a mathematical model which can quantify the production rate of droplets is demonstrated. The experiments of droplet formation are performed for different geometries of the T-junction microchannels, and good agreements are shown between the predicted and the measured values of the droplet production rates. From both theoretical and experimental study, the production rate of droplets varies nonlinearly with the flow-rate ratio of the two phases during droplet formation, and by fixing the flow-rate ratio, the production rate of droplets is approximately a linear function of the flow rate of the fluids. In particular, the coefficients of the linear relation are only determined by the geometrical parameters of the T-junction microchannel. As a result, our model can be validated experimentally, and especially for a specific geometry of the T-junction, the production rate of droplets can be precisely predicted and controlled based on the flow rate of the fluids.

  5. Dissolved organic matter composition drives the marine production of brominated very short-lived substances.

    Science.gov (United States)

    Liu, Yina; Thornton, Daniel C O; Bianchi, Thomas S; Arnold, William A; Shields, Michael R; Chen, Jie; Yvon-Lewis, Shari A

    2015-03-17

    Brominated very short-lived substances (BrVSLS), such as bromoform, are important trace gases for stratospheric ozone chemistry. These naturally derived trace gases are formed via bromoperoxidase-mediated halogenation of dissolved organic matter (DOM) in seawater. Information on DOM type in relation to the observed BrVSLS concentrations in seawater, however, is scarce. We examined the sensitivity of BrVSLS production in relation to the presence of specific DOM moieties. A total of 28 model DOM compounds in artificial seawater were treated with vanadium bromoperoxidase (V-BrPO). Our results show a clear dependence of BrVSLS production on DOM type. In general, molecules that comprise a large fraction of the bulk DOM pool did not noticeably affect BrVSLS production. Only specific cell metabolites and humic acid appeared to significantly enhance BrVSLS production. Amino acids and lignin phenols suppressed enzyme-mediated BrVSLS production and may instead have formed halogenated nonvolatile molecules. Dibromomethane production was not observed in any experiments, suggesting it is not produced by the same pathway as the other BrVSLS. Our results suggest that regional differences in DOM composition may explain the observed BrVSLS concentration variability in the global ocean. Ultimately, BrVSLS production and concentrations are likely affected by DOM composition, reactivity, and cycling in the ocean.

  6. The Modeling of Logistics and Coordination of the Rate of Commodities Production with the Rate of their Disposal

    Directory of Open Access Journals (Sweden)

    Sherstennykov Yuriy V.

    2016-08-01

    Full Text Available The economic objective of the modern high-tech enterprise is the optimal expansion of its own market niche and bringing the production capacities in accordance with the current demand for the products. An important role in this respect is played by issues of optimal organization of the enterprise logistics, marketing analysis of the current demand and effective advertising campaign aimed at maximal use of the available production capacity and creation of proper conditions for developing, in particular for increasing the production capacities. The purpose of the article is the elaboration of economic and mathematical models of enterprise production activity taking into account the logistics and market demand; the use of the elaborated model to harmonize the rate of production of everyday commodities with the rate of their disposal. Two variants of the enterprise logistics schemes are analyzed. The influence of the advertising company on expanding the enterprise market niche is studied. A model that allows conducting a detailed study of the influence of market conditions on the pace of sales has been developed. It is appropriate to apply the model for the integrated coordination of the production rate of commodities of everyday demand with the dynamics of flows of commodities and services disposal.

  7. Model for the evaluation and prediction of production rate of sinter ...

    African Journals Online (AJOL)

    A model has been derived for evaluation and prediction of production rate of sinter machine operating on vertical mode. The quadratic model expressed as: P = 0.4395 V – 0.0526 V2 + 0.54, showed that the production rate of the sinter machine was dependent on the vertical sintering height. The maximum deviation of the ...

  8. empirical model for predicting rate of biogas production

    African Journals Online (AJOL)

    users

    Rate of biogas production using cow manure as substrate was monitored in two laboratory scale ... Biogas is a Gas obtained by anaerobic ... A. A. Adamu, Petroleum and Natural Gas Processing Department, Petroleum Training Institute, P.M.B..

  9. Photosynthesis rate, chlorophyll content and initial development of physic nut without micronutrient fertilization

    Directory of Open Access Journals (Sweden)

    Elcio Ferreira dos Santos

    2013-10-01

    Full Text Available Few studies in Brazil have addressed the need for micronutrients of physic nut focusing on physiological responses, especially in terms of photosynthesis. The objective of this study was to evaluate the effects of omission of boron (B, copper (Cu, iron (Fe, manganese (Mn and zinc (Zn on Jatropha curcas L.. The experimental design was a randomized block with four replications. The treatments were complete solution (control and solution without B, Cu, Fe, Mn, and Zn. We evaluated the chlorophyll content (SPAD units, photosynthetic rate, dry matter production and accumulation of micronutrients in plants, resulting from different treatments. The first signs of deficiency were observed for Fe and B, followed by Mn and Zn, while no symptoms were observed for Cu deficiency. The micronutrient omission reduced the dry matter yield, chlorophyll content and photosynthetic rate of the plants differently for each omitted nutrient. It was, however, the omission of Fe that most affected the development of this species in all parameters evaluated. The treatments negatively affected the chlorophyll content, evaluated in SPAD units, and the photosynthetic rate, except for the omission of B. However this result was probably due to the concentration effect, since there was a significant reduction in the dry matter production of B-deficient plants.

  10. Exothermic dark matter

    International Nuclear Information System (INIS)

    Graham, Peter W.; Saraswat, Prashant; Harnik, Roni; Rajendran, Surjeet

    2010-01-01

    We propose a novel mechanism for dark matter to explain the observed annual modulation signal at DAMA/LIBRA which avoids existing constraints from every other dark matter direct detection experiment including CRESST, CDMS, and XENON10. The dark matter consists of at least two light states with mass ∼few GeV and splittings ∼5 keV. It is natural for the heavier states to be cosmologically long-lived and to make up an O(1) fraction of the dark matter. Direct detection rates are dominated by the exothermic reactions in which an excited dark matter state downscatters off of a nucleus, becoming a lower energy state. In contrast to (endothermic) inelastic dark matter, the most sensitive experiments for exothermic dark matter are those with light nuclei and low threshold energies. Interestingly, this model can also naturally account for the observed low-energy events at CoGeNT. The only significant constraint on the model arises from the DAMA/LIBRA unmodulated spectrum but it can be tested in the near future by a low-threshold analysis of CDMS-Si and possibly other experiments including CRESST, COUPP, and XENON100.

  11. Particulate matter air pollution may offset ozone damage to global crop production

    Science.gov (United States)

    Schiferl, Luke D.; Heald, Colette L.

    2018-04-01

    Ensuring global food security requires a comprehensive understanding of environmental pressures on food production, including the impacts of air quality. Surface ozone damages plants and decreases crop production; this effect has been extensively studied. In contrast, the presence of particulate matter (PM) in the atmosphere can be beneficial to crops given that enhanced light scattering leads to a more even and efficient distribution of photons which can outweigh total incoming radiation loss. This study quantifies the impacts of ozone and PM on the global production of maize, rice, and wheat in 2010 and 2050. We show that accounting for the growing season of these crops is an important factor in determining their air pollution exposure. We find that the effect of PM can offset much, if not all, of the reduction in yield associated with ozone damage. Assuming maximum sensitivity to PM, the current (2010) global net impact of air quality on crop production varies by crop (+5.6, -3.7, and +4.5 % for maize, wheat, and rice, respectively). Future emissions scenarios indicate that attempts to improve air quality can result in a net negative effect on crop production in areas dominated by the PM effect. However, we caution that the uncertainty in this assessment is large, due to the uncertainty associated with crop response to changes in diffuse radiation; this highlights that a more detailed physiological study of this response for common cultivars is crucial.

  12. Particulate matter air pollution may offset ozone damage to global crop production

    Directory of Open Access Journals (Sweden)

    L. D. Schiferl

    2018-04-01

    Full Text Available Ensuring global food security requires a comprehensive understanding of environmental pressures on food production, including the impacts of air quality. Surface ozone damages plants and decreases crop production; this effect has been extensively studied. In contrast, the presence of particulate matter (PM in the atmosphere can be beneficial to crops given that enhanced light scattering leads to a more even and efficient distribution of photons which can outweigh total incoming radiation loss. This study quantifies the impacts of ozone and PM on the global production of maize, rice, and wheat in 2010 and 2050. We show that accounting for the growing season of these crops is an important factor in determining their air pollution exposure. We find that the effect of PM can offset much, if not all, of the reduction in yield associated with ozone damage. Assuming maximum sensitivity to PM, the current (2010 global net impact of air quality on crop production varies by crop (+5.6, −3.7, and +4.5 % for maize, wheat, and rice, respectively. Future emissions scenarios indicate that attempts to improve air quality can result in a net negative effect on crop production in areas dominated by the PM effect. However, we caution that the uncertainty in this assessment is large, due to the uncertainty associated with crop response to changes in diffuse radiation; this highlights that a more detailed physiological study of this response for common cultivars is crucial.

  13. Non-thermal production of minimal dark matter via right-handed neutrino decay

    International Nuclear Information System (INIS)

    Aoki, Mayumi; Toma, Takashi; Vicente, Avelino

    2015-01-01

    Minimal Dark Matter (MDM) stands as one of the simplest dark matter scenarios. In MDM models, annihilation and co-annihilation processes among the members of the MDM multiplet are usually very efficient, pushing the dark matter mass above O(10) TeV in order to reproduce the observed dark matter relic density. Motivated by this little drawback, in this paper we consider an extension of the MDM scenario by three right-handed neutrinos. Two specific choices for the MDM multiplet are studied: a fermionic SU(2) L quintuplet and a scalar SU(2) L septuplet. The lightest right-handed neutrino, with tiny Yukawa couplings, never reaches thermal equilibrium in the early universe and is produced by freeze-in. This creates a link between dark matter and neutrino physics: dark matter can be non-thermally produced by the decay of the lightest right-handed neutrino after freeze-out, allowing to lower significantly the dark matter mass. We discuss the phenomenology of the non-thermally produced MDM and, taking into account significant Sommerfeld corrections, we find that the dark matter mass must have some specific values in order not to be in conflict with the current bounds from gamma-ray observations

  14. Dosimetric measurement of the disintegration rate of fission products

    International Nuclear Information System (INIS)

    Solymosi, J.; Nagy, L.G.; Zagyvai, P.

    1992-01-01

    Investigations on the disintegration rate of fission products of 238 U and 239 Pu are presented. The intensity of the β-and γ-radiation of fission products were measured continously in an interval of 1-1300 hours following the fission, offering the possibility for determining the general and specific characteristics of the individual fission products. A universal measuring procedure was elaborated for the rapid in situ determination of the dosimetric features of fission products, which is suitable for the accurate evaluation and prediction of external absorbed dose even in case of fission products of various origin and unknown composition. (author) 6 refs.; 7 figs.; 1 tab

  15. MadAnalysis Recast Code for Dark Matter Production in Association with Bottom Quarks

    CERN Document Server

    Biswas, Diptaparna

    The CMS-B2G-15-007 analysis was carried out to investigate the $pp\\rightarrow bb+DM$ process, which is a candidate process of direct Dark Matter production. In this particular work, this process is simulated and analyzed for 13 TeV LHC experiment using MadGraph, Pythia 8 and MadAnalysis C++ API. The recast code is written to reproduce the results obtained by the experimentalists in CMS-B2G-15-007 analysis. The result is interpreted within simplified scalar model in terms of the coupling between the mediator and the DM candidate and evaluated based on the MET distribution. CMS-B2G-15-007 uses a dataset of $2.17fb^{-1}$ of data collected by the CMS experiment in $\\sqrt{s}=13TeV$ proton-proton collisions at LHC. This analysis is sensitive also to DM production processes in association with top quarks. Results are reported as upper limits on the cross section for the b quark and top quark associated production independently, and interpreted within simplified models in terms of the coupling between the mediator an...

  16. S-Channel Dark Matter Simplified Models and Unitarity

    CERN Document Server

    Englert, Christoph; Spannowsky, Michael

    The ultraviolet structure of $s$-channel mediator dark matter simplified models at hadron colliders is considered. In terms of commonly studied $s$-channel mediator simplified models it is argued that at arbitrarily high energies the perturbative description of dark matter production in high energy scattering at hadron colliders will break down in a number of cases. This is analogous to the well documented breakdown of an EFT description of dark matter collider production. With this in mind, to diagnose whether or not the use of simplified models at the LHC is valid, perturbative unitarity of the scattering amplitude in the processes relevant to LHC dark matter searches is studied. The results are as one would expect: at the LHC and future proton colliders the simplified model descriptions of dark matter production are in general valid. As a result of the general discussion, a simple new class of previously unconsidered `Fermiophobic Scalar' simplified models is proposed, in which a scalar mediator couples to...

  17. A variable reaction rate model for chlorine decay in drinking water due to the reaction with dissolved organic matter.

    Science.gov (United States)

    Hua, Pei; Vasyukova, Ekaterina; Uhl, Wolfgang

    2015-05-15

    A second order kinetic model for simulating chlorine decay in bulk water due to the reaction with dissolved organic matter (DOM) was developed. It takes into account the decreasing reactivity of dissolved organic matter using a variable reaction rate coefficient (VRRC) which decreases with an increasing conversion. The concentration of reducing species is surrogated by the maximum chlorine demand. Temperature dependency, respectively, is described by the Arrhenius-relationship. The accuracy and adequacy of the proposed model to describe chlorine decay in bulk water were evaluated and shown for very different waters and different conditions such as water mixing or rechlorination by applying statistical tests. It is thus very well suited for application in water quality modeling for distribution systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Development of Copper Corrosion Products and Relation between Surface Appearance and Corrosion Rate

    International Nuclear Information System (INIS)

    Lan, Tran Thi Ngoc; Binh, Nguyen Thi Thanh; Tru, Nguyen Nhi; Yoshino, Tsujino; Yasuki, Maeda

    2008-01-01

    Copper was exposed unsheltered and sheltered in four humid tropical sites, representing urban, urban-industrial, urban-marine and rural environments. The corrosion rates and the sequence of corrosion product formation are presented and discussed in relation with climatic and atmospheric pollution parameters. Chemical compositions of corrosion products were found to depend on environments and duration of exposure. In all environments, cuprite was the predominating corrosion product that formed first and continuously increased during the exposure. Among the sulphur-containing corrosion products, posnjakite and brochantite were more frequently found and the first formed earlier. Nantokite was the most common chlorine-containing products for most cases, except the high-chloride environment, where atacamite was detected instead. The corrosion rate of copper was well indicated by the colour of patina. The red-purple colour corresponded to the high corrosion rate and the greenish grey colour corresponded to the low corrosion rate. Corrosion rate of sheltered copper in urban-marine environment increased with the exposure time

  19. Phenomenological introduction to direct dark matter detection

    International Nuclear Information System (INIS)

    Gondolo, P.

    1996-01-01

    The dark matter of our galactic halo may be constituted by elementary particles that interact weakly with with ordinary matter (WIMPs). In spite of the very low counting rates expected for these dark matter particle to scatter off nuclei in a laboratory detector, such direct WIMP searches are possible and are experimentally carried out at present. An introduction to the theoretical ingredients entering the counting rates predictions, together with a short discussion of the major theoretical uncertainties, is here presented. (author)

  20. 78 FR 1277 - International Product Change-Global Expedited Package Services-Non-Published Rates

    Science.gov (United States)

    2013-01-08

    ... POSTAL SERVICE International Product Change--Global Expedited Package Services-- Non-Published...-- Non-Published Rates 4 (GEPS-NPR 4) to the Competitive Products List. DATES: Effective date: January 8... add Global Expedited Package Services-- Non-Published Rates 4 (GEPS-NPR 4) to the Competitive Products...

  1. Constraint on dark matter annihilation with dark star formation using Fermi extragalactic diffuse gamma-ray background data

    International Nuclear Information System (INIS)

    Yuan, Qiang; Yue, Bin; Chen, Xuelei; Zhang, Bing

    2011-01-01

    It has been proposed that during the formation of the first generation stars there might be a ''dark star'' phase in which the power of the star comes from dark matter annihilation. The adiabatic contraction process to form the dark star would result in a highly concentrated density profile of the host halo at the same time, which may give enhanced indirect detection signals of dark matter. In this work we investigate the extragalactic γ-ray background from dark matter annihilation with such a dark star formation scenario, and employ the isotropic γ-ray data from Fermi-LAT to constrain the model parameters of dark matter. The results suffer from large uncertainties of both the formation rate of the first generation stars and the subsequent evolution effects of the host halos of the dark stars. We find, in the most optimistic case for γ-ray production via dark matter annihilation, the expected extragalactic γ-ray flux will be enhanced by 1-2 orders of magnitude. In such a case, the annihilation cross section of the supersymmetric dark matter can be constrained to the thermal production level, and the leptonic dark matter model which is proposed to explain the positron/electron excesses can be well excluded. Conversely, if the positron/electron excesses are of a dark matter annihilation origin, then the early Universe environment is such that no dark star can form

  2. Enhancement in secondary particulate matter production due to mountain trapping

    Science.gov (United States)

    Yao, Teng; Fung, J. C. H.; Ma, H.; Lau, A. K. H.; Chan, P. W.; Yu, J. Z.; Xue, J.

    2014-10-01

    As China's largest economic development zone, the Pearl River Delta (PRD) is subject to particulate matter (PM) and visibility deterioration problems. Due to high PM concentration, haze days impacting ambient visibility have occurred frequently in this region. Besides visibility impairment, PM pollution also causes a negative impact on public health. These negative impacts have heightened the need to improve our understanding of the PM pollution of the PRD region. One major cause of the PRD pollution problem is cold front passages in the winter; however, the mechanism of pollution formation stays unclear. In this study, the Comprehensive Air Quality Model (CAMx) is utilized to investigate the detailed PM production and transport mechanisms in the PRD. Simulated concentrations of PM2.5 species, which have a good correlation with observation, show that sulfate and nitrate are the dominant pollutants among different PM2.5 species. Before the cold front passage a large amount of gas-phase and particle-phase pollutants are transported to the mountainous regions in the north of the PRD, and become trapped by the terrain. Over the mountain regions, cloud driven by upwelling flow promotes aqueous-phase reactions including oxidations of PM precursors such as SO2 and NO2. By this process, production of secondary PM is enhanced. When the cold front continues to advance further south, PM is transported to the PRD cities, and suppressed into a thin layer near the ground by a low planetary boundary layer (PBL). Thus high PM concentration episodes take place in the PRD cities. After examining production and transportation pathways, this study presents that the complex terrain configuration would block pollutant dispersion, provide cloudy environment, and advance secondary PM production. Previous studies have pointed out that pollution emitted from outside this region largely influences the air quality in the PRD; however, this study shows that pollutants from the outside could be

  3. Hirschegg '95: Dynamical properties of hadrons in nuclear matter. Proceedings

    International Nuclear Information System (INIS)

    Feldmeier, H.; Noerenberg, W.

    1995-01-01

    The following topics were dealt with: Chiral symmetry, chiral condensates, in-medium effective chiral Lagrangians, Δ's in nuclei, nonperturbative QCD, electron scattering from nuclear matter, nuclear shadowing, QCD sum rules, deconfinement, ultrarelativistic heavy ion collisions, nuclear dimuon and electron pair production, photoproduction from nuclei, subthreshold K + production, kaon polarization in nuclear matter, charged pion production in relativistic heavy ion collisions, the Nambu-Jona-Lasinio model, the SU(3) L xSU(3) R sigma model, nonequilibrium dense nuclear matter, pion pair production at finite temperature. (HSI)

  4. Buyer-vendor coordination for fixed lifetime product with quantity discount under finite production rate

    Science.gov (United States)

    Zhang, Qinghong; Luo, Jianwen; Duan, Yongrui

    2016-03-01

    Buyer-vendor coordination has been widely addressed; however, the fixed lifetime of the product is seldom considered. In this paper, we study the coordination of an integrated production-inventory system with quantity discount for a fixed lifetime product under finite production rate and deterministic demand. We first derive the buyer's ordering policy and the vendor's production batch size in decentralised and centralised systems. We then compare the two systems and show the non-coordination of the ordering policies and the production batch sizes. To improve the supply chain efficiency, we propose quantity discount contract and prove that the contract can coordinate the buyer-vendor supply chain. Finally, we present analytically tractable solutions and give a numerical example to illustrate the benefits of the proposed quantity discount strategy.

  5. Non-thermal production of minimal dark matter via right-handed neutrino decay

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Mayumi [Institute for Theoretical Physics, Kanazawa University,Kanazawa 920-1192 (Japan); Toma, Takashi [Laboratoire de Physique Théorique, CNRS - UMR 8627, Université de Paris-Sud 11,F-91405 Orsay Cedex (France); Vicente, Avelino [IFPA, Dep. AGO, Université de Liège,Bat B5, Sart-Tilman B-4000 Liège 1 (Belgium); Instituto de Física Corpuscular, CSIC-Universitat de València,Apdo. 22085, E-46071 Valencia (Spain)

    2015-09-29

    Minimal Dark Matter (MDM) stands as one of the simplest dark matter scenarios. In MDM models, annihilation and co-annihilation processes among the members of the MDM multiplet are usually very efficient, pushing the dark matter mass above O(10) TeV in order to reproduce the observed dark matter relic density. Motivated by this little drawback, in this paper we consider an extension of the MDM scenario by three right-handed neutrinos. Two specific choices for the MDM multiplet are studied: a fermionic SU(2){sub L} quintuplet and a scalar SU(2){sub L} septuplet. The lightest right-handed neutrino, with tiny Yukawa couplings, never reaches thermal equilibrium in the early universe and is produced by freeze-in. This creates a link between dark matter and neutrino physics: dark matter can be non-thermally produced by the decay of the lightest right-handed neutrino after freeze-out, allowing to lower significantly the dark matter mass. We discuss the phenomenology of the non-thermally produced MDM and, taking into account significant Sommerfeld corrections, we find that the dark matter mass must have some specific values in order not to be in conflict with the current bounds from gamma-ray observations.

  6. Non-thermal production of minimal dark matter via right-handed neutrino decay

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Mayumi [Institute for Theoretical Physics, Kanazawa University, Kanazawa 920-1192 (Japan); Toma, Takashi [Laboratoire de Physique Théorique, CNRS - UMR 8627, Université de Paris-Sud 11, F-91405 Orsay Cedex (France); Vicente, Avelino, E-mail: mayumi@hep.s.kanazawa-u.ac.jp, E-mail: takashi.toma@th.u-psud.fr, E-mail: Avelino.Vicente@ulg.ac.be [IFPA, Dep. AGO, Université de Liège, Bat B5, Sart-Tilman B-4000 Liège 1 (Belgium)

    2015-09-01

    Minimal Dark Matter (MDM) stands as one of the simplest dark matter scenarios. In MDM models, annihilation and co-annihilation processes among the members of the MDM multiplet are usually very efficient, pushing the dark matter mass above O(10) TeV in order to reproduce the observed dark matter relic density. Motivated by this little drawback, in this paper we consider an extension of the MDM scenario by three right-handed neutrinos. Two specific choices for the MDM multiplet are studied: a fermionic SU(2){sub L} quintuplet and a scalar SU(2){sub L} septuplet. The lightest right-handed neutrino, with tiny Yukawa couplings, never reaches thermal equilibrium in the early universe and is produced by freeze-in. This creates a link between dark matter and neutrino physics: dark matter can be non-thermally produced by the decay of the lightest right-handed neutrino after freeze-out, allowing to lower significantly the dark matter mass. We discuss the phenomenology of the non-thermally produced MDM and, taking into account significant Sommerfeld corrections, we find that the dark matter mass must have some specific values in order not to be in conflict with the current bounds from gamma-ray observations.

  7. Z2 SIMP dark matter

    International Nuclear Information System (INIS)

    Bernal, Nicolás; Chu, Xiaoyong

    2016-01-01

    Dark matter with strong self-interactions provides a compelling solution to several small-scale structure puzzles. Under the assumption that the coupling between dark matter and the Standard Model particles is suppressed, such strongly interacting massive particles (SIMPs) allow for a successful thermal freeze-out through N-to-N' processes, where N dark matter particles annihilate to N' of them. In the most common scenarios, where dark matter stability is guaranteed by a Z 2 symmetry, the seemingly leading annihilating channel, i.e. 3-to-2 process, is forbidden, so the 4-to-2 one dominate the production of the dark matter relic density. Moreover, cosmological observations require that the dark matter sector is colder than the thermal bath of Standard Model particles, a condition that can be dynamically generated via a small portal between dark matter and Standard Model particles, à la freeze-in. This scenario is exemplified in the context of the Singlet Scalar dark matter model

  8. Assessment of vehicle trip production rates in Ilorin (Nigeria) | Jimoh ...

    African Journals Online (AJOL)

    Occupation, age, gender, income lev-el, vehicle ownership, trip length and fare structure affected the total trip generation, with an average production rate of 3.5, in the range of 2.79 - 4.29. The lower rate was characteristic of school children (5 - 15 years), while the highest rate was attributed to affluent and elderly persons ...

  9. Ecological studies in a Scanian woodland and meadow area, southern Sweden. Ti. Plant biomass, primary production and turnover of organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, F

    1970-01-01

    As a part of an IBP project the productivity of the south Swedish deciduous woodland ecosystems and their secondary successional stages a comparison between the distribution of organic matter in a mixed deciduous woodland dominated by Quercus robur, Tilia cordata, Corylus avellana and Anemone nemorosa and a tall herb meadow with Filipendula ulmaria within the nemoral zone in the southernmost part of Sweden has been made. Estimations of the plant biomass and production in the woodland was made by a dimension analysis applying allometric equations. A total plant biomass of 240 t/ha was found with 201 t/ha and 39 t/ha as above-and below-ground figures respectively. The corresponding figures of the net primary production are 15.6, 13.3 and 2.3 t/ha. A production of 0.77 t/ha is included for the above-ground production of the field layer. The litter fall, fractions less than 50 cm long, during a three year period amounted to 5.28 t/ha with considerable variation between years. Including coarser litter fractions an yearly input to the ground of 6.5 t/ha was found. After estimation of the remaining litter before the leaf fall, 6.1 t/ha, the yearly turnover of the litter layer is calculated to 52%. As the humus fraction amounts to 218 t/ha, the total content of organic matter in the woodland ecosystem thus is 463 t/ha with an almost equal distribution between above-and below-ground portions. In the meadow the distribution of above-and below-ground portions of the organic matter is 1/49, calculated from the following figures: Above-ground biomass 4.7 t/ha, below-ground biomass 13.2 t/ha, surface litter 2.4 t/ha and humus 304 t/ha making the total organic matter of the meadow ecosystem 324 t/ha. The yearly above-ground production is estimated to be 7.2 t/ha and taking this as the yearly litter input to the ground and taking the remaining litter into account a turnover of the litter layer 75% is calculated.

  10. Exploration of Elastic Scattering Rates for Supersymmetric Dark Matter

    CERN Document Server

    Ellis, Jonathan Richard; Olive, Keith A; Ellis, John

    2001-01-01

    We explore the possible cross sections for the elastic scattering of neutralinos chi on nucleons p,n in the minimal supersymmetric extension of the standard model (MSSM). Universality of the soft supersymmetry-breaking scalar masses for the Higgs multiplets is not assumed, but the MSSM parameters are nevertheless required to lead consistently to an electroweak vacuum. We explore systematically the region of MSSM parameter space where LEP and other accelerator constraints are respected, and the relic neutralino density lies in the range 0.1 < Omega_chi h^2 < 0.3 preferred by cosmology. We also discuss models with Omega_chi h^2 < 0.1, in which case we scale the density of supersymmetric dark matter in our galactic halo by Omega_chi h^2 / 0.1, allowing for the possible existence of some complementary form of cold dark matter. We find values of the cross sections that are considerably lower than the present experimental sensitivities. At low neutralino masses, m_chi < 100 GeV, the cross sections may b...

  11. Superconducting Detectors for Superlight Dark Matter.

    Science.gov (United States)

    Hochberg, Yonit; Zhao, Yue; Zurek, Kathryn M

    2016-01-08

    We propose and study a new class of superconducting detectors that are sensitive to O(meV) electron recoils from dark matter-electron scattering. Such devices could detect dark matter as light as the warm dark-matter limit, m(X)≳1  keV. We compute the rate of dark-matter scattering off of free electrons in a (superconducting) metal, including the relevant Pauli blocking factors. We demonstrate that classes of dark matter consistent with terrestrial and cosmological or astrophysical constraints could be detected by such detectors with a moderate size exposure.

  12. Measurement of broiler litter production rates and nutrient content using recycled litter.

    Science.gov (United States)

    Coufal, C D; Chavez, C; Niemeyer, P R; Carey, J B

    2006-03-01

    It is important for broiler producers to know litter production rates and litter nutrient content when developing nutrient management plans. Estimation of broiler litter production varies widely in the literature due to factors such as geographical region, type of housing, size of broiler produced, and number of flocks reared on the same litter. Published data for N, P, and K content are also highly variable. In addition, few data are available regarding the rate of production, characteristics, and nutrient content of caked litter (cake). In this study, 18 consecutive flocks of broilers were reared on the same litter in experimental pens under simulated commercial conditions. The mass of litter and cake produced was measured after each flock. Samples of all litter materials were analyzed for pH, moisture, N, P, and K. Average litter and cake moisture content were 26.4 and 46.9%, respectively. Significant variation in litter and cake nutrient content was observed and can largely be attributed to ambient temperature differences. Average litter, cake, and total litter (litter plus cake) production rates were 153.3, 74.8, and 228.2 g of dry litter material per kg of live broiler weight (g/kg) per flock, respectively. Significant variation in litter production rates among flocks was also observed. Cumulative litter, cake, and total litter production rates after 18 flocks were 170.3, 78.7, and 249.0 g/kg, respectively. The data produced from this research can be used by broiler producers to estimate broiler litter and cake production and the nutrient content of these materials.

  13. 76 FR 15340 - In the Matter of Certain GPS Devices and Products Containing Same; Notice of Commission...

    Science.gov (United States)

    2011-03-21

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-602] In the Matter of Certain GPS Devices and... importation, or the sale within the United States after importation of certain GPS devices and products... Determination in all respects. See SiRF Tech., Inc. v. Int'l Trade Comm'n, 601 F.3d 1319 (Fed. Cir. 2010). On...

  14. Impact of exchange rates on the world uranium market

    International Nuclear Information System (INIS)

    Fulton, M.E.; Combs, G.F. Jr.

    1986-01-01

    A preliminary analysis of the relationship between exchange rates and US uranium prices and product ion is presented. This analysis supplements the discussions on the broader topic of fuel prices, exchange rates and other international economic phenomena scheduled during the 1985 EPRI Fuel Supply Seminar. By varying exchange rate assumptions in the recently developed Uranium Market Model, estimates of the magnitude and timing of price and production effects were obtained. These effects do indeed appear to be large and have implications in procurement, fuel planning and commodity policy. While analysts may differ on details, the inescapable conclusion is that exchange rates matter a great deal in the uranium market. The case described is for a scenario of exchange rates with other currencies returning to their 1980 levels. A second case, an across the board weakening of the dollar by 25%, the results of which are somewhat less dramatic is also examined

  15. Methodology for determination of radon-222 production rate of residential building and experimental verification

    International Nuclear Information System (INIS)

    Tung, Thomas C.W.; Niu, J.L.; Burnett, J.; Lau, Judy O.W.

    2005-01-01

    Indoor radon concentration is mainly associated with the radon production rate of building material, ventilation rate, and the outdoor radon concentrations. Radon production rate of a room is defined as the sum of the products of the radon emanation rates and the exposed areas of the materials. Since the selection of the building materials and the exposed areas are different from room to room, it makes the radon production rate of homes fall in a wide range. Here, the radon production rate of a room is suggested to be quantified by a sealing method, in which the systematic radon growth curve is obtained. The radon production rate of the room can be determined from the initial slope of the growth curve. Three rooms at different homes in Hong Kong were selected in the study for verifying the methodology. The uncertainty characterized by data scatter arisen from the coupling effect of the leakage rate and outdoor radon was also included in the discussion. During the measurements, no occupant was allowed into the home. No mechanical ventilation was involved in the measurement. The indoor and outdoor radon concentrations of the sampled homes were monitored simultaneously and lasted for more than three days. The radon production rates and the uncertainties of three rooms at Homes 1, 2, and 3 were found to be 232.8, 46.0, 414.6, and 20.3, 9.4, 59.2Bqh -1 , respectively. The approach is valid when the air leakage rate of the room is controlled below 0.1h -1

  16. 76 FR 396 - Product Change-Priority Mail-Non-Published Rates

    Science.gov (United States)

    2011-01-04

    ... POSTAL SERVICE Product Change--Priority Mail--Non-Published Rates AGENCY: Postal Service TM . ACTION: Notice. SUMMARY: Postal Service notice of filing of a request with the Postal Regulatory... States Postal Service Concerning Priority Mail--Non-Published Rates and Notice of Filing Materials Under...

  17. High Acetic Acid Production Rate Obtained by Microbial Electrosynthesis from Carbon Dioxide.

    Science.gov (United States)

    Jourdin, Ludovic; Grieger, Timothy; Monetti, Juliette; Flexer, Victoria; Freguia, Stefano; Lu, Yang; Chen, Jun; Romano, Mark; Wallace, Gordon G; Keller, Jurg

    2015-11-17

    High product specificity and production rate are regarded as key success parameters for large-scale applicability of a (bio)chemical reaction technology. Here, we report a significant performance enhancement in acetate formation from CO2, reaching comparable productivity levels as in industrial fermentation processes (volumetric production rate and product yield). A biocathode current density of -102 ± 1 A m(-2) and an acetic acid production rate of 685 ± 30 (g m(-2) day(-1)) have been achieved in this study. High recoveries of 94 ± 2% of the CO2 supplied as the sole carbon source and 100 ± 4% of electrons into the final product (acetic acid) were achieved after development of a mature biofilm, reaching an elevated product titer of up to 11 g L(-1). This high product specificity is remarkable for mixed microbial cultures, which would make the product downstream processing easier and the technology more attractive. This performance enhancement was enabled through the combination of a well-acclimatized and enriched microbial culture (very fast start-up after culture transfer), coupled with the use of a newly synthesized electrode material, EPD-3D. The throwing power of the electrophoretic deposition technique, a method suitable for large-scale production, was harnessed to form multiwalled carbon nanotube coatings onto reticulated vitreous carbon to generate a hierarchical porous structure.

  18. Dairy cow breed interacts with stocking rate in temperate pasture-based dairy production systems.

    Science.gov (United States)

    Spaans, O K; Macdonald, K A; Lancaster, J A S; Bryant, A M; Roche, J R

    2018-05-01

    Economic optimum stocking rates for grazing dairy systems have been defined by accounting for the pasture production potential of the farm [t of dry matter (DM)/ha], the amount of feed imported from outside the farm (t of DM/ha), and the size of the cow (kg). These variables were combined into the comparative stocking rate [CSR; kg of body weight (BW)/t of feed DM available] measure. However, CSR assumes no effect of cow genetics beyond BW, and there is increasing evidence of within-breed differences in residual feed intake and between-breed differences in the gross efficiency with which cows use metabolizable energy for milk production. A multiyear production system experiment was established to determine whether Jersey (J) and Holstein-Friesian (HF) breeds performed similarly at the same CSR. Fifty-nine J cows and 51 HF cows were randomly allocated to 1 of 2 CSR in a 2 × 2 factorial arrangement; systems were designed to have a CSR of either 80 or 100 kg of BW/t of feed DM (J-CSR80, J-CSR100, HF-CSR80, and HF-CSR100 treatment groups). Data were analyzed for consistency of farmlet response over years using ANOVA procedures, with year and farmlet as fixed effects and the interaction of farmlet with year as a random effect. The collated biological data and financial data extracted from a national economic database were used to model the financial performance for the different breed and CSR treatments. On average, annual and individual season pasture DM production was greater for the J farmlets and was less in the CSR100 treatment; however, the effect of CSR was primarily driven by a large decline in pasture DM production in the HF-CSR100 treatment (breed × CSR interaction). This interaction in feed availability resulted in a breed × CSR interaction for the per-cow and per-hectare milk production variables, with HF cows producing more milk and milk components per cow in the CSR80 treatment but the same amount as the J cows in the CSR100 treatment. On a per

  19. Energy productivity, fertilization rate and profitability of wheat production after various predecessors II.Profitability of wheat production

    Directory of Open Access Journals (Sweden)

    Z. Uhr

    2016-03-01

    Full Text Available Abstract. In the course of our study on the adaptation of modern genotypes common winter wheat (Triticum aestivum to the requirements of sustainable agriculture data were received concerning the influence of the predecessor and nitrogen fertilizer rate on energy efficiency and recyclable nitrogen fertilization and profitability of productivity.We share these data with the scientific community, as they are up-to-date and informative in both theoretical and practical aspects. The analyses are based on data from field experiments fertilizer derived after predecessor cereals – regular crop of sorghum, millet, maize and legumes after predecessor - separate sowing of chickpeas. Energy efficiency of nitrogen fertilization was calculated as the ratio between the energy supplied in the additional grain yield and energy input in the form of fertilizers. Refundable efficiency of nitrogen fertilization is the additional amount of nitrogen accumulated in the grain, with respect to the applied nitrogen fertilization. Economic profitability of production is evaluated by coefficient R = P/Ra (ratio of benefits/costs. The results show that energy efficiency and recyclable nitrogen fertilization are on average five times higher after cereal than after legumes predecessor, and decreased with increasing the fertilizer rate, the decrease was statistically significant only for the first item (exponent. Profitability ratio of production after the introduction of legumes predecessor in crop rotation increases by an average of 42% and retains maximum values of fertilization levels 0.06, 0.12 and 0.18 t/ha nitrogen. Profitability of wheat production using pre-legumes crop is not determined by the parameters nitrogen fertilizer rate and energy efficiency of nitrogen fertilization and refundable efficiency of nitrogen fertilization.

  20. Build to order and entry/exit strategies under exchange rate uncertainty

    Directory of Open Access Journals (Sweden)

    Lin Chin-Tsai

    2004-01-01

    Full Text Available Under uncertainty of exchange rate, we extend the build to order production model of Lin et al. (2002 by considering the export-oriented manufacturer to make decisions to switch production location freely between domestic and foreign ones. The export-oriented manufacturer is risk neutral and has rational expectations. When we transfer the production location from domestic (foreign to foreign (domestic, and the production location transferring cost and the drift of real exchange rate are both equal to zero, then the optimal entry and exit threshold value of Cobb-Douglas production function are equal, no matter whether we use real options or net present value method. Thus export-oriented manufacturer can make decisions at the optimal transfer threshold value for transferable locations wherever the production locations are. It provides the export-oriented manufacturer with another way of thinking.

  1. Production rates of strange vector mesons at the Z0 resonance

    International Nuclear Information System (INIS)

    Dima, M.O.

    1997-05-01

    This dissertation presents a study of strange vector meson production, open-quotes leading particleclose quotes effect and a first direct measurement of the strangeness suppression parameter in hadronic decays of the neutral electroweak boson, Z 0 . The measurements were performed in e + e - collisions at the Stanford Linear Accelerator Center (SLAC) with the SLC Large Detector (SLD) experiment. A new generation particle ID system, the SLD Cerenkov Ring Imaging Detector (CRID) is used to discriminate kaons from pions, enabling the reconstruction of the vector mesons over a wide momentum range. The inclusive production rates of φ and K* 0 and the differential rates versus momentum were measured and are compared with those of other experiments and theoretical predictions. The high longitudinal polarisation of the SLC electron beam is used in conjunction with the electroweak quark production asymmetries to separate quark jets from antiquark jets. K* 0 production is studied separately in these samples, and the results show evidence for the open-quotes leading particleclose quotes effect. The difference between K* 0 production rates at high momentum in quark and antiquark jets yields a first direct measurement of strangeness suppression in jet fragmentation

  2. Assessing the nutritional value of agroindustrial co-products and feed through chemical composition, in vitro digestibility, and gas production technique

    Directory of Open Access Journals (Sweden)

    Paula Martins Olivo

    2017-07-01

    Full Text Available Agroindustrial co-products are a viable alternative for use in animal nutrition. Tests were conducted using eight different types of co-products and feed to evaluate the chemical composition, in vitro digestibility of dry matter, crude protein and neutral detergent fiber, and gas production by them. The co-products tested were: coffee hulls; pelleted citrus pulp; grape residue; soybean hulls; cottonseed; cassava foliage; and foods usually supplied to ruminants: corn silage and ground corn concentrate. Data of in vitro digestibility of dry matter, crude protein and neutral detergent fiber were tested by analysis of variance using the least square method; the results of gas production were interpreted by a non-linear regression by the Gauss-Newton method; and the effects of treatments were evaluated by the Tukey’s test. The coefficients of in vitro digestibility of dry matter, crude protein and neutral detergent fiber of co-products were different. Gas production was also different between co-products and feeds evaluated for the volume of gas produced from the fast and slow degradation fractions, degradation rate, bacterial colonization time, and the total volume of gas produced. The evaluated co-products exhibited greater in vitro dry matter digestibility compared to corn silage, except for cottonseed, grape residue, and cassava foliage. Co-products showed higher values of in vitro crude protein digestibility compared to corn silage, and a reduced in vitro digestibility of neutral detergent fiber, except for pelleted citrus pulp and soybean hulls. Corn silage produced larger volume of gas from the fast degradation fraction compared to the co-products and corn concentrate. Co-products analyzed had appropriate nutritional characteristics according to the techniques applied and can be included in ruminant diets.

  3. Effect on incorporating urea molasses mineral block lick in the diet of crossbred calves on the protozoal production rate in the rumen

    International Nuclear Information System (INIS)

    Garg, M.R.; Gupta, B.N.; Singh, G.P.

    1992-01-01

    Sixteen male rumen fistulated calves (18-24 months of age; 180-200 kg body wt) were divided into four groups of four animals each. Animals in all groups were fed wheat straw ad lib as the sole roughage. However, animals in Gr I were fed concentrate mixture at maintenance level whereas, animals in Gr II, III and IV had free access to urea molasses mineral block (UMMB) lick existing modified 'A' and modified 'B', respectively without any concentrate mixture. Dry matter intake (kg/100 kg body wt) were similar in four groups. However, straw intake was significantly higher in UMMB supplemented groups. Protozoa production rate (gN/d) was significantly higher in Gr I (7.112 + 0.27) as compared to Gr II (4.302 + 0.51), Gr III (4.743 + 0.27) and Gr IV (4.501 + 0.25). Thus, these results indicated that protozoal production rate in the rumen is significantly lower when crossbred calves were fed on wheat straw based diet supplemented with different UMMB licks as compared to those fed concentrate mixture at maintenance level. (author). 12 refs., 4 tabs

  4. Productivity dynamics of Livestock in southern peninsular India: A Compound growth rate analysis

    Directory of Open Access Journals (Sweden)

    G. Kathiravan 1 and S. Selvam 2

    2011-04-01

    Full Text Available Although India possesses the large volume of livestock, their productivity is abysmally low at global level. India, with its wide variation in geo-ecological parameters, elucidates a high variation in the productivity of its livestock, among regions. The compound growth rate of livestock productivity was worked out for the Southern Peninsular state of India, Tamil Nadu. The average productivity of milk in cross bred cows and buffaloes in Tamil Nadu was less than the national average, while the productivity desi cows was a bit a more. The annual compound growth rate of milk productivity among crossbred cows of Tamil Nadu was at meager 0.54 per cent during the period between 1998-1999 and 2006- 2007, whereas the productivity of milk in desi cows had improved from at an annual compound growth rate of 1.29 per cent. Notably, the milk productivity in buffaloes had declined at a rate of 0.29 per cent during the period under study. The annual compound growth of egg productivity in improved hens of Tamil Nadu was 20.87 per cent. The average annual productivity was 109.531 eggs, which improved from 70.623 in 1998-1999 to 197.084 in 2004-2005. Correspondingly, the productivity of desi hens also had a positive swing from the year 2003-2004 onwards. The results implied that the simulation of increased productivity, better farm financing and improved milk marketing could result in enhanced livestock production that would meet the future demands. [Veterinary World 2011; 4(2.000: 68-74

  5. Physics of intense light ion beams and production of high energy density in matter. Annual report 1994

    International Nuclear Information System (INIS)

    Bluhm, H.J.

    1995-06-01

    This report presents the results obtained in 1994 within the FZK-program on 'Physics of intense ion beams and pulsed plasmas'. It describes the present status of the 6 MW, 2 TW pulsed generator KALIF-HELIA, the production and focussing of high power ion beams and numerical simulations and experiments related to the hydrodynamics of beam matter interaction. (orig.) [de

  6. Searches for Dark Matter at the ATLAS experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00143063; The ATLAS collaboration

    2015-01-01

    Abstract. Searches for strongly produced dark matters in events with jets, photons, heavy-flavor quarks or massive gauge bosons recoiling against large missing transverse momentum in ATLAS are presented. These "MET+X" signatures provide powerful probes to dark matter production at the LHC, allowing us to interpret results in terms of effective field theory and/or simplified models with pair production of Weakly Interactions Particles. Recent ATLAS results on dark matter searches at LHC Run I and the connection to astroparticle physics are discussed.

  7. Seven (and a half) reasons to believe in mirror matter: from neutrino puzzles to the inferred dark matter in the universe

    International Nuclear Information System (INIS)

    Foot, R.

    2001-02-01

    Parity and time reversal are obvious and plausible candidates for fundamental symmetries of nature. Hypothesising that these symmetries exist implies the existence of a new form of matter, called mirror matter. The mirror matter theory (or exact parity model) makes four main predictions: 1) Dark matter in the form of mirror matter should exist in the Universe (i.e. mirror galaxies, stars, planets, meteoroids...), 2) Maximal ordinary neutrino - mirror neutrino oscillations if neutrinos have mass, 3) Orthopositronium should have a shorter effective lifetime than predicted by QED (in 'vacuum' experiments) because of the effects of photon-mirror photon mixing and 4) Higgs production and decay rate should be 50% lower than in the standard model due to Higgs mirror - Higgs mixing (assuming that the separation of the Higgs masses is larger than their decay widths). At the present time there is strong experimental/observational evidence supporting the first three of these predictions, while the fourth one is not tested yet because the Higgs boson, predicted in the standard model of particle physics, is yet to be found. This experimental/observational evidence is rich and varied ranging from the atmospheric and solar neutrino deficits, MACHO gravitational microlensing events, strange properties of extra-solar planets, the existence of 'isolated' planets, orthopositronium lifetime anomaly, Tunguska and other strange 'meteor' events including perhaps, the origin of the moon. The purpose of this article is to provide a not too technical review of these ideas along with some new results

  8. Forbidden Channels and SIMP Dark Matter

    OpenAIRE

    Choi Soo-Min; Kang Yoo-Jin; Lee Hyun Min

    2018-01-01

    In this review, we focus on dark matter production from thermal freeze-out with forbidden channels and SIMP processes. We show that forbidden channels can be dominant to produce dark matter depending on the dark photon and / or dark Higgs mass compared to SIMP.

  9. Strange matter and Big Bang helium synthesis

    International Nuclear Information System (INIS)

    Madsen, J.; Riisager, K.

    1985-01-01

    Stable strange quark matter produced in the QCD phase transition in the early universe will trap neutrons and repel protons, thus reducing primordial helium production, Ysub(p). For reasonable values of Ysub(p), the radius of strange droplets must exceed 10 -6 cm if strange matter shall solve the dark-matter problem without spoiling Big Bang helium synthesis. (orig.)

  10. Gravitational effects of condensate dark matter on compact stellar objects

    International Nuclear Information System (INIS)

    Li, X.Y.; Wang, F.Y.; Cheng, K.S.

    2012-01-01

    We study the gravitational effect of non-self-annihilating dark matter on compact stellar objects. The self-interaction of condensate dark matter can give high accretion rate of dark matter onto stars. Phase transition to condensation state takes place when the dark matter density exceeds the critical value. A compact degenerate dark matter core is developed and alter the structure and stability of the stellar objects. Condensate dark matter admixed neutron stars is studied through the two-fluid TOV equation. The existence of condensate dark matter deforms the mass-radius relation of neutron stars and lower their maximum baryonic masses and radii. The possible effects on the Gamma-ray Burst rate in high redshift are discussed

  11. [Proceeding: Production rate, metabolic clearance rate and mean plasma concentration of cortisol in hyperthyroidism (author's transl)].

    Science.gov (United States)

    Linquette, M; Lefebvre, J; Racadot, A; Cappoen, J P

    1975-01-01

    The adrenocortical function was studied in 23 patients with hyperthyroidism and compared with a group of 15 normal subjects. Parameters of adrenal function were determined with 1,2(3)H-cortisol. The half-life of cortisol is significantly shortened in hyperthyroidism, as compared to normal subjects (49,5 +/- 6,6 min vs 68,3 +/- 10,5 min) and metabolic clearance rate is increased (418,5 +/- 89,5 L/24 h vs 237,5 +/- 48,5 L/24 h, for normal subjects). The production rate of cortisol, calculated from specific and cumulate activities of THE and THF is increased in hyperthyroidism expressed as mg/24 h or mg/m2/24 h (respectively : 26,7 +/- 7,8 mg/24 h vs 15,7 +/- 3 mg/24 h and 16,9 +/- 4,6 mg/m2/24 h vs 9,5 +/- 1,8 mg/m2/24 h). The mean plasma concentration, calculated as the radio (see article) is not statiscally different in hyperthyroid and normal subjects (6,8 +/- 2,1 microg/100 ml vs 7,3 +/- 1,9 microg/100 ml). 7 patients were reinvestigated after treatment of thyrotoxicosis when they were clinically and biologically in euthyroid state. All the values were normalized, without statistically significant difference from control (T 1/2 = 65,4 +/- 18 min, Metb Cl. Rate : 255 +/- 64,5 L/24 h, production rate : 15,6 +/- 1,8 mg/24 h and 9 +/- 1,4 mg/m2/24 h. mean plasma concentration : 6,8 +/- 2,8 microg/100 ml). Shortened cortisol half life, increased metabolic clearance rate and production rate, and normal mean plasma concentration have been reported in hyperthyroidism (Peterson, Copinschi, Gallagher). These changes, secondary to thyroid hormone excess, are the consequences of increased hepatic catabolism of cortisol. The activity of 11 OH steroid deshydrogenase is increased, as demonstrated by increased ratio (see article) in normal subjects (0,001 less than p less than 0,005). There is a high proportion of 17 kéto metabolites (E, DHE, THE) whose feed-back effect is weak as compared to 17 OH metabolites (F, DHF, THF). The hypothalamo-hypophyso-adrenal system is

  12. Event generation and production of signal inputs for the search of dark matter mediator signal at a future hadron collider

    CERN Document Server

    Chalise, Darshan

    2017-01-01

    The interaction between Dark Matter particles and Standard Model particles is possible through a force mediated by a Dark Matter(DM) - Standard Model(SM) mediator. If that mediator decays through a dijet event, the reconstructed invariant mass of the jets will peak at a specific value, in contrast to the smooth QCD background. This analysis is a preliminary work towards the understanding of how changes in detector conditions at the Future Circular Collider affect the sensitivity of the mediator signal. MadGraph 5 was used to produce events with 30 TeV DM mediator and Heppy was used to produce flat n-tuples for ROOT analysis. MadAnalysis 5 was then used to produce histograms of MadGraph events and PyRoot was used to analyze Heppy output. Histograms of invariant mass of the jets after event production through MadGraph as well as after Heppy analysis showed a peak at 30 TeV. This verified the production of a 30 TeV mediator during event production.

  13. Pay Matters: The Piece Rate and Health in the Developing World.

    Science.gov (United States)

    Davis, Mary E

    Piece rate pay remains a common form of compensation in developing-world industries. While the piece rate may boost productivity, it has been shown to have unintended consequences for occupational safety and health, including increased accident and injury risk. This paper explores the relationship between worker pay and physical and emotional health, and questions the modern day business case for piece rate pay in the developing world. The relationship between piece rate and self-reported measures of physical and emotional health is estimated using a large survey of garment workers in 109 Vietnamese factories between 2010 and 2014. A random effects logit model controls for factory and year, predicting worker health as a function of pay type, demographics, and factory characteristics. Workers paid by the piece report worse physical and emotional health than workers paid by the hour (OR = 1.38-1.81). Wage incentives provide the most consistently significant evidence of all demographic and factory-level variables, including the factory's own performance on occupational safety and health compliance measures. These results highlight the importance of how workers are paid to understanding the variability in worker health outcomes. More research is needed to better understand the business case supporting the continued use of piece rate pay in the developing world. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  14. Results of a pilot scale melter test to attain higher production rates

    International Nuclear Information System (INIS)

    Elliott, M.L.; Perez, J.M. Jr.; Chapman, C.C.

    1991-01-01

    A pilot-scale melter test was completed as part of the effort to enhance glass production rates. The experiment was designed to evaluate the effects of bulk glass temperature and feed oxide loading. The maximum glass production rate obtained, 86 kg/hr-m 2 , was over 200% better than the previous record for the melter used

  15. Implications of the DAMA and CRESST experiments for mirror matter-type dark matter

    International Nuclear Information System (INIS)

    Foot, R.

    2004-01-01

    Mirror atoms are expected to be a significant component of the galactic dark matter halo if mirror matter is identified with the nonbaryonic dark matter in the Universe. Mirror matter can interact with ordinary matter via gravity and via the photon-mirror photon kinetic mixing interaction--causing mirror charged particles to couple to ordinary photons with an effective electric charge εe. This means that the nuclei of mirror atoms can elastically scatter off the nuclei of ordinary atoms, leading to nuclear recoils, which can be detected in existing dark matter experiments. We show that the dark matter experiments most sensitive to this type of dark matter candidate (via the nuclear recoil signature) are the DAMA/NaI and CRESST/Sapphire experiments. Furthermore, we show that the impressive annual modulation signal obtained by the DAMA/NaI experiment can be explained by mirror matter-type dark matter for vertical bar ε vertical bar ∼5x10 -9 and is supported by DAMA's absolute rate measurement as well as the CRESST/Sapphire data. This value of vertical bar ε vertical bar is consistent with the value obtained from various solar system anomalies including the Pioneer spacecraft anomaly, anomalous meteorite events and lack of small craters on the asteroid Eros. It is also consistent with standard big bang nucleosynthesis

  16. Cosmic-ray-produced stable nuclides: various production rates and their implications

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1981-01-01

    The rates for a number of reactions producing certain stable nuclides, such as 3 He and 4 He, and fission in the moon are calculated for galactic-cosmic-ray particles and for solar protons. Solar-proton-induced reactions with bromine usually are not an important source of cosmogenic Kr isotopes. The 130 Ba(n,p) reaction cannot account for the undercalculation of 130 Xe production rates. Calculated production rates of 15 N, 13 C, and 2 H agree fairly well with rates inferred from measured excesses of these isotopes in samples with long exposure ages. Cosmic-ray-induced fission of U and Th can produce significant amounts of fission tracks and of 86 Kr, 134 Xe, and 136 Xe, especially in samples with long exposures to cosmic-ray particles

  17. Constraining Dark Matter with ATLAS

    CERN Document Server

    Czodrowski, Patrick; The ATLAS collaboration

    2017-01-01

    The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as their signature. The ATLAS detector has developed a broad and systematic search program for dark matter production in LHC collisions. The results of these searches on the first 13 TeV data, their interpretation, and the design and possible evolution of the search program will be presented.

  18. In defense of anti-matter

    International Nuclear Information System (INIS)

    Rogers, S.; Thompson, W.B.

    1980-01-01

    There appears to be a prejudice in the astronomical world against an obvious high-energy source - the mutual annihilation of matter and anti-matter. In favor of this prejudice is the lack of any convincing evidence of the presence of naturally occurring anti-matter. Only recently have cosmic-ray antiprotons been detected (cf. Golden et al., 1979), and then in numbers consistent with secondary production in flight, while annihilation X-rays have also been detected, but again in circumstances where they might well be attributed to secondary effects of some other high-energy process. (orig.)

  19. Simulation of corrosion product activity in pressurized water reactors under flow rate transients

    International Nuclear Information System (INIS)

    Mirza, Anwar M.; Mirza, Nasir M.; Mir, Imran

    1998-01-01

    Simulation of coolant activation due to corrosion products and impurities in a typical pressurized water reactor has been done under flow rate transients. Employing time dependent production and losses of corrosion products in the primary coolant path an approach has been developed to calculate the coolant specific activity. Results for 24 Na, 56 Mn, 59 Fe, 60 Co and 99Mo show that the specific activity in primary loop approaches equilibrium value under normal operating conditions fairly rapidly. Predominant corrosion product activity is due to Mn-56. Parametric studies at full power for various ramp decreases in flow rate show initial decline in the activity and then a gradual rise to relatively higher saturation values. The minimum value and the time taken to reach the minima are strong functions of the slope of linear decrease in flow rate. In the second part flow rate coastdown was allowed to occur at different flow half-times. The reactor scram was initiated at 90% of the normal flow rate. The results show that the specific activity decreases and the rate of decrease depends on pump half time and the reactor scram conditions

  20. Millennial-scale variability of marine productivity and terrigenous matter supply in the western Bering Sea over the past 180 kyr

    Directory of Open Access Journals (Sweden)

    J.-R. Riethdorf

    2013-06-01

    Full Text Available We used piston cores recovered in the western Bering Sea to reconstruct millennial-scale changes in marine productivity and terrigenous matter supply over the past ~180 kyr. Based on a geochemical multi-proxy approach, our results indicate closely interacting processes controlling marine productivity and terrigenous matter supply comparable to the situation in the Okhotsk Sea. Overall, terrigenous inputs were high, whereas export production was low. Minor increases in marine productivity occurred during intervals of Marine Isotope Stage 5 and interstadials, but pronounced maxima were recorded during interglacials and Termination I. The terrigenous material is suggested to be derived from continental sources on the eastern Bering Sea shelf and to be subsequently transported via sea ice, which is likely to drive changes in surface productivity, terrigenous inputs, and upper-ocean stratification. From our results we propose glacial, deglacial, and interglacial scenarios for environmental change in the Bering Sea. These changes seem to be primarily controlled by insolation and sea-level forcing which affect the strength of atmospheric pressure systems and sea-ice growth. The opening history of the Bering Strait is considered to have had an additional impact. High-resolution core logging data (color b*, XRF scans strongly correspond to the Dansgaard–Oeschger climate variability registered in the NGRIP ice core and support an atmospheric coupling mechanism of Northern Hemisphere climates.

  1. Dark matter in and around stars

    International Nuclear Information System (INIS)

    Sivertsson, Sofia

    2009-01-01

    There is by now compelling evidence that most of the matter in the universe is in the form of dark matter, a form of matter quite different from the matter we experience in every day life. The gravitational effects of this dark matter have been observed in many different ways but its true nature is still unknown. In most models dark matter particles can annihilate with each other into standard model particles. The direct or indirect observation of such annihilation products could give important clues for the dark matter puzzle. For signals from dark matter annihilations to be detectable, typically high dark matter densities are required. Massive objects, such as stars, can increase the local dark matter density both via scattering off nucleons and by pulling in dark matter gravitationally as the star forms. Dark matter annihilations outside the star would give rise to gamma rays and this is discussed in the first paper. Furthermore dark matter annihilations inside the star would deposit energy inside the star which, if abundant enough, could alter the stellar evolution. Aspects of this are investigated in the second paper. Finally, local dark matter over densities formed in the early universe could still be around today; prospects of detecting gamma rays from such clumps are discussed in the third paper

  2. Effects Disposal Condition and Ground Water to Leaching Rate of Radionuclides from Solidification Products

    International Nuclear Information System (INIS)

    Herlan Martono; Wati

    2008-01-01

    Effects disposal condition and ground water to leaching rate of radionuclides from solidification products have been studied. The aims of leaching test at laboratory to get the best composition of solidified products for continuous process or handling. The leaching rate of radionuclides from the many kinds of matrix from smallest to bigger are glass, thermosetting plastic, urea formaldehyde, asphalt, and cement. Glass for solidification of high level waste, thermosetting plastic and urea formaldehyde for solidification of low and intermediate waste, asphalt and cement for solidification of low and intermediate level waste. In shallow land burial, ground water rate is fast, debit is high, and high permeability, so the probability contact between solidification products and ground water is occur. The pH of ground water increasing leaching rate, but cation in the ground water retard leaching rate. Effects temperature radiation and radiolysis to solidification products is not occur. In the deep repository, ground water rate is slow, debit is small, and low permeability, so the probability contact between solidification products and ground water is very small. There are effect cooling time and distance between pits to rock temperature. Alfa radiation effects can be occur, but there is no contact between solidification products and ground water, so that there is not radiolysis. (author)

  3. Did LIGO Detect Dark Matter?

    Science.gov (United States)

    Bird, Simeon; Cholis, Ilias; Muñoz, Julian B; Ali-Haïmoud, Yacine; Kamionkowski, Marc; Kovetz, Ely D; Raccanelli, Alvise; Riess, Adam G

    2016-05-20

    We consider the possibility that the black-hole (BH) binary detected by LIGO may be a signature of dark matter. Interestingly enough, there remains a window for masses 20M_{⊙}≲M_{bh}≲100M_{⊙} where primordial black holes (PBHs) may constitute the dark matter. If two BHs in a galactic halo pass sufficiently close, they radiate enough energy in gravitational waves to become gravitationally bound. The bound BHs will rapidly spiral inward due to the emission of gravitational radiation and ultimately will merge. Uncertainties in the rate for such events arise from our imprecise knowledge of the phase-space structure of galactic halos on the smallest scales. Still, reasonable estimates span a range that overlaps the 2-53  Gpc^{-3} yr^{-1} rate estimated from GW150914, thus raising the possibility that LIGO has detected PBH dark matter. PBH mergers are likely to be distributed spatially more like dark matter than luminous matter and have neither optical nor neutrino counterparts. They may be distinguished from mergers of BHs from more traditional astrophysical sources through the observed mass spectrum, their high ellipticities, or their stochastic gravitational wave background. Next-generation experiments will be invaluable in performing these tests.

  4. Exploring the direct impacts of particulate matter and surface ozone on global crop production

    Science.gov (United States)

    Schiferl, L. D.; Heald, C. L.

    2016-12-01

    The current era of rising food demand to feed an increasing population along with expansion of industrialization throughout the globe has been accompanied by deteriorating air quality and an enhancement in agricultural activity. Both air quality and the food supply are vitally important to sustaining human enterprise, and understanding the effects air quality may have on agricultural production is critical. Particulate matter (PM) in the atmosphere decreases the total photosynthetically available radiation (PAR) available to crops through the scattering and absorption of radiation while also increasing the diffuse fraction (DF) of this PAR. Since plants respond positively to a higher DF through the more even distribution of photons to all leaves, the net effect of PM on crop production depends on the magnitudes of these values and the response mechanisms of a specific crop. In contrast, atmospheric ozone always acts to decrease crop production through its phytotoxic properties. While the relationships between ozone and crop production have been readily studied, the effects of PM on crop production and their relative importance compared to ozone is much more uncertain. This study uses the GEOS-Chem chemical transport model linked to the RRTMG radiative transfer model and the DSSAT crop model to explore the impacts of PM and ozone on the globally distributed production of maize, rice, wheat and soybeans. First, we examine how air quality differentially affects total seasonal production by crop and region. Second, we investigate the dependence of simulated production on air quality over different timescales and under varying cloud conditions.

  5. Accurate estimate of the relic density and the kinetic decoupling in nonthermal dark matter models

    International Nuclear Information System (INIS)

    Arcadi, Giorgio; Ullio, Piero

    2011-01-01

    Nonthermal dark matter generation is an appealing alternative to the standard paradigm of thermal WIMP dark matter. We reconsider nonthermal production mechanisms in a systematic way, and develop a numerical code for accurate computations of the dark matter relic density. We discuss, in particular, scenarios with long-lived massive states decaying into dark matter particles, appearing naturally in several beyond the standard model theories, such as supergravity and superstring frameworks. Since nonthermal production favors dark matter candidates with large pair annihilation rates, we analyze the possible connection with the anomalies detected in the lepton cosmic-ray flux by Pamela and Fermi. Concentrating on supersymmetric models, we consider the effect of these nonstandard cosmologies in selecting a preferred mass scale for the lightest supersymmetric particle as a dark matter candidate, and the consequent impact on the interpretation of new physics discovered or excluded at the LHC. Finally, we examine a rather predictive model, the G2-MSSM, investigating some of the standard assumptions usually implemented in the solution of the Boltzmann equation for the dark matter component, including coannihilations. We question the hypothesis that kinetic equilibrium holds along the whole phase of dark matter generation, and the validity of the factorization usually implemented to rewrite the system of a coupled Boltzmann equation for each coannihilating species as a single equation for the sum of all the number densities. As a byproduct we develop here a formalism to compute the kinetic decoupling temperature in case of coannihilating particles, which can also be applied to other particle physics frameworks, and also to standard thermal relics within a standard cosmology.

  6. Sterile neutrino dark matter with supersymmetry

    Science.gov (United States)

    Shakya, Bibhushan; Wells, James D.

    2017-08-01

    Sterile neutrino dark matter, a popular alternative to the WIMP paradigm, has generally been studied in non-supersymmetric setups. If the underlying theory is supersymmetric, we find that several interesting and novel dark matter features can arise. In particular, in scenarios of freeze-in production of sterile neutrino dark matter, its superpartner, the sterile sneutrino, can play a crucial role in early Universe cosmology as the dominant source of cold, warm, or hot dark matter, or of a subdominant relativistic population of sterile neutrinos that can contribute to the effective number of relativistic degrees of freedom Neff during big bang nucleosynthesis.

  7. Mixed Wino Dark Matter: consequences for direct, indirect and collider detection

    International Nuclear Information System (INIS)

    Baer, Howard; Mustafayev, Azar; Park, Eun-Kyung; Profumo, Stefano

    2005-01-01

    In supersymmetric models with gravity-mediated SUSY breaking and gaugino mass unification, the predicted relic abundance of neutralinos usually exceeds the strict limits imposed by the WMAP collaboration. One way to obtain the correct relic abundance is to abandon gaugino mass universality and allow a mixed wino-bino lightest SUSY particle (LSP). The enhanced annihilation and scattering cross sections of mixed wino dark matter (MWDM) compared to bino dark matter lead to enhanced rates for direct dark matter detection, as well as for indirect detection at neutrino telescopes and for detection of dark matter annihilation products in the galactic halo. For collider experiments, MWDM leads to a reduced but significant mass gap between the lightest neutralinos so that Z-tilde 2 two-body decay modes are usually closed. This means that dilepton mass edges- the starting point for cascade decay reconstruction at the CERN LHC- should be accessible over almost all of parameter space. Measurement of the m Z-tilde2 -m Z-tilde1 mass gap at LHC plus various sparticle masses and cross sections as a function of beam polarization at the International Linear Collider (ILC) would pinpoint MWDM as the dominant component of dark matter in the universe

  8. 50 CFR Table 3 to Part 679 - Product Recovery Rates for Groundfish Species and Conversion Rates for Pacific Halibut

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 9 2010-10-01 2010-10-01 false Product Recovery Rates for Groundfish Species and Conversion Rates for Pacific Halibut 3 Table 3 to Part 679 Wildlife and Fisheries FISHERY... Rates for Groundfish Species and Conversion Rates for Pacific Halibut ER28JA02.074 ER10JY02.000 ER28JA02...

  9. New Spectral Features from Bound Dark Matter

    DEFF Research Database (Denmark)

    Catena, Riccardo; Kouvaris, Chris

    2016-01-01

    We demonstrate that dark matter particles gravitationally bound to the Earth can induce a characteristic nuclear recoil signal at low energies in direct detection experiments. The new spectral feature we predict can provide the ultimate smoking gun for dark matter discovery for experiments...... with positive signal but unclear background. The new feature is universal, in that the ratio of bound over halo dark matter event rates at detectors is independent of the dark matter-nucleon cross section....

  10. "Very Good" Ratings in a Survey of Maternity Care: Kindness and Understanding Matter to Australian Women.

    Science.gov (United States)

    Todd, Angela L; Ampt, Amanda J; Roberts, Christine L

    2017-03-01

    Surveys have shown that women are highly satisfied with their maternity care. Their satisfaction has been associated with various demographic, personal, and care factors. Isolating the factors that most matter to women about their care can guide quality improvement efforts. This study aimed to identify the most significant factors associated with high ratings of care by women in the three maternity periods (antenatal, birth, and postnatal). A survey was sent to 2,048 women who gave birth at seven public hospitals in New South Wales, Australia, exploring their expectations of, and experiences with maternity care. Women's overall ratings of care for the antenatal, birth, and postnatal periods were analyzed, and a number of maternal characteristics and care factors examined as potential predictors of "Very good" ratings of care. Among 886 women with a completed survey, 65 percent assigned a "Very good" rating for antenatal care, 74 percent for birth care, 58 percent for postnatal care, and 44 percent for all three periods. One factor was strongly associated with care ratings in all three maternity periods: women who were "always or almost always" treated with kindness and understanding were 1.8-2.8 times more likely to rate their antenatal, birth, and postnatal care as "Very good." A limited number of other factors were significantly associated with high care ratings for one or two of the maternity periods. Women's perceptions about the quality of their interpersonal interactions with health caregivers have a significant bearing on women's views about their maternity care journey. © 2016 Wiley Periodicals, Inc.

  11. Ground state of high-density matter

    Science.gov (United States)

    Copeland, ED; Kolb, Edward W.; Lee, Kimyeong

    1988-01-01

    It is shown that if an upper bound to the false vacuum energy of the electroweak Higgs potential is satisfied, the true ground state of high-density matter is not nuclear matter, or even strange-quark matter, but rather a non-topological soliton where the electroweak symmetry is exact and the fermions are massless. This possibility is examined in the standard SU(3) sub C tensor product SU(2) sub L tensor product U(1) sub Y model. The bound to the false vacuum energy is satisfied only for a narrow range of the Higgs boson masses in the minimal electroweak model (within about 10 eV of its minimum allowed value of 6.6 GeV) and a somewhat wider range for electroweak models with a non-minimal Higgs sector.

  12. Not Worth the Extra Cost? Diluting the Differentiation Ability of Highly Rated Products by Altering the Meaning of Rating Scale Levels

    DEFF Research Database (Denmark)

    Meissner, Martin; Heinzle, Stefanie Lena; Decker, Reinhold

    2013-01-01

    Over the last decade, the use of rating scales has grown in popularity in various fields, including customer online reviews and energy labels. Rating scales convey important information on attributes of products or services that consumers evaluate in their purchase decisions. By applying...... characteristics. In addition, two choice-based conjoint studies examine whether the way consumers make their choices among products can be influenced by changing the labeling of rating scale levels. The results show that a manipulation of the meaning of rating scale levels diminishes both the importance...

  13. Dark matter: Theoretical perspectives

    International Nuclear Information System (INIS)

    Turner, M.S.

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for ''new physics.'' The compelling candidates are: a very light axion ( 10 -6 eV--10 -4 eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos

  14. Effects of a wax organogel and alginate gel complex on holy basil (Ocimum sanctum) in vitro ruminal dry matter disappearance and gas production.

    Science.gov (United States)

    Templeman, James R; Rogers, Michael A; Cant, John P; McBride, Brian W; Osborne, Vern R

    2018-02-20

    The objectives of this study were to: (a) select an ideal organogel for the oil phase of a novel gel encapsulation technology, (b) optimize the formulation of an organogel and sodium alginate-based gel complex, and (c) examine the rumen protective ability of the gel by measuring 48-h in vitro ruminal dry matter disappearance and gas production from encapsulated dried and ground holy basil leaves. A rice-bran wax and canola oil organogel was selected for the oil phase of the gel complex as this combination had a 48-h dry matter disappearance of 6%, the lowest of all organogels analyzed. The gel complex was formulated by homogenizing the organogel with a sodium alginate solution to create a low-viscosity oil-in-water emulsion. Average dry matter disappearance of gel-encapsulated holy basil was 19%, compared to 42% for the free, unprotected holy basil. However, gel encapsulation of holy basil stimulated gas production. Specifically, gas production of encapsulated holy basil was four times higher than the treatment with holy basil added on top of the gel prior to incubation rather than encapsulated within the gel. Although the gel itself was highly degradable, it is speculated encapsulation thwarted holy basil's antimicrobial activity. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  15. Exotic particles at the LHC. Production via the Higgs portal and WIMP dark matter searches

    Energy Technology Data Exchange (ETDEWEB)

    Hessler, Andre Georg

    2016-09-05

    This thesis addresses two different aspects of the search for Physics Beyond the Standard Model at the Large Hadron Collider (LHC). First, and motivated by the recent discovery of a new interaction mediated by the Higgs boson, we systematically analyze the impact of the Higgs interaction on the production of new particles at the LHC. Second, we investigate the collider signatures of long-lived particles decaying into leptons and invisible energy, and which are predicted to exist in a class of neutrino mass models with a weakly interacting dark matter particle.

  16. Reduced white matter MRI transverse relaxation rate in cognitively normal H63D-HFE human carriers and H67D-HFE mice.

    Science.gov (United States)

    Meadowcroft, Mark D; Wang, Jianli; Purnell, Carson J; Peters, Douglas G; Eslinger, Paul J; Neely, Elizabeth B; Gill, David J; Vasavada, Megha; Ali-Rahmani, Fatima; Yang, Qing X; Connor, James R

    2016-12-01

    Mutations within the HFE protein gene sequence have been associated with increased risk of developing a number of neurodegenerative disorders. To this effect, an animal model has been created which incorporates the mouse homologue to the human H63D-HFE mutation: the H67D-HFE knock-in mouse. These mice exhibit alterations in iron management proteins, have increased neuronal oxidative stress, and a disruption in cholesterol regulation. However, it remains undetermined how these differences translate to human H63D carriers in regards to white matter (WM) integrity. To this endeavor, MRI transverse relaxation rate (R 2 ) parametrics were employed to test the hypothesis that WM alterations are present in H63D human carriers and are recapitulated in the H67D mice. H63D carriers exhibit widespread reductions in brain R 2 compared to non-carriers within white matter association fibers in the brain. Similar R 2 decreases within white matter tracts were observed in the H67D mouse brain. Additionally, an exacerbation of age-related R 2 decrease is found in the H67D animal model in white matter regions of interest. The decrease in R 2 within white matter tracts of both species is speculated to be multifaceted. The R 2 changes are hypothesized to be due to alterations in axonal biochemical tissue composition. The R 2 changes observed in both the human-H63D and mouse-H67D data suggest that modified white matter myelination is occurring in subjects with HFE mutations, potentially increasing vulnerability to neurodegenerative disorders.

  17. Off-shell dark matter: A cosmological relic of quantum gravity

    Science.gov (United States)

    Saravani, Mehdi; Afshordi, Niayesh

    2017-02-01

    We study a novel proposal for the origin of cosmological cold dark matter (CDM) which is rooted in the quantum nature of spacetime. In this model, off-shell modes of quantum fields can exist in asymptotic states as a result of spacetime nonlocality (expected in generic theories of quantum gravity) and play the role of CDM, which we dub off-shell dark matter (O f DM ). However, their rate of production is suppressed by the scale of nonlocality (e.g. Planck length). As a result, we show that O f DM is only produced in the first moments of big bang, and then effectively decouples (except through its gravitational interactions). We examine the observational predictions of this model: In the context of cosmic inflation, we show that this proposal relates the reheating temperature to the inflaton mass, which narrows down the uncertainty in the number of e -foldings of specific inflationary scenarios. We also demonstrate that O f DM is indeed cold, and discuss potentially observable signatures on small scale matter power spectrum.

  18. Inverted dipole feature in directional detection of exothermic dark matter

    International Nuclear Information System (INIS)

    Bozorgnia, Nassim; Gelmini, Graciela B.; Gondolo, Paolo

    2017-01-01

    Directional dark matter detection attempts to measure the direction of motion of nuclei recoiling after having interacted with dark matter particles in the halo of our Galaxy. Due to Earth's motion with respect to the Galaxy, the dark matter flux is concentrated around a preferential direction. An anisotropy in the recoil direction rate is expected as an unmistakable signature of dark matter. The average nuclear recoil direction is expected to coincide with the average direction of dark matter particles arriving to Earth. Here we point out that for a particular type of dark matter, inelastic exothermic dark matter, the mean recoil direction as well as a secondary feature, a ring of maximum recoil rate around the mean recoil direction, could instead be opposite to the average dark matter arrival direction. Thus, the detection of an average nuclear recoil direction opposite to the usually expected direction would constitute a spectacular experimental confirmation of this type of dark matter.

  19. Fines stabilizing agent reduces production decline rates in steam injected wells

    Energy Technology Data Exchange (ETDEWEB)

    Castillo de Castillo, Milagros; Fernandez Andrades, Jarvi [PDVSA - Petroleos de Venezuela S.A., Caracas (Venezuela); Navarro Cornejo, Willian; Curtis, James [BJ Services do Brasil Ltda., RJ (Brazil)

    2004-07-01

    The Bachaquero Lago heavy oil field, located in Lake Maracaibo, Venezuela, with an area of 9800 ha, in which more than 1800 wells have been drilled. The Lagunillas formation in this field is a mature, clastic, unconsolidated sandstone of Miocene age with good permeability. Clays are present, in laminated form or dispersed within the productive sandstones. Heavy oil, less than 12 deg API, is produced by cyclic steam injection. Wells are completed with cased-hole gravel packs to prevent sand and fines production. Rapid production decline rates are typically observed after the steam injection cycles, due to fines migration and plugging of the reservoir and gravel pack. This paper describes the methodology used to treat the wells with a fines stabilizing agent during the steam injection cycles in order to successfully reduce the subsequent production decline rate. Results from a multi-well pilot project are presented and analyzed. (author)

  20. Yield, yield components and dry matter digestibility of alfalfa experimental populations

    Directory of Open Access Journals (Sweden)

    Katić Slobodan

    2010-01-01

    Full Text Available Alfalfa is the most important forage crop grown in the temperate regions. It is cultivated for production of vegetative aerial mass used fresh or as hay, and recently as haylage and silage. In many centres worldwide, efforts are made to breed and create new alfalfa cultivars with both higher yields and of higher nutritional value. The aim of this paper was to determine yield and digestibility of 12 experimental populations of alfalfa, and to compare their results to the yields of well-known domestic alfalfa commercial cultivars. The results show significant differences in yield of green forage and dry matter among alfalfa populations, as well as in yield components, height, proportion of leaves in yield and growth rate (tab. 1, 2 and 3. Differences between in vitro digestible dry matter (% and yields of in vitro digestible dry matter (t ha-1 were also significant (tab. 5 and 6. Yield and quality of experimental populations were at the same level or higher than of control cultivars. Synthetic SINUSA exceeded the control cutivars (NS Mediana ZMS V and Banat VS in yield and quality of dry matter. .

  1. Gas production and decline rates in the province of Alberta

    International Nuclear Information System (INIS)

    Samson, L.A.

    1999-01-01

    A detailed study was conducted to evaluate the gas production decline rates in Alberta. The study examined the producing gas wells that were place in production between 1990 and 1997. Three major assumptions were used to determine the number of wells necessary to meet future market demand. These were: (1) reserves have been declining at greater rates in the past several years. The current rate of decline is 12 per cent, (2) new reserves added in future will produce at 5.1 E6M3 per year, and (3) the decline rates for new gas wells will be 27 per cent in the first year, 16 per cent in the second year, 12 per cent in the third year and thereafter. With this information, the Alberta Energy and Utilities Board estimates that the annual total deliveries of gas from Alberta in the year 2002 will be 177.4 E9M3 compared to 127 E9M3 in 1997. In order to meet this supply, drilling activity for successful gas wells will have to double the 1997 rate because it is predicted that more than 6400 new wells will be needed per year to meet future demand. 2 refs., 2 tabs., 20 figs

  2. Measurement of strange particle production in the NICA fixed-target programme

    Energy Technology Data Exchange (ETDEWEB)

    Friese, Volker [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany)

    2016-08-15

    Strange particles provide a sensitive tool to study the dense and hot matter created in relativistic nuclear collisions. Although strangeness production in such collisions has been a topic of experimental and theoretical research for many years, its understanding is far from being complete. This holds in particular for multi-strange hyperons and for lower collision energies as relevant for NICA and FAIR. Multi-strange particles, being sensitive to both the mechanism of strangeness production and the net-baryon density, are expected to shed light on the state of the created matter and to indicate possible transitions to new phases of strongly interacting matter. We thus advocate the measurement of hyperons and φ mesons in a fixed-target experiment at NICA (BM rate at N), which can be achieved by a relatively compact detector system. (orig.)

  3. Realizing high-rate sulfur reduction under sulfate-rich conditions in a biological sulfide production system to treat metal-laden wastewater deficient in organic matter.

    Science.gov (United States)

    Sun, Rongrong; Zhang, Liang; Zhang, Zefeng; Chen, Guang-Hao; Jiang, Feng

    2017-12-22

    Biological sulfur reduction can theoretically produce sufficient sulfide to effectively remove and recover heavy metals in the treatment of organics-deficient sulfate-rich metal-laden wastewater such as acid mine drainage and metallurgic wastewater, using 75% less organics than biological sulfate reduction. However, it is still unknown whether sulfur reduction can indeed compete with sulfate reduction, particularly under high-strength sulfate conditions. The aim of this study was to investigate the long-term feasibility of biological sulfur reduction under high sulfate conditions in a lab-scale sulfur-reducing biological sulfide production (BSP) system with sublimed sulfur added. In the 169-day trial, an average sulfide production rate (SPR) as high as 47 ± 9 mg S/L-h was achieved in the absence of sulfate, and the average SPR under sulfate-rich conditions was similar (53 ± 10 mg S/L-h) when 1300 mg S/L sulfate were fed with the influent. Interestingly, sulfate was barely reduced even at such a high strength and contributed to only 1.5% of total sulfide production. Desulfomicrobium was identified as the predominant sulfidogenic bacterium in the bioreactor. Batch tests further revealed that this sulfidogenic bacteria used elemental sulfur as the electron acceptor instead of the highly bioavailable sulfate, during which polysulfide acted as an intermediate, leading to an even higher bioavailability of sulfur than sulfate. The pathway of sulfur to sulfide conversion via polysulfide in the presence of both sulfur and sulfate was discussed. Collectively, when conditions favor polysulfide formation, sulfur reduction can be a promising and attractive technology to realize a high-rate and low-cost BSP process for treating sulfate-rich metal-laden wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Soil organic matter dynamics and the global carbon cycle

    International Nuclear Information System (INIS)

    Post, W.M.; Emanuel, W.R.; King, A.W.

    1992-01-01

    The large size and potentially long residence time of the soil organic matter pool make it an important component of the global carbon cycle. Net terrestrial primary production of about 60 Pg C·yr -1 is, over a several-year period of time, balanced by an equivalent flux of litter production and subsequent decomposition of detritus and soil organic matter. We will review many of the major factors that influence soil organic matter dynamics that need to be explicitly considered in development of global estimates of carbon turnover in the world's soils. We will also discuss current decomposition models that are general enough to be used to develop a representation of global soil organic matter dynamics

  5. Production and decay rates of the iota meson

    International Nuclear Information System (INIS)

    Frank, M.; O'Donnell, P.J.; Toronto Univ., Ontario

    1984-01-01

    We correlate the results for the mass spectrum of low lying isoscalar-pseudoscalar mesons with the production decay rates from J/psi->γP, with P=eta 1 , eta' 1 , eta 2 and iota and study the radiative decays of the iota meson. We conclude that the iota meson has to be interpreted as having a strong gluonium component. (orig.)

  6. Bounds on dark matter interactions with electroweak gauge bosons

    Energy Technology Data Exchange (ETDEWEB)

    Cotta, R. C.; Hewett, J. L.; Le, M. -P.; Rizzo, T. G.

    2013-12-01

    We investigate scenarios in which dark matter interacts with the Standard Model primarily through electroweak gauge bosons. We employ an effective field theory framework wherein the Standard Model and the dark matter particle are the only light states in order to derive model-independent bounds. Bounds on such interactions are derived from dark matter production by weak boson fusion at the LHC, indirect detection searches for the products of dark matter annihilation and from the measured invisible width of the Z 0 . We find that limits on the UV scale, Λ , reach weak scale values for most operators and values of the dark matter mass, thus probing the most natural scenarios in the weakly interacting massive particle dark matter paradigm. Our bounds suggest that light dark matter ( m χ ≲ m Z / 2 or m χ ≲ 100 – 200 GeV , depending on the operator) cannot interact only with the electroweak gauge bosons of the Standard Model, but rather requires additional operator contributions or dark sector structure to avoid overclosing the Universe.

  7. Engineering Mathematical Analysis Method for Productivity Rate in Linear Arrangement Serial Structure Automated Flow Assembly Line

    Directory of Open Access Journals (Sweden)

    Tan Chan Sin

    2015-01-01

    Full Text Available Productivity rate (Q or production rate is one of the important indicator criteria for industrial engineer to improve the system and finish good output in production or assembly line. Mathematical and statistical analysis method is required to be applied for productivity rate in industry visual overviews of the failure factors and further improvement within the production line especially for automated flow line since it is complicated. Mathematical model of productivity rate in linear arrangement serial structure automated flow line with different failure rate and bottleneck machining time parameters becomes the basic model for this productivity analysis. This paper presents the engineering mathematical analysis method which is applied in an automotive company which possesses automated flow assembly line in final assembly line to produce motorcycle in Malaysia. DCAS engineering and mathematical analysis method that consists of four stages known as data collection, calculation and comparison, analysis, and sustainable improvement is used to analyze productivity in automated flow assembly line based on particular mathematical model. Variety of failure rate that causes loss of productivity and bottleneck machining time is shown specifically in mathematic figure and presents the sustainable solution for productivity improvement for this final assembly automated flow line.

  8. Optimization between heating load and entropy-production rate for endoreversible absorption heat-transformers

    International Nuclear Information System (INIS)

    Sun Fengrui; Qin Xiaoyong; Chen Lingen; Wu Chih

    2005-01-01

    For an endoreversible four-heat-reservoir absorption heat-transformer cycle, for which a linear (Newtonian) heat-transfer law applies, an ecological optimization criterion is proposed for the best mode of operation of the cycle. This involves maximizing a function representing the compromise between the heating load and the entropy-production rate. The optimal relation between the ecological criterion and the COP (coefficient of performance), the maximum ecological criterion and the corresponding COP, heating load and entropy production rate, as well as the ecological criterion and entropy-production rate at the maximum heating load are derived using finite-time thermodynamics. Moreover, compared with the heating-load criterion, the effects of the cycle parameters on the ecological performance are studied by numerical examples. These show that achieving the maximum ecological criterion makes the entropy-production rate decrease by 77.0% and the COP increase by 55.4% with only 27.3% heating-load losses compared with the maximum heating-load objective. The results reflect that the ecological criterion has long-term significance for optimal design of absorption heat-transformers

  9. Production cost of biomasses from eucalyptus and elefant grass for energy

    Directory of Open Access Journals (Sweden)

    Laurent Marie Roger Quéno

    2011-09-01

    Full Text Available This work established the unit energy cost generated from biomass of eucalyptus (Eucalyptus sp. and elephant grass (Pennisetum sp. and applied a sensitivity analysis to verify the influences of factors such as the silviculture of eucalyptus, production volume of each species, the cost of land and the interest rate. It was shown that the treatment of eucalyptus in very short rotation of 2 years with reform of stand every 6 years has a average cost of production higher than the traditional treatment of short rotation of 6 years with reform only at the age of 18. It was also observed that eucalyptus has a Production Cost on average of R$ 4,41 /Gj, lower than the elephant grass which is on average of R$ 5,44/Gj, which however has a higher annual capacity of dry matter production. The elephant grass has the possibility to compete with eucalyptus when a set of conditions is met: discount rate higher than or equal to 8%, High price of land, and elephant grass high volume production, greater than or equal to 35 tonnes of dry matter per hectare and year.

  10. Pressure effect on rate of production of glucose-equivalent in plant ...

    Indian Academy of Sciences (India)

    Administrator

    C4 Green plants; rate of equivalent production; pressure effect. 1. Introduction ... the photosynthetic process, especially on the activa- tion and ... Section 4 deals with the effect ... the global concentrations of glyceraldehydes-3- ... chloroplast,9a a product of the maximum possible .... as soil, tissue, development stage, etc.

  11. Jet Definitions in Effective Field Theory and Decaying Dark Matter

    Science.gov (United States)

    Cheung, William Man Yin

    2012-06-01

    In this thesis jet production and cosmological constraints on decaying dark matter are studied. The powerful framework of effective field theory is applied in both cases to further our knowledge of particle physics. We first discuss how to apply the Soft Collinear Effective Theory (SCET) for calculating hadronic jet production rate. By applying SCET power counting, we develop a consistent approach to perform phase space integrations. This approach is then successfully applied to one-loop calculations with regard to a variety of jet algorithms. This allows us to study if the soft contribution can be factorized from the collinear ones. In particular we point out the connection between such factorization and the choice of ultraviolet regulator. We then further our study of the (exclusive) kT and C/A jet algorithms in SCET with the introduction of an additional regulator. Regularizing the virtualities and rapidities of graphs in SCET, we are able to write the next-to-leading-order dijet cross section as the product of separate hard, jet, and soft contributions. We show how to reproduce the Sudakov form factor to next-to-leading logarithmic accuracy previously calculated by the coherent branching formalism. Our resummed expression only depends on the renormalization group evolution of the hard function, rather than on that of the hard and jet functions as is usual in SCET. Finally we present a complete analysis of the cosmological constraints on decaying dark matter. For this, we have updated and extended previous analyses to include Lyman-alpha forest, large scale structure, and weak lensing observations. Astrophysical constraints are not considered in this thesis. The bounds on the lifetime of decaying dark matter are dominated by either the late-time integrated Sachs-Wolfe effect for the scenario with weak reionization, or CMB polarisation observations when there is significant reionization. For the respective scenarios, the lifetimes for decaying dark matter are

  12. The influence of rate and time of nitrate supply on nitrogen fixation and yield in pea (Pisum sativum L.)

    DEFF Research Database (Denmark)

    Jensen, Erik Steen

    1986-01-01

    contributed with 82, 13 and 5% of total plant N, respectively. The supply of low rates of nitrate fertilizer at sowing (“starter N”) increased the vegetative dry matter production, but not the seed yield significantly. Nitrogen fixation was not significantly decreased by the lower rates of nitrate but higher...

  13. Current /sup 14/C methods for measuring primary production: gross underestimates in oceanic waters

    Energy Technology Data Exchange (ETDEWEB)

    Gieskes, W W.C.; Kraay, G W; Baars, M A [Netherlands Institute for Sea Research, Texel, Netherlands

    1979-10-01

    The amount of organic matter produced through autotrophic processes in the euphotic zone of the tropical open ocean and available for respiration of autotrophs and heterotrophs was at least 5 to 15 times higher than values derived from the common /sup 14/C method suggested. The new estimates are based on measurements of /sup 14/C incorporation in organic matter of ocean samples incubated in bottles of up to 4 litres. Oceanic phytoplankton appeared to have a high growth rate, with generation times of hours, not days. High heterotrophic activity, finding its expression in high dark fixation rates of /sup 14/C, took place in conjunction with this high primary production of organic matter.

  14. Quantifying the controls on potential soil production rates: a case study of the San Gabriel Mountains, California

    Directory of Open Access Journals (Sweden)

    J. D. Pelletier

    2017-08-01

    Full Text Available The potential soil production rate, i.e., the upper limit at which bedrock can be converted into transportable material, limits how fast erosion can occur in mountain ranges in the absence of widespread landsliding in bedrock or intact regolith. Traditionally, the potential soil production rate has been considered to be solely dependent on climate and rock characteristics. Data from the San Gabriel Mountains of California, however, suggest that topographic steepness may also influence potential soil production rates. In this paper I test the hypothesis that topographically induced stress opening of preexisting fractures in the bedrock or intact regolith beneath hillslopes of the San Gabriel Mountains increases potential soil production rates in steep portions of the range. A mathematical model for this process predicts a relationship between potential soil production rates and average slope consistent with published data. Once the effects of average slope are accounted for, a small subset of the data suggests that cold temperatures may limit soil production rates at the highest elevations of the range due to the influence of temperature on vegetation growth. These results suggest that climate and rock characteristics may be the sole controls on potential soil production rates as traditionally assumed but that the porosity of bedrock or intact regolith may evolve with topographic steepness in a way that enhances the persistence of soil cover in compressive-stress environments. I develop an empirical equation that relates potential soil production rates in the San Gabriel Mountains to the average slope and a climatic index that accounts for temperature limitations on soil production rates at high elevations. Assuming a balance between soil production and erosion rates on the hillslope scale, I illustrate the interrelationships among potential soil production rates, soil thickness, erosion rates, and topographic steepness that result from the

  15. Evaluation of biogas production rate and biochemical changes in ...

    African Journals Online (AJOL)

    The rate of biogas generation and biochemical changes in pig dung used in a simple mobile biogas digester designed and constructed at the Department of Environmental Technology, Federal University of Technology Owerri, Nigeria were evaluated. Measurable gas production started 4 days after feeding the digester with ...

  16. On-demand microbicide products: design matters.

    Science.gov (United States)

    Patel, Sravan Kumar; Rohan, Lisa Cencia

    2017-12-01

    Sexual intercourse (vaginal and anal) is the predominant mode of human immunodeficiency virus (HIV) transmission. Topical microbicides used in an on-demand format (i.e., immediately before or after sex) can be part of an effective tool kit utilized to prevent sexual transmission of HIV. The effectiveness of prevention products is positively correlated with adherence, which is likely to depend on user acceptability of the product. The development of an efficacious and acceptable product is therefore paramount for the success of an on-demand product. Acceptability of on-demand products (e.g., gels, films, and tablets) and their attributes is influenced by a multitude of user-specific factors that span behavioral, lifestyle, socio-economic, and cultural aspects. In addition, physicochemical properties of the drug, anatomical and physiological aspects of anorectal and vaginal compartments, issues relating to large-scale production, and cost can impact product development. These factors together with user preferences determine the design space of an effective, acceptable, and feasible on-demand product. In this review, we summarize the interacting factors that together determine product choice and its target product profile.

  17. J/psi production in proton-nucleus collisions at ALICE: cold nuclear matter really matters

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Heavy quarkonia are expected to be sensitive to the properties of strongly interacting matter, at both low and high temperatures. In nucleus-nucleus collisions, a phase transition to a deconfined state of quarks and gluons (Quark-Gluon Plasma) is thought to take place once the temperature of the system exceeds a critical temperature of the order of 150-200 MeV. The deconfined state can induce a suppression of charmonium (due to color screening, dominant at SPS and RHIC energies), which can be overturned at LHC energy by the (re)combination of the large number of free c and cbar quarks, taking place when the system cools down below the critical temperature. Cold nuclear matter also has an influence on heavy quarkonia. Such effects can be studied in proton-nucleus collisions, where no deconfined state is expected to be created. At LHC energy, they mainly include nuclear shadowing, gluon saturation, break-up of the quarkonium states, and parton energy loss in the initial and final state. The study of these eff...

  18. Cholinergic Potentiation and Audiovisual Repetition-Imitation Therapy Improve Speech Production and Communication Deficits in a Person with Crossed Aphasia by Inducing Structural Plasticity in White Matter Tracts.

    Science.gov (United States)

    Berthier, Marcelo L; De-Torres, Irene; Paredes-Pacheco, José; Roé-Vellvé, Núria; Thurnhofer-Hemsi, Karl; Torres-Prioris, María J; Alfaro, Francisco; Moreno-Torres, Ignacio; López-Barroso, Diana; Dávila, Guadalupe

    2017-01-01

    Donepezil (DP), a cognitive-enhancing drug targeting the cholinergic system, combined with massed sentence repetition training augmented and speeded up recovery of speech production deficits in patients with chronic conduction aphasia and extensive left hemisphere infarctions (Berthier et al., 2014). Nevertheless, a still unsettled question is whether such improvements correlate with restorative structural changes in gray matter and white matter pathways mediating speech production. In the present study, we used pharmacological magnetic resonance imaging to study treatment-induced brain changes in gray matter and white matter tracts in a right-handed male with chronic conduction aphasia and a right subcortical lesion (crossed aphasia). A single-patient, open-label multiple-baseline design incorporating two different treatments and two post-treatment evaluations was used. The patient received an initial dose of DP (5 mg/day) which was maintained during 4 weeks and then titrated up to 10 mg/day and administered alone (without aphasia therapy) during 8 weeks (Endpoint 1). Thereafter, the drug was combined with an audiovisual repetition-imitation therapy (Look-Listen-Repeat, LLR) during 3 months (Endpoint 2). Language evaluations, diffusion weighted imaging (DWI), and voxel-based morphometry (VBM) were performed at baseline and at both endpoints in JAM and once in 21 healthy control males. Treatment with DP alone and combined with LLR therapy induced marked improvement in aphasia and communication deficits as well as in selected measures of connected speech production, and phrase repetition. The obtained gains in speech production remained well-above baseline scores even 4 months after ending combined therapy. Longitudinal DWI showed structural plasticity in the right frontal aslant tract and direct segment of the arcuate fasciculus with both interventions. VBM revealed no structural changes in other white matter tracts nor in cortical areas linked by these tracts. In

  19. Cholinergic Potentiation and Audiovisual Repetition-Imitation Therapy Improve Speech Production and Communication Deficits in a Person with Crossed Aphasia by Inducing Structural Plasticity in White Matter Tracts

    Directory of Open Access Journals (Sweden)

    Marcelo L. Berthier

    2017-06-01

    Full Text Available Donepezil (DP, a cognitive-enhancing drug targeting the cholinergic system, combined with massed sentence repetition training augmented and speeded up recovery of speech production deficits in patients with chronic conduction aphasia and extensive left hemisphere infarctions (Berthier et al., 2014. Nevertheless, a still unsettled question is whether such improvements correlate with restorative structural changes in gray matter and white matter pathways mediating speech production. In the present study, we used pharmacological magnetic resonance imaging to study treatment-induced brain changes in gray matter and white matter tracts in a right-handed male with chronic conduction aphasia and a right subcortical lesion (crossed aphasia. A single-patient, open-label multiple-baseline design incorporating two different treatments and two post-treatment evaluations was used. The patient received an initial dose of DP (5 mg/day which was maintained during 4 weeks and then titrated up to 10 mg/day and administered alone (without aphasia therapy during 8 weeks (Endpoint 1. Thereafter, the drug was combined with an audiovisual repetition-imitation therapy (Look-Listen-Repeat, LLR during 3 months (Endpoint 2. Language evaluations, diffusion weighted imaging (DWI, and voxel-based morphometry (VBM were performed at baseline and at both endpoints in JAM and once in 21 healthy control males. Treatment with DP alone and combined with LLR therapy induced marked improvement in aphasia and communication deficits as well as in selected measures of connected speech production, and phrase repetition. The obtained gains in speech production remained well-above baseline scores even 4 months after ending combined therapy. Longitudinal DWI showed structural plasticity in the right frontal aslant tract and direct segment of the arcuate fasciculus with both interventions. VBM revealed no structural changes in other white matter tracts nor in cortical areas linked by these

  20. Memory behaviors of entropy production rates in heat conduction

    Science.gov (United States)

    Li, Shu-Nan; Cao, Bing-Yang

    2018-02-01

    Based on the relaxation time approximation and first-order expansion, memory behaviors in heat conduction are found between the macroscopic and Boltzmann-Gibbs-Shannon (BGS) entropy production rates with exponentially decaying memory kernels. In the frameworks of classical irreversible thermodynamics (CIT) and BGS statistical mechanics, the memory dependency on the integrated history is unidirectional, while for the extended irreversible thermodynamics (EIT) and BGS entropy production rates, the memory dependences are bidirectional and coexist with the linear terms. When macroscopic and microscopic relaxation times satisfy a specific relationship, the entropic memory dependences will be eliminated. There also exist initial effects in entropic memory behaviors, which decay exponentially. The second-order term are also discussed, which can be understood as the global non-equilibrium degree. The effects of the second-order term are consisted of three parts: memory dependency, initial value and linear term. The corresponding memory kernels are still exponential and the initial effects of the global non-equilibrium degree also decay exponentially.

  1. Low-to-moderate nitrogen and phosphorus concentrations accelerate microbially driven litter breakdown rates

    Science.gov (United States)

    John S. Kominoski; Amy D. Rosemond; Jonathan P. Benstead; Vladislav Gulis; John C. Maerz; David Manning

    2015-01-01

    Particulate organic matter (POM) processing is an important driver of aquatic ecosystem productivity that is sensitive to nutrient enrichment and drives ecosystem carbon (C) loss. Although studies of single concentrations of nitrogen (N) or phosphorus (P) have shown effects at relatively low concentrations, responses of litter breakdown rates along gradients of low-to-...

  2. Gulf of Mexico Outer Continental Shelf daily oil and gas production rate projections from 1999 through 2003

    International Nuclear Information System (INIS)

    Melancon, J.M.; Baud, R.D.

    1999-02-01

    This paper provides daily oil and gas production rate projections for the Gulf of Mexico (GOM) Outer Continental Shelf (OCS) for the years 1999 through 2003. These projections represent daily oil and gas production estimates at calendar year end. In this report, daily oil production rates include both oil and condensate production, and daily gas production rates include both associated and nonassociated gas production. In addition to providing daily oil and gas production rate projections, the authors have included one figure and one table pertaining to leasing history and one table concerning exploration and development plan approvals

  3. Rate of germanium-isotope production by background processes in the SAGE experiment

    International Nuclear Information System (INIS)

    Gavrin, V.N.; Gorbachev, V.V.; Ibragimova, T.V.; Cleveland, B.T.

    2002-01-01

    Data on a direct determination of systematic uncertainties caused by the background production of germanium isotopes in the radiochemical SAGE experiment measuring the solar-neutrino flux are analyzed. The result obtained for the rate of 68 Ge production is 6.5(1±1.0) times greater than the expected one; the rate of 69 Ge production does not exceed preliminary estimates. The above result for 68 Ge corresponds to the systematic uncertainty that is caused by the interaction of cosmic-ray muons and which is equal to 5.8% (4.5 SNU) at a solar-neutrino-capture rate of 77.0 SNU. An experiment is proposed that would test the effect of cosmic-ray muon influence on the SAGE systematic uncertainty and which would be performed at the location of the underground scintillation telescope facilities of the Baksan Neutrino Observatory (Institute for Nuclear Research, Russian Academy of Sciences)

  4. Dark matter: Theoretical perspectives

    International Nuclear Information System (INIS)

    Turner, M.S.

    1993-01-01

    The author both reviews and makes the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that (i) there are no dark-matter candidates within the open-quotes standard modelclose quotes of particle physics, (ii) there are several compelling candidates within attractive extensions of the standard model of particle physics, and (iii) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for open-quotes new physics.close quotes The compelling candidates are a very light axion (10 -6 --10 -4 eV), a light neutrino (20--90 eV), and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. The author briefly mentions more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos. 119 refs

  5. Dark matter: Theoretical perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.S. (Chicago Univ., IL (United States). Enrico Fermi Inst. Fermi National Accelerator Lab., Batavia, IL (United States))

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for new physics.'' The compelling candidates are: a very light axion ( 10[sup [minus]6] eV--10[sup [minus]4] eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.

  6. Dark matter: Theoretical perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.S. [Chicago Univ., IL (United States). Enrico Fermi Inst.]|[Fermi National Accelerator Lab., Batavia, IL (United States)

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for ``new physics.`` The compelling candidates are: a very light axion ( 10{sup {minus}6} eV--10{sup {minus}4} eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.

  7. Dark matter searches with a mono-Z′ jet

    International Nuclear Information System (INIS)

    Bai, Yang; Bourbeau, James; Lin, Tongyan

    2015-01-01

    We study collider signatures of a class of dark matter models with a GeV-scale dark Z ′ . At hadron colliders, the production of dark matter particles naturally leads to associated production of the Z ′ , which can appear as a narrow jet after it decays hadronically. Contrary to the usual mono-jet signal from initial state radiation, the final state radiation of dark matter can generate the signature of a mono-Z ′ jet plus missing transverse energy. Performing a jet-substructure analysis to tag the Z ′ jet, we show that these Z ′ jets can be distinguished from QCD jets at high significance. Compared to mono-jets, a dedicated search for mono-Z ′ jet events can lead to over an order of magnitude stronger bounds on the interpreted dark matter-nucleon scattering cross sections.

  8. Dark Matter Coannihilation with a Lighter Species.

    Science.gov (United States)

    Berlin, Asher

    2017-09-22

    We propose a new thermal freeze-out mechanism for ultraheavy dark matter. Dark matter coannihilates with a lighter unstable species that is nearby in mass, leading to an annihilation rate that is exponentially enhanced relative to standard weakly interactive massive particles. This scenario destabilizes any potential dark matter candidate. In order to remain consistent with astrophysical observations, our proposal necessitates very long-lived states, motivating striking phenomenology associated with the late decays of ultraheavy dark matter, potentially as massive as the scale of grand unified theories, M_{GUT}∼10^{16}  GeV.

  9. Fertility and productivity index rating of some soils conditioned by climate and topography

    International Nuclear Information System (INIS)

    Okae-Anti, Daniel; Imoro, Abukari Z.

    2004-10-01

    In the humid tropics, well-drained soils with abundant loose iron concretions, soils with very little weatherable minerals left and of poor chemical status due to the abundance of low activity clays, pose serious limitations to agricultural productivity. Accurate and reliable soil productivity information is needed in the form of crop yield estimates and productivity indices. We investigated the productive potential of some acrisols and plinthosols by computing productivity indices (PI) and estimating yields of four test crops, namely cowpea, groundnut, maize and soybean. PI was based on physico-chemical parameters expected to regulate air-water relations, have a role in determining the mechanical resistance to crop roots and the volume of soil, and, contribute to the fertility status of the soils. Very low Pls in the order 7.2x10 - 5, 9.6x10 - 5 and 8.32x10 - 4 were observed for Nyankpala, Changnayili and Kpelesawgu series respectively. Based on the inherently low fertility status of these soils, maize, planted as a sole crop or in rotation with groundnut is the sustainable cropping system for the soils. A return of crop residue to the soil is envisaged as a long term practice to maintain adequate levels of organic matter. (author)

  10. Low nitrous oxide production through nitrifier-denitrification in intermittent-feed high-rate nitritation reactors

    DEFF Research Database (Denmark)

    Su, Qingxian; Ma, Chun; Domingo-Felez, Carlos

    2017-01-01

    Nitrous oxide (N2O) production from autotrophic nitrogen conversion processes, especially nitritation systems, can be significant, requires understanding and calls for mitigation. In this study, the rates and pathways of N2O production were quantified in two lab-scale sequencing batch reactors...... to maintain high nitritation efficiency and high nitritation rates at 20-26 °C over a period of ∼300 days. Even at the high nitritation efficiencies, net N2O production was low (∼2% of the oxidized ammonium). Net N2O production rates transiently increased with a rise in pH after each feeding, suggesting...... operated with intermittent feeding and demonstrating long-term and high-rate nitritation. The resulting reactor biomass was highly enriched in ammonia-oxidizing bacteria, and converted ∼93 ± 14% of the oxidized ammonium to nitrite. The low DO set-point combined with intermittent feeding was sufficient...

  11. Potential production and growth analysis of local variety and Americana variety of soybean (Glycine max (L) Merril)

    International Nuclear Information System (INIS)

    Sumakud, M.Y.M.A.

    2000-01-01

    Soybean needs high radiation intensity for photosynthesis process; therefore 100 percent of the sunlight are needed. Due to increasing the soybean production, the environment factor such as climate, soil and management are needed. One of the environment factor that influence the growth and dry matter production is radiation. This research done was to see the potential production of local variety and Americana variety by observing the total radiation absorption, temperature, rainfall and humidity. Therefore the objective of this research was to know the potential production in tropic area in soybean. If the production is mainly determined by the high growth rate or the length of phase linear or both of them also by the efficiency of radiation that received by the plant. The method of this research was carried out by using completed randomized design, with three replications. The result showed that the growth and the production of soybean are determined by growth rate (Cm) and the length of growth linear (tm). Dry matter of soybean is determined by growth rate instead of the length of growth linear, for efficiency of radiation are not significant. Pod formation is determined by the growth rate, content of pods is determined by the length of linear growth

  12. Continuous biohydrogen production using cheese whey: Improving the hydrogen production rate

    Energy Technology Data Exchange (ETDEWEB)

    Davila-Vazquez, Gustavo; Cota-Navarro, Ciria Berenice; Razo-Flores, Elias [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Lomas 4a seccion, C.P. 78216, San Luis Potosi, S.L.P (Mexico); Rosales-Colunga, Luis Manuel; de Leon-Rodriguez, Antonio [Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Lomas 4a seccion, C.P. 78216, San Luis Potosi, S.L.P (Mexico)

    2009-05-15

    Due to the renewed interest in finding sustainable fuels or energy carriers, biohydrogen (Bio-H{sub 2}) from biomass is a promising alternative. Fermentative Bio-H{sub 2} production was studied in a continuous stirred tank reactor (CSTR) operated during 65.6 d with cheese whey (CW) as substrate. Three hydraulic retention times (HRTs) were tested (10, 6 and 4 h) and the highest volumetric hydrogen production rate (VHPR) was attained with HRT of 6 h. Therefore, four organic loading rates (OLRs) at a fixed HRT of 6 h were tested thereafter, being: 92.4, 115.5, 138.6 and 184.4 g lactose/L/d. The highest VHPR (46.61 mmol H{sub 2}/L/h) and hydrogen molar yield (HMY) of 2.8 mol H{sub 2}/mol lactose were found at an OLR of 138.6 g lactose/L/d; a sharp fall in VHPR occurred at an OLR of 184.4 g lactose/L/d. Butyric, propionic and acetic acids were the main soluble metabolites found, with butyric-to-acetic ratios ranging from 1.0 to 2.4. Bacterial community was identified by partial sequence analysis of the 16S rRNA and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The results showed that at HRT of 10 h and 6 h were dominated by the Clostridium genus. The VHPR attained in this study is the highest reported value for a CSTR system using CW as substrate with anaerobic sludge as inoculum and represents a 33-fold increase compared to a previous study. Thus, it was demonstrated that continuous fermentative Bio-H{sub 2} production from CW can be significantly enhanced by an appropriate selection of parameters such as HRT and OLR. Enhancements in VHPR are significant because it is a critical parameter to determine the full-scale practical application of fermentation technologies that will be used for sustainable and clean energy generation. (author)

  13. Why Is the Teen Birth Rate in the United States so High and Why Does It Matter? NBER Working Paper No. 17965

    Science.gov (United States)

    Kearney, Melissa Schettini; Levine, Phillip B.

    2012-01-01

    This paper examines two aspects of teen childbearing in the United States. First, it reviews and synthesizes the evidence on the reasons why teen birth rates are so uniquely high in the United States and especially in some states. Second, it considers why and how it matters. We argue that economists' typical explanations are unable to account for…

  14. Quenching of weak interactions in nucleon matter

    International Nuclear Information System (INIS)

    Cowell, S.; Pandharipande, V.R.

    2003-01-01

    We have calculated the one-body Fermi and Gamow-Teller charge-current and vector and axial-vector neutral-current nuclear matrix elements in nucleon matter at densities of 0.08, 0.16, and 0.24 fm -3 and proton fractions ranging from 0.2 to 0.5. The correlated states for nucleon matter are obtained by operating on Fermi-gas states by a symmetrized product of pair correlation operators determined from variational calculations with the Argonne-v18 and Urbana-IX two- and three-nucleon interactions. The squares of the charge- current matrix elements are found to be quenched by 20-25 % by the short-range correlations in nucleon matter. Most of the quenching is due to spin-isospin correlations induced by the pion exchange interactions which change the isospins and spins of the nucleons. A large part of it can be related to the probability for a spin-up proton quasiparticle to be a bare spin-up/down proton/neutron. Within the interval considered, the charge-current matrix elements do not have significant dependence on the matter density, proton fraction, and magnitudes of nucleon momenta; however, they do depend on momentum transfer. The neutral-current matrix elements have a significant dependence on the proton fraction. We also calculate the matrix elements of the nuclear Hamiltonian in the same correlated basis. These provide relatively mild effective interactions that give the variational energies in the Hartree-Fock approximation. The calculated two-nucleon effective interaction describes the spin-isospin susceptibilities of nuclear and neutron matter fairly accurately. However terms greater than or equal to three-body terms are necessary to reproduce the compressibility. Realistic calculations of weak interaction rates in nucleon matter can presumably be carried out using the effective operators and interactions studied here. All presented results use the simple two-body cluster approximation to calculate the correlated basis matrix elements. This allows for a clear

  15. Anitproton-matter interactions in antiproton applications

    Science.gov (United States)

    Morgan, David L., Jr.

    1990-01-01

    By virtue of the highly energetic particles released when they annihilate in matter, antiprotons have a variety of potentially important applications. Among others, these include remote 3-D density and composition imaging of the human body and also of thick, dense materials, cancer therapy, and spacecraft propulsion. Except for spacecraft propulsion, the required numbers of low energy antiprotons can be produced, stored, and transported through reliance on current or near term technology. Paramount to these applications and to fundamental research involving antiprotons is knowledge of how antiprotons interact with matter. The basic annihilation process is fairly well understood, but the antiproton annihilation and energy loss rates in matter depend in complex ways on a number of atomic processes. The rates, and the corresponding cross sections, were measured or are accurately predictable only for limited combinations of antiproton kinetic energy and material species.

  16. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter

    KAUST Repository

    Logan, Bruce E.; Call, Douglas; Cheng, Shaoan; Hamelers, Hubertus V. M.; Sleutels, Tom H. J. A.; Jeremiasse, Adriaan W.; Rozendal, René A.

    2008-01-01

    production rates. MECs used to make hydrogen gas are similar in design to microbial fuel cells (MFCs) that produce electricity, but there are important differences in architecture and analytical methods used to evaluate performance. We review here

  17. Organic Matter Loading Modifies the Microbial Community Responsible for Nitrogen Loss in Estuarine Sediments.

    Science.gov (United States)

    Babbin, Andrew R; Jayakumar, Amal; Ward, Bess B

    2016-04-01

    Coastal marine sediments, as locations of substantial fixed nitrogen loss, are very important to the nitrogen budget and to the primary productivity of the oceans. Coastal sediment systems are also highly dynamic and subject to periodic natural and anthropogenic organic substrate additions. The response to organic matter by the microbial community involved in nitrogen loss processes was evaluated using mesocosms of Chesapeake Bay sediments. Over the course of a 50-day incubation, rates of anammox and denitrification were measured weekly using (15)N tracer incubations, and samples were collected for genetic analysis. Rates of both nitrogen loss processes and gene abundances associated with them corresponded loosely, probably because heterogeneities in sediments obscured a clear relationship. The rates of denitrification were stimulated more, and the fraction of nitrogen loss attributed to anammox slightly reduced, by the higher organic matter addition. Furthermore, the large organic matter pulse drove a significant and rapid shift in the denitrifier community composition as determined using a nirS microarray, indicating that the diversity of these organisms plays an essential role in responding to anthropogenic inputs. We also suggest that the proportion of nitrogen loss due to anammox in these coastal estuarine sediments may be underestimated due to temporal dynamics as well as from methodological artifacts related to conventional sediment slurry incubation approaches.

  18. Shoot growth, radiation interception and dry matter production and partitioning during the establishment phase of Miscanthus sinensis 'Giganteus' grown at two densities in the UK

    International Nuclear Information System (INIS)

    Bullard, M.J.; Heath, M.C.; Nixon, P.M.I.

    1995-01-01

    Photosynthetic area index (PAI), radiation interception (I) and dry matter partitioning between shoots and roots were measured for Miscanthus sinensis‘Giganteus' grown from micro-propagated transplants on a fertile peaty loam soil in eastern England. In the establishment year, Miscanthus plants produced 35 and 70 shoots plant -1 at densities of 4.0 and 1.8 plants m -2 respectively. At the higher density, there were 140 shoots m -2 with the largest reaching a height of 1.8 m; these canopies attained a maximum PAI of 5.45, intercepting 94% of incident radiation. Leaf lamina contributed c. 90% of total photosynthetic area with stems contributing the remainder. At the lower density, maximum PAI and I values were 2.88 and 86% respectively. PAI was related to I by calculating attenuation coefficients (k); these indicated that Miscanthus canopies were more effective at intercepting radiation per unit PAI at the lower density (k= -0.31) compared with the higher density (k= -0.20). Radiation interception was related to dry matter accumulated by calculating conversion efficiencies (e). At 4 plants m -2 , × for shoot dry matter production was 1.17g MJ -1 . Miscanthus partitioned a relatively large amount of total dry matter into below-ground biomass. By plant senescence, c. 30% of total dry matter had been partitioned into root and rhizome; rhizome biomass contributed 80% of below-ground dry matter, × increased to 1.62 g MJ -1 when calculated on a total dry matter basis (shoot + root + rhizome). Total dry matter production was increased 68% by a 2.2-fold increase in plant density. (author)

  19. Investigation of OxProduction Rates in the Mexico City Metropolitan Area during MILAGRO

    Science.gov (United States)

    Dusanter, S.; Molina, L. T.; Stevens, P. S.

    2009-12-01

    Understanding the oxidative capacity of the atmosphere and the formation of secondary pollutants are important issues in atmospheric chemistry. For instance, the photochemical production of tropospheric ozone (O3) is of particular interest due to its detrimental effects on both human health and agricultural ecosystems. A detailed characterization of tropospheric O3 production rates will help in the development of effective control strategies. The 2006 Mexico City Metropolitan Area field campaign (MCMA-2006) was one of four components of MILAGRO (Megacity Initiative: Local And Global Research Observations) intended to collect information on the impact of megacity emissions on local, regional and global scales. In this presentation, rates of production of Ox (Ox = O3 + NO2) species during MCMA-2006 at the supersite T0 (Instituto Mexicano del Petroleo) will be presented using different approaches based on measured and modeled concentrations of ROx (OH + HO2 + RO2) radicals. In addition, we will examine both the reactivity of OH and the contribution of specific peroxy radicals to the oxidation rate of NO to estimate the contribution of groups of VOCs (alkanes, alkenes, aromatics, oxygenated and biogenic VOCs) to the total production rate of Ox species.

  20. THE PRODUCTION RATE OF SN Ia EVENTS IN GLOBULAR CLUSTERS

    International Nuclear Information System (INIS)

    Washabaugh, Pearce C.; Bregman, Joel N.

    2013-01-01

    In globular clusters, dynamical evolution produces luminous X-ray emitting binaries at a rate about 200 times greater than in the field. If globular clusters also produce SN Ia at a high rate, it would account for many of the SN Ia production in early-type galaxies and provide insight into their formation. Here we use archival Hubble Space Telescope (HST) images of nearby galaxies that have hosted an SN Ia to examine the rate at which globular clusters produce these events. The location of the SN Ia is registered on an HST image obtained before the event or after the supernova (SN) faded. Of the 36 nearby galaxies examined, 21 had sufficiently good data to search for globular cluster hosts. None of the 21 SNe have a definite globular cluster counterpart, although there are some ambiguous cases. This places an upper limit to the enhancement rate of SN Ia production in globular clusters of about 42 at the 95% confidence level, which is an order of magnitude lower than the enhancement rate for luminous X-ray binaries. Even if all of the ambiguous cases are considered as having a globular cluster counterpart, the upper bound for the enhancement rate is 82 at the 95% confidence level, still a factor of several below that needed to account for half of the SN Ia events. Barring unforeseen selection effects, we conclude that globular clusters are not responsible for producing a significant fraction of the SN Ia events in early-type galaxies.

  1. Revisiting the gravitino dark matter and baryon asymmetry from Q-ball decay in gauge mediation

    Energy Technology Data Exchange (ETDEWEB)

    Kasuya, Shinta, E-mail: kasuya@kanagawa-u.ac.jp [Department of Mathematics and Physics, Kanagawa University, Kanagawa 259-1293 (Japan); Max-Planck-Institut für Kernphysik, PO Box 103980, 69029 Heidelberg (Germany); Kawasaki, Masahiro [Institute for Cosmic Ray Research, the University of Tokyo, Chiba 277-8582 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, the University of Tokyo, Chiba 277-8582 (Japan); Yamada, Masaki [Institute for Cosmic Ray Research, the University of Tokyo, Chiba 277-8582 (Japan)

    2013-10-07

    We reconsider the Q-ball decay and reinvestigate the scenario that the amount of the baryons and the gravitino dark matter is naturally explained by the decay of the Q balls in the gauge-mediated SUSY breaking. We refine the decay rates into baryons, NLSPs, and gravitinos, and estimate their branching ratios based on the consideration of Pauli blocking. We obtain a smaller branching into gravitinos than the previous estimate, and the NLSPs are more produced by the Q-ball decay. However, the efficient annihilations of NLSPs occur afterward so that their abundance does not spoil the successful BBN and they only produce negligible amount of the gravitinos to the dark matter density by their decay. In this way, we find that the scenario with the direct production of the gravitino dark matter from the Q-ball decay works naturally.

  2. Interaction of ionising radiations with matter

    International Nuclear Information System (INIS)

    Caudrelier, Olivier

    2010-01-01

    In a first part, this academic course addresses the interaction of non-charged particles with matter. The author more particularly addresses the interaction of a photon plasma with matter (attenuation of electromagnetic radiations, law of exponential attenuation, attenuation half value layer), the elementary phenomena of the interaction of a photon with matter (photoelectric effect, Compton effect, Thomson-Rayleigh scattering, materialisation, photo-nuclear reaction, prevalence domains, application in medical imagery), and the interaction of fast and slow neutrons with matter (elastic and inelastic scattering, radiative and non-radiative capture). The second part addresses the interaction of charged particles with matter. The author more particularly addresses the interaction with electrons present in the medium (ionization, excitation, stop efficiency, linear energy transfer, ionization linear density), the interaction with the nucleus (Bremsstrahlung), and the case of light particles (electrons) and of heavy particles (protons, alpha, fission products)

  3. Adsorption of organic matter contained in industrial phosphoric acid onto bentonite: Batch contact time and kinetic study

    International Nuclear Information System (INIS)

    Mellah, Abdelhamid

    1992-12-01

    The soluble organic matter present in industrial phosphoric acid can strongly affect the uranium recovery during its solvent extraction by forming stable foams and emulsions. The removal of these organics is an important step both for the production of decontaminated fertilizers and the successful recovery of uranium. The equilibrium isotherms of organic matter adsorption onto bentonite show that the data correlated well with freundlich's model and that the adsorption is physical in nature. the maximum monomolecular capacity (Qo) according to the Langmuir model is 153 mg/g for an initial organic matter concentration of 251.5 mg/1, at 30 oC. The operating parameters (agitation speed, solid/liquid ratio, temperature, particle size and initial organic matter concentration) influenced the rate of adsorption. The adsorption isotherm of uranium onto bentonite exhibits and anomalous shape similar to the Z-type isotherm reported by Giles et al

  4. Litter Production and Decomposition Rate in the Reclaimed Mined Land under Albizia and Sesbania Stands and Their Effects on some Soil Chemical Properties

    Directory of Open Access Journals (Sweden)

    Hery Suhartoyo

    2011-01-01

    Full Text Available Vegetation establishment is considered as a critical step of mined land rehabilitation. The growing plants do not only prevent soil erosion, but also play important roles in soil ecosystem development. Their litterfall is the main process of transferring organic matter and nutrients from aboveground tree biomass to soil. Thus, its quantification would aid in understanding biomass and nutrient dynamics of the ecosystem. This study was aimed to investigate the litter production and its decomposition rate in a reclaimed mined land using albizia and sesbania, and their effects on some soil properties. The litter under each stand was biweekly collected for four months. At the same time litter samples were decomposed in mesh nylon bags in soils and the remaining litters were biweekly measured. Soil samples were taken from 0-15 cm depths from each stand for analyses of soil organic C, total N, and cation exchange capacity (CEC. The results demonstrated that total litter production under albizia (10.58 t ha-1 yr-1 was almost twice as much as that under sesbania stands (5.43 t ha-1 yr-1. Albizia litter was dominated by leaf litter (49.26% and least as understory vegetation (23.31%, whereas sesbania litter was more evenly distributed among litter types. Decomposition rates of all litters were fastest in the initial stage and then gradually decreased. Sesbania leaf litters decomposed fastest, while albizia twigs slowest. Differences in the litter production and decomposition rates of the two species had not sufficiently caused significant effects on organic-C, total N, and CEC of the soils after one year of revegetation.

  5. Dissipative dark matter halos: The steady state solution

    Science.gov (United States)

    Foot, R.

    2018-02-01

    Dissipative dark matter, where dark matter particle properties closely resemble familiar baryonic matter, is considered. Mirror dark matter, which arises from an isomorphic hidden sector, is a specific and theoretically constrained scenario. Other possibilities include models with more generic hidden sectors that contain massless dark photons [unbroken U (1 ) gauge interactions]. Such dark matter not only features dissipative cooling processes but also is assumed to have nontrivial heating sourced by ordinary supernovae (facilitated by the kinetic mixing interaction). The dynamics of dissipative dark matter halos around rotationally supported galaxies, influenced by heating as well as cooling processes, can be modeled by fluid equations. For a sufficiently isolated galaxy with a stable star formation rate, the dissipative dark matter halos are expected to evolve to a steady state configuration which is in hydrostatic equilibrium and where heating and cooling rates locally balance. Here, we take into account the major cooling and heating processes, and numerically solve for the steady state solution under the assumptions of spherical symmetry, negligible dark magnetic fields, and that supernova sourced energy is transported to the halo via dark radiation. For the parameters considered, and assumptions made, we were unable to find a physically realistic solution for the constrained case of mirror dark matter halos. Halo cooling generally exceeds heating at realistic halo mass densities. This problem can be rectified in more generic dissipative dark matter models, and we discuss a specific example in some detail.

  6. Low nitrous oxide production through nitrifier-denitrification in intermittent-feed high-rate nitritation reactors.

    Science.gov (United States)

    Su, Qingxian; Ma, Chun; Domingo-Félez, Carlos; Kiil, Anne Sofie; Thamdrup, Bo; Jensen, Marlene Mark; Smets, Barth F

    2017-10-15

    Nitrous oxide (N 2 O) production from autotrophic nitrogen conversion processes, especially nitritation systems, can be significant, requires understanding and calls for mitigation. In this study, the rates and pathways of N 2 O production were quantified in two lab-scale sequencing batch reactors operated with intermittent feeding and demonstrating long-term and high-rate nitritation. The resulting reactor biomass was highly enriched in ammonia-oxidizing bacteria, and converted ∼93 ± 14% of the oxidized ammonium to nitrite. The low DO set-point combined with intermittent feeding was sufficient to maintain high nitritation efficiency and high nitritation rates at 20-26 °C over a period of ∼300 days. Even at the high nitritation efficiencies, net N 2 O production was low (∼2% of the oxidized ammonium). Net N 2 O production rates transiently increased with a rise in pH after each feeding, suggesting a potential effect of pH on N 2 O production. In situ application of 15 N labeled substrates revealed nitrifier denitrification as the dominant pathway of N 2 O production. Our study highlights operational conditions that minimize N 2 O emission from two-stage autotrophic nitrogen removal systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Fusarium graminearum in Stored Wheat: Use of CO₂ Production to Quantify Dry Matter Losses and Relate This to Relative Risks of Zearalenone Contamination under Interacting Environmental Conditions.

    Science.gov (United States)

    Garcia-Cela, Esther; Kiaitsi, Elsa; Sulyok, Michael; Medina, Angel; Magan, Naresh

    2018-02-17

    Zearalenone (ZEN) contamination from Fusarium graminearum colonization is particularly important in food and feed wheat, especially during post-harvest storage with legislative limits for both food and feed grain. Indicators of the relative risk from exceeding these limits would be useful. We examined the effect of different water activities (a w ; 0.95-0.90) and temperature (10-25 °C) in naturally contaminated and irradiated wheat grain, both inoculated with F. graminearum and stored for 15 days on (a) respiration rate; (b) dry matter losses (DML); (c) ZEN production and (d) relationship between DML and ZEN contamination relative to the EU legislative limits. Gas Chromatography was used to measure the temporal respiration rates and the total accumulated CO₂ production. There was an increase in temporal CO₂ production rates in wetter and warmer conditions in all treatments, with the highest respiration in the 25 °C × 0.95 a w treatments + F. graminearum inoculation. This was reflected in the total accumulated CO₂ in the treatments. The maximum DMLs were in the 0.95 a w /20-25 °C treatments and at 10 °C/0.95 a w . The DMLs were modelled to produce contour maps of the environmental conditions resulting in maximum/minimum losses. Contamination with ZEN/ZEN-related compounds were quantified. Maximum production was at 25 °C/0.95-0.93 a w and 20 °C/0.95 a w . ZEN contamination levels plotted against DMLs for all the treatments showed that at ca 1.0% DML, the risk was high. This type of data is important in building a database for the development of a post-harvest decision support system for relative risks of different mycotoxins.

  8. Relationships between stocking rate, livestock production systems and Alpine grasslands management

    Directory of Open Access Journals (Sweden)

    Enrico Sturaro

    2010-01-01

    Full Text Available This study was conducted in order to identify the relationships between stocking rate, management system, topographic conditions and weed encroachment of summer pastures in “Lessinia”, a pre-Alpine area in the Veneto region (North-Eastern Italy. Using the data from a field survey on 46 summer pastures (30 with dairy cows and 16 with other bovine categories, various ANOVA/ANCOVA models were used to test the effects on stocking rate of livestock category, supplementary concentrate feeding, and pasture weed encroachment, slope and elevation. Stocking rate was higher in summer pastures with dairy cows than in those with other bovine categories, and in pastures with moderate slopes than in those with higher ones, but was unaffected by supplementary concentrate feeding, altitude and weed encroachment. This indicates that in the considered areas stocking rate is not constrained by pasture productivity and is kept at sub-optimal levels. Future research is needed to make more clear the effects that the present management status may have on the evolution of pastures productivity and biodiversity value.

  9. IMPACT OF MARKET-DETERMINED EXCHANGE RATES ON RICE PRODUCTION AND IMPORT IN NIGERIA

    Directory of Open Access Journals (Sweden)

    Aliyu Aishat Ammani

    2013-10-01

    Full Text Available Rice is an economically important food security crop, cultivated in almost all of Nigeria’s 36 States. Nigeria spends more than 356 billion naira (2.24 billion US dollars annually on rice import. This paper set out to analyze the trend in rice production, productivity, import, value of import and consumption that follows the adoption of the Structural Adjustment Programme (SAP in Nigeria, with emphasis on the effects of exchange rate (ER deregulation on domestic rice production and rice imports over the period 1986-2010. Relevant time series data were collected and used. A semi-log growth rate model and 2simple linear regression models were developed and estimated. Highlights of the findings include (i accelerated rate of growth in rice production (Instantaneous Growth Rate (IGR 2.2%; Cumulative Growth Rate (CGR 2.2%; rice hectarage (IGR 3.7%; CGR 3.8%; rice importation (IGR 8.5%; CGR8.9%; expenditure on rice importation (IGR 10.6%; CGR 11.2% and rice consumption (IGR 3.4%; CGR 3.5% alongside a significant deceleration in rice yield (IGR -1.4%; CGR -201.4% (ii The observed significant increase in domestic rice production cannot be confidently attributed to ER deregulation alone because it does not lead to a decrease in rice importation into Nigeria. (iii The significant increase in domestic rice importation as observed contradicts a priori expectation that ER deregulation will lead to significant decrease in rice importation. The study concluded that free market approach alone cannot stimulate local agricultural production in countries where farmers producing under low-technology-agriculture are put in direct competition with farmers from advancedtechnology-agriculture; hence governments need to restrict importation to protect local producers.

  10. Ultrasound assisted biogas production from landfill leachate

    International Nuclear Information System (INIS)

    Oz, Nilgün Ayman; Yarimtepe, Canan Can

    2014-01-01

    Highlights: • Effect of low frequency ultrasound pretreatment on leachate was investigated. • Three different ultrasound energy inputs (200, 400 and 600 W/l) was applied. • Low-frequency ultrasound treatment increased soluble COD in landfill leachate. • Application of ultrasound to leachate increased biogas production about 40%. • Application of ultrasound to leachate increased total methane production rate about 20%. - Abstract: The aim of this study is to increase biogas production and methane yield from landfill leachate in anaerobic batch reactors by using low frequency ultrasound as a pretreatment step. In the first part of the study, optimum conditions for solubilization of organic matter in leachate samples were investigated using various sonication durations at an ultrasound frequency of 20 kHz. The level of organic matter solubilization during ultrasonic pretreatment experiments was determined by calculating the ratio of soluble chemical oxygen demand (sCOD) to total chemical oxygen demand (tCOD). The sCOD/tCOD ratio was increased from 47% in raw leachate to 63% after 45 min sonication at 600 W/l. Non-parametric Friedman’s test indicated that ultrasonic pretreatment has a significant effect on sCOD parameter for leachate (p < 0.05). In the second part of the study, anaerobic batch reactors were operated for both ultrasonically pretreated and untreated landfill leachate samples in order to assess the effect of sonication on biogas and methane production rate. In anaerobic batch reactor feed with ultrasonically pretreated leachate, 40% more biogas was obtained compared to the control reactor. For statistical analysis, Mann–Whitney U test was performed to compare biogas and methane production rates for raw and pretreated leachate samples and it has been found that ultrasonic pretreatment significantly enhanced biogas and methane production rates from leachate (p < 0.05) in anaerobic batch reactors. The overall results showed that low frequency

  11. Ultrasound assisted biogas production from landfill leachate

    Energy Technology Data Exchange (ETDEWEB)

    Oz, Nilgün Ayman, E-mail: nilgunayman@comu.edu.tr; Yarimtepe, Canan Can

    2014-07-15

    Highlights: • Effect of low frequency ultrasound pretreatment on leachate was investigated. • Three different ultrasound energy inputs (200, 400 and 600 W/l) was applied. • Low-frequency ultrasound treatment increased soluble COD in landfill leachate. • Application of ultrasound to leachate increased biogas production about 40%. • Application of ultrasound to leachate increased total methane production rate about 20%. - Abstract: The aim of this study is to increase biogas production and methane yield from landfill leachate in anaerobic batch reactors by using low frequency ultrasound as a pretreatment step. In the first part of the study, optimum conditions for solubilization of organic matter in leachate samples were investigated using various sonication durations at an ultrasound frequency of 20 kHz. The level of organic matter solubilization during ultrasonic pretreatment experiments was determined by calculating the ratio of soluble chemical oxygen demand (sCOD) to total chemical oxygen demand (tCOD). The sCOD/tCOD ratio was increased from 47% in raw leachate to 63% after 45 min sonication at 600 W/l. Non-parametric Friedman’s test indicated that ultrasonic pretreatment has a significant effect on sCOD parameter for leachate (p < 0.05). In the second part of the study, anaerobic batch reactors were operated for both ultrasonically pretreated and untreated landfill leachate samples in order to assess the effect of sonication on biogas and methane production rate. In anaerobic batch reactor feed with ultrasonically pretreated leachate, 40% more biogas was obtained compared to the control reactor. For statistical analysis, Mann–Whitney U test was performed to compare biogas and methane production rates for raw and pretreated leachate samples and it has been found that ultrasonic pretreatment significantly enhanced biogas and methane production rates from leachate (p < 0.05) in anaerobic batch reactors. The overall results showed that low frequency

  12. Empirical Model for Predicting Rate of Biogas Production | Adamu ...

    African Journals Online (AJOL)

    Rate of biogas production using cow manure as substrate was monitored in two laboratory scale batch reactors (13 liter and 108 liter capacities). Two empirical models based on the Gompertz and the modified logistic equations were used to fit the experimental data based on non-linear regression analysis using Solver tool ...

  13. Clay-associated organic matter in kaolinitic and smectitic soils

    NARCIS (Netherlands)

    Wattel-Koekkoek, E.J.W.

    2002-01-01

    The primary source of soil organic matter is plant debris of all kinds, such as dead roots, leaves and branches that enter into the soil and are then biologically decomposed at variable rates. Organic matter has many different important functions on a local and global scale. Soil organic matter is

  14. Dilepton production theory

    International Nuclear Information System (INIS)

    Kapusta, J.

    1990-01-01

    Whenever charged particles collide they radiate real and virtual photons, the virtual ones decaying into lepton pairs. The advantage of observing electromagnetic signals from a strongly interacting many-body system is that they travel relatively unscathed from the production point to the detector. Since production rates are rapidly increasing functions of temperature and density these electromagnetic signals are good probes of the early high temperature and density stage of heavy ion collisions. The purpose of this talk is to provide an exploratory study of electron-positron radiation from finite temperature and density nuclear matter, and to make some corresponding comparisons with the p(4.9 GeV) + Be measurements of the DLS group

  15. Effect of turbulence on the disintegration rate of flushable consumer products.

    Science.gov (United States)

    Karadagli, Fatih; Rittmann, Bruce E; McAvoy, Drew C; Richardson, John E

    2012-05-01

    A previously developed model for the physical disintegration of flushable consumer products is expanded by investigating the effects of turbulence on the rate of physical disintegration. Disintegration experiments were conducted with cardboard tampon applicators at 100, 150, and 200 rotations per minute, corresponding to Reynold's numbers of 25,900, 39,400, and 52,900, respectively, which were estimated by using computational fluid dynamics modeling. The experiments were simulated with the disintegration model to obtain best-fit values of the kinetic and distribution parameters. Computed rate coefficients (ki) for all solid sizes (i.e., greater than 8, 4 to 8, 2 to 4, and 1 to 2 mm) increased strongly with Reynold's number or rotational speed. Thus, turbulence strongly affected the disintegration rate of flushable products, and the relationship of the ki values to Reynold's number can be included in mathematical representations of physical disintegration.

  16. Dark matter asymmetry in supersymmetric Dirac leptogenesis

    International Nuclear Information System (INIS)

    Choi, Ki-Young; Chun, Eung Jin; Shin, Chang Sub

    2013-01-01

    We discuss asymmetric or symmetric dark matter candidate in the supersymmetric Dirac leptogenesis scenario. By introducing a singlet superfield coupling to right-handed neutrinos, the overabundance problem of dark matter can be evaded and various possibilities for dark matter candidate arise. If the singlino is the lightest supersymmetric particle (LSP), it becomes naturally asymmetric dark matter. On the other hand, the right-handed sneutrino is a symmetric dark matter candidate whose relic density can be determined by the usual thermal freeze-out process. The conventional neutralino or gravitino LSP can be also a dark matter candidate as its non-thermal production from the right-handed sneutrino can be controlled appropriately. In our scenario, the late-decay of heavy supersymmetric particles mainly produces the right-handed sneutrino and neutrino which is harmless to the standard prediction of the Big-Bang Nucleosynthesis

  17. Enhanced photon production rate on the light-cone

    International Nuclear Information System (INIS)

    Aurenche, P.; Grenoble-1 Univ., 74 - Annecy; Gelis, F.; Kobes, R.; Petitgirard, E.

    1996-01-01

    Recent studies of the high temperature soft photon production rate on the light cone using Braaten-Pisarski resummation techniques have found collinear divergences present. It is shown that there exist a class of terms outside the Braaten-Pisarski framework which, although also divergent, dominate over these previously considered terms. The divergences in these new terms may be alleviated by application of a recently developed resummation scheme for processes sensitive to the light-cone. (author)

  18. Astrophysical search strategies for accelerator blind dark matter

    International Nuclear Information System (INIS)

    Wells, J.D.

    1998-04-01

    A weakly interacting dark matter particle may be very difficult to discover at an accelerator because it either (1) is too heavy, (2) has no standard model gauge interactions, or (3) is almost degenerate with other states. In each of these cases, searches for annihilation products in the galactic halo are useful probes of dark matter properties. Using the example of supersymmetric dark matter, the author demonstrates how astrophysical searches for dark matter may provide discovery and mass information inaccessible to collider physics programs such as the Tevatron and LHC

  19. Optimum stocking rate for goat production on improved highland ...

    African Journals Online (AJOL)

    The effects of four stocking rates (SR; 7.5, 15, 30 and 45 goats ha-1) on goat performance and herbage productivity were examined on the perennial pastures. The experiment was applied by grazing 65 six-months old Chinese Yunling black goat wethers for two years. Significant year × SR interactions were observed on ...

  20. Production rates of strange vector mesons at the Z0 resonance

    Energy Technology Data Exchange (ETDEWEB)

    Dima, Mihai O. [Stanford Univ., CA (United States)

    1997-05-01

    This dissertation presents a study of strange vector meson production, "leading particle" effect and a first direct measurement of the strangeness suppression parameter in hadronic decays of the neutral electroweak boson, Z. The measurements were performed in e+e- collisions at the Stanford Linear Accelerator Center (SLAC) with the SLC Large Detector (SLD) experiment. A new generation particle ID system, the SLD Cerenkov Ring Imaging Detector (CRID) is used to discriminate kaons from pions, enabling the reconstruction of the vector mesons over a wide momentum range. The inclusive production rates of ρ and K*0 and the differential rates versus momentum were measured and are compared with those of other experiments and theoretical predictions. The high longitudinal polarisation of the SLC electron beam is used in conjunction with the electroweak quark production asymmetries to separate quark jets from antiquark jets. K*0 production is studied separately in these samples, and the results show evidence for the "leading particle" effect. The difference between K*0 production rates at high momentum in quark and antiquark jets yields a first direct measurement of strangeness suppression in jet fragmentation.

  1. Investigation the Impact of Exchange Rate Volatility on the Export of Agricultural Products

    Directory of Open Access Journals (Sweden)

    M. Jamalipour

    2016-10-01

    coefficients. Results and Discussion: Main results showed that real exchange rate volatility and export value of selected commodities are Co-integrated. The coefficient estimation of FMOLS and DOLS methods are equal and statically significant; so, these methods aren’t statically different and they showed that real exchange rate volatility has a negative impact on exported value for whole panel. However, the specific coefficient for each commodity showed contradictory behavior in short run and long run; for example real exchange rate fluctuation has a negative and significant impact on all the commodities; but, in short run this variable has a positive and significant impact on exported value. Moreover, based on estimated results it seems that fluctuation in exchange market has a greater impact on more valuable commodities like date. Conclusion: Considering the importance of agricultural product trade and in order to overcome mono-product economy, this study investigated long term and short term relation between export of grape, orange, date and exchange rate volatilities. To this aim, first the index of exchange volatility using generated autoregressive conditional heteroscedasticity (GARCH was calculated. In order to investigate the relation between exchange rate volatilities and export value of agricultural product, unit root test and cointegration test related to panel data were used during years 1971-2013. The results of model estimation showed that exchange rate volatilities in short term and long term have respectively positive and negative effects on the export value of orange, grape and date. In long term, the negative effects of Exchange rate volatilities on high-export-value products are more than its effects on low-export-value products. Based on the estimation results we can conclude that, in short run, exporters are willing to increase their interchange and gain profits of the volatility in exchange market; however, in long run exchange rate fluctuation has

  2. Harvesting costs and production rates for seed-tree removal in young-growth, mixed-conifer stands

    Science.gov (United States)

    Philip M. McDonald

    1969-01-01

    Ponderosa pine seed trees left from a previous cutting on the Challenge Experimental Forest, California, were removed in October 1963. Logging costs and production rates were compared with those for a seed-tree cutting on an area nearby. Production rates for seed-tree removal greatly exceeded those for the operation as a whole. Skidding production increased by 38...

  3. Rate and Product Studies of Solvolyses of Benzyl Fluoroformate

    Directory of Open Access Journals (Sweden)

    Dennis N. Kevill

    2006-07-01

    Full Text Available The specific rates of solvolysis of benzyl fluoroformate have been measured inseveral hydroxylic solvents at 25.0 °C. For methanolysis, the solvent deuterium isotopeeffect and activation parameters were determined and activation parameters were alsodetermined for solvolyses in ethanol and 80% ethanol. For several of the binary hydroxylicsolvents, measurement of product ratios allowed selectivity values to be determined. Anextended Grunwald–Winstein treatment of the data led to sensitivities to changes in solventnucleophilicity and ionizing power. Comparison with previously determined specific ratesfor solvolysis of the chloroformate gave fluorine/chlorine rate ratios greater than unity. Allof the determinations made were consistent with an addition–elimination (association–dissociation mechanism, with addition rate-determining.

  4. Initial ratings of different types of e-cigarettes and relationships between product appeal and nicotine delivery.

    Science.gov (United States)

    Hajek, Peter; Przulj, Dunja; Phillips-Waller, Anna; Anderson, Rebecca; McRobbie, Hayden

    2018-04-01

    Little is known about features of e-cigarettes (EC) that facilitate or hinder the switch from smoking to vaping. We tested eight brands of EC to determine how nicotine delivery and other product characteristics influence user's initial reactions. Fifteen vapers tested each product after overnight abstinence from both smoking and vaping. At each session, participant's vaped ad lib for 5 min. Blood samples were taken at baseline and at 2, 4, 6, 8, 10 and 30 min after starting vaping. Participants rated the products on a range of characteristics. The products tested included six 'cig-a-like' and two refillable products, one with variable voltage. We also tested participants' own EC. All products significantly reduced urges to smoke. Refillable products delivered more nicotine and received generally superior ratings in terms of craving relief, subjective nicotine delivery, throat hit and vapour production but in overall ratings, they were joined by a cig-a-like, Blu. Participants puffed more on low nicotine delivery products. Participants' estimates of nicotine delivery from different EC were closely linked to 'throat hit'. Nicotine delivery was less important in the initial product ratings than draw resistance, mouthpiece comfort and effects on reducing urge to smoke. All EC products reduced urges to smoke. Refillable products received generally more favourable ratings than 'cig-a-likes' with similar nicotine content. Perception of nicotine delivery was guided by throat sensations. Lower nicotine delivery was associated with more frequent puffing. The first impressions of EC products are guided less by nicotine delivery than by sensory signals.

  5. Asymmetric dark matter annihilation as a test of non-standard cosmologies

    International Nuclear Information System (INIS)

    Gelmini, Graciela B.; Huh, Ji-Haeng; Rehagen, Thomas

    2013-01-01

    We show that the relic abundance of the minority component of asymmetric dark matter can be very sensitive to the expansion rate of the Universe and the temperature of transition between a non-standard pre-Big Bang Nucleosynthesis cosmological phase and the standard radiation dominated phase, if chemical decoupling happens before this transition. In particular, because the annihilation cross section of asymmetric dark matter is typically larger than that of symmetric dark matter in the standard cosmology, the decrease in relic density of the minority component in non-standard cosmologies with respect to the majority component may be compensated by the increase in annihilation cross section, so that the annihilation rate at present of asymmetric dark matter, contrary to general belief, could be larger than that of symmetric dark matter in the standard cosmology. Thus, if the annihilation cross section of the asymmetric dark matter candidate is known, the annihilation rate at present, if detectable, could be used to test the Universe before Big Bang Nucleosynthesis, an epoch from which we do not yet have any data

  6. EDITORIAL: Focus on Dark Matter and Particle Physics

    Science.gov (United States)

    Aprile, Elena; Profumo, Stefano

    2009-10-01

    Doetinchem, H Gast, T Kirn and S Schael Axion searches with helioscopes and astrophysical signatures for axion(-like) particles K Zioutas, M Tsagri, Y Semertzidis, T Papaevangelou, T Dafni and V Anastassopoulos The indirect search for dark matter with IceCube Francis Halzen and Dan Hooper DIRECT DARK MATTER SEARCHES:EXPERIMENTS Gaseous dark matter detectors G Sciolla and C J Martoff Search for dark matter with CRESST Rafael F Lang and Wolfgang Seidel DIRECT AND INDIRECT PARTICLE DARK MATTER SEARCHES:THEORY Dark matter annihilation around intermediate mass black holes: an update Gianfranco Bertone, Mattia Fornasa, Marco Taoso and Andrew R Zentner Update on the direct detection of dark matter in MSSM models with non-universal Higgs masses John Ellis, Keith A Olive and Pearl Sandick Dark stars: a new study of the first stars in the Universe Katherine Freese, Peter Bodenheimer, Paolo Gondolo and Douglas Spolyar Determining the mass of dark matter particles with direct detection experiments Chung-Lin Shan The detection of subsolar mass dark matter halos Savvas M Koushiappas Neutrino coherent scattering rates at direct dark matter detectors Louis E Strigari Gamma rays from dark matter annihilation in the central region of the Galaxy Pasquale Dario Serpico and Dan Hooper DARK MATTER MODELS The dark matter interpretation of the 511 keV line Céline Boehm Axions as dark matter particles Leanne D Duffy and Karl van Bibber Sterile neutrinos Alexander Kusenko Dark matter candidates Lars Bergström Minimal dark matter: model and results Marco Cirelli and Alessandro Strumia Shedding light on the dark sector with direct WIMP production Partha Konar, Kyoungchul Kong, Konstantin T Matchev and Maxim Perelstein Axinos as dark matter particles Laura Covi and Jihn E Kim

  7. Learning control for riser-slug elimination and production-rate optimization for an offshore oil and gas production process

    DEFF Research Database (Denmark)

    Pedersen, Simon; Løhndorf, Petar Durdevic; Yang, Zhenyu

    2014-01-01

    , (ii) maximizing the production rate at the riser of an offshore production platform, by manipulating a topside choke valve through a learning switching model-free PID controller. The results show good steady-state performance, though a long settling time due to the unknown reference for no slugging...

  8. Back Reaction And Local Cosmological Expansion Rate

    CERN Document Server

    Geshnizjani, G; Geshnizjani, Ghazal; Brandenberger, Robert

    2002-01-01

    We calculate the back reaction of cosmological perturbations on a general relativistic variable which measures the local expansion rate of the Universe. Specifically, we consider a cosmological model in which matter is described by a single field. We analyze back reaction both in a matter dominated Universe and in a phase of scalar field-driven chaotic inflation. In both cases, we find that the leading infrared terms contributing to the back reaction vanish when the local expansion rate is measured at a fixed value of the matter field which is used as a clock, whereas they do not appear to vanish if the expansion rate is evaluated at a fixed value of the background time. We discuss possible implications for more realistic models with a more complicated matter sector.

  9. Quantifying the degradation of organic matter in marine sediments: A review and synthesis

    Science.gov (United States)

    Arndt, Sandra; Jørgensen, B. B.; LaRowe, D. E.; Middelburg, J. J.; Pancost, R. D.; Regnier, P.

    2013-08-01

    Quantifying the rates of biogeochemical processes in marine sediments is essential for understanding global element cycles and climate change. Because organic matter degradation is the engine behind benthic dynamics, deciphering the impact that various forces have on this process is central to determining the evolution of the Earth system. Therefore, recent developments in the quantitative modeling of organic matter degradation in marine sediments are critically reviewed. The first part of the review synthesizes the main chemical, biological and physical factors that control organic matter degradation in sediments while the second part provides a general review of the mathematical formulations used to model these processes and the third part evaluates their application over different spatial and temporal scales. Key transport mechanisms in sedimentary environments are summarized and the mathematical formulation of the organic matter degradation rate law is described in detail. The roles of enzyme kinetics, bioenergetics, temperature and biomass growth in particular are highlighted. Alternative model approaches that quantify the degradation rate constant are also critically compared. In the third part of the review, the capability of different model approaches to extrapolate organic matter degradation rates over a broad range of temporal and spatial scales is assessed. In addition, the structure, functions and parameterization of more than 250 published models of organic matter degradation in marine sediments are analyzed. The large range of published model parameters illustrates the complex nature of organic matter dynamics, and, thus, the limited transferability of these parameters from one site to another. Compiled model parameters do not reveal a statistically significant correlation with single environmental characteristics such as water depth, deposition rate or organic matter flux. The lack of a generic framework that allows for model parameters to be

  10. The Dark Matter of Biology.

    Science.gov (United States)

    Ross, Jennifer L

    2016-09-06

    The inside of the cell is full of important, yet invisible species of molecules and proteins that interact weakly but couple together to have huge and important effects in many biological processes. Such "dark matter" inside cells remains mostly hidden, because our tools were developed to investigate strongly interacting species and folded proteins. Example dark-matter species include intrinsically disordered proteins, posttranslational states, ion species, and rare, transient, and weak interactions undetectable by biochemical assays. The dark matter of biology is likely to have multiple, vital roles to regulate signaling, rates of reactions, water structure and viscosity, crowding, and other cellular activities. We need to create new tools to image, detect, and understand these dark-matter species if we are to truly understand fundamental physical principles of biology. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Vector mesons in dense matter and dilepton production in heavy ion collisions at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Santini, Elvira

    2008-02-15

    The vector meson spectral functions are calculated to the first order in the nuclear matter density assuming the dominant contribution comes from the couplings of the vector mesons to nucleons and nucleon resonances. An attempt is made to reproduce the HADES dilepton production data with the in-medium spectral functions of the vector mesons using the Relativistic Quantum Molecular Dynamics (RQMD) transport model developed earlier for modelling heavy-ion collisions. The results are sensitive to the in-medium broadening of nucleon resonances. A generally good agreement with the HADES data is achieved for selfconsistent treatment of the nucleon resonance broadening and the vector meson spectral functions. (orig.)

  12. Vector mesons in dense matter and dilepton production in heavy ion collisions at intermediate energies

    International Nuclear Information System (INIS)

    Santini, Elvira

    2008-01-01

    The vector meson spectral functions are calculated to the first order in the nuclear matter density assuming the dominant contribution comes from the couplings of the vector mesons to nucleons and nucleon resonances. An attempt is made to reproduce the HADES dilepton production data with the in-medium spectral functions of the vector mesons using the Relativistic Quantum Molecular Dynamics (RQMD) transport model developed earlier for modelling heavy-ion collisions. The results are sensitive to the in-medium broadening of nucleon resonances. A generally good agreement with the HADES data is achieved for selfconsistent treatment of the nucleon resonance broadening and the vector meson spectral functions. (orig.)

  13. Morphological characteristics, dry matter production, and nutritional value of winter forage and grains under grazing and split nitrogen fertilization

    Directory of Open Access Journals (Sweden)

    Loreno Egidio Taffarel

    2017-06-01

    Full Text Available Morphological characteristics, dry matter production, and nutritional values of winter forage and grains were evaluated. This study was conducted from April 24, 2012 to November 7, 2013 in the Western Paraná State University (UNIOESTE, Marechal Cândido Rondon, Brazil. Pastures under one grazing and non-grazing conditions were evaluated under 120 kg N ha-1 fertilization split into two 60 kg N ha-1 treatments. Two pastures received 40 kg N ha-1 three times. IPR 126 oat, BRS Tarumã wheat, and IPR 111 triticale were the test crops. Topdressing with 40 or 60 kg N ha-1 did not change morphological characteristics until 60 d after sowing. Pastures under non-grazing that received 120 kg N ha-1 treatments were taller than the controls, whereas those under grazing that received 80 or 120 kg N ha-1 presented with higher leaf production than did the controls. Total average dry matter (DM production in 2012 and 2013 was, respectively, 5,275 kg ha-1 and 6,270 kg ha-1 for oat, 3,166 kg ha-1 and 7,423 kg ha-1 for wheat, and 4,552 kg ha-1 and 7,603 kg ha-1 for triticale. Split N fertilization did not cause differences in the levels of crude protein (CP, neutral detergent fiber (NDF, and acid detergent fiber (ADF in the forage. Nevertheless, increases in in vitro dry matter digestibility (IVDMD were observed in oat and wheat receiving 60 kg N ha-1 during the first graze. IVDMD did not change in oat, wheat, and triticale forages receiving 80 or 120 kg N ha-1 during the second graze. Grazing did not affect the nutritional values of wheat and triticale grains, but reduced those of oat. Therefore, the results of the present study suggest that grazing lengthens the crop cycles, and so allow the staggered sowing of summer crops.

  14. High substrate uptake rates empower Vibrio natriegens as production host for industrial biotechnology.

    Science.gov (United States)

    Hoffart, Eugenia; Grenz, Sebastian; Lange, Julian; Nitschel, Robert; Müller, Felix; Schwentner, Andreas; Feith, André; Lenfers-Lücker, Mira; Takors, Ralf; Blombach, Bastian

    2017-09-08

    The productivity of industrial fermentation processes is essentially limited by the biomass specific substrate consumption rate (q S ) of the applied microbial production system. Since q S depends on the growth rate (μ), we highlight the potential of the fastest growing non-pathogenic bacterium, Vibrio natriegens , as novel candidate for future biotechnological processes. V. natriegens grows rapidly in BHIN complex medium with a μ of up to 4.43 h -1 (doubling time of 9.4 min) as well as in minimal medium supplemented with various industrially relevant substrates. Bioreactor cultivations in minimal medium with glucose showed that V. natriegens possesses an exceptionally high q S under aerobic (3.90 ± 0.08 g g -1 h -1 ) and anaerobic (7.81 ± 0.71 g g -1 h -1 ) conditions. Fermentations with resting cells of genetically engineered V. natriegens under anaerobic conditions yielded an overall volumetric productivity of 0.56 ± 0.10 g alanine L -1 min -1 (i.e. 34 g L -1 h -1 ). These inherent properties render V. natriegens a promising new microbial platform for future industrial fermentation processes operating with high productivity. Importance Low conversion rates are one major challenge to realize microbial fermentation processes for the production of commodities operating competitively to existing petrochemical approaches. For this reason, we screened for a novel platform organism possessing superior characteristics to traditionally employed microbial systems. We identified the fast growing Vibrio natriegens which exhibits a versatile metabolism and shows striking growth and conversion rates, as a solid candidate to reach outstanding productivities. Due to these inherent characteristics V. natriegens can speed up common laboratory routines, is suitable for already existing production procedures, and forms an excellent foundation to engineer next generation bioprocesses. Copyright © 2017 American Society for Microbiology.

  15. Employee self-rated productivity and objective organizational production levels: effects of worksite health interventions involving reduced work hours and physical exercise.

    Science.gov (United States)

    von Thiele Schwarz, Ulrica; Hasson, Henna

    2011-08-01

    To investigate how worksite health interventions involving a 2.5-hour reduction of weekly working hours with (PE) or without (RWH) mandatory physical exercise affects productivity. Six workplaces in dental health care were matched and randomized to three conditions (PE, RWH and referents). Employees' (N = 177) self-rated productivity and the workplaces' production levels (number of patients) were examined longitudinally. Number of treated patients increased in all conditions during the intervention year. While RWH showed the largest increase in this measure, PE showed significant increases in self-rated productivity, that is, increased quantity of work and work-ability and decreased sickness absence. A reduction in work hours may be used for health promotion activities with sustained or improved production levels, suggesting an increased productivity since the same, or higher, production level can be achieved with lesser resources.

  16. Dose rate distribution for products irradiated in a semi-industrial irradiation plant. 1st stage

    International Nuclear Information System (INIS)

    Mangussi, J.

    2005-01-01

    The model of the bulk product absorbed dose rate distribution in a semi industrial irradiation plant is presented. In this plant the products are subject to a dynamic irradiation process: single-plaque, single-direction, four-passes. The additional two passes, also one on each side of the plaque, serve to minimize the lateral dose variation as well as the depth-dose non-uniformity. The first stage of this model takes only into account the direct absorbed dose rate; the model outputs are the depth-dose distribution and the lateral-dose distribution. The calculated absorbed dose in the bulk product and its uniformity-ratio after the dynamic irradiation process for different products is compared. The model results are in good agreement with the experimental measurements in a bulk of irradiated product; and the air absorbed dose rate in the irradiation chamber behind the product subject to the dynamic irradiation process. (author) [es

  17. Recent results on searches for direct production of dark matter with the CMS detector

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    With observed galactic excesses, tighter constraints from underground experiments, and a precise measurement of the relic density, our understanding of dark matter has greatly improved. As one of the few sources which can potentially produce dark matter, the LHC has the capability of complementing existing measurements. Recently, work by both ATLAS and CMS has been undertaken to unify the presentation of dark matter results, allowing for a robust comparison with other detector experiments. In this new light, we present two new results from CMS: the search for dark matter in Z + MET final state (Z decaying to leptons) and the search for dark matter in the monojet and hadronically decaying vector boson final state. Results are presented for simplified models, EFT and in terms of Higgs to invisible decays.

  18. Including chemical-related impact categories in LCA on printed matter does it matter?

    DEFF Research Database (Denmark)

    Larsen, Henrik Fred; Hansen, Morten Søes; Hauschild, Michael Zwicky

    2004-01-01

    global warming, acidification and nutrification. The studies focus on energy consumption including the emissions and impact categories related to energy. The chemical-related impact categories comprising ecotoxicity and human toxicity are not included at all or only to a limited degree. In this paper we...... include these chemical-related impact categories by making use of some of the newest knowledge about emissions from the production at the printing industry combined with knowledge about the composition of the printing materials used during the production of offset printed matter. This paper is based...... printed matter produced on a fictitious sheet feed offset printing industry in Europe has been identified and shown in Figure 1 (light bars). „Ï The effect of including the chemical related impact categories is substantial as shown in Figure 1, e.g. the importance of paper is reduced from 67% to 31...

  19. Candidates for non-baryonic dark matter

    International Nuclear Information System (INIS)

    Fornengo, Nicolao

    2002-01-01

    This report is a brief review of the efforts to explain the nature of non-baryonic dark matter and of the studies devoted to the search for relic particles. Among the different dark matter candidates, special attention is devoted to relic neutralinos, by giving an overview of the recent calculations of its relic abundance and detection rates in a wide variety of supersymmetric schemes

  20. Candidates for non-baryonic dark matter

    OpenAIRE

    Fornengo, Nicolao

    2002-01-01

    This report is a brief review of the efforts to explain the nature of non-baryonic dark matter and of the studies devoted to the search for relic particles. Among the different dark matter candidates, special attention is devoted to relic neutralinos, by giving an overview of the recent calculations of its relic abundance and detection rates in a wide variety of supersymmetric schemes.

  1. Measurement of HOx· production rate due to radon decay in air

    International Nuclear Information System (INIS)

    Ding, Huiling.

    1993-08-01

    Radon in indoor air may cause the exposure of the public to excessive radioactivity. Radiolysis of water vapor in indoor air due to radon decay could produce (·OH and HO 2 ·) that may convert atmospheric constituents to compounds of lower vapor pressure. These lower vapor pressure compounds might then nucleate to form new particles in the indoor atmosphere. Chemical amplification was used to determine HO x · production rate in indoor air caused by radon decay. Average HO x · production rate was found to be (4.31±0.07) x 10 5 HO x · per Rn decay per second (Bq) 3.4 to 55.0% at 22C. This work provided G (HO x ·) -value, 7.86±0.13 No./100 eV in air by directly measuring [HO x ·] formed from the radiolysis procedure. This G value implies that HO x · produced by radon decay in air might be formed by multiple processes and may be result of positive ion-molecule reactions, primary radiolysis, and radical reactions. There is no obvious relation between HO x · production rate and relative humidity. A laser-induced fluorescence (LIF) system has been used for ·OH production rate measurement; it consists of an excimer laser, a dye laser, a frequency doubler, a gaseous fluorescence chamber, and other optical and electronic parts. This system needs to be improved to eliminate the interferences of light scattering and artificial ·OH produced from the photolysis of O 3 /H 2 O

  2. Effect of Varieties and Plant Population Densities on Dry Matter Production, Radiation Interception and Radiation Energy Conversion in Peanut

    Directory of Open Access Journals (Sweden)

    agus suprapto

    2012-05-01

    Full Text Available The solar radiation is one of the major criteria to obtaining advantages on peanuts (Arachishypogaea L.. Although various combinations of crops have been reported, but variety association and plant population densities (PPD during the periodically stage of growth on peanuts have yet to be analyzed. Dry matter production (DM, radiation energy interception, and radiation energy conversions were monitored over the growth period of two varieties of peanut. An experiment was conducted in Jambegede Research Farm, Indonesian Legume and Tuber Crops Research Institute, Malang, East Java, Indonesia, from July until October 2011. The experiment was arranged in a Split Plot Design with three replications. Peanut varieties, as the main plot consisted of two treatments: Kelinci andKancil variety. In addition, five PPD variations as sub plot consisted of 8.1, 11.1, 16.0, 25.0 and 44.4 plant m-2 were arranged in a square spacing. The results showed that DM production from high PPD increased gradually to lower PPD in all varieties. Interception efficiency (IE increased in all varieties from early sowing. A plant population density of 25.0 m-2 and 44.4 plants m-2 intercepted more radiation over 11.1 or 16.0 plants m-2. Conversion efficiency of radiation energy (CE to total dry matter production on Kelinci variety (1.52% indicated a slight higher percentage than on Kancil variety (1.41%. Moreover, the CE and IE values indicated a decrease as the PPD increased on maximum DM.

  3. Fusarium graminearum in Stored Wheat: Use of CO2 Production to Quantify Dry Matter Losses and Relate This to Relative Risks of Zearalenone Contamination under Interacting Environmental Conditions

    Science.gov (United States)

    Kiaitsi, Elsa; Magan, Naresh

    2018-01-01

    Zearalenone (ZEN) contamination from Fusarium graminearum colonization is particularly important in food and feed wheat, especially during post-harvest storage with legislative limits for both food and feed grain. Indicators of the relative risk from exceeding these limits would be useful. We examined the effect of different water activities (aw; 0.95–0.90) and temperature (10–25 °C) in naturally contaminated and irradiated wheat grain, both inoculated with F. graminearum and stored for 15 days on (a) respiration rate; (b) dry matter losses (DML); (c) ZEN production and (d) relationship between DML and ZEN contamination relative to the EU legislative limits. Gas Chromatography was used to measure the temporal respiration rates and the total accumulated CO2 production. There was an increase in temporal CO2 production rates in wetter and warmer conditions in all treatments, with the highest respiration in the 25 °C × 0.95 aw treatments + F. graminearum inoculation. This was reflected in the total accumulated CO2 in the treatments. The maximum DMLs were in the 0.95 aw/20–25 °C treatments and at 10 °C/0.95 aw. The DMLs were modelled to produce contour maps of the environmental conditions resulting in maximum/minimum losses. Contamination with ZEN/ZEN-related compounds were quantified. Maximum production was at 25 °C/0.95–0.93 aw and 20 °C/0.95 aw. ZEN contamination levels plotted against DMLs for all the treatments showed that at ca. 1.0% DML, the risk was high. This type of data is important in building a database for the development of a post-harvest decision support system for relative risks of different mycotoxins. PMID:29462982

  4. Fusarium graminearum in Stored Wheat: Use of CO2 Production to Quantify Dry Matter Losses and Relate This to Relative Risks of Zearalenone Contamination under Interacting Environmental Conditions

    Directory of Open Access Journals (Sweden)

    Esther Garcia-Cela

    2018-02-01

    Full Text Available Zearalenone (ZEN contamination from Fusarium graminearum colonization is particularly important in food and feed wheat, especially during post-harvest storage with legislative limits for both food and feed grain. Indicators of the relative risk from exceeding these limits would be useful. We examined the effect of different water activities (aw; 0.95–0.90 and temperature (10–25 °C in naturally contaminated and irradiated wheat grain, both inoculated with F. graminearum and stored for 15 days on (a respiration rate; (b dry matter losses (DML; (c ZEN production and (d relationship between DML and ZEN contamination relative to the EU legislative limits. Gas Chromatography was used to measure the temporal respiration rates and the total accumulated CO2 production. There was an increase in temporal CO2 production rates in wetter and warmer conditions in all treatments, with the highest respiration in the 25 °C × 0.95 aw treatments + F. graminearum inoculation. This was reflected in the total accumulated CO2 in the treatments. The maximum DMLs were in the 0.95 aw/20–25 °C treatments and at 10 °C/0.95 aw. The DMLs were modelled to produce contour maps of the environmental conditions resulting in maximum/minimum losses. Contamination with ZEN/ZEN-related compounds were quantified. Maximum production was at 25 °C/0.95–0.93 aw and 20 °C/0.95 aw. ZEN contamination levels plotted against DMLs for all the treatments showed that at ca. <1.0% DML, there was a low risk of ZEN contamination exceeding EU legislative limits, while at >1.0% DML, the risk was high. This type of data is important in building a database for the development of a post-harvest decision support system for relative risks of different mycotoxins.

  5. First Evidence of an Important Organic Matter Trophic Pathway between Temperate Corals and Pelagic Microbial Communities.

    Directory of Open Access Journals (Sweden)

    J A Fonvielle

    Full Text Available Mucus, i.e., particulate and dissolved organic matter (POM, DOM released by corals, acts as an important energy carrier in tropical ecosystems, but little is known on its ecological role in temperate environments. This study assessed POM and DOM production by the temperate coral Cladocora caespitosa under different environmental conditions. The subsequent enzymatic degradation, growth of prokaryotes and virus-like particles (VLPs as well as changes in the structure of the prokaryotic communities were also monitored. C. caespitosa produced an important quantity of mucus, which varied according to the environmental conditions (from 37.8 to 67.75 nmol carbon h-1 cm-2, but remained higher or comparable to productions observed in tropical corals. It has an important nutritional value, as highlighted by the high content in dissolved nitrogen (50% to 90% of the organic matter released. Organic matter was rapidly degraded by prokaryotes' enzymatic activities, and due to its nitrogen content, aminopeptidase activity was 500 fold higher than the α-glucosidase activity. Prokaryotes, as well as VLPs, presented a rapid growth in the mucus, with prokaryote production rates as high as 0.31 μg h-1 L-1. Changes in bacterial and archaeal communities were observed in the ageing mucus and between mucus and the water column, suggesting a clear impact of mucus on microorganism diversity. Overall, our results show that the organic matter released by temperate corals, such as C. caespitosa, which can form reef structures in the Mediterranean Sea, stimulates microbial activity and thereby functions as a significant carbon and nitrogen supplier to the microbial loop.

  6. Optical measurements of atomic oxygen concentration, temperature and nitric oxide production rate in flames

    Science.gov (United States)

    Myhr, Franklin Henry

    An optical method for measuring nitric oxide (NO) production rates in flames was developed and characterized in a series of steady, one-dimensional, atmospheric-pressure laminar flames of 0.700 Hsb2/0.199 Nsb2/0.101 COsb2 or 0.700 CHsb4/0.300 Nsb2 (by moles) with dry air, with equivalence ratios from 0.79 to 1.27. Oxygen atom concentration, (O), was measured by two-photon laser-induced fluorescence (LIF), temperature was measured by ultraviolet Rayleigh scattering, and nitrogen concentration was calculated from supplied reactant flows; together this information was used to calculate the NO production rate through the thermal (Zel'dovich) mechanism. Measurements by two other techniques were compared with results from the above method. In the first comparison, gas sampling was used to measure axial NO concentration profiles, the slopes of which were multiplied by velocity to obtain total NO production rates. In the second comparison, LIF measurements of hydroxyl radical (OH) were used with equilibrium water concentrations and a partial equilibrium assumption to find (O). Nitric oxide production rates from all three methods agreed reasonably well. Photolytic interference was observed during (O) LIF measurements in all of the flames; this is the major difficulty in applying the optical technique. Photolysis of molecular oxygen in lean flames has been well documented before, but the degree of interference observed in the rich flames suggests that some other molecule is also dissociating; the candidates are OH, CO, COsb2 and Hsb2O. An extrapolative technique for removing the effects of photolysis from (O) LIF measurements worked well in all flames where NO production was significant. Using the optical method to measure NO production rates in turbulent flames will involve a tradeoff among spatial resolution, systematic photolysis error, and random shot noise. With the conventional laser system used in this work, a single pulse with a resolution of 700 mum measured NO

  7. Charged mediators in dark matter scattering

    Science.gov (United States)

    Stengel, Patrick

    2017-11-01

    We consider a scenario, within the framework of the MSSM, in which dark matter is bino-like and dark matter-nucleon spin-independent scattering occurs via the exchange of light squarks which exhibit left-right mixing. We show that direct detection experiments such as LUX and SuperCDMS will be sensitive to a wide class of such models through spin-independent scattering. The dominant nuclear physics uncertainty is the quark content of the nucleon, particularly the strangeness content. We also investigate parameter space with nearly degenerate neutralino and squark masses, thus enhancing dark matter annihilation and nucleon scattering event rates.

  8. Restricting access time at pasture and time of grazing allocation for Holstein dairy cows: Ingestive behaviour, dry matter intake and milk production

    NARCIS (Netherlands)

    Mattiauda, D.A.; Tamminga, S.; Gibb, M.J.; Soca, P.; Bentancur, O.; Chilibroste, P.

    2013-01-01

    The objective of this study was to assess the effects of restricting access time to pasture and time of grazing allocation on grazing behaviour, daily dry matter intake (DMI), rumen fermentation, milk production and composition in dairy cows. Twenty-one autumn-calving Holstein cows were assigned to

  9. Evaluation of the production, composition and aluminum and iron complexation of algogenic organic matter

    Czech Academy of Sciences Publication Activity Database

    Pivokonský, Martin; Klouček, Ondřej; Pivokonská, Lenka

    2006-01-01

    Roč. 40, č. 16 (2006), s. 3045-3052 ISSN 0043-1354 R&D Projects: GA AV ČR KJB200600501 Institutional research plan: CEZ:AV0Z20600510 Keywords : affinity chromatography * algogenic organic matter * aluminum and iron coagulants * extracellular organic matter * molecular weight fractionation * intracellular organic matter Subject RIV: BK - Fluid Dynamics Impact factor: 2.459, year: 2006

  10. Effects of coral-derived organic matter on the growth of bacterioplankton and heterotrophic nanoflagellates

    Science.gov (United States)

    Nakajima, Ryota; Tanaka, Yasuaki; Guillemette, Ryan; Kurihara, Haruko

    2017-12-01

    Exudates derived from hermatypic corals were incubated with dark conditions for 96 h to quantify the growth of both bacteria and HNF in response to coral-derived dissolved organic matter (DOM). The addition of coral-derived DOM caused significantly higher growth rates and production of bacteria and HNF compared to those in control seawater without coral exudates. During the incubation, HNF exhibited their peak in abundance 24-48 h after the peak abundance of bacteria. The growth efficiencies of both bacteria and HNF were significantly higher with coral-derived DOM, suggesting higher transfer efficiency from bacteria that is fueled by coral organic matter to HNF. Therefore, trophic transfer of coral-derived DOM from bacteria to HNF can contribute to efficient carbon flow through the microbial food web.

  11. Dark matter searches with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00379232; The ATLAS collaboration

    2017-01-01

    The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as its signature. The ATLAS detector has developed a broad and systematic search program for dark matter production in LHC collisions. The results of these searches on the first 13 TeV data, their interpretation, and the design and possible evolution of the search program will be presented.

  12. Dark Matter searches with the ATLAS Detector

    CERN Document Server

    Cortes-Gonzalez, Arely; The ATLAS collaboration

    2017-01-01

    The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as their signature. The ATLAS detector has developed a broad and systematic search program for dark matter production in LHC collisions. The results of these searches on the first 13 TeV data, their interpretation, and the design and possible evolution of the search program will be presented.

  13. Dark matter searches with the ATLAS detector

    CERN Document Server

    Whalen, Kathleen; The ATLAS collaboration

    2017-01-01

    The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as its signature. The ATLAS detector has developed a broad and systematic search program for dark matter production in LHC collisions. The results of these searches using the first 13 TeV data, their interpretation, and the design and possible evolution of the search program will be presented.

  14. Dark matter at the SHiP experiment

    International Nuclear Information System (INIS)

    Timiryasov, Inar

    2016-01-01

    We study prospects of dark matter searches in the SHiP experiment. SHiP (Search for Hidden Particles) is the recently proposed fixed target experiment which will exploit the high-intensity beam of 400 GeV protons from the CERN SPS. In addition to the hidden sector detector, SHiP will be equipped with the ν_τ detector, which presumably would be sensitive to dark matter particles. We describe appropriate production and detection channels and estimate SHiP’s sensitivity for a scalar dark matter coupled to the Standard model through the vector mediator

  15. Cosmic-ray production rates of neon isotopes in meteorite minerals

    International Nuclear Information System (INIS)

    Bhandari, N.

    1988-01-01

    The rates of production of 21 Ne and 22 Ne in spallation reactions, both due to solar as well as galactic cosmic rays, in some major meteoritic minerals, e.g. olivines, feldspars and pyroxenes, are calculated using their energy spectra and excitation functions. The production profiles of 21 Ne and 22 Ne due to galactic cosmic rays, and the 22 Ne/ 21 Ne ratio depend upon the size of the meteoroid. The 22 Ne/ 21 Ne ratio is very sensitive to the abundance of sodium and consequently its depth profile is distinctly different in feldspars, the ratio increasing with depth rather than decreasing as in pyroxenes and olivines. In the near-surface regions, up to a depth of 2 cm, production due to solar flare protons dominates, giving rise to a steep gradient in isotopic production as well as in the 22 Ne/ 21 Ne ratio. Composite production profiles are given and compared with measurements in some meteorites. (author). 22 refs

  16. Model for GCR-particle fluxes in stony meteorites and production rates of cosmogenic nuclides

    International Nuclear Information System (INIS)

    Reedy, R.C.

    1984-01-01

    A model is presented for the differential fluxes of galactic-cosmic-ray (GCR) particles with energies above 1 MeV inside any spherical stony meteorite as a function of the meteorite's radius and the sample's depth. This model is based on the Reedy-Arnold equations for the energy-dependent fluxes of GCR particles in the moon and is an extension of flux parameters that were derived for several meteorites of various sizes. This flux is used to calculate the production rates of many cosmogenic nuclides as a function of radius and depth. The peak production rates for most nuclides made by the reactions of energetic GCR particles occur near the centers of meteorites with radii of 40 to 70 g cm -2 . Although the model has some limitations, it reproduces well the basic trends for the depth-dependent production of cosmogenic nuclides in stony meteorites of various radii. These production profiles agree fairly well with measurements of cosmogenic nuclides in meteorites. Some of these production profiles are different than those calculated by others. The chemical dependence of the production rates for several nuclides varies with size and depth. 25 references, 8 figures

  17. Development of a portable instrument to measure ozone production rates in the troposphere

    Science.gov (United States)

    Sklaveniti, Sofia; Locoge, Nadine; Stevens, Philip; Kumar, Vinod; Sinha, Vinayak; Dusanter, Sébastien

    2015-04-01

    Ground-level ozone is a key species related to air pollution, causing respiratory problems, damaging crops and forests, and affecting the climate. Our current understanding of the tropospheric ozone-forming chemistry indicates that net ozone production occurs via reactions of peroxy radicals (HO2 + RO2) with NO producing NO2, whose photolysis leads to O3 formation. Production rates of tropospheric ozone, P(O3), depend on concentrations of oxides of nitrogen (NOx = NO + NO2) and Volatile Organic Compounds (V OCs), but also on production rates of ROx radicals (OH + HO2 + RO2). The formation of ozone follows a complex nonlinear chemistry that makes strategies for reducing ozone difficult to implement. In this context, atmospheric chemistry models are used to develop emission regulations, but there are still uncertainties associated with the chemical mechanisms used in these models. Testing the ozone formation chemistry in atmospheric models is needed, in order to ensure the development of effective strategies for ozone reduction. We will present the development of an instrument for direct measurements of ozone production rates (OPR) in ambient air. The OPR instrument is made of three components: (i) two quartz flow tubes to sample ambient air, one exposed to solar radiation and one covered by a UV filter, (ii) a NO2-to-O3 conversion unit, and (iii) an ozone analyzer. The total amount of ozone exiting each flow tube is conserved in the form of Ox = NO2 + O3. Ozone production rates P(O3) are derived from the difference in Ox concentration between the two flow tubes, divided by the exposure time of air inside the flow tubes. We will present studies that were carried out in the laboratory to characterize each part of the instrument and we will discuss the performances of the OPR instrument based on experiments carried out using synthetic air mixtures of known composition (NOx and V OCs). Chemical modeling will also be presented to assess the reliability of ozone

  18. Voice recognition versus transcriptionist: error rated and productivity in MRI reporting

    International Nuclear Information System (INIS)

    Strahan, Rodney H.; Schneider-Kolsky, Michal E.

    2010-01-01

    Full text: Purpose: Despite the frequent introduction of voice recognition (VR) into radiology departments, little evidence still exists about its impact on workflow, error rates and costs. We designed a study to compare typographical errors, turnaround times (TAT) from reported to verified and productivity for VR-generated reports versus transcriptionist-generated reports in MRI. Methods: Fifty MRI reports generated by VR and 50 finalised MRI reports generated by the transcriptionist, of two radiologists, were sampled retrospectively. Two hundred reports were scrutinised for typographical errors and the average TAT from dictated to final approval. To assess productivity, the average MRI reports per hour for one of the radiologists was calculated using data from extra weekend reporting sessions. Results: Forty-two % and 30% of the finalised VR reports for each of the radiologists investigated contained errors. Only 6% and 8% of the transcriptionist-generated reports contained errors. The average TAT for VR was 0 h, and for the transcriptionist reports TAT was 89 and 38.9 h. Productivity was calculated at 8.6 MRI reports per hour using VR and 13.3 MRI reports using the transcriptionist, representing a 55% increase in productivity. Conclusion: Our results demonstrate that VR is not an effective method of generating reports for MRI. Ideally, we would have the report error rate and productivity of a transcriptionist and the TAT of VR.

  19. Neutrino interactions in hot and dense matter

    International Nuclear Information System (INIS)

    Reddy, S.; Prakash, M.; Lattimer, J.M.

    1998-01-01

    We study the charged and neutral current weak interaction rates relevant for the determination of neutrino opacities in dense matter found in supernovae and neutron stars. We establish an efficient formalism for calculating differential cross sections and mean free paths for interacting, asymmetric nuclear matter at arbitrary degeneracy. The formalism is valid for both charged and neutral current reactions. Strong interaction corrections are incorporated through the in-medium single particle energies at the relevant density and temperature. The effects of strong interactions on the weak interaction rates are investigated using both potential and effective field-theoretical models of matter. We investigate the relative importance of charged and neutral currents for different astrophysical situations, and also examine the influence of strangeness-bearing hyperons. Our findings show that the mean free paths are significantly altered by the effects of strong interactions and the multi-component nature of dense matter. The opacities are then discussed in the context of the evolution of the core of a protoneutron star. copyright 1998 The American Physical Society

  20. FRW-type cosmologies with adiabatic matter creation

    International Nuclear Information System (INIS)

    Lima, J.A.; Germano, A.S.; Abramo, L.R.

    1996-01-01

    Some properties of cosmological models with matter creation are investigated in the framework of the Friedmann-Robertson-Walker line element. For adiabatic matter creation, as developed by Prigogine and co-workers, we derive a simple expression relating the particle number density n and energy density ρ which holds regardless of the matter creation rate. The conditions to generate inflation are discussed and by considering the natural phenomenological matter creation rate ψ=3βnH, where β is a pure number of the order of unity and H is the Hubble parameter, a minimally modified hot big-bang model is proposed. The dynamic properties of such models can be deduced from the standard ones simply by replacing the adiabatic index γ of the equation of state by an effective parameter γ * =γ(1-β). The thermodynamic behavior is determined and it is also shown that ages large enough to agree with observations are obtained even given the high values of H suggested by recent measurements. copyright 1996 The American Physical Society

  1. Dark-matter QCD-axion searches.

    Science.gov (United States)

    Rosenberg, Leslie J

    2015-10-06

    In the late 20th century, cosmology became a precision science. Now, at the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There's no known such elementary particle, so the strong presumption is the dark matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10(-(6-3)) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. However, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. This article is a selective overview of the current generation of sensitive axion searches. Not all techniques and experiments

  2. Alkalinity production in intertidal sands intensified by lugworm bioirrigation.

    Science.gov (United States)

    Rao, Alexandra M F; Malkin, Sairah Y; Montserrat, Francesc; Meysman, Filip J R

    2014-07-05

    Porewater profiles and sediment-water fluxes of oxygen, nutrients, pH, calcium, alkalinity, and sulfide were measured in intertidal sandflat sediments from the Oosterschelde mesotidal lagoon (The Netherlands). The influence of bioturbation and bioirrigation by the deep-burrowing polychaete Arenicola marina on the rates and sources of benthic alkalinity generation was examined by comparing measurements in intact and defaunated sediment cores before and after the addition of A. marina in summer and fall 2011. Higher organic matter remineralization rates, shallower O 2 penetration, and greater sediment-water solute fluxes were observed in summer, consistent with higher sediment community metabolic rates at a higher temperature. Lugworm activity stimulated porewater exchange (5.1 × in summer, 1.9 × in fall), organic matter remineralization (6.2 × in summer, 1.9 × in fall), aerobic respiration (2.4 × in summer, 2.1 × in fall), alkalinity release (4.7 × in summer, 4.0 × in fall), nutrient regeneration, and iron cycling. The effects of lugworm activity on net sediment-water fluxes were similar but more pronounced in summer than in fall. Alkalinity release in fall was entirely driven by metabolic carbonate dissolution, while this process explained between 22 and 69% of total alkalinity production in summer, indicating the importance of other processes in this season. By enhancing organic matter remineralization and the reoxidation of reduced metabolites by the sediment microbial community, lugworm activity stimulated the production of dissolved inorganic carbon and metabolic acidity, which in turn enhanced metabolic CaCO 3 dissolution efficiency. In summer, evidence of microbial long distance electron transport (LDET) was observed in defaunated sediment. Thus, alkalinity production by net carbonate dissolution was likely supplemented by anaerobic respiration and LDET in summer.

  3. Dark-matter production through loop-induced processes at the LHC: the s-channel mediator case

    Energy Technology Data Exchange (ETDEWEB)

    Mattelaer, Olivier [Durham University, Institute for Particle Physics Phenomenology (IPPP), Durham (United Kingdom); Vryonidou, Eleni [Universite catholique de Louvain, Centre for Cosmology, Particle Physics and Phenomenology (CP3), Louvain-la-Neuve (Belgium)

    2015-09-15

    We show how studies relevant for mono-X searches at the LHC in simplified models featuring a dark-matter candidate and an s-channel mediator can be performed within the MadGraph5{sub a}MC rate at NLO framework. We focus on gluon-initiated loop-induced processes, mostly relevant to the case where the mediator couples preferentially to third generation quarks and in particular to the top quark. Our implementation allows us to study signatures at hadron colliders involving missing transverse energy plus jets or plus neutral bosons (γ,Z,H), possibly including the effects of extra radiation by multi-parton merging and matching to the parton shower. (orig.)

  4. Dark-matter production through loop-induced processes at the LHC: the s-channel mediator case

    International Nuclear Information System (INIS)

    Mattelaer, Olivier; Vryonidou, Eleni

    2015-01-01

    We show how studies relevant for mono-X searches at the LHC in simplified models featuring a dark-matter candidate and an s-channel mediator can be performed within the MadGraph5 a MC rate at NLO framework. We focus on gluon-initiated loop-induced processes, mostly relevant to the case where the mediator couples preferentially to third generation quarks and in particular to the top quark. Our implementation allows us to study signatures at hadron colliders involving missing transverse energy plus jets or plus neutral bosons (γ,Z,H), possibly including the effects of extra radiation by multi-parton merging and matching to the parton shower. (orig.)

  5. Importance of NDF digestibility of whole crop maize silage for dry matter intake and milk production in dairy cows

    DEFF Research Database (Denmark)

    Krämer, Monika; Lund, Peter; Weisbjerg, Martin Riis

    2016-01-01

    The importance of maize silage as a feed component in cattle rations and for biogas production has substantially increased. Whole crop maize silage is a forage with a high starch concentration, but also the cell wall fraction, commonly analysed as neutral detergent fibre (aNDFom) is a major energy...... source for use in ruminant nutrition. Even though ruminants require forage fibre to maintain rumen function and maximize productivity, excess fibre limits feed intake due to its contribution to physical fill in the rumen. As feed intake is the most important factor for milk production, both a......NDFom concentration and aNDFom digestibility are key determinants of the nutritive value of a diet. Therefore, the importance of maize silage aNDFom digestibility on nutritive value, dry matter (DM) intake (DMI) and milk production was investigated in a literature review across a wide range of studies varying...

  6. DLHA: Dark Matter Les Houches Agreement

    International Nuclear Information System (INIS)

    Balazs, C.; Cerdeno, D.G.; Leane, R.; Kakizaki, M.; Kraml, S.; Savage, C.; Scott, P.; Sekmen, S.

    2012-01-01

    This work presents a set of conventions and numerical structures that aim to provide a universal interface between computer programs calculating dark matter related observables. It specifies input and output parameters for the calculation of observables such as abundance, direct and various indirect detection rates. These parameters range from cosmological to astrophysical to nuclear observables. The present conventions lay the foundations for defining a future Les Houches Dark Matter Accord. (authors)

  7. Determination of pseudo multi-pulse production rate in GM counters by correlation analysis between signal pulses

    International Nuclear Information System (INIS)

    Hashimoto, Kengo; Ueda, Taizou

    1996-01-01

    A technique, based on the correlation analysis of signal pulses in time sequence, is proposed to determine the production rate of the pseudo multi-pulse in Geiger-Mueller (GM) counter. With a multi-channel scaler initiated by a signal pulse, subsequent pulses are recorded in sequence. The production of the multi-pulse increases the counting probability immediately after the initiation. By examining the deviation of the measured probability from the ideal counting probability, the production rate and the average lag time to produce the multi-pulse can be determined. By the use of the present technique, the production rate and the average lag time were obtained for the various GM tubes. These results indicate that the consumption of the quench gas results in a significant increase in the production rate but little variation in the lag time, and that the lag time strongly depends on the tube diameter. (author)

  8. Matter-antimatter and matter-matter interactions at intermediate energies

    International Nuclear Information System (INIS)

    Santos, Antonio Carlos Fontes dos

    2002-01-01

    This article presents some of the recent experimental advances on the study on antimatter-matter and matter-matter interactions, and some of the subtle differences stimulated a great theoretical efforts for explanation of the results experimentally observed

  9. Effect of harvest period on foliage production and dry matter distribution in five cassava cultivars during the second plant cycle

    Directory of Open Access Journals (Sweden)

    Edvaldo Sagrilo

    2006-11-01

    Full Text Available The objective of this work was to study the leaf production pattern and dry matter distribution in cassava during the second plant cycle. The completely randomized experimental design with four replications was used, with five cultivars in the main plots and ten harvest times in the sub-plots. Foliage production was affected by plant age, being higher in hot periods. Leaf blades and petioles dry matter content presented a linear increase due to a progressive decrease in the amount of young leaves and ontogenetic factors. The stems provided, temporarily, carbohydrates to the plant re-growth, delaying the availability and use of storage roots dry matter. The dry matter content in the storage roots was lower during the vegetative and higher during rest period. The storage roots diameter increased considerably when the amount of leaves was higher, indicating the importance of leaf area in the cassava plant production.O experimento foi conduzido de outubro de 1997 a maio de 1999, no Noroeste do Paraná, Brasil, com o objetivo de avaliar o padrão de produção de folhas e distribuição de massa seca em 5 cultivares de mandioca, durante o segundo ciclo vegetativo. Utilizou-se o delineamento experimental em blocos casualizados, com 4 repetições, no esquema de parcelas subdivididas, estando as cultivares nas parcelas e as épocas de colheita nas subparcelas. A produção de folhas foi afetada pela idade das plantas, sendo maior nos períodos de temperatura elevada. Os teores de massa seca nos limbos foliares e pecíolos aumentaram linearmente com a idade das plantas, devido à menor proporção de folhas jovens e a fatores ontogênicos inerentes à planta. As hastes proporcionaram, temporariamente, os assimilados necessários para a reestruturação vegetativa das plantas, protelando a disponibilidade e uso dos carboidratos armazenados nas raízes. O teor de massa seca nas raízes foi menor durante o período de crescimento vegetativo e maior

  10. In-situ production of humic-like fluorescent dissolved organic matter during Cochlodinium polykrikoides blooms

    Science.gov (United States)

    Kwon, Hyeong Kyu; Kim, Guebuem; Lim, Weol Ae; Park, Jong Woo

    2018-04-01

    We investigated phytoplankton pigments, dissolved organic carbon (DOC), and fluorescent dissolved organic matter (FDOM) during the summers of 2013 and 2016 in the coastal area of Tongyeong, Korea, where Cochlodinium polykrikoides blooms often occur. The density of red tides was evaluated using a dinoflagellate pigment, peridinin. The concentrations of peridinin and DOC in the patch areas were 15- and 4-fold higher than those in the non-patch areas. The parallel factor analysis (PARAFAC) model identified one protein-like FDOM (FDOMT) and two humic-like FDOM, classically classified as marine FDOM (FDOMM) and terrestrial FDOM (FDOMC). The concentrations of FDOMT in the patch areas were 5-fold higher than those in the non-patch areas, likely associated with biological production. In general, FDOMM and FDOMC are known to be dependent exclusively on salinity in any surface waters of the coastal ocean. However, in this study, we observed strikingly enhanced FDOMC concentration over that expected from the salinity mixing, whereas FDOMM increases were not clear. These FDOMC concentrations showed a significant positive correlation against peridinin, indicating that the production of FDOMC is associated with the red tide blooms. Our results suggest that FDOMC can be naturally enriched by some phytoplankton species, without FDOMM enrichment. Such naturally produced FDOM may play a critical role in biological production as well as biogeochemical cycle in red tide regions.

  11. Superheavy dark matter

    CERN Document Server

    Riotto, Antonio

    2000-01-01

    It is usually thought that the present mass density of the Universe is dominated by a weakly interacting massive particle (WIMP), a fossil relic of the early Universe. Theoretical ideas and experimental efforts have focused mostly on production and detection of thermal relics, with mass typically in the range a few GeV to a hundred GeV. Here, we will review scenarios for production of nonthermal dark matter whose mass may be in the range 10/sup 12/ to 10/sup 19/ GeV, much larger than the mass of thermal wimpy WIMPS. We will also review recent related results in understanding the production of very heavy fermions through preheating after inflation. (19 refs).

  12. Calculating Production Rate of each Branch of a Multilateral Well Using Multi-Segment Well Model: Field Example

    Directory of Open Access Journals (Sweden)

    Mohammed S. Al-Jawad

    2017-11-01

    Full Text Available Multilateral wells require a sophisticated type of well model to be applied in reservoir simulators to represent them. The model must be able to determine the flow rate of each fluid and the pressure throughout the well. The production rate calculations are very important because they give an indication about some main issues associated with multi-lateral wells such as one branch may produce water or gas before others, no production rate from one branch, and selecting the best location of a new branch for development process easily. This paper states the way to calculate production rate of each branch of a multilateral well-using multi-segment well model. The pressure behaviour of each branch is simulated dependent on knowing its production rate. This model has divided a multi-lateral well into an arbitrary number of segments depending on the required degree of accuracy and run time of the simulator. The model implemented on a field example (multi-lateral well HF-65ML in Halfaya Oil Field/Mishrif formation. The production rate and pressure behaviour of each branch are simulated during the producing interval of the multilateral well. The conclusion is that production rate of the main branch is slightly larger than a lateral branch.

  13. Metabolic differentiation in biofilms as indicated by carbon dioxide production rates.

    Science.gov (United States)

    Bester, Elanna; Kroukamp, Otini; Wolfaardt, Gideon M; Boonzaaier, Leandro; Liss, Steven N

    2010-02-01

    The measurement of carbon dioxide production rates as an indication of metabolic activity was applied to study biofilm development and response of Pseudomonas sp. biofilms to an environmental disturbance in the form of a moving air-liquid interface (i.e., shear). A differential response in biofilm cohesiveness was observed after bubble perturbation, and the biofilm layers were operationally defined as either shear-susceptible or non-shear-susceptible. Confocal laser scanning microscopy and image analysis showed a significant reduction in biofilm thickness and biomass after the removal of the shear-susceptible biofilm layer, as well as notable changes in the roughness coefficient and surface-to-biovolume ratio. These changes were accompanied by a 72% reduction of whole-biofilm CO2 production; however, the non-shear-susceptible region of the biofilm responded rapidly after the removal of the overlying cells and extracellular polymeric substances (EPS) along with the associated changes in nutrient and O2 flux, with CO2 production rates returning to preperturbation levels within 24 h. The adaptable nature and the ability of bacteria to respond to environmental conditions were further demonstrated by the outer shear-susceptible region of the biofilm; the average CO2 production rate of cells from this region increased within 0.25 h from 9.45 +/- 5.40 fmol of CO2 x cell(-1) x h(-1) to 22.6 +/- 7.58 fmol of CO2 x cell(-1) x h(-1) when cells were removed from the biofilm and maintained in suspension without an additional nutrient supply. These results also demonstrate the need for sufficient monitoring of biofilm recovery at the solid substratum if mechanical methods are used for biofouling control.

  14. Changes in soil physical and chemical properties following organic matter removal and compaction: 20-year response of the aspen Lake-States Long Term Soil Productivity installations

    Science.gov (United States)

    Robert A. Slesak; Brian J. Palik; Anthony W. D' Amato; Valerie J. Kurth

    2017-01-01

    Soil functions that control plant resource availability can be altered by management activities such as increased organic matter (OM) removal and soil compaction during forest harvesting. The Long Term Soil Productivity study was established to evaluate how these practices influence soil and site productivity using experimental treatments that span a range of forest...

  15. Quantum Kronecker sum-product low-density parity-check codes with finite rate

    Science.gov (United States)

    Kovalev, Alexey A.; Pryadko, Leonid P.

    2013-07-01

    We introduce an ansatz for quantum codes which gives the hypergraph-product (generalized toric) codes by Tillich and Zémor and generalized bicycle codes by MacKay as limiting cases. The construction allows for both the lower and the upper bounds on the minimum distance; they scale as a square root of the block length. Many thus defined codes have a finite rate and limited-weight stabilizer generators, an analog of classical low-density parity-check (LDPC) codes. Compared to the hypergraph-product codes, hyperbicycle codes generally have a wider range of parameters; in particular, they can have a higher rate while preserving the estimated error threshold.

  16. Neutrons for probing matter

    International Nuclear Information System (INIS)

    Torres, F. Ed.; Mazzucchetti, D.

    2008-01-01

    The authors tell the story of the French Orphee reactor located in Saclay from the decision to build it in the seventies, to its commissioning in 1980, to its upgrading in the nineties and to its today's operating life. As early as its feasibility studies Orphee has been designed as a dual-purpose reactor: scientific research for instance in crystallography and magnetism, and industrial uses like neutron radiography, silicon doping or radionuclide production. This book is divided into 4 parts: 1) the neutron: an explorer of the matter, 2) the Orphee reactor: a neutron source, 3) the adventurers of the matter: Leon Brillouin laboratory's staff, and 4) the perspectives for neutrons

  17. Searches for Dark Matter with in Events with Hadronic Activity

    CERN Document Server

    The ATLAS collaboration

    2017-01-01

    The astrophysical evidence of dark matter provides some of the most compelling clues to the nature of physics beyond the Standard Model. From these clues, ATLAS has developed a broad and systematic search program for dark matter production in LHC collisions. In the framework of Simplified models the searches are divided into invisible and visible channels, corresponding to dark matter searches, with a missing energy signature, and dark matter mediator searches, looking for bump in invariant mass distributions.

  18. Back reaction and the local cosmological expansion rate

    CERN Document Server

    Geshnizjani, G

    2002-01-01

    We calculate the back reaction of cosmological perturbations on a general relativistic variable which measures the local expansion rate of the Universe. Specifically, we consider a cosmological model in which matter is described by a single field. We analyze back reaction both in a matter-dominated Universe and in a phase of scalar field-driven chaotic inflation. In both cases, we find that the leading infrared terms contributing to the back reaction vanish when the local expansion rate is measured at a fixed value of the matter field which is used as a clock, whereas they do not appear to vanish if the expansion rate is evaluated at a fixed value of the background time. We discuss possible implications for more realistic models with a more complicated matter sector.

  19. Water coning. An empirical formula for the critical oil-production rate

    Energy Technology Data Exchange (ETDEWEB)

    Schols, R S

    1972-01-01

    The production of oil through a well that partly penetrates an oil layer underlain by water causes the oil/water interface to deform into a bell shape, usually referred to as water coning. To prevent water- breakthrough as a result of water coning, a knowledge of critical rates is necessary. Experiments are described in which critical rates were measured as a function of the relevant parameters. The experiments were conducted in Hele Shaw models, suitable for radial flow. From the experimental data, an empirical formula for critical rates was derived in dimensionless form. Approximate theoretical solutions for the critical rate appear in literature. A comparison of critical rates calculated according to these solutions with those from the empirical formula shows that these literature data give either too high or too low values for the critical rates.

  20. LEP shines light on dark matter

    International Nuclear Information System (INIS)

    Fox, Patrick J.; Harnik, Roni; Kopp, Joachim; Tsai, Yuhsin

    2011-01-01

    Dark matter pair production at high energy colliders may leave observable signatures in the energy and momentum spectra of the objects recoiling against the dark matter. We use LEP data on monophoton events with large missing energy to constrain the coupling of dark matter to electrons. Within a large class of models, our limits are complementary to and competitive with limits on dark matter annihilation and on WIMP-nucleon scattering from indirect and direct searches. Our limits, however, do not suffer from systematic and astrophysical uncertainties associated with direct and indirect limits. For example, we are able to rule out light (< or approx. 10 GeV) thermal relic dark matter with universal couplings exclusively to charged leptons. In addition, for dark matter mass below about 80 GeV, LEP limits are stronger than Fermi constraints on annihilation into charged leptons in dwarf spheroidal galaxies. Within its kinematic reach, LEP also provides the strongest constraints on the spin-dependent direct detection cross section in models with universal couplings to both quarks and leptons. In such models the strongest limit is also set on spin-independent scattering for dark matter masses below ∼4 GeV. Throughout our discussion, we consider both low energy effective theories of dark matter, as well as several motivated renormalizable scenarios involving light mediators.

  1. Production of aerosols by optical catapulting: Imaging, performance parameters and laser-induced plasma sampling rate

    International Nuclear Information System (INIS)

    Abdelhamid, M.; Fortes, F.J.; Fernández-Bravo, A.; Harith, M.A.; Laserna, J.J.

    2013-01-01

    Optical catapulting (OC) is a sampling and manipulation method that has been extensively studied in applications ranging from single cells in heterogeneous tissue samples to analysis of explosive residues in human fingerprints. Specifically, analysis of the catapulted material by means of laser-induced breakdown spectroscopy (LIBS) offers a promising approach for the inspection of solid particulate matter. In this work, we focus our attention in the experimental parameters to be optimized for a proper aerosol generation while increasing the particle density in the focal region sampled by LIBS. For this purpose we use shadowgraphy visualization as a diagnostic tool. Shadowgraphic images were acquired for studying the evolution and dynamics of solid aerosols produced by OC. Aluminum silicate particles (0.2–8 μm) were ejected from the substrate using a Q-switched Nd:YAG laser at 1064 nm, while time-resolved images recorded the propagation of the generated aerosol. For LIBS analysis and shadowgraphy visualization, a Q-switched Nd:YAG laser at 1064 nm and 532 nm was employed, respectively. Several parameters such as the time delay between pulses and the effect of laser fluence on the aerosol production have been also investigated. After optimization, the particle density in the sampling focal volume increases while improving the aerosol sampling rate till ca. 90%. - Highlights: • Aerosol generation by optical catapulting has been successfully optimized. • We study the evolution and dynamics of solid aerosols produced by OC. • We use shadowgraphy visualization as a diagnostic tool. • Effects of temporal conditions and laser fluence on the elevation of the aerosol cloud have been investigated. • The observed LIBS sampling rate increased from 50% reported before to approximately 90%

  2. 76 FR 2930 - International Product Change-Global Expedited Package Services-Non- Published Rates

    Science.gov (United States)

    2011-01-18

    ... POSTAL SERVICE International Product Change--Global Expedited Package Services-- Non- Published... request with the Postal Regulatory Commission to add Global Expedited Package Services-- Non-Published...--Non-Published Rates, to the Competitive Products List, and Notice of Filing (Under Seal) the Enabling...

  3. Critical Opalescence in Baryonic QCD Matter

    OpenAIRE

    Antoniou, N. G.; Diakonos, F. K.; Kapoyannis, A. S.; Kousouris, K. S.

    2006-01-01

    We show that critical opalescence, a clear signature of second-order phase transition in conventional matter, manifests itself as critical intermittency in QCD matter produced in experiments with nuclei. This behaviour is revealed in transverse momentum spectra as a pattern of power laws in factorial moments, to all orders, associated with baryon production. This phenomenon together with a similar effect in the isoscalar sector of pions (sigma mode) provide us with a set of observables associ...

  4. Norwegian resource policy: The production rate for Norwegian petroleum resources; Norsk ressurspolitikk: Utvinningstempoet for norske petroleumsressurser

    Energy Technology Data Exchange (ETDEWEB)

    Schreiner, P.

    1995-12-31

    Petroleum activities have become a large industry in Norway. This has led to extensive changes in Norwegian economy and society. In the public debate on this activity there has been little discussion of what would be the most profitable production rate. However, it is generally agreed that the great wealth implied by the petroleum resources must be managed in ways suitable to both present and coming generations. This report discusses the production rate based on the following questions: (1) How high can the production rate be before the petroleum activities and the expenditure of the income from them influence the remaining Norwegian economy too strongly? (2) How much of this wealth should reasonably be used by present generations and how much should be left for future generations? There is much to gain from a high tempo and from relocating some of the petroleum wealth. The possibilities of influencing the production rate are mainly connected with the allotments of production licences. The consequences of uncertainties in the petroleum activities for the choice of exploitation tempo are unclear. The environment is not much affected by the production rate. The contractor activity has become Norway`s largest industry. 42 refs., 14 figs., 2 tabs.

  5. Enhanced bit rate-distance product impulse radio ultra-wideband over fiber link

    DEFF Research Database (Denmark)

    Rodes Lopez, Roberto; Jensen, Jesper Bevensee; Caballero Jambrina, Antonio

    2010-01-01

    We report on a record distance and bit rate-wireless impulse radio (IR) ultra-wideband (UWB) link with combined transmission over a 20 km long fiber link. We are able to improve the compliance with the regulated frequency emission mask and achieve bit rate-distance products as high as 16 Gbit/s·m....

  6. Voice recognition versus transcriptionist: error rates and productivity in MRI reporting.

    Science.gov (United States)

    Strahan, Rodney H; Schneider-Kolsky, Michal E

    2010-10-01

    Despite the frequent introduction of voice recognition (VR) into radiology departments, little evidence still exists about its impact on workflow, error rates and costs. We designed a study to compare typographical errors, turnaround times (TAT) from reported to verified and productivity for VR-generated reports versus transcriptionist-generated reports in MRI. Fifty MRI reports generated by VR and 50 finalized MRI reports generated by the transcriptionist, of two radiologists, were sampled retrospectively. Two hundred reports were scrutinised for typographical errors and the average TAT from dictated to final approval. To assess productivity, the average MRI reports per hour for one of the radiologists was calculated using data from extra weekend reporting sessions. Forty-two % and 30% of the finalized VR reports for each of the radiologists investigated contained errors. Only 6% and 8% of the transcriptionist-generated reports contained errors. The average TAT for VR was 0 h, and for the transcriptionist reports TAT was 89 and 38.9 h. Productivity was calculated at 8.6 MRI reports per hour using VR and 13.3 MRI reports using the transcriptionist, representing a 55% increase in productivity. Our results demonstrate that VR is not an effective method of generating reports for MRI. Ideally, we would have the report error rate and productivity of a transcriptionist and the TAT of VR. © 2010 The Authors. Journal of Medical Imaging and Radiation Oncology © 2010 The Royal Australian and New Zealand College of Radiologists.

  7. Tracing the long-term microbial production of recalcitrant fluorescent dissolved organic matter in seawater

    DEFF Research Database (Denmark)

    Jørgensen, Linda; Stedmon, Colin A.; Granskog, Mats A.

    2014-01-01

    The majority of dissolved organic matter (DOM) in the ocean is resistant to microbial degradation, yet its formation remains poorly understood. The fluorescent fraction of DOM can be used to trace the formation of recalcitrant DOM (RDOM). A long-term (> 1 year) experiment revealed 27–52% removal...... of dissolved organic carbon and a nonlinear increase in RDOM fluorescence associated with microbial turnover of semilabile DOM. This fluorescence was also produced using glucose as the only initial carbon source, suggesting that degradation of prokaryote remnants contributes to RDOM. Our results indicate...... that the formation of a fluorescent RDOM component depends on the bioavailability of the substrate: the less labile, the larger the production of fluorescent RDOM relative to organic carbon remineralized. The anticipated increase in microbial carbon demand due to ocean warming can potentially forcemicrobes...

  8. Dark Matter searches at ATLAS

    CERN Document Server

    Cortes-Gonzalez, Arely; The ATLAS collaboration

    2016-01-01

    If Dark Matter interacts weakly with the Standard Model it can be produced at the LHC. It can be identified via initial state radiation (ISR) of the incoming partons, leaving a signature in the detector of the ISR particle (jet, photon, Z or W) recoiling off of the invisible Dark Matter particles, resulting in a large momentum imbalance. Many signatures of large missing transverse momentum recoiling against jets, photons, heavy-flavor quarks, weak gauge bosons or Higgs bosons provide an interesting channel for Dark Matter searches. These LHC searches complement those from (in)direct detection experiments. Results of these searches with the ATLAS experiment, in both effective field theory and simplified models with pair WIMP production are discussed. Both 8TeV and 13TeV pp collision data has been used in these results.

  9. Dark Matter Searches with the ATLAS Detector

    CERN Document Server

    Elliot, Alison; The ATLAS collaboration

    2017-01-01

    The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as their signature.  The ATLAS detector has developed a broad and systematic search program for dark matter production in LHC collisions. The results of these searches on the first 13 TeV data, their interpretation, and the design and possible evolution of the search program will be presented.

  10. Dark Matter Searches with the ATLAS detector

    Directory of Open Access Journals (Sweden)

    Elliot Alison

    2017-01-01

    Full Text Available The presence of a non-baryonic dark matter component in the Universe is inferred from the observation of its gravitational interaction. If dark matter interacts weakly with the Standard Model it would be produced at the LHC, escaping the detector and leaving a large missing transverse momentum as its signature. The ATLAS detector has developed a broad and systematic search program for dark matter production in LHC collisions. The results of these searches on the first 13 TeV data, their interpretation, and the design and possible evolution of the search program will be presented.

  11. Estimation of build up of dose rate on U3O8 product drum

    International Nuclear Information System (INIS)

    Pandey, J.P.N.; Shinde, A.M.; Deshpande, M.D.

    2008-01-01

    In fuel reprocessing plant, plutonium oxide and uranium oxide (U 3 O 8 ) are products. Approximately 180 kg U 3 O 8 is filled in SS drum and sealed firmly before storage. In PHWR natural uranium (UO 2 ) is used as fuel. In natural uranium, thorium-232 is present as an impurity at few tens of ppm level. During irradiation in power reactors, due to nuclear reaction formation of 232 U from 232 Th takes place. Natural decay of 232 U leads to the formation of 208 Tl. As time passes, there is buildup of 208 Tl and hence increase in dose rate on the drum containing U 3 O 8 . It is essential to estimate the buildup of dose rate considering the external radiological hazards involved during U 3 O 8 drum handling, transportation and fuel fabrication. This paper describes the calculation of dose rate on drum in future years using MCNP code. For dose rate calculation decay of fission product activity which remains as contamination in product and build up of '2 08 Tl from 232 U is considered. Some measured values of dose rate on U 3 O 8 drum are given for the comparisons with estimated dose rate based on MCNP code. (author)

  12. Particle production in hot and dense nuclear matter

    International Nuclear Information System (INIS)

    Eklund, A.

    1992-08-01

    The charged particle production in heavy ion reactions at 200 A GeV has been studied for projectiles of 16 O and 32 S on targets of Al, Cu, Ag and Au. Up to 700 charged particles are measured in the pseudorapidity region -1.7 32 S+Au. The measured particle density is used to estimate the energy density attained in central collisions and gives a values of ≅2 GeV/fm 3 . This is close to the energy density predicted for the phase transition from hadronic matter to a quark-gluon plasma. To measure the large number of charged particle produced, finely granulated detector systems are employed. Streamer tube detectors with pad readout and large area, multi-step avalanche chambers with optical readout have been developed for the measurements. The widths of the pseudorapidity distributions of charged particles increase with decreasing centrality of the collision as well as with increasing mass of the target nucleus. This behaviour is assumed to be due to the target fragmentation. The Monte-Carlo model for nucleus-nucleus collisions, VENUS 3.11, which includes rescattering, is in reasonable agreement with the data. The yield of charged particles for central collisions of the heavy targets with 33 S is found to be proportional to the target mass, A, at target rapidity. At midrapidity it is approximately proportional to A 0.3 . At midrapidity the charged particle measurements are supplemented by measurements of the transverse energy. The dimensionless, normalized variances of the multiplicity and transverse energy distributions are, to a large extent, governed by the collision geometry. The change in the normalized variance when studying the charged particle distribution in a narrow angular region is explained as being of statistical nature. (au)

  13. Weak interactions in hot nucleon matter

    International Nuclear Information System (INIS)

    Cowell, S.; Pandharipande, V.R.

    2006-01-01

    The reaction rates for electron capture, neutrino absorption, and neutrino scattering in hot asymmetric nuclear matter are calculated with two-body effective interactions and one-body effective weak operators obtained from realistic models of nuclear forces by use of correlated basis theory. The infinite system is modeled in a box with periodic boundary conditions, and the one-quasiparticle quasi-hole response functions are calculated with a large microcanonical sample and the Tamm-Dancoff approximation. Results for matter at a temperature of 10 MeV, proton fraction 0.4, and densities ρ=(1/2),1,(3/2)ρ 0 , where ρ 0 is the equilibrium density of symmetric nuclear matter, are presented to illustrate the method. In general, the strength of the response is shifted to higher-energy transfers when compared with that of a noninteracting Fermi gas. The shift in the response and the weakness of effective operators as compared with the bare operators significantly reduce the cross sections for electron capture and neutrino scattering by factors of ∼2.5-3.5. In contrast, the symmetry energy enhances the neutrino absorption reaction rate relative to the Fermi gas. However, this reaction rate is still quite small because of Pauli blocking

  14. Challenges in QCD matter physics. The scientific programme of the Compressed Baryonic Matter experiment at FAIR

    International Nuclear Information System (INIS)

    Ablyazimov, T.; Adak, R.P.

    2017-01-01

    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (√(s_N_N) = 2.7-4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (μ_B > 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter. (orig.)

  15. Challenges in QCD matter physics. The scientific programme of the Compressed Baryonic Matter experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Ablyazimov, T. [Joint Institute for Nuclear Research (JINR-LIT), Dubna (Russian Federation). Lab. of Information Technologies; Abuhoza, A. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt (Germany); Adak, R.P. [Bose Institute, Kolkata (India). Dept. of Physics; and others

    2017-03-15

    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (√(s{sub NN}) = 2.7-4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (μ{sub B} > 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter. (orig.)

  16. Challenges in QCD matter physics -The scientific programme of the Compressed Baryonic Matter experiment at FAIR

    Science.gov (United States)

    Ablyazimov, T.; Abuhoza, A.; Adak, R. P.; Adamczyk, M.; Agarwal, K.; Aggarwal, M. M.; Ahammed, Z.; Ahmad, F.; Ahmad, N.; Ahmad, S.; Akindinov, A.; Akishin, P.; Akishina, E.; Akishina, T.; Akishina, V.; Akram, A.; Al-Turany, M.; Alekseev, I.; Alexandrov, E.; Alexandrov, I.; Amar-Youcef, S.; Anđelić, M.; Andreeva, O.; Andrei, C.; Andronic, A.; Anisimov, Yu.; Appelshäuser, H.; Argintaru, D.; Atkin, E.; Avdeev, S.; Averbeck, R.; Azmi, M. D.; Baban, V.; Bach, M.; Badura, E.; Bähr, S.; Balog, T.; Balzer, M.; Bao, E.; Baranova, N.; Barczyk, T.; Bartoş, D.; Bashir, S.; Baszczyk, M.; Batenkov, O.; Baublis, V.; Baznat, M.; Becker, J.; Becker, K.-H.; Belogurov, S.; Belyakov, D.; Bendarouach, J.; Berceanu, I.; Bercuci, A.; Berdnikov, A.; Berdnikov, Y.; Berendes, R.; Berezin, G.; Bergmann, C.; Bertini, D.; Bertini, O.; Beşliu, C.; Bezshyyko, O.; Bhaduri, P. P.; Bhasin, A.; Bhati, A. K.; Bhattacharjee, B.; Bhattacharyya, A.; Bhattacharyya, T. K.; Biswas, S.; Blank, T.; Blau, D.; Blinov, V.; Blume, C.; Bocharov, Yu.; Book, J.; Breitner, T.; Brüning, U.; Brzychczyk, J.; Bubak, A.; Büsching, H.; Bus, T.; Butuzov, V.; Bychkov, A.; Byszuk, A.; Cai, Xu; Cãlin, M.; Cao, Ping; Caragheorgheopol, G.; Carević, I.; Cătănescu, V.; Chakrabarti, A.; Chattopadhyay, S.; Chaus, A.; Chen, Hongfang; Chen, LuYao; Cheng, Jianping; Chepurnov, V.; Cherif, H.; Chernogorov, A.; Ciobanu, M. I.; Claus, G.; Constantin, F.; Csanád, M.; D'Ascenzo, N.; Das, Supriya; Das, Susovan; de Cuveland, J.; Debnath, B.; Dementiev, D.; Deng, Wendi; Deng, Zhi; Deppe, H.; Deppner, I.; Derenovskaya, O.; Deveaux, C. A.; Deveaux, M.; Dey, K.; Dey, M.; Dillenseger, P.; Dobyrn, V.; Doering, D.; Dong, Sheng; Dorokhov, A.; Dreschmann, M.; Drozd, A.; Dubey, A. K.; Dubnichka, S.; Dubnichkova, Z.; Dürr, M.; Dutka, L.; Dželalija, M.; Elsha, V. V.; Emschermann, D.; Engel, H.; Eremin, V.; Eşanu, T.; Eschke, J.; Eschweiler, D.; Fan, Huanhuan; Fan, Xingming; Farooq, M.; Fateev, O.; Feng, Shengqin; Figuli, S. P. D.; Filozova, I.; Finogeev, D.; Fischer, P.; Flemming, H.; Förtsch, J.; Frankenfeld, U.; Friese, V.; Friske, E.; Fröhlich, I.; Frühauf, J.; Gajda, J.; Galatyuk, T.; Gangopadhyay, G.; García Chávez, C.; Gebelein, J.; Ghosh, P.; Ghosh, S. K.; Gläßel, S.; Goffe, M.; Golinka-Bezshyyko, L.; Golovatyuk, V.; Golovnya, S.; Golovtsov, V.; Golubeva, M.; Golubkov, D.; Gómez Ramírez, A.; Gorbunov, S.; Gorokhov, S.; Gottschalk, D.; Gryboś, P.; Grzeszczuk, A.; Guber, F.; Gudima, K.; Gumiński, M.; Gupta, A.; Gusakov, Yu.; Han, Dong; Hartmann, H.; He, Shue; Hehner, J.; Heine, N.; Herghelegiu, A.; Herrmann, N.; Heß, B.; Heuser, J. M.; Himmi, A.; Höhne, C.; Holzmann, R.; Hu, Dongdong; Huang, Guangming; Huang, Xinjie; Hutter, D.; Ierusalimov, A.; Ilgenfritz, E.-M.; Irfan, M.; Ivanischev, D.; Ivanov, M.; Ivanov, P.; Ivanov, Valery; Ivanov, Victor; Ivanov, Vladimir; Ivashkin, A.; Jaaskelainen, K.; Jahan, H.; Jain, V.; Jakovlev, V.; Janson, T.; Jiang, Di; Jipa, A.; Kadenko, I.; Kähler, P.; Kämpfer, B.; Kalinin, V.; Kallunkathariyil, J.; Kampert, K.-H.; Kaptur, E.; Karabowicz, R.; Karavichev, O.; Karavicheva, T.; Karmanov, D.; Karnaukhov, V.; Karpechev, E.; Kasiński, K.; Kasprowicz, G.; Kaur, M.; Kazantsev, A.; Kebschull, U.; Kekelidze, G.; Khan, M. M.; Khan, S. A.; Khanzadeev, A.; Khasanov, F.; Khvorostukhin, A.; Kirakosyan, V.; Kirejczyk, M.; Kiryakov, A.; Kiš, M.; Kisel, I.; Kisel, P.; Kiselev, S.; Kiss, T.; Klaus, P.; Kłeczek, R.; Klein-Bösing, Ch.; Kleipa, V.; Klochkov, V.; Kmon, P.; Koch, K.; Kochenda, L.; Koczoń, P.; Koenig, W.; Kohn, M.; Kolb, B. W.; Kolosova, A.; Komkov, B.; Korolev, M.; Korolko, I.; Kotte, R.; Kovalchuk, A.; Kowalski, S.; Koziel, M.; Kozlov, G.; Kozlov, V.; Kramarenko, V.; Kravtsov, P.; Krebs, E.; Kreidl, C.; Kres, I.; Kresan, D.; Kretschmar, G.; Krieger, M.; Kryanev, A. V.; Kryshen, E.; Kuc, M.; Kucewicz, W.; Kucher, V.; Kudin, L.; Kugler, A.; Kumar, Ajit; Kumar, Ashwini; Kumar, L.; Kunkel, J.; Kurepin, A.; Kurepin, N.; Kurilkin, A.; Kurilkin, P.; Kushpil, V.; Kuznetsov, S.; Kyva, V.; Ladygin, V.; Lara, C.; Larionov, P.; Laso García, A.; Lavrik, E.; Lazanu, I.; Lebedev, A.; Lebedev, S.; Lebedeva, E.; Lehnert, J.; Lehrbach, J.; Leifels, Y.; Lemke, F.; Li, Cheng; Li, Qiyan; Li, Xin; Li, Yuanjing; Lindenstruth, V.; Linnik, B.; Liu, Feng; Lobanov, I.; Lobanova, E.; Löchner, S.; Loizeau, P.-A.; Lone, S. A.; Lucio Martínez, J. A.; Luo, Xiaofeng; Lymanets, A.; Lyu, Pengfei; Maevskaya, A.; Mahajan, S.; Mahapatra, D. P.; Mahmoud, T.; Maj, P.; Majka, Z.; Malakhov, A.; Malankin, E.; Malkevich, D.; Malyatina, O.; Malygina, H.; Mandal, M. M.; Mandal, S.; Manko, V.; Manz, S.; Marin Garcia, A. M.; Markert, J.; Masciocchi, S.; Matulewicz, T.; Meder, L.; Merkin, M.; Mialkovski, V.; Michel, J.; Miftakhov, N.; Mik, L.; Mikhailov, K.; Mikhaylov, V.; Milanović, B.; Militsija, V.; Miskowiec, D.; Momot, I.; Morhardt, T.; Morozov, S.; Müller, W. F. J.; Müntz, C.; Mukherjee, S.; Muñoz Castillo, C. E.; Murin, Yu.; Najman, R.; Nandi, C.; Nandy, E.; Naumann, L.; Nayak, T.; Nedosekin, A.; Negi, V. S.; Niebur, W.; Nikulin, V.; Normanov, D.; Oancea, A.; Oh, Kunsu; Onishchuk, Yu.; Ososkov, G.; Otfinowski, P.; Ovcharenko, E.; Pal, S.; Panasenko, I.; Panda, N. R.; Parzhitskiy, S.; Patel, V.; Pauly, C.; Penschuck, M.; Peshekhonov, D.; Peshekhonov, V.; Petráček, V.; Petri, M.; Petriş, M.; Petrovici, A.; Petrovici, M.; Petrovskiy, A.; Petukhov, O.; Pfeifer, D.; Piasecki, K.; Pieper, J.; Pietraszko, J.; Płaneta, R.; Plotnikov, V.; Plujko, V.; Pluta, J.; Pop, A.; Pospisil, V.; Poźniak, K.; Prakash, A.; Prasad, S. K.; Prokudin, M.; Pshenichnov, I.; Pugach, M.; Pugatch, V.; Querchfeld, S.; Rabtsun, S.; Radulescu, L.; Raha, S.; Rami, F.; Raniwala, R.; Raniwala, S.; Raportirenko, A.; Rautenberg, J.; Rauza, J.; Ray, R.; Razin, S.; Reichelt, P.; Reinecke, S.; Reinefeld, A.; Reshetin, A.; Ristea, C.; Ristea, O.; Rodriguez Rodriguez, A.; Roether, F.; Romaniuk, R.; Rost, A.; Rostchin, E.; Rostovtseva, I.; Roy, Amitava; Roy, Ankhi; Rożynek, J.; Ryabov, Yu.; Sadovsky, A.; Sahoo, R.; Sahu, P. K.; Sahu, S. K.; Saini, J.; Samanta, S.; Sambyal, S. S.; Samsonov, V.; Sánchez Rosado, J.; Sander, O.; Sarangi, S.; Satława, T.; Sau, S.; Saveliev, V.; Schatral, S.; Schiaua, C.; Schintke, F.; Schmidt, C. J.; Schmidt, H. R.; Schmidt, K.; Scholten, J.; Schweda, K.; Seck, F.; Seddiki, S.; Selyuzhenkov, I.; Semennikov, A.; Senger, A.; Senger, P.; Shabanov, A.; Shabunov, A.; Shao, Ming; Sheremetiev, A. D.; Shi, Shusu; Shumeiko, N.; Shumikhin, V.; Sibiryak, I.; Sikora, B.; Simakov, A.; Simon, C.; Simons, C.; Singaraju, R. N.; Singh, A. K.; Singh, B. K.; Singh, C. P.; Singhal, V.; Singla, M.; Sitzmann, P.; Siwek-Wilczyńska, K.; Škoda, L.; Skwira-Chalot, I.; Som, I.; Song, Guofeng; Song, Jihye; Sosin, Z.; Soyk, D.; Staszel, P.; Strikhanov, M.; Strohauer, S.; Stroth, J.; Sturm, C.; Sultanov, R.; Sun, Yongjie; Svirida, D.; Svoboda, O.; Szabó, A.; Szczygieł, R.; Talukdar, R.; Tang, Zebo; Tanha, M.; Tarasiuk, J.; Tarassenkova, O.; Târzilă, M.-G.; Teklishyn, M.; Tischler, T.; Tlustý, P.; Tölyhi, T.; Toia, A.; Topil'skaya, N.; Träger, M.; Tripathy, S.; Tsakov, I.; Tsyupa, Yu.; Turowiecki, A.; Tuturas, N. G.; Uhlig, F.; Usenko, E.; Valin, I.; Varga, D.; Vassiliev, I.; Vasylyev, O.; Verbitskaya, E.; Verhoeven, W.; Veshikov, A.; Visinka, R.; Viyogi, Y. P.; Volkov, S.; Volochniuk, A.; Vorobiev, A.; Voronin, Aleksey; Voronin, Alexander; Vovchenko, V.; Vznuzdaev, M.; Wang, Dong; Wang, Xi-Wei; Wang, Yaping; Wang, Yi; Weber, M.; Wendisch, C.; Wessels, J. P.; Wiebusch, M.; Wiechula, J.; Wielanek, D.; Wieloch, A.; Wilms, A.; Winckler, N.; Winter, M.; Wiśniewski, K.; Wolf, Gy.; Won, Sanguk; Wu, Ke-Jun; Wüstenfeld, J.; Xiang, Changzhou; Xu, Nu; Yang, Junfeng; Yang, Rongxing; Yin, Zhongbao; Yoo, In-Kwon; Yuldashev, B.; Yushmanov, I.; Zabołotny, W.; Zaitsev, Yu.; Zamiatin, N. I.; Zanevsky, Yu.; Zhalov, M.; Zhang, Yifei; Zhang, Yu; Zhao, Lei; Zheng, Jiajun; Zheng, Sheng; Zhou, Daicui; Zhou, Jing; Zhu, Xianglei; Zinchenko, A.; Zipper, W.; Żoładź, M.; Zrelov, P.; Zryuev, V.; Zumbruch, P.; Zyzak, M.

    2017-03-01

    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (√{s_{NN}}= 2.7-4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials ( μ_B > 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter.

  17. The Production Rate and Employment of Ph.D. Astronomers

    Science.gov (United States)

    Metcalfe, Travis S.

    2008-02-01

    In an effort to encourage self-regulation of the astronomy job market, I examine the supply of, and demand for, astronomers over time. On the supply side, I document the production rate of Ph.D. astronomers from 1970 to 2006 using the UMI Dissertation Abstracts database, along with data from other independent sources. I compare the long-term trends in Ph.D. production with federal astronomy research funding over the same time period, and I demonstrate that additional funding is correlated with higher subsequent Ph.D. production. On the demand side, I monitor the changing patterns of employment using statistics about the number and types of jobs advertised in the AAS Job Register from 1984 to 2006. Finally, I assess the sustainability of the job market by normalizing this demand by the annual Ph.D. production. The most recent data suggest that there are now annual advertisements for about one postdoctoral job, half a faculty job, and half a research/support position for every new domestic Ph.D. recipient in astronomy and astrophysics. The average new astronomer might expect to hold up to 3 jobs before finding a steady position.

  18. Success rates for product development strategies in new drug development.

    Science.gov (United States)

    Dahlin, E; Nelson, G M; Haynes, M; Sargeant, F

    2016-04-01

    While research has examined the likelihood that drugs progress across phases of clinical trials, no research to date has examined the types of product development strategies that are the most likely to be successful in clinical trials. This research seeks to identify the strategies that are most likely to reach the market-those generated using a novel product development strategy or strategies that combine a company's expertise with both drugs and indications, which we call combined experience strategies. We evaluate the success of product development strategies in the drug development process for a sample of 2562 clinical trials completed by 406 US pharmaceutical companies. To identify product development strategies, we coded each clinical trial according to whether it consisted of an indication or a drug that was new to the firm. Accordingly, a clinical trial that consists of both an indication and a drug that were both new to the firm represents a novel product development strategy; indication experience is a product development strategy that consists of an indication that a firm had tested previously in a clinical trial, but with a drug that was new to the firm; drug experience is a product development strategy that consists of a drug that the firm had prior experience testing in clinical trials, but with an indication that was new to the firm; combined experience consists of both a drug and an indication that the firm had experience testing in clinical trials. Success rates for product development strategies across clinical phases were calculated for the clinical trials in our sample. Combined experience strategies had the highest success rate. More than three and a half percent (0·036) of the trials that combined experience with drugs and indications eventually reached the market. The next most successful strategy is drug experience (0·025) with novel strategies trailing closely (0·024). Indication experience strategies are the least successful (0·008

  19. 29 CFR 1610.20 - Deletion of exempted matters.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false Deletion of exempted matters. 1610.20 Section 1610.20 Labor... Production or Disclosure Under 5 U.S.C. 552 § 1610.20 Deletion of exempted matters. Where requested records... the remainder of the records, they shall be disclosed by the Commission with deletions. To each such...

  20. Effect of K-N-humates on dry matter production and nutrient use efficiency of maize in Sarawak, Malaysia.

    Science.gov (United States)

    Petrus, Auldry Chaddy; Ahmed, Osumanu Haruna; Muhamad, Ab Majid Nik; Nasir, Hassan Mohammad; Jiwan, Make

    2010-07-06

    Agricultural waste, such as sago waste (SW), is one of the sources of pollution to streams and rivers in Sarawak, particularly those situated near sago processing plants. In addition, unbalanced and excessive use of chemical fertilizers can cause soil and water pollution. Humic substances can be used as organic fertilizers, which reduce pollution. The objectives of this study were to produce K- and ammonium-based organic fertilizer from composted SW and to determine the efficiency of the organic-based fertilizer produced. Humic substances were isolated using standard procedures. Liquid fertilizers were formulated except for T2 (NPK fertilizer), which was in solid form. There were six treatments with three replications. Organic fertilizers were applied to soil in pots on the 10th day after sowing (DAS), but on the 28th DAS, only plants of T2 were fertilized. The plant samples were harvested on the 57th DAS during the tassel stage. The dry matter of plant parts (leaves, stems, and roots) were determined and analyzed for N, P, and K using standard procedures. Soil of every treatment was also analyzed for exchangeable K, Ca, Mg, and Na, organic matter, organic carbon, available P, pH, total N, P, nitrate and ammonium contents using standard procedures. Treatments with humin (T5 and T6) showed remarkable results on dry matter production; N, P, and K contents; their uptake; as well as their use efficiency by maize. The inclusion of humin might have loosened the soil and increased the soil porosity, hence the better growth of the plants. Humin plus inorganic fertilizer provided additional nutrients for the plants. The addition of inorganic fertilizer into compost is a combination of quick and slow release sources, which supplies N throughout the crop growth period. Common fertilization by surface application of T2 without any additives (acidic and high CEC materials) causes N and K to be easily lost. High Ca in the soil may have reacted with phosphate from fertilizer to

  1. Effect of K-N-Humates on Dry Matter Production and Nutrient Use Efficiency of Maize in Sarawak, Malaysia

    Directory of Open Access Journals (Sweden)

    Auldry Chaddy Petrus

    2010-01-01

    Full Text Available Agricultural waste, such as sago waste (SW, is one of the sources of pollution to streams and rivers in Sarawak, particularly those situated near sago processing plants. In addition, unbalanced and excessive use of chemical fertilizers can cause soil and water pollution. Humic substances can be used as organic fertilizers, which reduce pollution. The objectives of this study were to produce K- and ammonium-based organic fertilizer from composted SW and to determine the efficiency of the organic-based fertilizer produced. Humic substances were isolated using standard procedures. Liquid fertilizers were formulated except for T2 (NPK fertilizer, which was in solid form. There were six treatments with three replications. Organic fertilizers were applied to soil in pots on the 10th day after sowing (DAS, but on the 28th DAS, only plants of T2 were fertilized. The plant samples were harvested on the 57th DAS during the tassel stage. The dry matter of plant parts (leaves, stems, and roots were determined and analyzed for N, P, and K using standard procedures. Soil of every treatment was also analyzed for exchangeable K, Ca, Mg, and Na, organic matter, organic carbon, available P, pH, total N, P, nitrate and ammonium contents using standard procedures. Treatments with humin (T5 and T6 showed remarkable results on dry matter production; N, P, and K contents; their uptake; as well as their use efficiency by maize. The inclusion of humin might have loosened the soil and increased the soil porosity, hence the better growth of the plants. Humin plus inorganic fertilizer provided additional nutrients for the plants. The addition of inorganic fertilizer into compost is a combination of quick and slow release sources, which supplies N throughout the crop growth period. Common fertilization by surface application of T2 without any additives (acidic and high CEC materials causes N and K to be easily lost. High Ca in the soil may have reacted with phosphate from

  2. Production of extra quarks decaying to dark matter beyond the narrow width approximation at the LHC

    Science.gov (United States)

    Moretti, Stefano; O'Brien, Dermot; Panizzi, Luca; Prager, Hugo

    2017-08-01

    This paper explores the effects of finite width in processes of pair production of an extra heavy quark with charge 2 /3 (top partner) and its subsequent decay into a bosonic dark matter (DM) candidate—either scalar or vector—and SM up-type quarks at the Large Hadron Collider (LHC). This dynamics has been ignored so far in standard experimental searches of heavy quarks decaying to DM and we assess herein the regions of validity of current approaches, based on the assumption that the extra quarks have a narrow width. Further, we discuss the configurations of masses, widths and couplings where the latter breaks down.

  3. Disinfection by-product formation during chlor(am)ination of algal organic matters (AOM) extracted from Microcystis aeruginosa: effect of growth phases, AOM and bromide concentration.

    Science.gov (United States)

    Chen, Juxiang; Gao, Naiyun; Li, Lei; Zhu, Mingqiu; Yang, Jing; Lu, Xian; Zhang, Yansen

    2017-03-01

    Algae organic matter (AOM), including extracellular organic matter (EOM) and intracellular organic matter (IOM), has caused a series of problems to the water quality, among which formation of disinfection by-products (DBPs) during subsequent chlor(am)ination process was especially serious and concerned. This study characterized physicochemical properties of the EOM and IOM solution extracted from different growth phases of Microcystis aeruginosa and investigated the corresponding formation potential of DBPs during chlor(am)ination process. Besides, the effects of initial concentration of xEOM, IOM, and Br - on the yields of disinfection by-product formation potential were studied. The results indicated that the specific UV absorbance (SUVA 254 ) values of IOM and EOM (1.09 and 2.66 L/mg m) were considerably lower than that of natural organic matter (NOM) (4.79 L/mg m). Fluorescence dates showed the soluble microbial by-product was dominant in both EOM and IOM, and the tryptophan was the main component of AOM. From the excitation-emission matrix figure of EOM and IOM, we found that the content of the high molecular weight protein substance in IOM was higher than EOM. During chlorination of EOM and IOM, the yields of four kinds of DBPs followed the order trichloroethene (TCM) > 1,1-DCP > dichloride acetonitrile (DCAN) > trichloronitromethane (TCNM), while the order was TCM > DCAN > TCNM > 1,1-DCP during chloramination process. The bromine substitution factor (BSF) value increased with the increasing of the concentration of Br - . When the concentration of Br - was 500 μg/L, the BSF values of chlorination EOM and IOM were 51.1 and 68.4%, respectively. As the concentration of Br - increased, the formation of Cl-DBPs was inhibited and the formation of Br-DBPs was promoted. Graphical abstract ᅟ.

  4. Expressed microRNA associated with high rate of egg production in chicken ovarian follicles.

    Science.gov (United States)

    Wu, N; Gaur, U; Zhu, Q; Chen, B; Xu, Z; Zhao, X; Yang, M; Li, D

    2017-04-01

    MicroRNA (miRNA) is a highly conserved class of small noncoding RNA about 19-24 nucleotides in length that function in a specific manner to post-transcriptionally regulate gene expression in organisms. Tissue miRNA expression studies have discovered a myriad of functions for miRNAs in various aspects, but a role for miRNAs in chicken ovarian tissue at 300 days of age has not hitherto been reported. In this study, we performed the first miRNA analysis of ovarian tissues in chickens with low and high rates of egg production using high-throughput sequencing. By comparing low rate of egg production chickens with high rate of egg production chickens, 17 significantly differentially expressed miRNAs were found (P chickens with high rates of egg production, suggesting that these miRNAs have an important role in ovary development and reproductive management of chicken. Furthermore, we uncovered that a significantly up-regulated miRNA-gga-miR-200a-3p-is ubiquitous in reproduction-regulation-related pathways. This miRNA may play a special central role in the reproductive management of chicken, and needs to be further studied for confirmation. © 2016 Stichting International Foundation for Animal Genetics.

  5. Logging production rates in young-growth, mixed-conifer stands in north central California

    Science.gov (United States)

    Philip M. McDonald

    1972-01-01

    To quantify production rates for small trees, this study examined the components of log-making and tractor yarding at the Challenge Experimental Forest, Yuba County, California. Rates were calculated over a range of 12 to 40 inches d.b.h. The rate for incense-cedar was lowest; for ponderosa pine it was intermediate; and for Douglas-fir, white fir, and sugar pine...

  6. Feature level review table generation for E-Commerce websites to produce qualitative rating of the products

    Directory of Open Access Journals (Sweden)

    D.R. Kumar Raja

    2017-12-01

    Full Text Available It is widely acknowledged today that E-Commerce business is growing rapidly. This is happened only because of people are completely depending on the ratings and reviews given by the customers who are already purchased and using the products. Online surveys, customer reviews on shopping sites are the key sources to understand customer requirements and feedback to help upgrade the product quality and achieve greater outcomes. Now the challenge is that whether those reviews came from product level or feature level will be the million dollar question. To overcome this problem we are proposing a new algorithm to give feature level rating for the product which is called Feature Level Review Rating Analysis (FLRRA algorithm.

  7. An integrated supply chain model for the perishable items with fuzzy production rate and fuzzy demand rate

    Directory of Open Access Journals (Sweden)

    Singh Chaman

    2011-01-01

    Full Text Available In the changing market scenario, supply chain management is getting phenomenal importance amongst researchers. Studies on supply chain management have emphasized the importance of a long-term strategic relationship between the manufacturer, distributor and retailer. In the present paper, a model has been developed by assuming that the demand rate and production rate as triangular fuzzy numbers and items deteriorate at a constant rate. The expressions for the average inventory cost are obtained both in crisp and fuzzy sense. The fuzzy model is defuzzified using the fuzzy extension principle, and its optimization with respect to the decision variable is also carried out. Finally, an example is given to illustrate the model and sensitivity analysis is performed to study the effect of parameters.

  8. Role of electroweak radiation in predictions for dark matter indirect detection

    Energy Technology Data Exchange (ETDEWEB)

    Ali Cavasonza, Leila; Pellen, Mathieu; Kraemer, Michael [RWTH Aachen, Aachen (Germany)

    2015-07-01

    A very exciting challenge in particle and astroparticle physics is the exploration of the nature of dark matter. The evidences of the existence of dark matter are also the strongest phenomenological indications for physics beyond the Standard Model. A huge experimental effort is currently made at colliders and via astrophysical experiments to shed light on the nature of dark matter: dark matter may be produced at colliders or detected through direct and indirect detection experiments. The interplay and complementarity between these different approaches offers extraordinary opportunities to improve our understanding of the nature of dark matter or to set constraints on dark matter models. In indirect detection one searches for dark matter annihilation products, that produce secondary antimatter particles like positrons and antiprotons. Such antimatter particles propagate through the Galaxy and can be detected at Earth by astrophysical experiments. Particularly interesting is the importance of electroweak corrections to the predictions for the expected fluxes at Earth. The inclusion of EW radiation from the primary dark matter annihilation products can significantly affect the spectra of the secondary SM particles. The EW radiation can be described using fragmentation functions, as done for instance in QCD. We study the quality of this approximation in a simplified SUSY model and in a UED model.

  9. The production rate of cosmogenic deuterium at the Moon's surface

    Science.gov (United States)

    Füri, Evelyn; Deloule, Etienne; Trappitsch, Reto

    2017-09-01

    The hydrogen (D/H) isotope ratio is a key tracer for the source of planetary water. However, secondary processes such as solar wind implantation and cosmic ray induced spallation reactions have modified the primordial D/H signature of 'water' in all rocks and soils recovered on the Moon. Here, we re-evaluate the production rate of cosmogenic deuterium (D) at the Moon's surface through ion microprobe analyses of hydrogen isotopes in olivines from eight Apollo 12 and 15 mare basalts. These in situ measurements are complemented by CO2 laser extraction-static mass spectrometry analyses of cosmogenic noble gas nuclides (3He, 21Ne, 38Ar). Cosmic ray exposure (CRE) ages of the mare basalts, derived from their cosmogenic 21Ne content, range from 60 to 422 Ma. These CRE ages are 35% higher, on average, than the published values for the same samples. The amount of D detected in the olivines increases linearly with increasing CRE ages, consistent with a production rate of (2.17 ± 0.11) ×10-12 mol(g rock)-1 Ma-1. This value is more than twice as high as previous estimates for the production of D by galactic cosmic rays, indicating that for water-poor lunar samples, i.e., samples with water concentrations ≤50 ppm, corrected D/H ratios have been severely overestimated.

  10. The origin of matter

    International Nuclear Information System (INIS)

    Cline, J.

    2004-01-01

    The author presents the issue of how matter triumphed over anti-matter in the formation of the universe. Theories focus on the nature of asymmetry that might have created an excess of matter over anti-matter. Sakharov and Kuzmin listed 3 conditions that must be met for baryogenesis to take place. First the baryon number must not be conserved: there must be some interactions that change the number of baryons, baryon-number violation can rise from an interaction between quarks and leptons. Secondly, 2 symmetries that relate particles to antiparticles must be violated. The CP violation in Kaon decay is too weak to create enough baryon asymmetry, so physicists believe that larger sources of CP violation await discovery. Thirdly, there must be the loss of thermal equilibrium of the universe. In thermal equilibrium, baryons are decaying but inverse processes are also taking place, quarks are fusing to form baryons, rates being equal no baryon asymmetry is generated. But if thermal equilibrium is broken, to say temperature is decreasing, at a certain temperature a pair of quarks will no longer have enough energy to produce a heavy particle which generates baryon asymmetry. (A.C.)

  11. Indirect detection of neutralino dark matter up to TeV scale

    International Nuclear Information System (INIS)

    Hooper, Dan

    2001-01-01

    In this paper, we will describe the results of SUSY parameter space searches including minimal supergravity, non-universal supergravity and minimal supersymmetry and the implications on the indirect detection of neutralino dark matter. We give special attention to the effects of detector thresholds, solar absorption of neutrinos and hadronization of neutralino annihilation products. These effects are known to be important in calculating accurate event rates [1]. We chose also to focus on models which predict a heavy lightest neutralino (several hundred GeV to several TeV). These models have been selected for several reasons including their inaccessibility in future collider searches

  12. Simultaneous removal of organic matter and salt ions from saline wastewater in bioelectrochemical systems

    KAUST Repository

    Kim, Younggy

    2013-01-01

    A new bioelectrochemical system is proposed for simultaneous removal of salinity and organic matter. In this process, exoelectrogenic microorganisms oxidize organic matter and transfer electrons to the anode, hydrogen is evolved at the cathode by supplying additional voltage, and salt is removed from the wastewater due to the electric potential generated and the use of two ion-exchange membranes. Salinity removal (initial conductivity ~40mS/cm) increased from 21 to 84% by increasing the substrate (sodium acetate) from 2 to 8g/L. A total of 72-94% of the chemical oxygen demand was degraded in the anode and cathode chambers, with 1-4% left in the anode chamber and the balance lost through the anion-exchange membrane into the concentrate waste chamber. The maximum hydrogen production rate was 3.6m3-H2/m3-electrolyte per day at an applied potential of 1.2V. The Coulombic efficiency was ~100%, while the cathode recovery varied from 57 to 100%, depending on the extent of methanogenesis. Exoelectrogenic microbes generated high current densities (7.8mA/cm2) at ≤36g/L of total dissolved solids, but >41g/L eliminated current. These results provide a new method for achieving simultaneous removal of salinity and organic matter from a saline wastewater with H2 production. © 2012 Elsevier B.V.

  13. On-line tritium production and heat deposition rate measurements at the Lotus facility

    International Nuclear Information System (INIS)

    Joneja, O.P.; Scherrer, P.; Anand, R.P.

    1994-01-01

    Integral tritium production and heat deposition measurement in a prototype fusion blanket would enable verification of the computational codes and the data based employed for the calculations. A large number of tritium production rate measurements have been reported for different type of blankets, whereas the direct heat deposition due to the mixed radiation field in the fusion environment, is still in its infancy. In order to ascertain the kerma factors and the photon production libraries, suitable techniques must be developed to directly measure the nuclear heat deposition rates in the materials required for the fusion systems. In this context, at the Lotus facility, we have developed an extremely efficient double ionizing chamber, for the on-line tritium production measurements and employed a pure graphite calorimeter to measure the nuclear heat deposition due to the mixed radiation field of the 14 MeV, Haefely neutron generator. This paper presents both systems and some of the recent measurements. (authors). 8 refs., 13 figs

  14. Searching for Quark Matter at the CERN SPS

    CERN Document Server

    Lourenço, C

    2002-01-01

    This article gives a brief overview of some recent advances in our understanding of the physics of dense strongly interacting matter, from measurements done at the CERN SPS. The presently available results are very interesting, and are likely to reflect the production of a new state of matter in central Pb-Pb collisions, at the highest SPS energies. However, important questions require further work. Particular emphasis is given to developments made since the Quark Matter 1999 conference, and to issues that justify the continuation of the SPS heavy ion physics program beyond year 2000.

  15. Axion as a non-WIMP dark matter candidate

    International Nuclear Information System (INIS)

    Saikawa, Ken'ichi

    2017-09-01

    The axion arises in well-motivated extensions of the Standard Model of particle physics and is regarded as an alternative to the weakly interacting massive particle paradigm to explain the nature of dark matter. In this contribution, we review theoretical aspects of dark matter axions, particularly focusing on recent developments in the estimation of their relic abundance. A closer look at their non-thermal production mechanisms in the early universe reveals the possibility of explaining the observed dark matter abundance in various mass ranges. The mass ranges predicted in various cosmological scenarios are briefly summarized.

  16. Specific light uptake rates can enhance astaxanthin productivity in Haematococcus lacustris.

    Science.gov (United States)

    Lee, Ho-Sang; Kim, Z-Hun; Park, Hanwool; Lee, Choul-Gyun

    2016-05-01

    Lumostatic operation was applied for efficient astaxanthin production in autotrophic Haematococcus lacustris cultures using 0.4-L bubble column photobioreactors. The lumostatic operation in this study was performed with three different specific light uptake rates (q(e)) based on cell concentration, cell projection area, and fresh weight as one-, two- and three-dimensional characteristics values, respectively. The q(e) value from the cell concentration (q(e1D)) obtained was 13.5 × 10⁻⁸ μE cell⁻¹ s⁻¹, and the maximum astaxanthin concentration was increased to 150 % compared to that of a control with constant light intensity. The other optimum q e values by cell projection area (q(e2D)) and fresh weight (q( e3D)) were determined to be 195 μE m⁻² s⁻¹ and 10.5 μE g⁻¹ s⁻¹ for astaxanthin production, respectively. The maximum astaxanthin production from the lumostatic cultures using the parameters controlled by cell projection area (2D) and fresh weight (3D) also increased by 36 and 22% over that of the controls, respectively. When comparing the optimal q e values among the three different types, the lumostatic cultures using q(e) based on fresh weight showed the highest astaxanthin productivity (22.8 mg L⁻¹ day⁻¹), which was a higher level than previously reported. The lumostatic operations reported here demonstrated that more efficient and effective astaxanthin production was obtained by H. lacustris than providing a constant light intensity, regardless of which parameter is used to calculate the specific light uptake rate.

  17. A hypothesis concerning the nature of dark matter

    International Nuclear Information System (INIS)

    Paduroiu, Sinziana; Rusu, Mircea

    2004-01-01

    In this paper we briefly review the main observational facts that lead to the hypothesis of the so called 'dark matter' as a considerable part of the matter in the Universe that is not visible. The expansion rate of the universe, the birth of the galaxies and their rotation curves are some of the phenomena that can be explained by the existence of dark matter. Generally, there are two models for dark matter: the hot dark matter (HDM) model and the cold dark matter one (CDM). In this paper we will refer mainly to the cold dark matter model. Two different opinions regarding the nature of dark matter and its contribution to the total mass of the matter in the Universe due to a cosmological constant will be discussed. In the first part some particles candidates for dark matter like neutralino and axions will be considered and their prediction made by supersymmetry theory. In the second part different alternative models will be presented that imply singularities of the gravitational theory; inflationary models; and in particular one model that introduces a new expression in the gravitational potential as an attempt to explain the phenomena that made us believe in the existence of this kind of matter. (authors)

  18. Indirect detection of dark matter

    International Nuclear Information System (INIS)

    Pieri, L.

    2008-01-01

    In the Cold Dark Matter scenario, the Dark Matter particle candidate may be a Weakly Interacting Massive Particle (Wimp). Annihilation of two Wimps in local or cosmological structures would result in the production of a number of standard model particles such as photons, leptons and baryons which could be observed with the presently available or future experiments such as the Pamela or Glast satellites or the Cherenkov Telescopes. In this work we review the status-of-the-art of the theoretical and phenomenological studies about the possibility of indirect detection of signals coming from Wimp annihilation.

  19. Dark Matter Searches at ATLAS

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The astrophysical evidence of dark matter provides some of the most compelling clues to the nature of physics beyond the Standard Model. From these clues, ATLAS has developed a broad and systematic search program for dark matter production in LHC collisions. These searches are now entering their prime, with the LHC now colliding protons at the increased 13 TeV centre-of-mass energy and set to deliver much larger datasets than ever before. The results of these searches on the first 13 TeV data, their interpretation, and the design and possible evolution of the search program will be presented.

  20. Sequential and base rate analysis of emotional validation and invalidation in chronic pain couples: patient gender matters.

    Science.gov (United States)

    Leong, Laura E M; Cano, Annmarie; Johansen, Ayna B

    2011-11-01

    The purpose of this study was to examine the extent to which communication patterns that foster or hinder intimacy and emotion regulation in couples were related to pain, marital satisfaction, and depression in 78 chronic pain couples attempting to problem-solve an area of disagreement in their marriage. Sequences and base rates of validation and invalidation communication patterns were almost uniformly unrelated to adjustment variables unless patient gender was taken into account. Male patient couples' reciprocal invalidation was related to worse pain, but this was not found in female patient couples. In addition, spouses' validation was related to poorer patient pain and marital satisfaction, but only in couples with a male patient. It was not only the presence or absence of invalidation and validation that mattered (base rates), but the context and timing of these events (sequences) that affected patients' adjustment. This research demonstrates that sequences of interaction behaviors that foster and hinder emotion regulation should be attended to when assessing and treating pain patients and their spouses. This article presents analyses of both sequences and base rates of chronic pain couples' communication patterns, focusing on validation and invalidation. These results may potentially improve psychosocial treatments for these couples, by addressing sequential interactions of intimacy and empathy. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.

  1. Increasing Biogas Production Rate from Cattle Manure Using Rumen Fluid as Inoculums

    Directory of Open Access Journals (Sweden)

    Budiyono Budiyono

    2013-10-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 In this study, rumen fluid of animal ruminant was used as inoculums to increase biogas production rate from cattle manure at mesophilic condition. A series of laboratory experiments using 400 ml biodigester were performed in batch operation mode. Given 100 grams of fresh cattle manure (M was fed to each biodigester and mixed with rumen fluid (R and tap water (W in several ratio resulting six different M:W:R ratio contents i.e. 1:1:0; 1:0.75:0.25; 1:0.5:0.5; 1:0.25:0.75; and 1:0:1 (correspond to 0; 12.5; 25, 37.5; 50, and 100 % rumen, respectively and six different total solid (TS contents i.e. 2.6, 4.6, 6.2, 7.4, 9.2, 12.3, and 18.4 %. The operating temperatures were at room temperature. The results showed that the rumen fluid inoculated to biodigester significantly effected the biogas production. Rumen fluid inoculums caused biogas production rate and efficiency increase more than two times in compare to manure substrate without rumen fluid inoculums. The best performance for biogas production was the digester with rumen fluid and TS content in the range of 25-50 % and 7.4 and 9.2 %, respectively. These results suggest that, based on TS content effects to biogas yield, rumen fluid inoculums exhibit the similar effect with other inoculums. Increasing rumen content will also increase biogas production. Due to the optimum total solid (TS content for biogas production between 7-9 % (or correspond to more and less manure and total liquid 1:1, the rumen fluid content of 50 % will give the best performance for biogas production. The future work will be carried out to study the dynamics of biogas production if both the rumen fluid inoculums and manure are fed in the continuous system Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Doi: 10.12777/ijse.6.1.31-38 [How to cite this article: Budiyono, Widiasa, I.N., Johari, S. and Sunarso. (2014. Increasing Biogas

  2. Accounting for graduate medical education production of primary care physicians and general surgeons: timing of measurement matters.

    Science.gov (United States)

    Petterson, Stephen; Burke, Matthew; Phillips, Robert; Teevan, Bridget

    2011-05-01

    Legislation proposed in 2009 to expand GME set institutional primary care and general surgery production eligibility thresholds at 25% at entry into training. The authors measured institutions' production of primary care physicians and general surgeons on completion of first residency versus two to four years after graduation to inform debate and explore residency expansion and physician workforce implications. Production of primary care physicians and general surgeons was assessed by retrospective analysis of the 2009 American Medical Association Masterfile, which includes physicians' training institution, residency specialty, and year of completion for up to six training experiences. The authors measured production rates for each institution based on physicians completing their first residency during 2005-2007 in family or internal medicine, pediatrics, or general surgery. They then reassessed rates to account for those who completed additional training. They compared these rates with proposed expansion eligibility thresholds and current workforce needs. Of 116,004 physicians completing their first residency, 54,245 (46.8%) were in primary care and general surgery. Of 683 training institutions, 586 met the 25% threshold for expansion eligibility. At two to four years out, only 29,963 physicians (25.8%) remained in primary care or general surgery, and 135 institutions lost eligibility. A 35% threshold eliminated 314 institutions collectively training 93,774 residents (80.8%). Residency expansion thresholds that do not account for production at least two to four years after completion of first residency overestimate eligibility. The overall primary care production rate from GME will not sustain the current physician workforce composition. Copyright © by the Association of American medical Colleges.

  3. Tenor of macro nutrients and dry matter productivity of covering crops in function of the potassium doses

    Directory of Open Access Journals (Sweden)

    Amilton Ferreira da Silva

    2014-01-01

    Full Text Available With the adoption of the system of direct sowing it is necessary the formation of a straw layer in the surface of the soils. In this sense, some species of grass can be used for that goal, besides; those plants can act in the recycling for the accumulation of nutrients in the aerial part, and its readiness for the subsequent culture. The potassium is one of the most accumulated nutrients for many of those plants. The objective of this work was to quantify the macronutrients tenor and the productivity of dry matter of Penisetum glaucum L. and Panicum miliaceum L. under different potassium doses. A blocks at random design, with the treatments disposed in factorial 3x2, was used, being the factors: covering cultures (P.glaucum and P. miliaceum and potassium doses (0; 50 and 100 kg ha-1 of K2 O, with four repetitions. The matter dries was evaluated and the tenors of N, P, K, Ca, Mg and S in them, at 50 days after sowing covering cultures. P.glaucum produced larger dry matter content and tenor of N, K and Mg in the aerial part, independently of the K dose applied, while the tenor of P decreased with the application of high dose of K in the soil. The application of K influenced on the tenors of Ca and S in the two covering cultures, nevertheless P.glaucum accumulated higher tenor of those macronutrients in the absence of application of K.

  4. 76 FR 65639 - International Mail: Proposed Product Rate and Fee Changes

    Science.gov (United States)

    2011-10-24

    ... Customs Clearance and Delivery Fee International Reply Coupons International Business Reply Service The... * * * * * International Business Reply Service (382) [For each country that offers International Business Reply Service... POSTAL SERVICE 39 CFR Part 20 International Mail: Proposed Product Rate and Fee Changes AGENCY...

  5. Experimentation on the anaerobic filter reactor for biogas production using rural domestic wastewater

    Science.gov (United States)

    Leju Celestino Ladu, John; Lü, Xi-wu; Zhong, Zhaoping

    2017-08-01

    The biogas production from anaerobic filter (AF) reactor was experimented in Taihu Lake Environmental Engineering Research Center of Southeast University, Wuxi, China. Two rounds of experimental operations were conducted in a laboratory scale at different Hydraulic retention time (HRT) and wastewater temperature. The biogas production rate during the experimentation was in the range of 4.63 to 11.78 L/d. In the first experimentation, the average gas production rate was 10.08 L/d, and in the second experimentation, the average gas production rate was 4.97 L/d. The experimentation observed the favorable Hydraulic Retention Time and wastewater temperature in AF was three days and 30.95°C which produced the gas concentration of 11.78 L/d. The HRT and wastewater temperature affected the efficiency of the AF process on the organic matter removal and nutrients removal as well. It can be deduced from the obtained results that HRT and wastewater temperature directly affects the efficiency of the AF reactor in biogas production. In conclusion, anaerobic filter treatment of organic matter substrates from the rural domestic wastewater increases the efficiency of the AF reactor on biogas production and gives a number of benefits for the management of organic wastes as well as reduction in water pollution. Hence, the operation of the AF reactor in rural domestic wastewater treatment can play an important element for corporate economy of the biogas plant, socio-economic aspects and in the development of effective and feasible concepts for wastewater management, especially for people in rural low-income areas.

  6. Impact of Corn Residue Removal on Crop and Soil Productivity

    Science.gov (United States)

    Johnson, J. M.; Wilhelm, W. W.; Hatfield, J. L.; Voorhees, W. B.; Linden, D.

    2003-12-01

    Over-reliance on imported fuels, increasing atmospheric levels of greenhouses and sustaining food production for a growing population are three of the most important problems facing society in the mid-term. The US Department of Energy and private enterprise are developing technology necessary to use high cellulose feedstock, such as crop residues, for ethanol production. Based on production levels, corn (Zea mays L.) residue has potential as a biofuel feedstock. Crop residues are a renewable and domestic fuel source, which can reduce the rate of fossil fuel use (both imported and domestic) and provide an additional farm commodity. Crop residues protect the soil from wind and water erosion, provide inputs to form soil organic matter (a critical component determining soil quality) and play a role in nutrient cycling. Crop residues impact radiation balance and energy fluxes and reduce evaporation. Therefore, the benefits of using crop residues as fuel, which removes crop residues from the field, must be balanced against negative environmental impacts (e.g. soil erosion), maintaining soil organic matter levels, and preserving or enhancing productivity. All ramifications of new management practices and crop uses must be explored and evaluated fully before an industry is established. There are limited numbers of long-term studies with soil and crop responses to residue removal that range from negative to negligible. The range of crop and soil responses to crop residue removal was attributed to interactions with climate, management and soil type. Within limits, corn residue can be harvested for ethanol production to provide a renewable, domestic source of energy feedstock that reduces greenhouse gases. Removal rates must vary based on regional yield, climatic conditions and cultural practices. Agronomists are challenged to develop a protocol (tool) for recommending maximum permissible removal rates that ensure sustained soil productivity.

  7. Self-interacting spin-2 dark matter

    Science.gov (United States)

    Chu, Xiaoyong; Garcia-Cely, Camilo

    2017-11-01

    Recent developments in bigravity allow one to construct consistent theories of interacting spin-2 particles that are free of ghosts. In this framework, we propose an elementary spin-2 dark matter candidate with a mass well below the TeV scale. We show that, in a certain regime where the interactions induced by the spin-2 fields do not lead to large departures from the predictions of general relativity, such a light dark matter particle typically self-interacts and undergoes self-annihilations via 3-to-2 processes. We discuss its production mechanisms and also identify the regions of the parameter space where self-interactions can alleviate the discrepancies at small scales between the predictions of the collisionless dark matter paradigm and cosmological N-body simulations.

  8. Lifetime and production rate of beauty baryons from Z decays

    CERN Document Server

    Abreu, P; Adye, T; Agasi, E; Ajinenko, I; Aleksan, Roy; Alekseev, G D; Allport, P P; Almehed, S; Alvsvaag, S J; Amaldi, Ugo; Amato, S; Andreazza, A; Andrieux, M L; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barate, R; Barbiellini, Guido; Bardin, Dimitri Yuri; Barker, G J; Baroncelli, A; Bärring, O; Barrio, J A; Bartl, Walter; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Benvenuti, Alberto C; Berggren, M; Bertrand, D; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bloch, D; Blume, M; Blyth, S; Bocci, V; Bolognese, T; Bonesini, M; Bonivento, W; Booth, P S L; Borisov, G; Bosio, C; Bosworth, S; Botner, O; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenner, R A; Bricman, C; Brillault, L; Brown, R C A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Buys, A; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cankocak, K; Cao, F; Carena, F; Carrilho, P; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerrito, L; Chabaud, V; Chapkin, M M; Charpentier, P; Chaussard, L; Chauveau, J; Checchia, P; Chelkov, G A; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Cindro, V; Collins, P; Contreras, J L; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Dahl-Jensen, Erik; Dahm, J; D'Almagne, B; Dam, M; Damgaard, G; Daum, A; Dauncey, P D; Davenport, Martyn; Da Silva, W; Defoix, C; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; De Boeck, H; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; De Saint-Jean, C; Dijkstra, H; Di Ciaccio, Lucia; Djama, F; Dolbeau, J; Dönszelmann, M; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Dufour, Y; Dupont, F; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Ershaidat, N; Erzen, B; Espirito-Santo, M C; Falk, E; Fassouliotis, D; Feindt, Michael; Fenyuk, A; Ferrer, A; Filippas-Tassos, A; Firestone, A; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frenkiel, P; Fries, D E C; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fürstenau, H; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gibbs, M; Gillespie, D; Gokieli, R; Golob, B; Gopal, Gian P; Gorn, L; Górski, M; Gracco, Valerio; Graziani, E; Grosdidier, G; Gunnarsson, P; Günther, M; Guy, J; Haedinger, U; Hahn, F; Hahn, M; Hahn, S; Hajduk, Z; Hallgren, A; Hamacher, K; Hao, W; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Higón, E; Hilke, Hans Jürgen; Hill, T S; Holmgren, S O; Holt, P J; Holthuizen, D J; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Ioannou, P; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, Christian; Juillot, P; Kaiser, M; Kalmus, George Ernest; Kapusta, F; Karlsson, M; Karvelas, E; Katsanevas, S; Katsoufis, E C; Keränen, R; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klein, H; Klovning, A; Kluit, P M; Köhne, J H; Köne, B; Kokkinias, P; Koratzinos, M; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Kramer, P H; Krammer, Manfred; Kreuter, C; Królikowski, J; Kronkvist, I J; Krumshtein, Z; Krupinski, W; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Laktineh, I; Lamblot, S; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Lapin, V; Last, I; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leitner, R; Lemoigne, Y; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Liko, D; Lindner, R; Lipniacka, A; Lippi, I; Lörstad, B; Lokajícek, M; Loken, J G; López, J M; López-Fernandez, A; López-Aguera, M A; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Maehlum, G; Maio, A; Malychev, V; Mandl, F; Marco, J; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Maron, T; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, M; McNulty, M; Medbo, J; Meroni, C; Meyer, W T; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Morettini, P; Müller, H; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Negri, P; Némécek, S; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Niss, P; Nomerotski, A; Normand, Ainsley; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Ostankov, A P; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Pagès, P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Passeri, A; Pegoraro, M; Peralta, L; Pernegger, H; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Piana, G; Pierre, F; Plaszczynski, S; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Prest, M; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Reid, D; Renton, P B; Resvanis, L K; Richard, F; Richardson, J; Rídky, J; Rinaudo, G; Ripp, I; Romero, A; Roncagliolo, I; Ronchese, P; Roos, L; Rosenberg, E I; Rosso, E; Roudeau, Patrick; Rovelli, T; Rückstuhl, W; Ruhlmann-Kleider, V; Ruiz, A; Rybicki, K; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sánchez, J; Sannino, M; Schneider, H; Schyns, M A E; Sciolla, G; Scuri, F; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Shellard, R C; Siccama, I; Siegrist, P; Simonetti, S; Simonetto, F; Sissakian, A N; Sitár, B; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Squarcia, S; Stäck, H; Stanescu, C; Stapnes, Steinar; Stavitski, I; Stepaniak, K; Stichelbaut, F; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tavernet, J P; Chikilev, O G; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Toet, D Z; Tomaradze, A G; Tomé, B; Torassa, E; Tortora, L; Tranströmer, G; Treille, D; Trischuk, W; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Überschär, S; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; van Apeldoorn, G W; van Dam, P; Van Doninck, W K; Van Eldik, J; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Wehr, A; Weierstall, M; Weilhammer, Peter; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Wormser, G; Woschnagg, K; Yip, K; Zach, F; Zacharatou-Jarlskog, C; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zito, M; Zontar, D; Zuberi, R; Zucchelli, G C; Zumerle, G

    1995-01-01

    The production and decay of beauty baryons (b-baryons) have been studied using 1.7 \\times 10^6 Z hadronic decays collected by the DELPHI detector at LEP. Three different techniques were used to identify the b-baryons. The first method used pairs of a \\Lambda and a lepton to tag the b-baryon decay. The second method associated fully reconstructed \\Lambda_c baryons with leptons. The third analysis reconstructed the b-baryon decay points by forming secondary vertices from identified protons and muons of opposite sign. Using these methods the following production rates were measured: \\begin{eqnarray*} f(\\qb \\ra \\Bb) \\times \\BR(\\Bb \\ra \\mLs \\ell\\bar{\

  9. Modified dark matter: Relating dark energy, dark matter and baryonic matter

    Science.gov (United States)

    Edmonds, Douglas; Farrah, Duncan; Minic, Djordje; Ng, Y. Jack; Takeuchi, Tatsu

    Modified dark matter (MDM) is a phenomenological model of dark matter, inspired by gravitational thermodynamics. For an accelerating universe with positive cosmological constant (Λ), such phenomenological considerations lead to the emergence of a critical acceleration parameter related to Λ. Such a critical acceleration is an effective phenomenological manifestation of MDM, and it is found in correlations between dark matter and baryonic matter in galaxy rotation curves. The resulting MDM mass profiles, which are sensitive to Λ, are consistent with observational data at both the galactic and cluster scales. In particular, the same critical acceleration appears both in the galactic and cluster data fits based on MDM. Furthermore, using some robust qualitative arguments, MDM appears to work well on cosmological scales, even though quantitative studies are still lacking. Finally, we comment on certain nonlocal aspects of the quanta of modified dark matter, which may lead to novel nonparticle phenomenology and which may explain why, so far, dark matter detection experiments have failed to detect dark matter particles.

  10. Dark energy and dark matter in galaxy halos

    International Nuclear Information System (INIS)

    Tetradis, N.

    2006-01-01

    We consider the possibility that the dark matter is coupled through its mass to a scalar field associated with the dark energy of the Universe. In order for such a field to play a role at the present cosmological distances, it must be effectively massless at galactic length scales. We discuss the effect of the field on the distribution of dark matter in galaxy halos. We show that the profile of the distribution outside the galaxy core remains largely unaffected and the approximately flat rotation curves persist. The dispersion of the dark matter velocity is enhanced by a potentially large factor relative to the case of zero coupling between dark energy and dark matter. The counting rates in terrestrial dark matter detectors are similarly enhanced. Existing bounds on the properties of dark matter candidates can be extended to the coupled case, by taking into account the enhancement factor

  11. Where are we with the Dark Matter search?

    CERN Multimedia

    Antonella Del Rosso

    2012-01-01

    By observing the movement and the distribution of stars and galaxies, we learn that about 24% of the Universe is made of Dark Matter – an unknown type of matter whose origin is one of the main mysteries still kept by Nature. The world’s scientists are testing experimental methods to identify the particles of this elusive matter. How long will it stay in the “dark”? How can the LHC experiments participate in the race for discovery?   Figure 1: Dark Matter particles produced at the LHC would presumably escape undetected by the experiments. However, the event should be accompanied by some "missing momentum", which could be a signature of Dark Matter. Within the framework of a simple model for the production of Dark Matter, the CMS analysis significantly complements the sensitivity of direct search experiments. In particular, CMS is sensitive in the low-mass region below 3.5 GeV (the regions above the curves are excluded). Source: CMS Collab...

  12. The hidden-Markov brain: comparison and inference of white matter hyperintensities on magnetic resonance imaging (MRI)

    Science.gov (United States)

    Pham, Tuan D.; Salvetti, Federica; Wang, Bing; Diani, Marco; Heindel, Walter; Knecht, Stefan; Wersching, Heike; Baune, Bernhard T.; Berger, Klaus

    2011-02-01

    Rating and quantification of cerebral white matter hyperintensities on magnetic resonance imaging (MRI) are important tasks in various clinical and scientific settings. As manual evaluation is time consuming and imprecise, much effort has been made to automate the quantification of white matter hyperintensities. There is rarely any report that attempts to study the similarity/dissimilarity of white matter hyperintensity patterns that have different sizes, shapes and spatial localizations on the MRI. This paper proposes an original computational neuroscience framework for such a conceptual study with a standpoint that the prior knowledge about white matter hyperintensities can be accumulated and utilized to enable a reliable inference of the rating of a new white matter hyperintensity observation. This computational approach for rating inference of white matter hyperintensities, which appears to be the first study, can be utilized as a computerized rating-assisting tool and can be very economical for diagnostic evaluation of brain tissue lesions.

  13. Cognitive Implications of Deep Gray Matter Iron in Multiple Sclerosis.

    Science.gov (United States)

    Fujiwara, E; Kmech, J A; Cobzas, D; Sun, H; Seres, P; Blevins, G; Wilman, A H

    2017-05-01

    Deep gray matter iron accumulation is increasingly recognized in association with multiple sclerosis and can be measured in vivo with MR imaging. The cognitive implications of this pathology are not well-understood, especially vis-à-vis deep gray matter atrophy. Our aim was to investigate the relationships between cognition and deep gray matter iron in MS by using 2 MR imaging-based iron-susceptibility measures. Forty patients with multiple sclerosis (relapsing-remitting, n = 16; progressive, n = 24) and 27 healthy controls were imaged at 4.7T by using the transverse relaxation rate and quantitative susceptibility mapping. The transverse relaxation rate and quantitative susceptibility mapping values and volumes (atrophy) of the caudate, putamen, globus pallidus, and thalamus were determined by multiatlas segmentation. Cognition was assessed with the Brief Repeatable Battery of Neuropsychological Tests. Relationships between cognition and deep gray matter iron were examined by hierarchic regressions. Compared with controls, patients showed reduced memory ( P processing speed ( P = .02) and smaller putamen ( P deep gray matter iron accumulation in the current multiple sclerosis cohort. Atrophy and iron accumulation in deep gray matter both have negative but separable relationships to cognition in multiple sclerosis. © 2017 by American Journal of Neuroradiology.

  14. Heavy Higgs boson production at colliders in the singlet-triplet scotogenic dark matter model

    Science.gov (United States)

    Díaz, Marco Aurelio; Rojas, Nicolás; Urrutia-Quiroga, Sebastián; Valle, José W. F.

    2017-08-01

    We consider the possibility that the dark matter particle is a scalar WIMP messenger associated to neutrino mass generation, made stable by the same symmetry responsible for the radiative origin of neutrino mass. We focus on some of the implications of this proposal as realized within the singlet-triplet scotogenic dark matter model. We identify parameter sets consistent both with neutrino mass and the observed dark matter abundance. Finally we characterize the expected phenomenological profile of heavy Higgs boson physics at the LHC as well as at future linear Colliders.

  15. Measurement of the incorporation rates of four amino acids into proteins for estimating bacterial production.

    Science.gov (United States)

    Servais, P

    1995-03-01

    In aquatic ecosystems, [(3)H]thymidine incorporation into bacterial DNA and [(3)H]leucine incorporation into proteins are usually used to estimate bacterial production. The incorporation rates of four amino acids (leucine, tyrosine, lysine, alanine) into proteins of bacteria were measured in parallel on natural freshwater samples from the basin of the river Meuse (Belgium). Comparison of the incorporation into proteins and into the total macromolecular fraction showed that these different amino acids were incorporated at more than 90% into proteins. From incorporation measurements at four subsaturated concentrations (range, 2-77 nm), the maximum incorporation rates were determined. Strong correlations (r > 0.91 for all the calculated correlations) were found between the maximum incorporation rates of the different tested amino acids over a range of two orders of magnitude of bacterial activity. Bacterial production estimates were calculated using theoretical and experimental conversion factors. The productions calculated from the incorporation rates of the four amino acids were in good concordance, especially when the experimental conversion factors were used (slope range, 0.91-1.11, and r > 0.91). This study suggests that the incorporation of various amino acids into proteins can be used to estimate bacterial production.

  16. Decaying dark matter and the PAMELA anomaly

    International Nuclear Information System (INIS)

    Ibarra, Alejandro; Tran, David

    2009-01-01

    Astrophysical and cosmological observations do not require the dark matter particles to be absolutely stable. If they are indeed unstable, their decay into positrons might occur at a sufficiently large rate to allow the indirect detection of dark matter through an anomalous contribution to the cosmic positron flux. In this paper we discuss the implications of the excess in the positron fraction recently reported by the PAMELA collaboration for the scenario of decaying dark matter. To this end, we have performed a model-independent analysis of possible signatures by studying various decay channels in the case of both a fermionic and a scalar dark matter particle. We find that the steep rise in the positron fraction measured by PAMELA at energies larger than 10 GeV can naturally be accommodated in several realizations of the decaying dark matter scenario. The data point toward a rather heavy dark matter particle, m DM ∼> 300 GeV, which preferentially decays directly into first or second generation charged leptons with a lifetime τ DM ∼ 10 26 s

  17. Submicron and Nanoparticulate Matter Removal by HEPA-Rated Media Filters and Packed Beds of Granular Materials

    Science.gov (United States)

    Perry, J. L.; Agui, J. H.; Vijayakimar, R

    2016-01-01

    Contaminants generated aboard crewed spacecraft by diverse sources consist of both gaseous chemical contaminants and particulate matter. Both HEPA media filters and packed beds of granular material, such as activated carbon, which are both commonly employed for cabin atmosphere purification purposes have efficacy for removing nanoparticulate contaminants from the cabin atmosphere. The phenomena associated with particulate matter removal by HEPA media filters and packed beds of granular material are reviewed relative to their efficacy for removing fine (less than 2.5 micrometers) and ultrafine (less than 0.01 micrometers) sized particulate matter. Considerations are discussed for using these methods in an appropriate configuration to provide the most effective performance for a broad range of particle sizes including nanoparticulates.

  18. Comparison of Heterotrophic Bacterial Production-Rates in Early Spring in the Turbid Estuaries of the Scheldt and the Elbe

    NARCIS (Netherlands)

    Goosen, N.K.; Van Rijswijk, P.; Brockmann, U.

    1995-01-01

    In spring bacterial production rates were estimated by tritiated thymidine incorporation in the turbid estuaries of the rivers Scheldt and Elbe. Bacterial production rates in the Scheldt were 5 times higher than in the Elbe. In the Scheldt bacterial production rates correlated better with the DOC

  19. Maximum entropy production rate in quantum thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Beretta, Gian Paolo, E-mail: beretta@ing.unibs.i [Universita di Brescia, via Branze 38, 25123 Brescia (Italy)

    2010-06-01

    In the framework of the recent quest for well-behaved nonlinear extensions of the traditional Schroedinger-von Neumann unitary dynamics that could provide fundamental explanations of recent experimental evidence of loss of quantum coherence at the microscopic level, a recent paper [Gheorghiu-Svirschevski 2001 Phys. Rev. A 63 054102] reproposes the nonlinear equation of motion proposed by the present author [see Beretta G P 1987 Found. Phys. 17 365 and references therein] for quantum (thermo)dynamics of a single isolated indivisible constituent system, such as a single particle, qubit, qudit, spin or atomic system, or a Bose-Einstein or Fermi-Dirac field. As already proved, such nonlinear dynamics entails a fundamental unifying microscopic proof and extension of Onsager's reciprocity and Callen's fluctuation-dissipation relations to all nonequilibrium states, close and far from thermodynamic equilibrium. In this paper we propose a brief but self-contained review of the main results already proved, including the explicit geometrical construction of the equation of motion from the steepest-entropy-ascent ansatz and its exact mathematical and conceptual equivalence with the maximal-entropy-generation variational-principle formulation presented in Gheorghiu-Svirschevski S 2001 Phys. Rev. A 63 022105. Moreover, we show how it can be extended to the case of a composite system to obtain the general form of the equation of motion, consistent with the demanding requirements of strong separability and of compatibility with general thermodynamics principles. The irreversible term in the equation of motion describes the spontaneous attraction of the state operator in the direction of steepest entropy ascent, thus implementing the maximum entropy production principle in quantum theory. The time rate at which the path of steepest entropy ascent is followed has so far been left unspecified. As a step towards the identification of such rate, here we propose a possible

  20. BREIT code: Analytical solution of the balance rate equations for charge-state evolutions of heavy-ion beams in matter

    Energy Technology Data Exchange (ETDEWEB)

    Winckler, N., E-mail: n.winckler@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Rybalchenko, A. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Shevelko, V.P. [P.N. Lebedev Physical Institute, 119991 Moscow (Russian Federation); Al-Turany, M. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); CERN, European Organization for Nuclear Research, 1211 Geneve 23 (Switzerland); Kollegger, T. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Stöhlker, Th. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Helmholtz-Institute Jena, D-07743 Jena (Germany); Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, D-07743 Jena (Germany)

    2017-02-01

    A detailed description of a recently developed BREIT computer code (Balance Rate Equations of Ion Transportation) for calculating charge-state fractions of ion beams passing through matter is presented. The code is based on the analytical solutions of the differential balance equations for the charge-state fractions as a function of the target thickness and can be used for calculating the ion evolutions in gaseous, solid and plasma targets. The BREIT code is available on-line and requires the charge-changing cross sections and initial conditions in the input file. The eigenvalue decomposition method, applied to obtain the analytical solutions of the rate equations, is described in the paper. Calculations of non-equilibrium and equilibrium charge-state fractions, performed by the BREIT code, are compared with experimental data and results of other codes for ion beams in gaseous and solid targets. Ability and limitations of the BREIT code are discussed in detail.