WorldWideScience

Sample records for matter physics problems

  1. Open problems in condensed matter physics, 1987

    International Nuclear Information System (INIS)

    Falicov, L.M.

    1988-08-01

    The 1970's and 1980's can be considered the third stage in the explosive development of condensed matter physics. After the very intensive research of the 1930's and 1940's, which followed the formulation of quantum mechanics, and the path-breaking activity of the 1950's and 1960's, the problems being faced now are much more complex and not always susceptible to simple modelling. The (subjectively) open problems discussed here are: high temperature superconductivity, its properties and the possible new mechanisms which lead to it; the integral and fractional quantum Hall effects; new forms of order in condensed-matter systems; the physics of disorder, especially the problem of spin glasses; the physics of complex anisotropic systems; the theoretical prediction of stable and metastable states of matter; the physics of highly correlated states (heavy fermions); the physics of artificially made structures, in particular heterostructures and highly metastable states of matter; the determination of the microscopic structure of surfaces; and chaos and highly nonlinear phnomena. 82 refs

  2. 7th International Conference on Physics of Liquid Matter : Modern Problems

    CERN Document Server

    Chalyi, Alexander

    2018-01-01

    This book presents a collection of selected lectures discussing current problems in molecular physics and reviews the main cutting-edge advances in condensed and soft matter physics. It offers deep insights and a powerful basis for scientists and engineers to study complicated problems in physics, chemistry, biology, and medicine. The unification of experimental, theoretical, and computational methods allows milestone results to be achieved in areas such as ionic and ionic-electronic liquids, magnetic liquid systems, liquid systems with nanoparticles, structural phase transitions and critical phenomena, and small-angle neutron and X-ray scattering in liquids and liquid systems.   The lectures selected for this book were held at the 7th International Conference “Physics of Liquid Matter: Modern Problems” (PLMMP-2016), 27–31 May in Kiev, Ukraine.

  3. Dark matter and particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Masiero, A [SISSA-ISAS, Trieste (Italy) and INFN, Sezione di Trieste (Italy); Pascoli, S [SISSA-ISAS, Trieste (Italy) and INFN, Sezione di Trieste (Italy)

    2001-11-15

    Dark matter constitutes a key-problem at the interface between Particle Physics, Astrophysics and Cosmology. Indeed, the observational facts which have been accumulated in the last years on dark matter point to the existence of an amount of non-baryonic dark matter. Since the Standard Model of Particle Physics does not possess any candidate for such non-baryonic dark matter, this problem constitutes a major indication for new Physics beyond the Standard Model. We analyze the most important candidates for non-baryonic dark matter in the context of extensions of the Standard Model (in particular supersymmetric models). The recent hints for the presence of a large amount of unclustered 'vacuum' energy (cosmological constant?) is discussed from the Astrophysical and Particle Physics perspective. (author)

  4. Condensed matter physics in electrochemistry

    International Nuclear Information System (INIS)

    Kornyshev, A.A.

    1991-01-01

    Some topics in electrochemistry are considered from the condensed matter physics viewpoint in relation to the problems discussed in this book. Examples of the successful application of condensed matter physics to electrochemistry are discussed together with prospective problems and pressing questions. (author). 127 refs, 4 figs

  5. BES-HEP Connections: Common Problems in Condensed Matter and High Energy Physics, Round Table Discussion

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, Eduardo [Univ. of Illinois, Urbana, IL (United States); Maldacena, Juan [Inst. for Advanced Study, Princeton, NJ (United States); Chatterjee, Lali [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Office of High Energy Physics; Davenport, James W [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Office of Basic Energy Sciences

    2015-02-02

    On February 2, 2015 the Offices of High Energy Physics (HEP) and Basic Energy Sciences (BES) convened a Round Table discussion among a group of physicists on ‘Common Problems in Condensed Matter and High Energy Physics’. This was motivated by the realization that both fields deal with quantum many body problems, share many of the same challenges, use quantum field theoretical approaches and have productively interacted in the past. The meeting brought together physicists with intersecting interests to explore recent developments and identify possible areas of collaboration.... Several topics were identified as offering great opportunity for discovery and advancement in both condensed matter physics and particle physics research. These included topological phases of matter, the use of entanglement as a tool to study nontrivial quantum systems in condensed matter and gravity, the gauge-gravity duality, non-Fermi liquids, the interplay of transport and anomalies, and strongly interacting disordered systems. Many of the condensed matter problems are realizable in laboratory experiments, where new methods beyond the usual quasi-particle approximation are needed to explain the observed exotic and anomalous results. Tools and techniques such as lattice gauge theories, numerical simulations of many-body systems, and tensor networks are seen as valuable to both communities and will likely benefit from collaborative development.

  6. 6th International Conference on Physics of Liquid Matter : Modern Problems

    CERN Document Server

    Lebovka, Nikolai

    2015-01-01

    These proceedings comprise invited and contributed papers presented at PLMMP-2014, addressing modern problems in the fields of liquids, solutions and confined systems, critical phenomena, as well as colloidal and biological systems. The book focuses on state-of-the-art developments in contemporary physics of liquid matter. The papers presented here are organized into four parts: (i) structure of liquids in confined systems, (ii) phase transitions, supercritical liquids and glasses, (iii) colloids, and (iv) medical and biological aspects and cover the most recent developments in the broader field of liquid state including interdisciplinary problems.

  7. PREFACE: 17th International School on Condensed Matter Physics (ISCMP): Open Problems in Condensed Matter Physics, Biomedical Physics and their Applications

    Science.gov (United States)

    Dimova-Malinovska, Doriana; Nesheva, Diana; Pecheva, Emilia; Petrov, Alexander G.; Primatarowa, Marina T.

    2012-12-01

    We are pleased to introduce the Proceedings of the 17th International School on Condensed Matter Physics: Open Problems in Condensed Matter Physics, Biomedical Physics and their Applications, organized by the Institute of Solid State Physics of the Bulgarian Academy of Sciences. The Chairman of the School was Professor Alexander G Petrov. Like prior events, the School took place in the beautiful Black Sea resort of Saints Constantine and Helena near Varna, going back to the refurbished facilities of the Panorama hotel. Participants from 17 different countries delivered 31 invited lecturers and 78 posters, contributing through three sessions of poster presentations. Papers submitted to the Proceedings were refereed according to the high standards of the Journal of Physics: Conference Series and the accepted papers illustrate the diversity and the high level of the contributions. Not least significant factor for the success of the 17 ISCMP was the social program, both the organized events (Welcome and Farewell Parties) and the variety of pleasant local restaurants and beaches. Visits to the Archaeological Museum (rich in valuable gold treasures of the ancient Thracian culture) and to the famous rock monastery Aladja were organized for the participants from the Varna Municipality. These Proceedings are published for the second time by the Journal of Physics: Conference Series. We are grateful to the Journal's staff for supporting this idea. The Committee decided that the next event will take place again in Saints Constantine and Helena, 1-5 September 2014. It will be entitled: Challenges of the Nanoscale Science: Theory, Materials and Applications. Doriana Dimova-Malinovska, Diana Nesheva, Emilia Pecheva, Alexander G Petrov and Marina T Primatarowa Editors

  8. Numerical problems in physics

    CERN Document Server

    Singh, Devraj

    2015-01-01

    Numerical Problems in Physics, Volume 1 is intended to serve the need of the students pursuing graduate and post graduate courses in universities with Physics and Materials Science as subject including those appearing in engineering, medical, and civil services entrance examinations. KEY FEATURES: * 29 chapters on Optics, Wave & Oscillations, Electromagnetic Field Theory, Solid State Physics & Modern Physics * 540 solved numerical problems of various universities and ompetitive examinations * 523 multiple choice questions for quick and clear understanding of subject matter * 567 unsolved numerical problems for grasping concepts of the various topic in Physics * 49 Figures for understanding problems and concept

  9. Low dimensional field theories and condensed matter physics

    International Nuclear Information System (INIS)

    Nagaoka, Yosuke

    1992-01-01

    This issue is devoted to the Proceedings of the Fourth Yukawa International Seminar (YKIS '91) on Low Dimensional Field Theories and Condensed Matter Physics, which was held on July 28 to August 3 in Kyoto. In recent years there have been great experimental discoveries in the field of condensed matter physics: the quantum Hall effect and the high temperature superconductivity. Theoretical effort to clarify mechanisms of these phenomena revealed that they are deeply related to the basic problem of many-body systems with strong correlation. On the other hand, there have been important developments in field theory in low dimensions: the conformal field theory, the Chern-Simons gauge theory, etc. It was found that these theories work as a powerful method of approach to the problems in condensed matter physics. YKIS '91 was devoted to the study of common problems in low dimensional field theories and condensed matter physics. The 17 of the presented papers are collected in this issue. (J.P.N.)

  10. Nonlocal astrophysics dark matter, dark energy and physical vacuum

    CERN Document Server

    Alexeev, Boris V

    2017-01-01

    Non-Local Astrophysics: Dark Matter, Dark Energy and Physical Vacuum highlights the most significant features of non-local theory, a highly effective tool for solving many physical problems in areas where classical local theory runs into difficulties. The book provides the fundamental science behind new non-local astrophysics, discussing non-local kinetic and generalized hydrodynamic equations, non-local parameters in several physical systems, dark matter, dark energy, black holes and gravitational waves. Devoted to the solution of astrophysical problems from the position of non-local physics Provides a solution for dark matter and dark energy Discusses cosmological aspects of the theory of non-local physics Includes a solution for the problem of the Hubble Universe expansion, and of the dependence of the orbital velocity from the center of gravity

  11. Topology and condensed matter physics

    CERN Document Server

    Mj, Mahan; Bandyopadhyay, Abhijit

    2017-01-01

    This book introduces aspects of topology and applications to problems in condensed matter physics. Basic topics in mathematics have been introduced in a form accessible to physicists, and the use of topology in quantum, statistical and solid state physics has been developed with an emphasis on pedagogy. The aim is to bridge the language barrier between physics and mathematics, as well as the different specializations in physics. Pitched at the level of a graduate student of physics, this book does not assume any additional knowledge of mathematics or physics. It is therefore suited for advanced postgraduate students as well. A collection of selected problems will help the reader learn the topics on one's own, and the broad range of topics covered will make the text a valuable resource for practising researchers in the field.  The book consists of two parts: one corresponds to developing the necessary mathematics and the other discusses applications to physical problems. The section on mathematics is a qui...

  12. Physics of condensed matter

    CERN Document Server

    Misra, Prasanta K

    2012-01-01

    Physics of Condensed Matter is designed for a two-semester graduate course on condensed matter physics for students in physics and materials science. While the book offers fundamental ideas and topic areas of condensed matter physics, it also includes many recent topics of interest on which graduate students may choose to do further research. The text can also be used as a one-semester course for advanced undergraduate majors in physics, materials science, solid state chemistry, and electrical engineering, because it offers a breadth of topics applicable to these majors. The book be

  13. Statistical and particle physics: Common problems and techniques

    International Nuclear Information System (INIS)

    Bowler, K.C.; Mc Kane, A.J.

    1984-01-01

    These proceedings contain statistical mechanical studies in condensed matter physics; interfacial problems in statistical physics; string theory; general monte carlo methods and their application to Lattice gauge theories; topological excitations in field theory; phase transformation kinetics; and studies of chaotic systems

  14. Fundamentals of condensed matter physics

    CERN Document Server

    Cohen, Marvin L

    2016-01-01

    Based on an established course and covering the fundamentals, central areas, and contemporary topics of this diverse field, Fundamentals of Condensed Matter Physics is a much-needed textbook for graduate students. The book begins with an introduction to the modern conceptual models of a solid from the points of view of interacting atoms and elementary excitations. It then provides students with a thorough grounding in electronic structure as a starting point to understand many properties of condensed matter systems - electronic, structural, vibrational, thermal, optical, transport, magnetic and superconductivity - and methods to calculate them. Taking readers through the concepts and techniques, the text gives both theoretically and experimentally inclined students the knowledge needed for research and teaching careers in this field. It features 200 illustrations, 40 worked examples and 150 homework problems for students to test their understanding. Solutions to the problems for instructors are available at w...

  15. Proceedings 20. International Conference on Applied Physics of Condensed Matter

    International Nuclear Information System (INIS)

    Vajda, J.; Jamnicky, I.

    2014-01-01

    The 20. International Conference on Applied Physics of Condensed Matter was held on 25-28 June, 2014 on Strbske Pleso, Strba, Slovakia. The specialists discussed various aspects of modern problems in: New materials and structures, nanostructures, thin films, their analysis and applications; Nuclear science and technology, influence of irradiation on physical properties of materials, radiation detection; Physical properties and structural aspects of solid materials and their influencing; Computational physics and theory of physical properties of matter; Optical phenomena in materials, photovoltaics and photonics, new principles in sensors and detection methods. Forty-six contributions relevant of INIS interest (forty contributions) has been inputted to INIS.

  16. Physics through the 1990s: condensed-matter physics

    International Nuclear Information System (INIS)

    1986-01-01

    The volume presents the current status of condensed-matter physics from developments since the 1970s to opportunities in the 1990s. Topics include electronic structure, vibrational properties, critical phenomena and phase transitions, magnetism, semiconductors, defects and diffusion, surfaces and interfaces, low-temperature physics, liquid-state physics, polymers, nonlinear dynamics, instabilities, and chaos. Appendices cover the connections between condensed-matter physics and applications of national interest, new experimental techniques and materials, laser spectroscopy, and national facilities for condensed-matter physics research. The needs of the research community regarding support for individual researchers and for national facilities are presented, as are recommendations for improved government-academic-industrial relations

  17. Abstracts of the fourth international conference on modern problems of nuclear physics

    International Nuclear Information System (INIS)

    2001-09-01

    The Fourth International Conference on modern problems of nuclear physics was held on 25-29 September, 2001 in Tashkent, Uzbekistan. The specialists discussed various aspects of modern problems of both fundamental and applied nuclear physics. More than 300 talks were presented in the meeting on the following subjects: particle physics, relativistic nuclear physics and physics of atomic nuclei; applied nuclear physics; radiation solid state physics, condensed matter physics; activation analysis, radiochemistry, isotopes. (M.K.)

  18. Condensed matter physics

    CERN Document Server

    Isihara, A

    2007-01-01

    More than a graduate text and advanced research guide on condensed matter physics, this volume is useful to plasma physicists and polymer chemists, and their students. It emphasizes applications of statistical mechanics to a variety of systems in condensed matter physics rather than theoretical derivations of the principles of statistical mechanics and techniques. Isihara addresses a dozen different subjects in separate chapters, each designed to be directly accessible and used independently of previous chapters. Topics include simple liquids, electron systems and correlations, two-dimensional

  19. Physics through the 1990s: Condensed-matter physics

    International Nuclear Information System (INIS)

    1986-01-01

    In this survey of condensed-matter physics we describe the current status of the field, present some of the significant discoveries and developments in it since the early 1970s, and indicate some areas in which we expect that important discoveries will be made in the next decade. We also describe the resources that will be required to produce these discoveries. This volume is organized as follows. The first part is devoted to a discussion of the importance of condensed-matter physics; to brief descriptions of several of the most significant discoveries and advances in condensed-matter physics made in the 1970s and early 1980s, and of areas that appear to provide particularly exciting research opportunities in the next decade; and to a presentation of the support needs of condensed-matter physicists in the next decade and of recommendations aimed at their provision. Next, the subfields of condensed-matter physics are reviewed in detail. The volume concludes with several appendixes in which new materials, new experimental techniques, and the National Facilities are reviewed

  20. Soft matter physics

    CERN Document Server

    Doi, Masao

    2013-01-01

    Soft matter (polymers, colloids, surfactants and liquid crystals) are an important class of materials in modern technology. They also form the basis of many future technologies, for example in medical and environmental applications. Soft matter shows complex behaviour between fluids and solids, and used to be a synonym of complex materials. Due to the developments of the past two decades, soft condensed matter can now be discussed on the same sound physical basis as solid condensedmatter. The purpose of this book is to provide an overview of soft matter for undergraduate and graduate students

  1. Abstracts of the sixth international conference on modern problems of nuclear physics

    International Nuclear Information System (INIS)

    Yuldashev, B.; Fazylov, M.; Ibragimova, E.; Salikhbaev, U.

    2006-09-01

    The Sixth International Conference on modern problems of nuclear physics was held on 19-22 September, 2006 in Tashkent, Uzbekistan. The specialists discussed various aspects of modern problems of both fundamental and applied nuclear physics. About 275 talks were presented in the meetingof on the following subjects: particle physics, relativistic nuclear physics and physics of atomic nuclei; radiation physics of condenced matter; nuclear applications in industry, medicine, biology and agriculture; nuclear and radiation safety, non prolifaration issues. (K.M.)

  2. Abstracts of the sixth international conference on modern problems of nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Yuldashev, B; Fazylov, M; Ibragimova, E; Salikhbaev, U [eds.

    2006-09-15

    The Sixth International Conference on modern problems of nuclear physics was held on 19-22 September, 2006 in Tashkent, Uzbekistan. The specialists discussed various aspects of modern problems of both fundamental and applied nuclear physics. About 275 talks were presented in the meetingof on the following subjects: particle physics, relativistic nuclear physics and physics of atomic nuclei; radiation physics of condenced matter; nuclear applications in industry, medicine, biology and agriculture; nuclear and radiation safety, non prolifaration issues. (K.M.)

  3. Proceedings of the 19th International Conference on Applied Physics of Condensed Matter

    International Nuclear Information System (INIS)

    Vajda, J.; Jamnicky, I.

    2013-01-01

    The 19. International Conference on Applied Physics of Condensed Matter was held on 19-21 June, 2013 on Strbske Pleso, Strba, Slovakia. The specialists discussed various aspects of modern problems in: New materials and structures, nanostructures, thin films, their analysis and applications; Nuclear science and technology, influence of irradiation on physical properties of materials, radiation detection; Physical properties and structural aspects of solid materials and their influencing; Computational physics and theory of physical properties of matter; Optical phenomena in materials, photovoltaics and photonics, new principles in sensors and detection methods. Contributions relevant of INIS interest (forty contributions) has been inputted to INIS.

  4. Many body quantum physics at the condensed matter

    International Nuclear Information System (INIS)

    Llano, M. de

    1981-01-01

    The non-relativistic, continuous (as opposed to spin) many-body problem as it relates to condensed matter at absolute zero temperature is reviewed in simple, non-technical terms, mainly from the standpoint of infinite order perturbation theory, for physical systems where all the particles have the same mass but which otherwise interact with arbitrary short- or long-ranged two-body forces. (author)

  5. Condensed matter physics

    International Nuclear Information System (INIS)

    1990-01-01

    This is a summary of condensed matter physics in Brazil. It discusses as well, the perspectives and financing evolved in this research area for the next decade. It is specially concerned with semiconductors, magnetic materials, superconductivity, polymers, glasses, crystals ceramics, statistical physics, magnetic resonance and Moessbauer spectroscopy. (A.C.A.S.)

  6. Condensed matter physics

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The condensed matter physics research in the Physics Department of Risoe National Laboratory is predominantly experimental utilising diffraction of neutrons and x-rays. The research topics range from studies of structure, excitations and phase transitions in model systems to studies of ion transport, texture and recrystallization kinetics with a more applied nature. (author)

  7. Phase transitions and dark matter problems

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1984-10-01

    The possible relationships between phase transitions in the early universe and dark matter problems are discussed. It is shown that there are at least 3 distinct cosmological dark matter problems: (1) halos; (2) galaxy formation and clustering; and (3) Ω = 1, each emphasizing different attributes for the dark matter. At least some of the dark matter must be baryonic but if problems 2 and 3 are real they seem to also require non-baryonic material. However, if seeds are generated at the quark-hardon-chiral symmetry transition then alternatives to the standard scenarios may occur. At present no simple simultaneous solution (neither hot, warm, nor cold) exists for all 3 problems, but non-standard solutions with strings, decaying particles or light not tracing to mass may work. An alternative interpretation of the relationship of the cluster-cluster and galaxy-galaxy correlation functions using renormalized scaling is mentioned. In this interpretation galaxies are more strongly correlated and the cluster-cluster function is not expected to go negative until greater than or equal to 200 Mpc. Possible phase transition origins for the cluster-cluster renormalized scale are presented as ways to obtain a dimension 1.2 fractal. 64 references

  8. Problems Faced By Elementary School Second Grade English Subject Matter Teachers

    Directory of Open Access Journals (Sweden)

    Belgin Bal Incebacak

    2017-11-01

    Full Text Available The objective of thisstudy isto determine the problems experienced by subject matter teachers while instructing English lessons in the second grade of elementary school. What are the problemsfaced by English subject matter teachers when they instruct in 2nd grade lessons? In this research the descriptive modeling, which is one of the qualitative research methods, was employed. In accordance with this objective, we worked with 8 subject matter teachers from 5 different schoolsinAtakum and Ilkadim districtslocated in downtown Samsun, through easily accessible case sampling. The semi-structured “English Course Interview Form’’was applied to the teachers. In the study, descriptive survey model was employed, since it was aimed to reveal the current status of qualitative research methods.According to the results obtained from the research, the content was configured and presented under 5 themes. They were categorized as: 1. the problems experienced in classroom management, 2. the problems in physical and cognitive readiness, 3. the problems experienced in the learning and teacher process, 4. the problems seen in counseling, 5. the problems experienced in assessment and evaluation. In conclusion, the teachers stated that they had problems with managing the classroom, especially with the second grade students, whom are younger than others. It is observed that the change for teaching English at a younger age has been appropriate. Our teachersstated that they required in-service training so as to adapt to this aforementioned change.

  9. Differences in the Processes of Solving Physics Problems between Good Physics Problem Solvers and Poor Physics Problem Solvers.

    Science.gov (United States)

    Finegold, M.; Mass, R.

    1985-01-01

    Good problem solvers and poor problem solvers in advanced physics (N=8) were significantly different in their ability in translating, planning, and physical reasoning, as well as in problem solving time; no differences in reliance on algebraic solutions and checking problems were noted. Implications for physics teaching are discussed. (DH)

  10. PREFACE: 1st International Workshop on Theoretical and Computational Physics: Condensed Matter, Soft Matter and Materials Physics & 38th National Conference on Theoretical Physics

    Science.gov (United States)

    2014-09-01

    This volume contains selected papers presented at the 38th National Conference on Theoretical Physics (NCTP-38) and the 1st International Workshop on Theoretical and Computational Physics: Condensed Matter, Soft Matter and Materials Physics (IWTCP-1). Both the conference and the workshop were held from 29 July to 1 August 2013 in Pullman hotel, Da Nang, Vietnam. The IWTCP-1 was a new activity of the Vietnamese Theoretical Physics Society (VTPS) organized in association with the 38th National Conference on Theoretical Physics (NCTP-38), the most well-known annual scientific forum dedicated to the dissemination of the latest development in the field of theoretical physics within the country. The IWTCP-1 was also an External Activity of the Asia Pacific Center for Theoretical Physics (APCTP). The overriding goal of the IWTCP is to provide an international forum for scientists and engineers from academia to share ideas, problems and solution relating to the recent advances in theoretical physics as well as in computational physics. The main IWTCP motivation is to foster scientific exchanges between the Vietnamese theoretical and computational physics community and world-wide scientists as well as to promote high-standard level of research and education activities for young physicists in the country. About 110 participants coming from 10 countries participated in the conference and the workshop. 4 invited talks, 18 oral contributions and 46 posters were presented at the conference. In the workshop we had one keynote lecture and 9 invited talks presented by international experts in the fields of theoretical and computational physics, together with 14 oral and 33 poster contributions. The proceedings were edited by Nguyen Tri Lan, Trinh Xuan Hoang, and Nguyen Ai Viet. We would like to thank all invited speakers, participants and sponsors for making the conference and the workshop successful. Nguyen Ai Viet Chair of NCTP-38 and IWTCP-1

  11. The Dark Matter Problem

    NARCIS (Netherlands)

    Sanders, Robert H.

    1. Introduction; 2. Early history of the dark matter hypothesis; 3. The stability of disk galaxies: the dark halo solutions; 4. Direct evidence: extended rotation curves of spiral galaxies; 5. The maximum disk: light traces mass; 6. Cosmology and the birth of astroparticle physics; 7. Clusters

  12. Dark matter and the solar neutrino problem: Can particle physics provide a single solution

    International Nuclear Information System (INIS)

    West, G.B.

    1989-01-01

    We show how a relatively simple extension of the standard model can give a ''natural'' explanation for both the solar neutrino and dark matter problems. What is required is a new stable neutral lepton with a mass in the 4--8 GeV range. One possibility is a fourth generation neutrino interacting with matter either electromagnetically or via higgs-exchange (in addition, of course, to Z degree-exchange). In the former case, a new charged lepton with mass ∼10GeV would be required in order to generate a sufficiently large magnetic moment. The present experimental situation makes this possibility rather doubtful. In the latter case, a light higgs with mass ∼1GeV is required; this is still not ruled out experimentally. In any case, direct (or indirect) detection of dark matter will, during the next year, seal the fate of this model. 29 refs

  13. Dark matter and particle physics

    International Nuclear Information System (INIS)

    Peskin, Michael E.

    2007-01-01

    Astrophysicists now know that 80% of the matter in the universe is 'dark matter', composed of neutral and weakly interacting elementary particles that are not part of the Standard Model of particle physics. I will summarize the evidence for dark matter. I will explain why I expect dark matter particles to be produced at the CERN LHC. We will then need to characterize the new weakly interacting particles and demonstrate that they the same particles that are found in the cosmos. I will describe how this might be done. (author)

  14. Physics. Examples and problems. Mechanics, heat, electricity and magnetism, oscillations and waves, atomic and nuclear physics

    International Nuclear Information System (INIS)

    Stroppe, Heribert; Streitenberger, Peter; Specht, Eckard; Zeitler, Juergen; Langer, Heinz

    2017-01-01

    The present book is the unification of the proved problem collections for the basic physical training of studyings of especially engineering courses at technical colleges and universities. The book contains - didactically prepared and structured in the style of a textbook as well as with increasing difficulty - a total of 960 exemplary and additional tasks from the fields mechanics, heat, electricity and magnetism, oscillations and waves, as well as atomic and nuclear physics. For the exemplary problems the whole solution path and the complete calculation process with explanation of the relevant physical laws are extensively presented, for the additional problems for the self-control only the solutions and, if necessary, intermediate calculations are given. The examples and problems with mostly practice-oriented content are selected in such a way that they largely cover the matter treated in courses and exercises and make by their didactical preparation an effective repetition and optimal examination-preparation possible.

  15. New Approach to Analyzing Physics Problems: A Taxonomy of Introductory Physics Problems

    Science.gov (United States)

    Teodorescu, Raluca E.; Bennhold, Cornelius; Feldman, Gerald; Medsker, Larry

    2013-01-01

    This paper describes research on a classification of physics problems in the context of introductory physics courses. This classification, called the Taxonomy of Introductory Physics Problems (TIPP), relates physics problems to the cognitive processes required to solve them. TIPP was created in order to design educational objectives, to develop…

  16. Structure of matter an introductory course with problems and solutions

    CERN Document Server

    Rigamonti, Attilio

    2015-01-01

    This textbook, now in its third edition, provides a formative introduction to the structure of matter that will serve as a sound basis for students proceeding to more complex courses, thus bridging the gap between elementary physics and topics pertaining to research activities. The focus is deliberately limited to key concepts of atoms, molecules and solids, examining the basic structural aspects without paying detailed attention to the related properties. For many topics the aim has been to start from the beginning and to guide the reader to the threshold of advanced research. This edition includes four new chapters dealing with relevant phases of solid matter (magnetic, electric and superconductive) and the related phase transitions. The book is based on a mixture of theory and solved problems that are integrated into the formal presentation of the arguments. Readers will find it invaluable in enabling them to acquire basic knowledge in the wide and wonderful field of condensed matter and to understand how ...

  17. Soft matter food physics--the physics of food and cooking.

    Science.gov (United States)

    Vilgis, Thomas A

    2015-12-01

    This review discusses the (soft matter) physics of food. Although food is generally not considered as a typical model system for fundamental (soft matter) physics, a number of basic principles can be found in the interplay between the basic components of foods, water, oil/fat, proteins and carbohydrates. The review starts with the introduction and behavior of food-relevant molecules and discusses food-relevant properties and applications from their fundamental (multiscale) behavior. Typical food aspects from 'hard matter systems', such as chocolates or crystalline fats, to 'soft matter' in emulsions, dough, pasta and meat are covered and can be explained on a molecular basis. An important conclusion is the point that the macroscopic properties and the perception are defined by the molecular interplay on all length and time scales.

  18. Gravitational probes of dark matter physics

    OpenAIRE

    Buckley, Matthew R.; Peter, Annika H. G.

    2017-01-01

    The nature of dark matter is one of the most pressing questions in particle physics. Yet all our present knowledge of the dark sector to date comes from its gravitational interactions with astrophysical systems. Moreover, astronomical results still have immense potential to constrain the particle properties of dark matter. We introduce a simple 2D parameter space which classifies models in terms of a particle physics interaction strength and a characteristic astrophysical scale on which new p...

  19. Holographic duality in condensed matter physics

    CERN Document Server

    Zaanen, Jan; Sun, Ya-Wen; Schalm, Koenraad

    2015-01-01

    A pioneering treatise presenting how the new mathematical techniques of holographic duality unify seemingly unrelated fields of physics. This innovative development morphs quantum field theory, general relativity and the renormalisation group into a single computational framework and this book is the first to bring together a wide range of research in this rapidly developing field. Set within the context of condensed matter physics and using boxes highlighting the specific techniques required, it examines the holographic description of thermal properties of matter, Fermi liquids and superconductors, and hitherto unknown forms of macroscopically entangled quantum matter in terms of general relativity, stars and black holes. Showing that holographic duality can succeed where classic mathematical approaches fail, this text provides a thorough overview of this major breakthrough at the heart of modern physics. The inclusion of extensive introductory material using non-technical language and online Mathematica not...

  20. Proceedings 21. International Conference on Applied Physics of Condensed Matter and of the Scientific Conference Advanced Fast Reactors

    International Nuclear Information System (INIS)

    Vajda, J.; Jamnicky, I.

    2015-01-01

    The 21. International Conference on Applied Physics of Condensed Matter was held on 24-26 June, 2015 on Strbske Pleso, Strba, Slovakia. The Scientific Conference the Advanced Fast Reactors was part of the 21 st International Conference on APCOM 2015. The specialists discussed various aspects of modern problems in: Physical properties and structural aspects of solid materials and their influencing; Advanced fast reactors; Physical properties and structural aspects of solid materials and their influencing; Nuclear science and technology, influence of irradiation on physical properties of materials, radiation detection; Computational physics and theory of physical properties of matter; interdisciplinary physics of condensed matter; Nuclear science and technology, influence of irradiation on physical properties of materials, radiation detection; Optical phenomena in materials, photovoltaics and photonics, new principles in sensors and detection methods. Fifty seven contributions relevant of INIS interest has been inputted to INIS.

  1. A brief introduction to the dark matter problem

    International Nuclear Information System (INIS)

    Zhou Yufeng

    2011-01-01

    Understanding the nature of dark matter is a big challenge to the physics of our time. We briefly review the early history of the discovery of dark matter, the evidence of its existence from observations, its candidates, and the origin of its abundance in particle physics. An overview is given of the latest progress in its direct and indirect detections, and of the recent theoretical studies. (authors)

  2. On physical scales of dark matter halos

    International Nuclear Information System (INIS)

    Zemp, Marcel

    2014-01-01

    It is common practice to describe formal size and mass scales of dark matter halos as spherical overdensities with respect to an evolving density threshold. Here, we critically investigate the evolutionary effects of several such commonly used definitions and compare them to the halo evolution within fixed physical scales as well as to the evolution of other intrinsic physical properties of dark matter halos. It is shown that, in general, the traditional way of characterizing sizes and masses of halos dramatically overpredicts the degree of evolution in the last 10 Gyr, especially for low-mass halos. This pseudo-evolution leads to the illusion of growth even though there are no major changes within fixed physical scales. Such formal size definitions also serve as proxies for the virialized region of a halo in the literature. In general, those spherical overdensity scales do not coincide with the virialized region. A physically more precise nomenclature would be to simply characterize them by their very definition instead of calling such formal size and mass definitions 'virial'. In general, we find a discrepancy between the evolution of the underlying physical structure of dark matter halos seen in cosmological structure formation simulations and pseudo-evolving formal virial quantities. We question the importance of the role of formal virial quantities currently ubiquitously used in descriptions, models, and relations that involve properties of dark matter structures. Concepts and relations based on pseudo-evolving formal virial quantities do not properly reflect the actual evolution of dark matter halos and lead to an inaccurate picture of the physical evolution of our universe.

  3. Analysing the problems of science teachers that they encounter while teaching physics education

    Directory of Open Access Journals (Sweden)

    Cihat Demir

    2015-12-01

    Full Text Available Even though physical science is very important in our daily lives, it is insufficiently understood by students. In order for students to get a better physical education, the teachers who have given physics lesson should first eliminated the problems that they face during the teaching process. The aim of this survey is to specify the matters encountered by science teachers during the teaching of physics and to provide them with solutions. The study group consisted of 50 science teachers who worked in Diyarbakır and Batman over the period of 2014 - 2015. This research is a descriptive study carried out by content analysis. In this study, semi-structured interview have been used along with qualitative research methods. According to the research findings, the top problems that the physics teachers encountered in physics lesson while processing the topics were laboratory problems. Some solutions have been introduced for science teachers in order to help them provide a better physics education.

  4. Condensed matter physics

    CERN Document Server

    Marder, Michael P

    2010-01-01

    This Second Edition presents an updated review of the whole field of condensed matter physics. It consolidates new and classic topics from disparate sources, teaching not only about the effective masses of electrons in semiconductor crystals and band theory, but also about quasicrystals, dynamics of phase separation, why rubber is more floppy than steel, granular materials, quantum dots, Berry phases, the quantum Hall effect, and Luttinger liquids.

  5. Matter and Interactions: a particle physics perspective

    OpenAIRE

    Organtini, Giovanni

    2011-01-01

    In classical mechanics matter and fields are completely separated. Matter interacts with fields. For particle physicists this is not the case. Both matter and fields are represented by particles. Fundamental interactions are mediated by particles exchanged between matter particles. In this paper we explain why particle physicists believe in such a picture, introducing the technique of Feynman diagrams starting from very basic and popular analogies with classical mechanics, making the physics ...

  6. Proceedings 17. International Conference on Applied Physics of Condensed Matter

    International Nuclear Information System (INIS)

    Pudis, D.; Kubicova, I.; Bury, P.

    2011-01-01

    The 17. International Conference on Applied Physics of Condensed Matter was held on 22-24 June, 2011 in Spa Novy Smokovec, High Tatras, Slovakia. The specialists discussed various aspects of modern problems of nano-science and technology, thin films, MOS structures, optical phenomena, GaN-based heterostructures, simulation methods, heterostructures and devices, solid state characterization and analysis, materials and radiation, sensors and detection methods, and material sciences. Contributions relevant of INIS interest (55 contributions) has been inputted to INIS.

  7. Proceedings of the 18th International Conference on Applied Physics of Condensed Matter

    International Nuclear Information System (INIS)

    Vajda, J.; Jamnicky, I.

    2012-01-01

    The 18th International Conference on Applied Physics of Condensed Matter was held on 20-22 June, 2012 on Strbske Pleso, Strba, Slovakia. The specialists discussed various aspects of modern problems in: Nuclear science and technology, influence of irradiation on physical properties of materials, radiation detection; New materials and structures, nanostructures, thin films, their analysis and applications; Physical properties and structural aspects of solid materials and their influencing; Optical phenomena in materials, photovoltaics and photonics, new principles in sensors and detection methods. Contributions relevant of INIS interest (forty-eight contributions) has been inputted to INIS.

  8. All problems of theoretical physics

    International Nuclear Information System (INIS)

    Park, Bong Yeol

    1991-09-01

    This book introduces particle physics, nuclear physics, and condensed matter physics. It deals with trend of particle physics, gauge theory and renormalisation, Quark-Hadron phase transition, unified field theory and theory of internal string, supersymmetry and supergravity, Berry's connection and Quantum separation of slow versus fast dynamics, giant resonance, intermediate energy nuclear physics, unclear fission reactor physics, atomic structure of metastable defect in semiconductor, dynamics theory of condensation material world, and two-dimensional Ising model revisited.

  9. Mechanics problems in undergraduate physics

    CERN Document Server

    Strelkov, S P

    2013-01-01

    Problems in Undergraduate Physics, Volume I: Mechanics focuses on solutions to problems in physics. The book first discusses the fundamental problems in physics. Topics include laws of conservation of momentum and energy; dynamics of a point particle in circular motion; dynamics of a rotating rigid body; hydrostatics and aerostatics; and acoustics. The text also offers information on solutions to problems in physics. Answers to problems in kinematics, statics, gravity, elastic deformations, vibrations, and hydrostatics and aerostatics are discussed. Solutions to problems related to the laws of

  10. Field-matter interaction in atomic and plasma physics, from fluctuations to the strongly nonlinear regime

    International Nuclear Information System (INIS)

    Benisti, D.

    2011-01-01

    This manuscript provides a theoretical description, sometimes illustrated by experimental results, of several examples of field-matter interaction in various domains of physics, showing how the same basic concepts and theoretical methods may be used in very different physics situations. The issues addressed here are nonlinear field-matter interaction in plasma physics within the framework of classical mechanics (with a particular emphasis on wave-particle interaction), the linear analysis of beam-plasma instabilities in the relativistic regime, and the quantum description of laser-atom interaction, including quantum electrodynamics. Novel methods are systematically introduced in order to solve some very old problems, like the nonlinear counterpart of the Landau damping rate in plasma physics, for example. Moreover, our results directly apply to inertial confinement fusion, laser propagation in an atomic vapor, ion acceleration in a magnetized plasma and the physics of the Reversed Field Pinch for magnetic fusion. (author)

  11. Physics of superheavy dark matter in supergravity

    Science.gov (United States)

    Addazi, Andrea; Marciano, Antonino; Ketov, Sergei V.; Khlopov, Maxim Yu.

    New trends in inflationary model building and dark matter production in supergravity are considered. Starobinsky inflation is embedded into 𝒩 = 1 supergravity, avoiding instability problems, when the inflaton belongs to a vector superfield associated with a U(1) gauge symmetry, instead of a chiral superfield. This gauge symmetry can be spontaneously broken by the super-Higgs mechanism resulting in a massive vector supermultiplet including the (real scalar) inflaton field. Both supersymmetry (SUSY) and the R-symmetry can also be spontaneously broken by the Polonyi mechanism at high scales close to the inflationary scale. In this case, Polonyi particles and gravitinos become superheavy, and can be copiously produced during inflation by the Schwinger mechanism sourced by the universe expansion. The Polonyi mass slightly exceeds twice the gravitino mass, so that Polonyi particles are unstable and decay into gravitinos. Considering the mechanisms of superheavy gravitino production, we find that the right amount of cold dark matter composed of gravitinos can be achieved. In our scenario, the parameter space of the inflaton potential is directly related to the dark matter one, providing a new unifying framework of inflation and dark matter genesis. A multi-superfield extension of the supergravity framework with a single (inflaton) superfield can result in a formation of primordial nonlinear structures like mini- and stellar-mass black holes, primordial nongaussianity, and the running spectral index of density fluctuations. This framework can be embedded into the SUSY GUTs inspired by heterotic string compactifications on Calabi-Yau three-folds, thus unifying particle physics with quantum gravity.

  12. The condensed matter physics

    International Nuclear Information System (INIS)

    Sapoval, B.

    1988-01-01

    The 1988 progress report of the laboratory of the Condensed Matter Physics (Polytechnic School, France), is presented. The Laboratory activities are related to the physics of semiconductors and disordered phases. The electrical and optical properties of the semiconductors, mixed conductor, superionic conductors and ceramics, are studied. Moreover, the interfaces of those systems and the sol-gel inorganic polymerization phenomena, are investigated. The most important results obtained, concern the following investigations: the electrochemical field effect transistor, the cathodoluminescence, the low energy secondary electrons emission, the fluctuations of a two-dimensional diffused junction and the aerogels [fr

  13. Physics in Brazil in the next decade: condensed matter physics

    International Nuclear Information System (INIS)

    1990-01-01

    This book gives a general overview of the present situation in Brazil, concerning research in the different areas of condensed matter physics. The main areas discussed here are: semiconductors, magnetism and magnetic materials, superconductivity liquid crystals and polymers, ceramics, glasses and crystals, statistical physics and solid state physics, crystallography, magnetic resonance and Moessbauer spectroscopy, among others. (A.C.A.S.)

  14. Particle Physics Foundations of Dark Matter, Dark Energy, and Inflation (2/3)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Ninety-five percent of the present mass-energy density of the Universe is dark. Twenty-five percent is in the form of dark matter holding together galaxies and other large scale structures, and 70% is in the form of dark energy driving an accelerated expansion of the universe. Dark matter and dark energy cannot be explained within the standard model of particle physics. In the first lecture I will review the evidence for dark matter and the observations that point to an explanation in the form of cold dark matter. I will then describe the expected properties of a hypothetical Weakly-Interacting Massive Particle, or WIMP, and review experimental and observational approaches to test the hypothesis. Finally, I will discuss how the LHC might shed light on the problem. In the second lecture I will review the theoretical foundations and observational evidence that the dominant component of the present mass density of the Universe has a negative pressure, which leads to an accelerated expansion of the Universe...

  15. Particle Physics Foundations of Dark Matter, Dark Energy, and Inflation (3/3)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Ninety-five percent of the present mass-energy density of the Universe is dark. Twenty-five percent is in the form of dark matter holding together galaxies and other large scale structures, and 70% is in the form of dark energy driving an accelerated expansion of the universe. Dark matter and dark energy cannot be explained within the standard model of particle physics. In the first lecture I will review the evidence for dark matter and the observations that point to an explanation in the form of cold dark matter. I will then describe the expected properties of a hypothetical Weakly-Interacting Massive Particle, or WIMP, and review experimental and observational approaches to test the hypothesis. Finally, I will discuss how the LHC might shed light on the problem. In the second lecture I will review the theoretical foundations and observational evidence that the dominant component of the present mass density of the Universe has a negative pressure, which leads to an accelerated expansion of the Universe...

  16. Particle Physics Foundations of Dark Matter, Dark Energy, and Inflation (1/3)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Ninety-five percent of the present mass-energy density of the Universe is dark. Twenty-five percent is in the form of dark matter holding together galaxies and other large scale structures, and 70% is in the form of dark energy driving an accelerated expansion of the universe. Dark matter and dark energy cannot be explained within the standard model of particle physics. In the first lecture I will review the evidence for dark matter and the observations that point to an explanation in the form of cold dark matter. I will then describe the expected properties of a hypothetical Weakly-Interacting Massive Particle, or WIMP, and review experimental and observational approaches to test the hypothesis. Finally, I will discuss how the LHC might shed light on the problem. In the second lecture I will review the theoretical foundations and observational evidence that the dominant component of the present mass density of the Universe has a negative pressure, which leads to an accelerated expansion of the Universe...

  17. Particle dark matter from physics beyond the standard model

    International Nuclear Information System (INIS)

    Matchev, Konstantin

    2004-01-01

    In this talk I contrast three different particle dark matter candidates, all motivated by new physics beyond the Standard Model: supersymmetric dark matter, Kaluza-Klein dark matter, and scalar dark matter. I then discuss the prospects for their discovery and identification in both direct detection as well as collider experiments

  18. Strange matter and dihyperon physics

    International Nuclear Information System (INIS)

    Barnes, P.D.

    1986-01-01

    A short review of the properties of Strange Matter is followed by a discussion of dihyperon physics. Calculations of the mass, lifetime and decay modes of the H particle are discussed, along with a review of experiments designed to search for the H Dibaryon. 32 refs., 15 figs

  19. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1999

    DEFF Research Database (Denmark)

    2000-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1999 are presented in this progress report. Theresearch in physics is concentrated on neutron...... molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures.Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods...

  20. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 2000

    DEFF Research Database (Denmark)

    2001-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 2000 are presented in this progress report. Theresearch in physics is concentrated on neutron...... molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods...

  1. Condensed matter physics aspects of electrochemistry

    International Nuclear Information System (INIS)

    Tosi, M.P.; Kornyshev, A.A.

    1991-01-01

    This volume collects the proceedings of the Working Party on ''Electrochemistry: Condensed Matter, Atomic and Molecular Physics Aspects'', held for two weeks in the summer of 1990 at the International Centre for Theoretical Physics (ICTP) in Trieste. The goal of the meeting was to discuss those areas of electrochemistry that are accessible to the modern methods of theoretical condensed matter, atomic and molecular physics, in order to stimulate insight and deeper involvement by theoretical physicists into the field. The core of the ICTP Working Party was a set of topically grouped plenary lectures, accompanied by contributed seminars and by the formulation of joint research projects. In the tradition of the ICTP, it was not a meeting of pure theoreticians: about half of the lecturers were professional experimentalists - experts in electrochemistry, physical chemistry, surface science, technical applications. A set of topics was chosen for discussion at the meeting: Liquids, solvation, solutions; The interface (structure, characterization, electric properties, adsorption); Electrodynamics, optics, photo-emission; Charge transfer kinetics (homogeneous and heterogeneous reactions and processes); Superconducting electrodes; Fractal electrodes; Applied research (energy conversion and power sources, electrocatalysis, electroanalysis of turbulent flows). Refs, figs and tabs

  2. On importance of dark matter for LHC physics

    International Nuclear Information System (INIS)

    Bednyakov, V.A.

    2000-01-01

    The aim of this paper is to attract attention of the LHC high-energy physics community to non-accelerator, low-energy experiments that are also very sensitive to new physics. This example concerns the search for supersymmetric dark matter particles. It is shown that non-observation of the SUSY dark matter candidates with a high-accuracy detector can exclude large domains of the MSSM parameter space and, in particular, can make especially desirable collider search for light SUSY charged Higgs boson

  3. The quark matter

    International Nuclear Information System (INIS)

    Rho, Mannque.

    1980-04-01

    The present status of our understanding of the physics of hadronic (nuclear or neutron) matter under extreme conditions, in particular at high densities is discussed. This is a problem which challenges three disciplines of physics: nuclear physics, astrophysics and particle physics. It is generally believed that we now have a correct and perhaps ultimate theory of the strong interactions, namely quantum chromodynamics (QCD). The constituents of this theory are quarks and gluons, so highly dense matters should be describable in terms of these constituents alone. This is a question that addresses directly to the phenomenon of quark confinement, one of the least understood aspects in particle physics. For nuclear physics, the possibility of a phase change between nuclear matter and quark matter introduces entirely new degrees of freedom in the description of nuclei and will bring perhaps a deeper understanding of nuclear dynamics. In astrophysics, the properties of neutron stars will be properly understood only when the equation of state of 'neutron' matter at densities exceeding that of nuclear matter can be realiably calculated. Most fascinating is the possibility of quark stars existing in nature, not entirely an absurd idea. Finally the quark matter - nuclear matter phase transition must have occured in the early stage of universe when matter expanded from high temperature and density; this could be an essential ingredient in the big-bang cosmology

  4. Walter Kohn and the Rise of Condensed Matter Physics T V ...

    Indian Academy of Sciences (India)

    Ramakrishnan T V

    Condensed Matter Physics: ( Physics of condensed matter, which is mostly solid, ... The nature and description of electronic states in solids. ( also with coulomb ... materials, molecular complexes, etc.. (Chemistry, biology, materials science….).

  5. Using What Matters to Students in Bilingual Mathematics Problems

    Science.gov (United States)

    Dominguez, Higinio

    2011-01-01

    In this study, the author represented what matters to bilingual students in their everyday lives--namely bilingualism and everyday experiences--in school-based mathematical problems. Solving problems in pairs, students demonstrated different patterns of organizing and coordinating talk across problem contexts and across languages. Because these…

  6. Resource Letter HCMP-1: History of Condensed Matter Physics

    Science.gov (United States)

    Martin, Joseph D.

    2017-02-01

    This Resource Letter provides a guide to the literature on the history of condensed matter physics, including discussions of the development of the field and strategies for approaching its complicated historical trajectory. Following the presentation of general resources, journal articles and books are cited for the following topics: conceptual development; institutional and community structure; social, cultural, and political history; and connections between condensed matter physics and technology.

  7. 29th Workshop on Recent Developments in Computer Simulation Studies in Condensed Matter Physics

    International Nuclear Information System (INIS)

    2016-01-01

    support of this year's workshop. These Proceedings contain both invited papers and contributed presentations on problems in both classical and quantum condensed matter physics. As usual, topics ranged from hard and soft condensed matter to biologically inspired problems and purely methodological advances. While familiar topics like phase transitions were still on display, the trends in biophysics, dynamical behavior and complex systems demonstrated the continuing progression in the focus of computational condensed matter physics. We hope that readers will benefit from specialized results as well as profit from exposure to new algorithms, methods of analysis, and conceptual developments. Athens, GA, U.S.A. April, 2016 D. P. Landau M. Bachmann S. P. Lewis (paper)

  8. Condensed matter applied atomic collision physics, v.4

    CERN Document Server

    Datz, Sheldon

    1983-01-01

    Applied Atomic Collision Physics, Volume 4: Condensed Matter deals with the fundamental knowledge of collision processes in condensed media.The book focuses on the range of applications of atomic collisions in condensed matter, extending from effects on biological systems to the characterization and modification of solids. This volume begins with the description of some aspects of the physics involved in the production of ion beams. The radiation effects in biological and chemical systems, ion scattering and atomic diffraction, x-ray fluorescence analysis, and photoelectron and Auger spectrosc

  9. Proceedings of the 9. National Meeting on Condensed Matter Physics

    International Nuclear Information System (INIS)

    1986-01-01

    The 9. National Meeting on Condensed Matter Physics presents works developed in the following fields: amorphous materials, atomic and molecular physics, biophysics, crystallography, defects, growth and critical phenomena, instrumentation, liquid crystals, magnetism, matter science/mechanical properties, metals and alloys, optic, magnetic resonance and semiconductors. (M.C.K.) [pt

  10. Hierarchy problem and BSM physics

    Indian Academy of Sciences (India)

    Gautam Bhattacharyya

    2017-10-05

    Oct 5, 2017 ... One-loop quantum corrections to the Higgs boson mass from fermion ... physics? 3. Supersymmetry. Supersymmetry relates matter particles with force par- ticles, i.e. it .... Higgs remembers its Goldstone origin and its coupling.

  11. Annual progress report of the Condensed Matter Physics and Chemistry Department. 1 January - 31 December 2000

    International Nuclear Information System (INIS)

    Lebech, B.

    2001-03-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 2000 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  12. Annual progress report of the Condensed Matter Physics and Chemistry Department. 1 January - 31 December 1999

    Energy Technology Data Exchange (ETDEWEB)

    Lebech, B [ed.

    2000-02-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1999 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scalestructures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  13. Annual progress report of the Condensed Matter Physics and Chemistry Department. 1 January - 31 December 1999

    International Nuclear Information System (INIS)

    Lebech, B.

    2000-02-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1999 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  14. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1997

    International Nuclear Information System (INIS)

    Nielsen, M.; Bechgaard, K.; Clausen, K.N.; Feidenhans'l, R.; Johannsen, I.

    1998-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1997 are presented in this progress report. The research in physics in concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems in undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  15. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1998

    International Nuclear Information System (INIS)

    Bechgaard, K.; Clausen, K.N.; Feidenhans'l, R.; Johannsen, I.

    1999-04-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical properties of materials. The principal activities in the year 1998 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  16. EDITORIAL: Focus on Dark Matter and Particle Physics

    Science.gov (United States)

    Aprile, Elena; Profumo, Stefano

    2009-10-01

    The quest for the nature of dark matter has reached a historical point in time, with several different and complementary experiments on the verge of conclusively exploring large portions of the parameter space of the most theoretically compelling particle dark matter models. This focus issue on dark matter and particle physics brings together a broad selection of invited articles from the leading experimental and theoretical groups in the field. The leitmotif of the collection is the need for a multi-faceted search strategy that includes complementary experimental and theoretical techniques with the common goal of a sound understanding of the fundamental particle physical nature of dark matter. These include theoretical modelling, high-energy colliders and direct and indirect searches. We are confident that the works collected here present the state of the art of this rapidly changing field and will be of interest to both experts in the topic of dark matter as well as to those new to this exciting field. Focus on Dark Matter and Particle Physics Contents DARK MATTER AND ASTROPHYSICS Scintillator-based detectors for dark matter searches I S K Kim, H J Kim and Y D Kim Cosmology: small-scale issues Joel R Primack Big Bang nucleosynthesis and particle dark matter Karsten Jedamzik and Maxim Pospelov Particle models and the small-scale structure of dark matter Torsten Bringmann DARK MATTER AND COLLIDERS Dark matter in the MSSM R C Cotta, J S Gainer, J L Hewett and T G Rizzo The role of an e+e- linear collider in the study of cosmic dark matter M Battaglia Collider, direct and indirect detection of supersymmetric dark matter Howard Baer, Eun-Kyung Park and Xerxes Tata INDIRECT PARTICLE DARK MATTER SEARCHES:EXPERIMENTS PAMELA and indirect dark matter searches M Boezio et al An indirect search for dark matter using antideuterons: the GAPS experiment C J Hailey Perspectives for indirect dark matter search with AMS-2 using cosmic-ray electrons and positrons B Beischer, P von

  17. Nuclear matter physics at NICA

    Energy Technology Data Exchange (ETDEWEB)

    Senger, P. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2016-08-15

    The exploration of the QCD phase diagram is one of the most exciting and challenging projects of modern nuclear physics. In particular, the investigation of nuclear matter at high baryon densities offers the opportunity to find characteristic structures such as a first-order phase transition with a region of phase coexistence and a critical endpoint. The experimental discovery of these prominent landmarks of the QCD phase diagram would be a major breakthrough in our understanding of the properties of nuclear matter. Equally important is the quantitative experimental information on the properties of hadrons in dense matter which may shed light on chiral symmetry restoration and the origin of hadron masses. Worldwide, substantial efforts at the major heavy-ion accelerators are devoted to the clarification of these fundamental questions, and new dedicated experiments are planned at future facilities like CBM at FAIR in Darmstadt and MPD at NICA/JINR in Dubna. In this article the perspectives for MPD at NICA will be discussed. (orig.)

  18. Integrating Condensed Matter Physics into a Liberal Arts Physics Curriculum

    Science.gov (United States)

    Collett, Jeffrey

    2008-03-01

    The emergence of nanoscale science into the popular consciousness presents an opportunity to attract and retain future condensed matter scientists. We inject nanoscale physics into recruiting activities and into the introductory and the core portions of the curriculum. Laboratory involvement and research opportunity play important roles in maintaining student engagement. We use inexpensive scanning tunneling (STM) and atomic force (AFM) microscopes to introduce students to nanoscale structure early in their college careers. Although the physics of tip-surface interactions is sophisticated, the resulting images can be interpreted intuitively. We use the STM in introductory modern physics to explore quantum tunneling and the properties of electrons at surfaces. An interdisciplinary course in nanoscience and nanotechnology course team-taught with chemists looks at nanoscale phenomena in physics, chemistry, and biology. Core quantum and statistical physics courses look at effects of quantum mechanics and quantum statistics in degenerate systems. An upper level solid-state physics course takes up traditional condensed matter topics from a structural perspective by beginning with a study of both elastic and inelastic scattering of x-rays from crystalline solids and liquid crystals. Students encounter reciprocal space concepts through the analysis of laboratory scattering data and by the development of the scattering theory. The course then examines the importance of scattering processes in band structure and in electrical and thermal conduction. A segment of the course is devoted to surface physics and nanostructures where we explore the effects of restricting particles to two-dimensional surfaces, one-dimensional wires, and zero-dimensional quantum dots.

  19. Spectroscopic characteristics of soil organic matter as a tool to assess soil physical quality in Mediterranean ecosystems

    Science.gov (United States)

    Recio Vázquez, Lorena; Almendros, Gonzalo; Knicker, Heike; López-Martín, María; Carral, Pilar; Álvarez, Ana

    2014-05-01

    degree of humification (properties involved in the maintenance of physical support, water storage and air provision functions). From the practical viewpoint, the results support the idea that the detailed structural study of the different soil C-forms is useful for accurately monitoring soil physical status. The quantification of total soil organic carbon ought to be complemented with qualitative analyses of the organic matter, at least at the spectroscopic level, which can be used for the early diagnosis of possible degradation processes. Moreover, in already degraded soils, the knowledge of the sources of variability for each physical property provides valuable information for the restoration of these ecosystems by adapting inputs of organic matter with specific features (aliphatic nature, oxidation degree, humification stage, etc.) to particular soil degradation problems (i.e. soil compaction, waterlogging, water erosion, etc.).

  20. Foundations of high-energy-density physics physical processes of matter at extreme conditions

    CERN Document Server

    Larsen, Jon

    2017-01-01

    High-energy-density physics explores the dynamics of matter at extreme conditions. This encompasses temperatures and densities far greater than we experience on Earth. It applies to normal stars, exploding stars, active galaxies, and planetary interiors. High-energy-density matter is found on Earth in the explosion of nuclear weapons and in laboratories with high-powered lasers or pulsed-power machines. The physics explored in this book is the basis for large-scale simulation codes needed to interpret experimental results whether from astrophysical observations or laboratory-scale experiments. The key elements of high-energy-density physics covered are gas dynamics, ionization, thermal energy transport, and radiation transfer, intense electromagnetic waves, and their dynamical coupling. Implicit in this is a fundamental understanding of hydrodynamics, plasma physics, atomic physics, quantum mechanics, and electromagnetic theory. Beginning with a summary of the topics and exploring the major ones in depth, thi...

  1. Space, Time, Matter, and Form Essays on Aristotle's Physics

    CERN Document Server

    Bostock, David

    2006-01-01

    Space, Time, Matter, and Form collects ten of David Bostock's essays on themes from Aristotle's Physics, four of them published here for the first time. The first five papers look at issues raised in the first two books of the Physics, centred on notions of matter and form, and the idea of substance as what persists through change. They also range over other of Aristotle's scientific works, such as his biology and psychology and the account of change in his De Generatione et Corruptione. The volume's remaining essays examine themes in later books of the Physics, including infinity, place, time

  2. Light-matter interaction physics and engineering at the nanoscale

    CERN Document Server

    Weiner, John

    2017-01-01

    Light–matter interaction is pervasive throughout the disciplines of optical and atomic physics, condensedmatter physics, and electrical engineering with frequency and length scales extending over many orders of magnitude. The frequency range extends from a few tens of Hz for sea communications to hundreds of petaHz (1015 s–1) for X-ray imaging systems. Length scales range from thousands of kilometres to a few hundred picometres. Although the present work does not offer an exhaustive treatise on this vast subject, it does aim to provide advanced undergraduates, graduate students, and researchers from these diverse disciplines the principal tools required to understand and contribute to rapidly advancing developments in light–matter interaction centred at optical frequencies and length scales. Classical electrodynamics, with an emphasis on the macroscopic expressions of Maxwell’s equations, physical optics, and quantum mechanics provide unique perspectives to the interaction of light and matter at these...

  3. Problems and solutions in quantum physics

    CERN Document Server

    Ficek, Zbigniew

    2016-01-01

    This book contains tutorial problems with solutions for the textbook Quantum Physics for Beginners. The reader studying the abstract field of quantum physics needs to solve plenty of practical, especially quantitative, problems. This book places emphasis on basic problems of quantum physics together with some instructive, simulating, and useful applications. A considerable range of complexity is presented by these problems, and not too many of them can be solved using formulas alone.

  4. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1998

    Energy Technology Data Exchange (ETDEWEB)

    Bechgaard, K.; Clausen, K.N.; Feidenhans`l, R.; Johannsen, I. [eds.

    1999-04-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical properties of materials. The principal activities in the year 1998 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au) 2 tabs., 142 ills., 169 refs.

  5. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1997

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M; Bechgaard, K; Clausen, K N; Feidenhans` l, R; Johannsen, I [eds.

    1998-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1997 are presented in this progress report. The research in physics in concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems in undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au). 129 ills., 213 refs.

  6. Extreme state of matter physics at FAIR

    International Nuclear Information System (INIS)

    Boris Sharkov

    2010-01-01

    Complete text of publication follows. The Facility for Antiproton and Ion Research in Europe, FAIR, will provide worldwide unique accelerator and experimental facilities allowing for a large variety of unprecedented fore-front research in extreme state of matter physics and applied science. Indeed, it is the largest basic research project on the roadmap of the European Strategy Forum of Research Infrastructures (ESFRI), and it is cornerstone of the European Research Area. FAIR offers to scientists from the whole world an abundance of outstanding research opportunities, broader in scope than any other contemporary large-scale facility worldwide. More than 2500 scientists are involved in setting up and exploiting the FAIR facility. They will push the frontiers of our knowledge in hadron, nuclear, atomic and applied physics far ahead, with important implications also for other fields in science such as cosmology, astro and particle physics, and technology. It includes 14 initial experiments, which form the four scientific pillars of FAIR. The main thrust of intense heavy ion and laser beam-matter interaction research focuses on the structure and evolution of matter on both a microscopic and on a cosmic scale. This presentation outlines the current status of the Facility for Antiproton and Ion Research. It is expected that the actual construction of the facility will commence in 2010 as the project has raised more than one billion euro in funding. The sequence and scope of the construction will be described. Also the physics program of FAIR, based on the acquired funding, will be presented.

  7. Fair for extreme state of matter physics

    International Nuclear Information System (INIS)

    Sharkov, B.

    2013-01-01

    The Facility for Antiproton and Ion Research in Europe, FAIR, will provide worldwide unique accelerator and experimental facilities allowing for a large variety of unprecedented fore-front research in extreme state of matter physics and applied science. Indeed, it is the largest basic research project on the roadmap of the European Strategy Forum of Research Infrastructures (ESFRI), and it is cornerstone of the European Research Area. FAIR offers to scientists from the whole world an abundance of outstanding research opportunities, broader in scope than any other contemporary large-scale facility worldwide. More than 2500 scientists are involved in setting up and exploiting the FAIR facility. They will push the frontiers of our knowledge in hadron, nuclear, atomic and applied physics far ahead, with important implications also for other fields in science such as cosmology, astro and particle physics, and technology. It includes 14 initial experiments, which form the four scientific pillars of FAIR. The main thrust of intense heavy ion and laser beam-matter interaction research focuses on the structure and evolution of matter on both a microscopic and on a cosmic scale. This presentation outlines the current status of the Facility for Antiproton and Ion Research. It is expected that the actual construction of the facility will commence in 2010 as the project has raised more than one billion euro in funding. The sequence and scope of the construction will be described. Also the physics program of FAIR, based on the acquired funding, will be presented. (author)

  8. Some problems of quantum cosmology and dark matter physics

    Science.gov (United States)

    Wang, Jin

    The quantum cosmology is studied of the string universe obtained by embedding the Robertson-Walker metric in the nonlinear sigma model. It was found that initially the universe exists in a series of metastable bound states with the scale factor taking discrete values. Then it tunnels through a barrier and comes out in an inflationary state. This tunneling (or evolution in imaginary time) also has the effect of heating up the matter field so that we have a condition of chaotic inflation. The asymptotic solutions agree with those obtained from the classical Einstein equations. Quantum cosmology was considered of a 4-D universe using the effective action of superstrings. Both Hartle-Hawking and Vilenkin boundary conditions were applied to the solution of Wheeler-DeWitt equation. Under certain conditions (fermions added) the universe was found to tunnel through to the Lorentzian regime from the Euclidean regime and time is dynamically generated. Chudnovsky and Vilenkin's idea was applied to possible existence of cosmic strings in the Sun. Stellar evolution with cosmic strings at solar age gives a radius and luminosity of the star which are in contradiction with observation. The astrophysical bound was studied on the change of gravitational constant with time. It was found that (G/G) less than 10-12yr-1 is the condition that has to be satisfied in order not to cause the conflict with observation. The effect was studied of axions on the steller evolution of a 10 solar mass star model. If the axion mass is larger than .1 ev the star's age is significantly different at late stages, compared to the star without axions. It is argued that if cosmions (or WIMPS) solve the solar neutrino problem, then they must also play an important role in the evolution of low mass star main sequence stars. If they do so, then a simple (long mean free path) model for the interaction of cosmions with baryons leads to changes in the structure of the nuclear-burning core which may in principle

  9. [Winter workshop on universalities in condensed matter physics, Les Houches, France, March 15-24, 1988]: [Foreign trip report

    International Nuclear Information System (INIS)

    Hu, Bambi.

    1988-01-01

    This paper reports on the travel of Bambi Hu to France for a workshop on Universalities in Condensed Matter Physics. A very brief discussion is given on the workshop. His paper titled ''Problem of Universality in Phase Transitions in Low-Symmetry Systems,'' is included in this report

  10. Inquiry-based problem solving in introductory physics

    Science.gov (United States)

    Koleci, Carolann

    What makes problem solving in physics difficult? How do students solve physics problems, and how does this compare to an expert physicist's strategy? Over the past twenty years, physics education research has revealed several differences between novice and expert problem solving. The work of Chi, Feltovich, and Glaser demonstrates that novices tend to categorize problems based on surface features, while experts categorize according to theory, principles, or concepts1. If there are differences between how problems are categorized, then are there differences between how physics problems are solved? Learning more about the problem solving process, including how students like to learn and what is most effective, requires both qualitative and quantitative analysis. In an effort to learn how novices and experts solve introductory electricity problems, a series of in-depth interviews were conducted, transcribed, and analyzed, using both qualitative and quantitative methods. One-way ANOVA tests were performed in order to learn if there are any significant problem solving differences between: (a) novices and experts, (b) genders, (c) students who like to answer questions in class and those who don't, (d) students who like to ask questions in class and those who don't, (e) students employing an interrogative approach to problem solving and those who don't, and (f) those who like physics and those who dislike it. The results of both the qualitative and quantitative methods reveal that inquiry-based problem solving is prevalent among novices and experts, and frequently leads to the correct physics. These findings serve as impetus for the third dimension of this work: the development of Choose Your Own Adventure Physics(c) (CYOAP), an innovative teaching tool in physics which encourages inquiry-based problem solving. 1Chi, M., P. Feltovich, R. Glaser, "Categorization and Representation of Physics Problems by Experts and Novices", Cognitive Science, 5, 121--152 (1981).

  11. Dark matter: Theoretical perspectives

    International Nuclear Information System (INIS)

    Turner, M.S.

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for ''new physics.'' The compelling candidates are: a very light axion ( 10 -6 eV--10 -4 eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos

  12. Exact series solution to the two flavor neutrino oscillation problem in matter

    International Nuclear Information System (INIS)

    Blennow, Mattias; Ohlsson, Tommy

    2004-01-01

    In this paper, we present a real nonlinear differential equation for the two flavor neutrino oscillation problem in matter with an arbitrary density profile. We also present an exact series solution to this nonlinear differential equation. In addition, we investigate numerically the convergence of this solution for different matter density profiles such as constant and linear profiles as well as the Preliminary Reference Earth Model describing the Earth's matter density profile. Finally, we discuss other methods used for solving the neutrino flavor evolution problem

  13. Rooting the biggest problems in physics

    DEFF Research Database (Denmark)

    Javadi, Hossein; Forouzbakhsh, Farshid

    2016-01-01

    to combine these three theories of classical mechanics, quantum mechanics and relativity in order to reach to a unique physics. Eventually, by answering the unanswered questions, the physics problems will be solved. In this paper, the stems of physics problems are expressed and the solution of them...

  14. Mirror matter as self-interacting dark matter

    International Nuclear Information System (INIS)

    Mohapatra, R.N.; Nussinov, S.; Teplitz, V.L.

    2002-01-01

    It has been argued that the observed core density profile of galaxies is inconsistent with having a dark matter particle that is collisionless and that alternative dark matter candidates which are self-interacting may explain observations better. One new class of self-interacting dark matter that has been proposed in the context of mirror universe models of particle physics is the mirror hydrogen atom, whose stability is guaranteed by the conservation of mirror baryon number. We show that the effective transport cross section for mirror hydrogen atoms has the right order of magnitude for solving the 'cuspy' halo problem. Furthermore, the suppression of dissipation effects for mirror atoms due to a higher mirror mass scale prevents the mirror halo matter from collapsing into a disk, strengthening the argument for mirror matter as galactic dark matter

  15. Condensed elementary particle matter

    International Nuclear Information System (INIS)

    Kajantie, K.

    1996-01-01

    Quark matter is a special case of condensed elementary particle matter, matter governed by the laws of particle physics. The talk discusses how far one can get in the study of particle matter by reducing the problem to computations based on the action. As an example the computation of the phase diagram of electroweak matter is presented. It is quite possible that ultimately an antireductionist attitude will prevail: experiments will reveal unpredicted phenomena not obviously reducible to the study of the action. (orig.)

  16. Reactor physics problems on HCPWR

    International Nuclear Information System (INIS)

    Ishiguro, Yukio; Akie, Hiroshi; Kaneko, Kunio; Sasaki, Makoto.

    1986-01-01

    Reactor physics problems on high conversion pressurized water reactors (HCPWRs) are discussed. Described in this report are outline of the HCPWR, expected accuracy for the various reactor physical qualities, and method for K-effective calculation in the resonance energy area. And requested further research problems are shown. The target value of the conversion ratio are also discussed. (author)

  17. (Tropical) soil organic matter modelling: problems and prospects

    NARCIS (Netherlands)

    Keulen, van H.

    2001-01-01

    Soil organic matter plays an important role in many physical, chemical and biological processes. However, the quantitative relations between the mineral and organic components of the soil and the relations with the vegetation are poorly understood. In such situations, the use of models is an

  18. What is physics problem solving competency?

    DEFF Research Database (Denmark)

    Niss, Martin

    2018-01-01

    on the nature of physics problem- solving competency. The first, Sommerfeld’s, is a “theory first, phenomenon second” approach. Here the relevant problems originate in one of the theories of physics and the job goal of the problem- solver is to make a mathematical analysis of the suitable equation......A central goal of physics education is to teach problem-solving competency, but the nature of this competency is not well-described in the literature. The present paperarticle uses recent historical scholarship on Arnold Sommerfeld and Enrico Fermi to identify and characterize two positions......(s) and then give a qualitative analysis of the phenomenon that arise from these mathematical results. Fermi’s position is a “phenomenon first, theory second” approach, where the starting point is a physical phenomenon that is analyzed and then brought into the realm of a physics theory. The two positions...

  19. Physics of hot hadronic matter and quark-gluon plasma

    International Nuclear Information System (INIS)

    Shuryak, E.V.

    1990-07-01

    This Introductory talk contains a brief review of the current status of theoretical and experimental activities related to physics of superdense matter. In particular, we discuss latest lattice results on the phase transition, recent progress in chiral symmetry physics based on the theory of interacting instantons, new in the theory of QGP and of hot hadronic matter, mean p t and collective flow, the shape of p t distribution, strangeness production, J/ψ suppression and φ enhancement, two puzzles connected with soft pion and soft photon enhancements, and some other ''ultrasoft'' phenomena. 56 refs., 6 figs

  20. Dark matter: Theoretical perspectives

    International Nuclear Information System (INIS)

    Turner, M.S.

    1993-01-01

    The author both reviews and makes the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that (i) there are no dark-matter candidates within the open-quotes standard modelclose quotes of particle physics, (ii) there are several compelling candidates within attractive extensions of the standard model of particle physics, and (iii) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for open-quotes new physics.close quotes The compelling candidates are a very light axion (10 -6 --10 -4 eV), a light neutrino (20--90 eV), and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. The author briefly mentions more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos. 119 refs

  1. Dark matter: Theoretical perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.S. (Chicago Univ., IL (United States). Enrico Fermi Inst. Fermi National Accelerator Lab., Batavia, IL (United States))

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for new physics.'' The compelling candidates are: a very light axion ( 10[sup [minus]6] eV--10[sup [minus]4] eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.

  2. Dark matter: Theoretical perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Turner, M.S. [Chicago Univ., IL (United States). Enrico Fermi Inst.]|[Fermi National Accelerator Lab., Batavia, IL (United States)

    1993-01-01

    I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that: (1) there are no dark matter candidates within the standard model of particle physics; (2) there are several compelling candidates within attractive extensions of the standard model of particle physics; and (3) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for ``new physics.`` The compelling candidates are: a very light axion ( 10{sup {minus}6} eV--10{sup {minus}4} eV); a light neutrino (20 eV--90 eV); and a heavy neutralino (10 GeV--2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.

  3. Dark matter and galactic cosmic rays

    International Nuclear Information System (INIS)

    Taillet, R.

    2010-12-01

    Dark matter is one of the major problems encountered by modern cosmology and astrophysics, resisting the efforts of both theoreticians and experimentalists. The problem itself is easy to state: many indirect astrophysical measurements indicate that the mass contained in the Universe seems to be dominated by a new type of matter which has never been directly seen yet, this is why it is called dark matter. This hypothesis of dark matter being made of new particles is of great interest for particle physicists, whose theories provide many candidates: dark matter is one of the major topics of astro-particle physics. This work focuses on searching dark matter in the form of new particles, more precisely to indirect detection, i.e. the search of particles produced by dark matter annihilation rather than dark matter particles themselves. In this framework, I will present the studies I have been doing in the field of cosmic rays physics (particularly cosmic ray sources), in several collaborations. In particular, the study of the antimatter component of cosmic rays can give relevant information about dark matter. The last chapter is dedicated to my teaching activities

  4. Double beta and dark matter search-window to new physics beyond the Standard Model of particle physics

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.

    1999-01-01

    Nuclear double beta decay provides an extraordinarily broad potential to search beyond Standard Model physics, probing already now the TeV scale, on which new physics should manifest itself. These possibilities are reviewed here. First, the results of present generation experiments are presented. The most sensitive one of them - the Heidelberg-Moscow experiment in the Gran Sasso - probes the electron mass now in the sub eV region and will reach a limit of ∼ 0.1 eV in a few years. Basing to a large extend on the theoretical work of the Heidelberg Double Beta Group in the last two years, results are obtained also for SUSY models (R-parity breaking, sneutrino mass), leptoquarks (leptoquark-Higgs coupling), compositeness, right-handed W boson mass, test of special relativity and equivalence principle in the neutrino sector and others. These results are comfortably competitive to corresponding results from high-energy accelerators like TEVATRON, HERA, etc. One of the enriched 76 Ge detectors also yields the most stringent limits for cold dark matter (WIMPs) to date by using raw data. Second, future perspectives of ββ research are discussed. A new Heidelberg experimental proposal (GENIUS) is described which would allow to increase the sensitivity for Majorana neutrino masses from the present level at best 0.1 eV down to 0.01 eV or even 0.001 eV. Its physical potential would be a breakthrough into the multi-TeV range for many beyond standard models. Its sensitivity for neutrino oscillation parameters would be larger than of all present terrestrial neutrino oscillation experiments and of those planned for the future. It could probe directly the atmospheric neutrino problem and the large angle, and for almost degenerate neutrino mass scenarios even the small angle solution of the solar neutrino problem. It would further, already in a first step using only 100 kg of natural Ge detectors, cover almost the full MSSM parameter space for prediction of neutralinos as cold

  5. A Multivariate Model of Physics Problem Solving

    Science.gov (United States)

    Taasoobshirazi, Gita; Farley, John

    2013-01-01

    A model of expertise in physics problem solving was tested on undergraduate science, physics, and engineering majors enrolled in an introductory-level physics course. Structural equation modeling was used to test hypothesized relationships among variables linked to expertise in physics problem solving including motivation, metacognitive planning,…

  6. International Workshop on Current Problems in Condensed Matter

    CERN Document Server

    Current Problems in Condensed Matter

    1998-01-01

    This volume contains the papers presented at the International Workshop on the Cur­ rent Problems in Condensed Matter: Theory and Experiment, held at Cocoyoc, More­ los, Mexico, during January 5-9, 1997. The participants had come from Argentina, Austria, Chile, England, France, Germany, Italy, Japan, Mexico, Switzerland, and the USA. The presentations at the Workshop provided state-of-art reviews of many of the most important problems, currently under study, in condensed matter. Equally important to all the participants in the workshop was the fact that we had come to honor a friend, Karl Heinz Bennemann, on his sixty-fifth birthday. This Festschrift is just a small measure of recognition of the intellectualleadership of Professor Bennemann in the field and equally important, as a sincere tribute to his qualities as an exceptional friend, college and mentor. Those who have had the privilege to work closely with Karl have been deeply touched by Karl's inquisitive scientific mind as well as by bis k...

  7. Statistical physics and condensed matter

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This document is divided into 4 sections: 1) General aspects of statistical physics. The themes include: possible geometrical structures of thermodynamics, the thermodynamical foundation of quantum measurement, transport phenomena (kinetic theory, hydrodynamics and turbulence) and out of equilibrium systems (stochastic dynamics and turbulence). The techniques involved here are typical of applied analysis: stability criteria, mode decomposition, shocks and stochastic equations. 2) Disordered, glassy and granular systems: statics and dynamics. The complexity of the systems can be studied through the structure of their phase space. The geometry of this phase space is studied in several works: the overlap distribution can now be computed with a very high precision; the boundary energy between low lying states does not behave like in ordinary systems; and the Edward's hypothesis of equi-probability of low lying metastable states is invalidated. The phenomenon of aging, characteristic of glassy dynamics, is studied in several models. Dynamics of biological systems or of fracture is shown to bear some resemblance with that of disordered systems. 3) Quantum systems. The themes include: mesoscopic superconductors, supersymmetric approach to strongly correlated electrons, quantum criticality and heavy fermion compounds, optical sum rule violation in the cuprates, heat capacity of lattice spin models from high-temperature series expansion, Lieb-Schultz-Mattis theorem in dimension larger than one, quantum Hall effect, Bose-Einstein condensation and multiple-spin exchange model on the triangular lattice. 4) Soft condensed matter and biological systems. Path integral representations are invaluable to describe polymers, proteins and self-avoiding membranes. Using these methods, problems as diverse as the titration of a weak poly-acid by a strong base, the denaturation transition of DNA or bridge-hopping in conducting polymers have been addressed. The problems of RNA folding

  8. Statistical physics and condensed matter

    International Nuclear Information System (INIS)

    2003-01-01

    This document is divided into 4 sections: 1) General aspects of statistical physics. The themes include: possible geometrical structures of thermodynamics, the thermodynamical foundation of quantum measurement, transport phenomena (kinetic theory, hydrodynamics and turbulence) and out of equilibrium systems (stochastic dynamics and turbulence). The techniques involved here are typical of applied analysis: stability criteria, mode decomposition, shocks and stochastic equations. 2) Disordered, glassy and granular systems: statics and dynamics. The complexity of the systems can be studied through the structure of their phase space. The geometry of this phase space is studied in several works: the overlap distribution can now be computed with a very high precision; the boundary energy between low lying states does not behave like in ordinary systems; and the Edward's hypothesis of equi-probability of low lying metastable states is invalidated. The phenomenon of aging, characteristic of glassy dynamics, is studied in several models. Dynamics of biological systems or of fracture is shown to bear some resemblance with that of disordered systems. 3) Quantum systems. The themes include: mesoscopic superconductors, supersymmetric approach to strongly correlated electrons, quantum criticality and heavy fermion compounds, optical sum rule violation in the cuprates, heat capacity of lattice spin models from high-temperature series expansion, Lieb-Schultz-Mattis theorem in dimension larger than one, quantum Hall effect, Bose-Einstein condensation and multiple-spin exchange model on the triangular lattice. 4) Soft condensed matter and biological systems. Path integral representations are invaluable to describe polymers, proteins and self-avoiding membranes. Using these methods, problems as diverse as the titration of a weak poly-acid by a strong base, the denaturation transition of DNA or bridge-hopping in conducting polymers have been addressed. The problems of RNA folding has

  9. Designing and using multiple-possibility physics problems in physics courses

    Science.gov (United States)

    Shekoyan, Vazgen

    2012-02-01

    One important aspect of physics instruction is helping students develop better problem solving expertise. Besides enhancing the content knowledge, problems help students develop different cognitive abilities and skills. This presentation focuses on multiple-possibility problems (alternatively called ill-structured problems). These problems are different from traditional ``end of chapter'' single-possibility problems. They do not have one right answer and thus the student has to examine different possibilities, assumptions and evaluate the outcomes. To solve such problems one has to engage in a cognitive monitoring called epistemic cognition. It is an important part of thinking in real life. Physicists routinely use epistemic cognition when they solve problems. I have explored the instructional value of using such problems in introductory physics courses.

  10. Computer problem-solving coaches for introductory physics: Design and usability studies

    Science.gov (United States)

    Ryan, Qing X.; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Mason, Andrew

    2016-06-01

    The combination of modern computing power, the interactivity of web applications, and the flexibility of object-oriented programming may finally be sufficient to create computer coaches that can help students develop metacognitive problem-solving skills, an important competence in our rapidly changing technological society. However, no matter how effective such coaches might be, they will only be useful if they are attractive to students. We describe the design and testing of a set of web-based computer programs that act as personal coaches to students while they practice solving problems from introductory physics. The coaches are designed to supplement regular human instruction, giving students access to effective forms of practice outside class. We present results from large-scale usability tests of the computer coaches and discuss their implications for future versions of the coaches.

  11. Problems of matter-antimatter boundary layers

    International Nuclear Information System (INIS)

    Lehnert, B.

    1975-01-01

    This paper outlines the problems of the quasi-steady matter-antimatter boundary layers discussed in Klein-Alfven's cosmological theory, and a crude model of the corresponding ambiplasma balance is presented: (i) at interstellar particle densities, no well-defined boundary layer can exist in presence of neutral gas, nor can such a layer be sustained in an unmagnetized fully ionized ambiplasma. (ii) Within the limits of applicability of the present model, sharply defined boundary layers are under certain conditions found to exist in a magnetized ambiplasma. Thus, at beta values less than unity, a steep pressure drop of the low-energy components of matter and antimatter can be balanced by a magnetic field and the electric currents in the ambiplasma. (iii) The boundary layer thickness is of the order of 2x 0 approximately 10/BT 0 sup(1/4) meters, where B is the magnetic field strength in MKS units and T 0 the characteristic temperature of the low-energy components in the layer. (Auth.)

  12. Dark matter in the universe

    International Nuclear Information System (INIS)

    Opher, Reuven

    2001-01-01

    We treat here the problem of dark matter in galaxies. Recent articles seem to imply that we are entering into the precision era of cosmology, implying that all of the basic physics of cosmology is known. However, we show here that recent observations question the pillar of the standard model: the presence of nonbaryonic 'dark matter' in galaxies. Using Newton's law of gravitation, observations indicate that most of the matter in galaxies in invisible or dark. From the observed abundances of light elements, dark matter in galaxies must be primarily nonbaryonic. The standard model and its problems in explaining nonbaryonic dark matter will first be discussed. This will be followed by a discussion of a modification of Newton's law of gravitation to explain dark matter in galaxies. (author)

  13. The cosmology/particle physics interface

    International Nuclear Information System (INIS)

    Olive, K.A.; Schramm, D.N.

    1985-01-01

    The paper reviews the interface between elementary particle physics and cosmology; and concentrates on inflation and the dark matter problem. Inflationary models of the Universe are examined, including phase transitions and supergravity. The three classes of dark matter problems discussed are: dynamical halos, galaxy formation and clustering, and the Ω=1 of inflation. Possible solutions to the cosmological dark matter problems are considered. (U.K.)

  14. Analysis of condensed matter physics records in databases. Science and technology indicators in condensed matter physics

    International Nuclear Information System (INIS)

    Hillebrand, C.D.

    1999-05-01

    An analysis of the literature on Condensed Matter Physics, with particular emphasis on High Temperature Superconductors, was performed on the contents of the bibliographic database International Nuclear Information System (INIS). Quantitative data were obtained on various characteristics of the relevant INIS records such as subject categories, language and country of publication, publication types, etc. The analysis opens up the possibility for further studies, e.g. on international research co-operation and on publication patterns. (author)

  15. Nuclear physics: the core of matter, the fuel of stars

    International Nuclear Information System (INIS)

    Schiffer, J.P.

    1999-01-01

    Dramatic progress has been made in all branches of physics since the National Research Council's 1986 decadal survey of the field. The Physics in a New Era series explores these advances and looks ahead to future goals. The series includes assessments of the major subfields and reports on several smaller subfields, and preparation has begun on an overview volume on the unity of physics, its relationships to other fields, and its contributions to national needs. Nuclear Physics is the latest volume of the series. The book describes current activity in understanding nuclear structure and symmetries, the behavior of matter at extreme densities, the role of nuclear physics in astrophysics and cosmology, and the instrumentation and facilities used by the field. It makes recommendations on the resources needed for experimental and theoretical advances in the coming decade. Nuclear physics addresses the nature of matter making up 99.9 percent of the mass of our everyday world. It explores the nuclear reactions that fuel the stars, including our Sun, which provides the energy for all life on Earth. The field of nuclear physics encompasses some 3,000 experimental and theoretical researchers who work at universities and national laboratories across the United States, as well as the experimental facilities and infrastructure that allow these researchers to address the outstanding scientific questions facing us. This report provides an overview of the frontiers of nuclear physics as we enter the next millennium, with special attention to the state of the science in the United States.The current frontiers of nuclear physics involve fundamental and rapidly evolving issues. One is understanding the structure and behavior of strongly interacting matter in terms of its basic constituents, quarks and gluons, over a wide range of conditions - from normal nuclear matter to the dense cores of neutron stars, and to the Big Bang that was the birth of the universe. Another is to describe

  16. Dark matter in the universe

    CERN Document Server

    Seigar, Marc S

    2015-01-01

    The study of dark matter, in both astrophysics and particle physics, has emerged as one of the most active and exciting topics of research in recent years. This book reviews the history behind the discovery of missing mass (or unseen mass) in the universe, and ties this into the proposed extensions to the Standard Model of Particle Physics (such as Supersymmetry), which were being proposed within the same time frame. This book is written as an introduction to these problems at the forefront of astrophysics and particle physics, with the goal of conveying the physics of dark matter to beginning undergraduate majors in scientific fields. The book goes on to describe existing and upcoming experiments and techniques, which will be used to detect dark matter either directly or indirectly.

  17. Soft matter food physics—the physics of food and cooking

    Science.gov (United States)

    Vilgis, Thomas A.

    2015-12-01

    This review discusses the (soft matter) physics of food. Although food is generally not considered as a typical model system for fundamental (soft matter) physics, a number of basic principles can be found in the interplay between the basic components of foods, water, oil/fat, proteins and carbohydrates. The review starts with the introduction and behavior of food-relevant molecules and discusses food-relevant properties and applications from their fundamental (multiscale) behavior. Typical food aspects from ‘hard matter systems’, such as chocolates or crystalline fats, to ‘soft matter’ in emulsions, dough, pasta and meat are covered and can be explained on a molecular basis. An important conclusion is the point that the macroscopic properties and the perception are defined by the molecular interplay on all length and time scales.

  18. Soft matter food physics—the physics of food and cooking

    International Nuclear Information System (INIS)

    Vilgis, Thomas A

    2015-01-01

    This review discusses the (soft matter) physics of food. Although food is generally not considered as a typical model system for fundamental (soft matter) physics, a number of basic principles can be found in the interplay between the basic components of foods, water, oil/fat, proteins and carbohydrates. The review starts with the introduction and behavior of food-relevant molecules and discusses food-relevant properties and applications from their fundamental (multiscale) behavior. Typical food aspects from ‘hard matter systems’, such as chocolates or crystalline fats, to ‘soft matter’ in emulsions, dough, pasta and meat are covered and can be explained on a molecular basis. An important conclusion is the point that the macroscopic properties and the perception are defined by the molecular interplay on all length and time scales. (report on progress)

  19. Considerations concerning the physics of nuclear matter under extreme conditions and an accelerator for relativistic heavy ions

    International Nuclear Information System (INIS)

    Blasche, K.; Bock, R.; Franzke, B.; Greiner, W.; Gutbrod, H.H.; Povh, B.; Schmelzer, C.; Stock, R.

    1977-01-01

    The future problems of heavy-ion physics in the 10 GeV/U range are dealt with: the dynamics of relativistic nuclear collisions, phase transitions, nuclear matter, quantum electrodynamics of extremely strong fields, and astrophysical aspects. In the second part, the project of a heavy-ion accelerator in the 10 GeV/U range to be coupled to the present GSI UNILAC accelerator is discussed. (WL) [de

  20. Diagrammatics lectures on selected problems in condensed matter theory

    CERN Document Server

    Sadovskii, Michael V

    2006-01-01

    The introduction of quantum field theory methods has led to a kind of "revolution" in condensed matter theory. This resulted in the increased importance of Feynman diagrams or diagram technique. It has now become imperative for professionals in condensed matter theory to have a thorough knowledge of this method.There are many good books that cover the general aspects of diagrammatic methods. At the same time, there has been a rising need for books that describe calculations and methodical "know how" of specific problems for beginners in graduate and postgraduate courses. This unique collection

  1. The research of condensed matter physics by using intense proton accelerator

    International Nuclear Information System (INIS)

    Endoh, Yasuo

    1990-01-01

    The present article covers the application of intense protons to basic condensed matter physics. Major recent neutron scattering activities in condensed matter physics are first outlined, emphasizing the fact that the contribution of accelerator base science has a tremendous impact on this basic science. Application of spallation neutrons to condensed matter physics is discussed in relation to such subjects as high energy (epithermal) excitations and small angle neutron scattering. Then the specific subject of high Tc superconductor is addressed, focusing on how neutrons as well as muons provide experimental results that serve significantly in exploring the mechanism of exotic high Tc superconductivity. Techniques for neutron polarization must be developed in the future. The neutron spin reflectivity ratio has been shown to be a sensitive probe of surface depth profile of magnetization. Another new method is neutron depolarization to probe bulk magnetic induction throughout a slab which neutrons pass through. (N.K.)

  2. Female adolescents with severe substance and conduct problems have substantially less brain gray matter volume.

    Directory of Open Access Journals (Sweden)

    Manish S Dalwani

    Full Text Available Structural neuroimaging studies have demonstrated lower regional gray matter volume in adolescents with severe substance and conduct problems. These research studies, including ours, have generally focused on male-only or mixed-sex samples of adolescents with conduct and/or substance problems. Here we compare gray matter volume between female adolescents with severe substance and conduct problems and female healthy controls of similar ages.Female adolescents with severe substance and conduct problems will show significantly less gray matter volume in frontal regions critical to inhibition (i.e. dorsolateral prefrontal cortex and ventrolateral prefrontal cortex, conflict processing (i.e., anterior cingulate, valuation of expected outcomes (i.e., medial orbitofrontal cortex and the dopamine reward system (i.e. striatum.We conducted whole-brain voxel-based morphometric comparison of structural MR images of 22 patients (14-18 years with severe substance and conduct problems and 21 controls of similar age using statistical parametric mapping (SPM and voxel-based morphometric (VBM8 toolbox. We tested group differences in regional gray matter volume with analyses of covariance, adjusting for age and IQ at p<0.05, corrected for multiple comparisons at whole-brain cluster-level threshold.Female adolescents with severe substance and conduct problems compared to controls showed significantly less gray matter volume in right dorsolateral prefrontal cortex, left ventrolateral prefrontal cortex, medial orbitofrontal cortex, anterior cingulate, bilateral somatosensory cortex, left supramarginal gyrus, and bilateral angular gyrus. Considering the entire brain, patients had 9.5% less overall gray matter volume compared to controls.Female adolescents with severe substance and conduct problems in comparison to similarly aged female healthy controls showed substantially lower gray matter volume in brain regions involved in inhibition, conflict processing, valuation

  3. Collection of problems in physical chemistry

    CERN Document Server

    Bareš, Jirí; Fried, Vojtech

    1961-01-01

    Collection of Problems in Physical Chemistry provides illustrations and problems covering the field of physical chemistry. The material has been arranged into illustrations that are solved and supplemented by problems, thus enabling readers to determine the extent to which they have mastered each subject. Most of the illustrations and problems were taken from original papers, to which reference is made. The English edition of this book has been translated from the manuscript of the 2nd Czech edition. It has been changed slightly in some places and enlarged on in others on the basis of further

  4. In search of dark matter

    CERN Document Server

    Freeman, Kenneth C

    2006-01-01

    The dark matter problem is one of the most fundamental and profoundly difficult to solve problems in the history of science. Not knowing what makes up most of the known universe goes to the heart of our understanding of the Universe and our place in it. In Search of Dark Matter is the story of the emergence of the dark matter problem, from the initial erroneous ‘discovery’ of dark matter by Jan Oort to contemporary explanations for the nature of dark matter and its role in the origin and evolution of the Universe. Written for the educated non-scientist and scientist alike, it spans a variety of scientific disciplines, from observational astronomy to particle physics. Concepts that the reader will encounter along the way are at the cutting edge of scientific research. However the themes are explained in such a way that no prior understanding of science beyond a high school education is necessary.

  5. The 1989 progress report: Physics of the condensed matter

    International Nuclear Information System (INIS)

    Sapoval, B.

    1989-01-01

    The 1989 progress report of the laboratory of Condensed Matter Physics of the Polytechnic School (France) is presented. The laboratory research fields are the physics of semiconductors and the physics of disordered states. The 1989 main results were the determination of the fractal dimension of silicon aerogels by means of nuclear magnetic resonance and the observation of local vibrations of a fractal drum. The published papers, the conferences and Laboratory staff are listed [fr

  6. Dark matter: the astrophysical case

    International Nuclear Information System (INIS)

    Silk, J.

    2012-01-01

    The identification of dark matter is one of the most urgent problems in cosmology. I describe the astrophysical case for dark matter, from both an observational and a theoretical perspective. This overview will therefore focus on the observational motivations rather than the particle physics aspects of dark matter constraints on specific dark matter candidates. First, however, I summarize the astronomical evidence for dark matter, then I highlight the weaknesses of the standard cold dark matter model (LCDM) to provide a robust explanation of some observations. The greatest weakness in the dark matter saga is that we have not yet identified the nature of dark matter itself

  7. Problems of high energy physics

    International Nuclear Information System (INIS)

    Kadyshevskij, V.G.

    1989-01-01

    Some problems of high energy physics are discussed. The main attention is paid to describibg the standard model. The model comprises quantum chromodynamics and electroweak interaction theory. The problem of CP breaking is considered as well. 8 refs.; 1 tab

  8. Field theories in condensed matter physics

    Science.gov (United States)

    Concha, Andres

    In this thesis, field theory is applied to different problems in the context of condensed matter physics. In the first part of this work, a classical problem in which an elastic instability appears is studied. By taking advantage of the symmetries of the system, it is shown that when a soft substrate has a stiff crust and the whole system is forced to reduce its volume, the stiff crust rearranges in a way that will break the initial rotational symmetry, producing a periodic pattern that can be manipulated at our will by suitable changes of the external parameters. It is shown that elastic interactions in this type of systems can be mapped into non-local effective potentials. The possible application of these instabilities is also discussed. In the second part of this work, quantum electrodynamics (QED) is analyzed as an emergent theory that allows us to describe the low energy excitations in two-dimensional nodal systems. In particular, the ballistic electronic transport in graphene-like systems is analyzed. We propose a novel way to control massless Dirac fermions in graphene and systems alike by controlling the group velocity through the sample. We have analyzed this problem by computing transport properties using the transmission matrix formalism and, remarkably, it is found that a behavior conforming with a Snell's-like law emerges in this system: the basic ingredient needed to produce electronic wave guides. Finally, an anisotropic and strongly interacting version of QED 3 is applied to explain the non-universal emergence of antiferromagnetic order in cuprate superconductors. It is pointed out that the dynamics of interacting vortex anti-vortex fluctuations play a crucial role in defining the strength of interactions in this system. As a consequence, we find that different phases (confined and deconfined) are possible as a function of the relative velocity of the photons with respect to the Fermi and gap velocities for low energy excitation in cuprates.

  9. Physics understanding the properties of matter and energy

    CERN Document Server

    2015-01-01

    Without physics, modern life would not exist. Instead of electric light, we would read by the light of candles. We couldn''t build skyscrapers. We could not possibly bridge rivers, much less build a jet or interplanetary craft. Computers and smartphones would be unimaginable. Physics is concerned with the most fundamental aspects of matter and energy and how they interact to make the physical universe work. In accessible language and with explanatory graphics and visual aids, this book introduces readers to the science that is at the very center of all other sciences and essential to our very

  10. Lectures on holographic methods for condensed matter physics

    International Nuclear Information System (INIS)

    Hartnoll, Sean A

    2009-01-01

    These notes are loosely based on lectures given at the CERN Winter School on Supergravity, Strings and Gauge theories, February 2009, and at the IPM String School in Tehran, April 2009. I have focused on a few concrete topics and also on addressing questions that have arisen repeatedly. Background condensed matter physics material is included as motivation and easy reference for the high energy physics community. The discussion of holographic techniques progresses from equilibrium, to transport and to superconductivity.

  11. XII seminar on problems of reactor physics

    International Nuclear Information System (INIS)

    Kryuchkov, Eh.F.; Naumov, V.I.

    2003-01-01

    Results of the XII seminar Physical problems of effective and safety use of nuclear materials taking place on the basis of MEPI (September, 2002) are discussed. Reports on the directions: physical problems of advanced nuclear-energetic technologies; account, control and nuclear material management; effective and safety use of nuclear materials at NPP; programming and software for the analysis of physical processes are performed. Of particular interest is reports on actual problems of nuclear energetics and fuel cycle, on ill-intentioned use of fissile materials, efficiency of long-lived isotopes transmutation and spent fuel management [ru

  12. The Missing Curriculum in Physics Problem-Solving Education

    Science.gov (United States)

    Williams, Mobolaji

    2018-05-01

    Physics is often seen as an excellent introduction to science because it allows students to learn not only the laws governing the world around them, but also, through the problems students solve, a way of thinking which is conducive to solving problems outside of physics and even outside of science. In this article, we contest this latter idea and argue that in physics classes, students do not learn widely applicable problem-solving skills because physics education almost exclusively requires students to solve well-defined problems rather than the less-defined problems which better model problem solving outside of a formal class. Using personal, constructed, and the historical accounts of Schrödinger's development of the wave equation and Feynman's development of path integrals, we argue that what is missing in problem-solving education is practice in identifying gaps in knowledge and in framing these knowledge gaps as questions of the kind answerable using techniques students have learned. We discuss why these elements are typically not taught as part of the problem-solving curriculum and end with suggestions on how to incorporate these missing elements into physics classes.

  13. Getting the astrophysics and particle physics of dark matter out of next-generation direct detection experiments

    International Nuclear Information System (INIS)

    Peter, Annika H. G.

    2010-01-01

    The next decade will bring massive new data sets from experiments of the direct detection of weakly interacting massive particle dark matter. Mapping the data sets to the particle-physics properties of dark matter is complicated not only by the considerable uncertainties in the dark-matter model, but by its poorly constrained local distribution function (the 'astrophysics' of dark matter). I propose a shift in how to think about direct-detection data analysis. I show that by treating the astrophysical and particle-physics uncertainties of dark matter on equal footing, and by incorporating a combination of data sets into the analysis, one may recover both the particle physics and astrophysics of dark matter. Not only does such an approach yield more accurate estimates of dark-matter properties, but it may illuminate how dark matter coevolves with galaxies.

  14. Seventeenth Workshop on Computer Simulation Studies in Condensed-Matter Physics

    CERN Document Server

    Landau, David P; Schütler, Heinz-Bernd; Computer Simulation Studies in Condensed-Matter Physics XVI

    2006-01-01

    This status report features the most recent developments in the field, spanning a wide range of topical areas in the computer simulation of condensed matter/materials physics. Both established and new topics are included, ranging from the statistical mechanics of classical magnetic spin models to electronic structure calculations, quantum simulations, and simulations of soft condensed matter. The book presents new physical results as well as novel methods of simulation and data analysis. Highlights of this volume include various aspects of non-equilibrium statistical mechanics, studies of properties of real materials using both classical model simulations and electronic structure calculations, and the use of computer simulations in teaching.

  15. Proceedings of the 12. National Meeting on Condensed Matter Physics

    International Nuclear Information System (INIS)

    1989-01-01

    The XII National Meeting on Condensed Matter Physics presented works in the areas: atomic and molecular physics; biophysics; crystallography; defects growth and characterization of crystals; instrumentation; liquid crystals; magnetism; science of materials, metals and alloys; magnetic resonance; semiconductors; superconductivity and; surfaces and thin films. (M.C.K.) [pt

  16. Detecting dark matter

    International Nuclear Information System (INIS)

    Dixon, Roger L.

    2000-01-01

    Dark matter is one of the most pressing problems in modern cosmology and particle physic research. This talk will motivate the existence of dark matter by reviewing the main experimental evidence for its existence, the rotation curves of galaxies and the motions of galaxies about one another. It will then go on to review the corroborating theoretical motivations before combining all the supporting evidence to explore some of the possibilities for dark matter along with its expected properties. This will lay the ground work for dark matter detection. A number of differing techniques are being developed and used to detect dark matter. These will be briefly discussed before the focus turns to cryogenic detection techniques. Finally, some preliminary results and expectations will be given for the Cryogenic Dark Matter Search (CDMS) experiment

  17. Noise study in condensed matter physics-Towards extension to surrounding fields

    International Nuclear Information System (INIS)

    Maeda, Atsutaka

    2006-01-01

    I briefly review noise studies in condensed matter physics, such as the shot noise measurement in metals, the dynamic-coherent-volume investigation in charge-density waves, the macroscopic quantum tunneling in superconductors, and the experimental investigation of dynamic phase diagram of driven vortices in high-T c superconductors. With these examples, one finds that the noise studies have played many crucial roles in condensed matter physics. I also discuss a recent theoretical suggestion that noise measurements in Josephson junction may clarify the origin of the dark energy in the universe

  18. An introduction to particle dark matter

    CERN Document Server

    Profumo, Stefano

    2017-01-01

    What is the dark matter that fills the Universe and binds together galaxies? How was it produced? What are its interactions and particle properties?The paradigm of dark matter is one of the key developments at the interface of cosmology and elementary particle physics. It is also one of the foundations of the standard cosmological model. This book presents the state of the art in building and testing particle models for dark matter. Each chapter gives an analysis of questions, research directions, and methods within the field. More than 200 problems are included to challenge and stimulate the reader's knowledge and provide guidance in the practical implementation of the numerous 'tools of the trade' presented. Appendices summarize the basics of cosmology and particle physics needed for any quantitative understanding of particle models for dark matter.This interdisciplinary textbook is essential reading for anyone interested in the microscopic nature of dark matter as it manifests itself in particle physics ex...

  19. Open problems and future prospects for hypernuclear physics

    International Nuclear Information System (INIS)

    Dover, C.B.

    1992-01-01

    We appraise the current status of our knowledge of hypernuclear structure physics, and emphasize the unsolved problems. The prospects for significant advances in high resolution hypernuclear spectroscopy with CW electron beams at CEBAF or intense pion beams at the proposed PILAC facility at LPF are discussed. These facilities could greatly extend our understanding of strangeness S = -1 hypernuclear systems. For S = -2 systems, new events have been seen in a (K - ,K + ) hybrid counter-emulsion experiment at KEK in Japan. We give a theoretical interpretation of one of these events, as well as some further possibilities for the exploration of ΛΛ hypernuclear spectroscopy via Ξ - -atoms. We mention some possible enhancements of (K - ,K + ) or (K - ,K 0 ) cross sections to discrete states, due to ΞN-ΛΛ configuration mixing in a shell model description of S = -2 hypernuclei. Finally, we explore the possibilities for producing multi-strange nuclei or droplets of strange quark matter (''strangelets'') in relativistic heavy ion collisions

  20. Collaboration in Australian condensed matter physics research

    International Nuclear Information System (INIS)

    Cushion, J.D.

    1998-01-01

    Full text: This year marks the 'coming of age' of the annual Condensed Matter Physics Meetings which has constituted possibly the most successful physics series which has been run in Australia and New Zealand. The conferences have become colloquially known as the 'Wagga conferences' to the community, leading to such strange but interpretable phrases as 'Wagga is in New Zealand this year'. It seems an appropriate time to take stock of some of the changes which have taken place in Australian condensed matter physics research over the past 21 years. Statistics will be presented on some of the trends over this time, using the Wagga abstract books as the data source. Particular emphasis will be placed on the increase in collaborative research which has occurred, fuelled by a combination of government policies, reduction in resources and increasing complexity of some of the research projects. Collaborative papers now frequently include authors from more than one university as well as from CSIRO, ANSTO/AINSE, other government and semi-government laboratories and private industry. None of these occurred in the 'early days' but most would agree that the health of the discipline has been improved by the change. It is also appropriate to point out the role of the Wagga conferences in fostering these collaborations by bringing together the groups so that they could meet, interact and discover which people had the missing expertise to make a particular project viable

  1. Neutrinos and Nucleosynthesis in Hot and Dense Matter

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, George [Univ. of California, San Diego, CA (United States)

    2016-01-14

    The Topical Collaboration for Neutrinos and Nucleosynthesis in Hot and Dense matter brought together researchers from a variety of nuclear science specialties and a number of institutions to address nuclear physics and neutrino physics problems associated with dense matter and the origin of the elements. See attached final technical reports for (1) the UCSD award and (2) a copy of the report for the whole TC

  2. Exercises and problems in mathematical methods of physics

    CERN Document Server

    Cicogna, Giampaolo

    2018-01-01

    This book presents exercises and problems in the mathematical methods of physics with the aim of offering undergraduate students an alternative way to explore and fully understand the mathematical notions on which modern physics is based. The exercises and problems are proposed not in a random order but rather in a sequence that maximizes their educational value. Each section and subsection starts with exercises based on first definitions, followed by groups of problems devoted to intermediate and, subsequently, more elaborate situations. Some of the problems are unavoidably "routine", but others bring to the forenontrivial properties that are often omitted or barely mentioned in textbooks. There are also problems where the reader is guided to obtain important results that are usually stated in textbooks without complete proofs. In all, some 350 solved problems covering all mathematical notions useful to physics are included. While the book is intended primarily for undergraduate students of physics, students...

  3. Addressing Mathematization Obstacles with Unformalized Problems in Physics Education

    DEFF Research Database (Denmark)

    Niss, Martin

    2018-01-01

    Abstract: Solving a physics problem requires that the problem solver either implicitly or explicitly structure the problem situation in such a way that she can set up the mathematical equations based on the relevant physics. This part of the mathematization process has been shown to cause obstacles...... for students (Niss, 2016). In the paper, we show how the students’ ability to perform this mathematization process can be trained by using so-called unformalized physics problems. Some examples of how this training can be done are provided from a course on problem solving in physics taught at Roskilde...

  4. Dark matter and dark energy from the solution of the strong CP problem.

    Science.gov (United States)

    Mainini, Roberto; Bonometto, Silvio A

    2004-09-17

    The Peccei-Quinn (PQ) solution of the strong CP problem requires the existence of axions, which are viable candidates for dark matter. If the Nambu-Goldstone potential of the PQ model is replaced by a potential V(|Phi|) admitting a tracker solution, the scalar field |Phi| can account for dark energy, while the phase of Phi yields axion dark matter. If V is a supergravity (SUGRA) potential, the model essentially depends on a single parameter, the energy scale Lambda. Once we set Lambda approximately equal to 10(10) GeV at the quark-hadron transition, |Phi| naturally passes through values suitable to solve the strong CP problem, later growing to values providing fair amounts of dark matter and dark energy.

  5. WIMP dark matter and supersymmetry searches with neutrino telescopes

    International Nuclear Information System (INIS)

    Fornengo, N.

    2011-01-01

    The particle physics interpretation of the missing-mass, or dark-matter, a problem of cosmological and astrophysical nature, is going to be placed under strong scrutiny in the next years. From the particle physics side, accelerator physics will deeply test theoretical ideas about new physics beyond the Standard Model, where a particle physics candidate to dark matter is often naturally obtained. From the astrophysical side, many probes are already providing a great deal of independent information on signals which can be produced by the galactic or extra-galactic dark matter. The current and new-generation experimental efforts are therefore going to place under deep scrutiny the theoretical explanations of the relevant signals. The ultimate hope is in fact to be able to disentangle a dark matter signal from the various sources of backgrounds. Neutrino telescopes are one of the prominent tools for looking at dark matter and search for a signal, the neutrino flux from Earth and Sun. In this neutrino dark matter searches share properties with both direct dark matter searches and cosmic-ray indirect dark matter searches, and therefore complement these different detection techniques.

  6. Physics. Examples and problems. Mechanics, heat, electricity and magnetism, oscillations and waves, atomic and nuclear physics; Physik. Beispiele und Aufgaben. Mechanik, Waermelehre, Elektrizitaet und Magnetismus, Schwingungen und Wellen, Atom- und Kernphysik

    Energy Technology Data Exchange (ETDEWEB)

    Stroppe, Heribert; Streitenberger, Peter; Specht, Eckard; Zeitler, Juergen; Langer, Heinz

    2017-07-01

    The present book is the unification of the proved problem collections for the basic physical training of studyings of especially engineering courses at technical colleges and universities. The book contains - didactically prepared and structured in the style of a textbook as well as with increasing difficulty - a total of 960 exemplary and additional tasks from the fields mechanics, heat, electricity and magnetism, oscillations and waves, as well as atomic and nuclear physics. For the exemplary problems the whole solution path and the complete calculation process with explanation of the relevant physical laws are extensively presented, for the additional problems for the self-control only the solutions and, if necessary, intermediate calculations are given. The examples and problems with mostly practice-oriented content are selected in such a way that they largely cover the matter treated in courses and exercises and make by their didactical preparation an effective repetition and optimal examination-preparation possible.

  7. Eighteenth Workshop on Recent Developments in Computer Simulation Studies in Condensed Matter Physics

    CERN Document Server

    Landau, David P; Schüttler, Heinz-Bernd; Computer Simulation Studies in Condensed-Matter Physics XVIII

    2006-01-01

    This volume represents a "status report" emanating from presentations made during the 18th Annual Workshop on Computer Simulations Studies in Condensed Matter Physics at the Center for Simulational Physics at the University of Georgia in March 2005. It provides a broad overview of the most recent advances in the field, spanning the range from statistical physics to soft condensed matter and biological systems. Results on nanostructures and materials are included as are several descriptions of advances in quantum simulations and quantum computing as well as.methodological advances.

  8. On the physical problem of spatial dimensions: an alternative procedure to stability arguments

    International Nuclear Information System (INIS)

    Caruso, F.; Xavier, R.M.

    1986-01-01

    The three-dimensionality of space as a physical problem is discussed. Consideration on previous works is done, in which it is showed that the n-dimensional solar system can be stable only for n=3 and, from quantum mechanics, that this is the case also for hydrogen atons. Thus the epistemological consequences of the use of the stability postulate to derive spatial dimensionality is critically reviewed. The distinguished role of Maxwell's eletromagnetic theory in the determination of space dimensionality is stressed. 'Metric versus' 'topological' 'arguments are compared and shown to apply respectively to 'matter' and 'fields'. (G.D.F.) [pt

  9. Some problems of high-energy elementary particle physics

    International Nuclear Information System (INIS)

    Isaev, P.S.

    1995-01-01

    The problems of high-energy elementary particle physics are discussed. It is pointed out that the modern theory of elementary-particle physics has no solutions of some large physical problems: origin of the mass, electric charge, identity of particle masses, change of the mass of elementary particles in time and others. 7 refs

  10. Proceedings of Republic conference (with participation of scientists from Commonwealth of Independent States countries) 'Modern problems of semiconductor physics', dedicated for twentieth anniversary of independence of Republic Uzbekistan

    International Nuclear Information System (INIS)

    Matchanov, A.T.; Tagaev, M.B.; Ismaylov, K.A.

    2011-11-01

    Republic conference with participation of scientists from Commonwealth of Independent States countries 'Modern problems of semiconductor physics', dedicated for twentieth anniversary of independence of Republic Uzbekistan was held on 23-25 November, 2011 in Nukus, Uzbekistan. Specialists and young scientists from universities and academic research institutes discussed various aspects of modern problems of semiconductor physics. More than 100 talks were presented in the meeting on the following subjects: solid state physics, physics of condensed matter and nano materials; educational tools and information technologies. (K.M.)

  11. String Theory Methods for Condensed Matter Physics

    Science.gov (United States)

    Nastase, Horatiu

    2017-09-01

    Preface; Acknowledgments; Introduction; Part I. Condensed Matter Models and Problems: 1. Lightning review of statistical mechanics, thermodynamics, phases and phase transitions; 2. Magnetism in solids; 3. Electrons in solids: Fermi gas vs. Fermi liquid; 4. Bosonic quasi-particles: phonons and plasmons; 5. Spin-charge separation in 1+1 dimensional solids: spinons and holons; 6. The Ising model and the Heisenberg spin chain; 7. Spin chains and integrable systems; 8. The thermodynamic Bethe ansatz; 9. Conformal field theories and quantum phase transitions; 10. Classical vs. quantum Hall effect; 11. Superconductivity: Landau-Ginzburg, London and BCS; 12. Topology and statistics: Berry and Chern-Simons, anyons and nonabelions; 13. Insulators; 14. The Kondo effect and the Kondo problem; 15. Hydrodynamics and transport properties: from Boltzmann to Navier-Stokes; Part II. Elements of General Relativity and String Theory: 16. The Einstein equation and the Schwarzschild solution; 17. The Reissner-Nordstrom and Kerr-Newman solutions and thermodynamic properties of black holes; 18. Extra dimensions and Kaluza-Klein; 19. Electromagnetism and gravity in various dimensions. Consistent truncations; 20. Gravity plus matter: black holes and p-branes in various dimensions; 21. Weak/strong coupling dualities in 1+1, 2+1, 3+1 and d+1 dimensions; 22. The relativistic point particle and the relativistic string; 23. Lightcone strings and quantization; 24. D-branes and gauge fields; 25. Electromagnetic fields on D-branes. Supersymmetry and N = 4 SYM. T-duality of closed strings; 26. Dualities and M theory; 27. The AdS/CFT correspondence: definition and motivation; Part III. Applying String Theory to Condensed Matter Problems: 28. The pp wave correspondence: string Hamiltonian from N = 4 SYM; 29. Spin chains from N = 4 SYM; 30. The Bethe ansatz: Bethe strings from classical strings in AdS; 31. Integrability and AdS/CFT; 32. AdS/CFT phenomenology: Lifshitz, Galilean and Schrodinger

  12. Standard Model–axion–seesaw–Higgs portal inflation. Five problems of particle physics and cosmology solved in one stroke

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros, Guillermo [Institut de Physique Théorique, Université Paris Saclay, CEA, CNRS, 91191 Gif-sur-Yvette (France); Redondo, Javier [Departamento de Física Teórica, Universidad de Zaragoza, Pedro Cerbuna 12, E-50009, Zaragoza (Spain); Ringwald, Andreas [DESY, Notkestr. 85, 22607 Hamburg (Germany); Tamarit, Carlos, E-mail: guillermo.ballesteros@cea.fr, E-mail: jredondo@unizar.es, E-mail: andreas.ringwald@desy.de, E-mail: carlos.tamarit@durham.ac.uk [Institute for Particle Physics Phenomenology, Durham University, South Road, DH1 3LE (United Kingdom)

    2017-08-01

    We present a minimal extension of the Standard Model (SM) providing a consistent picture of particle physics from the electroweak scale to the Planck scale and of cosmology from inflation until today. Three right-handed neutrinos N {sub i} , a new color triplet Q and a complex SM-singlet scalar σ, whose vacuum expectation value v {sub σ} ∼ 10{sup 11} GeV breaks lepton number and a Peccei-Quinn symmetry simultaneously, are added to the SM. At low energies, the model reduces to the SM, augmented by seesaw generated neutrino masses and mixing, plus the axion. The latter solves the strong CP problem and accounts for the cold dark matter in the Universe. The inflaton is comprised by a mixture of σ and the SM Higgs, and reheating of the Universe after inflation proceeds via the Higgs portal. Baryogenesis occurs via thermal leptogenesis. Thus, five fundamental problems of particle physics and cosmology are solved at one stroke in this unified Standard Model—axion—seesaw—Higgs portal inflation (SMASH) model. It can be probed decisively by upcoming cosmic microwave background and axion dark matter experiments.

  13. Standard Model-Axion-Seesaw-Higgs portal inflation. Five problems of particle physics and cosmology solved in one stroke

    International Nuclear Information System (INIS)

    Ballesteros, Guillermo; Ringwald, Andreas; Tamarit, Carlos

    2016-10-01

    We present a minimal extension of the Standard Model (SM) providing a consistent picture of particle physics from the electroweak scale to the Planck scale and of cosmology from inflation until today. Three right-handed neutrinos N_i, a new color triplet Q and a complex SM-singlet scalar σ, whose vacuum expectation value υ_σ∝10"1"1 GeV breaks lepton number and a Peccei-Quinn symmetry simultaneously, are added to the SM. At low energies, the model reduces to the SM, augmented by seesaw generated neutrino masses and mixing, plus the axion. The latter solves the strong CP problem and accounts for the cold dark matter in the Universe. The inflaton is comprised by a mixture of σ and the SM Higgs and reheating of the Universe after inflation proceeds via the Higgs portal. Baryogenesis occurs via thermal leptogenesis. Thus, five fundamental problems of particle physics and cosmology are solved at one stroke in this unified Standard Model-Axion-Seesaw-Higgs portal inflation (SMASH) model. It can be probed decisively by upcoming cosmic microwave background and axion dark matter experiments.

  14. Nonlinear problems in theoretical physics

    International Nuclear Information System (INIS)

    Ranada, A.F.

    1979-01-01

    This volume contains the lecture notes and review talks delivered at the 9th GIFT international seminar on theoretical physics on the general subject 'Nonlinear Problems in Theoretical Physics'. Mist contributions deal with recent developments in the theory of the spectral transformation and solitons, but there are also articles from the field of transport theory and plasma physics and an unconventional view of classical and quantum electrodynamics. All contributions to this volume will appear under their corresponding subject categories. (HJ)

  15. The Implementation of Physics Problem Solving Strategy Combined with Concept Map in General Physics Course

    Science.gov (United States)

    Hidayati, H.; Ramli, R.

    2018-04-01

    This paper aims to provide a description of the implementation of Physic Problem Solving strategy combined with concept maps in General Physics learning at Department of Physics, Universitas Negeri Padang. Action research has been conducted in two cycles where each end of the cycle is reflected and improved for the next cycle. Implementation of Physics Problem Solving strategy combined with concept map can increase student activity in solving general physics problem with an average increase of 15% and can improve student learning outcomes from 42,7 in the cycle I become 62,7 in cycle II in general physics at the Universitas Negeri Padang. In the future, the implementation of Physic Problem Solving strategy combined with concept maps will need to be considered in Physics courses.

  16. 7. International conference on materials science and condensed matter physics. Abstracts

    International Nuclear Information System (INIS)

    2014-09-01

    This book includes the abstracts of the communications presented at the 7th International Conference on Materials Science and Condensed Matter Physics, traditional biennial meeting organized by the Institute of Applied Physics of the Academy of Sciences of Moldova (IAP) which celebrates this year its 50th anniversary. The conference reports have been delivered in a broad range of topics in materials science, condensed matter physics, electrochemistry reflecting the research results of the scientific staff and Ph.D. students from the IAP as well as those by distinguished guests from different countries. The abstracts cover special issues of modern theoretical and experimental physics and advanced technology, such as advances in condensed matter theory; theory of low dimensional systems; modelling of materials and structural properties; ordering and phase transitions; quantum optics and electronics; strong correlated electronic systems; crystal growth; electronic processes and transport properties of semiconductors and superconductors; ordering processes in magnetic and multiferroic systems; interaction of light and matter, and optical phenomena; properties of composites, meta materials and molecular materials; crystal engineering of solid state structures; metal-organic materials; porous materials; advanced materials with magnetic, luminescent, nonlinear optical , thermoelectric, catalytic, analytic and pharmaceutical properties; defects engineering and mechanical properties; crystallography of organic, inorganic and supramolecular compounds; advanced physics of nanosystems; methods of nanostructures and nanomaterials fabrication and characterization; electronic properties of quantum wells, superlattices, nanowires and nanodots; meso- and nanoelectronics, optical processes in nanostructures; emerging phenomena in nanocomposites and nanomaterials; device modelling and simulation, device structures and elements; photovoltaics: crystals, thin films, nanoparticles

  17. A large scale double beta and dark matter experiment: On the physics potential of GENIUS

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.; Hirsch, M.

    1997-01-01

    The physics potential of GENIUS, a recently proposed double beta decay anddark matter experiment is discussed. The experiment will allow to probe neutrino masses down to 10 -(2-3) eV. GENIUS will test the structure of the neutrino mass matrix, and therefore implicitly neutrino oscillation parameters comparable or superior in sensitivity to the best proposed dedicated terrestrial neutrino oscillation experiments. If the 10 -3 eV level is reached, GENIUS will even allow to test the large angle MSW solution of the solar neutrino problem. Even in its first stage GENIUS will confirm or rule out degenerate or inverted neutrino mass scenarios, which have been widely discussed in the literature as a possible solution to current hints on finite neutrino masses and also test the ν e ν μ hypothesis of the atmospheric neutrino problem.GENIUS would contribute to the search for R-parity violating SUSY and right-handed W-bosons on a scale similar or superior to LHC. In addition, GENIUS would largely improve the current 0νββ decay searches for R-parity conserving SUSY and leptoquarks. Concerning cold dark matter (CDM) search, the low background anticipated for GENIUS would, for thefirst time ever, allow to cover the complete MSSM neutralino parameter space, making GENIUS competitive to LHC in SUSY discovery. If GENIUS could find SUSY CDM as a by-product it would confirm that R-parity must be conserved exactly. GENIUS will thus be a major tool for future non-accelerator particle physics. (orig.)

  18. Obstacle problems in mathematical physics

    CERN Document Server

    Rodrigues, J-F

    1987-01-01

    The aim of this research monograph is to present a general account of the applicability of elliptic variational inequalities to the important class of free boundary problems of obstacle type from a unifying point of view of classical Mathematical Physics.The first part of the volume introduces some obstacle type problems which can be reduced to variational inequalities. Part II presents some of the main aspects of the theory of elliptic variational inequalities, from the abstract hilbertian framework to the smoothness of the variational solution, discussing in general the properties of the free boundary and including some results on the obstacle Plateau problem. The last part examines the application to free boundary problems, namely the lubrication-cavitation problem, the elastoplastic problem, the Signorini (or the boundary obstacle) problem, the dam problem, the continuous casting problem, the electrochemical machining problem and the problem of the flow with wake in a channel past a profile.

  19. Light-matter interaction physics and engineering at the nanoscale

    CERN Document Server

    Weiner, John

    2013-01-01

    This book draws together the essential elements of classical electrodynamics, surface wave physics, plasmonic materials, and circuit theory of electrical engineering to provide insight into the essential physics of nanoscale light-matter interaction and to provide design methodology for practical nanoscale plasmonic devices. A chapter on classical and quantal radiation also highlights the similarities (and differences) between the classical fields of Maxwell's equations and the wave functions of Schrodinger's equation. The aim of this chapter is to provide a semiclassical picture of atomic absorption and emission of radiation, lending credence and physical plausibility to the "rules" of standard wave-mechanical calculations.

  20. Applications of the Monte Carlo simulation in dosimetry and medical physics problems

    International Nuclear Information System (INIS)

    Rojas C, E. L.

    2010-01-01

    At the present time the computers use to solve important problems extends to all the areas. These areas can be of social, economic, of engineering, of basic and applied science, etc. With and appropriate handling of computation programs and information can be carried out calculations and simulations of real models, to study them and to solve theoretical or application problems. The processes that contain random variables are susceptible of being approached with the Monte Carlo method. This is a numeric method that, thanks to the improvements in the processors of the computers, it can apply in many tasks more than what was made in the principles of their practical application (at the beginning of the decade of 1950). In this work the application of the Monte Carlo method will be approached in the simulation of the radiation interaction with the matter, to investigate dosimetric aspects of some problems that exist in the medical physics area. Also, contain an introduction about some historical data and some general concepts related with the Monte Carlo simulation are revised. (Author)

  1. Astrophysical dark matter: candidates from particle physics and detection possibilities

    International Nuclear Information System (INIS)

    Freese, K.

    1989-01-01

    In this talk, I will discuss the arguments that 50% to 90% of the matter in galaxies, including our own, is made of an unknown type of dark matter. I will review the reason why cosmologists believe Ω = 1 and illustrate the contrast with the limits on the amount of baryonic matter from element abundances in Big Bang Nucleosynthesis. Other arguments for nonbaryonic dark matter will also be discussed. Candidates for the dark matter from particle physics will be presented. I will focus on cold dark matter candidates known as WIMPs, weakly interacting massive (O(GeV)) particles. I will try to illustrate why these particles are interesting for astrophysics and outline ideas for cornering them. Detection possibilities for these particles include indirect detection, which takes advantage of the annihilation products of these particles in the galactic halo, the sun, or the earth. Direct detection via newly proposed cryogenic detectors must be sensitive to <∼ keV energy deposits. Annual modulation of the dark matter signal can be used as a signature for these halo particles. I hope to motivate the interest in these particles and discuss ideas for finding them

  2. Australian and New Zealand Institutes of Physics. Eighteenth annual condensed matter physics meeting

    International Nuclear Information System (INIS)

    Chaplin, D.; Hutchinson, W.; Yazidjoglou, N.; Stewart, G.

    1994-01-01

    The Handbook contains abstracts of oral and poster presentations covering various aspects of condensed matter physics such as magnetism, superconductivity, semiconductor materials and their properties, as well as the use of nuclear techniques in studies of these materials. 162 contributions have been considered to be in the INIS subject scope and were indexed separately

  3. Using isomorphic problems to learn introductory physics

    Directory of Open Access Journals (Sweden)

    Shih-Yin Lin

    2011-08-01

    Full Text Available In this study, we examine introductory physics students’ ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. Three hundred sixty-two students from a calculus-based and an algebra-based introductory physics course were given a quiz in the recitation in which they had to first learn from a solved problem provided and take advantage of what they learned from it to solve another problem (which we call the quiz problem which was isomorphic. Previous research suggests that the multiple-concept quiz problem is challenging for introductory students. Students in different recitation classes received different interventions in order to help them discern and exploit the underlying similarities of the isomorphic solved and quiz problems. We also conducted think-aloud interviews with four introductory students in order to understand in depth the difficulties they had and explore strategies to provide better scaffolding. We found that most students were able to learn from the solved problem to some extent with the scaffolding provided and invoke the relevant principles in the quiz problem. However, they were not necessarily able to apply the principles correctly. Research suggests that more scaffolding is needed to help students in applying these principles appropriately. We outline a few possible strategies for future investigation.

  4. Using isomorphic problems to learn introductory physics

    Science.gov (United States)

    Lin, Shih-Yin; Singh, Chandralekha

    2011-12-01

    In this study, we examine introductory physics students’ ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. Three hundred sixty-two students from a calculus-based and an algebra-based introductory physics course were given a quiz in the recitation in which they had to first learn from a solved problem provided and take advantage of what they learned from it to solve another problem (which we call the quiz problem) which was isomorphic. Previous research suggests that the multiple-concept quiz problem is challenging for introductory students. Students in different recitation classes received different interventions in order to help them discern and exploit the underlying similarities of the isomorphic solved and quiz problems. We also conducted think-aloud interviews with four introductory students in order to understand in depth the difficulties they had and explore strategies to provide better scaffolding. We found that most students were able to learn from the solved problem to some extent with the scaffolding provided and invoke the relevant principles in the quiz problem. However, they were not necessarily able to apply the principles correctly. Research suggests that more scaffolding is needed to help students in applying these principles appropriately. We outline a few possible strategies for future investigation.

  5. Dark clouds in particle physics and cosmology: the issues of dark matter and dark energy

    International Nuclear Information System (INIS)

    Zhang Xinmin

    2011-01-01

    Unveiling the nature of dark matter and dark energy is one of the main tasks of particle physics and cosmology in the 21st century. We first present an overview of the history and current status of research in cosmology, at the same time emphasizing the new challenges in particle physics. Then we focus on the scientific issues of dark energy, dark matter and anti-matter, and review the recent progress made in these fields. Finally, we discuss the prospects for future research on the experimental probing of dark matter and dark energy in China. (authors)

  6. Heuristic versus statistical physics approach to optimization problems

    International Nuclear Information System (INIS)

    Jedrzejek, C.; Cieplinski, L.

    1995-01-01

    Optimization is a crucial ingredient of many calculation schemes in science and engineering. In this paper we assess several classes of methods: heuristic algorithms, methods directly relying on statistical physics such as the mean-field method and simulated annealing; and Hopfield-type neural networks and genetic algorithms partly related to statistical physics. We perform the analysis for three types of problems: (1) the Travelling Salesman Problem, (2) vector quantization, and (3) traffic control problem in multistage interconnection network. In general, heuristic algorithms perform better (except for genetic algorithms) and much faster but have to be specific for every problem. The key to improving the performance could be to include heuristic features into general purpose statistical physics methods. (author)

  7. Examining problem solving in physics-intensive Ph.D. research

    Directory of Open Access Journals (Sweden)

    Anne E. Leak

    2017-07-01

    Full Text Available Problem-solving strategies learned by physics undergraduates should prepare them for real-world contexts as they transition from students to professionals. Yet, graduate students in physics-intensive research face problems that go beyond problem sets they experienced as undergraduates and are solved by different strategies than are typically learned in undergraduate coursework. This paper expands the notion of problem solving by characterizing the breadth of problems and problem-solving processes carried out by graduate students in physics-intensive research. We conducted semi-structured interviews with ten graduate students to determine the routine, difficult, and important problems they engage in and problem-solving strategies they found useful in their research. A qualitative typological analysis resulted in the creation of a three-dimensional framework: context, activity, and feature (that made the problem challenging. Problem contexts extended beyond theory and mathematics to include interactions with lab equipment, data, software, and people. Important and difficult contexts blended social and technical skills. Routine problem activities were typically well defined (e.g., troubleshooting, while difficult and important ones were more open ended and had multiple solution paths (e.g., evaluating options. In addition to broadening our understanding of problems faced by graduate students, our findings explore problem-solving strategies (e.g., breaking down problems, evaluating options, using test cases or approximations and characteristics of successful problem solvers (e.g., initiative, persistence, and motivation. Our research provides evidence of the influence that problems students are exposed to have on the strategies they use and learn. Using this evidence, we have developed a preliminary framework for exploring problems from the solver’s perspective. This framework will be examined and refined in future work. Understanding problems

  8. Examining problem solving in physics-intensive Ph.D. research

    Science.gov (United States)

    Leak, Anne E.; Rothwell, Susan L.; Olivera, Javier; Zwickl, Benjamin; Vosburg, Jarrett; Martin, Kelly Norris

    2017-12-01

    Problem-solving strategies learned by physics undergraduates should prepare them for real-world contexts as they transition from students to professionals. Yet, graduate students in physics-intensive research face problems that go beyond problem sets they experienced as undergraduates and are solved by different strategies than are typically learned in undergraduate coursework. This paper expands the notion of problem solving by characterizing the breadth of problems and problem-solving processes carried out by graduate students in physics-intensive research. We conducted semi-structured interviews with ten graduate students to determine the routine, difficult, and important problems they engage in and problem-solving strategies they found useful in their research. A qualitative typological analysis resulted in the creation of a three-dimensional framework: context, activity, and feature (that made the problem challenging). Problem contexts extended beyond theory and mathematics to include interactions with lab equipment, data, software, and people. Important and difficult contexts blended social and technical skills. Routine problem activities were typically well defined (e.g., troubleshooting), while difficult and important ones were more open ended and had multiple solution paths (e.g., evaluating options). In addition to broadening our understanding of problems faced by graduate students, our findings explore problem-solving strategies (e.g., breaking down problems, evaluating options, using test cases or approximations) and characteristics of successful problem solvers (e.g., initiative, persistence, and motivation). Our research provides evidence of the influence that problems students are exposed to have on the strategies they use and learn. Using this evidence, we have developed a preliminary framework for exploring problems from the solver's perspective. This framework will be examined and refined in future work. Understanding problems graduate students

  9. Causality problem in atomic physics

    Energy Technology Data Exchange (ETDEWEB)

    Bor, N

    1985-10-01

    The casuality problem in atomic physics is analysed by Bohr in a wide methodological context. The first part of the paper is a short historical essay picturing the entry of statistical concepts into physics. Bohr underlines a close relationship between an unavoidably probabilitic nature of the quantum theory and quantum postulates introducing the alien-to-classical-physics concepts of integrity, individuality of atomic processes. In the second central part of the paper Bohr discusses the casuality problems in atomic physics in detail and shows that their solution requires a careful analysis of the observation process. Proceeding from the program methodological requirement to describe the measuring instrumentation operation and observation results in the language of classical physics, he explains that the statistical character of the uncertainty relationships expresses a substantial specifically quantum constraint to the applicifically of classical conceptions analyses of microphenomena. Then Bohr refines in principle the notion ''phenomenon'', as one of the central notions among those he employed for the formulation of his complementarity principle. According to bohr a phenomenon should be under-stood as an unambiguously present situation of a completed experiment. Therefore, it is erroneous to speak of the phenomenon perturbation by the observation. The final part of the article deals with the discussion of methodological parallels of the quantum theory and relativity theory.

  10. Condensed Matter Physics in Colombia is in its forties

    Science.gov (United States)

    Camacho, Angela

    2015-03-01

    Physics in Colombia started to develop in the 70's as a research part of basic sciences with the acquisition, at that time, of large research equipments such as x-rays and EPR. Experimental work was soon supplemented by theoretical investigations, which led to the formation of research groups in condensed matter. In the early 80's existed such groups in five universities. In this report we present, after a short history of the main steps that guided the initial research subjects, the major areas already developed and the minor research groups that are in the stage of consolidation. Currently this type of work is done at least in 20 universities. We also show the actual numbers of researchers, publications, PhD students and laboratories discriminated in gender to complete an overview of Condensed Matter Physics in Colombia. Finally, we present a short review of the main theoretical issues that have been worked in the last decade focusing on low dimensional systems, their structural and optical properties

  11. The Magnetohydrodynamic Generator A Physics Olympiad Problem

    Indian Academy of Sciences (India)

    The Magnetohydrodynamic Generator A Physics Olympiad Problem (2001). Vijay A Singh ... Magnetohydrodynamics; generator; power; efficiency; Faraday's law; Physics Olympiad . Author Affiliations. Vijay A Singh1 Manish Kapoor2. Physics Department Indian Institute of Technology Kanpur 208016, India. MPE College ...

  12. Astro particle physics view on supersymmetry

    International Nuclear Information System (INIS)

    Fornengo, N.

    2010-01-01

    The particle physics interpretation of the missing-mass, or dark-matter, problem of cosmological and astrophysical nature is going to be posed under deep scrutiny in the next years. From the particle physics side, accelerator physics will deeply test theoretical ideas of new physics beyond the Standard Model, where a particle physics candidate to dark matter is often naturally obtained. From the astrophysical side, many probes are already providing a great deal of independent information on the signals which can be produced by the galactic or extra-galactic dark matter. The ultimate hope is in fact to be able to disentangle a dark matter signal from the various sources of backgrounds and to extract a coherent picture of new physics from the accelerator physics, astrophysics and cosmology side. A very ambitious and far-reaching project, indeed.

  13. 200 more puzzling physics problems with hints and solutions

    CERN Document Server

    Gnädig, Péter; Vigh, Máté

    2016-01-01

    Like its predecessor, 200 Puzzling Physics Problems, this book is aimed at strengthening students' grasp of the laws of physics by applying them to situations that are practical, and to problems that yield more easily to intuitive insight than to brute-force methods and complex mathematics. The problems are chosen almost exclusively from classical, non-quantum physics, but are no easier for that. They are intriguingly posed in accessible non-technical language, and require readers to select an appropriate analysis framework and decide which branches of physics are involved. The general level of sophistication needed is that of the exceptional school student, the good undergraduate, or the competent graduate student; some physics professors may find some of the more difficult questions challenging. By contrast, the mathematical demands are relatively minimal, and seldom go beyond elementary calculus. This further book of physics problems is not only instructive and challenging, but also enjoyable.

  14. Physical activity problem-solving inventory for adolescents: Development and initial validation

    Science.gov (United States)

    Youth encounter physical activity barriers, often called problems. The purpose of problem-solving is to generate solutions to overcome the barriers. Enhancing problem-solving ability may enable youth to be more physically active. Therefore, a method for reliably assessing physical activity problem-s...

  15. Assessing student written problem solutions: A problem-solving rubric with application to introductory physics

    Science.gov (United States)

    Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie

    2016-06-01

    Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic classroom work. It is also useful if such tools can be employed by instructors to guide their pedagogy. We describe the design, development, and testing of a simple rubric to assess written solutions to problems given in undergraduate introductory physics courses. In particular, we present evidence for the validity, reliability, and utility of the instrument. The rubric identifies five general problem-solving processes and defines the criteria to attain a score in each: organizing problem information into a Useful Description, selecting appropriate principles (Physics Approach), applying those principles to the specific conditions in the problem (Specific Application of Physics), using Mathematical Procedures appropriately, and displaying evidence of an organized reasoning pattern (Logical Progression).

  16. 4. International conference on materials science and condensed matter physics. Abstracts

    International Nuclear Information System (INIS)

    2008-09-01

    This book includes more than 200 abstracts on various aspects of: materials processing and characterization, crystal growth methods, solid-state and crystal technology, development of condensed matter theory and modeling of materials properties, solid-state device physics, nano science and nano technology, heterostructures, superlattices, quantum wells and wires, advanced quantum physics for nano systems

  17. Multi-Messenger Astronomy and Dark Matter

    Science.gov (United States)

    Bergström, Lars

    This chapter presents the elaborated lecture notes on Multi-Messenger Astronomy and Dark Matter given by Lars Bergström at the 40th Saas-Fee Advanced Course on "Astrophysics at Very High Energies". One of the main problems of astrophysics and astro-particle physics is that the nature of dark matter remains unsolved. There are basically three complementary approaches to try to solve this problem. One is the detection of new particles with accelerators, the second is the observation of various types of messengers from radio waves to gamma-ray photons and neutrinos, and the third is the use of ingenious experiments for direct detection of dark matter particles. After giving an introduction to the particle universe, the author discusses the relic density of particles, basic cross sections for neutrinos and gamma-rays, supersymmetric dark matter, detection methods for neutralino dark matter, particular dark matter candidates, the status of dark matter detection, a detailled calculation on an hypothetical "Saas-Fee Wimp", primordial black holes, and gravitational waves.

  18. Progressive problems higher grade physics

    CERN Document Server

    Kennedy, William

    2001-01-01

    This book fully covers all three Units studied in Scotland's Higher Grade Physics course, providing a systematic array of problems (from the simplest to the most difficult) to lead variously abled pupils to examination success.

  19. Pre-Service Physics Teachers’ Problem-solving Skills in Projectile Motion Concept

    Science.gov (United States)

    Sutarno, S.; Setiawan, A.; Kaniawati, I.; Suhandi, A.

    2017-09-01

    This study is a preliminary research aiming at exploring pre-service physics teachers’ skills in applying the stage of problem-solving strategies. A total of 76 students of physics education study program at a college in Bengkulu Indonesia participated in the study. The skills on solving physics problems are being explored through exercises that demand the use of problem-solving strategies with several stages such as useful description, physics approach, specific application of physics, physics equation, mathematical procedures, and logical progression. Based on the results of data analysis, it is found that the pre-service physics teachers’ skills are in the moderate category for physics approach and mathematical procedural, and low category for the others. It was concluded that the pre-service physics teachers’ problem-solving skills are categorized low. It is caused by the learning of physics that has done less to practice problem-solving skills. The problems provided are only routine and poorly trained in the implementation of problem-solving strategies.The results of the research can be used as a reference for the importance of the development of physics learning based on higher order thinking skills.

  20. Fundamental problems and perspectives of positron diagnostics of structural imperfections in condensed matter

    International Nuclear Information System (INIS)

    Mukashev, K.M.; Sarsenbinov, Sh. Sh.

    2000-01-01

    Fundamental problems and nature of electron-positron annihilation phenomenon, problems of its application in studies of condensed matter, development of various methodic based on this phenomenon for structural studies in solids, mathematical aspects of experimental deta decoding and program means for computer data processing are discussed. (author)

  1. Physical health problems in adults with Prader-Willi syndrome.

    Science.gov (United States)

    Sinnema, Margje; Maaskant, Marian A; van Schrojenstein Lantman-de Valk, Henny M J; van Nieuwpoort, I Caroline; Drent, Madeleine L; Curfs, Leopold M G; Schrander-Stumpel, Constance T R M

    2011-09-01

    Prader-Willi syndrome (PWS) is a genetic disorder which is characterized by severe hypotonia and feeding problems in early infancy. In later childhood and adolescence, this is followed by hyperphagia and extreme obesity if the diet is not strictly controlled. Data on physical health problems in adults with PWS are scarce. We report on the prevalence of physical health problems in a Dutch cohort of adults with PWS in relation to age, BMI, and genetic subtype. Participants (n = 102) were retrieved via the Dutch Prader-Willi Parent Association and through physicians specializing in persons with intellectual disabilities (ID). Details regarding physical health problem spanning the participants' lifespan were collected from caretakers through semi-structured interviews. Cardiovascular problems included diabetes mellitus, hypertension, and cerebrovascular accidents. Respiratory infections were frequent in adulthood. In males, cryptorchidism was almost universal, for which 28/48 males had a history of surgery, mostly orchidopexy. None of the women had a regular menstrual cycle. Sixteen individuals had a diagnosis of osteoporosis. Spinal deformation, hip dysplasia, and foot abnormalities were common. Skinpicking, leg edema, and erysipelas were frequent dermatological problems. The findings in our group support the notion that the prevalence of physical health problems is underestimated. This underscores the importance of developing monitoring programs which would help to recognize physical health problems at an early stage. Copyright © 2011 Wiley-Liss, Inc.

  2. Quantum theory and Aquinas's doctrine on matter

    Science.gov (United States)

    Grove, Stanley F.

    The Aristotelian conception of the material principle, deepened by Aquinas, is today widely misunderstood and largely alien to modern mathematical physics, despite the latter's preoccupation with matter and the spatiotemporal. The present dissertation seeks to develop a coherent understanding of matter in the Aristotelian-Thomistic sense, and to apply it to some key interpretive issues in quantum physics. I begin with a brief historical analysis of the Aristotelian, Newtonian ("classical"), and modern (quantum) approaches to physics, in order to highlight their commonality as well as their differences. Next, matter---especially prime matter---is investigated, in an Aristotelian-Thomistic perspective, under several rationes: as principle of individuation, as principle of extension or spatiality, as principle of corruptibility, as related to essence and existence, and as ground of intelligibility. An attempt is made to order these different rationes according to primordiality. A number of topics concerning the formal structure of hylomorphic being are then addressed: elementarity, virtual presence, the "dispositions of matter," entia vialia, natural minima, atomism, the nature of local motion, the plenum and instantaneous action at a distance---all with a view to their incorporation in a unified account of formed matter at or near the elementary level. Finally I take up several interpretive problems in quantum physics which were introduced early in the dissertation, and show how the material and formal principles expounded in the central chapters can render these problems intelligible. Thus I propose that wave and particle aspects in the quantum realm are related substantially rather than accidentally, and that characteristics of substantial (prime) matter and substantial form are therefore being evidenced directly at this level---in the reversibility of the wave-particle transition, in the spatial and temporal instantaneity of quantum events, and in the probabilism

  3. The transformation of elementary particle physics into many-body physics

    International Nuclear Information System (INIS)

    Hove, L. van

    1986-01-01

    The author illustrates the domains of particle physics where the theoretical problems and methods have much in common with many-body and condensed-matter physics. The multitude of diverse physical systems accessible to experimentation in condensed-matter physics, and the numerous concepts developed for their theoretical understanding provide a rich store of ideas and analogies to the particle physicist. This can help him to overcome the great handicap that in his own discipline the experimental facts are very hard to come by and are often extremely incomplete. On the other hand, particle physics brought us such truly fundamental advances as non-Abelian gauge theories, electroweak unification with the heavy weak bosons, and quantum chromodynamics with the confinement principle for the field quanta. As our understanding of these novel schemes deepens, possibly with further progress toward unification, one can expect that they will slowly have an impact on the rest of physics, just as the concepts and techniques of Abelian field theories have gradually invaded most of condensed-matter physics. (Auth.)

  4. Using Isomorphic Problems to Learn Introductory Physics

    Science.gov (United States)

    Lin, Shih-Yin; Singh, Chandralekha

    2011-01-01

    In this study, we examine introductory physics students' ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. Three hundred sixty-two students from a calculus-based and an algebra-based introductory physics course were given a quiz in the…

  5. Conceptual problem solving in high school physics

    Science.gov (United States)

    Docktor, Jennifer L.; Strand, Natalie E.; Mestre, José P.; Ross, Brian H.

    2015-12-01

    Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an instructional approach called Conceptual Problem Solving (CPS) which guides students to identify principles, justify their use, and plan their solution in writing before solving a problem. The CPS approach was implemented by high school physics teachers at three schools for major theorems and conservation laws in mechanics and CPS-taught classes were compared to control classes taught using traditional problem solving methods. Information about the teachers' implementation of the approach was gathered from classroom observations and interviews, and the effectiveness of the approach was evaluated from a series of written assessments. Results indicated that teachers found CPS easy to integrate into their curricula, students engaged in classroom discussions and produced problem solutions of a higher quality than before, and students scored higher on conceptual and problem solving measures.

  6. Conceptual problem solving in high school physics

    Directory of Open Access Journals (Sweden)

    Jennifer L. Docktor

    2015-09-01

    Full Text Available Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an instructional approach called Conceptual Problem Solving (CPS which guides students to identify principles, justify their use, and plan their solution in writing before solving a problem. The CPS approach was implemented by high school physics teachers at three schools for major theorems and conservation laws in mechanics and CPS-taught classes were compared to control classes taught using traditional problem solving methods. Information about the teachers’ implementation of the approach was gathered from classroom observations and interviews, and the effectiveness of the approach was evaluated from a series of written assessments. Results indicated that teachers found CPS easy to integrate into their curricula, students engaged in classroom discussions and produced problem solutions of a higher quality than before, and students scored higher on conceptual and problem solving measures.

  7. Using Analogy to Solve a Three-Step Physics Problem

    Science.gov (United States)

    Lin, Shih-Yin; Singh, Chandralekha

    2010-10-01

    In a companion paper, we discuss students' ability to take advantage of what they learn from a solved problem and transfer their learning to solve a quiz problem that has different surface features but the same underlying physics principles. Here, we discuss students' ability to perform analogical reasoning between another pair of problems. Both the problems can be solved using the same physics principles. However, the solved problem provided was a two-step problem (which can be solved by decomposing it into two sub-problems) while the quiz problem was a three-step problem. We find that it is challenging for students to extend what they learned from a two-step problem to solve a three-step problem.

  8. Assessing student written problem solutions: A problem-solving rubric with application to introductory physics

    Directory of Open Access Journals (Sweden)

    Jennifer L. Docktor

    2016-05-01

    Full Text Available Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic classroom work. It is also useful if such tools can be employed by instructors to guide their pedagogy. We describe the design, development, and testing of a simple rubric to assess written solutions to problems given in undergraduate introductory physics courses. In particular, we present evidence for the validity, reliability, and utility of the instrument. The rubric identifies five general problem-solving processes and defines the criteria to attain a score in each: organizing problem information into a Useful Description, selecting appropriate principles (Physics Approach, applying those principles to the specific conditions in the problem (Specific Application of Physics, using Mathematical Procedures appropriately, and displaying evidence of an organized reasoning pattern (Logical Progression.

  9. Physics students' approaches to learning and cognitive processes in solving physics problems

    Science.gov (United States)

    Bouchard, Josee

    This study examined traditional instruction and problem-based learning (PBL) approaches to teaching and the extent to which they foster the development of desirable cognitive processes, including metacognition, critical thinking, physical intuition, and problem solving among undergraduate physics students. The study also examined students' approaches to learning and their perceived role as physics students. The research took place in the context of advanced courses of electromagnetism at a Canadian research university. The cognitive science, expertise, physics and science education, instructional psychology, and discourse processes literature provided the framework and background to conceptualize and structure this study. A within-stage mixed-model design was used and a number of instruments, including a survey, observation grids, and problem sets were developed specifically for this study. A special one-week long problem-based learning (PBL) intervention was also designed. Interviews with the instructors participating in the study provided complementary data. Findings include evidence that students in general engage in metacognitive processes in the organization of their personal study time. However, this potential, including the development of other cognitive processes, might not be stimulated as much as it could in the traditional lecture instructional context. The PBL approach was deemed as more empowering for the students. An unexpected finding came from the realisation that a simple exposure to a structured exercise of problem-solving (pre-test) was sufficient to produce superior planning and solving strategies on a second exposure (post-test) even for the students who had not been exposed to any special treatment. Maturation was ruled out as a potential threat to the validity of this finding. Another promising finding appears to be that the problem-based learning (PBL) intervention tends to foster the development of cognitive competencies, particularly

  10. Extreme states of matter high energy density physics

    CERN Document Server

    Fortov, Vladimir E

    2016-01-01

    With its many beautiful colour pictures, this book gives fascinating insights into the unusual forms and behaviour of matter under extremely high pressures and temperatures. These extreme states are generated, among other things, by strong shock, detonation and electric explosion waves, dense laser beams,electron and ion beams, hypersonic entry of spacecraft into dense atmospheres of planets, and in many other situations characterized by extremely high pressures and temperatures.Written by one of the world's foremost experts on the topic, this book will inform and fascinate all scientists dealing with materials properties and physics, and also serve as an excellent introduction to plasma-, shock-wave and high-energy-density physics for students and newcomers seeking an overview. This second edition is thoroughly revised and expanded, in particular with new material on high energy-density physics, nuclear explosions and other nuclear transformation processes.

  11. Extreme states of matter in strong interaction physics an introduction

    CERN Document Server

    Satz, Helmut

    2018-01-01

    This book is a course-tested primer on the thermodynamics of strongly interacting matter – a profound and challenging area of both theoretical and experimental modern physics. Analytical and numerical studies of statistical quantum chromodynamics provide the main theoretical tool, while in experiments, high-energy nuclear collisions are the key for extensive laboratory investigations. As such, the field straddles statistical, particle and nuclear physics, both conceptually and in the methods of investigation used. The book addresses, above all, the many young scientists starting their scientific research in this field, providing them with a general, self-contained introduction that highlights the basic concepts and ideas and explains why we do what we do. Much of the book focuses on equilibrium thermodynamics: first it presents simplified phenomenological pictures, leading to critical behavior in hadronic matter and to a quark-hadron phase transition. This is followed by elements of finite temperature latti...

  12. Quantum field theory and symmetries in nuclear physics

    International Nuclear Information System (INIS)

    Baldin, A.M.

    2000-01-01

    Nuclear physics embraces a wide area of knowledge ranging from fundamental problems of matter structure up to the origin of the universe. Applied aspects of this science bear a direct relation to the most urgent problems of people's life - ecology and energetics. The present talk deals with one of these aspects, namely, a possible description of the properties of nuclear matter by means of the methods of modern mathematical physics which N.N. Bogolyubov has greatly contributed to

  13. Ordinary matter, dark matter, and dark energy on normal Zeeman space-times

    Science.gov (United States)

    Imre Szabó, Zoltán

    2017-01-01

    Zeeman space-times are new, relativistic, and operator based Hamiltonian models representing multi-particle systems. They are established on Lorentzian pseudo Riemannian manifolds whose Laplacian immediately appears in the form of original quantum physical wave operators. In classical quantum theory they emerge, differently, from the Hamilton formalism and the correspondence principle. Nonetheless, this new model does not just reiterate the well known conceptions but holds the key to solving open problems of quantum theory. Most remarkably, it represents the dark matter, dark energy, and ordinary matter by the same ratios how they show up in experiments. Another remarkable agreement with reality is that the ordinary matter appears to be non-expanding and is described in consent with observations. The theory also explains gravitation, moreover, the Hamilton operators of all energy and matter formations, together with their physical properties, are solely derived from the Laplacian of the Zeeman space-time. By this reason, it is called Monistic Wave Laplacian which symbolizes an all-comprehensive unification of all matter and energy formations. This paper only outlines the normal case where the particles do not have proper spin but just angular momentum. The complete anomalous theory is detailed in [Sz2, Sz3, Sz4, Sz5, Sz6, Sz7].

  14. Some problems of physics of ultrahigh energy cosmic rays

    International Nuclear Information System (INIS)

    Isaev, P.S.

    1999-01-01

    Nearest 15-20 years will be years of flourishing of experimental researches into the energy of cosmic rays at > or ∼ 10 15 eV and of new discoveries in the physics of elementary particles of ultrahigh energies. Unsolved problems of modern physics of ultrahigh energy cosmic rays, which are relevant to the problems of elementary particles physics, are reviewed

  15. Analytical derivation: An epistemic game for solving mathematically based physics problems

    Science.gov (United States)

    Bajracharya, Rabindra R.; Thompson, John R.

    2016-06-01

    Problem solving, which often involves multiple steps, is an integral part of physics learning and teaching. Using the perspective of the epistemic game, we documented a specific game that is commonly pursued by students while solving mathematically based physics problems: the analytical derivation game. This game involves deriving an equation through symbolic manipulations and routine mathematical operations, usually without any physical interpretation of the processes. This game often creates cognitive obstacles in students, preventing them from using alternative resources or better approaches during problem solving. We conducted hour-long, semi-structured, individual interviews with fourteen introductory physics students. Students were asked to solve four "pseudophysics" problems containing algebraic and graphical representations. The problems required the application of the fundamental theorem of calculus (FTC), which is one of the most frequently used mathematical concepts in physics problem solving. We show that the analytical derivation game is necessary, but not sufficient, to solve mathematically based physics problems, specifically those involving graphical representations.

  16. Library of problem-oriented programs for solving problems of atomic and nuclear physics

    International Nuclear Information System (INIS)

    Kharitonov, Yu.I.

    1976-01-01

    The Data Centre of the Leningrad Institute of Nuclear Physics (LIYaF) is working on the establishment of a library of problem-oriented computer programs for solving problems of atomic and nuclear physics. This paper lists and describes briefly the programs presently available to the Data Centre. The descriptions include the program code numbers, the program language, the translator for which the program is designed, and the program scope

  17. The Effect of Problem Based Learning (PBL) Instruction on Students' Motivation and Problem Solving Skills of Physics

    Science.gov (United States)

    Argaw, Aweke Shishigu; Haile, Beyene Bashu; Ayalew, Beyene Tesfaw; Kuma, Shiferaw Gadisa

    2017-01-01

    Through the learning of physics, students will acquire problem solving skills which are relevant to their daily life. Determining the best way in which students learn physics takes a priority in physics education. The goal of the present study was to determine the effect of problem based learning strategy on students' problem solving skills and…

  18. Complex network problems in physics, computer science and biology

    Science.gov (United States)

    Cojocaru, Radu Ionut

    There is a close relation between physics and mathematics and the exchange of ideas between these two sciences are well established. However until few years ago there was no such a close relation between physics and computer science. Even more, only recently biologists started to use methods and tools from statistical physics in order to study the behavior of complex system. In this thesis we concentrate on applying and analyzing several methods borrowed from computer science to biology and also we use methods from statistical physics in solving hard problems from computer science. In recent years physicists have been interested in studying the behavior of complex networks. Physics is an experimental science in which theoretical predictions are compared to experiments. In this definition, the term prediction plays a very important role: although the system is complex, it is still possible to get predictions for its behavior, but these predictions are of a probabilistic nature. Spin glasses, lattice gases or the Potts model are a few examples of complex systems in physics. Spin glasses and many frustrated antiferromagnets map exactly to computer science problems in the NP-hard class defined in Chapter 1. In Chapter 1 we discuss a common result from artificial intelligence (AI) which shows that there are some problems which are NP-complete, with the implication that these problems are difficult to solve. We introduce a few well known hard problems from computer science (Satisfiability, Coloring, Vertex Cover together with Maximum Independent Set and Number Partitioning) and then discuss their mapping to problems from physics. In Chapter 2 we provide a short review of combinatorial optimization algorithms and their applications to ground state problems in disordered systems. We discuss the cavity method initially developed for studying the Sherrington-Kirkpatrick model of spin glasses. We extend this model to the study of a specific case of spin glass on the Bethe

  19. Dark matter physics, flavor physics and LHC constraints in the dark matter model with a bottom partner

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Tomohiro [Institute for Advanced Research, Nagoya University,Nagoya 464-8602 (Japan); Kobayashi-Maskawa Institute for the Origin of Particles and the Universe,Nagoya University, Nagoya 464-8602 (Japan); Kawamura, Junichiro [Department of Physics, Waseda University,Tokyo 169-8555 (Japan); Okawa, Shohei [Department of Physics, Nagoya University,Nagoya 464-8602 (Japan); Omura, Yuji [Kobayashi-Maskawa Institute for the Origin of Particles and the Universe,Nagoya University, Nagoya 464-8602 (Japan)

    2017-03-10

    In the scenario that dark matter (DM) is a weakly interacting massive particle, there are many possibilities of the interactions with the Standard Model (SM) particles to achieve the relic density of DM. In this paper, we consider a simple DM model where the DM candidate is a complex scalar boson. The model contains a new complex gauge singlet scalar boson and a new fermion whose gauge charge is the same as the right-handed down-type quark. We dub the new fermion the bottom partner. These new particles have Yukawa interactions with the SM down-type quarks. The DM candidate interacts with the SM particles through the Yukawa interactions. The Yukawa interactions are not only relevant to the annihilation process of the DM but also contribute to the flavor physics, such as the ΔF=2 processes. In addition, the flavor alignment of the Yukawa couplings is related to the decay modes of the bottom partner, and thus we can find the explicit correlations among the physical observables in DM physics, flavor physics, and the signals at the LHC. We survey the ΔF=2 processes based on the numerical analyses of the thermal relic density, the direct detection of the DM, and the current LHC bounds. We investigate the perturbative bound on the Yukawa coupling as well. A Study of a fermionic DM model with extra scalar quarks is also given for comparison.

  20. Philosophical problems of modern physics

    International Nuclear Information System (INIS)

    Mittelstaedt, P.

    1976-01-01

    This book treats the philosophical problems that have arisen in connection with the theories of relativity and quantum theory. The book begins with a discussion of the problems that were raised by the special theory of relativity; questions relating to the structure of space and time, especially the problem of the temporal sequence of events. Subsequently problems are considered that were raised by the general theory of relativity, and which question the validity and applicability of Euclidean geometry to empirical space. The physical results, and in particular the theory of the measuring process in quantum mechanics, are considered. Criticism of the concept of substance and of the law of causality in quantum theory are discussed. Finally, the validity and applicability of classical logic for the domain of quantum-theoretical propositions are dealt with. (B.R.H.)

  1. Using an isomorphic problem pair to learn introductory physics: Transferring from a two-step problem to a three-step problem

    Directory of Open Access Journals (Sweden)

    Shih-Yin Lin

    2013-10-01

    Full Text Available In this study, we examine introductory physics students’ ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. 382 students from a calculus-based and an algebra-based introductory physics course were administered a quiz in the recitation in which they had to learn from a solved problem provided and take advantage of what they learned from it to solve another isomorphic problem (which we call the quiz problem. The solved problem provided has two subproblems while the quiz problem has three subproblems, which is known from previous research to be challenging for introductory students. In addition to the solved problem, students also received extra scaffolding supports that were intended to help them discern and exploit the underlying similarities of the isomorphic solved and quiz problems. The data analysis suggests that students had great difficulty in transferring what they learned from a two-step problem to a three-step problem. Although most students were able to learn from the solved problem to some extent with the scaffolding provided and invoke the relevant principles in the quiz problem, they were not necessarily able to apply the principles correctly. We also conducted think-aloud interviews with six introductory students in order to understand in depth the difficulties they had and explore strategies to provide better scaffolding. The interviews suggest that students often superficially mapped the principles employed in the solved problem to the quiz problem without necessarily understanding the governing conditions underlying each principle and examining the applicability of the principle in the new situation in an in-depth manner. Findings suggest that more scaffolding is needed to help students in transferring from a two-step problem to a three-step problem and applying the physics principles appropriately. We outline a few

  2. Using an isomorphic problem pair to learn introductory physics: Transferring from a two-step problem to a three-step problem

    Science.gov (United States)

    Lin, Shih-Yin; Singh, Chandralekha

    2013-12-01

    In this study, we examine introductory physics students’ ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. 382 students from a calculus-based and an algebra-based introductory physics course were administered a quiz in the recitation in which they had to learn from a solved problem provided and take advantage of what they learned from it to solve another isomorphic problem (which we call the quiz problem). The solved problem provided has two subproblems while the quiz problem has three subproblems, which is known from previous research to be challenging for introductory students. In addition to the solved problem, students also received extra scaffolding supports that were intended to help them discern and exploit the underlying similarities of the isomorphic solved and quiz problems. The data analysis suggests that students had great difficulty in transferring what they learned from a two-step problem to a three-step problem. Although most students were able to learn from the solved problem to some extent with the scaffolding provided and invoke the relevant principles in the quiz problem, they were not necessarily able to apply the principles correctly. We also conducted think-aloud interviews with six introductory students in order to understand in depth the difficulties they had and explore strategies to provide better scaffolding. The interviews suggest that students often superficially mapped the principles employed in the solved problem to the quiz problem without necessarily understanding the governing conditions underlying each principle and examining the applicability of the principle in the new situation in an in-depth manner. Findings suggest that more scaffolding is needed to help students in transferring from a two-step problem to a three-step problem and applying the physics principles appropriately. We outline a few possible strategies

  3. Perceived Mattering to the Family and Physical Violence within the Family by Adolescents

    Science.gov (United States)

    Elliott, Gregory C.; Cunningham, Susan M.; Colangelo, Melissa; Gelles, Richard J.

    2011-01-01

    Mattering is the extent to which people believe they make a difference in the world around them. This study hypothesizes that adolescents who believe they matter less to their families will more likely threaten or engage in intrafamily physical violence. The data come from a national sample of 2,004 adolescents. Controlling for respondents' age,…

  4. 6. International conference on materials science and condensed matter physics. Abstracts

    International Nuclear Information System (INIS)

    2012-09-01

    This book includes abstracts of the communications presented at the 6th International Conference on Materials Science and Condensed Matter Physics. The aim of this event is two-fold. First, it provides a nice opportunity for discussions and the dissemination of the latest results on selected topics in materials science, condensed-matter physics, and electrical methods of materials treatment. On the other hand, this is an occasion for sketching a broad perspective of scientific research and technological developments for the participants through oral and poster presentations. The abstracts presented in the book cover certain issues of modern theoretical and experimental physics and advanced technology, such as crystal growth, doping and implantation, fabrication of solid state structures; defect engineering, methods of fabrication and characterization of nanostructures including nanocomposites, nanowires and nano dots; fullerenes and nano tubes; quantum wells and superlattices; molecular-based materials, meso- and nano electronics; methods of structural and mechanical characterization; optical, transport, magnetic and superconductor properties, non-linear phenomena, size and interface effects; condensed matter theory; modelling of materials and structural properties including low dimensional systems; advanced materials and fabrication processes, device modelling and simulation of structures and elements; optoelectronics and photonics; microsensors and micro electro-mechanical systems; degradation and reliability, advanced technologies of electro-physico-chemical methods and equipment for materials machining, including modification of surfaces; electrophysical technologies of intensification of heat- and mass-transfer; treatment of biological preparations and foodstuff.

  5. Self-interacting inelastic dark matter: a viable solution to the small scale structure problems

    Energy Technology Data Exchange (ETDEWEB)

    Blennow, Mattias; Clementz, Stefan; Herrero-Garcia, Juan, E-mail: emb@kth.se, E-mail: scl@kth.se, E-mail: juan.herrero-garcia@adelaide.edu.au [Department of Physics, School of Engineering Sciences, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm (Sweden)

    2017-03-01

    Self-interacting dark matter has been proposed as a solution to the small-scale structure problems, such as the observed flat cores in dwarf and low surface brightness galaxies. If scattering takes place through light mediators, the scattering cross section relevant to solve these problems may fall into the non-perturbative regime leading to a non-trivial velocity dependence, which allows compatibility with limits stemming from cluster-size objects. However, these models are strongly constrained by different observations, in particular from the requirements that the decay of the light mediator is sufficiently rapid (before Big Bang Nucleosynthesis) and from direct detection. A natural solution to reconcile both requirements are inelastic endothermic interactions, such that scatterings in direct detection experiments are suppressed or even kinematically forbidden if the mass splitting between the two-states is sufficiently large. Using an exact solution when numerically solving the Schrödinger equation, we study such scenarios and find regions in the parameter space of dark matter and mediator masses, and the mass splitting of the states, where the small scale structure problems can be solved, the dark matter has the correct relic abundance and direct detection limits can be evaded.

  6. Relationships between undergraduates' argumentation skills, conceptual quality of problem solutions, and problem solving strategies in introductory physics

    Science.gov (United States)

    Rebello, Carina M.

    This study explored the effects of alternative forms of argumentation on undergraduates' physics solutions in introductory calculus-based physics. A two-phase concurrent mixed methods design was employed to investigate relationships between undergraduates' written argumentation abilities, conceptual quality of problem solutions, as well as approaches and strategies for solving argumentative physics problems across multiple physics topics. Participants were assigned via stratified sampling to one of three conditions (control, guided construct, or guided evaluate) based on gender and pre-test scores on a conceptual instrument. The guided construct and guided evaluate groups received tasks and prompts drawn from literature to facilitate argument construction or evaluation. Using a multiple case study design, with each condition serving as a case, interviews were conducted consisting of a think-aloud problem solving session paired with a semi-structured interview. The analysis of problem solving strategies was guided by the theoretical framework on epistemic games adapted by Tuminaro and Redish (2007). This study provides empirical evidence that integration of written argumentation into physics problems can potentially improve the conceptual quality of solutions, expand their repertoire of problem solving strategies and show promise for addressing the gender gap in physics. The study suggests further avenues for research in this area and implications for designing and implementing argumentation tasks in introductory college physics.

  7. Statistical physics of hard optimization problems

    International Nuclear Information System (INIS)

    Zdeborova, L.

    2009-01-01

    Optimization is fundamental in many areas of science, from computer science and information theory to engineering and statistical physics, as well as to biology or social sciences. It typically involves a large number of variables and a cost function depending on these variables. Optimization problems in the non-deterministic polynomial (NP)-complete class are particularly difficult, it is believed that the number of operations required to minimize the cost function is in the most difficult cases exponential in the system size. However, even in an NP-complete problem the practically arising instances might, in fact, be easy to solve. The principal question we address in this article is: How to recognize if an NP-complete constraint satisfaction problem is typically hard and what are the main reasons for this? We adopt approaches from the statistical physics of disordered systems, in particular the cavity method developed originally to describe glassy systems. We describe new properties of the space of solutions in two of the most studied constraint satisfaction problems - random satisfy ability and random graph coloring. We suggest a relation between the existence of the so-called frozen variables and the algorithmic hardness of a problem. Based on these insights, we introduce a new class of problems which we named ”locked” constraint satisfaction, where the statistical description is easily solvable, but from the algorithmic point of view they are even more challenging than the canonical satisfy ability.

  8. Statistical physics of hard optimization problems

    International Nuclear Information System (INIS)

    Zdeborova, L.

    2009-01-01

    Optimization is fundamental in many areas of science, from computer science and information theory to engineering and statistical physics, as well as to biology or social sciences. It typically involves a large number of variables and a cost function depending on these variables. Optimization problems in the non-deterministic polynomial-complete class are particularly difficult, it is believed that the number of operations required to minimize the cost function is in the most difficult cases exponential in the system size. However, even in an non-deterministic polynomial-complete problem the practically arising instances might, in fact, be easy to solve. The principal the question we address in the article is: How to recognize if an non-deterministic polynomial-complete constraint satisfaction problem is typically hard and what are the main reasons for this? We adopt approaches from the statistical physics of disordered systems, in particular the cavity method developed originally to describe glassy systems. We describe new properties of the space of solutions in two of the most studied constraint satisfaction problems - random satisfiability and random graph coloring. We suggest a relation between the existence of the so-called frozen variables and the algorithmic hardness of a problem. Based on these insights, we introduce a new class of problems which we named 'locked' constraint satisfaction, where the statistical description is easily solvable, but from the algorithmic point of view they are even more challenging than the canonical satisfiability (Authors)

  9. Statistical physics of hard optimization problems

    Science.gov (United States)

    Zdeborová, Lenka

    2009-06-01

    Optimization is fundamental in many areas of science, from computer science and information theory to engineering and statistical physics, as well as to biology or social sciences. It typically involves a large number of variables and a cost function depending on these variables. Optimization problems in the non-deterministic polynomial (NP)-complete class are particularly difficult, it is believed that the number of operations required to minimize the cost function is in the most difficult cases exponential in the system size. However, even in an NP-complete problem the practically arising instances might, in fact, be easy to solve. The principal question we address in this article is: How to recognize if an NP-complete constraint satisfaction problem is typically hard and what are the main reasons for this? We adopt approaches from the statistical physics of disordered systems, in particular the cavity method developed originally to describe glassy systems. We describe new properties of the space of solutions in two of the most studied constraint satisfaction problems - random satisfiability and random graph coloring. We suggest a relation between the existence of the so-called frozen variables and the algorithmic hardness of a problem. Based on these insights, we introduce a new class of problems which we named "locked" constraint satisfaction, where the statistical description is easily solvable, but from the algorithmic point of view they are even more challenging than the canonical satisfiability.

  10. Conceptual Problem Solving in High School Physics

    Science.gov (United States)

    Docktor, Jennifer L.; Strand, Natalie E.; Mestre, José P.; Ross, Brian H.

    2015-01-01

    Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an…

  11. Open problems in mathematical physics

    Science.gov (United States)

    Coley, Alan A.

    2017-09-01

    We present a list of open questions in mathematical physics. After a historical introduction, a number of problems in a variety of different fields are discussed, with the intention of giving an overall impression of the current status of mathematical physics, particularly in the topical fields of classical general relativity, cosmology and the quantum realm. This list is motivated by the recent article proposing 42 fundamental questions (in physics) which must be answered on the road to full enlightenment (Allen and Lidstrom 2017 Phys. Scr. 92 012501). But paraphrasing a famous quote by the British football manager Bill Shankly, in response to the question of whether mathematics can answer the Ultimate Question of Life, the Universe, and Everything, mathematics is, of course, much more important than that.

  12. The causality problem in atomic physics

    International Nuclear Information System (INIS)

    Bor, N.

    1985-01-01

    The casuality problem in atomic physics is analysed by Bohr in a wide methodological context. The first part of the paper is a short historical essay picturing the entry of statistical concepts into physics. Bohr underlines a close relationship between an unavoidably probabilitic nature of the quantum theory and quantum postulates introducing the alien-to-classical-physics concepts of integrity, individuality of atomic processes. In the second central part of the paper Bohr discusses the casuality problems in atomic physics in detail and shows that their solution requires a careful analysis of the observation process. Proceeding from the program methodological requirement to describe the measuring instrumentation operation and observation results in the language of classical physics, he explains that the statistical character of the uncertainty relationships expresses a substantial specifically quantum constraint to the applicifically of classical conceptions analyses of microphenomena. Then Bohr refines in principle the notion ''phenomenon'', as one of the central notions among those he employed for the formulation of his complementarity principle. According to bohr a phenomenon should be under-stood as an unambiguously present situation of a completed experiment. Therefore, it is erroneous to speak of the phenomenon perturbation by the observation. The final part of the article deals with the discussion of methodological parallels of the quantum theory and relativity theory

  13. The construction of the representation in solving a physics problem

    Directory of Open Access Journals (Sweden)

    Enrique A. Coleoni

    2001-09-01

    Full Text Available Written solutions of a physics problem provided by high school students in a physics olympiad are analysed. The study was done on the basis of theoretical developments which take into account peculiarities of the understanding of scientific problems. Some errors are typefied according to failures at different levels of the representation process. A categorization is proposed suggesting the possibility of reinterpreting some mistakes made by physics students in problem solving.

  14. Phantom dark energy with varying-mass dark matter particles: Acceleration and cosmic coincidence problem

    International Nuclear Information System (INIS)

    Leon, Genly; Saridakis, Emmanuel N.

    2010-01-01

    We investigate several varying-mass dark matter particle models in the framework of phantom cosmology. We examine whether there exist late-time cosmological solutions, corresponding to an accelerating universe and possessing dark energy and dark matter densities of the same order. Imposing exponential or power-law potentials and exponential or power-law mass dependence, we conclude that the coincidence problem cannot be solved or even alleviated. Thus, if dark energy is attributed to the phantom paradigm, varying-mass dark matter models cannot fulfill the basic requirement that led to their construction.

  15. Probes for dark matter physics

    Science.gov (United States)

    Khlopov, Maxim Yu.

    The existence of cosmological dark matter is in the bedrock of the modern cosmology. The dark matter is assumed to be nonbaryonic and consists of new stable particles. Weakly Interacting Massive Particle (WIMP) miracle appeals to search for neutral stable weakly interacting particles in underground experiments by their nuclear recoil and at colliders by missing energy and momentum, which they carry out. However, the lack of WIMP effects in their direct underground searches and at colliders can appeal to other forms of dark matter candidates. These candidates may be weakly interacting slim particles, superweakly interacting particles, or composite dark matter, in which new particles are bound. Their existence should lead to cosmological effects that can find probes in the astrophysical data. However, if composite dark matter contains stable electrically charged leptons and quarks bound by ordinary Coulomb interaction in elusive dark atoms, these charged constituents of dark atoms can be the subject of direct experimental test at the colliders. The models, predicting stable particles with charge ‑ 2 without stable particles with charges + 1 and ‑ 1 can avoid severe constraints on anomalous isotopes of light elements and provide solution for the puzzles of dark matter searches. In such models, the excessive ‑ 2 charged particles are bound with primordial helium in O-helium atoms, maintaining specific nuclear-interacting form of the dark matter. The successful development of composite dark matter scenarios appeals for experimental search for doubly charged constituents of dark atoms, making experimental search for exotic stable double charged particles experimentum crucis for dark atoms of composite dark matter.

  16. The Physics of Life. Part I: The Animate Organism as an Active Condensed Matter Body

    OpenAIRE

    Kukuruznyak , Dmitry ,

    2017-01-01

    Nonequilibrium "active agents" establish bonds with each other and create a quickly evolving condensed state known as active matter. Recently, active matter composed of motile self-organizing biopolymers demonstrated a biotic-like motion similar to cytoplasmic streaming. It was suggested that the active matter could produce cells. However, active matter physics cannot yet define an " organism " and thus make a satisfactory connection to biology. This paper describes an organism made of active...

  17. Conceptual problem solving in high school physics

    OpenAIRE

    Jennifer L. Docktor; Natalie E. Strand; José P. Mestre; Brian H. Ross

    2015-01-01

    Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an instructional approach called Conceptual Problem Solving (CPS) which guides students to identify principles, justify their use, and plan their solution in w...

  18. Neutrino and dark matter physics with sub-keV germanium detectors

    Indian Academy of Sciences (India)

    2014-11-04

    Nov 4, 2014 ... the recent results on spin-independent couplings of light WIMPs from the ... the studies of low-energy neutrino and dark matter physics. .... vs. SAT. 12 (shaping time is 12 μs with partial integration) signals, for both calibration.

  19. Is dark matter with long-range interactions a solution to all small-scale problems of Λ cold dark matter cosmology?

    Science.gov (United States)

    van den Aarssen, Laura G; Bringmann, Torsten; Pfrommer, Christoph

    2012-12-07

    The cold dark matter paradigm describes the large-scale structure of the Universe remarkably well. However, there exists some tension with the observed abundances and internal density structures of both field dwarf galaxies and galactic satellites. Here, we demonstrate that a simple class of dark matter models may offer a viable solution to all of these problems simultaneously. Their key phenomenological properties are velocity-dependent self-interactions mediated by a light vector messenger and thermal production with much later kinetic decoupling than in the standard case.

  20. Video-based problems in introductory mechanics physics courses

    International Nuclear Information System (INIS)

    Gröber, Sebastian; Klein, Pascal; Kuhn, Jochen

    2014-01-01

    Introductory mechanics physics courses at the transition from school to university are a challenge for students. They are faced with an abrupt and necessary increase of theoretical content and requirements on their conceptual understanding of phyiscs. In order to support this transition we replaced part of the mandatory weekly theory-based paper-and-pencil problems with video analysis problems of equal content and level of difficulty. Video-based problems (VBP) are a new problem format for teaching physics from a linked sequence of theoretical and video-based experimental tasks. Experimental tasks are related to the well-known concept of video motion analysis. This introduction of an experimental part in recitations allows the establishment of theory–experiment interplay as well as connections between physical content and context fields such as nature, technique, everyday life and applied physics by conducting model-and context-related experiments. Furthermore, laws and formulas as predominantly representative forms are extended by the use of diagrams and vectors. In this paper we give general reasons for this approach, describe the structure and added values of VBP, and show that they cover a relevant part of mechanics courses at university. Emphasis is put on theory–experiment interplay as a structural added value of VBP to promote students' construction of knowledge and conceptual understanding. (paper)

  1. Statistical physics of hard combinatorial optimization: Vertex cover problem

    Science.gov (United States)

    Zhao, Jin-Hua; Zhou, Hai-Jun

    2014-07-01

    Typical-case computation complexity is a research topic at the boundary of computer science, applied mathematics, and statistical physics. In the last twenty years, the replica-symmetry-breaking mean field theory of spin glasses and the associated message-passing algorithms have greatly deepened our understanding of typical-case computation complexity. In this paper, we use the vertex cover problem, a basic nondeterministic-polynomial (NP)-complete combinatorial optimization problem of wide application, as an example to introduce the statistical physical methods and algorithms. We do not go into the technical details but emphasize mainly the intuitive physical meanings of the message-passing equations. A nonfamiliar reader shall be able to understand to a large extent the physics behind the mean field approaches and to adjust the mean field methods in solving other optimization problems.

  2. Physics of biological membranes

    Science.gov (United States)

    Mouritsen, Ole G.

    The biological membrane is a complex system consisting of an aqueous biomolecular planar aggregate of predominantly lipid and protein molecules. At physiological temperatures, the membrane may be considered a thin (˜50Å) slab of anisotropic fluid characterized by a high lateral mobility of the various molecular components. A substantial fraction of biological activity takes place in association with membranes. As a very lively piece of condensed matter, the biological membrane is a challenging research topic for both the experimental and theoretical physicists who are facing a number of fundamental physical problems including molecular self-organization, macromolecular structure and dynamics, inter-macromolecular interactions, structure-function relationships, transport of energy and matter, and interfacial forces. This paper will present a brief review of recent theoretical and experimental progress on such problems, with special emphasis on lipid bilayer structure and dynamics, lipid phase transitions, lipid-protein and lipid-cholesterol interactions, intermembrane forces, and the physical constraints imposed on biomembrane function and evolution. The paper advocates the dual point of view that there are a number of interesting physics problems in membranology and, at the same time, that the physical properties of biomembranes are important regulators of membrane function.

  3. Overview. Department of Theoretical Physics. Section 4

    Energy Technology Data Exchange (ETDEWEB)

    Kwiecinski, J. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    Research activity of the Department of the Theoretical Physics spans a wide variety of problems in theoretical high-energy and elementary particle physics, theoretical nuclear physics, theory of the nuclear matter, quark gluon plasma and relativistic heavy-ion collisions, theoretical astrophysics, as well as general physics. Theoretical research in high energy and elementary particle physics is concentrated on the theory of deep inelastic lepton scattering in the region of low x and its phenomenological implication for the ep collider HERA at DESY, on the theory of nonleptonic decays of hadrons, and on low energy {pi}{pi} and K-anti-K interactions and scalar meson spectroscopy. The activity in the theory of relativistic heavy-ion collisions is focused on the study of quark condensate fluctuations, on the analysis of critical scattering near the chiral phase transition, and on Bose-Einstein correlation in heavy-ion collisions. Theoretical studies in nuclear physics and in theory of nuclear matter concern analysis of models, with dynamical symmetry based on group S{sub p}(6,R) for the description of collective modes of atomic nuclei, analysis of the Goldstone bosons in nuclear matter and analysis of saturation properties of nuclear matter. Research in theoretical astrophysics is mainly devoted to the analysis of magnetic properties of hadronic matter in neutron stars with proton admixture. Studies in general physics concern problem related to the Galilean covariance of classical and quantum mechanics. The detailed results obtained in various fields are summarised in presented abstracts as well as information about employed personnel, publications, contribution to conferences, reports, workshops and seminars.

  4. Overview. Department of Theoretical Physics. Section 4

    Energy Technology Data Exchange (ETDEWEB)

    Kwiecinski, J [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-31

    Research activity of the Department of the Theoretical Physics spans a wide variety of problems in theoretical high-energy and elementary particle physics, theoretical nuclear physics, theory of the nuclear matter, quark gluon plasma and relativistic heavy-ion collisions, theoretical astrophysics, as well as general physics. Theoretical research in high energy and elementary particle physics is concentrated on the theory of deep inelastic lepton scattering in the region of low x and its phenomenological implication for the ep collider HERA at DESY, on the theory of nonleptonic decays of hadrons, and on low energy {pi}{pi} and K-anti-K interactions and scalar meson spectroscopy. The activity in the theory of relativistic heavy-ion collisions is focused on the study of quark condensate fluctuations, on the analysis of critical scattering near the chiral phase transition, and on Bose-Einstein correlation in heavy-ion collisions. Theoretical studies in nuclear physics and in theory of nuclear matter concern analysis of models, with dynamical symmetry based on group S{sub p}(6,R) for the description of collective modes of atomic nuclei, analysis of the Goldstone bosons in nuclear matter and analysis of saturation properties of nuclear matter. Research in theoretical astrophysics is mainly devoted to the analysis of magnetic properties of hadronic matter in neutron stars with proton admixture. Studies in general physics concern problem related to the Galilean covariance of classical and quantum mechanics. The detailed results obtained in various fields are summarised in presented abstracts as well as information about employed personnel, publications, contribution to conferences, reports, workshops and seminars.

  5. Overview. Department of Theoretical Physics. Section 4

    International Nuclear Information System (INIS)

    Kwiecinski, J.

    1995-01-01

    Research activity of the Department of the Theoretical Physics spans a wide variety of problems in theoretical high-energy and elementary particle physics, theoretical nuclear physics, theory of the nuclear matter, quark gluon plasma and relativistic heavy-ion collisions, theoretical astrophysics, as well as general physics. Theoretical research in high energy and elementary particle physics is concentrated on the theory of deep inelastic lepton scattering in the region of low x and its phenomenological implication for the ep collider HERA at DESY, on the theory of nonleptonic decays of hadrons, and on low energy ππ and K-anti-K interactions and scalar meson spectroscopy. The activity in the theory of relativistic heavy-ion collisions is focused on the study of quark condensate fluctuations, on the analysis of critical scattering near the chiral phase transition, and on Bose-Einstein correlation in heavy-ion collisions. Theoretical studies in nuclear physics and in theory of nuclear matter concern analysis of models, with dynamical symmetry based on group S p (6,R) for the description of collective modes of atomic nuclei, analysis of the Goldstone bosons in nuclear matter and analysis of saturation properties of nuclear matter. Research in theoretical astrophysics is mainly devoted to the analysis of magnetic properties of hadronic matter in neutron stars with proton admixture. Studies in general physics concern problem related to the Galilean covariance of classical and quantum mechanics. The detailed results obtained in various fields are summarised in presented abstracts as well as information about employed personnel, publications, contribution to conferences, reports, workshops and seminars

  6. Asymmetric capture of Dirac dark matter by the Sun

    International Nuclear Information System (INIS)

    Blennow, Mattias; Clementz, Stefan

    2015-01-01

    Current problems with the solar model may be alleviated if a significant amount of dark matter from the galactic halo is captured in the Sun. We discuss the capture process in the case where the dark matter is a Dirac fermion and the background halo consists of equal amounts of dark matter and anti-dark matter. By considering the case where dark matter and anti-dark matter have different cross sections on solar nuclei as well as the case where the capture process is considered to be a Poisson process, we find that a significant asymmetry between the captured dark particles and anti-particles is possible even for an annihilation cross section in the range expected for thermal relic dark matter. Since the captured number of particles are competitive with asymmetric dark matter models in a large range of parameter space, one may expect solar physics to be altered by the capture of Dirac dark matter. It is thus possible that solutions to the solar composition problem may be searched for in these type of models

  7. Asymmetric capture of Dirac dark matter by the Sun

    Energy Technology Data Exchange (ETDEWEB)

    Blennow, Mattias; Clementz, Stefan [Department of Theoretical Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Albanova University Center,106 91, Stockholm (Sweden)

    2015-08-18

    Current problems with the solar model may be alleviated if a significant amount of dark matter from the galactic halo is captured in the Sun. We discuss the capture process in the case where the dark matter is a Dirac fermion and the background halo consists of equal amounts of dark matter and anti-dark matter. By considering the case where dark matter and anti-dark matter have different cross sections on solar nuclei as well as the case where the capture process is considered to be a Poisson process, we find that a significant asymmetry between the captured dark particles and anti-particles is possible even for an annihilation cross section in the range expected for thermal relic dark matter. Since the captured number of particles are competitive with asymmetric dark matter models in a large range of parameter space, one may expect solar physics to be altered by the capture of Dirac dark matter. It is thus possible that solutions to the solar composition problem may be searched for in these type of models.

  8. Asymmetric capture of Dirac dark matter by the Sun

    Energy Technology Data Exchange (ETDEWEB)

    Blennow, Mattias; Clementz, Stefan, E-mail: emb@kth.se, E-mail: scl@kth.se [Department of Theoretical Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Albanova University Center, 106 91, Stockholm (Sweden)

    2015-08-01

    Current problems with the solar model may be alleviated if a significant amount of dark matter from the galactic halo is captured in the Sun. We discuss the capture process in the case where the dark matter is a Dirac fermion and the background halo consists of equal amounts of dark matter and anti-dark matter. By considering the case where dark matter and anti-dark matter have different cross sections on solar nuclei as well as the case where the capture process is considered to be a Poisson process, we find that a significant asymmetry between the captured dark particles and anti-particles is possible even for an annihilation cross section in the range expected for thermal relic dark matter. Since the captured number of particles are competitive with asymmetric dark matter models in a large range of parameter space, one may expect solar physics to be altered by the capture of Dirac dark matter. It is thus possible that solutions to the solar composition problem may be searched for in these type of models.

  9. Problem Solving in Physics: Undergraduates' Framing, Procedures, and Decision Making

    Science.gov (United States)

    Modir, Bahar

    In this dissertation I will start with the broad research question of what does problem solving in upper division physics look like? My focus in this study is on students' problem solving in physics theory courses. Some mathematical formalisms are common across all physics core courses such as using the process of separation of variables, doing Taylor series, or using the orthogonality properties of mathematical functions to set terms equal to zero. However, there are slight differences in their use of these mathematical formalisms across different courses, possibly because of how students map different physical systems to these processes. Thus, my first main research question aims to answer how students perform these recurring processes across upper division physics courses. I break this broad question into three particular research questions: What knowledge pieces do students use to make connections between physics and procedural math? How do students use their knowledge pieces coherently to provide reasoning strategies in estimation problems? How do students look ahead into the problem to read the information out of the physical scenario to align their use of math in physics? Building on the previous body of the literature, I will use the theory family of Knowledge in Pieces and provide evidence to expand this theoretical foundation. I will compare my study with previous studies and provide suggestions on how to generalize these theory expansions for future use. My experimental data mostly come from video-based classroom data. Students in groups of 2-4 students solve in-class problems in quantum mechanics and electromagnetic fields 1 courses collaboratively. In addition, I will analyze clinical interviews to demonstrate how a single case study student plays an epistemic game to estimate the total energy in a hurricane. My second research question is more focused on a particular instructional context. How do students frame problem solving in quantum mechanics? I

  10. Open problems in mathematical physics

    International Nuclear Information System (INIS)

    Coley, Alan A

    2017-01-01

    We present a list of open questions in mathematical physics. After a historical introduction, a number of problems in a variety of different fields are discussed, with the intention of giving an overall impression of the current status of mathematical physics, particularly in the topical fields of classical general relativity, cosmology and the quantum realm. This list is motivated by the recent article proposing 42 fundamental questions (in physics) which must be answered on the road to full enlightenment (Allen and Lidstrom 2017 Phys. Scr . 92 012501). But paraphrasing a famous quote by the British football manager Bill Shankly, in response to the question of whether mathematics can answer the Ultimate Question of Life, the Universe, and Everything, mathematics is, of course, much more important than that. (invited comment)

  11. MASS-SAT: Matter-antimatter space spectrometer on satellite

    CERN Document Server

    Basini, G; Massimo Brancaccio, F; Ricci, M; Bocciolini, M; Spillantini, P; Wang, Y F; Bongiorno, F; de Pascale, M P; Morselli, A; Picozza, P; de Marzo, C; Erriquez, O; Barbiellini, G; Vacchi, A; Galeotti, P; Ballocchi, G; Simon, M; Carlson, P; Goret, P; Golden, R L

    The MASS-SAT Experiment (Matter-Antimatter Space Spectrometer on SATellite) presented here is conceived to search for an experimental answer to many open problems related to both Astrophysics and Physics, through the detection of positrons, antiprotons, nuclei and, overall, antinuclei if they exist. Among these problems there are the hypothesized presence of antigalaxies in the Universe (the matter-antimatter symmetry problem), the existence of black holes as possible antiproton sources (the Hawking effect), the existence of photinos as antiproton sources (related to the dark-matter problem), the understanding of the mechanism of cosmic-ray acceleration in the interstellar medium, the determination of the relative abundancies of isotopes in cosmic rays and many others. The choice of an orbit expecially appropriate for that (geostationary or polar orbit) as well as the choice of an apparatus composed only of solid-state detectors and permanent magnets (no gas and no liquid helium on board, avoiding complexity ...

  12. 1000 Solved Problems in Modern Physics

    CERN Document Server

    Kamal, Ahmad A

    2010-01-01

    This book basically caters to the needs of undergraduates and graduates physics students in the area of modern physics, specially particle and nuclear physics. Lecturers/tutors may use it as a resource book. The contents of the book are based on the syllabi currently used in the undergraduate courses in USA, U.K., and other countries. The book is divided into 10 chapters, each chapter beginning with a brief but adequate summary and necessary formulas, tables and line diagrams followed by a variety of typical problems useful for assignments and exams. Detailed solutions are provided at the end of each chapter.

  13. Current challenges in fundamental physics

    Science.gov (United States)

    Egana Ugrinovic, Daniel

    The discovery of the Higgs boson at the Large Hadron Collider completed the Standard Model of particle physics. The Standard Model is a remarkably successful theory of fundamental physics, but it suffers from severe problems. It does not provide an explanation for the origin or stability of the electroweak scale nor for the origin and structure of flavor and CP violation. It predicts vanishing neutrino masses, in disagreement with experimental observations. It also fails to explain the matter-antimatter asymmetry of the universe, and it does not provide a particle candidate for dark matter. In this thesis we provide experimentally testable solutions for most of these problems and we study their phenomenology.

  14. The interplay of externalizing problems and physical and inductive discipline during childhood.

    Science.gov (United States)

    Choe, Daniel Ewon; Olson, Sheryl L; Sameroff, Arnold J

    2013-11-01

    Children who are physically disciplined are at elevated risk for externalizing problems. Conversely, maternal reasoning and reminding of rules, or inductive discipline, is associated with fewer child externalizing problems. Few studies have simultaneously examined bidirectional associations between these forms of discipline and child adjustment using cross-informant, multimethod data. We hypothesized that less inductive and more physical discipline would predict more externalizing problems, children would have evocative effects on parenting, and high levels of either form of discipline would predict low levels of the other. In a study of 241 children-spanning ages 3, 5.5, and 10-structural equation modeling indicated that 3-year-olds with higher teacher ratings of externalizing problems received higher mother ratings of physical discipline at age 5.5. Mothers endorsing more inductive discipline at child age 3 reported less physical discipline and had children with fewer externalizing problems at age 5.5. Negative bidirectional associations emerged between physical and inductive discipline from ages 5.5 to 10. Findings suggested children's externalizing problems elicited physical discipline, and maternal inductive discipline might help prevent externalizing problems and physical discipline.

  15. Physics: Quantum problems solved through games

    Science.gov (United States)

    Maniscalco, Sabrina

    2016-04-01

    Humans are better than computers at performing certain tasks because of their intuition and superior visual processing. Video games are now being used to channel these abilities to solve problems in quantum physics. See Letter p.210

  16. Compendium to radiation physics for medical physicists. 300 problems and solutions

    International Nuclear Information System (INIS)

    Podgorsak, Ervin B.

    2014-01-01

    Can be used in combination with other textbooks. Exercise book for graduate and undergraduate students of medical physics and engineering. Well chosen and didactically presented problems. Perfect set for learning in connection with the textbook by Podgorsak and others. Detailed derivation of results with many detailed illustrations. Fully worked-out solutions to exercises/questions. Combines exercises in radiation physics and medical physics. This exercise book contains 300 typical problems and exercises in modern physics and radiation physics with complete solutions, detailed equations and graphs. This textbook is linked directly with the textbook ''Radiation Physics for Medical Physicists'', Springer (2010) but can also be used in combination with other related textbooks. For ease of use, this textbook has exactly the same organizational layout (14 chapters, 128 sections) as the ''Radiation Physics for Medical Physicists'' textbook and each section is covered by at least one problem with solution given. Equations, figures and tables are cross-referenced between the two books. It is the only large compilation of textbook material and associated solved problems in medical physics, radiation physics, and biophysics.

  17. Proceedings of international conference dedicated to the seventieth anniversary of Physical-technical institute, SPA 'Physics-Sun' 'Fundamental and applied problems of physics'

    International Nuclear Information System (INIS)

    Lutpullaev, S.L.; Atabaev, I.G.; Abdurakhmanov, A.A.

    2013-11-01

    The International conference dedicated to the seventieth anniversary of Physical-technical institute, SPA 'Physics-Sun' 'Fundamental and applied problems of physics' was held on 14-15 November, 2013 in Tashkent, Uzbekistan. Specialists discussed various aspects of modern problems of relativistic nuclear physics and physics of atomic nuclei, solid state physics, various applications of new materials. More than 225 talks were presented in the meeting. (k.m.)

  18. 5th International Heidelberg Conference on Dark Matter in Astro- and Particle Physics

    CERN Document Server

    Arnowitt, Richard; DARK 2004; Dark Matter in Astro- and Particle Physics

    2006-01-01

    The search for dark matter in the universe has established itself as one of the most exciting and central fields of astrophysics, particle physics and cosmology. The lectures and talks in this book emphasize the experimental and theoretical status and future perspectives, stressing in particular the interplay between astro- and particle physics.

  19. First results from the LUX Dark Matter Experiment

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Discovery of the nature of dark matter is internationally recognized as one of the greatest contemporary challenges in science, fundamental to our understanding of the Universe. The most compelling candidates for dark matter are Weakly Interacting Massive Particles (WIMPs) that arise naturally in several models of physics beyond the Standard Model. The discovery of galactic WIMPs would therefore enlighten two of the outstanding problems of modern physics - the matter composition of the Universe and the extrapolation of the Standard Model of particle physics to GUT scales. Although no definitive signal has yet been discovered, the worldwide race towards direct detection has been dramatically accelerated by the remarkable progress and evolution of liquid xenon (LXe) time projection chambers (TPCs). They have shifted the scale of target mass by orders of magnitude whilst simultaneously reducing backgrounds to unprecedented low levels, becoming the leaders of the field and offering the most promising prospects fo...

  20. Internet Computer Coaches for Introductory Physics Problem Solving

    Science.gov (United States)

    Xu Ryan, Qing

    2013-01-01

    The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the…

  1. SYMMETRY, HAMILTONIAN PROBLEMS AND WAVELETS IN ACCELERATOR PHYSICS

    International Nuclear Information System (INIS)

    FEDOROVA, A.; ZEITLIN, M.; PARSA, Z.

    2000-01-01

    In this paper the authors consider applications of methods from wavelet analysis to nonlinear dynamical problems related to accelerator physics. In this approach they take into account underlying algebraical, geometrical and topological structures of corresponding problems

  2. The philosophical aspect of learning inverse problems of mathematical physics

    Directory of Open Access Journals (Sweden)

    Виктор Семенович Корнилов

    2018-12-01

    Full Text Available The article describes specific questions student learning inverse problems of mathematical physics. When teaching inverse problems of mathematical physics to the understanding of the students brought the information that the inverse problems of mathematical physics with a philosophical point of view are the problems of determining the unknown causes of known consequences, and the search for their solutions have great scientific and educational potential. The reasons are specified in the form of unknown coefficients, right side, initial conditions of the mathematical model of inverse problems, and as a consequence are functionals of the solution of this mathematical model. In the process of learning the inverse problems of mathematical physics focuses on the philosophical aspects of the phenomenon of information and identify cause-effect relations. It is emphasized that in the process of logical analysis applied and humanitarian character, students realize that information is always related to the fundamental philosophical questions that the analysis applied and the humanitarian aspects of the obtained results the inverse problem of mathematical physics allows students to make appropriate inferences about the studied process and to, ultimately, new information, to study its properties and understand its value. Philosophical understanding of the notion of information opens up to students a new methodological opportunities to comprehend the world and helps us to reinterpret existing science and philosophy of the theory related to the disclosure of the interrelationship of all phenomena of reality.

  3. A Boundary Value Problem for Introductory Physics?

    Science.gov (United States)

    Grundberg, Johan

    2008-01-01

    The Laplace equation has applications in several fields of physics, and problems involving this equation serve as paradigms for boundary value problems. In the case of the Laplace equation in a disc there is a well-known explicit formula for the solution: Poisson's integral. We show how one can derive this formula, and in addition two equivalent…

  4. Compendium to radiation physics for medical physicists 300 problems and solutions

    CERN Document Server

    Podgorsak, Ervin B

    2014-01-01

    This exercise book contains 300 typical problems and exercises in modern physics and radiation physics with complete solutions, detailed equations and graphs. This textbook is linked directly with the textbook "Radiation Physics for Medical Physicists", Springer (2010) but can also be used in combination with other related textbooks. For ease of use, this textbook has exactly the same organizational layout (14 chapters, 128 sections) as the "Radiation Physics for Medical Physicists" textbook and each section is covered by at least one problem with solution given. Equations, figures and tables are cross-referenced between the two books. It is the only large compilation of textbook material and associated solved problems in medical physics, radiation physics, and biophysics.

  5. Introduction to the physics of matter basic atomic, molecular, and solid-state physics

    CERN Document Server

    Manini, Nicola

    2014-01-01

    This book offers an up-to-date, compact presentation of basic topics in the physics of matter, from atoms to molecules to solids, including elements of statistical mechanics. The adiabatic separation of the motion of electrons and nuclei in matter and its spectroscopic implications are outlined for molecules and recalled regularly in the study of the dynamics of gases and solids. Numerous experiments are described and more than 160 figures give a clear visual impression of the main concepts. Sufficient detail of mathematical derivations is provided to enable students to follow easily. The focus is on present-day understanding and especially on phenomena fitting various independent-particle models. The historical development of this understanding, and phenomena such as magnetism and superconductivity, where interparticle interactions and nonadiabatic effects play a crucial role, are mostly omitted. A final outlook section stimulates the curiosity of the reader to pursue the study of such advanced topics in gra...

  6. Fundamentals of Condensed Matter Physics Marvin L. Cohen and Steven G. Louie

    Energy Technology Data Exchange (ETDEWEB)

    Devanathan, Ram

    2017-06-01

    discusses electrical and thermal transport in materials. Part IV takes the reader further into many body effects, superconductivity, and nanoscale materials. The authors introduce Feynman diagrams and many-body perturbation theory in Chapter 13, theories of superconductivity in Chapter 14, magnetism in Chapter 15, and low dimensional systems in Chapter 16. The first two parts are required reading for the beginner planning to perform DFT calculations. The advanced student interested in conducting research in condensed matter physics will benefit from continuing on to the last two parts. There is a set of problems at the end of each part. The narrative is aided by equations and detailed figures. References at the end of the book direct the reader to relevant books and review articles for each chapter. The inside covers include a periodic table and a useful list of fundamental physical constants. The authors present the underlying mathematics elegantly, which makes the textbook quite readable for those with a good mathematical background. Students lacking a firm footing in math will find the terrain rough after Chapter 1. This field has seen many good undergraduate textbooks including those by Kittel and by Ashcroft and Mermin. This volume fills the need for a rigorous graduate level textbook, and is a required addition to the bookshelf of every condensed matter physicist. Cohen and Louie have brought refreshing clarity to a challenging subject and made it eminently accessible to the motivated student.

  7. Behaviour of mathematics and physics students in solving problem of Vector-Physics context

    Science.gov (United States)

    Sardi; Rizal, M.; Mansyur, J.

    2018-04-01

    This research aimed to describe behaviors of mathematics and physics students in solving problem of the vector concept in physics context. The subjects of the research were students who enrolled in Mathematics Education Study Program and Physics Education Study Program of FKIP Universitas Tadulako. The selected participants were students who received the highest score in vector fundamental concept test in each study program. The data were collected through thinking-aloud activity followed by an interview. The steps of data analysis included data reduction, display, and conclusion drawing. The credibility of the data was tested using a triangulation method. Based on the data analysis, it can be concluded that the two groups of students did not show fundamental differences in problem-solving behavior, especially in the steps of understanding the problem (identifying, collecting and analyzing facts and information), planning (looking for alternative strategies) and conducting the alternative strategy. The two groups were differ only in the evaluation aspect. In contrast to Physics students who evaluated their answer, mathematics students did not conducted an evaluation activity on their work. However, the difference was not caused by the differences in background knowledge.

  8. Computer methods in physics 250 problems with guided solutions

    CERN Document Server

    Landau, Rubin H

    2018-01-01

    Our future scientists and professionals must be conversant in computational techniques. In order to facilitate integration of computer methods into existing physics courses, this textbook offers a large number of worked examples and problems with fully guided solutions in Python as well as other languages (Mathematica, Java, C, Fortran, and Maple). It’s also intended as a self-study guide for learning how to use computer methods in physics. The authors include an introductory chapter on numerical tools and indication of computational and physics difficulty level for each problem.

  9. Separable boundary-value problems in physics

    CERN Document Server

    Willatzen, Morten

    2011-01-01

    Innovative developments in science and technology require a thorough knowledge of applied mathematics, particularly in the field of differential equations and special functions. These are relevant in modeling and computing applications of electromagnetic theory and quantum theory, e.g. in photonics and nanotechnology. The problem of solving partial differential equations remains an important topic that is taught at both the undergraduate and graduate level. Separable Boundary-Value Problems in Physics is an accessible and comprehensive treatment of partial differential equations i

  10. Dark matter: a problem in relativistic metrology?

    International Nuclear Information System (INIS)

    Lusanna, Luca

    2017-01-01

    Besides the tidal degrees of freedom of Einstein general relativity (GR) (namely the two polarizations of gravitational waves after linearization of the theory) there are the inertial gauge ones connected with the freedom in the choice of the 4-coordinates of the space-time, i.e. in the choice of the notions of time and 3-space (the 3+1 splitting of space-time) and in their use to define a non-inertial frame (the inertial ones being forbidden by the equivalence principle) by means of a set of conventions for the relativistic metrology of the space-time (like the GPS ones near the Earth). The canonical York basis of canonical ADM gravity allows us to identify the Hamiltonian inertial gauge variables in globally hyperbolic asymptotically Minkowskian space-times without super-translations and to define the family of non-harmonic Schwinger time gauges. In these 3+1 splittings of space-time the freedom in the choice of time (the problem of clock synchronization) is described by the inertial gauge variable York time (the trace of the extrinsic curvature of the instantaneous 3-spaces). This inertial gauge freedom and the non-Euclidean nature of the instantaneous 3-spaces required by the equivalence principle need to be incorporated as metrical conventions in a relativistic suitable extension of the existing (essentially Galilean) ICRS celestial reference system. In this paper I make a short review of the existing possibilities to explain the presence of dark matter (or at least of part of it) as a relativistic inertial effect induced by the non- Euclidean nature of the 3-spaces. After a Hamiltonian Post-Minkowskian (HPM) linearization of canonical ADM tetrad gravity with particles, having equal inertial and gravitational masses, as matter, followed by a Post-Newtonian (PN) expansion, we find that the Newtonian equality of inertial and gravitational masses breaks down and that the inertial gauge York time produces an increment of the inertial masses explaining at least

  11. International Centre for Theoretical Physics, Trieste, scientific activities in 1992

    International Nuclear Information System (INIS)

    1993-08-01

    The document contains three parts. Part I is a programme overview of 1992 including a description of scientific activities and statistics about participation by geographic areas and by activities. Part II presents the scientific programme in the following fields: fundamental physics, condensed matter physics, mathematics, physics related to the energy problems, physics and the environment, physics of the living state (of matter), and applied physics. Conferences and other activities by the centre are also listed. Part III lists the publications issued in 1992. 5 tabs

  12. Selected problems in experimental intermediate energy physics

    International Nuclear Information System (INIS)

    Mayes, B.W.; Hungerford, E.V.; Pinsky, L.S.

    1990-09-01

    The objectives of this research program are to: investigate forefront problems in experimental intermediate energy physics; educate students in this field of research; and, develop the instrumentation necessary to undertake this experimental program. Generally, the research is designed to search for physical processes which cannot be explained by conventional models of elementary interactions. This includes the use of nuclear targets where the nucleus provides a many body environment of strongly perturbation of a known interaction by this environment. Unfortunately, such effects may be masked by the complexity of the many body problem and may be difficult to observe. Therefore, experiments must be carefully chosen and analyzed for deviations from the more conventional models. There were three major thrusts of the program; strange particle physics, where a strange quark is embedded in the nuclear medium; muon electro-weak decay, which involves a search for a violation of the standard model of the electro-weak interaction; and measurement of the spin dependent structure function of the neutron

  13. Neutrino and dark matter physics with sub-keV germanium detectors

    Indian Academy of Sciences (India)

    2014-11-04

    Nov 4, 2014 ... Germanium detectors with sub-keV sensitivities open a window to study neutrino physics to search for light weakly interacting massive particle (WIMP) dark matter. We summarize the recent results on spin-independent couplings of light WIMPs from the TEXONO experiment at the Kuo-Sheng Reactor ...

  14. CAREER opportunities at the Condensed Matter Physics Program, NSF/DMR

    Science.gov (United States)

    Durakiewicz, Tomasz

    The Faculty Early Career Development (CAREER) Program is a Foundation-wide activity, offering prestigious awards in support of junior faculty. Awards are expected to build the careers of teacher-scholars through outstanding research, excellent education and the integration of education and research. Condensed Matter Physics Program receives between 35 and 45 CAREER proposals each year, in areas related to fundamental research of phenomena exhibited by condensed matter systems. Proposal processing, merit review process, funding levels and success rates will be discussed in the presentation. NSF encourages submission of CAREER proposals from junior faculty members from CAREER-eligible organizations and encourages women, members of underrepresented minority groups, and persons with disabilities to apply. NSF/DMR/CMP homepage: https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=5666

  15. Proceedings of 3. international conference 'Fundamental and applied problems of physics'

    International Nuclear Information System (INIS)

    Lutpullaev, S.L.

    2006-01-01

    The third International conference 'Fundamental and applied problems of physics' was held on 26-27 October, 2006 in Tashkent, Uzbekistan. The conference was consecrated to 15th anniversary of Uzbekistan independence. Specialists discussed various aspects of modern problems of relativistic nuclear physics and physics of atomic nuclei, solid state physics, various applications of new materials. More than 150 talks were presented in the meeting. (k.m.)

  16. REVIEWS OF TOPICAL PROBLEMS: 21st century: what is life from the perspective of physics?

    Science.gov (United States)

    Ivanitskii, Genrikh R.

    2010-07-01

    The evolution of the biophysical paradigm over 65 years since the publication in 1944 of Erwin Schrödinger's What is Life? The Physical Aspects of the Living Cell is reviewed. Based on the advances in molecular genetics, it is argued that all the features characteristic of living systems can also be found in nonliving ones. Ten paradoxes in logic and physics are analyzed that allow defining life in terms of a spatial-temporal hierarchy of structures and combinatory probabilistic logic. From the perspective of physics, life can be defined as resulting from a game involving interactions of matter one part of which acquires the ability to remember the success (or failure) probabilities from the previous rounds of the game, thereby increasing its chances for further survival in the next round. This part of matter is currently called living matter.

  17. Partially specified physics problems: university students' attitudes and performance

    International Nuclear Information System (INIS)

    Marusic, M; Erceg, N; Slisko, J

    2011-01-01

    In this research we asked the fourth year students (N = 50) of a technical faculty of the University of Split (Republic of Croatia) to solve a partially specified physics problem related to gravitational force. The task for the students was to decide whether the situation described in the problem is feasible or not. Nevertheless, the formulation of the problem is such that it does not give students any explicit advice regarding what to calculate or how to judge the feasibility of the given situation in the real world. The research was carried out using a structured written exam method. The worksheet was structured in order to assess explicitly a few elements of the students' problem-solving performance. Based on their results, the examinees were classified into four categories, depending on what they could or could not accomplish during problem solving. A majority of students were not able to solve the given physical problem completely. A selection of students' and professors' observations is also included. Our results show that traditionally formulated numerical exercises, which are mostly used in physics teaching, do not develop students' abilities in higher-order thinking (i.e. planning, decision making or result evaluation) to a desirable extent. We suggest that partially specified problems should be given to students, both in problem-solving sessions and exams, in order to prepare them for dealing with ill-structured tasks in real life.

  18. Doing physics with scientific notebook a problem solving approach

    CERN Document Server

    Gallant, Joseph

    2012-01-01

    The goal of this book is to teach undergraduate students how to use Scientific Notebook (SNB) to solve physics problems. SNB software combines word processing and mathematics in standard notation with the power of symbolic computation. As its name implies, SNB can be used as a notebook in which students set up a math or science problem, write and solve equations, and analyze and discuss their results. Written by a physics teacher with over 20 years experience, this text includes topics that have educational value, fit within the typical physics curriculum, and show the benefits of using SNB.

  19. Dark matter searches at ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00220289; The ATLAS collaboration

    2015-01-01

    The large excess of Dark Matter observed in the Universe and its particle nature is one of the key problems yet to be solved in particle physics. Despite the extensive success of the Standard Model, it is not able to explain this excess, which instead might be due to yet unknown particles, such as Weakly Interacting Massive Particles, that could be produced at the Large Hadron Collider. This contribution will give an overview of different approaches to finding evidence for Dark Matter with the ATLAS experiment in $\\sqrt{s}=8~\\mathrm{TeV}$ Run-1 data.

  20. Challenges in QCD matter physics. The scientific programme of the Compressed Baryonic Matter experiment at FAIR

    International Nuclear Information System (INIS)

    Ablyazimov, T.; Adak, R.P.

    2017-01-01

    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (√(s_N_N) = 2.7-4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (μ_B > 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter. (orig.)

  1. Challenges in QCD matter physics. The scientific programme of the Compressed Baryonic Matter experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Ablyazimov, T. [Joint Institute for Nuclear Research (JINR-LIT), Dubna (Russian Federation). Lab. of Information Technologies; Abuhoza, A. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt (Germany); Adak, R.P. [Bose Institute, Kolkata (India). Dept. of Physics; and others

    2017-03-15

    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (√(s{sub NN}) = 2.7-4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (μ{sub B} > 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter. (orig.)

  2. Challenges in QCD matter physics -The scientific programme of the Compressed Baryonic Matter experiment at FAIR

    Science.gov (United States)

    Ablyazimov, T.; Abuhoza, A.; Adak, R. P.; Adamczyk, M.; Agarwal, K.; Aggarwal, M. M.; Ahammed, Z.; Ahmad, F.; Ahmad, N.; Ahmad, S.; Akindinov, A.; Akishin, P.; Akishina, E.; Akishina, T.; Akishina, V.; Akram, A.; Al-Turany, M.; Alekseev, I.; Alexandrov, E.; Alexandrov, I.; Amar-Youcef, S.; Anđelić, M.; Andreeva, O.; Andrei, C.; Andronic, A.; Anisimov, Yu.; Appelshäuser, H.; Argintaru, D.; Atkin, E.; Avdeev, S.; Averbeck, R.; Azmi, M. D.; Baban, V.; Bach, M.; Badura, E.; Bähr, S.; Balog, T.; Balzer, M.; Bao, E.; Baranova, N.; Barczyk, T.; Bartoş, D.; Bashir, S.; Baszczyk, M.; Batenkov, O.; Baublis, V.; Baznat, M.; Becker, J.; Becker, K.-H.; Belogurov, S.; Belyakov, D.; Bendarouach, J.; Berceanu, I.; Bercuci, A.; Berdnikov, A.; Berdnikov, Y.; Berendes, R.; Berezin, G.; Bergmann, C.; Bertini, D.; Bertini, O.; Beşliu, C.; Bezshyyko, O.; Bhaduri, P. P.; Bhasin, A.; Bhati, A. K.; Bhattacharjee, B.; Bhattacharyya, A.; Bhattacharyya, T. K.; Biswas, S.; Blank, T.; Blau, D.; Blinov, V.; Blume, C.; Bocharov, Yu.; Book, J.; Breitner, T.; Brüning, U.; Brzychczyk, J.; Bubak, A.; Büsching, H.; Bus, T.; Butuzov, V.; Bychkov, A.; Byszuk, A.; Cai, Xu; Cãlin, M.; Cao, Ping; Caragheorgheopol, G.; Carević, I.; Cătănescu, V.; Chakrabarti, A.; Chattopadhyay, S.; Chaus, A.; Chen, Hongfang; Chen, LuYao; Cheng, Jianping; Chepurnov, V.; Cherif, H.; Chernogorov, A.; Ciobanu, M. I.; Claus, G.; Constantin, F.; Csanád, M.; D'Ascenzo, N.; Das, Supriya; Das, Susovan; de Cuveland, J.; Debnath, B.; Dementiev, D.; Deng, Wendi; Deng, Zhi; Deppe, H.; Deppner, I.; Derenovskaya, O.; Deveaux, C. A.; Deveaux, M.; Dey, K.; Dey, M.; Dillenseger, P.; Dobyrn, V.; Doering, D.; Dong, Sheng; Dorokhov, A.; Dreschmann, M.; Drozd, A.; Dubey, A. K.; Dubnichka, S.; Dubnichkova, Z.; Dürr, M.; Dutka, L.; Dželalija, M.; Elsha, V. V.; Emschermann, D.; Engel, H.; Eremin, V.; Eşanu, T.; Eschke, J.; Eschweiler, D.; Fan, Huanhuan; Fan, Xingming; Farooq, M.; Fateev, O.; Feng, Shengqin; Figuli, S. P. D.; Filozova, I.; Finogeev, D.; Fischer, P.; Flemming, H.; Förtsch, J.; Frankenfeld, U.; Friese, V.; Friske, E.; Fröhlich, I.; Frühauf, J.; Gajda, J.; Galatyuk, T.; Gangopadhyay, G.; García Chávez, C.; Gebelein, J.; Ghosh, P.; Ghosh, S. K.; Gläßel, S.; Goffe, M.; Golinka-Bezshyyko, L.; Golovatyuk, V.; Golovnya, S.; Golovtsov, V.; Golubeva, M.; Golubkov, D.; Gómez Ramírez, A.; Gorbunov, S.; Gorokhov, S.; Gottschalk, D.; Gryboś, P.; Grzeszczuk, A.; Guber, F.; Gudima, K.; Gumiński, M.; Gupta, A.; Gusakov, Yu.; Han, Dong; Hartmann, H.; He, Shue; Hehner, J.; Heine, N.; Herghelegiu, A.; Herrmann, N.; Heß, B.; Heuser, J. M.; Himmi, A.; Höhne, C.; Holzmann, R.; Hu, Dongdong; Huang, Guangming; Huang, Xinjie; Hutter, D.; Ierusalimov, A.; Ilgenfritz, E.-M.; Irfan, M.; Ivanischev, D.; Ivanov, M.; Ivanov, P.; Ivanov, Valery; Ivanov, Victor; Ivanov, Vladimir; Ivashkin, A.; Jaaskelainen, K.; Jahan, H.; Jain, V.; Jakovlev, V.; Janson, T.; Jiang, Di; Jipa, A.; Kadenko, I.; Kähler, P.; Kämpfer, B.; Kalinin, V.; Kallunkathariyil, J.; Kampert, K.-H.; Kaptur, E.; Karabowicz, R.; Karavichev, O.; Karavicheva, T.; Karmanov, D.; Karnaukhov, V.; Karpechev, E.; Kasiński, K.; Kasprowicz, G.; Kaur, M.; Kazantsev, A.; Kebschull, U.; Kekelidze, G.; Khan, M. M.; Khan, S. A.; Khanzadeev, A.; Khasanov, F.; Khvorostukhin, A.; Kirakosyan, V.; Kirejczyk, M.; Kiryakov, A.; Kiš, M.; Kisel, I.; Kisel, P.; Kiselev, S.; Kiss, T.; Klaus, P.; Kłeczek, R.; Klein-Bösing, Ch.; Kleipa, V.; Klochkov, V.; Kmon, P.; Koch, K.; Kochenda, L.; Koczoń, P.; Koenig, W.; Kohn, M.; Kolb, B. W.; Kolosova, A.; Komkov, B.; Korolev, M.; Korolko, I.; Kotte, R.; Kovalchuk, A.; Kowalski, S.; Koziel, M.; Kozlov, G.; Kozlov, V.; Kramarenko, V.; Kravtsov, P.; Krebs, E.; Kreidl, C.; Kres, I.; Kresan, D.; Kretschmar, G.; Krieger, M.; Kryanev, A. V.; Kryshen, E.; Kuc, M.; Kucewicz, W.; Kucher, V.; Kudin, L.; Kugler, A.; Kumar, Ajit; Kumar, Ashwini; Kumar, L.; Kunkel, J.; Kurepin, A.; Kurepin, N.; Kurilkin, A.; Kurilkin, P.; Kushpil, V.; Kuznetsov, S.; Kyva, V.; Ladygin, V.; Lara, C.; Larionov, P.; Laso García, A.; Lavrik, E.; Lazanu, I.; Lebedev, A.; Lebedev, S.; Lebedeva, E.; Lehnert, J.; Lehrbach, J.; Leifels, Y.; Lemke, F.; Li, Cheng; Li, Qiyan; Li, Xin; Li, Yuanjing; Lindenstruth, V.; Linnik, B.; Liu, Feng; Lobanov, I.; Lobanova, E.; Löchner, S.; Loizeau, P.-A.; Lone, S. A.; Lucio Martínez, J. A.; Luo, Xiaofeng; Lymanets, A.; Lyu, Pengfei; Maevskaya, A.; Mahajan, S.; Mahapatra, D. P.; Mahmoud, T.; Maj, P.; Majka, Z.; Malakhov, A.; Malankin, E.; Malkevich, D.; Malyatina, O.; Malygina, H.; Mandal, M. M.; Mandal, S.; Manko, V.; Manz, S.; Marin Garcia, A. M.; Markert, J.; Masciocchi, S.; Matulewicz, T.; Meder, L.; Merkin, M.; Mialkovski, V.; Michel, J.; Miftakhov, N.; Mik, L.; Mikhailov, K.; Mikhaylov, V.; Milanović, B.; Militsija, V.; Miskowiec, D.; Momot, I.; Morhardt, T.; Morozov, S.; Müller, W. F. J.; Müntz, C.; Mukherjee, S.; Muñoz Castillo, C. E.; Murin, Yu.; Najman, R.; Nandi, C.; Nandy, E.; Naumann, L.; Nayak, T.; Nedosekin, A.; Negi, V. S.; Niebur, W.; Nikulin, V.; Normanov, D.; Oancea, A.; Oh, Kunsu; Onishchuk, Yu.; Ososkov, G.; Otfinowski, P.; Ovcharenko, E.; Pal, S.; Panasenko, I.; Panda, N. R.; Parzhitskiy, S.; Patel, V.; Pauly, C.; Penschuck, M.; Peshekhonov, D.; Peshekhonov, V.; Petráček, V.; Petri, M.; Petriş, M.; Petrovici, A.; Petrovici, M.; Petrovskiy, A.; Petukhov, O.; Pfeifer, D.; Piasecki, K.; Pieper, J.; Pietraszko, J.; Płaneta, R.; Plotnikov, V.; Plujko, V.; Pluta, J.; Pop, A.; Pospisil, V.; Poźniak, K.; Prakash, A.; Prasad, S. K.; Prokudin, M.; Pshenichnov, I.; Pugach, M.; Pugatch, V.; Querchfeld, S.; Rabtsun, S.; Radulescu, L.; Raha, S.; Rami, F.; Raniwala, R.; Raniwala, S.; Raportirenko, A.; Rautenberg, J.; Rauza, J.; Ray, R.; Razin, S.; Reichelt, P.; Reinecke, S.; Reinefeld, A.; Reshetin, A.; Ristea, C.; Ristea, O.; Rodriguez Rodriguez, A.; Roether, F.; Romaniuk, R.; Rost, A.; Rostchin, E.; Rostovtseva, I.; Roy, Amitava; Roy, Ankhi; Rożynek, J.; Ryabov, Yu.; Sadovsky, A.; Sahoo, R.; Sahu, P. K.; Sahu, S. K.; Saini, J.; Samanta, S.; Sambyal, S. S.; Samsonov, V.; Sánchez Rosado, J.; Sander, O.; Sarangi, S.; Satława, T.; Sau, S.; Saveliev, V.; Schatral, S.; Schiaua, C.; Schintke, F.; Schmidt, C. J.; Schmidt, H. R.; Schmidt, K.; Scholten, J.; Schweda, K.; Seck, F.; Seddiki, S.; Selyuzhenkov, I.; Semennikov, A.; Senger, A.; Senger, P.; Shabanov, A.; Shabunov, A.; Shao, Ming; Sheremetiev, A. D.; Shi, Shusu; Shumeiko, N.; Shumikhin, V.; Sibiryak, I.; Sikora, B.; Simakov, A.; Simon, C.; Simons, C.; Singaraju, R. N.; Singh, A. K.; Singh, B. K.; Singh, C. P.; Singhal, V.; Singla, M.; Sitzmann, P.; Siwek-Wilczyńska, K.; Škoda, L.; Skwira-Chalot, I.; Som, I.; Song, Guofeng; Song, Jihye; Sosin, Z.; Soyk, D.; Staszel, P.; Strikhanov, M.; Strohauer, S.; Stroth, J.; Sturm, C.; Sultanov, R.; Sun, Yongjie; Svirida, D.; Svoboda, O.; Szabó, A.; Szczygieł, R.; Talukdar, R.; Tang, Zebo; Tanha, M.; Tarasiuk, J.; Tarassenkova, O.; Târzilă, M.-G.; Teklishyn, M.; Tischler, T.; Tlustý, P.; Tölyhi, T.; Toia, A.; Topil'skaya, N.; Träger, M.; Tripathy, S.; Tsakov, I.; Tsyupa, Yu.; Turowiecki, A.; Tuturas, N. G.; Uhlig, F.; Usenko, E.; Valin, I.; Varga, D.; Vassiliev, I.; Vasylyev, O.; Verbitskaya, E.; Verhoeven, W.; Veshikov, A.; Visinka, R.; Viyogi, Y. P.; Volkov, S.; Volochniuk, A.; Vorobiev, A.; Voronin, Aleksey; Voronin, Alexander; Vovchenko, V.; Vznuzdaev, M.; Wang, Dong; Wang, Xi-Wei; Wang, Yaping; Wang, Yi; Weber, M.; Wendisch, C.; Wessels, J. P.; Wiebusch, M.; Wiechula, J.; Wielanek, D.; Wieloch, A.; Wilms, A.; Winckler, N.; Winter, M.; Wiśniewski, K.; Wolf, Gy.; Won, Sanguk; Wu, Ke-Jun; Wüstenfeld, J.; Xiang, Changzhou; Xu, Nu; Yang, Junfeng; Yang, Rongxing; Yin, Zhongbao; Yoo, In-Kwon; Yuldashev, B.; Yushmanov, I.; Zabołotny, W.; Zaitsev, Yu.; Zamiatin, N. I.; Zanevsky, Yu.; Zhalov, M.; Zhang, Yifei; Zhang, Yu; Zhao, Lei; Zheng, Jiajun; Zheng, Sheng; Zhou, Daicui; Zhou, Jing; Zhu, Xianglei; Zinchenko, A.; Zipper, W.; Żoładź, M.; Zrelov, P.; Zryuev, V.; Zumbruch, P.; Zyzak, M.

    2017-03-01

    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (√{s_{NN}}= 2.7-4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials ( μ_B > 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter.

  3. Origins of life: a problem for physics, a key issues review

    Science.gov (United States)

    Imari Walker, Sara

    2017-09-01

    The origins of life stands among the great open scientific questions of our time. While a number of proposals exist for possible starting points in the pathway from non-living to living matter, these have so far not achieved states of complexity that are anywhere near that of even the simplest living systems. A key challenge is identifying the properties of living matter that might distinguish living and non-living physical systems such that we might build new life in the lab. This review is geared towards covering major viewpoints on the origin of life for those new to the origin of life field, with a forward look towards considering what it might take for a physical theory that universally explains the phenomenon of life to arise from the seemingly disconnected array of ideas proposed thus far. The hope is that a theory akin to our other theories in fundamental physics might one day emerge to explain the phenomenon of life, and in turn finally permit solving its origins.

  4. Skill Levels of Prospective Physics Teachers on Problem Posing

    Science.gov (United States)

    Cildir, Sema; Sezen, Nazan

    2011-01-01

    Problem posing is one of the topics which the educators thoroughly accentuate. Problem posing skill is defined as an introvert activity of a student's learning. In this study, skill levels of prospective physics teachers on problem posing were determined and their views on problem posing were evaluated. To this end, prospective teachers were given…

  5. Abstracts of the fifth international conference on modern problems of nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-08-01

    The Fifth Uzbekistan Conference on modern problems of nuclear physics was held on 12-15 August, 2003 in Samarkand, Uzbekistan. The specialists discussed various aspects of modern problems of both fundamental and applied nuclear physics. More than 300 talks were presented in the meeting on the following subjects: particle physics, relativistic nuclear physics and physics of atomic nuclei; activation analysis, radiochemistry, isotopes, applied nuclear physics; radiation solid state physics.

  6. Abstracts of the fifth international conference on modern problems of nuclear physics

    International Nuclear Information System (INIS)

    2003-08-01

    The Fifth Uzbekistan Conference on modern problems of nuclear physics was held on 12-15 August, 2003 in Samarkand, Uzbekistan. The specialists discussed various aspects of modern problems of both fundamental and applied nuclear physics. More than 300 talks were presented in the meeting on the following subjects: particle physics, relativistic nuclear physics and physics of atomic nuclei; activation analysis, radiochemistry, isotopes, applied nuclear physics; radiation solid state physics

  7. Vol. 1: Physics of Elementary Particles and Quantum Field Theory. General Problems

    International Nuclear Information System (INIS)

    Sitenko, A.

    1993-01-01

    Problems of modern physics and the situation with physical research in Ukraine are considered. Programme of the conference includes scientific and general problems. Its proceedings are published in 6 volumes. The papers presented in this volume refer to elementary particle physics and quantum field theory. The main attention is paid to the following problems: - development of science in Ukraine and its role in the state structures; - modern state of scientific research in Ukraine; - education and training of specialists; - history of Ukrainian physics and contribution of Ukrainian scientists in the world science; - problems of the Ukrainian scientific terminology

  8. Internet computer coaches for introductory physics problem solving

    Science.gov (United States)

    Xu Ryan, Qing

    The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the educational system, national studies have shown that the majority of students emerge from such courses having made little progress toward developing good problem-solving skills. The Physics Education Research Group at the University of Minnesota has been developing Internet computer coaches to help students become more expert-like problem solvers. During the Fall 2011 and Spring 2013 semesters, the coaches were introduced into large sections (200+ students) of the calculus based introductory mechanics course at the University of Minnesota. This dissertation, will address the research background of the project, including the pedagogical design of the coaches and the assessment of problem solving. The methodological framework of conducting experiments will be explained. The data collected from the large-scale experimental studies will be discussed from the following aspects: the usage and usability of these coaches; the usefulness perceived by students; and the usefulness measured by final exam and problem solving rubric. It will also address the implications drawn from this study, including using this data to direct future coach design and difficulties in conducting authentic assessment of problem-solving.

  9. Statistical methods in radiation physics

    CERN Document Server

    Turner, James E; Bogard, James S

    2012-01-01

    This statistics textbook, with particular emphasis on radiation protection and dosimetry, deals with statistical solutions to problems inherent in health physics measurements and decision making. The authors begin with a description of our current understanding of the statistical nature of physical processes at the atomic level, including radioactive decay and interactions of radiation with matter. Examples are taken from problems encountered in health physics, and the material is presented such that health physicists and most other nuclear professionals will more readily understand the application of statistical principles in the familiar context of the examples. Problems are presented at the end of each chapter, with solutions to selected problems provided online. In addition, numerous worked examples are included throughout the text.

  10. Structure of Matter An Introductory Course with Problems and Solutions

    CERN Document Server

    Rigamonti, Attilio

    2009-01-01

    This is the second edition of this textbook, the original of which was published in 2007. Initial undergraduate studies in physics are usually in an organized format devoted to elementary aspects, which is then followed by advanced programmes in specialized fields. A difficult task is to provide a formative introduction in the early period, suitable as a base for courses more complex, thus bridging the wide gap between elementary physics and topics pertaining to research activities. This textbook remains an endeavour toward that goal, and is based on a mixture of simplified institutional theory and solved problems. In this way, the hope is to provide physical insight, basic knowledge and motivation, without impeding advanced learning. The choice has been to limit the focus to key concepts and to those aspects most typical of atoms, molecules and compounds, by looking at the basic, structural components, without paying detailed attention to the properties possessed by them. Problems are intertwined with formal...

  11. Structure of Matter An Introductory Course with Problems and Solutions

    CERN Document Server

    Rigamonti, Attilio

    2007-01-01

    This is the second edition of this textbook, the original of which was published in 2007. Initial undergraduate studies in physics are usually in an organized format devoted to elementary aspects, which is then followed by advanced programmes in specialized fields. A difficult task is to provide a formative introduction in the early period, suitable as a base for courses more complex, thus bridging the wide gap between elementary physics and topics pertaining to research activities. This textbook remains an endeavour toward that goal, and is based on a mixture of simplified institutional theory and solved problems. In this way, the hope is to provide physical insight, basic knowledge and motivation, without impeding advanced learning. The choice has been to limit the focus to key concepts and to those aspects most typical of atoms, molecules and compounds, by looking at the basic, structural components, without paying detailed attention to the properties possessed by them. Problems are intertwined with formal...

  12. Abstracts of the third international conference on modern problems of nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-01

    The Third Uzbekistan Conference on modern problems of nuclear physics was held on 23-27 August, 1999 in Bukhara, Uzbekistan. The specialists discussed various aspects of modern problems of both fundamental and applied nuclear physics. More than 300 talks were presented in the meeting on the following subjects: particle physics, relativistic nuclear physics and physics of atomic nuclei; activation analysis, radiochemistry, isotopes, applied nuclear physics; radiation solid state physics. (A.A.D.)

  13. Academic Training Lecture Regular Programme: Particle Physics Foundations of Dark Matter, Dark Energy, and Inflation (1/3)

    CERN Multimedia

    2012-01-01

    Particle Physics Foundations of Dark Matter, Dark Energy, and Inflation (1/3), by Dr. Edward (Rocky) Kolb (University of Chicago).   Wednesday, May 9, 2012 from 11:00 to 12:00 (Europe/Zurich) at CERN ( 500-1-001 - Main Auditorium ) Ninety-five percent of the present mass-energy density of the Universe is dark.  Twenty-five percent is in the form of dark matter holding together galaxies and other large scale structures, and 70% is in the form of dark energy driving an accelerated expansion of the universe.  Dark matter and dark energy cannot be explained within the standard model of particle physics.  In the first lecture I will review the evidence for dark matter and the observations that point to an explanation in the form of cold dark matter.  I will then describe the expected properties of a hypothetical Weakly-Interacting Massive Particle, or WIMP, and review experimental and observational approaches to test the hypothesis.  Finally, I will discus...

  14. Intuitive physics knowledge, physics problem solving and the role of mathematical equations

    Directory of Open Access Journals (Sweden)

    Laura Buteler

    2012-09-01

    Full Text Available The present work explores the role that mathematical equations play in modifying students’ physical intuition (diSessa, 1993. The work is carried out assuming that students achieve a great deal of the refinement in their physical intuitions during problem solving (Sherin, 2006. The study is guided by the question of how the use of mathematical equations contributes to this refinement. The authors aim at expanding on Sherin´s (2006 hypothesis, suggesting a more bounding relation between physical intuitions and mathematics. In this scenario, intuitions play a more compelling role in “deciding” which equations are acceptable and which are not. Our hypothesis is constructed on the basis of three cases: the first published by Sherin (2006 and two more from registries of our own. The three cases are compared and analyzed in relation to the role of mathematical equations in refining – or not – the intuitive knowledge students bring to play during problem solving.

  15. Fundamental Particle Structure in the Cosmological Dark Matter

    Science.gov (United States)

    Khlopov, Maxim

    2013-11-01

    The nonbaryonic dark matter of the universe is assumed to consist of new stable forms of matter. Their stability reflects symmetry of micro-world and mechanisms of its symmetry breaking. Particle candidates for cosmological dark matter are lightest particles that bear new conserved quantum numbers. Dark matter particles may represent ideal gas of noninteracting particles. Self-interacting dark matter weakly or superweakly coupled to ordinary matter is also possible, reflecting nontrivial pattern of particle symmetry in the hidden sector of particle theory. In the early universe the structure of particle symmetry breaking gives rise to cosmological phase transitions, from which macroscopic cosmological defects or primordial nonlinear structures can be originated. Primordial black holes (PBHs) can be not only a candidate for dark matter, but also represent a universal probe for superhigh energy physics in the early universe. Evaporating PBHs turn to be a source of even superweakly interacting particles, while clouds of massive PBHs can serve as nonlinear seeds for galaxy formation. The observed broken symmetry of the three known families may provide a simultaneous solution for the problems of the mass of neutrino and strong CP-violation in the unique framework of models of horizontal unification. Dark matter candidates can also appear in the new families of quarks and leptons and the existence of new stable charged leptons and quarks is possible, hidden in elusive "dark atoms." Such possibility, strongly restricted by the constraints on anomalous isotopes of light elements, is not excluded in scenarios that predict stable double charged particles. The excessive -2 charged particles are bound in these scenarios with primordial helium in O-helium "atoms," maintaining specific nuclear-interacting form of the dark matter, which may provide an interesting solution for the puzzles of the direct dark matter searches. In the context of cosmoparticle physics, studying

  16. Seminar Neutronika-2012. Neutron-physical problems of nuclear-power engineering. Program and abstracts

    International Nuclear Information System (INIS)

    2012-01-01

    On October, 30 - November, 2 in State Scientific Center of the Russian Federation - Institute for Physics and Power Engineering named after A.I. Leypunsky a seminar Neutron-physical problems of nuclear power engineering - Neutronika-2012 took place. On the seminar the following problems were discussed: justification of neutron-physical characteristics of reactor facilities and innovation projects; constant support of neutron-physical calculations of nuclear power installations; numerical simulation during solving reactor physics problems; simulation of neutron-physical processes in reactor facilities by Monte Carlo method; development and verification of programs for reactor facilities neutron-physical calculations; algorithms and programs for solving nonstationary problems of neutron-physical calculation of nuclear reactors; analysis of integral and reactor experiments, experimental database; justification of nuclear and radiation safety of fuel cycle [ru

  17. Physical stress, mass, and energy for non-relativistic matter

    Science.gov (United States)

    Geracie, Michael; Prabhu, Kartik; Roberts, Matthew M.

    2017-06-01

    For theories of relativistic matter fields there exist two possible definitions of the stress-energy tensor, one defined by a variation of the action with the coframes at fixed connection, and the other at fixed torsion. These two stress-energy tensors do not necessarily coincide and it is the latter that corresponds to the Cauchy stress measured in the lab. In this note we discuss the corresponding issue for non-relativistic matter theories. We point out that while the physical non-relativistic stress, momentum, and mass currents are defined by a variation of the action at fixed torsion, the energy current does not admit such a description and is naturally defined at fixed connection. Any attempt to define an energy current at fixed torsion results in an ambiguity which cannot be resolved from the background spacetime data or conservation laws. We also provide computations of these quantities for some simple non-relativistic actions.

  18. Physics matters

    CERN Document Server

    Natarajan, Vasant

    2017-01-01

    This is a collection of essays on physics topics. It is written as a textbook for non-physics science and arts students, at the undergraduate level. Topics covered include cellphone radiation, lasers, the twin paradox, and more.

  19. Nuclear detectors. Physical principles of operation

    International Nuclear Information System (INIS)

    Pochet, Th.

    2005-01-01

    Nuclear detection is used in several domains of activity from the physics research, the nuclear industry, the medical and industrial sectors, the security etc. The particles of interest are the α, β, X, γ and neutrons. This article treats of the basic physical properties of radiation detection, the general characteristics of the different classes of existing detectors and the particle/matter interactions: 1 - general considerations; 2 - measurement types and definitions: pulse mode, current mode, definitions; 3 - physical principles of direct detection: introduction and general problem, materials used in detection, simple device, junction semiconductor device, charges generation and transport inside matter, signal generation; 4 - physical principles of indirect detection: introduction, scintillation mechanisms, definition and properties of scintillators. (J.S.)

  20. Framework for understanding LENR processes, using conventional condensed matter physics

    International Nuclear Information System (INIS)

    Chubb, Scott R.

    2006-01-01

    Conventional condensed matter physics provides a unifying framework for understanding low-energy nuclear reactions (LENRs) in solids. In the paper, standard many-body physics techniques are used to illustrate this fact. Specifically, the paper shows that formally the theories by Schwinger, Hagelstein, and Chubb and Chubb (C and C), all can be related to a common set of equations, associated with reaction rate and energy transfer, through a standard many-body physics procedure (R-matrix theory). In each case, particular forms of coherence are used that, implicitly provide a mechanism for understanding how LENRs can proceed without. the emission of high-energy particles. In addition, additional ideas, associated with Conventional Condensed Matter physics, are used to extend the earlier ion band state (IBS) model by C and C. The general model clarifies the origin of coherent. processes that initiate LENRs, through the onset of ion conduction that can occur through ionic fluctuations in nano-scale crystals. In the case of PdD x , these fluctuations begin to occur as x → 1 in sub-lattice structures with characteristic dimensions of 60 nm. The resulting LENRs are triggered by the polarization between injected d's and electrons (immediately above the Fermi energy) that takes place in finite-size PdD crystals. During the prolonged charging of PdD x the applied, external electric field induces these fluctuations through a form of Zener tunneling that mimics the kind of tunneling, predicted by Zener, that is responsible for possible conduction (referred to as Zener-electric breakdown) in insulators. But because the fluctuations are ionic and they occur in PdD, nano-scale structures, a more appropriate characterization is Zener-ionic breakdown in nano-crystalline PdD. Using the underlying dynamics, it is possible to relate triggering times that are required for the initiation of the effect, to crystal size and externally applied fields. (authors)

  1. Worked problems in heat, thermodynamics and kinetic theory for physics students

    CERN Document Server

    Pincherle, L; Green, L L

    2013-01-01

    Worked Problems in Heat, Thermodynamics and Kinetic Theory for Physics Students is a complementary to textbooks in physics. This book is a collection of exercise problems that have been part of tutorial classes in heat and thermodynamics at the University of London. This collection of exercise problems, with answers that are fully worked out, deals with various topics. This book poses problems covering the definition of temperature such as calculating the assigned value of the temperature of boiling water under specific conditions. This text also gives example of problems dealing with the fir

  2. Neutrino transport in stellar matter

    International Nuclear Information System (INIS)

    Basdevant, J.L.

    1985-09-01

    We reconsider the neutrino transport problem in dense stellar matter which has a variety of applications among which the participation of neutrinos to the dynamics of type II supernova explosions. We describe the position of the problem and make some critiscism of previously used approximation methods. We then propose a method which is capable of handling simultaneously the optically thick, optically thin, and intermediate regimes, which is of crucial importance in such problems. The method consists in a simulation of the transport process and can be considered exact within numerical accuracy. We, finally exhibit some sample calculations which show the efficiency of the method, and present interesting qualitative physical features

  3. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond

    Science.gov (United States)

    Casola, Francesco; van der Sar, Toeno; Yacoby, Amir

    2018-01-01

    The magnetic fields generated by spins and currents provide a unique window into the physics of correlated-electron materials and devices. First proposed only a decade ago, magnetometry based on the electron spin of nitrogen-vacancy (NV) defects in diamond is emerging as a platform that is excellently suited for probing condensed matter systems; it can be operated from cryogenic temperatures to above room temperature, has a dynamic range spanning from direct current to gigahertz and allows sensor-sample distances as small as a few nanometres. As such, NV magnetometry provides access to static and dynamic magnetic and electronic phenomena with nanoscale spatial resolution. Pioneering work has focused on proof-of-principle demonstrations of its nanoscale imaging resolution and magnetic field sensitivity. Now, experiments are starting to probe the correlated-electron physics of magnets and superconductors and to explore the current distributions in low-dimensional materials. In this Review, we discuss the application of NV magnetometry to the exploration of condensed matter physics, focusing on its use to study static and dynamic magnetic textures and static and dynamic current distributions.

  4. Understanding student use of differentials in physics integration problems

    Directory of Open Access Journals (Sweden)

    Dehui Hu

    2013-07-01

    Full Text Available This study focuses on students’ use of the mathematical concept of differentials in physics problem solving. For instance, in electrostatics, students need to set up an integral to find the electric field due to a charged bar, an activity that involves the application of mathematical differentials (e.g., dr, dq. In this paper we aim to explore students’ reasoning about the differential concept in physics problems. We conducted group teaching or learning interviews with 13 engineering students enrolled in a second-semester calculus-based physics course. We amalgamated two frameworks—the resources framework and the conceptual metaphor framework—to analyze students’ reasoning about differential concept. Categorizing the mathematical resources involved in students’ mathematical thinking in physics provides us deeper insights into how students use mathematics in physics. Identifying the conceptual metaphors in students’ discourse illustrates the role of concrete experiential notions in students’ construction of mathematical reasoning. These two frameworks serve different purposes, and we illustrate how they can be pieced together to provide a better understanding of students’ mathematical thinking in physics.

  5. Using an Isomorphic Problem Pair to Learn Introductory Physics: Transferring from a Two-Step Problem to a Three-Step Problem

    Science.gov (United States)

    Lin, Shih-Yin; Singh, Chandralekha

    2013-01-01

    In this study, we examine introductory physics students' ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. 382 students from a calculus-based and an algebra-based introductory physics course were administered a quiz in the recitation…

  6. Quantum simulations with photons and polaritons merging quantum optics with condensed matter physics

    CERN Document Server

    2017-01-01

    This book reviews progress towards quantum simulators based on photonic and hybrid light-matter systems, covering theoretical proposals and recent experimental work. Quantum simulators are specially designed quantum computers. Their main aim is to simulate and understand complex and inaccessible quantum many-body phenomena found or predicted in condensed matter physics, materials science and exotic quantum field theories. Applications will include the engineering of smart materials, robust optical or electronic circuits, deciphering quantum chemistry and even the design of drugs. Technological developments in the fields of interfacing light and matter, especially in many-body quantum optics, have motivated recent proposals for quantum simulators based on strongly correlated photons and polaritons generated in hybrid light-matter systems. The latter have complementary strengths to cold atom and ion based simulators and they can probe for example out of equilibrium phenomena in a natural driven-dissipative sett...

  7. MAUVE: A New Strategy for Solving and Grading Physics Problems

    Science.gov (United States)

    Hill, Nicole Breanne

    2016-05-01

    MAUVE (magnitude, answer, units, variables, and equations) is a framework and rubric to help students and teachers through the process of clearly solving and assessing solutions to introductory physics problems. Success in introductory physics often derives from an understanding of units, a command over dimensional analysis, and good bookkeeping. I developed MAUVE for an introductory-level environmental physics course as an easy-to-remember checklist to help students construct organized and thoughtful solutions to physics problems. Environmental physics is a core physics course for environmental and sustainability science (ESS) majors that teaches principles of radiation, thermodynamics, and mechanics within the context of the environment and sustainable energy systems. ESS student concentrations include environmental biology, applied ecology, biogeochemistry, and natural resources. The MAUVE rubric, inspired by nature, has encouraged my students to produce legible and tactical work, and has significantly clarified the grading process.

  8. Helping Students with Problems: What Physical Educators Can Do.

    Science.gov (United States)

    Jones, C. J.; Nelson, Barbara

    1985-01-01

    Children often have trouble finding effective ways to deal with daily stress. Physical educators work in an environment where they can observe and study their students. Suggestions are offered for physical education teachers dealing with students with problems. (DF)

  9. The Science Shop for Physics: an interface between practical problems in society and physical knowledge

    Science.gov (United States)

    van den Berg, G. P.

    1998-03-01

    Since some 20 years most Dutch universities have one or more science shops. Central shops handle research questions for all disciplines. Specialized shops are part of a department of chemistry or medicine, history, social science, etc. The shops have evolved rather differently, but their main mission still is to help social groups that lack money and have no easy access to scientific knowledge, e.g. neighbourhood, environmental, third world or patient groups. Most also help non-commercial organizations such as schools, trade unions or local authorities. Low-cost help can be provided because students do the work as part of their training, mainly in student projects (literature search, practical work, graduation, etc.). A total staff of 80, helped by 600 students, 250 voluntary and 50 paid researchers, handle 1500 questions resulting in 300 reports (estimated figures 1995). Science shops for physics (`Physics Shop', PS) have to deal with practical problems, generally involving classical physics. Major topics are noise, vibration, radiation, indoor climate and energy: most of the work lies in estimating/measuring relevant parameters, assessing impact, seeking solutions. The 3 Dutch PS's have developed in different directions. One is run entirely by students and deals with small, concrete problems. The second PS is managed by a co-ordinator who mediates between client groups and physics staff members who assist students in small and larger projects. The third has a lot of in-house expertise, and the shop staff is in direct contact with client groups as well as students who work in the PS itself. In questions submitted to the PS it is not always immediately clear what to do or how to do it because of the non-scientific phrasing of the problems and problems include non-physical (e.g. technical, health or legal) aspects. Also, difficulties in solving the problems are typically not in the underlying physics, but in the lack of accurate data and of control of the complex

  10. A fresh approach to forecasting in astroparticle physics and dark matter searches

    Science.gov (United States)

    Edwards, Thomas D. P.; Weniger, Christoph

    2018-02-01

    We present a toolbox of new techniques and concepts for the efficient forecasting of experimental sensitivities. These are applicable to a large range of scenarios in (astro-)particle physics, and based on the Fisher information formalism. Fisher information provides an answer to the question 'what is the maximum extractable information from a given observation?'. It is a common tool for the forecasting of experimental sensitivities in many branches of science, but rarely used in astroparticle physics or searches for particle dark matter. After briefly reviewing the Fisher information matrix of general Poisson likelihoods, we propose very compact expressions for estimating expected exclusion and discovery limits ('equivalent counts method'). We demonstrate by comparison with Monte Carlo results that they remain surprisingly accurate even deep in the Poisson regime. We show how correlated background systematics can be efficiently accounted for by a treatment based on Gaussian random fields. Finally, we introduce the novel concept of Fisher information flux. It can be thought of as a generalization of the commonly used signal-to-noise ratio, while accounting for the non-local properties and saturation effects of background and instrumental uncertainties. It is a powerful and flexible tool ready to be used as core concept for informed strategy development in astroparticle physics and searches for particle dark matter.

  11. Surveying Turkish High School and University Students' Attitudes and Approaches to Physics Problem Solving

    Science.gov (United States)

    Balta, Nuri; Mason, Andrew J.; Singh, Chandralekha

    2016-01-01

    Students' attitudes and approaches to physics problem solving can impact how well they learn physics and how successful they are in solving physics problems. Prior research in the U.S. using a validated Attitude and Approaches to Problem Solving (AAPS) survey suggests that there are major differences between students in introductory physics and…

  12. Mathematical mechanic using physical reasoning to solve problems

    CERN Document Server

    Levi, Mark

    2009-01-01

    Everybody knows that mathematics is indispensable to physics--imagine where we'd be today if Einstein and Newton didn't have the math to back up their ideas. But how many people realize that physics can be used to produce many astonishing and strikingly elegant solutions in mathematics? Mark Levi shows how in this delightful book, treating readers to a host of entertaining problems and mind-bending puzzlers that will amuse and inspire their inner physicist. Levi turns math and physics upside down, revealing how physics can simplify proofs and lead to quicker solutions and new theorems, and how physical solutions can illustrate why results are true in ways lengthy mathematical calculations never can

  13. Physics Problems Based on Up-to-Date Science and Technology.

    Science.gov (United States)

    Folan, Lorcan M.; Tsifrinovich, Vladimir I.

    2007-03-01

    We observe a huge chasm between up-to-date science and undergraduate education. The result of this chasm is that current student interest in undergraduate science is low. Consequently, students who are graduating from college are often unable to take advantage of the many opportunities offered by science and technology. Cutting edge science and technology frequently use the methods learned in undergraduate courses, but up-to-date applications are not normally used as examples or for problems in undergraduate courses. There are many physics problems which contain information about the latest achievements in science and technology. But typically, the level of these problems is too advanced for undergraduates. We created physics problems for undergraduate science and engineering students, which are based on the latest achievements in science and technology. These problems have been successfully used in our courses at the Polytechnic University in New York. We believe that university faculty may suggest such problems in order to provide information about the frontiers of science and technological, demonstrate the importance of undergraduate physics in solving contemporary problems and raise the interest of talented students in science. From the other side, our approach may be considered an indirect way for advertising advanced technologies, which undergraduate students and, even more important, future college graduates could use in their working lives.

  14. Inflationary imprints on dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Nurmi, Sami; Tenkanen, Tommi; Tuominen, Kimmo, E-mail: sami.nurmi@helsinki.fi, E-mail: tommi.tenkanen@helsinki.fi, E-mail: kimmo.i.tuominen@helsinki.fi [University of Helsinki and Helsinki Institute of Physics, P.O. Box 64, FI-00014, University of Helsinki (Finland)

    2015-11-01

    We show that dark matter abundance and the inflationary scale H could be intimately related. Standard Model extensions with Higgs mediated couplings to new physics typically contain extra scalars displaced from vacuum during inflation. If their coupling to Standard Model is weak, they will not thermalize and may easily constitute too much dark matter reminiscent to the moduli problem. As an example we consider Standard Model extended by a Z{sub 2} symmetric singlet s coupled to the Standard Model Higgs Φ via λ Φ{sup †}Φ s{sup 2}. Dark matter relic density is generated non-thermally for λ ∼< 10{sup −7}. We show that the dark matter yield crucially depends on the inflationary scale. For H∼ 10{sup 10} GeV we find that the singlet self-coupling and mass should lie in the regime λ{sub s}∼> 10{sup −9} and m{sub s}∼< 50 GeV to avoid dark matter overproduction.

  15. Get 150 minutes/week of moderate physical activity: It doesn’t matter how

    Science.gov (United States)

    Researchers at the National Cancer Institute have shown that people who engage in more minutes of moderate-intensity physical activity enjoy health benefits (measured here by likelihood of dying during the study period), but it does not matter how those minutes are accumulated.

  16. Physics-based Inverse Problem to Deduce Marine Atmospheric Boundary Layer Parameters

    Science.gov (United States)

    2017-03-07

    knowledge and capabilities in the use and development of inverse problem techniques to deduce atmospheric parameters. WORK COMPLETED The research completed...please find the Final Technical Report with SF 298 for Dr. Erin E. Hackett’s ONR grant entitled Physics -based Inverse Problem to Deduce Marine...From- To) 07/03/2017 Final Technica l Dec 2012- Dec 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Physics -based Inverse Problem to Deduce Marine

  17. Partially specified physics problems: university students' attitudes and performance

    Energy Technology Data Exchange (ETDEWEB)

    Marusic, M [Prva Gimnazija, Teslina 10, 21000 Split (Croatia); Erceg, N [Department of Physics, University of Rijeka, Omladinska 14, 51000 Rijeka (Croatia); Slisko, J, E-mail: mirko@marusic.inf, E-mail: nerceg@phy.uniri.hr, E-mail: jslisko@fcfm.buap.mx [Benemerita Universidad Autonoma de Puebla, Apartado Postal 1152, Puebla, Puebla CP 72000 (Mexico)

    2011-05-15

    In this research we asked the fourth year students (N = 50) of a technical faculty of the University of Split (Republic of Croatia) to solve a partially specified physics problem related to gravitational force. The task for the students was to decide whether the situation described in the problem is feasible or not. Nevertheless, the formulation of the problem is such that it does not give students any explicit advice regarding what to calculate or how to judge the feasibility of the given situation in the real world. The research was carried out using a structured written exam method. The worksheet was structured in order to assess explicitly a few elements of the students' problem-solving performance. Based on their results, the examinees were classified into four categories, depending on what they could or could not accomplish during problem solving. A majority of students were not able to solve the given physical problem completely. A selection of students' and professors' observations is also included. Our results show that traditionally formulated numerical exercises, which are mostly used in physics teaching, do not develop students' abilities in higher-order thinking (i.e. planning, decision making or result evaluation) to a desirable extent. We suggest that partially specified problems should be given to students, both in problem-solving sessions and exams, in order to prepare them for dealing with ill-structured tasks in real life.

  18. Eureka! Physics of Particles, Matter and the Universe

    International Nuclear Information System (INIS)

    O'Sullivan, Colm T

    1997-01-01

    To provide a simple account of the whole of physics within 200 pages (excluding a glossary and index) of a small-format book is an extraordinarily ambitious project, yet this is what Roger Blin-Stoyle has attempted in Eureka! and, on the whole, he has succeeded admirably. Furthermore, he has achieved this without resorting to much more than a dozen mathematical expressions, most of them in the treatment of special relativity. To say that the account is comprehensive would be something of an understatement; this reviewer failed to detect a single topic, pure or applied, which could be described as part of mainstream physics which did not get at least a mention in these pages. The book is well written and the explanations are clear, as one would expect from an author who is an eminent scientist and who has given a professional lifetime to physics education and the promotion of the discipline. The reader should be warned, however, not to expect anything very radical - there are no novel treatments, no unique insights. The strength of the book lies in its clarity and compactness. The material is presented in a matter-of-fact manner with no forced emphasis on the exotic, so often a feature of recent attempts to present physics to the lay reader. The modern trend towards early specialization in physics courses in schools and universities has many unhappy consequences, not least of which is the loss of awareness of the essential unity of the subject. In this little book Professor Blin-Stoyle makes a valiant and welcome attempt to address the balance. Anyone with an interest in getting to know what is involved in that area of human knowledge we call physics could do a lot worse than start here. (book review)

  19. An Absolute Phase Space for the Physicality of Matter

    International Nuclear Information System (INIS)

    Valentine, John S.

    2010-01-01

    We define an abstract and absolute phase space (''APS'') for sub-quantum intrinsic wave states, in three axes, each mapping directly to a duality having fundamental ontological basis. Many aspects of quantum physics emerge from the interaction algebra and a model deduced from principles of 'unique solvability' and 'identifiable entity', and we reconstruct previously abstract fundamental principles and phenomena from these new foundations. The physical model defines bosons as virtual continuous waves pairs in the APS, and fermions as real self-quantizing snapshots of those waves when simple conditions are met. The abstraction and physical model define a template for the constitution of all fermions, a template for all the standard fundamental bosons and their local interactions, in a common framework and compactified phase space for all forms of real matter and virtual vacuum energy, and a distinct algebra for observables and unobservables. To illustrate our scheme's potential, we provide examples of slit experiment variations (where the model finds theoretical basis for interference only occurring between two final sources), QCD (where we may model most attributes known to QCD, and a new view on entanglement), and we suggest approaches for other varied applications. We believe this is a viable candidate for further exploration as a foundational proposition for physics.

  20. The Relationship between Students' Problem Solving Frames and Epistemological Beliefs

    Science.gov (United States)

    Wampler, Wendi N.

    2013-01-01

    Introductory undergraduate physics courses aim to help students develop the skills and strategies necessary to solve complex, real world problems, but many students not only leave these courses with serious gaps in their conceptual understanding, but also maintain a novice-like approach to solving problems. "Matter and Interactions"…

  1. A collection of problems for physics teaching

    International Nuclear Information System (INIS)

    Groeber, S; Jodl, H-J

    2010-01-01

    Problems are an important instrument for teachers to mediate physics content and for learners to adopt this content. This collection of problems is not only suited to traditional teaching and learning in lectures or student labs, but also to all kinds of new ways of teaching and learning, such as self-study, long-distance teaching, project-oriented learning and the use of remote labs/web experiments. We focus on Rutherford's scattering experiment, electron diffraction, Millikan's experiment and the use of pendulums to measure the dependence of gravitational acceleration on latitude. The collection contains about 50 problems with 160 subtasks and solutions, altogether 100 pages. Structure, content, range and the added value of the problems are described. The whole collection can be downloaded for free from http://rcl.physik.uni-kl.de.

  2. Differences in Visual Attention between Those Who Correctly and Incorrectly Answer Physics Problems

    Science.gov (United States)

    Madsen, Adrian M.; Larson, Adam M.; Loschky, Lester C.; Rebello, N. Sanjay

    2012-01-01

    This study investigated how visual attention differed between those who correctly versus incorrectly answered introductory physics problems. We recorded eye movements of 24 individuals on six different conceptual physics problems where the necessary information to solve the problem was contained in a diagram. The problems also contained areas…

  3. Research Projects in Physics: A Mechanism for Teaching Ill-Structured Problem Solving

    Science.gov (United States)

    Milbourne, Jeff; Bennett, Jonathan

    2017-01-01

    Physics education research has a tradition of studying problem solving, exploring themes such as physical intuition and differences between expert and novice problem solvers. However, most of this work has focused on traditional, or well-structured, problems, similar to what might appear in a textbook. Less work has been done with open-ended, or…

  4. Constraints on particle physics from cosmology

    International Nuclear Information System (INIS)

    Schramm, D.N.; Charlton, J.C.

    1986-01-01

    Cosmology and particle physics have become symbiotic in their relationship. In the past, developments in physics have been used to explain astrophysics problems. Recently, cosmology also has been able to place constraints on particle properties and these constraints can be tested by experiment. Thus, the flow of information at the interface of particle physics and cosmology is no longer just one-way. (Astronomy is no longer a parasite of physics.) Many examples of the interchange are described in this review. The timeline of cosmology is rapidly filling in as later events find their explanations in earlier events. In this review, the authors mention what is known about each epoch and show how it might constrain the particle models. Since a great deal of effort is devoted currently to the study of the dark matter problem, special emphasis will be placed on this issue. This study of dark matter and galaxy formation will allow us to draw upon much of what was discussed in earlier epochs. This review draws heavily on a previous review by the authors

  5. Updated constraints on velocity and momentum-dependent asymmetric dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, Aaron C. [Institute for Particle Physics Phenomenology (IPPP),Department of Physics, Durham University,Durham DH1 3LE (United Kingdom); Blackett Laboratory, Department of Physics, Imperial College London,Prince Consort Road, London SW7 2AZ (United Kingdom); Scott, Pat [Blackett Laboratory, Department of Physics, Imperial College London,Prince Consort Road, London SW7 2AZ (United Kingdom); Serenelli, Aldo [Institut de Ciències de l’Espai (ICE-CSIC/IEEC),Campus UAB, Carrer de Can Magrans s/n, 08193 Cerdanyola del Vallés (Spain)

    2016-11-04

    We present updated constraints on dark matter models with momentum-dependent or velocity-dependent interactions with nuclei, based on direct detection and solar physics. We improve our previous treatment of energy transport in the solar interior by dark matter scattering, leading to significant changes in fits to many observables. Based on solar physics alone, DM with a spin-independent q{sup 4} coupling provides the best fit to data, and a statistically satisfactory solution to the solar abundance problem. Once direct detection limits are accounted for however, the best solution is spin-dependent v{sup 2} scattering with a reference cross-section of 10{sup −35} cm{sup 2} (at a reference velocity of v{sub 0}=220 km s{sup −1}), and a dark matter mass of about 5 GeV.

  6. A guided problem solving approach for teaching quantum physics in secondary school and physics introductory courses

    Directory of Open Access Journals (Sweden)

    Francisco Savall Alemany

    2017-01-01

    Full Text Available The effectiveness of the problem based teaching on the science learning has been highlighted by the didactic research. This teaching model is characterized by organizing the units around problems and by proposing a research plan to find a solution which requires concepts and models to be introduced in a functional way, as possible solutions to the problem. In this article we present a problem based unit for teaching quantum physics  in  introductory  physics  courses  and  we  analyze  in  detail  the  teaching  strategy  that  we  follow  to build a model to explain the emission and absorption of radiation.

  7. Investigation of physics thought experiments’ effects on students’ logical problem solving skills

    Directory of Open Access Journals (Sweden)

    Ince Elif

    2016-01-01

    Full Text Available The purpose of this study, investigation of physics thought experiments’ effects on students’ logical problem-solving skills in collaborative groups. In this context, it was requested to undergraduate students who have taken General Physics I and General Physics II to develop thought experiments in order to solve daily life problems. At the next stage, students’ thought experiments were classified according to common issues in cooperative groups and were asked to try to solve the problems by using thought experiments’ process from each group. As a result of this study; students’ thought experiments related to daily life were developed and problem solving processes have been presented in detail.

  8. Research Projects in Physics: A Mechanism for Teaching Ill-Structured Problem Solving

    Science.gov (United States)

    Milbourne, Jeff; Bennett, Jonathan

    2017-10-01

    Physics education research has a tradition of studying problem solving, exploring themes such as physical intuition and differences between expert and novice problem solvers. However, most of this work has focused on traditional, or well-structured, problems, similar to what might appear in a textbook. Less work has been done with open-ended, or ill-structured, problems, similar to the types of problems students might face in their professional lives. Given the national discourse on educational system reform aligned with 21st century skills, including problem solving, it is critical to provide educational experiences that help students learn to solve all types of problems, including ill-structured problems.

  9. Including Critical Thinking and Problem Solving in Physical Education

    Science.gov (United States)

    Pill, Shane; SueSee, Brendan

    2017-01-01

    Many physical education curriculum frameworks include statements about the inclusion of critical inquiry processes and the development of creativity and problem-solving skills. The learning environment created by physical education can encourage or limit the application and development of the learners' cognitive resources for critical and creative…

  10. Do experiments suggest a hierarchy problem?

    International Nuclear Information System (INIS)

    Vissani, F.

    1997-09-01

    The hierarchy problem of the scalar sector of the standard model is reformulated, emphasizing the role of experimental facts that may suggest the existence of a new physics large mass scale, for instance indications of the instability of the matter, or indications in favor of massive neutrinos. In the see-saw model for the neutrino masses a hierarchy problem arises if the mass of the right-handed neutrinos is larger than approximatively 10 7 GeV: this problem, and its possible solutions, are discussed. (author)

  11. Differences in visual attention between those who correctly and incorrectly answer physics problems

    Directory of Open Access Journals (Sweden)

    N. Sanjay Rebello1

    2012-05-01

    Full Text Available This study investigated how visual attention differed between those who correctly versus incorrectly answered introductory physics problems. We recorded eye movements of 24 individuals on six different conceptual physics problems where the necessary information to solve the problem was contained in a diagram. The problems also contained areas consistent with a novicelike response and areas of high perceptual salience. Participants ranged from those who had only taken one high school physics course to those who had completed a Physics Ph.D. We found that participants who answered correctly spent a higher percentage of time looking at the relevant areas of the diagram, and those who answered incorrectly spent a higher percentage of time looking in areas of the diagram consistent with a novicelike answer. Thus, when solving physics problems, top-down processing plays a key role in guiding visual selective attention either to thematically relevant areas or novicelike areas depending on the accuracy of a student’s physics knowledge. This result has implications for the use of visual cues to redirect individuals’ attention to relevant portions of the diagrams and may potentially influence the way they reason about these problems.

  12. Mental, physical and social health problems of call centre workers

    Directory of Open Access Journals (Sweden)

    P Bhuyar

    2008-01-01

    Full Text Available Background: Call centre workers in BPO face unique occupational hazards - mental, physical and psychosocial. Material & Method: A sample 100 call centre workers of both sexes and from two cities Pune and Mumbai were surveyed by both qualitative and quantitative methods for the above health problems. Results: A high proportion of workers faced sleep disturbances and associated mental stress and anxiety. Sleep disturbance and anxiety was significantly more in international call centres compared to domestic. There was also disturbance in circadian rhythms due to night shift. Physical problems such as musculoskeletal disorders, obesity, eye, and hearing problems were also present. Psychosocial problems included disruption in family life, use of tobacco and alcohol, and faulty eating habits. Conclusion: Better personal management, health education and more research is indicated to study the health problems in this emerging occupation.

  13. The Search of Axion Dark Matter

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    The axion provides a solution to the strong CP problem and is a cold dark matter candidate. I will review the limits on the axion from particle physics, stellar evolution and cosmology. The various constraints suggest that the axion mass is in the micro-eV to milli-eV range. In this range, axions contribute significantly to the energy density of the universe in the form of cold dark matter. Dark matter axions can be searched for on Earth by stimulating their conversion to microwave photons in an electromagnetic cavity permeated by a strong magnetic field. Using this technique, limits on the local halo density have been placed by the Axion Dark Matter experiment at Lawrence Livermore National Laboratory. I will give a status report on ADMX and its upgrade presently under construction. I will also discuss the results from solar axion searches (Tokyo helioscope, CAST) and laser experiments (PVLAS).

  14. Physical health problems in adults with Prader-Willi syndrome

    NARCIS (Netherlands)

    Sinnema, M.; Maaskant, M.A.; Schrojenstein Lantman-de Valk, H.M.J. van; Nieuwpoort, I.C. van; Drent, M.L.; Curfs, L.M.G.; Schrander-Stumpel, C.T.R.M.

    2011-01-01

    Prader-Willi syndrome (PWS) is a genetic disorder which is characterized by severe hypotonia and feeding problems in early infancy. In later childhood and adolescence, this is followed by hyperphagia and extreme obesity if the diet is not strictly controlled. Data on physical health problems in

  15. Ratcheting Up The Search for Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, Samuel Dylan [Univ. of Michigan, Ann Arbor, MI (United States)

    2014-01-01

    The last several years have included remarkable advances in two of the primary areas of fundamental particle physics: the search for dark matter and the discovery of the Higgs boson. This dissertation will highlight some contributions made on the forefront of these exciting fields. Although the circumstantial evidence supporting the dark matter hypothesis is now almost undeniably significant, indisputable direct proof is still lacking. As the direct searches for dark matter continue, we can maximize our prospects of discovery by using theoretical techniques complementary to the observational searches to rule out additional, otherwise accessible parameter space. In this dissertation, I report bounds on a wide range of dark matter theories. The models considered here cover the spectrum from the canonical case of self-conjugate dark matter with weak-scale interactions, to electrically charged dark matter, to non-annihilating, non-fermionic dark matter. These bounds are obtained from considerations of astrophysical and cosmological data, including, respectively: diffuse gamma ray photon observations; structure formation considerations, along with an explication of the novel local dark matter structure due to galactic astrophysics; and the existence of old pulsars in dark-matter-rich environments. I also consider the prospects for a model of neutrino dark matter which has been motivated by a wide set of seemingly contradictory experimental results. In addition, I include a study that provides the tools to begin solving the speculative ``inverse'' problem of extracting dark matter properties solely from hypothetical nuclear energy spectra, which we may face if dark matter is discovered with multiple direct detection experiments. In contrast to the null searches for dark matter, we have the example of the recent discovery of the Higgs boson. The Higgs boson is the first fundamental scalar particle ever observed, and precision measurements of the production and

  16. How some infinities cause problems in classical physical theories

    NARCIS (Netherlands)

    Atkinson, David; Peijnenburg, Jeanne; Allo, P.; van Kerhove, B.

    2014-01-01

    In this paper we review a 1992 excursion of Jean Paul Van Bendegem into physics, ‘How Infinities Cause Problems in Classical Physical Theories’, in the light of two later models concerning colliding balls, of Pérez Laraudogoitia and of Alper and Bridger, respectively. We show that Van Bendegem

  17. Non-Commutative Mechanics in Mathematical & in Condensed Matter Physics

    Directory of Open Access Journals (Sweden)

    Peter A. Horváthy

    2006-12-01

    Full Text Available Non-commutative structures were introduced, independently and around the same time, in mathematical and in condensed matter physics (see Table 1. Souriau's construction applied to the two-parameter central extension of the planar Galilei group leads to the ''exotic'' particle, which has non-commuting position coordinates. A Berry-phase argument applied to the Bloch electron yields in turn a semiclassical model that has been used to explain the anomalous/spin/optical Hall effects. The non-commutative parameter is momentum-dependent in this case, and can take the form of a monopole in momentum space.

  18. Computer Problem-Solving Coaches for Introductory Physics: Design and Usability Studies

    Science.gov (United States)

    Ryan, Qing X.; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Mason, Andrew

    2016-01-01

    The combination of modern computing power, the interactivity of web applications, and the flexibility of object-oriented programming may finally be sufficient to create computer coaches that can help students develop metacognitive problem-solving skills, an important competence in our rapidly changing technological society. However, no matter how…

  19. Reactors physics. Bases of nuclear physics

    International Nuclear Information System (INIS)

    Diop, Ch.M.

    2006-01-01

    The aim of nuclear reactor physics is to quantify the relevant macroscopic data for the characterization of the neutronic state of a reactor core and to evaluate the effects of radiations (neutrons and gamma radiations) on organic matter and on inorganic materials. This first article presents the bases of nuclear physics in the context of nuclear reactors: 1 - reactor physics and nuclear physics; 2 - atomic nucleus - basic definitions: nucleus constituents, dimensions and mass of the atomic nucleus, mass defect, binding energy and stability of the nucleus, strong interaction, nuclear momentums of nucleons and nucleus; 3 - nucleus stability and radioactivity: equation of evolution with time - radioactive decay law; alpha decay, stability limit of spontaneous fission, beta decay, electronic capture, gamma emission, internal conversion, radioactivity, two-body problem and notion of radioactive equilibrium. (J.S.)

  20. Framework for understanding LENR processes, using conventional condensed matter physics

    Energy Technology Data Exchange (ETDEWEB)

    Chubb, Scott R. [Research Systems Inc., 9822 Pebble Weigh Ct., Burke VA 22015-3378 (United States)

    2006-07-01

    Conventional condensed matter physics provides a unifying framework for understanding low-energy nuclear reactions (LENRs) in solids. In the paper, standard many-body physics techniques are used to illustrate this fact. Specifically, the paper shows that formally the theories by Schwinger, Hagelstein, and Chubb and Chubb (C and C), all can be related to a common set of equations, associated with reaction rate and energy transfer, through a standard many-body physics procedure (R-matrix theory). In each case, particular forms of coherence are used that, implicitly provide a mechanism for understanding how LENRs can proceed without. the emission of high-energy particles. In addition, additional ideas, associated with Conventional Condensed Matter physics, are used to extend the earlier ion band state (IBS) model by C and C. The general model clarifies the origin of coherent. processes that initiate LENRs, through the onset of ion conduction that can occur through ionic fluctuations in nano-scale crystals. In the case of PdD{sub x}, these fluctuations begin to occur as x {yields} 1 in sub-lattice structures with characteristic dimensions of 60 nm. The resulting LENRs are triggered by the polarization between injected d's and electrons (immediately above the Fermi energy) that takes place in finite-size PdD crystals. During the prolonged charging of PdD{sub x} the applied, external electric field induces these fluctuations through a form of Zener tunneling that mimics the kind of tunneling, predicted by Zener, that is responsible for possible conduction (referred to as Zener-electric breakdown) in insulators. But because the fluctuations are ionic and they occur in PdD, nano-scale structures, a more appropriate characterization is Zener-ionic breakdown in nano-crystalline PdD. Using the underlying dynamics, it is possible to relate triggering times that are required for the initiation of the effect, to crystal size and externally applied fields. (authors)

  1. Introduction to health physics

    CERN Document Server

    Johnson, Thomas

    2017-01-01

    "A dynamic and comprehensive overview of the field of health physics"""This trusted, one-of-a-kind guide delivers authoritative and succinctly written coverage of the entire field of health physics including the biological basis for radiation safety standards, radioactivity, nuclear reactors, radioactive waste, and non-ionizing radiation, as well as radiation dosimetry, radiation instrumentation, and principles of radiation protection. This thorough overview of need-to-know topics, from a review of physical principles to a useful look at the interaction of radiation with matter, offers a problem-solving approach that will serve readers throughout their careers. More than 380 "Homework Problems" and 175+ "Example Problems" Essential background material on quantitative risk assessment for radiation exposure Unique Integration of industrial hygiene with radiation safety Authoritative radiation safety and environmental health coverage that supports the International Commission on Radiological Protection's standar...

  2. [Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Kapusta, J.I.

    1993-01-01

    The main subject of research was the physics of matter at energy densities greater than 0.15 GeV/fm 3 . Theory encompasses the relativistic many-body/quantum field theory aspects of QCD and the electroweak interactions at these high energy densities, both in and out of thermal equilibrium. Applications range from neutron stars/pulsars to QCD and electroweak phase transitions in the early universe, from baryon number violation in cosmology to the description of nucleus-nucleus collisions at CERN and at Brookhaven. Recent activity to understand the properties of matter at energy densities where the electroweak W and Z boson degrees of freedom are important is reported. This problem has applications to cosmology and has the potential to explain the baryon asymmetry produced in the big bang at energies where the particle degrees of freedom will soon be experimentally, probed. This problem is interesting for nuclear physics because of the techniques used in many-body, physics of nuclei and the quark-gluon plasma may be extended to this new problem. The was also interested in problems related to multiparticle production. This includes work on production of particles in heavy-ion collisions, the small x part, of the nuclear and hadron wave function, and multiparticle production induced by instantons in weakly coupled theories. These problems have applications in the heavy ion program at RHIC and the deep inelastic scattering experiments at HERA

  3. Research in theoretical nuclear physics. Annual progress report No. 18

    International Nuclear Information System (INIS)

    1986-01-01

    Research programs in four major areas are described: the structure of the nucleon and the nucleon-nucleon interaction, strangeness, and strange baryons; the equation of state of dense matter with specific concern both for the problems of stellar collapse and supernova explosions and of relativistic heavy-ion collisions, nuclear structure physics; and relativistic effects in nuclear particularly heavy ion reactions and quark matter physics. New research efforts in many-body theory are also described

  4. Determining Students' Attitude towards Physics through Problem-Solving Strategy

    Science.gov (United States)

    Erdemir, Naki

    2009-01-01

    In this study, the effects of teacher-directed and self-directed problem-solving strategies on students' attitudes toward physics were explored. Problem-solving strategies were used with the experimental group, while the control group was instructed using traditional teaching methods. The study was conducted with 270 students at various high…

  5. Proceedings of the thirty first convention of Orissa Physical Society and national seminar on recent trends in condensed matter physics: souvenir

    International Nuclear Information System (INIS)

    2014-01-01

    This conference covers issues relevant to condensed matter physics. The research in this area has laid the foundation for development of science and technology in wide areas of energy, information, communication etc. Papers relevant to INIS are indexed separately

  6. Matter-antimatter asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The Conference is devoted to a multidisciplinary study of matter-antimatter asymmetry and, in particular, from the point of view of particle physics, astrophysics and cosmology. A number of topics, such as the practical applications of antimatter in medical imaging, of particular interest to non-specialists, will also be briefly covered. More than thirty years after the discovery of CP violation in the kaon system, precision experiments with kaons at CERN and Fermilab have demonstrated the existence of direct CP violation, opening a window on a hitherto poorly explored part of particle physics. On the one hand, two experiments devoted mainly to CP violation in B mesons, BABAR and Belle, are beginning to test CP violation in the Standard Model in a decisive way. On the other hand, balloon experiments and the space-based AMS project are circumscribing precise limits on the cosmological abundance of antimatter. Finally, the fundamental problem of cosmological matter-antimatter asymmetry at a Grand Unification scale or at the Electroweak phase transition has been the object of intense theoretical activity in recent years. This document gathers most of the slides that have been presented in the plenary and parallel sessions.

  7. Girls and Women with Physical Disabilities: Needs and Problems

    Directory of Open Access Journals (Sweden)

    Maryam Sharifian-Sani

    2006-07-01

    Full Text Available Objective: By taking into account that understanding the primary needs of disabled girls and women is essential in finding a suitable solution to their problems, the main objective of the current research was based on the investigation of the needs and the problems of girls and women with physical disabilities in Tehran (capital of Iran.  Materials & Methods: This research has been carried out in a descriptive manner. The participants of this research were 216 girls and women with physical disability who were selected among 1395 clients of the welfare organization in Tehran through a systematic randomized method. Data collection was carried out using an 82-question questionnaire designed by the researchers. The questionnaire compiled by reviewing current resources on the subject and based on discussions carried out within focus groups. It was finalized after determining its validity and reliability. Results: Examining the needs and problems of girls and women with physical disability, in general, made clear their priorities in each area. Priorities for educational needs: promoting the awareness of society through education, providing vocational training employment needs: accessible transportation, allocation of special employment opportunities for them (quota system need for starting a family: the possibility of meeting their future husbands before marriage provided by their families, consultation before marriage their main needs regarding transportation: improving pedestrian pavements and public pathways, provision of a special transport service taking account of their particular disability need for rehabilitation services: rehabilitation aids and educational services leisure time: financial help for using sports-recreational facilities, provision of sports facilities for girls and women with physical disability their needs for establishing communication:, receiving a normal reaction from non-disabled people while dealing with their needs and

  8. Mirage in the sky: Nonthermal dark matter, gravitino problem, and cosmic ray anomalies

    International Nuclear Information System (INIS)

    Dutta, Bhaskar; Sinha, Kuver; Leblond, Louis

    2009-01-01

    Recent anomalies in cosmic rays could be due to dark matter annihilation in our galaxy. In order to get the required large cross section to explain the data while still obtaining the right relic density, we rely on a nonstandard thermal history between dark matter freeze out and big-bang nucleosynthesis. We show that through a reheating phase from the decay of a heavy moduli or even the gravitino, we can produce the right relic density of dark matter if its self-annihilation cross section is large enough. In addition to fitting the recent data, this scenario solves the cosmological moduli and gravitino problems. We illustrate this mechanism with a specific example in the context of U(1) B-L extended minimal supersymmetric standard model where supersymmetry is broken via mirage mediation. These string motivated models naturally contain heavy moduli decaying to the gravitino, whose subsequent decay to the LSP can reheat the Universe at a low temperature. The right-handed sneutrino and the B-L gaugino can both be viable dark matter candidates with a large cross section. They are leptophilic because of B-L charges. We also show that it is possible to distinguish the nonthermal from the thermal scenario (using Sommerfeld enhancement) in direct detection experiments for certain regions of parameter space.

  9. Toward the automated analysis of plasma physics problems

    International Nuclear Information System (INIS)

    Mynick, H.E.

    1989-04-01

    A program (CALC) is described, which carries out nontrivial plasma physics calculations, in a manner intended to emulate the approach of a human theorist. This includes the initial process of gathering the relevant equations from a plasma knowledge base, and then determining how to solve them. Solution of the sets of equations governing physics problems, which in general have a nonuniform,irregular structure, not amenable to solution by standardized algorithmic procedures, is facilitated by an analysis of the structure of the equations and the relations among them. This often permits decompositions of the full problem into subproblems, and other simplifications in form, which renders the resultant subsystems soluble by more standardized tools. CALC's operation is illustrated by a detailed description of its treatment of a sample plasma calculation. 5 refs., 3 figs

  10. Influence of tutors' subject-matter expertise on student effort and achievement in problem-based learning

    NARCIS (Netherlands)

    H.G. Schmidt (Henk); A. van der Arend (Arie); J.H.C. Moust (Jos); I. Kokx (Irma); L. Boon (Louis)

    1993-01-01

    textabstractPurpose. To investigate the effects of tutors' subject-matter expertise on students' levels of academic achievement and study effort in a problem-based health sciences curriculum. Also, to study differences in turors' behaviors and the influences of these differences on students'

  11. Multi-Physics Demonstration Problem with the SHARP Reactor Simulation Toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Merzari, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Shemon, E. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Yu, Y. Q. [Argonne National Lab. (ANL), Argonne, IL (United States); Thomas, J. W. [Argonne National Lab. (ANL), Argonne, IL (United States); Obabko, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Jain, Rajeev [Argonne National Lab. (ANL), Argonne, IL (United States); Mahadevan, Vijay [Argonne National Lab. (ANL), Argonne, IL (United States); Tautges, Timothy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Solberg, Jerome [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ferencz, Robert Mark [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Whitesides, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-12-21

    This report describes to employ SHARP to perform a first-of-a-kind analysis of the core radial expansion phenomenon in an SFR. This effort required significant advances in the framework Multi-Physics Demonstration Problem with the SHARP Reactor Simulation Toolkit used to drive the coupled simulations, manipulate the mesh in response to the deformation of the geometry, and generate the necessary modified mesh files. Furthermore, the model geometry is fairly complex, and consistent mesh generation for the three physics modules required significant effort. Fully-integrated simulations of a 7-assembly mini-core test problem have been performed, and the results are presented here. Physics models of a full-core model of the Advanced Burner Test Reactor have also been developed for each of the three physics modules. Standalone results of each of the three physics modules for the ABTR are presented here, which provides a demonstration of the feasibility of the fully-integrated simulation.

  12. Geometrization of the electromagnetic field and dark matter

    International Nuclear Information System (INIS)

    Pestov, I.B.

    2005-01-01

    A general concept of potential field is introduced. The potential field that one puts in correspondence with dark matter, has fundamental geometrical interpretation (parallel transport) and has intrinsically inherent local symmetry. The equations of dark matter field are derived that are invariant with respect to the local transformations. It is shown how to reduce these equations to the Maxwell equations. Thus, the dark matter field may be considered as generalized electromagnetic field and a simple solution of the old problem is given to connect electromagnetic field with geometrical properties of the physical manifold itself. It is shown that gauge fixing renders generalized electromagnetic field effectively massive while the Maxwell electromagnetic field remains massless. To learn more about interactions between matter and dark matter on the microscopical level (and to recognize the fundamental role of internal symmetry) the general covariant Dirac equation is derived in the Minkowski space-time which describes the interactions of spinor field with dark matter field

  13. What Is Physics Problem-Solving Competency? The Views of Arnold Sommerfeld and Enrico Fermi

    Science.gov (United States)

    Niss, Martin

    2018-05-01

    A central goal of physics education is to teach problem-solving competency, but the description of the nature of this competency is somehwat fragmentary and implicit in the literature. The present article uses recent historical scholarship on Arnold Sommerfeld and Enrico Fermi to identify and characterize two positions on the nature of physics problem-solving competency. The first, Sommerfeld's, is a "theory first, phenomenon second" approach. Here, the relevant problems originate in one of the theories of physics and the goal of the problem-solver is to make a mathematical analysis of the relevant equation(s) and then give a qualitative analysis of the phenomenon that arise from these mathematical results. Fermi's position is a "phenomenon first, theory second" approach, where the starting point is a physical phenomenon that is analyzed and then brought into the realm of a physics theory. The two positions are illustrated with solutions to two problems and it is shown that the two positions are reflected in problem collections of university educations in physics.

  14. Living with Stigma: Depressed Elderly Persons’ Experiences of Physical Health Problems

    Directory of Open Access Journals (Sweden)

    Anne Lise Holm

    2014-01-01

    Full Text Available The aim of this paper is to deepen the understanding of depressed elderly persons’ lived experiences of physical health problems. Individual in-depth interviews were conducted with 15 depressed elderly persons who suffer from physical health problems. A hermeneutic analysis was performed, yielding one main theme, living with stigma, and three themes: longing to be taken seriously, being uncertain about whether the pain is physical or mental, and a sense of living in a war zone. The second theme comprised two subthemes, feeling like a stranger and feeling dizzy, while the third had one subtheme: afraid of being helpless and dependent on others. Stigma deprives individuals of their dignity and reinforces destructive patterns of isolation and hopelessness. Nurses should provide information in a sensitive way and try to avoid diagnostic overshadowing. Effective training programmes and procedures need to be developed with more focus on how to handle depressive ill health and physical problems in older people.

  15. The Importance of Monitoring Skills in Physics Problem Solving

    Science.gov (United States)

    Ali, Marlina; Talib, Corrienna-Abd; Hasniza Ibrahim, Nor; Surif, Johari; Halim Abdullah, Abdul

    2016-01-01

    The purpose of this paper is to show how important "monitoring" is as metacognitive skills in solving physics problems in the field mechanics. Based on test scores, twenty one students were divided into two groups: more successful (MS) and less successful (LS) problem solvers. Students were allowed to think-aloud while they worked on…

  16. Cosmology [2011 European School of High-Energy Physics

    Energy Technology Data Exchange (ETDEWEB)

    Rubakov, V A [Moscow, INR (Russian Federation)

    2014-07-01

    In these lectures we first concentrate on the cosmological problems which, hopefully, have to do with the new physics to be probed at the LHC: the nature and origin of dark matter and generation of matter-antimatter asymmetry. We give several examples showing the LHC cosmological potential. These are WIMPs as cold dark matter, gravitinos as warm dark matter, and electroweak baryogenesis as a mechanism for generating matter-antimatter asymmetry. In the remaining part of the lectures we discuss the cosmological perturbations as a tool for studying the epoch preceeding the conventional hot stage of the cosmological evolution.

  17. Science Academies' Refresher Course in Foundations of Physical ...

    Indian Academy of Sciences (India)

    2017-12-31

    Dec 31, 2017 ... Physical Chemistry is the branch of chemistry that deals with the mechanism, the rate and the energy transfer that occur when matter undergoes a change. Understanding the key concepts of physical chemistry is essential for solving practical problems in research and industrial appli- cations. A brief outline ...

  18. 19th International School on Condensed Matter Physics (ISCMP): Advances in Nanostructured Condensed Matter: Research and Innovations

    International Nuclear Information System (INIS)

    2017-01-01

    We are pleased to introduce the Proceedings of the 19 th International School on Condensed Matter Physics “Advances in Nanostructured Condensed Matter: Research and Innovations” (19 th ISCMP). The school was held from August 28 th till September 2 nd , 2016 in Varna, Bulgaria. It was organized by the Institute of Solid State Physics of the Bulgarian Academy of Sciences (ISSP-BAS), and took place at one of the fine resorts on the Bulgarian Black Sea “Saints Constantine and Helena”. The aim of this international school is to bring together top experimentalists and theoreticians, with interests in interdisciplinary areas, with the younger generation of scientists, in order to discuss current research and to communicate new forefront ideas. This year special focus was given to discussions on membrane biophysics and quantum information, also not forgotten were some traditionally covered areas, such as characterization of nanostructured materials. Participants from 12 countries presented 28 invited lectures, 12 short oral talks and 44 posters. The hope of the organizing committee is that the 19 th ISCMP provided enough opportunities for direct scientific contacts, interesting discussions and interactive exchange of ideas between the participants. The nice weather certainly helped a lot in this respect. The editors would like to thank all authors for their high-quality contributions and the members of the international program committee for their commitment. The papers submitted for publication in the Proceedings were refereed according to the publishing standards of the Journal of Physics: Conference Series. The Editorial Committee members are very grateful to the Journal’s staff for the continuous fruitful relations and for giving us the opportunity to present the work from the 19 th ISCMP. Prof. DSc Hassan Chamati, Assist. Prof. Dr. Alexander A. Donkov, Assoc. Prof. Dr. Julia Genova, and Assoc. Prof. Dr. Emilia Pecheva (paper)

  19. Using soil organic matter fractions as indicators of soil physical quality

    DEFF Research Database (Denmark)

    Pulido Moncada, Mansonia A.; Lozano, Z; Delgado, M

    2018-01-01

    The objective of this study was to evaluate the use of chemical and physical fractions of soil organic matter (SOM), rather than SOM per se, as indicators of soil physical quality (SPQ) based on their effect on aggregate stability (AS). Chemically extracted humic and fulvic acids (HA and FA) were...... used as chemical fractions, and heavy and light fractions (HF and LF) obtained by density separation as physical fractions. The analyses were conducted on medium-textured soils from tropical and temperate regions under cropland and pasture. Results show that soil organic carbon (SOC), SOM fractions...... and AS appear to be affected by land use regardless of the origin of the soils. A general separation of structurally stable and unstable soils between samples of large and small SOC content, respectively, was observed. SOM fractions did not show a better relationship with AS than SOC per se. In both...

  20. Geometrization of the Electromagnetic Field and Dark Matter

    CERN Document Server

    Pestov, I B

    2005-01-01

    A general concept of potential field is introduced. The potential field that one puts in correspondence with dark matter, has fundamental geometrical interpretation (parallel transport) and has intrinsically inherent local symmetry. The equations of dark matter field are derived that are invariant with respect to the local transformations. It is shown how to reduce these equations to the Maxwell equations. Thus, the dark matter field may be considered as generalized lectromagnetic field and a simple solution of the old problem is given to connect electromagnetic field with geometrical properties of the physical manifold itself. It is shown that gauge fixing renders generalized electromagnetic field effectively massive while the Maxwell electromagnetic field remains massless. To learn more about interactions between matter and dark matter on the microscopical level (and to recognize the fundamental role of internal symmetry) the general covariant Dirac equation is derived in the Minkowski space--time which des...

  1. Toward the fundamental theory of nuclear matter physics: The microscopic theory of nuclear collective dynamics

    International Nuclear Information System (INIS)

    Sakata, F.; Marumori, T.; Hashimoto, Y.; Tsukuma, H.; Yamamoto, Y.; Terasaki, J.; Iwasawa, Y.; Itabashi, H.

    1992-01-01

    Since the research field of nuclear physics is expanding rapidly, it is becoming more imperative to develop the microscopie theory of nuclear matter physics which provides us with a unified understanding of diverse phenomena exhibited by nuclei. An estabishment of various stable mean-fields in nuclei allows us to develop the microscopie theory of nuclear collective dynamics within the mean-field approximation. The classical-level theory of nuclear collective dynamics is developed by exploiting the symplectic structure of the timedependent Hartree-Fock (TDHF)-manifold. The importance of exploring the single-particle dynamics, e.g. the level-crossing dynamics in connection with the classical order-to-chaos transition mechanism is pointed out. Since the classical-level theory os directly related to the full quantum mechanical boson expansion theory via the symplectic structure of the TDHF-manifold, the quantum theory of nuclear collective dynamics is developed at the dictation of what os developed on the classical-level theory. The quantum theory thus formulated enables us to introduce the quantum integrability and quantum chaoticity for individual eigenstates. The inter-relationship between the classical-level and quantum theories of nuclear collective dynamics might play a decisive role in developing the quantum theory of many-body problems. (orig.)

  2. Exploring the mirror matter interpretation of the DAMA experiment: Has the dark matter problem been solved?

    OpenAIRE

    Foot, R.

    2004-01-01

    The self consistency between the impressive DAMA annual modulation signal and the differential energy spectrum is an important test for dark matter candidates.Mirror matter-type dark matter passes this test while other dark matter candidates, including standard (spin-independent) WIMPs and mini-electric charged particle dark matter, do not do so well.We argue that the unique properties of mirror matter-type dark matter seem to be just those required to fully explain the data, suggesting that ...

  3. Influence of ~7 keV sterile neutrino dark matter on the process of reionization

    DEFF Research Database (Denmark)

    Rudakovskyi, Anton; Iakubovskyi, Dmytro

    2016-01-01

    Recent reports of a weak unidentified emission line at ~3.5 keV found in spectra of several matter-dominated objects may give a clue to resolve the long-standing problem of dark matter. One of the best physically motivated particle candidate able to produce such an extra line is sterile neutrino...... neutrino dark matter able to produce the observed line at ~3.5 keV, to the process of reionization. By incorporating dark matter power spectra for ~7 keV sterile neutrinos into extended semi-analytical `bubble' model of reionization we obtain that such sterile neutrino dark matter would produce...

  4. Physically self-consistent basis for modern cosmology

    International Nuclear Information System (INIS)

    Khlopov, M.Yu.

    2000-01-01

    Cosmoparticle physics appeared as a natural result of internal development of cosmology seeking physical grounds for inflation, baryosynthesis, and nonbaryonic dark matter and of particle physics going outside the Standard Model of particle interactions. Its aim is to study the foundations of particle physics and cosmology and their fundamental relationship in the combination of respective indirect cosmological, astrophysical, and physical effects. The ideas on new particles and fields predicted by particle theory and on their cosmological impact are discussed, as well as the methods of cosmoparticle physics to probe these ideas, are considered with special analysis of physical mechanisms for inflation, baryosynthesis, and nonbaryonic dark matter. These mechanisms are shown to reflect the main principle of modern cosmology, putting, instead of formal parameters of cosmological models, physical processes governing the evolution of the big-bang universe. Their realization on the basis of particle theory induces additional model-dependent predictions, accessible to various methods of nonaccelerator particle physics. Probes for such predictions, with the use of astrophysical data, are the aim of cosmoarcheology studying astrophysical effects of new physics. The possibility of finding quantitatively definite relationships between cosmological and laboratory effects on the basis of cosmoparticle approach, as well as of obtaining a unique solution to the problem of physical candidates for inflation, mechanisms of baryogenesis, and multicomponent dark matter, is exemplified in terms of gauge model with broken family symmetry, underlying horizontal unification and possessing quantitatively definite physical grounds for inflation, baryosynthesis, and effectively multicomponent dark-matter scenarios

  5. Physics laboratory 2

    International Nuclear Information System (INIS)

    1980-01-01

    The report covers the research activities of the Physics laboratory of H.C. Oersted Institute, University of Copenhagen in the period January 1, 1976 - January 1, 1979. It gives also an idea about the teaching carried out by yhe laboratory. The research - broadly speaking - deals mainly with the interaction of particles (ions, electrons and neutrons) and electromagnetic radiation (X-rays) with matter. Use is made in studies of: atomic physics, radiation effects, surface physics, the electronic and crystallographic structure of matter and some biological problems. The research is carried out partly in the laboratory itself and partly at and in collaboration with other institutes in this country (H.C. Oersted Institute, Chemical Laboratories, Denmark's Technical University, Aarhus University, Institute of Physics and Risoe National Laboratory) and abroad (Federal Republic of Germany, France, India, Sweden, U.K., U.S.A. and U.S.S.R.). All these institutes are listed in the abstract titles. Bibliography comprehends 94 publications. A substantial part of the research is supported by the Danish Natural Sciences Research Council. (author)

  6. How to make university students solve physics problems requiring mathematical skills: The "Adventurous Problem Solving" approach

    NARCIS (Netherlands)

    de Mul, F.F.M.; Martin Batlle, C.; Martin i Batlle, Cristina; de Bruijn, Imme; Rinzema, K.; Rinzema, Kees

    2003-01-01

    Teaching physics to first-year university students (in the USA: junior/senior level) is often hampered by their lack of skills in the underlying mathematics, and that in turn may block their understanding of the physics and their ability to solve problems. Examples are vector algebra, differential

  7. Expert and novice categorization of introductory physics problems

    Science.gov (United States)

    Wolf, Steven Frederick

    Since it was first published 30 years ago, Chi et al.'s seminal paper on expert and novice categorization of introductory problems led to a plethora of follow-up studies within and outside of the area of physics [Chi et al. Cognitive Science 5, 121 -- 152 (1981)]. These studies frequently encompass "card-sorting" exercises whereby the participants group problems. The study firmly established the paradigm that novices categorize physics problems by "surface features" (e.g. "incline," "pendulum," "projectile motion,"... ), while experts use "deep structure" (e.g. "energy conservation," "Newton 2,"... ). While this technique certainly allows insights into problem solving approaches, simple descriptive statistics more often than not fail to find significant differences between experts and novices. In most experiments, the clean-cut outcome of the original study cannot be reproduced. Given the widespread implications of the original study, the frequent failure to reproduce its findings warrants a closer look. We developed a less subjective statistical analysis method for the card sorting outcome and studied how the "successful" outcome of the experiment depends on the choice of the original card set. Thus, in a first step, we are moving beyond descriptive statistics, and develop a novel microscopic approach that takes into account the individual identity of the cards and uses graph theory and models to visualize, analyze, and interpret problem categorization experiments. These graphs are compared macroscopically, using standard graph theoretic statistics, and microscopically, using a distance metric that we have developed. This macroscopic sorting behavior is described using our Cognitive Categorization Model. The microscopic comparison allows us to visualize our sorters using Principal Components Analysis and compare the expert sorters to the novice sorters as a group. In the second step, we ask the question: Which properties of problems are most important in problem

  8. Tests of the particle physics-physical cosmology interface

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1993-01-01

    Three interrelated interfaces of particle physics and physical cosmology are discussed: (1) inflation and other phase transitions; (2) Big Bang Nucleosynthesis (and also the quark-hadron transition); and (3) structure formation (including dark matter). Recent observations that affect each of these topics are discussed. Topic number 1 is shown to be consistent with the COBE observations but not proven and it may be having problems with some age-expansion data. Topic number 2 has now been well-tested and is an established ''pillar'' of the Big Bang. Topic number 3 is the prime arena of current physical cosmological activity. Experiments to resolve the current exciting, but still ambiguous, situation following the COBE results are discussed

  9. Physical Chemistry Chemical Kinetics and Reaction Mechanism

    CERN Document Server

    Trimm, Harold H

    2011-01-01

    Physical chemistry covers diverse topics, from biochemistry to materials properties to the development of quantum computers. Physical chemistry applies physics and math to problems that interest chemists, biologists, and engineers. Physical chemists use theoretical constructs and mathematical computations to understand chemical properties and describe the behavior of molecular and condensed matter. Their work involves manipulations of data as well as materials. Physical chemistry entails extensive work with sophisticated instrumentation and equipment as well as state-of-the-art computers. This

  10. Nuclear and Condensed Matter Physics: VI Regional CRRNSM Conference. AIP Conference Proceedings, No. 513 [APCPCS

    International Nuclear Information System (INIS)

    Messina, A.

    2000-01-01

    This book contains 102 scientific contributions in the areas of nuclear and condensed matter physics. The conference was attended by 144 physicists, most of them belonging to the Sicilian Universities of Palermo, Catania and Messina

  11. Common Origin of Neutrino Mass, Dark Matter, and Baryogenesis

    OpenAIRE

    Ma, Ernest

    2006-01-01

    Combining one established idea with two recent ones, it is pointed out for the first time that three of the outstanding problems of particle physics and cosmology, i.e. neutrino mass, dark matter, and baryogenesis, may have a common solution, arising from the interactions of a single term, with experimentally verifiable consequences.

  12. Gravitino, dark matter candidate and implications for big bang nucleosynthesis

    International Nuclear Information System (INIS)

    Bailly, S.

    2008-11-01

    The Standard Model of particle physics was developed in the seventies. Despite many experimental successes, it presents many problems that can only be solved with models beyond the Standard Model. Supersymmetry is an interesting candidate, postulating a new symmetry between fermions and bosons. This model can also have interesting applications in cosmology. It offers potentially good candidates for dark matter, what represents 25% of the energy density of the Universe, and its nature is unknown. Another cosmological problem is the lithium problems in Big Bang Nucleosynthesis describing the production of light elements in the first seconds of the Universe. The lithium abundance predicted by the theory is inconsistent with observations. I study a scenario in which a supersymmetric particle, the gravitino, is the candidate for dark matter and the production of this particle through the decay of other supersymmetric particles may solve the lithium problems. (author)

  13. Condensed matter physics of biomolecule systems in a differential geometric framework

    DEFF Research Database (Denmark)

    Bohr, Henrik; Ipsen, J. H.; Markvorsen, Steen

    2007-01-01

    In this contribution biomolecular systems are analyzed in a framework of differential geometry in order to derive important condensed matter physics information. In the first section lipid bi-layer membranes are examined with respect to statistical properties and topology, e.g. a relation between...... vesicle formation and the proliferation of genus number. In the second section differential geometric methods are used for analyzing the surface structure of proteins and thereby understanding catalytic properties of larger proteins....

  14. Condensed matter physics of biomolecule systems in a differential geometric framework

    DEFF Research Database (Denmark)

    Bohr, H.; Ipsen, John Hjort; Markvorsen, S

    2007-01-01

    In this contribution biomolecular systems are analyzed in a framework of differential geometry in order to derive important condensed matter physics information. In the first section lipid bi-layer membranes axe examined with respect to statistical properties and topology, e.g. a relation between...... vesicle formation and the proliferation of genus number. In the second section differential geometric methods are used for analyzing the surface structure of proteins and thereby understanding catalytic properties of larger proteins....

  15. Science Academies' Refresher Course in Foundations of Physical ...

    Indian Academy of Sciences (India)

    Physical Chemistry is the branch of chemistry that deals with the mechanism, the rate and the energy transfer that occur when matter undergoes a change. Understanding the key concepts of physical chemistry is essential for solving practical problems in research and industrial appli- cations. A brief outline of the course is ...

  16. Dissociative conceptual and quantitative problem solving outcomes across interactive engagement and traditional format introductory physics

    Directory of Open Access Journals (Sweden)

    Mark A. McDaniel

    2016-11-01

    Full Text Available The existing literature indicates that interactive-engagement (IE based general physics classes improve conceptual learning relative to more traditional lecture-oriented classrooms. Very little research, however, has examined quantitative problem-solving outcomes from IE based relative to traditional lecture-based physics classes. The present study included both pre- and post-course conceptual-learning assessments and a new quantitative physics problem-solving assessment that included three representative conservation of energy problems from a first-semester calculus-based college physics course. Scores for problem translation, plan coherence, solution execution, and evaluation of solution plausibility were extracted for each problem. Over 450 students in three IE-based sections and two traditional lecture sections taught at the same university during the same semester participated. As expected, the IE-based course produced more robust gains on a Force Concept Inventory than did the lecture course. By contrast, when the full sample was considered, gains in quantitative problem solving were significantly greater for lecture than IE-based physics; when students were matched on pre-test scores, there was still no advantage for IE-based physics on gains in quantitative problem solving. Further, the association between performance on the concept inventory and quantitative problem solving was minimal. These results highlight that improved conceptual understanding does not necessarily support improved quantitative physics problem solving, and that the instructional method appears to have less bearing on gains in quantitative problem solving than does the kinds of problems emphasized in the courses and homework and the overlap of these problems to those on the assessment.

  17. The Large Hadron Collider project: organizational and financial matters (of physics at the terascale)

    NARCIS (Netherlands)

    Engelen, J.

    2012-01-01

    n this paper, I present a view of organizational and financial matters relevant for the successful construction and operation of the experimental set-ups at the Large Hadron Collider of CERN, the European Laboratory for Particle Physics in Geneva. Construction of these experiments was particularly

  18. The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect

    NARCIS (Netherlands)

    Spaldin, Nicola A.; Fiebig, Manfred; Mostovoy, Maxim

    2008-01-01

    The concept of toroidal moments in condensed-matter physics and their long-range ordering in a so-called ferrotoroidic state is reviewed. We show that ferrotoroidicity as a form of primary ferroic order can be understood both from microscopic (multipole expansion) and macroscopic (symmetry-based

  19. Case of Two Electrostatics Problems: Can Providing a Diagram Adversely Impact Introductory Physics Students' Problem Solving Performance?

    Science.gov (United States)

    Maries, Alexandru; Singh, Chandralekha

    2018-01-01

    Drawing appropriate diagrams is a useful problem solving heuristic that can transform a problem into a representation that is easier to exploit for solving it. One major focus while helping introductory physics students learn effective problem solving is to help them understand that drawing diagrams can facilitate problem solution. We conducted an…

  20. Use of model analysis to analyse Thai students’ attitudes and approaches to physics problem solving

    Science.gov (United States)

    Rakkapao, S.; Prasitpong, S.

    2018-03-01

    This study applies the model analysis technique to explore the distribution of Thai students’ attitudes and approaches to physics problem solving and how those attitudes and approaches change as a result of different experiences in physics learning. We administered the Attitudes and Approaches to Problem Solving (AAPS) survey to over 700 Thai university students from five different levels, namely students entering science, first-year science students, and second-, third- and fourth-year physics students. We found that their inferred mental states were generally mixed. The largest gap between physics experts and all levels of the students was about the role of equations and formulas in physics problem solving, and in views towards difficult problems. Most participants of all levels believed that being able to handle the mathematics is the most important part of physics problem solving. Most students’ views did not change even though they gained experiences in physics learning.

  1. Development and validation of a physics problem-solving assessment rubric

    Science.gov (United States)

    Docktor, Jennifer Lynn

    Problem solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving throughout the educational system, there is no standard way to evaluate written problem solving that is valid, reliable, and easy to use. Most tests of problem solving performance given in the classroom focus on the correctness of the end result or partial results rather than the quality of the procedures and reasoning leading to the result, which gives an inadequate description of a student's skills. A more detailed and meaningful measure is necessary if different curricular materials or pedagogies are to be compared. This measurement tool could also allow instructors to diagnose student difficulties and focus their coaching. It is important that the instrument be applicable to any problem solving format used by a student and to a range of problem types and topics typically used by instructors. Typically complex processes such as problem solving are assessed by using a rubric, which divides a skill into multiple quasi-independent categories and defines criteria to attain a score in each. This dissertation describes the development of a problem solving rubric for the purpose of assessing written solutions to physics problems and presents evidence for the validity, reliability, and utility of score interpretations on the instrument.

  2. Max-Planck-Institute for Physics, Werner-Heisenberg-Institute. Annual report 1991

    International Nuclear Information System (INIS)

    1992-04-01

    The projects carried out by the department of theoretical physics comprise a broad spectrum of current and fundamental problems of elementary particle physics, especially the interaction of the two. The examinations carried out by the department of experimental physics concern themselves with the production and transformation processes of elementary particles, their features, interactions and their underlying physical laws. This includes the construction of detectors such as HEGRA for high-energy cosmic ray detection. Problems from the area of condensed matter were also dealt with. (DG) [de

  3. Health physics problems encountered in the Saclay linear accelerator

    International Nuclear Information System (INIS)

    Delsaut, R.

    1979-01-01

    The safety and health physics problems specific to the Saclay linear accelerator are presented: activation (of gases, dust, water, structural materials, targets); individual dosimetry; the safety engineering [fr

  4. Innovative applications of genetic algorithms to problems in accelerator physics

    Directory of Open Access Journals (Sweden)

    Alicia Hofler

    2013-01-01

    Full Text Available The genetic algorithm (GA is a powerful technique that implements the principles nature uses in biological evolution to optimize a multidimensional nonlinear problem. The GA works especially well for problems with a large number of local extrema, where traditional methods (such as conjugate gradient, steepest descent, and others fail or, at best, underperform. The field of accelerator physics, among others, abounds with problems which lend themselves to optimization via GAs. In this paper, we report on the successful application of GAs in several problems related to the existing Continuous Electron Beam Accelerator Facility nuclear physics machine, the proposed Medium-energy Electron-Ion Collider at Jefferson Lab, and a radio frequency gun-based injector. These encouraging results are a step forward in optimizing accelerator design and provide an impetus for application of GAs to other problems in the field. To that end, we discuss the details of the GAs used, include a newly devised enhancement which leads to improved convergence to the optimum, and make recommendations for future GA developments and accelerator applications.

  5. Dark Matter in the Universe

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The question “What is the Universe made of?” is the longest outstanding problem in all of physics. Ordinary atoms only constitute 5% of the total, while the rest is of unknown composition. Already in 1933 Fritz Zwicky observed that the rapid motions of objects within clusters of galaxies were unexplained by the gravitation pull of luminous matter, and he postulated the existence of Dunkle Materie, or dark matter. A variety of dark matter candidates exist, including new fundamental particles already postulated in particle theories: axions and WIMPs (weakly interacting massive particles). Over the past 25 years, there has been a three pronged approach to WIMP detection: creating them at particle accelerators; searched for detection of astrophysical WIMPs scattering off of nuclei in underground detectors; and “indirect detection” of WIMP annihilation products (neutrinos, positrons, or photons). As yet the LHC has only placed bounds rather than finding discovery. For 13 years the DAMA experiment has proc...

  6. Particle physics and cosmology beyond the Standard Model: inflation, dark matter and flavour

    International Nuclear Information System (INIS)

    Heurtier, L.

    2015-01-01

    This thesis has been focusing on beyond the Standard Model aspects of particle physics and their implication in cosmology. We have gone through this work along the timeline of the Universe History focusing on three major topics that are the inflationary period, the dark matter relic density production and detection, and finally the question of flavor changing constraints on low energy supersymmetric theories. In the first part of this thesis, after reviewing the theoretical and phenomenological aspects of both the Big Bang theory and the theory of Inflation we will study in detail how describing Inflation in a high energy supersymmetric theory. The second part of this thesis is dedicated to dark matter. We have studied phenomenological aspects of simple models, extending the present Standard Model with simple abelian symmetries, by assuming that the constituent of dark matter would be able to exchange information with the visible sector by the help of a mediator particle. We have studied in particular possible interactions of heavy or light dark matter with respectively the strong and the electroweak sectors of the Standard Model. Our models are strongly constrained of course by experiments. The third part of this work will be dedicated to a different aspect of beyond Standard Model theories, that is the treatment of the flavour changing processes of particle physics. The Minimal Supersymmetric Standard Model (MSSM), as one of these possible enlargement of the Standard Model, introduces new processes of flavour changing that are highly constrained by experiment. We present some works in which we consider the possibility of adding so called Dirac Gauginos to the MSSM to render flavour changing weaker in the theory, and propose different flavour patterns theories

  7. Attitude and practice of physical activity and social problem-solving ability among university students.

    Science.gov (United States)

    Sone, Toshimasa; Kawachi, Yousuke; Abe, Chihiro; Otomo, Yuki; Sung, Yul-Wan; Ogawa, Seiji

    2017-04-04

    Effective social problem-solving abilities can contribute to decreased risk of poor mental health. In addition, physical activity has a favorable effect on mental health. These previous studies suggest that physical activity and social problem-solving ability can interact by helping to sustain mental health. The present study aimed to determine the association between attitude and practice of physical activity and social problem-solving ability among university students. Information on physical activity and social problem-solving was collected using a self-administered questionnaire. We analyzed data from 185 students who participated in the questionnaire surveys and psychological tests. Social problem-solving as measured by the Social Problem-Solving Inventory-Revised (SPSI-R) (median score 10.85) was the dependent variable. Multiple logistic regression analysis was employed to calculate the odds ratios (ORs) and 95% confidence intervals (CIs) for higher SPSI-R according to physical activity categories. The multiple logistic regression analysis indicated that the ORs (95% CI) in reference to participants who said they never considered exercising were 2.08 (0.69-6.93), 1.62 (0.55-5.26), 2.78 (0.86-9.77), and 6.23 (1.81-23.97) for participants who did not exercise but intended to start, tried to exercise but did not, exercised but not regularly, and exercised regularly, respectively. This finding suggested that positive linear association between physical activity and social problem-solving ability (p value for linear trend social problem-solving ability.

  8. Solid Matter

    CERN Document Server

    Angelo, Joseph A

    2011-01-01

    Supported by a generous quantity of full-color illustrations and interesting sidebars, Solid Matter introduces the basic characteristics and properties of solid matter. It briefly describes the cosmic connection of the elements, leading readers through several key events in human pre-history that resulted in more advanced uses of matter in the solid state. Chapters include:. -Solid Matter: An Initial Perspective. -Physical Behavior of Matter. -The Gravity of Matter. -Fundamentals of Materials Science. -Rocks and Minerals. -Metals. -Building Materials. -Carbon Earth's Most Versatile Element. -S

  9. Some Learning Problems Concerning the Use of Symbolic Language in Physics.

    Science.gov (United States)

    De Lozano, Silvia Ragout; Cardenas, Marta

    2002-01-01

    Draws the attention of teachers of basic university physics courses to student problems concerning the interpretation of the symbolic language used in physics. Reports specific difficulties found in the first physics course related to different kinds of statements expressed in the mathematical language. (Contains 15 references.) (Author/YDS)

  10. At LEP, a new Physics. The dark matter

    International Nuclear Information System (INIS)

    Bouquet, A.; Haissinski, J.; Perrottet, M.; Renard, F.M.; Sadoulet, B.; Savoy, C.; Treille, D.

    1990-01-01

    The starting of LEP (European Large Electron-Positron storage rings) took place, in July 1989 and the 5 reports introduced during the 21th Summer School on Particle Physics (Ecole de Gif) locate, after a rapid recall of standard model, the problems that LEP will have to resolve in a more or less long time, LEP 100 or LEP 200. These reports are indexed separately [fr

  11. Sensitivity and Uncertainty Analysis of Coupled Reactor Physics Problems : Method Development for Multi-Physics in Reactors

    NARCIS (Netherlands)

    Perkó, Z.

    2015-01-01

    This thesis presents novel adjoint and spectral methods for the sensitivity and uncertainty (S&U) analysis of multi-physics problems encountered in the field of reactor physics. The first part focuses on the steady state of reactors and extends the adjoint sensitivity analysis methods well

  12. The emerging problem of physical child abuse in South Korea.

    Science.gov (United States)

    Hahm, H C; Guterman, N B

    2001-05-01

    South Korea has had remarkably high incidence and prevalence rates of physical violence against children, yet the problem has received only limited public and professional attention until very recently. This article represents the first attempt in English to systematically analyze South Korea's recent epidemiological studies on child maltreatment. Discussed are sociocultural factors that have contributed both to delays in child protection laws and a low public awareness of the problem of child abuse. The article highlights methodological issues concerning the definition of physical abuse in South Korea and the complex attitudes toward violence. It also examines the role of the Korean women's movement in the reform of family laws and the recent establishment of new child protection legislation. Suggestions for future directions for the problem of child maltreatment within South Korea are presented.

  13. P3: An installation for high-energy density plasma physics and ultra-high intensity laser–matter interaction at ELI-Beamlines

    Directory of Open Access Journals (Sweden)

    S. Weber

    2017-07-01

    Full Text Available ELI-Beamlines (ELI-BL, one of the three pillars of the Extreme Light Infrastructure endeavour, will be in a unique position to perform research in high-energy-density-physics (HEDP, plasma physics and ultra-high intensity (UHI (>1022W/cm2 laser–plasma interaction. Recently the need for HED laboratory physics was identified and the P3 (plasma physics platform installation under construction in ELI-BL will be an answer. The ELI-BL 10 PW laser makes possible fundamental research topics from high-field physics to new extreme states of matter such as radiation-dominated ones, high-pressure quantum ones, warm dense matter (WDM and ultra-relativistic plasmas. HEDP is of fundamental importance for research in the field of laboratory astrophysics and inertial confinement fusion (ICF. Reaching such extreme states of matter now and in the future will depend on the use of plasma optics for amplifying and focusing laser pulses. This article will present the relevant technological infrastructure being built in ELI-BL for HEDP and UHI, and gives a brief overview of some research under way in the field of UHI, laboratory astrophysics, ICF, WDM, and plasma optics.

  14. Workplace bullying, sleep problems and leisure-time physical activity: a prospective cohort study.

    Science.gov (United States)

    Hansen, Åse Marie; Gullander, Maria; Hogh, Annie; Persson, Roger; Kolstad, Henrik A; Willert, Morten Vejs; Bonde, Jens Peter; Kaerlev, Linda; Rugulies, Reiner; Grynderup, Matias Brødsgaard

    2016-01-01

    Workplace bullying is a potent stressor that may increase sleep problems. Since physical fitness improves resilience to stress, it seems plausible that recreational physical activities may moderate the association between bullying and sleep. The study aimed to examine prospectively whether (i) bullying increases the risk of sleep problems, and (ii) the association between bullying and sleep problems is moderated by leisure-time physical activity (LTPA). The study sample comprised a cohort of public and private sector employees, who were enrolled into the Work Bullying and Harassment (WBH) cohort (N=3278) or the Psychosocial Risk Factors for Stress and Mental Disease (PRISME) cohort (N=4455). We measured workplace bullying using one question that was preceded by a definition of bullying. We used the Karolinska sleep questionnaire to assess sleep problems. The number of hours per week spent on LTPA estimated the degree of physical activity. Workplace bullying at baseline (T1) was associated with awakening problems and lack of restful sleep at follow-up (T2) but not with overall sleep problems and disturbed sleep. T1-LTPA did not moderate the association between T1-workplace bullying and T2-sleep problems. We found support that workplace bullying is related to development of T2-sleep problems, but this association seems not to be modified by LTPA.

  15. Radiation physics in medicine and veterinary medicine studies

    International Nuclear Information System (INIS)

    Popovic, D.; Djuric, G.

    2000-01-01

    Medical and veterinary medicine staff and specialists represent an important decision making group in national administration and institutions dealing with radiation protection and environmental protection matters in general. Still, their education in physics, especially in radiation physics is fragmentary and loose, both from technical and theoretical point of view. Within medicine and veterinary medicine studies as well as within other biomedical sciences (biology, pharmacology, biotechnology) radiation physics is usually incorporated in the first year curricula as a part of general physics or biophysics course. Some segments of radiation physics mainly as a technical base for different instrumentation methods and techniques could be also found within different graduate and post-graduate courses of radiology, physical therapy, radiation hygiene, environmental protection, etc. But the traditional approach in presenting the matter and inflexibility of the educational system strongly confront the growing public concern for the environmental problems dealing with radiation and demands for better informing and technical education for those involved in informing and administration. This paper considers some of these problems presenting a new approach in education in radiation physics for medical and veterinary medicine students based on education through student projects and work in the field, as well as on the strong collaboration among administration, universities and professional societies on the national and international level. (author)

  16. MAUVE: A New Strategy for Solving and Grading Physics Problems

    Science.gov (United States)

    Hill, Nicole Breanne

    2016-01-01

    MAUVE (magnitude, answer, units, variables, and equations) is a framework and rubric to help students and teachers through the process of clearly solving and assessing solutions to introductory physics problems. Success in introductory physics often derives from an understanding of units, a command over dimensional analysis, and good bookkeeping.…

  17. Main physical problems of superhigh energy accelerators

    International Nuclear Information System (INIS)

    Lapidus, L.I.

    1979-01-01

    A survey is given of the state and prospects for the scientific researches to be carried out at the largest charged particle accelerators now under construction. The fundamental problems of the elementary particle physics are considered which can be solved on the base of experiments at high-energy accelerators. The problems to be solved involve development of the theory of various quark number, accurate determination of the charged and neutral intermediate vector boson masses in the Weinberg-Salam theory, the problem of production of t-quark, W -+ - and Z deg bosons, Higgs mesons and investigation of their interactions, examination of quark and lepton spectra, studies on the effects of strong interactions. As a result of the investigations on hadrons at maximum momentum transfers, the data on space-time structure at short distances can be obtained. It is emphasized that there are no engineering barriers to the construction of such accelerators. The main problem lies in financial investment. A conclusion is drawn that the next generation of accelerators will be developed on the base of cooperation between many countries [ru

  18. Advances in Soft Matter Mechanics

    CERN Document Server

    Li, Shaofan

    2012-01-01

    "Advances in Soft Matter Mechanics" is a compilation and selection of recent works in soft matter mechanics by a group of active researchers in the field. The main objectives of this book are first to disseminate the latest developments in soft matter mechanics in the field of applied and computational mechanics, and second to introduce soft matter mechanics as a sub-discipline of soft matter physics. As an important branch of soft matter physics, soft matter mechanics has developed rapidly in recent years. A number of the novel approaches discussed in this book are unique, such as the coarse grained finite element method for modeling colloidal adhesion, entropic elasticity, meshfree simulations of liquid crystal elastomers, simulations of DNA, etc. The book is intended for researchers and graduate students in the field of mechanics, condensed matter physics and biomaterials. Dr. Shaofan Li is a professor of the University of California-Berkeley, U.S.A; Dr. Bohua Sun is a professor of Cape Peninsula Universit...

  19. The practice of problem-based investigative teaching reform in semiconductor physics course

    Science.gov (United States)

    Chen, Aiping; Wu, Gaojian; Gu, Dawei; Jiang, Hongying; Wang, Lei

    2017-08-01

    Semiconductor physics is an important basic course for the students of the majors of applied physics, optoelectronics, and microelectronics. The authors have been carrying out investigative-teaching reform in semiconductor physics teaching. Firstly, the teaching content was re-structured based on scientific problems. Secondly, the students were placed in groups to discuss different scientific problems and to present a few short science-reports. Thirdly, micro-lesson videos were produced for the students to study and analyze before or after class. With comparative analysis, we find out that the semiconductor-physics curriculum content was greatly enriched. In addition, the students' learning motivation and scientific thinking ability increased, and their innovation ability was improved. Overall, the teaching quality of the semiconductor physics course could be significantly improved.

  20. Problem Space Matters: Evaluation of a German Enrichment Program for Gifted Children.

    Science.gov (United States)

    Welter, Marisete M; Jaarsveld, Saskia; Lachmann, Thomas

    2018-01-01

    We studied the development of cognitive abilities related to intelligence and creativity ( N = 48, 6-10 years old), using a longitudinal design (over one school year), in order to evaluate an Enrichment Program for gifted primary school children initiated by the government of the German federal state of Rhineland-Palatinate ( Entdeckertag Rheinland Pfalz , Germany; ET; Day of Discoverers). A group of German primary school children ( N = 24), identified earlier as intellectually gifted and selected to join the ET program was compared to a gender-, class- and IQ- matched group of control children that did not participate in this program. All participants performed the Standard Progressive Matrices (SPM) test, which measures intelligence in well-defined problem space; the Creative Reasoning Task (CRT), which measures intelligence in ill-defined problem space; and the test of creative thinking-drawing production (TCT-DP), which measures creativity, also in ill-defined problem space. Results revealed that problem space matters: the ET program is effective only for the improvement of intelligence operating in well-defined problem space. An effect was found for intelligence as measured by SPM only, but neither for intelligence operating in ill-defined problem space (CRT) nor for creativity (TCT-DP). This suggests that, depending on the type of problem spaces presented, different cognitive abilities are elicited in the same child. Therefore, enrichment programs for gifted, but also for children attending traditional schools, should provide opportunities to develop cognitive abilities related to intelligence, operating in both well- and ill-defined problem spaces, and to creativity in a parallel, using an interactive approach.

  1. Problem-Based Learning in the Physical Science Classroom, K-12

    Science.gov (United States)

    McConnell, Tom J.; Parker, Joyce; Eberhardt, Janet

    2018-01-01

    "Problem-Based Learning in the Physical Science Classroom, K-12" will help your students truly understand concepts such as motion, energy, and magnetism in true-to-life contexts. The book offers a comprehensive description of why, how, and when to implement problem-based learning (PBL) in your curriculum. Its 14 developmentally…

  2. Surveying Turkish high school and university students’ attitudes and approaches to physics problem solving

    Directory of Open Access Journals (Sweden)

    Nuri Balta

    2016-04-01

    Full Text Available Students’ attitudes and approaches to physics problem solving can impact how well they learn physics and how successful they are in solving physics problems. Prior research in the U.S. using a validated Attitude and Approaches to Problem Solving (AAPS survey suggests that there are major differences between students in introductory physics and astronomy courses and physics experts in terms of their attitudes and approaches to physics problem solving. Here we discuss the validation, administration, and analysis of data for the Turkish version of the AAPS survey for high school and university students in Turkey. After the validation and administration of the Turkish version of the survey, the analysis of the data was conducted by grouping the data by grade level, school type, and gender. While there are no statistically significant differences between the averages of various groups on the survey, overall, the university students in Turkey were more expertlike than vocational high school students. On an item by item basis, there are statistically differences between the averages of the groups on many items. For example, on average, the university students demonstrated less expertlike attitudes about the role of equations and formulas in problem solving, in solving difficult problems, and in knowing when the solution is not correct, whereas they displayed more expertlike attitudes and approaches on items related to metacognition in physics problem solving. A principal component analysis on the data yields item clusters into which the student responses on various survey items can be grouped. A comparison of the responses of the Turkish and American university students enrolled in algebra-based introductory physics courses shows that on more than half of the items, the responses of these two groups were statistically significantly different, with the U.S. students on average responding to the items in a more expertlike manner.

  3. Student representational competence and self-assessment when solving physics problems

    Directory of Open Access Journals (Sweden)

    Noah D. Finkelstein

    2005-10-01

    Full Text Available Student success in solving physics problems is related to the representational format of the problem. We study student representational competence in two large-lecture algebra-based introductory university physics courses with approximately 600 participants total. We examined student performance on homework problems given in four different representational formats (mathematical, pictorial, graphical, verbal, with problem statements as close to isomorphic as possible. In addition to the homeworks, we examine students’ assessment of representations by providing follow-up quizzes in which they chose between various problem formats. As a control, some parts of the classes were assigned a random-format follow-up quiz. We find that there are statistically significant performance differences between different representations of nearly isomorphic statements of quiz and homework problems. We also find that allowing students to choose which representational format they use improves student performance under some circumstances and degrades it in others. Notably, one of the two courses studied shows much greater performance differences between the groups that received a choice of format and those that did not, and we consider possible causes. Overall, we observe that student representational competence is tied to both micro- and macrolevel features of the task and environment.

  4. Investigation of matter enhanced neutrino oscillations relevant to the solar neutrino problem

    International Nuclear Information System (INIS)

    Losecco, J.M.; Bionta, R.M.; Casper, D.; Claus, R.; Errede, S.; Foster, G.; Park, H.S.; Seidel, S.; Shumard, E.; Sinclair, D.; Stone, J.L.; Sulak, L.; Van der Velde, J.C.; Blewitt, G.; Cortez, B.; Lehmann, E.; Bratton, C.B.; Gajewski, W.; Ganezer, K.S.; Haines, T.J.; Kropp, W.R.; Reines, F.; Schultz, J.; Sobel, H.W.; Wuest, C.; Goldhaber, M.; Jones, T.W.; Kielczewska, D.; Learned, J.G.; Svoboda, R.

    1987-01-01

    We study the effect of matter enhanced neutrino oscillations on atmospheric neutrinos. A recently proposed solution to the solar neutrino problem with Δm 2 =1.1x10 -4 eV 2 suggests enhanced effects in the range 200 MeV-500 MeV. We find no evidence of this effect for ν μ ??ν e mixing. Limits are set on the magnitude of the mixing angle. Our limit is sin θ V <0.14 at 90% confidence level. The limit is dominated by statistical errors and may be improved. (orig.)

  5. Where is particle physics going?

    Science.gov (United States)

    Ellis, John

    2017-12-01

    The answer to the question in the title is: in search of new physics beyond the Standard Model, for which there are many motivations, including the likely instability of the electroweak vacuum, dark matter, the origin of matter, the masses of neutrinos, the naturalness of the hierarchy of mass scales, cosmological inflation and the search for quantum gravity. So far, however, there are no clear indications about the theoretical solutions to these problems, nor the experimental strategies to resolve them. It makes sense now to prepare various projects for possible future accelerators, so as to be ready for decisions when the physics outlook becomes clearer. Paraphrasing George Harrison, “If you don’t yet know where you’re going, any road may take you there.”

  6. Actual problems of physics and technology. III International youth scientific school-conference. Book of abstracts

    International Nuclear Information System (INIS)

    2014-01-01

    The third International youth scientific school-conference took place 10-13 April 2014 year in Moscow on the basis National Research Nuclear University MEPhI and RAS Lebedev P.N. Physical Institute. The actual scientific problems of current fundamental and applied physics as well as nuclear and physical technologies were discussed. This book of abstracts contains many interesting items devoted problems of theoretical physics and astrophysics, nuclear physics, nanotecnology, laser physics and plasma physics [ru

  7. Interplay between the b →s l l anomalies and dark matter physics

    Science.gov (United States)

    Kawamura, Junichiro; Okawa, Shohei; Omura, Yuji

    2017-10-01

    Recently, the LHCb Collaboration has reported the excesses in the b →s l l processes. One of the promising candidates for new physics to explain the anomalies is the extended Standard Model (SM) with vectorlike quarks and leptons. In that model, Yukawa couplings between the extra fermions and SM fermions are introduced, adding extra scalars. Then, the box diagrams involving the extra fields achieve the b →s l l anomalies. It has been known that the excesses require the large Yukawa couplings of leptons, so that this kind of model can be tested by studying correlations with other observables. In this paper, we consider the extra scalar to be a dark matter (DM) candidate, and investigate DM physics as well as the flavor physics and the LHC physics. The DM relic density and the direct-detection cross section are also dominantly given by the Yukawa couplings, so that we find some explicit correlations between DM physics and the flavor physics. In particular, we find the predictions of the b →s l l anomalies against the direct detection of DM.

  8. Unfolding in particle physics: A window on solving inverse problems

    International Nuclear Information System (INIS)

    Spano, F.

    2013-01-01

    Unfolding is the ensemble of techniques aimed at resolving inverse, ill-posed problems. A pedagogical introduction to the origin and main problems related to unfolding is presented and used as the the stepping stone towards the illustration of some of the most common techniques that are currently used in particle physics experiments. (authors)

  9. Excel 2016 for physical sciences statistics a guide to solving practical problems

    CERN Document Server

    Quirk, Thomas J; Horton, Howard F

    2016-01-01

    This book is a step-by-step exercise-driven guide for students and practitioners who need to master Excel to solve practical physical science problems. If understanding statistics isn’t your strongest suit, you are not especially mathematically-inclined, or if you are wary of computers, this is the right book for you. Excel is an effective learning tool for quantitative analyses in environmental science courses. Its powerful computational ability and graphical functions make learning statistics much easier than in years past. However, Excel 2016 for Physical Sciences Statistics: A Guide to Solving Practical Problems is the first book to capitalize on these improvements by teaching students and managers how to apply Excel 2016 to statistical techniques necessary in their courses and work. Each chapter explains statistical formulas and directs the reader to use Excel commands to solve specific, easy-to-understand physical science problems. Practice problems are provided at the end of each chapter with their s...

  10. Integrating video and animation with physics problem- solving exercises on the World Wide Web

    Science.gov (United States)

    Titus, Aaron Patrick

    1998-10-01

    Problem solving is of paramount importance in teaching and learning physics. An important step in solving a problem is visualization. To help students visualize a problem, we included video clips with homework questions delivered via the World Wide Web. Although including video with physics problems has a positive effect with some problems, we found that this may not be the best way to integrate multimedia with physics problems since improving visualization is probably not as helpful as changing students' approach. To challenge how students solve problems and to help them develop a more expert-like approach, we developed a type of physics exercise called a multimedia-focused problem where students take data from an animation in order to solve a problem. Because numbers suggestive of a solution are not given in the text of the question, students have to consider the problem conceptually before analyzing it mathematically. As a result, we found that students had difficulty solving such problems compared to traditional textbook-like problems. Students' survey responses showed that students indeed had difficulty determining what was needed to solve a problem when it was not explicitly given to them in the text of the question. Analyzing think-aloud interviews where students verbalized their thoughts while solving problems, we found that multimedia-focused problems indeed required solid conceptual understanding in order for them to be solved correctly. As a result, we believe that when integrated with instruction, multimedia-focused problems can be a valuable tool in helping students develop better conceptual understanding and more expert-like problem solving skills by challenging novice beliefs and problem solving approaches. Multimedia-focused problems may also be useful for diagnosing conceptual understanding and problem skills.

  11. Moderate Physical Activity Mediates the Association between White Matter Lesion Volume and Memory Recall in Breast Cancer Survivors.

    Directory of Open Access Journals (Sweden)

    Gillian E Cooke

    Full Text Available Increased survival rates among breast cancer patients have drawn significant attention to consequences of both the presence of cancer, and the subsequent treatment-related impact on the brain. The incidence of breast cancer and the effects of treatment often result in alterations in the microstructure of white matter and impaired cognitive functioning. However, physical activity is proving to be a successful modifiable lifestyle factor in many studies that could prove beneficial to breast cancer survivors. This study investigates the link between white matter lesion volume, moderate physical activity, and cognition in breast cancer survivors following treatment compared to non-cancer age-matched controls. Results revealed that brain structure significantly predicted cognitive function via mediation of physical activity in breast cancer survivors. Overall, the study provided preliminary evidence suggesting moderate physical activity may help reduce the treatment related risks associated with breast cancer, including changes to WM integrity and cognitive impairment.

  12. Cusp-core problem and strong gravitational lensing

    International Nuclear Information System (INIS)

    Li Nan; Chen Daming

    2009-01-01

    Cosmological numerical simulations of galaxy formation have led to the cuspy density profile of a pure cold dark matter halo toward the center, which is in sharp contradiction with the observations of the rotation curves of cold dark matter-dominated dwarf and low surface brightness disk galaxies, with the latter tending to favor mass profiles with a flat central core. Many efforts have been devoted to resolving this cusp-core problem in recent years, among them, baryon-cold dark matter interactions are considered to be the main physical mechanisms erasing the cold dark matter (CDM) cusp into a flat core in the centers of all CDM halos. Clearly, baryon-cold dark matter interactions are not customized only for CDM-dominated disk galaxies, but for all types, including giant ellipticals. We first fit the most recent high resolution observations of rotation curves with the Burkert profile, then use the constrained core size-halo mass relation to calculate the lensing frequency, and compare the predicted results with strong lensing observations. Unfortunately, it turns out that the core size constrained from rotation curves of disk galaxies cannot be extrapolated to giant ellipticals. We conclude that, in the standard cosmological paradigm, baryon-cold dark matter interactions are not universal mechanisms for galaxy formation, and therefore, they cannot be true solutions to the cusp-core problem.

  13. Workplace bullying, sleep problems and leisure-time physical activity: a prospective cohort study

    DEFF Research Database (Denmark)

    Hansen, Åse Marie; Gullander, Maria; Hogh, Annie

    2015-01-01

    and Harassment (WBH) cohort (N=3278) or the Psychosocial Risk Factors for Stress and Mental Disease (PRISME) cohort (N=4455). We measured workplace bullying using one question that was preceded by a definition of bullying. We used the Karolinska sleep questionnaire to assess sleep problems. The number of hours......OBJECTIVES: Workplace bullying is a potent stressor that may increase sleep problems. Since physical fitness improves resilience to stress, it seems plausible that recreational physical activities may moderate the association between bullying and sleep. The study aimed to examine prospectively...... whether (i) bullying increases the risk of sleep problems, and (ii) the association between bullying and sleep problems is moderated by leisure-time physical activity (LTPA). METHODS: The study sample comprised a cohort of public and private sector employees, who were enrolled into the Work Bullying...

  14. Application of the group-theoretical method to physical problems

    OpenAIRE

    Abd-el-malek, Mina B.

    1998-01-01

    The concept of the theory of continuous groups of transformations has attracted the attention of applied mathematicians and engineers to solve many physical problems in the engineering sciences. Three applications are presented in this paper. The first one is the problem of time-dependent vertical temperature distribution in a stagnant lake. Two cases have been considered for the forms of the water parameters, namely water density and thermal conductivity. The second application is the unstea...

  15. Salamfestschrift. A collection of talks from the conference on highlights of particle and condensed matter physics

    International Nuclear Information System (INIS)

    Ali, A.; Ellis, J.; Randjbar Daemi, S.; eds)

    1994-01-01

    The book contains papers, mainly on particle physics, presented at the meeting held between 8 and 12 March 1993 at the ICTP in Trieste to honor Professor Abdus Salam. The articles have been grouped in 6 chapters: Standard Model (6 papers), Beyond the Standard Model (4 papers), Astro-Particle Physics and Cosmology (3 papers), Strings and Quantum Gravity (5 papers), Mathematical Physics and Condensed Matter (2 papers), Salam's Collaborators and Students (13 papers). A separate abstract was prepared for each paper. Refs, figs and tabs

  16. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil

    NARCIS (Netherlands)

    Liu, Hongfei; Yang, Xiaomei; Liu, Guobin; Liang, Chutao; Xue, Sha; Chen, Hao; Ritsema, Coen J.; Geissen, Violette

    2017-01-01

    Plastic debris is accumulating in agricultural land due to the increased use of plastic mulches, which is causing serious environmental problems, especially for biochemical and physical properties of the soil. Dissolved organic matter (DOM) plays a central role in driving soil biogeochemistry, but

  17. SUSY and Dark Matter Results from ATLAS

    CERN Document Server

    Sandaker, H

    2013-01-01

    New results from LHC are increasingly challenging the limits of the Standard Model of particle physics. Some of the most attractive scenarios for new physics are Supersymmet- ric models. In addition to solving some of the shortcomings of the Standard Model (e.g. hierarchy problem, Higgs mass corrections, gauge coupling unification) they also provide a suitable Dark Matter candidate, which could be produced at the LHC. We present the latest searches for Supersymmetry in events with high-energy final states and large missing transverse momentum for 4.7 fb−1 of proton-proton collisions at √s = 7 TeV as recorded by the ATLAS detector at the Large Hadron Collider. The data is interpreted in models where the Dark Matter candidate is dominantly produced in cascade decays of heavier unstable supersymmetric particles together with high-pT Standard Model parti- cles. We also present more model-independent searches for one single highly energetic jet or photon together with large amount of missing energy, showing th...

  18. Towards a conceptual framework for identifying student difficulties with solving Real-World Problems in Physics

    DEFF Research Database (Denmark)

    Niss, Martin

    2012-01-01

    This paper develops a conceptual framework for identifying the challenges and obstacles university students encounter when solving real-world problems involving Physics. The framework is based on viewing problem solving as a modelling process. In order to solve a real-world problem, the problem...... solver has to go through the steps and do the tasks of such a process. The paper presents a theoretical analysis of what it takes to solve three real-world problems, demonstrating how the framework presented captures the essential aspects of solving them. Moreover, it is argued that three steps critical...... for real-world problem solving – initial analysis of the problem situation, choice of relevant physical theory (the so-called paradigmatic choice) and mathematization – are not covered by existing models of problem solving in Physics. Finally, the existing research on student difficulties with problem...

  19. SECONDARY PHYSICAL EDUCATION AVOIDANCE AND GENDER: PROBLEMS AND ANTIDOTES

    Directory of Open Access Journals (Sweden)

    Thomas Ryan

    2012-07-01

    Full Text Available Our goal was to locate and evaluate the barriers that impact and cause females to avoid secondary elective physical education courses. We sought to find answers to stop the further decline of female enrolment in secondary physical education by looking into curricula, program and instructional variables. Anecdotal evidence informed this study which was very much exploratory, building upon several key facts. First, Ontario (Canada secondary students are only required to take one credit (course in physical education in order to graduate and second, most students take the required physical education course in grade nine which is their first year of high school. Following this there is an average of 10% fewer females in every physical education class in the province of Ontario and only an average of 12% are enrolled in physical education each year. Several issues were identified and explored including self-confidence; motivation; perceived value of physical activity; opportunities for physical activity; marking scheme; competition; co-ed classes; teaching approach; and peers as possible problems and solutions.

  20. Case of two electrostatics problems: Can providing a diagram adversely impact introductory physics students’ problem solving performance?

    Directory of Open Access Journals (Sweden)

    Alexandru Maries

    2018-03-01

    Full Text Available Drawing appropriate diagrams is a useful problem solving heuristic that can transform a problem into a representation that is easier to exploit for solving it. One major focus while helping introductory physics students learn effective problem solving is to help them understand that drawing diagrams can facilitate problem solution. We conducted an investigation in which two different interventions were implemented during recitation quizzes in a large enrollment algebra-based introductory physics course. Students were either (i asked to solve problems in which the diagrams were drawn for them or (ii explicitly told to draw a diagram. A comparison group was not given any instruction regarding diagrams. We developed rubrics to score the problem solving performance of students in different intervention groups and investigated ten problems. We found that students who were provided diagrams never performed better and actually performed worse than the other students on three problems, one involving standing sound waves in a tube (discussed elsewhere and two problems in electricity which we focus on here. These two problems were the only problems in electricity that involved considerations of initial and final conditions, which may partly account for why students provided with diagrams performed significantly worse than students who were not provided with diagrams. In order to explore potential reasons for this finding, we conducted interviews with students and found that some students provided with diagrams may have spent less time on the conceptual analysis and planning stage of the problem solving process. In particular, those provided with the diagram were more likely to jump into the implementation stage of problem solving early without fully analyzing and understanding the problem, which can increase the likelihood of mistakes in solutions.

  1. Case of two electrostatics problems: Can providing a diagram adversely impact introductory physics students' problem solving performance?

    Science.gov (United States)

    Maries, Alexandru; Singh, Chandralekha

    2018-06-01

    Drawing appropriate diagrams is a useful problem solving heuristic that can transform a problem into a representation that is easier to exploit for solving it. One major focus while helping introductory physics students learn effective problem solving is to help them understand that drawing diagrams can facilitate problem solution. We conducted an investigation in which two different interventions were implemented during recitation quizzes in a large enrollment algebra-based introductory physics course. Students were either (i) asked to solve problems in which the diagrams were drawn for them or (ii) explicitly told to draw a diagram. A comparison group was not given any instruction regarding diagrams. We developed rubrics to score the problem solving performance of students in different intervention groups and investigated ten problems. We found that students who were provided diagrams never performed better and actually performed worse than the other students on three problems, one involving standing sound waves in a tube (discussed elsewhere) and two problems in electricity which we focus on here. These two problems were the only problems in electricity that involved considerations of initial and final conditions, which may partly account for why students provided with diagrams performed significantly worse than students who were not provided with diagrams. In order to explore potential reasons for this finding, we conducted interviews with students and found that some students provided with diagrams may have spent less time on the conceptual analysis and planning stage of the problem solving process. In particular, those provided with the diagram were more likely to jump into the implementation stage of problem solving early without fully analyzing and understanding the problem, which can increase the likelihood of mistakes in solutions.

  2. Fermilab | Science | Particle Physics | Benefits of Particle Physics

    Science.gov (United States)

    Photos and videos Latest news For the media Particle Physics Neutrinos Fermilab and the LHC Dark matter initiatives Research and development Key discoveries Benefits of particle physics Particle Accelerators society Particle Physics 101 Science of matter, energy, space and time How particle physics discovery

  3. NDM06: 2. symposium on neutrinos and dark matter in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Akerib, D; Arnold, R; Balantekin, A; Barabash, A; Barnabe, H; Baroni, S; Baussan, E; Bellini, F; Bobisut, F; Bongrand, M; Brofferio, Ch; Capolupo, A; Enrico, Carrara; Caurier, E; Cermak, P; Chardin, G; Civitarese, O; Couchot, F; Kerret, H de; Heros, C de los; Detwiler, J; Dracos, M; Drexlin, G; Efremenko, Y; Ejiri, H; Falchini, E; Fatemi-Ghomi, N; Finger, M Ch; Finger Miroslav, Ch; Fiorillo, G; Fiorini, E; Fracasso, S; Frekers, D; Fushimi, K I; Gascon, J; Genest, M H; Georgadze, A; Giuliani, A; Goeger-Neff, M; Gomez-Cadenas, J J; Greenfield, M; H de Jesus, J; Hallin, A; Hannestad, St; Hirai, Sh; Hoessl, J; Ianni, A; Ieva, M B; Ishihara, N; Jullian, S; Kaim, S; Kajino, T; Kayser, B; Kochetov, O; Kopylov, A; Kortelainen, M; Kroeninger, K; Lachenmaier, T; Lalanne, D; Lanfranchi, J C; Lazauskas, R; Lemrani, A R; Li, J; Mansoulie, B; Marquet, Ch; Martinez, J; Mirizzi, A; Morfin Jorge, G; Motz, H; Murphy, A; Navas, S; Niedermeier, L; Nishiura, H; Nomachi, M; Nones, C.; Ogawa, H; Ogawa, I; Ohsumi, H; Palladino, V; Paniccia, M; Perotto, L; Petcov, S; Pfister, S; Piquemal, F; Poves, A; Praet, Ch; Raffelt, G; Ramberg, E; Rashba, T; Regnault, N; Ricol, J St; Rodejohann, W; Rodin, V; Ruz, J; Sander, Ch; Sarazin, X; Scholberg, K; Sigl, G; Simkovic, F; Sousa, A; Stanev, T; Strolger, L; Suekane, F; Thomas, J; Titov, N; Toivanen, J; Torrente-Lujan, E; Tytler, D; Vala, L; Vignaud, D; Vitiello, G; Vogel, P; Volkov, G; Volpe, C; Wong, H; Yilmazer, A

    2006-07-01

    This second symposium on neutrinos and dark matter is aimed at discussing research frontiers and perspectives on currently developing subjects. It has been organized around 6 topics: 1) double beta decays, theory and experiments (particularly: GERDA, MOON, SuperNEMO, CUORE, CANDLES, EXO, and DCBA), 2) neutrinos and nuclear physics, 3) single beta decays and nu-responses, 4) neutrino astrophysics, 5) solar neutrino review, and 6) neutrino oscillations. This document is made up of the slides of the presentations.

  4. NDM06: 2. symposium on neutrinos and dark matter in nuclear physics

    International Nuclear Information System (INIS)

    Akerib, D.; Arnold, R.; Balantekin, A.; Barabash, A.; Barnabe, H.; Baroni, S.; Baussan, E.; Bellini, F.; Bobisut, F.; Bongrand, M.; Brofferio, Ch.; Capolupo, A.; Carrara Enrico; Caurier, E.; Cermak, P.; Chardin, G.; Civitarese, O.; Couchot, F.; Kerret, H. de; Heros, C. de los; Detwiler, J.; Dracos, M.; Drexlin, G.; Efremenko, Y.; Ejiri, H.; Falchini, E.; Fatemi-Ghomi, N.; Finger, M.Ch.; Finger Miroslav, Ch.; Fiorillo, G.; Fiorini, E.; Fracasso, S.; Frekers, D.; Fushimi, K.I.; Gascon, J.; Genest, M.H.; Georgadze, A.; Giuliani, A.; Goeger-Neff, M.; Gomez-Cadenas, J.J.; Greenfield, M.; H de Jesus, J.; Hallin, A.; Hannestad, St.; Hirai, Sh.; Hoessl, J.; Ianni, A.; Ieva, M.B.; Ishihara, N.; Jullian, S.; Kaim, S.; Kajino, T.; Kayser, B.; Kochetov, O.; Kopylov, A.; Kortelainen, M.; Kroeninger, K.; Lachenmaier, T.; Lalanne, D.; Lanfranchi, J.C.; Lazauskas, R.; Lemrani, A.R.; Li, J.; Mansoulie, B.; Marquet, Ch.; Martinez, J.; Mirizzi, A.; Morfin Jorge, G.; Motz, H.; Murphy, A.; Navas, S.; Niedermeier, L.; Nishiura, H.; Nomachi, M.; Nones, C.; Ogawa, H.; Ogawa, I.; Ohsumi, H.; Palladino, V.; Paniccia, M.; Perotto, L.; Petcov, S.; Pfister, S.; Piquemal, F.; Poves, A.; Praet, Ch.; Raffelt, G.; Ramberg, E.; Rashba, T.; Regnault, N.; Ricol, J.St.; Rodejohann, W.; Rodin, V.; Ruz, J.; Sander, Ch.; Sarazin, X.; Scholberg, K.; Sigl, G.; Simkovic, F.; Sousa, A.; Stanev, T.; Strolger, L.; Suekane, F.; Thomas, J.; Titov, N.; Toivanen, J.; Torrente-Lujan, E.; Tytler, D.; Vala, L.; Vignaud, D.; Vitiello, G.; Vogel, P.; Volkov, G.; Volpe, C.; Wong, H.; Yilmazer, A.

    2006-01-01

    This second symposium on neutrinos and dark matter is aimed at discussing research frontiers and perspectives on currently developing subjects. It has been organized around 6 topics: 1) double beta decays, theory and experiments (particularly: GERDA, MOON, SuperNEMO, CUORE, CANDLES, EXO, and DCBA), 2) neutrinos and nuclear physics, 3) single beta decays and nu-responses, 4) neutrino astrophysics, 5) solar neutrino review, and 6) neutrino oscillations. This document is made up of the slides of the presentations

  5. Self-Paced Physics, Segments 24-27.

    Science.gov (United States)

    New York Inst. of Tech., Old Westbury.

    Four study segments of the Self-Paced Physics Course materials are presented in this fifth problems and solutions book used as a part of student course work. The subject matter is related to work in electric fields, potential differences, parallel plates, electric potential energies, potential gradients, capacitances, and capacitor circuits.…

  6. Self-Paced Physics, Segments 28-31.

    Science.gov (United States)

    New York Inst. of Tech., Old Westbury.

    Four study segments of the Self-Paced Physics Course materials are presented in this sixth problems and solutions book used as a part of student course work. The subject matter is related to electric currents, current densities, resistances, Ohm's law, voltages, Joule heating, electromotive forces, single loop circuits, series and parallel…

  7. Generalized calculus with applications to matter and forces

    CERN Document Server

    Campos, L M B C

    2014-01-01

    Combining mathematical theory, physical principles, and engineering problems, Generalized Calculus with Applications to Matter and Forces examines generalized functions, including the Heaviside unit jump and the Dirac unit impulse and its derivatives of all orders, in one and several dimensions. The text introduces the two main approaches to generalized functions: (1) as a nonuniform limit of a family of ordinary functions, and (2) as a functional over a set of test functions from which properties are inherited. The second approach is developed more extensively to encompass multidimensional generalized functions whose arguments are ordinary functions of several variables. As part of a series of books for engineers and scientists exploring advanced mathematics, Generalized Calculus with Applications to Matter and Forces presents generalized functions from an applied point of view, tackling problem classes such as: •Gauss and Stokes’ theorems in the differential geometry, tensor calculus, and theory of ...

  8. Relationships between Undergraduates' Argumentation Skills, Conceptual Quality of Problem Solutions, and Problem Solving Strategies in Introductory Physics

    Science.gov (United States)

    Rebello, Carina M.

    2012-01-01

    This study explored the effects of alternative forms of argumentation on undergraduates' physics solutions in introductory calculus-based physics. A two-phase concurrent mixed methods design was employed to investigate relationships between undergraduates' written argumentation abilities, conceptual quality of problem solutions, as well…

  9. Correlated electrons in quantum matter

    CERN Document Server

    Fulde, Peter

    2012-01-01

    An understanding of the effects of electronic correlations in quantum systems is one of the most challenging problems in physics, partly due to the relevance in modern high technology. Yet there exist hardly any books on the subject which try to give a comprehensive overview on the field covering insulators, semiconductors, as well as metals. The present book tries to fill that gap. It intends to provide graduate students and researchers a comprehensive survey of electron correlations, weak and strong, in insulators, semiconductors and metals. This topic is a central one in condensed matter and beyond that in theoretical physics. The reader will have a better understanding of the great progress which has been made in the field over the past few decades.

  10. Fourth American Physical Society Topical Conference on Shock Waves in Condensed Matter

    CERN Document Server

    Shock Waves in Condensed Matter

    1986-01-01

    The Fourth American Physical Society Topical Conference on Shock Waves in Condensed Matter was held in Spokane, Washington, July 22-25, 1985. Two hundred and fifty scientists and engineers representing thirteen countries registered at the conference. The countries represented included the United States of America, Australia, Canada, The People's Repub­ lic of China, France, India, Israel, Japan, Republic of China (Taiwan), United Kingdom, U. S. S. R, Switzerland and West Germany. One hundred and sixty-two technical papers, cov­ ering recent developments in shock wave and high pressure physics, were presented. All of the abstracts have been published in the September 1985 issue of the Bulletin of the American Physical Society. The topical conferences, held every two years since 1979, have become the principal forum for shock wave studies in condensed materials. Both formal and informal technical discussions regarding recent developments conveyed a sense of excitement. Consistent with the past conferences, th...

  11. Direct and Indirect Dark Matter Detection in Gauge Theories

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, Farinaldo [Federal Univ. of Paraba (Brazil)

    2013-01-01

    The Dark matter (DM) problem constitutes a key question at the interface among Particle Physics, Astrophysics and Cosmology. The observational data which have been accumulated in the last years point to an existence of non baryonic amount of DM. Since the Standard Model (SM) does not provide any candidate for such non-baryonic DM, the evidence of DM is a major indication for new physics beyond the SM. We will study in this work one of the most popular DM candidates, the so called WIMPs (Weakly Interacting Massive Particles) from a direct and indirect detection perspective. In order to approach the direct and indirect dection of DM in the context of Particle Physics in a more pedagogic way, we will begin our discussion talking about a minimal extension of the SM. Later we will work on the subject in a 3-3-1 model. Next, we will study the role of WIMPs in the Big Bang Nucleosynthesis. Lastly, we will look for indirect DM signals in the center of our galaxy using the NASA Satellite, called Fermi-LAT. Through a comprehensive analysis of the data events observed by Fermi-LAT and some background models, we will constrain the dark matter annihilation cross section for several annihilation channels and dark matter halo profiles.

  12. Learning problem-solving skills in a distance education physics course

    Science.gov (United States)

    Rampho, G. J.; Ramorola, M. Z.

    2017-10-01

    In this paper we present the results of a study on the effectiveness of combinations of delivery modes of distance education in learning problem-solving skills in a distance education introductory physics course. A problem-solving instruction with the explicit teaching of a problem-solving strategy and worked-out examples were implemented in the course. The study used the ex post facto research design with stratified sampling to investigate the effect of the learning of a problem-solving strategy on the problem-solving performance. The number of problems attempted and the mean frequency of using a strategy in solving problems in the three course presentation modes were compared. The finding of the study indicated that combining the different course presentation modes had no statistically significant effect in the learning of problem-solving skills in the distance education course.

  13. The Future of Physics

    International Nuclear Information System (INIS)

    Gross, David

    2005-01-01

    In this talk I will discuss 25 questions that might guide physics, in the broadest sense, over the next 25 years. The 25 questions are: (1) The origin of the Universe; (2) The nature of Dark Matter; (3) The nature of Dark Energy; (4) The formation of structures in the Universe; (5) The validity of General Relativity; (6) The validity of Quantum Mechanics; (7) The problems not solved by the Standard Model of particles; (8) The existence of supersymmetry; (9) The solution of QCD; (10) The nature of string theory; (11) The nature of space and time; (12) Whether the laws of physics are unique; (13) Can kinematics, dynamics and initial conditions be separated; (14) Are there new states of condensed matter; (15) The understanding of complexity in computing; (16) The construction of a quantum computer; (17) The existence of a room-temperature superconductor; (18) The existence of a theory of biology; (19) Deducing physical form from genomics; (20) The physical basis of consciousness; (21) Could a computer become a creative physicist; (22) How to avoid the balkanization of physics; (23) The scope of reductionism; (24) The role of theory; and (25) How to avoid depending on unrealizable big physics projects.

  14. A modern course in statistical physics

    CERN Document Server

    Reichl, Linda E

    2016-01-01

    "A Modern Course in Statistical Physics" is a textbook that illustrates the foundations of equilibrium and non-equilibrium statistical physics, and the universal nature of thermodynamic processes, from the point of view of contemporary research problems. The book treats such diverse topics as the microscopic theory of critical phenomena, superfluid dynamics, quantum conductance, light scattering, transport processes, and dissipative structures, all in the framework of the foundations of statistical physics and thermodynamics. It shows the quantum origins of problems in classical statistical physics. One focus of the book is fluctuations that occur due to the discrete nature of matter, a topic of growing importance for nanometer scale physics and biophysics. Another focus concerns classical and quantum phase transitions, in both monatomic and mixed particle systems. This fourth edition extends the range of topics considered to include, for example, entropic forces, electrochemical processes in biological syste...

  15. Studies of Visual Attention in Physics Problem Solving

    Science.gov (United States)

    Madsen, Adrian M.

    2013-01-01

    The work described here represents an effort to understand and influence visual attention while solving physics problems containing a diagram. Our visual system is guided by two types of processes--top-down and bottom-up. The top-down processes are internal and determined by ones prior knowledge and goals. The bottom-up processes are external and…

  16. Current trends in non-accelerator particle physics: 1, Neutrino mass and oscillation. 2, High energy neutrino astrophysics. 3, Detection of dark matter. 4, Search for strange quark matter. 5, Magnetic monopole searches

    International Nuclear Information System (INIS)

    He, Yudong

    1995-07-01

    This report is a compilation of papers reflecting current trends in non-accelerator particle physics, corresponding to talks that its author was invited to present at the Workshop on Tibet Cosmic Ray Experiment and Related Physics Topics held in Beijing, China, April 4--13, 1995. The papers are entitled 'Neutrino Mass and Oscillation', 'High Energy Neutrino Astrophysics', 'Detection of Dark Matter', 'Search for Strange Quark Matter', and 'Magnetic Monopole Searches'. The report is introduced by a survey of the field and a brief description of each of the author's papers

  17. Behavior Problems in School-Aged Physically Abused and Neglected Children in Spain.

    Science.gov (United States)

    de Paul, Joaquin; Arruabarrena, M. Ignacia

    1995-01-01

    This study investigated behavior problems in 66 school-aged physically abused, neglected, and control group children in the Basque Country, Spain. Abused and neglected children had higher subscale scores for social problems, delinquent behavior, and attention problems and showed lower school adjustment. Neglected children appeared more aggressive,…

  18. 132nd International School of Physics "Enrico Fermi" : Course on Dark Matter in the Universe

    CERN Document Server

    Primack, Joel R; Provenzale, A; International School of Physics "Enrico Fermi" : Course on Dark Matter in the Universe; Scuola Internazionale di Fisica "Enrico Fermi"

    1996-01-01

    Physics and astrophysics came to dark matter through many different routes, finally accepting it, but often with some distaste. It has been noticed that the existence of dark matter is yet another displacement of humans from the centre of the Universe: not only do our planet and our sun have no central position in the Universe, not only are humans just animals (although with a 'specialized' central nervous system), but even the material of which we are made is only a marginal component of the cosmic substance! If this is the right attitude to take, scientists feeling distaste for dark matter are much like Galileo Galilei's colleagues who refused to look through the telescope to watch the Medici planets. Nevertheless, astronomers, when required to take a ballot in favour of some cosmological model, often still vote for 'pure baryonic' with substantial majorities, although most cosmologists assume that a 'cold' component of dark matter plays a role in producing the world as we observe it. Among the many subject...

  19. Problems in particle theory. Technical report - 1993--1994

    International Nuclear Information System (INIS)

    Adler, S.L.; Wilczek, F.

    1994-10-01

    This report is a progress report on the work of two principal investigators in the broad area of particle physics theory, covering their personal work, that of their coworkers, and their proposed work for the future. One author has worked in the past on various topics in field theory and particle physics, among them current algebras, the physics of neutrino induced reactions, quantum electrodynamics (including strong magnetic field processes), the theory of the axial-vector current anomaly, topics in quantum gravity, and nonlinear models for quark confinement. While much of his work has been analytical, all of the projects listed above (except for the work on gravity) had phases which required considerable computer work as well. Over the next several years, he proposes to continue or initiate research on the following problems: (1) Acceleration algorithms for the Monte Carlo analysis of lattice field and gauge theories, and more generally, new research in computational neuroscience and pattern recognition. (2) Construction of quaternionic generalizations of complex quantum mechanics and field theory, and their application to composite models of quarks and leptons, and to the problem of unifying quantum theories of matter with general relativity. One author has worked on problems in exotic quantum statistics and its applications to condensed matter systems. His work has also continued on the quantum theory of black holes. This has evolved toward understanding properties of quantum field theory and string theory in incomplete regions of flat space

  20. Proceedings of workshop on dark matter and the structure of the universe

    International Nuclear Information System (INIS)

    Sasaki, Misao

    1989-10-01

    The workshop on 'Dark matter and the structure of the universe' was held from January 29 to February 1, 1989 at the Research Institute for Theoretical Physics, Hiroshima University. It aimed at clarifying the basic theoretical problems of the dark matter and the structure of the universe, and gaining inspiration on the direction of future research. In the first half of the workshop, the observed data on the large scale structure were critically reviewed, and some new ideas and theoretical frameworks which relate the actual cosmological structure to the observable quantities were presented. In the second half of the workshop, the various possible matters being proposed for the dark matter were examined in the light of both observed (or experimental) data and theoretical predictions. The speakers in the workshop gave well prepared, stimulative talks, and made it possible for the participants to have fruitful and constructive discussions. The workshop was supported partially by the Grant in Aid for Scientific Research, Ministry of Education, and by the Research Institute for Theoretical Physics, Hiroshima University. In this report, eight presentations on observational and theoretical cosmology and ten on dark matter and galaxy formation are collected. (K.I.)

  1. What is Time in Some Modern Physics Theories: Interpretation Problems

    Directory of Open Access Journals (Sweden)

    Karpenko Ivan A.

    2016-03-01

    Full Text Available The article deals with the problem of time in the context of several theories of modem physics. This fundamental concept inevitably arises in physical theories, but so far there is no adequate description of it in the philosophy of science. In the theory of relativity, quantum field theory. Standard Model of particle physics, theory of loop quantum gravity, superstring theory and other most recent theories the idea of time is shown explicitly or not. Sometimes, such as in the special theory of relativity, it plays a significant role and sometimes it does not. But anyway it exists and is implied by the content of the theory, which in some cases directly includes its mathematical tools. Fundamental difference of space-time processes in microcosm and macrocosm is of particular importance for solving the problem. In this regard, a need to understand the time in the way it appears in modem physics, to describe it in the language of philosophy arises (satisfactory for time description mathematical tools also do not exist. This will give an opportunity to get closer to the answer on question of time characteristics. And even if we do not obtain the exact answer, we will still be able to formulate the right question about its nature. For this purpose, the present research carries out analysis of the key theories of modern physics with regard to historical and scientific, historical and philosophical perspectives, hi some cases, this gives an opportunity to detect the succession of the associated with time perception ideas, their development, as well as the origination of fundamentally new ones. During the analysis, the conect characteristics of time are formulated from the point of view of physical theory and the attempt to state the nature of time is made. On the ground of conducted research, the conclusions about current state of the problem and its future solution perspectives are drawn.

  2. Numerical methods for solution of some nonlinear problems of mathematical physics

    International Nuclear Information System (INIS)

    Zhidkov, E.P.

    1981-01-01

    The continuous analog of the Newton method and its application to some nonlinear problems of mathematical physics using a computer is considered. It is shown that the application of this method in JINR to the wide range of nonlinear problems has shown its universality and high efficiency [ru

  3. Solving Large-Scale Computational Problems Using Insights from Statistical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Selman, Bart [Cornell University

    2012-02-29

    Many challenging problems in computer science and related fields can be formulated as constraint satisfaction problems. Such problems consist of a set of discrete variables and a set of constraints between those variables, and represent a general class of so-called NP-complete problems. The goal is to find a value assignment to the variables that satisfies all constraints, generally requiring a search through and exponentially large space of variable-value assignments. Models for disordered systems, as studied in statistical physics, can provide important new insights into the nature of constraint satisfaction problems. Recently, work in this area has resulted in the discovery of a new method for solving such problems, called the survey propagation (SP) method. With SP, we can solve problems with millions of variables and constraints, an improvement of two orders of magnitude over previous methods.

  4. Nicotine dependence matters: examining longitudinal association between smoking and physical activity among Canadian adults.

    Science.gov (United States)

    Azagba, Sunday; Asbridge, Mark

    2013-11-01

    A number of studies point to the inverse relationship between physical activity and smoking; however, none has examined the role of nicotine dependence in physical activity participation among smokers. This study examined whether levels of nicotine dependence modify the association between leisure time physical activity and smoking status. The study used longitudinal data on 6795 adults from the Canadian National Population Health Survey (2004-2010). Generalized estimating equations were used to examine the association between physical activity, smoking, and nicotine dependence. We found that nicotine dependent smokers were significantly less likely to be physically active compared to non-smokers. Specifically, using the Fagerstrom Test for Nicotine Dependence, nicotine dependent smokers (OR 0.65, 95% CI 0.55-0.76) were less likely to be physically active while no significant difference was found for non-dependent smokers (OR 0.90, 95% CI 0.80-1.02) compared to non-smokers. Nicotine dependence matters in shaping engagement in physical activity among daily smokers. Efforts directed at promoting smoking cessation through nicotine dependence treatment intervention may provide additional benefits to health and well-being through an increased participation in physical activity. © 2013.

  5. The effectiveness of collaborative problem based physics learning (CPBPL) model to improve student’s self-confidence on physics learning

    Science.gov (United States)

    Prahani, B. K.; Suprapto, N.; Suliyanah; Lestari, N. A.; Jauhariyah, M. N. R.; Admoko, S.; Wahyuni, S.

    2018-03-01

    In the previous research, Collaborative Problem Based Physic Learning (CPBPL) model has been developed to improve student’s science process skills, collaborative problem solving, and self-confidence on physics learning. This research is aimed to analyze the effectiveness of CPBPL model towards the improvement of student’s self-confidence on physics learning. This research implemented quasi experimental design on 140 senior high school students who were divided into 4 groups. Data collection was conducted through questionnaire, observation, and interview. Self-confidence measurement was conducted through Self-Confidence Evaluation Sheet (SCES). The data was analyzed using Wilcoxon test, n-gain, and Kruskal Wallis test. Result shows that: (1) There is a significant score improvement on student’s self-confidence on physics learning (α=5%), (2) n-gain value student’s self-confidence on physics learning is high, and (3) n-gain average student’s self-confidence on physics learning was consistent throughout all groups. It can be concluded that CPBPL model is effective to improve student’s self-confidence on physics learning.

  6. Quantum physics of light and matter photons, atoms, and strongly correlated systems

    CERN Document Server

    Salasnich, Luca

    2017-01-01

    This compact but exhaustive textbook, now in its significantly revised and expanded second edition, provides an essential introduction to the field quantization of light and matter with applications to atomic physics and strongly correlated systems. Following an initial review of the origins of special relativity and quantum mechanics, individual chapters are devoted to the second quantization of the electromagnetic field and the consequences of light field quantization for the description of electromagnetic transitions. The spin of the electron is then analyzed, with particular attention to its derivation from the Dirac equation. Subsequent topics include the effects of external electric and magnetic fields on the atomic spectra and the properties of systems composed of many interacting identical particles. The book also provides a detailed explanation of the second quantization of the non-relativistic matter field, i.e., the Schrödinger field, which offers a powerful tool for the investigation of many-body...

  7. Elements of a cognitive model of physics problem solving: Epistemic games

    Directory of Open Access Journals (Sweden)

    Jonathan Tuminaro

    2007-07-01

    Full Text Available Although much is known about the differences between expert and novice problem solvers, knowledge of those differences typically does not provide enough detail to help instructors understand why some students seem to learn physics while solving problems and others do not. A critical issue is how students access the knowledge they have in the context of solving a particular problem. In this paper, we discuss our observations of students solving physics problems in authentic situations in an algebra-based physics class at the University of Maryland. We find that when these students are working together and interacting effectively, they often use a limited set of locally coherent resources for blocks of time of a few minutes or more. This coherence appears to provide the student with guidance as to what knowledge and procedures to access and what to ignore. Often, this leads to the students failing to apply relevant knowledge they later show they possess. In this paper, we outline a theoretical phenomenology for describing these local coherences and identify six organizational structures that we refer to as epistemic games. The hypothesis that students tend to function within the narrow confines of a fairly limited set of games provides a good description of our observations. We demonstrate how students use these games in two case studies and discuss the implications for instruction.

  8. Higgs, supersymmetry and dark matter after Run I of the LHC

    CERN Document Server

    Dumont, Beranger

    2017-01-01

    Two major problems call for an extension of the Standard Model (SM): the hierarchy problem in the Higgs sector and the dark matter in the Universe. The discovery of a Higgs boson with mass of about 125 GeV was clearly the most significant piece of news from CERN's Large Hadron Collider (LHC). In addition to representing the ultimate triumph of the SM, it shed new light on the hierarchy problem and opened up new ways of probing new physics. The various measurements performed at Run I of the LHC constrain the Higgs couplings to SM particles as well as invisible and undetected decays. In this thesis, the impact of the LHC Higgs results on various new physics scenarios is assessed, carefully taking into account uncertainties and correlations between them. Generic modifications of the Higgs coupling strengths, possibly arising from extended Higgs sectors or higher-dimensional operators, are considered. Furthermore, specific new physics models are tested. This includes, in particular, the phenomenological Minimal S...

  9. Self-Paced Physics, Segments 19-23.

    Science.gov (United States)

    New York Inst. of Tech., Old Westbury.

    Five study segments of the Self-Paced Physics Course materials are presented in this fourth problems and solutions book used as a part of student course work. The subject matter is related to electric charges, insulators, Coulomb's law, electric fields, lines of force, solid angles, conductors, motion of charged particles, dipoles, electric flux,…

  10. Dark matter at the Fermi scale

    International Nuclear Information System (INIS)

    Feng, Jonathan L

    2006-01-01

    Recent breakthroughs in cosmology reveal that a quarter of the Universe is composed of dark matter, but the microscopic identity of dark matter remains a deep mystery. I review recent progress in resolving this puzzle, focusing on two well-motivated classes of dark matter candidates: weakly interacting massive particles (WIMPs) and superWIMPs. These possibilities have similar motivations: they exist in the same well-motivated particle physics models, the observed dark matter relic density emerges naturally and dark matter particles have mass around 100 GeV, the energy scale identified as interesting over 70 years ago by Fermi. At the same time, they have widely varying implications for direct and indirect dark matter searches, particle colliders, Big Bang nucleosynthesis, the cosmic microwave background, and halo profiles and structure formation. If WIMPs or superWIMPs are a significant component of dark matter, we will soon be entering a golden era in which dark matter will be studied through diverse probes at the interface of particle physics, astroparticle physics and cosmology. I outline a programme of dark matter studies for each of these scenarios and discuss the prospects for identifying dark matter in the coming years. (topical review)

  11. DESIGNING ALGORITHMS FOR SOLVING PHYSICS PROBLEMS ON THE BASIS OF MIVAR APPROACH

    Directory of Open Access Journals (Sweden)

    Dmitry Alekseevich Chuvikov

    2017-05-01

    Full Text Available The paper considers the process of designing algorithms for solving physics problems on the basis of mivar approach. The work also describes general principles of mivar theory. The concepts of parameter, relation and class in mivar space are considered. There are descriptions of properties which every object in Wi!Mi model should have. An experiment in testing capabilities of the Wi!Mi software has been carried out, thus the model has been designed which solves physics problems from year 8 school course in Russia. To conduct the experiment a new version of Wi!Mi 2.1 software has been used. The physics model deals with the following areas: thermal phenomena, electric and electromagnetic phenomena, optical phenomena.

  12. Complementary aspects on matter-antimatter boundary layers

    International Nuclear Information System (INIS)

    Lehnert, B.

    1990-05-01

    This paper gives some complementary aspects on the problems of the matter-antimatter metagalaxy model and its cellular structure, as being proposed by Klein and Alfven. A previously outlined one-dimensional model of a magnetized matter-antimatter boundary layer is updated and extended, by introducing amended nuclear annihilation data, and by making improved approximations of the layer structure and its dependence on relevant parameters. The critical beta value obtained from this model leads to critical plasma densities which are not high enough to become reconcilable with a cellular matter-antimatter structure within the volume of a galaxy. Additional investigations are required on the questions whether the obtained beta limit would still apply to cells of the size of a galaxy, and whether large modification of this limit could result from further refinement of the theory and from the transition to a three-dimensional model. Attention is called to the wide area of further research on ambiplasma physics, and on a three-dimensional cell structure with associated problems of equilibrium and stability. In particular, the high-energy ambiplasma component has to be further analysed in terms of kinetic theory, on account of the large Larmor radii of the corresponding electrons and positrons

  13. 21st century: what is life from the perspective of physics?

    International Nuclear Information System (INIS)

    Ivanitskii, Genrikh R

    2010-01-01

    The evolution of the biophysical paradigm over 65 years since the publication in 1944 of Erwin Schroedinger's What is Life? The Physical Aspects of the Living Cell is reviewed. Based on the advances in molecular genetics, it is argued that all the features characteristic of living systems can also be found in nonliving ones. Ten paradoxes in logic and physics are analyzed that allow defining life in terms of a spatial-temporal hierarchy of structures and combinatory probabilistic logic. From the perspective of physics, life can be defined as resulting from a game involving interactions of matter one part of which acquires the ability to remember the success (or failure) probabilities from the previous rounds of the game, thereby increasing its chances for further survival in the next round. This part of matter is currently called living matter. (reviews of topical problems)

  14. How Can We Improve Problem Solving in Undergraduate Biology? Applying Lessons from 30 Years of Physics Education Research

    Science.gov (United States)

    Hoskinson, A.-M.; Caballero, M. D.; Knight, J. K.

    2013-01-01

    If students are to successfully grapple with authentic, complex biological problems as scientists and citizens, they need practice solving such problems during their undergraduate years. Physics education researchers have investigated student problem solving for the past three decades. Although physics and biology problems differ in structure and content, the instructional purposes align closely: explaining patterns and processes in the natural world and making predictions about physical and biological systems. In this paper, we discuss how research-supported approaches developed by physics education researchers can be adopted by biologists to enhance student problem-solving skills. First, we compare the problems that biology students are typically asked to solve with authentic, complex problems. We then describe the development of research-validated physics curricula emphasizing process skills in problem solving. We show that solving authentic, complex biology problems requires many of the same skills that practicing physicists and biologists use in representing problems, seeking relationships, making predictions, and verifying or checking solutions. We assert that acquiring these skills can help biology students become competent problem solvers. Finally, we propose how biology scholars can apply lessons from physics education in their classrooms and inspire new studies in biology education research. PMID:23737623

  15. How can we improve problem solving in undergraduate biology? Applying lessons from 30 years of physics education research.

    Science.gov (United States)

    Hoskinson, A-M; Caballero, M D; Knight, J K

    2013-06-01

    If students are to successfully grapple with authentic, complex biological problems as scientists and citizens, they need practice solving such problems during their undergraduate years. Physics education researchers have investigated student problem solving for the past three decades. Although physics and biology problems differ in structure and content, the instructional purposes align closely: explaining patterns and processes in the natural world and making predictions about physical and biological systems. In this paper, we discuss how research-supported approaches developed by physics education researchers can be adopted by biologists to enhance student problem-solving skills. First, we compare the problems that biology students are typically asked to solve with authentic, complex problems. We then describe the development of research-validated physics curricula emphasizing process skills in problem solving. We show that solving authentic, complex biology problems requires many of the same skills that practicing physicists and biologists use in representing problems, seeking relationships, making predictions, and verifying or checking solutions. We assert that acquiring these skills can help biology students become competent problem solvers. Finally, we propose how biology scholars can apply lessons from physics education in their classrooms and inspire new studies in biology education research.

  16. Theoretical nuclear physics in France: overview and perspectives - 2004 and 2009

    International Nuclear Information System (INIS)

    2004-11-01

    A first report published in 2004 proposes an overview of the situation of research in theoretical nuclear physics in France per field of research: nucleus structure, nuclear reactions at low and medium energies (fusion, fission, multi fragmentation), hadron physics, state equation of nuclear matter and of neutron matter, and nuclear astrophysics, plasma of quarks and gluons, and nucleus-nucleus collisions at high energy, developments of the theory of the nuclear N-body problem and its impact on other disciplines. For each theme, the report indicates the involved research themes and their specific fields of research, comments the research themes, objectives and perspectives, discusses how the theoretical activity matches experimental programmes. The second report published in 2009 proposes the same kind of overview for the following themes: nucleus structure, state equation of nuclear and stellar matter, collisions and reactions at low and medium energy, hadron physics, quarks and gluons in nuclear physics, interdisciplinary applications of nuclear theory. Each report also provides some statistics about the researcher community

  17. Inertial frames and breakthrough propulsion physics

    Science.gov (United States)

    Millis, Marc G.

    2017-09-01

    The term ;Breakthrough Propulsion Physics; comes from the NASA project by that name which examined non-rocket space drives, gravity control, and faster-than-light travel. The focus here is on space drives and the related unsolved physics of inertial frames. A ;space drive; is a generic term encompassing any concept for using as-yet undiscovered physics to move a spacecraft instead of existing rockets, sails, or tethers. The collective state of the art spans mostly steps 1-3 of the scientific method: defining the problem, collecting data, and forming hypotheses. The key issues include (1) conservation of momentum, (2) absence of obvious reaction mass, and (3) the net-external thrusting requirement. Relevant open problems in physics include: (1) the sources and mechanisms of inertial frames, (2) coupling of gravitation to the other fundamental forces, and (3) the nature of the quantum vacuum. Rather than following the assumption that inertial frames are an immutable, intrinsic property of space, this paper revisits Mach's Principle, where it is posited that inertia is relative to the distant surrounding matter. This perspective allows conjectures that a space drive could impart reaction forces to that matter, via some as-yet undiscovered interaction with the inertial frame properties of space. Thought experiments are offered to begin a process to derive new hypotheses. It is unknown if this line of inquiry will be fruitful, but it is hoped that, by revisiting unsolved physics from a propulsion point of view, new insights will be gained.

  18. Abraham Pais Prize Lecture: Shifting Problems and Boundaries in the History of Modern Physics

    Science.gov (United States)

    Nye, Mary-Jo

    A long established category of study in the history of science is the ``history of physical sciences.'' It is a category that immediately begs the question of disciplinary boundaries for the problems and subjects addressed in historical inquiry. As a historian of the physical sciences, I often have puzzled over disciplinary boundaries and the means used to create or justify them. Scientists most often have been professionally identified with specific institutionalized fields since the late 19th century, but the questions they ask and the problems they solve are not neatly carved up by disciplinary perimeters. Like institutional departments or professorships, the Nobel Prizes in the 20th century often have delineated the scope of ``Physics'' or ``Chemistry'' (and ``Physiology or Medicine''), but the Prizes do not reflect disciplinary rigidity, despite some standard core subjects. In this paper I examine trends in Nobel Prize awards that indicate shifts in problem solving and in boundaries in twentieth century physics, tying those developments to changing themes in the history of physics and physical science in recent decades.

  19. Do New Caledonian crows solve physical problems through causal reasoning?

    Science.gov (United States)

    Taylor, A.H.; Hunt, G.R.; Medina, F.S.; Gray, R.D.

    2008-01-01

    The extent to which animals other than humans can reason about physical problems is contentious. The benchmark test for this ability has been the trap-tube task. We presented New Caledonian crows with a series of two-trap versions of this problem. Three out of six crows solved the initial trap-tube. These crows continued to avoid the trap when the arbitrary features that had previously been associated with successful performances were removed. However, they did not avoid the trap when a hole and a functional trap were in the tube. In contrast to a recent primate study, the three crows then solved a causally equivalent but visually distinct problem—the trap-table task. The performance of the three crows across the four transfers made explanations based on chance, associative learning, visual and tactile generalization, and previous dispositions unlikely. Our findings suggest that New Caledonian crows can solve complex physical problems by reasoning both causally and analogically about causal relations. Causal and analogical reasoning may form the basis of the New Caledonian crow's exceptional tool skills. PMID:18796393

  20. Parenting stress among mothers of children with different physical, mental, and psychological problems

    Directory of Open Access Journals (Sweden)

    Awat Feizi

    2014-01-01

    Full Text Available Background: Parents of children with developmental problems are always bearing a load of stress. The aim of this study is to compare the stress in mothers of children with different disabilities to each other, considering their demographic background. Materials and Methods: This was a cross-sectional study conducted in Isfahan, Iran during 2012 on 285 mothers of 6-12 years old children with chronic physical disease, psychological disorder, and sensory-motor and mental problems. Abedin′s parenting stress questionnaire was used and obtained data were analyzed using multivariate analysis of variance or covariance as appropriate. Results: Mothers of children with sensory-motor mental and chronic physical problems experience more stress than mothers of children with psychological disorders (P < 0.05. The stress score of mothers of children with psychological disorders was lower than the other two groups. Also there was a significant difference between the score of mothers of children with chronic physical problems and mothers of children with psychological disorders regarding parent-child dysfunctional interaction (P < 0.01. A significant difference was observed in terms of stress among mothers of children with sensory-motor mental problems with different number of children (P < 0.05; also mothers of children with chronic physical problems in different levels of education have experienced different levels of parenting stress (P < 0.05 Conclusion: Due to high level of parenting stress among our studied samples, special education and early intervention are needed for parents in our study population in order to deepening their diagnostic knowledge and professional consultation on stress management

  1. Impact of Y2K problem on physical protection system

    International Nuclear Information System (INIS)

    Kumar, R.; Swadia, N.S.; Zanwar, P.S.; Mishra, G.P.; Salunke, A.S.; Nigam, R.K.

    1999-01-01

    Year 2000 related system failures/problems in Physical Protection System pose no threat to general safety and functioning of any nuclear facility. But there can be potential security threats having radiation safety and non-proliferation concern and hence should be given due importance. Reviewing and testing Physical Protection System for Y2K compliance are easier than other systems as it does not directly affect operation of the plant. The existing emergency response capability at the nuclear facilities should be utilizes effectively to mitigate any Y2K induced events on Physical Protection System with dedicated manpower and channeled efforts

  2. Physics Teachers' Education (PTE): Problems and Challenges

    Science.gov (United States)

    Sassi, Elena; Michelini, Marisa

    A vast majority of the research results acknowledge the crucial role of teacher's education, as a vital tool in enhancing the quality of physics education. The projects like PISA, ROSE and TIMMS showcase the impact of teacher's education as a qualitative improvement in the physics learning environment. In Physics Education Research (PER), the impact of teacher's education had been addressed for the its role in the enhancement of positive interest among the students. The current world-wide state of the art characterizes a large variety of boundary conditions, traditions and practices that are being followed. In our present context, we foucus and discuss on the multidimensional challanges such as competencies needed, degrees required, problems encountered, support to be provided and the basic pre-requirements of Teacher's education for the secondary schools. We present some of the teaching methods and practices followed in coherent with, both, the Student centered and open learning environments along with some of the useful didactical indicators. Also, we potray a couple of research-based examples successfully experimented in Italy. Finally we propose some useful recommendations along with the criteria to be followed in the teachers education for the overall improvement.

  3. Novel dark matter phenomenology at colliders

    Science.gov (United States)

    Wardlow, Kyle Patrick

    While a suitable candidate particle for dark matter (DM) has yet to be discovered, it is possible one will be found by experiments currently investigating physics on the weak scale. If discovered on that energy scale, the dark matter will likely be producible in significant quantities at colliders like the LHC, allowing the properties of and underlying physical model characterizing the dark matter to be precisely determined. I assume that the dark matter will be produced as one of the decay products of a new massive resonance related to physics beyond the Standard Model, and using the energy distributions of the associated visible decay products, develop techniques for determining the symmetry protecting these potential dark matter candidates from decaying into lighter Standard Model (SM) particles and to simultaneously measure the masses of both the dark matter candidate and the particle from which it decays.

  4. The profile of students’ problem-solving skill in physics across interest program in the secondary school

    Science.gov (United States)

    Jua, S. K.; Sarwanto; Sukarmin

    2018-05-01

    Problem-solving skills are important skills in physics. However, according to some researchers, the problem-solving skill of Indonesian students’ problem in physics learning is categorized still low. The purpose of this study was to identify the profile of problem-solving skills of students who follow the across the interests program of physics. The subjects of the study were high school students of Social Sciences, grade X. The type of this research was descriptive research. The data which used to analyze the problem-solving skills were obtained through student questionnaires and the test results with impulse materials and collision. From the descriptive analysis results, the percentage of students’ problem-solving skill based on the test was 52.93% and indicators respectively. These results indicated that students’ problem-solving skill is categorized low.

  5. EDITORIAL: Richard Palmer: celebrating 37 years with Journal of Physics: Condensed Matter Richard Palmer: celebrating 37 years with Journal of Physics: Condensed Matter

    Science.gov (United States)

    Ferry, David

    2009-01-01

    It is with a great deal of both happiness and sadness that I have to announce that we are losing one of the real strengths of the Journal of Physics: Condensed Matter (JPCM). Dr Richard Palmer, our Senior Publisher, announced his retirement, and this issue marks the first without his involvement. Of course, we are happy that he will get to enjoy his retirement, but we are sad to lose such a valuable member of our team. Richard first started work at IOP Publishing in March 1971 as an Editorial Assistant with Journal of Physics B: Atomic and Molecular Physics. After a few months, he transferred to Journal of Physics C: Solid State Physics. During his first year, he was sent on a residential publishing training course and asked to sign an undertaking to stay at IOP Publishing for at least two years. Although Richard refused to sign, as he did not want to commit himself, he has remained with the journal since then. The following year, the Assistant Editor of Journal of Physics C: Solid State Physics, Malcolm Haines, walked out without notice in order to work on his family vineyard in France, and Richard stepped into the breach. In those days, external editors had a much more hands-on role in IOP Publishing and he had to travel to Harwell to be interviewed by Alan Lidiard, the Honorary Editor of Journal of Physics C: Solid State Physics, before being given the job of Assistant Editor permanently. I am told that in those days the job consisted mainly of editing and proofreading and peer review. There was no journal development work. At some point in the early 1980s, production and peer review were split into separate departments and Richard then headed a group of journals consisting of Journal of Physics C: Solid State Physics, Journal of Physics D: Applied Physics and Journal of Physics F: Metal Physics, Semiconductor Science and Technology, Superconductor Science and Technology, Plasma Physics and Controlled Fusion, and later Nanotechnology and Modelling and Simulation

  6. Safety from physical viewpoint: ''two-risk model in multiple risk problem''

    International Nuclear Information System (INIS)

    Kuz'Min, I.I.; Akimov, V.A.

    1998-01-01

    Full text of publication follows: the problem of safety provision for people and environment within the framework of a certain socio-economic system (SES) as a problem of managing a great number of interacting risks characterizing numerous hazards (natural, manmade, social, economic once, etc.) inherent in the certain SES has been discussed. From the physical point of view, it can be considered a problem of interaction of many bodies which has no accurate mathematical solution even if the laws of interaction of this bodies are known. In physics, to solve this problem, an approach based on the reduction of the above-mentioned problem of the problem of two-body interaction which can be solved accurately in mathematics has been used. The report presents a similar approach to the problem of risk management in the SES. This approach includes the subdivision of numerous hazards inherent within the framework of the SES into two classes of hazards, so that each of the classes could be considered an integrated whole one, each of them being characterized by the appropriate risk. Consequently, problem of 'multiple-risk' management (i.e. the problem of many bodies, as represented in physics) can be reduced to the 'two-risk' management problem (that is, to the problem two-bodies). Within the framework of the two-risk model the optimization of costs to reduce the two kinds of risk, that is, the risk inherent in the SES as a whole, as well as the risk potentially provoked by lots of activities to be introduced in the SES economy has been described. The model has made it possible to formulate and prove the theorem of equilibrium in risk management. Using the theorem, a relatively simple and practically applicable procedure of optimizing the threshold costs to reduce diverse kinds of risk has been elaborated. The procedure provides to assess the minimum value of the cost that can be achieved regarding the socio-economic factors typical of the SES under discussion. The aimed

  7. Testing fundamental physics with gravitational waves

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The landmark detection of gravitational waves (GWs) has opened a new era in physics, giving access to the hitherto unexplored strong-gravity regime, where spacetime curvature is extreme and the relevant speed is close to the speed of light. In parallel to its countless astrophysical applications, this discovery can have also important implications for fundamental physics. In this context, I will discuss some outstanding, cross-cutting problems that can be finally investigated in the GW era: the nature of black holes and of spacetime singularities, the limits of classical gravity, the existence of extra light fields, and the effects of dark matter near compact objects. Future GW measurements will provide unparalleled tests of quantum-gravity effects at the horizon scale, exotic compact objects, ultralight dark matter, and of general relativity in the strong-field regime.

  8. The Relevance of Nuclear Physics

    International Nuclear Information System (INIS)

    Weisskopf, V.F.

    1969-01-01

    I am asked what nuclear physics is about, that is, nuclear physics as distinct from particle physics and other parts of physics. I see three trends in this science. One is the discovery of new phenomena, phenomena of nature which we have not seen or observed, of which we did not know anything before. The second trend, I would say, is towards the solution of fundamental problems, the answers to certain basic questions in physics; I shall give some details later on. The third is the construction of new concepts in physics necessary to deal with the problems not only in nuclear physics but also in the rest of physics. The order of these three items is unimportant. This meeting should be concerned not only with the factual questions of science, but also with the, let me say, philosophic and practical questions of nuclear physics. Why do we do nuclear physics, what is the sense of it, what is the meaning of it and, most importantly, how can we defend the support of nuclear physics, how can we convince the governments to spend money on such a thing, which to a certain extent is our pleasure? And so we will have to be quite clear among ourselves that this is a very important matter

  9. An Examination of Physical and Mental Health Problems of the Homeless.

    Science.gov (United States)

    Solarz, Andrea; Mowbray, Carol

    Homelessness is a significant social problem in the United States and it has been estimated that there may be as many as 2.5 million homeless people in this country today. For these people, poverty, substance abuse, and harsh living conditions may further contribute to the development of physical and mental health problems. A study was conducted…

  10. Some open problems in the physics of disordered systems

    Indian Academy of Sciences (India)

    Some problems in the physics of disordered systems are pointed out; most of these arise from experiments. Keywords. Disordered systems; electron localization; metal insulator transitions. PACS Nos 71.55. .... overlapping the free electron Fermi sphere, the Fermi surface is cut up into a large number of small electron and ...

  11. Electronic collection of solved physics problems to encourage students’ active approach (not only to self study)

    Science.gov (United States)

    Koupilová, Zdeňka; Mandíková, Dana; Snětinová, Marie

    2017-09-01

    Ten years ago we started to develop a Collection of Fully Solved Problems aimed at introductory undergraduate and high school level students. The collection is specially designed to encourage students in an active approach to problem solving, e.g. to solve at least some parts of a problem on their own. Nowadays the Collection contains about 800 fully solved problems in physics in Czech and nearly 180 problems in English. It has several hundreds of unique visitors per school day. Based on user feedback, the collection is used by students mainly for their home study and by teachers as a supplementary material. The creation of the structured solution of the physics problems has proved to be a beneficial activity for prospective physics teachers (students of our department).

  12. Dark matter self-interactions and small scale structure

    Science.gov (United States)

    Tulin, Sean; Yu, Hai-Bo

    2018-02-01

    We review theories of dark matter (DM) beyond the collisionless paradigm, known as self-interacting dark matter (SIDM), and their observable implications for astrophysical structure in the Universe. Self-interactions are motivated, in part, due to the potential to explain long-standing (and more recent) small scale structure observations that are in tension with collisionless cold DM (CDM) predictions. Simple particle physics models for SIDM can provide a universal explanation for these observations across a wide range of mass scales spanning dwarf galaxies, low and high surface brightness spiral galaxies, and clusters of galaxies. At the same time, SIDM leaves intact the success of ΛCDM cosmology on large scales. This report covers the following topics: (1) small scale structure issues, including the core-cusp problem, the diversity problem for rotation curves, the missing satellites problem, and the too-big-to-fail problem, as well as recent progress in hydrodynamical simulations of galaxy formation; (2) N-body simulations for SIDM, including implications for density profiles, halo shapes, substructure, and the interplay between baryons and self-interactions; (3) semi-analytic Jeans-based methods that provide a complementary approach for connecting particle models with observations; (4) merging systems, such as cluster mergers (e.g., the Bullet Cluster) and minor infalls, along with recent simulation results for mergers; (5) particle physics models, including light mediator models and composite DM models; and (6) complementary probes for SIDM, including indirect and direct detection experiments, particle collider searches, and cosmological observations. We provide a summary and critical look for all current constraints on DM self-interactions and an outline for future directions.

  13. Physics of dense matter, neutron stars, and supernova

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1989-02-01

    Nuclear and astrophysical evidence on the equation of state of dense matter is examined. The role of hyperonization of matter in the development of proto-neutron stars is briefly discussed. 7 refs., 4 figs

  14. Benchmark problem suite for reactor physics study of LWR next generation fuels

    International Nuclear Information System (INIS)

    Yamamoto, Akio; Ikehara, Tadashi; Ito, Takuya; Saji, Etsuro

    2002-01-01

    This paper proposes a benchmark problem suite for studying the physics of next-generation fuels of light water reactors. The target discharge burnup of the next-generation fuel was set to 70 GWd/t considering the increasing trend in discharge burnup of light water reactor fuels. The UO 2 and MOX fuels are included in the benchmark specifications. The benchmark problem consists of three different geometries: fuel pin cell, PWR fuel assembly and BWR fuel assembly. In the pin cell problem, detailed nuclear characteristics such as burnup dependence of nuclide-wise reactivity were included in the required calculation results to facilitate the study of reactor physics. In the assembly benchmark problems, important parameters for in-core fuel management such as local peaking factors and reactivity coefficients were included in the required results. The benchmark problems provide comprehensive test problems for next-generation light water reactor fuels with extended high burnup. Furthermore, since the pin cell, the PWR assembly and the BWR assembly problems are independent, analyses of the entire benchmark suite is not necessary: e.g., the set of pin cell and PWR fuel assembly problems will be suitable for those in charge of PWR in-core fuel management, and the set of pin cell and BWR fuel assembly problems for those in charge of BWR in-core fuel management. (author)

  15. The search for decaying Dark Matter

    CERN Document Server

    Herder, J W den; Ruchayskiy, O.; Abazajian, K.; Frenk, C.; Hansen, S.; Jonker, P.; Kouveliotou, C.; Lesgourgues, J.; Neronov, A.; Ohashi, T.; Paerels, F.; Paltani, S.; Piro, L.; Pohl, M.; Shaposhnikov, M.; Silk, J.; Valle, J.W.F.

    2009-01-01

    We propose an X-ray mission called Xenia to search for decaying superweakly interacting Dark Matter particles (super-WIMP) with a mass in the keV range. The mission and its observation plan are capable of providing a major break through in our understanding of the nature of Dark Matter (DM). It will confirm, or reject, predictions of a number of particle physics models by increasing the sensitivity of the search for decaying DM by about two orders of magnitude through a wide-field imaging X-ray spectrometer in combination with a dedicated observation program. The proposed mission will provide unique limits on the mixing angle and mass of neutral leptons, right handed partners of neutrinos, which are important Dark Matter candidates. The existence of these particles is strongly motivated by observed neutrino flavor oscillations and the problem of baryon asymmetry of the Universe. In super-WIMP models, the details of the formation of the cosmic web are different from those of LambdaCDM. The proposed mission wil...

  16. The Interplay of Externalizing Problems and Physical and Inductive Discipline during Childhood

    Science.gov (United States)

    Choe, Daniel Ewon; Olson, Sheryl L.; Sameroff, Arnold J.

    2013-01-01

    Children who are physically disciplined are at elevated risk for externalizing problems. Conversely, maternal reasoning and reminding of rules, or inductive discipline, is associated with fewer child externalizing problems. Few studies have simultaneously examined bidirectional associations between these forms of discipline and child adjustment…

  17. 1000 Solved Problems in Classical Physics An Exercise Book

    CERN Document Server

    Kamal, Ahmad A

    2011-01-01

    This book basically caters to the needs of undergraduate and graduate physics students in classical physics, especially Classical Mechanics and Electricity and Electromagnetism. Lecturers/Tutors may use it as a resource book. The contents of the book are based on the syllabi currently used in the undergraduate courses in the USA, U.K., and other countries. The book consists of 15 chapters, each one beginning with a brief but adequate summary and necessary formulas and Line diagrams followed by a variety of typical problems useful for assignments and exams. Detailed solutions are provided at the end of each chapter.

  18. Moduli Dark Matter and the Search for Its Decay Line using Suzaku X-Ray Telescope

    Science.gov (United States)

    Kusenko, Alexander; Loewenstein, Michael; Yanagida, Tsutomu T.

    2013-01-01

    Light scalar fields called moduli arise from a variety of different models involving supersymmetry and/or string theory; thus their existence is a generic prediction of leading theories for physics beyond the standard model. They also present a formidable, long-standing problem for cosmology. We argue that an anthropic solution to the moduli problem exists in the case of small moduli masses and that it automatically leads to dark matter in the form of moduli. The recent discovery of the 125 GeV Higgs boson implies a lower bound on the moduli mass of about a keV. This form of dark matter is consistent with the observed properties of structure formation, and it is amenable to detection with the help of x-ray telescopes. We present the results of a search for such dark matter particles using spectra extracted from the first deep x-ray observations of the Draco and Ursa Minor dwarf spheroidal galaxies, which are darkmatter- dominated systems with extreme mass-to-light ratios and low intrinsic backgrounds. No emission line is positively detected, and we set new constraints on the relevant new physics.

  19. Self-organization phenomena in plasma physics

    International Nuclear Information System (INIS)

    Sanduloviciu, M.; Popescu, S.

    2001-01-01

    The self-assembling in nature and laboratory of structures in systems away from thermodynamic equilibrium is one of the problems that mostly fascinates the scientists working in all branches of science. In this context a substantial progress has been obtained by investigating the appearance of spatial and spatiotemporal patterns in plasma. These experiments revealed the presence of a scenario of self-organization able to suggest an answer to the central problem of the 'Science of Complexity', why matter transits spontaneously from a disordered into an ordered state? Based on this scenario of self-organization we present arguments proving the possibility to explain the challenging problems of nonequilibrium physics in general. These problems refer to: (i) genuine origin of phase transitions observed in gaseous conductors and semiconductors; (ii) the elucidation of the role played by self-organization in the simulation of oscillations; (iii) the physical basis of anomalous transport of matter and energy with special reference to the possibilities of improving the economical performance of fusion devices; (iv) the possibility to use self-confined gaseous space charged configurations as an alternative to the magnetically confined plasma used at present in fusion devices. In other branches of sciences, as for instance in Biology, the self-organization scenario reveals a new insight into a mechanism able to explain the appearance of the simplest possible space charge configuration able to evolve, under suitable conditions, into prebiotic structures. Referring to phenomena observed in nature, the same self-organization scenario suggests plausible answers to the appearance of ball lightening but also to the origin of the flickering phenomena observed in the light emission of the Sun and stars. For theory the described self-organization scenario offers a new physical basis for many problems of nonlinear science not solved yet and also a new model for the so-called 'self

  20. Important remarks on the problem of neutrino passing through the matter

    International Nuclear Information System (INIS)

    Beshtoev, Kh.M.

    2011-01-01

    It is supposed that resonance enhancement of neutrino oscillations in the matter appears while a neutrino is passing through the matter. It is shown that Wolfenstein equation, for a neutrino passing through the matter, has a disadvantage (it does not take into account the law of momentum conservation; i.e., it is supposed that in the matter the neutrino energy changes, but its momentum does not). It leads, for example, to changing the effective mass of the neutrino by the value 0.87 · 10 -2 eV from a very small value of energy polarization of the matter caused by the neutrino, which is equal 5 · 10 -12 eV. After removing this disadvantage (i.e., taking into account that neutrino momentum also changes in matter) we have obtained a solution to this equation. In this solution a very small enhancement of neutrino oscillations in the solar matter appears due to the smallness of the energy polarization of the matter caused by the neutrino. Two possible solutions to this equation are also given for the limiting cases

  1. Dark matter wants Linear Collider

    International Nuclear Information System (INIS)

    Matsumoto, S.; Asano, M.; Fujii, K.; Takubo, Y.; Honda, T.; Saito, T.; Yamamoto, H.; Humdi, R.S.; Ito, H.; Kanemura, S; Nabeshima, T.; Okada, N.; Suehara, T.

    2011-01-01

    One of the main purposes of physics at the International Linear Collider (ILC) is to study the property of dark matter such as its mass, spin, quantum numbers, and interactions with particles of the standard model. We discuss how the property can or cannot be investigated at the ILC using two typical cases of dark matter scenario: 1) most of new particles predicted in physics beyond the standard model are heavy and only dark matter is accessible at the ILC, and 2) not only dark matter but also other new particles are accessible at the ILC. We find that, as can be easily imagined, dark matter can be detected without any difficulties in the latter case. In the former case, it is still possible to detect dark matter when the mass of dark matter is less than a half mass of the Higgs boson.

  2. Association between Psychopathology and Physical Health Problems among Youth in Residential Treatment

    Science.gov (United States)

    Nelson, Timothy D.; Smith, Tori R.; Duppong Hurley, Kristin; Epstein, Michael H.; Thompson, Ronald W.; Tonniges, Thomas F.

    2013-01-01

    Youth in residential treatment settings often present with a complex combination of mental and physical health problems. Despite an emerging literature documenting significant associations between mental health and physical health, the relationship between these two areas of functioning has not been systematically examined in youth presenting to…

  3. Framework for Understanding LENR Processes, Using Ordinary Condensed Matter Physics

    Science.gov (United States)

    Chubb, Scott

    2005-03-01

    As I have emphasizedootnotetextS.R. Chubb, Proc. ICCF10 (in press). Also, http://www.lenr-canr.org/acrobat/ChubbSRnutsandbol.pdf http://www.lenr-canr.org/acrobat/ChubbSRnutsandbol.pdf, S.R. Chubb, Trans. Amer. Nuc. Soc. 88 , 618 (2003)., in discussions of Low Energy Nuclear Reactions(LENRs), mainstream many-body physics ideas have been largely ignored. A key point is that in condensed matter, delocalized, wave-like effects can allow large amounts of momentum to be transferred instantly to distant locations, without any particular particle (or particles) acquiring high velocity through a Broken Gauge Symmetry. Explicit features in the electronic structure explain how this can occur^1 in finite size PdD crystals, with real boundaries. The essential physics^1 can be related to standard many-body techniquesootnotetextBurke,P.G. and K.A. Berrington, Atomic and Molecular Processes:an R matrix Approach (Bristol: IOP Publishing, 1993).. In the paper, I examine this relationship, the relationship of the theory^1 to other LENR theories, and the importance of certain features (for example, boundaries^1) that are not included in the other LENR theories.

  4. Physics at FAIR

    International Nuclear Information System (INIS)

    Chattopadhyay, Subhasis

    2014-01-01

    The Facility for Antiproton and Ion Research (FAIR) is under construction at Darmstadt, Germany. It will deliver high intensity beams of ions and antiprotons for experiments in the fields of atomic physics, plasma physics, nuclear physics, hadron physics, nuclear matter physics, material physics and biophysics. One of the scientific pillars of FAIR is the Compressed Baryonic Matter (CBM) experiment which is designed for the study of high density nuclear matter as it exists in the core of neutron stars. In this article the scientific program of FAIR will be reviewed with emphasis on the CBM experiment

  5. A Theoretical Analysis: Physical Unclonable Functions and The Software Protection Problem

    Energy Technology Data Exchange (ETDEWEB)

    Nithyanand, Rishab [Stony Brook Univ., NY (United States); Solis, John H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2011-09-01

    Physical Unclonable Functions (PUFs) or Physical One Way Functions (P-OWFs) are physical systems whose responses to input stimuli (i.e., challenges) are easy to measure (within reasonable error bounds) but hard to clone. This property of unclonability is due to the accepted hardness of replicating the multitude of uncontrollable manufacturing characteristics and makes PUFs useful in solving problems such as device authentication, software protection, licensing, and certified execution. In this paper, we focus on the effectiveness of PUFs for software protection and show that traditional non-computational (black-box) PUFs cannot solve the problem against real world adversaries in offline settings. Our contributions are the following: We provide two real world adversary models (weak and strong variants) and present definitions for security against the adversaries. We continue by proposing schemes secure against the weak adversary and show that no scheme is secure against a strong adversary without the use of trusted hardware. Finally, we present a protection scheme secure against strong adversaries based on trusted hardware.

  6. Facilitating case reuse during problem solving in algebra-based physics

    Science.gov (United States)

    Mateycik, Frances Ann

    This research project investigates students' development of problem solving schemata while using strategies that facilitate the process of using solved examples to assist with a new problem (case reuse). Focus group learning interviews were used to explore students' perceptions and understanding of several problem solving strategies. Individual clinical interviews were conducted and quantitative examination data were collected to assess students' conceptual understanding, knowledge organization, and problem solving performance on a variety of problem tasks. The study began with a short one-time treatment of two independent, research-based strategies chosen to facilitate case reuse. Exploration of students' perceptions and use of the strategies lead investigators to select one of the two strategies to be implemented over a full semester of focus group interviews. The strategy chosen was structure mapping. Structure maps are defined as visual representations of quantities and their associations. They were created by experts to model the appropriate mental organization of knowledge elements for a given physical concept. Students were asked to use these maps as they were comfortable while problem solving. Data obtained from this phase of our study (Phase I) offered no evidence of improved problem solving schema. The 11 contact hour study was barely sufficient time for students to become comfortable using the maps. A set of simpler strategies were selected for their more explicit facilitation of analogical reasoning, and were used together during two more semester long focus group treatments (Phase II and Phase III of this study). These strategies included the use of a step-by-step process aimed at reducing cognitive load associated with mathematical procedure, direct reflection of principles involved in a given set of problems, and the direct comparison of problem pairs designed to be void of surface similarities (similar objects or object orientations) and sharing

  7. Electronic collection of solved physics problems to encourage students’ active approach (not only to self study)

    International Nuclear Information System (INIS)

    Koupilová, Zdeňka; Mandíková, Dana; Snětinová, Marie

    2017-01-01

    Ten years ago we started to develop a Collection of Fully Solved Problems aimed at introductory undergraduate and high school level students. The collection is specially designed to encourage students in an active approach to problem solving, e.g. to solve at least some parts of a problem on their own. Nowadays the Collection contains about 800 fully solved problems in physics in Czech and nearly 180 problems in English. It has several hundreds of unique visitors per school day. Based on user feedback, the collection is used by students mainly for their home study and by teachers as a supplementary material. The creation of the structured solution of the physics problems has proved to be a beneficial activity for prospective physics teachers (students of our department). (paper)

  8. Effect of scaffolding on helping introductory physics students solve quantitative problems involving strong alternative conceptions

    Science.gov (United States)

    Lin, Shih-Yin; Singh, Chandralekha

    2015-12-01

    It is well known that introductory physics students often have alternative conceptions that are inconsistent with established physical principles and concepts. Invoking alternative conceptions in the quantitative problem-solving process can derail the entire process. In order to help students solve quantitative problems involving strong alternative conceptions correctly, appropriate scaffolding support can be helpful. The goal of this study is to examine how different scaffolding supports involving analogical problem-solving influence introductory physics students' performance on a target quantitative problem in a situation where many students' solution process is derailed due to alternative conceptions. Three different scaffolding supports were designed and implemented in calculus-based and algebra-based introductory physics courses involving 410 students to evaluate the level of scaffolding needed to help students learn from an analogical problem that is similar in the underlying principles involved but for which the problem-solving process is not derailed by alternative conceptions. We found that for the quantitative problem involving strong alternative conceptions, simply guiding students to work through the solution of the analogical problem first was not enough to help most students discern the similarity between the two problems. However, if additional scaffolding supports that directly helped students examine and repair their knowledge elements involving alternative conceptions were provided, e.g., by guiding students to contemplate related issues and asking them to solve the targeted problem on their own first before learning from the analogical problem provided, students were more likely to discern the underlying similarities between the problems and avoid getting derailed by alternative conceptions when solving the targeted problem. We also found that some scaffolding supports were more effective in the calculus-based course than in the algebra

  9. Singularity Crossing, Transformation of Matter Properties and the Problem of Parametrization in Field Theories

    Science.gov (United States)

    Kamenshchik, A. Yu.

    2018-03-01

    We investigate particular cosmological models, based either on tachyon fields or on perfect fluids, for which soft future singularities arise in a natural way. Our main result is the description of a smooth crossing of the soft singularity in models with an anti-Chaplygin gas or with a particular tachyon field in the presence of dust. Such a crossing is made possible by certain transformations of matter properties. We discuss and compare also different approaches to the problem of crossing of the Big Bang-Big Crunch singularities.

  10. A Solution to the Cosmological Problem of Relativity Theory

    Science.gov (United States)

    Janzen, Daryl

    After nearly a century of scientific investigation, the standard cosmological theory continues to have many unexplained problems, which invariably amount to one troubling statement: we know of no good reason for the Universe to appear just as it does, which is described extremely well by the flat ΛCDM cosmological model. Therefore, the problem is not that the physical model is at all incompatible with observation, but that, as our empirical results have been increasingly constrained, it has also become increasingly obvious that the Universe does not meet our prior expectations; e.g., the evidence suggests that the Universe began from a singularity of the theory that is used to describe it, and with space expanding thereafter in cosmic time, even though relativity theory is thought to imply that no such objective foliation of the spacetime continuum should reasonably exist. Furthermore, the expanding Universe is well-described as being flat, isotropic, and homogeneous, even though its shape and expansion rate are everywhere supposed to be the products of local energy-content---and the necessary prior uniform distribution, of just the right amount of matter for all three of these conditions to be met, could not have been causally determined to begin with. And finally, the empirically constrained density parameters now indicate that all of the matter that we directly observe should make up only four percent of the total, so that the dominant forms of energy in the Universe should be dark energy in the form of a cosmological constant, Λ, and cold dark matter (CDM). The most common ways of attacking these problems have been: to apply modifications to the basic physical model, e.g. as in the inflation and quintessence theories which strive to resolve the horizon, flatness, and cosmological constant problems; to use particle physics techniques in order to formulate the description of dark matter candidates that might fit with observations; and, in the case of the Big

  11. Dissipative dark matter halos: The steady state solution

    Science.gov (United States)

    Foot, R.

    2018-02-01

    Dissipative dark matter, where dark matter particle properties closely resemble familiar baryonic matter, is considered. Mirror dark matter, which arises from an isomorphic hidden sector, is a specific and theoretically constrained scenario. Other possibilities include models with more generic hidden sectors that contain massless dark photons [unbroken U (1 ) gauge interactions]. Such dark matter not only features dissipative cooling processes but also is assumed to have nontrivial heating sourced by ordinary supernovae (facilitated by the kinetic mixing interaction). The dynamics of dissipative dark matter halos around rotationally supported galaxies, influenced by heating as well as cooling processes, can be modeled by fluid equations. For a sufficiently isolated galaxy with a stable star formation rate, the dissipative dark matter halos are expected to evolve to a steady state configuration which is in hydrostatic equilibrium and where heating and cooling rates locally balance. Here, we take into account the major cooling and heating processes, and numerically solve for the steady state solution under the assumptions of spherical symmetry, negligible dark magnetic fields, and that supernova sourced energy is transported to the halo via dark radiation. For the parameters considered, and assumptions made, we were unable to find a physically realistic solution for the constrained case of mirror dark matter halos. Halo cooling generally exceeds heating at realistic halo mass densities. This problem can be rectified in more generic dissipative dark matter models, and we discuss a specific example in some detail.

  12. Mineralization of organic matter in gray forest soil and typical chernozem with degraded structure due to physical impacts

    Science.gov (United States)

    Semenov, V. M.; Zhuravlev, N. S.; Tulina, A. S.

    2015-10-01

    The dynamics of the organic matter mineralization in the gray forest soil and typical chernozem with structure disturbed by physical impacts (grinding and extraction of water-soluble substances) were studied in two long-term experiments at the constant temperature and moisture. The grinding of soil to particles of 0.1, day-1) and difficultly mineralizable (0.01 > k 3 > 0.001, day-1) fractions in the active pool of soil organic matter. The results of the studies show that the destruction of the structural-aggregate status is one of the reasons for the active soil organic matter depletion and, as a consequence, for the degradation of the properties inherent to the undisturbed soils.

  13. Age-related physical and psychological vulnerability as pathways to problem gambling in older adults.

    Science.gov (United States)

    Parke, Adrian; Griffiths, Mark; Pattinson, Julie; Keatley, David

    2018-03-01

    Background To inform clinical treatment and preventative efforts, there is an important need to understand the pathways to late-life gambling disorder. Aims This study assesses the association between age-related physical health, social networks, and problem gambling in adults aged over 65 years and assesses the mediating role of affective disorders in this association. Methods The sample comprised 595 older adults (mean age: 74.4 years, range: 65-94 years; 77.1% female) who were interviewed using a structured questionnaire to assess physical frailty, geriatric pain, loneliness, geriatric depression, geriatric anxiety, and problem gambling. Results Pathway analysis demonstrated associations between these variables and gambling problems, providing a good fit for the data, but that critically these relationships were mediated by both anxiety and depression symptoms. Conclusions This study indicates that late-life problem gambling may develop as vulnerable individuals gamble to escape anxiety and depression consequent to deteriorating physical well-being and social support. When individuals develop late-life problem gambling, it is recommended that the treatment primarily focuses upon targeting and replacing avoidant coping approaches.

  14. Interaction of radiation with matter

    CERN Document Server

    Nikjoo, Hooshang; Emfietzoglou, Dimitris

    2012-01-01

    Written for students approaching the subject for the first time, this text provides a solid grounding in the physics of the interactions of photons and particles with matter, which is the basis of radiological physics and radiation dosimetry. The authors first present the relevant atomic physics and then describe the interactions, emphasizing practical applications in health/medical physics and radiation biology. They cover such important topics as microdosimetry, interaction of photons with matter, electron energy loss, and dielectric response. Each chapter includes exercises and a summary.

  15. Uniqueness of inverse scattering problem in local quantum physics

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, Bert [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mail: schroer@cbpf.br

    2001-06-01

    It is shown that the a Bisognano-Wichmann-Unruh inspired formulation of local quantum physics which starts from wedge-localized algebras, leads to a uniqueness proof for the scattering problem. The important mathematical tool is the thermal KMS aspect of localization and its strengthening by the requirement of crossing symmetry for generalized formfactors. (author)

  16. Physics of soft impact and cratering

    CERN Document Server

    Katsuragi, Hiroaki

    2016-01-01

    This book focuses on the impact dynamics and cratering of soft matter to describe its importance, difficulty, and wide applicability to planetary-related problems. A comprehensive introduction to the dimensional analysis and constitutive laws that are necessary to discuss impact mechanics and cratering is first provided. Then, particular coverage is given to the impact of granular matter, which is one of the most crucial constituents for geophysics. While granular matter shows both solid-like and fluid-like behaviors, neither solid nor fluid dynamics is sufficient to fully understand the physics of granular matter. In order to reveal its fundamental properties, extensive impact tests have been carried out recently. The author reveals the findings of these recent studies as well as what remains unsolved in terms of impact dynamics. Impact crater morphology with various soft matter impacts also is discussed intensively. Various experimental and observational results up to the recent Itokawa asteroid’s terrain...

  17. Examining End-of-Chapter Problems across Editions of an Introductory Calculus-Based Physics Textbook

    Science.gov (United States)

    Xiao, Bin

    2016-01-01

    End-Of-Chapter (EOC) problems have been part of many physics education studies. Typically, only problems "localized" as relevant to a single chapter were used. This work examines how well this type of problem represents all EOC problems and whether EOC problems found in leading textbooks have changed over the past several decades. To…

  18. Computer simulation studies in condensed-matter physics 5. Proceedings

    International Nuclear Information System (INIS)

    Landau, D.P.; Mon, K.K.; Schuettler, H.B.

    1993-01-01

    As the role of computer simulations began to increase in importance, we sensed a need for a ''meeting place'' for both experienced simulators and neophytes to discuss new techniques and results in an environment which promotes extended discussion. As a consequence of these concerns, The Center for Simulational Physics established an annual workshop on Recent Developments in Computer Simulation Studies in Condensed-Matter Physics. This year's workshop was the fifth in this series and the interest which the scientific community has shown demonstrates quite clearly the useful purpose which the series has served. The workshop was held at the University of Georgia, February 17-21, 1992, and these proceedings from a record of the workshop which is published with the goal of timely dissemination of the papers to a wider audience. The proceedings are divided into four parts. The first part contains invited papers which deal with simulational studies of classical systems and includes an introduction to some new simulation techniques and special purpose computers as well. A separate section of the proceedings is devoted to invited papers on quantum systems including new results for strongly correlated electron and quantum spin models. The third section is comprised of a single, invited description of a newly developed software shell designed for running parallel programs. The contributed presentations comprise the final chapter. (orig.). 79 figs

  19. Towards Dense Nuclear Matter in A Modified Sakai-Sugimoto Model

    Directory of Open Access Journals (Sweden)

    Rho Mannque

    2012-02-01

    Full Text Available As a part of the attempt to address dense baryonic matter, we first review holographic approaches to QCD. The big advantage of the holographic approaches is that they render strongly coupled 4D gauge theories as duals of certain weakly coupled string/supergravity that are well understood. Its relevance to real QCD is one of the central problems in hadron/nuclear physics as well as in the context of applied string theory. None of the models based on these holographic approaches presently available can adequately describe the system we are interested in, namely dense baryonic matter. Nevertheless, some aspects of the holographic approach are found to describe certain processes both in vacuum and in medium. In this talk we only present the structure of a model that appears to be closest to QCD, and has the potential to address the problem.

  20. Collection of proceedings of the international conference on programming and mathematical methods for solution of physical problems

    International Nuclear Information System (INIS)

    1994-01-01

    Traditional International Conference on programming and mathematical methods for solution of physical problems took place in Dubna in Jun, 14-19, 1993. More than 160 scientists from 14 countries participated in the Conference. They presented about 120 reports, the range of problems including computerized information complexes, experimental data acquisition and processing systems, mathematical simulation and calculation experiment in physics, analytical and numerical methods for solution of physical problems

  1. FOREWORD: 18th International School on Condensed Matter Physics

    Science.gov (United States)

    Dimova-Malinovska, Doriana; Genova, Julia; Nesheva, Diana; Petrov, Alexander G.; Primatarowa, Marina T.

    2014-12-01

    We are delighted to present the Proceedings of the 18th International School on Condensed Matter Physics: Challenges of Nanoscale Science: Theory, Materials, Applications, organized by the Institute of Solid State Physics of the Bulgarian Academy of Sciences and chaired by Professor Alexander G Petrov. On this occasion the School was held in memory of Professor Nikolay Kirov (1943-2013), former Director of the Institute and Chairman between 1991 and 1998. The 18ISCMP was one of several events dedicated to the 145th anniversary of the Bulgarian Academy of Sciences in 2014, and was held in the welcoming Black Sea resort of St. Constantine and Helena near Varna, at the Hotel and Congress Centre Frederic Joliot-Curie. Participants from 16 countries delivered 32 invited lectures, and 71 contributed posters were presented over three lively and well-attended evening sessions. Manuscripts submitted to the Proceedings were refereed in accordance with the guidelines of the Journal of Physics: Conference Series, and we believe the papers published herein testify to the high technical quality and diversity of contributions. A satellite meeting, Transition Metal Oxide Thin Films - Functional Layers in Smart Windows and Water Splitting Devices: Technology and Optoelectronic Properties was held in parallel with the School (http://www.inera.org, 3-6 Sept 2014). This activity, which took place under the FP7-funded project INERA, offered opportunities for crossdisciplinary discussions and exchange of ideas between both sets of participants. As always, a major factor in the success of the 18ISCMP was the social programme, headed by the organized events (Welcome and Farewell Parties) and enhanced in no small measure by a variety of pleasant local restaurants, bars and beaches. We are most grateful to staff of the Journal of Physics: Conference Series for their continued support for the School, this being the third occasion on which the Proceedings have been published under its

  2. Gendered emotion work around physical health problems in mid- and later-life marriages.

    Science.gov (United States)

    Thomeer, Mieke Beth; Reczek, Corinne; Umberson, Debra

    2015-01-01

    The provision and receipt of emotion work-defined as intentional activities done to promote another's emotional well-being-are central dimensions of marriage. However, emotion work in response to physical health problems is a largely unexplored, yet likely important, aspect of the marital experience. We analyze dyadic in-depth interviews with husbands and wives in 21 mid- to later-life couples to examine the ways that health-impaired people and their spouses provide, interpret, and explain emotion work. Because physical health problems, emotion work, and marital dynamics are gendered, we consider how these processes differ for women and men. We find that wives provide emotion work regardless of their own health status. Husbands provide emotion work less consistently, typically only when the husbands see themselves as their wife's primary source of stability or when the husbands view their marriage as balanced. Notions of traditional masculinity preclude some husbands from providing emotion work even when their wife is health-impaired. This study articulates emotion work around physical health problems as one factor that sustains and exacerbates gender inequalities in marriage with implications for emotional and physical well-being. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Gendered emotion work around physical health problems in mid- and later-life marriages☆

    Science.gov (United States)

    Thomeer, Mieke Beth; Reczek, Corinne; Umberson, Debra

    2015-01-01

    The provision and receipt of emotion work—defined as intentional activities done to promote another’s emotional well-being—are central dimensions of marriage. However, emotion work in response to physical health problems is a largely unexplored, yet likely important, aspect of the marital experience. We analyze dyadic in-depth interviews with husbands and wives in 21 mid-to later-life couples to examine the ways that health-impaired people and their spouses provide, interpret, and explain emotion work. Because physical health problems, emotion work, and marital dynamics are gendered, we consider how these processes differ for women and men. We find that wives provide emotion work regardless of their own health status. Husbands provide emotion work less consistently, typically only when the husbands see themselves as their wife’s primary source of stability or when the husbands view their marriage as balanced. Notions of traditional masculinity preclude some husbands from providing emotion work even when their wife is health-impaired. This study articulates emotion work around physical health problems as one factor that sustains and exacerbates gender inequalities in marriage with implications for emotional and physical well-being. PMID:25661852

  4. Health problems in connection with radiation from radioactive matter in fertilizers, soils and rocks

    International Nuclear Information System (INIS)

    Laag, J.

    1988-01-01

    Under the last world congress of the International Society of Soil Science in Hamburg in August 1986, the working group ''Soil and Geomedicine'' was set up. The symposium on health problems in connection with radiation from radioactive matter in fertilizers, soils and rocks was a joint arrangement of this working group and a permanent committe of The Norwegian Academy of Science and Letters. The book presents the full text of 13 of the papers presented at the symposium. Separate abstacts have been submitted for 12 of these papers

  5. Physics of Baseball & Softball

    CERN Document Server

    Cross, Rod

    2011-01-01

    This book describes the physics of baseball and softball, assuming that the reader has a background in both physics and mathematics at the high school level. The physics is explained in a conversational style, and illustrated with experimental results obtained both in the laboratory and in the field. Simple equations are also used in order to model the experimental results and to test whether the explanations are actually valid. The subject matter provides an excellent opportunity to explain physics in an interesting manner, given the universal popularity of baseball and softball as pastimes. There is also the interaction between a bat and ball, which is a classic problem in physics involving large forces, short time intervals, momentum, and energy transfer, vibration, rotation, and the different physical properties of the wood (or aluminum) of the bat, and the ball. The flight of the ball through the air is another fascinating example of physics in action, involving the effects of gravity, air resistance and...

  6. The Birth of Matter

    CERN Multimedia

    2005-01-01

    To mark the World Year of Physics, the Physics Section of the University of Geneva is organising a series of lectures for the uninitiated. Each lecture will begin with a demonstration in the auditorium of the detection of cosmic rays and, in collaboration with Professor E. Ellberger of the Conservatoire de Musique de Genève, of how these signals from the farthest reaches of the Universe can be used to create 'cosmic music'. The fourth lecture in the series, entitled 'The Birth of Matter', will take place on Tuesday 3 May 2005 and will be given by CERN's theoretical physicist, John Ellis. Where does matter come from? Where do the structures that surround us, such as galaxies, come from? Are we living in a world of invisible matter? Why is the universe so old and so big? John Ellis will show how elementary particle physics and, in particular, the LHC under construction at CERN, can answer these questions. The Birth of Matter Professor John Ellis Tuesday 3 May, starting 8.00 p.m. Main Auditorium...

  7. The Birth of Matter

    CERN Multimedia

    2005-01-01

    To mark the World Year of Physics, the Physics Section of the University of Geneva is organising a series of lectures for the uninitiated. Each lecture will begin with a demonstration in the auditorium of the detection of cosmic rays and, in collaboration with Professor E. Ellberger of the Conservatoire de Musique de Genève, of how these signals from the farthest reaches of the Universe can be used to create "cosmic music". The fourth lecture in the series, entitled "The Birth of Matter", will take place on Tuesday 3 May 2005 and will be given by CERN's theoretical physicist, John Ellis. Where does matter come from? Where do the structures that surround us, such as galaxies, come from? Are we living in a world of invisible matter? Why is the universe so old and so big? John Ellis will show how elementary particle physics and, in particular, the LHC under construction at CERN, can answer these questions. The Birth of Matter Professor John Ellis Tuesday 3 May, starting 8.00 p.m. Main Audito...

  8. Ultralight particle dark matter

    International Nuclear Information System (INIS)

    Ringwald, A.

    2013-10-01

    We review the physics case for very weakly coupled ultralight particles beyond the Standard Model, in particular for axions and axion-like particles (ALPs): (i) the axionic solution of the strong CP problem and its embedding in well motivated extensions of the Standard Model; (ii) the possibility that the cold dark matter in the Universe is comprised of axions and ALPs; (iii) the ALP explanation of the anomalous transparency of the Universe for TeV photons; and (iv) the axion or ALP explanation of the anomalous energy loss of white dwarfs. Moreover, we present an overview of ongoing and near-future laboratory experiments searching for axions and ALPs: haloscopes, helioscopes, and light-shining-through-a-wall experiments.

  9. Ultralight particle dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Ringwald, A.

    2013-10-15

    We review the physics case for very weakly coupled ultralight particles beyond the Standard Model, in particular for axions and axion-like particles (ALPs): (i) the axionic solution of the strong CP problem and its embedding in well motivated extensions of the Standard Model; (ii) the possibility that the cold dark matter in the Universe is comprised of axions and ALPs; (iii) the ALP explanation of the anomalous transparency of the Universe for TeV photons; and (iv) the axion or ALP explanation of the anomalous energy loss of white dwarfs. Moreover, we present an overview of ongoing and near-future laboratory experiments searching for axions and ALPs: haloscopes, helioscopes, and light-shining-through-a-wall experiments.

  10. Is Treating Motor Problems in DCD Just a Matter of Practice and More Practice?

    Science.gov (United States)

    Schoemaker, Marina M; Smits-Engelsman, Bouwien C M

    Developmental coordination disorder (DCD) is often called a motor learning deficit. The question addressed in this paper is whether improvement of motor skills is just a matter of mere practice. Without any kind of intervention, children with DCD do not improve their motor skills generally, whereas they do improve after task-oriented intervention. Merely offering children the opportunity to practice motor skills, for instance by playing active video games, did lead to improved motor performance according to recent research findings, but to a lesser extent than task-oriented intervention. We argue that children with DCD lack the required motor problem-solving skills necessary to further improve their performance. Explicit motor teaching with an emphasis on developing these problem-solving skills is a necessary ingredient of intervention in DCD, leveraging the effectiveness of intervention above that of mere practicing.

  11. Inflatable Dark Matter.

    Science.gov (United States)

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D

    2016-01-22

    We describe a general scenario, dubbed "inflatable dark matter," in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early Universe. The overproduction of dark matter that is predicted within many, otherwise, well-motivated models of new physics can be elegantly remedied within this context. Thermal relics that would, otherwise, be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the nonthermal abundance of grand unified theory or Planck scale axions can be brought to acceptable levels without invoking anthropic tuning of initial conditions. A period of late-time inflation could have occurred over a wide range of scales from ∼MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the standard model.

  12. ADHD-related symptoms, emotional/behavioral problems, and physical conditions in Taiwanese children with epilepsy

    OpenAIRE

    Fang-Ju Tsai; Shu-Tsen Liu; Chi-Mei Lee; Wang-Tso Lee; Pi-Chuan Fan; Wei-Sheng Lin; Yen-Nan Chiu; Susan Shur-Fen Gau

    2013-01-01

    Little is known about whether Asian children with epilepsy have more attention-deficit hyperactivity disorder (ADHD)-related symptoms, emotional/ behavioral problems, and physical conditions compared with those described in Western studies. The authors investigated the rates of ADHD-related symptoms, emotional/behavioral problems, and physical conditions among pediatric patients with epilepsy. Methods: We recruited 61 patients with epilepsy, aged 6–16 years, and 122 age-, sex-, and parenta...

  13. Dark matter universe.

    Science.gov (United States)

    Bahcall, Neta A

    2015-10-06

    Most of the mass in the universe is in the form of dark matter--a new type of nonbaryonic particle not yet detected in the laboratory or in other detection experiments. The evidence for the existence of dark matter through its gravitational impact is clear in astronomical observations--from the early observations of the large motions of galaxies in clusters and the motions of stars and gas in galaxies, to observations of the large-scale structure in the universe, gravitational lensing, and the cosmic microwave background. The extensive data consistently show the dominance of dark matter and quantify its amount and distribution, assuming general relativity is valid. The data inform us that the dark matter is nonbaryonic, is "cold" (i.e., moves nonrelativistically in the early universe), and interacts only weakly with matter other than by gravity. The current Lambda cold dark matter cosmology--a simple (but strange) flat cold dark matter model dominated by a cosmological constant Lambda, with only six basic parameters (including the density of matter and of baryons, the initial mass fluctuations amplitude and its scale dependence, and the age of the universe and of the first stars)--fits remarkably well all the accumulated data. However, what is the dark matter? This is one of the most fundamental open questions in cosmology and particle physics. Its existence requires an extension of our current understanding of particle physics or otherwise point to a modification of gravity on cosmological scales. The exploration and ultimate detection of dark matter are led by experiments for direct and indirect detection of this yet mysterious particle.

  14. Epistemic Beliefs about Justification Employed by Physics Students and Faculty in Two Different Problem Contexts

    Science.gov (United States)

    Çağlayan Mercan, Fatih

    2012-06-01

    This study examines the epistemic beliefs about justification employed by physics undergraduate and graduate students and faculty in the context of solving a standard classical physics problem and a frontier physics problem. Data were collected by a think-aloud problem solving session followed by a semi-structured interview conducted with 50 participants, 10 participants at freshmen, seniors, masters, PhD, and faculty levels. Seven modes of justification were identified and used for exploring the relationships between each justification mode and problem context, and expertise level. The data showed that justification modes were not mutually exclusive and many respondents combined different modes in their responses in both problem contexts. Success on solving the standard classical physics problem was not related to any of the justification modes and was independent of expertise level. The strength of the association across the problem contexts for the authoritative, rational, and empirical justification modes fell in the medium range and for the modeling justification mode fell in the large range of practical significance. Expertise level was not related with the empirical and religious justification modes. The strength of the association between the expertise level and the authoritative, rational, experiential, and relativistic justification modes fell in the medium range, and the modeling justification mode fell in the large range of practical significance. The results provide support for the importance of context for the epistemic beliefs about justification and are discussed in terms of the implications for teaching and learning science.

  15. Gaseous Matter

    CERN Document Server

    Angelo, Joseph A

    2011-01-01

    aseous Matter focuses on the many important discoveries that led to the scientific interpretation of matter in the gaseous state. This new, full-color resource describes the basic characteristics and properties of several important gases, including air, hydrogen, helium, oxygen, and nitrogen. The nature and scope of the science of fluids is discussed in great detail, highlighting the most important scientific principles upon which the field is based. Chapters include:. Gaseous Matter An Initial Perspective. Physical Characteristics of Gases. The Rise of the Science of Gases. Kinetic Theory of

  16. The need for expanded exploration of matter-antimatter annihilation for propulsion application

    Science.gov (United States)

    Massier, P. F.

    1982-01-01

    The use of matter-antimatter annihilation as a propulsion application for interstellar travel is discussed. The physical basis for the superior energy release in such a system is summarized, and the problems associated with antimatter production, collection and storage are assessed. Advances in devising a workable propulsion system are reported, and the parameters of an antimatter propulsion system are described.

  17. Particle Physics, 2nd Edition

    Science.gov (United States)

    Martin, B. R.; Shaw, G.

    1998-01-01

    Particle Physics, Second Edition is a concise and lucid account of the fundamental constituents of matter. The standard model of particle physics is developed carefully and systematically, without heavy mathematical formalism, to make this stimulating subject accessible to undergraduate students. Throughout, the emphasis is on the interpretation of experimental data in terms of the basic properties of quarks and leptons, and extensive use is made of symmetry principles and Feynman diagrams, which are introduced early in the book. The Second Edition brings the book fully up to date, including the discovery of the top quark and the search for the Higgs boson. A final short chapter is devoted to the continuing search for new physics beyond the standard model. Particle Physics, Second Edition features: * A carefully structured and written text to help students understand this exciting and demanding subject. * Many worked examples and problems to aid student learning. Hints for solving the problems are given in an Appendix. * Optional "starred" sections and appendices, containing more specialised and advanced material for the more ambitious reader.

  18. The Cryogenic Dark Matter Search low ionization-threshold experiment

    Energy Technology Data Exchange (ETDEWEB)

    Basu Thakur, Ritoban [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2014-01-01

    Over 80 years ago we discovered the presence of Dark Matter in our universe. Endeavors in astronomy and cosmology are in consensus with ever improving precision that Dark Matter constitutes an essential 27% of our universe. The Standard Model of Particle Physics does not provide any answers to the Dark Matter problem. It is imperative that we understand Dark Matter and discover its fundamental nature. This is because, alongside other important factors, Dark Matter is responsible for formation of structure in our universe. The very construct in which we sit is defined by its abundance. The Milky Way galaxy, hence life, wouldn't have formed if small over densities of Dark Matter had not caused sufficient accretion of stellar material. Marvelous experiments have been designed based on basic notions to directly and in-directly study Dark Matter, and the Cryogenic Dark Matter Search (CDMS) experiment has been a pioneer and forerunner in the direct detection field. Generations of the CDMS experiment were designed with advanced scientific upgrades to detect Dark Matter particles of mass O(100) GeV/c2. This mass-scale was set primarily by predictions from Super Symmetry. Around 2013 the canonical SUSY predictions were losing some ground and several observations (rather hints of signals) from various experiments indicated to the possibility of lighter Dark Matter of mass O(10) GeV/c2. While the SuperCDMS experiment was probing the regular parameter space, the CDMSlite experiment was conceived to dedicatedly search for light Dark Matter using a novel technology. "CDMSlite" stands for CDMS - low ionization threshold experiment. Here we utilize a unique electron phonon coupling mechanism to measure ionization generated by scattering of light particles. Typically signals from such low energy recoils would be washed under instrumental noise. In CDMSlite via generation of Luke-Neganov phonons we can detect the small ionization energies, amplified in

  19. Electroweakly-interacting Dirac dark matter

    International Nuclear Information System (INIS)

    Nagata, Natsumi

    2014-11-01

    We consider a class of fermionic dark matter candidates that are charged under both the SU(2) L and U(1) Y gauge interactions. Such a dark matter is stringently restricted by the dark matter direct detection experiments, since the Z-boson exchange processes induce too large dark matter-nucleus elastic scattering cross sections. Effects of ultraviolet (UV) physics, however, split it into two Majorana fermions to evade the constraint. These effects may be probed by means of the dark matter-nucleus scattering via the Higgs-boson exchange process, as well as the electric dipole moments induced by the dark matter and its SU(2) L partner fields. In this Letter, we evaluate them with effective operators that describe the UV-physics effects. It turns out that the constraints coming from the experiments for the quantities have already restricted the dark matters with hypercharge Y≥3/2. Future experiments have sensitivities to probe this class of dark matter candidates, and may disfavor the Y≥1 cases if no signal is observed. In this case, only the Y=0 and 1/2 cases may be the remaining possibilities for the SU(2) L charged fermionic dark matter candidates.

  20. Multi-representation ability of students on the problem solving physics

    Science.gov (United States)

    Theasy, Y.; Wiyanto; Sujarwata

    2018-03-01

    Accuracy in representing knowledge possessed by students will show how the level of student understanding. The multi-representation ability of students on the problem solving of physics has been done through qualitative method of grounded theory model and implemented on physics education student of Unnes academic year 2016/2017. Multiforms of representation used are verbal (V), images/diagrams (D), graph (G), and mathematically (M). High and low category students have an accurate use of graphical representation (G) of 83% and 77.78%, and medium category has accurate use of image representation (D) equal to 66%.