WorldWideScience

Sample records for matter power spectra

  1. Dark matter statistics for large galaxy catalogs: power spectra and covariance matrices

    Science.gov (United States)

    Klypin, Anatoly; Prada, Francisco

    2018-06-01

    Large-scale surveys of galaxies require accurate theoretical predictions of the dark matter clustering for thousands of mock galaxy catalogs. We demonstrate that this goal can be achieve with the new Parallel Particle-Mesh (PM) N-body code GLAM at a very low computational cost. We run ˜22, 000 simulations with ˜2 billion particles that provide ˜1% accuracy of the dark matter power spectra P(k) for wave-numbers up to k ˜ 1hMpc-1. Using this large data-set we study the power spectrum covariance matrix. In contrast to many previous analytical and numerical results, we find that the covariance matrix normalised to the power spectrum C(k, k΄)/P(k)P(k΄) has a complex structure of non-diagonal components: an upturn at small k, followed by a minimum at k ≈ 0.1 - 0.2 hMpc-1, and a maximum at k ≈ 0.5 - 0.6 hMpc-1. The normalised covariance matrix strongly evolves with redshift: C(k, k΄)∝δα(t)P(k)P(k΄), where δ is the linear growth factor and α ≈ 1 - 1.25, which indicates that the covariance matrix depends on cosmological parameters. We also show that waves longer than 1h-1Gpc have very little impact on the power spectrum and covariance matrix. This significantly reduces the computational costs and complexity of theoretical predictions: relatively small volume ˜(1h-1Gpc)3 simulations capture the necessary properties of dark matter clustering statistics. As our results also indicate, achieving ˜1% errors in the covariance matrix for k < 0.50 hMpc-1 requires a resolution better than ɛ ˜ 0.5h-1Mpc.

  2. Reconstruction of real-space linear matter power spectrum from multipoles of BOSS DR12 results

    Science.gov (United States)

    Lee, Seokcheon

    2018-02-01

    Recently, the power spectrum (PS) multipoles using the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 12 (DR12) sample are analyzed [1]. The based model for the analysis is the so-called TNS quasi-linear model and the analysis provides the multipoles up to the hexadecapole [2]. Thus, one might be able to recover the real-space linear matter PS by using the combinations of multipoles to investigate the cosmology [3]. We provide the analytic form of the ratio of quadrupole (hexadecapole) to monopole moments of the quasi-linear PS including the Fingers-of-God (FoG) effect to recover the real-space PS in the linear regime. One expects that observed values of the ratios of multipoles should be consistent with those of the linear theory at large scales. Thus, we compare the ratios of multipoles of the linear theory, including the FoG effect with the measured values. From these, we recover the linear matter power spectra in real-space. These recovered power spectra are consistent with the linear matter power spectra.

  3. Effect of the length of inflation on angular TT and TE power spectra in power-law inflation

    International Nuclear Information System (INIS)

    Hirai, Shiro; Takami, Tomoyuki

    2006-01-01

    The effect of the length of inflation on the power spectra of scalar and tensor perturbations is estimated using the power-law inflation model with a scale factor of a(η) = (-η) p = t q . Considering various pre-inflation models with radiation-dominated or scalar matter-dominated periods before inflation in combination with two matching conditions, the temperature angular power spectrum (TT) and temperature-polarization cross-power spectrum (TE) are calculated and a likelihood analysis is performed. It is shown that the discrepancies between the Wilkinson microwave anisotropy probe (WMAP) data and the ΛCDM model, such as suppression of the spectrum at l = 2, 3 and oscillatory behaviour, may be explained by the finite length of inflation model if the length of inflation is near 60 e-folds and q ≥ 300. The proposed models retain similar values of χ 2 to that achieved by the ΛCDM model with respect to fit to the WMAP data, but display different characteristics of the angular TE power spectra at l ≤ 20

  4. Artificial intelligence analysis of paraspinal power spectra.

    Science.gov (United States)

    Oliver, C W; Atsma, W J

    1996-10-01

    OBJECTIVE: As an aid to discrimination of sufferers with back pain an artificial intelligence neural network was constructed to differentiate paraspinal power spectra. DESIGN: Clinical investigation using surface electromyography. METHOD: The surface electromyogram power spectra from 60 subjects, 33 non-back-pain sufferers and 27 chronic back pain sufferers were used to construct a back propagation neural network that was then tested. Subjects were placed on a test frame in 30 degrees of lumbar forward flexion. An isometric load of two-thirds maximum voluntary contraction was held constant for 30 s whilst surface electromyograms were recorded at the level of the L(4-5). Paraspinal power spectra were calculated and loaded into the input layer of a three-layer back propagation network. The neural network classified the spectra into normal or back pain type. RESULTS: The back propagation neural was shown to have satisfactory convergence with a specificity of 79% and a sensitivity of 80%. CONCLUSIONS: Artificial intelligence neural networks appear to be a useful method of differentiating paraspinal power spectra in back-pain sufferers.

  5. Using the CMB angular power spectrum to study Dark Matter-photon interactions

    International Nuclear Information System (INIS)

    Wilkinson, Ryan J.; Boehm, Céline; Lesgourgues, Julien

    2014-01-01

    In this paper, we explore the impact of Dark Matter-photon interactions on the CMB angular power spectrum. Using the one-year data release of the Planck satellite, we derive an upper bound on the Dark Matter-photon elastic scattering cross section of σ DM−γ ≤ 8 × 10 −31 (m DM /GeV) cm 2 (68% CL) if the cross section is constant and a present-day value of σ DM−γ ≤ 6 × 10 −40 (m DM /GeV) cm 2 (68% CL) if it scales as the temperature squared. For such a limiting cross section, both the B-modes and the TT angular power spectrum are suppressed with respect to ΛCDM predictions for ℓ∼>500 and ℓ∼>3000 respectively, indicating that forthcoming data from CMB polarisation experiments and Planck could help to constrain and characterise the physics of the dark sector. This essentially initiates a new type of dark matter search that is independent of whether dark matter is annihilating, decaying or asymmetric. Thus, any CMB experiment with the ability to measure the temperature and/or polarisation power spectra at high ℓ should be able to investigate the potential interactions of dark matter and contribute to our fundamental understanding of its nature

  6. The matter power spectrum from the Ly alpha forest : an optical depth estimate

    NARCIS (Netherlands)

    Zaroubi, S; Nusser, A; Haehnelt, M; Kim, TS; Viel, M.

    2006-01-01

    We measure the matter power spectrum from 31 Ly alpha spectra spanning the redshift range of 1.6-3.6. The optical depth, tau, for Ly alpha absorption of the intergalactic medium is obtained from the flux using the inversion method of Nusser & Haehnelt. The optical depth is converted to density by

  7. Correlation Functions and Power Spectra

    DEFF Research Database (Denmark)

    Larsen, Jan

    2006-01-01

    The present lecture note is a supplement to the textbook Digital Signal Processing by J. Proakis and D.G. Manolakis used in the IMM/DTU course 02451 Digital Signal Processing and provides an extended discussion of correlation functions and power spectra. The definitions of correlation functions...... and spectra for discrete-time and continuous-time (analog) signals are pretty similar. Consequently, we confine the discussion mainly to real discrete-time signals. The Appendix contains detailed definitions and properties of correlation functions and spectra for analog as well as discrete-time signals....... It is possible to define correlation functions and associated spectra for aperiodic, periodic and random signals although the interpretation is different. Moreover, we will discuss correlation functions when mixing these basic signal types. In addition, the note include several examples for the purpose...

  8. Asymmetric dark matter and the hadronic spectra of hidden QCD

    Science.gov (United States)

    Lonsdale, Stephen J.; Schroor, Martine; Volkas, Raymond R.

    2017-09-01

    The idea that dark matter may be a composite state of a hidden non-Abelian gauge sector has received great attention in recent years. Frameworks such as asymmetric dark matter motivate the idea that dark matter may have similar mass to the proton, while mirror matter and G ×G grand unified theories provide rationales for additional gauge sectors which may have minimal interactions with standard model particles. In this work we explore the hadronic spectra that these dark QCD models can allow. The effects of the number of light colored particles and the value of the confinement scale on the lightest stable state, the dark matter candidate, are examined in the hyperspherical constituent quark model for baryonic and mesonic states.

  9. Localization and mass spectra of various matter fields on Weyl thin brane

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Tao-Tao; Zhao, Li; Zhang, Yu-Peng [Lanzhou University, Institute of Theoretical Physics, Lanzhou (China); Xie, Qun-Ying [Lanzhou University, School of Information Science and Engineering, Lanzhou (China)

    2017-06-15

    It has been shown that the thin brane model in a five-dimensional Weyl gravity can deal with the wrong-signed Friedmann-like equation in the Randall-Sundrum-1 (RS1) model. In the Weyl brane model, there are also two branes with opposite brane tensions, but the four-dimensional graviton (the gravity zero mode) is localized near the negative tension brane, while our four-dimensional universe is localized on the positive tension brane. In this paper, we consider the mass spectra of various bulk matter fields (i.e., scalar, vector, and fermion fields) on the Weyl brane. It is shown that the zero modes of those matter fields can be localized on the positive tension brane under some conditions. The mass spectra of the bulk matter fields are equidistant for the higher excited states, and relatively sparse for the lower excited states. The size of the extra dimension determines the gap of the mass spectra. We also consider the correction to the Newtonian potential in this model and it is proportional to 1/r{sup 3}. (orig.)

  10. Simple emergent power spectra from complex inflationary physics

    International Nuclear Information System (INIS)

    Dias, Mafalda; Frazer, Jonathan; Marsh, M.C. David

    2016-04-01

    We construct ensembles of random scalar potentials for N f interacting scalar fields using non-equilibrium random matrix theory, and use these to study the generation of observables during small-field inflation. For N f =O(few), these heavily featured scalar potentials give rise to power spectra that are highly non-linear, at odds with observations. For N f >>1, the superhorizon evolution of the perturbations is generically substantial, yet the power spectra simplify considerably and become more predictive, with most realisations being well approximated by a linear power spectrum. This provides proof of principle that complex inflationary physics can give rise to simple emergent power spectra. We explain how these results can be understood in terms of large N f universality of random matrix theory.

  11. Simple emergent power spectra from complex inflationary physics

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Mafalda; Frazer, Jonathan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Marsh, M.C. David [Cambridge Univ. (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics (DAMTP)

    2016-04-15

    We construct ensembles of random scalar potentials for N{sub f} interacting scalar fields using non-equilibrium random matrix theory, and use these to study the generation of observables during small-field inflation. For N{sub f}=O(few), these heavily featured scalar potentials give rise to power spectra that are highly non-linear, at odds with observations. For N{sub f}>>1, the superhorizon evolution of the perturbations is generically substantial, yet the power spectra simplify considerably and become more predictive, with most realisations being well approximated by a linear power spectrum. This provides proof of principle that complex inflationary physics can give rise to simple emergent power spectra. We explain how these results can be understood in terms of large N{sub f} universality of random matrix theory.

  12. COLORED DISSOLVED ORGANIC MATTER (CDOM) CHARACTERIZATION BY ABSORPTION AND FLUORESCENCE SPECTRA

    OpenAIRE

    Goncalves Araujo, Rafael; Ramirez-Perez, Marta; Kraberg, Alexandra; Piera, Jaume; Bracher, Astrid

    2014-01-01

    Colored dissolved organic matter (CDOM) absorption and fluorescence spectra were analyzed from samples collected in the Lena River Delta region (Siberia, Russia; summer-2013) and in the Alfacs Bay (Ebro River Delta, Spain; summer-2013/winter-2014) in order to use optical measurements to infer loading and origin of CDOM. Absorbance spectra and Excitation-Emission matrices (EEMs) were obtained with a HORIBA Aqualog® spectrofluorometer. CDOM absorption at 443nm (a443) and terrestrial absorption ...

  13. 1/f 2 Characteristics and isotropy in the fourier power spectra of visual art, cartoons, comics, mangas, and different categories of photographs.

    Science.gov (United States)

    Koch, Michael; Denzler, Joachim; Redies, Christoph

    2010-08-19

    Art images and natural scenes have in common that their radially averaged (1D) Fourier spectral power falls according to a power-law with increasing spatial frequency (1/f(2) characteristics), which implies that the power spectra have scale-invariant properties. In the present study, we show that other categories of man-made images, cartoons and graphic novels (comics and mangas), have similar properties. Further on, we extend our investigations to 2D power spectra. In order to determine whether the Fourier power spectra of man-made images differed from those of other categories of images (photographs of natural scenes, objects, faces and plants and scientific illustrations), we analyzed their 2D power spectra by principal component analysis. Results indicated that the first fifteen principal components allowed a partial separation of the different image categories. The differences between the image categories were studied in more detail by analyzing whether the mean power and the slope of the power gradients from low to high spatial frequencies varied across orientations in the power spectra. Mean power was generally higher in cardinal orientations both in real-world photographs and artworks, with no systematic difference between the two types of images. However, the slope of the power gradients showed a lower degree of mean variability across spectral orientations (i.e., more isotropy) in art images, cartoons and graphic novels than in photographs of comparable subject matters. Taken together, these results indicate that art images, cartoons and graphic novels possess relatively uniform 1/f(2) characteristics across all orientations. In conclusion, the man-made stimuli studied, which were presumably produced to evoke pleasant and/or enjoyable visual perception in human observers, form a subset of all images and share statistical properties in their Fourier power spectra. Whether these properties are necessary or sufficient to induce aesthetic perception remains

  14. Power spectra of currents off Bombay

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    Current measurements were carried out using a recording current meter across the continental shelf off Bombay, Maharashtra, India at 4 stations from an anchored ship. Power spectra were computed for selected lengths of records. Spectral energy...

  15. Use of Directional Spectra for Detection of Engine Cylinder Power Fault

    Directory of Open Access Journals (Sweden)

    Chong-Won Lee

    1997-01-01

    Full Text Available A diagnostic method, which uses the two-sided directional power spectra of complex-valued engine vibration signals, is presented and tested with four-cylinder compression and spark ignition engines for the diagnosis of cylinder power faults. As spectral estimators, the maximum likelihood and FFT methods are compared, and the multi-layer neural network is employed for pattern recognition. Experimental results show that the success rate for identifying the misfired cylinder is much higher with the use of two-sided directional power spectra than conventional one-sided power spectra.

  16. Crustal geomagnetic field - Two-dimensional intermediate-wavelength spatial power spectra

    Science.gov (United States)

    Mcleod, M. G.

    1983-01-01

    Two-dimensional Fourier spatial power spectra of equivalent magnetization values are presented for a region that includes a large portion of the western United States. The magnetization values were determined by inversion of POGO satellite data, assuming a magnetic crust 40 km thick, and were located on an 11 x 10 array with 300 km grid spacing. The spectra appear to be in good agreement with values of the crustal geomagnetic field spatial power spectra given by McLeod and Coleman (1980) and with the crustal field model given by Serson and Hannaford (1957). The spectra show evidence of noise at low frequencies in the direction along the satellite orbital track (N-S). indicating that for this particular data set additional filtering would probably be desirable. These findings illustrate the value of two-dimensional spatial power spectra both for describing the geomagnetic field statistically and as a guide for diagnosing possible noise sources.

  17. Anisotropic Behaviour of Magnetic Power Spectra in Solar Wind Turbulence.

    Science.gov (United States)

    Banerjee, S.; Saur, J.; Gerick, F.; von Papen, M.

    2017-12-01

    Introduction:High altitude fast solar wind turbulence (SWT) shows different spectral properties as a function of the angle between the flow direction and the scale dependent mean magnetic field (Horbury et al., PRL, 2008). The average magnetic power contained in the near perpendicular direction (80º-90º) was found to be approximately 5 times larger than the average power in the parallel direction (0º- 10º). In addition, the parallel power spectra was found to give a steeper (-2) power law than the perpendicular power spectral density (PSD) which followed a near Kolmogorov slope (-5/3). Similar anisotropic behaviour has also been observed (Chen et al., MNRAS, 2011) for slow solar wind (SSW), but using a different method exploiting multi-spacecraft data of Cluster. Purpose:In the current study, using Ulysses data, we investigate (i) the anisotropic behaviour of near ecliptic slow solar wind using the same methodology (described below) as that of Horbury et al. (2008) and (ii) the dependence of the anisotropic behaviour of SWT as a function of the heliospheric latitude.Method:We apply the wavelet method to calculate the turbulent power spectra of the magnetic field fluctuations parallel and perpendicular to the local mean magnetic field (LMF). According to Horbury et al., LMF for a given scale (or size) is obtained using an envelope of the envelope of that size. Results:(i) SSW intervals always show near -5/3 perpendicular spectra. Unlike the fast solar wind (FSW) intervals, for SSW, we often find intervals where power parallel to the mean field is not observed. For a few intervals with sufficient power in parallel direction, slow wind turbulence also exhibit -2 parallel spectra similar to FSW.(ii) The behaviours of parallel and perpendicular power spectra are found to be independent of the heliospheric latitude. Conclusion:In the current study we do not find significant influence of the heliospheric latitude on the spectral slopes of parallel and perpendicular

  18. Distortions in power spectra of digitized signals - II: Suggested solution

    International Nuclear Information System (INIS)

    Njau, E.C.

    1982-04-01

    In Part I of this report we developed analytical expressions which represent exactly the energy density spectra of ''digitization processes'' that are essentially involved in spectral analysis of continuous signals. Besides, we related the spectral energy density of each digitization process to the parameters of the exact spectral energy density of the corresponding signal. On this basis, we briefly discussed the forms of distortions (or false structures) which are present in normally computed power spectra when the corresponding spectra of the digitization processes are not sufficiently decoupled from or nullified in the computed spectra. The biggest worry with regard to these distortions is not only that they may mask the actual information contained in the original signal, but also they may tempt the researcher to establish false characteristics about the signal involved. It is, in this context, that any reasonable method that could be used (even conditionally) to pinpoint false structures in computed power spectra would be both timely and useful. A simple, handy guidance through which some portions of computed energy density spectra which are dominated by the false structures mentioned above, can be located is presented herein. Equations are presented which give the various frequencies at which false peaks may be located in such ''contaminated'' portions of computed energy density spectra. The occurrence of frequency shifts in computed power spectra is also briefly discussed. (author)

  19. Flow angle dependent photoacoustic Doppler power spectra under intensity-modulated continuous wave laser excitation

    Directory of Open Access Journals (Sweden)

    Yu Tong

    2016-02-01

    Full Text Available Photoacoustic Doppler (PAD power spectra showing an evident Doppler shift represent the major characteristics of the continuous wave-excited or burst wave-excited versions of PAD flow measurements. In this paper, the flow angle dependences of the PAD power spectra are investigated using an experiment setup that was established based on intensity-modulated continuous wave laser excitation. The setup has an overall configuration that is similar to a previously reported configuration, but is more sophisticated in that it accurately aligns the laser illumination with the ultrasound detection process, and in that it picks up the correct sample position. In the analysis of the power spectra data, we find that the background power spectra can be extracted by combining the output signals from the two channels of the lock-in amplifier, which is very useful for identification of the PAD power spectra. The power spectra are presented and analyzed in opposite flow directions, at different flow speeds, and at different flow angles. The power spectra at a 90° flow angle show the unique properties of symmetrical shapes due to PAD broadening. For the other flow angles, the smoothed power spectra clearly show a flow angle cosine relationship.

  20. Running of featureful primordial power spectra

    Science.gov (United States)

    Gariazzo, Stefano; Mena, Olga; Miralles, Victor; Ramírez, Héctor; Boubekeur, Lotfi

    2017-06-01

    Current measurements of the temperature and polarization anisotropy power spectra of the cosmic microwave background (CMB) seem to indicate that the naive expectation for the slow-roll hierarchy within the most simple inflationary paradigm may not be respected in nature. We show that a primordial power spectrum with localized features could in principle give rise to the observed slow-roll anarchy when fitted to a featureless power spectrum. From a model comparison perspective, and assuming that nature has chosen a featureless primordial power spectrum, we find that, while with mock Planck data there is only weak evidence against a model with localized features, upcoming CMB missions may provide compelling evidence against such a nonstandard primordial power spectrum. This evidence could be reinforced if a featureless primordial power spectrum is independently confirmed from bispectrum and/or galaxy clustering measurements.

  1. Seeded hot dark matter models with inflation

    Science.gov (United States)

    Gratsias, John; Scherrer, Robert J.; Steigman, Gary; Villumsen, Jens V.

    1993-01-01

    We examine massive neutrino (hot dark matter) models for large-scale structure in which the density perturbations are produced by randomly distributed relic seeds and by inflation. Power spectra, streaming velocities, and the Sachs-Wolfe quadrupole fluctuation are derived for this model. We find that the pure seeded hot dark matter model without inflation produces Sachs-Wolfe fluctuations far smaller than those seen by COBE. With the addition of inflationary perturbations, fluctuations consistent with COBE can be produced. The COBE results set the normalization of the inflationary component, which determines the large-scale (about 50/h Mpc) streaming velocities. The normalization of the seed power spectrum is a free parameter, which can be adjusted to obtain the desired fluctuations on small scales. The power spectra produced are very similar to those seen in mixed hot and cold dark matter models.

  2. Maturation of EEG Power Spectra in Early Adolescence: A Longitudinal Study

    Science.gov (United States)

    Cragg, Lucy; Kovacevic, Natasa; McIntosh, Anthony Randal; Poulsen, Catherine; Martinu, Kristina; Leonard, Gabriel; Paus, Tomas

    2011-01-01

    This study investigated the fine-grained development of the EEG power spectra in early adolescence, and the extent to which it is reflected in changes in peak frequency. It also sought to determine whether sex differences in the EEG power spectra reflect differential patterns of maturation. A group of 56 adolescents were tested at age 10 years and…

  3. Power-law to Power-law Mapping of Blazar Spectra from Intergalactic Absorption

    International Nuclear Information System (INIS)

    Stecker, F W; Scully, S T

    2007-01-01

    We have derived a useful analytic approximation for determining the effect of intergalactic absorption on the γ-ray spectra of TeV blazars the energy range 0.2 TeV γ γ ) is approximately logarithmic. The effect of this energy dependence is to steepen intrinsic source spectra such that a source with an approximate power-law spectral index Γ s is converted to one with an observed spectral index Γ o ≅ Γ s + ΔΓ(z) where ΔΓ(z) is a linear function of z in the redshift range 0.05-0.4. We apply this approximation to the spectra of 7 TeV blazars

  4. Interacting dark matter disguised as warm dark matter

    International Nuclear Information System (INIS)

    Boehm, Celine; Riazuelo, Alain; Hansen, Steen H.; Schaeffer, Richard

    2002-01-01

    We explore some of the consequences of dark-matter-photon interactions on structure formation, focusing on the evolution of cosmological perturbations and performing both an analytical and a numerical study. We compute the cosmic microwave background anisotropies and matter power spectrum in this class of models. We find, as the main result, that when dark matter and photons are coupled, dark matter perturbations can experience a new damping regime in addition to the usual collisional Silk damping effect. Such dark matter particles (having quite large photon interactions) behave like cold dark matter or warm dark matter as far as the cosmic microwave background anisotropies or matter power spectrum are concerned, respectively. These dark-matter-photon interactions leave specific imprints at sufficiently small scales on both of these two spectra, which may allow us to put new constraints on the acceptable photon-dark-matter interactions. Under the conservative assumption that the abundance of 10 12 M · galaxies is correctly given by the cold dark matter, and without any knowledge of the abundance of smaller objects, we obtain the limit on the ratio of the dark-matter-photon cross section to the dark matter mass σ γ-DM /m DM -6 σ Th /(100 GeV)≅6x10 -33 cm 2 GeV -1

  5. Evaluation of plasma-wave spectral density from cross-power spectra

    International Nuclear Information System (INIS)

    Ilic, D.B.; Harker, K.J.

    1975-01-01

    The plasma-wave spectral density is evaluated by performing a spatial Fourier transform on experimental cross-power spectra of ion acoustic waves. The cross-power spectra are recorded on analog magnetic tape, converted to digital form, transferred to digital magnetic tape, and Fourier transformed on a digital computer. The important effects of sampling, finite data strings, and data smoothing on the end results are discussed and illustrated. The results indicate the usefulness of the spectral density method for the study of nonlinear wave phenomena. (auth)

  6. Exponential power spectra, deterministic chaos and Lorentzian pulses in plasma edge dynamics

    International Nuclear Information System (INIS)

    Maggs, J E; Morales, G J

    2012-01-01

    Exponential spectra have been observed in the edges of tokamaks, stellarators, helical devices and linear machines. The observation of exponential power spectra is significant because such a spectral character has been closely associated with the phenomenon of deterministic chaos by the nonlinear dynamics community. The proximate cause of exponential power spectra in both magnetized plasma edges and nonlinear dynamics models is the occurrence of Lorentzian pulses in the time signals of fluctuations. Lorentzian pulses are produced by chaotic behavior in the separatrix regions of plasma E × B flow fields or the limit cycle regions of nonlinear models. Chaotic advection, driven by the potential fields of drift waves in plasmas, results in transport. The observation of exponential power spectra and Lorentzian pulses suggests that fluctuations and transport at the edge of magnetized plasmas arise from deterministic, rather than stochastic, dynamics. (paper)

  7. Diversity of soft X-ray spectra in quasars

    International Nuclear Information System (INIS)

    Elvis, M.; Wilkes, B.J.; Tananbaum, H.

    1985-01-01

    Soft X-ray spectra for three quasars obtained with the Einstein Imaging Proportional Counter covering the 0.1-4.0 keV band are reported. Power-law fits to these spectra have best-fit energy indices of 1.2 +0.6 or -0.2, for the quasar NAB 0205 + 024, 0.6 +0.3 or -0.2 for the quasar B2 1028 + 313, and 2.2 + or -0.4 for the quasar PG 1211 + 143. None of the quasars shows any evidence for a column density of cold matter in excess of the galactic values. The derived spectra demonstrate that there is no single universal power law slope for quasar X-ray spectra. The implications of these results for the X-ray background, X-ray continuum emission mechanisms, and the production of the optical/UV emission lines are briefly discussed. 46 references

  8. Fractal analysis of power spectra

    International Nuclear Information System (INIS)

    Johnston, S.

    1982-01-01

    A general argument is presented concerning the Hausdorff dimension D of the power spectrum curve for a system of N weakly-coupled oscillators. Explicit upper and lower bounds for D are derived in terms of the number N of interacting modes. The mathematical reasoning relies upon the celebrated KAM theorem concerning the perturbation of Hamiltonian systems and the finite measure of the set of destroyed tori in phase space; this set can be related to Hausdorff dimension by certain mathematical theorems. An important consequence of these results is a simple empirical test for the applicability of Hamiltonian perturbation theory in the analysis of an experimentally observed spectrum. As an illustration, the theory is applied to the interpretation of a recent numerical analysis of both the power spectrum of the Sun and certain laboratory spectra of hydrodynamic turbulence. (Auth.)

  9. Dual regression physiological modeling of resting-state EPI power spectra: Effects of healthy aging.

    Science.gov (United States)

    Viessmann, Olivia; Möller, Harald E; Jezzard, Peter

    2018-02-02

    Aging and disease-related changes in the arteriovasculature have been linked to elevated levels of cardiac cycle-induced pulsatility in the cerebral microcirculation. Functional magnetic resonance imaging (fMRI), acquired fast enough to unalias the cardiac frequency contributions, can be used to study these physiological signals in the brain. Here, we propose an iterative dual regression analysis in the frequency domain to model single voxel power spectra of echo planar imaging (EPI) data using external recordings of the cardiac and respiratory cycles as input. We further show that a data-driven variant, without external physiological traces, produces comparable results. We use this framework to map and quantify cardiac and respiratory contributions in healthy aging. We found a significant increase in the spatial extent of cardiac modulated white matter voxels with age, whereas the overall strength of cardiac-related EPI power did not show an age effect. Copyright © 2018. Published by Elsevier Inc.

  10. Spatial variation of AIA coronal Fourier power spectra

    Science.gov (United States)

    Ireland, J.; Mcateer, R. T. J.

    2015-12-01

    We describe a study of the spatial distribution of the properties of the Fourier power spectrum of time-series of AIA 171Å and 193Å data. The area studied includes examples of physically different components of the corona, such as coronal moss, a sunspot, quiet Sun and fan loop footpoints. We show that a large fraction of the power spectra are well modeled by a power spectrum that behaves like a power law f-n (n>0)at lower frequencies f, dropping to a constant value at higher frequencies. We also show that there are areas where the power spectra are better described by the above power spectrum model, plus a narrow band oscillatory feature, centered in the 3-5 minute oscillation range. These narrow-band spectral features are thought to be due to the propagation of oscillations from lower down in solar atmosphere to hotter. This allows us to produce maps of large areas of the corona showing where the propagation from one waveband to another does and does not occur. This is an important step in understanding wave propagation in different layers in the corona. We also show the 171Å and 193Å power spectrum power law indices are correlated, with 171Å power law indices in the range n = 1.8 to 2.8, and 193Å power law indices n = 2 to 3.5 approximately. Maps of the power law index show that different ranges of values of the power law indices occur in spatially contiguous parts of the corona, indicating that local spatial structure may play a role in defining the power law index value. Taken with our previous result from Ireland et al. (2015) that physically different parts of the corona have different mean values of the power law index, this new result strongly suggests that the same mechanism producing the observed power law power spectrum is operating everywhere across the corona. We discuss the nanoflare hypothesis as a possible explanation of these observations.

  11. Seismic design spectra for nuclear power plants, state-of-the-art

    International Nuclear Information System (INIS)

    Michalopoulos, A.P.; Shukla, D.K.

    1976-01-01

    The State-of-the-Art of nuclear power plant design involves the use of design response spectra together with a modal analysis of a mathematical idealization of the actual structure. The design response spectra give the maximum response to ground shaking for a family of single degree-of-freedom viscously damped oscillators. These spectra are usually described as an accelerogram giving ground acceleration as a function of time. The definition of a 'standard' design response spectra is reviewed and illustrated by data relevant to 'hard' or rock sites. Finally, the paper recommends a set of design response spectra applicable to rock sites

  12. Nonlinearities in modified gravity cosmology: Signatures of modified gravity in the nonlinear matter power spectrum

    International Nuclear Information System (INIS)

    Cui Weiguang; Zhang Pengjie; Yang Xiaohu

    2010-01-01

    A large fraction of cosmological information on dark energy and gravity is encoded in the nonlinear regime. Precision cosmology thus requires precision modeling of nonlinearities in general dark energy and modified gravity models. We modify the Gadget-2 code and run a series of N-body simulations on modified gravity cosmology to study the nonlinearities. The modified gravity model that we investigate in the present paper is characterized by a single parameter ζ, which determines the enhancement of particle acceleration with respect to general relativity (GR), given the identical mass distribution (ζ=1 in GR). The first nonlinear statistics we investigate is the nonlinear matter power spectrum at k < or approx. 3h/Mpc, which is the relevant range for robust weak lensing power spectrum modeling at l < or approx. 2000. In this study, we focus on the relative difference in the nonlinear power spectra at corresponding redshifts where different gravity models have the same linear power spectra. This particular statistics highlights the imprint of modified gravity in the nonlinear regime and the importance of including the nonlinear regime in testing GR. By design, it is less susceptible to the sample variance and numerical artifacts. We adopt a mass assignment method based on wavelet to improve the power spectrum measurement. We run a series of tests to determine the suitable simulation specifications (particle number, box size, and initial redshift). We find that, the nonlinear power spectra can differ by ∼30% for 10% deviation from GR (|ζ-1|=0.1) where the rms density fluctuations reach 10. This large difference, on one hand, shows the richness of information on gravity in the corresponding scales, and on the other hand, invalidates simple extrapolations of some existing fitting formulae to modified gravity cosmology.

  13. One-dimensional power spectrum and neutrino mass in the spectra of BOSS

    International Nuclear Information System (INIS)

    Borde, Arnaud

    2014-01-01

    The framework of the studies presented in this thesis is the one-dimensional power spectrum of the transmitted flux in the Lyman-alpha forests. The Lyman-alpha forest is an absorption pattern seen in the spectra of high redshift quasars corresponding to the absorption of the quasar light by the hydrogen clouds along the line of sight. It is a powerful cosmological tool as it probes relatively small scales, of the order of a few Mpc. It is also sensible to small non-linear effects such as the one induced by massive neutrinos. First, we have developed two independent methods to measure the one-dimensional power spectrum of the transmitted flux in the Lyman-alpha forest. The first method is based on a Fourier transform, and the second on a maximum likelihood estimator. The two methods are independent and have different systematic uncertainties. The determination of the noise level in the data spectra was subject to a novel treatment, because of its significant impact on the derived power spectrum. We applied the two methods to 13,821 quasar spectra from SDSS-III/BOSS DR9 selected from a larger sample of over 60,000 spectra on the basis of their high quality, large signal-to-noise ratio, and good spectral resolution. The power spectra measured using either approach are in good agreement over all twelve redshift bins from =2.2 to =4.4, and scales from 0.001 (km/s)"-"1 to 0.02 (km/s)"-"1. We carefully determined the methodological and instrumental systematic uncertainties of our measurements. Then, we present a suite of cosmological N-body simulations with cold dark matter, baryons and neutrinos aiming at modeling the low-density regions of the IGM as probed by the Lyman-alpha forests at high redshift. The simulations are designed to match the requirements imposed by the quality of BOSS and eBOSS data. They are made using either 768"3 or 192"3 particles of each type, spanning volumes ranging from (25 Mpc/h)"3 for high-resolution simulations to (100 Mpc/h)"3 for large

  14. Calculation of power spectra for block coded signals

    DEFF Research Database (Denmark)

    Justesen, Jørn

    2001-01-01

    We present some improvements in the procedure for calculating power spectra of signals based on finite state descriptions and constant block size. In addition to simplified calculations, our results provide some insight into the form of the closed expressions and to the relation between the spect...

  15. Power spectra as a diagnostic tool in probing statistical/nonstatistical behavior in unimolecular reactions

    Science.gov (United States)

    Chang, Xiaoyen Y.; Sewell, Thomas D.; Raff, Lionel M.; Thompson, Donald L.

    1992-11-01

    The possibility of utilizing different types of power spectra obtained from classical trajectories as a diagnostic tool to identify the presence of nonstatistical dynamics is explored by using the unimolecular bond-fission reactions of 1,2-difluoroethane and the 2-chloroethyl radical as test cases. In previous studies, the reaction rates for these systems were calculated by using a variational transition-state theory and classical trajectory methods. A comparison of the results showed that 1,2-difluoroethane is a nonstatistical system, while the 2-chloroethyl radical behaves statistically. Power spectra for these two systems have been generated under various conditions. The characteristics of these spectra are as follows: (1) The spectra for the 2-chloroethyl radical are always broader and more coupled to other modes than is the case for 1,2-difluoroethane. This is true even at very low levels of excitation. (2) When an internal energy near or above the dissociation threshold is initially partitioned into a local C-H stretching mode, the power spectra for 1,2-difluoroethane broaden somewhat, but discrete and somewhat isolated bands are still clearly evident. In contrast, the analogous power spectra for the 2-chloroethyl radical exhibit a near complete absence of isolated bands. The general appearance of the spectrum suggests a very high level of mode-to-mode coupling, large intramolecular vibrational energy redistribution (IVR) rates, and global statistical behavior. (3) The appearance of the power spectrum for the 2-chloroethyl radical is unaltered regardless of whether the initial C-H excitation is in the CH2 or the CH2Cl group. This result also suggests statistical behavior. These results are interpreted to mean that power spectra may be used as a diagnostic tool to assess the statistical character of a system. The presence of a diffuse spectrum exhibiting a nearly complete loss of isolated structures indicates that the dissociation dynamics of the molecule will

  16. Full-sky formulae for weak lensing power spectra from total angular momentum method

    International Nuclear Information System (INIS)

    Yamauchi, Daisuke; Taruya, Atsushi; Namikawa, Toshiya

    2013-01-01

    We systematically derive full-sky formulae for the weak lensing power spectra generated by scalar, vector and tensor perturbations from the total angular momentum (TAM) method. Based on both the geodesic and geodesic deviation equations, we first give the gauge-invariant expressions for the deflection angle and Jacobi map as observables of the CMB lensing and cosmic shear experiments. We then apply the TAM method, originally developed in the theoretical studies of CMB, to a systematic derivation of the angular power spectra. The TAM representation, which characterizes the total angular dependence of the spatial modes projected along a line-of-sight, can carry all the information of the lensing modes generated by scalar, vector, and tensor metric perturbations. This greatly simplifies the calculation, and we present a complete set of the full-sky formulae for angular power spectra in both the E-/B-mode cosmic shear and gradient-/curl-mode lensing potential of deflection angle. Based on the formulae, we give illustrative examples of non-vanishing B-mode cosmic shear and curl-mode of deflection angle in the presence of the vector and tensor perturbations, and explicitly compute the power spectra

  17. Planck 2013 results. XV. CMB power spectra and likelihood

    CERN Document Server

    Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, L.Y.; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.M.; Desert, F.X.; Dickinson, C.; Diego, J.M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Gaier, T.C.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Heraud, Y.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, T.R.; Jaffe, A.H.; Jewell, J.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Laureijs, R.J.; Lawrence, C.R.; Le Jeune, M.; Leach, S.; Leahy, J.P.; Leonardi, R.; Leon-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P.B.; Lindholm, V.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P.M.; Macias-Perez, J.F.; Maffei, B.; Maino, D.; Mandolesi, N.; Marinucci, D.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Millea, M.; Mitra, S.; Miville-Deschenes, M.A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Norgaard-Nielsen, H.U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I.J.; Orieux, F.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Paykari, P.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prezeau, G.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Rahlin, A.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ringeval, C.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubino-Martin, J.A.; Rusholme, B.; Sandri, M.; Sanselme, L.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Starck, J.L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Turler, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; White, M.; White, S.D.M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-01-01

    We present the Planck likelihood, a complete statistical description of the two-point correlation function of the CMB temperature fluctuations. We use this likelihood to derive the Planck CMB power spectrum over three decades in l, covering 2 = 50, we employ a correlated Gaussian likelihood approximation based on angular cross-spectra derived from the 100, 143 and 217 GHz channels. We validate our likelihood through an extensive suite of consistency tests, and assess the impact of residual foreground and instrumental uncertainties on cosmological parameters. We find good internal agreement among the high-l cross-spectra with residuals of a few uK^2 at l <= 1000. We compare our results with foreground-cleaned CMB maps, and with cross-spectra derived from the 70 GHz Planck map, and find broad agreement in terms of spectrum residuals and cosmological parameters. The best-fit LCDM cosmology is in excellent agreement with preliminary Planck polarisation spectra. The standard LCDM cosmology is well constrained b...

  18. The effect of thermal velocities on structure formation in N-body simulations of warm dark matter

    Science.gov (United States)

    Leo, Matteo; Baugh, Carlton M.; Li, Baojiu; Pascoli, Silvia

    2017-11-01

    We investigate the impact of thermal velocities in N-body simulations of structure formation in warm dark matter models. Adopting the commonly used approach of adding thermal velocities, randomly selected from a Fermi-Dirac distribution, to the gravitationally-induced velocities of the simulation particles, we compare the matter and velocity power spectra measured from CDM and WDM simulations, in the latter case with and without thermal velocities. This prescription for adding thermal velocities introduces numerical noise into the initial conditions, which influences structure formation. At early times, the noise affects dramatically the power spectra measured from simulations with thermal velocities, with deviations of the order of ~ Script O(10) (in the matter power spectra) and of the order of ~ Script O(102) (in the velocity power spectra) compared to those extracted from simulations without thermal velocities. At late times, these effects are less pronounced with deviations of less than a few percent. Increasing the resolution of the N-body simulation shifts these discrepancies to higher wavenumbers. We also find that spurious haloes start to appear in simulations which include thermal velocities at a mass that is ~3 times larger than in simulations without thermal velocities.

  19. Circadian variation of EEG power spectra in NREM and REM sleep in humans: dissociation from body temperature

    Science.gov (United States)

    Dijk, D. J.

    1999-01-01

    In humans, EEG power spectra in REM and NREM sleep, as well as characteristics of sleep spindles such as their duration, amplitude, frequency and incidence, vary with circadian phase. Recently it has been hypothesized that circadian variations in EEG spectra in humans are caused by variations in brain or body temperature and may not represent phenomena relevant to sleep regulatory processes. To test this directly, a further analysis of EEG power spectra - collected in a forced desynchrony protocol in which sleep episodes were scheduled to a 28-h period while the rhythms of body temperature and plasma melatonin were oscillating at their near 24-h period - was carried out. EEG power spectra were computed for NREM and REM sleep occurring between 90-120 and 270-300 degrees of the circadian melatonin rhythm, i.e. just after the clearance of melatonin from plasma in the 'morning' and just after the 'evening' increase in melatonin secretion. Average body temperatures during scheduled sleep at these two circadian phases were identical (36.72 degrees C). Despite identical body temperatures, the power spectra in NREM sleep were very different at these two circadian phases. EEG activity in the low frequency spindle range was significantly and markedly enhanced after the evening increase in plasma melatonin as compared to the morning phase. For REM sleep, significant differences in power spectra during these two circadian phases, in particular in the alpha range, were also observed. The results confirm that EEG power spectra in NREM and REM sleep vary with circadian phase, suggesting that the direct contribution of temperature to the circadian variation in EEG power spectra is absent or only minor, and are at variance with the hypothesis that circadian variations in EEG power spectra are caused by variations in temperature.

  20. Accurate initial conditions in mixed Dark Matter--Baryon simulations

    CERN Document Server

    Valkenburg, Wessel

    2017-06-01

    We quantify the error in the results of mixed baryon--dark-matter hydrodynamic simulations, stemming from outdated approximations for the generation of initial conditions. The error at redshift 0 in contemporary large simulations, is of the order of few to ten percent in the power spectra of baryons and dark matter, and their combined total-matter power spectrum. After describing how to properly assign initial displacements and peculiar velocities to multiple species, we review several approximations: (1) {using the total-matter power spectrum to compute displacements and peculiar velocities of both fluids}, (2) scaling the linear redshift-zero power spectrum back to the initial power spectrum using the Newtonian growth factor ignoring homogeneous radiation, (3) using longitudinal-gauge velocities with synchronous-gauge densities, and (4) ignoring the phase-difference in the Fourier modes for the offset baryon grid, relative to the dark-matter grid. Three of these approximations do not take into account that ...

  1. Adiabatic regularization of power spectra in nonminimally coupled chaotic inflation

    Energy Technology Data Exchange (ETDEWEB)

    Alinea, Allan L., E-mail: alinea@het.phys.sci.osaka-u.ac.jp [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan)

    2016-10-01

    We investigate the effect of adiabatic regularization on both the tensor- and scalar-perturbation power spectra in nonminimally coupled chaotic inflation. Similar to that of the minimally coupled general single-field inflation, we find that the subtraction term is suppressed by an exponentially decaying factor involving the number of e -folds. By following the subtraction term long enough beyond horizon crossing, the regularized power spectrum tends to the ''bare'' power spectrum. This study justifies the use of the unregularized (''bare'') power spectrum in standard calculations.

  2. Influence of ~7 keV sterile neutrino dark matter on the process of reionization

    DEFF Research Database (Denmark)

    Rudakovskyi, Anton; Iakubovskyi, Dmytro

    2016-01-01

    Recent reports of a weak unidentified emission line at ~3.5 keV found in spectra of several matter-dominated objects may give a clue to resolve the long-standing problem of dark matter. One of the best physically motivated particle candidate able to produce such an extra line is sterile neutrino...... neutrino dark matter able to produce the observed line at ~3.5 keV, to the process of reionization. By incorporating dark matter power spectra for ~7 keV sterile neutrinos into extended semi-analytical `bubble' model of reionization we obtain that such sterile neutrino dark matter would produce...

  3. Measurement of spectra for intra-oral X-ray beams using biological materials as attenuator

    International Nuclear Information System (INIS)

    Zenóbio, Madelon A.F.; Nogueira-Tavares, Maria S.; Zenóbio, Elton G.; Squair, Peterson Lima; Santos, Marcus A.P.; Silva, Teógenes A. da

    2011-01-01

    In diagnostic radiology, the radiation interaction probability in matter is a strong function of the X-ray energy. The knowledge of the X-ray energy spectral distribution allows optimizing the radiographic imaging system in order to obtain high quality images with as low as reasonably achievable patient doses. In this study, transmitted X-ray spectra through dentin and enamel that are existing materials in intra-oral radiology were experimentally determined in an X-ray equipment with 40–70 kV variable range. Dentin and enamel samples with 0.4–3.8 and 0.6–2.6 mm thick were used as attenuators. X-ray transmitted spectra were measured with XR-100T model CdTe detector and half-value layers (HVL) were determined. Characteristics of both dentin and enamel transmitted spectra showed that they have differences in the penetration power in matter and in the spectrum distribution. The results will be useful for phantom developments based on dentin and enamel for image quality control in dental radiology. - Highlights: ► The X-ray energy spectral distribution, optimize the radiographic imaging system. Transmitted X-ray spectra through dentin and enamel were experimentally determined. X-ray transmitted spectra were measured (XR-100T model CdTe detector). The transmitted spectra showed differences in the penetration power and spectrum distribution. Dentin and enamel transmitted spectra will be useful for phantom developments.

  4. Power spectrum of dark matter substructure in strong gravitational lenses

    Science.gov (United States)

    Diaz Rivero, Ana; Cyr-Racine, Francis-Yan; Dvorkin, Cora

    2018-01-01

    Studying the smallest self-bound dark matter structure in our Universe can yield important clues about the fundamental particle nature of dark matter. Galaxy-scale strong gravitational lensing provides a unique way to detect and characterize dark matter substructures at cosmological distances from the Milky Way. Within the cold dark matter (CDM) paradigm, the number of low-mass subhalos within lens galaxies is expected to be large, implying that their contribution to the lensing convergence field is approximately Gaussian and could thus be described by their power spectrum. We develop here a general formalism to compute from first principles the substructure convergence power spectrum for different populations of dark matter subhalos. As an example, we apply our framework to two distinct subhalo populations: a truncated Navarro-Frenk-White subhalo population motivated by standard CDM, and a truncated cored subhalo population motivated by self-interacting dark matter (SIDM). We study in detail how the subhalo abundance, mass function, internal density profile, and concentration affect the amplitude and shape of the substructure power spectrum. We determine that the power spectrum is mostly sensitive to a specific combination of the subhalo abundance and moments of the mass function, as well as to the average tidal truncation scale of the largest subhalos included in the analysis. Interestingly, we show that the asymptotic slope of the substructure power spectrum at large wave number reflects the internal density profile of the subhalos. In particular, the SIDM power spectrum exhibits a characteristic steepening at large wave number absent in the CDM power spectrum, opening the possibility of using this observable, if at all measurable, to discern between these two scenarios.

  5. Earthquake response spectra for seismic design of nuclear power plants in the UK

    International Nuclear Information System (INIS)

    Bommer, Julian J.; Papaspiliou, Myrto; Price, Warren

    2011-01-01

    Highlights: → Seismic design of UK nuclear power plants usually based on PML response spectra. → We review derivation of PML spectra in terms of earthquake data used and procedure. → The data include errors and represent a small fraction of what is now available. → Seismic design loads in current practice are derived as mean uniform hazard spectra. → The need to capture epistemic uncertainty makes use of single equation indefensible. - Abstract: Earthquake actions for the seismic design of nuclear power plants in the United Kingdom are generally based on spectral shapes anchored to peak ground acceleration (PGA) values obtained from a single predictive equation. Both the spectra and the PGA prediction equation were derived in the 1980s. The technical bases for these formulations of seismic loading are now very dated if compared with the state-of-the-art in this field. Alternative spectral shapes are explored and the options, and the associated benefits and challenges, for generating uniform hazard response spectra instead of fixed shapes anchored to PGA are discussed.

  6. Generation of floor response spectra for a model structure of nuclear power plant

    International Nuclear Information System (INIS)

    Vaidyanathan, C.V.; Kamatchi, P.; Ravichandran, R.; Lakshmanan, N.

    2003-01-01

    The importance of Nuclear power plants and the consequences of a nuclear accident require that the nuclear structures be designed for the most severe environmental conditions. Earthquakes constitutes major design consideration for the system, structures and equipment of a nuclear power plant. The design of structures on ground is based on the ground response spectra. Many important parts of a nuclear power plant facility are attached to the principal parts of the structure and respond in a manner determined by the structural response rather than by the general ground motion to which the structure is supported. Hence the seismic response of equipment is generally based on the response spectrum of the floor on which it is mounted. In this paper such floor response spectra have been generated at different nodes of a chosen model structure of a nuclear power plant. In the present study a detailed nonlinear time history analysis has been carried out on the mathematical model of the chosen Nuclear Power Plant model structure with the spectrum compatible time history. The acceleration response results of the time history analysis has been used in the spectral analysis and the response spectra are generated. Further peak broadening has been done to account for uncertainties in the material properties and soil characteristics. (author)

  7. Estimation of burst-mode LDA power spectra

    DEFF Research Database (Denmark)

    Velte, Clara Marika; George, William K.; Buchhave, Preben

    2014-01-01

    . The signal can be interpreted correctly by applying residence time weighting to all statistics and using the residence time-weighted discrete Fourier transform to compute the Fourier transform. A new spectral algorithm using the latter is applied to two experiments: a cylinder wake and an axisymmetric......The estimation of power spectra from LDA data provides signal processing challenges for fluid dynamicists for several reasons: acquisition is dictated by randomly arriving particles, the registered particle velocities tend to be biased toward higher values, and the signal is highly intermittent...

  8. Critical Opalescence in Baryonic QCD Matter

    OpenAIRE

    Antoniou, N. G.; Diakonos, F. K.; Kapoyannis, A. S.; Kousouris, K. S.

    2006-01-01

    We show that critical opalescence, a clear signature of second-order phase transition in conventional matter, manifests itself as critical intermittency in QCD matter produced in experiments with nuclei. This behaviour is revealed in transverse momentum spectra as a pattern of power laws in factorial moments, to all orders, associated with baryon production. This phenomenon together with a similar effect in the isoscalar sector of pions (sigma mode) provide us with a set of observables associ...

  9. On the cosmic-ray spectra of three-body lepton-flavor-violating dark matter decays

    International Nuclear Information System (INIS)

    Carone, Christopher D.; Cukierman, Ari; Primulando, Reinard

    2011-01-01

    We consider possible leptonic three-body decays of spin-1/2, charge-asymmetric dark matter. Assuming a general Dirac structure for the four-fermion contact interactions of interest, we study the cosmic-ray electron and positron spectra and show that good fits to the current data can be obtained for both charged-lepton-flavor-conserving and flavor-violating decay channels. We find that different choices for the Dirac structure of the underlying decay operator can be significantly compensated by different choices for the dark matter mass and lifetime. The decay modes we consider provide differing predictions for the cosmic-ray positron fraction at energies higher than those currently probed at the PAMELA experiment; these predictions might be tested at cosmic-ray detectors like AMS-02.

  10. On the causes of spectral enhancements in solar wind power spectra

    Science.gov (United States)

    Unti, T.; Russell, C. T.

    1976-01-01

    Enhancements in power spectra of the solar-wind ion flux in the frequency neighborhood of 0.5 Hz had been noted by Unti et al. (1973). It was speculated that these were due to convected small-scale density irregularities. In this paper, 54 flux spectra calculated from OGO 5 data are examined. It is seen that the few prominent spectral peaks which occur were not generated by density irregularities, but were due to several different causes, including convected discontinuities and propagating transverse waves. A superposition of many spectra, however, reveals a moderate enhancement at a frequency corresponding to convected features with a correlation length of a proton gyroradius, consistent with the results of Neugebauer (1975).

  11. Logarithmic divergences in the k-inflationary power spectra computed through the uniform approximation

    Energy Technology Data Exchange (ETDEWEB)

    Alinea, Allan L.; Kubota, Takahiro; Naylor, Wade, E-mail: alinea@het.phys.sci.osaka-u.ac.jp, E-mail: kubota@celas.osaka-u.ac.jp, E-mail: naylor@phys.sci.osaka-u.ac.jp [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan)

    2016-02-01

    We investigate a calculation method for solving the Mukhanov-Sasaki equation in slow-roll k-inflation based on the uniform approximation (UA) in conjunction with an expansion scheme for slow-roll parameters with respect to the number of e-folds about the so-called turning point. Earlier works on this method have so far gained some promising results derived from the approximating expressions for the power spectra among others, up to second order with respect to the Hubble and sound flow parameters, when compared to other semi-analytical approaches (e.g., Green's function and WKB methods). However, a closer inspection is suggestive that there is a problem when higher-order parts of the power spectra are considered; residual logarithmic divergences may come out that can render the prediction physically inconsistent. Looking at this possibility, we map out up to what order with respect to the mentioned parameters several physical quantities can be calculated before hitting a logarithmically divergent result. It turns out that the power spectra are limited up to second order, the tensor-to-scalar ratio up to third order, and the spectral indices and running converge to all orders. This indicates that the expansion scheme is incompatible with the working equations derived from UA for the power spectra but compatible with that of the spectral indices. For those quantities that involve logarithmically divergent terms in the higher-order parts, existing results in the literature for the convergent lower-order parts calculated in the equivalent fashion should be viewed with some caution; they do not rest on solid mathematical ground.

  12. H I anisotropies associated with radio-polarimetric filaments . Steep power spectra associated with cold gas

    Science.gov (United States)

    Kalberla, P. M. W.; Kerp, J.; Haud, U.; Haverkorn, M.

    2017-10-01

    Context. LOFAR detected toward 3C 196 linear polarization structures which were found subsequently to be closely correlated with cold filamentary H I structures. The derived direction-dependent H I power spectra revealed marked anisotropies for narrow ranges in velocity, sharing the orientation of the magnetic field as expected for magneto-hydrodynamical (MHD) turbulence. Aims: Using the Galactic portion of the Effelsberg-Bonn H I Survey (EBHIS) we continue our study of such anisotropies in the H I distribution in direction of two WSRT fields, Horologium and Auriga; both are well known for their prominent radio-polarimetric depolarization canals. At 349 MHz the observed pattern in total intensity is insignificant but polarized intensity and polarization angle show prominent ubiquitous structures with so far unknown origin. Methods: Apodizing the H I survey data by applying a rotational symmetric 50% Tukey window, we derive average and position angle dependent power spectra. We fit power laws and characterize anisotropies in the power distribution. We used a Gaussian analysis to determine relative abundances for the cold and warm neutral medium. Results: For the analyzed radio-polarimetric targets significant anisotropies are detected in the H I power spectra; their position angles are aligned to the prominent depolarization canals, initially detected by WSRT. H I anisotropies are associated with steep power spectra. Steep power spectra, associated with cold gas, are detected also in other fields. Conclusions: Radio-polarimetric depolarization canals are associated with filamentary H I structures that belong to the cold neutral medium (CNM). Anisotropies in the CNM are in this case linked to a steepening of the power-spectrum spectral index, indicating that phase transitions in a turbulent medium occur on all scales. Filamentary H I structures, driven by thermal instabilities, and radio-polarimetric filaments are associated with each other. The magneto-ionic medium

  13. Spectra processing at tooth enamel dosimetry: Analytical description of EPR spectrum at different microwave power

    International Nuclear Information System (INIS)

    Tieliewuhan, E.; Ivannikov, A.; Zhumadilov, K.; Nalapko, M.; Tikunov, D.; Skvortsov, V.; Stepanenko, V.; Toyoda, S.; Tanaka, K.; Endo, S.; Hoshi, M.

    2006-01-01

    Variation of the electron paramagnetic resonance (EPR) spectrum of the human tooth enamel recorded at different microwave power is investigated. The analytical models describing the native and the radiation-induced signals in the enamel are proposed, which fit the experimental spectra in wide range of microwave power. These models are designed to use for processing the spectra of irradiated enamel at determination of the absorbed dose from the intensity of the radiation-induced signal

  14. Applications and real life spectra in the power generation industry

    International Nuclear Information System (INIS)

    Nix, K.J.; Lindley, T.C.

    1988-12-01

    Loading spectra encountered in various structures, machines, and components in the Power Generation Industry are presented from the viewpoint of fatigue analysis and structural integrity assessment. Although particular attention is paid to loading transients in turbo-generators, other items such as pressure vessels, pumped storage, nuclear plant pressure circuitry and wind turbines are also considered. (author)

  15. Critical opalescence in baryonic QCD matter.

    Science.gov (United States)

    Antoniou, N G; Diakonos, F K; Kapoyannis, A S; Kousouris, K S

    2006-07-21

    We show that critical opalescence, a clear signature of second-order phase transition in conventional matter, manifests itself as critical intermittency in QCD matter produced in experiments with nuclei. This behavior is revealed in transverse momentum spectra as a pattern of power laws in factorial moments, to all orders, associated with baryon production. This phenomenon together with a similar effect in the isoscalar sector of pions (sigma mode) provide us with a set of observables associated with the search for the QCD critical point in experiments with nuclei at high energies.

  16. Critical Opalescence in Baryonic QCD Matter

    Science.gov (United States)

    Antoniou, N. G.; Diakonos, F. K.; Kapoyannis, A. S.; Kousouris, K. S.

    2006-07-01

    We show that critical opalescence, a clear signature of second-order phase transition in conventional matter, manifests itself as critical intermittency in QCD matter produced in experiments with nuclei. This behavior is revealed in transverse momentum spectra as a pattern of power laws in factorial moments, to all orders, associated with baryon production. This phenomenon together with a similar effect in the isoscalar sector of pions (sigma mode) provide us with a set of observables associated with the search for the QCD critical point in experiments with nuclei at high energies.

  17. Critical Opalescence in Baryonic QCD Matter

    International Nuclear Information System (INIS)

    Antoniou, N. G.; Diakonos, F. K.; Kapoyannis, A. S.; Kousouris, K. S.

    2006-01-01

    We show that critical opalescence, a clear signature of second-order phase transition in conventional matter, manifests itself as critical intermittency in QCD matter produced in experiments with nuclei. This behavior is revealed in transverse momentum spectra as a pattern of power laws in factorial moments, to all orders, associated with baryon production. This phenomenon together with a similar effect in the isoscalar sector of pions (sigma mode) provide us with a set of observables associated with the search for the QCD critical point in experiments with nuclei at high energies

  18. The role of the eROSITA all-sky survey in searches for sterile neutrino dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Zandanel, Fabio; Weniger, Christoph; Ando, Shin' ichiro, E-mail: f.zandanel@uva.nl, E-mail: c.weniger@uva.nl, E-mail: s.ando@uva.nl [GRAPPA Institute, University of Amsterdam, 1098 XH Amsterdam (Netherlands)

    2015-09-01

    We investigate for the first time the potential of angular auto- and cross-correlation power spectra in identifying sterile neutrino dark matter in the cosmic X-ray background. We take as reference the performance of the soon-to-be-launched eROSITA satellite. The main astrophysical background sources against sterile neutrino decays are active galactic nuclei, galaxies powered by X-ray binaries, and clusters of galaxies. While sterile neutrino decays are always subdominant in the auto-correlation power spectra, they can be efficiently enhanced when cross-correlating with tracers of the dark matter distribution such as galaxies in the 2MASS catalogues. We show that the planned four-years eROSITA all-sky survey will provide a large enough photon statistics to potentially yield very stringent constraints on the decay lifetime, enabling to firmly test the recently claimed 3.56-keV X-ray line found towards several clusters and galaxies and its decaying dark matter interpretation. However, we also show that in order to fully exploit the potential of eROSITA for dark matter searches, it is vital to overcome the shot-noise limitations inherent to galaxy catalogues as tracers for the dark matter distribution.

  19. Running from features: Optimized evaluation of inflationary power spectra

    Science.gov (United States)

    Motohashi, Hayato; Hu, Wayne

    2015-08-01

    In models like axion monodromy, temporal features during inflation which are not associated with its ending can produce scalar, and to a lesser extent, tensor power spectra where deviations from scale-free power law spectra can be as large as the deviations from scale invariance itself. Here the standard slow-roll approach breaks down since its parameters evolve on an e -folding scale Δ N much smaller than the e -folds to the end of inflation. Using the generalized slow-roll approach, we show that the expansion of observables in a hierarchy of potential or Hubble evolution parameters comes from a Taylor expansion of the features around an evaluation point that can be optimized. Optimization of the leading-order expression provides a sufficiently accurate approximation for current data as long as the power spectrum can be described over the well-observed few e -folds by the local tilt and running. Standard second-order approaches, often used in the literature, ironically are worse than leading-order approaches due to inconsistent evaluation of observables. We develop a new optimized next-order approach which predicts observables to 10-3 even for Δ N ˜1 where all parameters in the infinite hierarchy are of comparable magnitude. For models with Δ N ≪1 , the generalized slow-roll approach provides integral expressions that are accurate to second order in the deviation from scale invariance. Their evaluation in the monodromy model provides highly accurate explicit relations between the running oscillation amplitude, frequency, and phase in the curvature spectrum and parameters of the potential.

  20. Hadronic energy spectra from nuclear collisions: Effects from collective transverse flow and the phase transition to quark matter

    International Nuclear Information System (INIS)

    Heinz, U.

    1988-11-01

    I give an overview of the processes determining the shape of energy spectra of hadrons emitted in relativistic nuclear collisions, and discuss how one can extract from them information on the presence of collective transverse flow and on the transition to quark-gluon matter in such collisions. 6 refs., 3 figs

  1. Planck 2013 results. XV. CMB power spectra and likelihood

    Science.gov (United States)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Gaier, T. C.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Laureijs, R. J.; Lawrence, C. R.; Le Jeune, M.; Leach, S.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Marinucci, D.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Millea, M.; Mitra, S.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Orieux, F.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Paykari, P.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rahlin, A.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ringeval, C.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Sanselme, L.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    This paper presents the Planck 2013 likelihood, a complete statistical description of the two-point correlation function of the CMB temperature fluctuations that accounts for all known relevant uncertainties, both instrumental and astrophysical in nature. We use this likelihood to derive our best estimate of the CMB angular power spectrum from Planck over three decades in multipole moment, ℓ, covering 2 ≤ ℓ ≤ 2500. The main source of uncertainty at ℓ ≲ 1500 is cosmic variance. Uncertainties in small-scale foreground modelling and instrumental noise dominate the error budget at higher ℓs. For ℓ impact of residual foreground and instrumental uncertainties on the final cosmological parameters. We find good internal agreement among the high-ℓ cross-spectra with residuals below a few μK2 at ℓ ≲ 1000, in agreement with estimated calibration uncertainties. We compare our results with foreground-cleaned CMB maps derived from all Planck frequencies, as well as with cross-spectra derived from the 70 GHz Planck map, and find broad agreement in terms of spectrum residuals and cosmological parameters. We further show that the best-fit ΛCDM cosmology is in excellent agreement with preliminary PlanckEE and TE polarisation spectra. We find that the standard ΛCDM cosmology is well constrained by Planck from the measurements at ℓ ≲ 1500. One specific example is the spectral index of scalar perturbations, for which we report a 5.4σ deviation from scale invariance, ns = 1. Increasing the multipole range beyond ℓ ≃ 1500 does not increase our accuracy for the ΛCDM parameters, but instead allows us to study extensions beyond the standard model. We find no indication of significant departures from the ΛCDM framework. Finally, we report a tension between the Planck best-fit ΛCDM model and the low-ℓ spectrum in the form of a power deficit of 5-10% at ℓ ≲ 40, with a statistical significance of 2.5-3σ. Without a theoretically motivated model for

  2. A holistic view of unstable dark matter. Spectral and anisotropy signatures in astrophysical backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Le

    2010-11-15

    The nature of dark matter is one of the key outstanding problems in both particle and astrophysics. If dark matter decays or annihilates into electrons and positrons, it can affect diffuse radiation backgrounds observed in astrophysics. In this thesis, we propose a new, more general analysis of constraints on dark matter models. For any decaying dark matter model, constraints on mass and lifetime can be obtained by folding the specific dark matter decay spectrum with a response function. We derive these response functions from full-sky radio surveys and Fermi-LAT gamma-ray observations as well as from the local positron fluxes measured by the PAMELA satellite experiment and apply them to place constraints on some specific dark matter decay models. We also discuss the influence of astrophysical uncertainties on the response function, such as the uncertainties from propagation models and from the spatial distribution of the dark matter. Moreover, an anisotropy analysis of full-sky emission gamma-ray and radio maps is performed to identify possible signatures of annihilating dark matter. We calculate angular power spectra of the cosmological background of synchrotron emission from dark matter annihilations into electron positron pairs. We compare the power spectra with the anisotropy of astrophysical and cosmological radio backgrounds, from normal galaxies, radio-galaxies, galaxy cluster accretion shocks, the cosmic microwave background and Galactic foregrounds. In addition, we develop a numerical tool to compute gamma-ray emission from such electrons and positrons diffusing in the smooth host halo and in substructure halos with masses down to 10{sup -6}M{sub s}un. We show that, unlike the total gamma-ray angular power spectrum observed by Fermi-LAT, the angular power spectrum from the inverse Compton scattering is exponentially suppressed below an angular scale determined by the diffusion length of electrons and positrons. (orig.)

  3. A holistic view of unstable dark matter. Spectral and anisotropy signatures in astrophysical backgrounds

    International Nuclear Information System (INIS)

    Zhang, Le

    2010-11-01

    The nature of dark matter is one of the key outstanding problems in both particle and astrophysics. If dark matter decays or annihilates into electrons and positrons, it can affect diffuse radiation backgrounds observed in astrophysics. In this thesis, we propose a new, more general analysis of constraints on dark matter models. For any decaying dark matter model, constraints on mass and lifetime can be obtained by folding the specific dark matter decay spectrum with a response function. We derive these response functions from full-sky radio surveys and Fermi-LAT gamma-ray observations as well as from the local positron fluxes measured by the PAMELA satellite experiment and apply them to place constraints on some specific dark matter decay models. We also discuss the influence of astrophysical uncertainties on the response function, such as the uncertainties from propagation models and from the spatial distribution of the dark matter. Moreover, an anisotropy analysis of full-sky emission gamma-ray and radio maps is performed to identify possible signatures of annihilating dark matter. We calculate angular power spectra of the cosmological background of synchrotron emission from dark matter annihilations into electron positron pairs. We compare the power spectra with the anisotropy of astrophysical and cosmological radio backgrounds, from normal galaxies, radio-galaxies, galaxy cluster accretion shocks, the cosmic microwave background and Galactic foregrounds. In addition, we develop a numerical tool to compute gamma-ray emission from such electrons and positrons diffusing in the smooth host halo and in substructure halos with masses down to 10 -6 M s un. We show that, unlike the total gamma-ray angular power spectrum observed by Fermi-LAT, the angular power spectrum from the inverse Compton scattering is exponentially suppressed below an angular scale determined by the diffusion length of electrons and positrons. (orig.)

  4. Intrinsic dendritic filtering gives low-pass power spectra of local field potentials

    DEFF Research Database (Denmark)

    Lindén, Henrik; Pettersen, Klas H; Einevoll, Gaute T

    2010-01-01

    of contributions to the LFP from a single layer-5 pyramidal neuron and a single layer-4 stellate neuron receiving synaptic input. An intrinsic dendritic low-pass filtering effect of the LFP signal, previously demonstrated for extracellular signatures of action potentials, is seen to strongly affect the LFP power...... spectra, even for frequencies as low as 10 Hz for the example pyramidal neuron. Further, the LFP signal is found to depend sensitively on both the recording position and the position of the synaptic input: the LFP power spectra recorded close to the active synapse are typically found to be less low......The local field potential (LFP) is among the most important experimental measures when probing neural population activity, but a proper understanding of the link between the underlying neural activity and the LFP signal is still missing. Here we investigate this link by mathematical modeling...

  5. Spatial power-spectra from Yohkoh soft X-ray images

    Science.gov (United States)

    Martens, Petrus C. H.; Gomez, Daniel O.

    1992-01-01

    We analyze three sequences of images from active regions, and a full disk image obtained by Yohkoh's Soft X-ray Telescope. Two sequences are from a region at center disk observed through different filters, and one sequence is from the limb. After Fourier-transforming the X-ray intensity of the images we find nearly isotropic power-spectra with an azimuthally integrated slope of -2.1 for the center disk, and -2.8 for the limb images. The full-disk picture yields a spectrum of -2.4. These results are different from the active region spectra obtained with the Normal Incidence X-ray Telescope which have a slope of the order of -3.0, and we ascribe this to the difference in temperature response between the instruments. However, both the SXT and NIXT results are consistent with coronal heating as the end result of a downward quasistatic cascade (in lengthscales) of free magnetic energy in the corona, driven by footpoint motions in the photosphere.

  6. CONSTRAINING POLARIZED FOREGROUNDS FOR EoR EXPERIMENTS. I. 2D POWER SPECTRA FROM THE PAPER-32 IMAGING ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, S. A.; Aguirre, J. E.; Moore, D. F. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA (United States); Nunhokee, C. D.; Bernardi, G. [Department of Physics and Electronics, Rhodes University, Grahamstown (South Africa); Pober, J. C. [Department of Physics, Brown University, Providence, RI (United States); Ali, Z. S.; DeBoer, D. R.; Parsons, A. R. [Astronomy Department, University of California, Berkeley, CA (United States); Bradley, R. F. [Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA (United States); Carilli, C. L. [National Radio Astronomy Observatory, Socorro, NM (United States); Gugliucci, N. E. [Saint Anselm College, Manchester, NH (United States); Jacobs, D. C. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ (United States); Klima, P. [National Radio Astronomy Observatory, Charlottesville, VA (United States); MacMahon, D. H. E. [Radio Astronomy Laboratory, University of California, Berkeley, CA (United States); Manley, J. R.; Walbrugh, W. P. [SKA South Africa, Pinelands (South Africa); Stefan, I. I., E-mail: saulkohn@sas.upenn.edu [Cavendish Laboratory, Cambridge (United Kingdom)

    2016-06-01

    Current generation low-frequency interferometers constructed with the objective of detecting the high-redshift 21 cm background aim to generate power spectra of the brightness temperature contrast of neutral hydrogen in primordial intergalactic medium. Two-dimensional (2D) power spectra (power in Fourier modes parallel and perpendicular to the line of sight) that formed from interferometric visibilities have been shown to delineate a boundary between spectrally smooth foregrounds (known as the wedge ) and spectrally structured 21 cm background emission (the EoR window ). However, polarized foregrounds are known to possess spectral structure due to Faraday rotation, which can leak into the EoR window. In this work we create and analyze 2D power spectra from the PAPER-32 imaging array in Stokes I, Q, U, and V. These allow us to observe and diagnose systematic effects in our calibration at high signal-to-noise within the Fourier space most relevant to EoR experiments. We observe well-defined windows in the Stokes visibilities, with Stokes Q, U, and V power spectra sharing a similar wedge shape to that seen in Stokes I. With modest polarization calibration, we see no evidence that polarization calibration errors move power outside the wedge in any Stokes visibility to the noise levels attained. Deeper integrations will be required to confirm that this behavior persists to the depth required for EoR detection.

  7. A pulsed power hydrodynamics approach to exploring properties of warm dense matter

    Energy Technology Data Exchange (ETDEWEB)

    Reinovsky, Robert Emil [Los Alamos National Laboratory

    2008-01-01

    Pulsed Power Hydrodynamics, as an application of low-impedance, pulsed power, and high magnetic field technology developed over the last decade to study advanced hydrodynamic problems, instabilities, turbulence, and material properties, can potentially be applied to the study of the behavior and properties of warm dense matter (WDM) as well. Exploration of the properties, such as equation of state and conductivity, of warm dense matter is an emerging area of study focused on the behavior of matter at density near solid density (from 10% of solid density to a few times solid density) and modest temperatures ({approx}1-10 eV). Warm dense matter conditions can be achieved by laser or particle beam heating of very small quantities of matter on timescales short compared to the subsequent hydrodynamic expansion timescales (isochoric heating) and a vigorous community of researchers is applying these techniques using petawatt scale laser systems, but the microscopic size scale of the WDM produced in this way limits access to some physics phenomena. Pulsed power hydrodynamics techniques, either through high convergence liner compression of a large volume, modest density, low temperature plasma to densities approaching solid density or through the explosion and subsequent expansion of a conductor (wire) against a high pressure (density) gas background (isobaric expansion) techniques both offer the prospect for producing warm dense matter in macroscopic quantities. However, both techniques demand substantial energy, proper power conditioning and delivery, and an understanding of the hydrodynamic and instability processes that limit each technique. Similarly, liner compression of normal density material, perhaps using multiple reflected shocks can provide access to the challenging region above normal density -- again with the requirement of very large amounts of driving energy. In this paper we will provide an introduction to techniques that might be applied to explore this

  8. A theoretical and experimental analysis of modulated laser fields and power spectra

    DEFF Research Database (Denmark)

    Olesen, Henning; Jacobsen, G.

    1982-01-01

    A general theoretical description of modulated laser fields and power spectra for a current modulated single-mode laser is derived, taking into account both the intensity and frequency modulation (IM and FM) of the emitted light. The theory relies on an explicit knowledge of the modulus as well...

  9. Forward Modeling of Reduced Power Spectra from Three-dimensional k-space

    Science.gov (United States)

    von Papen, Michael; Saur, Joachim

    2015-06-01

    We present results from a numerical forward model to evaluate one-dimensional reduced power spectral densities (PSDs) from arbitrary energy distributions in {\\boldsymbol{k}} -space. In this model, we can separately calculate the diagonal elements of the spectral tensor for incompressible axisymmetric turbulence with vanishing helicity. Given a critically balanced turbulent cascade with {{k}\\parallel }∼ k\\bot α and α \\lt 1, we explore the implications on the reduced PSD as a function of frequency. The spectra are obtained under the assumption of Taylor’s hypothesis. We further investigate the functional dependence of the spectral index κ on the field-to-flow angle θ between plasma flow and background magnetic field from MHD to electron kinetic scales. We show that critically balanced turbulence asymptotically develops toward θ-independent spectra with a slope corresponding to the perpendicular cascade. This occurs at a transition frequency {{f}2D}(L,α ,θ ), which is analytically estimated and depends on outer scale L, critical balance exponent α, and field-to-flow angle θ. We discuss anisotropic damping terms acting on the {\\boldsymbol{k}} -space distribution of energy and their effects on the PSD. Further, we show that the spectral anisotropies κ (θ ) as found by Horbury et al. and Chen et al. in the solar wind are in accordance with a damped critically balanced cascade of kinetic Alfvén waves. We also model power spectra obtained by Papen et al. in Saturn’s plasma sheet and find that the change of spectral indices inside 9 {{R}s} can be explained by damping on electron scales.

  10. Early-matter-like dark energy and the cosmic microwave background

    International Nuclear Information System (INIS)

    Aurich, R.; Lustig, S.

    2016-01-01

    Early-matter-like dark energy is defined as a dark energy component whose equation of state approaches that of cold dark matter (CDM) at early times. Such a component is an ingredient of unified dark matter (UDM) models, which unify the cold dark matter and the cosmological constant of the ΛCDM concordance model into a single dark fluid. Power series expansions in conformal time of the perturbations of the various components for a model with early-matter-like dark energy are provided. They allow the calculation of the cosmic microwave background (CMB) anisotropy from the primordial initial values of the perturbations. For a phenomenological UDM model, which agrees with the observations of the local Universe, the CMB anisotropy is computed and compared with the CMB data. It is found that a match to the CMB observations is possible if the so-called effective velocity of sound c eff of the early-matter-like dark energy component is very close to zero. The modifications on the CMB temperature and polarization power spectra caused by varying the effective velocity of sound are studied

  11. Non-linear Matter Spectra in Coupled Quintessence

    CERN Document Server

    Saracco, F; Tetradis, N; Pettorino, V; Robbers, G

    2010-01-01

    We consider cosmologies in which a dark-energy scalar field interacts with cold dark matter. The growth of perturbations is followed beyond the linear level by means of the time-renormalization-group method, which is extended to describe a multi-component matter sector. Even in the absence of the extra interaction, a scale-dependent bias is generated as a consequence of the different initial conditions for baryons and dark matter after decoupling. The effect is greatly enhanced by the extra coupling and can be at the percent level in the range of scales of baryonic acoustic oscillations. We compare our results with N-body simulations, finding very good agreement.

  12. Neutron energy spectra calculations in the low power research reactor

    International Nuclear Information System (INIS)

    Omar, H.; Khattab, K.; Ghazi, N.

    2011-01-01

    The neutron energy spectra have been calculated in the fuel region, inner and outer irradiation sites of the zero power research reactor using the MCNP-4C code and the combination of the WIMS-D/4 transport code for generation of group constants and the three-dimensional CITATION diffusion code for core analysis calculations. The neutron energy spectrum has been divided into three regions and compared with the proposed empirical correlations. The calculated thermal and fast neutron fluxes in the low power research reactor MNSR inner and outer irradiation sites have been compared with the measured results. Better agreements have been noticed between the calculated and measured results using the MCNP code than those obtained by the CITATION code. (author)

  13. Particle dark matter searches in the anisotropic sky

    Science.gov (United States)

    Fornengo, Nicolao; Regis, Marco

    2014-02-01

    Anisotropies in the electromagnetic emission produced by dark matter annihilation or decay in the extragalactic sky are a recent tool in the quest for a particle dark matter evidence. We review the formalism to compute the two-point angular power spectrum in the halo-model approach and discuss the features and the relative size of the various auto- and cross-correlation signals that can be envisaged for anisotropy studies. From the side of particle dark matter signals, we consider the full multi-wavelength spectrum, from the radio emission to X-ray and gamma-ray productions. We discuss the angular power spectra of the auto-correlation of each of these signals and of the cross-correlation between any pair of them. We then extend the search to comprise specific gravitational tracers of dark matter distribution in the Universe: weak-lensing cosmic shear, large-scale-structure matter distribution and CMB-lensing. We have shown that cross-correlating a multi-wavelength dark matter signal (which is a direct manifestation of its particle physics nature) with a gravitational tracer (which is a manifestation of the presence of large amounts of unseen matter in the Universe) may offer a promising tool to demonstrate that what we call DM is indeed formed by elementary particles.

  14. Particle dark matter searches in the anisotropic sky

    Directory of Open Access Journals (Sweden)

    Nicolao eFornengo

    2014-02-01

    Full Text Available Anisotropies in the electromagnetic emission produced by dark matter annihilation or decay in the extragalactic sky are a recent tool in the quest for a particle dark matter evidence. We review the formalism to compute the two-point angular power spectrum in the halo-model approach and discuss the features and the relative size of the various auto- and cross-correlation signals that can be envisaged for anisotropy studies. From the side of particle dark matter signals, we consider the full multi-wavelength spectrum, from the radio emission to X-ray and gamma-ray productions. We discuss the angular power spectra of the auto-correlation of each of these signals and of the cross-correlation between any pair of them. We then extend the search to comprise specific gravitational tracers of dark matter distribution in the Universe: weak-lensing cosmic shear, large-scale-structure matter distribution and CMB-lensing. We have shown that cross-correlating a multi-wavelength dark matter signal (which is a direct manifestation of its particle physics nature with a gravitational tracer (which is a manifestation of the presence of large amounts of unseen matter in the Universe may offer a promising tool to demonstrate that what we call DM is indeed formed by elementary particles.

  15. Musical rhythm spectra from Bach to Joplin obey a 1/f power law.

    Science.gov (United States)

    Levitin, Daniel J; Chordia, Parag; Menon, Vinod

    2012-03-06

    Much of our enjoyment of music comes from its balance of predictability and surprise. Musical pitch fluctuations follow a 1/f power law that precisely achieves this balance. Musical rhythms, especially those of Western classical music, are considered highly regular and predictable, and this predictability has been hypothesized to underlie rhythm's contribution to our enjoyment of music. Are musical rhythms indeed entirely predictable and how do they vary with genre and composer? To answer this question, we analyzed the rhythm spectra of 1,788 movements from 558 compositions of Western classical music. We found that an overwhelming majority of rhythms obeyed a 1/f(β) power law across 16 subgenres and 40 composers, with β ranging from ∼0.5-1. Notably, classical composers, whose compositions are known to exhibit nearly identical 1/f pitch spectra, demonstrated distinctive 1/f rhythm spectra: Beethoven's rhythms were among the most predictable, and Mozart's among the least. Our finding of the ubiquity of 1/f rhythm spectra in compositions spanning nearly four centuries demonstrates that, as with musical pitch, musical rhythms also exhibit a balance of predictability and surprise that could contribute in a fundamental way to our aesthetic experience of music. Although music compositions are intended to be performed, the fact that the notated rhythms follow a 1/f spectrum indicates that such structure is no mere artifact of performance or perception, but rather, exists within the written composition before the music is performed. Furthermore, composers systematically manipulate (consciously or otherwise) the predictability in 1/f rhythms to give their compositions unique identities.

  16. Observational constraints on variable equation of state parameters of dark matter and dark energy after Planck

    Directory of Open Access Journals (Sweden)

    Suresh Kumar

    2014-10-01

    Full Text Available In this paper, we study a cosmological model in general relativity within the framework of spatially flat Friedmann–Robertson–Walker space–time filled with ordinary matter (baryonic, radiation, dark matter and dark energy, where the latter two components are described by Chevallier–Polarski–Linder equation of state parameters. We utilize the observational data sets from SNLS3, BAO and Planck + WMAP9 + WiggleZ measurements of matter power spectrum to constrain the model parameters. We find that the current observational data offer tight constraints on the equation of state parameter of dark matter. We consider the perturbations and study the behavior of dark matter by observing its effects on CMB and matter power spectra. We find that the current observational data favor the cold dark matter scenario with the cosmological constant type dark energy at the present epoch.

  17. Observational constraints on variable equation of state parameters of dark matter and dark energy after Planck

    International Nuclear Information System (INIS)

    Kumar, Suresh; Xu, Lixin

    2014-01-01

    In this paper, we study a cosmological model in general relativity within the framework of spatially flat Friedmann–Robertson–Walker space–time filled with ordinary matter (baryonic), radiation, dark matter and dark energy, where the latter two components are described by Chevallier–Polarski–Linder equation of state parameters. We utilize the observational data sets from SNLS3, BAO and Planck + WMAP9 + WiggleZ measurements of matter power spectrum to constrain the model parameters. We find that the current observational data offer tight constraints on the equation of state parameter of dark matter. We consider the perturbations and study the behavior of dark matter by observing its effects on CMB and matter power spectra. We find that the current observational data favor the cold dark matter scenario with the cosmological constant type dark energy at the present epoch

  18. The IAEA stopping power database, following the trends in stopping power of ions in matter

    Science.gov (United States)

    Montanari, C. C.; Dimitriou, P.

    2017-10-01

    The aim of this work is to present an overview of the state of art of the energy loss of ions in matter, based on the new developments in the stopping power database of the International Atomic Energy Agency (IAEA). This exhaustive collection of experimental data, graphs, programs and comparisons, is the legacy of Helmut Paul, who made it accessible to the global scientific community, and has been extensively employed in theoretical and experimental research during the last 25 years. The field of stopping power in matter is evolving, with new trends in materials of interest, including oxides, nitrides, polymers, and biological targets. Our goal is to identify areas of interest and emerging data needs to meet the requirements of a continuously developing user community.

  19. Probing dark energy with cluster counts and cosmic shear power spectra: including the full covariance

    International Nuclear Information System (INIS)

    Takada, Masahiro; Bridle, Sarah

    2007-01-01

    Several dark energy experiments are available from a single large-area imaging survey and may be combined to improve cosmological parameter constraints and/or test inherent systematics. Two promising experiments are cosmic shear power spectra and counts of galaxy clusters. However, the two experiments probe the same cosmic mass density field in large-scale structure, therefore the combination may be less powerful than first thought. We investigate the cross-covariance between the cosmic shear power spectra and the cluster counts based on the halo model approach, where the cross-covariance arises from the three-point correlations of the underlying mass density field. Fully taking into account the cross-covariance, as well as non-Gaussian errors on the lensing power spectrum covariance, we find a significant cross-correlation between the lensing power spectrum signals at multipoles l∼10 3 and the cluster counts containing halos with masses M∼>10 14 M o-dot . Including the cross-covariance for the combined measurement degrades and in some cases improves the total signal-to-noise (S/N) ratios up to ∼±20% relative to when the two are independent. For cosmological parameter determination, the cross-covariance has a smaller effect as a result of working in a multi-dimensional parameter space, implying that the two observables can be considered independent to a good approximation. We also discuss the fact that cluster count experiments using lensing-selected mass peaks could be more complementary to cosmic shear tomography than mass-selected cluster counts of the corresponding mass threshold. Using lensing selected clusters with a realistic usable detection threshold ((S/N) cluster ∼6 for a ground-based survey), the uncertainty on each dark energy parameter may be roughly halved by the combined experiments, relative to using the power spectra alone

  20. The matter power spectrum in redshift space using effective field theory

    Science.gov (United States)

    Fonseca de la Bella, Lucía; Regan, Donough; Seery, David; Hotchkiss, Shaun

    2017-11-01

    The use of Eulerian 'standard perturbation theory' to describe mass assembly in the early universe has traditionally been limited to modes with k lesssim 0.1 h/Mpc at z=0. At larger k the SPT power spectrum deviates from measurements made using N-body simulations. Recently, there has been progress in extending the reach of perturbation theory to larger k using ideas borrowed from effective field theory. We revisit the computation of the redshift-space matter power spectrum within this framework, including for the first time the full one-loop time dependence. We use a resummation scheme proposed by Vlah et al. to account for damping of baryonic acoustic oscillations due to large-scale random motions and show that this has a significant effect on the multipole power spectra. We renormalize by comparison to a suite of custom N-body simulations matching the MultiDark MDR1 cosmology. At z=0 and for scales k lesssim 0.4 h/Mpc we find that the EFT furnishes a description of the real-space power spectrum up to ~ 2%, for the l = 0 mode up to ~ 5%, and for the l = 2, 4 modes up to ~ 25%. We argue that, in the MDR1 cosmology, positivity of the l=0 mode gives a firm upper limit of k ≈ 0.74 h/Mpc for the validity of the one-loop EFT prediction in redshift space using only the lowest-order counterterm. We show that replacing the one-loop growth factors by their Einstein-de Sitter counterparts is a good approximation for the l=0 mode, but can induce deviations as large as 2% for the l=2, 4 modes. An accompanying software bundle, distributed under open source licenses, includes Mathematica notebooks describing the calculation, together with parallel pipelines capable of computing both the necessary one-loop SPT integrals and the effective field theory counterterms.

  1. Stopping powers of energetic electrons penetrating condensed matter-theory and application

    International Nuclear Information System (INIS)

    Tan Zhenyu; Xia Yueyuan

    2004-01-01

    In this review article, the motivation of studying inelastic energy loss for energetic electrons penetrating through matter and the corresponding technological importance have been outlined. The theoretical development and method for the calculation of stopping powers are described. The stopping power data tables for a group of polymers and bioorganic compounds are presented, and the application aspects of the stopping power data are briefly discussed. (authors)

  2. Power spectra based Planck constraints on compensated isocurvature, and forecasts for LiteBIRD and CORE space missions

    Energy Technology Data Exchange (ETDEWEB)

    Väliviita, Jussi, E-mail: jussi.valiviita@helsinki.fi [University of Helsinki, Department of Physics and Helsinki Institute of Physics, P.O. Box 64, FIN-00014 University of Helsinki (Finland)

    2017-04-01

    Compensated isocurvature perturbations (CIP), where the primordial baryon and cold dark matter density perturbations cancel, do not cause total matter isocurvature perturbation. Consequently, at the linear order in the baryon density contrast Δ, a mixture of CIP and the adiabatic mode leads to the same CMB spectra as the pure adiabatic mode. Only recently, Muñoz et al. showed that at the second order CIP leaves an imprint in the observable CMB by smoothing the power spectra in a similar manner as lensing. This causes a strong degeneracy between the CIP variance Δ{sub rms}{sup 2} ≡ (Δ{sup 2}) and the phenomenological lensing parameter A {sub L}. We study several combinations of the Planck 2015 data and show that the measured lensing potential power spectrum C {sub ℓ}{sup φφ} breaks the degeneracy. Nested sampling of the ΛCDM+Δ{sub rms}{sup 2}(+ A {sub L}) model using the Planck 2015 temperature, polarization, and lensing data gives Δ{sub rms}{sup 2} = (6.9{sup +3.0}{sub −3.1}) × 10{sup −3} at 68% CL. A non-zero value is favoured at 2.3σ (or without the polarization data at 2.8σ). CIP with Δ{sub rms}{sup 2} ≈ 7 × 10{sup −3} improves the bestfit χ{sup 2} by 3.6 compared to the adiabatic ΛCDM model. In contrast, although the temperature data favour A {sub L} ≅ 1.22, allowing A {sub L} ≠ 1 does not improve the joint fit at all, since the lensing data disfavour A {sub L} ≠ 1. Indeed, CIP provides a rare example of a simple model, which is capable of reducing the Planck lensing anomaly significantly and fitting well simultaneously the high (and low) multipole temperature and lensing data, as well as the polarization data. Finally, we derive forecasts for two future satellite missions (LiteBIRD proposal to JAXA/NASA and Exploring Cosmic Origins with CORE proposal to ESA's M5 call) and compare these to simulated Planck data. Due to its coarse angular resolution, LiteBIRD is not able to improve the constraints on Δ{sub rms}{sup 2} or A

  3. Reheating effects in the matter power spectrum and implications for substructure

    International Nuclear Information System (INIS)

    Erickcek, Adrienne L.; Sigurdson, Kris

    2011-01-01

    The thermal and expansion history of the Universe before big bang nucleosynthesis is unknown. We investigate the evolution of cosmological perturbations through the transition from an early matter era to radiation domination. We treat reheating as the perturbative decay of an oscillating scalar field into relativistic plasma and cold dark matter. After reheating, we find that subhorizon perturbations in the decay-produced dark matter density are significantly enhanced, while subhorizon radiation perturbations are instead suppressed. If dark matter originates in the radiation bath after reheating, this suppression may be the primary cutoff in the matter power spectrum. Conversely, for dark matter produced nonthermally from scalar decay, enhanced perturbations can drive structure formation during the cosmic dark ages and dramatically increase the abundance of compact substructures. For low reheat temperatures, we find that as much as 50% of all dark matter is in microhalos with M > or approx. 0.1M + at z≅100, compared to a fraction of ∼10 -10 in the standard case. In this scenario, ultradense substructures may constitute a large fraction of dark matter in galaxies today.

  4. Effective description of dark matter as a viscous fluid

    CERN Document Server

    Floerchinger, S.; Tetradis, N.; Wiedemann, U.A.

    2016-10-28

    Treating dark matter at large scales as an effectively viscous fluid provides an improved framework for the calculation of the density and velocity power spectra compared to the standard assumption of an ideal pressureless fluid. We discuss how this framework can be made concrete through an appropriate coarse-graining procedure. We also review results that demonstrate that it improves the convergence of cosmological perturbation theory.

  5. Effective description of dark matter as a viscous fluid

    International Nuclear Information System (INIS)

    Floerchinger, Stefan; Garny, Mathias; Tetradis, Nikolaos; Wiedemann, Urs Achim

    2016-01-01

    Treating dark matter at large scales as an effectively viscous fluid provides an improved framework for the calculation of the density and velocity power spectra compared to the standard assumption of an ideal pressureless fluid. We discuss how this framework can be made concrete through an appropriate coarse-graining procedure. We also review results that demonstrate that it improves the convergence of cosmological perturbation theory

  6. Model-independent evaluation of recoils channeling impact on visible energy spectra in dark matter particles crystalline detectors

    International Nuclear Information System (INIS)

    Dyuldya, S.V.; Bratchenko, M.I.

    2012-01-01

    Proposed is a direct method of Dark Matter crystalline scintillation detectors calibration by means of an atomistic molecular dynamics modeling of their responses to ∼10 keV recoil atoms. Simulations show that the recoils channeling exists in NaI lattice with probabilities of ∼5 - 15 %. It does not affect the mean values of quenching factors but gives rise to high visible energy spectral tails absent in disordered detectors. As a result, the lattice ordering manifests the ∼100 % effect on NaI(Tl) visible energy spectra at 2-6 keV window

  7. Exploring dark matter microphysics with galaxy surveys

    Energy Technology Data Exchange (ETDEWEB)

    Escudero, Miguel; Mena, Olga [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València, Apartado de Correos 22085, E-46071 Valencia (Spain); Vincent, Aaron C.; Wilkinson, Ryan J.; Boehm, Céline, E-mail: miguel.Escudero@uv.es, E-mail: omena@ific.uv.es, E-mail: aaron.vincent@durham.ac.uk, E-mail: ryan.wilkinson@durham.ac.uk, E-mail: c.m.boehm@durham.ac.uk [Institute for Particle Physics Phenomenology (IPPP), Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2015-09-01

    We use present cosmological observations and forecasts of future experiments to illustrate the power of large-scale structure (LSS) surveys in probing dark matter (DM) microphysics and unveiling potential deviations from the standard ΛCDM scenario. To quantify this statement, we focus on an extension of ΛCDM with DM-neutrino scattering, which leaves a distinctive imprint on the angular and matter power spectra. After finding that future CMB experiments (such as COrE+) will not significantly improve the constraints set by the Planck satellite, we show that the next generation of galaxy clustering surveys (such as DESI) could play a leading role in constraining alternative cosmologies and even have the potential to make a discovery. Typically we find that DESI would be an order of magnitude more sensitive to DM interactions than Planck, thus probing effects that until now have only been accessible via N-body simulations.

  8. Testing alternative theories of dark matter with the CMB

    International Nuclear Information System (INIS)

    Li Baojiu; Barrow, John D.; Mota, David F.; Zhao, HongSheng

    2008-01-01

    We propose a method to study and constrain modified gravity theories for dark matter using CMB temperature anisotropies and polarization. We assume that the theories considered here have already passed the matter power-spectrum test of large-scale structure. With this requirement met, we show that a modified gravity theory can be specified by parametrizing the time evolution of its dark-matter density contrast, which is completely controlled by the dark-matter stress history. We calculate how the stress history with a given parametrization affects the CMB observables, and a qualitative discussion of the physical effects involved is supplemented with numerical examples. It is found that, in general, alternative gravity theories can be efficiently constrained by the CMB temperature and polarization spectra. There exist, however, special cases where modified gravity cannot be distinguished from the CDM model even by using both CMB and matter power spectrum observations, nor can they be efficiently restricted by other observables in perturbed cosmologies. Our results show how the stress properties of dark matter, which determine the evolutions of both density perturbations and the gravitational potential, can be effectively investigated using just the general conservation equations and without assuming any specific theoretical gravitational theory within a wide class.

  9. Development and Operation of Dual-Mode Analyzers for Wireless Power Consortium/Power Matters Alliance Wireless Power Systems.

    Science.gov (United States)

    Um, Keehong

    2016-05-01

    We have designed a protocol analyzer to be used in wireless power systems and analyzed the operation of wireless chargers defined by standards of Qi of Wireless Power Consortium (WPC) and Power Matters Alliance (PMA) protocols. The integrated circuit (IC, or microchip) developed so far for wireless power transmission is not easily adopted by chargers for specific purposes. A device for measuring the performance of test equipment currently available is required to transform and expand the types of protocol. Since a protocol analyzer with these functions is required, we have developed a device that can analyze the two protocols of WPC and PMA at the same time. As a result of our research, we present a dual-mode system that can analyze the protocols of both WPC and PMA.

  10. Formation of hard power laws in the energetic particle spectra resulting from relativistic magnetic reconnection.

    Science.gov (United States)

    Guo, Fan; Li, Hui; Daughton, William; Liu, Yi-Hsin

    2014-10-10

    Using fully kinetic simulations, we demonstrate that magnetic reconnection in relativistic plasmas is highly efficient at accelerating particles through a first-order Fermi process resulting from the curvature drift of particles in the direction of the electric field induced by the relativistic flows. This mechanism gives rise to the formation of hard power-law spectra in parameter regimes where the energy density in the reconnecting field exceeds the rest mass energy density σ ≡ B(2)/(4πnm(e)c(2))>1 and when the system size is sufficiently large. In the limit σ ≫ 1, the spectral index approaches p = 1 and most of the available energy is converted into nonthermal particles. A simple analytic model is proposed which explains these key features and predicts a general condition under which hard power-law spectra will be generated from magnetic reconnection.

  11. Quantum-Gravitational Effects on Primordial Power Spectra in Slow-Roll Inflationary Models

    Directory of Open Access Journals (Sweden)

    David Brizuela

    2018-01-01

    Full Text Available We review the computation of the power spectra of inflationary gauge-invariant perturbations in the context of canonical quantum gravity for generic slow-roll models. A semiclassical approximation, based on an expansion in inverse powers of the Planck mass, is applied to the complete Wheeler–DeWitt equation describing a perturbed inflationary universe. This expansion leads to a hierarchy of equations at consecutive orders of the approximation and allows us to write down a corrected Schrödinger equation that encodes information about quantum-gravitational effects. The analytical dependence of the correction to the power spectrum on the wavenumber is obtained. Nonetheless, some numerical work is needed in order to obtain its precise value. Finally, it is shown that the correction turns out to be positive, which leads to an enhancement of the power spectrum especially prominent for large scales. We will also discuss whether this correction leads to a measurable effect in the cosmic microwave background anisotropies.

  12. Simulations and cosmological inference: A statistical model for power spectra means and covariances

    International Nuclear Information System (INIS)

    Schneider, Michael D.; Knox, Lloyd; Habib, Salman; Heitmann, Katrin; Higdon, David; Nakhleh, Charles

    2008-01-01

    We describe an approximate statistical model for the sample variance distribution of the nonlinear matter power spectrum that can be calibrated from limited numbers of simulations. Our model retains the common assumption of a multivariate normal distribution for the power spectrum band powers but takes full account of the (parameter-dependent) power spectrum covariance. The model is calibrated using an extension of the framework in Habib et al. (2007) to train Gaussian processes for the power spectrum mean and covariance given a set of simulation runs over a hypercube in parameter space. We demonstrate the performance of this machinery by estimating the parameters of a power-law model for the power spectrum. Within this framework, our calibrated sample variance distribution is robust to errors in the estimated covariance and shows rapid convergence of the posterior parameter constraints with the number of training simulations.

  13. Viable tensor-to-scalar ratio in a symmetric matter bounce

    Science.gov (United States)

    Nath Raveendran, Rathul; Chowdhury, Debika; Sriramkumar, L.

    2018-01-01

    Matter bounces refer to scenarios wherein the universe contracts at early times as in a matter dominated epoch until the scale factor reaches a minimum, after which it starts expanding. While such scenarios are known to lead to scale invariant spectra of primordial perturbations after the bounce, the challenge has been to construct completely symmetric bounces that lead to a tensor-to-scalar ratio which is small enough to be consistent with the recent cosmological data. In this work, we construct a model involving two scalar fields (a canonical field and a non-canonical ghost field) to drive the symmetric matter bounce and study the evolution of the scalar perturbations in the model. We find that the model can be completely described in terms of a single parameter, viz. the ratio of the scale associated with the bounce to the value of the scale factor at the bounce. We evolve the scalar perturbations numerically across the bounce and evaluate the scalar power spectra after the bounce. We show that, while the scalar and tensor perturbation spectra are scale invariant over scales of cosmological interest, the tensor-to-scalar ratio proves to be much smaller than the current upper bound from the observations of the cosmic microwave background anisotropies by the Planck mission. We also support our numerical analysis with analytical arguments.

  14. Warm Dark Matter Sterile Neutrinos in Electron Capture and Beta Decay Spectra

    Directory of Open Access Journals (Sweden)

    O. Moreno

    2016-01-01

    Full Text Available We briefly review the motivation to search for sterile neutrinos in the keV mass scale, as dark matter candidates, and the prospects to find them in beta decay or electron capture spectra, with a global perspective. We describe the fundamentals of the neutrino flavor-mass eigenstate mismatch that opens the possibility of detecting sterile neutrinos in such ordinary nuclear processes. Results are shown and discussed for the effect of heavy neutrino emission in electron capture in Holmium 163 and in two isotopes of Lead, 202 and 205, as well as in the beta decay of Tritium. We study the deexcitation spectrum in the considered cases of electron capture and the charged lepton spectrum in the case of Tritium beta decay. For each of these cases, we define ratios of integrated transition rates over different regions of the spectrum under study and give new results that may guide and facilitate the analysis of possible future measurements, paying particular attention to forbidden transitions in Lead isotopes.

  15. Indirect Detection Analysis: Wino Dark Matter Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Hryczuk, Andrzej [Munich, Tech. U.; Cholis, Ilias [Fermilab; Iengo, Roberto [SISSA, Trieste; Tavakoli, Maryam [IPM, Tehran; Ullio, Piero [INFN, Trieste

    2014-07-15

    We perform a multichannel analysis of the indirect signals for the Wino Dark Matter, including one-loop electroweak and Sommerfeld enhancement corrections. We derive limits from cosmic ray antiprotons and positrons, from continuum galactic and extragalactic diffuse γ-ray spectra, from the absence of γ-ray line features at the galactic center above 500 GeV in energy, from γ-rays toward nearby dwarf spheroidal galaxies and galaxy clusters, and from CMB power-spectra. Additionally, we show the future prospects for neutrino observations toward the inner Galaxy and from antideuteron searches. For each of these indirect detection probes we include and discuss the relevance of the most important astrophysical uncertainties that can impact the strength of the derived limits. We find that the Wino as a dark matter candidate is excluded in the mass range bellow simeq 800 GeV from antiprotons and between 1.8 and 3.5 TeV from the absence of a γ-ray line feature toward the galactic center. Limits from other indirect detection probes confirm the main bulk of the excluded mass ranges.

  16. Sterile neutrino, hidden dark matter and their cosmological signatures

    International Nuclear Information System (INIS)

    Das, Subinoy

    2012-01-01

    Though thermal dark matter has been the central idea behind the dark matter candidates, it is highly possible that dark matter of the universe is non-thermal in origin or it might be in thermal contact with some hidden or dark sector but not with standard model. Here we explore the cosmological bounds as well as the signatures on two types of non-thermal dark matter candidates. First we discuss a hidden dark matter with almost no interaction (or very feeble) with standard model particles so that it is not in thermal contact with visible sector but we assume it is thermalized with in a hidden sector due to some interaction. While encompassing the standard cold WIMP scenario, we do not require the freeze-out process to be non-relativistic. Rather, freeze-out may also occur when dark matter particles are semi-relativistic or relativistic. Especially we focus on the warm dark matter scenario in this set up and find the constraints on the warm dark matter mass, cross-section and hidden to visible sector temperature ratio which accounts for the observed dark-matter density, satisfies the Tremaine-Gunn bound on dark-matter phase space density and has a free-streaming length consistent with cosmological constraints on the matter power spectrum. Our method can also be applied to keV sterile neutrino dark matter which is not thermalized with standard model but is thermalized with in a dark sector. The second part of this proceeding focuses on an exotic dark matter candidate which arises from the existence of eV mass sterile neutrino through a late phase transition. Due to existence of a strong scalar force the light sterile states get trapped into stable degenerate micro nuggets. We find that its signature in matter power spectra is close to a warm dark matter candidate.

  17. CHAM: a fast algorithm of modelling non-linear matter power spectrum in the sCreened HAlo Model

    Science.gov (United States)

    Hu, Bin; Liu, Xue-Wen; Cai, Rong-Gen

    2018-05-01

    We present a fast numerical screened halo model algorithm (CHAM, which stands for the sCreened HAlo Model) for modelling non-linear power spectrum for the alternative models to Λ cold dark matter. This method has three obvious advantages. First of all, it is not being restricted to a specific dark energy/modified gravity model. In principle, all of the screened scalar-tensor theories can be applied. Secondly, the least assumptions are made in the calculation. Hence, the physical picture is very easily understandable. Thirdly, it is very predictable and does not rely on the calibration from N-body simulation. As an example, we show the case of the Hu-Sawicki f(R) gravity. In this case, the typical CPU time with the current parallel PYTHON script (eight threads) is roughly within 10 min. The resulting spectra are in a good agreement with N-body data within a few percentage accuracy up to k ˜ 1 h Mpc-1.

  18. REJUVENATING THE MATTER POWER SPECTRUM: RESTORING INFORMATION WITH A LOGARITHMIC DENSITY MAPPING

    International Nuclear Information System (INIS)

    Neyrinck, Mark C.; Szalay, Alexander S.; Szapudi, Istvan

    2009-01-01

    We find that nonlinearities in the dark matter power spectrum are dramatically smaller if the density field first undergoes a logarithmic mapping. In the Millennium simulation, this procedure gives a power spectrum with a shape hardly departing from the linear power spectrum for k ∼ -1 at all redshifts. Also, this procedure unveils pristine Fisher information on a range of scales reaching a factor of 2-3 smaller than in the standard power spectrum, yielding 10 times more cumulative signal to noise at z = 0.

  19. Dark matter for excess of AMS-02 positrons and antiprotons

    Directory of Open Access Journals (Sweden)

    Chuan-Hung Chen

    2015-07-01

    Full Text Available We propose a dark matter explanation to simultaneously account for the excess of antiproton-to-proton and positron power spectra observed in the AMS-02 experiment while having the right dark matter relic abundance and satisfying the current direct search bounds. We extend the Higgs triplet model with a hidden gauge symmetry of SU(2X that is broken to Z3 by a quadruplet scalar field, rendering the associated gauge bosons stable weakly-interacting massive particle dark matter candidates. By coupling the complex Higgs triplet and the SU(2X quadruplet, the dark matter candidates can annihilate into triplet Higgs bosons each of which in turn decays into lepton or gauge boson final states. Such a mechanism gives rise to correct excess of positrons and antiprotons with an appropriate choice of the triplet vacuum expectation value. Besides, the model provides a link between neutrino mass and dark matter phenomenology.

  20. Testing Rastall's theory using matter power spectrum

    International Nuclear Information System (INIS)

    Batista, C.E.M.; Fabris, J.C.; Daouda, M.H.

    2010-01-01

    Rastall's theory is a modification of the General Relativity theory leading to a different expression for the conservation law in the matter sector compared with the usual one. It has been argued recently that such a theory may have applications to the dark energy problem, since a pressureless fluid may lead to an accelerated universe. In the present work we confront Rastall's theory with the power spectrum data. The results indicate a configuration that essentially reduces Rastall's theory to General Relativity, unless the non-usual conservation law refers to a scalar field, situation where other configurations are eventually possible.

  1. EFFECTS OF THE NEUTRINO MASS SPLITTING ON THE NONLINEAR MATTER POWER SPECTRUM

    International Nuclear Information System (INIS)

    Wagner, Christian; Verde, Licia; Jimenez, Raul

    2012-01-01

    We have performed cosmological N-body simulations which include the effect of the masses of the individual neutrino species. The simulations were aimed at studying the effect of different neutrino hierarchies on the matter power spectrum. Compared to the linear theory predictions, we find that nonlinearities enhance the effect of hierarchy on the matter power spectrum at mildly nonlinear scales. The maximum difference between the different hierarchies is about 0.5% for a sum of neutrino masses of 0.1 eV. Albeit this is a small effect, it is potentially measurable from upcoming surveys. In combination with neutrinoless double-β decay experiments, this opens up the possibility of using the sky to determine if neutrinos are Majorana or Dirac fermions.

  2. Quantum synchrotron spectra from semirelativistic electrons in teragauss magnetic fields

    International Nuclear Information System (INIS)

    Brainerd, J.J.

    1987-01-01

    Synchrotron spectra are calculated from quantum electrodynamic transition rates for thermal and power-law electron distributions. It is shown that quantum effects appear in thermal spectra when the photon energy is greater than the electron temperature, and in power-law spectra when the electron energy in units of the electron rest mass times the magnetic field strength in units of the critical field strength is of order unity. These spectra are compared with spectra calculated from the ultrarelativistic approximation for synchrotron emission. It is found that the approximation for the power-law spectra is good, and the approximation for thermal spectra produces the shape of the spectrum accurately but fails to give the correct normalization. Single photon pair creation masks the quantum effects for power-law distributions, so only modifications to thermal spectra are important for gamma-ray bursts. 13 references

  3. Generation of floor spectra compatible time histories for equipment seismic qualification in nuclear power plants

    International Nuclear Information System (INIS)

    Shyu, Y.-S.; Luh, Gary G.; Blum, Arie

    2004-01-01

    This paper proposes a procedure for generating floor response spectra compatible time histories used for equipment seismic qualification in nuclear power plants. From the 84th percentile power spectrum density function of an earthquake ensemble of four randomly generated time history motions, a statistically equivalent time history can be obtained by converting the power spectrum density function from the frequency domain into the time domain. With minor modification, if needed, the converted time history will satisfy both the spectral and the power spectrum density enveloping criteria, as required by the USNRC per Revision 2 of the Standard Review Plan, Section 3.7.1. Step-by-step generating procedures and two numerical examples are presented to illustrate the applications of the methodology. (author)

  4. From the Cover: Musical rhythm spectra from Bach to Joplin obey a 1/f power law

    Science.gov (United States)

    Levitin, Daniel J.; Chordia, Parag; Menon, Vinod

    2012-03-01

    Much of our enjoyment of music comes from its balance of predictability and surprise. Musical pitch fluctuations follow a 1/f power law that precisely achieves this balance. Musical rhythms, especially those of Western classical music, are considered highly regular and predictable, and this predictability has been hypothesized to underlie rhythm's contribution to our enjoyment of music. Are musical rhythms indeed entirely predictable and how do they vary with genre and composer? To answer this question, we analyzed the rhythm spectra of 1,788 movements from 558 compositions of Western classical music. We found that an overwhelming majority of rhythms obeyed a 1/fβ power law across 16 subgenres and 40 composers, with β ranging from ∼0.5-1. Notably, classical composers, whose compositions are known to exhibit nearly identical 1/f pitch spectra, demonstrated distinctive 1/f rhythm spectra: Beethoven's rhythms were among the most predictable, and Mozart's among the least. Our finding of the ubiquity of 1/f rhythm spectra in compositions spanning nearly four centuries demonstrates that, as with musical pitch, musical rhythms also exhibit a balance of predictability and surprise that could contribute in a fundamental way to our aesthetic experience of music. Although music compositions are intended to be performed, the fact that the notated rhythms follow a 1/f spectrum indicates that such structure is no mere artifact of performance or perception, but rather, exists within the written composition before the music is performed. Furthermore, composers systematically manipulate (consciously or otherwise) the predictability in 1/f rhythms to give their compositions unique identities.

  5. A Comparison of Maps and Power Spectra Determined from South Pole Telescope and Planck Data

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Z.; Aylor, K.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Cho, H-M.; Chown, R.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Dobbs, M. A.; Everett, W. B.; Follin, B.; George, E. M.; Halverson, N. W.; Harrington, N. L.; Holder, G. P.; Holzapfel, W. L.; Hrubes, J. D.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Luong-Van, D.; Marrone, D. P.; McMahon, J. J.; Meyer, S. S.; Millea, M.; Mocanu, L. M.; Mohr, J. J.; Natoli, T.; Omori, Y.; Padin, S.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Sayre, J. T.; Schaffer, K. K.; Shirokoff, E.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; Vanderlinde, K.; Vieira, J. D.; Williamson, R.

    2018-01-17

    We study the consistency of 150 GHz data from the South Pole Telescope (SPT) and 143 GHz data from the \\textit{Planck} satellite over the 2540 $\\text{deg}^2$ patch of sky covered by the SPT-SZ survey. We first visually compare the maps and find that the map residuals appear consistent with noise after we account for differences in angular resolution and filtering. To make a more quantitative comparison, we calculate (1) the cross-spectrum between two independent halves of SPT 150 GHz data, (2) the cross-spectrum between two independent halves of \\textit{Planck} 143 GHz data, and (3) the cross-spectrum between SPT 150 GHz and \\textit{Planck} 143 GHz data. We find the three cross-spectra are well-fit (PTE = 0.30) by the null hypothesis in which both experiments have measured the same sky map up to a single free parameter characterizing the relative calibration between the two. As a by-product of this analysis, we improve the calibration of SPT data by nearly an order of magnitude, from 2.6\\% to 0.3\\% in power; the best-fit power calibration factor relative to the most recent published SPT calibration is $1.0174 \\pm 0.0033$. Finally, we compare all three cross-spectra to the full-sky \\textit{Planck} $143 \\times 143$ power spectrum and find a hint ($\\sim$1.5$\\sigma$) for differences in the power spectrum of the SPT-SZ footprint and the full-sky power spectrum, which we model and fit as a power law in the spectrum. The best-fit value of this tilt is consistent between the three cross-spectra in the SPT-SZ footprint, implying that the source of this tilt---assuming it is real---is a sample variance fluctuation in the SPT-SZ region relative to the full sky. Despite the precision of our tests, we find no evidence for systematic errors in either data set. The consistency of cosmological parameters derived from these datasets is discussed in a companion paper.

  6. Scaling properties of the transverse mass spectra

    International Nuclear Information System (INIS)

    Schaffner-Bielich, J.

    2002-01-01

    Motivated from the formation of an initial state of gluon-saturated matter, we discuss scaling relations for the transverse mass spectra at BNL's relativistic heavy-ion collider (RHIC). We show on linear plots, that the transverse mass spectra for various hadrons can be described by an universal function in m t . The transverse mass spectra for different centralities can be rescaled into each other. Finally, we demonstrate that m t -scaling is also present in proton-antiproton collider data and compare it to m t -scaling at RHIC. (orig.)

  7. Inflationary power spectra with quantum holonomy corrections

    Energy Technology Data Exchange (ETDEWEB)

    Mielczarek, Jakub, E-mail: jakub.mielczarek@uj.edu.pl [Institute of Physics, Jagiellonian University, Reymonta 4, Cracow, 30-059 Poland (Poland)

    2014-03-01

    In this paper we study slow-roll inflation with holonomy corrections from loop quantum cosmology. It was previously shown that, in the Planck epoch, these corrections lead to such effects as singularity avoidance, metric signature change and a state of silence. Here, we consider holonomy corrections affecting the phase of cosmic inflation, which takes place away from the Planck epoch. Both tensor and scalar power spectra of primordial inflationary perturbations are computed up to the first order in slow-roll parameters and V/ρ{sub c}, where V is a potential of the scalar field and ρ{sub c} is a critical energy density (expected to be of the order of the Planck energy density). Possible normalizations of modes at short scales are discussed. In case the normalization is performed with use of the Wronskian condition applied to adiabatic vacuum, the tensor and scalar spectral indices are not quantum corrected in the leading order. However, by choosing an alternative method of normalization one can obtain quantum corrections in the leading order. Furthermore, we show that the holonomy-corrected equations of motion for tensor and scalar modes can be derived based on effective background metrics. This allows us to show that the classical Wronskian normalization condition is well defined for the cosmological perturbations with holonomy corrections.

  8. Cosmic microwave background constraints on primordial black hole dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Aloni, Daniel; Blum, Kfir [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Herzl 234, Rehovot (Israel); Flauger, Raphael, E-mail: daniel.aloni@weizmann.ac.il, E-mail: kfir.blum@weizmann.ac.il, E-mail: flauger@physics.ucsd.edu [University of California, 9500 Gilman Drive 0319, La Jolla, San Diego, CA, 92093 (United States)

    2017-05-01

    We revisit cosmic microwave background (CMB) constraints on primordial black hole dark matter. Spectral distortion limits from COBE/FIRAS do not impose a relevant constraint. Planck CMB anisotropy power spectra imply that primordial black holes with m {sub BH}∼> 5 M {sub ⊙} are disfavored. However, this is susceptible to sizeable uncertainties due to the treatment of the black hole accretion process. These constraints are weaker than those quoted in earlier literature for the same observables.

  9. 3D simulations with boosted primordial power spectra and ultracompact minihalos

    Science.gov (United States)

    Gosenca, Mateja; Adamek, Julian; Byrnes, Christian T.; Hotchkiss, Shaun

    2017-12-01

    We perform three-dimensional simulations of structure formation in the early Universe, when boosting the primordial power spectrum on ˜kpc scales. We demonstrate that our simulations are capable of producing power-law profiles close to the steep ρ ∝r-9 /4 halo profiles that are commonly assumed to be a good approximation to ultracompact minihalos (UCMHs). However, we show that for more realistic initial conditions in which halos are neither perfectly symmetric nor isolated the steep power-law profile is disrupted, and we find that the Navarro-Frenk-White profile is a better fit to most halos. In the presence of background fluctuations, even extreme, nearly spherical initial conditions do not remain exceptional. Nonetheless, boosting the amplitude of initial fluctuations causes all structures to form earlier and thus at larger densities. With a sufficiently large amplitude of fluctuations, we find that values for the concentration of typical halos in our simulations can become very large. However, despite the signal coming from dark matter annihilation inside the cores of these halos being enhanced, it is still orders of magnitude smaller compared to the usually assumed UCMH profile. The upper bound on the primordial power spectrum from the nonobservation of UCMHs should therefore be reevaluated.

  10. Experimental study of ion stopping power in warm dense matter: charge-state distribution measurements of ions leaving warm dense matter

    International Nuclear Information System (INIS)

    Gauthier, Maxence

    2013-01-01

    The determination if the ion slowing down process (or stopping power) in warm dense matter is essential especially in the frame of inertial confinement fusion. During my thesis, our interest was driven by the modification of the charge state of ion beam emerging from warm dense matter, this quantity playing a major role in ion stopping power calculation. We took advantage of the properties exhibited by ion beams produced by high intensity short pulse lasers to study during two experiments performed at ELFIE and TITAN facilities, the charge state modification of a carbon and helium ion beams emerging from an aluminum foil isochorically heated by an energetic proton beam. In the first two chapters are presented the major challenges regarding the subject from both a theoretical and experimental point of view. Here are exposed the different simulation tools used during the thesis. The third chapter is devoted to the study of the property of laser-produced ion beams in the scope of our experiments aiming at studying the stopping power. We have studied in particular ion beams generated using lower-than-solid density targets during two experiments: helium gas jet and laser-exploded target. In the last chapter are presented the set-ups and results of the two experiments on the charge state of ion beam emerging from warm dense matter. The data we measured in solid-density cold aluminum are successfully compared with the results already obtained in conventional accelerators. (author) [fr

  11. DEPENDENCE OF SOLAR-WIND POWER SPECTRA ON THE DIRECTION OF THE LOCAL MEAN MAGNETIC FIELD

    International Nuclear Information System (INIS)

    Podesta, J. J.

    2009-01-01

    Wavelet analysis can be used to measure the power spectrum of solar-wind fluctuations along a line in any direction (θ, φ) with respect to the local mean magnetic field B 0 . This technique is applied to study solar-wind turbulence in high-speed streams in the ecliptic plane near solar minimum using magnetic field measurements with a cadence of eight vectors per second. The analysis of nine high-speed streams shows that the reduced spectrum of magnetic field fluctuations (trace power) is approximately azimuthally symmetric about B 0 in both the inertial range and dissipation range; in the inertial range the spectra are characterized by a power-law exponent that changes continuously from 1.6 ± 0.1 in the direction perpendicular to the mean field to 2.0 ± 0.1 in the direction parallel to the mean field. The large uncertainties suggest that the perpendicular power-law indices 3/2 and 5/3 are both consistent with the data. The results are similar to those found by Horbury et al. at high heliographic latitudes. Comparisons between solar-wind observations and the theories of strong incompressible MHD turbulence developed by Goldreich and Sridhar and Boldyrev are not rigorously justified because these theories only apply to turbulence with vanishing cross-helicity although the normalized cross-helicity of solar-wind turbulence is not negligible. Assuming these theories can be generalized in such a way that the three-dimensional wavevector spectra have similar functional forms when the cross-helicity is nonzero, then for the interval of Ulysses data analyzed by Horbury et al. the ratio of the spectra perpendicular and parallel to B 0 is more consistent with the Goldreich and Sridhar scaling P perpendicular /P || ∝ ν 1/3 than with the Boldyrev scaling ν 1/2 . The analysis of high-speed streams in the ecliptic plane does not yield a reliable measurement of this scaling law. The transition from a turbulent MHD-scale energy cascade to a kinetic Alfven wave (KAW

  12. AMS-02 fits dark matter

    Science.gov (United States)

    Balázs, Csaba; Li, Tong

    2016-05-01

    In this work we perform a comprehensive statistical analysis of the AMS-02 electron, positron fluxes and the antiproton-to-proton ratio in the context of a simplified dark matter model. We include known, standard astrophysical sources and a dark matter component in the cosmic ray injection spectra. To predict the AMS-02 observables we use propagation parameters extracted from observed fluxes of heavier nuclei and the low energy part of the AMS-02 data. We assume that the dark matter particle is a Majorana fermion coupling to third generation fermions via a spin-0 mediator, and annihilating to multiple channels at once. The simultaneous presence of various annihilation channels provides the dark matter model with additional flexibility, and this enables us to simultaneously fit all cosmic ray spectra using a simple particle physics model and coherent astrophysical assumptions. Our results indicate that AMS-02 observations are not only consistent with the dark matter hypothesis within the uncertainties, but adding a dark matter contribution improves the fit to the data. Assuming, however, that dark matter is solely responsible for this improvement of the fit, it is difficult to evade the latest CMB limits in this model.

  13. AMS-02 fits dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Balázs, Csaba; Li, Tong [ARC Centre of Excellence for Particle Physics at the Tera-scale,School of Physics and Astronomy, Monash University, Melbourne, Victoria 3800 (Australia)

    2016-05-05

    In this work we perform a comprehensive statistical analysis of the AMS-02 electron, positron fluxes and the antiproton-to-proton ratio in the context of a simplified dark matter model. We include known, standard astrophysical sources and a dark matter component in the cosmic ray injection spectra. To predict the AMS-02 observables we use propagation parameters extracted from observed fluxes of heavier nuclei and the low energy part of the AMS-02 data. We assume that the dark matter particle is a Majorana fermion coupling to third generation fermions via a spin-0 mediator, and annihilating to multiple channels at once. The simultaneous presence of various annihilation channels provides the dark matter model with additional flexibility, and this enables us to simultaneously fit all cosmic ray spectra using a simple particle physics model and coherent astrophysical assumptions. Our results indicate that AMS-02 observations are not only consistent with the dark matter hypothesis within the uncertainties, but adding a dark matter contribution improves the fit to the data. Assuming, however, that dark matter is solely responsible for this improvement of the fit, it is difficult to evade the latest CMB limits in this model.

  14. Influence of ∼7 keV sterile neutrino dark matter on the process of reionization

    International Nuclear Information System (INIS)

    Rudakovskyi, Anton; Iakubovskyi, Dmytro

    2016-01-01

    Recent reports of a weak unidentified emission line at ∼3.5 keV found in spectra of several matter-dominated objects may give a clue to resolve the long-standing problem of dark matter. One of the best physically motivated particle candidate able to produce such an extra line is sterile neutrino with the mass of ∼7 keV . Previous works show that sterile neutrino dark matter with parameters consistent with the new line measurement modestly affects structure formation compared to conventional cold dark matter scenario. In this work, we concentrate for the first time on contribution of the sterile neutrino dark matter able to produce the observed line at ∼3.5 keV, to the process of reionization. By incorporating dark matter power spectra for ∼7 keV sterile neutrinos into extended semi-analytical 'bubble' model of reionization we obtain that such sterile neutrino dark matter would produce significantly sharper reionization compared to widely used cold dark matter models, impossible to 'imitate' within the cold dark matter scenario under any reasonable choice of our model parameters, and would have a clear tendency of lowering both the redshift of reionization and the electron scattering optical depth (although the difference is still below the existing model uncertainties). Further dedicated studies of reionization (such as 21 cm measurements or studies of kinetic Sunyaev-Zeldovich effect) will thus be essential for reconstruction of particle candidate responsible the ∼3.5 keV line.

  15. Revealing discriminating power of the elements in edible sea salts: Line-intensity correlation analysis from laser-induced plasma emission spectra

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yonghoon, E-mail: yhlee@mokpo.ac.kr [Department of Chemistry, Mokpo National University, Jeonnam 534-729 (Korea, Republic of); Ham, Kyung-Sik [Department of Food Engineering, Mokpo National University, Jeonnam 534-729 (Korea, Republic of); Han, Song-Hee [Division of Maritime Transportation System, Mokpo National Maritime University, Jeonnam 530-729 (Korea, Republic of); Yoo, Jonghyun, E-mail: jyoo@appliedspectra.com [Applied Spectra, Inc., 46665 Fremont Boulevard, Fremont, CA 94538 (United States); Jeong, Sungho [School of Mechatronics, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2014-11-01

    We have investigated the discriminating power of the elements in edible sea salts using Laser-Induced Breakdown Spectroscopy (LIBS). For the ten different sea salts from South Korea, China, Japan, France, Mexico and New Zealand, LIBS spectra were recorded in the spectral range between 190 and 1040 nm, identifying the presence of Na, Cl, K, Ca, Mg, Li, Sr, Al, Si, Ti, Fe, C, O, N, and H. Intensity correlation analysis of the observed emission lines provided a valuable insight into the discriminating power of the different elements in the sea salts. The correlation analysis suggests that the elements with independent discrimination power can be categorized into three groups; those that represent dissolved ions in seawater (K, Li, and Mg), those that are associated with calcified particles (Ca and Sr), and those that are present in soils contained in the sea salts (Al, Si, Ti, and Fe). Classification models using a few emission lines selected based on the results from intensity correlation analysis and full broadband LIBS spectra were developed based on Principal Component Analysis (PCA) and Partial Least Squares-Discriminant Analysis (PLS-DA) and their performances were compared. Our results indicate that effective combination of a few emission lines can provide a dependable model for discriminating the edible sea salts and the performance is not much degraded from that based on the full broadband spectra. This can be rationalized by the intensity correlation results. - Highlights: • Broadband LIBS spectra of various edible sea salts were obtained. • Intensity correlation of emission lines of the elements in edible sea salts was analyzed. • The elements were categorized into three groups with independent discriminating power. • The effective combination of a few lines can provide dependable classification models.

  16. Supercluster simulations: impact of baryons on the matter power spectrum and weak lensing forecasts for Super-CLASS

    Science.gov (United States)

    Peters, Aaron; Brown, Michael L.; Kay, Scott T.; Barnes, David J.

    2018-03-01

    We use a combination of full hydrodynamic and dark matter only simulations to investigate the effect that supercluster environments and baryonic physics have on the matter power spectrum, by re-simulating a sample of supercluster sub-volumes. On large scales we find that the matter power spectrum measured from our supercluster sample has at least twice as much power as that measured from our random sample. Our investigation of the effect of baryonic physics on the matter power spectrum is found to be in agreement with previous studies and is weaker than the selection effect over the majority of scales. In addition, we investigate the effect of targeting a cosmologically non-representative, supercluster region of the sky on the weak lensing shear power spectrum. We do this by generating shear and convergence maps using a line-of-sight integration technique, which intercepts our random and supercluster sub-volumes. We find the convergence power spectrum measured from our supercluster sample has a larger amplitude than that measured from the random sample at all scales. We frame our results within the context of the Super-CLuster Assisted Shear Survey (Super-CLASS), which aims to measure the cosmic shear signal in the radio band by targeting a region of the sky that contains five Abell clusters. Assuming the Super-CLASS survey will have a source density of 1.5 galaxies arcmin-2, we forecast a detection significance of 2.7^{+1.5}_{-1.2}, which indicates that in the absence of systematics the Super-CLASS project could make a cosmic shear detection with radio data alone.

  17. First Polarized Power Spectra from HERA-19 Commissioning Data: Comparison with Simulations

    Science.gov (United States)

    Igarashi, Amy; Chichura, Paul; Fox Fortino, Austin; Kohn, Saul; Aguirre, James; HERA Collaboration, CHAMP

    2018-01-01

    The Hydrogen Epoch of Reionization Array (HERA) is a radio telescope whose primary goal is the detection of redshifted 21-cm line radiation produced from the spin-flip transition of HI during the Epoch of Reionization (EoR). HERA is currently under construction in South Africa, and will eventually be an array of 350 14-m antennas. HERA aims for a statistical detection of the power spectrum of this emission, using the so-called delay spectrum technique (Parsons et al 2012). We examine a first season of commissioning data from the first 19 elements (HERA-19) to characterize Galactic and extragalactic foregrounds. We compare the delay spectrum for HERA-19 constructed from data to those constructed from simulations done using a detailed instrument electromagnetic model and using the unpolarized Global Sky Model (GSM2008). We compare the data and simulations to explore the effects of Stokes-I to Q and U leakage, and further examine whether statistical models of polarization match the observed polarized power spectra.

  18. A new approach for measuring power spectra and reconstructing time series in active galactic nuclei

    Science.gov (United States)

    Li, Yan-Rong; Wang, Jian-Min

    2018-05-01

    We provide a new approach to measure power spectra and reconstruct time series in active galactic nuclei (AGNs) based on the fact that the Fourier transform of AGN stochastic variations is a series of complex Gaussian random variables. The approach parametrizes a stochastic series in frequency domain and transforms it back to time domain to fit the observed data. The parameters and their uncertainties are derived in a Bayesian framework, which also allows us to compare the relative merits of different power spectral density models. The well-developed fast Fourier transform algorithm together with parallel computation enables an acceptable time complexity for the approach.

  19. Origin of multiple periodicities in the Fourier power spectra of the Plasmodium falciparum genome

    Directory of Open Access Journals (Sweden)

    Nunes Miriam CS

    2011-12-01

    Full Text Available Abstract Background Fourier transforms and their associated power spectra are used for detecting periodicities and protein-coding genes and is generally regarded as a well established technique. Many of the periodicities which have been found with this method are quite well understood such as the periodicity of 3 nt which is associated to codon usage. But what is the origin of the peculiar frequency multiples k/21 which were reported for a tiny section of chromosome 2 in P. falciparum? Are these present in other chromosomes and perhaps in related organisms? And how should we interpret fractional periodicities in genomes? Results We applied the binary indicator power spectrum to all chromosomes of P. falciparum, and found that the frequency overtones k/21 are present only in non-coding sections. We did not find such frequency overtones in any other related genomes. Furthermore, the frequency overtones were identified as artifacts of the way the genome is encoded into a numerical sequence, that is, they are frequency aliases. By choosing a different way to encode the sequence the overtones do not appear. In view of these results, we revisited early applications of this technique to proteins where frequency overtones were reported. Conclusions Some authors hinted recently at the possibility of mapping artifacts and frequency aliases in power spectra. However, in the case of P. falciparum the frequency aliases are particularly strong and can mask the 1/3 frequency which is used for gene detecting. This shows that albeit being a well known technique, with a long history of application in proteins, few researchers seem to be aware of the problems represented by frequency aliases.

  20. Influence of pure dephasing on emission spectra from single photon sources

    DEFF Research Database (Denmark)

    Næsby Rasmussen, Andreas; Skovgård, Troels Suhr; Kristensen, Philip Trøst

    2008-01-01

    We investigate the light-matter interaction of a quantum dot with the electromagnetic field in a lossy microcavity and calculate emission spectra for nonzero detuning and dephasing. It is found that dephasing shifts the intensity of the emission peaks for nonzero detuning. We investigate the char......We investigate the light-matter interaction of a quantum dot with the electromagnetic field in a lossy microcavity and calculate emission spectra for nonzero detuning and dephasing. It is found that dephasing shifts the intensity of the emission peaks for nonzero detuning. We investigate...

  1. Analytic and numerical calculations of quantum synchrotron spectra from relativistic electron distributions

    International Nuclear Information System (INIS)

    Brainerd, J.J.; Petrosian, V.

    1987-01-01

    Calculations are performed numerically and analytically of synchrotron spectra for thermal and power-law electron distributions using the single-particle synchrotron power spectrum derived from quantum electrodynamics. It is found that the photon energy at which quantum effects appear is proportional to temperature and independent of field strength for thermal spectra; quantum effects introduce an exponential roll-off away from the classical spectra. For power law spectra, the photon energy at which quantum effects appear is inversely proportional to the magnetic field strength; quantum effects produce a steeper power law than is found classically. The results are compared with spectra derived from the classical power spectrum with an energy cutoff ensuring conservation of energy. It is found that an energy cutoff is generally an inadequate approximation of quantum effects for low photon energies and for thermal spectra, but gives reasonable results for high-energy emission from power-law electron distributions. 17 references

  2. Dynamics of optical matter creation and annihilation in colloidal liquids controlled by laser trapping power.

    Science.gov (United States)

    Liu, Jin; Dai, Qiao-Feng; Huang, Xu-Guang; Wu, Li-Jun; Guo, Qi; Hu, Wei; Yang, Xiang-Bo; Lan, Sheng; Gopal, Achanta Venu; Trofimov, Vyacheslav A

    2008-11-15

    We investigate the dynamics of optical matter creation and annihilation in a colloidal liquid that was employed to construct an all-optical switch. It is revealed that the switching-on process can be characterized by the Fermi-Dirac distribution function, while the switching-off process can be described by a steady state followed by a single exponential decay. The phase transition times exhibit a strong dependence on trapping power. With an increasing trapping power, while the switching-on time decreases rapidly, the switch-off time increases significantly, indicating the effects of optical binding and van der Waals force on the lifetime of the optical matter.

  3. Modification of EEG power spectra and EEG connectivity in autobiographical memory: a sLORETA study.

    Science.gov (United States)

    Imperatori, Claudio; Brunetti, Riccardo; Farina, Benedetto; Speranza, Anna Maria; Losurdo, Anna; Testani, Elisa; Contardi, Anna; Della Marca, Giacomo

    2014-08-01

    The aim of the present study was to explore the modifications of scalp EEG power spectra and EEG connectivity during the autobiographical memory test (AM-T) and during the retrieval of an autobiographical event (the high school final examination, Task 2). Seventeen healthy volunteers were enrolled (9 women and 8 men, mean age 23.4 ± 2.8 years, range 19-30). EEG was recorded at baseline and while performing the autobiographical memory (AM) tasks, by means of 19 surface electrodes and a nasopharyngeal electrode. EEG analysis was conducted by means of the standardized LOw Resolution Electric Tomography (sLORETA) software. Power spectra and lagged EEG coherence were compared between EEG acquired during the memory tasks and baseline recording. The frequency bands considered were as follows: delta (0.5-4 Hz); theta (4.5-7.5 Hz); alpha (8-12.5 Hz); beta1 (13-17.5 Hz); beta2 (18-30 Hz); gamma (30.5-60 Hz). During AM-T, we observed a significant delta power increase in left frontal and midline cortices (T = 3.554; p < 0.05) and increased EEG connectivity in delta band in prefrontal, temporal, parietal, and occipital areas, and for gamma bands in the left temporo-parietal regions (T = 4.154; p < 0.05). In Task 2, we measured an increased power in the gamma band located in the left posterior midline areas (T = 3.960; p < 0.05) and a significant increase in delta band connectivity in the prefrontal, temporal, parietal, and occipital areas, and in the gamma band involving right temporo-parietal areas (T = 4.579; p < 0.05). These results indicate that AM retrieval engages in a complex network which is mediated by both low- (delta) and high-frequency (gamma) EEG bands.

  4. ACOUSTIC SCALE FROM THE ANGULAR POWER SPECTRA OF SDSS-III DR8 PHOTOMETRIC LUMINOUS GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Hee-Jong [Berkeley Center for Cosmological Physics, LBL and Department of Physics, University of California, Berkeley, CA 94720 (United States); Ho, Shirley; White, Martin; Reid, Beth; Schlegel, David J. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Cuesta, Antonio J.; Padmanabhan, Nikhil [Yale Center for Astronomy and Astrophysics, Yale University, New Haven, CT 06511 (United States); Ross, Ashley J.; Percival, Will J.; Nichol, Robert C. [Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom); Saito, Shun [Department of Astronomy, 601 Campbell Hall, University of California at Berkeley, Berkeley, CA 94720 (United States); De Putter, Roland [Instituto de Fisica Corpuscular, Valencia (Spain); Eisenstein, Daniel J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 20, Cambridge, MA 02138 (United States); Xu Xiaoying; Skibba, Ramin [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Schneider, Donald P. [Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802 (United States); Verde, Licia [Institucio Catalana de Recerca i Estudis Avancats, Barcelona (Spain); Bizyaev, Dmitry; Brewington, Howard; Brinkmann, J. [Apache Point Observatory, 2001 Apache Point Road, Sunspot, NM 88349 (United States); and others

    2012-12-10

    We measure the acoustic scale from the angular power spectra of the Sloan Digital Sky Survey III (SDSS-III) Data Release 8 imaging catalog that includes 872, 921 galaxies over {approx}10,000 deg{sup 2} between 0.45 < z < 0.65. The extensive spectroscopic training set of the Baryon Oscillation Spectroscopic Survey luminous galaxies allows precise estimates of the true redshift distributions of galaxies in our imaging catalog. Utilizing the redshift distribution information, we build templates and fit to the power spectra of the data, which are measured in our companion paper, to derive the location of Baryon acoustic oscillations (BAOs) while marginalizing over many free parameters to exclude nearly all of the non-BAO signal. We derive the ratio of the angular diameter distance to the sound horizon scale D{sub A} (z)/r{sub s} = 9.212{sup +0.416}{sub -{sub 0.404}} at z = 0.54, and therefore D{sub A} (z) = 1411 {+-} 65 Mpc at z = 0.54; the result is fairly independent of assumptions on the underlying cosmology. Our measurement of angular diameter distance D{sub A} (z) is 1.4{sigma} higher than what is expected for the concordance {Lambda}CDM, in accordance to the trend of other spectroscopic BAO measurements for z {approx}> 0.35. We report constraints on cosmological parameters from our measurement in combination with the WMAP7 data and the previous spectroscopic BAO measurements of SDSS and WiggleZ. We refer to our companion papers (Ho et al.; de Putter et al.) for investigations on information of the full power spectrum.

  5. Very low frequency oscillations in the power spectra of heart rate variability during dry supine immersion and exposure to non-hypoxic hypobaria.

    Science.gov (United States)

    Tripathi, K K

    2011-06-01

    The origin of very low frequency (VLF) oscillations in the power spectra of heart rate variability (HRV) is controversial with possible mechanisms involving thermoregulation and/or renin-angiotensin-aldosterone system. Recently, a major contribution from vagal influences has been suggested. The present study investigated the behaviour of VLF (0.004-0.040 Hz) components of HRV power spectra in a group of healthy male volunteers during their exposure to (1) dry, supine, immersion in thermo-neutral water for 6 h (n = 7) and (2) non-hypoxic hypobaria (breathing 40-60% oxygen at 15,000' simulated in a decompression chamber) for 5 h (n = 15). The two manoeuvres are established to increase vagal outflow. During both the manoeuvres, all the frequency domain indices of HRV exhibited a significant increase. Increase in HRV was much more than that in the R-R interval. At 6 h of immersion, the R-R interval increased by ∼ 15% but the total power increased ∼ fourfold. Similarly, at 5 h of exposure to hypobaria, total power increased ∼ twofold with a very modest increase in an R-R of ∼ 9%. Increase in spectral power was appreciable even after normalization with mean R-R(2). Increase in VLF during immersion was more than reported during enalaprilat blockade of angiotensin convertase enzyme. Plasma renin activity did not vary during hypobaria. There was a significant increase in pNN50, an established marker of cardiac vagal activity. Centre frequencies of the spectra and slope (β) of the relation between log(PSD) and log(frequency) did not change. Results were supportive of the notion that the parasympathetic system is pre-potent to influence slower (than respiratory) frequency components in HRV spectrum. Additionally, such an effect was without a change in the time constant of effector responses or pacemaker frequencies of VLF and LF periodicities and HRV was not a simple linear surrogate for cardiac vagal effects. An invariance of spectral exponent (β) ruled out

  6. The Coyote Universe II: Cosmological Models and Precision Emulation of the Nonlinear Matter Power Spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Heitmann, Katrin [Los Alamos National Laboratory; Habib, Salman [Los Alamos National Laboratory; Higdon, David [Los Alamos National Laboratory; Williams, Brian J [Los Alamos National Laboratory; White, Martin [Los Alamos National Laboratory; Wagner, Christian [Los Alamos National Laboratory

    2008-01-01

    The power spectrum of density fluctuations is a foundational source of cosmological information. Precision cosmological probes targeted primarily at investigations of dark energy require accurate theoretical determinations of the power spectrum in the nonlinear regime. To exploit the observational power of future cosmological surveys, accuracy demands on the theory are at the one percent level or better. Numerical simulations are currently the only way to produce sufficiently error-controlled predictions for the power spectrum. The very high computational cost of (precision) N-body simulations is a major obstacle to obtaining predictions in the nonlinear regime, while scanning over cosmological parameters. Near-future observations, however, are likely to provide a meaningful constraint only on constant dark energy equation of state 'wCDM' cosmologies. In this paper we demonstrate that a limited set of only 37 cosmological models -- the 'Coyote Universe' suite -- can be used to predict the nonlinear matter power spectrum at the required accuracy over a prior parameter range set by cosmic microwave background observations. This paper is the second in a series of three, with the final aim to provide a high-accuracy prediction scheme for the nonlinear matter power spectrum for wCDM cosmologies.

  7. Redshift space clustering of galaxies and cold dark matter model

    Science.gov (United States)

    Bahcall, Neta A.; Cen, Renyue; Gramann, Mirt

    1993-01-01

    The distorting effect of peculiar velocities on the power speturm and correlation function of IRAS and optical galaxies is studied. The observed redshift space power spectra and correlation functions of IRAS and optical the galaxies over the entire range of scales are directly compared with the corresponding redshift space distributions using large-scale computer simulations of cold dark matter (CDM) models in order to study the distortion effect of peculiar velocities on the power spectrum and correlation function of the galaxies. It is found that the observed power spectrum of IRAS and optical galaxies is consistent with the spectrum of an Omega = 1 CDM model. The problems that such a model currently faces may be related more to the high value of Omega in the model than to the shape of the spectrum. A low-density CDM model is also investigated and found to be consistent with the data.

  8. Improving interpretation of infrared spectra for OM characterization by subtraction of spectra from incinerated samples

    Science.gov (United States)

    Ellerbrock, Ruth H.; Gerke, Horst H.; Leue, Martin

    2017-04-01

    Non-destructive methods such as diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) have been applied to characterize organic matter (OM) at intact structural surfaces among others. However, it is often difficult to distinguish effects of organic components on DRIFT signal intensities from those of mineral components. The objective of this study was to re-evaluate DRIFT spectra from intact earthworm burrow walls and coated cracks to improve the interpretation of C-H and C=O bands. We compared DRIFT and transmission Fourier transform infrared (FTIR) spectra of entire samples that were from the same pedogenetic soil horizon, but different in mineral composition and texture (i.e., glacial till versus loess). Spectra of incinerated samples were subtracted from the original spectra. Transmission FTIR and DRIFT spectra were almost identical for entire soil samples. However, the DRIFT spectra were affected by the bulk mode bands (i.e., wavenumbers 2000 to 1700 cm-1) that affected spectral resolution and reproducibility. The ratios between C-H and C=O band intensities as indicator for OM quality obtained with DRIFT were smaller than those obtained from transmission FTIR. A spectral subtraction procedure was found to reduce effects of mineral absorption bands on DRIFT spectra allowing an improved interpretation. DRIFT spectroscopy as a non-destructive method for analyzing OM composition at intact surfaces in structured soils could be calibrated with information obtained with the more detailed transmission FTIR and complementary methods.

  9. [Experimental study on spectra of compressed air microwave plasma].

    Science.gov (United States)

    Liu, Yong-Xi; Zhang, Gui-Xin; Wang, Qiang; Hou, Ling-Yun

    2013-03-01

    Using a microwave plasma generator, compressed air microwave plasma was excited under 1 - 5 atm pressures. Under different pressures and different incident microwave power, the emission spectra of compressed air microwave plasma were studied with a spectra measuring system. The results show that continuum is significant at atmospheric pressure and the characteristic will be weakened as the pressure increases. The band spectra intensity will be reduced with the falling of the incident microwave power and the band spectra were still significant. The experimental results are valuable to studying the characteristics of compressed air microwave plasma and the generating conditions of NO active groups.

  10. New constraints and prospects for sub-GeV dark matter scattering off electrons in xenon

    Science.gov (United States)

    Essig, Rouven; Volansky, Tomer; Yu, Tien-Tien

    2017-08-01

    We study in detail sub-GeV dark matter scattering off electrons in xenon, including the expected electron recoil spectra and annual modulation spectra. We derive improved constraints using low-energy XENON10 and XENON100 ionization-only data. For XENON10, in addition to including electron-recoil data corresponding to about 1-3 electrons, we include for the first time events corresponding to about 4-7 electrons. Assuming the scattering is momentum independent (FDM=1 ), this strengthens a previous cross-section bound by almost an order of magnitude for dark matter masses above 50 MeV. The available XENON100 data corresponds to events with about 4-50 electrons, and leads to a constraint that is comparable to the XENON10 bound above 50 MeV for FDM=1 . We demonstrate that a search for an annual modulation signal in upcoming xenon experiments (XENON1T, XENONnT, LZ) could substantially improve the above bounds even in the presence of large backgrounds. We also emphasize that in simple benchmark models of sub-GeV dark matter, the dark matter-electron scattering rate can be as high as one event every ten (two) seconds in the XENON1T (XENONnT or LZ) experiments, without being in conflict with any other known experimental bounds. While there are several sources of backgrounds that can produce single- or few-electron events, a large event rate can be consistent with a dark matter signal and should not be simply written off as purely a detector curiosity. This fact motivates a detailed analysis of the ionization-data ("S2") data, taking into account the expected annual modulation spectrum of the signal rate, as well as the DM-induced electron-recoil spectra, which are another powerful discriminant between signal and background.

  11. Scikit-spectra: Explorative Spectroscopy in Python

    Directory of Open Access Journals (Sweden)

    Adam Hughes

    2015-06-01

    Full Text Available Scikit-spectra is an intuitive framework for explorative spectroscopy in Python. Scikit-spectra leverages the Pandas library for powerful data processing to provide datastructures and an API designed for spectroscopy. Utilizing the new IPython Notebook widget system, scikit-spectra is headed towards a GUI when you want it, API when you need it approach to spectral analysis. As an application, analysis is presented of the surface-plasmon resonance shift in a solution of gold nanoparticles induced by proteins binding to the gold’s surface. Please refer to the scikit-spectra website for full documentation and support: http://hugadams.github.io/scikit-spectra/

  12. Aberrant EEG functional connectivity and EEG power spectra in resting state post-traumatic stress disorder: a sLORETA study.

    Science.gov (United States)

    Imperatori, Claudio; Farina, Benedetto; Quintiliani, Maria Isabella; Onofri, Antonio; Castelli Gattinara, Paola; Lepore, Marta; Gnoni, Valentina; Mazzucchi, Edoardo; Contardi, Anna; Della Marca, Giacomo

    2014-10-01

    The aim of the present study was to explore the modifications of EEG power spectra and EEG connectivity of resting state (RS) condition in patients with post-traumatic stress disorder (PTSD). Seventeen patients and seventeen healthy subjects matched for age and gender were enrolled. EEG was recorded during 5min of RS. EEG analysis was conducted by means of the standardized Low Resolution Electric Tomography software (sLORETA). In power spectra analysis PTSD patients showed a widespread increase of theta activity (4.5-7.5Hz) in parietal lobes (Brodmann Area, BA 7, 4, 5, 40) and in frontal lobes (BA 6). In the connectivity analysis PTSD patients also showed increase of alpha connectivity (8-12.5Hz) between the cortical areas explored by Pz-P4 electrode. Our results could reflect the alteration of memory systems and emotional processing consistently altered in PTSD patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Indirect search for dark matter with AMS

    International Nuclear Information System (INIS)

    Goy, Corinne

    2006-01-01

    This document summarises the potential of AMS in the indirect search for Dark Matter. Observations and cosmology indicate that the Universe may include a large amount of Dark Matter of unknown nature. A good candidate is the Ligthest Supersymmetric Particle in R-Parity conserving models. AMS offers a unique opportunity to study Dark Matter indirect signature in three spectra: gamma, antiprotons and positrons

  14. Matter power spectrum in hidden neutrino interacting dark matter models: a closer look at the collision term

    Energy Technology Data Exchange (ETDEWEB)

    Binder, Tobias; Covi, Laura [Institute for Theoretical Physics, Georg-August University Göttingen,Friedrich-Hund-Platz 1, Göttingen, D-37077 (Germany); Kamada, Ayuki [Department of Physics and Astronomy, University of California,Riverside, California 92521 (United States); Murayama, Hitoshi [Kavli Institute for the Physics and Mathematics of the Universe (WPI),University of Tokyo Institutes for Advanced Study, University of Tokyo,Kashiwa 277-8583 (Japan); Department of Physics, University of California, Berkeley,Berkeley, California 94720 (United States); Theoretical Physics Group, Lawrence Berkeley National Laboratory,Berkeley, California 94720 (United States); Takahashi, Tomo [Department of Physics, Saga University,Saga 840-8502 (Japan); Yoshida, Naoki [Kavli Institute for the Physics and Mathematics of the Universe (WPI),University of Tokyo Institutes for Advanced Study, University of Tokyo,Kashiwa 277-8583 (Japan); Department of Physics, University of Tokyo,Tokyo 113-0033 (Japan); CREST, Japan Science and Technology Agency,4-1-8 Honcho, Kawaguchi, Saitama, 332-0012 (Japan)

    2016-11-21

    Dark Matter (DM) models providing possible alternative solutions to the small-scale crisis of the standard cosmology are nowadays of growing interest. We consider DM interacting with light hidden fermions via well-motivated fundamental operators showing the resultant matter power spectrum is suppressed on subgalactic scales within a plausible parameter region. Our basic description of the evolution of cosmological perturbations relies on a fully consistent first principles derivation of a perturbed Fokker-Planck type equation, generalizing existing literature. The cosmological perturbation of the Fokker-Planck equation is presented for the first time in two different gauges, where the results transform into each other according to the rules of gauge transformation. Furthermore, our focus lies on a derivation of a broadly applicable and easily computable collision term showing important phenomenological differences to other existing approximations. As one of the main results and concerning the small-scale crisis, we show the equal importance of vector and scalar boson mediated interactions between the DM and the light fermions.

  15. Power spectrum tomography of dark matter annihilation with local galaxy distribution

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Shin' ichiro, E-mail: s.ando@uva.nl [GRAPPA Institute, University of Amsterdam, 1098 XH Amsterdam (Netherlands)

    2014-10-01

    Cross-correlating the gamma-ray background with local galaxy catalogs potentially gives stringent constraints on dark matter annihilation. We provide updated theoretical estimates of sensitivities to the annihilation cross section from gamma-ray data with Fermi telescope and 2MASS galaxy catalogs, by elaborating the galaxy power spectrum and astrophysical backgrounds, and adopting the Markov-Chain Monte Carlo simulations. In particular, we show that taking tomographic approach by dividing the galaxy catalogs into more than one redshift slice will improve the sensitivity by a factor of a few to several. If dark matter halos contain lots of bright substructures, yielding a large annihilation boost (e.g., a factor of ∼100 for galaxy-size halos), then one may be able to probe the canonical annihilation cross section for thermal production mechanism up to masses of ∼700 GeV. Even with modest substructure boost (e.g., a factor of ∼10 for galaxy-size halos), on the other hand, the sensitivities could still reach a factor of three larger than the canonical cross section for dark matter masses of tens to a few hundreds of GeV.

  16. The Effects of Interplanetary Transport in the Event-intergrated Solar Energetic Particle Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lulu; Zhang, Ming; Rassoul, Hamid K., E-mail: lzhao@fit.edu [Physics and Space Sciences Department, Florida Institute of Technology, Melbourne, FL 32901 (United States)

    2017-02-10

    Previous investigations on the energy spectra of solar energetic particle (SEP) events revealed that the energy spectra observed at 1 au often show double power laws with break energies from one to tens of MeV/nuc. In order to determine whether the double power-law features result from the SEP source or the interplanetary transport process from the Sun to 1 au, we separately analyze the SEP spectra in the decay phase, during which the transport effect is minimum. In this paper, we reported three events observed by the Interplanetary Monitory Platform 8 spacecraft, which occurred on 1977 September 19, November 22, and 1979 March 1. For the first two events, the event-integrated spectra of protons possess double power-law profiles with break energies in a range of several MeV to tens of MeV, while the spectra integrated in the decay (reservoir) phase yield single power laws. Moreover, a general trend from a double power law at the rising phase to a single power law at the decay phase is observed. For the third event, both the event-integrated and the reservoir spectra show double power-law features. However, the difference between the low- and high-energy power-law indices is smaller for the reservoir spectrum than the event-integrated spectrum. These features were reproduced by solving the 1D diffusion equation analytically and we suggest that the transport process, especially the diffusion process, plays an important role in breaking the energy spectra.

  17. Cancerous tissue mapping from random lasing emission spectra

    International Nuclear Information System (INIS)

    Polson, R C; Vardeny, Z V

    2010-01-01

    Random lasing emission spectra have been collected from both healthy and cancerous tissues. The two types of tissue with optical gain have different light scattering properties as obtained from an average power Fourier transform of their random lasing emission spectra. The difference in the power Fourier transform leads to a contrast between cancerous and benign tissues, which is utilized for tissue mapping of healthy and cancerous regions of patients

  18. Statistical properties of Fermi GBM GRBs' spectra

    Science.gov (United States)

    Rácz, István I.; Balázs, Lajos G.; Horvath, Istvan; Tóth, L. Viktor; Bagoly, Zsolt

    2018-03-01

    Statistical studies of gamma-ray burst (GRB) spectra may result in important information on the physics of GRBs. The Fermi GBM catalogue contains GRB parameters (peak energy, spectral indices, and intensity) estimated fitting the gamma-ray spectral energy distribution of the total emission (fluence, flnc), and during the time of the peak flux (pflx). Using contingency tables, we studied the relationship of the models best-fitting pflx and flnc time intervals. Our analysis revealed an ordering of the spectra into a power law - Comptonized - smoothly broken power law - Band series. This result was further supported by a correspondence analysis of the pflx and flnc spectra categorical variables. We performed a linear discriminant analysis (LDA) to find a relationship between categorical (spectral) and model independent physical data. LDA resulted in highly significant physical differences among the spectral types, that is more pronounced in the case of the pflx spectra, than for the flnc spectra. We interpreted this difference as caused by the temporal variation of the spectrum during the outburst. This spectral variability is confirmed by the differences in the low-energy spectral index and peak energy, between the pflx and flnc spectra. We found that the synchrotron radiation is significant in GBM spectra. The mean low-energy spectral index is close to the canonical value of α = -2/3 during the peak flux. However, α is ˜ -0.9 for the spectra of the fluences. We interpret this difference as showing that the effect of cooling is important only for the fluence spectra.

  19. Climatology of tropospheric vertical velocity spectra

    Science.gov (United States)

    Ecklund, W. L.; Gage, K. S.; Balsley, B. B.; Carter, D. A.

    1986-01-01

    Vertical velocity power spectra obtained from Poker Flat, Alaska; Platteville, Colorado; Rhone Delta, France; and Ponape, East Caroline Islands using 50-MHz clear-air radars with vertical beams are given. The spectra were obtained by analyzing the quietest periods from the one-minute-resolution time series for each site. The lengths of available vertical records ranged from as long as 6 months at Poker Flat to about 1 month at Platteville. The quiet-time vertical velocity spectra are shown. Spectral period ranging from 2 minutes to 4 hours is shown on the abscissa and power spectral density is given on the ordinate. The Brunt-Vaisala (B-V) periods (determined from nearby sounding balloons) are indicated. All spectra (except the one from Platteville) exhibit a peak at periods slightly longer than the B-V period, are flat at longer periods, and fall rapidly at periods less than the B-V period. This behavior is expected for a spectrum of internal waves and is very similar to what is observed in the ocean (Eriksen, 1978). The spectral amplitudes vary by only a factor of 2 or 3 about the mean, and show that under quiet conditions vertical velocity spectra from the troposphere are very similar at widely different locations.

  20. Distinctive effects of allochthonous and autochthonous organic matter on CDOM spectra in a tropical lake

    Directory of Open Access Journals (Sweden)

    L. P. M. Brandão

    2018-05-01

    Full Text Available Despite the increasing understanding about differences in carbon cycling between temperate and tropical freshwater systems, our knowledge on the importance of organic matter (OM pools on light absorption properties in tropical lakes is very scarce. We performed a factorial mesocosm experiment in a tropical lake (Minas Gerais, Brazil to evaluate the effects of increased concentrations of allochthonous and autochthonous OM, and differences in light availability on the light absorption characteristics of chromophoric dissolved organic matter (CDOM. Autochthonous OM deriving from phytoplankton ( ∼  Chl a was stimulated by addition of nutrients, while OM from degradation of terrestrial leaves increased allochthonous OM, and neutral shading was used to manipulate light availability. Effects of the additions and shading on DOC, Chl a, nutrients, total suspended solid concentrations (TSM and spectral CDOM absorption were monitored every 3 days. CDOM quality was characterized by spectral indices (S250–450, S275–295, S350–450, SR and SUVA254. Effects of carbon sources and shading on the spectral CDOM absorption was investigated through principal component (PCA and redundancy (RDA analyses. The two different OM sources affected CDOM quality very differently and shading had minor effects on OM levels, but significant effects on OM quality, especially in combination with nutrient additions. Spectral indices (S250–450 and SR were mostly affected by allochthonous OM addition. The PCA showed that enrichment by allochthonous carbon had a strong effect on the CDOM spectra in the range between 300 and 400 nm, while the increase in autochthonous carbon increased absorption at wavelengths below 350 nm. Our study shows that small inputs of allochthonous OM can have large effects on the spectral light absorption compared to large production of autochthonous OM, with important implications for carbon cycling in tropical lakes.

  1. Evaluation of Reduced Power Spectra from Three-Dimensional k-Space

    Science.gov (United States)

    Saur, J.; von Papen, M.

    2014-12-01

    We present a new tool to evaluate one dimensional reduced power spectral densities (PSD) from arbitrary energy distributions in kk-space. This enables us to calculate the power spectra as they are measured in spacecraft frame for any given measurement geometry assuming Taylor's frozen-in approximation. It is possible to seperately calculate the diagonal elements of the spectral tensor and also to insert additional, non-turbulent energy in kk-space (e.g. mirror mode waves). Given a critically balanced turbulent cascade with k∥˜kα⊥k_\\|sim k_perp^alpha, we explore the implications on the spectral form of the PSD and the functional dependence of the spectral index κkappa on the field-to-flow angle θtheta between plasma flow and background magnetic field. We show that critically balanced turbulence develops a θtheta-independent cascade with the spectral slope of the perpendicular cascade κ(θ=90∘)kappa(theta{=}90^circ). This happens at frequencies f>fmaxf>f_mathrm{max}, where fmax(L,α,θ)f_mathrm{max}(L,alpha,theta) is a function of outer scale LL, critical balance exponent αalpha and field-to-flow angle θtheta. We also discuss potential damping terms acting on the kk-space distribution of energy and their effect on the PSD. Further, we show that the functional dependence κ(θ)kappa(theta) as found by textit{Horbury et al.} (2008) and textit{Chen et al.} (2010) can be explained with a damped critically balanced turbulence model.

  2. Selection Ideal Coal Suppliers of Thermal Power Plants Using the Matter-Element Extension Model with Integrated Empowerment Method for Sustainability

    Directory of Open Access Journals (Sweden)

    Zhongfu Tan

    2014-01-01

    Full Text Available In order to reduce thermal power generation cost and improve its market competitiveness, considering fuel quality, cost, creditworthiness, and sustainable development capacity factors, this paper established the evaluation system for coal supplier selection of thermal power and put forward the coal supplier selection strategies for thermal power based on integrated empowering and ideal matter-element extension models. On the one hand, the integrated empowering model can overcome the limitations of subjective and objective methods to determine weights, better balance subjective, and objective information. On the other hand, since the evaluation results of the traditional element extension model may fall into the same class and only get part of the order results, in order to overcome this shortcoming, the idealistic matter-element extension model is constructed. It selects the ideal positive and negative matter-elements classical field and uses the closeness degree to replace traditional maximum degree of membership criterion and calculates the positive or negative distance between the matter-element to be evaluated and the ideal matter-element; then it can get the full order results of the evaluation schemes. Simulated and compared with the TOPSIS method, Romania selection method, and PROMETHEE method, numerical example results show that the method put forward by this paper is effective and reliable.

  3. Implications for gravitational lensing and the dark matter content in clusters of galaxies from spatially resolved x-ray spectra

    Science.gov (United States)

    Loewenstein, M.

    1994-01-01

    A simple method for deriving well-behaved temperature solutions to the equation of hydrostatic equilibrium for intracluster media with X-ray imaging observations is presented and applied to a series of generalized models as well as to observations of the Perseus cluster and Abell 2256. In these applications the allowed range in the ratio of nonbaryons to baryons as a function of radius is derived, taking into account the uncertainties and crude spatial resolution of the X-ray spectra and considering a range of physically reasonable mass models with various scale heights. Particular attention is paid to the central regions of the cluster, and it is found that the dark matter can be sufficiently concentrated to be consistent with the high central mass surface densities for moderate-redshift clusters from their gravitational lensing properties.

  4. Self-interacting warm dark matter

    International Nuclear Information System (INIS)

    Hannestad, Steen; Scherrer, Robert J.

    2000-01-01

    It has been shown by many independent studies that the cold dark matter scenario produces singular galactic dark halos, in strong contrast with observations. Possible remedies are that either the dark matter is warm so that it has significant thermal motion or that the dark matter has strong self-interactions. We combine these ideas to calculate the linear mass power spectrum and the spectrum of cosmic microwave background (CMB) fluctuations for self-interacting warm dark matter. Our results indicate that such models have more power on small scales than is the case for the standard warm dark matter model, with a CMB fluctuation spectrum which is nearly indistinguishable from standard cold dark matter. This enhanced small-scale power may provide better agreement with the observations than does standard warm dark matter. (c) 2000 The American Physical Society

  5. Cusp-latitude Pc3 spectra: band-limited and power-law components

    Directory of Open Access Journals (Sweden)

    P. V. Ponomarenko

    Full Text Available This work attempts to fill a gap in comparative studies of upstream-generated Pc3–4 waves and broad band ULF noise observed at cusp latitudes. We performed a statistical analysis of the spectral properties of three years of cusp-latitude ground magnetometer data, finding that the average daytime Pc3–4 spectra are characterized by two principal components: an upstream-related band-limited enhancement (‘signal’ and a power-law background (‘noise’ with S(f a  f -4 . Based on this information we developed an algorithm allowing for the deconvolution of these two components in the spectral domain. The frequency of the signal enhancement increases linearly with IMF magnitude as f [mHz] ~ 4.4 | BIMF | [nT], and its power maximizes around IMF cone angles qxB ~ 20 and 160° and at 10:30–11:00 MLT. Both spectral components exhibit similar semiannual variations with equinoctial maxima. The back-ground noise power grows with increasing southward Bz and remains nearly constant for northward Bz . Its diurnal variation resembles that of Pc5 field-line resonance power, with a maximum near 09:00 MLT. Both the band-limited signal and broad band noise components show power-law growth with solar wind velocity a V 5.71sw and a V 4.12sw, respectively. Thus, the effective signal-to-noise ratio increases with in-creasing Vsw. The observations suggest that the noise generation is associated with reconnection processes.

    Key words. Magnetospheric physics (magnetopause, cusp, and boundary layers; MHD waves and instabilities; solar wind magnetosphere interactions

  6. Raman spectra of lithium compounds

    Science.gov (United States)

    Gorelik, V. S.; Bi, Dongxue; Voinov, Y. P.; Vodchits, A. I.; Gorshunov, B. P.; Yurasov, N. I.; Yurasova, I. I.

    2017-11-01

    The paper is devoted to the results of investigating the spontaneous Raman scattering spectra in the lithium compounds crystals in a wide spectral range by the fibre-optic spectroscopy method. We also present the stimulated Raman scattering spectra in the lithium hydroxide and lithium deuteride crystals obtained with the use of powerful laser source. The symmetry properties of the lithium hydroxide, lithium hydroxide monohydrate and lithium deuteride crystals optical modes were analyzed by means of the irreducible representations of the point symmetry groups. We have established the selection rules in the Raman and infrared absorption spectra of LiOH, LiOH·H2O and LiD crystals.

  7. Response spectra in alluvial soils

    International Nuclear Information System (INIS)

    Chandrasekharan, A.R.; Paul, D.K.

    1975-01-01

    For aseismic design of structures, the ground motion data is assumed either in the form of ground acceleration as a function of time or indirectly in the form of response spectra. Though the response spectra approach has limitations like not being applicable for nonlinear problems, it is usually used for structures like nuclear power plants. Fifty accelerograms recorded at alluvial sites have been processed. Since different empirical formulas relating acceleration with magnitude and distance give a wide scatter of values, peak ground acceleration alone cannot be the parameter as is assumed by a number of authors. The spectra corresponding to 5% damping have been normalised with respect to three parameters, namely, peak ground acceleration, peak ground velocity and a nondimensional quantity ad/v 2 . Envelopee of maxima and minima as well as average response spectra has been obtained. A comparison with the USAEC spectra has been made. A relation between ground acceleration, ground velocity and ad/v 2 has been obtained which would nearly give the same magnification of the response. A design response spectra for alluvial soils has been recommended. (author)

  8. Weakening gravity on redshift-survey scales with kinetic matter mixing

    Energy Technology Data Exchange (ETDEWEB)

    D' Amico, Guido [Theoretical Physics Department, CERN, Geneva (Switzerland); Huang, Zhiqi [School of Physics and Astronomy, Sun Yat-Sen University, 135 Xingang Xi Road, 510275, Guangzhou (China); Mancarella, Michele; Vernizzi, Filippo [CEA, IPhT, CNRS, URA-2306, 91191 Gif-sur-Yvette cédex (France)

    2017-02-01

    We explore general scalar-tensor models in the presence of a kinetic mixing between matter and the scalar field, which we call Kinetic Matter Mixing. In the frame where gravity is de-mixed from the scalar this is due to disformal couplings of matter species to the gravitational sector, with disformal coefficients that depend on the gradient of the scalar field. In the frame where matter is minimally coupled, it originates from the so-called beyond Horndeski quadratic Lagrangian. We extend the Effective Theory of Interacting Dark Energy by allowing disformal coupling coefficients to depend on the gradient of the scalar field as well. In this very general approach, we derive the conditions to avoid ghost and gradient instabilities and we define Kinetic Matter Mixing independently of the frame metric used to described the action. We study its phenomenological consequences for a ΛCDM background evolution, first analytically on small scales. Then, we compute the matter power spectrum and the angular spectra of the CMB anisotropies and the CMB lensing potential, on all scales. We employ the public version of COOP, a numerical Einstein-Boltzmann solver that implements very general scalar-tensor modifications of gravity. Rather uniquely, Kinetic Matter Mixing weakens gravity on short scales, predicting a lower σ{sub 8} with respect to the ΛCDM case. We propose this as a possible solution to the tension between the CMB best-fit model and low-redshift observables.

  9. External Economies Evaluation of Wind Power Engineering Project Based on Analytic Hierarchy Process and Matter-Element Extension Model

    Directory of Open Access Journals (Sweden)

    Hong-ze Li

    2013-01-01

    Full Text Available The external economies of wind power engineering project may affect the operational efficiency of wind power enterprises and sustainable development of wind power industry. In order to ensure that the wind power engineering project is constructed and developed in a scientific manner, a reasonable external economies evaluation needs to be performed. Considering the interaction relationship of the evaluation indices and the ambiguity and uncertainty inherent, a hybrid model of external economies evaluation designed to be applied to wind power engineering project was put forward based on the analytic hierarchy process (AHP and matter-element extension model in this paper. The AHP was used to determine the weights of indices, and the matter-element extension model was used to deduce final ranking. Taking a wind power engineering project in Inner Mongolia city as an example, the external economies evaluation is performed by employing this hybrid model. The result shows that the external economies of this wind power engineering project are belonged to the “strongest” level, and “the degree of increasing region GDP,” “the degree of reducing pollution gas emissions,” and “the degree of energy conservation” are the sensitive indices.

  10. Nonlinear FMR spectra in yttrium iron garnet

    Directory of Open Access Journals (Sweden)

    Yu.M. Bunkov, P.M. Vetoshko, I.G. Motygullin, T.R. Safin, M.S. Tagirov, N.A. Tukmakova

    2015-12-01

    Full Text Available Results of demagnetizing effect studies in yttrium iron garnet Y3Fe5O12 thin films are reported. Experiments were performed on X-Band of electron paramagnetic resonance spectrometer at room temperature. The ferromagnetic resonance (FMR spectra were obtained for one-layer single crystal YIG films for different values of the applied microwave power. Nonlinear FMR spectra transformation by the microwave power increasing in various directions of magnetic field sweep was observed. It is explained by the influence of the demagnetization action of nonequilibrium magnons.

  11. Spatially localized 1H NMR spectra of metabolites in the human brain

    International Nuclear Information System (INIS)

    Hanstock, C.C.; Rothman, D.L.; Jue, T.; Shulman, R.G.; Prichard, J.W.

    1988-01-01

    Using a surface coil, the authors have obtained 1 H NMR spectra from metabolites in the human brain. Localization was achieved by combining depth pulses with image-selected in vivo spectroscopy magnetic field gradient methods. 1 H spectra in which total creatine (3.03 ppm) has a signal/noise ratio of 95:1 were obtained in 4 min from 14 ml of brain. A resonance at 2.02 ppm consisting predominantly of N-acetylaspartate was measured relative to the creatine peak in gray and white matter, and the ratio was lower in the white matter. The spin-spin relaxation times of N-acetylaspartate and creatine were measured in white and gray matter and while creatine relaxation times were the same in both, the N-acetylaspartate relaxation time was longer in white matter. Lactate was detected in the normoxic brain and the average of three measurements was ∼0.5 mM from comparison with the creatine plus phosphocreatine peak, which was assumed to be 10.5 mM

  12. A digital processing method for the analysis of complex nuclear spectra

    International Nuclear Information System (INIS)

    Madan, V.K.; Abani, M.C.; Bairi, B.R.

    1994-01-01

    This paper describes a digital processing method using frequency power spectra for the analysis of complex nuclear spectra. The power spectra were estimated by employing modified discrete Fourier transform. The method was applied to observed spectral envelopes. The results for separating closely-spaced doublets in nuclear spectra of low statistical precision compared favorably with those obtained by using a popular peak fitting program SAMPO. The paper also describes limitations of the peak fitting methods. It describes the advantages of digital processing techniques for type II digital signals including nuclear spectra. A compact computer program occupying less than 2.5 kByte of memory space was written in BASIC for the processing of observed spectral envelopes. (orig.)

  13. Warm dense matter study and pulsed-power developments for X-pinch equipment in Nagaoka University of Technology

    International Nuclear Information System (INIS)

    Sasaki, Toru; Miki, Yasutoshi; Tachinami, Fumitaka; Saito, Hirotaka; Takahashi, Takuya; Anzai, Nobuyuki; Kikuchi, Takashi; Aso, Tsukasa; Harada, Nob.

    2014-01-01

    In order to explore high energy density physics, we have performed WDM experiment by using several pulsed-power devices. To generate well-defined warm dense state for evaluating electrical conductivity and its properties, we have proposed an isochoric heating of foamed metal by using pulsed-power discharge. The proposed technique yields the electrical conductivity of warm dense matter with a well-defined temperature. To observe the warm dense matter, a pulsed-power generator based on a pulse-forming-network (PFN) was studied toward generating an intense point-spot-like X-ray source from X-pinch technique. From comparison of the designing and the actual inductances of the X-pinch system, the actual inductance of X-pinch system is 3.5 times higher than the designing inductance. To reduce the total inductance of X-pinch system, we will modify the gap switch system such as multi spake gap

  14. Solar Energetic Particle Spectra

    Science.gov (United States)

    Ryan, J. M.; Boezio, M.; Bravar, U.; Bruno, A.; Christian, E. R.; de Nolfo, G. A.; Martucci, M.; Mergè, M.; Munini, R.; Ricci, M.; Sparvoli, R.; Stochaj, S.

    2017-12-01

    We report updated event-integrated spectra from several SEP events measured with PAMELA. The measurements were made from 2006 to 2014 in the energy range starting at 80 MeV and extending well above the neutron monitor threshold. The PAMELA instrument is in a high inclination, low Earth orbit and has access to SEPs when at high latitudes. Spectra have been assembled from these high-latitude measurements. The field of view of PAMELA is small and during the high-latitude passes it scans a wide range of asymptotic directions as the spacecraft orbits. Correcting for data gaps, solid angle effects and improved background corrections, we have compiled event-integrated intensity spectra for twenty-eight SEP events. Where statistics permit, the spectra exhibit power law shapes in energy with a high-energy exponential roll over. The events analyzed include two genuine ground level enhancements (GLE). In those cases the roll-over energy lies above the neutron monitor threshold ( 1 GV) while the others are lower. We see no qualitative difference between the spectra of GLE vs. non-GLE events, i.e., all roll over in an exponential fashion with rapidly decreasing intensity at high energies.

  15. Efficient estimation of burst-mode LDA power spectra

    DEFF Research Database (Denmark)

    Velte, Clara Marika; George, William K

    2010-01-01

    the velocity bias effects. Residence time weighting should also be used to compute velocity spectra. The residence time-weighted direct Fourier transform can, however, be computationally heavy, especially for the large data sets needed to eliminate finite time window effects and given the increased...

  16. Searching for signatures of dark matter-dark radiation interaction in observations of large-scale structure

    Science.gov (United States)

    Pan, Zhen; Kaplinghat, Manoj; Knox, Lloyd

    2018-05-01

    In this paper, we conduct a search in the latest large-scale structure measurements for signatures of the dark matter-dark radiation interaction proposed by Buen-Abad et al. (2015). We show that prior claims of an inference of this interaction at ˜3 σ significance rely on a use of the Sunyaev-Zeldovich cluster mass function that ignores uncertainty in the mass-observable relationship. Including this uncertainty we find that the inferred level of interaction remains consistent with the data, but so does zero interaction; i.e., there is no longer a preference for nonzero interaction. We also point out that inference of the shape and amplitude of the matter power spectrum from Ly α forest measurements is highly inconsistent with the predictions of the Λ CDM model conditioned on Planck cosmic microwave background temperature, polarization, and lensing power spectra, and that the dark matter-dark radiation model can restore that consistency. We also phenomenologically generalize the model of Buen-Abad et al. (2015) to allow for interaction rates with different scalings with temperature, and find that the original scaling is preferred by the data.

  17. EFFECT OF MICROWAVE POWER ON SHAPE OF EPR SPECTRA--APPLICATION TO EXAMINATION OF COMPLEX FREE RADICAL SYSTEM IN THERMALLY STERILIZED ACIDUM BORICUM.

    Science.gov (United States)

    Ramos, Paweł; Pieprzyca, Małgorzata; Pilawa, Barbara

    2016-01-01

    Complex free radical system in thermally sterilized acidum boricum (AB) was studied. Acidum boricum was sterilized at temperatures and times given by pharmaceutical norms: 160 degrees C and 120 min, 170 degrees C and 60 min and 180 degrees C and 30 min. The advanced spectroscopic tests were performed. The EPR spectra of free radicals were measured as the first derivatives with microwaves of 9.3 GHz frequency and magnetic modulation of 100 kHz. The Polish X-band electron paramagnetic resonance spectrometer of Radiopan (Poznań) was used. EPR lines were not observed for the nonheated AB. The broad EPR asymmetric lines were obtained for all the heated AB samples. The influence of microwave power in the range of 2.2-70 mW on the shape of EPR spectra of the heated drug samples was tested. The following asymmetry parameters: A1/A2, A1-A2, B1/B2, and B1-B2, were analyzed. The changes of these parameters with microwave power were observed. The strong dependence of shape and its parameters on microwave power proved the complex character of free radical system in thermally sterilized AB. Changes of microwave power during the detection of EPR spectra indicated complex character of free radicals in AB sterilized in hot air under all the tested conditions. Thermolysis, interactions between free radicals and interactions of free radicals with oxygen may be responsible for the complex free radicals system in thermally treated AB. Usefulness of continuous microwave saturation of EPR lines and shape analysis to examine free radicals in thermally sterilized drugs was confirmed.

  18. Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters

    CERN Document Server

    Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit, A.; Benoit-Levy, A.; Bernard, J.P.; Bersanelli, M.; Bielewicz, P.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.F.; Catalano, A.; Challinor, A.; Chiang, H.C.; Christensen, P.R.; Clements, D.L.; Colombo, L.P.L.; Combet, C.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Desert, F.X.; Di Valentino, E.; Dickinson, C.; Diego, J.M.; Dolag, K.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T.A.; Eriksen, H.K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Gauthier, C.; Gerbino, M.; Giard, M.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hamann, J.; Hansen, F.K.; Harrison, D.L.; Helou, G.; Henrot-Versille, S.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Holmes, W.A.; Hornstrup, A.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jones, W.C.; Juvela, M.; Keihanen, E.; Keskitalo, R.; Kiiveri, K.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lahteenmaki, A.; Lamarre, J.M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Le Jeune, M.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P.B.; Lilley, M.; Linden-Vornle, M.; Lindholm, V.; Lopez-Caniego, M.; Macias-Perez, J.F.; Maffei, B.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P.G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; Meinhold, P.R.; Melchiorri, A.; Migliaccio, M.; Millea, M.; Miville-Deschenes, M.A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J.A.; Narimani, A.; Naselsky, P.; Nati, F.; Natoli, P.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T.J.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G.W.; Prunet, S.; Puget, J.L.; Rachen, J.P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rossetti, M.; Roudier, G.; d'Orfeuil, B.Rouille; Rubino-Martin, J.A.; Rusholme, B.; Salvati, L.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Serra, P.; Spencer, L.D.; Spinelli, M.; Stolyarov, V.; Stompor, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.S.; Sygnet, J.F.; Tauber, J.A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Wehus, I.K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-01-01

    This paper presents the Planck 2015 likelihoods, statistical descriptions of the 2-point correlation functions of CMB temperature and polarization. They use the hybrid approach employed previously: pixel-based at low multipoles, $\\ell$, and a Gaussian approximation to the distribution of cross-power spectra at higher $\\ell$. The main improvements are the use of more and better processed data and of Planck polarization data, and more detailed foreground and instrumental models. More than doubling the data allows further checks and enhanced immunity to systematics. Progress in foreground modelling enables a larger sky fraction, contributing to enhanced precision. Improvements in processing and instrumental models further reduce uncertainties. Extensive tests establish robustness and accuracy, from temperature, from polarization, and from their combination, and show that the {\\Lambda}CDM model continues to offer a very good fit. We further validate the likelihood against specific extensions to this baseline, suc...

  19. Regulation of suspended particulate matter (SPM) in Indian coal-based thermal power plants

    Science.gov (United States)

    Sengupta, Ishita

    Air borne particulate matter, in major Indian cities is at least three times the standard prescribed by the WHO. Coal-based thermal power plants are the major emitters of particulate matter in India. The lack of severe penalty for non-compliance with the standards has worsened the situation and thus calls for an immediate need for investment in technologies to regulate particulate emissions. My dissertation studies the optimal investment decisions in a dynamic framework, for a random sample of forty Indian coal-based power plants to abate particulate emissions. I used Linear Programming to solve the double cost minimization problem for the optimal choices of coal, boiler and pollution-control equipment. A policy analysis is done to choose over various tax policies, which would induce the firms to adopt the energy efficient as well as cost efficient technology. The aim here is to reach the WHO standards. Using the optimal switching point model I show that in a dynamic set up, switching the boiler immediately is always the cost effective option for all the power plants even if there is no policy restriction. The switch to a baghouse depends upon the policy in place. Theoretically, even though an emission tax is considered the most efficient tax, an ash tax or a coal tax can also be considered to be a good substitute especially in countries like India where monitoring costs are very high. As SPM is a local pollutant the analysis here is mainly firm specific.

  20. Search for Dark Matter Satellites Using the FERMI-LAT

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; /DESY; Albert, A.; /Ohio State U.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, G.; /INFN, Trieste /Trieste U.; Bastieri, D.; /INFN, Padua /Padua U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Blandford, R.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, E.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /SLAC; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bottacini, E.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Brandt, T.J.; /IRAP, Toulouse /Toulouse III U.; Bregeon, J.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Buehler, R.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Burnett, T.H.; /Washington U., Seattle; Caliandro, G.A.; /ICE, Bellaterra; Cameron, R.A.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /IASF, Milan /DAPNIA, Saclay /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /ASDC, Frascati /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Stockholm U. /Stockholm U., OKC /ASDC, Frascati /Bari U. /INFN, Bari /Naval Research Lab, Wash., D.C. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Hiroshima U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Bari U. /INFN, Bari /INFN, Bari /INFN, Perugia /Perugia U. /Bari U. /INFN, Bari /Bari U. /INFN, Bari /Bologna Observ. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; /more authors..

    2012-08-16

    Numerical simulations based on the {Lambda}CDM model of cosmology predict a large number of as yet unobserved Galactic dark matter satellites. We report the results of a Large Area Telescope (LAT) search for these satellites via the {gamma}-ray emission expected from the annihilation of weakly interacting massive particle (WIMP) dark matter. Some dark matter satellites are expected to have hard {gamma}-ray spectra, finite angular extents, and a lack of counterparts at other wavelengths. We sought to identify LAT sources with these characteristics, focusing on {gamma}-ray spectra consistent with WIMP annihilation through the b{bar b} channel. We found no viable dark matter satellite candidates using one year of data, and we present a framework for interpreting this result in the context of numerical simulations to constrain the velocity-averaged annihilation cross section for a conventional 100 GeV WIMP annihilating through the b{bar b} channel.

  1. Search for Dark Matter Satellites Using the Fermi-Lat

    Science.gov (United States)

    Ackermann, M.; Albert, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; Bloom, E. D.; hide

    2012-01-01

    Numerical simulations based on the ACDM model of cosmology predict a large number of as yet unobserved Galactic dark matter satellites. We report the results of a Large Area Telescope (LAT) search for these satellites via the gamma-ray emission expected from the annihilation of weakly interacting massive particle (WIMP) dark matter. Some dark matter satellites are expected to have hard gamma-ray spectra, finite angular extents, and a lack of counterparts at other wavelengths. We sought to identify LAT sources with these characteristics, focusing on gamma-ray spectra consistent with WIMP annihilation through the bb(sup raised bar) channel. We found no viable dark matter satellite candidates using one year of data, and we present a framework for interpreting this result in the context of numerical simulations to constrain the velocity-averaged annihilation cross section for a conventional 100 Ge V WIMP annihilating through the bb(sup raised bar) channel.

  2. The effects of the small-scale behaviour of dark matter power spectrum on CMB spectral distortion

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Abir; Sethi, Shiv K. [Raman Research Institute, CV Raman Ave Sadashivnagar, Bengaluru, Karnataka 560080 (India); Das, Subinoy, E-mail: abir@rri.res.in, E-mail: sethi@rri.res.in, E-mail: subinoy@iiap.res.in [Indian Institute of Astrophysics, 100 Feet Rd, Madiwala, 2nd Block, Koramangala, Bengaluru, Karnataka 560034 (India)

    2017-07-01

    After numerous astronomical and experimental searches, the precise particle nature of dark matter is still unknown. The standard Weakly Interacting Massive Particle(WIMP) dark matter, despite successfully explaining the large-scale features of the universe, has long-standing small-scale issues. The spectral distortion in the Cosmic Microwave Background(CMB) caused by Silk damping in the pre-recombination era allows one to access information on a range of small scales 0.3 Mpc < k < 10{sup 4} Mpc{sup −1}, whose dynamics can be precisely described using linear theory. In this paper, we investigate the possibility of using the Silk damping induced CMB spectral distortion as a probe of the small-scale power. We consider four suggested alternative dark matter candidates—Warm Dark Matter (WDM), Late Forming Dark Matter (LFDM), Ultra Light Axion (ULA) dark matter and Charged Decaying Dark Matter (CHDM); the matter power in all these models deviate significantly from the ΛCDM model at small scales. We compute the spectral distortion of CMB for these alternative models and compare our results with the ΛCDM model. We show that the main impact of alternative models is to alter the sub-horizon evolution of the Newtonian potential which affects the late-time behaviour of spectral distortion of CMB. The y -parameter diminishes by a few percent as compared to the ΛCDM model for a range of parameters of these models: LFDM for formation redshift z {sub f} = 10{sup 5} (7%); WDM for mass m {sub wdm} = 1 keV (2%); CHDM for decay redshift z {sub decay} = 10{sup 5} (5%); ULA for mass m {sub a} = 10{sup −24} eV (3%). This effect from the pre-recombination era can be masked by orders of magnitude higher y -distortions generated by late-time sources, e.g. the Epoch of Reionization and tSZ from the cluster of galaxies. We also briefly discuss the detectability of this deviation in light of the upcoming CMB experiment PIXIE, which might have the sensitivity to detect this signal from

  3. Re-hardening of hadron transverse mass spectra in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Ohnishi, A.; Otuka, N.; Sahu, P.K.; Isse, M.; Nara, Y.

    2001-01-01

    We analyze the spectra of pions and protons in heavy-ion collisions at relativistic energies from 2 A GeV to 65 + 65 A GeV by using a jet-implemented hadron-string cascade model. In this energy region, hadron transverse mass spectra first show softening until SPS energies, and re-hardening may emerge at RHIC energies. Since hadronic matter is expected to show only softening at higher energy densities, this re-hardening of spectra can be interpreted as a good signature of the quark-gluon plasma formation. (author)

  4. Different spectra with the same neutron source

    International Nuclear Information System (INIS)

    Vega C, H. R.; Ortiz R, J. M.; Hernandez D, V. M.; Martinez B, M. R.; Hernandez A, B.; Ortiz H, A. A.; Mercado, G. A.

    2010-01-01

    Using as source term the spectrum of a 239 Pu-Be source several neutron spectra have been calculated using Monte Carlo methods. The source term was located in the centre of spherical moderators made of light water, heavy water and polyethylene of different diameters. Also a 239 Pu-Be source was used to measure its neutron spectrum, bare and moderated by water. The neutron spectra were measured at 100 cm with a Bonner spheres spectrometer. Monte Carlo calculations were used to calculate the neutron spectra of bare and water-moderated spectra that were compared with those measured with the spectrometer. Resulting spectra are similar to those found in power plants with PWR, BWR and Candu nuclear reactors. Beside the spectra the dosimetric features were determined. Using moderators and a single neutron source can be produced neutron spectra alike those found in workplaces, this neutron fields can be utilized to calibrate neutron dosimeters and area monitors. (Author)

  5. The bispectrum of matter perturbations from cosmic strings

    Energy Technology Data Exchange (ETDEWEB)

    Regan, Donough; Hindmarsh, Mark, E-mail: d.regan@sussex.ac.uk, E-mail: m.b.hindmarsh@sussex.ac.uk [Astronomy Centre, University of Sussex, Falmer, Brighton, BN1 9QH (United Kingdom)

    2015-03-01

    We present the first calculation of the bispectrum of the matter perturbations induced by cosmic strings. The calculation is performed in two different ways: the first uses the unequal time correlators (UETCs) of the string network - computed using a Gaussian model previously employed for cosmic string power spectra. The second approach uses the wake model, where string density perturbations are concentrated in sheet-like structures whose surface density grows with time. The qualitative and quantitative agreement of the two gives confidence to the results. An essential ingredient in the UETC approach is the inclusion of compensation factors in the integration with the Green's function of the matter and radiation fluids, and we show that these compensation factors must be included in the wake model also. We also present a comparison of the UETCs computed in the Gaussian model, and those computed in the unconnected segment model (USM) used by the standard cosmic string perturbation package CMBACT. We compare numerical estimates for the bispectrum of cosmic strings to those produced by perturbations from an inflationary era, and discover that, despite the intrinsically non-Gaussian nature of string-induced perturbations, the matter bispectrum is unlikely to produce competitive constraints on a population of cosmic strings.

  6. ACOUSTIC SCALE FROM THE ANGULAR POWER SPECTRA OF SDSS-III DR8 PHOTOMETRIC LUMINOUS GALAXIES

    International Nuclear Information System (INIS)

    Seo, Hee-Jong; Ho, Shirley; White, Martin; Reid, Beth; Schlegel, David J.; Cuesta, Antonio J.; Padmanabhan, Nikhil; Ross, Ashley J.; Percival, Will J.; Nichol, Robert C.; Saito, Shun; De Putter, Roland; Eisenstein, Daniel J.; Xu Xiaoying; Skibba, Ramin; Schneider, Donald P.; Verde, Licia; Bizyaev, Dmitry; Brewington, Howard; Brinkmann, J.

    2012-01-01

    We measure the acoustic scale from the angular power spectra of the Sloan Digital Sky Survey III (SDSS-III) Data Release 8 imaging catalog that includes 872, 921 galaxies over ∼10,000 deg 2 between 0.45 A (z)/r s = 9.212 +0.416 – 0 .404 at z = 0.54, and therefore D A (z) = 1411 ± 65 Mpc at z = 0.54; the result is fairly independent of assumptions on the underlying cosmology. Our measurement of angular diameter distance D A (z) is 1.4σ higher than what is expected for the concordance ΛCDM, in accordance to the trend of other spectroscopic BAO measurements for z ∼> 0.35. We report constraints on cosmological parameters from our measurement in combination with the WMAP7 data and the previous spectroscopic BAO measurements of SDSS and WiggleZ. We refer to our companion papers (Ho et al.; de Putter et al.) for investigations on information of the full power spectrum.

  7. Angular Spectra of Polarized Galactic Foregrounds

    OpenAIRE

    Cho, Jung; Lazarian, A.

    2003-01-01

    It is believed that magnetic field lines are twisted and bend by turbulent motions in the Galaxy. Therefore, both Galactic synchrotron emission and thermal emission from dust reflects statistics of Galactic turbulence. Our simple model of Galactic turbulence, motivated by results of our simulations, predicts that Galactic disk and halo exhibit different angular power spectra. We show that observed angular spectra of synchrotron emission are compatible with our model. We also show that our mod...

  8. First results from the IllustrisTNG simulations: matter and galaxy clustering

    Science.gov (United States)

    Springel, Volker; Pakmor, Rüdiger; Pillepich, Annalisa; Weinberger, Rainer; Nelson, Dylan; Hernquist, Lars; Vogelsberger, Mark; Genel, Shy; Torrey, Paul; Marinacci, Federico; Naiman, Jill

    2018-03-01

    Hydrodynamical simulations of galaxy formation have now reached sufficient volume to make precision predictions for clustering on cosmologically relevant scales. Here, we use our new IllustrisTNG simulations to study the non-linear correlation functions and power spectra of baryons, dark matter, galaxies, and haloes over an exceptionally large range of scales. We find that baryonic effects increase the clustering of dark matter on small scales and damp the total matter power spectrum on scales up to k ˜ 10 h Mpc-1 by 20 per cent. The non-linear two-point correlation function of the stellar mass is close to a power-law over a wide range of scales and approximately invariant in time from very high redshift to the present. The two-point correlation function of the simulated galaxies agrees well with Sloan Digital Sky Survey at its mean redshift z ≃ 0.1, both as a function of stellar mass and when split according to galaxy colour, apart from a mild excess in the clustering of red galaxies in the stellar mass range of109-1010 h-2 M⊙. Given this agreement, the TNG simulations can make valuable theoretical predictions for the clustering bias of different galaxy samples. We find that the clustering length of the galaxy autocorrelation function depends strongly on stellar mass and redshift. Its power-law slope γ is nearly invariant with stellar mass, but declines from γ ˜ 1.8 at redshift z = 0 to γ ˜ 1.6 at redshift z ˜ 1, beyond which the slope steepens again. We detect significant scale dependences in the bias of different observational tracers of large-scale structure, extending well into the range of the baryonic acoustic oscillations and causing nominal (yet fortunately correctable) shifts of the acoustic peaks of around ˜ 5 per cent.

  9. New structures of power density spectra for four Kepler active galactic nuclei

    Science.gov (United States)

    Dobrotka, A.; Antonuccio-Delogu, V.; Bajčičáková, I.

    2017-09-01

    Many nearby active galactic nuclei display a significant short-term variability. In this work, we reanalyse photometric data of four active galactic nuclei observed by Kepler in order to study the flickering activity, with our main goal to search for multiple components in the power density spectra. We find that all four objects have similar characteristics, with two break frequencies at approximately log( f /Hz) = -5.2 and -4.7. We consider some physical phenomena whose characteristic time-scales are consistent with those observed, in particular mass accretion fluctuations in the inner geometrically thick disc (hot X-ray corona) and unstable relativistic Rayleigh-Taylor modes. The former is supported by detection of the same break frequencies in the Swift X-ray data of ZW229-15. We also discuss rms-flux relations, and we detect a possible typical linear trend at lower flux levels. Our findings support the hypothesis of a multiplicative character of variability, in agreement with the propagating accretion fluctuation model.

  10. A technique for filling gaps in time series with complicated power spectra

    International Nuclear Information System (INIS)

    Brown, T.M.

    1984-01-01

    Fahlman and Ulrych (1982) describe a method for estimating the power and phase spectra of gapped time series, using a maximum-entropy reconstruction of the data in the gaps. It has proved difficult to apply this technique to solar oscillations data, because of the great complexity of the solar oscillations spectrum. We describe a means for avoiding this difficulty, and report the results of a series of blind tests of the modified technique. The main results of these tests are: 1. Gap-filling gives good results, provided that the signal-to-noise ration in the original data is large enough, and provided the gaps are short enough. For low-noise data, the duty cycle of the observations should not be less than about 50%. 2. The frequencies and widths of narrow spectrum features are well reproduced by the technique. 3. The technique systematically reduces the apparent amplitudes of small features in the spectrum relative to large ones. (orig.)

  11. Dark matter axions '96

    International Nuclear Information System (INIS)

    Sikivie, P.

    1996-01-01

    This report discusses why axions have been postulated to exist, what cosmology implies about their presence as cold dark matter in the galactic halo, how axions might be detected in cavities wherein strong magnetic fields stimulate their conversion into photons, and relations between axions' energy spectra and galactic halos' properties

  12. Spectra of turbulent static pressure fluctuations in jet mixing layers

    Science.gov (United States)

    Jones, B. G.; Adrian, R. J.; Nithianandan, C. K.; Planchon, H. P., Jr.

    1977-01-01

    Spectral similarity laws are derived for the power spectra of turbulent static pressure fluctuations by application of dimensional analysis in the limit of large turbulent Reynolds number. The theory predicts that pressure spectra are generated by three distinct types of interaction in the velocity fields: a fourth order interaction between fluctuating velocities, an interaction between the first order mean shear and the third order velocity fluctuations, and an interaction between the second order mean shear rate and the second order fluctuating velocity. Measurements of one-dimensional power spectra of the turbulent static pressure fluctuations in the driven mixing layer of a subsonic, circular jet are presented, and the spectra are examined for evidence of spectral similarity. Spectral similarity is found for the low wavenumber range when the large scale flow on the centerline of the mixing layer is self-preserving. The data are also consistent with the existence of universal inertial subranges for the spectra of each interaction mode.

  13. First Constraints on Fuzzy Dark Matter from Lyman-α Forest Data and Hydrodynamical Simulations.

    Science.gov (United States)

    Iršič, Vid; Viel, Matteo; Haehnelt, Martin G; Bolton, James S; Becker, George D

    2017-07-21

    We present constraints on the masses of extremely light bosons dubbed fuzzy dark matter (FDM) from Lyman-α forest data. Extremely light bosons with a de Broglie wavelength of ∼1  kpc have been suggested as dark matter candidates that may resolve some of the current small scale problems of the cold dark matter model. For the first time, we use hydrodynamical simulations to model the Lyman-α flux power spectrum in these models and compare it to the observed flux power spectrum from two different data sets: the XQ-100 and HIRES/MIKE quasar spectra samples. After marginalization over nuisance and physical parameters and with conservative assumptions for the thermal history of the intergalactic medium (IGM) that allow for jumps in the temperature of up to 5000 K, XQ-100 provides a lower limit of 7.1×10^{-22}  eV, HIRES/MIKE returns a stronger limit of 14.3×10^{-22}  eV, while the combination of both data sets results in a limit of 20×10^{-22}  eV (2σ C.L.). The limits for the analysis of the combined data sets increases to 37.5×10^{-22}  eV (2σ C.L.) when a smoother thermal history is assumed where the temperature of the IGM evolves as a power law in redshift. Light boson masses in the range 1-10×10^{-22}  eV are ruled out at high significance by our analysis, casting strong doubts that FDM helps solve the "small scale crisis" of the cold dark matter models.

  14. Construction of a catalog of X-ray spectra for mammography simulations

    International Nuclear Information System (INIS)

    Santos, L.C.S.; Vieira, J.W.

    2017-01-01

    Computational Exposure Models (MCEs) allow the simulation of the interaction of radiation with matter by means of Monte Carlo (MC) techniques. Generally, MCEs are composed of phantom, simulator algorithms of radioactive sources and an MC code to simulate the transport, interaction of the radiation with matter and to evaluate the energy deposited in regions of interest. To compose an MCE for simulations in mammography, the construction of a catalog of X-ray spectra was started, based on the catalog model constructed and using until then in MCEs by the Group of Research in Numerical Dosimetry and by the Group of Research in Computational Dosimetry & Embedded Systems (both referenced in this work as GDN). Potential of 25 kV and 35 kV and used target / filter were applied to the tube: Mo / Mo. The file containing the spectra was read correctly by EGSnrc

  15. General Notes on Processes and Their Spectra

    Directory of Open Access Journals (Sweden)

    Gustav Cepciansky

    2012-01-01

    Full Text Available The frequency spectrum performs one of the main characteristics of a process. The aim of the paper is to show the coherence between the process and its own spectrum and how the behaviour and properties of a process itself can be deduced from its spectrum. Processes are categorized and general principles of their spectra calculation and recognition are given. The main stress is put on power spectra of electric and optic signals, as they also perform a kind of processes. These spectra can be directly measured, observed and examined by means of spectral analyzers and they are very important characteristics which can not be omitted at transmission techniques in telecommunication technologies. Further, the paper also deals with non electric processes, mainly with processes and spectra at mass servicing and how these spectra can be utilised in praxis.

  16. 78 FR 14361 - In the Matter of Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Units 1 and...

    Science.gov (United States)

    2013-03-05

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0310; Docket Nos. 50-445 and 50-446; License Nos. NPF-87 and NPF-89] In the Matter of Luminant Generation Company LLC, Comanche Peak Nuclear Power Plant, Units... Nuclear Power Plant, Units 1 and 2 (CPNPP), and its Independent Spent Fuel Storage Installation Facility...

  17. The role of positronium decoherence in positron annihilation in matter

    International Nuclear Information System (INIS)

    Pietrow, M.; Slomski, P.

    2011-01-01

    A small difference between the energies of the para-positronium (p-Ps) and ortho-positronium (o-Ps) states suggests the possibility of the superposition of p-Ps and o-Ps during the formation of positronium (Ps) from pre-Ps, terminating its migration in the matter in a void. It is shown that such a superposition decoheres in the basis of p-Ps and o-Ps. The decoherence time scale estimated here motivates a correction in the precise analysis of the positron annihilation lifetime spectra. More generally, the superposited Ps state should contribute to the theory of the evolution of positronium in matter. -- Highlights: → Decoherence time decrease exponentially with the number of e - interacting with Ps. → Time scale of the decoherence motivates correction in decomposition of PALS spectra. → We showed the way of modification for formulas used for PALS spectra decomposition. → The superposited Ps should contribute to the positronium in matter evolution theory. → We examined the magnetisation influence to be expected on the process of decoherence.

  18. Optimization and energy spectra of x-ray to be used for imaging

    International Nuclear Information System (INIS)

    Nakamori, Nobuyuki; Kanamori, Hitoshi

    1979-01-01

    The relations of the spectra of X-ray used for diagnosis to the absorbed dose of patients and X-ray information are now being investigated by a number of investigators. Here the problems and the trends of the investigations at present are described. Advent of semiconductor detectors has improved the accuracy of measuring X-ray spectra very rapidly. However, since the semiconductor detectors themselves utilize X-ray photon absorption, calibration curves must be prepared for obtaining the true X-ray spectra. Though there are methods of theoretically determining X-ray spectra, no definite theoretical formula is found. Thus, the derivation of an empirical equation based on measured data would be the most fundamental problem. Interactions in an object and the change of X-ray spectra are described on the case of monochromatic and continuous X-ray irradiation. As mentioned above, beam hardening occurs when X-ray enters a matter deep, because the interactions between X-ray and the matter depend upon the photon energy. There are a few methods for correcting the variation of CT (computed tomography) number due to beam hardening. However, prior to this, there are two methods of representing continuous X-ray with single energy, and the unification of the methods or a new way of defining X-ray quality is needed. It has been and is always desirable that monochromatic X-ray source becomes to be useable, and various methods are proposed. (Wakatsuki, Y.)

  19. Application of bounding spectra to seismic design of piping based on the performance of above ground piping in power plants subjected to strong motion earthquakes

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1995-02-01

    This report extends the potential application of Bounding Spectra evaluation procedures, developed as part of the A-46 Unresolved Safety Issue applicable to seismic verification of in-situ electrical and mechanical equipment, to in-situ safety related piping in nuclear power plants. The report presents a summary of earthquake experience data which define the behavior of typical U.S. power plant piping subject to strong motion earthquakes. The report defines those piping system caveats which would assure the seismic adequacy of the piping systems which meet those caveats and whose seismic demand are within the bounding spectra input. Based on the observed behavior of piping in strong motion earthquakes, the report describes the capabilities of the piping system to carry seismic loads as a function of the type of connection (i.e. threaded versus welded). This report also discusses in some detail the basic causes and mechanisms for earthquake damages and failures to power plant piping systems

  20. Distribution function approach to redshift space distortions. Part V: perturbation theory applied to dark matter halos

    Energy Technology Data Exchange (ETDEWEB)

    Vlah, Zvonimir; Seljak, Uroš [Institute for Theoretical Physics, University of Zürich, Zürich (Switzerland); Okumura, Teppei [Institute for the Early Universe, Ewha Womans University, Seoul, S. Korea (Korea, Republic of); Desjacques, Vincent, E-mail: zvlah@physik.uzh.ch, E-mail: seljak@physik.uzh.ch, E-mail: teppei@ewha.ac.kr, E-mail: Vincent.Desjacques@unige.ch [Département de Physique Théorique and Center for Astroparticle Physics (CAP) Université de Genéve, Genéve (Switzerland)

    2013-10-01

    Numerical simulations show that redshift space distortions (RSD) introduce strong scale dependence in the power spectra of halos, with ten percent deviations relative to linear theory predictions even on relatively large scales (k < 0.1h/Mpc) and even in the absence of satellites (which induce Fingers-of-God, FoG, effects). If unmodeled these effects prevent one from extracting cosmological information from RSD surveys. In this paper we use Eulerian perturbation theory (PT) and Eulerian halo biasing model and apply it to the distribution function approach to RSD, in which RSD is decomposed into several correlators of density weighted velocity moments. We model each of these correlators using PT and compare the results to simulations over a wide range of halo masses and redshifts. We find that with an introduction of a physically motivated halo biasing, and using dark matter power spectra from simulations, we can reproduce the simulation results at a percent level on scales up to k ∼ 0.15h/Mpc at z = 0, without the need to have free FoG parameters in the model.

  1. Comparison between simplified load spectra in accordance with Germanische Lloyd guidelines, and load spectra derived from time domain simulations

    Energy Technology Data Exchange (ETDEWEB)

    Rees, M [Aerodyn Energiesysteme gmbH, Rendsburg (Germany)

    1996-09-01

    The Germanische Lloyd guideline allows calculations of load spectra in two fundamentally different ways. In the case of the so-called `simplified load spectra` the maximum amplitude of fluctuation of a load component is formed as {+-}75% of the average value of the purely aerodynamic loads of this component at rated wind conditions, together with an overlay of mass-related loads. The second method allowed in the GL guideline is the calculation of load spectra from simulation results in the time domain. For a number of average wind speeds the time-dependent characteristics of the load components are calculated taking account of the natural spatial turbulence of the wind. These are converted into load spectra using the rainflow method. In a parametric study the load spectra are calculated according to both methods and compared. The calculations are performed for turbines with rated powers of 100 kW to 2000 kW, with two and three blades, and also for stall-controlled and pitch-controlled turbines. The calculated load spectra are compared with each by means of 1 P fatigue equivalent load spectra. The influence of individual parameters is presented, as is the validity of the simplified load spectra. (au)

  2. Hunting for Dark Matter in Spheroidal Galaxies

    Science.gov (United States)

    Steele, Rebecca; Holwerda, Benne; Kielkopf, John F.

    2018-06-01

    Searches for blended spectra have been highly successful in identifying strongly lensing galaxies: these spectra show a low-redshift passive galaxy with much stronger emission lines from the source being lensed. We have recently identified 112 strong lensing candidates in the Galaxy and Mass Assembly Survey (GAMA). The improved sensitivity and redshift determination makes this a very clean sample of two-galaxy spectra, spanning both lower-mass galaxy strong lenses as well as a higher redshiftregime (z > 0.4). As a first step of a PhD project, we will vet the 112 candidate strong gravitational lenses using the new Kilo Degree Survey (KiDS), which is both deeper and sharper than existing Sloan images. Once confirmed, these lower mass gravitational lenses can be targeted with the soon-to-launch James Webb Space Telescope or the Hubble Space Telescope for follow-up observations. Models of the gravitational lenses give us direct measures of the dark matter content of these low-mass galaxies, thought to be dominated by dark matter.

  3. Quark Matter May Not Be Strange.

    Science.gov (United States)

    Holdom, Bob; Ren, Jing; Zhang, Chen

    2018-06-01

    If quark matter is energetically favored over nuclear matter at zero temperature and pressure, then it has long been expected to take the form of strange quark matter (SQM), with comparable amounts of u, d, and s quarks. The possibility of quark matter with only u and d quarks (udQM) is usually dismissed because of the observed stability of ordinary nuclei. However, we find that udQM generally has lower bulk energy per baryon than normal nuclei and SQM. This emerges in a phenomenological model that describes the spectra of the lightest pseudoscalar and scalar meson nonets. Taking into account the finite size effects, udQM can be the ground state of baryonic matter only for baryon number A>A_{min} with A_{min}≳300. This ensures the stability of ordinary nuclei and points to a new form of stable matter just beyond the periodic table.

  4. Stopping power measurements with 17-GeV/c protons at the AGS or inclusive proton spectra from proton-nucleus interactions at 17 GeV/c

    International Nuclear Information System (INIS)

    Remsberg, L.P.; Barton, D.S.; Bunce, G.

    1984-01-01

    The problem of nuclear stopping power and its importance to the study of nucleus-nucleus collisions at very high energies was brought to general attention one year ago at Quark Matter 83 by Busza and Goldhaber. In this context, nuclear stopping power can be thought of as the rate of energy (or rapidity) loss of a proton traversing nuclear matter. It does not directly address the important question of energy deposition. Busza and Goldhaber showed that knowledge of nuclear stopping power is needed to estimate the minimum center-of-mass energy required in nucleus-nucleus collisions to ensure the production of very high temperatures at low baryon density. At cm energies of about 1 to 10 GeV/A, the stopping power is important in the estimation of the maximum baryon densities attainable in nucleus-nucleus collisions. The data presented are more relevant to this latter point

  5. Automated element identification for EDS spectra evaluation using quantification and integrated spectra simulation approaches

    International Nuclear Information System (INIS)

    Eggert, F

    2010-01-01

    This work describes first real automated solution for qualitative evaluation of EDS spectra in X-ray microanalysis. It uses a combination of integrated standardless quantitative evaluation, computation of analytical errors to a final uncertainty, and parts of recently developed simulation approaches. Multiple spectra reconstruction assessments and peak searches of the residual spectrum are powerful enough to solve the qualitative analytical question automatically for totally unknown specimens. The integrated quantitative assessment is useful to improve the confidence of the qualitative analysis. Therefore, the qualitative element analysis becomes a part of integrated quantitative spectrum evaluation, where the quantitative results are used to iteratively refine element decisions, spectrum deconvolution, and simulation steps.

  6. An analytical examination of distortions in power spectra due to sampling errors

    International Nuclear Information System (INIS)

    Njau, E.C.

    1982-06-01

    Distortions introduced into spectral energy densities of sinusoid signals as well as those of more complex signals through different forms of errors in signal sampling are developed and shown analytically. The approach we have adopted in doing this involves, firstly, developing for each type of signal and for the corresponding form of sampling errors an analytical expression that gives the faulty digitization process involved in terms of the features of the particular signal. Secondly, we take advantage of a method described elsewhere [IC/82/44] to relate, as much as possible, the true spectral energy density of the signal and the corresponding spectral energy density of the faulty digitization process. Thirdly, we then develop expressions which reveal the distortions that are formed in the directly computed spectral energy density of the digitized signal. It is evident from the formulations developed herein that the types of sampling errors taken into consideration may create false peaks and other distortions that are of non-negligible concern in computed power spectra. (author)

  7. Gigahertz-peaked Spectra Pulsars and Thermal Absorption Model

    Energy Technology Data Exchange (ETDEWEB)

    Kijak, J.; Basu, R.; Lewandowski, W.; Rożko, K. [Janusz Gil Institute of Astronomy, University of Zielona Góra, ul. Z. Szafrana 2, PL-65-516 Zielona Góra (Poland); Dembska, M., E-mail: jkijak@astro.ia.uz.zgora.pl [DLR Institute of Space Systems, Robert-Hooke-Str. 7 D-28359 Bremen (Germany)

    2017-05-10

    We present the results of our radio interferometric observations of pulsars at 325 and 610 MHz using the Giant Metrewave Radio Telescope. We used the imaging method to estimate the flux densities of several pulsars at these radio frequencies. The analysis of the shapes of the pulsar spectra allowed us to identify five new gigahertz-peaked spectra (GPS) pulsars. Using the hypothesis that the spectral turnovers are caused by thermal free–free absorption in the interstellar medium, we modeled the spectra of all known objects of this kind. Using the model, we were able to put some observational constraints on the physical parameters of the absorbing matter, which allows us to distinguish between the possible sources of absorption. We also discuss the possible effects of the existence of GPS pulsars on future search surveys, showing that the optimal frequency range for finding such objects would be from a few GHz (for regular GPS sources) to possibly 10 GHz for pulsars and radio magnetars exhibiting very strong absorption.

  8. Quantum physics of light and matter photons, atoms, and strongly correlated systems

    CERN Document Server

    Salasnich, Luca

    2017-01-01

    This compact but exhaustive textbook, now in its significantly revised and expanded second edition, provides an essential introduction to the field quantization of light and matter with applications to atomic physics and strongly correlated systems. Following an initial review of the origins of special relativity and quantum mechanics, individual chapters are devoted to the second quantization of the electromagnetic field and the consequences of light field quantization for the description of electromagnetic transitions. The spin of the electron is then analyzed, with particular attention to its derivation from the Dirac equation. Subsequent topics include the effects of external electric and magnetic fields on the atomic spectra and the properties of systems composed of many interacting identical particles. The book also provides a detailed explanation of the second quantization of the non-relativistic matter field, i.e., the Schrödinger field, which offers a powerful tool for the investigation of many-body...

  9. Power-controlled transition from standard to negative refraction in reorientational soft matter.

    Science.gov (United States)

    Piccardi, Armando; Alberucci, Alessandro; Kravets, Nina; Buchnev, Oleksandr; Assanto, Gaetano

    2014-11-25

    Refraction at a dielectric interface can take an anomalous character in anisotropic crystals, when light is negatively refracted with incident and refracted beams emerging on the same side of the interface normal. In soft matter subject to reorientation, such as nematic liquid crystals, the nonlinear interaction with light allows tuning of the optical properties. We demonstrate that in such material a beam of light can experience either positive or negative refraction depending on input power, as it can alter the spatial distribution of the optic axis and, in turn, the direction of the energy flow when traveling across an interface. Moreover, the nonlinear optical response yields beam self-focusing and spatial localization into a self-confined solitary wave through the formation of a graded-index waveguide, linking the refractive transition to power-driven readdressing of copolarized guided-wave signals, with a number of output ports not limited by diffraction.

  10. The spectra and periodograms of anti-correlated discrete fractional Gaussian noise.

    Science.gov (United States)

    Raymond, G M; Percival, D B; Bassingthwaighte, J B

    2003-05-01

    Discrete fractional Gaussian noise (dFGN) has been proposed as a model for interpreting a wide variety of physiological data. The form of actual spectra of dFGN for frequencies near zero varies as f(1-2H), where 0 < H < 1 is the Hurst coefficient; however, this form for the spectra need not be a good approximation at other frequencies. When H approaches zero, dFGN spectra exhibit the 1 - 2H power-law behavior only over a range of low frequencies that is vanishingly small. When dealing with a time series of finite length drawn from a dFGN process with unknown H, practitioners must deal with estimated spectra in lieu of actual spectra. The most basic spectral estimator is the periodogram. The expected value of the periodogram for dFGN with small H also exhibits non-power-law behavior. At the lowest Fourier frequencies associated with a time series of N values sampled from a dFGN process, the expected value of the periodogram for H approaching zero varies as f(0) rather than f(1-2H). For finite N and small H, the expected value of the periodogram can in fact exhibit a local power-law behavior with a spectral exponent of 1 - 2H at only two distinct frequencies.

  11. 76 FR 77022 - In the Matter of Carolina Power & Light Company, H.B. Robinson Steam Electric Plant, Unit No. 2...

    Science.gov (United States)

    2011-12-09

    ... and 72-3] In the Matter of Carolina Power & Light Company, H.B. Robinson Steam Electric Plant, Unit No. 2, H. B. Robinson Steam Electric Plant, Unit 2, Independent Spent Fuel Storage Installation; Order Approving Indirect Transfer of Control of Licenses I. Carolina Power & Light Company (CP&L, the licensee) is...

  12. PPPC 4 DMν: a Poor Particle Physicist Cookbook for Neutrinos from Dark Matter annihilations in the Sun

    Energy Technology Data Exchange (ETDEWEB)

    Baratella, Pietro [Scuola Normale Superiore and INFN, Piazza dei Cavalieri 7, Pisa, 56126 (Italy); Cirelli, Marco [Institut de Physique Théorique, CNRS URA 2306 and CEA-Saclay, Gif-sur-Yvette, 91191 (France); Hektor, Andi; Pata, Joosep; Piibeleht, Morten; Strumia, Alessandro, E-mail: pietro.baratella@sissa.it, E-mail: marco.cirelli@cea.fr, E-mail: andi.hektor@cern.ch, E-mail: joosep.pata@cern.ch, E-mail: morten.piibeleht@cern.ch, E-mail: alessandro.strumia@cern.ch [National Institute of Chemical Physics and Biophysics, Ravala 10, Tallinn (Estonia)

    2014-03-01

    We provide ingredients and recipes for computing neutrino signals of TeV-scale Dark Matter (DM) annihilations in the Sun. For each annihilation channel and DM mass we present the energy spectra of neutrinos at production, including: state-of-the-art energy losses of primary particles in solar matter, secondary neutrinos, electroweak radiation. We then present the spectra after propagation to the Earth, including (vacuum and matter) flavor oscillations and interactions in solar matter. We also provide a numerical computation of the capture rate of DM particles in the Sun. These results are available in numerical form.

  13. 75 FR 10833 - In the Matter of Entergy Nuclear Operations; Vermont Yankee Nuclear Power Station; Demand for...

    Science.gov (United States)

    2010-03-09

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 05000271; License No. DPR-28; EA-10-034; NRC-2010-0089] In the Matter of Entergy Nuclear Operations; Vermont Yankee Nuclear Power Station; Demand for... this Demand for Information, the following information, in writing, and under oath or affirmation: 1...

  14. Nonlinear evolution of the matter power spectrum in modified theories of gravity

    International Nuclear Information System (INIS)

    Koyama, Kazuya; Taruya, Atsushi; Hiramatsu, Takashi

    2009-01-01

    We present a formalism to calculate the nonlinear matter power spectrum in modified gravity models that explain the late-time acceleration of the Universe without dark energy. Any successful modified gravity models should contain a mechanism to recover general relativity (GR) on small scales in order to avoid the stringent constrains on deviations from GR at solar system scales. Based on our formalism, the quasi-nonlinear power spectrum in the Dvali-Gabadadze-Porratti braneworld models and f(R) gravity models are derived by taking into account the mechanism to recover GR properly. We also extrapolate our predictions to fully nonlinear scales using the parametrized post-Friedmann framework. In the Dvali-Gabadadze-Porratti and f(R) gravity models, the predicted nonlinear power spectrum is shown to reproduce N-body results. We find that the mechanism to recover GR suppresses the difference between the modified gravity models and dark energy models with the same expansion history, but the difference remains large at the weakly nonlinear regime in these models. Our formalism is applicable to a wide variety of modified gravity models and it is ready to use once consistent models for modified gravity are developed.

  15. Radio synchrotron spectra of star-forming galaxies

    Science.gov (United States)

    Klein, U.; Lisenfeld, U.; Verley, S.

    2018-03-01

    We investigated the radio continuum spectra of 14 star-forming galaxies by fitting nonthermal (synchrotron) and thermal (free-free) radiation laws. The underlying radio continuum measurements cover a frequency range of 325 MHz to 24.5 GHz (32 GHz in case of M 82). It turns out that most of these synchrotron spectra are not simple power-laws, but are best represented by a low-frequency spectrum with a mean slope αnth = 0.59 ± 0.20 (Sν ∝ ν-α), and by a break or an exponential decline in the frequency range of 1-12 GHz. Simple power-laws or mildly curved synchrotron spectra lead to unrealistically low thermal flux densities, and/or to strong deviations from the expected optically thin free-free spectra with slope αth = 0.10 in the fits. The break or cutoff energies are in the range of 1.5-7 GeV. We briefly discuss the possible origin of such a cutoff or break. If the low-frequency spectra obtained here reflect the injection spectrum of cosmic-ray electrons, they comply with the mean spectral index of Galactic supernova remnants. A comparison of the fitted thermal flux densities with the (foreground-corrected) Hα fluxes yields the extinction, which increases with metallicity. The fraction of thermal emission is higher than believed hitherto, especially at high frequencies, and is highest in the dwarf galaxies of our sample, which we interpret in terms of a lack of containment in these low-mass systems, or a time effect caused by a very young starburst.

  16. Can tonne-scale direct detection experiments discover nuclear dark matter?

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, Alistair; Kirk, Russell; Monroe, Jocelyn; West, Stephen M., E-mail: Alistair.Butcher.2010@live.rhul.ac.uk, E-mail: Russell.Kirk.2008@live.rhul.ac.uk, E-mail: Jocelyn.Monroe@rhul.ac.uk, E-mail: Stephen.West@rhul.ac.uk [Department of Physics, Royal Holloway University of London, Egham, Surrey, TW20 0EX (United Kingdom)

    2017-10-01

    Models of nuclear dark matter propose that the dark sector contains large composite states consisting of dark nucleons in analogy to Standard Model nuclei. We examine the direct detection phenomenology of a particular class of nuclear dark matter model at the current generation of tonne-scale liquid noble experiments, in particular DEAP-3600 and XENON1T. In our chosen nuclear dark matter scenario distinctive features arise in the recoil energy spectra due to the non-point-like nature of the composite dark matter state. We calculate the number of events required to distinguish these spectra from those of a standard point-like WIMP state with a decaying exponential recoil spectrum. In the most favourable regions of nuclear dark matter parameter space, we find that a few tens of events are needed to distinguish nuclear dark matter from WIMPs at the 3 σ level in a single experiment. Given the total exposure time of DEAP-3600 and XENON1T we find that at best a 2 σ distinction is possible by these experiments individually, while 3 σ sensitivity is reached for a range of parameters by the combination of the two experiments. We show that future upgrades of these experiments have potential to distinguish a large range of nuclear dark matter models from that of a WIMP at greater than 3 σ .

  17. Can tonne-scale direct detection experiments discover nuclear dark matter?

    International Nuclear Information System (INIS)

    Butcher, Alistair; Kirk, Russell; Monroe, Jocelyn; West, Stephen M.

    2017-01-01

    Models of nuclear dark matter propose that the dark sector contains large composite states consisting of dark nucleons in analogy to Standard Model nuclei. We examine the direct detection phenomenology of a particular class of nuclear dark matter model at the current generation of tonne-scale liquid noble experiments, in particular DEAP-3600 and XENON1T. In our chosen nuclear dark matter scenario distinctive features arise in the recoil energy spectra due to the non-point-like nature of the composite dark matter state. We calculate the number of events required to distinguish these spectra from those of a standard point-like WIMP state with a decaying exponential recoil spectrum. In the most favourable regions of nuclear dark matter parameter space, we find that a few tens of events are needed to distinguish nuclear dark matter from WIMPs at the 3 σ level in a single experiment. Given the total exposure time of DEAP-3600 and XENON1T we find that at best a 2 σ distinction is possible by these experiments individually, while 3 σ sensitivity is reached for a range of parameters by the combination of the two experiments. We show that future upgrades of these experiments have potential to distinguish a large range of nuclear dark matter models from that of a WIMP at greater than 3 σ .

  18. 75 FR 70042 - In the Matter of All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent...

    Science.gov (United States)

    2010-11-16

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos (Redacted), License Nos (Redacted), EA (Redacted); NRC- 2010-0351] In the Matter of All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent Nuclear Fuel; Order Modifying License (Effective Immediately) I. The licensees identified in...

  19. 75 FR 79423 - In the Matter of All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent...

    Science.gov (United States)

    2010-12-20

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. (Redacted), License Nos.: (Redacted), EA (Redacted); NRC- 2010-0351] In the Matter of All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent Nuclear Fuel; Order Modifying License (Effective Immediately) I The licensees identified in...

  20. Matter power spectrum and the challenge of percent accuracy

    International Nuclear Information System (INIS)

    Schneider, Aurel; Teyssier, Romain; Potter, Doug; Stadel, Joachim; Reed, Darren S.; Onions, Julian; Pearce, Frazer R.; Smith, Robert E.; Springel, Volker; Scoccimarro, Roman

    2016-01-01

    Future galaxy surveys require one percent precision in the theoretical knowledge of the power spectrum over a large range including very nonlinear scales. While this level of accuracy is easily obtained in the linear regime with perturbation theory, it represents a serious challenge for small scales where numerical simulations are required. In this paper we quantify the precision of present-day N -body methods, identifying main potential error sources from the set-up of initial conditions to the measurement of the final power spectrum. We directly compare three widely used N -body codes, Ramses, Pkdgrav3, and Gadget3 which represent three main discretisation techniques: the particle-mesh method, the tree method, and a hybrid combination of the two. For standard run parameters, the codes agree to within one percent at k ≤1 h Mpc −1 and to within three percent at k ≤10 h Mpc −1 . We also consider the bispectrum and show that the reduced bispectra agree at the sub-percent level for k ≤ 2 h Mpc −1 . In a second step, we quantify potential errors due to initial conditions, box size, and resolution using an extended suite of simulations performed with our fastest code Pkdgrav3. We demonstrate that the simulation box size should not be smaller than L =0.5 h −1 Gpc to avoid systematic finite-volume effects (while much larger boxes are required to beat down the statistical sample variance). Furthermore, a maximum particle mass of M p =10 9 h −1 M ⊙ is required to conservatively obtain one percent precision of the matter power spectrum. As a consequence, numerical simulations covering large survey volumes of upcoming missions such as DES, LSST, and Euclid will need more than a trillion particles to reproduce clustering properties at the targeted accuracy.

  1. Dark matter directional detection in non-relativistic effective theories

    International Nuclear Information System (INIS)

    Catena, Riccardo

    2015-01-01

    We extend the formalism of dark matter directional detection to arbitrary one-body dark matter-nucleon interactions. The new theoretical framework generalizes the one currently used, which is based on 2 types of dark matter-nucleon interaction only. It includes 14 dark matter-nucleon interaction operators, 8 isotope-dependent nuclear response functions, and the Radon transform of the first 2 moments of the dark matter velocity distribution. We calculate the recoil energy spectra at dark matter directional detectors made of CF 4 , CS 2 and 3 He for the 14 dark matter-nucleon interactions, using nuclear response functions recently obtained through numerical nuclear structure calculations. We highlight the new features of the proposed theoretical framework, and present our results for a spherical dark matter halo and for a stream of dark matter particles. This study lays the foundations for model independent analyses of dark matter directional detection experiments

  2. PPPC 4 DMν: a Poor Particle Physicist Cookbook for Neutrinos from Dark Matter annihilations in the Sun

    International Nuclear Information System (INIS)

    Baratella, Pietro; Cirelli, Marco; Hektor, Andi; Pata, Joosep; Piibeleht, Morten; Strumia, Alessandro

    2014-01-01

    We provide ingredients and recipes for computing neutrino signals of TeV-scale Dark Matter (DM) annihilations in the Sun. For each annihilation channel and DM mass we present the energy spectra of neutrinos at production, including: state-of-the-art energy losses of primary particles in solar matter, secondary neutrinos, electroweak radiation. We then present the spectra after propagation to the Earth, including (vacuum and matter) flavor oscillations and interactions in solar matter. We also provide a numerical computation of the capture rate of DM particles in the Sun. These results are available in numerical form http://www.marcocirelli.net/PPPC4DMID.html

  3. PPPC 4 DMν: a Poor Particle Physicist Cookbook for Neutrinos from Dark Matter annihilations in the Sun

    Energy Technology Data Exchange (ETDEWEB)

    Baratella, Pietro [Scuola Normale Superiore and INFN, Piazza dei Cavalieri 7, Pisa, 56126 (Italy); Cirelli, Marco [Institut de Physique Théorique, CNRS URA 2306 & CEA-Saclay, Gif-sur-Yvette, 91191 (France); Hektor, Andi [National Institute of Chemical Physics and Biophysics, Ravala 10, Tallinn (Estonia); Helsinki Institute of Physics, P.O. Box 64, Helsinki, FI-00014 (Finland); Pata, Joosep; Piibeleht, Morten [National Institute of Chemical Physics and Biophysics, Ravala 10, Tallinn (Estonia); Strumia, Alessandro [National Institute of Chemical Physics and Biophysics, Ravala 10, Tallinn (Estonia); Dipartimento di Fisica dell’Università di Pisa and INFN, Largo Buonarroti 2, Pisa (Italy)

    2014-03-27

    We provide ingredients and recipes for computing neutrino signals of TeV-scale Dark Matter (DM) annihilations in the Sun. For each annihilation channel and DM mass we present the energy spectra of neutrinos at production, including: state-of-the-art energy losses of primary particles in solar matter, secondary neutrinos, electroweak radiation. We then present the spectra after propagation to the Earth, including (vacuum and matter) flavor oscillations and interactions in solar matter. We also provide a numerical computation of the capture rate of DM particles in the Sun. These results are available in numerical form http://www.marcocirelli.net/PPPC4DMID.html.

  4. Dark Matter Effective Theory

    DEFF Research Database (Denmark)

    Del Nobile, Eugenio; Sannino, Francesco

    2012-01-01

    We organize the effective (self)interaction terms for complex scalar dark matter candidates which are either an isosinglet, isodoublet or an isotriplet with respect to the weak interactions. The classification has been performed ordering the operators in inverse powers of the dark matter cutoff...... scale. We assume Lorentz invariance, color and charge neutrality. We also introduce potentially interesting dark matter induced flavor-changing operators. Our general framework allows for model independent investigations of dark matter properties....

  5. Relativistic simulations of compact object mergers for nucleonic matter and strange quark matter

    International Nuclear Information System (INIS)

    Bauswein, Andreas Ottmar

    2010-01-01

    Under the assumption that the energy of the ground state of 3-flavor quark matter is lower than the one of nucleonic matter, the compact stellar remnants of supernova explosions are composed of this quark matter. Because of the appearance of strange quarks, such objects are called strange stars. Considering their observational features, strange stars are very similar to neutron stars made of nucleonic matter, and therefore observations cannot exclude the existence of strange stars. This thesis introduces a new method for simulating mergers of compact stars and black holes within a general relativistic framework. The main goal of the present work is the investigation of the question, whether the coalescence of two strange stars in a binary system yields observational signatures that allow one to distinguish them from colliding neutron stars. In this context the gravitational-wave signals are analyzed. It is found that in general the characteristic frequencies in the gravitational-wave spectra are higher for strange stars. Moreover, the amount of matter that becomes gravitationally unbound during the merging is determined. The detection of ejecta of strange star mergers as potential component of cosmic ray flux could serve as a proof of the existence of strange quark matter. (orig.)

  6. Relativistic simulations of compact object mergers for nucleonic matter and strange quark matter

    Energy Technology Data Exchange (ETDEWEB)

    Bauswein, Andreas Ottmar

    2010-01-29

    Under the assumption that the energy of the ground state of 3-flavor quark matter is lower than the one of nucleonic matter, the compact stellar remnants of supernova explosions are composed of this quark matter. Because of the appearance of strange quarks, such objects are called strange stars. Considering their observational features, strange stars are very similar to neutron stars made of nucleonic matter, and therefore observations cannot exclude the existence of strange stars. This thesis introduces a new method for simulating mergers of compact stars and black holes within a general relativistic framework. The main goal of the present work is the investigation of the question, whether the coalescence of two strange stars in a binary system yields observational signatures that allow one to distinguish them from colliding neutron stars. In this context the gravitational-wave signals are analyzed. It is found that in general the characteristic frequencies in the gravitational-wave spectra are higher for strange stars. Moreover, the amount of matter that becomes gravitationally unbound during the merging is determined. The detection of ejecta of strange star mergers as potential component of cosmic ray flux could serve as a proof of the existence of strange quark matter. (orig.)

  7. Monotonous braking of high energy hadrons in nuclear matter

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1979-01-01

    Propagation of high energy hadrons in nuclear matter is discussed. The possibility of the existence of the monotonous energy losses of hadrons in nuclear matter is considered. In favour of this hypothesis experimental facts such as pion-nucleus interactions (proton emission spectra, proton multiplicity distributions in these interactions) and other data are presented. The investigated phenomenon in the framework of the hypothesis is characterized in more detail

  8. [Raman spectra of monkey cerebral cortex tissue].

    Science.gov (United States)

    Zhu, Ji-chun; Guo, Jian-yu; Cai, Wei-ying; Wang, Zu-geng; Sun, Zhen-rong

    2010-01-01

    Monkey cerebral cortex, an important part in the brain to control action and thought activities, is mainly composed of grey matter and nerve cell. In the present paper, the in situ Raman spectra of the cerebral cortex of the birth, teenage and aged monkeys were achieved for the first time. The results show that the Raman spectra for the different age monkey cerebral cortex exhibit most obvious changes in the regions of 1000-1400 and 2800-3000 cm(-1). With monkey growing up, the relative intensities of the Raman bands at 1313 and 2885 cm(-1) mainly assigned to CH2 chain vibrational mode of lipid become stronger and stronger whereas the relative intensities of the Raman bands at 1338 and 2932 cm(-1) mainly assigned to CH3 chain vibrational mode of protein become weaker and weaker. In addition, the two new Raman bands at 1296 and 2850 cm(-1) are only observed in the aged monkey cerebral cortex, therefore, the two bands can be considered as a character or "marker" to differentiate the caducity degree with monkey growth In order to further explore the changes, the relative intensity ratios of the Raman band at 1313 cm(-1) to that at 1338 cm(-1) and the Raman band at 2885 cm(-1) to that at 2 932 cm(-1), I1313/I1338 and I2885/I2932, which are the lipid-to-protein ratios, are introduced to denote the degree of the lipid content. The results show that the relative intensity ratios increase significantly with monkey growth, namely, the lipid content in the cerebral cortex increases greatly with monkey growth. So, the authors can deduce that the overmuch lipid is an important cause to induce the caducity. Therefore, the results will be a powerful assistance and valuable parameter to study the order of life growth and diagnose diseases.

  9. Primordial spectra from sudden turning trajectory

    Science.gov (United States)

    Noumi, Toshifumi; Yamaguchi, Masahide

    2013-12-01

    Effects of heavy fields on primordial spectra of curvature perturbations are discussed in inflationary models with a sudden turning trajectory. When heavy fields are excited after the sudden turn and oscillate around the bottom of the potential, the following two effects are generically induced: deformation of the inflationary background spacetime and conversion interactions between adiabatic and isocurvature perturbations, both of which can affect the primordial density perturbations. In this paper, we calculate primordial spectra in inflationary models with sudden turning potentials taking into account both of the two effects appropriately. We find that there are some non-trivial correlations between the two effects in the power spectrum and, as a consequence, the primordial scalar power spectrum has a peak around the scale exiting the horizon at the turn. Though both effects can induce parametric resonance amplifications, they are shown to be canceled out for the case with the canonical kinetic terms. The peak feature and the scale dependence of bispectra are also discussed.

  10. Remarks about the displaced spectra techniques

    International Nuclear Information System (INIS)

    Behringer, K.; Pineyro, J.

    1989-01-01

    In a recent paper a new method, called displaced spectra techniques, was presented for distinguishing between sinusoidal components and narrowband random noise contributions in otherwise random noise data. It is based on Fourier transform techniques, and uses the power spectral density (PSD) and a newly-introduced second-order displaced power spectra density (SDPSD) function. In order to distinguish between the two peak types, a validation criterion has been established. In this note, three topics are covered: a) improved numerical data for the validation criterion are given by using the refined estimation procedure of the PSD and SDPSD functions by the Welch method; b) the validation criterion requires the subtraction of the background below the peaks. A semiautomatic procedure is described; c) it was observed that peaks in the real part of the SDPSD function can be accompanied by fine structure phenomena which are unresolved in the PSD function. A few remarks are made about this problem. (author)

  11. Analysis of longer period variation of the Kuroshio Current intrusion into the Luzon Strait using rectified wavelet power spectra

    Science.gov (United States)

    Yuan, Yaochu; Yang, Chenghao; Tseng, Yu-heng; Zhu, Xiao-Hua; Wang, Huiqun; Chen, Hong

    2017-08-01

    Longer period variation of the Kuroshio into the Luzon Strait (LS) was identified using acoustic Doppler current profiler (ADCP) observations as well as pressure and temperature time series data recorded by two TDs (manufactured by the RBR Ltd.) at mooring station N2 (20°40.441‧N, 120°38.324‧E). The ADCP was deployed at depths of 50-300 m between July 7, 2009 and April 10, 2011, and the TDs at around 340 and 365 m between July 9, 2009 and July 9, 2011. Observations provide strong evidence of longer period variation of the Kuroshio into the LS using the Vector rotary spectra (VRS) and Rectified wavelet power spectra analysis (RWPSA). RWPSA of the observations allowed the identification of two types of dominant periods. The first type, with the strongest power spectral density (PSD), had a dominant period of 112 d and was found throughout the upper 300 m. For example, the maximum PSD for western and northern velocity components time series were 3800 and 3550 at 50 m, respectively. The maximum power spectral density decrease with deeper depths, i.e., the depth dependence of maximum PSD. The 112 d period was also identified in the pressure and temperature time series data, at 340 m and 365 m. Combined RWPSA with VRS and mechanism analysis, it is clear that the occurrence of the most dominant period of 112 d in the upper 300 m is related to the clockwise meandering of the Kuroshio into the LS, which is caused by westward propagating stronger anticyclonic eddies from the interior ocean due to the interaction of Rossby eddies with the Kuroshio. The second type of dominant period, for example a 40 d period, is related to the anticlockwise meandering of the Kuroshio. The final dominant period of 14 d coincides with the fortnightly spring-neap tidal period.

  12. Optical spectra of 73 stripped-envelope core-collapse supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Modjaz, M.; Bianco, F. B.; Liu, Y. Q. [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Blondin, S. [Aix Marseille Université, CNRS, LAM (Laboratoire d' Astrophysique de Marseille) UMR 7326, F-13388, Marseille (France); Kirshner, R. P.; Challis, P.; Hicken, M.; Marion, G. H. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Matheson, T. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Berlind, P.; Calkins, M. L. [F. L. Whipple Observatory, 670 Mt. Hopkins Road, P.O. Box 97, Amado, AZ 85645 (United States); Garnavich, P. [Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556 (United States); Jha, S., E-mail: mmodjaz@nyu.edu [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States)

    2014-05-01

    We present 645 optical spectra of 73 supernovae (SNe) of Types IIb, Ib, Ic, and broad-lined Ic. All of these types are attributed to the core collapse of massive stars, with varying degrees of intact H and He envelopes before explosion. The SNe in our sample have a mean redshift (cz) = 4200 km s{sup –1}. Most of these spectra were gathered at the Harvard-Smithsonian Center for Astrophysics (CfA) between 2004 and 2009. For 53 SNe, these are the first published spectra. The data coverage ranges from mere identification (1-3 spectra) for a few SNe to extensive series of observations (10-30 spectra) that trace the spectral evolution for others, with an average of 9 spectra per SN. For 44 SNe of the 73 SNe presented here, we have well-determined dates of maximum light to determine the phase of each spectrum. Our sample constitutes the most extensive spectral library of stripped-envelope SNe to date. We provide very early coverage (as early as 30 days before V-band max) for photospheric spectra, as well as late-time nebular coverage when the innermost regions of the SN are visible (as late as 2 yr after explosion, while for SN 1993J, we have data as late as 11.6 yr). This data set has homogeneous observations and reductions that allow us to study the spectroscopic diversity of these classes of stripped SNe and to compare these to SNe-gamma-ray bursts. We undertake these matters in follow-up papers.

  13. Electronic Raman spectra in iron-based superconductors with two-orbital model

    International Nuclear Information System (INIS)

    Lu Hongyan; Wang Da; Chen San; Wang Wei; Gong Pifeng

    2011-01-01

    Electronic Raman spectra were calculated in orbital space in a microscopic theory. Both Raman spectra and spectra weight were presented. Raman spectra for the gap symmetries are different from each other. The results can help decide the gap symmetry by comparing with experiments. Electronic Raman spectra in iron-based superconductors with two-orbital model is discussed. In the orbital space, some possible pairing symmetries of the gap are selected. To further discriminate them, electronic Raman spectra and spectra weight at Fermi surface (FS) which helps understand the Raman spectra are calculated in each case. From the low energy threshold, the number of Raman peaks, and the low frequency power law behavior, we can judge whether it is full gap or nodal gap, and even one gap or multi-gaps. The results provide useful predictions for comparison with experiments.

  14. Comparison of FTIR Spectra of Bulk and Acid Residual Organic Matter in Chondrites

    Science.gov (United States)

    Kebukawa, Y.; Alexander, C. M. O'D.; Cody, G. D.

    2013-09-01

    We compared infrared spectra of bulk meteorites and IOM. The CH_2/CH_3 ratios show some difference between bulk samples and IOM, but there is no systematic correlation with chondrite groups or petrologic type.

  15. Compton spectra of atoms at high x-ray intensity

    Science.gov (United States)

    Son, Sang-Kil; Geffert, Otfried; Santra, Robin

    2017-03-01

    Compton scattering is the nonresonant inelastic scattering of an x-ray photon by an electron and has been used to probe the electron momentum distribution in gas-phase and condensed-matter samples. In the low x-ray intensity regime, Compton scattering from atoms dominantly comes from bound electrons in neutral atoms, neglecting contributions from bound electrons in ions and free (ionized) electrons. In contrast, in the high x-ray intensity regime, the sample experiences severe ionization via x-ray multiphoton multiple ionization dynamics. Thus, it becomes necessary to take into account all the contributions to the Compton scattering signal when atoms are exposed to high-intensity x-ray pulses provided by x-ray free-electron lasers (XFELs). In this paper, we investigate the Compton spectra of atoms at high x-ray intensity, using an extension of the integrated x-ray atomic physics toolkit, xatom. As the x-ray fluence increases, there is a significant contribution from ionized electrons to the Compton spectra, which gives rise to strong deviations from the Compton spectra of neutral atoms. The present study provides not only understanding of the fundamental XFEL-matter interaction but also crucial information for single-particle imaging experiments, where Compton scattering is no longer negligible. , which features invited work from the best early-career researchers working within the scope of J. Phys. B. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Sang-Kil Son was selected by the Editorial Board of J. Phys. B as an Emerging Leader.

  16. Modifications of EEG power spectra in mesial temporal lobe during n-back tasks of increasing difficulty. A sLORETA study.

    Science.gov (United States)

    Imperatori, Claudio; Farina, Benedetto; Brunetti, Riccardo; Gnoni, Valentina; Testani, Elisa; Quintiliani, Maria I; Del Gatto, Claudia; Indraccolo, Allegra; Contardi, Anna; Speranza, Anna M; Della Marca, Giacomo

    2013-01-01

    The n-back task is widely used to investigate the neural basis of Working Memory (WM) processes. The principal aim of this study was to explore and compare the EEG power spectra during two n-back tests with different levels of difficulty (1-back vs. 3-back). Fourteen healthy subjects were enrolled (seven men and seven women, mean age 31.21 ± 7.05 years, range: 23-48). EEG was recorded while performing the N-back test, by means of 19 surface electrodes referred to joint mastoids. EEG analysis were conducted by means of the standardized Low Resolution brain Electric Tomography (sLORETA) software. The statistical comparison between EEG power spectra in the two conditions was performed using paired t-statistics on the coherence values after Fisher's z transformation available in the LORETA program package. The frequency bands considered were: delta (0.5-4 Hz); theta (4.5-7.5 Hz); alpha (8-12.5 Hz); beta (13-30 Hz); gamma (30.5-100 Hz). Significant changes occurred in the delta band: in the 3-back condition an increased delta power was localized in a brain region corresponding to the Brodmann Area (BA) 28 in the left posterior entorhinal cortex (T = 3.112; p < 0.05) and in the BA 35 in the left perirhinal cortex in the parahippocampal gyrus (T = 2.876; p < 0.05). No significant differences were observed in the right hemisphere and in the alpha, theta, beta, and gamma frequency bands. Our results indicate that the most prominent modification induced by the increased complexity of the task occur in the mesial left temporal lobe structures.

  17. Modifications of EEG Power Spectra in Mesial Temporal Lobe during n-back tasks of increasing difficulty. A sLORETA study.

    Directory of Open Access Journals (Sweden)

    Claudio eImperatori

    2013-04-01

    Full Text Available The n-back task is widely used to investigate the neural basis of Working Memory (WM processes. The principal aim of this study was to explore and compare the EEG power spectra during two n-back tests with different levels of difficulty (1-back vs 3-back.Fourteen healthy subjects were enrolled (7 men and 7 women, mean age 31.21±7.05 years, range: 23-48. EEG was recorded while performing the N-back test, by means of 19 surface electrodes referred to joint mastoids. EEG analysis were conducted by means of the standardized LOw Resolution brain Electric Tomography (sLORETA software. The statistical comparison between EEG power spectra in the two conditions was performed using paired t-statistics on the coherence values after Fisher’s z transformation available in the LORETA program package. The frequency bands considered were: delta (0.5-4 Hz; theta (4.5–7.5 Hz; alpha (8–12.5 Hz; beta (13–30 Hz; gamma (30.5–100 Hz. Significant changes occurred in the delta band: in the 3-back condition an increased delta power was localized in a brain region corresponding to the Brodmann Area (BA 28 in the left posterior entorhinal cortex (T = 3.112; p<0.05 and in the BA 35 in the left peririnhal cortex in the parahippocampal gyrus (T = 2.876; p<0.05. No significant differences were observed in the right hemisphere and in the alpha, theta, beta and gamma frequency bands. Our results indicate that the most prominent modification induced by the increased complexity of the task occur in the mesial left temporal lobe structures.

  18. Ionization history of the universe as a test for superheavy dark matter particles

    International Nuclear Information System (INIS)

    Doroshkevich, A.G.; Naselsky, P.D.

    2002-01-01

    In this paper we discuss the possible distortions of the ionization history of the universe caused by an injection of nonthermal energy due to decays of hypothetical superheavy dark matter (SHDM) particles. These particles are usually considered as a possible source of ultrahigh energy cosmic rays in the framework of the top-down model. Estimates of the fraction of energy of decays converted to the UV range show that, for suitable parameters of the SHDM particles, significant distortions of the power spectra of the cosmic microwave background anisotropy appear. A comparison with the observed power spectrum allows us to restrict some properties of the SHDM particles. These decays can also increase by about 5-10 times the degree of ionization of hydrogen at redshifts z∼10-50, which essentially accelerates the formation of molecules of H 2 and the first stars during the 'dark ages'

  19. Power plant emissions: particulate matter-related health damages and the benefits of alternative emission reduction scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, C.

    2004-06-15

    This report estimates the avoidable health effects of each of a series of alternative regulatory scenarios for power plants, focusing on the adverse human health effects due to exposure to fine particulate matter (PM2.5) This report uses the same analytical methods that the U.S. Environmental Protection Agency used in 2003 to prepare an analysis of the potential health effects of the proposed Clear Skies Act (EPA 2003). This report conducts an analysis of the impacts in 2010 and 2020 of three policy alternatives to the proposed Clear Skies Act, The Jeffords/Lieberman/Collins 'The Clean Power Act', S. 366, and the EPA August 2001 Straw Proposal (one of several alternatives EPA analyzed prior to the announcement of the Clear Skies Initiative in 2002). The report also examines the health impacts associated with the total emissions from coal fired electricity generating units in 2010. Chapter 2 describes the emissions inventory estimates, and the changes in the emissions associated with each scenario analyzed. Chapter 3 describes the methods used to estimate changes in particulate matter concentrations. Chapter 4 describes general issues arising in estimating and valuing changes in adverse health effects associated with changes in particulate matter. Chapter 5 describes in some detail the methods used for estimating and valuing adverse health effects, and Chapter 6 presents the results of these analyses. Chapter 7 presents estimates of the impact of these alternative policy options on the PM non-attainment status. 117 refs., 21 figs., 32 tabs., 3 apps.

  20. THE CASE AGAINST WARM OR SELF-INTERACTING DARK MATTER AS EXPLANATIONS FOR CORES IN LOW SURFACE BRIGHTNESS GALAXIES

    International Nuclear Information System (INIS)

    Kuzio de Naray, Rachel; Martinez, Gregory D.; Bullock, James S.; Kaplinghat, Manoj

    2010-01-01

    Warm dark matter (WDM) and self-interacting dark matter (SIDM) are often motivated by the inferred cores in the dark matter halos of low surface brightness (LSB) galaxies. We test thermal WDM, non-thermal WDM, and SIDM using high-resolution rotation curves of nine LSB galaxies. We fit these dark matter models to the data and determine the halo core radii and central densities. While the minimum core size in WDM models is predicted to decrease with halo mass, we find that the inferred core radii increase with halo mass and also cannot be explained with a single value of the primordial phase-space density. Moreover, if the core size is set by WDM particle properties, then even the smallest cores we infer would require primordial phase-space density values that are orders of magnitude smaller than lower limits obtained from the Lyα forest power spectra. We also find that the dark matter halo core densities vary by a factor of about 30 from system to system while showing no systematic trend with the maximum rotation velocity of the galaxy. This strongly argues against the core size being directly set by large self-interactions (scattering or annihilation) of dark matter. We therefore conclude that the inferred cores do not provide motivation to prefer WDM or SIDM over other dark matter models.

  1. Microwave Saturation of Complex EPR Spectra and Free Radicals of Burnt Skin Treated with Apitherapeutic Agent

    Directory of Open Access Journals (Sweden)

    Pawel Olczyk

    2013-01-01

    Full Text Available The effect of microwave power on the complex electron paramagnetic resonance spectra of the burn matrix after the therapy with propolis was examined. The spectra were measured with microwaves in the range of 2.2–79 mW. Three groups of free radicals were found in the damaged skin samples. Their spectral lines evolve differently with the microwave power. In order to detect these free radical groups, the lineshape of the spectra was numerically analysed. The spectra were a superposition of three component lines. The best fit was obtained for the deconvolution of the experimental spectra into one Gauss and two Lorentz lines. The microwave power changes also the lineshape of the spectra of thermally injured skin treated with the conventional agent—silver sulphadiazine. The spectral changes were different for propolis and for silver sulphadiazine. The number of individual groups of free radicals in the wound bed after implementation of these two substances is not equal. It may be explained by a higher activity of propolis than of silver sulphadiazine as therapeutic agents.

  2. Investigation of IR absorption spectra of oral cavity bacteria

    Science.gov (United States)

    Belikov, Andrei V.; Altshuler, Gregory B.; Moroz, Boris T.; Pavlovskaya, Irina V.

    1996-12-01

    The results of comparative investigation for IR and visual absorption spectra of oral cavity bacteria are represented by this paper. There are also shown the main differences in absorption spectra of such pure bacteria cultures as : E- coli, Candida, Staph, Epidermidis, and absorption spectra of bacteria colonies cultured in tooth root canals suspected to harbour several endodontical problems. The results of experimental research targeted to investigate an effect of such combined YAG:Nd and YAG:Cr; Tm; Ho laser parameters like: wavelength, energy density, average power and etc., to oral cavity bacteria deactivation are given finally.

  3. RAMAN-SPECTRA OF HUMAN DENTAL CALCULUS

    NARCIS (Netherlands)

    TSUDA, H; ARENDS, J

    1993-01-01

    Raman spectra of human dental calculus have been observed for the first time by use of micro-Raman spectroscopy. The spectral features of calculus were influenced easily by heating caused by laser irradiation. Therefore, the measurements were carried out at relatively low power (5 mW, 1-mu m spot

  4. Cosmic gamma-ray background from dark matter annihilation

    International Nuclear Information System (INIS)

    Ando, Shin'ichiro

    2007-01-01

    High-energy photons from pair annihilation of dark matter particles contribute to the cosmic gamma-ray background (CGB) observed in a wide energy range. The precise shape of the energy spectrum of CGB depends on the nature of dark matter particles. In order to discriminate between the signals from dark matter annihilation and other astrophysical sources, however, the information from the energy spectrum of CGB may not be sufficient. We show that dark matter annihilation not only contributes to the mean CGB intensity, but also produces a characteristic anisotropy, which provides a powerful tool for testing the origins of the observed CGB. We show that the expected sensitivity of future gamma-ray detectors such as GLAST should allow us to measure the angular power spectrum of CGB anisotropy, if dark matter particles are supersymmetric neutralinos and they account for most of the observed mean intensity. As the intensity of photons from annihilation is proportional to the density squared, we show that the predicted shape of the angular power spectrum of gamma rays from dark matter annihilation is different from that due to other astrophysical sources such as blazars, whose intensity is linearly proportional to density. Therefore, the angular power spectrum of the CGB provides a 'smoking-gun' signature of gamma rays from dark matter annihilation

  5. A New Precision Measurement of the Small-scale Line-of-sight Power Spectrum of the Lyα Forest

    Science.gov (United States)

    Walther, Michael; Hennawi, Joseph F.; Hiss, Hector; Oñorbe, Jose; Lee, Khee-Gan; Rorai, Alberto; O’Meara, John

    2018-01-01

    We present a new measurement of the Lyα forest power spectrum at 1.8 masking missing data, damped Lyα absorption systems, and metal absorption lines. Our measurement results in unprecedented precision on the small-scale modes k> 0.02 {{s}} {{km}}-1, inaccessible to previous SDSS/BOSS analyses. It is well known that these high-k modes are highly sensitive to the thermal state of the intergalactic medium, but contamination by narrow metal lines is a significant concern. We quantify the effect of metals on the small-scale power and find a modest effect on modes with kmasking metals and restricting to kmasking as our data are generated from Lyα forest simulations. These mock spectra are used to build a custom emulator, enabling us to interpolate between a sparse grid of models and perform Markov chain Monte Carlo fits. Our results agree well with BOSS on scales kdata set for precisely constraining the thermal history of the intergalactic medium, cosmological parameters, and the nature of dark matter. The power spectra and their covariance matrices are provided as electronic tables.

  6. SIMULATION OF PARTICLE SPECTRA AT RHIC

    International Nuclear Information System (INIS)

    KAHANA, D.E.; KAHANA, S.H.

    2001-01-01

    A purely hadronic simulation is performed of the recently reported data from PHOBOS at energies of √s = 56, 130 GeV using the relativistic heavy ion cascade LUCIFER which had previously given a good description of the NA49 inclusive spectra at √s = 17.2 GeV/A. The results compare well with these early measurements at RHIC and indeed successfully predict the increase in multiplicity now seen by PHOBOS and the other RHIC detectors at the nominal maximum energy of √s = 200 GeV/A, suggesting that evidence for quark-gluon matter remains elusive

  7. Cosmological perturbation theory for baryons and dark matter: One-loop corrections in the renormalized perturbation theory framework

    International Nuclear Information System (INIS)

    Somogyi, Gabor; Smith, Robert E.

    2010-01-01

    spectra. If we compare the total matter power spectra in the two- and one-component fluid approaches, then we find excellent agreement, with deviations being <0.5% throughout the evolution. Consequences: high precision modeling of the large-scale distribution of baryons in the Universe cannot be achieved through an effective mean-mass one-component fluid approximation; detection significance of BAO will be amplified in probes that study baryonic matter, relative to probes that study the CDM or total mass only. The CDM distribution can be modeled accurately at late times and the total matter at all times. This is good news for probes that are sensitive to the total mass, such as gravitational weak lensing as existing modeling techniques are good enough. Lastly, we identify an analytic approximation that greatly simplifies the evaluation of the full PT expressions, and it is better than <1% over the full range of scales and times considered.

  8. Modeling the complexity of acoustic emission during intermittent plastic deformation: Power laws and multifractal spectra.

    Science.gov (United States)

    Kumar, Jagadish; Ananthakrishna, G

    2018-01-01

    Scale-invariant power-law distributions for acoustic emission signals are ubiquitous in several plastically deforming materials. However, power-law distributions for acoustic emission energies are reported in distinctly different plastically deforming situations such as hcp and fcc single and polycrystalline samples exhibiting smooth stress-strain curves and in dilute metallic alloys exhibiting discontinuous flow. This is surprising since the underlying dislocation mechanisms in these two types of deformations are very different. So far, there have been no models that predict the power-law statistics for discontinuous flow. Furthermore, the statistics of the acoustic emission signals in jerky flow is even more complex, requiring multifractal measures for a proper characterization. There has been no model that explains the complex statistics either. Here we address the problem of statistical characterization of the acoustic emission signals associated with the three types of the Portevin-Le Chatelier bands. Following our recently proposed general framework for calculating acoustic emission, we set up a wave equation for the elastic degrees of freedom with a plastic strain rate as a source term. The energy dissipated during acoustic emission is represented by the Rayleigh-dissipation function. Using the plastic strain rate obtained from the Ananthakrishna model for the Portevin-Le Chatelier effect, we compute the acoustic emission signals associated with the three Portevin-Le Chatelier bands and the Lüders-like band. The so-calculated acoustic emission signals are used for further statistical characterization. Our results show that the model predicts power-law statistics for all the acoustic emission signals associated with the three types of Portevin-Le Chatelier bands with the exponent values increasing with increasing strain rate. The calculated multifractal spectra corresponding to the acoustic emission signals associated with the three band types have a maximum

  9. Neutron spectra in two beam ports of the TRIGA Mark III reactor

    International Nuclear Information System (INIS)

    Vega C, H. R.; Hernandez D, V. M.; Aguilar, F.; Paredes, L.; Rivera M, T.

    2013-10-01

    The neutron spectra have been measured in two beam ports, radial and tangential, of the TRIGA Mark III nuclear reactor from the National Institute of Nuclear Research. Measurements were carried out with the core with mixed fuel (Leu 8.5/20 and Flip Heu 8.5/70). Two reactor powers, 5 and 10 W, were used during neutron spectra measurements using a Bonner sphere spectrometer with a 6 Lil(Eu) scintillator and 2, 3, 5, 8, 10 and 12 inches-diameter high density polyethylene spheres. The neutron spectra were unfolded using the NSDUAZ unfolding code; from each spectrum the total neutron flux, the neutron mean energy and the neutron ambient dose equivalent dose were determined. Measured spectra show fission (E≥ 0.1 MeV), epithermal (from 0.4 eV up to 0.1 MeV) and thermal neutrons (E≤ 0.4 eV). For both reactor powers the spectra in the radial beam port have similar features which are different to the neutron spectrum characteristics in the tangential beam port. (Author)

  10. Neutron spectra in two beam ports of the TRIGA Mark III reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R.; Hernandez D, V. M. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas (Mexico); Aguilar, F.; Paredes, L. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Rivera M, T., E-mail: fermineutron@yahoo.com [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria, Av. Legaria 694, 11500 Mexico D. F. (Mexico)

    2013-10-15

    The neutron spectra have been measured in two beam ports, radial and tangential, of the TRIGA Mark III nuclear reactor from the National Institute of Nuclear Research. Measurements were carried out with the core with mixed fuel (Leu 8.5/20 and Flip Heu 8.5/70). Two reactor powers, 5 and 10 W, were used during neutron spectra measurements using a Bonner sphere spectrometer with a {sup 6}Lil(Eu) scintillator and 2, 3, 5, 8, 10 and 12 inches-diameter high density polyethylene spheres. The neutron spectra were unfolded using the NSDUAZ unfolding code; from each spectrum the total neutron flux, the neutron mean energy and the neutron ambient dose equivalent dose were determined. Measured spectra show fission (E≥ 0.1 MeV), epithermal (from 0.4 eV up to 0.1 MeV) and thermal neutrons (E≤ 0.4 eV). For both reactor powers the spectra in the radial beam port have similar features which are different to the neutron spectrum characteristics in the tangential beam port. (Author)

  11. Machine learning molecular dynamics for the simulation of infrared spectra.

    Science.gov (United States)

    Gastegger, Michael; Behler, Jörg; Marquetand, Philipp

    2017-10-01

    Machine learning has emerged as an invaluable tool in many research areas. In the present work, we harness this power to predict highly accurate molecular infrared spectra with unprecedented computational efficiency. To account for vibrational anharmonic and dynamical effects - typically neglected by conventional quantum chemistry approaches - we base our machine learning strategy on ab initio molecular dynamics simulations. While these simulations are usually extremely time consuming even for small molecules, we overcome these limitations by leveraging the power of a variety of machine learning techniques, not only accelerating simulations by several orders of magnitude, but also greatly extending the size of systems that can be treated. To this end, we develop a molecular dipole moment model based on environment dependent neural network charges and combine it with the neural network potential approach of Behler and Parrinello. Contrary to the prevalent big data philosophy, we are able to obtain very accurate machine learning models for the prediction of infrared spectra based on only a few hundreds of electronic structure reference points. This is made possible through the use of molecular forces during neural network potential training and the introduction of a fully automated sampling scheme. We demonstrate the power of our machine learning approach by applying it to model the infrared spectra of a methanol molecule, n -alkanes containing up to 200 atoms and the protonated alanine tripeptide, which at the same time represents the first application of machine learning techniques to simulate the dynamics of a peptide. In all of these case studies we find an excellent agreement between the infrared spectra predicted via machine learning models and the respective theoretical and experimental spectra.

  12. Model-independent implications of the e±, p-bar cosmic ray spectra on properties of Dark Matter

    International Nuclear Information System (INIS)

    Cirelli, M.; Kadastik, M.; Raidal, M.; Strumia, A.

    2009-01-01

    Taking into account spins, we classify all two-body non-relativistic Dark Matter annihilation channels to the allowed polarization states of Standard Model particles, computing the energy spectra of the stable final-state particles relevant for indirect DM detection. We study the DM masses, annihilation channels and cross sections that can reproduce the PAMELA indications of an e + excess consistently with the PAMELA p-bar data and the ATIC/PPB-BETS e + +e - data. From the PAMELA data alone, two solutions emerge: (i) either the DM particles that annihilate into W,Z,h must be heavier than about 10 TeV or (ii) the DM must annihilate only into leptons. Thus in both cases a DM particle compatible with the PAMELA excess seems to have quite unexpected properties. The solution (ii) implies a peak in the e + +e - energy spectrum, which, indeed, seems to appear in the ATIC/PPB-BETS data around 700 GeV. If upcoming data from ATIC-4 and GLAST confirm this feature, this would point to a O(1) TeV DM annihilating only into leptons. Otherwise the solution (i) would be favored. We comment on the implications of these results for DM models, direct DM detection and colliders as well as on the possibility of an astrophysical origin of the excess

  13. Analysis of turbulence spectra in gas-liquid two-phase flow

    International Nuclear Information System (INIS)

    Kataoka, Isao; Besnard, D.C.; Serizawa, Akimi.

    1993-01-01

    An analysis was made on the turbulence spectra in bubbly flow. Basic equation for turbulence spectrum in bubbly flow was formulated considering the eddy disintegration induced by bubble. Based on the dimensional analysis and modeling of eddy disintegration by bubble, constitutive equations for eddy disintegration were derived. Using these equations, turbulence spectra in bubbly flow (showing -8/3 power) was successfully explained. (author)

  14. Input energy measurement toward warm dense matter generation using intense pulsed power generator

    Science.gov (United States)

    Hayashi, R.; Ito, T.; Ishitani, T.; Tamura, F.; Kudo, T.; Takakura, N.; Kashine, K.; Takahashi, K.; Sasaki, T.; Kikuchi, T.; Harada, Nob.; Jiang, W.; Tokuchi, A.

    2016-05-01

    In order to investigate properties of warm dense matter (WDM) in inertial confinement fusion (ICF), evaluation method for the WDM with isochoric heating on the implosion time-scale using an intense pulsed power generator ETIGO-II (∼1 TW, ∼50 ns) has been considered. In this study, the history of input energy into the sample is measured from the voltage and the current waveforms. To achieve isochoric heating, a foamed aluminum with pore sizes 600 μm and with 90% porosity was packed into a hollow glass capillary (ø 5 mm × 10 mm). The temperature of the sample is calculated from the numerical calculation using the measured input power. According to the above measurements, the input energy into a sample and the achievable temperature are estimated to be 300 J and 6000 K. It indicates that the WDM state is generated using the proposed method with ICF implosion time-scale.

  15. LSD-based analysis of high-resolution stellar spectra

    Science.gov (United States)

    Tsymbal, V.; Tkachenko, A.; Van, Reeth T.

    2014-11-01

    We present a generalization of the method of least-squares deconvolution (LSD), a powerful tool for extracting high S/N average line profiles from stellar spectra. The generalization of the method is effected by extending it towards the multiprofile LSD and by introducing the possibility to correct the line strengths from the initial mask. We illustrate the new approach by two examples: (a) the detection of astroseismic signatures from low S/N spectra of single stars, and (b) disentangling spectra of multiple stellar objects. The analysis is applied to spectra obtained with 2-m class telescopes in the course of spectroscopic ground-based support for space missions such as CoRoT and Kepler. Usually, rather high S/N is required, so smaller telescopes can only compete successfully with more advanced ones when one can apply a technique that enables a remarkable increase in the S/N of the spectra which they observe. Since the LSD profiles have a potential for reconstruction what is common in all the spectral profiles, it should have a particular practical application to faint stars observed with 2-m class telescopes and whose spectra show remarkable LPVs.

  16. Matter power spectrum and the challenge of percent accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Aurel; Teyssier, Romain; Potter, Doug; Stadel, Joachim; Reed, Darren S. [Institute for Computational Science, University of Zurich, Winterthurerstrasse 190, 8057 Zurich (Switzerland); Onions, Julian; Pearce, Frazer R. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Smith, Robert E. [Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9QH (United Kingdom); Springel, Volker [Heidelberger Institut für Theoretische Studien, 69118 Heidelberg (Germany); Scoccimarro, Roman, E-mail: aurel@physik.uzh.ch, E-mail: teyssier@physik.uzh.ch, E-mail: dpotter@physik.uzh.ch, E-mail: stadel@physik.uzh.ch, E-mail: julian.onions@nottingham.ac.uk, E-mail: reed@physik.uzh.ch, E-mail: r.e.smith@sussex.ac.uk, E-mail: volker.springel@h-its.org, E-mail: Frazer.Pearce@nottingham.ac.uk, E-mail: rs123@nyu.edu [Center for Cosmology and Particle Physics, Department of Physics, New York University, NY 10003, New York (United States)

    2016-04-01

    Future galaxy surveys require one percent precision in the theoretical knowledge of the power spectrum over a large range including very nonlinear scales. While this level of accuracy is easily obtained in the linear regime with perturbation theory, it represents a serious challenge for small scales where numerical simulations are required. In this paper we quantify the precision of present-day N -body methods, identifying main potential error sources from the set-up of initial conditions to the measurement of the final power spectrum. We directly compare three widely used N -body codes, Ramses, Pkdgrav3, and Gadget3 which represent three main discretisation techniques: the particle-mesh method, the tree method, and a hybrid combination of the two. For standard run parameters, the codes agree to within one percent at k ≤1 h Mpc{sup −1} and to within three percent at k ≤10 h Mpc{sup −1}. We also consider the bispectrum and show that the reduced bispectra agree at the sub-percent level for k ≤ 2 h Mpc{sup −1}. In a second step, we quantify potential errors due to initial conditions, box size, and resolution using an extended suite of simulations performed with our fastest code Pkdgrav3. We demonstrate that the simulation box size should not be smaller than L =0.5 h {sup −1}Gpc to avoid systematic finite-volume effects (while much larger boxes are required to beat down the statistical sample variance). Furthermore, a maximum particle mass of M {sub p}=10{sup 9} h {sup −1}M{sub ⊙} is required to conservatively obtain one percent precision of the matter power spectrum. As a consequence, numerical simulations covering large survey volumes of upcoming missions such as DES, LSST, and Euclid will need more than a trillion particles to reproduce clustering properties at the targeted accuracy.

  17. An effective model for fermion dark matter. Indirect detection of supersymmetric dark matter in astronomy with the CELESTE Telescope

    International Nuclear Information System (INIS)

    Lavalle, Julien

    2004-01-01

    The purpose of this thesis is to discuss both phenomenological and experimental aspects of Dark Matter, related to its indirect detection with gamma-ray astronomy. In the MSSM framework, neutralinos arise as natural candidates to non-baryonic and Cold Dark Matter, whose gravitational effects manifest in the Universe at different scales. As they are Majorana particles, they may in principle annihilate in high density regions, as the centres of galaxies, and produce gamma rays. Nevertheless, the expected fluxes are basically low compared to experimental sensitivities. After estimating gamma fluxes from M31 and Draco galaxies in the MSSM scheme, we first generalize the MSSM couplings by studying an effective Lagrangian. We show that the only constraint of imposing a relic abundance compatible with recent measurements obviously deplete significantly the gamma ray production, but also that predictions in this effective approach are more optimistic for indirect detection than the MSSM. In a second part, we present the indirect searches for Dark Matter performed with the CELESTE Cherenkov telescope towards the galaxy M31. We propose a statistical method to reconstruct spectra, mandatory to discriminate classical and exotic spectra. The M31 data analysis enables the extraction of an upper limit on the gamma ray flux, which is the first worldwide for a galaxy in the energy range 50-500 GeV, and whose astrophysical interest goes beyond indirect searches for Dark Matter. (author)

  18. Basic model of fermion dark matter. Indirect detection of supersymmetric dark matter in γ astronomy with the CELESTE telescope

    International Nuclear Information System (INIS)

    Lavalle, J.

    2004-10-01

    The purpose of this thesis is to discuss both phenomenological and experimental aspects of Dark Matter, related to its indirect detection with gamma-ray astronomy. In the MSSM (Minimal Supersymmetric Standard Model) framework, neutralinos arise as natural candidates to non-baryonic and Cold Dark Matter, whose gravitational effects manifest in the Universe at different scales. As they are Majorana particles, they may in principle annihilate in high density regions, as the centres of galaxies, and produce gamma rays. Nevertheless, the expected fluxes are basically low compared to experimental sensitivities. After estimating gamma fluxes from M31 and Draco galaxies in the MSSM scheme, we first generalize the MSSM couplings by studying an effective Lagrangian. We show that the only constraint of imposing a relic abundance compatible with recent measurements obviously deplete significantly the gamma ray production, but also that predictions in this effective approach are more optimistic for indirect detection than the MSSM. In a second part, we present the indirect searches for Dark Matter performed with the CELESTE Cherenkov telescope towards the galaxy M31. We propose a statistical method to reconstruct spectra, mandatory to discriminate classical and exotic spectra. The M31 data analysis enables the extraction of an upper limit on the gamma ray flux, which is the first worldwide for a galaxy in the energy range 50-500 GeV, and whose astrophysical interest goes beyond indirect searches for Dark Matter. (author)

  19. Interacting hot dark matter

    International Nuclear Information System (INIS)

    Atrio-Barandela, F.; Davidson, S.

    1997-01-01

    We discuss the viability of a light particle (∼30eV neutrino) with strong self-interactions as a dark matter candidate. The interaction prevents the neutrinos from free-streaming during the radiation-dominated regime so galaxy-sized density perturbations can survive. Smaller scale perturbations are damped due to neutrino diffusion. We calculate the power spectrum in the imperfect fluid approximation, and show that it is damped at the length scale one would estimate due to neutrino diffusion. The strength of the neutrino-neutrino coupling is only weakly constrained by observations, and could be chosen by fitting the power spectrum to the observed amplitude of matter density perturbations. The main shortcoming of our model is that interacting neutrinos cannot provide the dark matter in dwarf galaxies. copyright 1997 The American Physical Society

  20. The interpretation of the intensity of components of laser scattering by interaction with matter

    Science.gov (United States)

    Fidanovski, Z.; Srećković, M.; Ostojić, S.; Ilić, J.; Merkle, M.

    2012-05-01

    The measurement of scattered light properties offers many optical, acoustic, dielectric, thermodynamic data about the scattering medium. Brillouin spectroscopy with various modifications and different laser types has been a measurement technique in acoustics for a long time, but it is still important as an autonomous technique. It enables more detailed and exhaustive knowledge of the acoustic and optical properties of matter. A series of Rayleigh-Brillouin spectra are recorded for a set of organic solvents and phytol. The equipment used in spectra recordings enables the measurement of four components of scattered laser intensity Ihh, Ihv, Ivv and Ivh. The ratios of the linewidth, as well as shifts, are determined for Rayleigh-Brillouin spectra. According to them, the hypersound velocity and absorption coefficients can be calculated. There is much software for data processing obtained in laser interaction with matter, with different programming tools. An analysis of spectra is performed, i.e. an examination of which distribution (Gaussian or Lorentzian) better explains the experimentally obtained diagrams.

  1. Algorithms for classification of astronomical object spectra

    Science.gov (United States)

    Wasiewicz, P.; Szuppe, J.; Hryniewicz, K.

    2015-09-01

    Obtaining interesting celestial objects from tens of thousands or even millions of recorded optical-ultraviolet spectra depends not only on the data quality but also on the accuracy of spectra decomposition. Additionally rapidly growing data volumes demands higher computing power and/or more efficient algorithms implementations. In this paper we speed up the process of substracting iron transitions and fitting Gaussian functions to emission peaks utilising C++ and OpenCL methods together with the NOSQL database. In this paper we implemented typical astronomical methods of detecting peaks in comparison to our previous hybrid methods implemented with CUDA.

  2. Efficient evaluation of angular power spectra and bispectra

    Science.gov (United States)

    Assassi, Valentin; Simonović, Marko; Zaldarriaga, Matias

    2017-11-01

    Angular statistics of cosmological observables are hard to compute. The main difficulty is due to the presence of highly-oscillatory Bessel functions which need to be integrated over. In this paper, we provide a simple and fast method to compute the angular power spectrum and bispectrum of any observable. The method is based on using an FFTlog algorithm to decompose the momentum-space statistics onto a basis of power-law functions. For each power law, the integrals over Bessel functions have a simple analytical solution. This allows us to efficiently evaluate these integrals, independently of the value of the multipole l. In particular, this method significantly speeds up the evaluation of the angular bispectrum compared to existing methods. To illustrate our algorithm, we compute the galaxy, lensing and CMB temperature angular power spectrum and bispectrum.

  3. Dark matter vs. neutrinos: the effect of astrophysical uncertainties and timing information on the neutrino floor

    International Nuclear Information System (INIS)

    Davis, Jonathan H.

    2015-01-01

    Future multi-tonne Direct Detection experiments will be sensitive to solar neutrino induced nuclear recoils which form an irreducible background to light Dark Matter searches. Indeed for masses around 6 GeV the spectra of neutrinos and Dark Matter are so similar that experiments are said to run into a neutrino floor, for which sensitivity increases only marginally with exposure past a certain cross section. In this work we show that this floor can be overcome using the different annual modulation expected from solar neutrinos and Dark Matter. Specifically for cross sections below the neutrino floor the DM signal is observable through a phase shift and a smaller amplitude for the time-dependent event rate. This allows the exclusion power to be improved by up to an order of magnitude for large exposures. In addition we demonstrate that, using only spectral information, the neutrino floor exists over a wider mass range than has been previously shown, since the large uncertainties in the Dark Matter velocity distribution make the signal spectrum harder to distinguish from the neutrino background. However for most velocity distributions it can still be surpassed using timing information, and so the neutrino floor is not an absolute limit on the sensitivity of Direct Detection experiments

  4. Identification of regions of normal grey matter and white matter from pathologic glioblastoma and necrosis in frozen sections using Raman imaging.

    Science.gov (United States)

    Kast, Rachel; Auner, Gregory; Yurgelevic, Sally; Broadbent, Brandy; Raghunathan, Aditya; Poisson, Laila M; Mikkelsen, Tom; Rosenblum, Mark L; Kalkanis, Steven N

    2015-11-01

    In neurosurgical applications, a tool capable of distinguishing grey matter, white matter, and areas of tumor and/or necrosis in near-real time could greatly aid in tumor resection decision making. Raman spectroscopy is a non-destructive spectroscopic technique which provides molecular information about the tissue under examination based on the vibrational properties of the constituent molecules. With careful measurement and data processing, a spatial step and repeat acquisition of Raman spectra can be used to create Raman images. Forty frozen brain tissue sections were imaged in their entirety using a 300-µm-square measurement grid, and two or more regions of interest within each tissue were also imaged using a 25 µm-square step size. Molecular correlates for histologic features of interest were identified within the Raman spectra, and novel imaging algorithms were developed to compare molecular features across multiple tissues. In previous work, the relative concentration of individual biomolecules was imaged. Here, the relative concentrations of 1004, 1300:1344, and 1660 cm(-1), which correspond primarily to protein and lipid content, were simultaneously imaged across all tissues. This provided simple interpretation of boundaries between grey matter, white matter, and diseased tissue, and corresponded with findings from adjacent hematoxylin and eosin-stained sections. This novel, yet simple, multi-channel imaging technique allows clinically-relevant resolution with straightforward molecular interpretation of Raman images not possible by imaging any single peak. This method can be applied to either surgical or laboratory tools for rapid, non-destructive imaging of grey and white matter.

  5. A simplified method of estimating noise power spectra

    International Nuclear Information System (INIS)

    Hanson, K.M.

    1998-01-01

    A technique to estimate the radial dependence of the noise power spectrum of images is proposed in which the calculations are conducted solely in the spatial domain of the noise image. The noise power spectrum averaged over a radial spatial-frequency interval is obtained form the variance of a noise image that has been convolved with a small kernel that approximates a Laplacian operator. Recursive consolidation of the image by factors of two in each dimension yields estimates of the noise power spectrum over that full range of spatial frequencies

  6. Cosmological perturbation theory for baryons and dark matter I. One-loop corrections in the RPT framework

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, Gabor [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Zurich Univ. (Switzerland). Inst. for Theoretical Physics; Smith, Robert E. [Zurich Univ. (Switzerland). Inst. for Theoretical Physics

    2009-10-15

    Baryonic Acoustic Oscillation (BAO) features are amplified for baryon and slightly damped for CDM spectra. If we compare the total matter power spectra in the 2- and 1-component fluid approaches, then we find excellent agreement, with deviations being < 0.5% throughout the evolution. Consequences: high precision modeling of the large-scale distribution of baryons in the Universe can not be achieved through an effective mean-mass 1-component fluid approximation; detection significance of BAO will be amplified in probes that study baryonic matter, relative to probes that study the CDM or total mass only. The CDM distribution can be modeled accurately at late times and the total matter at all times. This is good news for probes that are sensitive to the total mass, such as gravitational weak lensing as existing modeling techniques are good enough. Lastly, we identify an analytic approximation that greatly simplifies the evaluation of the full PT expressions, and it is better than < 1% over the full range of scales and times considered. (orig.)

  7. Probing hot dense matter with jet energy loss

    International Nuclear Information System (INIS)

    Levai, P.; Barnafoeldi, G.G.; Gyulassy, M.; Vitev, I.; Fai, G.; Zhang, Y.

    2002-01-01

    We study, in a pQCD calculation augmented by nuclear effects, the jet energy loss needed to reproduce the π 0 spectra in Au+Au collisions at large p T , measured by PHENIX at RHIC. The transverse width of the parton momentum distributions (intrinsic k T ) is used phenomenologically to obtain a reliable baseline pp result. Jet quenching is applied to the nuclear spectra (including shadowing and multiscattering) to fit the data. Latest results on fluctuating gluon radiation are considered to measure the opacity of the produced hot dense matter at RHIC energy. (orig.)

  8. Monte Carlo simulations of plutonium gamma-ray spectra

    International Nuclear Information System (INIS)

    Koenig, Z.M.; Carlson, J.B.; Wang, Tzu-Fang; Ruhter, W.D.

    1993-01-01

    Monte Carlo calculations were investigated as a means of simulating the gamma-ray spectra of Pu. These simulated spectra will be used to develop and evaluate gamma-ray analysis techniques for various nondestructive measurements. Simulated spectra of calculational standards can be used for code intercomparisons, to understand systematic biases and to estimate minimum detection levels of existing and proposed nondestructive analysis instruments. The capability to simulate gamma-ray spectra from HPGe detectors could significantly reduce the costs of preparing large numbers of real reference materials. MCNP was used for the Monte Carlo transport of the photons. Results from the MCNP calculations were folded in with a detector response function for a realistic spectrum. Plutonium spectrum peaks were produced with Lorentzian shapes, for the x-rays, and Gaussian distributions. The MGA code determined the Pu isotopes and specific power of this calculated spectrum and compared it to a similar analysis on a measured spectrum

  9. LEP shines light on dark matter

    International Nuclear Information System (INIS)

    Fox, Patrick J.; Harnik, Roni; Kopp, Joachim; Tsai, Yuhsin

    2011-01-01

    Dark matter pair production at high energy colliders may leave observable signatures in the energy and momentum spectra of the objects recoiling against the dark matter. We use LEP data on monophoton events with large missing energy to constrain the coupling of dark matter to electrons. Within a large class of models, our limits are complementary to and competitive with limits on dark matter annihilation and on WIMP-nucleon scattering from indirect and direct searches. Our limits, however, do not suffer from systematic and astrophysical uncertainties associated with direct and indirect limits. For example, we are able to rule out light (< or approx. 10 GeV) thermal relic dark matter with universal couplings exclusively to charged leptons. In addition, for dark matter mass below about 80 GeV, LEP limits are stronger than Fermi constraints on annihilation into charged leptons in dwarf spheroidal galaxies. Within its kinematic reach, LEP also provides the strongest constraints on the spin-dependent direct detection cross section in models with universal couplings to both quarks and leptons. In such models the strongest limit is also set on spin-independent scattering for dark matter masses below ∼4 GeV. Throughout our discussion, we consider both low energy effective theories of dark matter, as well as several motivated renormalizable scenarios involving light mediators.

  10. The generation of high-power charge particle micro beams and its interaction with condensed matter

    International Nuclear Information System (INIS)

    Vogel, N.; Skvortsov, V.A.

    1996-01-01

    As has been observed experimentally, the action of a picosecond laser beam on an Al-target in air gives rise to the generation and acceleration of high-power micro electron and ion beams. An original theoretical model for describing the generation and particle acceleration of such micro beams as a result of the micro channeling effect is presented. It was found that extreme states of matter, with compression in the Gbar pressure range, can be produced by such micro beams. (author). 3 figs., 12 refs

  11. The Mira-Titan Universe. II. Matter Power Spectrum Emulation

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, Earl; Heitmann, Katrin; Kwan, Juliana; Upadhye, Amol; Bingham, Derek; Habib, Salman; Higdon, David; Pope, Adrian; Finkel, Hal; Frontiere, Nicholas

    2017-09-20

    We introduce a new cosmic emulator for the matter power spectrum covering eight cosmological parameters. Targeted at optical surveys, the emulator provides accurate predictions out to a wavenumber k similar to 5 Mpc(-1) and redshift z <= 2. In addition to covering the standard set of Lambda CDM parameters, massive neutrinos and a dynamical dark energy of state are included. The emulator is built on a sample set of 36 cosmological models, carefully chosen to provide accurate predictions over the wide and large parameter space. For each model, we have performed a high-resolution simulation, augmented with 16 medium-resolution simulations and TimeRG perturbation theory results to provide accurate coverage over a wide k-range; the data set generated as part of this project is more than 1.2Pbytes. With the current set of simulated models, we achieve an accuracy of approximately 4%. Because the sampling approach used here has established convergence and error-control properties, follow-up results with more than a hundred cosmological models will soon achieve similar to 1% accuracy. We compare our approach with other prediction schemes that are based on halo model ideas and remapping approaches.

  12. Constraints on Leptophilic Dark Matter from the AMS-02 Experiment

    International Nuclear Information System (INIS)

    Cavasonza, Leila Ali; Gast, Henning; Schael, Stefan; Krämer, Michael; Pellen, Mathieu

    2017-01-01

    The annihilation of dark matter particles in the Galactic halo of the Milky Way may lead to cosmic ray signatures that can be probed by the AMS-02 experiment, which has measured the composition and fluxes of charged cosmic rays with unprecedented precision. Given the absence of characteristic spectral features in the electron and positron fluxes measured by AMS-02, we derive upper limits on the dark matter annihilation cross section for leptophilic dark matter models. Our limits are based on a new background model that describes all recent measurements of the energy spectra of cosmic-ray positrons and electrons. For thermal dark matter relics, we can exclude dark matter masses below about 100 GeV. We include the radiation of electroweak gauge bosons in the dark matter annihilation process and compute the antiproton signal that can be expected within leptophilic dark matter models.

  13. Constraints on Leptophilic Dark Matter from the AMS-02 Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Cavasonza, Leila Ali; Gast, Henning; Schael, Stefan [I. Physikalisches Institut, RWTH Aachen University, D-52074 Aachen (Germany); Krämer, Michael [Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University, D-52074 Aachen (Germany); Pellen, Mathieu, E-mail: cavasonza@physik.rwth-aachen.de [Institut für Theoretische Physik und Astrophysik, Universität Würzburg, D-97074 Würzburg (Germany)

    2017-04-10

    The annihilation of dark matter particles in the Galactic halo of the Milky Way may lead to cosmic ray signatures that can be probed by the AMS-02 experiment, which has measured the composition and fluxes of charged cosmic rays with unprecedented precision. Given the absence of characteristic spectral features in the electron and positron fluxes measured by AMS-02, we derive upper limits on the dark matter annihilation cross section for leptophilic dark matter models. Our limits are based on a new background model that describes all recent measurements of the energy spectra of cosmic-ray positrons and electrons. For thermal dark matter relics, we can exclude dark matter masses below about 100 GeV. We include the radiation of electroweak gauge bosons in the dark matter annihilation process and compute the antiproton signal that can be expected within leptophilic dark matter models.

  14. Mimicking dark matter through a non-minimal gravitational coupling with matter

    International Nuclear Information System (INIS)

    Bertolami, O.; Páramos, J.

    2010-01-01

    In this study one resorts to the phenomenology of models endowed with a non-minimal coupling between matter and geometry, in order to develop a mechanism through which dynamics similar to that due to the presence of dark matter is generated. As a first attempt, one tries to account for the flattening of the galaxy rotation curves as an effect of the non-(covariant) conservation of the energy-momentum tensor of visible matter. Afterwards, one assumes instead that this non-minimal coupling modifies the scalar curvature in a way that can be interpreted as a dark matter component (albeit with negative pressure). It is concluded that it is possible to mimic known dark matter density profiles through an appropriate power-law coupling f 2 = (R/R 0 ) n , with a negative index n — a fact that reflects the dominance of dark matter at large distances. The properties of the model are extensively discussed, and possible cosmological implications are addressed

  15. The effects of the small-scale behaviour of dark matter power spectrum on CMB spectral distortion

    Science.gov (United States)

    Sarkar, Abir; Sethi, Shiv. K.; Das, Subinoy

    2017-07-01

    After numerous astronomical and experimental searches, the precise particle nature of dark matter is still unknown. The standard Weakly Interacting Massive Particle(WIMP) dark matter, despite successfully explaining the large-scale features of the universe, has long-standing small-scale issues. The spectral distortion in the Cosmic Microwave Background(CMB) caused by Silk damping in the pre-recombination era allows one to access information on a range of small scales 0.3 Mpc Light Axion (ULA) dark matter and Charged Decaying Dark Matter (CHDM); the matter power in all these models deviate significantly from the ΛCDM model at small scales. We compute the spectral distortion of CMB for these alternative models and compare our results with the ΛCDM model. We show that the main impact of alternative models is to alter the sub-horizon evolution of the Newtonian potential which affects the late-time behaviour of spectral distortion of CMB. The y-parameter diminishes by a few percent as compared to the ΛCDM model for a range of parameters of these models: LFDM for formation redshift zf = 105 (7%); WDM for mass mwdm = 1 keV (2%); CHDM for decay redshift zdecay = 105 (5%); ULA for mass ma = 10-24 eV (3%). This effect from the pre-recombination era can be masked by orders of magnitude higher y-distortions generated by late-time sources, e.g. the Epoch of Reionization and tSZ from the cluster of galaxies. We also briefly discuss the detectability of this deviation in light of the upcoming CMB experiment PIXIE, which might have the sensitivity to detect this signal from the pre-recombination phase.

  16. Wukong Sharpens Its Eyes and Unveils the Nature of Dark Matter

    Science.gov (United States)

    Cong, Kun-Lin

    2016-07-01

    Dark matter does not emit light or reflect electromagnetic radiation, but its existence can be inferred from the effects of measurements such as gravity and mass. Unveiling the nature of dark matter is one of the biggest mysteries of modern science. Exploration of dark matter could give scientists a clearer understanding of the past and future of galaxies and the universe. Chinese scientists have been engaged actively in dark matter research in recent years, and made some significant achievements in theoretical studies, numerical simulations, and experimental investigation. The Dark Matter Particles Explorer Satellite (DAMPE) was launched by LM launch vehicle on 17th December 2015. It was constructed as a scientific satellite that has four major parts - a plastic scintillator array detector, a silicon array detector, a BGO calorimeter and a neutron detector - together comprising about 76,000 minor detectors. The main scientific purpose of DAMPE is to investigate dark matter particle from deep space, via high resolution observation of gamma-rays and electrons spectra, and its space distribution. It will also help scientists study the transportation and acceleration of cosmic rays in the galaxy by measuring the energy spectra of heavy ions. DAMPE was dubbed Wukong after the Monkey King character from the Chinese classic legend Journey to the West. "Wu" means becoming aware of through the senses, and "Kong" refers to the space. The figurative meaning of "Wukong" is to know and comprehend the nature of the space. DAMPE is the most sensitive and accurate detectors designed for dark matter with the highest performance among the similar explorers. It will find the evidence that can certify the existence of dark matter.

  17. Method to generate generic floor response spectra for operating nuclear power plant

    International Nuclear Information System (INIS)

    Curreri, J.; Costantino, C.; Subudhi, M.; Reich, M.

    1985-01-01

    The general approach in the development of the response spectra was to study the effects on the dynamic characteristics of each of the elements in the chain of events that goes between the loads and the responses. This includes the loads, the soils and the structures. A free-field earthquake response spectra was used to generate horizontal earthquake time histories. The excitation was applied through the soil and into the various structures to produce responses in equipment. An entire range of soil conditions was used with each structure, from soft soil to solid rock. Actual PWR and BWR - Mark I structural models were used as representative of a class of structures. For each model, the stiffness properties were varied, with the same mass, so as to extend the fundamental base structure natural frequency from 2 cps to 36 cps. This resulted in fundamental mode coupled natural frequencies as low as 0.86 cps and as high as 30 cps. From all of these models of soils and structures, floor response spectra were generated at each floor level. The natural frequencies of the structures were varied to obtain maximum response conditions. The actual properties were first used to locate the natural frequencies. The stiffness properties were then varied, with the same mass, to extend the range of the fundamental base structure natural frequency. The intention was to have the coupled structural material frequencies in the vicinity of the peak amplitude frequency content of the excitation spectrum. Particular attention was therefore given to the frequency band between 2 Hz and 4 Hz. A horizontal generic floor response spectra is proposed for the top level of a generic structure. Reduction factors are applied to the peak acceleration for equipment at lower levels

  18. Beta spectra. II-Positron spectra

    International Nuclear Information System (INIS)

    Grau, A.; Garcia-Torano, E.

    1981-01-01

    Using the Fermi theory of beta decay, the beta spectra for 30 positron emitters have been computed, introducing a correction factor for unique forbidden transitions. The spectra are ploted vs. energy, once normalised, and tabulated with the related Fermi functions. The average and median energies are calculated. (author)

  19. Proton acceleration experiments and warm dense matter research using high power lasers

    Energy Technology Data Exchange (ETDEWEB)

    Roth, M; Alber, I; Guenther, M; Harres, K [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Bagnoud, V [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Brown, C R D [Plasma Physics Group, Imperial College London, SW7 2BZ (United Kingdom); Clarke, R; Heathcote, R; Li, B [STFC, Rutherford Appleton Laboratory (RAL), Chilton, Didcot, OX14 OQX (United Kingdom); Daido, H [Photo Medical Research Center, JAEA, Kizugawa-City, Kyoto 619-0215 (Japan); Fernandez, J; Flippo, K; Gaillard, S; Gauthier, C [Los Alamos National Laboratory (LANL), Los Alamos, NM 87545 (United States); Geissel, M [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Glenzer, S; Kritcher, A; Kugland, N; LePape, S [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Gregori, G, E-mail: markus.roth@physik.tu-darmstadt.d [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom)

    2009-12-15

    The acceleration of intense proton and ion beams by ultra-intense lasers has matured to a point where applications in basic research and technology are being developed. Crucial for harvesting the unmatched beam parameters driven by the relativistic electron sheath is the precise control of the beam. In this paper we report on recent experiments using the PHELIX laser at GSI, the VULCAN laser at RAL and the TRIDENT laser at LANL to control and use laser accelerated proton beams for applications in high energy density research. We demonstrate efficient collimation of the proton beam using high field pulsed solenoid magnets, a prerequisite to capture and transport the beam for applications. Furthermore, we report on two campaigns to use intense, short proton bunches to isochorically heat solid targets up to the warm dense matter state. The temporal profile of the proton beam allows for rapid heating of the target, much faster than the hydrodynamic response time thereby creating a strongly coupled plasma at solid density. The target parameters are then probed by x-ray Thomson scattering to reveal the density and temperature of the heated volume. This combination of two powerful techniques developed during the past few years allows for the generation and investigation of macroscopic samples of matter in states present in giant planets or the interior of the earth.

  20. Proton acceleration experiments and warm dense matter research using high power lasers

    International Nuclear Information System (INIS)

    Roth, M; Alber, I; Guenther, M; Harres, K; Bagnoud, V; Brown, C R D; Clarke, R; Heathcote, R; Li, B; Daido, H; Fernandez, J; Flippo, K; Gaillard, S; Gauthier, C; Geissel, M; Glenzer, S; Kritcher, A; Kugland, N; LePape, S; Gregori, G

    2009-01-01

    The acceleration of intense proton and ion beams by ultra-intense lasers has matured to a point where applications in basic research and technology are being developed. Crucial for harvesting the unmatched beam parameters driven by the relativistic electron sheath is the precise control of the beam. In this paper we report on recent experiments using the PHELIX laser at GSI, the VULCAN laser at RAL and the TRIDENT laser at LANL to control and use laser accelerated proton beams for applications in high energy density research. We demonstrate efficient collimation of the proton beam using high field pulsed solenoid magnets, a prerequisite to capture and transport the beam for applications. Furthermore, we report on two campaigns to use intense, short proton bunches to isochorically heat solid targets up to the warm dense matter state. The temporal profile of the proton beam allows for rapid heating of the target, much faster than the hydrodynamic response time thereby creating a strongly coupled plasma at solid density. The target parameters are then probed by x-ray Thomson scattering to reveal the density and temperature of the heated volume. This combination of two powerful techniques developed during the past few years allows for the generation and investigation of macroscopic samples of matter in states present in giant planets or the interior of the earth.

  1. BETA SPECTRA. I. Negatrons spectra

    International Nuclear Information System (INIS)

    Grau Malonda, A.; Garcia-Torano, E.

    1978-01-01

    Using the Fermi theory of beta decay, the beta spectra for 62 negatrons emitters have been computed introducing a correction factor for unique forbidden transitions. These spectra are plotted vs. energy, once normal i sed, and tabulated with the related Fermi functions. The average and median energies are calculated. (Author)

  2. Consistent scalar and tensor perturbation power spectra in single fluid matter bounce with dark energy era

    Science.gov (United States)

    Bacalhau, Anna Paula; Pinto-Neto, Nelson; Vitenti, Sandro Dias Pinto

    2018-04-01

    We investigate cosmological scenarios containing one canonical scalar field with an exponential potential in the context of bouncing models, in which the bounce happens due to quantum cosmological effects. The only possible bouncing solutions in this scenario (discarding an infinitely fine-tuned exception) must have one and only one dark energy phase, occurring either in the contracting era or in the expanding era. Hence, these bounce solutions are necessarily asymmetric. Naturally, the more convenient solution is the one in which the dark energy phase happens in the expanding era, in order to be a possible explanation for the current accelerated expansion indicated by cosmological observations. In this case, one has the picture of a Universe undergoing a classical dust contraction from very large scales, the initial repeller of the model, moving to a classical stiff-matter contraction near the singularity, which is avoided due to the quantum bounce. The Universe is then launched to a dark energy era, after passing through radiation- and dust-dominated phases, finally returning to the dust expanding phase, the final attractor of the model. We calculate the spectral indices and amplitudes of scalar and tensor perturbations numerically, considering the whole history of the model, including the bounce phase itself, without making any approximation nor using any matching condition on the perturbations. As the background model is necessarily dust dominated in the far past, the usual adiabatic vacuum initial conditions can be easily imposed in this era. Hence, this is a cosmological model in which the presence of dark energy behavior in the Universe does not turn the usual vacuum initial conditions prescription for cosmological perturbation in bouncing models problematic. Scalar and tensor perturbations end up being almost scale invariant, as expected. The background parameters can be adjusted, without fine-tunings, to yield the observed amplitude for scalar

  3. Normalizations of High Taylor Reynolds Number Power Spectra

    Science.gov (United States)

    Puga, Alejandro; Koster, Timothy; Larue, John C.

    2014-11-01

    The velocity power spectrum provides insight in how the turbulent kinetic energy is transferred from larger to smaller scales. Wind tunnel experiments are conducted where high intensity turbulence is generated by means of an active turbulence grid modeled after Makita's 1991 design (Makita, 1991) as implemented by Mydlarski and Warhaft (M&W, 1998). The goal of this study is to document the evolution of the scaling region and assess the relative collapse of several proposed normalizations over a range of Rλ from 185 to 997. As predicted by Kolmogorov (1963), an asymptotic approach of the slope (n) of the inertial subrange to - 5 / 3 with increasing Rλ is observed. There are three velocity power spectrum normalizations as presented by Kolmogorov (1963), Von Karman and Howarth (1938) and George (1992). Results show that the Von Karman and Howarth normalization does not collapse the velocity power spectrum as well as the Kolmogorov and George normalizations. The Kolmogorov normalization does a good job of collapsing the velocity power spectrum in the normalized high wavenumber range of 0 . 0002 University of California, Irvine Research Fund.

  4. Cosmological perturbation theory for baryons and dark matter: One-loop corrections in the renormalized perturbation theory framework

    Science.gov (United States)

    Somogyi, Gábor; Smith, Robert E.

    2010-01-01

    baryon and slightly damped for CDM spectra. If we compare the total matter power spectra in the two- and one-component fluid approaches, then we find excellent agreement, with deviations being <0.5% throughout the evolution. Consequences: high precision modeling of the large-scale distribution of baryons in the Universe cannot be achieved through an effective mean-mass one-component fluid approximation; detection significance of BAO will be amplified in probes that study baryonic matter, relative to probes that study the CDM or total mass only. The CDM distribution can be modeled accurately at late times and the total matter at all times. This is good news for probes that are sensitive to the total mass, such as gravitational weak lensing as existing modeling techniques are good enough. Lastly, we identify an analytic approximation that greatly simplifies the evaluation of the full PT expressions, and it is better than <1% over the full range of scales and times considered.

  5. Anisotropy of the cosmic gamma-ray background from dark matter annihilation

    International Nuclear Information System (INIS)

    Ando, Shin'ichiro; Komatsu, Eiichiro

    2006-01-01

    High-energy photons from pair annihilation of dark matter particles contribute to the cosmic gamma-ray background (CGB) observed in a wide energy range. Since dark matter particles are weakly interacting, annihilation can happen only in high density regions such as dark matter halos. The precise shape of the energy spectrum of CGB depends on the nature of dark matter particles--their mass and annihilation cross section, as well as the cosmological evolution of dark matter halos. In order to discriminate between the signals from dark matter annihilation and other astrophysical sources, however, the information from the energy spectrum of CGB may not be sufficient. We show that dark matter annihilation not only contributes to the mean CGB intensity, but also produces a characteristic anisotropy, which provides a powerful tool for testing the origins of the observed CGB. We develop the formalism based on a halo model approach to analytically calculate the three-dimensional power spectrum of dark matter clumping, which determines the power spectrum of annihilation signals. We show that the expected sensitivity of future gamma-ray detectors such as the Gamma Ray Large Area Space Telescope (GLAST) should allow us to measure the angular power spectrum of CGB anisotropy, if dark matter particles are supersymmetric neutralinos and they account for most of the observed mean intensity of CGB in GeV region. On the other hand, if dark matter has a relatively small mass, on the order of 20 MeV, and accounts for most of the CGB in MeV region, then the future Advanced Compton Telescope (ACT) should be able to measure the angular power spectrum in MeV region. As the intensity of photons from annihilation is proportional to the density squared, we show that the predicted shape of the angular power spectrum of gamma rays from dark matter annihilation is different from that due to other astrophysical sources such as blazars and supernovae, whose intensity is linearly proportional to

  6. X-ray absorption spectra and emission spectra of plasmas

    International Nuclear Information System (INIS)

    Peng Yonglun; Yang Li; Wang Minsheng; Li Jiaming

    2002-01-01

    The author reports a theoretical method to calculate the resolved absorption spectra and emission spectra (optically thin) of hot dense plasmas. Due to its fully relativistic treatment incorporated with the quantum defect theory, it calculates the absorption spectra and emission spectra for single element or multi-element plasmas with little computational efforts. The calculated absorption spectra of LTE gold plasmas agree well with the experimental ones. It also calculates the optical thin emission spectra of LTE gold plasmas, which is helpful to diagnose the plasmas of relevant ICF plasmas. It can also provide the relevant parameters such as population density of various ionic stages, precise radiative properties for ICF studies

  7. Classification of a Supersolid: Trial Wavefunctions, Symmetry Breakings and Excitation Spectra

    Science.gov (United States)

    Chen, Yu; Ye, Jinwu; Tian, Guangshan

    2012-11-01

    A state of matter is characterized by its symmetry breaking and elementary excitations. A supersolid is a state which breaks both translational symmetry and internal U(1) symmetry. Here, we review some past and recent works in phenomenological Ginsburg-Landau theories, ground state trial wavefunctions and microscopic numerical calculations. We also write down a new effective supersolid Hamiltonian on a lattice. The eigenstates of the Hamiltonian contains both the ground state wavefunction and all the excited states (supersolidon) wavefunctions. We contrast various kinds of supersolids in both continuous systems and on lattices, both condensed matter and cold atom systems. We provide additional new insights in studying their order parameters, symmetry breaking patterns, the excitation spectra and detection methods.

  8. Characterization of the diversity in bat biosonar beampatterns with spherical harmonics power spectra.

    Science.gov (United States)

    Motamedi, Mohammad; Müller, Rolf

    2014-06-01

    The biosonar beampatterns found across different bat species are highly diverse in terms of global and local shape properties such as overall beamwidth or the presence, location, and shape of multiple lobes. It may be hypothesized that some of this variability reflects evolutionary adaptation. To investigate this hypothesis, the present work has searched for patterns in the variability across a set of 283 numerical predictions of emission and reception beampatterns from 88 bat species belonging to four major families (Rhinolophidae, Hipposideridae, Phyllostomidae, Vespertilionidae). This was done using a lossy compression of the beampatterns that utilized real spherical harmonics as basis functions. The resulting vector representations showed differences between the families as well as between emission and reception. These differences existed in the means of the power spectra as well as in their distribution. The distributions were characterized in a low dimensional space found through principal component analysis. The distinctiveness of the beampatterns across the groups was corroborated by pairwise classification experiments that yielded correct classification rates between ~85 and ~98%. Beamwidth was a major factor but not the sole distinguishing feature in these classification experiments. These differences could be seen as an indication of adaptive trends at the beampattern level.

  9. Influence of soil-structure interaction on floor response spectra

    International Nuclear Information System (INIS)

    Costantino, C.J.; Miller, C.A.; Curreri, J.R.

    1985-01-01

    A study was undertaken to investigate the influence of soil-structure interaction on floor response spectra developed in typical nuclear power plant structures. A horizontal earthquake time history, whose spectra envelops the Regulatory Guide 1.60 criteria and is scaled to a log peak acceleration, was used as input to structural models. Two different structural stick models were used, representing typical BWR and PWR facilities. By varying the structural and soil stiffness parameters, a wide range of system behaviors were investigated. Floor response spectra, required to assess equipment qualification, were of primary interest. It was found from a variation of parameter study that the interaction soil parameters, particularly radiation damping, greatly affect the nature of the calculated responses. 2 refs., 2 figs., 2 tabs

  10. Influence of soil-structure interaction on floor response spectra

    International Nuclear Information System (INIS)

    Costantino, C.J.; Miller, C.A.; Curreri, J.R.

    1985-01-01

    A study was undertaken to investigate the influence of soil-structure interaction on floor response spectra developed in typical nuclear power plant structures. A horizontal earthquake time history, whose spectra envelops the Reg. Guide 1.60 criteria and is scaled to a 1 g peak acceleration, was used as input to structural models. Two different structural stick models were used, representing typical BWR and PWR facilities. By varying the structural and soil stiffness parameters, a wide range of system behaviors were investigated. Floor response spectra, required to assess equipment qualification, were of primary interest. It was found from a variation of parameter study that the interaction soil parameters, particularly radiation damping, greatly affect the nature of the calculated responses. (orig.)

  11. Gamma-ray spectra and doses from the Little Boy replica

    International Nuclear Information System (INIS)

    Moss, C.E.; Lucas, M.C.; Tisinger, E.W.; Hamm, M.E.

    1984-01-01

    Most radiation safety guidelines in the nuclear industry are based on the data concerning the survivors of the nuclear explosions at Hiroshima and Nagasaki. Crucial to determining these guidelines is the radiation from the explosions. We have measured gamma-ray pulse-height distributions from an accurate replica of the Little Boy device used at Hiroshima, operated at low power levels near critical. The device was placed outdoors on a stand 4 m from the ground to minimize environmental effects. The power levels were based on a monitor detector calibrated very carefully in independent experiments. High-resolution pulse-height distributions were acquired with a germanium detector to identify the lines and to obtain line intensities. The 7631 to 7645 keV doublet from neutron capture in the heavy steel case was dominant. Low-resolution pulse-height distributions were acquired with bismuth-germanate detectors. We calculated flux spectra from these distributions using accurately measured detector response functions and efficiency curves. We then calculated dose-rate spectra from the flux spectra using a flux-to-dose-rate conversion procedure. The integral of each dose-rate spectrum gave an integral dose rate. The integral doses at 2 m ranged from 0.46 to 1.03 mrem per 10 13 fissions. The output of the Little Boy replica can be calculated with Monte Carlo codes. Comparison of our experimental spectra, line intensities, and integral doses can be used to verify these calculations at low power levels and give increased confidence to the calculated values from the explosion at Hiroshima. These calculations then can be used to establish better radiation safety guidelines. 7 references, 7 figures, 2 tables

  12. Interfacial structure of soft matter probed by SFG spectroscopy.

    Science.gov (United States)

    Ye, Shen; Tong, Yujin; Ge, Aimin; Qiao, Lin; Davies, Paul B

    2014-10-01

    Sum frequency generation (SFG) vibrational spectroscopy, an interface-specific technique in contrast to, for example, attenuated total reflectance spectroscopy, which is only interface sensitive, has been employed to investigate the surface and interface structure of soft matter on a molecular scale. The experimental arrangement required to carry out SFG spectroscopy, with particular reference to soft matter, and the analytical methods developed to interpret the spectra are described. The elucidation of the interfacial structure of soft matter systems is an essential prerequisite in order to understand and eventually control the surface properties of these important functional materials. Copyright © 2014 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A distribution-free test for anomalous gamma-ray spectra

    International Nuclear Information System (INIS)

    Chan, Kung-sik; Li, Jinzheng; Eichinger, William; Bai, Er-Wei

    2014-01-01

    Gamma-ray spectra are increasingly acquired in monitoring cross-border traffic, or in an area search for lost or orphan special nuclear material (SNM). The signal in such data is generally weak, resulting in poorly resolved spectra, thereby making it hard to detect the presence of SNM. We develop a new test for detecting anomalous spectra by characterizing the complete shape change in a spectrum from background radiation; the proposed method may serve as a tripwire for routine screening for SNM. We show that, with increasing detection time, the limiting distribution of the test is given by some functional of the Brownian bridge. The efficacy of the proposed method is illustrated by simulations. - Highlights: • We develop a new non-parametric test for detecting anomalous gamma-ray spectra. • The proposed test has good empirical power for detecting weak signals. • It can serve as an effective tripwire for invoking more thorough scrutiny of the source

  14. Calculation of the stopping power and the path of charged particles in matter. Application example

    International Nuclear Information System (INIS)

    Barre, Bertrand; Du Lieu, Pierre

    1969-05-01

    The path of a charged particle in matter is calculated by integrating the stopping power of the medium against this particle. Depending on the energy of the particle, stopping powers are calculated using Lindhard, Bethe, or semi-empirical smoothing solutions. After exposing recent theories in this field, the authors present a Fortran subroutine which performs these various operations, and covers all energy domains. This routine is available for operation on IBM 360; it uses a magnetic tape library that can take into account experimental results. The subprogram presentation, leaving the user the option of entering the data and using the results at his discretion, allows a particularly flexible use. At the end of this note, some considerations on possible further improvements in the program, and a bibliography of the articles that have dealt with the question from a theoretical or an experimental point of view are discussed [fr

  15. Filtering microphonics in dark matter germanium experiments

    International Nuclear Information System (INIS)

    Morales, J.; Garcia, E.; Ortiz de Solorzano, A.; Morales, A.; Nunz-Lagos, R.; Puimedon, J.; Saenz, C.; Villar, J.A.

    1992-01-01

    A technique for reducing the microphonic noise in a germanium spectrometer used in dark matter particles searches is described. Filtered energy spectra, corresponding to 48.5 kg day of data in a running experiment in the Canfranc tunnel are presented. Improvements of this filtering procedure with respect to the method of rejecting those events not distributed evenly in time are also discussed. (orig.)

  16. A simple method for generation of back-ground-free gamma-ray spectra

    International Nuclear Information System (INIS)

    Kawarasaki, Y.

    1976-01-01

    A simple and versatile method of generating background-free γ-ray spectra is presented. This method is equivalent to the generation of a continuous background baseline over the entire energy range of spectra corresponding to the original ones obtained with a Ge(Li) detector. These background curves can not be generally expressed in a single and simple analytic form nor in the form of a power series. These background-free spectra thus obtained make it feasible to assign many tiny peaks at the stage of visual inspection of the spectra, which is difficult to do with the original ones. The automatic peak-finding and peak area calculation procedures are both applicable to these background-free spectra. Examples of the application are illustrated. The effect of the peak-shape distortion is also discussed. (Auth.)

  17. The seismic response and floor spectra of OL3 NPP buildings in Finland

    International Nuclear Information System (INIS)

    Pentti Varpasuo

    2005-01-01

    The purpose of the present work is the computation of seismic response and floor spectra of the nuclear power plant OL3 buildings in Olkiluoto. The following OL3 plant buildings were included in the analysis: 1. the Reactor Building UJA/UJB; 2. the Safeguard Buildings UJH/UJK 1-4; 3. and the Fuel Building UFA The in-structure spectra were generated using the ground motion response spectra documented in YVL GUIDE 2.6 'Seismic events at nuclear power plants' issued by Finnish Centre of Radiation Protection. The floor spectra were computed for the following equipment damping values: 2%, 4%, 7%, and 10%. The joint model for the plant buildings was generated. All analyses were linear and the direct time integration method was used with time step of 0.001 sec. All response runs were carried out with MSC/Nastran general purpose structural analysis program. The development of floor spectra has been carried out in accordance with the US NRC -Regulatory Guide 1.122: 'Development of Floor Design Response Spectra for Seismic Design of Floor-Supported Equipment or Components'. The response results show that the dominant frequencies of the reactor building are located around 5 Hz in frequency space and that the typical amplification of spectral peaks for 4% damping is from 8 -10 times when compared to peak ground acceleration. (authors)

  18. The study of crystal structures and vibrational spectra of inorganicsalts of 2,4-diaminopyrimidine

    Czech Academy of Sciences Publication Activity Database

    Matulková, I.; Mathauserová, J.; Císařová, I.; Němec, I.; Fábry, Jan

    2016-01-01

    Roč. 1103, Jan (2016), s. 82-93 ISSN 0022-2860 R&D Projects: GA ČR GA14-05506S Institutional support: RVO:68378271 Keywords : salts of 2,4-diaminopyrimidine * single crystal X-ray structural analysis * vibrational spectra Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.753, year: 2016

  19. Multi-phase Turbulence Density Power Spectra in the Perseus Molecular Cloud

    Science.gov (United States)

    Pingel, N. M.; Lee, Min-Young; Burkhart, Blakesley; Stanimirović, Snežana

    2018-04-01

    We derive two-dimensional spatial power spectra of four distinct interstellar medium tracers, H I, 12CO(J = 1–0), 13CO(J = 1–0), and dust, in the Perseus molecular cloud, covering linear scales ranging from ∼0.1 pc to ∼90 pc. Among the four tracers, we find the steepest slopes of ‑3.23 ± 0.05 and ‑3.22 ± 0.05 for the uncorrected and opacity-corrected H I column density images. This result suggests that the H I in and around Perseus traces a non-gravitating, transonic medium on average, with a negligible effect from opacity. On the other hand, we measure the shallowest slope of ‑2.72 ± 0.12 for the 2MASS dust extinction data and interpret this as the signature of a self-gravitating, supersonic medium. Possible variations in the dust-to-gas ratio likely do not alter our conclusion. Finally, we derive slopes of ‑3.08 ± 0.08 and ‑2.88 ± 0.07 for the 12CO(1–0) and 13CO(1–0) integrated intensity images. Based on theoretical predictions for an optically thick medium, we interpret these slopes of roughly ‑3 as implying that both CO lines are susceptible to the opacity effect. While simple tests for the impact of CO formation and depletion indicate that the measured slopes of 12CO(1–0) and 13CO(1–0) are not likely affected by these chemical effects, our results generally suggest that chemically more complex and/or fully optically thick media may not be a reliable observational tracer for characterizing turbulence.

  20. Basic experimental preparation for the measurement of the stopping power of heavy ions in matter

    International Nuclear Information System (INIS)

    Carvalho Brito Brum, H. de.

    1976-02-01

    To measure the stopping power of heavy ions in solid matter one must develop both an experimental apparatus and a data analysis program. This thesis discusses these preparatory works and the methods to be employed. The design, building and testing of a scattering chamber with many detectors; the preparation of thin solid films, their analysis by electron diffraction and their thickness measurements; the testing of the electronic system; the calibration of the 4 MeV Van de Graaf accelerator at PUC/RJ; and the development of an original data analysis computer program are presented. (Author) [pt

  1. Peaked signals from dark matter velocity structures in direct detection experiments

    Science.gov (United States)

    Lang, Rafael F.; Weiner, Neal

    2010-06-01

    In direct dark matter detection experiments, conventional elastic scattering of WIMPs results in exponentially falling recoil spectra. In contrast, theories of WIMPs with excited states can lead to nuclear recoil spectra that peak at finite recoil energies ER. The peaks of such signals are typically fairly broad, with ΔER/Epeak ~ 1. We show that in the presence of dark matter structures with low velocity dispersion, such as streams or clumps, peaks from up-scattering can become extremely narrow with FWHM of a few keV only. This differs dramatically from the conventionally expected WIMP spectrum and would, once detected, open the possibility to measure the dark matter velocity structure with high accuracy. As an intriguing example, we confront the observed cluster of 3 events near 42 keV from the CRESST commissioning run with this scenario. Inelastic dark matter particles with a wide range of parameters are capable of producing such a narrow peak. We calculate the possible signals at other experiments, and find that such particles could also give rise to the signal at DAMA, although not from the same stream. Over some range of parameters, a signal would be visible at xenon experiments. We show that such dark matter peaks are a very clear signal and can be easily disentangled from potential backgrounds, both terrestrial or due to WIMP down-scattering, by an enhanced annual modulation in both the amplitude of the signal and its spectral shape.

  2. Peaked signals from dark matter velocity structures in direct detection experiments

    International Nuclear Information System (INIS)

    Lang, Rafael F.; Weiner, Neal

    2010-01-01

    In direct dark matter detection experiments, conventional elastic scattering of WIMPs results in exponentially falling recoil spectra. In contrast, theories of WIMPs with excited states can lead to nuclear recoil spectra that peak at finite recoil energies E R . The peaks of such signals are typically fairly broad, with ΔE R /E peak ∼ 1. We show that in the presence of dark matter structures with low velocity dispersion, such as streams or clumps, peaks from up-scattering can become extremely narrow with FWHM of a few keV only. This differs dramatically from the conventionally expected WIMP spectrum and would, once detected, open the possibility to measure the dark matter velocity structure with high accuracy. As an intriguing example, we confront the observed cluster of 3 events near 42 keV from the CRESST commissioning run with this scenario. Inelastic dark matter particles with a wide range of parameters are capable of producing such a narrow peak. We calculate the possible signals at other experiments, and find that such particles could also give rise to the signal at DAMA, although not from the same stream. Over some range of parameters, a signal would be visible at xenon experiments. We show that such dark matter peaks are a very clear signal and can be easily disentangled from potential backgrounds, both terrestrial or due to WIMP down-scattering, by an enhanced annual modulation in both the amplitude of the signal and its spectral shape

  3. Structure formation constraints on Sommerfeld-enhanced dark matter annihilation

    International Nuclear Information System (INIS)

    Armendariz-Picon, Cristian; Neelakanta, Jayanth T.

    2012-01-01

    We study the growth of cosmic structure in a ΛCDM universe under the assumption that dark matter self-annihilates with an averaged cross section times relative velocity that grows with the scale factor, an increase known as Sommerfeld-enhancement. Such an evolution is expected in models in which a light force carrier in the dark sector enhances the annihilation cross section of dark matter particles, and has been invoked, for instance, to explain anomalies in cosmic ray spectra reported in the past. In order to make our results as general as possible, we assume that dark matter annihilates into a relativistic species that only interacts gravitationally with the standard model. This assumption also allows us to test whether the additional relativistic species mildly favored by cosmic-microwave background data could originate from dark matter annihilation. We do not find evidence for Sommerfeld-enhanced dark matter annihilation and derive the corresponding upper limits on the annihilation cross-section

  4. Neutron spectra from radionuclide sources for cardiac pacemakers

    International Nuclear Information System (INIS)

    Kluge, H.

    1975-01-01

    Neutron spectra from Plutonium 238 radioisotope batteries powering cardiac pacemakers are measured in the energy range above 0.7 MeV. The results are used to calculate radiation doses within a cylindrical phantom. There are only minor differences between the different types of plutonium 238-batteries and californium 252-batteries

  5. Detailed spectra of high-power broadband microwave radiation from interactions of relativistic electron beams with weakly magnetized plasmas

    International Nuclear Information System (INIS)

    Kato, K.G.; Benford, G.; Tzach, D.

    1983-01-01

    Prodigious quantities of microwave energy distributed uniformly across a wide frequency band are observed when a relativistic electron beam (REB) penetrates a plasma. Typical measured values are 20 MW total for Δνapprox. =40 GHz with preliminary observations of bandwidths as large as 100 GHz. An intense annular pulsed REB (Iapprox. =128 kA; rapprox. =3 cm; Δrapprox. =1 cm; 50 nsec FWHM; γapprox. =3) is sent through an unmagnetized or weakly magnetized plasma column (n/sub plasma/approx.10 13 cm -3 ). Beam-to-plasma densities of 0.01 >ω/sub p/ and weak harmonic structure is wholly unanticipated from Langmuir scattering or soliton collapse models. A model of Compton-like boosting of ambient plasma waves by the beam electrons, with collateral emission of high-frequency photons, qualitatively explains these spectra. Power emerges largely in an angle approx.1/γ, as required by Compton mechanisms. As n/sub b//n/sub p/ falls, ω/sub p/-2ω/sub p/ structure and harmonic power ratios consistent with soliton collapse theories appear. With further reduction of n/sub b//n/sub p/ only the ω/sub p/ line persists

  6. Comparison of optical and electron spectra in an infra-red free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    MacLeod, A.M.; Gillespie, W.A.; Martin, P.F. [Univ. of Abertay, Dundee (United Kingdom)] [and others

    1995-12-31

    Time-resolved electron and optical spectra recently acquired at the FELIX facility are presented, showing the evolution of the respective macropulses. A comparison is made between the optical power output during the macropulse and the measured power extracted from the electron beam using a simple model of the cavity losses. Data are available for a wide range of operating conditions: the wavelength range is from 9 {mu}m to 28 {mu}m and detuning are between 1/4{lambda} and 2{lambda}. The effect of rapid electron beam energy changes on the optical and electron spectra will also be discussed.

  7. The formation of cosmic structure in a texture-seeded cold dark matter cosmogony

    Science.gov (United States)

    Gooding, Andrew K.; Park, Changbom; Spergel, David N.; Turok, Neil; Gott, Richard, III

    1992-01-01

    The growth of density fluctuations induced by global texture in an Omega = 1 cold dark matter (CDM) cosmogony is calculated. The resulting power spectra are in good agreement with each other, with more power on large scales than in the standard inflation plus CDM model. Calculation of related statistics (two-point correlation functions, mass variances, cosmic Mach number) indicates that the texture plus CDM model compares more favorably than standard CDM with observations of large-scale structure. Texture produces coherent velocity fields on large scales, as observed. Excessive small-scale velocity dispersions, and voids less empty than those observed may be remedied by including baryonic physics. The topology of the cosmic structure agrees well with observation. The non-Gaussian texture induced density fluctuations lead to earlier nonlinear object formation than in Gaussian models and may also be more compatible with recent evidence that the galaxy density field is non-Gaussian on large scales. On smaller scales the density field is strongly non-Gaussian, but this appears to be primarily due to nonlinear gravitational clustering. The velocity field on smaller scales is surprisingly Gaussian.

  8. 78 FR 29158 - In the Matter of Zion Solutions, LLC; Zion Nuclear Power Station, Units 1 and 2; Order Approving...

    Science.gov (United States)

    2013-05-17

    ... and DPR-48] In the Matter of Zion Solutions, LLC; Zion Nuclear Power Station, Units 1 and 2; Order... formed for the purpose of acquiring ES, Inc. and is held by certain investment fund entities organized by... Environmental Management Programs, in writing, of such receipt no later than one (1) business day prior to the...

  9. Investigation of ion acceleration mechanism through laser-matter interaction in femtosecond domain

    Energy Technology Data Exchange (ETDEWEB)

    Altana, C., E-mail: altana@lns.infn.it [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Via S. Sofia 64, 95123 Catania (Italy); Muoio, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Messina, Viale F.S. D’Alcontres 31, 98166 Messina (Italy); Lanzalone, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Università degli Studi di Enna “Kore”, Via delle Olimpiadi, 94100 Enna (Italy); Tudisco, S. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Brandi, F. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Cirrone, G.A.P. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via S. Sofia 62, 95123 Catania (Italy); Cristoforetti, G. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Fazzi, A. [Energy Department, Polytechnic of Milan and INFN, Milan (Italy); Ferrara, P.; Fulgentini, L. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Giove, D. [Energy Department, Polytechnic of Milan and INFN, Milan (Italy); Koester, P. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Labate, L. [CNR, Intense Laser Irradiation Laboratory, Via G. Moruzzi 1, 56124 Pisa (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); and others

    2016-09-01

    An experimental campaign aiming to investigate the ion acceleration mechanisms through laser-matter interaction in the femtosecond domain has been carried out at the ILIL facility at a laser intensity of up to 2×10{sup 19} W/cm{sup 2}. A Thomson Parabola Spectrometer was used to identify different ion species and measure the energy spectra and the corresponding temperature parameters. We discuss the dependence of the protons spectra upon the structural characteristics of the targets (thickness and atomic mass) and the role of surface versus target bulk during acceleration process. - Highlights: • Ion acceleration mechanism in TNSA regime was investigated. • The energy spectra and the corresponding temperature parameters were measured. • Dependence of the spectra upon the target structural characteristics was discussed.

  10. Predicting ambient aerosol thermal-optical reflectance measurements from infrared spectra: elemental carbon

    Science.gov (United States)

    Dillner, A. M.; Takahama, S.

    2015-10-01

    Elemental carbon (EC) is an important constituent of atmospheric particulate matter because it absorbs solar radiation influencing climate and visibility and it adversely affects human health. The EC measured by thermal methods such as thermal-optical reflectance (TOR) is operationally defined as the carbon that volatilizes from quartz filter samples at elevated temperatures in the presence of oxygen. Here, methods are presented to accurately predict TOR EC using Fourier transform infrared (FT-IR) absorbance spectra from atmospheric particulate matter collected on polytetrafluoroethylene (PTFE or Teflon) filters. This method is similar to the procedure developed for OC in prior work (Dillner and Takahama, 2015). Transmittance FT-IR analysis is rapid, inexpensive and nondestructive to the PTFE filter samples which are routinely collected for mass and elemental analysis in monitoring networks. FT-IR absorbance spectra are obtained from 794 filter samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to collocated TOR EC measurements. The FT-IR spectra are divided into calibration and test sets. Two calibrations are developed: one developed from uniform distribution of samples across the EC mass range (Uniform EC) and one developed from a uniform distribution of Low EC mass samples (EC < 2.4 μg, Low Uniform EC). A hybrid approach which applies the Low EC calibration to Low EC samples and the Uniform EC calibration to all other samples is used to produce predictions for Low EC samples that have mean error on par with parallel TOR EC samples in the same mass range and an estimate of the minimum detection limit (MDL) that is on par with TOR EC MDL. For all samples, this hybrid approach leads to precise and accurate TOR EC predictions by FT-IR as indicated by high coefficient of determination (R2; 0.96), no bias (0.00 μg m-3, a

  11. Power/response spectrum transformations in equipment qualification

    International Nuclear Information System (INIS)

    Unruh, J.F.; Kana, D.D.

    1985-01-01

    Since its introduction a few years ago the use of the power/response spectrum transformation has gained considerable interest and acceptance, and a number of new applications of the transformation have been developed in the equipment qualification area. A brief review of the power/response spectrum transformation is given with a discussion of the input/output relationships for linear systems required for elevated power spectrum generation. Frequency content of earthquakelike signals is discussed with emphasis on the resolution given by the PSD. The problem of excessive ZPA due to inconsistent spectra enveloping and mechanical nonlinearities is also discussed. The PSD/RS transformation is applied to the problems of combining various dynamic load events, developing bounding spectra, and developing damping consistent test spectra. Development of elevated component spectra corrected for base overtest and generation from in-situ measurements is reviewed

  12. Distortions in power spectra of digitized signals - I: General formulations

    International Nuclear Information System (INIS)

    Njau, E.C.

    1982-04-01

    When a continuous signal f(t) is digitized and then spectrally analysed, the resultant energy spectral density R(ω) is given as R(ω) = |F(ω) * D(ω)| 2 , where F(ω) is the exact Fourier transform of f(t), D(ω) is the exact Fourier transform of the digitization process and * denotes convolution operation. A notable practical problem in spectral analysis is how to adequately decouple D(ω) from R(ω) and hence obtain the exact energy spectral density of f(t), i.e. |F(ω)| 2 , since R(ω) → |F(ω)| 2 only if D(ω) → delta(ω) or (under certain conditions) when D(ω) → delta(ω-ω 0 ) or if D(ω) → Σsub(n) delta(ω-ωsub(n)), where the latter is a sufficiently spaced series of delta functions and ωsub(j) is constant for a given j. A solution to this problem requires, among others, thorough understanding of D(ω), how it relates to F(ω) and hence the manner or degree to which D(ω) distorts or contaminates F(ω) to form R(ω). In this paper, we have developed exact analytical expressions of D(ω) that are well related to the corresponding F(ω) in the cases when f(t) is a simple sinusoid as well as when it is in the form of a more complex function. It is established that in either of these cases, D(ω) is a clear function of the salient parameters of both f(t) and F(ω). The contents of this paper are used in Part II to examine the manner and extent to which D(ω) causes distortions in R(ω) under given conditions, and also to establish a procedure by which such distortions may be decoupled from a practically computed R(ω). Other related issues such as frequency shifts in computed power spectra are also discussed therein. (author)

  13. How cold is cold dark matter?

    International Nuclear Information System (INIS)

    Armendariz-Picon, Cristian; Neelakanta, Jayanth T.

    2014-01-01

    If cold dark matter consists of particles, these must be non-interacting and non-relativistic by definition. In most cold dark matter models however, dark matter particles inherit a non-vanishing velocity dispersion from interactions in the early universe, a velocity that redshifts with cosmic expansion but certainly remains non-zero. In this article, we place model-independent constraints on the dark matter temperature to mass ratio, whose square root determines the dark matter velocity dispersion. We only assume that dark matter particles decoupled kinetically while non-relativistic, when galactic scales had not entered the horizon yet, and that their momentum distribution has been Maxwellian since that time. Under these assumptions, using cosmic microwave background and matter power spectrum observations, we place upper limits on the temperature to mass ratio of cold dark matter today (away from collapsed structures). These limits imply that the present cold dark matter velocity dispersion has to be smaller than 54 m/s. Cold dark matter has to be quite cold, indeed

  14. Nuclear power generation modern power station practice

    CERN Document Server

    1971-01-01

    Nuclear Power Generation focuses on the use of nuclear reactors as heat sources for electricity generation. This volume explains how nuclear energy can be harnessed to produce power by discussing the fundamental physical facts and the properties of matter underlying the operation of a reactor. This book is comprised of five chapters and opens with an overview of nuclear physics, first by considering the structure of matter and basic physical concepts such as atomic structure and nuclear reactions. The second chapter deals with the requirements of a reactor as a heat source, along with the diff

  15. Some preliminary formulations toward a new theory of matter

    International Nuclear Information System (INIS)

    Shekhawat, V.

    1976-01-01

    Matter is pictured as a primitive fluid substratum having the fundamental property of fluctuating at a constant frequency. From this are derived the discrete properties of space and time, and it follows that, at the microlevel, talk of pure space and pure time involves ambiguities. A new interpretation of Planck's constant emerges according to which it is a quantum of matter-time combination. Thus, a quantum of matter-space combination should exist. On pursuing further the hydrodynamic model, such a constant is in fact discovered as the drag-quantum of the quantum fluid. A fourth-degree differential equation is considered which, with the help of this new constant, generates spectra of frequency, mass, and fine structure constants. The theory seems to answer some important fundamental questions

  16. A simple theory of LET spectra of heavy ion beams

    International Nuclear Information System (INIS)

    Wilson, J.W.; Townsend, L.W.; Schimmerling, W.; Norbury, J.W.; Wong, M.; Badavi, F.

    1985-01-01

    The transition of high energy ion beams through extended matter is of considerable interest to the space program as well as radiobiology and medical therapy. The transition is defined in terms of various atomic/molecular and nuclear cross sections in a Boltzmann-like equation. One dimensional solutions are derived herein from which LET spectra are derived for secondary fragments. Such LET spectra are fundamental to the evaluation of beam quality, biological effects, and radiation shield effectiveness. Sensitivity of LET spectral distributions to uncertainty in physical parameters such as the isotopic fragmentation parameters, fragment mass, and absorption cross section is established for a number of ion beams. The main limitation in LET studies is the paucity of both elemental and isotopic fragmentation data. The elemental fragmentation data is more readily available because of its simple experimental procedures. It has been suggested by some that natural abundance ratios should be used with the elemental cross sections but this leads to an order-of-magnitude error in LET spectra in many cases. Very few examples of isotopic fragmentation measurements are available. Although major advances in nuclear fragmentation theory have been made, we must await more extensive isotopic fragmentation experiments for final validation

  17. Dark Matter remains obscure

    CERN Multimedia

    Fabio Capello

    2011-01-01

    It is one of the hidden secrets that literally surround the Universe. Experiments have shown no result so far because trying to capture particles that do not seem to interact with ordinary matter is no trivial exercise. The OSQAR experiment at CERN is dedicated to the search for axions, one of the candidates for Dark Matter. For its difficult challenge, OSQAR counts on one of the world’s most powerful magnets borrowed from the LHC. In a recent publication, the OSQAR collaboration was able to confirm that no axion signal appears out of the background. In other words: the quest is still on.   The OSQAR experiment installed in the SM18 hall. (Photo by F. Capello) The OSQAR “Light Shining Through a Wall” experiment was officially launched in 2007 with the aim of detecting axions, that is, particles that might be the main components of Dark Matter. OSQAR uses the powerful LHC dipole magnet to intensify the predicted photon-axion conversions in the presence of strong m...

  18. Thermoluminescence of simulated interstellar matter after gamma-ray irradiation. Forsterite, enstatite and carbonates

    Science.gov (United States)

    Koike, K.; Nakagawa, M.; Koike, C.; Okada, M.; Chihara, H.

    2002-08-01

    Interstellar matter is known to be strongly irradiated by cosmic radiation and several types of cosmic ray particles. Simulated interstellar matter, such as synthesized forsterite (Mg2SiO4), enstatite (MgSiO3) and magnesite (MgCO3), has been irradiated with 60Co gamma-rays in liquid nitrogen, and also irradiated with fast neutrons at 10 K and 70 K by making use of the low-temperature irradiation facility of the Kyoto University Reactor (KUR-LTL. Maximum fast neutron dose is 1017nf /cm2). After irradiation, samples are stored in liquid nitrogen for several months to allow the decay of induced radioactivity. We measured the luminescence spectra of the gamma ray irradiated samples during warming to 370 K using a spectrophotometer. For the forsterite and magnesite, the spectra exhibit a rather intense peak at about 645-655 nm and 660 nm respectively, whereas luminescence scarcely appeared in the natural olivine sample. The spectra of forsterite is very similar to the ERE of the Red Rectangle.

  19. Artificial ground motion compatible with specified peak ground displacement and target multi-damping response spectra

    International Nuclear Information System (INIS)

    Zhang Yushan; Zhao Fengxin

    2010-01-01

    With respect to the design ground motion of nuclear power plant (NPP), the Regular Guide 1.60 of the US not only defined the standard multi-damping response spectra, i.e. the RG1.60 spectra, but also definitely prescribed the peak ground displacement (PGD) value corresponding to the standard spectra. However, in the engineering practice of generating multi-damping-spectra-compatible artificial ground motion for the seismic design of NPP, the PGD value had been neglected. Addressing this issue, this paper proposed a synthesizing method which generates the artificial ground motion compatible with not only the target multi-damping response spectra but also the specified PGD value. Firstly, by the transfer formula between the power spectrum and the response spectrum, an initial uniformly modulated acceleration time history is synthesized by multiplying the stationary Gaussian process with the prescribed intensity envelope to simulate the amplitude-non-stationarity of earthquake ground motion. And then by superimposing a series of narrow-band time histories in the time domain, the initial time history is modified in the iterative manner to match the target PGD as well as the target multi-damping spectra with the pre-specified matching precisions. Numerical examples are provided to demonstrate the matching precisions of the proposed method to the target values.

  20. Reflectance variability of surface coatings reveals characteristic eigenvalue spectra

    Science.gov (United States)

    Medina, José M.; Díaz, José A.; Barros, Rui

    2012-10-01

    We have examined the trial-to-trial variability of the reflectance spectra of surface coatings containing effect pigments. Principal component analysis of reflectances was done at each detection angle separately. A method for classification of principal components is applied based on the eigenvalue spectra. It was found that the eigenvalue spectra follow characteristic power laws and depend on the detection angle. Three different subsets of principal components were examined to separate the relevant spectral features related to the pigments from other noise sources. Reconstruction of the reflectance spectra by taking only the first subset indicated that reflectance variability was higher at near-specular reflection, suggesting a correlation with the trial-to-trial deposition of effect pigments. Reconstruction by using the second subset indicates that variability was higher at short wavelengths. Finally, reconstruction by using only the third subset indicates that reflectance variability was not totally random as a function of the wavelength. The methods employed can be useful in the evaluation of color variability in industrial paint application processes.

  1. High-z objects and cold dark matter cosmogonies - Constraints on the primordial power spectrum on small scales

    Science.gov (United States)

    Kashlinsky, A.

    1993-01-01

    Modified cold dark matter (CDM) models were recently suggested to account for large-scale optical data, which fix the power spectrum on large scales, and the COBE results, which would then fix the bias parameter, b. We point out that all such models have deficit of small-scale power where density fluctuations are presently nonlinear, and should then lead to late epochs of collapse of scales M between 10 exp 9 - 10 exp 10 solar masses and (1-5) x 10 exp 14 solar masses. We compute the probabilities and comoving space densities of various scale objects at high redshifts according to the CDM models and compare these with observations of high-z QSOs, high-z galaxies and the protocluster-size object found recently by Uson et al. (1992) at z = 3.4. We show that the modified CDM models are inconsistent with the observational data on these objects. We thus suggest that in order to account for the high-z objects, as well as the large-scale and COBE data, one needs a power spectrum with more power on small scales than CDM models allow and an open universe.

  2. Globalisation and local power: influences on health matters in South Africa.

    Science.gov (United States)

    Gilbert, Tal; Gilbert, Leah

    2004-03-01

    This paper reviews some of the multiple influences on health issues in South Africa, placing them in the context of globalisation. By examining the complexity of factors, both domestic and global, which impact on these issues, it questions the extent to which global patterns in areas such as health policy, HIV/AIDS, health care pluralism, and neo-liberal macroeconomic policy have played out in South Africa. The identification of some of the multiple and complex forces in each case reveals a relatively consistent story of global pressures interacting with domestic realities, with some recognizably local results. There is no doubt that a full and nuanced understanding of health in South Africa requires an appreciation of developments in the global political economy, international organizations such as the WHO and World Bank, and forces which operate outside of institutions. In each case, however, the specific opportunities available to actors within the country, as well as the relative power of those actors, should be given their due consideration in analysing their potential impact on health matters.

  3. Dark matter annihilation with s-channel internal Higgsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Jason; Liao, Jiajun, E-mail: liaoj@hawaii.edu; Marfatia, Danny

    2016-08-10

    We study the scenario of fermionic dark matter that annihilates to standard model fermions through an s-channel axial vector mediator. We point out that the well-known chirality suppression of the annihilation cross section can be alleviated by s-channel internal Higgsstrahlung. The shapes of the cosmic ray spectra are identical to that of t-channel internal Higgsstrahlung in the limit of a heavy mediating particle. Unlike the general case of t-channel bremsstrahlung, s-channel Higgsstrahlung can be the dominant annihilation process even for Dirac dark matter. Since the s-channel mediator can be a standard model singlet, collider searches for the mediator are easily circumvented.

  4. Dark matter annihilation with s-channel internal Higgsstrahlung

    International Nuclear Information System (INIS)

    Kumar, Jason; Liao, Jiajun; Marfatia, Danny

    2016-01-01

    We study the scenario of fermionic dark matter that annihilates to standard model fermions through an s-channel axial vector mediator. We point out that the well-known chirality suppression of the annihilation cross section can be alleviated by s-channel internal Higgsstrahlung. The shapes of the cosmic ray spectra are identical to that of t-channel internal Higgsstrahlung in the limit of a heavy mediating particle. Unlike the general case of t-channel bremsstrahlung, s-channel Higgsstrahlung can be the dominant annihilation process even for Dirac dark matter. Since the s-channel mediator can be a standard model singlet, collider searches for the mediator are easily circumvented.

  5. Tritium in organic matter around Krsko Nuclear Power Plant

    International Nuclear Information System (INIS)

    Kristof, Romana; Zorko, Benjamin; Kozar Logar, Jasmina; Kosenina, Suzana

    2017-01-01

    The aim of the research was to obtain first results of tritium in the organic matter of environmental samples in the vicinity of Krsko NPP. The emphasis was on the layout of suitable sampling network of crops and fruits in nearby agricultural area. Method for determination of tritium in organic matter in the form of Tissue Free Water Tritium (TFWT) and Organically Bound Tritium (OBT) has been implemented. Capabilities of the methods were tested on real environmental samples and its findings were compared to modeled activities of tritium from atmospheric releases and literature based results of TFWT and OBT. (author)

  6. Steady-state and accident analyses of PBMR with the computer code SPECTRA

    International Nuclear Information System (INIS)

    Stempniewicz, Marek M.

    2002-01-01

    The SPECTRA code is an accident analysis code developed at NRG. It is designed for thermal-hydraulic analyses of nuclear or conventional power plants. The code is capable of analysing the whole power plant, including reactor vessel, primary system, various control and safety systems, containment and reactor building. The aim of the work presented in this paper was to prepare a preliminary thermal-hydraulic model of PBMR for SPECTRA, and perform steady state and accident analyses. In order to assess SPECTRA capability to model the PBMR reactors, a model of the INCOGEN system has been prepared first. Steady state and accident scenarios were analyzed for INCOGEN configuration. Results were compared to the results obtained earlier with INAS and OCTOPUS/PANTHERMIX. A good agreement was obtained. Results of accident analyses with PBMR model showed qualitatively good results. It is concluded that SPECTRA is a suitable tool for analyzing High Temperature Reactors, such as INCOGEN or for example PBMR (Pebble Bed Modular Reactor). Analyses of INCOGEN and PBMR systems showed that in all analyzed cases the fuel temperatures remained within the acceptable limits. Consequently there is no danger of release of radioactivity to the environment. It may be concluded that those are promising designs for future safe industrial reactors. (author)

  7. Linear perturbation theory for tidal streams and the small-scale CDM power spectrum

    Science.gov (United States)

    Bovy, Jo; Erkal, Denis; Sanders, Jason L.

    2017-04-01

    Tidal streams in the Milky Way are sensitive probes of the population of low-mass dark matter subhaloes predicted in cold dark matter (CDM) simulations. We present a new calculus for computing the effect of subhalo fly-bys on cold streams based on the action-angle representation of streams. The heart of this calculus is a line-of-parallel-angle approach that calculates the perturbed distribution function of a stream segment by undoing the effect of all relevant impacts. This approach allows one to compute the perturbed stream density and track in any coordinate system in minutes for realizations of the subhalo distribution down to 105 M⊙, accounting for the stream's internal dispersion and overlapping impacts. We study the statistical properties of density and track fluctuations with large suites of simulations of the effect of subhalo fly-bys. The one-dimensional density and track power spectra along the stream trace the subhalo mass function, with higher mass subhaloes producing power only on large scales, while lower mass subhaloes cause structure on smaller scales. We also find significant density and track bispectra that are observationally accessible. We further demonstrate that different projections of the track all reflect the same pattern of perturbations, facilitating their observational measurement. We apply this formalism to data for the Pal 5 stream and make a first rigorous determination of 10^{+11}_{-6} dark matter subhaloes with masses between 106.5 and 109 M⊙ within 20 kpc from the Galactic centre [corresponding to 1.4^{+1.6}_{-0.9} times the number predicted by CDM-only simulations or to fsub(r matter is clumpy on the smallest scales relevant for galaxy formation.

  8. Regular cannabis and alcohol use is associated with resting-state time course power spectra in incarcerated adolescents.

    Science.gov (United States)

    Thijssen, Sandra; Rashid, Barnaly; Gopal, Shruti; Nyalakanti, Prashanth; Calhoun, Vince D; Kiehl, Kent A

    2017-09-01

    Cannabis and alcohol are believed to have widespread effects on the brain. Although adolescents are at increased risk for substance use, the adolescent brain may also be particularly vulnerable to the effects of drug exposure due to its rapid maturation. Here, we examined the association between cannabis and alcohol use duration and resting-state functional connectivity in a large sample of male juvenile delinquents. The present sample was drawn from the Southwest Advanced Neuroimaging Cohort, Youth sample, and from a youth detention facility in Wisconsin. All participants were scanned at the maximum-security facilities using The Mind Research Network's 1.5T Avanto SQ Mobile MRI scanner. Information on cannabis and alcohol regular use duration was collected using self-report. Resting-state networks were computed using group independent component analysis in 201 participants. Associations with cannabis and alcohol use were assessed using Mancova analyses controlling for age, IQ, smoking and psychopathy scores in the complete case sample of 180 male juvenile delinquents. No associations between alcohol or cannabis use and network spatial maps were found. Longer cannabis use was associated with decreased low frequency power of the default mode network, the executive control networks (ECNs), and several sensory networks, and with decreased functional network connectivity. Duration of alcohol use was associated with decreased low frequency power of the right frontoparietal network, salience network, dorsal attention network, and several sensory networks. Our findings suggest that adolescent cannabis and alcohol use are associated with widespread differences in resting-state time course power spectra, which may persist even after abstinence. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Late forming dark matter in theories of neutrino dark energy

    International Nuclear Information System (INIS)

    Das, Subinoy; Weiner, Neal

    2011-01-01

    We study the possibility of late forming dark matter, where a scalar field, previously trapped in a metastable state by thermal or finite density effects, goes through a phase transition near the era matter-radiation equality and begins to oscillate about its true minimum. Such a theory is motivated generally if the dark energy is of a similar form, but has not yet made the transition to dark matter, and, in particular, arises automatically in recently considered theories of neutrino dark energy. If such a field comprises the present dark matter, the matter power spectrum typically shows a sharp break at small, presently nonlinear scales, below which power is highly suppressed and previously contained acoustic oscillations. If, instead, such a field forms a subdominant component of the total dark matter, such acoustic oscillations may imprint themselves in the linear regime.

  10. Radiative properties of astrophysical matter: a quest to reproduce astrophysical conditions on earth

    International Nuclear Information System (INIS)

    Bailey, James E.

    2010-01-01

    Experiments in terrestrial laboratories can be used to evaluate the physical models that interpret astronomical observations. The properties of matter in astrophysical objects are essential components of these models, but terrestrial laboratories struggle to reproduce the extreme conditions that often exist. Megajoule-class DOE/NNSA facilities such as the National Ignition Facility and Z can create unprecedented amounts of matter at extreme conditions, providing new capabilities to test astrophysical models with high accuracy. Experiments at these large facilities are challenging, and access is very competitive. However, the cylindrically-symmetric Z source emits radiation in all directions, enabling multiple physics experiments to be driven with a single Z discharge. This helps ameliorate access limitations. This article describes research efforts under way at Sandia National Laboratories Z facility investigating radiation transport through stellar interior matter, population kinetics of atoms exposed to the intense radiation emitted by accretion powered objects, and spectral line formation in white dwarf (WD) photospheres. Opacity quantifies the absorption of radiation by matter and strongly influences stellar structure and evolution, since radiation dominates energy transport deep inside stars. Opacity models have become highly sophisticated, but laboratory tests at the conditions existing inside stars have not been possible - until now. Z research is presently focused on measuring iron absorption at conditions relevant to the base of the solar convection zone, where the electron temperature and density are 190 eV and 9 x 10 22 e/cc, respectively. Creating these conditions in a sample that is sufficiently large, long-lived, and uniform is extraordinarily challenging. A source of radiation that streams through the relatively-large samples can produce volumetric heating and thus, uniform conditions, but to achieve high temperatures a strong source is required. Z

  11. High Energy Electron Signals from Dark Matter Annihilation in the Sun

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Philip; /SLAC; Toro, Natalia; /Stanford U., ITP; Weiner, Neal; Yavin, Itay; /New York U., CCPP

    2012-04-09

    In this paper we discuss two mechanisms by which high energy electrons resulting from dark matter annihilations in or near the Sun can arrive at the Earth. Specifically, electrons can escape the sun if DM annihilates into long-lived states, or if dark matter scatters inelastically, which would leave a halo of dark matter outside of the sun. Such a localized source of electrons may affect the spectra observed by experiments with narrower fields of view oriented towards the sun, such as ATIC, differently from those with larger fields of view such as Fermi. We suggest a simple test of these possibilities with existing Fermi data that is more sensitive than limits from final state radiation. If observed, such a signal will constitute an unequivocal signature of dark matter.

  12. Comparison of the Raman spectra of ion irradiated soot and collected extraterrestrial carbon

    Science.gov (United States)

    Brunetto, R.; Pino, T.; Dartois, E.; Cao, A.-T.; d'Hendecourt, L.; Strazzulla, G.; Bréchignac, Ph.

    2009-03-01

    We use a low pressure flame to produce soot by-products as possible analogues of the carbonaceous dust present in diverse astrophysical environments, such as circumstellar shells, diffuse interstellar medium, planetary disks, as well as in our own Solar System. Several soot samples, displaying an initial chemical diversity from aromatic to aliphatic dominated material, are irradiated with 200-400 keV H +, He +, and Ar ++ ions, with fluences comprised between 10 14 and 10 16 ions/cm 2, to simulate expected radiation induced modification on extraterrestrial carbon. The evolution of the samples is monitored using Raman spectroscopy, before, during, and after irradiation. A detailed analysis of the first- and second-order Raman spectra is performed, using a fitting combination of Lorentzian and/or Gaussian-shaped bands. Upon irradiation, the samples evolve toward an amorphous carbon phase. The results suggest that the observed variations are more related to vacancy formation than ionization processes. A comparison with Raman spectra of extraterrestrial organic matter and other irradiation experiments of astrophysically relevant carbonaceous materials is presented. The results are consistent with previous experiments showing mostly amorphization of various carbonaceous materials. Irradiated soots have Raman spectra similar to those of some meteorites, IDPs, and Comet Wild 2 grains collected by the Stardust mission. Since the early-Sun expected irradiation fluxes sufficient for amorphization are compatible with accretion timescales, our results support the idea that insoluble organic matter (IOM) observed in primitive meteorites has experienced irradiation-induced amorphization prior to the accretion of the parent bodies, emphasizing the important role played by early solar nebula processing.

  13. Predicting ambient aerosol Thermal Optical Reflectance (TOR) measurements from infrared spectra: elemental carbon

    Science.gov (United States)

    Dillner, A. M.; Takahama, S.

    2015-06-01

    Elemental carbon (EC) is an important constituent of atmospheric particulate matter because it absorbs solar radiation influencing climate and visibility and it adversely affects human health. The EC measured by thermal methods such as Thermal-Optical Reflectance (TOR) is operationally defined as the carbon that volatilizes from quartz filter samples at elevated temperatures in the presence of oxygen. Here, methods are presented to accurately predict TOR EC using Fourier Transform Infrared (FT-IR) absorbance spectra from atmospheric particulate matter collected on polytetrafluoroethylene (PTFE or Teflon) filters. This method is similar to the procedure tested and developed for OC in prior work (Dillner and Takahama, 2015). Transmittance FT-IR analysis is rapid, inexpensive, and non-destructive to the PTFE filter samples which are routinely collected for mass and elemental analysis in monitoring networks. FT-IR absorbance spectra are obtained from 794 filter samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to collocated TOR EC measurements. The FTIR spectra are divided into calibration and test sets. Two calibrations are developed, one which is developed from uniform distribution of samples across the EC mass range (Uniform EC) and one developed from a~uniform distribution of low EC mass samples (EC < 2.4 μg, Low Uniform EC). A hybrid approach which applies the low EC calibration to low EC samples and the Uniform EC calibration to all other samples is used to produces predictions for low EC samples that have mean error on par with parallel TOR EC samples in the same mass range and an estimate of the minimum detection limit (MDL) that is on par with TOR EC MDL. For all samples, this hybrid approach leads to precise and accurate TOR EC predictions by FT-IR as indicated by high coefficient of variation (R2; 0.96), no

  14. Revealing dark matter substructure with anisotropies in the diffuse gamma-ray background

    International Nuclear Information System (INIS)

    Siegal-Gaskins, Jennifer M

    2008-01-01

    The majority of gamma-ray emission from galactic dark matter annihilation is likely to be detected as a contribution to the diffuse gamma-ray background. I show that dark matter substructure in the halo of the Galaxy induces characteristic anisotropies in the diffuse background that could be used to determine the small-scale dark matter distribution. I calculate the angular power spectrum of the emission from dark matter substructure for several models of the subhalo population and show that features in the power spectrum can be used to infer the presence of substructure. The shape of the power spectrum is largely unaffected by the subhalo radial distribution and mass function, and for many scenarios I find that a measurement of the angular power spectrum by Fermi will be able to constrain the abundance of substructure. An anti-biased subhalo radial distribution is shown to produce emission that differs significantly in intensity and large-scale angular dependence from that of a subhalo distribution which traces the smooth dark matter halo, potentially impacting the detectability of the dark matter signal for a variety of targets and methods

  15. Revealing dark matter substructure with anisotropies in the diffuse gamma-ray background

    Energy Technology Data Exchange (ETDEWEB)

    Siegal-Gaskins, Jennifer M, E-mail: jsg@kicp.uchicago.edu [Kavli Institute for Cosmological Physics and Department of Physics, University of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60637 (United States)

    2008-10-15

    The majority of gamma-ray emission from galactic dark matter annihilation is likely to be detected as a contribution to the diffuse gamma-ray background. I show that dark matter substructure in the halo of the Galaxy induces characteristic anisotropies in the diffuse background that could be used to determine the small-scale dark matter distribution. I calculate the angular power spectrum of the emission from dark matter substructure for several models of the subhalo population and show that features in the power spectrum can be used to infer the presence of substructure. The shape of the power spectrum is largely unaffected by the subhalo radial distribution and mass function, and for many scenarios I find that a measurement of the angular power spectrum by Fermi will be able to constrain the abundance of substructure. An anti-biased subhalo radial distribution is shown to produce emission that differs significantly in intensity and large-scale angular dependence from that of a subhalo distribution which traces the smooth dark matter halo, potentially impacting the detectability of the dark matter signal for a variety of targets and methods.

  16. Modification of Optical Properties of Seawater Exposed to Oil Contaminants Based on Excitation-Emission Spectra

    Science.gov (United States)

    Baszanowska, E.; Otremba, Z.

    2015-10-01

    The optical behaviour of seawater exposed to a residual amount of oil pollution is presented and a comparison of the fluorescence spectra of oil dissolved in both n-hexane and seawater is discussed based on excitation-emission spectra. Crude oil extracted from the southern part of the Baltic Sea was used to characterise petroleum properties after contact with seawater. The wavelength-independent fluorescence maximum for natural seawater and seawater artificially polluted with oil were determined. Moreover, the specific excitation-emission peaks for natural seawater and polluted water were analysed to identify the natural organic matter composition. It was found that fluorescence spectra identification is a promising method to detect even an extremely low concentration of petroleum residues directly in the seawater. In addition, alien substances disturbing the fluorescence signatures of natural organic substances in a marine environment is also discussed.

  17. Bumping structure of initial energy density distributions and peculiarities of pion spectra in A + A collisions

    International Nuclear Information System (INIS)

    Borysova, M.S.

    2012-01-01

    The effect of a fluctuating bumping structure of the initial conditions on spectra and the collective evolution of matter created in heavy-ion collisions in the frameworks of the Hydro-Kinetic Model is investigated. As motivated by the glasma-flux-tube scenario, the initial conditions are modeled by the set of four high energy-density tube-like fluctuations with longitudinally homogeneous structure within some space-rapidity region in a boost-invariant 2D geometry. It was found that the presence of transversally bumping tube-like fluctuations in initial conditions strongly affects the hydrodynamic evolution and leads to emergence of conspicuous structures in the calculated pion spectra. It was observed that the 4 tube initial configuration generates a four-peak structure in the final azimuthal distributions of one-particle spectra.

  18. A study of the optimum draft of multiple resonance power buoys for maximizing electric power production

    Directory of Open Access Journals (Sweden)

    Hyuck-Min Kweon

    2014-12-01

    Full Text Available To maximize electric power production using wave energy extractions from resonance power buoys, the maximum motion displacement spectra of the buoys can primarily be obtained under a given wave condition. In this study, wave spectra observed in shoaling water were formulated. Target resonance frequencies were established from the arithmetic means of modal frequency bands and the peak frequencies. The motion characteristics of the circular cylindrical power buoys with corresponding drafts were then calculated using numerical models without considering PTO damping force. Results showed that the heave motions of the power buoys in shoaling waters with insufficient drafts produced greater amplification effects than those in deep seas with sufficient drafts.

  19. High-energy X-ray spectra of Cygnus XR-1 observed from OSO 8

    Science.gov (United States)

    Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.

    1979-01-01

    X-ray spectra of Cygnus XR-1 were measured with the scintillation spectrometer aboard the OSO 8 satellite during a period of one-and-one-half to three weeks in each of the years from 1975 to 1977. Typical spectra of the source between 15 and 250 keV are presented and the spectra are found to be well represented by a single power-law expression whose photon number spectral index is different for the two intensity states that were considered. The observed pivoting effect is consistent with two-temperature accretion disk models of the X-ray emitting region.

  20. Inclusive dielectron spectra in p plus p collisions at 3.5 GeV kinetic beam energy

    Czech Academy of Sciences Publication Activity Database

    Agakishiev, G.; Balanda, A.; Belyaev, A.; Finocchiaro, P.; Guber, F.; Karavicheva, T.; Krása, Antonín; Křížek, Filip; Kugler, Andrej; Lapidus, K.; Markert, J.; Michel, J.; Pechenova, O.; Rustamov, A.; Sobolev, Yuri, G.; Strobele, H.; Tarantola, A.; Teilab, K.; Tlustý, Pavel; Wagner, Vladimír

    2012-01-01

    Roč. 48, č. 5 (2012), s. 1-11 ISSN 1434-6001 R&D Projects: GA MŠk LC07050; GA AV ČR IAA100480803 Institutional support: RVO:61389005 Keywords : relativistic collisions * nuclear matter * dielectron spectra * HADES Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.043, year: 2012

  1. Temporal multiscaling characteristics of particulate matter PM 10 and ground-level ozone O3 concentrations in Caribbean region

    Science.gov (United States)

    Plocoste, Thomas; Calif, Rudy; Jacoby-Koaly, Sandra

    2017-11-01

    A good knowledge of the intermittency of atmospheric pollutants is crucial for air pollution management. We consider here particulate matter PM 10 and ground-level ozone O3 time series in Guadeloupe archipelago which experiments a tropical and humid climate in the Caribbean zone. The aim of this paper is to study their scaling statistics in the framework of fully developed turbulence and Kolmogorov's theory. Firstly, we estimate their Fourier power spectra and consider their scaling properties in the physical space. The power spectra computed follows a power law behavior for both considered pollutants. Thereafter we study the scaling behavior of PM 10 and O3 time series. Contrary to numerous studies where the multifractal detrended fluctuation analysis is frequently applied, here, the classical structure function analysis is used to extract the scaling exponent or multifractal spectrum ζ(q) ; this function provides a full characterization of a process at all intensities and all scales. The obtained results show that PM 10 and O3 possess intermittent and multifractal properties. The singularity spectrum MS(α) also confirms both pollutants multifractal features. The originality of this work comes from a statistical modeling performed on ζ(q) and MS(α) by a lognormal model to compute the intermittency parameter μ. By contrast with PM 10 which mainly depends on puffs of Saharan dust (synoptic-scale), O3 is more intermittent due to variability of its local precursors. The results presented in this paper can help to better understand the mechanisms governing the dynamics of PM 10 and O3 in Caribbean islands context.

  2. Quantum treatment of neutrino in background matter

    International Nuclear Information System (INIS)

    Studenikin, A I

    2006-01-01

    Motivated by the need of elaboration of the quantum theory of the spin light of neutrino in matter (SLν), we have studied in more detail the exact solutions of the Dirac equation for neutrinos moving in background matter. These exact neutrino wavefunctions form a basis for a rather powerful method of investigation of different neutrino processes in matter, which is similar to the Furry representation of quantum electrodynamics in external fields. Within this method we also derive the corresponding Dirac equation for an electron moving in matter and consider the electromagnetic radiation ('spin light of electron in matter' (SLe)) that can be emitted by the electron in this case

  3. Determination of the optical absorption spectra of thin layers from their photoacoustic spectra

    Science.gov (United States)

    Bychto, Leszek; Maliński, Mirosław; Patryn, Aleksy; Tivanov, Mikhail; Gremenok, Valery

    2018-05-01

    This paper presents a new method for computations of the optical absorption coefficient spectra from the normalized photoacoustic amplitude spectra of thin semiconductor samples deposited on the optically transparent and thermally thick substrates. This method was tested on CuIn(Te0.7Se0.3)2 thin films. From the normalized photoacoustic amplitude spectra, the optical absorption coefficient spectra were computed with the new formula as also with the numerical iterative method. From these spectra, the value of the energy gap of the thin film material and the type of the optical transitions were determined. From the experimental optical transmission spectra, the optical absorption coefficient spectra were computed too, and compared with the optical absorption coefficient spectra obtained from photoacoustic spectra.

  4. A method to generate generic floor response spectra for operating nuclear power plants

    International Nuclear Information System (INIS)

    Curreri, J.; Costantino, C.; Subudhi, M.; Reich, M.

    1985-01-01

    A free-field earthquake response spectra was used to generate horizontal earthquake time histories. The excitation was applied through the soil and into the various structures to produce responses in equipment. An entire range of soil conditions was used with each structure, from soft soil to solid rock. Actual PWR and BWR - Mark I structural models were used as representative of a class of structures. For each model, the stiffness properties were varied, with the same mass, so as to extend the fundamental base structure natural frequency from 2 cps to 36 cps. This resulted in fundamental mode coupled natural frequencies as low as 0.86 cps and as high as 30 cps. From all of these models of soils and structures, floor response spectra were generated at each floor level. The natural frequencies of the structures were varied to obtain maximum response conditions. The actual properties were first used to locate the natural frequencies. The stiffness properties were than varied, with the same mass, to extend the range of the fundamental base structure natural frequency. The intention was to have the coupled structural material frequencies in the vicinity of the peak amplitude frequency content of the excitation spectrum. Particular attention was therefore given to the frequency band between 2 Hz and 4 Hz. A horizontal generic floor response spectra is proposed for the top level of a generic structure. Reduction factors are applied to the peak acceleration for equipment at lower levels. (orig./HP)

  5. Small but mighty: Dark matter substructures

    Science.gov (United States)

    Cyr-Racine, Francis-Yan; Keeton, Charles; Moustakas, Leonidas

    2018-01-01

    The fundamental properties of dark matter, such as its mass, self-interaction, and coupling to other particles, can have a major impact on the evolution of cosmological density fluctuations on small length scales. Strong gravitational lenses have long been recognized as powerful tools to study the dark matter distribution on these small subgalactic scales. In this talk, we discuss how gravitationally lensed quasars and extended lensed arcs could be used to probe non minimal dark matter models. We comment on the possibilities enabled by precise astrometry, deep imaging, and time delays to extract information about mass substructures inside lens galaxies. To this end, we introduce a new lensing statistics that allows for a robust diagnostic of the presence of perturbations caused by substructures. We determine which properties of mass substructures are most readily constrained by lensing data and forecast the constraining power of current and future observations.

  6. Study of plasmas created by X-ray laser-matter interaction

    International Nuclear Information System (INIS)

    Galtier, E.

    2010-11-01

    This thesis took advantage of the emerging newly developed 4. generation sources of light, namely the free electron lasers, to create and characterize a state of matter under extreme conditions which is still obscure: the warm dense matter (WDM). WDM is found in giant planets and is also produced in inertial fusion. An experiment allowed to study the transitions between the different phases, solid/WDM/plasma, and characterize the mechanism responsible for the equilibration. The laser pulse FLASH, of duration and energy equal to about 20 femto-seconds and 30 μJ respectively, is micro-focussed on a solid target producing an isochoric heating. The intensity, greater than 10 16 W.cm -2 , has never been reached in such an experimental context so far. Emission spectra from an aluminium plasma are studied with a code coupling a genetic algorithm and a code of atomic physics, in order to interpret the whole temporal evolution of the XUV laser-matter interaction for the first time, despite the time integration of the experimental spectra. The first experimental proof of the important contribution of the Auger effect in the isochoric heating of an aluminium target is established. The first observation of the X-ray emission of a boron nitride target under extreme conditions has been investigated by a preliminary study. Additionally, the effect of hot electrons on the electron population distribution in the energy levels of the ions is analysed and shows an important similarity with the photo-ionization process occurring in XUV/X-ray laser-matter interaction. (author)

  7. 28 CFR 0.47 - Alien property matters.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Alien property matters. 0.47 Section 0.47....47 Alien property matters. The Office of Alien Property shall be a part of the Civil Division: (a... Alien Property: (1) Exercising or performing all the authority, rights, privileges, powers, duties, and...

  8. The νMSM, dark matter and neutrino masses

    International Nuclear Information System (INIS)

    Asaka, Takehiko; Blanchet, Steve; Shaposhnikov, Mikhail

    2005-01-01

    We investigate an extension of the Minimal Standard Model by right-handed neutrinos (the νMSM) to incorporate neutrino masses consistent with oscillation experiments. Within this theory, the only candidates for dark matter particles are sterile right-handed neutrinos with masses of a few keV. Requiring that these neutrinos explain entirely the (warm) dark matter, we find that their number is at least three. We show that, in the minimal choice of three sterile neutrinos, the mass of the lightest active neutrino is smaller than O(10 -5 ) eV, which excludes the degenerate mass spectra of three active neutrinos and fixes the absolute mass scale of the other two active neutrinos

  9. Characterization of dissolved organic matter in landfill leachate during the combined treatment process of air stripping, Fenton, SBR and coagulation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, ZhiPing, E-mail: liulqs@163.com [Key Laboratory of Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045 (China); Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400020 (China); Wu, WenHui; Shi, Ping [Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400020 (China); Guo, JinSong [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400045 (China); Cheng, Jin [Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400020 (China)

    2015-07-15

    Highlights: • DOM fractions spectra analysis during the whole treatment process. • Efficient method was achieved to remove organic matters in landfill leachate. • Molecular weight distribution and fractions were discussed. - Abstract: A combined treatment process of air stripping + Fenton + sequencing batch reactor (SBR)+ coagulation was performed to remove the pollutants in landfill leachate. Molecular weight (MW) distribution and fractions of dissolved organic matter (DOM) were discussed to study the characteristics. The experiment showed that the removal rate of chemical oxygen demand (COD), five day biological oxygen demand (BOD{sub 5}) and ammonia nitrogen (NH{sub 3}−N) by the combined process were 92.8%, 87.8% and 98.0%, respectively. Humic acid (HA) and fulvic acid (FA) were the main fractions in raw leachate with 81.8% of the total COD concentration, while hydrophilic organic matter (HyI) was the dominant fraction in the final effluent of the combined process with 63.5% of the total COD concentration. After the combined treatment process, the removal rate of DOM and fractions HA, FA, HyI were 91.9%, 97.1%, 95.8% and 71.7%, respectively. Organic matters of MW < 2 k and MW > 100 k were removed with 90.5% and 97.9% COD concentration after the treatment. The ultraviolet–visible spectra (UV–vis), Fourier transform infrared spectra (FTIR) and three-dimensional excitation-emission matrices spectra (EEMs) indicated that benzene materials and phenol compounds were preferentially removed in air stripping. High MW matters, aromatic rings, conjugated moieties and some functional groups were mainly removed by Fenton. While small MW fractions, carboxylic acids, alcohols and protein-like materials were preferentially biodegraded via SBR. Fulvic-like and humic-like materials were mainly destroyed via Fenton oxidation and coagulation.

  10. Detection of Copper (II) and Cadmium (II) binding to dissolved organic matter from macrophyte decomposition by fluorescence excitation-emission matrix spectra combined with parallel factor analysis

    International Nuclear Information System (INIS)

    Yuan, Dong-hai; Guo, Xu-jing; Wen, Li; He, Lian-sheng; Wang, Jing-gang; Li, Jun-qi

    2015-01-01

    Fluorescence excitation-emission matrix (EEM) spectra coupled with parallel factor analysis (PARAFAC) was used to characterize dissolved organic matter (DOM) derived from macrophyte decomposition, and to study its complexation with Cu (II) and Cd (II). Both the protein-like and the humic-like components showed a marked quenching effect by Cu (II). Negligible quenching effects were found for Cd (II) by components 1, 5 and 6. The stability constants and the fraction of the binding fluorophores for humic-like components and Cu (II) can be influenced by macrophyte decomposition of various weight gradients in aquatic plants. Macrophyte decomposition within the scope of the appropriate aquatic phytomass can maximize the stability constant of DOM-metal complexes. A large amount of organic matter was introduced into the aquatic environment by macrophyte decomposition, suggesting that the potential risk of DOM as a carrier of heavy metal contamination in macrophytic lakes should not be ignored. - Highlights: • Macrophyte decomposition increases fluorescent DOM components in the upper sediment. • Protein-like components are quenched or enhanced by adding Cu (II) and Cd (II). • Macrophyte decomposition DOM can impact the affinity of Cu (II) and Cd (II). • The log K M and f values showed a marked change due to macrophyte decomposition. • Macrophyte decomposition can maximize the stability constant of DOM-Cu (II) complexes. - Macrophyte decomposition DOM can influence on the binding affinity of metal ions in macrophytic lakes

  11. Search for dark matter and supersymmetry in the vector boson fusion topology in proton-proton collisions at CMS

    Science.gov (United States)

    Celik, A.; Hernandez, A. M. C.; CMS Collaboration

    2017-07-01

    A search for pair production of dark matter candidates and supersymmetry (SUSY) production with two jets in vector-boson fusion (VBF) topology is presented using data collected by the Compact Muon Solenoid (CMS) detector in proton-proton collisions at the Large Hadron Collider (LHC). Final states with no leptons are expected in pair production of dark matter particles or scalar quarks in SUSY compressed mass-spectra scenarios. Final states with low-energy leptons are expected in the production of charginos and neutralinos in SUSY compressed mass-spectra scenarios. Results for both zero and two lepton final states at 8 TeV are presented with brief prospects at 13 TeV.

  12. Excitation power dependence of photoluminescence spectra of GaSb type-II quantum dots in GaAs grown by droplet epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kawazu, T., E-mail: KAWAZU.Takuya@nims.go.jp; Noda, T.; Sakuma, Y. [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Sakaki, H. [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Toyota Technological Institute, 2-12-1 Hisakata, Tempaku-ku, Nagoya 468-8511 (Japan)

    2016-04-15

    We investigated the excitation power P dependence of photoluminescence (PL) spectra of GaSb type-II quantum dots (QDs) in GaAs grown by droplet epitaxy. We prepared two QD samples annealed at slightly different temperatures (380 {sup o}C and 400 {sup o}C) and carried out PL measurements. The 20 {sup o}C increase of the annealing temperature leads to (1) about 140 and 60 times stronger wetting layer (WL) luminescence at low and high P, (2) about 45% large energy shift of QD luminescence with P, and (3) the different P dependence of the PL intensity ratio between the QD and the WL. These differences of the PL characteristics are explained by the effects of the WL.

  13. Lectures on dark matter

    International Nuclear Information System (INIS)

    Seljak, U.

    2001-01-01

    These lectures concentrate on evolution and generation of dark matter perturbations. The purpose of the lectures is to present, in a systematic way, a comprehensive review of the cosmological parameters that can lead to observable effects in the dark matter clustering properties. We begin by reviewing the relativistic linear perturbation theory formalism. We discuss the gauge issue and derive Einstein's and continuity equations for several popular gauge choices. We continue by developing fluid equations for cold dark matter and baryons and Boltzmann equations for photons, massive and massless neutrinos. We then discuss the generation of initial perturbations by the process of inflation and the parameters of that process that can be extracted from the observations. Finally we discuss evolution of perturbations in various regimes and the imprint of the evolution on the dark matter power spectrum both in the linear and in the nonlinear regime. (author)

  14. Lectures on dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Seljak, U [Department of Physics, Princeton University, Princeton, NJ (United States)

    2001-11-15

    These lectures concentrate on evolution and generation of dark matter perturbations. The purpose of the lectures is to present, in a systematic way, a comprehensive review of the cosmological parameters that can lead to observable effects in the dark matter clustering properties. We begin by reviewing the relativistic linear perturbation theory formalism. We discuss the gauge issue and derive Einstein's and continuity equations for several popular gauge choices. We continue by developing fluid equations for cold dark matter and baryons and Boltzmann equations for photons, massive and massless neutrinos. We then discuss the generation of initial perturbations by the process of inflation and the parameters of that process that can be extracted from the observations. Finally we discuss evolution of perturbations in various regimes and the imprint of the evolution on the dark matter power spectrum both in the linear and in the nonlinear regime. (author)

  15. Constraining dark matter in the MSSM at the LHC

    International Nuclear Information System (INIS)

    Nojiri, Mihoko M.; Polesello, Giacomo; Tovey, Daniel R.

    2006-01-01

    In the event that R-Parity conserving supersymmetry (SUSY) is discovered at the LHC, a key issue which will need to be addressed will be the consistency of that signal with astrophysical and non-accelerator constraints on SUSY Dark Matter. This issue is studied for a benchmark model based on measurements of end-points and thresholds in the invariant mass spectra of various combinations of leptons and jets. These measurements are used to constrain the soft SUSY breaking parameters at the electroweak scale in a general MSSM model. Based on these constraints, we assess the accuracy with which the Dark Matter relic density can be measured

  16. SPHERICAL HARMONIC ANALYSES OF INTENSITY MAPPING POWER SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Adrian; Zhang, Yunfan; Parsons, Aaron R., E-mail: acliu@berkeley.edu [Department of Astronomy and Radio Astronomy Laboratory, University of California Berkeley, Berkeley, CA 94720 (United States)

    2016-12-20

    Intensity mapping is a promising technique for surveying the large-scale structure of our universe from z  = 0 to z  ∼ 150, using the brightness temperature field of spectral lines to directly observe previously unexplored portions of our cosmic timeline. Examples of targeted lines include the 21 cm hyperfine transition of neutral hydrogen, rotational lines of carbon monoxide, and fine-structure lines of singly ionized carbon. Recent efforts have focused on detections of the power spectrum of spatial fluctuations, but have been hindered by systematics such as foreground contamination. This has motivated the decomposition of data into Fourier modes perpendicular and parallel to the line of sight, which has been shown to be a particularly powerful way to diagnose systematics. However, such a method is well-defined only in the limit of a narrow-field, flat-sky approximation. This limits the sensitivity of intensity mapping experiments, as it means that wide surveys must be separately analyzed as a patchwork of smaller fields. In this paper, we develop a framework for analyzing intensity mapping data in a spherical Fourier–Bessel basis, which incorporates curved sky effects without difficulty. We use our framework to generalize a number of techniques in intensity mapping data analysis from the flat sky to the curved sky. These include visibility-based estimators for the power spectrum, treatments of interloper lines, and the “foreground wedge” signature of spectrally smooth foregrounds.

  17. Generation of synthetic time histories compatible with multiple-damping design response spectra

    International Nuclear Information System (INIS)

    Lilhanand, K.; Tseng, W.S.

    1987-01-01

    Seismic design of nuclear power plants as currently practiced requires time history analyses be performed to generate floor response spectra for seismic qualification of piping, equipment, and components. Since design response spectra are normally prescribed in the form of smooth spectra, the generation of synthetic time histories whose response spectra closely match the ''target'' design spectra of multiple damping values, is often required for the seismic time history analysis purpose. Various methods of generation of synthetic time histories compatible with target response spectra have been proposed in the literature. Since the mathematical problem of determining a time history from a given set of response spectral values is not unique, an exact solution is not possible, and all the proposed methods resort to some forms of approximate solutions. In this paper, a new iteration scheme, is described which effectively removes the difficulties encountered by the existing methods. This new iteration scheme can not only improve the accuracy of spectrum matching for a single-damping target spectrum, but also automate the spectrum matching for multiple-damping target spectra. The applicability and limitations as well as the method adopted to improve the numerical stability of this new iteration scheme are presented. The effectiveness of this new iteration scheme is illustrated by two example applications

  18. X-ray spectra of PG quasars. I. The continuum from X-rays to infrared

    International Nuclear Information System (INIS)

    Elvis, M.; Green, R.F.; Bechtold, J.; Schmidt, M.; Neugebauer, G.; Kitt Peak National Observatory, Tucson, AZ; Steward Observatory, Tucson, AZ; Palomar Observatory, Pasadena, CA)

    1986-01-01

    Einstein IPC X-ray spectra for a sample of eight optically selected quasars from the Palomar Bright Quasar survey are presented. The quasars have a mean power law energy slope which in five individual cases is inconsistent with the value found in hard X-ray selection criterion rather than luminosity, redshift, or U-B color. New IUE and optical continuum spectra and infrared photometry are presented for these quasars. The data are combined into log vf(v) and log v distributions which support the decomposition of the overall quasar spectrum into a power law plus a superposed optical-UV big bump which may be due to an accretion disk. At least six of the quasars have vf(v)s which are roughly constant between their infrared and X-ray power laws, suggesting a strong link between the two regions. 104 references

  19. Response spectra for nuclear structures on rock sites considering the near-fault directivity effect

    Institute of Scientific and Technical Information of China (English)

    Xu Longiun; Yang Shengchao; Xie Lili

    2010-01-01

    Near-fault ground motions, potentially with large amplitude and typical velocity pulses, may significantly impact the performance of a wide range of structures. The current study is aimed at evaluating the safety implications of the near-fault effect on nuclear power plant facilities designed according to the Chinese code. To this end, a set of near-fault ground motions at rock sites with typical forward-directivity effect is examined with special emphasis on several key parameters and response spectra. Spectral comparison of the selected records with the Chinese and other code design spectra was conducted. The bi-normalized response spectra in terms of different comer periods are utilized to derive nuclear design spectra. It is concluded that nuclear design spectra on rock sites derived from typical rupture directivity records are significantly influenced both by the earthquake magnitude and the rupture distance. The nuclear design spectra specified in the code needs to be adjusted to reflect the near-fault directivity effect of large earthquakes.

  20. Modeling degradation in SOEC impedance spectra

    DEFF Research Database (Denmark)

    Jensen, Søren Højgaard; Hauch, Anne; Knibbe, Ruth

    2013-01-01

    Solid oxide cell (SOC) performance is limited by various processes. One way to investigate these processes is by electrochemical impedance spectroscopy. In order to quantify and characterize the processes, an equivalent circuit can be used to model the SOC impedance spectra (IS). Unfortunately......, the optimal equivalent circuit is often unknown and to complicate matters further, several processes contribute to the SOC impedance - making detailed process characterization difficult. In this work we analyze and model a series of IS measured during steam electrolysis operation of an SOC. During testing......, degradation is only observed in the Ni/YSZ electrode and not in the electrolyte or the LSM/YSZ electrode. A batch fit of the differences between the IS shows that a modified Gerischer element provides a better fit to the Ni/YSZ electrode impedance than the frequently used RQ element - albeit neither...

  1. Li-impurity effect in optical spectra of KTaO.sub.3./sub.:Er.sup.3+./sup. crystals

    Czech Academy of Sciences Publication Activity Database

    Skvortsov, A. P.; Potůček, Zdeněk; Poletaev, N.K.; Syrnikov, P. P.; Bryknar, Z.; Dejneka, Alexandr; Jastrabík, Lubomír; Trepakov, Vladimír

    2016-01-01

    Roč. 121, č. 4 (2016), s. 534-537 ISSN 0030-400X Institutional support: RVO:68378271 Keywords : f–f absorption and emission spectra * Er impurities * KTaO 3 and K 1-x Li x TaO 3 * crystals Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.716, year: 2016

  2. Energy Matters, July 1999

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, E.

    1999-07-09

    This issue of Energy Matters focuses on selling an energy-efficient project to management. There are also articles on combined heat and power systems, inspecting steam traps for efficient system, root cause failure analysis on AC induction motors, and performance optimization tips.

  3. Dark matter and galaxy formation

    International Nuclear Information System (INIS)

    Umemura, Masayuki

    1987-01-01

    We propose a hybrid model of universe for galaxy formation, that is, an Einstein- de Sitter universe dominated by two-component dark matter: massive neutrinos and cold dark matter. In this hybrid model, the first luminous objects are dwarf galaxies. The neutrino density fluctuations produce large-scale high density and low density regions, which consequently evolve to superclusters of galaxies and voids, respectively. Dwarf galaxies are formed preferentially in supercluster regions. In voids, the formation of dwarf galaxies is fairly suppressed by diffuse UV flux from QSOs, and instead a number of expanding clouds are born, which produce Lyα forest as seen in QSO spectra. Ordinary galaxies are expected to form as aggregations of dwarf galaxies. In this model, some galaxies are born also in voids, and they tend to evolve to spiral galaxies. Additionally, if the same number of globular clusters are formed in a dwarf, the specific globular cluster frequencies are expected to be much larger in ellipticals than in spirals. (author)

  4. Seismic and dynamic qualification of safety-related electrical and mechanical equipment in operating nuclear power plants: development of a method to generate generic floor-response spectra

    International Nuclear Information System (INIS)

    Curreri, J.; Costantino, C.; Subudhi, M.; Reich, M.

    1983-09-01

    Generic floor response spectra were developed for use in the qualification of electrical and mechanical equipment in operating nuclear power plants. The characteristics of 1000 floor response spectra were studied to determine the generic spectra. The procedure developed uses as much or as little information that currently exists at the plant relating to the question of equipment qualification. The general approach was to study the effects on the dynamic characteristics of each of the elements in the chain of events that goes between the loads and the responses. This includes the loads, the soils and the structures. A free-field earthquake response spectra was used to generate horizontal earthquake time histories. The excitation was applied through the soil and into the various structures to produce responses in equipment. An entire range of soil conditions was used with each structure. Actual PWR and BWR - Mark I structural models were used. For each model, the stiffness properties were varied, with the same mass, so as to extend the fundamental base structure natural frequency from 2 cps to 36 cps. The natural frequencies of the structures were varied to obtain maximum response conditions. The actual properties were first used to locate the natural frequencies. The stiffness properties were than varied, with the same mass, to extend the range of the fundamental base structure natural frequency. The intention was to have the coupled structural material frequencies in the vicinity of the peak amplitude frequency content of the excitation spectrum. Particular attention was therefore given to the frequency band between 2 Hz and 4 Hz. A horizontal generic floor response spectra is proposed for the top level of a generic structure. Reduction factors are applied to the peak acceleration for equipment at lower levels

  5. Neutron spectra produced by moderating an isotopic neutron source

    International Nuclear Information System (INIS)

    Carrillo Nunnez, Aureliano; Vega Carrillo, Hector Rene

    2001-01-01

    A Monte Carlo study has been carried out to determine the neutron spectra produced by an isotopic neutron source inserted in moderating media. Most devices used for radiation protection have a response strongly dependent on neutron energy. ISO recommends several neutron sources and monoenergetic neutron radiations, but actual working situations have broad spectral neutron distributions extending from thermal to MeV energies, for instance, near nuclear power plants, medical applications accelerators and cosmic neutrons. To improve the evaluation of the dosimetric quantities, is recommended to calibrate the radiation protection devices in neutron spectra which are nearly like those met in practice. In order to complete the range of neutron calibrating sources, it seems useful to develop several wide spectral distributions representative of typical spectra down to thermal energies. The aim of this investigation was to use an isotopic neutron source in different moderating media to reproduce some of the neutron fields found in practice. MCNP code has been used during calculations, in these a 239PuBe neutron source was inserted in H2O, D2O and polyethylene moderators. Moderators were modeled as spheres and cylinders of different sizes. In the case of cylindrical geometry the anisotropy of resulting neutron spectra was calculated from 0 to 2 . From neutron spectra dosimetric features were calculated. MCNP calculations were validated by measuring the neutron spectra of a 239PuBe neutron source inserted in a H2O cylindrical moderator. The measurements were carried out with a multisphere neutron spectrometer with a 6LiI(Eu) scintillator. From the measurements the neutron spectrum was unfolded using the BUNKIUT code and the UTA4 response matrix. Some of the moderators with the source produce a neutron spectrum close to spectra found in actual applications, then can be used during the calibration of radiation protection devices

  6. Origin of the turbulent spectra in the high-altitude cusp: Cluster spacecraft observations

    Directory of Open Access Journals (Sweden)

    K. Nykyri

    2006-05-01

    Full Text Available High-resolution magnetic field data from Cluster Flux Gate Magnetometer (FGM and the Spatio-Temporal Analysis of Field Fluctuations (STAFF instruments are used to study turbulent magnetic field fluctuations during the high-altitude cusp crossing on 17 March 2001. Despite the quiet solar wind conditions, the cusp was filled with magnetic field turbulence whose power correlates with the field-aligned ion plasma flux. The magnetic field wave spectra shows power law behavior with both double and single slopes with break in the spectra usually occurring in the vicinity of the local ion cyclotron frequency. Strong peaks in the wave power close to local ion cyclotron frequency were sometimes observed, with secondary peaks at higher harmonics indicative of resonant processes between protons and the waves. We show that the observed spectral break point may be caused partly by damping of obliquely propagating kinetic Alfvén (KAW waves and partly by cyclotron damping of ion cyclotron waves.

  7. Dark matter scenarios with multiple spin-2 fields

    Science.gov (United States)

    González Albornoz, N. L.; Schmidt-May, Angnis; von Strauss, Mikael

    2018-01-01

    We study ghost-free multimetric theories for (N+1) tensor fields with a coupling to matter and maximal global symmetry group SN×(Z2)N. Their mass spectra contain a massless mode, the graviton, and N massive spin-2 modes. One of the massive modes is distinct by being the heaviest, the remaining (N‑1) massive modes are simply identical copies of each other. All relevant physics can therefore be understood from the case N=2. Focussing on this case, we compute the full perturbative action up to cubic order and derive several features that hold to all orders in perturbation theory. The lighter massive mode does not couple to matter and neither of the massive modes decay into massless gravitons. We propose the lighter massive particle as a candidate for dark matter and investigate its phenomenology in the parameter region where the matter coupling is dominated by the massless graviton. The relic density of massive spin-2 can originate from a freeze-in mechanism or from gravitational particle production, giving rise to two different dark matter scenarios. The allowed parameter regions are very different from those in scenarios with only one massive spin-2 field and more accessible to experiments.

  8. Fluorescence quantum yields of natural organic matter and organic compounds: Implications for the fluorescence-based interpretation of organic matter composition

    DEFF Research Database (Denmark)

    Wünsch, Urban; Murphy, Kathleen R.; Stedmon, Colin

    2015-01-01

    to more than 200 modeled spectra (PARAFAC components) in the OpenFluor database. Apparent matches, based on spectral similarity, were subsequently evaluated using molar fluorescence and absorbance. Five organic compounds were potential matches with PARAFAC components from 16 studies; however, the ability......Absorbance and fluorescence spectroscopy are economical tools for tracing the supply, turnover and fate of dissolved organic matter (DOM). The colored and fluorescent fractions of DOM (CDOM and FDOM, respectively) are linked by the apparent fluorescence quantum yield (AQY) of DOM, which reflects...... the likelihood that chromophores emit fluorescence after absorbing light. Compared to the number of studies investigating CDOM and FDOM, few studies have systematically investigated AQY spectra for DOM, and linked them to fluorescence quantum yields (Φ) of organic compounds. To offer a standardized approach...

  9. PGOPHER: A program for simulating rotational, vibrational and electronic spectra

    International Nuclear Information System (INIS)

    Western, Colin M.

    2017-01-01

    The PGOPHER program is a general purpose program for simulating and fitting molecular spectra, particularly the rotational structure. The current version can handle linear molecules, symmetric tops and asymmetric tops and many possible transitions, both allowed and forbidden, including multiphoton and Raman spectra in addition to the common electric dipole absorptions. Many different interactions can be included in the calculation, including those arising from electron and nuclear spin, and external electric and magnetic fields. Multiple states and interactions between them can also be accounted for, limited only by available memory. Fitting of experimental data can be to line positions (in many common formats), intensities or band contours and the parameters determined can be level populations as well as rotational constants. PGOPHER is provided with a powerful and flexible graphical user interface to simplify many of the tasks required in simulating, understanding and fitting molecular spectra, including Fortrat diagrams and energy level plots in addition to overlaying experimental and simulated spectra. The program is open source, and can be compiled with open source tools. This paper provides a formal description of the operation of version 9.1. - Highlights: • Easy-to-use graphical interface for assigning and understanding molecular spectra. • Simulates rotational and vibrational structure of many types of molecular spectra. • Fits molecular properties to line positions or spectral contours. • Handles linear molecules and symmetric and asymmetric tops. • Handles perturbations, nuclear and electron spin, and electric and magnetic fields.

  10. Schottky spectra and crystalline beams

    International Nuclear Information System (INIS)

    Pestrikov, D.V.

    1996-01-01

    In this paper we revise the current dependence of the Schottky noise power of a cooled proton beam previously measured at NAP-M. More careful study of experimental data indicates a linear decrease in the inverse Schottky noise power with an increase in the beam intensity (N). The root of this function determines a threshold current which occurs at N = N th ≅1.2 x 10 8 particles. The inspection of measured Schottky spectra shows that this threshold does not correspond to some collective instability of the measured harmonic of the linear beam density. The found value of N th does not depend on the longitudinal beam temperature. For the case of NAP-M lattice, the study of the spectral properties of the Schottky noise in the crystalline string predicts the current dependence of the equilibrium momentum spread of the beam, which qualitatively agrees with that, recalculated from the NAP-M data. (orig.)

  11. Evolution of structure in cold dark matter universes

    OpenAIRE

    Consortium, The Virgo; :; Jenkins, A.; Frenk, C. S.; Pearce, F. R.; Thomas, P. A.; Colberg, J. M.; White, S. D. M.; Couchman, H. M. P.; Peacock, J. A.; Efstathiou, G.; Nelson, A. H.

    1997-01-01

    We present an analysis of the clustering evolution of dark matter in four cold dark matter (CDM) cosmologies. We use a suite of high resolution, 17-million particle, N-body simulations which sample volumes large enough to give clustering statistics with unprecedented accuracy. We investigate both a flat and an open model with Omega_0=0.3, and two models with Omega=1, one with the standard CDM power spectrum and the other with the same power spectrum as the Omega_0=0.3 models. The amplitude of...

  12. Assessment of the unidentified organic matter fraction in fogwater using fluorescence spectroscopy

    Science.gov (United States)

    Valsaraj, K.; Birdwell, J.

    2010-07-01

    Dissolved organic matter (DOM) in fogwaters from southeastern Louisiana and central-eastern China has been characterized using excitation-emission matrix (EEM) fluorescence spectroscopy. The results demonstrate that fluorescence spectroscopy can be used to obtain a qualitative assessment of the large fraction of fogwater organic carbon (~40 - 80% by weight) that cannot be identified in terms of specific chemical compounds. The method has the principle advantage that it can be applied at natural abundance concentrations, thus eliminating the need for large sample volumes required to isolate DOM for characterization by other spectroscopic (NMR, FTIR) and chemical (elemental) analyses. It was anticipated that the fogwater organic matter fluorescence spectra would resemble those of surface and rain waters, containing peaks indicative of both humic substances and fluorescent amino acids. Humic- and protein-like fluorophores were observed in the fogwater spectra and fluorescence-derived indices had values comparable to other natural waters. Biological character (intensity of tyrosine and tryptophan peaks) was found to increase with organic carbon concentration. Fogwater organic matter appears to contain a mixture of terrestrially- and microbially-derived material. The fluorescence results show that most of the unidentified fogwater organic carbon can be represented by humic-like and biologically-derived substances similar to those present in other aquatic systems.

  13. The Atacama Cosmology Telescope: A Measurement of the Primordial Power Spectrum

    Science.gov (United States)

    Hlozek, Renee; Dunkley, Joanna; Addison, Graeme; Appel, John William; Bond, J. Richard; Carvalho, C. Sofia; Das, Sudeep; Devlin, Mark J.; Duenner, Rolando; Essinger-Hileman, Thomas; hide

    2011-01-01

    We present constraints on the primordial power spectrum of adiabatic fluctuations using data from the 2008 Southern Survey of the Atacama Cosmology Telescope (ACT). The angular resolution of ACT provides sensitivity to scales beyond l = 1000 for resolution of multiple peaks in the primordial temperature power spectrum, which enables us to probe the primordial power spectrum of adiabatic scalar perturbations with wavenumbers up to k approx. = 0.2 Mp/c. We find no evidence for deviation from power-law fluctuations over two decades in scale. Matter fluctuations inferred from the primordial temperature power spectrum evolve over cosmic time and can be used to predict the matter power spectrum at late times; we illustrate the overlap of the matter power inferred from CMB measurements (which probe the power spectrum in thc linear regime) with existing probes of galaxy clustering, cluster abundances and weak lensing constraints on the primordial power. This highlights the range of scales probed by current measurement.s of the matter power spectrum.

  14. Analysis of the brain proton magnetic resonance spectroscopy - differences between normal grey and white matter

    International Nuclear Information System (INIS)

    Krukowski, P.; Podgorski, P.; Guzinski, M.; Szewczyk, P.; Sasiadek, M.

    2010-01-01

    Background: The proton magnetic resonance spectroscopy (HMRS) is a non-invasive diagnostic method that allows for an assessment of the metabolite concentration in tissues. The sources of the strongest resonance signals within the brain are N-acetylaspartate (NAA), creatine (Cr), choline (Cho), myoinositol (mI) and water. The aim of our study was to analyse the ratios of metabolite signals within the brain in HMRS in the healthy population, to define the differences between the grey and white matter spectra. Material/Methods: We studied prospectively 90 subjects aged from 8 to 80 years (mean 43.3 years, SD=17.9), without neurological symptoms or abnormalities in magnetic resonance imaging. In all patients, brain HMRS with Signa HDx 1.5 T MR unit (GE Healthcare) was performed with PRESS sequence, using a single voxel method, at TE of 35 ms and TR of 1500 ms. Spectroscopic evaluation involved voxels placed in the white matter of parietal lobe (PWM) and the grey matter of posterior cingulate gyrus (PGM). On the basis of the intensity of NAA, Cr, Cho, mI and water signals, the proportions of these signals were calculated, as well as the ratio of the analyzed metabolite signal to the sum of signals of NAA, Cho, Cr and mI (%Met) in the PGM and PWM voxels. We compared the proportions in the same patients in PGM and PWM voxels. Results: There has been a statistically significant difference between the proportions of a majority of the metabolite ratios evaluated in PGM and PWM, indicating the higher concentration of NAA, Cr and mI in grey matter, and higher concentration of Cho in white matter. Conclusions: HMRS spectra of the brain grey and white matter differ significantly. The concentrations of NAA, Cr and mI are higher in grey matter, while of choline - in the white matter. (authors)

  15. MAGNETIC ENERGY SPECTRA IN SOLAR ACTIVE REGIONS

    International Nuclear Information System (INIS)

    Abramenko, Valentyna; Yurchyshyn, Vasyl

    2010-01-01

    Line-of-sight magnetograms for 217 active regions (ARs) with different flare rates observed at the solar disk center from 1997 January until 2006 December are utilized to study the turbulence regime and its relationship to flare productivity. Data from the SOHO/MDI instrument recorded in the high-resolution mode and data from the BBSO magnetograph were used. The turbulence regime was probed via magnetic energy spectra and magnetic dissipation spectra. We found steeper energy spectra for ARs with higher flare productivity. We also report that both the power index, α, of the energy spectrum, E(k) ∼ k -α , and the total spectral energy, W = ∫E(k)dk, are comparably correlated with the flare index, A, of an AR. The correlations are found to be stronger than those found between the flare index and the total unsigned flux. The flare index for an AR can be estimated based on measurements of α and W as A = 10 b (αW) c , with b = -7.92 ± 0.58 and c = 1.85 ± 0.13. We found that the regime of the fully developed turbulence occurs in decaying ARs and in emerging ARs (at the very early stage of emergence). Well-developed ARs display underdeveloped turbulence with strong magnetic dissipation at all scales.

  16. A Test of Thick-Target Nonuniform Ionization as an Explanation for Breaks in Solar Flare Hard X-Ray Spectra

    Science.gov (United States)

    Holman, gordon; Dennis Brian R.; Tolbert, Anne K.; Schwartz, Richard

    2010-01-01

    Solar nonthermal hard X-ray (HXR) flare spectra often cannot be fitted by a single power law, but rather require a downward break in the photon spectrum. A possible explanation for this spectral break is nonuniform ionization in the emission region. We have developed a computer code to calculate the photon spectrum from electrons with a power-law distribution injected into a thick-target in which the ionization decreases linearly from 100% to zero. We use the bremsstrahlung cross-section from Haug (1997), which closely approximates the full relativistic Bethe-Heitler cross-section, and compare photon spectra computed from this model with those obtained by Kontar, Brown and McArthur (2002), who used a step-function ionization model and the Kramers approximation to the cross-section. We find that for HXR spectra from a target with nonuniform ionization, the difference (Delta-gamma) between the power-law indexes above and below the break has an upper limit between approx.0.2 and 0.7 that depends on the power-law index delta of the injected electron distribution. A broken power-law spectrum with a. higher value of Delta-gamma cannot result from nonuniform ionization alone. The model is applied to spectra obtained around the peak times of 20 flares observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI from 2002 to 2004 to determine whether thick-target nonuniform ionization can explain the measured spectral breaks. A Monte Carlo method is used to determine the uncertainties of the best-fit parameters, especially on Delta-gamma. We find that 15 of the 20 flare spectra require a downward spectral break and that at least 6 of these could not be explained by nonuniform ionization alone because they had values of Delta-gamma with less than a 2.5% probability of being consistent with the computed upper limits from the model. The remaining 9 flare spectra, based on this criterion, are consistent with the nonuniform ionization model.

  17. Role of electroweak radiation in predictions for dark matter indirect detection

    Energy Technology Data Exchange (ETDEWEB)

    Ali Cavasonza, Leila; Pellen, Mathieu; Kraemer, Michael [RWTH Aachen, Aachen (Germany)

    2015-07-01

    A very exciting challenge in particle and astroparticle physics is the exploration of the nature of dark matter. The evidences of the existence of dark matter are also the strongest phenomenological indications for physics beyond the Standard Model. A huge experimental effort is currently made at colliders and via astrophysical experiments to shed light on the nature of dark matter: dark matter may be produced at colliders or detected through direct and indirect detection experiments. The interplay and complementarity between these different approaches offers extraordinary opportunities to improve our understanding of the nature of dark matter or to set constraints on dark matter models. In indirect detection one searches for dark matter annihilation products, that produce secondary antimatter particles like positrons and antiprotons. Such antimatter particles propagate through the Galaxy and can be detected at Earth by astrophysical experiments. Particularly interesting is the importance of electroweak corrections to the predictions for the expected fluxes at Earth. The inclusion of EW radiation from the primary dark matter annihilation products can significantly affect the spectra of the secondary SM particles. The EW radiation can be described using fragmentation functions, as done for instance in QCD. We study the quality of this approximation in a simplified SUSY model and in a UED model.

  18. Ultra-narrow EIA spectra of 85Rb atom in a degenerate Zeeman multiplet system

    Science.gov (United States)

    Rehman, Hafeez Ur; Qureshi, Muhammad Mohsin; Noh, Heung-Ryoul; Kim, Jin-Tae

    2015-05-01

    Ultra-narrow EIA spectral features of thermal 85Rb atom with respect to coupling Rabi frequencies in a degenerate Zeeman multiplet system have been unraveled in the cases of same (σ+ -σ+ , π ∥ π) and orthogonal (σ+ -σ- , π ⊥ π)polarization configurations. The EIA signals with subnatural linewidth of ~ 100 kHz even in the cases of same circular and linear polarizations of coupling and probe laser have been obtained for the first time theoretically and experimentally. In weak coupling power limit of orthogonal polarization configurations, time-dependent transfer of coherence plays major role in the splitting of the EIA spectra while in strong coupling power, Mollow triplet-like mechanism due to strong power bring into broad split feature. The experimental ultra-narrow EIA features using one laser combined with an AOM match well with simulated spectra obtained by using generalized time-dependent optical Bloch equations.

  19. Predicting ambient aerosol Thermal Optical Reflectance (TOR) measurements from infrared spectra: organic carbon

    Science.gov (United States)

    Dillner, A. M.; Takahama, S.

    2014-11-01

    Organic carbon (OC) can constitute 50% or more of the mass of atmospheric particulate matter. Typically, the organic carbon concentration is measured using thermal methods such as Thermal-Optical Reflectance (TOR) from quartz fiber filters. Here, methods are presented whereby Fourier Transform Infrared (FT-IR) absorbance spectra from polytetrafluoroethylene (PTFE or Teflon) filters are used to accurately predict TOR OC. Transmittance FT-IR analysis is rapid, inexpensive, and non-destructive to the PTFE filters. To develop and test the method, FT-IR absorbance spectra are obtained from 794 samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites sampled during 2011. Partial least squares regression is used to calibrate sample FT-IR absorbance spectra to artifact-corrected TOR OC. The FTIR spectra are divided into calibration and test sets by sampling site and date which leads to precise and accurate OC predictions by FT-IR as indicated by high coefficient of determination (R2; 0.96), low bias (0.02 μg m-3, all μg m-3 values based on the nominal IMPROVE sample volume of 32.8 m-3), low error (0.08 μg m-3) and low normalized error (11%). These performance metrics can be achieved with various degrees of spectral pretreatment (e.g., including or excluding substrate contributions to the absorbances) and are comparable in precision and accuracy to collocated TOR measurements. FT-IR spectra are also divided into calibration and test sets by OC mass and by OM / OC which reflects the organic composition of the particulate matter and is obtained from organic functional group composition; this division also leads to precise and accurate OC predictions. Low OC concentrations have higher bias and normalized error due to TOR analytical errors and artifact correction errors, not due to the range of OC mass of the samples in the calibration set. However, samples with low OC mass can be used to predict samples with high OC mass indicating that the

  20. Floor response spectra of buildings with uncertain structural properties

    International Nuclear Information System (INIS)

    Chen, P.C.

    1975-01-01

    All Category I equipment, such as reactors, vessels, and major piping systems of nuclear power plants, is required to withstand earthquake loadings in order to minimize risk of seismic damage. The equipment is designed by using response spectra of the floor on which the equipment is mounted. The floor response spectra are constructed usually from the floor response time histories which are obtained through a deterministic dynamic analysis. This analysis assumes that all structural parameters, such as mass, stiffness, and damping have been calculated precisely, and that the earthquakes are known. However, structural parameters are usually difficult to determine precisely if the structures are massive and/or irregular, such as nuclear containments and its internal structures with foundation soil incorporated into the analysis. Faced with these uncertainties, it has been the practice to broaden the floor response spectra peaks by +-10 percent of the peak frequencies on the basis of conservatism. This approach is based on engineering judgement and does not have an analytical basis to provide a sufficient level of confidence in using these spectra for equipment design. To insure reliable design, it is necessary to know structural response variations due to variations in structural properties. This consideration leads to the treatment of structural properties as random variables and the use of probabilistic methods to predict structural response more accurately. New results on floor response spectra of buildings with uncertain structural properties obtained by determining the probabilistic dynamic response from the deterministic dynamic response and its standard deviation are presented. The resulting probabilistic floor response spectra are compared with those obtained deterministically, and are shown to provide a more reliable method for determining seismic forces

  1. PGOPHER: A program for simulating rotational, vibrational and electronic spectra

    Science.gov (United States)

    Western, Colin M.

    2017-01-01

    The PGOPHER program is a general purpose program for simulating and fitting molecular spectra, particularly the rotational structure. The current version can handle linear molecules, symmetric tops and asymmetric tops and many possible transitions, both allowed and forbidden, including multiphoton and Raman spectra in addition to the common electric dipole absorptions. Many different interactions can be included in the calculation, including those arising from electron and nuclear spin, and external electric and magnetic fields. Multiple states and interactions between them can also be accounted for, limited only by available memory. Fitting of experimental data can be to line positions (in many common formats), intensities or band contours and the parameters determined can be level populations as well as rotational constants. PGOPHER is provided with a powerful and flexible graphical user interface to simplify many of the tasks required in simulating, understanding and fitting molecular spectra, including Fortrat diagrams and energy level plots in addition to overlaying experimental and simulated spectra. The program is open source, and can be compiled with open source tools. This paper provides a formal description of the operation of version 9.1.

  2. Evaluation of double differential yield as used for representation of neutron spectra

    International Nuclear Information System (INIS)

    Solieman, A.H.M.; Comsan, M.N.H.

    2002-01-01

    The neutron intensity for TOF spectra representation has, until now, only been expressed in terms of double differential yield; number of neutrons per unit charge per unit solid angle per unit neutron energy interval (i.e. neutron intensity at a given resolving power). For accelerator-based neutron sources, the double differential yield - in terms of neutron energy interval - is found to be affected by the kinematics of the neutron producing reaction, to produce intensity irrelevant spectra. The results affect not only the applications that depend on relative neutron intensities, but also the applications that depend on the neutron intensity-weighted integration of the neutron spectra (e.g. neutron average energy calculation, and dose calculation using kerma factors). Other definition of the double differential yield - in terms of projectile energy loss - is suggested to avoid the drawbacks of the old definition. The neutron spectra that are driven using the two definitions are discussed

  3. Development of generic floor response spectra for equipment qualification for seismic loads

    International Nuclear Information System (INIS)

    Curren, J.R.; Costantino, C.J.

    1984-01-01

    A generic floor response spectra has been developed for use in the qualification of electrical and mechanical equipment in operating nuclear power plants. Actual PWR and BWR - Mark I structural models were used as representative of a class of structures. For each model, the stiffness properties were varied, with the same mass, so as to extend the fundamental base structure natural frequency from 2 cps to 36 cps. This resulted in fundamental mode coupled natural frequencies as low as 0.86 cps and as high as 30 cps. The characteristics of 1000 floor response spectra were studied to determine the generic spectra. A procedure for its application to any operating plant has been established. The procedure uses as much or as little information that currently exists at the plant relating to the question of equipment qualification. A generic floor response spectra is proposed for the top level of a generic structure. Reduction factors are applied to the peak acceleration for equipment at lower levels

  4. Development of generic floor response spectra for equipment qualification for seismic loads

    International Nuclear Information System (INIS)

    Curreri, J.R.; Costantino, C.J.

    1984-10-01

    A generic floor response spectra has been developed for use in the qualification of electrical and mechanical equipment in operating nuclear power plants. Actual PWR and BWR - Mark I structural models were used as representative of a class of structures. For each model, the stiffness properties were varied, with the same mass, so as to extend the fundamental base structure natural frequency from 2 cps to 36 cps. This resulted in fundamental mode coupled natural frequencies as low as 0.86 cps and as high as 30 cps. The characteristics of 1000 floor response spectra were studied to determine the generic spectra. A procedure for its application to any operating plant has been established. The procedure uses as much or as little information that currently exists at the plant relating to the question of equipment qualification. A generic floor response spectra is proposed for the top level of a generic structure. Reduction factors are applied to the peak acceleration for equipment at lower levels

  5. Reconstruction of signals with unknown spectra in information field theory with parameter uncertainty

    International Nuclear Information System (INIS)

    Ensslin, Torsten A.; Frommert, Mona

    2011-01-01

    The optimal reconstruction of cosmic metric perturbations and other signals requires knowledge of their power spectra and other parameters. If these are not known a priori, they have to be measured simultaneously from the same data used for the signal reconstruction. We formulate the general problem of signal inference in the presence of unknown parameters within the framework of information field theory. To solve this, we develop a generic parameter-uncertainty renormalized estimation (PURE) technique. As a concrete application, we address the problem of reconstructing Gaussian signals with unknown power-spectrum with five different approaches: (i) separate maximum-a-posteriori power-spectrum measurement and subsequent reconstruction, (ii) maximum-a-posteriori reconstruction with marginalized power-spectrum, (iii) maximizing the joint posterior of signal and spectrum, (iv) guessing the spectrum from the variance in the Wiener-filter map, and (v) renormalization flow analysis of the field-theoretical problem providing the PURE filter. In all cases, the reconstruction can be described or approximated as Wiener-filter operations with assumed signal spectra derived from the data according to the same recipe, but with differing coefficients. All of these filters, except the renormalized one, exhibit a perception threshold in case of a Jeffreys prior for the unknown spectrum. Data modes with variance below this threshold do not affect the signal reconstruction at all. Filter (iv) seems to be similar to the so-called Karhune-Loeve and Feldman-Kaiser-Peacock estimators for galaxy power spectra used in cosmology, which therefore should also exhibit a marginal perception threshold if correctly implemented. We present statistical performance tests and show that the PURE filter is superior to the others, especially if the post-Wiener-filter corrections are included or in case an additional scale-independent spectral smoothness prior can be adopted.

  6. Quantum noise spectra for periodically driven cavity optomechanics

    Science.gov (United States)

    Aranas, E. B.; Akram, M. Javed; Malz, Daniel; Monteiro, T. S.

    2017-12-01

    A growing number of experimental setups in cavity optomechanics exploit periodically driven fields. However, such setups are not amenable to analysis by using simple, yet powerful, closed-form expressions of linearized optomechanics, which have provided so much of our present understanding of experimental optomechanics. In the present paper, we formulate a method to calculate quantum noise spectra in modulated optomechanical systems, which we analyze, compare, and discuss with two other recently proposed solutions: we term these (i) frequency-shifted operators, (ii) Floquet [Phys. Rev. A 94, 023803 (2016), 10.1103/PhysRevA.94.023803], and (iii) iterative analysis [New J. Phys. 18, 113021 (2016), 10.1088/1367-2630/18/11/113021]. We prove that (i) and (ii) yield equivalent noise spectra and find that (iii) is an analytical approximation to (i) for weak modulations. We calculate the noise spectra of a doubly modulated system describing experiments of levitated particles in hybrid electro-optical traps. We show excellent agreement with Langevin stochastic simulations in the thermal regime and predict squeezing in the quantum regime. Finally, we reveal how otherwise-inaccessible spectral components of a modulated system can be measured in heterodyne detection through an appropriate choice of modulation frequencies.

  7. Dark Matter

    International Nuclear Information System (INIS)

    Audouze, J.; Tran Thanh Van, J.

    1988-01-01

    The book begins with the papers devoted to the experimental search of signatures of the dark matter which governs the evolution of the Universe as a whole. A series of contributions describe the presently considered experimental techniques (cryogenic detectors, supraconducting detectors...). A real dialogue concerning these techniques has been instaured between particle physicists and astrophysicists. After the progress report of the particle physicists, the book provides the reader with an updated situation concerning the research in cosmology. The second part of the book is devoted to the analysis of the backgrounds at different energies such as the possible role of the cooling flows in the constitution of massive galactic halos. Any search of dark matter implies necessarily the analysis of the spatial distributions of the large scale structures of the Universe. This report is followed by a series of statistical analyses of these distributions. These analyses concern mainly universes filled up with cold dark matter. The last paper of this third part concerns the search of clustering in the spatial distribution of QSOs. The presence of dark matter should affect the solar neighborhood and related to the existence of galactic haloes. The contributions are devoted to the search of such local dark matter. Primordial nucleosynthesis provides a very powerful tool to set up quite constraining limitations on the overall baryonic density. Even if on takes into account the inhomogeneities in density possibly induced by the Quark-Hadron transition, this baryonic density should be much lower than the overall density deduced from the dynamical models of Universe or the inflationary theories

  8. Ratcheting Up The Search for Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, Samuel Dylan [Univ. of Michigan, Ann Arbor, MI (United States)

    2014-01-01

    The last several years have included remarkable advances in two of the primary areas of fundamental particle physics: the search for dark matter and the discovery of the Higgs boson. This dissertation will highlight some contributions made on the forefront of these exciting fields. Although the circumstantial evidence supporting the dark matter hypothesis is now almost undeniably significant, indisputable direct proof is still lacking. As the direct searches for dark matter continue, we can maximize our prospects of discovery by using theoretical techniques complementary to the observational searches to rule out additional, otherwise accessible parameter space. In this dissertation, I report bounds on a wide range of dark matter theories. The models considered here cover the spectrum from the canonical case of self-conjugate dark matter with weak-scale interactions, to electrically charged dark matter, to non-annihilating, non-fermionic dark matter. These bounds are obtained from considerations of astrophysical and cosmological data, including, respectively: diffuse gamma ray photon observations; structure formation considerations, along with an explication of the novel local dark matter structure due to galactic astrophysics; and the existence of old pulsars in dark-matter-rich environments. I also consider the prospects for a model of neutrino dark matter which has been motivated by a wide set of seemingly contradictory experimental results. In addition, I include a study that provides the tools to begin solving the speculative ``inverse'' problem of extracting dark matter properties solely from hypothetical nuclear energy spectra, which we may face if dark matter is discovered with multiple direct detection experiments. In contrast to the null searches for dark matter, we have the example of the recent discovery of the Higgs boson. The Higgs boson is the first fundamental scalar particle ever observed, and precision measurements of the production and

  9. The Atacama Cosmology Telescope: two-season ACTPol spectra and parameters

    Energy Technology Data Exchange (ETDEWEB)

    Louis, Thibaut [UPMC Univ Paris 06, UMR7095, Institut d' Astrophysique de Paris, F-75014, Paris (France); Grace, Emily; Aiola, Simone; Choi, Steve K. [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Hasselfield, Matthew [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Lungu, Marius; Angile, Elio [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Maurin, Loïc [Instituto de Astrofísica and Centro de Astro-Ingeniería, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436 Macul, Santiago (Chile); Addison, Graeme E. [Department of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2686 (United States); Ade, Peter A. R. [School of Physics and Astronomy, Cardiff University, The Parade, Cardiff, Wales, CF24 3AA (United Kingdom); Allison, Rupert; Calabrese, Erminia [Sub-Department of Astrophysics, University of Oxford, Keble Road, Oxford, OX1 3RH (United Kingdom); Amiri, Mandana [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z4 (Canada); Battaglia, Nicholas [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Beall, James A.; Britton, Joe; Cho, Hsiao-mei [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305 (United States); De Bernardis, Francesco [Department of Physics, Cornell University, Ithaca, NY 14853 (United States); Bond, J Richard, E-mail: louis@iap.fr [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON, M5S 3H8 (Canada); and others

    2017-06-01

    We present the temperature and polarization angular power spectra measured by the Atacama Cosmology Telescope Polarimeter (ACTPol). We analyze night-time data collected during 2013–14 using two detector arrays at 149 GHz, from 548 deg{sup 2} of sky on the celestial equator. We use these spectra, and the spectra measured with the MBAC camera on ACT from 2008–10, in combination with planck and wmap data to estimate cosmological parameters from the temperature, polarization, and temperature-polarization cross-correlations. We find the new ACTPol data to be consistent with the ΛCDM model. The ACTPol temperature-polarization cross-spectrum now provides stronger constraints on multiple parameters than the ACTPol temperature spectrum, including the baryon density, the acoustic peak angular scale, and the derived Hubble constant. The new ACTPol data provide information on damping tail parameters. The joint uncertainty on the number of neutrino species and the primordial helium fraction is reduced by 20% when adding ACTPol to Planck temperature data alone.

  10. The Atacama Cosmology Telescope: Two-Season ACTPol Spectra and Parameters

    Science.gov (United States)

    Louis, Thibaut; Grace, Emily; Hasselfield, Matthew; Lungu, Marius; Maurin, Loic; Addison, Graeme E.; Adem Peter A. R.; Aiola, Simone; Allison, Rupert; Amiri, Mandana; hide

    2017-01-01

    We present the temperature and polarization angular power spectra measuredby the Atacama Cosmology Telescope Polarimeter (ACTPol). We analyze night-time datacollected during 2013-14 using two detector arrays at 149 GHz, from 548 deg(exp. 2) of sky onthe celestial equator. We use these spectra, and the spectra measured with the MBAC camera on ACT from 2008-10, in combination with Planck and WMAP data to estimate cosmological parameters from the temperature, polarization, and temperature-polarization cross-correlations. We find the new ACTPol data to be consistent with the CDM model. The ACTPol temperature-polarization cross-spectrum now provides stronger constraints on multiple parameters than the ACTPol temperature spectrum, including the baryon density, the acoustic peak angular scale, and the derived Hubble constant. The new ACTPol dataprovide information on damping tail parameters. The joint uncertainty on the number of neutrino species and the primordial helium fraction is reduced by 20% when adding ACTPol to Planck temperature data alone.

  11. Depth distributions of light action spectra for skin chromophores

    Science.gov (United States)

    Barun, V. V.; Ivanov, A. P.

    2010-03-01

    Light action spectra over wavelengths of 300-1000 nm are calculated for components of the human cutaneous covering: melanin, basal (bloodless) tissue, and blood oxy- and deoxyhemoglobin. The transformation of the spectra with depth in biological tissue results from two factors. The first is the wavelength dependence of the absorption coefficient corresponding to a particular skin chromophore and the second is the spectral selectivity of the radiation flux in biological tissue. This factor is related to the optical properties of all chromophores. A significant change is found to take place in the spectral distribution of absorbed radiant power with increasing depth. The action spectrum of light for the molecular oxygen contained in all components of biological tissue is also studied in the 625-645 nm range. The spectra are found to change with both the volume fraction of blood vessels and the degree of oxygenation of the blood. These results are useful for analyzing processes associated with optical absorption that are possible mechanisms for the interaction of light with biological tissues: photodissociation of oxyhemoglobin and the light-oxygen effect.

  12. Blind Source Separation For Ion Mobility Spectra

    International Nuclear Information System (INIS)

    Marco, S.; Pomareda, V.; Pardo, A.; Kessler, M.; Goebel, J.; Mueller, G.

    2009-01-01

    Miniaturization is a powerful trend for smart chemical instrumentation in a diversity of applications. It is know that miniaturization in IMS leads to a degradation of the system characteristics. For the present work, we are interested in signal processing solutions to mitigate limitations introduced by limited drift tube length that basically involve a loss of chemical selectivity. While blind source separation techniques (BSS) are popular in other domains, their application for smart chemical instrumentation is limited. However, in some conditions, basically linearity, BSS may fully recover the concentration time evolution and the pure spectra with few underlying hypothesis. This is extremely helpful in conditions where non-expected chemical interferents may appear, or unwanted perturbations may pollute the spectra. SIMPLISMA has been advocated by Harrington et al. in several papers. However, more modern methods of BSS for bilinear decomposition with the restriction of positiveness have appeared in the last decade. In order to explore and compare the performances of those methods a series of experiments were performed.

  13. Optical Spectra of Candidate International Celestial Reference Frame (ICRF) Flat-spectrum Radio Sources. III

    Energy Technology Data Exchange (ETDEWEB)

    Titov, O.; Stanford, Laura M. [Geoscience Australia, P.O. Box 378, Canberra, ACT 2601 (Australia); Pursimo, T. [Nordic Optical Telescope, Nordic Optical Telescope Apartado 474E-38700 Santa Cruz de La Palma, Santa Cruz de Tenerife (Spain); Johnston, Helen M.; Hunstead, Richard W. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Jauncey, David L. [CSIRO Astronomy and Space Science, ATNF and Mount Stromlo Observatory, Cotter Road, Weston, ACT 2611 (Australia); Zenere, Katrina A., E-mail: oleg.titov@ga.gov.au [School of Physics, University of Sydney, NSW 2006 (Australia)

    2017-04-01

    In extending our spectroscopic program, which targets sources drawn from the International Celestial Reference Frame (ICRF) Catalog, we have obtained spectra for ∼160 compact, flat-spectrum radio sources and determined redshifts for 112 quasars and radio galaxies. A further 14 sources with featureless spectra have been classified as BL Lac objects. Spectra were obtained at three telescopes: the 3.58 m European Southern Observatory New Technology Telescope, and the two 8.2 m Gemini telescopes in Hawaii and Chile. While most of the sources are powerful quasars, a significant fraction of radio galaxies is also included from the list of non-defining ICRF radio sources.

  14. MaRaCluster: A Fragment Rarity Metric for Clustering Fragment Spectra in Shotgun Proteomics.

    Science.gov (United States)

    The, Matthew; Käll, Lukas

    2016-03-04

    Shotgun proteomics experiments generate large amounts of fragment spectra as primary data, normally with high redundancy between and within experiments. Here, we have devised a clustering technique to identify fragment spectra stemming from the same species of peptide. This is a powerful alternative method to traditional search engines for analyzing spectra, specifically useful for larger scale mass spectrometry studies. As an aid in this process, we propose a distance calculation relying on the rarity of experimental fragment peaks, following the intuition that peaks shared by only a few spectra offer more evidence than peaks shared by a large number of spectra. We used this distance calculation and a complete-linkage scheme to cluster data from a recent large-scale mass spectrometry-based study. The clusterings produced by our method have up to 40% more identified peptides for their consensus spectra compared to those produced by the previous state-of-the-art method. We see that our method would advance the construction of spectral libraries as well as serve as a tool for mining large sets of fragment spectra. The source code and Ubuntu binary packages are available at https://github.com/statisticalbiotechnology/maracluster (under an Apache 2.0 license).

  15. Analysis of extreme ultraviolet spectra from laser produced rhenium plasmas

    Science.gov (United States)

    Wu, Tao; Higashiguchi, Takeshi; Li, Bowen; Suzuki, Yuhei; Arai, Goki; Dinh, Thanh-Hung; Dunne, Padraig; O'Reilly, Fergal; Sokell, Emma; Liu, Luning; O'Sullivan, Gerry

    2015-08-01

    Extreme ultraviolet spectra of highly-charged rhenium ions were observed in the 1-7 nm region using two Nd:YAG lasers with pulse lengths of 150 ps and 10 ns, respectively, operating at a number of laser power densities. The maximum focused peak power density was 2.6 × 1014 W cm-2 for the former and 5.5 × 1012 W cm-2 for the latter. The Cowan suite of atomic structure codes and unresolved transition array (UTA) approach were used to calculate and interpret the emission properties of the different spectra obtained. The results show that n = 4-n = 4 and n = 4-n = 5 UTAs lead to two intense quasi-continuous emission bands in the 4.3-6.3 nm and 1.5-4.3 nm spectral regions. As a result of the different ion stage distributions in the plasmas induced by ps and ns laser irradiation the 1.5-4.3 nm UTA peak moves to shorter wavelength in the ps laser produced plasma spectra. For the ns spectrum, the most populated ion stage during the lifetime of this plasma that could be identified from the n = 4-n = 5 transitions was Re23+ while for the ps plasma the presence of significantly higher stages was demonstrated. For the n = 4-n = 4 4p64dN-4p54dN+1 + 4p64dN-14f transitions, the 4d-4f transitions contribute mainly in the most intense 4.7-5.5 nm region while the 4p-4d subgroup gives rise to a weaker feature in the 4.3-4.7 nm region. A number of previously unidentified spectral features produced by n = 4-n = 5 transitions in the spectra of Re XVI to Re XXXIX are identified.

  16. Using Power to Influence Outcomes: Does Gender Matter?

    Science.gov (United States)

    Shapiro, Mary; Ingols, Cynthia; Blake-Beard, Stacy

    2011-01-01

    The conventional definitions of power and masculinity are tightly conflated. The same words that are often used to describe power, such as authority, control, and decisiveness, are also often used to define masculinity. Where does that leave women in building and using power? Even as feminist scholars attempt to decouple the definition of power…

  17. Copernicus spectra and infrared photometry of 42 Orionis

    International Nuclear Information System (INIS)

    Johnson, H.M.; Snow, T.P. Jr.; Gehrz, R.D.; Hackwell, J.A.

    1977-01-01

    The Orion sword star 42 Ori is embedded in a nebula north of and separated from the Orion nebula. The B1 V star is probably normal. Other members of the multiple remain poorly defined, and the nebula may exhibit some peculiarities that may depend on them. Copernicus ultraviolet spectra of the star are described here, especially in the form of tables of wavelength identifications. The properties of the interstellar material in the line of sight are also discussed. We present infrared photometry which suggests that 3 less than or equal to R less than or equal to 3.5 for the interstellar matter in the direction of 42 Ori. The IR photometry provides no evidence for companion stellar or circumstellar components

  18. New Constraints on the Geometry and Kinematics of Matter Surrounding the Accretion Flow in X-Ray Binaries from Chandra High-energy Transmission Grating X-Ray Spectroscopy

    Science.gov (United States)

    Tzanavaris, P.; Yaqoob, T.

    2018-03-01

    The narrow, neutral Fe Kα fluorescence emission line in X-ray binaries (XRBs) is a powerful probe of the geometry, kinematics, and Fe abundance of matter around the accretion flow. In a recent study it has been claimed, using Chandra High-Energy Transmission Grating (HETG) spectra for a sample of XRBs, that the circumnuclear material is consistent with a solar-abundance, uniform, spherical distribution. It was also claimed that the Fe Kα line was unresolved in all cases by the HETG. However, these conclusions were based on ad hoc models that did not attempt to relate the global column density to the Fe Kα line emission. We revisit the sample and test a self-consistent model of a uniform, spherical X-ray reprocessor against HETG spectra from 56 observations of 14 Galactic XRBs. We find that the model is ruled out in 13/14 sources because a variable Fe abundance is required. In two sources a spherical distribution is viable, but with nonsolar Fe abundance. We also applied a solar-abundance Compton-thick reflection model, which can account for the spectra that are inconsistent with a spherical model, but spectra with a broader bandpass are required to better constrain model parameters. We also robustly measured the velocity width of the Fe Kα line and found FWHM values of up to ∼5000 km s‑1. Only in some spectra was the Fe Kα line unresolved by the HETG.

  19. New Constraints on the Geometry and Kinematics of Matter Surrounding the Accretion Flow in X-Ray Binaries from Chandra High-Energy Transmission Grating X-Ray Spectroscopy

    Science.gov (United States)

    Tzanavaris, P.; Yaqoob, T.

    2018-01-01

    The narrow, neutral Fe Ka fluorescence emission line in X-ray binaries (XRBs) is a powerful probe of the geometry, kinematics, and Fe abundance of matter around the accretion flow. In a recent study it has been claimed, using Chandra High-Energy Transmission Grating (HETG) spectra for a sample of XRBs, that the circumnuclear material is consistent with a solar-abundance, uniform, spherical distribution. It was also claimed that the Fe Ka line was unresolved in all cases by the HETG. However, these conclusions were based on ad hoc models that did not attempt to relate the global column density to the Fe Ka line emission. We revisit the sample and test a self-consistent model of a uniform, spherical X-ray reprocessor against HETG spectra from 56 observations of 14 Galactic XRBs. We find that the model is ruled out in 13/14 sources because a variable Fe abundance is required. In two sources a spherical distribution is viable, but with nonsolar Fe abundance. We also applied a solar-abundance Compton-thick reflection model, which can account for the spectra that are inconsistent with a spherical model, but spectra with a broader bandpass are required to better constrain model parameters. We also robustly measured the velocity width of the Fe Ka line and found FWHM values of up to approx. 5000 km/s. Only in some spectra was the Fe Ka line unresolved by the HETG.

  20. Power-law spectra found in plant signal of the Borssele NPP. An analysis using wavelet. Application of wavelet for wide-frequency range investigation and investigation (spectrum) for the secondary system signals

    International Nuclear Information System (INIS)

    Suzudo, T.; Verhoef, J.P.; Tuerkcan, E.

    1996-09-01

    Power-law spectra were found in the temperature signals of the secondary loop in the Borssele Nuclear Power Plant, a PWR in the Netherlands. The coolant temperature before the steam generator inlet was found to fluctuate such that its power spectrum density S, follows S∝f -α , where α is ∝4/3. Analyses using PSD suggested that the value of α is roughly constant over years. Detailed analyses were conducted using wavelet, with the discovery that the power-law appears constantly only at around 0.1 Hz, and the estimated α was found between 1.26 and 1.36. The feedwater pressure signal and feedwater flow rate signal in the same frequency range were white noise and Borwnian motion respectively, and the indication of α=4/3 was not found from them. (orig.)

  1. The future of nuclear power in Germany

    International Nuclear Information System (INIS)

    Holzer, J.

    1993-01-01

    The future of nuclear power in Germany is not only a matter of technology, economy and ecology but, above all, a matter of political leadership, the quality of interaction of all groups of society, the need to take ideology out of politico-economico-technical matters, and of firmly standing up for a style of democracy in which majorities, not minorities, decide. The power economy is agreed that nuclear power is indispensable in a powerful electricity supply scheme. These should be the criteria to be met by an energy consensus: No nuclear plants should be sacrificed by being shut down before the end of their technical and economic service life; spent fuel and waste management in Germany should be secured with sufficient interim storage and repository storage capacities. (orig.) [de

  2. The COBE normalization for standard cold dark matter

    Science.gov (United States)

    Bunn, Emory F.; Scott, Douglas; White, Martin

    1995-01-01

    The Cosmic Background Explorer Satellite (COBE) detection of microwave anisotropies provides the best way of fixing the amplitude of cosmological fluctuations on the largest scales. This normalization is usually given for an n = 1 spectrum, including only the anisotropy caused by the Sachs-Wolfe effect. This is certainly not a good approximation for a model containing any reasonable amount of baryonic matter. In fact, even tilted Sachs-Wolfe spectra are not a good fit to models like cold dark matter (CDM). Here, we normalize standard CDM (sCDM) to the two-year COBE data and quote the best amplitude in terms of the conventionally used measures of power. We also give normalizations for some specific variants of this standard model, and we indicate how the normalization depends on the assumed values on n, Omega(sub B) and H(sub 0). For sCDM we find the mean value of Q = 19.9 +/- 1.5 micro-K, corresponding to sigma(sub 8) = 1.34 +/- 0.10, with the normalization at large scales being B = (8.16 +/- 1.04) x 10(exp 5)(Mpc/h)(exp 4), and other numbers given in the table. The measured rms temperature fluctuation smoothed on 10 deg is a little low relative to this normalization. This is mainly due to the low quadrupole in the data: when the quadrupole is removed, the measured value of sigma(10 deg) is quite consistent with the best-fitting the mean value of Q. The use of the mean value of Q should be preferred over sigma(10 deg), when its value can be determined for a particular theory, since it makes full use of the data.

  3. Comparison of power spectra for tomosynthesis projections and reconstructed images

    International Nuclear Information System (INIS)

    Engstrom, Emma; Reiser, Ingrid; Nishikawa, Robert

    2009-01-01

    Burgess et al. [Med. Phys. 28, 419-437 (2001)] showed that the power spectrum of mammographic breast background follows a power law and that lesion detectability is affected by the power-law exponent β which measures the amount of structure in the background. Following the study of Burgess et al., the authors measured and compared the power-law exponent of mammographic backgrounds in tomosynthesis projections and reconstructed slices to investigate the effect of tomosynthesis imaging on background structure. Our data set consisted of 55 patient cases. For each case, regions of interest (ROIs) were extracted from both projection images and reconstructed slices. The periodogram of each ROI was computed by taking the squared modulus of the Fourier transform of the ROI. The power-law exponent was determined for each periodogram and averaged across all ROIs extracted from all projections or reconstructed slices for each patient data set. For the projections, the mean β averaged across the 55 cases was 3.06 (standard deviation of 0.21), while it was 2.87 (0.24) for the corresponding reconstructions. The difference in β for a given patient between the projection ROIs and the reconstructed ROIs averaged across the 55 cases was 0.194, which was statistically significant (p<0.001). The 95% CI for the difference between the mean value of β for the projections and reconstructions was [0.170, 0.218]. The results are consistent with the observation that the amount of breast structure in the tomosynthesis slice is reduced compared to projection mammography and that this may lead to improved lesion detectability.

  4. Higher order moments of the matter distribution in scale-free cosmological simulations with large dynamic range

    Science.gov (United States)

    Lucchin, Francesco; Matarrese, Sabino; Melott, Adrian L.; Moscardini, Lauro

    1994-01-01

    We calculate reduced moments (xi bar)(sub q) of the matter density fluctuations, up to order q = 5, from counts in cells produced by particle-mesh numerical simulations with scale-free Gaussian initial conditions. We use power-law spectra P(k) proportional to k(exp n) with indices n = -3, -2, -1, 0, 1. Due to the supposed absence of characteristic times or scales in our models, all quantities are expected to depend on a single scaling variable. For each model, the moments at all times can be expressed in terms of the variance (xi bar)(sub 2), alone. We look for agreement with the hierarchical scaling ansatz, according to which ((xi bar)(sub q)) proportional to ((xi bar)(sub 2))(exp (q - 1)). For n less than or equal to -2 models, we find strong deviations from the hierarchy, which are mostly due to the presence of boundary problems in the simulations. A small, residual signal of deviation from the hierarchical scaling is however also found in n greater than or equal to -1 models. The wide range of spectra considered and the large dynamic range, with careful checks of scaling and shot-noise effects, allows us to reliably detect evolution away from the perturbation theory result.

  5. A review of modelling the interaction between natural organic matter and metal cations

    International Nuclear Information System (INIS)

    Falck, W.E.

    1989-01-01

    This report reviews techniques available to model the interaction between natural organic matter (mainly fulvic and humic acids) and metal cations and protons. A comprehensive overview over the properties of natural organic matter is given and experimental techniques are presented briefly. Two major concepts of modelling have been identified: discrete ligand models and continuous distribution model. Different modelling approaches like Discrete Ligand Models (s.s.), Random-Structure Model, Affinity Spectra, Statistical Distribution Models, Continuous Stability Function Models and surface sorption models and their advantages/disadvantages are discussed. (author)

  6. Laser- and gamma-induced transformations of optical spectra of indium-doped sodium borate glass

    CERN Document Server

    Kopyshinsky, O V; Zelensky, S E; Danilchenko, B A; Shakhov, O P

    2003-01-01

    The optical absorption and luminescence properties of indium-doped sodium borate glass irradiated by gamma-rays and by powerful UV lasers within the impurity-related absorption band are investigated experimentally. It is demonstrated that both the laser- and gamma-irradiation cause similar transformations of optical spectra in the UV and visible regions. The changes of the spectra observed are described with the use of a model which includes three types of impurity centres formed by differently charged indium ions.

  7. Strong spin-phonon coupling in infrared and Raman spectra of SrMnO.sub.3./sub..

    Czech Academy of Sciences Publication Activity Database

    Kamba, Stanislav; Goian, Veronica; Skoromets, Volodymyr; Hejtmánek, Jiří; Bovtun, Viktor; Kempa, Martin; Borodavka, Fedir; Vaněk, Přemysl; Belik, A.A.; Lee, J.H.; Pacherová, Oliva; Rabe, K.M.

    2014-01-01

    Roč. 89, č. 6 (2014), "064308-1"-"064308-9" ISSN 1098-0121 R&D Projects: GA MŠk LH13048; GA ČR GAP204/12/1163; GA MŠk LD12026; GA ČR GP14-14122P Institutional support: RVO:68378271 Keywords : multiferroics * spin-phonon coupling * infrared and Raman spectra Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  8. Applicability of FTIR-spectroscopy for characterizing waste organic matter

    International Nuclear Information System (INIS)

    Smidt, E.

    2001-12-01

    State and development of waste organic matter were characterized by means of FTIR-spectroscopy. Due to the interaction of infrared light with matter energy is absorbed by chemical functional groups. Chemical preparation steps are not necessary and therefore this method offers a more holistic information about the material. The first part of experiments was focussed on spectra of different waste materials representing various stages of decomposition. Due to characteristics in the fingerprint- region the identity of wastes is provable. Heights of significant bands in the spectrum were measured and relative absorbances were calculated. Changes of relative absorbances indicate the development of organic matter during decomposition. Organic matter of waste samples was compared to organic matter originating from natural analogous processes (peat, soil). The second part of experiments concentrated on a composting process for a period of 260 days. Spectral characteristics of the samples were compared to their chemical, physical and biological data. The change of relative absorbances was reflected by conventional parameters. According to the development of the entire sample humic acids underwent a change as well. For practical use the method offers several possibilities: monitoring of a process, comparison of different processes, quality control of products originating from waste materials and the proof of their identity. (author)

  9. Radiative accidental matter

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, D. Aristizabal [IFPA, Dép. AGO, Université de Liège,Bât B5, Sart Tilman B-4000 Liège 1 (Belgium); Universidad Técnica Federico Santa María - Departamento de Física,Casilla 110-V, Avda. España 1680, Valparaíso (Chile); Simoes, C.; Wegman, D. [IFPA, Dép. AGO, Université de Liège,Bât B5, Sart Tilman B-4000 Liège 1 (Belgium)

    2016-07-25

    Accidental matter models are scenarios where the beyond-the-standard model physics preserves all the standard model accidental and approximate symmetries up to a cutoff scale related with lepton number violation. We study such scenarios assuming that the new physics plays an active role in neutrino mass generation, and show that this unavoidably leads to radiatively induced neutrino masses. We systematically classify all possible models and determine their viability by studying electroweak precision data, big bang nucleosynthesis and electroweak perturbativity, finding that the latter places the most stringent constraints on the mass spectra. These results allow the identification of minimal radiative accidental matter models for which perturbativity is lost at high scales. We calculate radiative charged-lepton flavor violating processes in these setups, and show that μ→eγ has a rate well within MEG sensitivity provided the lepton-number violating scale is at or below 5×10{sup 5} GeV, a value (naturally) assured by the radiative suppression mechanism. Sizeable τ→μγ branching fractions within SuperKEKB sensitivity are possible for lower lepton-number breaking scales. We thus point out that these scenarios can be tested not only in direct searches but also in lepton flavor-violating experiments.

  10. Hadronic spectral functions in nuclear matter

    International Nuclear Information System (INIS)

    Post, M.; Leupold, S.; Mosel, U.

    2004-01-01

    We study the in-medium properties of mesons (π,η,ρ) and baryon resonances in cold nuclear matter within a coupled-channel analysis. The meson self energies are generated by particle-hole excitations. Thus multi-peak spectra are obtained for the mesonic spectral functions. In turn this leads to medium-modifications of the baryon resonances. Special care is taken to respect the analyticity of the spectral functions and to take into account effects from short-range correlations both for positive and negative parity states. Our model produces sensible results for pion and Δ dynamics in nuclear matter. We find a strong interplay of the ρ meson and the D 13 (1520), which moves spectral strength of the ρ spectrum to smaller invariant masses and leads to a broadening of the baryon resonance. The optical potential for the η meson resulting from our model is rather attractive whereas the in-medium properties modifications of the S 11 (1535) are found to be quite small

  11. Constrained energy minimization applied to apparent reflectance and single-scattering albedo spectra: a comparison

    Science.gov (United States)

    Resmini, Ronald G.; Graver, William R.; Kappus, Mary E.; Anderson, Mark E.

    1996-11-01

    Constrained energy minimization (CEM) has been applied to the mapping of the quantitative areal distribution of the mineral alunite in an approximately 1.8 km2 area of the Cuprite mining district, Nevada. CEM is a powerful technique for rapid quantitative mineral mapping which requires only the spectrum of the mineral to be mapped. A priori knowledge of background spectral signatures is not required. Our investigation applies CEM to calibrated radiance data converted to apparent reflectance (AR) and to single scattering albedo (SSA) spectra. The radiance data were acquired by the 210 channel, 0.4 micrometers to 2.5 micrometers airborne Hyperspectral Digital Imagery Collection Experiment sensor. CEM applied to AR spectra assumes linear mixing of the spectra of the materials exposed at the surface. This assumption is likely invalid as surface materials, which are often mixtures of particulates of different substances, are more properly modeled as intimate mixtures and thus spectral mixing analyses must take account of nonlinear effects. One technique for approximating nonlinear mixing requires the conversion of AR spectra to SSA spectra. The results of CEM applied to SSA spectra are compared to those of CEM applied to AR spectra. The occurrence of alunite is similar though not identical to mineral maps produced with both the SSA and AR spectra. Alunite is slightly more widespread based on processing with the SSA spectra. Further, fractional abundances derived from the SSA spectra are, in general, higher than those derived from AR spectra. Implications for the interpretation of quantitative mineral mapping with hyperspectral remote sensing data are discussed.

  12. Dark matter CMB constraints and likelihoods for poor particle physicists

    Energy Technology Data Exchange (ETDEWEB)

    Cline, James M.; Scott, Pat, E-mail: jcline@physics.mcgill.ca, E-mail: patscott@physics.mcgill.ca [Department of Physics, McGill University, 3600 rue University, Montréal, QC, H3A 2T8 (Canada)

    2013-03-01

    The cosmic microwave background provides constraints on the annihilation and decay of light dark matter at redshifts between 100 and 1000, the strength of which depends upon the fraction of energy ending up in the form of electrons and photons. The resulting constraints are usually presented for a limited selection of annihilation and decay channels. Here we provide constraints on the annihilation cross section and decay rate, at discrete values of the dark matter mass m{sub χ}, for all the annihilation and decay channels whose secondary spectra have been computed using PYTHIA in arXiv:1012.4515 (''PPPC 4 DM ID: a poor particle physicist cookbook for dark matter indirect detection''), namely e, μ, τ, V → e, V → μ, V → τ, u, d s, c, b, t, γ, g, W, Z and h. By interpolating in mass, these can be used to find the CMB constraints and likelihood functions from WMAP7 and Planck for a wide range of dark matter models, including those with annihilation or decay into a linear combination of different channels.

  13. Dark matter CMB constraints and likelihoods for poor particle physicists

    International Nuclear Information System (INIS)

    Cline, James M.; Scott, Pat

    2013-01-01

    The cosmic microwave background provides constraints on the annihilation and decay of light dark matter at redshifts between 100 and 1000, the strength of which depends upon the fraction of energy ending up in the form of electrons and photons. The resulting constraints are usually presented for a limited selection of annihilation and decay channels. Here we provide constraints on the annihilation cross section and decay rate, at discrete values of the dark matter mass m χ , for all the annihilation and decay channels whose secondary spectra have been computed using PYTHIA in arXiv:1012.4515 (''PPPC 4 DM ID: a poor particle physicist cookbook for dark matter indirect detection''), namely e, μ, τ, V → e, V → μ, V → τ, u, d s, c, b, t, γ, g, W, Z and h. By interpolating in mass, these can be used to find the CMB constraints and likelihood functions from WMAP7 and Planck for a wide range of dark matter models, including those with annihilation or decay into a linear combination of different channels

  14. Naturally enhanced ion-line spectra around the equatorial 150-km region

    Directory of Open Access Journals (Sweden)

    J. L. Chau

    2009-03-01

    Full Text Available For many years strong radar echoes coming from 140–170 km altitudes at low latitudes have been associated to the existence of field-aligned irregularities (FAIs (the so called 150-km echoes. In this work, we present frequency spectra as well as angular distribution of 150-km echoes. When the 150-km region is observed with beams perpendicular to the magnetic field (B the observed radar spectra are very narrow with spectral widths between 3–12 m/s. On the other hand, when few-degrees off-perpendicular beams are used, the radar spectra are wide with spectral widths comparable to those expected from ion-acoustic waves at these altitudes (>1000 m/s. Moreover the off-perpendicular spectral width increases with increasing altitude. The strength of the received echoes is one to two orders of magnitude stronger than the expected level of waves in thermal equilibrium at these altitudes. Such enhancement is not due to an increase in electron density. Except for the enhancement in power, the spectra characteristics of off-perpendicular and perpendicular echoes are in reasonable agreement with expected incoherent scatter spectra at these angles and altitudes. 150-km echoes are usually observed in narrow layers (2 to 5. Bistatic common volume observations as well as observations made few kilometers apart show that, for most of the layers, there is very high correlation on power fluctuations without a noticeable time separation between simultaneous echoes observed with Off-perpendicular and Perpendicular beams. However, in one of the central layers, the echoes are the strongest in the perpendicular beam and absent or very weak in the off-perpendicular beams, suggesting that they are generated by a plasma instability. Our results indicate that most echoes around 150-km region are not as aspect sensitive as originally thought, and they come from waves that have been enhanced above waves in thermal equilibrium.

  15. Naturally enhanced ion-line spectra around the equatorial 150-km region

    Directory of Open Access Journals (Sweden)

    J. L. Chau

    2009-03-01

    Full Text Available For many years strong radar echoes coming from 140–170 km altitudes at low latitudes have been associated to the existence of field-aligned irregularities (FAIs (the so called 150-km echoes. In this work, we present frequency spectra as well as angular distribution of 150-km echoes. When the 150-km region is observed with beams perpendicular to the magnetic field (B the observed radar spectra are very narrow with spectral widths between 3–12 m/s. On the other hand, when few-degrees off-perpendicular beams are used, the radar spectra are wide with spectral widths comparable to those expected from ion-acoustic waves at these altitudes (>1000 m/s. Moreover the off-perpendicular spectral width increases with increasing altitude. The strength of the received echoes is one to two orders of magnitude stronger than the expected level of waves in thermal equilibrium at these altitudes. Such enhancement is not due to an increase in electron density. Except for the enhancement in power, the spectra characteristics of off-perpendicular and perpendicular echoes are in reasonable agreement with expected incoherent scatter spectra at these angles and altitudes. 150-km echoes are usually observed in narrow layers (2 to 5. Bistatic common volume observations as well as observations made few kilometers apart show that, for most of the layers, there is very high correlation on power fluctuations without a noticeable time separation between simultaneous echoes observed with Off-perpendicular and Perpendicular beams. However, in one of the central layers, the echoes are the strongest in the perpendicular beam and absent or very weak in the off-perpendicular beams, suggesting that they are generated by a plasma instability. Our results indicate that most echoes around 150-km region are not as aspect sensitive as originally thought, and they come from waves that have been enhanced above waves in thermal equilibrium.

  16. Challenges for the kinetic unified dark matter model

    International Nuclear Information System (INIS)

    Giannakis, Dimitrios; Hu, Wayne

    2005-01-01

    Given that the dark matter and dark energy in the Universe affect cosmological observables only gravitationally, their phenomenology may be described by a single stress-energy tensor. True unification however requires a theory that reproduces the successful phenomenology of ΛCDM and that requirement places specific constraints on the stress structure of the matter. We show that a recently proposed unification through an offset quadratic kinetic term for a scalar field is exactly equivalent to a fluid with a closed-form barotropic equation of state plus cosmological constant. The finite pressure at high densities introduces a cutoff in the linear power spectrum, which may alleviate the dark matter substructure problem; we provide a convenient fitting function for such studies. Given that sufficient power must remain to reionize the Universe, the equation of state today is nonrelativistic with p∝ρ 2 and a Jeans scale in the parsec regime for all relevant densities. Structure may then be evolved into the nonlinear regime with standard hydrodynamic techniques. In fact, the model is equivalent to the well-studied collisional dark matter with negligible mean free path. If recent observations of the triaxiality of dark matter halos and ram pressure stripping in galaxy clusters are confirmed, this model will be ruled out

  17. Vibrational spectra and boson-like excitations in different amorphous forms of ice

    International Nuclear Information System (INIS)

    Kolesnikov, A.I.; Li, J.C.; Uffindell, C.H.

    1999-01-01

    Complete text of publication follows. Glasses are very interesting objects in the physics of condensed matter, with many universal properties, such as low-energy excitations (LEE) coexisting with the sound waves and giving an excess of vibrational modes with respect to the crystalline spectrum (the so called 'boson' peak) in Raman and inelastic neutron scattering (INS). Recently it was discovered that films of hydrogenated amorphous silicon do not show such LEE, whereas films of amorphous silicon do [1]. Also, the resonant absorption by two-level systems was observed for the high-density amorphous (hda) ice but not for the low-density amorphous (lda) ice in the far infrared spectra [2]. Thus, the nature of these near universal LEE becomes rather puzzling. This report presents the results of INS studies for hda and lda ice produced by high-pressure treatment and for vapor-deposited lda ice. Clear LEE were observed in the spectra for hda and deposited lda ice unlike their crystalline analogues. (author)

  18. Hyperons in nuclear matter from SU(3) chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Petschauer, S.; Kaiser, N. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Haidenbauer, J. [Institut fuer Kernphysik, Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich Center for Hadron Physics, Juelich (Germany); Meissner, Ulf G. [Institut fuer Kernphysik, Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich Center for Hadron Physics, Juelich (Germany); Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Weise, W. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Villa Tambosi, ECT, Villazzano (Trento) (Italy)

    2016-01-15

    Brueckner theory is used to investigate the properties of hyperons in nuclear matter. The hyperon-nucleon interaction is taken from chiral effective field theory at next-to-leading order with SU(3) symmetric low-energy constants. Furthermore, the underlying nucleon-nucleon interaction is also derived within chiral effective field theory. We present the single-particle potentials of Λ and Σ hyperons in symmetric and asymmetric nuclear matter computed with the continuous choice for intermediate spectra. The results are in good agreement with the empirical information. In particular, our calculation gives a repulsive Σ-nuclear potential and a weak Λ-nuclear spin-orbit force. (orig.)

  19. Photonic band gap spectra in Octonacci metamaterial quasicrystals

    Science.gov (United States)

    Brandão, E. R.; Vasconcelos, M. S.; Albuquerque, E. L.; Fulco, U. L.

    2017-02-01

    In this work we study theoretically the photonic band gap spectra for a one-dimensional quasicrystal made up of SiO2 (layer A) and a metamaterial (layer B) organized following the Octonacci sequence, where its nth-stage Sn is given by the inflation rule Sn =Sn - 1Sn - 2Sn - 1 for n ≥ 3 , with initial conditions S1 = A and S2 = B . The metamaterial is characterized by a frequency dependent electric permittivity ε(ω) and magnetic permeability μ(ω) . The polariton dispersion relation is obtained analytically by employing a theoretical calculation based on a transfer-matrix approach. A quantitative analysis of the spectra is then discussed, stressing the distribution of the allowed photonic band widths for high generations of the Octonacci structure, which depict a self-similar scaling property behavior, with a power law depending on the common in-plane wavevector kx .

  20. Simultaneous fit of the spectra of light and heavy self-conjugate mesons

    International Nuclear Information System (INIS)

    Jena, S.N.

    1983-01-01

    It is shown that a simultaneous nonrelativistic fit of the spectra of both the light and heavy self-conjugate mesons is possible by an effective non-Coulombic power-law potential of the form V(r) = Ar/sup 0.1/+V 0 . This purely phenomenological potential is found to provide a very good account of the mass spectra and the leptonic decay widths of the rho 0 , theta, psi, and UPSILON systems in a flavor-independent manner. In spite of the smallness of the constituent quark masses involved, the nonrelativistic fit for the light mesons of rho 0 and theta systems is excellent

  1. First Derivative UV Spectra of Surface Water as a Monitor of Chlorination in Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    V. Zitko

    2001-01-01

    Full Text Available Many countries require the presence of free chlorine at about 0.1 mg/l in their drinking water supplies. For various reasons, such as cast-iron pipes or long residence times in the distribution system, free chlorine may decrease below detection limits. In such cases it is important to know whether or not the water was chlorinated or if nonchlorinated water entered the system by accident. Changes in UV spectra of natural organic matter in lakewater were used to assess qualitatively the degree of chlorination in the treatment to produce drinking water. The changes were more obvious in the first derivative spectra. In lakewater, the derivative spectra have a maximum at about 280 nm. This maximum shifts to longer wavelengths by up to 10 nm, decreases, and eventually disappears with an increasing dose of chlorine. The water treatment system was monitored by this technique for over 1 year and changes in the UV spectra of water samples were compared with experimental samples treated with known amounts of chlorine. The changes of the UV spectra with the concentration of added chlorine are presented. On several occasions, water, which received very little or no chlorination, may have entered the drinking water system. The results show that first derivative spectra are potentially a tool to determine, in the absence of residual chlorine, whether or not surface water was chlorinated during the treatment to produce potable water.

  2. VizieR Online Data Catalog: DIB 661.3nm in Cepheid spectra (Kashuba+, 2016)

    Science.gov (United States)

    Kashuba, S. V.; Andrievsky, S. M.; Chekhonadskikh, F. A.; Luck, R. E.; Kovtyukh, V. V.; Korotin, S. A.; Krelowski, J.; Galazutdinov, G. A.

    2017-11-01

    We used spectra of Northern hemisphere Cepheids obtained by REL - one of the co-authors of this paper, with the High Resolution Spectrograph of the Hobby-Eberly Telescope at the McDonald Observatory of the University of Texas at Austin (Texas, USA) with the resolving power of 30000, a typical signal-to-noise ratio of about 100, and wavelength range of 435-780nm. A total of 253 Cepheid spectra were used in the research. We performed an investigation of the 661.356 nm DIB profile in 253 spectra of 176 Cepheids. After removal of the blending YII line the EW of each DIB was calculated for each spectrum. (1 data file).

  3. Searches for Dark Matter at the ATLAS experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00143063; The ATLAS collaboration

    2015-01-01

    Abstract. Searches for strongly produced dark matters in events with jets, photons, heavy-flavor quarks or massive gauge bosons recoiling against large missing transverse momentum in ATLAS are presented. These "MET+X" signatures provide powerful probes to dark matter production at the LHC, allowing us to interpret results in terms of effective field theory and/or simplified models with pair production of Weakly Interactions Particles. Recent ATLAS results on dark matter searches at LHC Run I and the connection to astroparticle physics are discussed.

  4. Bouncing Cosmologies with Dark Matter and Dark Energy

    Directory of Open Access Journals (Sweden)

    Yi-Fu Cai

    2016-12-01

    Full Text Available We review matter bounce scenarios where the matter content is dark matter and dark energy. These cosmologies predict a nearly scale-invariant power spectrum with a slightly red tilt for scalar perturbations and a small tensor-to-scalar ratio. Importantly, these models predict a positive running of the scalar index, contrary to the predictions of the simplest inflationary and ekpyrotic models, and hence, could potentially be falsified by future observations. We also review how bouncing cosmological space-times can arise in theories where either the Einstein equations are modified or where matter fields that violate the null energy condition are included.

  5. Boundary layer heights derived from velocity spectra

    Energy Technology Data Exchange (ETDEWEB)

    Hoejstrup, J.; Barthelmie, R.J. [Risoe National Lab., Roskilde (Denmark); Kaellstrand, B. [Univ. of Uppsala, Uppsala (Sweden)

    1997-10-01

    It is a well-known fact that the height of the mixed layer determines the size of the largest and most energetic eddies that can be observed in the unstable boundary layer, and consequently a peak can be observed in the power spectra of the along-wind velocity component at scales comparable to the mixed layer depth. We will now show how the mixed layer depth can be derived from the u-specta and the results will be compared with direct measurements using pibal and tethersonde measurements. (au)

  6. Self-Consistent Scheme for Spike-Train Power Spectra in Heterogeneous Sparse Networks.

    Science.gov (United States)

    Pena, Rodrigo F O; Vellmer, Sebastian; Bernardi, Davide; Roque, Antonio C; Lindner, Benjamin

    2018-01-01

    Recurrent networks of spiking neurons can be in an asynchronous state characterized by low or absent cross-correlations and spike statistics which resemble those of cortical neurons. Although spatial correlations are negligible in this state, neurons can show pronounced temporal correlations in their spike trains that can be quantified by the autocorrelation function or the spike-train power spectrum. Depending on cellular and network parameters, correlations display diverse patterns (ranging from simple refractory-period effects and stochastic oscillations to slow fluctuations) and it is generally not well-understood how these dependencies come about. Previous work has explored how the single-cell correlations in a homogeneous network (excitatory and inhibitory integrate-and-fire neurons with nearly balanced mean recurrent input) can be determined numerically from an iterative single-neuron simulation. Such a scheme is based on the fact that every neuron is driven by the network noise (i.e., the input currents from all its presynaptic partners) but also contributes to the network noise, leading to a self-consistency condition for the input and output spectra. Here we first extend this scheme to homogeneous networks with strong recurrent inhibition and a synaptic filter, in which instabilities of the previous scheme are avoided by an averaging procedure. We then extend the scheme to heterogeneous networks in which (i) different neural subpopulations (e.g., excitatory and inhibitory neurons) have different cellular or connectivity parameters; (ii) the number and strength of the input connections are random (Erdős-Rényi topology) and thus different among neurons. In all heterogeneous cases, neurons are lumped in different classes each of which is represented by a single neuron in the iterative scheme; in addition, we make a Gaussian approximation of the input current to the neuron. These approximations seem to be justified over a broad range of parameters as

  7. Self-Consistent Scheme for Spike-Train Power Spectra in Heterogeneous Sparse Networks

    Directory of Open Access Journals (Sweden)

    Rodrigo F. O. Pena

    2018-03-01

    Full Text Available Recurrent networks of spiking neurons can be in an asynchronous state characterized by low or absent cross-correlations and spike statistics which resemble those of cortical neurons. Although spatial correlations are negligible in this state, neurons can show pronounced temporal correlations in their spike trains that can be quantified by the autocorrelation function or the spike-train power spectrum. Depending on cellular and network parameters, correlations display diverse patterns (ranging from simple refractory-period effects and stochastic oscillations to slow fluctuations and it is generally not well-understood how these dependencies come about. Previous work has explored how the single-cell correlations in a homogeneous network (excitatory and inhibitory integrate-and-fire neurons with nearly balanced mean recurrent input can be determined numerically from an iterative single-neuron simulation. Such a scheme is based on the fact that every neuron is driven by the network noise (i.e., the input currents from all its presynaptic partners but also contributes to the network noise, leading to a self-consistency condition for the input and output spectra. Here we first extend this scheme to homogeneous networks with strong recurrent inhibition and a synaptic filter, in which instabilities of the previous scheme are avoided by an averaging procedure. We then extend the scheme to heterogeneous networks in which (i different neural subpopulations (e.g., excitatory and inhibitory neurons have different cellular or connectivity parameters; (ii the number and strength of the input connections are random (Erdős-Rényi topology and thus different among neurons. In all heterogeneous cases, neurons are lumped in different classes each of which is represented by a single neuron in the iterative scheme; in addition, we make a Gaussian approximation of the input current to the neuron. These approximations seem to be justified over a broad range of

  8. Constraining heavy dark matter with cosmic-ray antiprotons

    Science.gov (United States)

    Cuoco, Alessandro; Heisig, Jan; Korsmeier, Michael; Krämer, Michael

    2018-04-01

    Cosmic-ray observations provide a powerful probe of dark matter annihilation in the Galaxy. In this paper we derive constraints on heavy dark matter from the recent precise AMS-02 antiproton data. We consider all possible annihilation channels into pairs of standard model particles. Furthermore, we interpret our results in the context of minimal dark matter, including higgsino, wino and quintuplet dark matter. We compare the cosmic-ray antiproton limits to limits from γ-ray observations of dwarf spheroidal galaxies and to limits from γ-ray and γ-line observations towards the Galactic center. While the latter limits are highly dependent on the dark matter density distribution and only exclude a thermal wino for cuspy profiles, the cosmic-ray limits are more robust, strongly disfavoring the thermal wino dark matter scenario even for a conservative estimate of systematic uncertainties.

  9. Application of normalized spectra in resolving a challenging Orphenadrine and Paracetamol binary mixture

    Science.gov (United States)

    Yehia, Ali M.; Abd El-Rahman, Mohamed K.

    2015-03-01

    Normalized spectra have a great power in resolving spectral overlap of challenging Orphenadrine (ORP) and Paracetamol (PAR) binary mixture, four smart techniques utilizing the normalized spectra were used in this work, namely, amplitude modulation (AM), simultaneous area ratio subtraction (SARS), simultaneous derivative spectrophotometry (S1DD) and ratio H-point standard addition method (RHPSAM). In AM, peak amplitude at 221.6 nm of the division spectra was measured for both ORP and PAR determination, while in SARS, concentration of ORP was determined using the area under the curve from 215 nm to 222 nm of the regenerated ORP zero order absorption spectra, in S1DD, concentration of ORP was determined using the peak amplitude at 224 nm of the first derivative ratio spectra. PAR concentration was determined directly at 288 nm in the division spectra obtained during the manipulation steps in the previous three methods. The last RHPSAM is a dual wavelength method in which two calibrations were plotted at 216 nm and 226 nm. RH point is the intersection of the two calibration lines, where ORP and PAR concentrations were directly determined from coordinates of RH point. The proposed methods were applied successfully for the determination of ORP and PAR in their dosage form.

  10. Dark matter distribution and annihilation at the Galactic center

    International Nuclear Information System (INIS)

    Dokuchaev, V I; Eroshenko, Yu N

    2016-01-01

    We describe a promising method for measuring the total dark matter mass near a supermassive black hole at the Galactic center based on observations of nonrelativistic precession of the orbits of fast S0 stars. An analytical expression for the precession angle has been obtained under the assumption of a power-law profile of the dark matter density. The awaited weighing of the dark matter at the Galactic center provides the strong constraints on the annihilation signal from the neuralino dark matter particle candidate. The mass of the dark matter necessary for the explanation of the observed excess of gamma-radiation owing to the annihilation of the dark matter particles has been calculated with allowance for the Sommerfeld effect. (paper)

  11. THE ATACAMA COSMOLOGY TELESCOPE: A MEASUREMENT OF THE PRIMORDIAL POWER SPECTRUM

    Energy Technology Data Exchange (ETDEWEB)

    Hlozek, Renee; Dunkley, Joanna; Addison, Graeme [Department of Astrophysics, Oxford University, Oxford OX1 3RH (United Kingdom); Appel, John William; Das, Sudeep; Essinger-Hileman, Thomas; Fowler, Joseph W.; Hajian, Amir; Hincks, Adam D. [Joseph Henry Laboratories of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544 (United States); Bond, J. Richard [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON M5S 3H8 (Canada); Carvalho, C. Sofia [IPFN, IST, Av. RoviscoPais, 1049-001Lisboa, Portugal and RCAAM, Academy of Athens, Soranou Efessiou 4, 11-527 Athens (Greece); Devlin, Mark J.; Klein, Jeff [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Duenner, Rolando; Gallardo, Patricio [Departamento de Astronomia y Astrofisica, Facultad de Fisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Halpern, Mark; Hasselfield, Matthew [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4 (Canada); Hilton, Matt [School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Hughes, John P. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8019 (United States); Irwin, Kent D. [NIST Quantum Devices Group, 325 Broadway Mailcode 817.03, Boulder, CO 80305 (United States); and others

    2012-04-10

    We present constraints on the primordial power spectrum of adiabatic fluctuations using data from the 2008 Southern Survey of the Atacama Cosmology Telescope (ACT) in combination with measurements from the Wilkinson Microwave Anisotropy Probe and a prior on the Hubble constant. The angular resolution of ACT provides sensitivity to scales beyond l = 1000 for resolution of multiple peaks in the primordial temperature power spectrum, which enables us to probe the primordial power spectrum of adiabatic scalar perturbations with wavenumbers up to k {approx_equal} 0.2 Mpc{sup -1}. We find no evidence for deviation from power-law fluctuations over two decades in scale. Matter fluctuations inferred from the primordial temperature power spectrum evolve over cosmic time and can be used to predict the matter power spectrum at late times; we illustrate the overlap of the matter power inferred from cosmic microwave background measurements (which probe the power spectrum in the linear regime) with existing probes of galaxy clustering, cluster abundances, and weak-lensing constraints on the primordial power. This highlights the range of scales probed by current measurements of the matter power spectrum.

  12. Generation of floor response spectra for mixed-oxide fuel fabrication plants

    International Nuclear Information System (INIS)

    Arthur, D.F.; Murray, R.C.; Tokarz, F.J.

    1975-01-01

    Floor or amplified response spectra are generally used as input motion for seismic analysis of critical equipment and piping in nuclear power plants and related facilities. The floor spectra are normally the result of a time-history calculation of building response to ground shaking. However, alternate approximate methods have been suggested by both Kapur and Biggs. As part of a study for the Nuclear Regulatory Commission horizontal floor response spectra were generated and compared by all three methods. The dynamic analyses were performed on a model of the Westinghouse Recycle Fuels Plant Manufacturing Building (MOFFP). Input to the time-history calculations was a synthesized accelerogram whose response spectrum is similar to that in Regulatory Guide 1.60. The response spectrum of the synthetic ground motion was used as input to the Kapur and Biggs methods. Calculations were performed for both hard (3500 fps) and soft (1500 fps) foundation soils. Results of comparison of the three methods indicate that although the approximate methods could easily be made acceptable from a safety standpoint, they would be overly conservative. The time-history method will yield floor spectra which are less uncertain and less conservative for a relatively modest additional effort. (auth)

  13. Detecting gamma-ray anisotropies from decaying dark matter. Prospects for Fermi LAT

    International Nuclear Information System (INIS)

    Ibarra, Alejandro; Tran, David

    2009-09-01

    Decaying dark matter particles could be indirectly detected as an excess over a simple power law in the energy spectrum of the diffuse extragalactic gamma-ray background. Furthermore, since the Earth is not located at the center of the Galactic dark matter halo, the exotic contribution from dark matter decay to the diffuse gamma-ray flux is expected to be anisotropic, offering a complementary method for the indirect search for decaying dark matter particles. In this paper we discuss in detail the expected dipole-like anisotropies in the dark matter signal, taking also into account the radiation from inverse Compton scattering of electrons and positrons from dark matter decay. A different source for anisotropies in the gamma-ray flux are the dark matter density fluctuations on cosmic scales. We calculate the corresponding angular power spectrum of the gamma-ray flux and comment on observational prospects. Finally, we calculate the expected anisotropies for the decaying dark matter scenarios that can reproduce the electron/positron excesses reported by PAMELA and the Fermi LAT, and we estimate the prospects for detecting the predicted gamma-ray anisotropy in the near future. (orig.)

  14. Proposal and Evaluation of Subordinate Standard Solar Irradiance Spectra for Applications in Solar Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jessen, Wilko [German Aerospace Center (DLR); Wilbert, Stefan [German Aerospace Center (DLR); Gueymard, Christian A. [Solar Consulting Services; Polo, Jesus [CIEMAT; Bian, Zeqiang [China Meteorological Administration; Driesse, Anton [Photovoltaic Performance Labs; Marzo, Aitor [University of Antofagasta; Armstrong, Peter [Masdar Institute of Science & Technology; Vignola, Frank [University of Oregon; Ramirez, Lourdes [CIEMAT

    2018-04-01

    Reference solar irradiance spectra are needed to specify key parameters of solar technologies such as photovoltaic cell efficiency, in a comparable way. The IEC 60904-3 and ASTM G173 standards present such spectra for Direct Normal Irradiance (DNI) and Global Tilted Irradiance (GTI) on a 37 degrees tilted sun-facing surface for one set of clear-sky conditions with an air mass of 1.5 and low aerosol content. The IEC/G173 standard spectra are the widely accepted references for these purposes. Hence, the authors support the future replacement of the outdated ISO 9845 spectra with the IEC spectra within the ongoing update of this ISO standard. The use of a single reference spectrum per component of irradiance is important for clarity when comparing and rating solar devices such as PV cells. However, at some locations the average spectra can differ strongly from those defined in the IEC/G173 standards due to widely different atmospheric conditions and collector tilt angles. Therefore, additional subordinate standard spectra for other atmospheric conditions and tilt angles are of interest for a rough comparison of product performance under representative field conditions, in addition to using the main standard spectrum for product certification under standard test conditions. This simplifies the product selection for solar power systems when a fully-detailed performance analysis is not feasible (e.g. small installations). Also, the effort for a detailed yield analyses can be reduced by decreasing the number of initial product options. After appropriate testing, this contribution suggests a number of additional spectra related to eight sets of atmospheric conditions and tilt angles that are currently considered within ASTM and ISO working groups. The additional spectra, called subordinate standard spectra, are motivated by significant spectral mismatches compared to the IEC/G173 spectra (up to 6.5%, for PV at 37 degrees tilt and 10-15% for CPV). These mismatches

  15. Power distribution in complex environmental negotiations: Does balance matter?

    Science.gov (United States)

    Burkardt, N.; Lamb, B.L.; Taylor, J.G.

    1997-01-01

    We studied six interagency negotiations covering Federal Energy Regulatory Commission (FERC) hydroelectric power licenses. Negotiations occurred between state and federal resource agencies and developers over project operations and natural resource mitigation. We postulated that a balance of power among parties was necessary for successful negotiations. We found a complex relationship between balanced power and success and conclude that a balance of power was associated with success in these negotiations. Power played a dynamic role in the bargaining and illuminates important considerations for regulatory design.

  16. Mirror dark matter and large scale structure

    International Nuclear Information System (INIS)

    Ignatiev, A.Yu.; Volkas, R.R.

    2003-01-01

    Mirror matter is a dark matter candidate. In this paper, we reexamine the linear regime of density perturbation growth in a universe containing mirror dark matter. Taking adiabatic scale-invariant perturbations as the input, we confirm that the resulting processed power spectrum is richer than for the more familiar cases of cold, warm and hot dark matter. The new features include a maximum at a certain scale λ max , collisional damping below a smaller characteristic scale λ S ' , with oscillatory perturbations between the two. These scales are functions of the fundamental parameters of the theory. In particular, they decrease for decreasing x, the ratio of the mirror plasma temperature to that of the ordinary. For x∼0.2, the scale λ max becomes galactic. Mirror dark matter therefore leads to bottom-up large scale structure formation, similar to conventional cold dark matter, for x(less-or-similar sign)0.2. Indeed, the smaller the value of x, the closer mirror dark matter resembles standard cold dark matter during the linear regime. The differences pertain to scales smaller than λ S ' in the linear regime, and generally in the nonlinear regime because mirror dark matter is chemically complex and to some extent dissipative. Lyman-α forest data and the early reionization epoch established by WMAP may hold the key to distinguishing mirror dark matter from WIMP-style cold dark matter

  17. Nuclear power and safety

    International Nuclear Information System (INIS)

    Chidambaram, R.

    1992-01-01

    Some aspects of safety of nuclear power with special reference to Indian nuclear power programme are discussed. India must develop technology to protect herself from the adverse economic impact arising out of the restrictive regime which is being created through globalization of safety and environmental issues. Though the studies done and experience gained so far have shown that the PHWR system adopted by India has a number of superior safety features, research work is needed in the field of operation and maintenance of reactors and also in the field of reactor life extension through delaying of ageing effects. Public relations work must be pursued to convince the public at large of the safety of nuclear power programme. The new reactor designs in the second stage of evolution are based on either further improvement of existing well-proven designs or adoptions of more innovative ideas based on physical principles to ensure a higher level of safety. The development of Indian nuclear power programme is characterised by a balanced approach in the matter of assuring safety. Safety enforcement is not just looked upon as a pure administrative matter, but experts with independent minds are also involved in safety related matters. (M.G.B.)

  18. Simulation of electron energy loss spectra of nanomaterials with linear-scaling density functional theory

    International Nuclear Information System (INIS)

    Tait, E W; Payne, M C; Ratcliff, L E; Haynes, P D; Hine, N D M

    2016-01-01

    Experimental techniques for electron energy loss spectroscopy (EELS) combine high energy resolution with high spatial resolution. They are therefore powerful tools for investigating the local electronic structure of complex systems such as nanostructures, interfaces and even individual defects. Interpretation of experimental electron energy loss spectra is often challenging and can require theoretical modelling of candidate structures, which themselves may be large and complex, beyond the capabilities of traditional cubic-scaling density functional theory. In this work, we present functionality to compute electron energy loss spectra within the onetep linear-scaling density functional theory code. We first demonstrate that simulated spectra agree with those computed using conventional plane wave pseudopotential methods to a high degree of precision. The ability of onetep to tackle large problems is then exploited to investigate convergence of spectra with respect to supercell size. Finally, we apply the novel functionality to a study of the electron energy loss spectra of defects on the (1 0 1) surface of an anatase slab and determine concentrations of defects which might be experimentally detectable. (paper)

  19. Two-dimensional NMR spectroscopy links structural moieties of soil organic matter to the temperature sensitivity of its decomposition

    Science.gov (United States)

    Soucemarianadin, Laure; Erhagen, Björn; Öquist, Mats; Nilsson, Mats; Schleucher, Jürgen

    2015-04-01

    Soil organic matter (SOM) represents a huge carbon pool, specifically in boreal ecosystems. Warming-induced release of large amounts of CO2 from the soil carbon pool might become a significant exacerbating feedback to global warming, if decomposition rates of boreal soils were more sensitive to increased temperatures. Despite a large number of studies dedicated to the topic, it has proven difficult to elucidate how the organo-chemical composition of SOM influences its decomposition, or its quality as a substrate for microbial metabolism. A great part of this challenge results from our inability to achieve a detailed characterization of the complex composition of SOM on the level of molecular structural moieties. 13C nuclear magnetic resonance (NMR) spectroscopy is a common tool to characterize SOM. However, SOM is a very complex mixture and the chemical shift regions distinguished in the 13C NMR spectra often represent many different molecular fragments. For example, in the carbohydrates region, signals of all monosaccharides present in many different polymers overlap. This overlap thwarts attempts to identify molecular moieties, resulting in insufficient information to characterize SOM composition. We applied two-dimensional (2D) NMR to characterize SOM with highly increased resolution. We directly dissolved finely ground litters and forest floors'fibric and humic horizons'of both coniferous and deciduous boreal forests in dimethyl sulfoxide and analyzed the resulting solution with a 2D 1H-13C NMR experiment. In the 2D planes of these spectra, signals of CH groups can be resolved based on their 13C and 1H chemical shifts, hence the resolving power and information content of these NMR spectra is hugely increased. The 2D spectra indeed resolved overlaps observed in 1D 13C spectra, so that hundreds of distinct CH groups could be observed and many molecular fragments could be identified. For instance, in the aromatics region, signals from individual lignin units could

  20. Is it possible to tell the difference between fermionic and bosonic hot dark matter?

    Energy Technology Data Exchange (ETDEWEB)

    Hannestad, S.; Tu, H. [Aarhus Univ. (Denmark). Dept. of Physics and Astronomy; Ringwald, A.; Wong, Y.Y.Y. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2005-07-01

    We study the difference between thermally produced fermionic and bosonic hot dark matter in detail. In the linear regime of structure formation, their distinct free-streaming behaviours can lead to pronounced differences in the matter power spectrum. While not detectable with current cosmological data, such differences will be clearly observable with upcoming large scale weak lensing surveys for particles as light as m{sub HDM} {proportional_to} 0.2 eV. In the nonlinear regime, bosonic hot dark matter is not subject to the same phase space constraints that severely limit the amount of fermionic hot dark matter infall into cold dark matter halos. Consequently, the overdensities in fermionic and bosonic hot dark matter of equal particle mass can differ by more than a factor of five in the central part of a halo. However, this unique manifestation of quantum statistics may prove very difficult to detect unless the mass of the hot dark matter particle and its decoupling temperature fall within a very narrow window, 1matter infall may have some observable consequences for the nonlinear power spectrum and hence the weak lensing convergence power spectrum at l {proportional_to} 10{sup 3} {yields} 10{sup 4} at the percent level. (orig.)

  1. Dark Matter in the Heavens and at Colliders: Models and Constraints

    Energy Technology Data Exchange (ETDEWEB)

    Primulando, Reinard [College of William and Mary, Williamsburg, VA (United States)

    2012-08-01

    In this dissertation, we investigate various aspects of dark matter detection and model building. Motivated by the cosmic ray positron excess observed by PAMELA, we construct models of decaying dark matter to explain the excess. Specifically we present an explicit, TeV-scale model of decaying dark matter in which the approximate stability of the dark matter candidate is a consequence of a global symmetry that is broken only by instanton-induced operators generated by a non-Abelian dark gauge group. Alternatively, the decaying operator can arise as a Planck suppressed correction in a model with an Abelian discrete symmetry and vector-like states at an intermediate scale that are responsible for generating lepton Yukawa couplings. A flavor-nonconserving dark matter decay is also considered in the case of fermionic dark matter. Assuming a general Dirac structure for the four-fermion contact interactions of interest, the cosmic-ray electron and positron spectra were studied. We show that good fits to the current data can be obtained for both charged-leptonflavor- conserving and flavor-violating decay channels. Motivated by a possible excess of gamma rays in the galactic center, we constructed a supersymmetric leptophilic higgs model to explain the excess. Finally, we consider an improvement on dark matter collider searches using the Razor analysis, which was originally utilized for supersymmetry searches by the CMS collaboration.

  2. Experimental spectrum of reactor antineutrinos and spectra of main fissile isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Sinev, V. V., E-mail: vsinev@pcbai10.inr.ruhep.ru [Russian Academy of Sciences, Institute for Nuclear Research (Russian Federation)

    2013-05-15

    Within the period between the years 1988 and 1990, the spectrum of positrons from the inverse-beta-decay reaction on a proton was measured at the Rovno atomic power plant in the course of experiments conducted there. The measured spectrum has the vastest statistics in relation to other neutrino experiments at nuclear reactors and the lowest threshold for positron detection. An experimental reactor-antineutrino spectrum was obtained on the basis of this positron spectrum and was recommended as a reference spectrum. The spectra of individual fissile isotopes were singled out from the measured antineutrino spectrum. These spectra can be used to analyze neutrino experiments performed at nuclear reactors for various compositions of the fuel in the reactor core.

  3. Coronal Radio Sounding Experiments with Mars Express: Scintillation Spectra during Low Solar Activity

    International Nuclear Information System (INIS)

    Efimov, A. I.; Lukanina, L. A.; Samoznaev, L. N.; Rudash, V. K.; Chashei, I. V.; Bird, M. K.; Paetzold, M.; Tellmann, S.

    2010-01-01

    Coronal radio sounding observations were carried out with the radio science experiment MaRS on the ESA spacecraft Mars Express during the period from 25 August to 22 October 2004. Differential frequency and log-amplitude fluctuations of the dual-frequency signals were recorded during a period of low solar activity. The data are applicable to low heliographic latitudes, i.e. to slow solar wind. The mean frequency fluctuation and power law index of the frequency fluctuation temporal spectra are determined as a function of heliocentric distance. The radial dependence of the frequency fluctuation spectral index α reflects the previously documented flattening of the scintillation power spectra in the solar wind acceleration region. Temporal spectra of S-band and X-band normalized log-amplitude fluctuations were investigated over the range of fluctuation frequencies 0.01 Hz<ν<0.5 Hz, where the spectral density is approximately constant. The radial variation of the spectral density is analyzed and compared with Ulysses 1991 data, a period of high solar activity. Ranging measurements are presented and compared with frequency and log-amplitude scintillation data. Evidence for a weak increase in the fractional electron density turbulence level is obtained in the range 10-40 solar radii.

  4. Generation of artificial time-histories, rich in all frequencies, from given response spectra

    International Nuclear Information System (INIS)

    Levy, S.; Wilkinson, J.P.D.

    1976-01-01

    In the design of nuclear power plants, it has been found desirable in certain instances to use the time-history method of dynamic analysis to determine the plant response to seismic input. In the implementation of this method, it is necessary to determine an adequate representation of the excitation as a function of time. Because many design criteria are specified in terms of design response spectra one is faced with the problem of generating a time-history whose own response spectrum approximates as far as possible to the originally specified design response spectrum. One objective of this paper is to present a method of synthesizing such time-histories from a given design response spectrum. The design response spectra may be descriptive of floor responses at a particular location in a plant, or they may be descriptive of seismic ground motions at a plant site. The method described in this paper allows the generation of time histories that are rich in all frequencies in the spectrum. This richness is achieved by choosing a large number of closely-spaced frequency points such that the half-power points of adjacent frequencies overlap. Examples are given concerning seismic design response spectra, and a number of points are discussed concerning the effect of frequency spacing on convergence. (Auth.)

  5. Spontaneous emission spectra and quantum light-matter interactions from a strongly coupled quantum dot metal-nanoparticle system

    DEFF Research Database (Denmark)

    Van Vlack, C.; Kristensen, Philip Trøst; Hughes, S.

    2012-01-01

    the dot to the detector, we demonstrate that the strong-coupling regime should be observable in the far-field spontaneous emission spectrum, even at room temperature. The vacuum-induced emission spectra show that the usual vacuum Rabi doublet becomes a rich spectral triplet or quartet with two of the four...

  6. Seismic stress of plants and equipment in nuclear power station construction

    International Nuclear Information System (INIS)

    Hampe, E.; Schwarz, J.

    1984-01-01

    The applicability of floor spectra for designing components of nuclear power plants taking into account seismic effects is discussed. Methods for the determination of seismic floor excitation and various kinds of floor spectra are presented. As an example the floor spectra method is applied to containment buildings

  7. Spectra of Graphs

    NARCIS (Netherlands)

    Brouwer, A.E.; Haemers, W.H.

    2012-01-01

    This book gives an elementary treatment of the basic material about graph spectra, both for ordinary, and Laplace and Seidel spectra. The text progresses systematically, by covering standard topics before presenting some new material on trees, strongly regular graphs, two-graphs, association

  8. Dark matter from decaying topological defects

    International Nuclear Information System (INIS)

    Hindmarsh, Mark; Kirk, Russell; West, Stephen M.

    2014-01-01

    We study dark matter production by decaying topological defects, in particular cosmic strings. In topological defect or ''top-down'' (TD) scenarios, the dark matter injection rate varies as a power law with time with exponent p−4. We find a formula in closed form for the yield for all p < 3/2, which accurately reproduces the solution of the Boltzmann equation. We investigate two scenarios (p = 1, p = 7/6) motivated by cosmic strings which decay into TeV-scale states with a high branching fraction into dark matter particles. For dark matter models annihilating either by s-wave or p-wave, we find the regions of parameter space where the TD model can account for the dark matter relic density as measured by Planck. We find that topological defects can be the principal source of dark matter, even when the standard freeze-out calculation under-predicts the relic density and hence can lead to potentially large ''boost factor'' enhancements in the dark matter annihilation rate. We examine dark matter model-independent limits on this scenario arising from unitarity and discuss example model-dependent limits coming from indirect dark matter search experiments. In the four cases studied, the upper bound on Gμ for strings with an appreciable channel into TeV-scale states is significantly more stringent than the current Cosmic Microwave Background limits

  9. Quantitative EEG in Children and Adults With Attention Deficit Hyperactivity Disorder: Comparison of Absolute and Relative Power Spectra and Theta/Beta Ratio.

    Science.gov (United States)

    Markovska-Simoska, Silvana; Pop-Jordanova, Nada

    2017-01-01

    In recent decades, resting state electroencephalographic (EEG) measures have been widely used to document underlying neurophysiological dysfunction in attention deficit hyperactivity disorder (ADHD). Although most EEG studies focus on children, there is a growing interest in adults with ADHD too. The aim of this study was to objectively assess and compare the absolute and relative EEG power as well as the theta/beta ratio in children and adults with ADHD. The evaluated sample comprised 30 male children and 30 male adults with ADHD diagnosed according to DSM-IV criteria. They were compared with 30 boys and 30 male adults matched by age. The mean age (±SD) of the children's group was 9 (±2.44) years and the adult group 35.8 (±8.65) years. EEG was recorded during an eyes-open condition. Spectral analysis of absolute (μV 2 ) and relative power (%) was carried out for 4 frequency bands: delta (2-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), and beta (13-21 Hz). The findings obtained for ADHD children are increased absolute power of slow waves (theta and delta), whereas adults exhibited no differences compared with normal subjects. For the relative power spectra there were no differences between the ADHD and control groups. Across groups, the children showed greater relative power than the adults in the delta and theta bands, but for the higher frequency bands (alpha and beta) the adults showed more relative power than children. Only ADHD children showed greater theta/beta ratio compared to the normal group. Classification analysis showed that ADHD children could be differentiated from the control group by the absolute theta values and theta/beta ratio at Cz, but this was not the case with ADHD adults. The question that should be further explored is if these differences are mainly due to maturation processes or if there is a core difference in cortical arousal between ADHD children and adults. © EEG and Clinical Neuroscience Society (ECNS) 2016.

  10. Two-dimensional NMR spectroscopy as a tool to link soil organic matter composition to ecosystem processes

    Science.gov (United States)

    Soucemarianadin, Laure; Erhagen, Björn; Öquist, Mats; Nilsson, Mats; Schleucher, Jürgen

    2014-05-01

    Environmental factors (e.g. temperature and moisture) and the size and composition of soil microbial populations are often considered the main drivers of soil organic matter (SOM) mineralization. Less consideration is given to the role of SOM as a substrate for microbial metabolism and the importance of the organo-chemical composition of SOM on decomposition. In addition, a fraction of the SOM is often considered as recalcitrant to mineralization leading to accumulation of SOM. However, recently the concept of intrinsic recalcitrance of SOM to mineralization has been questioned. The challenge in investigating the role of SOM composition on its mineralization to a large extent stems from the difficulties in obtaining high resolution characterization of a very complex matrix. 13C nuclear magnetic resonance (NMR) spectroscopy is a widely used tool to characterize SOM. However, SOM is a very complex mixture and in the resulting 13C NMR spectra, the identified functional groups may represent different molecular fragments that appear in the same spectral region leading to broad peaks. These overlaps defy attempts to identify molecular moieties, and this makes it impossible to derive information at a resolution needed for evaluating e.g. recalcitrance of SOM. Here we applied a method, developed in wood science for the pulp paper industry, to achieve a better characterization of SOM. We directly dissolved finely ground organic layers of boreal forest floors-litters, fibric and humic horizons of both coniferous and broadleaved stands-in dimethyl sulfoxide and analyzed the resulting solution with a two-dimensional (2D) 1H-13C NMR experiment. We will discuss methodological aspects related to the ability to identify and quantify individual molecular moieties in SOM. We will demonstrate how the spectra resolve signals of CH groups in a 2D plane determined by the 13C and 1H chemical shifts, thereby vastly increasing the resolving power and information content of NMR spectra. The

  11. Analysis of extreme ultraviolet spectra from laser produced rhenium plasmas

    International Nuclear Information System (INIS)

    Wu, Tao; Dunne, Padraig; O’Reilly, Fergal; Sokell, Emma; Liu, Luning; O’Sullivan, Gerry; Higashiguchi, Takeshi; Suzuki, Yuhei; Arai, Goki; Dinh, Thanh-Hung; Li, Bowen

    2015-01-01

    Extreme ultraviolet spectra of highly-charged rhenium ions were observed in the 1–7 nm region using two Nd:YAG lasers with pulse lengths of 150 ps and 10 ns, respectively, operating at a number of laser power densities. The maximum focused peak power density was 2.6 × 10 14 W cm −2 for the former and 5.5 × 10 12 W cm −2 for the latter. The Cowan suite of atomic structure codes and unresolved transition array (UTA) approach were used to calculate and interpret the emission properties of the different spectra obtained. The results show that n = 4-n = 4 and n = 4-n = 5 UTAs lead to two intense quasi-continuous emission bands in the 4.3–6.3 nm and 1.5–4.3 nm spectral regions. As a result of the different ion stage distributions in the plasmas induced by ps and ns laser irradiation the 1.5–4.3 nm UTA peak moves to shorter wavelength in the ps laser produced plasma spectra. For the ns spectrum, the most populated ion stage during the lifetime of this plasma that could be identified from the n = 4-n = 5 transitions was Re 23+ while for the ps plasma the presence of significantly higher stages was demonstrated. For the n = 4-n = 4 4p 6 4d N -4p 5 4d N+1  + 4p 6 4d N−1 4f transitions, the 4d-4f transitions contribute mainly in the most intense 4.7–5.5 nm region while the 4p-4d subgroup gives rise to a weaker feature in the 4.3–4.7 nm region. A number of previously unidentified spectral features produced by n = 4-n = 5 transitions in the spectra of Re XVI to Re XXXIX are identified. (paper)

  12. The effects of the small-scale DM power on the cosmological neutral hydrogen (HI) distribution at high redshifts

    International Nuclear Information System (INIS)

    Sarkar, Abir; Sethi, Shiv K.; Mondal, Rajesh; Bharadwaj, Somnath; Das, Subinoy; Marsh, David J.E.

    2016-01-01

    The particle nature of dark matter remains a mystery. In this paper, we consider two dark matter models—Late Forming Dark Matter (LFDM) and Ultra-Light Axion (ULA) models—where the matter power spectra show novel effects on small scales. The high redshift universe offers a powerful probe of their parameters. In particular, we study two cosmological observables: the neutral hydrogen (HI) redshifted 21-cm signal from the epoch of reionization, and the evolution of the collapsed fraction of HI in the redshift range 2 < z < 5. We model the theoretical predictions of the models using CDM-like N-body simulations with modified initial conditions, and generate reionization fields using an excursion set model. The N-body approximation is valid on the length and halo mass scales studied. We show that LFDM and ULA models predict an increase in the HI power spectrum from the epoch of reionization by a factor between 2–10 for a range of scales 0.1 < k < 4 Mpc −1 . Assuming a fiducial model where a neutral hydrogen fraction x-bar HI  = 0.5 must be achieved by z = 8, the reionization process allows us to put approximate bounds on the redshift of dark matter formation z f  > 4 × 10 5 (for LFDM) and the axion mass m a  > 2.6 × 10 −23  eV (for ULA). The comparison of the collapsed mass fraction inferred from damped Lyman-α observations to the theoretical predictions of our models lead to the weaker bounds: z f  > 2 × 10 5 and m a  > 10 −23  eV. These bounds are consistent with other constraints in the literature using different observables; we briefly discuss how these bounds compare with possible constraints from the observation of luminosity function of galaxies at high redshifts. In the case of ULAs, these constraints are also consistent with a solution to the cusp-core problem of CDM

  13. Non-thermal Power-Law Distributions in Solar and Space Plasmas

    Science.gov (United States)

    Oka, M.; Battaglia, M.; Birn, J.; Chaston, C. C.; Effenberger, F.; Eriksson, E.; Fletcher, L.; Hatch, S.; Imada, S.; Khotyaintsev, Y. V.; Kuhar, M.; Livadiotis, G.; Miyoshi, Y.; Retino, A.

    2017-12-01

    Particles are accelerated to very high, non-thermal energies in solar and space plasma environments. While energy spectra of accelerated particles often exhibit a power-law and are characterized by the power-law index δ, it remains unclear how particles are accelerated to high energies and how δ is determined. Here, we review previous observations of the power-law index δ in a variety of different plasma environments with a particular focus on sub-relativistic electrons. It appears that in regions more closely related to magnetic reconnection (such as the "above-the-looptop" solar hard X-ray source and the plasma sheet in Earth's magnetotail), the spectra are typically soft (δ> 4). This is in contrast to the typically hard spectra (δuniform in the plasma sheet, while power-law distributions still exist even in quiet times. The role of magnetotail reconnection in the electron power-law formation could therefore be confounded with these background conditions. Because different regions have been studied with different instrumentations and methodologies, we point out a need for more systematic and coordinated studies of power-law distributions for a better understanding of possible scaling laws in particle acceleration as well as their universality.

  14. Curved Radio Spectra of Weak Cluster Shocks

    Science.gov (United States)

    Kang, Hyesung; Ryu, Dongsu

    2015-08-01

    In order to understand certain observed features of arc-like giant radio relics such as the rareness, uniform surface brightness, and curved integrated spectra, we explore a diffusive shock acceleration (DSA) model for radio relics in which a spherical shock impinges on a magnetized cloud containing fossil relativistic electrons. Toward this end, we perform DSA simulations of spherical shocks with the parameters relevant for the Sausage radio relic in cluster CIZA J2242.8+5301, and calculate the ensuing radio synchrotron emission from re-accelerated electrons. Three types of fossil electron populations are considered: a delta-function like population with the shock injection momentum, a power-law distribution, and a power law with an exponential cutoff. The surface brightness profile of the radio-emitting postshock region and the volume-integrated radio spectrum are calculated and compared with observations. We find that the observed width of the Sausage relic can be explained reasonably well by shocks with speed {u}{{s}}˜ 3× {10}3 {km} {{{s}}}-1 and sonic Mach number {M}{{s}}˜ 3. These shocks produce curved radio spectra that steepen gradually over (0.1-10){ν }{br} with a break frequency {ν }{br}˜ 1 GHz if the duration of electron acceleration is ˜60-80 Myr. However, the abrupt increase in the spectral index above ˜1.5 GHz observed in the Sausage relic seems to indicate that additional physical processes, other than radiative losses, operate for electrons with {γ }{{e}}≳ {10}4.

  15. Modification of EEG functional connectivity and EEG power spectra in overweight and obese patients with food addiction: An eLORETA study.

    Science.gov (United States)

    Imperatori, Claudio; Fabbricatore, Mariantonietta; Innamorati, Marco; Farina, Benedetto; Quintiliani, Maria Isabella; Lamis, Dorian A; Mazzucchi, Edoardo; Contardi, Anna; Vollono, Catello; Della Marca, Giacomo

    2015-12-01

    We evaluated the modifications of electroencephalographic (EEG) power spectra and EEG connectivity in overweight and obese patients with elevated food addiction (FA) symptoms. Fourteen overweight and obese patients (3 men and 11 women) with three or more FA symptoms and fourteen overweight and obese patients (3 men and 11 women) with two or less FA symptoms were included in the study. EEG was recorded during three different conditions: 1) five minutes resting state (RS), 2) five minutes resting state after a single taste of a chocolate milkshake (ML-RS), and 3) five minutes resting state after a single taste of control neutral solution (N-RS). EEG analyses were conducted by means of the exact Low Resolution Electric Tomography software (eLORETA). Significant modification was observed only in the ML-RS condition. Compared to controls, patients with three or more FA symptoms showed an increase of delta power in the right middle frontal gyrus (Brodmann Area [BA] 8) and in the right precentral gyrus (BA 9), and theta power in the right insula (BA 13) and in the right inferior frontal gyrus (BA 47). Furthermore, compared to controls, patients with three or more FA symptoms showed an increase of functional connectivity in fronto-parietal areas in both the theta and alpha band. The increase of functional connectivity was also positively associated with the number of FA symptoms. Taken together, our results show that FA has similar neurophysiological correlates of other forms of substance-related and addictive disorders suggesting similar psychopathological mechanisms.

  16. Measurements of bremsstrahlung spectra of Lanzhou ECR Ion Source No. 3 (LECR3)

    International Nuclear Information System (INIS)

    Zhao, H.Y.; Zhao, H.W.; Ma, X.W.; Zhang, S.F.; Feng, W.T.; Zhu, X.L.; Zhang, Z.M.; He, W.; Sun, L.T.; Feng, Y.C.; Cao, Y.; Li, J.Y.; Li, X.X.; Wang, H.; Ma, B.H.

    2006-01-01

    In order to diagnose the electron cyclotron resonance (ECR) plasma, electron bremsstrahlung spectra were measured by a HPGe detector on Lanzhou ECR Ion Source No. 3 at IMP. The ion source was operated with argon under various working conditions, including different microwave power, mixing gas, extraction high voltage (HV), and so on. Some of the measured spectra are presented in this article. The dependence of energetic electron population on mixing gas and extraction HV is also described. Additionally, we are looking forward to further measurements on SECRAL (Superconducting ECR Ion Source with Advanced design at Lanzhou)

  17. Analysis of spatial and temporal spectra of liquid film surface in annular gas-liquid flow

    Science.gov (United States)

    Alekseenko, Sergey; Cherdantsev, Andrey; Heinz, Oksana; Kharlamov, Sergey; Markovich, Dmitriy

    2013-09-01

    Wavy structure of liquid film in annular gas-liquid flow without liquid entrainment consists of fast long-living primary waves and slow short-living secondary waves. In present paper, results of spectral analysis of this wavy structure are presented. Application of high-speed LIF technique allowed us to perform such analysis in both spatial and temporal domains. Power spectra in both domains are characterized by one-humped shape with long exponential tail. Influence of gas velocity, liquid Reynolds number, liquid viscosity and pipe diameter on frequency of the waves is investigated. When gravity effect is much lesser than the shear stress, similarity of power spectra at different gas velocities is observed. Using combination of spectral analysis and identification of characteristic lines of primary waves, frequency of generation of secondary waves by primary waves is measured.

  18. The envelope of the power spectra of over a thousand δ Scuti stars. The T̅eff - νmax scaling relation

    Science.gov (United States)

    Barceló Forteza, S.; Roca Cortés, T.; García, R. A.

    2018-06-01

    CoRoT and Kepler high-precision photometric data allowed the detection and characterization of the oscillation parameters in stars other than the Sun. Moreover, thanks to the scaling relations, it is possible to estimate masses and radii for thousands of solar-type oscillating stars. Recently, a Δν - ρ relation has been found for δ Scuti stars. Now, analysing several hundreds of this kind of stars observed with CoRoT and Kepler, we present an empiric relation between their frequency at maximum power of their oscillation spectra and their effective temperature. Such a relation can be explained with the help of the κ-mechanism and the observed dispersion of the residuals is compatible with they being caused by the gravity-darkening effect. Table A.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A46

  19. Thinking outside the box: effects of modes larger than the survey on matter power spectrum covariance

    International Nuclear Information System (INIS)

    Putter, Roland de; Wagner, Christian; Verde, Licia; Mena, Olga; Percival, Will J.

    2012-01-01

    Accurate power spectrum (or correlation function) covariance matrices are a crucial requirement for cosmological parameter estimation from large scale structure surveys. In order to minimize reliance on computationally expensive mock catalogs, it is important to have a solid analytic understanding of the different components that make up a covariance matrix. Considering the matter power spectrum covariance matrix, it has recently been found that there is a potentially dominant effect on mildly non-linear scales due to power in modes of size equal to and larger than the survey volume. This beat coupling effect has been derived analytically in perturbation theory and while it has been tested with simulations, some questions remain unanswered. Moreover, there is an additional effect of these large modes, which has so far not been included in analytic studies, namely the effect on the estimated average density which enters the power spectrum estimate. In this article, we work out analytic, perturbation theory based expressions including both the beat coupling and this local average effect and we show that while, when isolated, beat coupling indeed causes large excess covariance in agreement with the literature, in a realistic scenario this is compensated almost entirely by the local average effect, leaving only ∼ 10% of the excess. We test our analytic expressions by comparison to a suite of large N-body simulations, using both full simulation boxes and subboxes thereof to study cases without beat coupling, with beat coupling and with both beat coupling and the local average effect. For the variances, we find excellent agreement with the analytic expressions for k −1 at z = 0.5, while the correlation coefficients agree to beyond k = 0.4 hMpc −1 . As expected, the range of agreement increases towards higher redshift and decreases slightly towards z = 0. We finish by including the large-mode effects in a full covariance matrix description for arbitrary survey

  20. Cosmic ray H and He spectra from 2 to 800 TeV/nucleon from the JACEE experiments

    International Nuclear Information System (INIS)

    Nilsen, B. S.; Cherry, M. L.; Sengupta, K.; Wefel, J. P.; Asakimori, K.; Burnett, T. H.; Iwai, J.; Lord, J.; Olson, E. D.; Strausz, S. C.; Wilkes, R. J.; Zager, E.; Chevli, K.; Gregory, J. C.; Johnson, J.; Shiina, T.; Takahashi, Y.; Christl, M. J.; Derrickson, J. H.; Fountain, W. F.

    1997-01-01

    Results for the cosmic ray hydrogen and helium spectra up to 800 TeV, near the 'knee' region, are presented. There is no sign of a break in either the hydrogen or helium spectra. The differential power law slopes are 2.80±0.04 for hydrogen and 2.68±0.06 for helium. With these new H and He measurements, together with earlier reported results for the heavier elements, the sum of the spectra give an all-particle spectrum that is in good agreement with the all-particle spectrum measured using extensive air showers

  1. Transverse Momentum Spectra of KS0 and K*0 at Midrapidity in d + Au, Cu + Cu, and p+p Collisions at √(sNN)=200 GeV

    International Nuclear Information System (INIS)

    Zhang, Guo-Xing; Li, Bao-Chun; Guo, Yuan-Yuan

    2015-01-01

    We analyze transverse momentum spectra of K S 0 and K *0 at midrapidity in d + Au, Cu + Cu, and p+p collisions at √(s NN )=200 GeV in the formworks of Tsallis statistics and Boltzmann statistics, respectively. Both of them can describe the transverse momentum spectra and extract the thermodynamics parameters of matter evolution in the collisions. The parameters are helpful for us to understand the thermodynamics factors of the particle production

  2. Methods for surveillance of noise signals from nuclear power plants using auto power spectra

    International Nuclear Information System (INIS)

    Streich, M.

    1988-01-01

    A survey of methods for noise diagnostics applied in the nuclear power plant 'Bruno Leuschner' for surveillance of primary circuit is given. Considering a special example concept of surveillance of standard deviations is explained. (author)

  3. Signatures of SUSY dark matter at the LHC and in the spectra of cosmic rays

    International Nuclear Information System (INIS)

    Olzem, J.

    2007-01-01

    This thesis discusses the search for supersymmetry at the future Large Hadron Collider (LHC) and the ongoing construction of one of the four large LHC experiments, the Compact Muon Solenoid (CMS), and focuses on the detection of signals from the annihilation of supersymmetric dark matter in the spectra of cosmic rays. The final steps of assembly of 1061 silicon microstrip detector modules for the CMS tracker endcaps are performed at the 1. Physikalisches Institut B at the RWTH Aachen. A laser test facility for these modules was developed and is described in this thesis. In contrast to test procedures based only on the evaluation of pedestal and noise data, the test facility relies on the generation of signals in the silicon sensors by infrared laser illumination. The fully automatic test facility provides high throughput and easy operation for the series production of the modules. Its performance is validated by investigating a reference module with artificially prepared defects of three types: open wirebonds, short-circuited strips and pinholes. It is shown that all defects are clearly detected. In addition to defect detection, an indication for the type of defect is provided. In a further validation step, nine modules from a prototype series are investigated with the laser test facility. Confirming the earlier results on the reference module, defective strips are reliably identified. This thesis describes a novel approach of positron identification with the space-borne AMS-01 experiment, namely through the detection of bremsstrahlung conversion in a silicon microstrip detector. In order to obtain the highest positron selection efficiency possible, novel combinatorial track finding algorithms were developed, particularly optimized for the signature of converted bremsstrahlung. By applying restrictions on the invariant mass of particles the background to the positron sample is largely eliminated. The remaining background contamination is determined from large

  4. Quantitative analysis of directional spontaneous emission spectra from light sources in photonic crystals

    International Nuclear Information System (INIS)

    Nikolaev, Ivan S.; Lodahl, Peter; Vos, Willem L.

    2005-01-01

    We have performed angle-resolved measurements of spontaneous-emission spectra from laser dyes and quantum dots in opal and inverse opal photonic crystals. Pronounced directional dependencies of the emission spectra are observed: angular ranges of strongly reduced emission adjoin with angular ranges of enhanced emission. It appears that emission from embedded light sources is affected both by the periodicity and by the structural imperfections of the crystals: the photons are Bragg diffracted by lattice planes and scattered by unavoidable structural disorder. Using a model comprising diffuse light transport and photonic band structure, we quantitatively explain the directional emission spectra. This work provides detailed understanding of the transport of spontaneously emitted light in real photonic crystals, which is essential in the interpretation of quantum optics in photonic-band-gap crystals and for applications wherein directional emission and total emission power are controlled

  5. AN EMPIRICAL METHOD FOR IMPROVING THE QUALITY OF RXTE HEXTE SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Javier A.; Steiner, James F.; McClintock, Jeffrey E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Grinberg, Victoria [MIT Kavli Institute for Astrophysics and Space Research, MIT, 70 Vassar Street, Cambridge, MA 02139 (United States); Pottschmidt, Katja [Department of Physics and Center for Space Science and Technology, UMBC, Baltimore, MD 21250 (United States); Rothschild, Richard E., E-mail: javier@head.cfa.harvard.edu, E-mail: jem@cfa.harvard.edu, E-mail: jsteiner@mit.edu, E-mail: grinberg@space.mit.edu, E-mail: katja@milkyway.gsfc.nasa.gov, E-mail: rrothschild@ucsd.edu [Center for Astrophysics and Space Sciences, University of California at San Diego, La Jolla, CA (United States)

    2016-03-01

    We have developed a correction tool to improve the quality of Rossi X-ray Timing Explorer (RXTE) High Energy X-ray Timing Experiment (HEXTE) spectra by employing the same method we used earlier to improve the quality of RXTE Proportional Counter Array (PCA) spectra. We fit all of the hundreds of HEXTE spectra of the Crab individually to a simple power-law model, some 37 million counts in total for Cluster A and 39 million counts for Cluster B, and we create for each cluster a combined spectrum of residuals. We find that the residual spectrum of Cluster A is free of instrumental artifacts while that of Cluster B contains significant features with amplitudes ∼1%; the most prominent is in the energy range 30–50 keV, which coincides with the iodine K edge. Starting with the residual spectrum for Cluster B, via an iterative procedure we created the calibration tool hexBcorr for correcting any Cluster B spectrum of interest. We demonstrate the efficacy of the tool by applying it to Cluster B spectra of two bright black holes, which contain several million counts apiece. For these spectra, application of the tool significantly improves the goodness of fit, while affecting only slightly the broadband fit parameters. The tool may be important for the study of spectral features, such as cyclotron lines, a topic that is beyond the scope of this paper.

  6. Phantom dark energy with varying-mass dark matter particles: Acceleration and cosmic coincidence problem

    International Nuclear Information System (INIS)

    Leon, Genly; Saridakis, Emmanuel N.

    2010-01-01

    We investigate several varying-mass dark matter particle models in the framework of phantom cosmology. We examine whether there exist late-time cosmological solutions, corresponding to an accelerating universe and possessing dark energy and dark matter densities of the same order. Imposing exponential or power-law potentials and exponential or power-law mass dependence, we conclude that the coincidence problem cannot be solved or even alleviated. Thus, if dark energy is attributed to the phantom paradigm, varying-mass dark matter models cannot fulfill the basic requirement that led to their construction.

  7. Controlled power supply for isotopes separator

    International Nuclear Information System (INIS)

    Lavaitte, A.; Pottier, J.

    1953-01-01

    This equipment is destined to equip the separator of isotopes who is the subject of the CEA report n 138. It includes: - a controlled power supply in voltage. - a controlled power supply in current. The spectra of fluctuations of these assembly is different in the two cases. (authors) [fr

  8. Production and degradation of fluorescent dissolved organic matter in surface waters of the eastern north Atlantic ocean

    NARCIS (Netherlands)

    Lønborg, C.; Yokokawa, T.; Herndl, G.J.; Alvarez-Salgado, X.A.

    2015-01-01

    The distribution and fate of coloured dissolved organic matter (CDOM) in the epipelagic Eastern North Atlantic was investigated during a cruise in the summer 2009 by combining field observations and culture experiments. Dissolved organic carbon (DOC) and nitrogen (DON), the absorption spectra of

  9. Smoothed Spectra, Ogives, and Error Estimates for Atmospheric Turbulence Data

    Science.gov (United States)

    Dias, Nelson Luís

    2018-01-01

    A systematic evaluation is conducted of the smoothed spectrum, which is a spectral estimate obtained by averaging over a window of contiguous frequencies. The technique is extended to the ogive, as well as to the cross-spectrum. It is shown that, combined with existing variance estimates for the periodogram, the variance—and therefore the random error—associated with these estimates can be calculated in a straightforward way. The smoothed spectra and ogives are biased estimates; with simple power-law analytical models, correction procedures are devised, as well as a global constraint that enforces Parseval's identity. Several new results are thus obtained: (1) The analytical variance estimates compare well with the sample variance calculated for the Bartlett spectrum and the variance of the inertial subrange of the cospectrum is shown to be relatively much larger than that of the spectrum. (2) Ogives and spectra estimates with reduced bias are calculated. (3) The bias of the smoothed spectrum and ogive is shown to be negligible at the higher frequencies. (4) The ogives and spectra thus calculated have better frequency resolution than the Bartlett spectrum, with (5) gradually increasing variance and relative error towards the low frequencies. (6) Power-law identification and extraction of the rate of dissipation of turbulence kinetic energy are possible directly from the ogive. (7) The smoothed cross-spectrum is a valid inner product and therefore an acceptable candidate for coherence and spectral correlation coefficient estimation by means of the Cauchy-Schwarz inequality. The quadrature, phase function, coherence function and spectral correlation function obtained from the smoothed spectral estimates compare well with the classical ones derived from the Bartlett spectrum.

  10. Scalings, spectra, and statistics of strong wave turbulence

    International Nuclear Information System (INIS)

    Robinson, P.A.

    1996-01-01

    A two-component model of strongly nonlinear wave turbulence is developed for a broad class of systems in which high-frequency electrostatic waves interact with low-frequency sound-like waves. In this model coherent nonlinear wave packets form and collapse amid a sea of incoherent background waves. It is shown that three classes of turbulence exist, typified by Langmuir, lower-hybrid, and upper-hybrid turbulence. Balance between power input to incoherent waves, and dissipation at the end of collapse determines power-law scalings of turbulent electrostatic energy density, density fluctuations, length and time scales. Knowledge of the evolution of collapsing packets enables probability distributions of the magnitudes of electric fields and density fluctuations to be calculated, yielding power-law dependences. Wavenumber spectra of collapsing waves and associated density fluctuations are also calculated and shown to have power-law forms. Applications to Langmuir, lower-hybrid, and upper-hybrid waves are discussed. In the Langmuir case the results agree with earlier theory and simulations, with one exception, which is consistent only with earlier simulations. In the lower-hybrid and upper-hybrid cases, the results are consistent with the few simulations to date. copyright 1996 American Institute of Physics

  11. Calculation of Wind Power Limit adjusting the Continuation Power Flow

    International Nuclear Information System (INIS)

    Santos Fuentefria, Ariel; Castro Fernández, Miguel; Martínez García, Antonio

    2012-01-01

    The wind power insertion in the power system is an important issue and can create some instability problems in voltage and system frequency due to stochastic origin of wind. Know the Wind Power Limit is a very important matter. Existing in bibliography a few methods for calculation of wind power limit. The calculation is based in static constrains, dynamic constraints or both. In this paper is developed a method for the calculation of wind power limit using some adjust in the continuation power flow, and having into account the static constrains. The method is complemented with Minimal Power Production Criterion. The method is proved in the Isla de la Juventud Electric System. The software used in the simulations was the Power System Analysis Toolbox (PSAT). (author)

  12. ACCURATE UNIVERSAL MODELS FOR THE MASS ACCRETION HISTORIES AND CONCENTRATIONS OF DARK MATTER HALOS

    International Nuclear Information System (INIS)

    Zhao, D. H.; Jing, Y. P.; Mo, H. J.; Boerner, G.

    2009-01-01

    A large amount of observations have constrained cosmological parameters and the initial density fluctuation spectrum to a very high accuracy. However, cosmological parameters change with time and the power index of the power spectrum dramatically varies with mass scale in the so-called concordance ΛCDM cosmology. Thus, any successful model for its structural evolution should work well simultaneously for various cosmological models and different power spectra. We use a large set of high-resolution N-body simulations of a variety of structure formation models (scale-free, standard CDM, open CDM, and ΛCDM) to study the mass accretion histories, the mass and redshift dependence of concentrations, and the concentration evolution histories of dark matter halos. We find that there is significant disagreement between the much-used empirical models in the literature and our simulations. Based on our simulation results, we find that the mass accretion rate of a halo is tightly correlated with a simple function of its mass, the redshift, parameters of the cosmology, and of the initial density fluctuation spectrum, which correctly disentangles the effects of all these factors and halo environments. We also find that the concentration of a halo is strongly correlated with the universe age when its progenitor on the mass accretion history first reaches 4% of its current mass. According to these correlations, we develop new empirical models for both the mass accretion histories and the concentration evolution histories of dark matter halos, and the latter can also be used to predict the mass and redshift dependence of halo concentrations. These models are accurate and universal: the same set of model parameters works well for different cosmological models and for halos of different masses at different redshifts, and in the ΛCDM case the model predictions match the simulation results very well even though halo mass is traced to about 0.0005 times the final mass, when

  13. Hydrodynamical description of 200A GeV/c S+Au collisions: Hadron and electromagnetic spectra

    International Nuclear Information System (INIS)

    Sollfrank, J.; Huovinen, P.; Kataja, M.; Ruuskanen, P.V.; Prakash, M.; Venugopalan, R.

    1997-01-01

    We study relativistic S+Au collisions at 200A GeV/c using a hydrodynamical approach. We test various equations of state (EOS close-quote s), which are used to describe the strongly interacting matter at densities attainable in the CERN-SPS heavy ion experiments. For each EOS, suitable initial conditions can be determined to reproduce the experimental hadron spectra; this emphasizes the ambiguity between the initial conditions and the EOS in such an approach. Simultaneously, we calculate the resulting thermal photon and dielectron spectra, and compare with experiments. If one allows the excitation of resonance states with increasing temperature, the electromagnetic signals from scenarios with and without phase transition are very similar and are not resolvable within the current experimental resolution. Only EOS close-quote s with a few degrees of freedom up to very high temperatures can be ruled out presently. We deduce an upper bound of about 250 MeV for the initial temperature from the single photon spectra of WA80. With regard to the CERES dilepton data, none of the EOS close-quote s considered, in conjunction with the standard leading order dilepton rates, succeed in reproducing the observed excess of dileptons below the ρ peak. Our work, however, suggests that an improved measurement of the photon and dilepton spectra has the potential to strongly constrain the EOS. copyright 1997 The American Physical Society

  14. Thermal and magnetic properties of neutron matter

    International Nuclear Information System (INIS)

    Abd-Alla, M.; Ragab, H.S.; Hassan, M.Y.M.

    1990-01-01

    The Thomas-Fermi model is used to calculate the equation of state of thermal polarized neutron matter applying Seyler-Blanchard interaction. The resulting equation of state is stiff and has a small dependence on both the temperature and the spin excess parameter. We expand the Fermi integrals in powers of temperature up to second order to examine the T 2 approximation for neutron matter. It is found to be reliable up to T = 10 MeV. We also studied the ferromagnetic transition in neutron matter. We found a ferromagnetic transition at density ρ ≅ 2ρ0. This ferromagnetic transition is found to have a small dependence on both the temperature and the spin excess parameter. We also studied the dependence of the effective mass and the sound velocity for polarized neutron matter on temperature. (author). 36 refs, 17 figs

  15. Analysis of the organic matter which are present in solid organic wastes from urban areas

    International Nuclear Information System (INIS)

    Canellas, Luciano Pasqualoto; Santos, Gabriel de Araujo; Amarai Sobrinho, Nelson Moura Brasil do; Mazur, Nelson; Moraes, Anselmo Alpande

    1997-01-01

    This study analyses the organic matter which are present in the solid wastes from the Rio de Janeiro city - Brazil. The humic acids were extracted and purified. After the purification, the humic acids were dried by lyophilization. Visible UV, infrared and NMR spectra were obtained for the humic acids extracted

  16. Response spectra by blind faults for design purpose of stiff structures on rock site

    International Nuclear Information System (INIS)

    Hiroyuki Mizutani; Kenichi Kato; Masayuki Takemura; Kazuhiko Yashiro; Kazuo Dan

    2005-01-01

    The goal of this paper is to propose the response spectra by blind faults for seismic design of nuclear power facilities. It is impossible to evaluate earthquake ground motions from blind faults, because the size and the location of blind fault cannot be identified even if the detailed geological surveys are conducted. From the viewpoint of seismic design, it is crucial to investigate the upper level of earthquake ground motions due to blind faults. In this paper, 41 earthquakes that occurred in the upper crust in Japan and California are selected and classified into the active and the blind fault types. On the basis of near-source strong motion records observed on rock sites, upper level of response spectra by blind faults is examined. The estimated upper level is as follows: the peak ground acceleration is 450 cm/s 2 , the flat level of the acceleration response spectra is 1200 cm/s 2 , and the flat level of the velocity response spectra is 100 cm/s on rock sites with shear wave velocity Vs of about 700 m/s. The upper level can envelop the observed response spectra in near-source region on rock sites. (authors)

  17. Negative ion mass spectra and particulate formation in rf silane plasma deposition experiments

    International Nuclear Information System (INIS)

    Howling, A.A.; Dorier, J.L.; Hollenstein, C.

    1992-09-01

    Negative ions have been clearly identified in silane rf plasmas used for the deposition of amorphous silicon. Mass spectra were measured for monosilicon up to pentasilicon negative ion radical groups in power-modulated plasmas by means of a mass spectrometer mounted just outside the glow region. Negative ions were only observed over a limited range of power modulation frequency which corresponds to particle-free conditions. The importance of negative ions regarding particulate formation is demonstrated and commented upon. (author) 3 figs., 19 refs

  18. Progress in Noise Thermometry at 505 K and 693 K Using Quantized Voltage Noise Ratio Spectra

    Science.gov (United States)

    Tew, W. L.; Benz, S. P.; Dresselhaus, P. D.; Coakley, K. J.; Rogalla, H.; White, D. R.; Labenski, J. R.

    2010-09-01

    Technical advances and new results in noise thermometry at temperatures near the tin freezing point and the zinc freezing point using a quantized voltage noise source (QVNS) are reported. The temperatures are derived by comparing the power spectral density of QVNS synthesized noise with that of Johnson noise from a known resistance at both 505 K and 693 K. Reference noise is digitally synthesized so that the average power spectra of the QVNS match those of the thermal noise, resulting in ratios of power spectra close to unity in the low-frequency limit. Three-parameter models are used to account for differences in impedance-related time constants in the spectra. Direct comparison of noise temperatures to the International Temperature Scale of 1990 (ITS-90) is achieved in a comparison furnace with standard platinum resistance thermometers. The observed noise temperatures determined by operating the noise thermometer in both absolute and relative modes, and related statistics together with estimated uncertainties are reported. The relative noise thermometry results are combined with results from other thermodynamic determinations at temperatures near the tin freezing point to calculate a value of T - T 90 = +4(18) mK for temperatures near the zinc freezing point. These latest results achieve a lower uncertainty than that of our earlier efforts. The present value of T - T 90 is compared to other published determinations from noise thermometry and other methods.

  19. White noise from dark matter: 21 cm observations of early baryon collapse

    International Nuclear Information System (INIS)

    Zurek, Kathryn M.; Hogan, Craig J.

    2007-01-01

    In concordance cosmology, dark matter density perturbations generated by inflation lead to nonlinear, virialized minihalos, into which baryons collapse at redshift z∼20. We survey here novel baryon evolution produced by a modification of the power spectrum from white noise density perturbations at scales below k∼10h Mpc -1 (the smallest scales currently measured with the Lyman-α forest). Exotic dark matter dynamics, such as would arise from scalar dark matter with a late phase transition (similar to an axion, but with lower mass), or primordial black hole dark matter, create such an amplification of small scale power. The dark matter produced in such a phase transition collapses into minihalos, with a size given by the dark matter mass within the horizon at the phase transition. If the mass of the initial minihalos is larger than ∼10 -3 M · , the modified power spectrum is found to cause widespread baryon collapse earlier than standard ΛCDM, leading to earlier gas heating. It also results in higher spin temperature of the baryons in the 21 cm line relative to ΛCDM at redshifts z>20 if the mass of the minihalo is larger than 1M · . It is estimated that experiments probing 21 cm radiation at high redshift will contribute a significant constraint on dark matter models of this type for initial minihalos larger than ∼10M · . These experiments may also detect (or rule out) primordial black holes as the dark matter in the window 30M · H 3 M · still left open by strong microlensing experiments and other astrophysical constraints. Early experiments reaching to z≅15 will constrain minihalos down to ∼10 3 M ·

  20. Predicting ambient aerosol thermal-optical reflectance (TOR) measurements from infrared spectra: organic carbon

    Science.gov (United States)

    Dillner, A. M.; Takahama, S.

    2015-03-01

    Organic carbon (OC) can constitute 50% or more of the mass of atmospheric particulate matter. Typically, organic carbon is measured from a quartz fiber filter that has been exposed to a volume of ambient air and analyzed using thermal methods such as thermal-optical reflectance (TOR). Here, methods are presented that show the feasibility of using Fourier transform infrared (FT-IR) absorbance spectra from polytetrafluoroethylene (PTFE or Teflon) filters to accurately predict TOR OC. This work marks an initial step in proposing a method that can reduce the operating costs of large air quality monitoring networks with an inexpensive, non-destructive analysis technique using routinely collected PTFE filter samples which, in addition to OC concentrations, can concurrently provide information regarding the composition of organic aerosol. This feasibility study suggests that the minimum detection limit and errors (or uncertainty) of FT-IR predictions are on par with TOR OC such that evaluation of long-term trends and epidemiological studies would not be significantly impacted. To develop and test the method, FT-IR absorbance spectra are obtained from 794 samples from seven Interagency Monitoring of PROtected Visual Environment (IMPROVE) sites collected during 2011. Partial least-squares regression is used to calibrate sample FT-IR absorbance spectra to TOR OC. The FTIR spectra are divided into calibration and test sets by sampling site and date. The calibration produces precise and accurate TOR OC predictions of the test set samples by FT-IR as indicated by high coefficient of variation (R2; 0.96), low bias (0.02 μg m-3, the nominal IMPROVE sample volume is 32.8 m3), low error (0.08 μg m-3) and low normalized error (11%). These performance metrics can be achieved with various degrees of spectral pretreatment (e.g., including or excluding substrate contributions to the absorbances) and are comparable in precision to collocated TOR measurements. FT-IR spectra are also

  1. What matters to women in science? Gender, power and bureaucracy

    Czech Academy of Sciences Publication Activity Database

    Linková, Marcela; Červinková, Alice

    2011-01-01

    Roč. 18, č. 3 (2011), s. 215-230 ISSN 1350-5068 R&D Projects: GA MŠk OK08007 Institutional research plan: CEZ:AV0Z70280505 Keywords : gender * science policy * modes of mattering Subject RIV: AO - Sociology, Demography Impact factor: 0.216, year: 2011

  2. Revealing dark matter substructure with anisotropies in the diffuse gamma-ray background

    OpenAIRE

    Siegal-Gaskins, Jennifer M.

    2008-01-01

    The majority of gamma-ray emission from Galactic dark matter annihilation is likely to be detected as a contribution to the diffuse gamma-ray background. I show that dark matter substructure in the halo of the Galaxy induces characteristic anisotropies in the diffuse background that could be used to determine the small-scale dark matter distribution. I calculate the angular power spectrum of the emission from dark matter substructure for several models of the subhalo population, and show that...

  3. Revival of the unified dark energy-dark matter model?

    International Nuclear Information System (INIS)

    Bento, M.C.; Bertolami, O.; Sen, A.A.

    2004-01-01

    We consider the generalized Chaplygin gas (GCG) proposal for unification of dark energy and dark matter and show that it admits an unique decomposition into dark energy and dark matter components once phantomlike dark energy is excluded. Within this framework, we study structure formation and show that difficulties associated to unphysical oscillations or blowup in the matter power spectrum can be circumvented. Furthermore, we show that the dominance of dark energy is related to the time when energy density fluctuations start deviating from the linear δ∼a behavior

  4. COSMOLOGY OF CHAMELEONS WITH POWER-LAW COUPLINGS

    International Nuclear Information System (INIS)

    Mota, David F.; Winther, Hans A.

    2011-01-01

    In chameleon field theories, a scalar field can couple to matter with gravitational strength and still evade local gravity constraints due to a combination of self-interactions and the couplings to matter. Originally, these theories were proposed with a constant coupling to matter; however, the chameleon mechanism also extends to the case where the coupling becomes field dependent. We study the cosmology of chameleon models with power-law couplings and power-law potentials. It is found that these generalized chameleons, when viable, have a background expansion very close to ΛCDM, but can in some special cases enhance the growth of the linear perturbations at low redshifts. For the models we consider, it is found that this region of the parameter space is ruled out by local gravity constraints. Imposing a coupling to dark matter only, the local constraints are avoided, and it is possible to have observable signatures on the linear matter perturbations.

  5. 239Pu prompt fission neutron spectra impact on a set of criticality and experimental reactor benchmarks

    International Nuclear Information System (INIS)

    Peneliau, Y.; Litaize, O.; Archier, P.; De Saint Jean, C.

    2014-01-01

    A large set of nuclear data are investigated to improve the calculation predictions of the new neutron transport simulation codes. With the next generation of nuclear power plants (GEN IV projects), one expects to reduce the calculated uncertainties which are mainly coming from nuclear data and are still very important, before taking into account integral information in the adjustment process. In France, future nuclear power plant concepts will probably use MOX fuel, either in Sodium Fast Reactors or in Gas Cooled Fast Reactors. Consequently, the knowledge of 239 Pu cross sections and other nuclear data is crucial issue in order to reduce these sources of uncertainty. The Prompt Fission Neutron Spectra (PFNS) for 239 Pu are part of these relevant data (an IAEA working group is even dedicated to PFNS) and the work presented here deals with this particular topic. The main international data files (i.e. JEFF-3.1.1, ENDF/B-VII.0, JENDL-4.0, BRC-2009) have been considered and compared with two different spectra, coming from the works of Maslov and Kornilov respectively. The spectra are first compared by calculating their mathematical moments in order to characterize them. Then, a reference calculation using the whole JEFF-3.1.1 evaluation file is performed and compared with another calculation performed with a new evaluation file, in which the data block containing the fission spectra (MF=5, MT=18) is replaced by the investigated spectra (one for each evaluation). A set of benchmarks is used to analyze the effects of PFNS, covering criticality cases and mock-up cases in various neutron flux spectra (thermal, intermediate, and fast flux spectra). Data coming from many ICSBEP experiments are used (PU-SOL-THERM, PU-MET-FAST, PU-MET-INTER and PU-MET-MIXED) and French mock-up experiments are also investigated (EOLE for thermal neutron flux spectrum and MASURCA for fast neutron flux spectrum). This study shows that many experiments and neutron parameters are very sensitive to

  6. Reagent-free bacterial identification using multivariate analysis of transmission spectra

    Science.gov (United States)

    Smith, Jennifer M.; Huffman, Debra E.; Acosta, Dayanis; Serebrennikova, Yulia; García-Rubio, Luis; Leparc, German F.

    2012-10-01

    The identification of bacterial pathogens from culture is critical to the proper administration of antibiotics and patient treatment. Many of the tests currently used in the clinical microbiology laboratory for bacterial identification today can be highly sensitive and specific; however, they have the additional burdens of complexity, cost, and the need for specialized reagents. We present an innovative, reagent-free method for the identification of pathogens from culture. A clinical study has been initiated to evaluate the sensitivity and specificity of this approach. Multiwavelength transmission spectra were generated from a set of clinical isolates including Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus. Spectra of an initial training set of these target organisms were used to create identification models representing the spectral variability of each species using multivariate statistical techniques. Next, the spectra of the blinded isolates of targeted species were identified using the model achieving >94% sensitivity and >98% specificity, with 100% accuracy for P. aeruginosa and S. aureus. The results from this on-going clinical study indicate this approach is a powerful and exciting technique for identification of pathogens. The menu of models is being expanded to include other bacterial genera and species of clinical significance.

  7. Distinctive effects of allochthonous and autochthonous organic matter on CDOM spectra in a tropical lake

    OpenAIRE

    Brandão, Luciana Pena Mello; Brighenti, Ludmila Silva; Staehr, Peter Anton; Asmala, Eero; Massicotte, Philippe; Tonetta, Denise; Barbosa, Francisco Antônio Rodrigues; Pujoni, Diego; Bezerra-Neto, José Fernandes

    2018-01-01

    Despite the increasing understanding about differences in carbon cycling between temperate and tropical freshwater systems, our knowledge on the importance of organic matter (OM) pools on light absorption properties in tropical lakes is very scarce. We performed a factorial mesocosm experiment in a tropical lake (Minas Gerais, Brazil) to evaluate the effects of increased concentrations of allochthonous and autochthonous OM on the light absorption characteristics of colored dissolved organic m...

  8. Ecosystem Services Flows: Why Stakeholders' Power Relationships Matter.

    Science.gov (United States)

    Felipe-Lucia, María R; Martín-López, Berta; Lavorel, Sandra; Berraquero-Díaz, Luis; Escalera-Reyes, Javier; Comín, Francisco A

    2015-01-01

    The ecosystem services framework has enabled the broader public to acknowledge the benefits nature provides to different stakeholders. However, not all stakeholders benefit equally from these services. Rather, power relationships are a key factor influencing the access of individuals or groups to ecosystem services. In this paper, we propose an adaptation of the "cascade" framework for ecosystem services to integrate the analysis of ecological interactions among ecosystem services and stakeholders' interactions, reflecting power relationships that mediate ecosystem services flows. We illustrate its application using the floodplain of the River Piedra (Spain) as a case study. First, we used structural equation modelling (SEM) to model the dependence relationships among ecosystem services. Second, we performed semi-structured interviews to identify formal power relationships among stakeholders. Third, we depicted ecosystem services according to stakeholders' ability to use, manage or impair ecosystem services in order to expose how power relationships mediate access to ecosystem services. Our results revealed that the strongest power was held by those stakeholders who managed (although did not use) those keystone ecosystem properties and services that determine the provision of other services (i.e., intermediate regulating and final services). In contrast, non-empowered stakeholders were only able to access the remaining non-excludable and non-rival ecosystem services (i.e., some of the cultural services, freshwater supply, water quality, and biological control). In addition, land stewardship, access rights, and governance appeared as critical factors determining the status of ecosystem services. Finally, we stress the need to analyse the role of stakeholders and their relationships to foster equal access to ecosystem services.

  9. Non-linear corrections to the cosmological matter power spectrum and scale-dependent galaxy bias: implications for parameter estimation

    International Nuclear Information System (INIS)

    Hamann, Jan; Hannestad, Steen; Melchiorri, Alessandro; Wong, Yvonne Y Y

    2008-01-01

    We explore and compare the performances of two non-linear correction and scale-dependent biasing models for the extraction of cosmological information from galaxy power spectrum data, especially in the context of beyond-ΛCDM (CDM: cold dark matter) cosmologies. The first model is the well known Q model, first applied in the analysis of Two-degree Field Galaxy Redshift Survey data. The second, the P model, is inspired by the halo model, in which non-linear evolution and scale-dependent biasing are encapsulated in a single non-Poisson shot noise term. We find that while the two models perform equally well in providing adequate correction for a range of galaxy clustering data in standard ΛCDM cosmology and in extensions with massive neutrinos, the Q model can give unphysical results in cosmologies containing a subdominant free-streaming dark matter whose temperature depends on the particle mass, e.g., relic thermal axions, unless a suitable prior is imposed on the correction parameter. This last case also exposes the danger of analytic marginalization, a technique sometimes used in the marginalization of nuisance parameters. In contrast, the P model suffers no undesirable effects, and is the recommended non-linear correction model also because of its physical transparency

  10. Non-linear corrections to the cosmological matter power spectrum and scale-dependent galaxy bias: implications for parameter estimation

    Science.gov (United States)

    Hamann, Jan; Hannestad, Steen; Melchiorri, Alessandro; Wong, Yvonne Y. Y.

    2008-07-01

    We explore and compare the performances of two non-linear correction and scale-dependent biasing models for the extraction of cosmological information from galaxy power spectrum data, especially in the context of beyond-ΛCDM (CDM: cold dark matter) cosmologies. The first model is the well known Q model, first applied in the analysis of Two-degree Field Galaxy Redshift Survey data. The second, the P model, is inspired by the halo model, in which non-linear evolution and scale-dependent biasing are encapsulated in a single non-Poisson shot noise term. We find that while the two models perform equally well in providing adequate correction for a range of galaxy clustering data in standard ΛCDM cosmology and in extensions with massive neutrinos, the Q model can give unphysical results in cosmologies containing a subdominant free-streaming dark matter whose temperature depends on the particle mass, e.g., relic thermal axions, unless a suitable prior is imposed on the correction parameter. This last case also exposes the danger of analytic marginalization, a technique sometimes used in the marginalization of nuisance parameters. In contrast, the P model suffers no undesirable effects, and is the recommended non-linear correction model also because of its physical transparency.

  11. Sound waves in hadronic matter

    Science.gov (United States)

    Wilk, Grzegorz; Włodarczyk, Zbigniew

    2018-01-01

    We argue that recent high energy CERN LHC experiments on transverse momenta distributions of produced particles provide us new, so far unnoticed and not fully appreciated, information on the underlying production processes. To this end we concentrate on the small (but persistent) log-periodic oscillations decorating the observed pT spectra and visible in the measured ratios R = σdata(pT) / σfit (pT). Because such spectra are described by quasi-power-like formulas characterised by two parameters: the power index n and scale parameter T (usually identified with temperature T), the observed logperiodic behaviour of the ratios R can originate either from suitable modifications of n or T (or both, but such a possibility is not discussed). In the first case n becomes a complex number and this can be related to scale invariance in the system, in the second the scale parameter T exhibits itself log-periodic oscillations which can be interpreted as the presence of some kind of sound waves forming in the collision system during the collision process, the wave number of which has a so-called self similar solution of the second kind. Because the first case was already widely discussed we concentrate on the second one and on its possible experimental consequences.

  12. An effective model for fermion dark matter. Indirect detection of supersymmetric dark matter in astronomy with the CELESTE Telescope; Modele effectif de matiere noire fermionique. Detection indirecte de matiere noir supersymetrique en astronomie avec le Telescope CELESTE

    Energy Technology Data Exchange (ETDEWEB)

    Lavalle, Julien [Ecole Doctorale des Sciences Fondamentales, Universite Blaise Pascal, Aubiere (France)

    2004-07-01

    The purpose of this thesis is to discuss both phenomenological and experimental aspects of Dark Matter, related to its indirect detection with gamma-ray astronomy. In the MSSM framework, neutralinos arise as natural candidates to non-baryonic and Cold Dark Matter, whose gravitational effects manifest in the Universe at different scales. As they are Majorana particles, they may in principle annihilate in high density regions, as the centres of galaxies, and produce gamma rays. Nevertheless, the expected fluxes are basically low compared to experimental sensitivities. After estimating gamma fluxes from M31 and Draco galaxies in the MSSM scheme, we first generalize the MSSM couplings by studying an effective Lagrangian. We show that the only constraint of imposing a relic abundance compatible with recent measurements obviously deplete significantly the gamma ray production, but also that predictions in this effective approach are more optimistic for indirect detection than the MSSM. In a second part, we present the indirect searches for Dark Matter performed with the CELESTE Cherenkov telescope towards the galaxy M31. We propose a statistical method to reconstruct spectra, mandatory to discriminate classical and exotic spectra. The M31 data analysis enables the extraction of an upper limit on the gamma ray flux, which is the first worldwide for a galaxy in the energy range 50-500 GeV, and whose astrophysical interest goes beyond indirect searches for Dark Matter. (author)

  13. Characterizing Sky Spectra Using SDSS BOSS Data

    Science.gov (United States)

    Florez, Lina Maria; Strauss, Michael A.

    2018-01-01

    In the optical/near-infrared spectra gathered by a ground-based telescope observing very faint sources, the strengths of the emission lines due to the Earth’s atmosphere can be many times larger than the fluxes of the sources we are interested in. Thus the limiting factor in faint-object spectroscopy is the degree to which systematics in the sky subtraction can be minimized. Longwards of 6000 Angstroms, the night-sky spectrum is dominated by multiple vibrational/rotational transitions of the OH radical from our upper atmosphere. While the wavelengths of these lines are the same in each sky spectrum, their relative strengths vary considerably as a function of time and position on the sky. The better we can model their strengths, the better we can hope to subtract them off. We expect that the strength of lines from common upper energy levels will be correlated with one another. We used flux-calibrated sky spectra from the Sloan Digital Sky Survey Baryon Oscillation Spectroscopic Survey (SDSS BOSS) to explore these correlations. Our aim is to use these correlations for creating improved sky subtraction algorithms for the Prime Focus Spectrograph (PFS) on the 8.2-meter Subaru Telescope. When PFS starts gathering data in 2019, it will be the most powerful multi-object spectrograph in the world. Since PFS will be gathering data on sources as faint as 24th magnitude and fainter, it's of upmost importance to be able to accurately measure and subtract sky spectra from the data that we receive.

  14. High-field NMR spectroscopy and FTICR mass spectrometry: powerful discovery tools for the molecular level characterization of marine dissolved organic matter

    Directory of Open Access Journals (Sweden)

    N. Hertkorn

    2013-03-01

    Full Text Available High-performance, non-target, high-resolution organic structural spectroscopy was applied to solid phase extracted marine dissolved organic matter (SPE-DOM isolated from four different depths in the open South Atlantic Ocean off the Angola coast (3° E, 18° S; Angola Basin and provided molecular level information with extraordinary coverage and resolution. Sampling was performed at depths of 5 m (Angola Current; near-surface photic zone, 48 m (Angola Current; fluorescence maximum, 200 m (still above Antarctic Intermediate Water, AAIW; upper mesopelagic zone and 5446 m (North Atlantic Deep Water, NADW; abyssopelagic, ~30 m above seafloor and produced SPE-DOM with near 40% carbon yield and beneficial nuclear magnetic resonance (NMR relaxation properties, a crucial prerequisite for the acquisition of NMR spectra with excellent resolution. 1H and 13C NMR spectra of all four marine SPE-DOM showed smooth bulk envelopes, reflecting intrinsic averaging from massive signal overlap, with a few percent of visibly resolved signatures and variable abundances for all major chemical environments. The abundance of singly oxygenated aliphatics and acetate derivatives in 1H NMR spectra declined from surface to deep marine SPE-DOM, whereas C-based aliphatics and carboxyl-rich alicyclic molecules (CRAM increased in abundance. Surface SPE-DOM contained fewer methyl esters than all other samples, likely a consequence of direct exposure to sunlight. Integration of 13C NMR spectra revealed continual increase of carboxylic acids and ketones from surface to depth, reflecting a progressive oxygenation, with concomitant decline of carbohydrate-related substructures. Aliphatic branching increased with depth, whereas the fraction of oxygenated aliphatics declined for methine, methylene and methyl carbon. Lipids in the oldest SPE-DOM at 5446 m showed a larger share of ethyl groups and methylene carbon than observed in the other samples. Two-dimensional NMR spectra showed

  15. Constraints on decaying Dark Matter from XMM-Newton observations of M31

    CERN Document Server

    Boyarsky, Alexey; Ruchayskiy, Oleg; Savchenko, Vladimir

    2007-01-01

    We derive constraints on parameters of the radiatively decaying Dark Matter (DM) particles, using XMM-Newton EPIC spectra of the Andromeda galaxy (M31). Using the observations of the outer (5'-13') parts of M31 we improve the existing constraints. For the case of sterile neutrino DM, combining our constraints with the latest computation of abundances of sterile neutrino in the Dodelson-Widrow (DW) scenario, we obtain the lower mass limit m_s 5.6 kev), we argue that the scenario in which all the DM is produced via DW mechanism is ruled out. We discuss however other production mechanisms and note that the sterile neutrino remains a viable candidate of Dark Matter, either warm or cold.

  16. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    International Nuclear Information System (INIS)

    Goldston, Robert J.

    2010-01-01

    Integrated energy, environment and economics modeling suggests electrical energy use will increase from 2.4 TWe today to 12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources. Thus nuclear power may be needed to provide ∼30% by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century proliferation risks are much greater, and more resistant to mitigation. The risks of nuclear power should be compared with the risks of the estimated 0.64 C long-term global surface-average temperature rise predicted if nuclear power were replaced with coal-fired power plants without carbon sequestration. Fusion energy, if developed, would provide a source of nuclear power with much lower proliferation risks than fission.

  17. Climate Change, Nuclear Power and Nuclear Proliferation: Magnitude Matters

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Goldston

    2010-03-03

    Integrated energy, environment and economics modeling suggests electrical energy use will increase from 2.4 TWe today to 12 TWe in 2100. It will be challenging to provide 40% of this electrical power from combustion with carbon sequestration, as it will be challenging to provide 30% from renewable energy sources. Thus nuclear power may be needed to provide ~30% by 2100. Calculations of the associated stocks and flows of uranium, plutonium and minor actinides indicate that the proliferation risks at mid-century, using current light-water reactor technology, are daunting. There are institutional arrangements that may be able to provide an acceptable level of risk mitigation, but they will be difficult to implement. If a transition is begun to fast-spectrum reactors at mid-century, without a dramatic change in the proliferation risks of such systems, at the end of the century proliferation risks are much greater, and more resistant to mitigation. The risks of nuclear power should be compared with the risks of the estimated 0.64oC long-term global surface-average temperature rise predicted if nuclear power were replaced with coal-fired power plants without carbon sequestration. Fusion energy, if developed, would provide a source of nuclear power with much lower proliferation risks than fission.

  18. Tensile strain induced changes in the optical spectra of SrTiO.sub.3./sub. epitaxial thin films

    Czech Academy of Sciences Publication Activity Database

    Dejneka, Alexandr; Tyunina, M.; Narkilahti, J.; Levoska, J.; Chvostová, Dagmar; Jastrabík, Lubomír; Trepakov, Vladimír

    2010-01-01

    Roč. 52, č. 10 (2010), 2082-2089 ISSN 1063-7834 R&D Projects: GA ČR GA202/08/1009; GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : SrTiO 3 epitaxial thin films * effect of biaxial tensile strains on optical spectra Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.727, year: 2010

  19. Experimental investigation of coupling between widely spaced modes of a beam using higher-order spectra

    International Nuclear Information System (INIS)

    Khan, K.A.

    2001-01-01

    Experimental studies related to a thin isotropic steel beam are presented. The beam was harmonically excited along its axis creating a situation of parametric excitation. A possible two-to-one internal resonance was considered between the third and fourth modes of the beam with an external resonance of its fourth mode. The coupling phenomenon responsible for transfer of energy from high frequency modes to a widely spaced low frequency mode was studied by using conventional tools and higher-order spectra (third-order spectrum (bispectrum) and fourth-order spectrum (trispectrum)). Pointwise dimensions of the attractors were examined to ascertain their chaotic character. The potential of higher-order spectra in detecting the quadratic and cubic phase couplings among the participating modes during bifurcations, periodically modulated motions, and chaotically modulated motions was also examined. The experimental results are provided in the form of power spectra, fractal dimensions, bispectra, bicoherence spectra, and trispectrum. Experimental observations of transitions from periodic to periodically modulated to chaotically-modulated motions are also presented. (author)

  20. Dark matter that can form dark stars

    International Nuclear Information System (INIS)

    Gondolo, Paolo; Huh, Ji-Haeng; Kim, Hyung Do; Scopel, Stefano

    2010-01-01

    The first stars to form in the Universe may be powered by the annihilation of weakly interacting dark matter particles. These so-called dark stars, if observed, may give us a clue about the nature of dark matter. Here we examine which models for particle dark matter satisfy the conditions for the formation of dark stars. We find that in general models with thermal dark matter lead to the formation of dark stars, with few notable exceptions: heavy neutralinos in the presence of coannihilations, annihilations that are resonant at dark matter freeze-out but not in dark stars, some models of neutrinophilic dark matter annihilating into neutrinos only and lighter than about 50 GeV. In particular, we find that a thermal DM candidate in standard Cosmology always forms a dark star as long as its mass is heavier than ≅ 50 GeV and the thermal average of its annihilation cross section is the same at the decoupling temperature and during the dark star formation, as for instance in the case of an annihilation cross section with a non-vanishing s-wave contribution

  1. Effect of detector size and position on measured vibration spectra of strings and rods

    International Nuclear Information System (INIS)

    Lipcsei, S.; Kiss, S.; Por, G.

    1993-04-01

    Weight functions of string and rod vibrations are described by standing and travelling wave models. The effects of detector size and position on the measured vibration spectra was investigated, and the main characteristics of the transfer function were calculated by a simple standing wave model. The theoretical results were compared with data from laboratory rod vibration experiments, and with pressure fluctuation spectra obtained at the Paks Nuclear Power Plant. In addition, some fundamental physical consequences can be made using the theory of superposition of travelling waves and their reflection on clamped rod ends. (R.P.) 5 refs.; 10 figs

  2. Study of the transverse mass spectra of strange particles in Pb-Pb collisions at 158 A GeV/c

    Czech Academy of Sciences Publication Activity Database

    Antinori, F.; Bacon, P. A.; Badala, A.; Staroba, Pavel; Závada, Petr

    2004-01-01

    Roč. 30, - (2004), s. 823-840 ISSN 0954-3899 R&D Projects: GA AV ČR KSK1048102 Keywords : NA57 experiment * K o s, .XI. and .OMEGA. hyperons * Pb-Pb collisions at 158 A GeV/c * ultrarelativistic heavy-ion collisions * transverse mass spectra * excited nuclear matter * phase transition Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.533, year: 2004

  3. Ecosystem Services Flows: Why Stakeholders’ Power Relationships Matter

    Science.gov (United States)

    Felipe-Lucia, María R.; Martín-López, Berta; Lavorel, Sandra; Berraquero-Díaz, Luis; Escalera-Reyes, Javier; Comín, Francisco A.

    2015-01-01

    The ecosystem services framework has enabled the broader public to acknowledge the benefits nature provides to different stakeholders. However, not all stakeholders benefit equally from these services. Rather, power relationships are a key factor influencing the access of individuals or groups to ecosystem services. In this paper, we propose an adaptation of the “cascade” framework for ecosystem services to integrate the analysis of ecological interactions among ecosystem services and stakeholders’ interactions, reflecting power relationships that mediate ecosystem services flows. We illustrate its application using the floodplain of the River Piedra (Spain) as a case study. First, we used structural equation modelling (SEM) to model the dependence relationships among ecosystem services. Second, we performed semi-structured interviews to identify formal power relationships among stakeholders. Third, we depicted ecosystem services according to stakeholders’ ability to use, manage or impair ecosystem services in order to expose how power relationships mediate access to ecosystem services. Our results revealed that the strongest power was held by those stakeholders who managed (although did not use) those keystone ecosystem properties and services that determine the provision of other services (i.e., intermediate regulating and final services). In contrast, non-empowered stakeholders were only able to access the remaining non-excludable and non-rival ecosystem services (i.e., some of the cultural services, freshwater supply, water quality, and biological control). In addition, land stewardship, access rights, and governance appeared as critical factors determining the status of ecosystem services. Finally, we stress the need to analyse the role of stakeholders and their relationships to foster equal access to ecosystem services. PMID:26201000

  4. Analysis of Isp-42, panda test with the spectra code

    International Nuclear Information System (INIS)

    Stempniewicz, M.M.

    2001-01-01

    International Standard Problems (ISP) are organized in order to assess the ability of computer codes to predict the outcome of accidents in Nuclear Power Plants. The ISP-42 test was performed at Paul Scherrer Institute in 1998, as a sequence of six phases, Phase A through F Blind and open calculations of ISP-42 were performed with the computer code SPECTRA for each of the six phases. SPECTRA is a general tool for thermal-hydraulic analyses. Results of blind calculations are in good agreement with experiment. For open calculations several modifications were made in the model. These were mainly corrections of some input errors made in the model used for blind analysis. Some small improvements to the nodalization were made. Results of open calculations are generally closer to the experiment than the blind results. For phase D the containment pressure prediction was somewhat worse in the open calculation. Based on comparisons of blind and open results with experiment several conclusions may be drawn: - use of long ID structures, in contact with pool and atmosphere should be avoided, - PCC units are better represented with larger amount of Control Volumes, - two parallel junctions should be used to represent large openings between vessels, like drywell air line, etc., - careful verification of input decks is needed, - stratification models in SPECTRA are useful for cases with light gas injection; for complex cases a complementary SPECTRA-CFD analysis may be performed. (author)

  5. The Distribution and Annihilation of Dark Matter Around Black Holes

    Science.gov (United States)

    Schnittman, Jeremy D.

    2015-01-01

    We use a Monte Carlo code to calculate the geodesic orbits of test particles around Kerr black holes, generating a distribution function of both bound and unbound populations of dark matter (DM) particles. From this distribution function, we calculate annihilation rates and observable gamma-ray spectra for a few simple DM models. The features of these spectra are sensitive to the black hole spin, observer inclination, and detailed properties of the DM annihilation cross-section and density profile. Confirming earlier analytic work, we find that for rapidly spinning black holes, the collisional Penrose process can reach efficiencies exceeding 600%, leading to a high-energy tail in the annihilation spectrum. The high particle density and large proper volume of the region immediately surrounding the horizon ensures that the observed flux from these extreme events is non-negligible.

  6. Quantum corrections to the inflaton potential and the power spectra from superhorizon modes and trace anomalies

    International Nuclear Information System (INIS)

    Boyanovsky, D.; Vega, H.J. de; Sanchez, N.G.

    2005-01-01

    We obtain the effective inflaton potential during slow-roll inflation by including the one-loop quantum corrections to the energy momentum tensor from scalar curvature and tensor perturbations as well as from light scalars and Dirac fermions coupled to the inflaton. During slow-roll inflation there is an unambiguous separation between super- and subhorizon contributions to the energy momentum tensor. The superhorizon part is determined by the curvature perturbations and scalar field fluctuations: both feature infrared enhancements as the inverse of a combination of slow-roll parameters which measure the departure from scale invariance in each case. Fermions and gravitons do not exhibit infrared divergences. The subhorizon part is completely specified by the trace anomaly of the fields with different spins and is solely determined by the space-time geometry. The one-loop corrections to the amplitude of curvature and tensor perturbations are obtained to leading order in slow roll and in the (H/M Pl ) 2 expansion. A complete assessment of the backreaction problem up to one loop including bosons and fermions is provided. The result validates the effective field theory description of inflation and confirms the robustness of the inflationary paradigm to quantum fluctuations. Quantum corrections to the power spectra are expressed in terms of the CMB observables: n s , r and dn s /dlnk. Trace anomalies (especially the graviton part) dominate these quantum corrections in a definite direction: they enhance the scalar curvature fluctuations and reduce the tensor fluctuations

  7. Basic model of fermion dark matter. Indirect detection of supersymmetric dark matter in {gamma} astronomy with the CELESTE telescope; Modele effectif de matiere noire fermionique. Detection indirecte de matiere noire supersymetrique en astronomie {gamma} avec le telescope CELESTE

    Energy Technology Data Exchange (ETDEWEB)

    Lavalle, J

    2004-10-15

    The purpose of this thesis is to discuss both phenomenological and experimental aspects of Dark Matter, related to its indirect detection with gamma-ray astronomy. In the MSSM (Minimal Supersymmetric Standard Model) framework, neutralinos arise as natural candidates to non-baryonic and Cold Dark Matter, whose gravitational effects manifest in the Universe at different scales. As they are Majorana particles, they may in principle annihilate in high density regions, as the centres of galaxies, and produce gamma rays. Nevertheless, the expected fluxes are basically low compared to experimental sensitivities. After estimating gamma fluxes from M31 and Draco galaxies in the MSSM scheme, we first generalize the MSSM couplings by studying an effective Lagrangian. We show that the only constraint of imposing a relic abundance compatible with recent measurements obviously deplete significantly the gamma ray production, but also that predictions in this effective approach are more optimistic for indirect detection than the MSSM. In a second part, we present the indirect searches for Dark Matter performed with the CELESTE Cherenkov telescope towards the galaxy M31. We propose a statistical method to reconstruct spectra, mandatory to discriminate classical and exotic spectra. The M31 data analysis enables the extraction of an upper limit on the gamma ray flux, which is the first worldwide for a galaxy in the energy range 50-500 GeV, and whose astrophysical interest goes beyond indirect searches for Dark Matter. (author)

  8. Toward Distinguishing Woodsmoke and Diesel Exhaust in Ambient Particulate Matter

    International Nuclear Information System (INIS)

    Braun, A.; Huggins, F.; Kubatova, A.; Wirick, S.; Maricq, M.; Mun, B.; McDonald, J.; Kelly, K.; Shah, N.; Huffman, G.

    2008-01-01

    Particulate matter (PM) from biomass burning and diesel exhaust has distinct X-ray spectroscopic, carbon specific signatures, which can be employed for source apportionment. Characterization of the functional groups of a wide selection of PM samples (woodsmoke, diesel soot, urban air PM) was carried out using the soft X-ray spectroscopy capabilities at the synchrotron radiation sources in Berkeley (ALS) and Brookhaven (NSLS). The spectra reveal that diesel exhaust particulate (DEP) matter is made up from a semigraphitic solid core and soluble organic matter, predominantly with carboxylic functional groups. Woodsmoke PM has no or a less prevalent, graphitic signature, instead it contains carbon-hydroxyl groups. Using these features to apportion the carbonaceous PM in ambient samples we estimate that the relative contribution of DEP to ambient PM in an urban area such as Lexington, KY and St. Louis, MO is 7% and 13.5%, respectively. These values are comparable to dispersion modeling data from nonurban and urban areas in California, and with elemental carbon measurements in urban locations such as Boston, MA, Rochester, NY, and Washington, DC.

  9. Neutron and photon spectra in LINACs

    International Nuclear Information System (INIS)

    Vega-Carrillo, H.R.; Martínez-Ovalle, S.A.; Lallena, A.M.; Mercado, G.A.; Benites-Rengifo, J.L.

    2012-01-01

    A Monte Carlo calculation, using the MCNPX code, was carried out in order to estimate the photon and neutron spectra in two locations of two linacs operating at 15 and 18 MV. Detailed models of both linac heads were used in the calculations. Spectra were estimated below the flattening filter and at the isocenter. Neutron spectra show two components due to evaporation and knock-on neutrons. Lethargy spectra under the filter were compared to the spectra calculated from the function quoted by Tosi et al. that describes reasonably well neutron spectra beyond 1 MeV, though tends to underestimate the energy region between 10 –6 and 1 MeV. Neutron and the Bremsstrahlung spectra show the same features regardless of the linac voltage. - Highlights: ► With MCNPX code realistic models of two LINACs were built. ► Photon and neutron spectra below the flattening filter and at the isocenter were calculated. ► Neutron spectrum at the flattening filter was compared against the Tosi et al. source-term model. ► Tosi et al. model underestimates the neutron contribution below 1 MeV. ► Photon spectra look alike to those published in literature.

  10. Texture of cooked potatoes (Solanum tuberosum). 1. Relationships between dry matter content, sensory-perceived texture and near-infrared spectroscopy

    NARCIS (Netherlands)

    Dijk, van C.; Fischer, M.; Holm, J.; Beekhuizen, J.G.; Stolle-Smits, T.; Boeriu, C.

    2002-01-01

    Properties of fresh potatoes, including dry matter (DM) content, starch content, and near-infrared (NIR) spectra, were determined and related to the sensory-perceived texture of the steam-cooked samples. To quantify these relationships, three potato cultivars, respectively representing a firm

  11. Statistical properties of spectra in harmonically trapped spin-orbit coupled systems

    DEFF Research Database (Denmark)

    V. Marchukov, O.; G. Volosniev, A.; V. Fedorov, D.

    2014-01-01

    We compute single-particle energy spectra for a one-body Hamiltonian consisting of a two-dimensional deformed harmonic oscillator potential, the Rashba spin-orbit coupling and the Zeeman term. To investigate the statistical properties of the obtained spectra as functions of deformation, spin......-orbit and Zeeman strengths we examine the distributions of the nearest neighbor spacings. We find that the shapes of these distributions depend strongly on the three potential parameters. We show that the obtained shapes in some cases can be well approximated with the standard Poisson, Brody and Wigner...... distributions. The Brody and Wigner distributions characterize irregular motion and help identify quantum chaotic systems. We present a special choices of deformation and spin-orbit strengths without the Zeeman term which provide a fair reproduction of the fourth-power repelling Wigner distribution. By adding...

  12. Probing decaying heavy dark matter with the 4-year IceCube HESE data

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Atri [Space sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège, Bât. B5a, 4000 Liège (Belgium); Esmaili, Arman [Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, C.P. 38071, 22452- 970, Rio de Janeiro (Brazil); Palomares-Ruiz, Sergio [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València, Apartado de Correos 22085, E-46071 Valencia (Spain); Sarcevic, Ina, E-mail: a.bhattacharya@ulg.ac.be, E-mail: arman@puc-rio.br, E-mail: sergio.palomares.ruiz@ific.uv.es, E-mail: ina@physics.arizona.edu [Department of Physics, University of Arizona, 1118 E. 4th St. Tucson, AZ 85704 (United States)

    2017-07-01

    After the first four years of data taking, the IceCube neutrino telescope has observed 54 high-energy starting events (HESE) with deposited energies between 20 TeV and 2 PeV . The background from atmospheric muons and neutrinos is expected to be of about 20 events, all below 100 TeV, thus pointing towards the astrophysical origin of about 8 events per year in that data set. However, their precise origin remains unknown. Here, we perform a detailed analysis of this event sample (considering simultaneously the energy, hemisphere and topology of the events) by assuming two contributions for the signal events: an isotropic power-law flux and a flux from decaying heavy dark matter. We fit the mass and lifetime of the dark matter and the normalization and spectral index of an isotropic power-law flux, for various decay channels of dark matter. We find that a significant contribution from dark matter decay is always slightly favored, either to explain the excess below 100 TeV, as in the case of decays to quarks or, as in the case of neutrino channels, to explain the three multi-PeV events. Also, we consider the possibility to interpret all the data by dark matter decays only, considering various combinations of two decay channels. We show that the decaying dark matter scenario provides a better fit to HESE data than the isotropic power-law flux.

  13. Dependence of EIA spectra on mutual coherence between coupling and probe fields in Cs atomic vapors

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Mi Rang; Kim, Kyoung Dae; Park, Hyun Deok; Kim, Jung Bog [Korea National University of Education, Chungwon (Korea, Republic of); Moon, Han Seb [Korea Research Institute of the Standards and Science, Taejon (Korea, Republic of)

    2002-03-01

    We observed the dependence of EIA spectra on the mutual coherence between the coupling and the probe fields in the D{sub 2}F{sub 9} = 4 {r_reversible} F{sub e} = 5 transition of Cs vapors at room temperature where the coupling and the probe fields were made from one laser source or two independent laser sources. By using one source having a high mutual coherence, we found EIA spectra linewidths much narrower than 0.1 {gamma} on the weak coupling field and the transparent spectra with linewidths narrower than 1 MHz within subnatural absorption on the strong coupling field. On the other hand, where the two sources which were nearly incoherent with each other were used, the absorption profiles showed the same dependence on the coupling power as the spectra for the one source, but their linewidths were broad, on the order of the natural linewidth.

  14. The influence of magnetic field geometry on magnetars X-ray spectra

    International Nuclear Information System (INIS)

    Viganò, D; Pons, J A; Miralles, J A; Parkins, N; Zane, S; Turolla, R

    2012-01-01

    Nowadays, the analysis of the X-ray spectra of magnetically powered neutron stars or magnetars is one of the most valuable tools to gain insight into the physical processes occurring in their interiors and magnetospheres. In particular, the magnetospheric plasma leaves a strong imprint on the observed X-ray spectrum by means of Compton up-scattering of the thermal radiation coming from the star surface. Motivated by the increased quality of the observational data, much theoretical work has been devoted to develop Monte Carlo (MC) codes that incorporate the effects of resonant Compton scattering (RCS) in the modeling of radiative transfer of photons through the magnetosphere. The two key ingredients in this simulations are the kinetic plasma properties and the magnetic field (MF) configuration. The MF geometry is expected to be complex, but up to now only mathematically simple solutions (self-similar solutions) have been employed. In this work, we discuss the effects of new, more realistic, MF geometries on synthetic spectra. We use new force-free solutions [14] in a previously developed MC code [9] to assess the influence of MF geometry on the emerging spectra. Our main result is that the shape of the final spectrum is mostly sensitive to uncertain parameters of the magnetospheric plasma, but the MF geometry plays an important role on the angle-dependence of the spectra.

  15. Dark matter and Bs→μ+μ- with minimal SO10 soft SUSY breaking

    International Nuclear Information System (INIS)

    Dermisek, R.; Roszkowski, L.; Ruiz de Austri, R.; Raby, S.

    2003-01-01

    CMSSM boundary conditions are usually used when calculating cosmological dark matter densities. In this paper we calculate the cosmological density of dark matter in the MSSM using minimal SO 10 soft SUSY breaking boundary conditions. These boundary conditions incorporate several attractive features: they are consistent with SO 10 Yukawa unification, they result in a 'natural' inverted scalar mass hierarchy and they reduce the dimension 5 operator contribution to the proton decay rate. With regards to dark matter, on the other hand, this is to a large extent an unexplored territory with large squark and slepton masses m 16 , large A 0 and small {μ,M 1/2 }. We find that in most regions of parameter space the cosmological density of dark matter is considerably less than required by the data. However there is a well-defined, narrow region of parameter space which provides the observed relic density of dark matter, as well as a good fit to precision electroweak data, including top, bottom and tau masses, and acceptable bounds on the branching fraction of B s →μ + μ - . We present predictions for Higgs and SUSY spectra, the dark matter detection cross section and the branching ratio BR(B s →μ + μ - ) in this region of parameter space. (author)

  16. Dark matter halos with cores from hierarchical structure formation

    International Nuclear Information System (INIS)

    Strigari, Louis E.; Kaplinghat, Manoj; Bullock, James S.

    2007-01-01

    We show that dark matter emerging from late decays (z or approx. 0.1 Mpc), and simultaneously generates observable constant-density cores in small dark matter halos. We refer to this class of models as meta-cold dark matter (mCDM), because it is born with nonrelativistic velocities from the decays of cold thermal relics. The constant-density cores are a result of the low phase-space density of mCDM at birth. Warm dark matter cannot produce similar size phase-space limited cores without saturating the Lyα power spectrum bounds. Dark matter-dominated galaxy rotation curves and stellar velocity dispersion profiles may provide the best means to discriminate between mCDM and CDM. mCDM candidates are motivated by the particle spectrum of supersymmetric and extra dimensional extensions to the standard model of particle physics

  17. Signatures of SUSY dark matter at the LHC and in the spectra of cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Olzem, J.

    2007-02-27

    This thesis discusses the search for supersymmetry at the future Large Hadron Collider (LHC) and the ongoing construction of one of the four large LHC experiments, the Compact Muon Solenoid (CMS), and focuses on the detection of signals from the annihilation of supersymmetric dark matter in the spectra of cosmic rays. The final steps of assembly of 1061 silicon microstrip detector modules for the CMS tracker endcaps are performed at the 1. Physikalisches Institut B at the RWTH Aachen. A laser test facility for these modules was developed and is described in this thesis. In contrast to test procedures based only on the evaluation of pedestal and noise data, the test facility relies on the generation of signals in the silicon sensors by infrared laser illumination. The fully automatic test facility provides high throughput and easy operation for the series production of the modules. Its performance is validated by investigating a reference module with artificially prepared defects of three types: open wirebonds, short-circuited strips and pinholes. It is shown that all defects are clearly detected. In addition to defect detection, an indication for the type of defect is provided. In a further validation step, nine modules from a prototype series are investigated with the laser test facility. Confirming the earlier results on the reference module, defective strips are reliably identified. This thesis describes a novel approach of positron identification with the space-borne AMS-01 experiment, namely through the detection of bremsstrahlung conversion in a silicon microstrip detector. In order to obtain the highest positron selection efficiency possible, novel combinatorial track finding algorithms were developed, particularly optimized for the signature of converted bremsstrahlung. By applying restrictions on the invariant mass of particles the background to the positron sample is largely eliminated. The remaining background contamination is determined from large

  18. Simplified models for dark matter face their consistent completions

    Energy Technology Data Exchange (ETDEWEB)

    Gonçalves, Dorival; Machado, Pedro A. N.; No, Jose Miguel

    2017-03-01

    Simplified dark matter models have been recently advocated as a powerful tool to exploit the complementarity between dark matter direct detection, indirect detection and LHC experimental probes. Focusing on pseudoscalar mediators between the dark and visible sectors, we show that the simplified dark matter model phenomenology departs significantly from that of consistent ${SU(2)_{\\mathrm{L}} \\times U(1)_{\\mathrm{Y}}}$ gauge invariant completions. We discuss the key physics simplified models fail to capture, and its impact on LHC searches. Notably, we show that resonant mono-Z searches provide competitive sensitivities to standard mono-jet analyses at $13$ TeV LHC.

  19. Atomic physics modeling of transmission spectra of Sc-doped aerogel foams to support OMEGA experiments

    Energy Technology Data Exchange (ETDEWEB)

    Johns, H. M., E-mail: hjohns@lanl.gov; Lanier, N. E.; Kline, J. L.; Fontes, C. J.; Perry, T. S.; Fryer, C. L.; Sherrill, M. E. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87544 (United States); Brown, C. R. D.; Morton, J. W. [AWE Aldermaston, Berkshire, Reading RG7 4PR (United Kingdom); Hager, J. D. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87544 (United States); Lockheed-Martin, 497 Electronics Parkway, Syracuse, New York 13221 (United States)

    2016-11-15

    We present synthetic transmission spectra generated with PrismSPECT utilizing both the ATBASE model and the Los Alamos opacity library (OPLIB) to evaluate whether an alternative choice in atomic data will impact modeling of experimental data from radiation transport experiments using Sc-doped aerogel foams (ScSi{sub 6}O{sub 12} at 75 mg/cm{sup 3} density). We have determined that in the 50-200 eV T{sub e} range there is a significant difference in the 1s-3p spectra, especially below 100 eV, and for T{sub e} = 200 eV above 5000 eV in photon energy. Examining synthetic spectra generated using OPLIB with 300 resolving power reveals spectral sensitivity to T{sub e} changes of ∼3 eV.

  20. On the origin of X-ray spectra in luminous blazars

    International Nuclear Information System (INIS)

    Sikora, Marek; Janiak, Mateusz; Moderski, Rafał; Nalewajko, Krzysztof; Madejski, Greg M.

    2013-01-01

    Gamma-ray luminosities of some quasar-associated blazars imply jet powers reaching values comparable to the accretion power even if assuming very strong Doppler boosting and very high efficiency of gamma-ray production. With much lower radiative efficiencies of protons than of electrons, and the recent reports of very strong coupling of electrons with shock-heated protons indicated by particle-in-cell simulations, the leptonic models seem to be strongly favored over the hadronic ones. However, the electron-proton coupling combined with the external-radiation-Compton (ERC) models of gamma-ray production in leptonic models predict extremely hard X-ray spectra, with energy indices α x ∼ 0. This is inconsistent with the observed 2-10 keV slopes of blazars, which cluster around α x ∼ 0.6. This problem can be resolved by assuming that electrons can be efficiently cooled down radiatively to non-relativistic energies, or that blazar spectra are entirely dominated by the synchrotron self-Compton (SSC) component up to at least 10 keV. Here, we show that the required cooling can be sufficiently efficient only at distances r < 0.03 pc. SSC spectra, on the other hand, can be produced roughly co-spatially with the observed synchrotron and ERC components, which are most likely located roughly at a parsec scale. We show that the dominant SSC component can also be produced much further than the dominant synchrotron and ERC components, at distances of ≳ 10 pc. Hence, depending on the spatial distribution of the energy dissipation along the jet, one may expect to see γ-ray/optical events with either correlated or uncorrelated X-rays. In all cases the number of e + e – pairs per proton is predicted to be very low. The direct verification of the proposed SSC scenario, and particularly the question of the co-spatiality of the SSC component with other spectral components, requires sensitive observations in the hard X-ray band. This is now possible with the deployment of the Nu