WorldWideScience

Sample records for matter physics department

  1. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 2000

    DEFF Research Database (Denmark)

    2001-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 2000 are presented in this progress report. Theresearch in physics is concentrated on neutron...... molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods...

  2. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1999

    DEFF Research Database (Denmark)

    2000-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1999 are presented in this progress report. Theresearch in physics is concentrated on neutron...... molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures.Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods...

  3. Annual progress report of the Condensed Matter Physics and Chemistry Department. 1 January - 31 December 2000

    International Nuclear Information System (INIS)

    Lebech, B.

    2001-03-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 2000 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  4. Annual progress report of the Condensed Matter Physics and Chemistry Department. 1 January - 31 December 1999

    Energy Technology Data Exchange (ETDEWEB)

    Lebech, B [ed.

    2000-02-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1999 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scalestructures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  5. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1997

    International Nuclear Information System (INIS)

    Nielsen, M.; Bechgaard, K.; Clausen, K.N.; Feidenhans'l, R.; Johannsen, I.

    1998-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1997 are presented in this progress report. The research in physics in concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems in undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  6. Annual progress report of the Condensed Matter Physics and Chemistry Department. 1 January - 31 December 1999

    International Nuclear Information System (INIS)

    Lebech, B.

    2000-02-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1999 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  7. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1998

    Energy Technology Data Exchange (ETDEWEB)

    Bechgaard, K.; Clausen, K.N.; Feidenhans`l, R.; Johannsen, I. [eds.

    1999-04-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical properties of materials. The principal activities in the year 1998 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au) 2 tabs., 142 ills., 169 refs.

  8. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1997

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M; Bechgaard, K; Clausen, K N; Feidenhans` l, R; Johannsen, I [eds.

    1998-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1997 are presented in this progress report. The research in physics in concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems in undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au). 129 ills., 213 refs.

  9. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1998

    International Nuclear Information System (INIS)

    Bechgaard, K.; Clausen, K.N.; Feidenhans'l, R.; Johannsen, I.

    1999-04-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical properties of materials. The principal activities in the year 1998 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  10. Condensed matter physics

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The condensed matter physics research in the Physics Department of Risoe National Laboratory is predominantly experimental utilising diffraction of neutrons and x-rays. The research topics range from studies of structure, excitations and phase transitions in model systems to studies of ion transport, texture and recrystallization kinetics with a more applied nature. (author)

  11. Physics matters

    CERN Document Server

    Natarajan, Vasant

    2017-01-01

    This is a collection of essays on physics topics. It is written as a textbook for non-physics science and arts students, at the undergraduate level. Topics covered include cellphone radiation, lasers, the twin paradox, and more.

  12. Department of Theoretical Physics - Overview

    International Nuclear Information System (INIS)

    Kwiecinski, J.

    2000-01-01

    Full text: Research activity of the Department of Theoretical Physics concerns theoretical high-energy and elementary particle physics, intermediate energy particle physics, theoretical nuclear physics, theory of nuclear matter, theory of quark-gluon plasma and of relativistic heavy-ion collisions, theoretical astrophysics and general physics. There is some emphasis on the phenomenological applications of the theoretical research, yet the more formal problems are also considered. The detailed summary of the research projects and of the results obtained in various fields is given in the abstracts. Our Department actively collaborates with other Departments of the Institute as well as with several scientific institutions both in Poland and abroad. In particular members of our Department participate in the EC network which allows mobility of researchers. Several members of our Department have also participated in the research projects funded by the Polish Committee for Scientific Research (KBN). The complete list of grants is listed separately. Besides pure research, members of our Department are also involved in graduate and undergraduate teaching activity both at our Institute as well as at other academic institutions in Cracow. At present five students are working for their Ph.D. or MSc degrees under supervision of the senior members from the Department. We continue our participation at the EC SOCRATES-ERASMUS educational programme which allows exchange of graduate students between our Department and the Department of Physics of the University of Durham in the UK. (author)

  13. Department of Theoretical Physics - Overview

    International Nuclear Information System (INIS)

    Kwiecinski, J.

    2002-01-01

    Full text: Research activity of the Department of Theoretical Physics concerns theoretical high energy and elementary particle physics, intermediate energy particle physics, theoretical nuclear physics, theory of nuclear matter, theory of quark-gluon plasma and of relativistic heavy ion collisions, theoretical astrophysics and general physics. There is some emphasis on the phenomenological applications of the theoretical research yet the more formal problems are also considered. The detailed summary of the research projects and of the results obtained in various fields is given in the abstracts. Our Department successfully collaborates with other Departments of the Institute as well as with several scientific institutions both in Poland and abroad. In particular, members of our Department participate in the EC network which allows for the mobility of researchers. Several members of our Department have also participated in the research projects funded by the State Committee for Scientific Research. Besides pure research, members of our Department are also involved in graduate and undergraduate teaching activity both at our Institute and at other academic institutions in Cracow. At present, eight students are working towards their Ph.D. degrees under the supervision of senior members of the Department. (author)

  14. Department of Theoretical Physics - Overview

    International Nuclear Information System (INIS)

    Kwiecinski, J.

    2001-01-01

    Full text: Research activity of the Department of Theoretical Physics concerns theoretical high-energy and elementary particle physics, intermediate energy particle physics, theoretical nuclear physics, theory of nuclear matter, theory of quark-gluon plasma and relativistic heavy-ion collisions, theoretical astrophysics and general physics. There is some emphasis on the phenomenological applications of the theoretical research yet more formal problems are also considered. A detailed summary of the research projects and of the results obtained in various field is given in the abstracts. Our Department actively collaborates with other Departments of the Institute as well as with several scientific institutions both in Poland and abroad. In particular, members of our Department participate in the EC network, which stimulates the mobility of researchers. Several members of our Department also participated in the research projects funded by the Polish Committee for Scientific Research (KBN). Besides pure research, members of our Department are also involved in graduate and up graduate teaching activity at our Institute as well as at other academic institution in Cracow. At present nine students are working on their Ph.D. degrees under the supervision of senior members of the Department. (author)

  15. Department of Theoretical Physics - Overview

    International Nuclear Information System (INIS)

    Kwiecinski, J.

    1999-01-01

    Full text: Research activity of the Department of Theoretical Physics concerns theoretical high-energy and elementary particle physics, intermediate energy particle physics, theoretical nuclear physics, theory of nuclear matter, theory of quark-gluon plasma and of relativistic heavy-ion collisions, theoretical astrophysics and general physics. There is some emphasis on the phenomenological applications of the theoretical research yet the more formal problems are also considered. The detailed summary of the research projects and of the results obtained in various fields is given in the abstracts. Our Department actively collaborates with other Departments of the Institute as well as with several scientific institutions both in Poland and abroad. In particular members of our Department participate in the EC network which allows mobility of researchers. Several members of our Department have also participated in the research projects funded by the Polish Committee for Scientific Research (KBN). The complete list of grants is listed separately. Besides pure research, members of our Department are also involved in graduate and undergraduate teaching activity both at our Institute as well as at other academic institutions in Cracow. At present five PhD students are working for their degree under supervision of the senior members from the Department. In the last year we have completed our active participation in the educational TEMPUS programme funded by the European Communities. This programme has in particular allowed exchange of students between our Department and the Department of Physics of the University of Durham in the United Kingdom. In 1998 we joined the SOCRATES - ERASMUS project which will make it possible to continue this exchange. (author)

  16. Physics of condensed matter

    CERN Document Server

    Misra, Prasanta K

    2012-01-01

    Physics of Condensed Matter is designed for a two-semester graduate course on condensed matter physics for students in physics and materials science. While the book offers fundamental ideas and topic areas of condensed matter physics, it also includes many recent topics of interest on which graduate students may choose to do further research. The text can also be used as a one-semester course for advanced undergraduate majors in physics, materials science, solid state chemistry, and electrical engineering, because it offers a breadth of topics applicable to these majors. The book be

  17. Soft matter physics

    CERN Document Server

    Doi, Masao

    2013-01-01

    Soft matter (polymers, colloids, surfactants and liquid crystals) are an important class of materials in modern technology. They also form the basis of many future technologies, for example in medical and environmental applications. Soft matter shows complex behaviour between fluids and solids, and used to be a synonym of complex materials. Due to the developments of the past two decades, soft condensed matter can now be discussed on the same sound physical basis as solid condensedmatter. The purpose of this book is to provide an overview of soft matter for undergraduate and graduate students

  18. Condensed matter physics

    International Nuclear Information System (INIS)

    1990-01-01

    This is a summary of condensed matter physics in Brazil. It discusses as well, the perspectives and financing evolved in this research area for the next decade. It is specially concerned with semiconductors, magnetic materials, superconductivity, polymers, glasses, crystals ceramics, statistical physics, magnetic resonance and Moessbauer spectroscopy. (A.C.A.S.)

  19. Condensed matter physics

    CERN Document Server

    Isihara, A

    2007-01-01

    More than a graduate text and advanced research guide on condensed matter physics, this volume is useful to plasma physicists and polymer chemists, and their students. It emphasizes applications of statistical mechanics to a variety of systems in condensed matter physics rather than theoretical derivations of the principles of statistical mechanics and techniques. Isihara addresses a dozen different subjects in separate chapters, each designed to be directly accessible and used independently of previous chapters. Topics include simple liquids, electron systems and correlations, two-dimensional

  20. Physics department annual progress report

    International Nuclear Information System (INIS)

    Moeller, H.B.; Lebech, B.

    1980-12-01

    Research in the Physics Department at Risoe covers three main fields: solid-state physics, plasma physics, and meteorology. The principal activities in these fields are presented for the period from 1 January to 31 December 1980. (Auth.)

  1. Department of Physics

    International Nuclear Information System (INIS)

    Following a list of the academic staff of the Physics Dept., the coursesoffered, seminars held and lectures held by guests, the research activities are very briefly described. These cover nuclear physics, elementary particles and ionospheric physics. Participation by staff members in conferences etc. is listed, as are lectures given by staff members at other academic institutions and reports and articles published. (JIW)

  2. Creating a Virtual Physics Department.

    Science.gov (United States)

    Suson, Daniel J.; Hewett, Lionel D.; McCoy, Jim; Nelson, Vaughn

    1999-01-01

    Describes a solution to alleviate the low numbers of students graduating from the majority of physics programs throughout the nation. Discusses the outcome of a virtual physics department. (Author/CCM)

  3. Condensed matter physics

    CERN Document Server

    Marder, Michael P

    2010-01-01

    This Second Edition presents an updated review of the whole field of condensed matter physics. It consolidates new and classic topics from disparate sources, teaching not only about the effective masses of electrons in semiconductor crystals and band theory, but also about quasicrystals, dynamics of phase separation, why rubber is more floppy than steel, granular materials, quantum dots, Berry phases, the quantum Hall effect, and Luttinger liquids.

  4. The condensed matter physics

    International Nuclear Information System (INIS)

    Sapoval, B.

    1988-01-01

    The 1988 progress report of the laboratory of the Condensed Matter Physics (Polytechnic School, France), is presented. The Laboratory activities are related to the physics of semiconductors and disordered phases. The electrical and optical properties of the semiconductors, mixed conductor, superionic conductors and ceramics, are studied. Moreover, the interfaces of those systems and the sol-gel inorganic polymerization phenomena, are investigated. The most important results obtained, concern the following investigations: the electrochemical field effect transistor, the cathodoluminescence, the low energy secondary electrons emission, the fluctuations of a two-dimensional diffused junction and the aerogels [fr

  5. Department of Physical Sciences

    African Journals Online (AJOL)

    USER

    2017-05-05

    May 5, 2017 ... ... of Physical Sciences, The Open University of Tanzania, P. O. Box ... bioaccumulation and biomagnification in the food chain. This research deals with human health risk assessment of metal contamination through the .... poisoning is untreatable (Faller, 2009). ... probability of adverse health effects in.

  6. Physics Department annual progress report

    International Nuclear Information System (INIS)

    Moeller, H.B.; Lebech, B.

    1981-12-01

    Research in the Physics Department at Risoe covers three main fields: solid-state physics; plasma physics; meteorology. The principal activities in these fields are presented in this report, which covers the period from 1 January to 31 December 1981. Introductions to the work in each of the main fields are given in the respective sections of the report. (Auth.)

  7. Overview. Department of Theoretical Physics. Section 4

    Energy Technology Data Exchange (ETDEWEB)

    Kwiecinski, J. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    Research activity of the Department of the Theoretical Physics spans a wide variety of problems in theoretical high-energy and elementary particle physics, theoretical nuclear physics, theory of the nuclear matter, quark gluon plasma and relativistic heavy-ion collisions, theoretical astrophysics, as well as general physics. Theoretical research in high energy and elementary particle physics is concentrated on the theory of deep inelastic lepton scattering in the region of low x and its phenomenological implication for the ep collider HERA at DESY, on the theory of nonleptonic decays of hadrons, and on low energy {pi}{pi} and K-anti-K interactions and scalar meson spectroscopy. The activity in the theory of relativistic heavy-ion collisions is focused on the study of quark condensate fluctuations, on the analysis of critical scattering near the chiral phase transition, and on Bose-Einstein correlation in heavy-ion collisions. Theoretical studies in nuclear physics and in theory of nuclear matter concern analysis of models, with dynamical symmetry based on group S{sub p}(6,R) for the description of collective modes of atomic nuclei, analysis of the Goldstone bosons in nuclear matter and analysis of saturation properties of nuclear matter. Research in theoretical astrophysics is mainly devoted to the analysis of magnetic properties of hadronic matter in neutron stars with proton admixture. Studies in general physics concern problem related to the Galilean covariance of classical and quantum mechanics. The detailed results obtained in various fields are summarised in presented abstracts as well as information about employed personnel, publications, contribution to conferences, reports, workshops and seminars.

  8. Overview. Department of Theoretical Physics. Section 4

    Energy Technology Data Exchange (ETDEWEB)

    Kwiecinski, J [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-31

    Research activity of the Department of the Theoretical Physics spans a wide variety of problems in theoretical high-energy and elementary particle physics, theoretical nuclear physics, theory of the nuclear matter, quark gluon plasma and relativistic heavy-ion collisions, theoretical astrophysics, as well as general physics. Theoretical research in high energy and elementary particle physics is concentrated on the theory of deep inelastic lepton scattering in the region of low x and its phenomenological implication for the ep collider HERA at DESY, on the theory of nonleptonic decays of hadrons, and on low energy {pi}{pi} and K-anti-K interactions and scalar meson spectroscopy. The activity in the theory of relativistic heavy-ion collisions is focused on the study of quark condensate fluctuations, on the analysis of critical scattering near the chiral phase transition, and on Bose-Einstein correlation in heavy-ion collisions. Theoretical studies in nuclear physics and in theory of nuclear matter concern analysis of models, with dynamical symmetry based on group S{sub p}(6,R) for the description of collective modes of atomic nuclei, analysis of the Goldstone bosons in nuclear matter and analysis of saturation properties of nuclear matter. Research in theoretical astrophysics is mainly devoted to the analysis of magnetic properties of hadronic matter in neutron stars with proton admixture. Studies in general physics concern problem related to the Galilean covariance of classical and quantum mechanics. The detailed results obtained in various fields are summarised in presented abstracts as well as information about employed personnel, publications, contribution to conferences, reports, workshops and seminars.

  9. Overview. Department of Theoretical Physics. Section 4

    International Nuclear Information System (INIS)

    Kwiecinski, J.

    1995-01-01

    Research activity of the Department of the Theoretical Physics spans a wide variety of problems in theoretical high-energy and elementary particle physics, theoretical nuclear physics, theory of the nuclear matter, quark gluon plasma and relativistic heavy-ion collisions, theoretical astrophysics, as well as general physics. Theoretical research in high energy and elementary particle physics is concentrated on the theory of deep inelastic lepton scattering in the region of low x and its phenomenological implication for the ep collider HERA at DESY, on the theory of nonleptonic decays of hadrons, and on low energy ππ and K-anti-K interactions and scalar meson spectroscopy. The activity in the theory of relativistic heavy-ion collisions is focused on the study of quark condensate fluctuations, on the analysis of critical scattering near the chiral phase transition, and on Bose-Einstein correlation in heavy-ion collisions. Theoretical studies in nuclear physics and in theory of nuclear matter concern analysis of models, with dynamical symmetry based on group S p (6,R) for the description of collective modes of atomic nuclei, analysis of the Goldstone bosons in nuclear matter and analysis of saturation properties of nuclear matter. Research in theoretical astrophysics is mainly devoted to the analysis of magnetic properties of hadronic matter in neutron stars with proton admixture. Studies in general physics concern problem related to the Galilean covariance of classical and quantum mechanics. The detailed results obtained in various fields are summarised in presented abstracts as well as information about employed personnel, publications, contribution to conferences, reports, workshops and seminars

  10. Condensed matter physics in electrochemistry

    International Nuclear Information System (INIS)

    Kornyshev, A.A.

    1991-01-01

    Some topics in electrochemistry are considered from the condensed matter physics viewpoint in relation to the problems discussed in this book. Examples of the successful application of condensed matter physics to electrochemistry are discussed together with prospective problems and pressing questions. (author). 127 refs, 4 figs

  11. Dark matter and particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Masiero, A [SISSA-ISAS, Trieste (Italy) and INFN, Sezione di Trieste (Italy); Pascoli, S [SISSA-ISAS, Trieste (Italy) and INFN, Sezione di Trieste (Italy)

    2001-11-15

    Dark matter constitutes a key-problem at the interface between Particle Physics, Astrophysics and Cosmology. Indeed, the observational facts which have been accumulated in the last years on dark matter point to the existence of an amount of non-baryonic dark matter. Since the Standard Model of Particle Physics does not possess any candidate for such non-baryonic dark matter, this problem constitutes a major indication for new Physics beyond the Standard Model. We analyze the most important candidates for non-baryonic dark matter in the context of extensions of the Standard Model (in particular supersymmetric models). The recent hints for the presence of a large amount of unclustered 'vacuum' energy (cosmological constant?) is discussed from the Astrophysical and Particle Physics perspective. (author)

  12. High Energy Physics Departments - Overview

    International Nuclear Information System (INIS)

    Bartke, J.

    1999-01-01

    Following the tradition, the activities of the seven new units created in 1997 on the basis of the former Department of High Energy Physics are presented under a common header, they are: Department of Particle Theory (Dept 5); Department of Leptonic Interactions (Dept 11); Department of Hadron Structure (Dept 12); Department of High Energy Nuclear Interactions (Dept 13); The ALICE Experiment Laboratory (NAL); The ATLAS Experiment Laboratory (NAT); High Energy Physics Detector Construction Group (PBD). The research covers a variety of problems of the experimental and theoretical high energy particle physics: the hadronic and leptonic interactions with nucleons and nuclei (characteristics of particle production, including heavy quark physics), e + e - interactions and tests of the Standard Model (also radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as the spectra, composition and interactions of high energy cosmic ray particles. Research on detectors and accelerator components as well as the development of the apparatus for the high energy physics experiments at future accelerators: LHC (CERN, Geneva), RHIC (Brookhaven), B-Factory (KEK, Tsukuba) and TESLA (DESY) is also presented. The technology of new materials with unique properties such as carbon-carbon composites is also worked on from the point of view of their application in high energy physics experiments. The Division is located in a separate building on the campus of the University of Mining and Metallurgy (UMM). This location, close to the Jagiellonian University (JU), facilitates the collaboration with the latter and with the UMM. The joint weekly seminars carried out for nearly 40 years prove this long term tradition. A substantial part of the activities is teaching and training students from the academic community in Cracow. Joint research, teaching and academic training in the high energy physics are carried out within the M. Miesowicz

  13. Department of Nuclear Physical Chemistry

    International Nuclear Information System (INIS)

    Mikulski, J.

    1994-01-01

    The research program at the Department of Nuclear Physical Chemistry of the Niewodniczanski Institute of Nuclear Physics is described. The Department consist of three laboratories. First - Laboratory of Physical Chemistry of Separation Processes on which the activity is concentrated on production and separation of neutron deficient isotopes for medical diagnostic. Recently, the main interest was in 111 In which is a promising tracer for cancer diagnostic. To increase the effectiveness of production of indium 111 In the reaction with deuterons on the enriched cadmium target was carried out instead of the previously used one with alpha particles on natural silver. In the second one - Laboratory of Chemistry and Radiochemistry - the systematic studies of physicochemical properties of transition elements in solutions are carried out. The results of the performed experiments were used for the elaboration of new rapid and selective methods for various elements. Some of these results have been applied for separation of trans actinide elements at U-400 cyclotron of JINR Dubna. The third one laboratory -Environmental Radioactivity Laboratory - conducts continuous monitoring of radioactivity contamination of atmosphere. The investigation of different radionuclides concentration in natural environment, mainly in the forest had been carried out

  14. Dark matter and particle physics

    International Nuclear Information System (INIS)

    Peskin, Michael E.

    2007-01-01

    Astrophysicists now know that 80% of the matter in the universe is 'dark matter', composed of neutral and weakly interacting elementary particles that are not part of the Standard Model of particle physics. I will summarize the evidence for dark matter. I will explain why I expect dark matter particles to be produced at the CERN LHC. We will then need to characterize the new weakly interacting particles and demonstrate that they the same particles that are found in the cosmos. I will describe how this might be done. (author)

  15. High Energy Physics Departments - Overview

    International Nuclear Information System (INIS)

    Bartke, J.

    2000-01-01

    Full text: Following our long-time tradition we will present under a common header the activities of the seven new units created in 1997 on the basis of the former Department of High Energy Physics: Department of Particle Theory (Dept. V); Department of Leptonic Interactions (Dept XI); Department of Hadron Structure (Dept XII); Department of High Energy Nuclear Interactions (Dept XIII); The ALICE Experiment Laboratory (NAL); The ATLAS Experiment Laboratory (NAT); High Energy Physics Detector Construction Group (PBD). At the end we will list our common activities: lectures and courses as well as seminars. Our research covers a variety of problems of the experimental and theoretical high energy particle physics: the hadronic and leptonic interactions with nucleons and nuclei (characteristics of particle production, including heavy quark physics), e + e - interactions and tests of the Standard Model (also evaluation of radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as the spectra, composition and interactions of high energy cosmic ray particles. Research on detectors and accelerator components as well as the development of the apparatus for the high energy physics experiments at future accelerators: LHC (CERN, Geneva), RHIC (Brookhaven), B-Factory (KEK, Tsukuba) and TESLA (DESY, Hamburg) is also carried out. The technology of new materials with unique properties such as carbon-carbon composites is also worked on from the point of view of their application in high energy physics experiments. The Division is located in a separate building on the campus of the University of Mining and Metallurgy. This location, close to the Jagiellonian University, facilitates the collaboration with the latter and with the University of Mining and Metallurgy. The joint weekly seminars carried out for nearly 40 years prove this long term tradition. A substantial part of our activities is teaching and training students from

  16. Soft matter physics

    CERN Document Server

    Williams, Claudine

    1999-01-01

    What do colloids, fractals, liquid crystals, and polymers have in common? Nothing at first sight. Yet the distance scales, the energy transfers, the way these objects react to an external field are very similar. For the first time, this book offers an introduction to the physics of these soft materials in one single volume. A variety of experiments and concepts are presented, including the phenomena of capillarity and wetting, fractals, small volumes and large surfaces, colloids, surfactants, giant micelles and fluid membranes, polymers, and liquid crystals. Each chapter is written by experts in the field with the aim of making the book accessible to the widest possible scientific audience: graduate students, lecturers, and research scientists in physics, chemistry, and other disciplines. Nobel Prize winner Pierre-Gilles de Gennes inspired this book and has written a foreword.

  17. Strange matter and dihyperon physics

    International Nuclear Information System (INIS)

    Barnes, P.D.

    1986-01-01

    A short review of the properties of Strange Matter is followed by a discussion of dihyperon physics. Calculations of the mass, lifetime and decay modes of the H particle are discussed, along with a review of experiments designed to search for the H Dibaryon. 32 refs., 15 figs

  18. Nuclear Physics Department annual report

    International Nuclear Information System (INIS)

    1997-07-01

    This annual report presents articles and abstracts published in foreign journals, covering the following subjects: nuclear structure, nuclear reactions, applied physics, instrumentation, nonlinear phenomena and high energy physics

  19. Topology and condensed matter physics

    CERN Document Server

    Mj, Mahan; Bandyopadhyay, Abhijit

    2017-01-01

    This book introduces aspects of topology and applications to problems in condensed matter physics. Basic topics in mathematics have been introduced in a form accessible to physicists, and the use of topology in quantum, statistical and solid state physics has been developed with an emphasis on pedagogy. The aim is to bridge the language barrier between physics and mathematics, as well as the different specializations in physics. Pitched at the level of a graduate student of physics, this book does not assume any additional knowledge of mathematics or physics. It is therefore suited for advanced postgraduate students as well. A collection of selected problems will help the reader learn the topics on one's own, and the broad range of topics covered will make the text a valuable resource for practising researchers in the field.  The book consists of two parts: one corresponds to developing the necessary mathematics and the other discusses applications to physical problems. The section on mathematics is a qui...

  20. Fundamentals of condensed matter physics

    CERN Document Server

    Cohen, Marvin L

    2016-01-01

    Based on an established course and covering the fundamentals, central areas, and contemporary topics of this diverse field, Fundamentals of Condensed Matter Physics is a much-needed textbook for graduate students. The book begins with an introduction to the modern conceptual models of a solid from the points of view of interacting atoms and elementary excitations. It then provides students with a thorough grounding in electronic structure as a starting point to understand many properties of condensed matter systems - electronic, structural, vibrational, thermal, optical, transport, magnetic and superconductivity - and methods to calculate them. Taking readers through the concepts and techniques, the text gives both theoretically and experimentally inclined students the knowledge needed for research and teaching careers in this field. It features 200 illustrations, 40 worked examples and 150 homework problems for students to test their understanding. Solutions to the problems for instructors are available at w...

  1. Department of Theoretical Physics. Annual report 1991

    International Nuclear Information System (INIS)

    1992-01-01

    The research done at the Department of Theoretical Physics of the H. Niewodniczanski Institute of Nuclear Physics concerns various theoretical problems of low, medium and high energy nuclear physics, elementary particle physics, astrophysics, general physics and mathematical physics. Both formal problems as well as more phenomenologically oriented ones are being considered. The details of the results obtained in various fields are summarised in the presented abstracts. (author)

  2. Nuclear matter physics at NICA

    Energy Technology Data Exchange (ETDEWEB)

    Senger, P. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2016-08-15

    The exploration of the QCD phase diagram is one of the most exciting and challenging projects of modern nuclear physics. In particular, the investigation of nuclear matter at high baryon densities offers the opportunity to find characteristic structures such as a first-order phase transition with a region of phase coexistence and a critical endpoint. The experimental discovery of these prominent landmarks of the QCD phase diagram would be a major breakthrough in our understanding of the properties of nuclear matter. Equally important is the quantitative experimental information on the properties of hadrons in dense matter which may shed light on chiral symmetry restoration and the origin of hadron masses. Worldwide, substantial efforts at the major heavy-ion accelerators are devoted to the clarification of these fundamental questions, and new dedicated experiments are planned at future facilities like CBM at FAIR in Darmstadt and MPD at NICA/JINR in Dubna. In this article the perspectives for MPD at NICA will be discussed. (orig.)

  3. Annual progress report of the Department of Solid State Physics

    International Nuclear Information System (INIS)

    Als-Nielsen, J.; Skov Pedersen, J.; Lebech, B.

    1992-01-01

    Research in the department covers the field of condensed matter physics. The principal activities of the department are presented in the Progress Report covering the period from 1 January to 31 December 1991. The condensed matter physics research is predominantly experimental utilizing diffraction of neutrons and X-rays. The research topics range from studies of two- and three-dimensional structures, magnetic ordering, heavy femions, high T c superconductivity, phase transitions in model systems to studies of precipitation phenomena and nano-scale structures in various materials. The major interest of the department is in basic research, but projects of more applied nature are often taken up, prompted by the applicability of the developed technique and expertise. (au) 2 tabs., 94 ills., 82 refs

  4. Physics Department. Annual progress report 1 January - 31 December 1990

    International Nuclear Information System (INIS)

    Als-Nielsen, J.; Skov Pedersen, J.; Lebech, B.

    1991-01-01

    Research in the Physics Department covers the field of condensed matter physics. The principal activities of the department are presented in this Progress Report for the period from 1 January to 31 December 1990. The condensed matter physics research is predominantly experimental utilising diffraction of neutrons and X-rays. The research topics range from studies of two- and three-dimensional structures, magnetic ordering, heavy fermions, phase transitions in model systems to studies of texture and recrystallization kinetics with a more applie nature. In the field high T c superconductors neutron and X-ray diffraction are used both for studying the basic mechanism responsible for the superconductivity and in the analysis of the solid state syntheses of the materials. (author) 9 tabs., 79 ills., 104 refs

  5. Department of Theoretical Physics. Annual Report 1989

    International Nuclear Information System (INIS)

    1990-01-01

    Abstracts of studies done in 1989 at the Department of Theoretical Physics of the H. Niewodniczanski Institute of Nuclear Physics in Cracow are given together with the lists of personnel, guests, conference papers, lectures, habilitations, ph.d. theses and publications. 45 refs. (A.S.)

  6. Department of High Energy Physics - Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2010-01-01

    measured trigger efficiency was in agreement with expectations. The team is working on two analyses: the search for the Higgs boson in the H→2tau channel and heavy stable charged particles. The LHCb experiment team has maintained the system of the Inner Detector during data taking and worked on ageing in the LHCb outer tracker preparing for the production of new straw chamber modules. The measurement of CP violation in B s → J/psi Phi decays is the main activity in analyzing the LHCb 2010 data. The ALICE team has commissioned the photon detector PHOS with the LHC data. In the first physical analysis, ALICE measured multiplicities and spectra of charged particles in pp and PbPb data, Bose-Einstein correlation and the p(bar)/p fraction. III. Neutrino physics experiments. The neutrino team works in three experiments on the following subjects: neutrino oscillations in the T2K experiment, the Dark Matter search in Super-Kamionkande and ArDM, and analysis of the first data from the Icarus experiment. The work includes commissioning of detectors during the first data taking (T2K, Icarus), especially on the Side Muon Range Detector, part of the near detector ND280 in T2K. The PhD thesis: '' A study of neutrino interactions constituting the background to electron neutrino appearance in the T2K experiment '' was defended by a team member. 10 publications have been published. A future oriented project is an involvement in studies of the MAPS vertex detector, for the ILC collider. Members of the department are active in the '' Pi of the sky '' project. Several members actively participate in two large projects: AiD (Accelerators and Detectors) and CiS (Swierk Computing Center). 10 PhD students work under the supervision of department members. (author)

  7. Department of High Energy Physics: Overview

    International Nuclear Information System (INIS)

    Nassalski, J.

    1999-01-01

    Full text: The main activity of our Department is experimental high energy physics with accelerators. Experiments are carried using large facilities: - at CERN, the European Laboratory for Particle Physics in Geneva, - at Celsius Storage Ring in Uppsala and - in DESY laboratory in Hamburg, where several groups of physicists from our Department are members of international collaborations. They are listed below together with the main physics interests: At CERN - Delphi at LEP - tests of the Standard Model, b-quark physics, SUSY search, - NA48 - CP-violation in K 0 decays, rare decays, - SMC - spin dependent nucleon structure function, the Bjorken sum, - NA49 and WA98 - heavy ion physics. At CELSIUS - WASA - threshold production of light mesons, rare meson decays. At DESY - ZEUS - proton and photon structure functions, diffractive production. In most of these experiments our Department also contributed to the instrumentation of detectors and is presently involved in data collection, detector supervision and in data analysis. At the same time the Department is also involved in preparation of new experiments: - CMS (Compact Muon Solenoid) and ALICE at the LHC (Large Hadron Collider) at CERN, - COMPASS (Compact Muon and Proton Apparatus for Structure and Spectroscopy) at the SPS at CERN, - WASA-Promice - an upgrade of the present detector at Celsius, - hyperfragment experiment at JINR, Dubna. The department has small workshop which was recently involved in an upgrade of the WASA detector. In our Department there are also two physicists working on the phenomenology of a quark-gluon plasma and on the low energy hadron-hadron interactions. Physicist from our Department collaborate with the Department of the Experimental Physics of Warsaw University. They are also involved in teaching and in supervision of diploma students. There is a group of 9 PhD students. (author)

  8. Matter and Interactions: a particle physics perspective

    OpenAIRE

    Organtini, Giovanni

    2011-01-01

    In classical mechanics matter and fields are completely separated. Matter interacts with fields. For particle physicists this is not the case. Both matter and fields are represented by particles. Fundamental interactions are mediated by particles exchanged between matter particles. In this paper we explain why particle physicists believe in such a picture, introducing the technique of Feynman diagrams starting from very basic and popular analogies with classical mechanics, making the physics ...

  9. Summary of Research 1998, Department of Physics

    OpenAIRE

    Faculty of the Department of Physics, Naval Postgraduate School

    1998-01-01

    The views expressed in this report are those of the authors and do not reflect the official policy or position of the Department of Defense or the U.S. Government. This report contains summaries of research projects in the Department of Physics. A list of recent publications is also included which consists of conference presentations and publications, books, contributions to books, published journal papers, technical reports, and thesis abstracts.

  10. Progress report of the nuclear physics department

    International Nuclear Information System (INIS)

    1988-01-01

    This progress report presents the research programs and the technical developments carried out at the Nuclear Physics Department of Saclay from October 1, 1986 to September 30, 1987. The research programs concern the structure of nuclei and the general study of nuclear reaction mechanisms. Experiments use electromagnetic probes of the 700 Mev Saclay linear electron accelerator and hadronic probes, light polarised particles and heavy ions of the National Laboratories SATURNE and GANIL. The Nuclear Physics Department is also involved in development of accelerator technologies, especially in the field of superconducting cavities [fr

  11. Statistical physics and condensed matter

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This document is divided into 4 sections: 1) General aspects of statistical physics. The themes include: possible geometrical structures of thermodynamics, the thermodynamical foundation of quantum measurement, transport phenomena (kinetic theory, hydrodynamics and turbulence) and out of equilibrium systems (stochastic dynamics and turbulence). The techniques involved here are typical of applied analysis: stability criteria, mode decomposition, shocks and stochastic equations. 2) Disordered, glassy and granular systems: statics and dynamics. The complexity of the systems can be studied through the structure of their phase space. The geometry of this phase space is studied in several works: the overlap distribution can now be computed with a very high precision; the boundary energy between low lying states does not behave like in ordinary systems; and the Edward's hypothesis of equi-probability of low lying metastable states is invalidated. The phenomenon of aging, characteristic of glassy dynamics, is studied in several models. Dynamics of biological systems or of fracture is shown to bear some resemblance with that of disordered systems. 3) Quantum systems. The themes include: mesoscopic superconductors, supersymmetric approach to strongly correlated electrons, quantum criticality and heavy fermion compounds, optical sum rule violation in the cuprates, heat capacity of lattice spin models from high-temperature series expansion, Lieb-Schultz-Mattis theorem in dimension larger than one, quantum Hall effect, Bose-Einstein condensation and multiple-spin exchange model on the triangular lattice. 4) Soft condensed matter and biological systems. Path integral representations are invaluable to describe polymers, proteins and self-avoiding membranes. Using these methods, problems as diverse as the titration of a weak poly-acid by a strong base, the denaturation transition of DNA or bridge-hopping in conducting polymers have been addressed. The problems of RNA folding

  12. Statistical physics and condensed matter

    International Nuclear Information System (INIS)

    2003-01-01

    This document is divided into 4 sections: 1) General aspects of statistical physics. The themes include: possible geometrical structures of thermodynamics, the thermodynamical foundation of quantum measurement, transport phenomena (kinetic theory, hydrodynamics and turbulence) and out of equilibrium systems (stochastic dynamics and turbulence). The techniques involved here are typical of applied analysis: stability criteria, mode decomposition, shocks and stochastic equations. 2) Disordered, glassy and granular systems: statics and dynamics. The complexity of the systems can be studied through the structure of their phase space. The geometry of this phase space is studied in several works: the overlap distribution can now be computed with a very high precision; the boundary energy between low lying states does not behave like in ordinary systems; and the Edward's hypothesis of equi-probability of low lying metastable states is invalidated. The phenomenon of aging, characteristic of glassy dynamics, is studied in several models. Dynamics of biological systems or of fracture is shown to bear some resemblance with that of disordered systems. 3) Quantum systems. The themes include: mesoscopic superconductors, supersymmetric approach to strongly correlated electrons, quantum criticality and heavy fermion compounds, optical sum rule violation in the cuprates, heat capacity of lattice spin models from high-temperature series expansion, Lieb-Schultz-Mattis theorem in dimension larger than one, quantum Hall effect, Bose-Einstein condensation and multiple-spin exchange model on the triangular lattice. 4) Soft condensed matter and biological systems. Path integral representations are invaluable to describe polymers, proteins and self-avoiding membranes. Using these methods, problems as diverse as the titration of a weak poly-acid by a strong base, the denaturation transition of DNA or bridge-hopping in conducting polymers have been addressed. The problems of RNA folding has

  13. Probes for dark matter physics

    Science.gov (United States)

    Khlopov, Maxim Yu.

    The existence of cosmological dark matter is in the bedrock of the modern cosmology. The dark matter is assumed to be nonbaryonic and consists of new stable particles. Weakly Interacting Massive Particle (WIMP) miracle appeals to search for neutral stable weakly interacting particles in underground experiments by their nuclear recoil and at colliders by missing energy and momentum, which they carry out. However, the lack of WIMP effects in their direct underground searches and at colliders can appeal to other forms of dark matter candidates. These candidates may be weakly interacting slim particles, superweakly interacting particles, or composite dark matter, in which new particles are bound. Their existence should lead to cosmological effects that can find probes in the astrophysical data. However, if composite dark matter contains stable electrically charged leptons and quarks bound by ordinary Coulomb interaction in elusive dark atoms, these charged constituents of dark atoms can be the subject of direct experimental test at the colliders. The models, predicting stable particles with charge ‑ 2 without stable particles with charges + 1 and ‑ 1 can avoid severe constraints on anomalous isotopes of light elements and provide solution for the puzzles of dark matter searches. In such models, the excessive ‑ 2 charged particles are bound with primordial helium in O-helium atoms, maintaining specific nuclear-interacting form of the dark matter. The successful development of composite dark matter scenarios appeals for experimental search for doubly charged constituents of dark atoms, making experimental search for exotic stable double charged particles experimentum crucis for dark atoms of composite dark matter.

  14. Physics through the 1990s: condensed-matter physics

    International Nuclear Information System (INIS)

    1986-01-01

    The volume presents the current status of condensed-matter physics from developments since the 1970s to opportunities in the 1990s. Topics include electronic structure, vibrational properties, critical phenomena and phase transitions, magnetism, semiconductors, defects and diffusion, surfaces and interfaces, low-temperature physics, liquid-state physics, polymers, nonlinear dynamics, instabilities, and chaos. Appendices cover the connections between condensed-matter physics and applications of national interest, new experimental techniques and materials, laser spectroscopy, and national facilities for condensed-matter physics research. The needs of the research community regarding support for individual researchers and for national facilities are presented, as are recommendations for improved government-academic-industrial relations

  15. Gravitational probes of dark matter physics

    OpenAIRE

    Buckley, Matthew R.; Peter, Annika H. G.

    2017-01-01

    The nature of dark matter is one of the most pressing questions in particle physics. Yet all our present knowledge of the dark sector to date comes from its gravitational interactions with astrophysical systems. Moreover, astronomical results still have immense potential to constrain the particle properties of dark matter. We introduce a simple 2D parameter space which classifies models in terms of a particle physics interaction strength and a characteristic astrophysical scale on which new p...

  16. Plasma Physics Department annual report, 1990

    International Nuclear Information System (INIS)

    1991-01-01

    The main fields in which researches have been carried out during 1990 at the Wills Plasma Physics Department are briefly discussed. These include investigations of shear Alfven waves at frequencies above the ion cyclotron frequency; the use of submillimetre lasers to detect by far forward scattering density fluctuation associated with waves in Tortus during Alfven wave heating experiments; basic physics of laser induced fluorescence in plasma and in particular the process which determine the population of excited states, as well as magnetron discharge studies and application of the vacuum arc as ion sources for accelerators and as sputtering device for producing thin film coating. A list of publications and papers presented at various conferences by the members of the Department is given in the Appendix

  17. Progress report of the Nuclear Physics Department

    International Nuclear Information System (INIS)

    1981-01-01

    This progress report presents the experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1979 to September 30, 1980. These studies concern the structure of nuclei and hypernuclei and various reaction mechanisms. They have been performed with the 8.5 MV tandem Van de Graaff, with the 600 MeV electron linac, at the synchrotron SATURNE and with different accelerators belonging to other laboratories [fr

  18. Department of High Energy Physics: Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2002-01-01

    Full text:The activities of the Department of High Energy Physics are centered around experiments performed at accelerators in the following laboratories: * At CERN, the European Laboratory for Particle Physics in Geneva, Switzerland: - DELPHI at LEP e + e - storage ring - the tests of the Standard Model, b-quark physics, gamma-gamma interactions and search for Higgs boson and supersymmetric particles - NA48 - the CP-violation and rare K 0 decays - COMPASS (Compact Muon and Proton Apparatus for Structure and Spectroscopy) - studies the gluon polarization in the nucleon - NA49 and WA98 - heavy ion physics, looking for possible effects of the phase transition to the quark-gluon plasma state. * At CELSIUS Storage Ring in Uppsala, Sweden: - WASA - a precise study of near threshold resonance production. * At DESY in Hamburg, Germany: - ZEUS - deep inelastic scattering of electrons and protons, proton structure functions, diffractive photon-proton interactions. * Super-Kamiokande and Icarus - neutrino mass and oscillations study. The groups of our Department participated in the construction phase of the experiments, both in hardware and in development of the software used in data analysis. Presently they take part in the data collection, detector performance supervision and data analysis. The Department is also actively involved in the preparation of new experiments: - CMS (Compact Muon Solenoid) at the LHC, - LHCb (b-quark production and CP-violation) at the LHC (Large Hadron Collider) at CERN, - ALICE - experiment to study the heavy ion interactions at the LHC, - ICARUS - tests of a liquid argon TPC, in preparation, for neutrino beam (CERN to Gran Sasso), and to be used for cosmic neutrino detection, - study of charge exchange processes in d-p collisions at Nuclotron in Dubna. A mechanical workshop attached to our Department, participated in the construction of the prototypes for the alignment monitoring system for the Outer Tracker detector in the LHCb experiment. Now

  19. Department of High Energy Physics: Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2003-01-01

    Full text: The activities of the Department of High Energy Physics are centered around experiments performed at accelerators in the following laboratories: - At CERN, the European Laboratory for Particle Physics in Geneva, Switzerland: - DELPHI at LEP e + e - storage ring - the tests of the Standard Model, b-quark physics, gamma-gamma interactions and search for Higgs boson and supersymmetric particles - NA48 - - the CP-violation and rare K 0 decays - COMPASS (Compact Muon and Proton Apparatus for Structure and Spectroscopy) - studies the gluon polarization in the nucleon - NA49 and WA98 - heavy ion physics, looking for possible effects of the phase transition to the quark-gluon plasma state. - At CELSIUS Storage Ring in Uppsala, Sweden: - WASA - a precise study of near threshold resonance production. - At DESY in Hamburg, Germany: - ZEUS - deep inelastic scattering of electrons and protons, proton structure functions, diffractive photon-proton interactions. - Super-Kamiokande and Icarus - neutrino mass and oscillation studies. The groups of our Department participated in the construction phase of the experiments, both in hardware and in the development of the software used in data analysis. Presently they take part in data collection, detector performance supervision and data analysis. The Department is also involved in the preparation of new experiments: - CMS (Compact Muon Solenoid) at the LHC, - LHCb (b-quark production and CP-violation) at the LHC (Large Hadron Collider) at CERN, - ALICE - experiment to study the heavy ion interactions at the LHC, - ICARUS - tests of a liquid argon TPC, in preparation, for neutrino beam (CERN to Gran Sasso), and to be used for cosmic neutrino detection, - the study of charge exchange processes in d-p collisions at Nuclotron in Dubna. A mechanical workshop attached to our Department participated in the construction of the prototypes for the alignment monitoring system for the Outer Tracker detector in the LHCb experiment. Now a

  20. Department of High Energy Physics: Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2004-01-01

    Full text: The activities of the Department of High Energy Physics are centered around experiments performed at accelerators in the following laboratories: - At CERN, the European Laboratory for Particle Physics in Geneva, Switzerland: - DELPHI at LEP e + e - storage ring - the tests of the Standard Model, b-quark physics, gamma-gamma interactions and search for Higgs boson and supersymmetric particles; - NA4B - the CP-violation and rare K 0 decays; - COMPASS (Compact Muon and Proton Apparatus for Structure and Spectroscopy) - studies the gluon polarization in the nucleon; - NA49 and WA98 - heavy ion physics, looking for possible effects of the phase transition to the quark-gluon plasma state. At CELSIUS Storage Ring in Uppsala, Sweden: - WASA - a precise study of near threshold resonance production. - At RHIC - study of pp elastic scattering. - At DESY in Hamburg, Germany: - ZEUS - deep inelastic scattering of electrons and protons, proton structure functions, diffractive photon-photon interactions. - Super-Kamiokande and K2 K - a study of neutrino oscillations. The groups from our Department participated in the construction phase of the experiments, both in hardware and in development of the software used in data analysis. Presently they take part in the data collection, detector performance supervision and data analysis. The Department is also involved in the preparation of new experiments: - search for optical flashes of cosmic origin: ''π of the sky'' project - search for optical counterparts of γ ray bursts, - CMS (Compact Muon Solenoid) at the LHC, - LHCb (b-quark production and CP-violation) at the LHC (Large Hadron Collider) at CERN, - ALICE - experiment to study the heavy ion interactions at the LHC, - ICARUS - tests of a liquid argon TPC, in preparation for neutrino beam (CERN to Gran Sasso), and to be used for cosmic neutrino detection, - study of charge exchange processes in d-p collisions at Nuclotron in Dubna. A mechanical workshop attached to our

  1. Department of High Energy Physics: Overview

    International Nuclear Information System (INIS)

    Nassalski, J.

    2000-01-01

    Full text: The activities of the Department of High Energy Physics are centered around experiments performed at accelerators in the following laboratories: 1. At CERN, the European Laboratory for Particle Physics in Geneva, Switzerland: - DELPHI at LEP e + e - storage ring is concerned mainly with the tests of the Standard Model, b-quark physics, gamma-gamma interactions and search for Higgs boson and supersymmetric particles; - NA48 - studies of the CP-violation in rare K 0 decays; - SMC - Spin Muon Collaboration is investigating the spin dependent nucleon structure functions and the gluon role in the nucleon spin; - NA49 and WA98 deal with heavy ion physics looking for possible effects of the phase transition to the quark-gluon plasma state. 2. At CELSIUS Storage Ring in Uppsala, Sweden: - WASA - the production of light mesons near threshold and their rare decays. 3. At DESY in Hamburg, Germany: - ZEUS - deep inelastic scattering of electrons and protons, proton structure functions, diffractive photon-proton interactions. The groups of our Department participated in the construction phase of the experiments, both in hardware and in development of the software used in data analysis. Presently they take part in the data acquisition, detector performance supervision and data analysis. The Department is also actively involved in the preparation of new experiments: - CMS (Compact Muon Solenoid) and LHCb (b-quark production and CP-violation) at the LHC (Large Hadron Collider) at CERN, - ALICE - experiment to study the heavy ion interactions at the LHC, - COMPASS (Compact Muon and Proton Apparatus for Structure and Spectroscopy) at the SPS at CERN, - WASA-Promice - a new version of the WASA detector at CELSIUS in Uppsala, - relativistic hyperfragment production experiment in Dubna, Russia. A small mechanical workshop is attached to our Department. It is involved in the preparation of the COMPASS experiment and participated in the construction of the WASA - Promice

  2. Department of High Energy Physics: Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2001-01-01

    Full text:The activities of the Department of High Energy Physics are centered around experiments performed at accelerators in the following laboratories: At CERN, the European Laboratory for Particle Physics in Geneva, Switzerland: - DELPHI at LEP e + e - storage ring is concerned mainly with the tests of the Standard Model, b-quark physics, gamma-gamma interactions and search for Higgs boson and supersymmetric particles; - NA48 - studies of the CP-violation and rare K 0 decays; - SMC - Spin Muon Collaboration is investigating the spin dependent nucleon structure functions and the gluon role in the nucleon spin; - NA49 and WA98 deal with heavy ion physics looking for possible effects of the phase transition in the quark-gluon plasma state. At CELSIUS Storage Ring in Uppsala, Sweden: - WASA - a precise study of near threshold production of light mesons, and their decays. At DESY in Hamburg, Germany: - ZEUS - deep inelastic scattering of electrons and protons, proton structure functions, diffractive photon-proton interactions. The groups of our Department participated in the construction phase of the experiments, both in hardware and in development of the software used in data analysis. Presently they take part in the data collection, detector performance supervision and data analysis. The Department is also actively involved in the preparation of new experiments: - CMS (Compact Muon Solenoid) and LHCb (b-quark production and CP-violation) at the LHC (Large Hadron Collider) at CERN; - ALICE - experiment to study the heavy ion interactions at the LHC; - COMPASS (Compact Muon and Proton Apparatus for Structure and Spectroscopy) at the SPS at CERN; - WASA- 4π - commissioning of a new version of the WASA detector at CELSIUS in Uppsala; - study of charge exchange processes in d-p collisions at Nuclotron in Dubna. A small mechanical workshop is attached to our Department. It is involved in the preparation of the COMPASS experiment and participated in the construction of

  3. Physics Department. Annual progress report 1 January - 31 December 1989

    International Nuclear Information System (INIS)

    Als-Nielsen, J.; Skov Pedersen, J.; Juul Rasmussen, J.; Lebech, B.

    1990-02-01

    Research in the Physics Department covers two main fields: condensed matter physics and plasma physics. The principal activites in these fields are presented in this Progress Report covering the period from 1 January to 31 December 1989. The condensed matter physics research is predominantly experimental utilising diffraction of neutrons and x-rays. The research topics range from studies of two- and three-dimensional structures, magnetic ordering, heavy fermions, phase transitions in model systems to studies of texture and recrystallization kinetics with a more applied nature. The discovery of the high Tc superconductors in 1986 has opened an important new research area, where neutron and x-ray diffraction are used to elucidate the basic mechanism responsible for the superconductivity and in the analysis of the solid state syntheses used in producing the materials. The plasma physics research is partly experimental and partly theoretical. The plasma physics programme is also of a wide scope ranging from fundamental studies of wave propagation, instabilities, solitons and turbulence in plasmas to refuelling a fusion reactor by deuterium-tritium pellets. (author) 4 tabs., 66 ills., 71 refs

  4. Physics Department annual progress report 1 January - 31 December 1983

    International Nuclear Information System (INIS)

    Als-Nielsen, J.; Lebech, B.

    1984-03-01

    Research in the Physics Department at Risoe National Laboratory covers three main fields: Condensed Matter Physics, Plasma Physics and Meteorology. The principal activities in these fields for the period from 1 January to 31 December 1983 are described. The condensed matters physics research is predominantly experimental utilising diffraction of neutrons and X-rays. The research topics range from studies of structure, excitations and phase transitions in model systems to studies of ion transport, texture and recrystallization kinetics with a more applied nature. The plasma physics research is partly experimental and partly theoretical. A study of pellet-plasma interaction is of applied nature and aimed at assessing the possibilities of refuelling a fusion reactor by shooting deuterium-tritium pellets into the plasma. A study of the fundamental physics of plasmas deals with investigations of wave propagation properties, instabilities, solitons, turbulence, etc. The research and applied work within meteorology lies within micrometeorology and the subjects range from surface energy balance studies, over studies of the general structure of atmospheric coherence and boundary layer response to change in surface elevation, to specific studies of turbulent dispersion and deposition of airborne material. As part of the applied work within meteorology and wind energy, the test station for small windmills tests and licences windmills for the Danish market and offers consulting assistance for the Danish windmill manufacturers. (Auth.)

  5. Physics Department annual progress report 1 January - 31 December 1982

    International Nuclear Information System (INIS)

    1983-09-01

    Research in the Physics Department at Risoe National Laboratory covers three main fields: condensed matter physics, plasma physics and meteorology. The report is a progress report describing the principal activities in these fields for the period from 1 January to 31 December 1982. The condensed matter physics research is predominantly experimental utilising diffraction of neutrons, X-rays, and synchrotron X-ray radiation. The research topics range from studies of structure, excitations and phase transitions in model systems to studies of ion transport, texture and recrystallization kinetics with a more applied nature. The plasma physics research is partly experimental and partly theoretical. A study of pellet-plasma interaction is of applied nature and aimed at assessing the possibilities of refuelling a fusion reactor by shooting deuterium-tritium pellets into the plasma. A study of the fundamental physics of plasmas deals with investigations of wave propagation properties, instabilities, solitons, turbulence, etc. The research and applied work within meteorology lies within micrometereology and the subjects range from surface energy balance studies, over studies of the general structure of atmospheric coherence and boundary layer response to change in surface elevation, to specific studies of turbulent dispersion and deposition of airborne material. As part of the applied work within meteorology and wind energy, the test station for small windmills tests and licences windmills for the Danish market and offers consulting assistance for the Danish windmill manufacturers. (Auth.)

  6. Physics in Brazil in the next decade: condensed matter physics

    International Nuclear Information System (INIS)

    1990-01-01

    This book gives a general overview of the present situation in Brazil, concerning research in the different areas of condensed matter physics. The main areas discussed here are: semiconductors, magnetism and magnetic materials, superconductivity liquid crystals and polymers, ceramics, glasses and crystals, statistical physics and solid state physics, crystallography, magnetic resonance and Moessbauer spectroscopy, among others. (A.C.A.S.)

  7. Progress report of the Nuclear Physics Department

    International Nuclear Information System (INIS)

    1983-01-01

    The experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1981 to September 30, 1982 are presented. These studies concern the structure of nuclei and hypernuclei and various reaction mechanisms. They have been performed with the 8.5 MV tandem Van de Graaff, with the 600 MeV electron linac, at the synchrotron SATURNE and with different accelerators belonging to other laboratories, in particular the SARA facility at Grenoble, the boosted tandem at Heidelberg and the secondary beams at CERN [fr

  8. Wills Plasma Physics Department annual report, 1989

    International Nuclear Information System (INIS)

    1991-01-01

    An overview of the collaborative researches carried out during the 1989 at the Wills Plasma Physics Department is given. The main activities included the study of hydromagnetic surface waves and RF heating using the Tortus tokamak; the development of diagnostic techniques, particularly those based on submillimetre lasers and tunable gyrotrons; gas discharge studies and investigations of apparent cold nuclear fusion in deuterated palladium. The small research tokamak Tortus was upgraded during the year, thus enabling the machine to be routinely and reliably operated at toroidal currents around 40 kA. A list of papers published or presented at various conferences during the year is included in the Appendix

  9. Progress report of the nuclear physics department

    International Nuclear Information System (INIS)

    1987-01-01

    This progress report presents the experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1985 to September 30, 1986. These studies concern the structure of nuclei, the nuclear reaction mechanisms and, more and more, mesic processes in nuclear dynamics. The experiments have been carried at the 700 MeV electron linac, the synchrotron SATURNE, the heavy ion accelerator GANIL, the SARA facility at Grenoble. An important technical activity has been devoted to the construction of the supraconducting booster of the 9 MV tandem [fr

  10. Progress report of the nuclear physics department

    International Nuclear Information System (INIS)

    1986-01-01

    This progress report presents the experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1984 to September 30, 1985. These studies concern the structure of nuclei, the nuclear reaction mechanisms and, more and more, mesic processes in nuclear dynamics. The experiments have been carried at the 700 MeV electron linac, the synchrotron SATURNE, the heavy ion accelerator GANIL, the SARA facility at Grenoble, and the antiproton beams at CERN. An important technical activity has been devoted to the construction of the supraconducting booster of the 9 MV tandem [fr

  11. Department of Accelerator Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Plawski, E.

    2003-01-01

    Full text: The main activities of the Accelerator Physics and Technology Department were focused on following subjects: - contribution to development and building of New Therapeutical Electron Accelerator delivering the photon beams of 6 and 15 MeV, - study of the photon and electron spectra of narrow photon beams with the use of the BEAM/EGSnrc codes, - design and construction of special RF structures for use in CLIC Test Facility in CERN, - design and construction of 1:1 copper, room temperature models of accelerating superconducting 1.3 GHz structures for TESLA Project in DESY. In spite of drastic reduction of scientific and technical staff (from 16 to 10 persons) the planned works were successfully completed, but requested some extraordinary efforts. In realisation of 6/15 MeV Accelerator Project, the Department was responsible all along the project for calculations of all most important parts (electron gun, accelerating structure, beam focusing, achromatic deviation) and also for construction and physical modelling of some strategic subassemblies. The results of scientific and technical achievements of our Department in this work are documented in the Annex to Final Report on realisation of KBN Scientific Project No PBZ 009-13 and earlier Annual Reports 2000 and 2001. The results of Monte Carlo calculations of narrow photon beams and experimental verification using Varian Clinac 2003CD, Simens Mevatron and CGR MeV Saturn accelerators ended up with PhD thesis prepared by MSc Anna Wysocka. Her thesis: Collimation and Dosimetry of X-ray Beams for Stereotactic Radiotherapy with Linear Accelerators was sponsored by KBN scientific Project Nr T11E 04121. In collaboration with LNF INFN Frascati the electron beam deflectors were designed for CERN CLIC Test Facility CTF3. These special type travelling wave RF structures were built by our Department and are actually operated in CTF3 experiment. As the result of collaboration with TESLA-FEL Project in DESY, the set of RF

  12. Department of Cosmic Ray Physics: Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2001-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high-energy physics and cosmic ray physics related to: Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. Studies of ultra-high energy (above 10 19 eV) cosmic rays: determination of energy and primary particle mass composition. Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation through the atmosphere. Studies of mass composition of cosmic rays in the energy range 10 15 -10 17 eV. Registration of cosmic ray intensity variation correlated with solar activity. Theoretical and experimental studies of Extensive Air Shower properties are performed mostly based on the results obtained by the Lodz Extensive Air Shower Array. We have noticed unexplainable delayed signals registered about 500-900 microseconds after the main EAS pulse. We prepared hardware for further experimental study of this effect. In September we have started registration of 5 GeV muon flux with the underground muon telescope. We registered 3 decreases of muon intensity correlated with Forbush decreases registered at lower energies. Variations of primary cosmic ray of energies up to about 100 GeV were responsible for our registrations. These set the upper limits for geometrical size of geomagnetic disturbances in interplanetary space. In construction and data interpretation of cosmic ray experiments, the Lodz group collaborates with many foreign institutes and laboratories: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Sciences and Uppsala University (Sweden). We have organised (together with the Physics Department of the University of Lodz) the 17 th European Cosmic Ray Symposium (24-?8 July 2000) in which about 150 physicists participated (about 100 from abroad). (author)

  13. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2010-01-01

    Full text: The 31 st International Cosmic Ray Conference (31.ICRC) was held in Lodz on 7-15 July 2009. The Conference was organized by the University of Lodz (Department of High Energy Astrophysics and Department of Astrophysics) and IPJ (Department of Cosmic Ray Physics). ICRCs are held every two years and are the largest forums to present and discuss the current status of Cosmic Ray studies. The Conference we co-organized gathered about 750 scientists (including about 50 from Poland). This was a remarkable event. The Department of Cosmic Ray Physics in Lodz is involved in basic research in the field of high energy Cosmic Rays. Cosmic Rays are energetic panicles from outside the Solar System. Most studies of Cosmic Rays address fundamental problems: - the nature of the physical and astrophysical processes responsible for the high energies of the particles. - experimental search for sources of Cosmic Rays, - studies of the astrophysical conditions at the acceleration sites, - properties of particle interactions at very high energies. Presentation of Cosmic Ray registration to high school students has become a popular way to introduce panicle physics detectors and elementary particle detection techniques to young people, in Lodz and Poznan we organize workshops on particle physics for high school students. This is part of the European activity: EPPOG Masterclass - Hands on CERN. Energetic Cosmic Ray particles produce cascades of panicles in the atmosphere, called Extensive Air Showers (EAS). Registering EASs and their properties is the main means of studying experimentally high energy Cosmic Rays: · The satellite experiment JEM-EUSO will observe EASs from the International Space Station. The main target is to find Cosmic Ray Sources for the highest energy Cosmic Rays. JEM-EUSO will collect a large number of events since it will observe a large area of the atmosphere. We are participating in the preparation of this mission. · The KASCADE-Grande addresses

  14. Holographic duality in condensed matter physics

    CERN Document Server

    Zaanen, Jan; Sun, Ya-Wen; Schalm, Koenraad

    2015-01-01

    A pioneering treatise presenting how the new mathematical techniques of holographic duality unify seemingly unrelated fields of physics. This innovative development morphs quantum field theory, general relativity and the renormalisation group into a single computational framework and this book is the first to bring together a wide range of research in this rapidly developing field. Set within the context of condensed matter physics and using boxes highlighting the specific techniques required, it examines the holographic description of thermal properties of matter, Fermi liquids and superconductors, and hitherto unknown forms of macroscopically entangled quantum matter in terms of general relativity, stars and black holes. Showing that holographic duality can succeed where classic mathematical approaches fail, this text provides a thorough overview of this major breakthrough at the heart of modern physics. The inclusion of extensive introductory material using non-technical language and online Mathematica not...

  15. Department of Cosmic Radiation Physics: Overview

    International Nuclear Information System (INIS)

    Gawin, J.

    1999-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high energy physics and cosmic ray physics related to: - Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation in the atmosphere. - Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. - Search for point sources of high energy cosmic rays. - Studies of cosmic ray propagation in the Galaxy and mechanisms of particle acceleration. - Studies of mass composition of cosmic rays in the energy range 10 15 - 10 17 eV. Theoretical and experimental studies of Extensive Air Shower properties are performed mostly based on the results obtained by the Lodz Extensive Air Shower Array. We analysed nearly 100,000 events of energies above 10 15 eV registered by the Lodz hodoscope. We have developed the method of data analysis which allows us to verify different models of cosmic ray mass composition. In our research in high energy cosmic rays we also used experimental data from other collaborating experiments in Karlsruhe, Baksan and THEMISTOCLE. The Lodz group collaborates with many foreign institutes and laboratories in construction and data interpretation of cosmic ray experiments. Our most important partners are: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Science, University of Perpignan and Uppsala University (Sweden). (author)

  16. Department of Cosmic Radiation Physics - Overview

    International Nuclear Information System (INIS)

    Gawin, J.

    1997-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high energy physics and cosmic ray physics related to: -Studies of the asymptotic properties of hadronic interactions from the analysis of cosmic ray propagation in the atmosphere. -Studies of structure and properties of Extensive Air Showers induced by cosmic ray particles. -Search for point sources of high energy cosmic rays. -Studies of cosmic ray propagation in the Galaxy and mechanisms of particle acceleration. -Studies of the mass composition of cosmic rays in the energy range 10 15 -10 17 eV. Theoretical and experimental studies of nuclear interactions for energies exceeding those obtained by modern particle accelerators are performed employing results obtained by the Lodz Extensive Air Shower Array. The Lodz hodoscope can register electromagnetic components of cosmic ray showers in the atmosphere as well as muons at two energy thresholds. Data collected by the Lodz array are also used to study mass composition of cosmic rays in the energy range 10 15 - 10 17 eV. The Lodz group collaborates with foreign institutes and laboratories on construction and data interpretation of cosmic ray experiments. Our most important partners are: Forschungszentrum Karlsruhe (Germany), College de France, the Institute for Nuclear Studies of the Russian Academy of Sciences, the University of Durham, and the University of Perpignan. (author)

  17. Department of Cosmic Radiation Physics: Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2000-01-01

    Full text: Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high-energy physics and cosmic ray physics related to: -Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation through the atmosphere. -Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. - Search for high-energy cosmic ray point sources. - Studies of cosmic ray propagation in the Galaxy and particle acceleration mechanisms. -Studies of mass composition of cosmic rays in the energy range 10 15 -10 17 eV. Theoretical and experimental studies of Extensive Air Shower properties are performed mainly on the basis of the results obtained by the Lodz Extensive Air Shower Array. We have analysed nearly 100,000 events of energies above 10 15 eV registered in the Lodz hodoscope. We have developed a method to verify different models of cosmic ray mass composition. The Lodz group collaborates with many foreign institutes and laboratories in construction and data interpretation of cosmic ray experiments. Our most important partners are: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Sciences and Uppsala University (Sweden). (author)

  18. Department of Cosmic Radiation Physics: Overview

    International Nuclear Information System (INIS)

    Gawin, J.

    1998-01-01

    (full text) The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high energy physics and cosmic ray physics related to: -Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation in the atmosphere. -Studies of the structure and properties of Extensive Air Showers induced by cosmic ray particles. - Search for point sources of high energy cosmic rays. - Studies of cosmic ray propagation in the Galaxy and mechanisms of particle acceleration. - Studies of mass composition of cosmic rays in the energy range l0 15 -10 17 eV. Theoretical and experimental studies of nuclear interactions for energies exceeding those obtained by modern particle accelerators are performed based on the results obtained by the Lodz Extensive Air Shower Array. The Lodz hodoscope can register the electromagnetic component of cosmic ray showers developing in the atmosphere as well as muons of two energy thresholds. Data collected by the Lodz array are also used to study the mass composition of cosmic rays in the energy range 10 15 -10 17 eV. The Lodz group collaborates with many foreign institutes and laboratories in construction and data interpretation of cosmic ray experiments. Our most important partners are: Forschungszentrum Karlsruhe (Germany), College de' France, the Institute for Nuclear Studies of the Russian Academy of Science, the University of Perpignan (France) and Uppsala University (Sweden). (author)

  19. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2007-01-01

    The Department of Cosmic Ray Physics in Lodz is involved in basic research in the high energy Cosmic Ray field. Cosmic Rays are energetic particles from outside the Solar System. The energy spectrum (power law energy dependence) suggests non-thermal origin of these particles. Most of the studies of Cosmic Rays address fundamental problems: · the nature of the physical and astrophysical processes responsible for high energies of particles (up to about 1020 eV/particle), · an estimation of the astrophysical conditions at the acceleration sites and/or search for sources of Cosmic Rays, · properties of high energy particle interactions at very high energies (nuclear interactions at energies exceeding energy available in the laboratories). Some Cosmic Ray studies might have practical (commercial) implications, e.g.: · '' cosmic weather '' forecast - predictions of geomagnetic disturbances related to Solar activity changes (due to large Solar Flares / events of Coronal Mass Ejection); these are important for large electricity networks, gas pipes, radio-wave connections, space missions and satellite experiments. Presentation of Cosmic Ray registration to high school students becomes a popular way to introduce particle physics detectors and elementary particle detection techniques to young people. We organize in Lodz several workshops on particle physics for high school students. This is a part of European activity: Masterclass - Hands on CERN. Energetic Cosmic Ray particles produce cascades of particles in the atmosphere, called Extensive Air Showers (EAS). Registering EAS and their properties is the main way of experimental studies of very high energy Cosmic Rays. In Lodz Department we run Extensive Air Shower array where EAS are continuously being registered. We concentrate on the studies of detection of neutrons correlated with EAS and interpretation of this phenomenon. Back in 2004 we started realisation of the Roland Maze Project, the network of EAS detectors

  20. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2008-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the high energy Cosmic Ray field. Cosmic Rays are energetic particles from outside the Solar System. Most of the studies of Cosmic Rays address fundamental problems: · the nature of the physical and astrophysical processes responsible for high energies of particles · an estimation of the astrophysical conditions at the acceleration sites and/or search for sources of Cosmic Rays, · properties of high energy particle interactions at very high energies. Some Cosmic Ray studies might have practical (commercial) implications, e.g. · '' cosmic weather '' forecast - predictions of geomagnetic disturbances related to Solar activity changes (due to large Solar Flares / events of Coronal Mass Ejection); these are important for large electricity networks, gas pipes, radio-wave connections, space missions and satellite experiments. Presentation of Cosmic Ray registration to high school students becomes a popular way to introduce particle physics detectors and elementary particle detection techniques to young people. We organize in Lodz several workshops on particle physics for high school students. This is a part of European activity: EPPOG's Masterclass - Hands on CERN. Energetic Cosmic Ray particles produce cascades of particles in the atmosphere, called Extensive Air Showers (EAS). Registering EAS and their properties is the main way of experimental studies of very high energy Cosmic Rays. In Lodz Department we run Extensive Air Shower array where EAS are continuously being registered. We concentrate on the studies of detection of neutrons correlated with EAS and interpretation of this phenomenon. In 2004 we started realisation of the Roland Maze Project, the network of EAS detectors placed on the roofs of high schools in Lodz. We received funds from the City of Lodz budget to make a pilot project and equip 10 high schools, each with four 1m 2 detectors and GPS. The network is

  1. Open problems in condensed matter physics, 1987

    International Nuclear Information System (INIS)

    Falicov, L.M.

    1988-08-01

    The 1970's and 1980's can be considered the third stage in the explosive development of condensed matter physics. After the very intensive research of the 1930's and 1940's, which followed the formulation of quantum mechanics, and the path-breaking activity of the 1950's and 1960's, the problems being faced now are much more complex and not always susceptible to simple modelling. The (subjectively) open problems discussed here are: high temperature superconductivity, its properties and the possible new mechanisms which lead to it; the integral and fractional quantum Hall effects; new forms of order in condensed-matter systems; the physics of disorder, especially the problem of spin glasses; the physics of complex anisotropic systems; the theoretical prediction of stable and metastable states of matter; the physics of highly correlated states (heavy fermions); the physics of artificially made structures, in particular heterostructures and highly metastable states of matter; the determination of the microscopic structure of surfaces; and chaos and highly nonlinear phnomena. 82 refs

  2. Department of High Energy Physics - Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2006-01-01

    The activities of the Department are centered around experiments performed at large accelerator laboratories: I. At CERN, the European Laboratory for Particle Physics in Geneva, Switzerland: - Data taking experiments: COMPASS (Compact Muon and Proton Apparatus for Structure and Spectroscopy) - studies of the gluon polarization in the nucleon; - Experiments that finished data taking but continue the analysis: NA49 and WA98 - heavy ion experiments, study hadronic and nuclear interactions, searching for the quark-gluon plasma. II. The 'Pi of the Sky' experiment, searching for optical flashes associated with Gamma Ray Bursts takes data with a set of CCD cameras mounted in the Chile Observatory Station, and works on an extension of the system. III. WASA experiment, recently transferred from the CELSIUS storage ring in Uppsala to Juelich, studies near threshold resonance production. IV. ZEUS experiment at HERA in Hamburg - studies of proton structure functions and diffractive interactions. V. Neutrino experiments at SuperKamiokande and K2K in Japan - studies of the neutrino oscillations. VI. Preparations for future experiments: a) ICARUS - in preparation for the neutrino beam from CERN, to study neutrino oscillations, b) Experiments at the future Large Hadron Collider at CERN: CMS - Compact Muon Solenoid, LHCb - study of b-quark production, ALICE - study of heavy ion collisions. A team of physicists, engineers and technicians, using our well equipped mechanical workshop, with 'clean room' (class 100 000) facilities has performed a large scale production of straw tube modules for the LHCb experiment. Preparations for LHC physics requires an active participation of the teams involved in the computer GRID implementation. There is also a small group involved in theoretical work on the phenomenology of quark-gluon plasma formation and the low energy hadronic reactions. Several physicists from our department are actively involved in science popularization. A close

  3. Department of Accelerator Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Plawski, E.

    2004-01-01

    problems with DKFZ Heidelberg, where she participates in the development so called scanning collimators. As a result of a collaboration with LNF INFN Frascati, apart from two travelling wave RF structures now operated in the CTF3 experiment at CERN, one additional TW structure was made in our Department. It serves as an experimental unit for further study of TW technology. The collaboration with the DESY TESLA-FEL Project during the past years concerned mainly the RF accelerating super-conducting superstructures. This work ended with good results; it was reported in a common international oral session held during PAC2003 in Portland, USA. The superstructures have a chance to be mass-produced if the TESLA Superconducting Collider gets international financial approval. The work on RF vacuum windows upgrading against the multipactor effects in high power couplers was continued at DESY till the end of 2003. The original new technologies of thin TiN coating of ceramic windows were applied using newly constructed coating set-up. The summary of our 2003 results on coating will be presented in the TESLA Report 2004-02. A prerequisite of practising Accelerator Physics is understanding its importance in the wider context. Looking to professional literature on accelerators applications, one finds that in the developed world roughly 20000 accelerators exist (excluding electron units below 0.2 MeV) and yearly this number increases by at least 10%. More than half are used for material modification and roughly 30 % in radiotherapy. The most advanced technically and technologically are accelerators for subatomic physics and synchrotron radiation sources, where the total number of existing or under construction machines surpasses 200. New solutions, new technologies, cost reductions are still being investigated. So, in spite of difficult financial conditions, there is real motivation to keep accelerator physics alive in our Institute. (author)

  4. Department of Cosmic Ray Physics; Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2004-01-01

    Full text: Cosmic Rays are energetic particles from outside the Solar System. The energy spectrum (power law energy dependence) suggests a non-thermal origin of these particles. Most of the studies of Cosmic Rays address fundamental problems such as: - the nature of the physical and astrophysical processes responsible for the high energies of particles (up to about 10 20 eV/particle), - estimation of the astrophysical conditions at the acceleration sites and/or a search for sources of Cosmic Rays, - properties of high energy particle interactions at very high energies (nuclear interactions at energies exceeding energies available in the laboratories). Some Cosmic Ray studies might have practical (commercial) implications, e.g. - ''cosmic weather'' forecast - predictions of geomagnetic disturbances related to Solar activity changes (due to large Solar Flares / events of Coronal Mass Ejections); these are important for large electricity networks, gas pipes, radio-wave connections, space missions and satellite experiments. The Department of Cosmic Ray Physics in Lodz is involved in basic research in the high energy Cosmic Ray field. Energetic Cosmic Ray particles produce cascades of particles in the atmosphere, called Extensive Air Showers (EAS). Registering EAS and their properties is the main theme of experimental studies of very high energy Cosmic Rays. In the Lodz Department we run an Extensive Air Shower array where EAS are registered. We concentrate our experimental research on the explanation of particle detection delayed by hundreds of microseconds with respect to the main EAS signals. In the underground (I5 meters) laboratory we continuously register muon (5 GeV energy threshold) flux with the multidirectional telescope. We have observed several disturbances (Forbush Decreases) in muon counting rates. The interpretation of these events for ''cosmic weather'' and for Cosmic Ray transport models in the interplanetary plasma are on going in collaboration with

  5. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J

    2005-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the high energy Cosmic Ray field. Cosmic Rays are energetic particles from outside the Solar System. The energy spectrum (power law energy dependence) suggests a non-thermal origin of these particles. Most studies of Cosmic Rays address fundamental problems: - the nature of the physical and astrophysical processes responsible for high energies of particles (up to about 10 20 eV/particle), - estimation of the astrophysical conditions at the acceleration sites and/or search for sources of Cosmic Rays, - properties of high energy particle interactions at very high energies (nuclear interactions at energies exceeding energy available in laboratories). - Some Cosmic Ray studies might have practical (commercial) implications, e.g. - ''cosmic weather'' forecast - predictions of geomagnetic disturbances related to Solar activity changes (due to large Solar Flares / events of Coronal Mass Ejection); these are important for large electricity networks, gas pipes, radio-wave connections, space missions and satellite experiments. Presentation of Cosmic Ray registration to high school students is a popular way to introduce particle physics detectors and elementary particle detection techniques to young people. Energetic Cosmic Ray particles produce cascades of particles in the atmosphere, called Extensive Air Showers (EAS). Registering the EAS and their properties is the main way of experimental studies of very high energy Cosmic Rays. In our Lodz Department we run an Extensive Air Shower array where EAS are continuously being registered. We concentrate on the studies of detection of neutrons correlated with EAS and interpretation of this phenomenon. In 2004 we started realisation of the Roland Maze Project, the network of EAS detectors placed on the roofs of high schools in Lodz. We received funds from the City of Lodz's budget to make a pilot project and equip 10 high schools, each with

  6. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2006-01-01

    The Department of Cosmic Ray Physics in Lodz is involved in basic research in the high energy Cosmic Ray field. Cosmic Rays are energetic particles from outside the Solar System. The energy spectrum (power law energy dependence) suggests a non-thermal origin of these particles. Most of the studies of Cosmic Rays address fundamental problems: · The nature of the physical and astrophysical processes responsible for the high energies of the particles (up to about 1020 eV/particle), · An estimation of the astrophysical conditions at the acceleration sites and/or search for sources of Cosmic Rays, · properties of high energy particle interactions at very high energies (nuclear interactions at energies exceeding energy available in the laboratories). Some Cosmic Ray studies might have practical (commercial) implications, e.g. · 'cosmic weather' forecast - predictions of geomagnetic disturbances related to Solar activity changes (due to large Solar Flares / events of Coronal Mass Ejection); these are important for large electricity networks, gas pipes, radio-wave connections, space missions and satellite experiments. Presentation of Cosmic Ray registration to high school students becomes a popular way to introduce particle physics detectors and elementary particle detection techniques to young people. Energetic Cosmic Ray particles produce cascades of particles in the atmosphere, called Extensive Air Showers (EAS). Registering EAS and their properties is the main way of experimental studies of very high energy Cosmic Rays. In the Lodz Department we run the Extensive Air Shower array where EAS are being registered. We concentrate on the studies of detection of neutrons correlated with EAS and interpretation of this phenomenon. In 2004, we started realisation of the Roland Maze Project, the network of EAS detectors placed on roofs of high schools in Lodz. We received funds from the City of Lodz budget to make a pilot project and equip 10 high schools, each with four 1 m

  7. On physical scales of dark matter halos

    International Nuclear Information System (INIS)

    Zemp, Marcel

    2014-01-01

    It is common practice to describe formal size and mass scales of dark matter halos as spherical overdensities with respect to an evolving density threshold. Here, we critically investigate the evolutionary effects of several such commonly used definitions and compare them to the halo evolution within fixed physical scales as well as to the evolution of other intrinsic physical properties of dark matter halos. It is shown that, in general, the traditional way of characterizing sizes and masses of halos dramatically overpredicts the degree of evolution in the last 10 Gyr, especially for low-mass halos. This pseudo-evolution leads to the illusion of growth even though there are no major changes within fixed physical scales. Such formal size definitions also serve as proxies for the virialized region of a halo in the literature. In general, those spherical overdensity scales do not coincide with the virialized region. A physically more precise nomenclature would be to simply characterize them by their very definition instead of calling such formal size and mass definitions 'virial'. In general, we find a discrepancy between the evolution of the underlying physical structure of dark matter halos seen in cosmological structure formation simulations and pseudo-evolving formal virial quantities. We question the importance of the role of formal virial quantities currently ubiquitously used in descriptions, models, and relations that involve properties of dark matter structures. Concepts and relations based on pseudo-evolving formal virial quantities do not properly reflect the actual evolution of dark matter halos and lead to an inaccurate picture of the physical evolution of our universe.

  8. Department of High Energy Physics - Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2009-01-01

    Full text: The main activities of the Department can be grouped into four parts: I. An ongoing analysis of data from large accelerator facilities At CERN SPS: The Compass experiment, ' a flagship of the CERN fixed target program ', studies the structure of the nucleon. Gluon polarization analysis was the main subject this year. Compass is an active experiment, and there is an ongoing effort in data taking and detector development. Two heavy ion experiments, WA98 and NA49, have finished data taking, but continue analysis. In 2008, important results on transverse momentum spectra were published. At COSY: The WASA experiment works with low energy (up to 3.7 GeV) beams of protons and deuterons, studying rare decays of eta mesons. New limits on branching ratios for such decays have been determined. This information is important for the theory of C and CP symmetry, and chiral perturbation theory. II. Preparations for soon-to-be-operating experiments at the LHC Three teams work on LHC experiments: CMS, LHCb and ALICE. The CMS experiment is ready for data taking. The muon trigger system, based on resistive plate chambers RPC, has been installed and tested using cosmic ray muons. Simulations of physical processes predicted by some extensions of the Standard Model were performed. The LHCb experiment team has worked on the system of the Inner Detector positioning station Rasnik, and the beam phase and intensity monitor (together with a P-III team). Simulations of the B decays into vector mesons, for the High Level Trigger, were performed. The ALICE team has worked on the installation of the photon detector PHOS and tests with cosmic muons. Simulations of neutral pion reconstruction were performed. Preparation of the computing base for future large experiments - work within the Worldwide LHC Computing Grid was actively pursued by a dedicated team. In 2008, many activities were directed at information and popularization of LHC physics. Our department members actively

  9. Department of Cosmic Ray Physics - Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2009-01-01

    Full text: The Department of Cosmic Ray Physics in Lodz is involved in basic research in the high-energy Cosmic Ray field. Cosmic Rays are energetic particles from outside the Solar System. Most of the studies of Cosmic Rays address fundamental problems: - the nature of the physical and astrophysical processes responsible for the high energies of the particles - an estimation of the astrophysical conditions at the acceleration sites and/or the search for sources of Cosmic Rays, - properties of high-energy particle interactions at very high energies. Some Cosmic Ray studies might have practical (commercial) implications, e.g. - '' cosmic weather '' forecasting - predictions of geomagnetic disturbances related to Solar activity changes (due to large Solar Flares/Coronal Mass Ejection events); these are important for large electricity networks, gas pipelines, radio-wave connections, space missions and satellite experiments. Presentation of Cosmic Ray registration to high school students has become a popular way to introduce particle physics detectors and elementary particle detection techniques to young people. We organize in Lodz and Poznan workshops on particle physics for high school students. This is a part of the European activity: EPPOG's Masterclass - Hands on CERN. Energetic Cosmic Ray particles produce cascades of particles in the atmosphere, called Extensive Air Showers (EAS). Registering EAS and their properties is the main way of experimentally study's very high energy Cosmic Rays. Locally in Lodz we concentrate on methodological studies of the detection of neutrons correlated with EAS and the interpretation of this phenomenon. We have also performed two series of neutron background measurements in the deep underground Gran Sasso Laboratory in Italy (within the ILIAS-TA Project). In 2004, we began the Roland Maze Project, a network of EAS detectors placed on the roofs of high schools in Lodz. The pilot project is to equip 10 high schools, each with four 1m

  10. Department of Plasma Physics and Technology - Overview

    International Nuclear Information System (INIS)

    Sadowski, M.

    1997-01-01

    In 1996 the main activities of Department P-5 (until December 1996 known as the Department of Thermonuclear Research) were concentrated on 5 topics: 1. Selected problems of plasma theory, 2. Studies of phenomena within high-current plasma concentrators, 3. Development of plasma diagnostic methods, 4. Studies in the field of fusion technology, 5. Research on new plasma-ion technologies. Theoretical studies mainly concerned elementary processes occurring within a plasma, and particularly those within near-electrode regions of microwave discharges as well as those within near-wall layers (SOL) of tokamaks. We also developed computational packages for parameter identification and modelling of physical phenomena in pulse plasma coaxial accelerators. Experimental studies were concentrated on the generation of a dense magnetized plasma in different high-current PF (Plasma Focus) facilities and small Z-Pinch devices. We carried out investigations of X-rays, relativistic electron beams (REBs), accelerated primary ions, and fast products of fusion reactions for deuterium discharges. Research on plasma diagnostics comprised the development of methods and equipment for studies of X-ray emission, pulsed electron beams, and fast ions, using special Cherenkov-type detectors of electrons and solid-state nuclear track detectors (SSNTDs) of ions. New diagnostic techniques were developed. Studies in the field of fusion technology concerned the design, construction, and testing of different high-voltage pulse generators. We also developed special opto-electronic systems for control and data transmission. Research on plasma-ion technology concentrated on the generation of pulsed high-power plasma-ion streams and their applications for the surface modification of semiconductors, pure metals and alloys. The material engineering studies were carried out in close collaboration with our P-9 Department and other domestic and foreign research centers

  11. Physics through the 1990s: Condensed-matter physics

    International Nuclear Information System (INIS)

    1986-01-01

    In this survey of condensed-matter physics we describe the current status of the field, present some of the significant discoveries and developments in it since the early 1970s, and indicate some areas in which we expect that important discoveries will be made in the next decade. We also describe the resources that will be required to produce these discoveries. This volume is organized as follows. The first part is devoted to a discussion of the importance of condensed-matter physics; to brief descriptions of several of the most significant discoveries and advances in condensed-matter physics made in the 1970s and early 1980s, and of areas that appear to provide particularly exciting research opportunities in the next decade; and to a presentation of the support needs of condensed-matter physicists in the next decade and of recommendations aimed at their provision. Next, the subfields of condensed-matter physics are reviewed in detail. The volume concludes with several appendixes in which new materials, new experimental techniques, and the National Facilities are reviewed

  12. Department of Plasma Physics and Technology - Overview

    International Nuclear Information System (INIS)

    Rabinski, M.

    2008-01-01

    Full text: The activities of the Department in 2007 continued previous studies in the following fields of plasma physics, controlled nuclear fusion and plasma technology of surface engineering: · Studies of physical phenomena in pulsed discharges in the Plasma-Focus (PF) and RPI-IBIS facilities; · Development of selected methods for high-temperature plasma diagnostics; · Research on plasma technologies; · Selected problems of plasma theory and computational modelling. As for the experimental studies particular attention was paid to the analysis of the correlation of X-ray pulses with pulsed electron beams and other corpuscular emissions from different Plasma-Focus (PF) facilities. A collisional-radiative model, taking into account the Stark effect and strong electric fields in the so called '' hot- spot '' regions of a pinch, was applied in those analyses. The main aim of these studies was to identify the physical phenomena responsible for the emission during the PF-type discharges. The emitted protons were also measured with nuclear track detectors. The measurements made it possible to obtain images of the regions, where the D-D fusion reactions occurred, as well as to determine the angular distribution of the emitted protons. Pulsed plasma streams were also investigated by means of time-resolved optical spectroscopy and corpuscular diagnostics. In a frame of the EURATOM program, efforts were devoted to the development of diagnostic methods for tokamak-type facilities. Such studies include the design and construction of the 4-channel Cherenkov-type detection system for the TORE-SUPRA tokamak at CEA-Cadarache. In the meantime in order to collect some experience a new measuring head was especially prepared for experiments within small facilities. Other fusion- oriented efforts are connected with the application of the solid-state nuclear track detectors for investigation of protons from tokamak plasma and high-energy beams emitted from laser produced plasmas

  13. Department of Accelerator Physics and Technology - Overview

    International Nuclear Information System (INIS)

    Plawski, E.

    2006-01-01

    The activities of P-10 Department in year 2005 were devoted to: - development of radiographic 4 MeV electron accelerator, - development of accelerating and deflecting types travelling (TW) and standing wave (SW) RF structures for electrons and ions, - MC simulations applied to photon and ion radiotherapy The compact 6 MeV electron linac constructed in Department P-10 was put in the beginning of reported year into experimental operation. The request for permission to use ionisation source (6 MeV linac) was submitted to National Atomic Energy Agency. On the basis of all necessary documents the permission for routine using of our linac was granted. Actually the e/X conversion tungsten target has been moved from vacuum to air. To improve the safety of accelerator operation, the new collimator and some shielding walls were added. Two regimes of operation are actually possible: X ray output beam or electron beam depending on user demand. Some old non-reliable sub-units of accelerator were replaced, and energy and intensity optimisation for e-/X-ray conversion were made. The MC calculations of photon beams produced on e-/X converter were repeated taking into account the new collimator and additional shields. The triode gun, originally thought of as a part of 6/15 MeV medical accelerator is still on long term tests showing excellent performance; it was twice opened to air to confirm the possibility of repeated formation of gun dispenser cathode. New pulse modulator was routinely used in these tests. The sublimation set-up designed and made in our Department for the TiN coating of accelerator components underwent successfully the technological test including coating quality of several ceramic RF power vacuum windows. Within the German heavy ion therapy program the DKFZ Heidelberg is responsible for medical physics problems of treatment planning and modeling of ion beams for GSI Radiotherapy Facility. The MC simulations are used to calibrate the X-ray CT scanners to obtain

  14. Extreme state of matter physics at FAIR

    International Nuclear Information System (INIS)

    Boris Sharkov

    2010-01-01

    Complete text of publication follows. The Facility for Antiproton and Ion Research in Europe, FAIR, will provide worldwide unique accelerator and experimental facilities allowing for a large variety of unprecedented fore-front research in extreme state of matter physics and applied science. Indeed, it is the largest basic research project on the roadmap of the European Strategy Forum of Research Infrastructures (ESFRI), and it is cornerstone of the European Research Area. FAIR offers to scientists from the whole world an abundance of outstanding research opportunities, broader in scope than any other contemporary large-scale facility worldwide. More than 2500 scientists are involved in setting up and exploiting the FAIR facility. They will push the frontiers of our knowledge in hadron, nuclear, atomic and applied physics far ahead, with important implications also for other fields in science such as cosmology, astro and particle physics, and technology. It includes 14 initial experiments, which form the four scientific pillars of FAIR. The main thrust of intense heavy ion and laser beam-matter interaction research focuses on the structure and evolution of matter on both a microscopic and on a cosmic scale. This presentation outlines the current status of the Facility for Antiproton and Ion Research. It is expected that the actual construction of the facility will commence in 2010 as the project has raised more than one billion euro in funding. The sequence and scope of the construction will be described. Also the physics program of FAIR, based on the acquired funding, will be presented.

  15. Fair for extreme state of matter physics

    International Nuclear Information System (INIS)

    Sharkov, B.

    2013-01-01

    The Facility for Antiproton and Ion Research in Europe, FAIR, will provide worldwide unique accelerator and experimental facilities allowing for a large variety of unprecedented fore-front research in extreme state of matter physics and applied science. Indeed, it is the largest basic research project on the roadmap of the European Strategy Forum of Research Infrastructures (ESFRI), and it is cornerstone of the European Research Area. FAIR offers to scientists from the whole world an abundance of outstanding research opportunities, broader in scope than any other contemporary large-scale facility worldwide. More than 2500 scientists are involved in setting up and exploiting the FAIR facility. They will push the frontiers of our knowledge in hadron, nuclear, atomic and applied physics far ahead, with important implications also for other fields in science such as cosmology, astro and particle physics, and technology. It includes 14 initial experiments, which form the four scientific pillars of FAIR. The main thrust of intense heavy ion and laser beam-matter interaction research focuses on the structure and evolution of matter on both a microscopic and on a cosmic scale. This presentation outlines the current status of the Facility for Antiproton and Ion Research. It is expected that the actual construction of the facility will commence in 2010 as the project has raised more than one billion euro in funding. The sequence and scope of the construction will be described. Also the physics program of FAIR, based on the acquired funding, will be presented. (author)

  16. Department of Cosmic Ray Physics; Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2003-01-01

    Full text: Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high-energy physics and cosmic ray physics related to: - Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. - Studies of ultra-high energy (above 10 19 eV) cosmic rays: determination of energy spectrum and mass composition of primary particles - Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation through the atmosphere. - Studies of mass composition of cosmic rays in the energy range 10 15 - 10 17 eV. - Registration of cosmic ray intensity variation correlated with solar activity. Theoretical and experimental studies of Extensive Air Shower properties are performed mostly basing on the results obtained by the Lodz Extensive Air Shower Array. We have noticed unexplainable delayed signals registered about 500-900 microseconds after the main EAS pulse. Neutron transport simulations were performed in collaboration with JINR in Dubna. We prepared hardware for further experimental study of this effect. Continuous registrations of 5 GeV muon flux with the underground muon telescope have been carried on over the year 2001. We have detected several changes of muon intensity correlated with Forbush decreases registered at lower energies. We have also started registrations of muon counting rate in the on-surface scintillation detectors. These measurements will be included to the analysis of the disturbed energy spectrum of primary cosmic rays and its dependence on interplanetary disturbances related to the solar activity. In construction and data interpretation of cosmic ray experiments the Lodz group collaborates with many foreign institutes and laboratories: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Sciences, JINR in Dubna (Russia), Uppsala University (Sweden) and DESY (Germany). We have prepared a

  17. Department of Cosmic Ray Physics: Overview

    International Nuclear Information System (INIS)

    Szabelski, J.

    2002-01-01

    Full text:The Department of Cosmic Ray Physics in Lodz is involved in basic research in the area of high-energy physics and cosmic ray physics related to: * Experimental and phenomenological studies of Extensive Air Showers induced by cosmic ray particles. * Studies of ultra-high energy (above 10 19 eV) cosmic rays: determination of energy spectrum and mass composition of primary particles * Studies of asymptotic properties of hadronic interactions based on the analysis of cosmic ray propagation through the atmosphere. * Studies of mass composition of cosmic rays in the energy range 10 15 -10 17 eV. * Registration of cosmic ray intensity variation correlated with solar activity. Theoretical and experimental studies of Extensive Air Shower properties are performed mostly based on the results obtained by the Lodz Extensive Air Shower Array. We have noticed unexplainable delayed signals registered about 500-900 microseconds after the main EAS pulse. We prepared hardware for further experimental study of this effect. Continuous registrations of 5 GeV muon flux with the underground muon telescope have been carried on during 2001. We detected several changes of muon intensity correlated with Forbush decreases registered at lower energies. We have also started registration of the muon counting rate in on-surface scintillation detectors. These measurements will be included to the analysis of the disturbed energy spectrum of primary cosmic rays and its dependence on interplanetary disturbances related to solar activity. In construction and data interpretation of cosmic ray experiments the Lodz group collaborates with many foreign institutes and laboratories: Forschungszentrum in Karlsruhe (Germany), College de France, Institute for Nuclear Studies of the Russian Academy of Sciences, Uppsala University (Sweden) and DESY (Germany). We have prepared a project of large air shower array for studies of cosmic rays up to 10 20 eV. Detectors would be placed on the roofs of high

  18. Department of Accelerator Physics and Technology - Overview

    International Nuclear Information System (INIS)

    Plawski, E.

    2007-01-01

    The activities of Department P-10 in 2006 were as follows: - continuation of development of radiographic 5-6 MeV electron accelerator, - study of very compact accelerating standing wave RF structures for electrons and ions, - Monte Carlo simulations applied to ion radiotherapy. The compact 6 MeV electron linac constructed in Department P-10 were further developed. Some equipment (low input impedance amplifier for beam transformer, up-to-date power supplies for beam position steering coils, magnetron frequency control unit) was added or replaced. The old control racks were replaced by a new single more compact control console. This will allow us to introduce a PLC based control system of accelerator (when money for necessary PLCs is granted). After additional amelioration of radiation shielding followed by Radiological Inspection, the permanent permission No D-15917 for routine operation of this accelerator in electron and X-ray mode was issued by the National Atomic Energy Agency. This allows us to render services to external customers. As it was already reported in 2005, two regimes of operation are actually possible: with X ray output beam or electron beam, depending on user demand. The triode gun, originally thought of as a part of the 6/15 MeV medical accelerator is still showing excellent performance on experimental stand; it was opened to air for about 2 hours to repair the broken wire of the beam scanner. This confirms the possibility of repeated formation of gun dispenser cathode. A new pulse modulator was routinely used in these tests. The special set-up, designed and made in our Department for the TiN coating of accelerator components, was routinely used for coating of various types of RF high power vacuum windows for conventional and superconducting 1.3 GHz accelerating structures. Cooperation with foreign enterprises is promising. Accel Instruments GmbH ordered the coating of two sets (in total 18 pieces) of coaxial and cylindrical vacuum windows for

  19. Department of Nuclear Physical Chemistry - Overview

    International Nuclear Information System (INIS)

    Petelenz, B.

    1999-01-01

    , UJ) and use of Pu and Cs contaminations as tracers to follow-up natural processes in peat bog (University of Agriculture, Cracow); d) preparation of α-spectrometric sources by electrodeposition (other groups of the Department) and determination of 241 Pu in α-spectrometric Pu sources (Silesian University, Katowice, Poland); e) comparative measurements of γ-background dose rate, using the PMS station, TL detectors and Gamma-Tracer probe (Health Physics Section of the Institute). In recognition of his expertise in radioecology, Dr Mietelski has been admitted as a Regular Member of the U.I.R. (Union Internationale de Radioecologie). Mrs Jasinska, Mr Kozak and Dr Mietelski received the Prize of the President of the City of Cracow for ''Organising and conducting continuous radiological monitoring of the air in Cracow and for the researches at the radioactive contamination of the environment''. The project on construction of the internal target assembly for isotope production was continued in the Laboratory of Physical Chemistry, in cooperation with the Cyclotron Section and Division of Mechanical Constructions of the Institute, and with the JINR, Dubna. In the meantime, in pilot experiments on the internal beam of the AIC-144 cyclotron, small activities of 11 C PET tracer were obtained from proton irradiated B 2 0 3 targets. A joint project with the Silesian Medical Academy, on applications of 32 P sources pure (β - emitter) in intravascular brachytherapy (IVBT), was started. Chemical and ionic methods of preparation of 32 P sources and their TL dosimetry were tested in cooperation with the Laboratory of the Ion Implanter and with the Health Physics Section of the Institute. Measurements of the activity of selenoenzymes in the context of human thyroid health or disease were continued in cooperation with the Medical College of the Jagiellonian University, and with the Rowett Research Institute, Aberdeen, Scotland

  20. Department of High Energy Physics - Overview

    International Nuclear Information System (INIS)

    Bialkowska, H.

    2010-01-01

    within the Worldwide LHC Computing Grid - was actively pursued by a dedicated team. In 2009 many activities were directed at information and popularization of LHC physics. III. Preparations for the neutrino physics experiments: The neutrino team works on preparations for the T2K experiment which will study neutrino oscillations. Local work concentrates on the Side Muon Range Detector, part of the near detector ND28O. This involves calculations of the trigger rates, simulations for the multi pixel photon counters and participation in the electronics tests and installation. IV. There is an opening into future diffraction physics experiment at RHIC, starting with participation in test runs of polarized proton beams. A future oriented project is an involvement in the studies of the MAPS vertex detector, for the ILC collider. 12 PhD students work under the supervision of our department members. (author)

  1. Department of Plasma Physics and Technology - Overview

    International Nuclear Information System (INIS)

    Sadowski, M.J.

    2006-01-01

    In 2005 research activities in Department P-V were concentrated on the continuation of previous studies in the field of plasma physics and CNF, but new investigations were also undertaken, particularly in the field of plasma technology. The main tasks were as follows: 1. Studies of physical phenomena in pulsed discharges producing dense magnetized plasma; 2. Development of methods and tools for high-temperature plasma diagnostics; 3. Research in the field of plasma technologies. As to the first task, particular attention was paid to studies of X-ray pulses and pulsed electron beams, by means of different diagnostic techniques. Measurements of the polarization of the selected X-ray spectral lines and their correlation with pulsed e-beams were performed in the MAJA-PF facility. Taking into account microscopic irreproducibility of so-called 'hot-spots', particular efforts were devoted to the correlation of the X-ray emission from a single hot-spot with corresponding non-thermal electron pulses. Some observations of X-rays were performed also at the PF-1000 facility at IPPLM in Warsaw. Other studies concerned the correlation of fast-neutron pulses with X-rays and other corpuscular emissions. Results of experimental studies carried out in the IPJ-IPPLM collaboration were analyzed and summarized. New measurements, carried out in the MAJA-PF facility, determined the temporal correlation of X-rays pulses, fusion-neutrons, fast electron beams and high-energy ion beams. Other efforts concerned studies of fast (ripple-born) electrons in tokamaks. An analysis of the capability of special Cerenkov-type detectors (based on diamond-crystal radiators) was performed, and measuring heads for the CASTOR and TORE-SUPRA facilities have been designed. Concerning the development of plasma diagnostic techniques, characteristics of PM-355 nuclear track detectors were analyzed and the calibrated detectors (with appropriate absorption filters) were used for measurements of fast (> 3 Me

  2. Department of Nuclear Physical Chemistry - Overview

    International Nuclear Information System (INIS)

    Szeglowski, Z.

    2000-01-01

    taking part in the proficiency test on the determination of 239 Pu, 241 Pu and 241 Am in mineral matrix, organised by the IAEA. Ten dust samples, delivered by the University of Bremen (Germany) were analysed for the presence of 238 Pu, 239+240 Pu, 241 Pu, 241 Am and 244 Cm. In 1999, the equipment of the Environmental Radioactivity Laboratory was enriched with a low- background liquid scintillator spectrometer (Wallac 1414-003 Guardian), which opened a whole new branch of possible work connected with determination of pure beta-emitters. First isotopes of interest were 90 Sr and 241 Pu accumulated in animal bones. For 90 Sr measurements, an extensive library of scintillation quenching corrections was prepared. The spectrometer was also applied for tests of the purity of 32 P for the Laboratory of Physical Chemistry. A new project on transfer of plutonium from forest soil and litter to fungi and plants has been started. It is a pilot study for a planned in-Lab experiment to be performed during the incoming year at the University of Extremadura, Caceres, Spain. Other projects conducted during 1999 in the Environmental Radioactivity Laboratory are described in short abstracts below. In the Laboratory of Physical Chemistry, the project on construction of the internal target assembly for isotope production was continued, in cooperation with the Institute's Division of Mechanical Construction and with the Cyclotron Section. At the same time, much investment was made into necessary renovations in the radiochemical laboratory. Research in the Laboratory was concentrated on preparation and evaluation of 32 P sources for intravascular brachytherapy. With the help of the Institute's Health Physics Laboratory, liquid Na 2 H 32 PO 4 sources were calibrated by TL dosimetry, and in cooperation with the Department of Nuclear Spectroscopy, some solid state sources containing 32 P were prepared. Liquid 32 P sources calibrated in the Institute were first applied in pre-clinical intravascular

  3. Department of Accelerator Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Pachan, M.

    1999-01-01

    ' laboratory. Additional radiation shielding was constructed and the computer assisted system for dosimetric monitoring was installed. Three experimental set-ups for electron and photon beam diagnostics are in course of installation and running -at: 4-5 MeV, 10-15 MeV, and 20 MeV. The 20 MeV unit will also be used for generation and metrology of narrow photon beams applicable in stereotactic radiosurgery. Preliminary design works are advanced, oriented, undertaken on an important project - high-power electron accelerators for radiation technology (10 MeV, 20-50 kW). Financial support for this task is still pending. A substantial part of the Department's activity was oriented to an international collaboration with accelerator physics centres. Two works completed in 1997 were extended in 1998: microwave pulsed generator destined for short beam bunches diagnostics was installed and put in operation at INFN-Frascati; 27 pieces of polarized ''door-knob'' r.f. couplers for superconducting cavities in HERA ring were installed and put in operation. In the course of 1998 we got the message from DESY, that couplers are working well and brought desirable improvement in operation reliability. The new item of collaboration with DESY, is design, construction and r.f. measurements of a copper model of accelerating ''superstructure'' for TESLA collider. If successful, the use of niobium ''superstructure'' can shorten by about a few kilometres the length of the TESLA linear accelerator. First four 1 m sections of model structures were sent to DESY at the end of 1998. The next four are in preparation. Some results of work done in 1998 were presented at conferences in Caen, Stockholm and Cracow

  4. Condensed matter physics aspects of electrochemistry

    International Nuclear Information System (INIS)

    Tosi, M.P.; Kornyshev, A.A.

    1991-01-01

    This volume collects the proceedings of the Working Party on ''Electrochemistry: Condensed Matter, Atomic and Molecular Physics Aspects'', held for two weeks in the summer of 1990 at the International Centre for Theoretical Physics (ICTP) in Trieste. The goal of the meeting was to discuss those areas of electrochemistry that are accessible to the modern methods of theoretical condensed matter, atomic and molecular physics, in order to stimulate insight and deeper involvement by theoretical physicists into the field. The core of the ICTP Working Party was a set of topically grouped plenary lectures, accompanied by contributed seminars and by the formulation of joint research projects. In the tradition of the ICTP, it was not a meeting of pure theoreticians: about half of the lecturers were professional experimentalists - experts in electrochemistry, physical chemistry, surface science, technical applications. A set of topics was chosen for discussion at the meeting: Liquids, solvation, solutions; The interface (structure, characterization, electric properties, adsorption); Electrodynamics, optics, photo-emission; Charge transfer kinetics (homogeneous and heterogeneous reactions and processes); Superconducting electrodes; Fractal electrodes; Applied research (energy conversion and power sources, electrocatalysis, electroanalysis of turbulent flows). Refs, figs and tabs

  5. Department of Nuclear Physical Chemistry - Overview

    International Nuclear Information System (INIS)

    Szeglewski, S.

    2002-01-01

    Full text: Research in the Department of Nuclear Physical Chemistry concentrates on three main topics: 1. Radiochemistry of transactinide elements; 2. Environmental radioactivity and related problems; 3. Preparation and applications of radioactive isotopes. The investigations on radiochemistry of transactinide elements are carried out in the Laboratory of Chemistry and Radiochemistry. Practical difficulties due to short half-lives and very low cross sections of formation of the superheavy nuclei are being overcome by developing fast and efficient methods of chemical separation, basing mostly on ion-exchange processes which are thoroughly studied via model experiments on lighter homologues of the elements of interest. During the year 2001, work with composite ferrocyanide sorbents was continued, and the efforts resulted in a patent application. The developed ion-exchangers (whose characteristics are constantly checked and improved in the laboratory) can find practical applications in environmental protection as well as in fundamental studies on the most exotic elements: 104 Rf, 105 Db, 106 Sg, 107 Bh, 108 Hs, and more. As to the latter, the discovery in Dubna of the relatively long-lived element 114 (t 1/2 =30s) gives hope that studies on aqueous chemistry of the elements Z =107 would be feasible. In this context, chemical methods of separation and identification of the heaviest elements are necessary to know the behaviour of the whole decay chains, for example: 114 -α-112 -α-110 -α-108 -α-106. The group is contributing its expertise to the top specialist international co-operation, involving the Joint Institute of Nuclear Research, Dubna, Russia, the Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences, Moscow, Russia, and three German institutions: the Technical University of Dresden, the University of Mainz, and the GSI Darmstadt. The Environmental Radioactivity Laboratory is following up traces of α, β, and γ radioactive

  6. Department of Plasma Physics and Technology - Overview

    International Nuclear Information System (INIS)

    Sadowski, M.J.

    2007-01-01

    In 2006 research activity of the P-V Department was concentrated on the continuation of previous studies in the field of plasma physics and controlled nuclear fusion (CNF), but several new topics concerning plasma technology were also investigated. The main tasks of the research activities were as follows: 1. Studies of physical phenomena in pulsed discharges producing dense magnetized plasma; 2. Development of methods and tools for high-temperature plasma diagnostics; 3. Research in the field of plasma technologies. In a frame of the first task particular attention was paid to studies of X-ray pulses and fast electron beams emitted from different Plasma-Focus (PF) facilities. The correlation of X-ray pulses with pulsed electron beams and other corpuscular emissions (i.e. accelerated primary ions and fusion reaction products) was investigated in the PF-360 device in Swierk. The X-ray and corpuscular emission was also studied in a PF-1000 facility at IPPLM in Warsaw. Separate efforts were devoted to the investigation of fast electrons escaping from Tokamak-type facilities. Such studies were carried out in a frame of the EURATOM program, using special Cerenkov-type detectors within the CASTOR tokamak, operated at IPP in Prague. Signals from the Cerenkov detector were recorded and interpreted. Other studies concerned the design and construction of a new 4-channel Cerenkov detection system for a TORE-SUPRA facility at CEA-Cadarache. Since thermal loads upon the Cerenkov probe within the TORE SUPRA facility can amount to 1 MW/cm 2 , it was necessary to perform detailed computations of heat transfer in various materials (i.e. diamond-radiators and the probe body). Some efforts were devoted to the calibration of new nuclear track detectors (NTD) and their application for measurements of fusion-produced protons emitted from PF-360 and PF-1000 facilities. In frame of the EURATOM program the calibrated NTD were also applied for measurements of fusion-protons in a TEXTOR

  7. Progress report 1986-1987 Department of Physics

    International Nuclear Information System (INIS)

    1988-01-01

    This progress report 1986-1987 deals with the first two years operation of the TANDAR electrostatic accelerator and also describes the research work in the following fields: nuclear physics (nuclear structure, nuclear reactions, intermediate energies, applied nuclear physics); solid state physics (crystallography and phase transitions, Mossbauer spectroscopy, condensed matter theory, crystals growth, instrumentation); atomic physics and computational physics. Finally, the staff, a list of publications and activities related to international agencies is included [es

  8. Collaboration in Australian condensed matter physics research

    International Nuclear Information System (INIS)

    Cushion, J.D.

    1998-01-01

    Full text: This year marks the 'coming of age' of the annual Condensed Matter Physics Meetings which has constituted possibly the most successful physics series which has been run in Australia and New Zealand. The conferences have become colloquially known as the 'Wagga conferences' to the community, leading to such strange but interpretable phrases as 'Wagga is in New Zealand this year'. It seems an appropriate time to take stock of some of the changes which have taken place in Australian condensed matter physics research over the past 21 years. Statistics will be presented on some of the trends over this time, using the Wagga abstract books as the data source. Particular emphasis will be placed on the increase in collaborative research which has occurred, fuelled by a combination of government policies, reduction in resources and increasing complexity of some of the research projects. Collaborative papers now frequently include authors from more than one university as well as from CSIRO, ANSTO/AINSE, other government and semi-government laboratories and private industry. None of these occurred in the 'early days' but most would agree that the health of the discipline has been improved by the change. It is also appropriate to point out the role of the Wagga conferences in fostering these collaborations by bringing together the groups so that they could meet, interact and discover which people had the missing expertise to make a particular project viable

  9. Physics of superheavy dark matter in supergravity

    Science.gov (United States)

    Addazi, Andrea; Marciano, Antonino; Ketov, Sergei V.; Khlopov, Maxim Yu.

    New trends in inflationary model building and dark matter production in supergravity are considered. Starobinsky inflation is embedded into 𝒩 = 1 supergravity, avoiding instability problems, when the inflaton belongs to a vector superfield associated with a U(1) gauge symmetry, instead of a chiral superfield. This gauge symmetry can be spontaneously broken by the super-Higgs mechanism resulting in a massive vector supermultiplet including the (real scalar) inflaton field. Both supersymmetry (SUSY) and the R-symmetry can also be spontaneously broken by the Polonyi mechanism at high scales close to the inflationary scale. In this case, Polonyi particles and gravitinos become superheavy, and can be copiously produced during inflation by the Schwinger mechanism sourced by the universe expansion. The Polonyi mass slightly exceeds twice the gravitino mass, so that Polonyi particles are unstable and decay into gravitinos. Considering the mechanisms of superheavy gravitino production, we find that the right amount of cold dark matter composed of gravitinos can be achieved. In our scenario, the parameter space of the inflaton potential is directly related to the dark matter one, providing a new unifying framework of inflation and dark matter genesis. A multi-superfield extension of the supergravity framework with a single (inflaton) superfield can result in a formation of primordial nonlinear structures like mini- and stellar-mass black holes, primordial nongaussianity, and the running spectral index of density fluctuations. This framework can be embedded into the SUSY GUTs inspired by heterotic string compactifications on Calabi-Yau three-folds, thus unifying particle physics with quantum gravity.

  10. Integrating Condensed Matter Physics into a Liberal Arts Physics Curriculum

    Science.gov (United States)

    Collett, Jeffrey

    2008-03-01

    The emergence of nanoscale science into the popular consciousness presents an opportunity to attract and retain future condensed matter scientists. We inject nanoscale physics into recruiting activities and into the introductory and the core portions of the curriculum. Laboratory involvement and research opportunity play important roles in maintaining student engagement. We use inexpensive scanning tunneling (STM) and atomic force (AFM) microscopes to introduce students to nanoscale structure early in their college careers. Although the physics of tip-surface interactions is sophisticated, the resulting images can be interpreted intuitively. We use the STM in introductory modern physics to explore quantum tunneling and the properties of electrons at surfaces. An interdisciplinary course in nanoscience and nanotechnology course team-taught with chemists looks at nanoscale phenomena in physics, chemistry, and biology. Core quantum and statistical physics courses look at effects of quantum mechanics and quantum statistics in degenerate systems. An upper level solid-state physics course takes up traditional condensed matter topics from a structural perspective by beginning with a study of both elastic and inelastic scattering of x-rays from crystalline solids and liquid crystals. Students encounter reciprocal space concepts through the analysis of laboratory scattering data and by the development of the scattering theory. The course then examines the importance of scattering processes in band structure and in electrical and thermal conduction. A segment of the course is devoted to surface physics and nanostructures where we explore the effects of restricting particles to two-dimensional surfaces, one-dimensional wires, and zero-dimensional quantum dots.

  11. Department of Accelerator Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Pachan, M.

    2002-01-01

    Full text:Due to financial shortages, the Extensive Research Program ''Isotopes and Accelerators'' did not come into effect. This in consequence limited the scope of new design and construction works. As the most important topic remained the continuation of work on Ordered Project for new therapeutical accelerator ''6/15''. It has to be emphasized that during realization of this task, several significant modifications were introduced to get a final solution better matched to future implementation of the prototype. The initially adopted ''classical'' solution of accelerating structure with separate bunching and accelerating sections, was replaced by a single mechanical unit with both incorporated functional subsystems. This solution is more convenient for future production and servicing, but in order to cover the broad range of energy variation is was necessary to recalculate the beam dynamics and to find the method for internal phase correction. Another important feature was an additional design of two possible injection systems, the first with a diode gun for 40 keV energy, and the second one with triode gun 15-20 keV. These solutions provide a contingency for - two production versions of an accelerator equipped with different RF power systems - klystron or magnetron. Substantial effort was directed to completion and operation of an experimental facility for testing accelerating structures. This facility is equipped with a RF high - power source in the form of 6 MW klystron, and high-vacuum pumping system. External apparatus connected to the facility are - magnetic spectrometer and computerized water phantom, which enable the diagnostics of accelerated electron beam. Several structure models were tested, and for the first time an electron energy in the vicinity of 15 MeV was registered. Other important subjects in (he Department's activity were: * Implementation of new versions of MC codes, for analysis of electron and photon beams distribution at the output of

  12. Department of Accelerator Physics and Technology - Overview

    International Nuclear Information System (INIS)

    Wronka, S.

    2010-01-01

    Full text: The activity of the P-10 department is focused on the development of new acceleration techniques and technology, as well as on applications of particle accelerators. Our team is able to perform all kind of calculations of research, medical and industrial accelerator components, including accelerating cavities, magnets, transfer lines, sources and targets, collimators and applicators. The main topic of the 2010 was the realization of the ' Accelerators and Detectors ' project. All results of this work are included in detailed descriptions of the particular machines. The other tasks are summarized below: 1) WP-06 Task in the European XFEL Project As part of the EXFEL preparatory phase, IPJ is developing HOM and Pickup output lines from superconducting cavities antennas, and Beam Line Absorbers of travelling HOM. This abridged WP-06 task is wholly realized by IPJ and belongs to WPG-1 (Work Package Group 1- Cold linac). The HOM couplers are used to extract and to dissipate Radio Frequency ('' RF '') energy present in the cavity due to the excitation of the HOMs by the electron beam bunches. The low frequency part of the HOM spectrum (below the cut-off frequency of the beam tube) will be extracted by HOM couplers and transmitted via coax lines to external loads. Each 9-cell cavity is equipped with two HOM couplers placed close to the end cells and working in a 2K environment. The propagating HOM power will be ca. 5.4 W/cryomodule for operation with 40000 bunches/s of a nominal charge of 1 nCoulomb. Power dissipated in BLA will be transferred to the 70 K environment by a copper stub brazed directly to the absorbing ceramic ring. The stub holds the ring in a stainless steel vacuum chamber thermally isolated from the 2K region by a flexible bellows. In 2010 the wakefields excited by beam bunches down to 40 microns were calculated, and the related wake potential and frequency spectrum of HOMs evaluated. The absorbing material (CA137 of Ceradyne Enterprice

  13. Particle dark matter from physics beyond the standard model

    International Nuclear Information System (INIS)

    Matchev, Konstantin

    2004-01-01

    In this talk I contrast three different particle dark matter candidates, all motivated by new physics beyond the Standard Model: supersymmetric dark matter, Kaluza-Klein dark matter, and scalar dark matter. I then discuss the prospects for their discovery and identification in both direct detection as well as collider experiments

  14. Department of Accelerator Physics And Technology - Overview

    International Nuclear Information System (INIS)

    Plawski, E.

    2009-01-01

    Full text: The activity of department P-10 is focused on the development of new acceleration techniques and technology, as well as on applications of particle accelerators. In 2008, the following topics were investigated and/or realized: 1. A linear accelerator for protons called TOP (Terapia Oncologica con Protoni, Oncological Proton Therapy). Basically a proton linac of modified Alvarez type working at 3000 MHz frequency and delivering beams in the energy range from 65 MeV to 200 MeV. In 2005, a contract was signed between ENEA and SINS-Swierk for the design, manufacture and delivery to Frascati of the input section of a 65 MeV linac. This section of SCDTL type will increase the proton energy from 7 to 16 MeV. In 2008, the field distribution in the manufactured structure was measured and optimized using available universal test stand. Measurements were also performed in ENEA/Frascati in October; a small difference in results, around 0.25%, is under investigation. Beam dynamics calculations using 3D codes have been started in parallel. 2. Preparation for participation in the international X-FEL project. Calculations of the parasitic Higher Order Modes (HOMs) induced in superconducting accelerating structures by very short electron bunches have been continued. Thanks to the special research grant received by department P-10 the design and completion of the HOM elements has been started for two accelerating modules, where each module consists of eight superconducting accelerating structures and focusing/correcting elements. 3. Superconducting layers; studies in INFN-Roma. Within the European CARE/JRA1/WP4-2 project, serious modification of the Nb-coating stand for the 1.3 GHz single-cell copper resonators using a vacuum arc was performed. Thanks to this stand the internal surface of the resonator was successfully coated. 4. TiN coating vacuum stand for RF components. At this stand the analysis of the TiN layer thickness as a function of reactive atmosphere pressure

  15. Department of Accelerator Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Pachan, M.

    2000-01-01

    Full text: The principal Department's duties in 1999 have not changed and were consequently directed on development in the area of electron and ion accelerators and their applications in science, medicine and technology. Two important events dominated the current and future orientation of R and D activity. The first was finalizing of long time efforts for preparing of the ordered research project granted by the State Committee of Scientific Research and devoted to elaboration and design of a new electron accelerator for radiotherapy, with two energies of X-ray photon beams. This project was formally approved in March 1999 and due to organisatory procedures set in operation after few months. In the second half of 1999, an important progress was done in advancing the project. The second mentioned event is foundation by the government of a Multiyear Research Programme - called ''Isotopes and Accelerators''. This programme formulates a broad spectrum of important tasks oriented on application of isotopes and accelerator techniques in many branches of science and national economy. The expected participation of the Department in this programme comprises following subjects: medical interoperative accelerator, high power electron accelerator for radiation technology, and upgrading of cyclotron for isotopes production. In course of 1999, preparatory studies in these subjects were carried out. Some of the results were presented on conferences and seminars. An interesting experience was the expertise done on technical status of Eindhoven isochronous cyclotron and its possible transfer to Swierk as a professional tool for isotopes production. In the group of medical applications, three subjects were continued during 1999 and brought important results: - completion of microwave measurements of high gradient acceleration structure for low energy accelerators; such structure will be very useful solution for Co-Line and interoperative accelerator; - evaluation of design data and

  16. Department of Accelerator Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Pachan, M.

    1998-01-01

    (full text) In the context of general discussions concerning the activity of the Institute, it was important to look critically at current and future directions at the Department's activity. Attention is given to development of basic accelerator knowledge, realized at home and throughout international collaborations. Of importance is a steady improvement of metrological and experimental basis for accelerator research. Apart of this, some development tendencies were formulated during 1997, oriented to application fields of accelerators. As examples should be named: - medical applications: a) A serious effort was given to an idea of using the existing compact cyclotron C-30 as a source for creation of a diagnostic centre in Swierk. The proposition was formulated in contact with the Nuclear Medicine Department of the Medical Academy, and the ''Brodno'' General Hospital. In spite of declared medical interest in such an installation, the project was not approved, due to lack of proper financial support. b) Model measurements and verification of theoretical assumptions and calculations oriented on the design of a very short, high-gradiented acceleration structure for the low energy accelerator COLINE/1000 were done. This project will enable us to achieve ''source - isocentre distance'', of 1000 mm, instead of existing 800 mm. This is important for therapy. In 1998, this work will be supported by the State Committee for Scientific Research. c) Preliminary discussions, and design approach were undertaken in collaboration with the Centre of Oncology, for elaboration of a movable low-energy accelerator with electron beam output, matched to inter operational irradiation during surgical therapy of tumours. - applications in radiation technology: Comparison of isotope and machine radiation sources indicates that, under Polish conditions it is reasonable to use purpose-oriented high power accelerators. The working group composed of specialists from IChTJ and IPJ prepared the

  17. Physics department annual progress report 1 January - 31 December 1978

    International Nuclear Information System (INIS)

    Moller, H.B.; Lebech, B.

    1978-12-01

    Research in the Physics Department at Riso covers three main fields: Solid-state physics, Plasma physics, Meteorology. The principal activities in these fields are presented in this report that covers the period from 1 January to 31 December 1978. (Auth.)

  18. Department of Plasma Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Sadowski, M.

    1998-01-01

    (full text) In 1997, theoretical studies mainly concerned the verification of physical models on the basis of experimental data, an analysis of plasma behaviour within regions close to electrode surfaces during quasi-continuous discharges induced by microwaves , as well as modelling of a discharge development within coaxial plasma injectors. Another direction of theoretical studies concerned elementary processes of importance for plasma research, and in particular those taking into consideration the role of spin within a classical model of proton - hydrogen atom collisions. Experimental studies comprised measurements of pulsed electron beams and effects of the polarization of X-rays emitted from Plasma Focus (PF) facilities, research on emission characteristics of different PF devices, as well as measurements of pulsed electron and ion-beams emitted from various devices of the PF and Z-Pinch type. An important direction of experimental studies concerned X-ray and ion measurements at a large PF-1000 facility. In the field of plasma diagnostics, efforts were devoted to an analysis of the results obtained from time-resolved measurements of nitrogen ions and deuterons within PF-type devices. Within a frame of diagnostics, a substantial achievement was also the design and construction of a new measuring equipment for studies of plasma dynamics and X-ray emissions. Particular attention was also paid to studies connected with the calibration of various solid-state nuclear track detectors (NTDs), particularly modern plastic detectors of the CR-39, PM-355 and PM-500 type. Studies in the field of fusion technology concerned the design and construction of a special pulse generator for the simulation of electromagnetic interference, as well as other efforts connected with research on electromagnetic compatibility of electronic and electrotechnical devices. Research on new types of HV pulse generators were carried out partially under contracts with industrial laboratories. In

  19. Analysis of condensed matter physics records in databases. Science and technology indicators in condensed matter physics

    International Nuclear Information System (INIS)

    Hillebrand, C.D.

    1999-05-01

    An analysis of the literature on Condensed Matter Physics, with particular emphasis on High Temperature Superconductors, was performed on the contents of the bibliographic database International Nuclear Information System (INIS). Quantitative data were obtained on various characteristics of the relevant INIS records such as subject categories, language and country of publication, publication types, etc. The analysis opens up the possibility for further studies, e.g. on international research co-operation and on publication patterns. (author)

  20. Progress report 1984-1985. Department of Physics

    International Nuclear Information System (INIS)

    1986-04-01

    The Department of Physics of the National Atomic Energy Commission reports on the advances and achievements performed during 1984-1985 within its three divisions: (1) Tandar Project; (2) Nuclear Physics (Nuclear Structure, Nuclear Reactions Intermediate Energies) and (3) Solid State Physics (Vibrational Spectroscopy, Cristallography and Phase transitions, Moessbauer Spectroscopy, Theoretical Solid State Physics, Crystal growth). Finally, a list of publications made by the personnel during said period, is included. (M.E.L.)

  1. Progress report 1982-1983. Department of Physics

    International Nuclear Information System (INIS)

    1984-01-01

    Research and development activities of the Physics Department during the period 1982-1983 are described in the following fields: TANDAR (heavy ions accelerator, laboratories, nuclear facilities); nuclear physics (nuclear structure, nuclear reactions); solid state physics (vibrational spectroscopy, crystal structure and phase transformations, crystal growth, Mossbauer spectroscopy, theoretical solid state physics, geological applications); solar energy. Finally a list of publications and papers presented at meetings and conferences is included. (M.E.L.) [es

  2. Progress report 1982-1983. Department of Physics

    International Nuclear Information System (INIS)

    1984-01-01

    Research and development activities of the Physics Department during the period 1982-1983 are described in the following fields: TANDAR (heavy ions accelerator, laboratories, nuclear facilities); Nuclear Physics (nuclear structure, nuclear reactions); Solid State Physics (vibrational spectroscopy, crystal structure and phase transformations, crystal growth, Mossbauer spectroscopy, theoretical solid state physics, geological applications); Solar Energy. Finally a list of publications and papers presented at meetings and conferences is included. (M.E.L.) [es

  3. Progress report 1984-1985. Department of Physics

    International Nuclear Information System (INIS)

    1986-04-01

    The Department of Physics of the National Atomic Energy Commission reports on the advances and achievements performed during 1984-1985, within its three divisions: 1) Tandar Project; 2) Nuclear Physics (Nuclear Structure, Nuclear Reactions Intermediate Energies) and 3) Solid State Physics (Vibrational Spectroscopy, Cristallography and Phase transitions, Moessbauer Spectroscopy, Theoretical Solid State Physics, Crystal growth). Finally, a list of publications made by the personnel during said period, is included. (M.E.L.) [es

  4. Department of Plasma Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Sadowski, M.J.

    2004-01-01

    Full text: In 2003, research activities in Dept. P-V embraced the continuation of previous studies in the field of high - temperature plasma physics and controlled nuclear fusion. Some new investigations were developed, particularly in the field of plasma technology. The main topics of the research activities were as follows: 1. Selected problems of plasma theory; 2. Investigation of plasma phenomena in pulse discharges of the Plasma-Focus (PF) and Z-Pinch type; 3. Development of selected methods of plasma diagnostics; 4. Research on experimental facilities for basic studies and industrial applications; 5. Modification of material surfaces by means of pulsed plasma-ion streams. Theoretical studies concerned the numerical modeling of discharges in a coaxial plasma accelerator of the IPD type. The modification of a 2-D model concerned mainly a plasma flow along the current sheath surface, taking into consideration the development of Rayleigh-Taylor instabilities. Several series of computations were performed and different parameters of the system were determined. As for experimental studies, we studied plasma phenomena which occur in high-current discharges of PF and Z-Pinch type. Measurements of pulsed electron beams, and their correlation with other plasma phenomena, were performed within the MAJA-PF device in Swierk and PF-1000 facility at IPPLM in Warsaw. Use was made of Cerenkov-type detectors and magnetic analyzers. It was confirmed that separate e-beams are generated in different hot-spots, and the electron energy spectrum ranges up to several hundreds keV (i.e. above the interelectrode voltage during the radial collapse phase). We also presented papers presenting results of previous research on polarization of X-ray lines emitted from the pinch column. Experimental studies of high-temperature plasma were also carried out within the PF-360 facility in Swierk. Several papers, describing the most important characteristics of this device and results of research

  5. Department of Plasma Physics and Technology: Overview

    International Nuclear Information System (INIS)

    Sadowski, M.

    2001-01-01

    Full text: In 2000 the research activity in the Dept. P-V was concentrated upon studies in the field of high-temperature plasma physics, nuclear fusion, and plasma technology. The main topics were as follows: l. Analysis of selected problems of plasma theory, 2. Investigation of phenomena in high-current pulse discharges of the Plasma-Focus (PF) and Z-Pinch type, 3. Development of the selected methods and equipment for plasma diagnostics, 4. Research on technology of experimental facilities for basic studies and applications, 5. Studies of the modification of material surfaces by means of pulse plasma-ion streams. In a frame of theoretical studies the numerical modeling was continued for discharges in coaxial plasma accelerators. The second theoretical aim was the description of some elementary atomic processes in the quasi- classical approach. A paper on the electron scattering on the atoms and molecules was published. In the quasi- classical model, the electron spin was taken into account and trajectories of 2 electrons in the helium atom were analyzed. In the frame of experimental studies, various phenomena were investigated in PF and Z-Pinch systems. The emission of pulse electron beams and ions as well as polarized X-rays were investigated in the MAFA-PF facility. New data about polarization of selected X-ray lines were obtained (2 papers at conferences and 2 publications). Ion emission measurements performed in small-scale PF-devices at INFIP and IFAS (Argentina), and in the Micro-Capillary device at Ecole Politechnique (France), were elaborated (5 papers at conferences and 2 publications). New measurements were also performed in the Capillary Z-Pinch device at IPP in Prague. With partial support of a US research contract, studies of the optimization of a neutron yield were performed in the PF-360 facility with special cryogenic targets (made of h eavy ice'' layers) or deuterium-gas targets (10 presentations at conferences, 2 reports for EOARD, and 7 papers

  6. 1975 annual report of the Elementary Particle Physics Department

    International Nuclear Information System (INIS)

    1976-03-01

    The annual report gives a short summary of experiments in progress and of approved proposals of experiments to be performed at CERN by the Elementary Particle Physics Department of Saclay, and also publication lists and informations about the Department activities during 1975 [fr

  7. Department of Nuclear Methods in the Solid State Physics

    International Nuclear Information System (INIS)

    2002-01-01

    Full text: The activity of the Department of Nuclear Methods in the Solid State Physics is focused on experimental research in condensed matter physics. Thermal neutron scattering and Moessbauer effect are the main techniques mastered in the laboratory. Most of the studies aim at better understanding of properties and processes observed in modern materials. Some applied research and theoretical studies were also performed. Research activities of the Department in 2001 can be summarized as follows: Neutron scattering studies concerned the magnetic ordering in TbB 12 and TmIn 3 and some special features of magnetic excitations in antiferromagnetic γ-Mn-alloys. Some work was devoted to optimization of the neutron single crystal monochromators and polarizers grown in Crystal Growth Laboratory. Small angle scattering studies on the surfactant - water ternary system were performed in cooperation with JINR Dubna. Moessbauer effect investigations of dysprosium intermetallic compounds yielded the new data for Pauling-Slater curves. The same technique applied to perovskites and ferrocene adduct to fullerene helped to resolve their structure. X-ray topographic and diffractometric studies were performed on hydrogen implanted semiconductor surfaces employing the synchrotron radiation sources. The X-ray method was applied also to investigations of plasma spraying process and phase composition of ceramic oxide coatings. Large part of studies concerned the structure of biologically active, pharmacologically important organic complexes, supported by modeling of their electron structure. Crystal growth of large size single-crystals of metals and alloys was used for preparation of specimens with mosaic structure suitable for neutron monochromator and polarizer systems. The construction work of the Neutron and Gamma Radiography Station has been completed. The results of first tests and studies proved the expected abilities of the systems. The possibility to visualize inner structures

  8. Proceedings of the 9. National Meeting on Condensed Matter Physics

    International Nuclear Information System (INIS)

    1986-01-01

    The 9. National Meeting on Condensed Matter Physics presents works developed in the following fields: amorphous materials, atomic and molecular physics, biophysics, crystallography, defects, growth and critical phenomena, instrumentation, liquid crystals, magnetism, matter science/mechanical properties, metals and alloys, optic, magnetic resonance and semiconductors. (M.C.K.) [pt

  9. Annual progress report 2000. Wind Energy and Atmospheric Physics Department

    International Nuclear Information System (INIS)

    Larsen, S.E.; Skrumsager, B.

    2001-05-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory in 2000. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 2000 is shown, including lists of publications, lectures, committees and staff members. (au)

  10. Wind Energy and Atmospheric Physics Department annual progress report 1999

    DEFF Research Database (Denmark)

    2000-01-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risø National Laboratory in 1999. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviateatmospheric aspects of environmental problems....... The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danishand international organisations on wind energy and atmospheric environmental impact. A sum......-mary of the department's activities in 1999 is presented, including lists of publications, lectures, committees and staff members....

  11. Annual progress report 2000. Wind Energy and Atmospheric Physics Department

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, S.E.; Skrumsager, B. (eds.)

    2001-05-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory in 2000. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 2000 is shown, including lists of publications, lectures, committees and staff members. (au)

  12. The case for biophysics super-groups in physics departments.

    Science.gov (United States)

    Hoogenboom, Bart W; Leake, Mark

    2018-06-04

    Increasing numbers of physicists engage in research activities that address biological questions from physics perspectives or strive to develop physics insights from active biological processes. The on-going development and success of such activities morph our ways of thinking about what it is to 'do biophysics' and add to our understanding of the physics of life. Many scientists in this research and teaching landscape are homed in physics departments. A challenge for a hosting department is how to group, name and structure such biophysicists to best add value to their emerging research and teaching but also to the portfolio of the whole department. Here we discuss these issues and speculate on strategies. Creative Commons Attribution license.

  13. Assessing the physical service setting: a look at emergency departments.

    Science.gov (United States)

    Steinke, Claudia

    2015-01-01

    To determine the attributes of the physical setting that are important for developing a positive service climate within emergency departments and to validate a measure for assessing physical service design. The design of the physical setting is an important and contributing factor for creating a service climate in organizations. Service climate is defined as employee perceptions of the practices, procedures, and behaviors that get rewarded, supported, and expected with regard to customer service and customer service quality. There has been research conducted which identifies antecedents within organization that promotes a positive service climate which in turn creates service-oriented behaviors by employees toward clients. The antecedent of the physical setting and its impact on perceptions of service climate has been less commonly explored. Using the concept of the physical service setting (which may be defined as aspects of the physical, built environment that facilitate the delivery of quality service), attributes of the physical setting and their relationship with service climate were explored by means of a quantitative paper survey distributed to emergency nurses (n = 180) throughout a province in Canada. The results highlight the validity and reliability of six scales measuring the physical setting and its relation to service. Respondents gave low ratings to the physical setting of their departments, in addition to low ratings of service climate. Respondents feel that the design of the physical setting in the emergency departments where they work is not conducive to providing quality service to clients. Certain attributes of the physical setting were found to be significant in influencing perceptions of service climate, hence service quality, within the emergency department setting. © The Author(s) 2015.

  14. EDITORIAL: Focus on Dark Matter and Particle Physics

    Science.gov (United States)

    Aprile, Elena; Profumo, Stefano

    2009-10-01

    The quest for the nature of dark matter has reached a historical point in time, with several different and complementary experiments on the verge of conclusively exploring large portions of the parameter space of the most theoretically compelling particle dark matter models. This focus issue on dark matter and particle physics brings together a broad selection of invited articles from the leading experimental and theoretical groups in the field. The leitmotif of the collection is the need for a multi-faceted search strategy that includes complementary experimental and theoretical techniques with the common goal of a sound understanding of the fundamental particle physical nature of dark matter. These include theoretical modelling, high-energy colliders and direct and indirect searches. We are confident that the works collected here present the state of the art of this rapidly changing field and will be of interest to both experts in the topic of dark matter as well as to those new to this exciting field. Focus on Dark Matter and Particle Physics Contents DARK MATTER AND ASTROPHYSICS Scintillator-based detectors for dark matter searches I S K Kim, H J Kim and Y D Kim Cosmology: small-scale issues Joel R Primack Big Bang nucleosynthesis and particle dark matter Karsten Jedamzik and Maxim Pospelov Particle models and the small-scale structure of dark matter Torsten Bringmann DARK MATTER AND COLLIDERS Dark matter in the MSSM R C Cotta, J S Gainer, J L Hewett and T G Rizzo The role of an e+e- linear collider in the study of cosmic dark matter M Battaglia Collider, direct and indirect detection of supersymmetric dark matter Howard Baer, Eun-Kyung Park and Xerxes Tata INDIRECT PARTICLE DARK MATTER SEARCHES:EXPERIMENTS PAMELA and indirect dark matter searches M Boezio et al An indirect search for dark matter using antideuterons: the GAPS experiment C J Hailey Perspectives for indirect dark matter search with AMS-2 using cosmic-ray electrons and positrons B Beischer, P von

  15. Field theories in condensed matter physics

    Science.gov (United States)

    Concha, Andres

    In this thesis, field theory is applied to different problems in the context of condensed matter physics. In the first part of this work, a classical problem in which an elastic instability appears is studied. By taking advantage of the symmetries of the system, it is shown that when a soft substrate has a stiff crust and the whole system is forced to reduce its volume, the stiff crust rearranges in a way that will break the initial rotational symmetry, producing a periodic pattern that can be manipulated at our will by suitable changes of the external parameters. It is shown that elastic interactions in this type of systems can be mapped into non-local effective potentials. The possible application of these instabilities is also discussed. In the second part of this work, quantum electrodynamics (QED) is analyzed as an emergent theory that allows us to describe the low energy excitations in two-dimensional nodal systems. In particular, the ballistic electronic transport in graphene-like systems is analyzed. We propose a novel way to control massless Dirac fermions in graphene and systems alike by controlling the group velocity through the sample. We have analyzed this problem by computing transport properties using the transmission matrix formalism and, remarkably, it is found that a behavior conforming with a Snell's-like law emerges in this system: the basic ingredient needed to produce electronic wave guides. Finally, an anisotropic and strongly interacting version of QED 3 is applied to explain the non-universal emergence of antiferromagnetic order in cuprate superconductors. It is pointed out that the dynamics of interacting vortex anti-vortex fluctuations play a crucial role in defining the strength of interactions in this system. As a consequence, we find that different phases (confined and deconfined) are possible as a function of the relative velocity of the photons with respect to the Fermi and gap velocities for low energy excitation in cuprates.

  16. Implementation multi representation and oral communication skills in Department of Physics Education on Elementary Physics II

    Science.gov (United States)

    Kusumawati, Intan; Marwoto, Putut; Linuwih, Suharto

    2015-09-01

    The ability of multi representation has been widely studied, but there has been no implementation through a model of learning. This study aimed to determine the ability of the students multi representation, relationships multi representation capabilities and oral communication skills, as well as the application of the relations between the two capabilities through learning model Presentatif Based on Multi representation (PBM) in solving optical geometric (Elementary Physics II). A concurrent mixed methods research methods with qualitative-quantitative weights. Means of collecting data in the form of the pre-test and post-test with essay form, observation sheets oral communication skills, and assessment of learning by observation sheet PBM-learning models all have a high degree of respectively validity category is 3.91; 4.22; 4.13; 3.88. Test reliability with Alpha Cronbach technique, reliability coefficient of 0.494. The students are department of Physics Education Unnes as a research subject. Sequence multi representation tendency of students from high to low in sequence, representation of M, D, G, V; whereas the order of accuracy, the group representation V, D, G, M. Relationship multi representation ability and oral communication skills, comparable/proportional. Implementation conjunction generate grounded theory. This study should be applied to the physics of matter, or any other university for comparison.

  17. Implementation multi representation and oral communication skills in Department of Physics Education on Elementary Physics II

    Energy Technology Data Exchange (ETDEWEB)

    Kusumawati, Intan, E-mail: intankusumawati10@gmail.com [High School in Teaching and Education (STKIP) Singkawang Jl. STKIP–Ex. Naram, district. North Singkawang, Singkawang-79251 West Borneo (Indonesia); Marwoto, Putut, E-mail: pmarwoto@yahoo.com; Linuwih, Suharto, E-mail: suhartolinuwih@gmail.com [Department of Physics Education, State University of Semarang (Unnes) Campus Unnes Bendan Ngisor, Semarang 50233 Central Java (Indonesia)

    2015-09-30

    The ability of multi representation has been widely studied, but there has been no implementation through a model of learning. This study aimed to determine the ability of the students multi representation, relationships multi representation capabilities and oral communication skills, as well as the application of the relations between the two capabilities through learning model Presentatif Based on Multi representation (PBM) in solving optical geometric (Elementary Physics II). A concurrent mixed methods research methods with qualitative–quantitative weights. Means of collecting data in the form of the pre-test and post-test with essay form, observation sheets oral communication skills, and assessment of learning by observation sheet PBM–learning models all have a high degree of respectively validity category is 3.91; 4.22; 4.13; 3.88. Test reliability with Alpha Cronbach technique, reliability coefficient of 0.494. The students are department of Physics Education Unnes as a research subject. Sequence multi representation tendency of students from high to low in sequence, representation of M, D, G, V; whereas the order of accuracy, the group representation V, D, G, M. Relationship multi representation ability and oral communication skills, comparable/proportional. Implementation conjunction generate grounded theory. This study should be applied to the physics of matter, or any other university for comparison.

  18. Implementation multi representation and oral communication skills in Department of Physics Education on Elementary Physics II

    International Nuclear Information System (INIS)

    Kusumawati, Intan; Marwoto, Putut; Linuwih, Suharto

    2015-01-01

    The ability of multi representation has been widely studied, but there has been no implementation through a model of learning. This study aimed to determine the ability of the students multi representation, relationships multi representation capabilities and oral communication skills, as well as the application of the relations between the two capabilities through learning model Presentatif Based on Multi representation (PBM) in solving optical geometric (Elementary Physics II). A concurrent mixed methods research methods with qualitative–quantitative weights. Means of collecting data in the form of the pre-test and post-test with essay form, observation sheets oral communication skills, and assessment of learning by observation sheet PBM–learning models all have a high degree of respectively validity category is 3.91; 4.22; 4.13; 3.88. Test reliability with Alpha Cronbach technique, reliability coefficient of 0.494. The students are department of Physics Education Unnes as a research subject. Sequence multi representation tendency of students from high to low in sequence, representation of M, D, G, V; whereas the order of accuracy, the group representation V, D, G, M. Relationship multi representation ability and oral communication skills, comparable/proportional. Implementation conjunction generate grounded theory. This study should be applied to the physics of matter, or any other university for comparison

  19. Overview. Department of Environmental and Radiation Transport Physics. Section 6

    Energy Technology Data Exchange (ETDEWEB)

    Loskiewicz, J. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    Research activities in the Department of Environmental and Radiation Transport Physics are carried out by three Laboratories: Laboratory of Environmental Physics, Laboratory of Neutron Transport Physics and Laboratory of Physics and Modeling of Radiation Transport. The researches provided in 1994 cover: tracer transport and flows in porous media, studies on pollution in atmospheric air, physics of molecular phenomena in chromatographic detectors, studies on neutron transport in heterogenous media, studies on evaluation of neutron cross-section in the thermal region, studies on theory and utilization of neural network in data evaluation, numerical modelling of particle cascades for particle accelerator shielding purpose. In this section the description of mentioned activities as well as the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants is also given.

  20. Overview. Department of Environmental and Radiation Transport Physics. Section 6

    Energy Technology Data Exchange (ETDEWEB)

    Loskiewicz, J [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-31

    Research activities in the Department of Environmental and Radiation Transport Physics are carried out by three Laboratories: Laboratory of Environmental Physics, Laboratory of Neutron Transport Physics and Laboratory of Physics and Modeling of Radiation Transport. The researches provided in 1994 cover: tracer transport and flows in porous media, studies on pollution in atmospheric air, physics of molecular phenomena in chromatographic detectors, studies on neutron transport in heterogenous media, studies on evaluation of neutron cross-section in the thermal region, studies on theory and utilization of neural network in data evaluation, numerical modelling of particle cascades for particle accelerator shielding purpose. In this section the description of mentioned activities as well as the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants is also given.

  1. Department F3. Condensed matter research and materials sciences

    International Nuclear Information System (INIS)

    Gaeggeler, H.W.

    1989-07-01

    The report deals with work done during 1988 in the field of muon spectroscopy, neutron scattering, spallation neutron source SINQ, cryogenic detectors, accelerator mass spectrometry, geochemistry, trace elements, aerosol chemistry, heavy elements, cement products, defect physics, irradiation damages in fusion reactor materials, and superconductivity. 111 figs., 19 tabs., 321 refs

  2. Applications of holography to condensed matter physics

    Science.gov (United States)

    Ross, Simon F.

    2012-10-01

    Holography is one of the key insights to emerge from string theory. It connects quantum gravity to field theory, and thereby provides a non-perturbative formulation of string theory. This has enabled progress on a range of theoretical issues, from the quantum description of spacetime to the calculation of scattering amplitudes in supersymmetric field theories. There have been important insights into both the field theories and the spacetime picture. More recently, applied holography has been the subject of intense and rapid development. The idea here is to use the spacetime description to address questions about strongly coupled field theory relevant to application areas such as finite-temperature QCD and condensed matter physics; the focus in this special issue is on the latter. This involves the study of field theory at finite temperature and with chemical potentials for appropriate charges, described in spacetime by charged black hole solutions. The use of holography to study these systems requires a significant extrapolation, from the field theories where classical gravitational calculations in the bulk are a useful approximation to the experimentally relevant theories. Nonetheless, the approach has had some striking qualitative successes, including the construction of holographic versions of superconducting or superfluid phase transitions, the identification of Fermi liquids with a variety of thermal behaviours, and the construction of a map between a class of gravity solutions and the hydrodynamic regime in the field theory. The use of holography provides a qualitatively new perspective on these aspects of strong coupling dynamics. In addition to insight into the behaviour of the strongly coupled field theories, this work has led to new insights into the bulk dynamics and a deeper understanding of holography. The purpose of this focus issue is to strengthen the connections between this direction and other gravitational research and to make the gravity

  3. Proceedings 20. International Conference on Applied Physics of Condensed Matter

    International Nuclear Information System (INIS)

    Vajda, J.; Jamnicky, I.

    2014-01-01

    The 20. International Conference on Applied Physics of Condensed Matter was held on 25-28 June, 2014 on Strbske Pleso, Strba, Slovakia. The specialists discussed various aspects of modern problems in: New materials and structures, nanostructures, thin films, their analysis and applications; Nuclear science and technology, influence of irradiation on physical properties of materials, radiation detection; Physical properties and structural aspects of solid materials and their influencing; Computational physics and theory of physical properties of matter; Optical phenomena in materials, photovoltaics and photonics, new principles in sensors and detection methods. Forty-six contributions relevant of INIS interest (forty contributions) has been inputted to INIS.

  4. Overview. Department of High Energy Physics. Section 5

    International Nuclear Information System (INIS)

    Coghen, T.

    1995-01-01

    The activities of Department of High Energy Physics in 1994 have been presented. They cover a variety of problems of experimental and theoretical high energy elementary particle physics: hadronic and leptonic interactions with nucleons and nuclei (mainly characteristics of particle production , including heavy quark physics), e + e - interactions and tests of the Standard Model (also evaluations of radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as spectra, composition and interactions of high energy cosmic ray particles.Research on detectors and development of apparatus for high energy physics experiments at future accelerators such as LHC or RHIC were also carried out. The short information about personnel employed in the Department, seminars, publication, conferences and reports is also given

  5. Overview. Department of High Energy Physics. Section 5

    Energy Technology Data Exchange (ETDEWEB)

    Coghen, T. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    The activities of Department of High Energy Physics in 1994 have been presented. They cover a variety of problems of experimental and theoretical high energy elementary particle physics: hadronic and leptonic interactions with nucleons and nuclei (mainly characteristics of particle production , including heavy quark physics), e{sup +} e{sup -} interactions and tests of the Standard Model (also evaluations of radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as spectra, composition and interactions of high energy cosmic ray particles.Research on detectors and development of apparatus for high energy physics experiments at future accelerators such as LHC or RHIC were also carried out. The short information about personnel employed in the Department, seminars, publication, conferences and reports is also given.

  6. Overview. Department of High Energy Physics. Section 5

    Energy Technology Data Exchange (ETDEWEB)

    Coghen, T [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-31

    The activities of Department of High Energy Physics in 1994 have been presented. They cover a variety of problems of experimental and theoretical high energy elementary particle physics: hadronic and leptonic interactions with nucleons and nuclei (mainly characteristics of particle production , including heavy quark physics), e{sup +} e{sup -} interactions and tests of the Standard Model (also evaluations of radiative corrections), ultrarelativistic heavy ion interactions and search for the quark-gluon plasma, as well as spectra, composition and interactions of high energy cosmic ray particles.Research on detectors and development of apparatus for high energy physics experiments at future accelerators such as LHC or RHIC were also carried out. The short information about personnel employed in the Department, seminars, publication, conferences and reports is also given.

  7. Annual report 1997. Wind Energy and Atmospheric Physics Department

    Energy Technology Data Exchange (ETDEWEB)

    Madsen, P.H.; Dannemand Andersen, P.; Skrumsager, B. [eds.

    1998-08-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory during 1997. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the department is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. (au)

  8. CURRICULUM MATTERS: Physics 2000: a personal view

    Science.gov (United States)

    Field, R. J.

    1997-03-01

    The author expresses his personal views of how Physics for A-level should develop towards the year 2000. These cover: the historical treatment of core topics, syllabus structure and the relevance of practical physics.

  9. Resource Letter HCMP-1: History of Condensed Matter Physics

    Science.gov (United States)

    Martin, Joseph D.

    2017-02-01

    This Resource Letter provides a guide to the literature on the history of condensed matter physics, including discussions of the development of the field and strategies for approaching its complicated historical trajectory. Following the presentation of general resources, journal articles and books are cited for the following topics: conceptual development; institutional and community structure; social, cultural, and political history; and connections between condensed matter physics and technology.

  10. Overview. Department of Nuclear Physical Chemistry. Section 9

    Energy Technology Data Exchange (ETDEWEB)

    Szeglowski, Z. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    In the papers presented bellow the activities of the Department of Nuclear Physical Chemistry in 1994 are presented. A further effort was made towards routine production of neutron-deficient isotopes for nuclear medicine - and namely {sup 67} Ga and {sup 139} Ce. Small activities of {sup 111} In were produced by the {alpha} bombardment of Ag target. In order to improve the {sup 111} In production the deuterons reaction with cadmium target was studied. The other field of the Department research is studying of the physicochemical properties of transactinoid elements (104,105, 106). The Department is also engaged in works of the National Network of Early Detection of Radioactive Contamination in Air. In this section, apart of the detail descriptions of mentioned activities, the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants are also given.

  11. Overview. Department of Nuclear Physical Chemistry. Section 9

    Energy Technology Data Exchange (ETDEWEB)

    Szeglowski, Z [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-31

    In the papers presented bellow the activities of the Department of Nuclear Physical Chemistry in 1994 are presented. A further effort was made towards routine production of neutron-deficient isotopes for nuclear medicine - and namely {sup 67} Ga and {sup 139} Ce. Small activities of {sup 111} In were produced by the {alpha} bombardment of Ag target. In order to improve the {sup 111} In production the deuterons reaction with cadmium target was studied. The other field of the Department research is studying of the physicochemical properties of transactinoid elements (104,105, 106). The Department is also engaged in works of the National Network of Early Detection of Radioactive Contamination in Air. In this section, apart of the detail descriptions of mentioned activities, the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants are also given.

  12. Nonlocal astrophysics dark matter, dark energy and physical vacuum

    CERN Document Server

    Alexeev, Boris V

    2017-01-01

    Non-Local Astrophysics: Dark Matter, Dark Energy and Physical Vacuum highlights the most significant features of non-local theory, a highly effective tool for solving many physical problems in areas where classical local theory runs into difficulties. The book provides the fundamental science behind new non-local astrophysics, discussing non-local kinetic and generalized hydrodynamic equations, non-local parameters in several physical systems, dark matter, dark energy, black holes and gravitational waves. Devoted to the solution of astrophysical problems from the position of non-local physics Provides a solution for dark matter and dark energy Discusses cosmological aspects of the theory of non-local physics Includes a solution for the problem of the Hubble Universe expansion, and of the dependence of the orbital velocity from the center of gravity

  13. A Study on school experiences of physics department students

    International Nuclear Information System (INIS)

    Cerit, N.

    2005-01-01

    Bringing up the young people who are seen as the guaranty of the future depends on a better education. One of the best ways of forming a high in quality education is connected to developing the quality in teacher training. Most of the developed countries have been carrying on studies in order to develop teacher training. School experience classes are the ones which are planned for the candidate teachers to observe the school in learning and teaching period and to practice in classrooms. Beginning from candidate teachers first years at school, this class should be thought to be beneficial for identifying their future school atmosphere, and it should be run effectively. For this purpose, it has been identified what difficulties the physics undergraduate and physics (with no thesis) master students, who took part in School Experience classes at the practice schools of Konya at which faculty-school cooperation is applied, had during activities, and their success at overcoming these difficulties, and their ideas about the practice school and its teachers. The research was done by making a survey to the physics undergraduate and physics(with no thesis) master students in 2003 Spring semester. The results of the research were analyzed for both girls and boys separately. After analyzed, the results showed that the most striking activity which both the undergraduate physics and physics(with no thesis) master students had difficulty was group activities. Moreover, it showed that 90 percent of the two groups had the idea that school experience activities would be beneficial for being a good physics teacher. It has been also recognized that the physics undergraduate students had a more positive view than physics(with no thesis) master students on the matter of meeting lack of interest from practice teachers, and taking the same course from the same teacher

  14. Improving Climate and Gender Equity in Physics Departments

    Science.gov (United States)

    Yennello, Sherry

    2010-02-01

    We need to open the door of science to women and minorities. We need to invite them in and encourage them to succeed. We need to teach them the secret handshake and transfer all the writing on the men's room walls and all-white country clubs into accessible places. We need to promote them to positions of national prominence. We need to do this out of respect to our mothers and the pioneering scientists who have come before us. We need to do this for our daughters and sons, so that our grandchildren may only know this discrimination as a piece of history. We need to do this now -- for the sake of our country, our science, our technical workforce, our economy and because it is the right thing to do. The Committee on the Status of Women in Physics (CSWP) has been helping physics departments improve their climate as a means to enhance gender equity. The CSWP site visit program has been giving departments valuable feedback on their climate for many years. In May 2007, a workshop on ``Gender Equity: Enhancing the Physics Enterprise in Universities and National Laboratories'' was held to address the issue of underrepresentation of women in physics by engaging the stake holders. This fall a new ``Conversation on Gender Equity'' has begun. Successful strategies for improving the climate and increasing the representation of women in physics will be presented. )

  15. Proceedings of the 12. National Meeting on Condensed Matter Physics

    International Nuclear Information System (INIS)

    1989-01-01

    The XII National Meeting on Condensed Matter Physics presented works in the areas: atomic and molecular physics; biophysics; crystallography; defects growth and characterization of crystals; instrumentation; liquid crystals; magnetism; science of materials, metals and alloys; magnetic resonance; semiconductors; superconductivity and; surfaces and thin films. (M.C.K.) [pt

  16. Atomic physics precise measurements and ultracold matter

    CERN Document Server

    Inguscio, Massimo

    2013-01-01

    Atomic Physics provides an expert guide to two spectacular new landscapes in physics: precision measurements, which have been revolutionized by the advent of the optical frequency comb, and atomic physics, which has been revolutionized by laser cooling. These advances are not incremental but transformative: they have generated a consilience between atomic and many-body physics, precipitated an explosion of scientific and technological applications, opened new areas of research, and attracted a brilliant generation of younger scientists. The research is advancing so rapidly, the barrage of applications is so dazzling, that students can be bewildered. For both students and experienced scientists, this book provides an invaluable description of basic principles, experimental methods, and scientific applications.

  17. Transcending matter: physics and ultimate meaning.

    Science.gov (United States)

    Paulson, Steve; Frank, Adam; Kaiser, David; Maudlin, Tim; Natarajan, Priyamvada

    2015-12-01

    From the discovery of new galaxies and nearly undetectable dark energy to the quantum entanglement of particles across the universe, new findings in physics naturally elicit a sense of awe and wonder. For the founders of modern physics-from Einstein and Bohr to Heisenberg, Pauli, and Bohm-a fascination with deeper questions of meaning and ultimate reality led some of them to explore esoteric traditions and metaphysics. More recently, however, physicists have largely shunned such philosophical and spiritual associations. What can contemporary physics offer us in the quest to understand our place in the universe? Has physics in some ways become a religion unto itself that rejects the search for existential meaning? Discussion of these and related questions is presented in this paper. © 2015 New York Academy of Sciences.

  18. Particle physics: Matter and antimatter scrutinized

    NARCIS (Netherlands)

    Jungmann, Klaus Peter

    2015-01-01

    A search for differences in the charge-to-mass ratio of protons and antiprotons, conducted at unprecedented levels of precision, results in stringent limits to the validity of fundamental physical symmetries.

  19. Physics of condensed matter at extreme conditions

    International Nuclear Information System (INIS)

    Ross, M.

    1988-01-01

    The study of matter under extreme conditions is a highly interdisciplinary subject with broad applications to materials science, geophysics and astrophysics. High-pressure properties are studied in the laboratory using static and dynamic techniques. The two differ drastically in the methods of generating and measuring pressure and in the fundamentally different nature of the final compressed state. This article covers a very broad range of conditions, intended to present an overview of important recent developments and to emphasize the behavior of materials and the kinds of properties now being studied

  20. Statistical physics including applications to condensed matter

    CERN Document Server

    Hermann, Claudine

    2005-01-01

    Statistical Physics bridges the properties of a macroscopic system and the microscopic behavior of its constituting particles, otherwise impossible due to the giant magnitude of Avogadro's number. Numerous systems of today's key technologies -- as e.g. semiconductors or lasers -- are macroscopic quantum objects; only statistical physics allows for understanding their fundamentals. Therefore, this graduate text also focuses on particular applications such as the properties of electrons in solids with applications, and radiation thermodynamics and the greenhouse effect.

  1. Space, Time, Matter, and Form Essays on Aristotle's Physics

    CERN Document Server

    Bostock, David

    2006-01-01

    Space, Time, Matter, and Form collects ten of David Bostock's essays on themes from Aristotle's Physics, four of them published here for the first time. The first five papers look at issues raised in the first two books of the Physics, centred on notions of matter and form, and the idea of substance as what persists through change. They also range over other of Aristotle's scientific works, such as his biology and psychology and the account of change in his De Generatione et Corruptione. The volume's remaining essays examine themes in later books of the Physics, including infinity, place, time

  2. COMMUNICATION STRATEGY FOR A PHYSICAL EDUCATION AND SPORT DEPARTMENT

    OpenAIRE

    Cristiana Pop

    2013-01-01

    Communication strategy of physical education and sports departments in an institution of higher education is, ultimately, a form of adaptation to new and changing environmental conditions (legal, political, internal organization and financial) in which they operate. Developing a communication strategy is an approach that is based on the research group aims to be influenced and on the effort to build a message, an image and emotional state to determine a change in perception, attitude and beha...

  3. Physics of the galaxy and interstellar matter

    International Nuclear Information System (INIS)

    Scheffler, H.; Elsasser, H.

    1988-01-01

    This book is based on the authors' long standing experience in teaching astronomy courses. It presents in a modern and complete way our present picture of the physics of the Milky Way system. The first part of the book deals with topics of more empirical character, such as the positions and motions of stars, the structure and kinetics of the stellar systems and interstellar phenomena. The more advanced second part is devoted to the interpretation of observational results, i.e. to the physics of interstellar gas and dust, to stellar dynamics, to the theory of spiral structures and the dynamics of interstellar gas

  4. The 1989 progress report: Physics of the condensed matter

    International Nuclear Information System (INIS)

    Sapoval, B.

    1989-01-01

    The 1989 progress report of the laboratory of Condensed Matter Physics of the Polytechnic School (France) is presented. The laboratory research fields are the physics of semiconductors and the physics of disordered states. The 1989 main results were the determination of the fractal dimension of silicon aerogels by means of nuclear magnetic resonance and the observation of local vibrations of a fractal drum. The published papers, the conferences and Laboratory staff are listed [fr

  5. Condensed matter physics with radioactive ion beams

    International Nuclear Information System (INIS)

    Haas, H.

    1996-01-01

    An overview of the present uses of radioactive ion beams from ISOLDE for condensed matter research is presented. As simple examples of such work, tracer studies of diffusion processes with radioisotopes and blocking/channeling measurements of emitted particles for lattice location are discussed. Especially the application of nuclear hyperfine interaction techniques such as PAC or Moessbauer spectroscopy has become a powerful tool to study local electronic and structural properties at impurities. Recently, interesting information on impurity properties in semiconductors has been obtained using all these methods. The extreme sensitivity of nuclear techniques makes them also well suited for investigations of surfaces, interfaces, and biomolecules. Some ideas for future uses of high energy radioactive ion beams beyond the scope of the present projects are outlined: the study of diffusion in highly immiscible systems by deep implantation, nuclear polarization with the tilted-foil technique, and transmutation doping of wide-bandgap semiconductors. (orig.)

  6. String Theory Methods for Condensed Matter Physics

    Science.gov (United States)

    Nastase, Horatiu

    2017-09-01

    Preface; Acknowledgments; Introduction; Part I. Condensed Matter Models and Problems: 1. Lightning review of statistical mechanics, thermodynamics, phases and phase transitions; 2. Magnetism in solids; 3. Electrons in solids: Fermi gas vs. Fermi liquid; 4. Bosonic quasi-particles: phonons and plasmons; 5. Spin-charge separation in 1+1 dimensional solids: spinons and holons; 6. The Ising model and the Heisenberg spin chain; 7. Spin chains and integrable systems; 8. The thermodynamic Bethe ansatz; 9. Conformal field theories and quantum phase transitions; 10. Classical vs. quantum Hall effect; 11. Superconductivity: Landau-Ginzburg, London and BCS; 12. Topology and statistics: Berry and Chern-Simons, anyons and nonabelions; 13. Insulators; 14. The Kondo effect and the Kondo problem; 15. Hydrodynamics and transport properties: from Boltzmann to Navier-Stokes; Part II. Elements of General Relativity and String Theory: 16. The Einstein equation and the Schwarzschild solution; 17. The Reissner-Nordstrom and Kerr-Newman solutions and thermodynamic properties of black holes; 18. Extra dimensions and Kaluza-Klein; 19. Electromagnetism and gravity in various dimensions. Consistent truncations; 20. Gravity plus matter: black holes and p-branes in various dimensions; 21. Weak/strong coupling dualities in 1+1, 2+1, 3+1 and d+1 dimensions; 22. The relativistic point particle and the relativistic string; 23. Lightcone strings and quantization; 24. D-branes and gauge fields; 25. Electromagnetic fields on D-branes. Supersymmetry and N = 4 SYM. T-duality of closed strings; 26. Dualities and M theory; 27. The AdS/CFT correspondence: definition and motivation; Part III. Applying String Theory to Condensed Matter Problems: 28. The pp wave correspondence: string Hamiltonian from N = 4 SYM; 29. Spin chains from N = 4 SYM; 30. The Bethe ansatz: Bethe strings from classical strings in AdS; 31. Integrability and AdS/CFT; 32. AdS/CFT phenomenology: Lifshitz, Galilean and Schrodinger

  7. Annual progress report of the Department of Solid State Physics 1 January - 31 December 1995

    International Nuclear Information System (INIS)

    Joergensen, M.; Bechgaard, K.; Clausen, K.N.; Feidenhans'l, R.; Johannsen, I.

    1996-01-01

    Research in the department is concerned with 'Materials with Distinct Physical and Chemical Properties'. The principal activities of the department in the period from 1 January to 31 December, 1995, are presented in this Progress Report. Neutron and x-ray diffraction techniques are used to study a wide variety of problems in condensed matter physics and include: two- and three-dimensional structures, magnetic ordering, heavy fermions, high T c superconductivity, phase transitions in model systems, precipitation phenomena, and nano-scale structures in various materials. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface modified polymers, and supramolecular structures. Related to these problems there is work going on in theory, Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au) 5 tabs., 135 ills., 163 refs

  8. Annual progress report of the Department of Solid State Physics 1 January -31 December 1996

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, M; Bechgaard, K; Clausen, K N; Feidenhans` l, R; Johannsen, I

    1997-01-01

    Research in the department is concerned with `Materials with Distinct Physical and Chemical Properties`. The principal activities of the department in the period from 1 January to 31 December, 1996, are presented in this Progress Report. Neutron and x-ray diffraction techniques are used to study a wide variety of problems in condensed matter physics and include: two- and three-dimensional structures, magnetic ordering, heavy fermions, high T{sub c} superconductivity, phase transitions in model systems, precipitation phenomena, and nano-scale structures in various materials. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface modified polymers, and supramolecular structures. Related to these problems there is work going on in theory, Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au) 6 tabs., 144 ills., 197 refs.

  9. Annual progress report of the Department of Solid State Physics 1 January -31 December 1994

    International Nuclear Information System (INIS)

    Lindgaard, P.-A.; Bechgaard, K.; Clausen, K.N.; Feidenhans'l, R.; Johannsen, I.

    1995-01-01

    Research in the department is concerned with 'Materials with Distinct Physical and Chemical Properties'. The principal activities of the department in the period from 1 January to 31 December, 1994, are presented in this Progress Report. Neutron and x-ray diffraction techniques are used to study a wide variety of problems in condensed matter physics and include: two- and three-dimensional structures, magnetic ordering, heavy fermions, high T c superconductivity, phase transitions in model systems, precipitation phenomena, and nano-scale structures in various materials. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface modified polymers, and supramolecular structures. Related to these problems there is work going on in theory, Monte Carlo simulations, and methods of data analysis. (au) (3 tabs., 116 ills., 181 refs.)

  10. Annual progress report of the Department of Solid State Physics 1 January - 31 December 1995

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, M; Bechgaard, K; Clausen, K N; Feidenhans` l, R; Johannsen, I [eds.

    1996-01-01

    Research in the department is concerned with `Materials with Distinct Physical and Chemical Properties`. The principal activities of the department in the period from 1 January to 31 December, 1995, are presented in this Progress Report. Neutron and x-ray diffraction techniques are used to study a wide variety of problems in condensed matter physics and include: two- and three-dimensional structures, magnetic ordering, heavy fermions, high T{sub c} superconductivity, phase transitions in model systems, precipitation phenomena, and nano-scale structures in various materials. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface modified polymers, and supramolecular structures. Related to these problems there is work going on in theory, Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au) 5 tabs., 135 ills., 163 refs.

  11. Annual progress report of the Department of Solid State Physics 1 January -31 December 1996

    International Nuclear Information System (INIS)

    Joergensen, M.; Bechgaard, K.; Clausen, K.N.; Feidenhans'l, R.; Johannsen, I.

    1997-01-01

    Research in the department is concerned with 'Materials with Distinct Physical and Chemical Properties'. The principal activities of the department in the period from 1 January to 31 December, 1996, are presented in this Progress Report. Neutron and x-ray diffraction techniques are used to study a wide variety of problems in condensed matter physics and include: two- and three-dimensional structures, magnetic ordering, heavy fermions, high T c superconductivity, phase transitions in model systems, precipitation phenomena, and nano-scale structures in various materials. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface modified polymers, and supramolecular structures. Related to these problems there is work going on in theory, Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au) 6 tabs., 144 ills., 197 refs

  12. Light-matter interaction physics and engineering at the nanoscale

    CERN Document Server

    Weiner, John

    2017-01-01

    Light–matter interaction is pervasive throughout the disciplines of optical and atomic physics, condensedmatter physics, and electrical engineering with frequency and length scales extending over many orders of magnitude. The frequency range extends from a few tens of Hz for sea communications to hundreds of petaHz (1015 s–1) for X-ray imaging systems. Length scales range from thousands of kilometres to a few hundred picometres. Although the present work does not offer an exhaustive treatise on this vast subject, it does aim to provide advanced undergraduates, graduate students, and researchers from these diverse disciplines the principal tools required to understand and contribute to rapidly advancing developments in light–matter interaction centred at optical frequencies and length scales. Classical electrodynamics, with an emphasis on the macroscopic expressions of Maxwell’s equations, physical optics, and quantum mechanics provide unique perspectives to the interaction of light and matter at these...

  13. Physical activity school intervention: context matters.

    Science.gov (United States)

    Guldager, J D; Andersen, P T; von Seelen, J; Leppin, A

    2018-06-01

    School-based interventions for increasing physical activity among children are widespread, however there is still a lack of knowledge about how school context factors are linked to implementation quality and effectiveness of programmes. The aim of this paper is to examine teacher-perceived effectiveness of a Danish national classroom-based health programme 'Active Around Denmark' and in particular, to investigate whether perceptions vary as a function of school social context factors. After completion of the programme all teachers (N = 5.892) received an electronic questionnaire. 2.097 completed the questionnaire (response rate 36%) and 1.781 datasets could be used for analysis. The teachers were asked about their perceptions of changes in children's attitudes towards and levels of physical activity after the competition. Our results indicated that certain contextual factors, such as schools' prioritization of health promotion, teachers' support by their school principal in implementation as well as teacher's satisfaction with the school' physical environment made a significant difference in teacher-perceived effectiveness. To conclude, teacher-perceived effectiveness of the health programme does vary as a function of school social context factors.

  14. Security Implications of Physical Design Attributes in the Emergency Department.

    Science.gov (United States)

    Pati, Debajyoti; Pati, Sipra; Harvey, Thomas E

    2016-07-01

    Security, a subset of safety, is equally important in the efficient delivery of patient care. The emergency department (ED) is susceptible to violence creating concerns for the safety and security of patients, staff, and visitors and for the safe and efficient delivery of care. Although there is an implicit and growing recognition of the role of the physical environment, interventions typically have been at the microlevel. The objective of this study was to identify physical design attributes that potentially influence safety and efficiency of ED operations. An exploratory, qualitative research design was adopted to examine the efficiency and safety correlates of ED physical design attributes. The study comprised a multimeasure approach involving multidisciplinary gaming, semistructured interviews, and touring interviews of frontline staff in four EDs at three hospital systems across three states. Five macro physical design attributes (issues that need to be addressed at the design stage and expensive to rectify once built) emerged from the data as factors substantially associated with security issues. They are design issues pertaining to (a) the entry zone, (b) traffic management, (c) patient room clustering, (d) centralization versus decentralization, and (e) provisions for special populations. Data from this study suggest that ED security concerns are generally associated with three sources: (a) gang-related violence, (b) dissatisfied patients, and (c) behavioral health patients. Study data show that physical design has an important role in addressing the above-mentioned concerns. Implications for ED design are outlined in the article. © The Author(s) 2016.

  15. Making Physics Matter in Primary Schools

    Science.gov (United States)

    Flaherty, Jackie; Cox, Wendy; Poole, Amanda; Watson, Jenny; Greygoose, Kirstin

    2016-04-01

    "Efforts to broaden students' aspirations, particularly in relation to STEM, need to begin in primary school." Kings College London "Aspires" Research Project 2013 From my outreach activity I have learnt that primary teachers could feel under pressure when faced with delivering the science curriculum. The teachers could be lacking confidence in their subject knowledge, lacking the equipment needed to deliver practical science or lacking enthusiasm for the subject. In addition, English and Mathematics were the subjects that were externally tested and reported to the authorities and so some teachers felt that time for science was being marginalised to ensure the best results in the externally assessed subjects. In my work with The Ogden Trust Primary Science team I have been involved in developing a range of strategies to address some of the issues outlined above. • CPD (Teacher Training) Programme We have provided free training to improve teachers knowledge and understanding of key physics concepts to GCSE standard and a practical workshop consisting of ten investigations, extension and challenge tasks. The teachers each receive a book of lesson plans and a resource box containing a class set of the equipment required. The four year programme covers Forces Light and Sound Electricity Earth & Space • "Phiz Labs" Funding from The Ogden Trust has allowed us to set up science laboratories within primary schools. The pupils have lab coats, goggles and access to a range of equipment that allows them to participate in more practical science activity and open-ended investigative work. My Phiz Lab is in the secondary school where I teach physics and practical workshops for primary pupils and teachers are held there on a regular basis. • Enrichment In order to enthuse and challenge the primary pupils a variety of enrichment activities take place. These include "Physics of Go-Karts" and "Particle Physics for Primary" workshops, competitions and regional Science Fairs

  16. Physics of hot hadronic matter and quark-gluon plasma

    International Nuclear Information System (INIS)

    Shuryak, E.V.

    1990-07-01

    This Introductory talk contains a brief review of the current status of theoretical and experimental activities related to physics of superdense matter. In particular, we discuss latest lattice results on the phase transition, recent progress in chiral symmetry physics based on the theory of interacting instantons, new in the theory of QGP and of hot hadronic matter, mean p t and collective flow, the shape of p t distribution, strangeness production, J/ψ suppression and φ enhancement, two puzzles connected with soft pion and soft photon enhancements, and some other ''ultrasoft'' phenomena. 56 refs., 6 figs

  17. Condensed matter applied atomic collision physics, v.4

    CERN Document Server

    Datz, Sheldon

    1983-01-01

    Applied Atomic Collision Physics, Volume 4: Condensed Matter deals with the fundamental knowledge of collision processes in condensed media.The book focuses on the range of applications of atomic collisions in condensed matter, extending from effects on biological systems to the characterization and modification of solids. This volume begins with the description of some aspects of the physics involved in the production of ion beams. The radiation effects in biological and chemical systems, ion scattering and atomic diffraction, x-ray fluorescence analysis, and photoelectron and Auger spectrosc

  18. On importance of dark matter for LHC physics

    International Nuclear Information System (INIS)

    Bednyakov, V.A.

    2000-01-01

    The aim of this paper is to attract attention of the LHC high-energy physics community to non-accelerator, low-energy experiments that are also very sensitive to new physics. This example concerns the search for supersymmetric dark matter particles. It is shown that non-observation of the SUSY dark matter candidates with a high-accuracy detector can exclude large domains of the MSSM parameter space and, in particular, can make especially desirable collider search for light SUSY charged Higgs boson

  19. Astrophysical dark matter: candidates from particle physics and detection possibilities

    International Nuclear Information System (INIS)

    Freese, K.

    1989-01-01

    In this talk, I will discuss the arguments that 50% to 90% of the matter in galaxies, including our own, is made of an unknown type of dark matter. I will review the reason why cosmologists believe Ω = 1 and illustrate the contrast with the limits on the amount of baryonic matter from element abundances in Big Bang Nucleosynthesis. Other arguments for nonbaryonic dark matter will also be discussed. Candidates for the dark matter from particle physics will be presented. I will focus on cold dark matter candidates known as WIMPs, weakly interacting massive (O(GeV)) particles. I will try to illustrate why these particles are interesting for astrophysics and outline ideas for cornering them. Detection possibilities for these particles include indirect detection, which takes advantage of the annihilation products of these particles in the galactic halo, the sun, or the earth. Direct detection via newly proposed cryogenic detectors must be sensitive to <∼ keV energy deposits. Annual modulation of the dark matter signal can be used as a signature for these halo particles. I hope to motivate the interest in these particles and discuss ideas for finding them

  20. Lectures on holographic methods for condensed matter physics

    International Nuclear Information System (INIS)

    Hartnoll, Sean A

    2009-01-01

    These notes are loosely based on lectures given at the CERN Winter School on Supergravity, Strings and Gauge theories, February 2009, and at the IPM String School in Tehran, April 2009. I have focused on a few concrete topics and also on addressing questions that have arisen repeatedly. Background condensed matter physics material is included as motivation and easy reference for the high energy physics community. The discussion of holographic techniques progresses from equilibrium, to transport and to superconductivity.

  1. Low dimensional field theories and condensed matter physics

    International Nuclear Information System (INIS)

    Nagaoka, Yosuke

    1992-01-01

    This issue is devoted to the Proceedings of the Fourth Yukawa International Seminar (YKIS '91) on Low Dimensional Field Theories and Condensed Matter Physics, which was held on July 28 to August 3 in Kyoto. In recent years there have been great experimental discoveries in the field of condensed matter physics: the quantum Hall effect and the high temperature superconductivity. Theoretical effort to clarify mechanisms of these phenomena revealed that they are deeply related to the basic problem of many-body systems with strong correlation. On the other hand, there have been important developments in field theory in low dimensions: the conformal field theory, the Chern-Simons gauge theory, etc. It was found that these theories work as a powerful method of approach to the problems in condensed matter physics. YKIS '91 was devoted to the study of common problems in low dimensional field theories and condensed matter physics. The 17 of the presented papers are collected in this issue. (J.P.N.)

  2. Nuclear physics: the core of matter, the fuel of stars

    International Nuclear Information System (INIS)

    Schiffer, J.P.

    1999-01-01

    Dramatic progress has been made in all branches of physics since the National Research Council's 1986 decadal survey of the field. The Physics in a New Era series explores these advances and looks ahead to future goals. The series includes assessments of the major subfields and reports on several smaller subfields, and preparation has begun on an overview volume on the unity of physics, its relationships to other fields, and its contributions to national needs. Nuclear Physics is the latest volume of the series. The book describes current activity in understanding nuclear structure and symmetries, the behavior of matter at extreme densities, the role of nuclear physics in astrophysics and cosmology, and the instrumentation and facilities used by the field. It makes recommendations on the resources needed for experimental and theoretical advances in the coming decade. Nuclear physics addresses the nature of matter making up 99.9 percent of the mass of our everyday world. It explores the nuclear reactions that fuel the stars, including our Sun, which provides the energy for all life on Earth. The field of nuclear physics encompasses some 3,000 experimental and theoretical researchers who work at universities and national laboratories across the United States, as well as the experimental facilities and infrastructure that allow these researchers to address the outstanding scientific questions facing us. This report provides an overview of the frontiers of nuclear physics as we enter the next millennium, with special attention to the state of the science in the United States.The current frontiers of nuclear physics involve fundamental and rapidly evolving issues. One is understanding the structure and behavior of strongly interacting matter in terms of its basic constituents, quarks and gluons, over a wide range of conditions - from normal nuclear matter to the dense cores of neutron stars, and to the Big Bang that was the birth of the universe. Another is to describe

  3. Light-matter interaction physics and engineering at the nanoscale

    CERN Document Server

    Weiner, John

    2013-01-01

    This book draws together the essential elements of classical electrodynamics, surface wave physics, plasmonic materials, and circuit theory of electrical engineering to provide insight into the essential physics of nanoscale light-matter interaction and to provide design methodology for practical nanoscale plasmonic devices. A chapter on classical and quantal radiation also highlights the similarities (and differences) between the classical fields of Maxwell's equations and the wave functions of Schrodinger's equation. The aim of this chapter is to provide a semiclassical picture of atomic absorption and emission of radiation, lending credence and physical plausibility to the "rules" of standard wave-mechanical calculations.

  4. Physics understanding the properties of matter and energy

    CERN Document Server

    2015-01-01

    Without physics, modern life would not exist. Instead of electric light, we would read by the light of candles. We couldn''t build skyscrapers. We could not possibly bridge rivers, much less build a jet or interplanetary craft. Computers and smartphones would be unimaginable. Physics is concerned with the most fundamental aspects of matter and energy and how they interact to make the physical universe work. In accessible language and with explanatory graphics and visual aids, this book introduces readers to the science that is at the very center of all other sciences and essential to our very

  5. Dose measurements in laboratory of Physics department, University of Khartoum

    International Nuclear Information System (INIS)

    Hamid, Maria Mohammed

    1999-05-01

    Personal monitoring in University of Khartoum is being conducted using thermoluminescent dosimetry. The purpose of the study is to measure the dose of radiation in laboratory of Physics in physics department. TL phosphors LiF: Mg, Ti (card) and LiF Mg, Cu, P (GR-200) and mini-rad dosimeter are used to measure the dose in laboratory. The total dose for students form the laboratory bu using card, GR-200 and mini-rad dosimeter was found to be 2.2μ sv/year. 2.5 μ sv/year and 2.6 μ sv respectively, and for the teacher about 4.0 μ sv/year, 5.8 μ sv/year and 13.6 μ sv/year respectively, and for the dose near junk room about 3.9 μ sv/year, 2.9 μ sv/year and 2.8 μ sv/year by using card, GR-200 and mini-rad dosimeter respectively. There is just a background radiation in the main library and the applied nuclear.(Author)

  6. Department of Plasma Physics and Material Engineering - Overview

    International Nuclear Information System (INIS)

    Rabinski, M.

    2010-01-01

    Full text: In April 2009 the Department of Materials Studies was united with the Department of Plasma Physics and Technology, This action followed twenty years of close cooperation in the implementation of high-intensity ion-beam pulses for the implantation of materials. In 2009 the activities of the new Department continued previous studies in the following fields of plasma physics, controlled nuclear fusion and plasma engineering: · Development of selected methods for high-temperature plasma diagnostics; · Studies of physical phenomena in pulsed discharges at the Plasma-Focus and RPI-IBIS facilities; · Research on plasma technologies, search for new methods of surface engineering; · Selected problems of plasma theory and computational modelling. In the framework of the EURATOM program. efforts were devoted to the development of diagnostics methods for tokamak-type facilities. Such studies included the elaboration of a special detection system based on a Cherenkov-type detector. Other fusion-oriented efforts were connected with the application of activation methods to the investigation of neutrons from the JET tokamak. Also. solid-state nuclear track detectors of the PM-355 type were used for measurements of energetic protons emitted from ultra-intense laser produced plasmas. In our continuing experimental studies, particular attention was paid to the development and application of optical spectroscopy for diagnostics of high-temperature plasma within the RPI-IBIS device and Plasma-Focus facilities. Fast ions escaping from the plasma were studied with nuclear track detectors, The interaction of plasma-ion streams with different targets was also investigated. A field of research activity was related to plasma technology. Efforts were undertaken to improve the ultra-high vacuum (UHV) deposition of thin superconducting layers. c.g. pure niobium film on the surface of copper resonant cavities of accelerators. The vacuum arc deposition technique was also applied to

  7. Extreme states of matter in strong interaction physics an introduction

    CERN Document Server

    Satz, Helmut

    2018-01-01

    This book is a course-tested primer on the thermodynamics of strongly interacting matter – a profound and challenging area of both theoretical and experimental modern physics. Analytical and numerical studies of statistical quantum chromodynamics provide the main theoretical tool, while in experiments, high-energy nuclear collisions are the key for extensive laboratory investigations. As such, the field straddles statistical, particle and nuclear physics, both conceptually and in the methods of investigation used. The book addresses, above all, the many young scientists starting their scientific research in this field, providing them with a general, self-contained introduction that highlights the basic concepts and ideas and explains why we do what we do. Much of the book focuses on equilibrium thermodynamics: first it presents simplified phenomenological pictures, leading to critical behavior in hadronic matter and to a quark-hadron phase transition. This is followed by elements of finite temperature latti...

  8. Many body quantum physics at the condensed matter

    International Nuclear Information System (INIS)

    Llano, M. de

    1981-01-01

    The non-relativistic, continuous (as opposed to spin) many-body problem as it relates to condensed matter at absolute zero temperature is reviewed in simple, non-technical terms, mainly from the standpoint of infinite order perturbation theory, for physical systems where all the particles have the same mass but which otherwise interact with arbitrary short- or long-ranged two-body forces. (author)

  9. Proceedings 17. International Conference on Applied Physics of Condensed Matter

    International Nuclear Information System (INIS)

    Pudis, D.; Kubicova, I.; Bury, P.

    2011-01-01

    The 17. International Conference on Applied Physics of Condensed Matter was held on 22-24 June, 2011 in Spa Novy Smokovec, High Tatras, Slovakia. The specialists discussed various aspects of modern problems of nano-science and technology, thin films, MOS structures, optical phenomena, GaN-based heterostructures, simulation methods, heterostructures and devices, solid state characterization and analysis, materials and radiation, sensors and detection methods, and material sciences. Contributions relevant of INIS interest (55 contributions) has been inputted to INIS.

  10. Walter Kohn and the Rise of Condensed Matter Physics T V ...

    Indian Academy of Sciences (India)

    Ramakrishnan T V

    Condensed Matter Physics: ( Physics of condensed matter, which is mostly solid, ... The nature and description of electronic states in solids. ( also with coulomb ... materials, molecular complexes, etc.. (Chemistry, biology, materials science….).

  11. Challenges in QCD matter physics -The scientific programme of the Compressed Baryonic Matter experiment at FAIR

    Science.gov (United States)

    Ablyazimov, T.; Abuhoza, A.; Adak, R. P.; Adamczyk, M.; Agarwal, K.; Aggarwal, M. M.; Ahammed, Z.; Ahmad, F.; Ahmad, N.; Ahmad, S.; Akindinov, A.; Akishin, P.; Akishina, E.; Akishina, T.; Akishina, V.; Akram, A.; Al-Turany, M.; Alekseev, I.; Alexandrov, E.; Alexandrov, I.; Amar-Youcef, S.; Anđelić, M.; Andreeva, O.; Andrei, C.; Andronic, A.; Anisimov, Yu.; Appelshäuser, H.; Argintaru, D.; Atkin, E.; Avdeev, S.; Averbeck, R.; Azmi, M. D.; Baban, V.; Bach, M.; Badura, E.; Bähr, S.; Balog, T.; Balzer, M.; Bao, E.; Baranova, N.; Barczyk, T.; Bartoş, D.; Bashir, S.; Baszczyk, M.; Batenkov, O.; Baublis, V.; Baznat, M.; Becker, J.; Becker, K.-H.; Belogurov, S.; Belyakov, D.; Bendarouach, J.; Berceanu, I.; Bercuci, A.; Berdnikov, A.; Berdnikov, Y.; Berendes, R.; Berezin, G.; Bergmann, C.; Bertini, D.; Bertini, O.; Beşliu, C.; Bezshyyko, O.; Bhaduri, P. P.; Bhasin, A.; Bhati, A. K.; Bhattacharjee, B.; Bhattacharyya, A.; Bhattacharyya, T. K.; Biswas, S.; Blank, T.; Blau, D.; Blinov, V.; Blume, C.; Bocharov, Yu.; Book, J.; Breitner, T.; Brüning, U.; Brzychczyk, J.; Bubak, A.; Büsching, H.; Bus, T.; Butuzov, V.; Bychkov, A.; Byszuk, A.; Cai, Xu; Cãlin, M.; Cao, Ping; Caragheorgheopol, G.; Carević, I.; Cătănescu, V.; Chakrabarti, A.; Chattopadhyay, S.; Chaus, A.; Chen, Hongfang; Chen, LuYao; Cheng, Jianping; Chepurnov, V.; Cherif, H.; Chernogorov, A.; Ciobanu, M. I.; Claus, G.; Constantin, F.; Csanád, M.; D'Ascenzo, N.; Das, Supriya; Das, Susovan; de Cuveland, J.; Debnath, B.; Dementiev, D.; Deng, Wendi; Deng, Zhi; Deppe, H.; Deppner, I.; Derenovskaya, O.; Deveaux, C. A.; Deveaux, M.; Dey, K.; Dey, M.; Dillenseger, P.; Dobyrn, V.; Doering, D.; Dong, Sheng; Dorokhov, A.; Dreschmann, M.; Drozd, A.; Dubey, A. K.; Dubnichka, S.; Dubnichkova, Z.; Dürr, M.; Dutka, L.; Dželalija, M.; Elsha, V. V.; Emschermann, D.; Engel, H.; Eremin, V.; Eşanu, T.; Eschke, J.; Eschweiler, D.; Fan, Huanhuan; Fan, Xingming; Farooq, M.; Fateev, O.; Feng, Shengqin; Figuli, S. P. D.; Filozova, I.; Finogeev, D.; Fischer, P.; Flemming, H.; Förtsch, J.; Frankenfeld, U.; Friese, V.; Friske, E.; Fröhlich, I.; Frühauf, J.; Gajda, J.; Galatyuk, T.; Gangopadhyay, G.; García Chávez, C.; Gebelein, J.; Ghosh, P.; Ghosh, S. K.; Gläßel, S.; Goffe, M.; Golinka-Bezshyyko, L.; Golovatyuk, V.; Golovnya, S.; Golovtsov, V.; Golubeva, M.; Golubkov, D.; Gómez Ramírez, A.; Gorbunov, S.; Gorokhov, S.; Gottschalk, D.; Gryboś, P.; Grzeszczuk, A.; Guber, F.; Gudima, K.; Gumiński, M.; Gupta, A.; Gusakov, Yu.; Han, Dong; Hartmann, H.; He, Shue; Hehner, J.; Heine, N.; Herghelegiu, A.; Herrmann, N.; Heß, B.; Heuser, J. M.; Himmi, A.; Höhne, C.; Holzmann, R.; Hu, Dongdong; Huang, Guangming; Huang, Xinjie; Hutter, D.; Ierusalimov, A.; Ilgenfritz, E.-M.; Irfan, M.; Ivanischev, D.; Ivanov, M.; Ivanov, P.; Ivanov, Valery; Ivanov, Victor; Ivanov, Vladimir; Ivashkin, A.; Jaaskelainen, K.; Jahan, H.; Jain, V.; Jakovlev, V.; Janson, T.; Jiang, Di; Jipa, A.; Kadenko, I.; Kähler, P.; Kämpfer, B.; Kalinin, V.; Kallunkathariyil, J.; Kampert, K.-H.; Kaptur, E.; Karabowicz, R.; Karavichev, O.; Karavicheva, T.; Karmanov, D.; Karnaukhov, V.; Karpechev, E.; Kasiński, K.; Kasprowicz, G.; Kaur, M.; Kazantsev, A.; Kebschull, U.; Kekelidze, G.; Khan, M. M.; Khan, S. A.; Khanzadeev, A.; Khasanov, F.; Khvorostukhin, A.; Kirakosyan, V.; Kirejczyk, M.; Kiryakov, A.; Kiš, M.; Kisel, I.; Kisel, P.; Kiselev, S.; Kiss, T.; Klaus, P.; Kłeczek, R.; Klein-Bösing, Ch.; Kleipa, V.; Klochkov, V.; Kmon, P.; Koch, K.; Kochenda, L.; Koczoń, P.; Koenig, W.; Kohn, M.; Kolb, B. W.; Kolosova, A.; Komkov, B.; Korolev, M.; Korolko, I.; Kotte, R.; Kovalchuk, A.; Kowalski, S.; Koziel, M.; Kozlov, G.; Kozlov, V.; Kramarenko, V.; Kravtsov, P.; Krebs, E.; Kreidl, C.; Kres, I.; Kresan, D.; Kretschmar, G.; Krieger, M.; Kryanev, A. V.; Kryshen, E.; Kuc, M.; Kucewicz, W.; Kucher, V.; Kudin, L.; Kugler, A.; Kumar, Ajit; Kumar, Ashwini; Kumar, L.; Kunkel, J.; Kurepin, A.; Kurepin, N.; Kurilkin, A.; Kurilkin, P.; Kushpil, V.; Kuznetsov, S.; Kyva, V.; Ladygin, V.; Lara, C.; Larionov, P.; Laso García, A.; Lavrik, E.; Lazanu, I.; Lebedev, A.; Lebedev, S.; Lebedeva, E.; Lehnert, J.; Lehrbach, J.; Leifels, Y.; Lemke, F.; Li, Cheng; Li, Qiyan; Li, Xin; Li, Yuanjing; Lindenstruth, V.; Linnik, B.; Liu, Feng; Lobanov, I.; Lobanova, E.; Löchner, S.; Loizeau, P.-A.; Lone, S. A.; Lucio Martínez, J. A.; Luo, Xiaofeng; Lymanets, A.; Lyu, Pengfei; Maevskaya, A.; Mahajan, S.; Mahapatra, D. P.; Mahmoud, T.; Maj, P.; Majka, Z.; Malakhov, A.; Malankin, E.; Malkevich, D.; Malyatina, O.; Malygina, H.; Mandal, M. M.; Mandal, S.; Manko, V.; Manz, S.; Marin Garcia, A. M.; Markert, J.; Masciocchi, S.; Matulewicz, T.; Meder, L.; Merkin, M.; Mialkovski, V.; Michel, J.; Miftakhov, N.; Mik, L.; Mikhailov, K.; Mikhaylov, V.; Milanović, B.; Militsija, V.; Miskowiec, D.; Momot, I.; Morhardt, T.; Morozov, S.; Müller, W. F. J.; Müntz, C.; Mukherjee, S.; Muñoz Castillo, C. E.; Murin, Yu.; Najman, R.; Nandi, C.; Nandy, E.; Naumann, L.; Nayak, T.; Nedosekin, A.; Negi, V. S.; Niebur, W.; Nikulin, V.; Normanov, D.; Oancea, A.; Oh, Kunsu; Onishchuk, Yu.; Ososkov, G.; Otfinowski, P.; Ovcharenko, E.; Pal, S.; Panasenko, I.; Panda, N. R.; Parzhitskiy, S.; Patel, V.; Pauly, C.; Penschuck, M.; Peshekhonov, D.; Peshekhonov, V.; Petráček, V.; Petri, M.; Petriş, M.; Petrovici, A.; Petrovici, M.; Petrovskiy, A.; Petukhov, O.; Pfeifer, D.; Piasecki, K.; Pieper, J.; Pietraszko, J.; Płaneta, R.; Plotnikov, V.; Plujko, V.; Pluta, J.; Pop, A.; Pospisil, V.; Poźniak, K.; Prakash, A.; Prasad, S. K.; Prokudin, M.; Pshenichnov, I.; Pugach, M.; Pugatch, V.; Querchfeld, S.; Rabtsun, S.; Radulescu, L.; Raha, S.; Rami, F.; Raniwala, R.; Raniwala, S.; Raportirenko, A.; Rautenberg, J.; Rauza, J.; Ray, R.; Razin, S.; Reichelt, P.; Reinecke, S.; Reinefeld, A.; Reshetin, A.; Ristea, C.; Ristea, O.; Rodriguez Rodriguez, A.; Roether, F.; Romaniuk, R.; Rost, A.; Rostchin, E.; Rostovtseva, I.; Roy, Amitava; Roy, Ankhi; Rożynek, J.; Ryabov, Yu.; Sadovsky, A.; Sahoo, R.; Sahu, P. K.; Sahu, S. K.; Saini, J.; Samanta, S.; Sambyal, S. S.; Samsonov, V.; Sánchez Rosado, J.; Sander, O.; Sarangi, S.; Satława, T.; Sau, S.; Saveliev, V.; Schatral, S.; Schiaua, C.; Schintke, F.; Schmidt, C. J.; Schmidt, H. R.; Schmidt, K.; Scholten, J.; Schweda, K.; Seck, F.; Seddiki, S.; Selyuzhenkov, I.; Semennikov, A.; Senger, A.; Senger, P.; Shabanov, A.; Shabunov, A.; Shao, Ming; Sheremetiev, A. D.; Shi, Shusu; Shumeiko, N.; Shumikhin, V.; Sibiryak, I.; Sikora, B.; Simakov, A.; Simon, C.; Simons, C.; Singaraju, R. N.; Singh, A. K.; Singh, B. K.; Singh, C. P.; Singhal, V.; Singla, M.; Sitzmann, P.; Siwek-Wilczyńska, K.; Škoda, L.; Skwira-Chalot, I.; Som, I.; Song, Guofeng; Song, Jihye; Sosin, Z.; Soyk, D.; Staszel, P.; Strikhanov, M.; Strohauer, S.; Stroth, J.; Sturm, C.; Sultanov, R.; Sun, Yongjie; Svirida, D.; Svoboda, O.; Szabó, A.; Szczygieł, R.; Talukdar, R.; Tang, Zebo; Tanha, M.; Tarasiuk, J.; Tarassenkova, O.; Târzilă, M.-G.; Teklishyn, M.; Tischler, T.; Tlustý, P.; Tölyhi, T.; Toia, A.; Topil'skaya, N.; Träger, M.; Tripathy, S.; Tsakov, I.; Tsyupa, Yu.; Turowiecki, A.; Tuturas, N. G.; Uhlig, F.; Usenko, E.; Valin, I.; Varga, D.; Vassiliev, I.; Vasylyev, O.; Verbitskaya, E.; Verhoeven, W.; Veshikov, A.; Visinka, R.; Viyogi, Y. P.; Volkov, S.; Volochniuk, A.; Vorobiev, A.; Voronin, Aleksey; Voronin, Alexander; Vovchenko, V.; Vznuzdaev, M.; Wang, Dong; Wang, Xi-Wei; Wang, Yaping; Wang, Yi; Weber, M.; Wendisch, C.; Wessels, J. P.; Wiebusch, M.; Wiechula, J.; Wielanek, D.; Wieloch, A.; Wilms, A.; Winckler, N.; Winter, M.; Wiśniewski, K.; Wolf, Gy.; Won, Sanguk; Wu, Ke-Jun; Wüstenfeld, J.; Xiang, Changzhou; Xu, Nu; Yang, Junfeng; Yang, Rongxing; Yin, Zhongbao; Yoo, In-Kwon; Yuldashev, B.; Yushmanov, I.; Zabołotny, W.; Zaitsev, Yu.; Zamiatin, N. I.; Zanevsky, Yu.; Zhalov, M.; Zhang, Yifei; Zhang, Yu; Zhao, Lei; Zheng, Jiajun; Zheng, Sheng; Zhou, Daicui; Zhou, Jing; Zhu, Xianglei; Zinchenko, A.; Zipper, W.; Żoładź, M.; Zrelov, P.; Zryuev, V.; Zumbruch, P.; Zyzak, M.

    2017-03-01

    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (√{s_{NN}}= 2.7-4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials ( μ_B > 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter.

  12. Annual progress report of the Department of Solid State Physics 1. January - 31 December 1992

    International Nuclear Information System (INIS)

    Skov Pedersen, J.; Lebech, B.; Lindgaard, P.-A.

    1993-01-01

    Research in the department is in the field of condensed matter physics. The principal activities of the department in the period from 1 january, to 31 December, 1992, are presented in this Progress Report. The department's research is predominantly experimental - utilising diffraction of neutrons and X-rays - and includes studies of two- and three-dimensional structures, magnetic ordering, heavy fermions, high T c superconductivity, phase transitions in model systems, precipitation phenomena, and nano-scale structures in various materials. The major interest of the department is in basic research but projects of a more applied nature are often up, prompted by the applicability of the developed techniques and expertise. For clarity, the contributions to this report are organized into 12 categories with the following headings: Theory, Monte Carlo simulations, and methods for data analysis. Magnetic structures, magnetic phase transitions,and spin dynamics. High T c superconductivity. Structures and structural phase transitions. Inclusions and precipitates in alloys and metals. Interaction of particles and photons with surfaces. Surfaces, interfaces, and amorphous structures. Langmuir films. Polymers. Microemulsions and biological systems. Instrumental developments. Other activities. (au) (1 tab., 101 ills., 165 refs.)

  13. Soft matter food physics--the physics of food and cooking.

    Science.gov (United States)

    Vilgis, Thomas A

    2015-12-01

    This review discusses the (soft matter) physics of food. Although food is generally not considered as a typical model system for fundamental (soft matter) physics, a number of basic principles can be found in the interplay between the basic components of foods, water, oil/fat, proteins and carbohydrates. The review starts with the introduction and behavior of food-relevant molecules and discusses food-relevant properties and applications from their fundamental (multiscale) behavior. Typical food aspects from 'hard matter systems', such as chocolates or crystalline fats, to 'soft matter' in emulsions, dough, pasta and meat are covered and can be explained on a molecular basis. An important conclusion is the point that the macroscopic properties and the perception are defined by the molecular interplay on all length and time scales.

  14. Department of Plasma Physics and Material Engineering - Overview

    International Nuclear Information System (INIS)

    Rabinski, M.

    2010-01-01

    Full text: In 2010 the activities of the Department continued previous studies in the following fields of plasma physics, controlled nuclear fusion and plasma engineering: · · Development of selected methods for high-temperature plasma diagnostics; · Studies of physical phenomena in pulsed discharges in the Plasma-Focus (PF), RPI-IBIS, and Impulse Plasma Deposition (IPD) facilities; · Research on plasma technologies; · Selected problems of plasma theory and computational modeling. In the frame of the EURATOM program, efforts were devoted to the development of diagnostics methods for tokamak-type facilities. In 2010 Cherenkov detectors were applied in the ISTTOK and TORE SUPRA facilities to detect energetic electrons (of energy > 60 keV), to determine their spatial and temporal behavior and to estimate their energy spectra. Attention was also paid to measurements of hard X rays emitted from ISTTOK and to their correlations with run-away electrons. The new data on fast electrons, collected within the TORE-SUPRA machine in 2010, confirmed the appearance of intense electron streams (possible ripple-born and runaway ones), which have a similar character to the electron signals recorded by means of other diagnostic techniques. Other fusion-oriented efforts are connected with the application of solid-state nuclear track detectors to detect fast alpha particles in tokamak experiments. As for experimental studies, particular attention was paid to the investigation of fast ion- and electron-beams emitted from high-current plasma discharges in PF and RPI facilities. Ion streams from discharges were studied by means of nuclear track detector, corpuscular diagnostic techniques, and particularly of a miniature Thompson-type mass-spectrometer. A field of research activity was related to plasma technology. Efforts were undertaken to improve the ultra-high vacuum (UHV) deposition of thin superconducting layers, e.g. pure niobium film on the surface of copper resonant cavities

  15. Foundations of high-energy-density physics physical processes of matter at extreme conditions

    CERN Document Server

    Larsen, Jon

    2017-01-01

    High-energy-density physics explores the dynamics of matter at extreme conditions. This encompasses temperatures and densities far greater than we experience on Earth. It applies to normal stars, exploding stars, active galaxies, and planetary interiors. High-energy-density matter is found on Earth in the explosion of nuclear weapons and in laboratories with high-powered lasers or pulsed-power machines. The physics explored in this book is the basis for large-scale simulation codes needed to interpret experimental results whether from astrophysical observations or laboratory-scale experiments. The key elements of high-energy-density physics covered are gas dynamics, ionization, thermal energy transport, and radiation transfer, intense electromagnetic waves, and their dynamical coupling. Implicit in this is a fundamental understanding of hydrodynamics, plasma physics, atomic physics, quantum mechanics, and electromagnetic theory. Beginning with a summary of the topics and exploring the major ones in depth, thi...

  16. Extreme states of matter high energy density physics

    CERN Document Server

    Fortov, Vladimir E

    2016-01-01

    With its many beautiful colour pictures, this book gives fascinating insights into the unusual forms and behaviour of matter under extremely high pressures and temperatures. These extreme states are generated, among other things, by strong shock, detonation and electric explosion waves, dense laser beams,electron and ion beams, hypersonic entry of spacecraft into dense atmospheres of planets, and in many other situations characterized by extremely high pressures and temperatures.Written by one of the world's foremost experts on the topic, this book will inform and fascinate all scientists dealing with materials properties and physics, and also serve as an excellent introduction to plasma-, shock-wave and high-energy-density physics for students and newcomers seeking an overview. This second edition is thoroughly revised and expanded, in particular with new material on high energy-density physics, nuclear explosions and other nuclear transformation processes.

  17. Physical stress, mass, and energy for non-relativistic matter

    Science.gov (United States)

    Geracie, Michael; Prabhu, Kartik; Roberts, Matthew M.

    2017-06-01

    For theories of relativistic matter fields there exist two possible definitions of the stress-energy tensor, one defined by a variation of the action with the coframes at fixed connection, and the other at fixed torsion. These two stress-energy tensors do not necessarily coincide and it is the latter that corresponds to the Cauchy stress measured in the lab. In this note we discuss the corresponding issue for non-relativistic matter theories. We point out that while the physical non-relativistic stress, momentum, and mass currents are defined by a variation of the action at fixed torsion, the energy current does not admit such a description and is naturally defined at fixed connection. Any attempt to define an energy current at fixed torsion results in an ambiguity which cannot be resolved from the background spacetime data or conservation laws. We also provide computations of these quantities for some simple non-relativistic actions.

  18. Progress Report. Institute of Atomic Physics, Institute of Physics and Nuclear Engineering, Department of Heavy Ion Physics. 1992-1993

    International Nuclear Information System (INIS)

    Grama, C.; Ionescu-Bujor, M.; Poenaru, D.; Pop, A.

    1994-01-01

    A brief account of the research and development activities carried out in the Department of Heavy Ion Physics, Institute of Atomic Physics, Institute of Physics and Nuclear Engineering, Bucharest, during the period January 1992 to December 1993 is presented. The main topics concern nuclear structure models and methods, heavy-ion-induced reactions, and general properties of nuclei and nuclear energy levels. Also, works dealing with particle detection, measuring instruments and methods are reported. The report contains two sections. The first covers the research in progress in the fields of nuclear structure, nuclear reactions, atomic physics, accelerator, instrumentation, methods and computer codes. The second one, the appendix, contains the list of publications of the Department staff in journals and proceedings, books, and preprints, the conference contributions, the academic degrees awarded, the scientific exchanges, and the list of scientific personnel

  19. EDITORIAL: Richard Palmer: celebrating 37 years with Journal of Physics: Condensed Matter Richard Palmer: celebrating 37 years with Journal of Physics: Condensed Matter

    Science.gov (United States)

    Ferry, David

    2009-01-01

    It is with a great deal of both happiness and sadness that I have to announce that we are losing one of the real strengths of the Journal of Physics: Condensed Matter (JPCM). Dr Richard Palmer, our Senior Publisher, announced his retirement, and this issue marks the first without his involvement. Of course, we are happy that he will get to enjoy his retirement, but we are sad to lose such a valuable member of our team. Richard first started work at IOP Publishing in March 1971 as an Editorial Assistant with Journal of Physics B: Atomic and Molecular Physics. After a few months, he transferred to Journal of Physics C: Solid State Physics. During his first year, he was sent on a residential publishing training course and asked to sign an undertaking to stay at IOP Publishing for at least two years. Although Richard refused to sign, as he did not want to commit himself, he has remained with the journal since then. The following year, the Assistant Editor of Journal of Physics C: Solid State Physics, Malcolm Haines, walked out without notice in order to work on his family vineyard in France, and Richard stepped into the breach. In those days, external editors had a much more hands-on role in IOP Publishing and he had to travel to Harwell to be interviewed by Alan Lidiard, the Honorary Editor of Journal of Physics C: Solid State Physics, before being given the job of Assistant Editor permanently. I am told that in those days the job consisted mainly of editing and proofreading and peer review. There was no journal development work. At some point in the early 1980s, production and peer review were split into separate departments and Richard then headed a group of journals consisting of Journal of Physics C: Solid State Physics, Journal of Physics D: Applied Physics and Journal of Physics F: Metal Physics, Semiconductor Science and Technology, Superconductor Science and Technology, Plasma Physics and Controlled Fusion, and later Nanotechnology and Modelling and Simulation

  20. Annual progress report of the Department of Solid State Physics 1 January - 31 December 1993

    International Nuclear Information System (INIS)

    Skov Pedersen, J.; Almdal, K.; Feidenhans'l, R.; Clausen, K.N.; Bechgaard, K.

    1994-01-01

    Research in the department is concerned with ''Materials with Distinct Physical and Chemical Properties''. The principal activities of the department in the period from 1 January, to 31 December, 1993, are presented in this Progress Report. Neutrons and X-ray diffraction techniques are used to study a wide variety of problems in condensed matter physics and include: two- and three-dimensional structures, magnetic ordering, heavy fermions, high T c superconductivity, phase transitions in model systems, precipitation phenomena, and nanoscale structures in various materials. The research in chemistry includes chemical synthesis and physico-chemical investigations of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface modified polymers, and supramolecular structures. This report is organized in 13 categories with the following headings: Theory, Monte Carlo simulations, and methods of data analysis. Magnetic structures, magnetic phase transitions, and spin dynamics. High T c superconductivity. Structures and structural phase transitions. Inclusions and precipitates in alloys and metals. Interaction of particles and photons with surfaces. Surfaces, interfaces, and amorphous structures. Langmuir films. Polymers. Molecular science. Microemulsions and biological systems. Instrument developments. Other activities. (au) (4 tabs., 109 ills., 168 refs.)

  1. Non-Commutative Mechanics in Mathematical & in Condensed Matter Physics

    Directory of Open Access Journals (Sweden)

    Peter A. Horváthy

    2006-12-01

    Full Text Available Non-commutative structures were introduced, independently and around the same time, in mathematical and in condensed matter physics (see Table 1. Souriau's construction applied to the two-parameter central extension of the planar Galilei group leads to the ''exotic'' particle, which has non-commuting position coordinates. A Berry-phase argument applied to the Bloch electron yields in turn a semiclassical model that has been used to explain the anomalous/spin/optical Hall effects. The non-commutative parameter is momentum-dependent in this case, and can take the form of a monopole in momentum space.

  2. Australian and New Zealand Institutes of Physics. Eighteenth annual condensed matter physics meeting

    International Nuclear Information System (INIS)

    Chaplin, D.; Hutchinson, W.; Yazidjoglou, N.; Stewart, G.

    1994-01-01

    The Handbook contains abstracts of oral and poster presentations covering various aspects of condensed matter physics such as magnetism, superconductivity, semiconductor materials and their properties, as well as the use of nuclear techniques in studies of these materials. 162 contributions have been considered to be in the INIS subject scope and were indexed separately

  3. Challenges in QCD matter physics. The scientific programme of the Compressed Baryonic Matter experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Ablyazimov, T. [Joint Institute for Nuclear Research (JINR-LIT), Dubna (Russian Federation). Lab. of Information Technologies; Abuhoza, A. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (GSI), Darmstadt (Germany); Adak, R.P. [Bose Institute, Kolkata (India). Dept. of Physics; and others

    2017-03-15

    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (√(s{sub NN}) = 2.7-4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (μ{sub B} > 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter. (orig.)

  4. Challenges in QCD matter physics. The scientific programme of the Compressed Baryonic Matter experiment at FAIR

    International Nuclear Information System (INIS)

    Ablyazimov, T.; Adak, R.P.

    2017-01-01

    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (√(s_N_N) = 2.7-4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (μ_B > 500 MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter. (orig.)

  5. Framework for understanding LENR processes, using conventional condensed matter physics

    International Nuclear Information System (INIS)

    Chubb, Scott R.

    2006-01-01

    Conventional condensed matter physics provides a unifying framework for understanding low-energy nuclear reactions (LENRs) in solids. In the paper, standard many-body physics techniques are used to illustrate this fact. Specifically, the paper shows that formally the theories by Schwinger, Hagelstein, and Chubb and Chubb (C and C), all can be related to a common set of equations, associated with reaction rate and energy transfer, through a standard many-body physics procedure (R-matrix theory). In each case, particular forms of coherence are used that, implicitly provide a mechanism for understanding how LENRs can proceed without. the emission of high-energy particles. In addition, additional ideas, associated with Conventional Condensed Matter physics, are used to extend the earlier ion band state (IBS) model by C and C. The general model clarifies the origin of coherent. processes that initiate LENRs, through the onset of ion conduction that can occur through ionic fluctuations in nano-scale crystals. In the case of PdD x , these fluctuations begin to occur as x → 1 in sub-lattice structures with characteristic dimensions of 60 nm. The resulting LENRs are triggered by the polarization between injected d's and electrons (immediately above the Fermi energy) that takes place in finite-size PdD crystals. During the prolonged charging of PdD x the applied, external electric field induces these fluctuations through a form of Zener tunneling that mimics the kind of tunneling, predicted by Zener, that is responsible for possible conduction (referred to as Zener-electric breakdown) in insulators. But because the fluctuations are ionic and they occur in PdD, nano-scale structures, a more appropriate characterization is Zener-ionic breakdown in nano-crystalline PdD. Using the underlying dynamics, it is possible to relate triggering times that are required for the initiation of the effect, to crystal size and externally applied fields. (authors)

  6. Framework for understanding LENR processes, using conventional condensed matter physics

    Energy Technology Data Exchange (ETDEWEB)

    Chubb, Scott R. [Research Systems Inc., 9822 Pebble Weigh Ct., Burke VA 22015-3378 (United States)

    2006-07-01

    Conventional condensed matter physics provides a unifying framework for understanding low-energy nuclear reactions (LENRs) in solids. In the paper, standard many-body physics techniques are used to illustrate this fact. Specifically, the paper shows that formally the theories by Schwinger, Hagelstein, and Chubb and Chubb (C and C), all can be related to a common set of equations, associated with reaction rate and energy transfer, through a standard many-body physics procedure (R-matrix theory). In each case, particular forms of coherence are used that, implicitly provide a mechanism for understanding how LENRs can proceed without. the emission of high-energy particles. In addition, additional ideas, associated with Conventional Condensed Matter physics, are used to extend the earlier ion band state (IBS) model by C and C. The general model clarifies the origin of coherent. processes that initiate LENRs, through the onset of ion conduction that can occur through ionic fluctuations in nano-scale crystals. In the case of PdD{sub x}, these fluctuations begin to occur as x {yields} 1 in sub-lattice structures with characteristic dimensions of 60 nm. The resulting LENRs are triggered by the polarization between injected d's and electrons (immediately above the Fermi energy) that takes place in finite-size PdD crystals. During the prolonged charging of PdD{sub x} the applied, external electric field induces these fluctuations through a form of Zener tunneling that mimics the kind of tunneling, predicted by Zener, that is responsible for possible conduction (referred to as Zener-electric breakdown) in insulators. But because the fluctuations are ionic and they occur in PdD, nano-scale structures, a more appropriate characterization is Zener-ionic breakdown in nano-crystalline PdD. Using the underlying dynamics, it is possible to relate triggering times that are required for the initiation of the effect, to crystal size and externally applied fields. (authors)

  7. Condensed Matter Physics in Colombia is in its forties

    Science.gov (United States)

    Camacho, Angela

    2015-03-01

    Physics in Colombia started to develop in the 70's as a research part of basic sciences with the acquisition, at that time, of large research equipments such as x-rays and EPR. Experimental work was soon supplemented by theoretical investigations, which led to the formation of research groups in condensed matter. In the early 80's existed such groups in five universities. In this report we present, after a short history of the main steps that guided the initial research subjects, the major areas already developed and the minor research groups that are in the stage of consolidation. Currently this type of work is done at least in 20 universities. We also show the actual numbers of researchers, publications, PhD students and laboratories discriminated in gender to complete an overview of Condensed Matter Physics in Colombia. Finally, we present a short review of the main theoretical issues that have been worked in the last decade focusing on low dimensional systems, their structural and optical properties

  8. Department of Environmental and Radiation Transport Physics - Overview

    International Nuclear Information System (INIS)

    Loskiewicz, J.

    2000-01-01

    Full text: The scope of scientific work of the Department is best characterized as Physics of the Earth. Our studies comprise the physics of the atmosphere, problems of groundwater systems, of outflows of gases (radon and thoron) from tectonic faults and caverns. We are studying the heterogeneity of rock formations and also working on problems of the nuclear geophysics. In the greater part of this research methods of nuclear physics are employed - neutrons as probing particles or radioactive and stable isotopes in tracer technologies. Concentrations of F-11, F-113 and CHCl 3 , CHCCl 3 , CCl 4 , F-12 and SF 6 in Cracow atmosphere were measured by gas chromatography (GS). The five-point interpolation-procedure for calculations of week weight-averaged concentrations of the above-mentioned gases was developed. At the Kasprowy Wierch Station (Tatra Mts.) the measurement of greenhouse effect gases (CH 4 , CO 2 and SF 6 ) has been continued. A method for measuring the SF 6 concentration in water as a hydrologic tracer was developed for determining the ages of young groundwater systems. Similar enrichment is being developed for such potential tracers as freon F-11 and F-12. Studies were continued on models for the interpretation of tracer data and transit time calculations in groundwater systems. Environmental tracer study of the Oligocene aquifer in the Mazovian basin has been completed. It has appeared that in the Late Glacial the recharge of groundwater systems in the Mazovian basin was, to a high degree, from paleolakes. Moderate concentrations of 4 He excess showed that the glacial waters cannot be older than those recharged at the end stages of the Last Glacial. The heterogeneity of a rock medium as: variable density, occurrence of concretions of high neutron absorbers etc. have been studied. The influence of the granulation change on the neutron absorption has been examined. A study of effective neutron parameters of an heterogeneous material containing highly

  9. An Absolute Phase Space for the Physicality of Matter

    International Nuclear Information System (INIS)

    Valentine, John S.

    2010-01-01

    We define an abstract and absolute phase space (''APS'') for sub-quantum intrinsic wave states, in three axes, each mapping directly to a duality having fundamental ontological basis. Many aspects of quantum physics emerge from the interaction algebra and a model deduced from principles of 'unique solvability' and 'identifiable entity', and we reconstruct previously abstract fundamental principles and phenomena from these new foundations. The physical model defines bosons as virtual continuous waves pairs in the APS, and fermions as real self-quantizing snapshots of those waves when simple conditions are met. The abstraction and physical model define a template for the constitution of all fermions, a template for all the standard fundamental bosons and their local interactions, in a common framework and compactified phase space for all forms of real matter and virtual vacuum energy, and a distinct algebra for observables and unobservables. To illustrate our scheme's potential, we provide examples of slit experiment variations (where the model finds theoretical basis for interference only occurring between two final sources), QCD (where we may model most attributes known to QCD, and a new view on entanglement), and we suggest approaches for other varied applications. We believe this is a viable candidate for further exploration as a foundational proposition for physics.

  10. Eureka! Physics of Particles, Matter and the Universe

    International Nuclear Information System (INIS)

    O'Sullivan, Colm T

    1997-01-01

    To provide a simple account of the whole of physics within 200 pages (excluding a glossary and index) of a small-format book is an extraordinarily ambitious project, yet this is what Roger Blin-Stoyle has attempted in Eureka! and, on the whole, he has succeeded admirably. Furthermore, he has achieved this without resorting to much more than a dozen mathematical expressions, most of them in the treatment of special relativity. To say that the account is comprehensive would be something of an understatement; this reviewer failed to detect a single topic, pure or applied, which could be described as part of mainstream physics which did not get at least a mention in these pages. The book is well written and the explanations are clear, as one would expect from an author who is an eminent scientist and who has given a professional lifetime to physics education and the promotion of the discipline. The reader should be warned, however, not to expect anything very radical - there are no novel treatments, no unique insights. The strength of the book lies in its clarity and compactness. The material is presented in a matter-of-fact manner with no forced emphasis on the exotic, so often a feature of recent attempts to present physics to the lay reader. The modern trend towards early specialization in physics courses in schools and universities has many unhappy consequences, not least of which is the loss of awareness of the essential unity of the subject. In this little book Professor Blin-Stoyle makes a valiant and welcome attempt to address the balance. Anyone with an interest in getting to know what is involved in that area of human knowledge we call physics could do a lot worse than start here. (book review)

  11. PUBLIC COMMENT ON THE DEPARTMENT OF HEALTH AND HUMAN SERVICES 2018 FEDERAL PHYSICAL ACITIVTY GUIDELINES

    Science.gov (United States)

    Title: Public Comment on Department of Health and Human Services (DHHS) 2018 Physical Activity Guidelines Author: Wayne E. Cascio, Director, Environmental Public Health Division, US EPA Abstract: In the 2008 Physical Activity Guidelines, the effects of air pollution and advers...

  12. Dark matter physics, flavor physics and LHC constraints in the dark matter model with a bottom partner

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Tomohiro [Institute for Advanced Research, Nagoya University,Nagoya 464-8602 (Japan); Kobayashi-Maskawa Institute for the Origin of Particles and the Universe,Nagoya University, Nagoya 464-8602 (Japan); Kawamura, Junichiro [Department of Physics, Waseda University,Tokyo 169-8555 (Japan); Okawa, Shohei [Department of Physics, Nagoya University,Nagoya 464-8602 (Japan); Omura, Yuji [Kobayashi-Maskawa Institute for the Origin of Particles and the Universe,Nagoya University, Nagoya 464-8602 (Japan)

    2017-03-10

    In the scenario that dark matter (DM) is a weakly interacting massive particle, there are many possibilities of the interactions with the Standard Model (SM) particles to achieve the relic density of DM. In this paper, we consider a simple DM model where the DM candidate is a complex scalar boson. The model contains a new complex gauge singlet scalar boson and a new fermion whose gauge charge is the same as the right-handed down-type quark. We dub the new fermion the bottom partner. These new particles have Yukawa interactions with the SM down-type quarks. The DM candidate interacts with the SM particles through the Yukawa interactions. The Yukawa interactions are not only relevant to the annihilation process of the DM but also contribute to the flavor physics, such as the ΔF=2 processes. In addition, the flavor alignment of the Yukawa couplings is related to the decay modes of the bottom partner, and thus we can find the explicit correlations among the physical observables in DM physics, flavor physics, and the signals at the LHC. We survey the ΔF=2 processes based on the numerical analyses of the thermal relic density, the direct detection of the DM, and the current LHC bounds. We investigate the perturbative bound on the Yukawa coupling as well. A Study of a fermionic DM model with extra scalar quarks is also given for comparison.

  13. Physics department annual progress report, 1 Jan - 31 Dec 1975

    International Nuclear Information System (INIS)

    Bjeerum Moeller, H.; Lebech, B.

    1975-12-01

    The principal activities in the fields of solid-state physics (neutron scattering), plasma physics, nuclear spectroscopy and meteorology are presented. The main experimental and theoretical work in solid-state physics has involved: investigation of the static and dynamic properties of magnetic solids; studies of various kinds of phase transitions in solids and liquid-like systems; electronic energy band calculations of metals; and investigations of the structure and lattice dynamics of molecular crystals and adsorbed monolayers. The work of the plasma physics section is centered on technology of interest for future fusion reactors and on basic plasma physics. The technological aspects of plasma phsics are undertaken with one of the possible refuelling schemes for fusion reactors in mind. The main object of the basic research is investigations of waves and instabilites in a relatively cold steady state plasma. The activites in the field of nuclear spectroscopy have concerned an attempt to form the 236 U fission isomer with thermal neutrons and studies of the fine structure in the mass distribution for fission fragments. The meteorology section is primarily engaged in studies of the planetary boundary layer. (B.R.H.)

  14. Graphene a new paradigm in condensed matter and device physics

    CERN Document Server

    Wolf, E L

    2014-01-01

    The book is an introduction to the science and possible applications of Graphene, the first one-atom-thick crystalline form of matter. Discovered in 2004 by now Nobelists Geim and Novoselov, the single layer of graphite, a hexagonal network of carbon atoms, has astonishing electrical and mechanical properties. It supports the highest electrical current density of any material, far exceeding metals copper and silver. Its absolute minimum thickness, 0.34 nanometers, provides an inherent advantage in possible forms of digital electronics past the era of Moore's Law. The book describes the unusual physics of the material, that it offers linear rather than parabolic energy bands. The Dirac-like electron energy bands lead to high constant carrier speed, similar to light photons. The lattice symmetry further implies a two-component wave-function, which has a practical effect of cancelling direct backscattering of carriers. The resulting high carrier mobility allows observation of the Quantum Hall Effect at room temp...

  15. Department of Environmental and Radiation Transport Physics - Overview

    International Nuclear Information System (INIS)

    Woznicka, U.

    2002-01-01

    The scientific activity of the Department in 2001 can be summarised as follows. In the Environmental Physics Laboratory gas chromatography methods are being developed mainly for atmospheric investigations and hydrological applications. A method for measuring the SF 6 contents in water for determining the age of young groundwaters is well advanced. Reconnaissance measurements performed in two aquifers yielded a reasonable agreement with the ages obtained from the tritium method. A proper determination of trace gases dissolved in water requires the measurement of the so-called ''excess air'' resulting from the excessive dissolution of air bubbles at the groundwater table. For this purpose, a new method of analysing the concentrations of argon and neon in water was developed. The separation of argon from oxygen in gas samples, extracted from water, carried out with the help of the catalyst of NiO type. Neon is determined with the aid of a pulse discharge helium detector (type PI-2D, VALCO Ltd) doped with neon. The initial results are promising. Atmospheric investigations were continued by measurements of the concentrations of F-11, F-12, F-113, CHCl 3 , CHCCl 3 , CCl 4 , and SF 6 in the Cracow area. Incidentally, high concentrations of SF 6 are observed. The air flow trajectories available in the BADC Trajectory Service (http://cirrus.badc.rl.ac.uk/trajectory/) were used in an attempt to identify the emission source of these high SF 6 concentrations. So far only the north-west direction was identified. Hydrogeological investigations of the origin and ages of different interesting groundwater systems by environmental isotope methods were also continued, and the origin of chemically unique mineral water in Krynica Spa has been identified as related to dehydration of clay minerals in burial diagenesis. The Natural Radioactivity Laboratory has been involved in interdisciplinary projects on the measurements of radon concentration in soil gas in areas of different

  16. Graduate Physics Education Adding Industrial Culture and Methods to a Traditional Graduate Physics Department

    Science.gov (United States)

    Vickers, Ken

    2005-03-01

    The education and training of the workforce needed to assure global competitiveness of American industry in high technology areas, along with the proper role of various disciplines in that educational process, is currently being re-examined. Several academic areas in science and engineering have reported results from such studies that revealed several broad themes of educational need that span and cross the boundaries of science and engineering. They included greater attention to and the development of team-building skills, personal or interactive skills, creative ability, and a business or entrepreneurial where-with-all. We will report in this paper the results of a fall 2000 Department of Education FIPSE grant to implement changes in its graduate physics program to address these issues. The proposal goal was to produce next-generation physics graduate students that are trained to evaluate and overcome complex technical problems by their participation in courses emphasizing the commercialization of technology research. To produce next-generation physics graduates who have learned to work with their student colleagues for their mutual success in an industrial-like group setting. And finally, to produce graduates who can lead interdisciplinary groups in solving complex problems in their career field.

  17. PREFACE: 1st International Workshop on Theoretical and Computational Physics: Condensed Matter, Soft Matter and Materials Physics & 38th National Conference on Theoretical Physics

    Science.gov (United States)

    2014-09-01

    This volume contains selected papers presented at the 38th National Conference on Theoretical Physics (NCTP-38) and the 1st International Workshop on Theoretical and Computational Physics: Condensed Matter, Soft Matter and Materials Physics (IWTCP-1). Both the conference and the workshop were held from 29 July to 1 August 2013 in Pullman hotel, Da Nang, Vietnam. The IWTCP-1 was a new activity of the Vietnamese Theoretical Physics Society (VTPS) organized in association with the 38th National Conference on Theoretical Physics (NCTP-38), the most well-known annual scientific forum dedicated to the dissemination of the latest development in the field of theoretical physics within the country. The IWTCP-1 was also an External Activity of the Asia Pacific Center for Theoretical Physics (APCTP). The overriding goal of the IWTCP is to provide an international forum for scientists and engineers from academia to share ideas, problems and solution relating to the recent advances in theoretical physics as well as in computational physics. The main IWTCP motivation is to foster scientific exchanges between the Vietnamese theoretical and computational physics community and world-wide scientists as well as to promote high-standard level of research and education activities for young physicists in the country. About 110 participants coming from 10 countries participated in the conference and the workshop. 4 invited talks, 18 oral contributions and 46 posters were presented at the conference. In the workshop we had one keynote lecture and 9 invited talks presented by international experts in the fields of theoretical and computational physics, together with 14 oral and 33 poster contributions. The proceedings were edited by Nguyen Tri Lan, Trinh Xuan Hoang, and Nguyen Ai Viet. We would like to thank all invited speakers, participants and sponsors for making the conference and the workshop successful. Nguyen Ai Viet Chair of NCTP-38 and IWTCP-1

  18. Analysis of Doctoral research at the Department of Physical ...

    African Journals Online (AJOL)

    Twelve (12) studies were reviewed over the 25-year period which cut across a broad spectrum of areas of study in Physical Education and Sport ranging from Anthropology and Sports History, Didactics, Sports Administration, Outdoor Education, Social-Psychology of Sports, fitness and health-related aspects. Soccer ...

  19. Physics department annual progress report, 1 Jan - 31 Dec 1976

    International Nuclear Information System (INIS)

    Bjerrum Moeller, H.; Lebech, B.

    1976-12-01

    The principal activities in the fields of solid-state physics (neutron scattering), plasma physics and meteorology are presented in this report that covers the period 1 January to 31 December 1976. In addition, research on nuclear spectroscopy was carried out up until March 31, 1976. The experimental and theoretical work in solid-state physics is roughly divided into the following main subject fields: investigations of the dynamic and static properties of magnetic and superconducting solids; studies of various kinds of phase transitions in magnetic and molecular systems; and investigations of the dynamic and static properties of molecular crystals and adsorbed monolayers. The main object of basic research in plasma physics is to investigate waves and instabilities in a relatively cold steady state plasma (produced in a Q-machine). Turbulence, ion cyclotron waves, and ion-acoustic waves in the presence of electron plasma waves are the chief phenomena investigated. Work on nuclear spectroscopy was concentrated on problems relating to fission. The meteorology section is primarily engaged in studies of the planetary boundary layer. (B.R.H.)

  20. The Impact of Physically Embedded Librarianship on Academic Departments

    Science.gov (United States)

    O'Toole, Erin; Barham, Rebecca; Monahan, Jo

    2016-01-01

    Academic librarians have been engaged in embedded librarianship for nearly 15 years, yet there are few published research studies on the impact of physically embedded librarians, who work alongside departmental faculty. This study leveraged a change in reference service to analyze what happened when subject librarians moved from the library…

  1. FOREWORD: 18th International School on Condensed Matter Physics

    Science.gov (United States)

    Dimova-Malinovska, Doriana; Genova, Julia; Nesheva, Diana; Petrov, Alexander G.; Primatarowa, Marina T.

    2014-12-01

    We are delighted to present the Proceedings of the 18th International School on Condensed Matter Physics: Challenges of Nanoscale Science: Theory, Materials, Applications, organized by the Institute of Solid State Physics of the Bulgarian Academy of Sciences and chaired by Professor Alexander G Petrov. On this occasion the School was held in memory of Professor Nikolay Kirov (1943-2013), former Director of the Institute and Chairman between 1991 and 1998. The 18ISCMP was one of several events dedicated to the 145th anniversary of the Bulgarian Academy of Sciences in 2014, and was held in the welcoming Black Sea resort of St. Constantine and Helena near Varna, at the Hotel and Congress Centre Frederic Joliot-Curie. Participants from 16 countries delivered 32 invited lectures, and 71 contributed posters were presented over three lively and well-attended evening sessions. Manuscripts submitted to the Proceedings were refereed in accordance with the guidelines of the Journal of Physics: Conference Series, and we believe the papers published herein testify to the high technical quality and diversity of contributions. A satellite meeting, Transition Metal Oxide Thin Films - Functional Layers in Smart Windows and Water Splitting Devices: Technology and Optoelectronic Properties was held in parallel with the School (http://www.inera.org, 3-6 Sept 2014). This activity, which took place under the FP7-funded project INERA, offered opportunities for crossdisciplinary discussions and exchange of ideas between both sets of participants. As always, a major factor in the success of the 18ISCMP was the social programme, headed by the organized events (Welcome and Farewell Parties) and enhanced in no small measure by a variety of pleasant local restaurants, bars and beaches. We are most grateful to staff of the Journal of Physics: Conference Series for their continued support for the School, this being the third occasion on which the Proceedings have been published under its

  2. Department

    African Journals Online (AJOL)

    USER

    2016-09-20

    Sep 20, 2016 ... Department of Biological and Environmental Sciences, Kibabii University. Abstract. This study ... Key Words: Climate Change, Regional Circulation Model, PRECIS, Bungoma County ... by different computer models is much.

  3. Theoretical physics department, june 96-may 98 status report

    International Nuclear Information System (INIS)

    1998-01-01

    This status report presents the work done at SPhT (service de physique theorique, CEA) from june 96 to may 98. The topics have been classified into 3 themes: - statistical physics, - mathematical physics and field theory, - astrophysics, nuclear and particle physics. In the first theme relevant contributions have been made to phase transitions, correlated electronic systems, polymers, membranes, proteins, disordered systems and out of equilibrium processes. The second theme collects various works, some works dedicated to aleatory matrices and quantum chaos aim at developing investigation methods, other works like cord theories use these methods. As for the third theme, the recent discovery of the fluctuations of background cosmological radiation has fomented a great activity at SPhT. Mean field approximation and effective strength have been the starting point of research in the field of nuclear structure. High energy quantum chromodynamics has been applied to deep inelastic scattering where the proton structure is studied through electron-proton collisions. A list of all the publications made by SPhT is given. (A.C.)

  4. Computer simulation studies in condensed-matter physics 5. Proceedings

    International Nuclear Information System (INIS)

    Landau, D.P.; Mon, K.K.; Schuettler, H.B.

    1993-01-01

    As the role of computer simulations began to increase in importance, we sensed a need for a ''meeting place'' for both experienced simulators and neophytes to discuss new techniques and results in an environment which promotes extended discussion. As a consequence of these concerns, The Center for Simulational Physics established an annual workshop on Recent Developments in Computer Simulation Studies in Condensed-Matter Physics. This year's workshop was the fifth in this series and the interest which the scientific community has shown demonstrates quite clearly the useful purpose which the series has served. The workshop was held at the University of Georgia, February 17-21, 1992, and these proceedings from a record of the workshop which is published with the goal of timely dissemination of the papers to a wider audience. The proceedings are divided into four parts. The first part contains invited papers which deal with simulational studies of classical systems and includes an introduction to some new simulation techniques and special purpose computers as well. A separate section of the proceedings is devoted to invited papers on quantum systems including new results for strongly correlated electron and quantum spin models. The third section is comprised of a single, invited description of a newly developed software shell designed for running parallel programs. The contributed presentations comprise the final chapter. (orig.). 79 figs

  5. Framework for Understanding LENR Processes, Using Ordinary Condensed Matter Physics

    Science.gov (United States)

    Chubb, Scott

    2005-03-01

    As I have emphasizedootnotetextS.R. Chubb, Proc. ICCF10 (in press). Also, http://www.lenr-canr.org/acrobat/ChubbSRnutsandbol.pdf http://www.lenr-canr.org/acrobat/ChubbSRnutsandbol.pdf, S.R. Chubb, Trans. Amer. Nuc. Soc. 88 , 618 (2003)., in discussions of Low Energy Nuclear Reactions(LENRs), mainstream many-body physics ideas have been largely ignored. A key point is that in condensed matter, delocalized, wave-like effects can allow large amounts of momentum to be transferred instantly to distant locations, without any particular particle (or particles) acquiring high velocity through a Broken Gauge Symmetry. Explicit features in the electronic structure explain how this can occur^1 in finite size PdD crystals, with real boundaries. The essential physics^1 can be related to standard many-body techniquesootnotetextBurke,P.G. and K.A. Berrington, Atomic and Molecular Processes:an R matrix Approach (Bristol: IOP Publishing, 1993).. In the paper, I examine this relationship, the relationship of the theory^1 to other LENR theories, and the importance of certain features (for example, boundaries^1) that are not included in the other LENR theories.

  6. Training of personnel for nuclear power at Nuclear Physics Department of Faculty of Mathematics and Physics, Comenius University

    International Nuclear Information System (INIS)

    Povinec, P.; Florek, M.; Chudy, M.

    1983-01-01

    The Science Faculty of the Comenius University in Bratislava established the nuclear physics specialization in 1962. Students enrolled in the study course acquired basic knowledge in mathematics and physics, foundations of the microstructure of matter and experimental methods of nuclear physics and technics. Since 1976 nuclear physics has been a separate study field which from the fourth year of study has its narrow specializations, namely applied nuclear physics, experimental nuclear physics and physics of the atomic nucleus and elementary particles. A change has recently been made in the system of optional lectures with the aim of providing the students with a wider range of knowledge in the physics of nuclear reactors and the use of computer technology and microelectronics in nuclear physics and technology. In 1980 a postgraduate study course was opened oriented to nuclear power and the environment. (E.S.)

  7. Department of Environmental and Radiation Transport Physics - Overview

    International Nuclear Information System (INIS)

    Woznicka, U.

    2001-01-01

    Full text: We deal with environmental physics and the radiation transport physics, both theoretically and experimentally. Some results find their way to practical applications. Our environmental physics research encompasses hydrogeological problems as well as measurements of trace elements in the atmosphere and in the water. Theoretical (analytical and numerical) and experimental issues of the radiation transport and radiation fields are our main field of research. The interest in radiation transport phenomena is stimulated by their importance for the environmental physics, industrial and nuclear facilities and methods of geophysical. Environmental isotopes and noble gases are used in the investigation of water-bearing geological formations in order to determine the origin and age of groundwater. The papers listed below and three ''Reports on research'' present recent achievements in this field. The gas chromatography methods are used for monitoring the anthropogenic trace gases (SF 6 and freons), which participate in the Earth green-house effect. A very high detection level of SF 6 in water, 0.0028 fg/cm 3 H 2 0, has been reached as required for hydrogeological purposes. A preliminary verification of the SF 6 tracer method for dating young groundwaters by the tritium method has been carried out. We carried on the work on a method of radon measurement in soil in connection with geological conditions. The national seminar ''Radon in Environment'' organized at the INP aroused an interest of Polish scientific centres in that field. The seminar gathered 60 participants who presented 24 oral reports and 8 posters. Within the scope of the radiation transport physics we studied thermal neutron transport in finite hydrogenous media. Advantages and limitations of a Monte Carlo code (MCNP) in thermal neutron transport simulations have been examined by both the analytical solution and the experiment on the INP pulsed neutron generator. An interesting contribution to the

  8. Physics of dense matter, neutron stars, and supernova

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1989-02-01

    Nuclear and astrophysical evidence on the equation of state of dense matter is examined. The role of hyperonization of matter in the development of proto-neutron stars is briefly discussed. 7 refs., 4 figs

  9. Introduction to the physics of matter basic atomic, molecular, and solid-state physics

    CERN Document Server

    Manini, Nicola

    2014-01-01

    This book offers an up-to-date, compact presentation of basic topics in the physics of matter, from atoms to molecules to solids, including elements of statistical mechanics. The adiabatic separation of the motion of electrons and nuclei in matter and its spectroscopic implications are outlined for molecules and recalled regularly in the study of the dynamics of gases and solids. Numerous experiments are described and more than 160 figures give a clear visual impression of the main concepts. Sufficient detail of mathematical derivations is provided to enable students to follow easily. The focus is on present-day understanding and especially on phenomena fitting various independent-particle models. The historical development of this understanding, and phenomena such as magnetism and superconductivity, where interparticle interactions and nonadiabatic effects play a crucial role, are mostly omitted. A final outlook section stimulates the curiosity of the reader to pursue the study of such advanced topics in gra...

  10. The Physics of Life. Part I: The Animate Organism as an Active Condensed Matter Body

    OpenAIRE

    Kukuruznyak , Dmitry ,

    2017-01-01

    Nonequilibrium "active agents" establish bonds with each other and create a quickly evolving condensed state known as active matter. Recently, active matter composed of motile self-organizing biopolymers demonstrated a biotic-like motion similar to cytoplasmic streaming. It was suggested that the active matter could produce cells. However, active matter physics cannot yet define an " organism " and thus make a satisfactory connection to biology. This paper describes an organism made of active...

  11. Higgs inflation, seesaw physics and fermion dark matter

    Directory of Open Access Journals (Sweden)

    Nobuchika Okada

    2015-07-01

    Full Text Available We present an inflationary model in which the Standard Model Higgs doublet field with non-minimal coupling to gravity drives inflation, and the effective Higgs potential is stabilized by new physics which includes a dark matter particle and right-handed neutrinos for the seesaw mechanism. All of the new particles are fermions, so that the Higgs doublet is the unique inflaton candidate. With central values for the masses of the top quark and the Higgs boson, the renormalization group improved Higgs potential is employed to yield the scalar spectral index ns≃0.968, the tensor-to-scalar ratio r≃0.003, and the running of the spectral index α=dns/dln⁡k≃−5.2×10−4 for the number of e-folds N0=60 (ns≃0.962, r≃0.004, and α≃−7.5×10−4 for N0=50. The fairly low value of r≃0.003 predicted in this class of models means that the ongoing space and land based experiments are not expected to observe gravity waves generated during inflation.

  12. Study of the calibration of the medical physics department - radon dosimeter in a radon facility

    International Nuclear Information System (INIS)

    Nikololpoulos, D.; Louizi, A.; Papadimitriou, D.; Proukakis, C.

    1997-01-01

    Several techniques have been developed to measure radon indoors.The use of a Solid State Nuclear Track Detector closed in a cup, has turned out to be the most appropriate for long term measurements. The Medical Physics Department of the Athens University is carrying out radon measurements in dwellings, apartments, outdoor air and mines since 1996. For this purpose a simple device, the so called Medical Physics Department radon dosimeter, has been constructed, which measures the radon concentration averaged over a long period of time. In the present paper the calibration technique introduced and the results of the calibration of the Medical Physics Department. (authors)

  13. Progress Report 1980-1981. Department of Physics

    International Nuclear Information System (INIS)

    1982-01-01

    start paying off as soon as the first beam becomes usable. Another aspect of general character which is worth mentioning is that both in 1980 and 1981 the series of nuclear physics workshops, started in 1978, continued with an enlarged audience and distinguished speakers. B. Bayman, S. Bjornholm, D.Mc. Hyder, M. Macfarlane and F. Stephens contributed with excellent talks. Within the program for cooperative research managed by the Argentine National Research Council and the U.S. National Science Foundation successful projects were carried out in collaboration with groups of Brookhaven, Ames and Tucson. Other joint efforts were also undertaken with scientists from Rio de Janeiro, Sao Paulo, Santiago de Chile, Tilbingen, Washington D.C., Grenoble, Berkeley, Paris, Strasbourg and local universities in Buenos Aires, La Plata and Tandil. The research output constitutes the main topic of this report and is summarized in the following pages. In general, the activity as a whole has steadily grown in spite of the fact that secondary (but necessary) chores have also multiplied and makes us feel frequently distressed. Adaptation to the new responsibilities ahead is the key. The years of running the old Synchrocyclotron and Cockcroft-Walton accelerator are finished. We now have a very powerful machine becoming operational, which will make possible experiments which up to now were only dreams. It will be our responsibility to make them become reality. It is both a sweet feeling and a heavy burden at the same time, to face this responsibility.

  14. The role of physics departments in the recruitment, preparation and support of pre-college teachers of physics

    Science.gov (United States)

    Seeley, Lane

    2008-05-01

    The United States faces a critical shortage of qualified physics and physical science teachers. The number of high school students taking physics is increasing but the number of physics majors pursuing careers in pre-college teaching is not nearly sufficient to meet the demand. College and university physics departments have content expertise and ready access to potential future teachers of physics. In order to address the crisis in physics and physical science education, APS, AAPT, and AIP have developed the PhysTEC project. Seattle Pacific University is one of six fully funded PhysTEC sites. The PhysTEC project also supports a coalition of more than one hundred institutions that are committed to improving K-12 physics and physical science education. This talk will describe the national PhysTEC project along with our local PhysTEC program. We will explore ways in which physics departments can more fully integrate the preparation of pre-college physics teachers within existing departmental priorities. We will discuss opportunities for regional partnerships between 2-year and 4-year colleges, school districts, and teacher preparation programs. We will also highlight ways in which our research on the learning and teaching of physics informs the development of tools that teachers and teacher educators can use to diagnose student ideas and to design subsequent instruction that capitalizes on these ideas. In collaboration with Stamatis Vokos, Seattle Pacific University and Pam Kraus, Facet Innovations LLC.

  15. The Ministry of the Russian Federation for Atomic Energy, the State Scientific Center of Russian Federation, A.I.Leipunsky Institute for Physics and Power Engineering, Nuclear Physics Department annual report 1998

    International Nuclear Information System (INIS)

    Kuzminov, B.D.

    1998-01-01

    The report contains 69 abstracts or short communications on the research activities in 1998 of the Nuclear Physics Department of the Institute for Physics and Power Engineering, Obninsk, Russian Federation. The papers are grouped in nine chapters: Nuclear fission (5), Nuclear structure and nuclear reactions (6), Nuclear data (14), Transmutation (4), Condensed matter physics (10), Mathematical modelling (14), Applied research (7), High-voltage accelerators (6), and Instruments and methods (4). A separate indexing was provided for each paper. The report also includes a presentation of the department structure, and accelerator complex, list of publications, participation in international and national conferences and meetings, cooperation

  16. PREFACE: 17th International School on Condensed Matter Physics (ISCMP): Open Problems in Condensed Matter Physics, Biomedical Physics and their Applications

    Science.gov (United States)

    Dimova-Malinovska, Doriana; Nesheva, Diana; Pecheva, Emilia; Petrov, Alexander G.; Primatarowa, Marina T.

    2012-12-01

    We are pleased to introduce the Proceedings of the 17th International School on Condensed Matter Physics: Open Problems in Condensed Matter Physics, Biomedical Physics and their Applications, organized by the Institute of Solid State Physics of the Bulgarian Academy of Sciences. The Chairman of the School was Professor Alexander G Petrov. Like prior events, the School took place in the beautiful Black Sea resort of Saints Constantine and Helena near Varna, going back to the refurbished facilities of the Panorama hotel. Participants from 17 different countries delivered 31 invited lecturers and 78 posters, contributing through three sessions of poster presentations. Papers submitted to the Proceedings were refereed according to the high standards of the Journal of Physics: Conference Series and the accepted papers illustrate the diversity and the high level of the contributions. Not least significant factor for the success of the 17 ISCMP was the social program, both the organized events (Welcome and Farewell Parties) and the variety of pleasant local restaurants and beaches. Visits to the Archaeological Museum (rich in valuable gold treasures of the ancient Thracian culture) and to the famous rock monastery Aladja were organized for the participants from the Varna Municipality. These Proceedings are published for the second time by the Journal of Physics: Conference Series. We are grateful to the Journal's staff for supporting this idea. The Committee decided that the next event will take place again in Saints Constantine and Helena, 1-5 September 2014. It will be entitled: Challenges of the Nanoscale Science: Theory, Materials and Applications. Doriana Dimova-Malinovska, Diana Nesheva, Emilia Pecheva, Alexander G Petrov and Marina T Primatarowa Editors

  17. [Physical medicine in hospital. Minimum standards in a physical medical department in acute inpatient areas in rheumatology].

    Science.gov (United States)

    Reißhauer, A; Liebl, M E

    2012-07-01

    Standards for what should be available in terms of equipment and services in a department of physical medicine caring for acute inpatients do not exist in Germany. The profile of a department determines the therapeutic services it focuses on and hence the technical facilities required. The German catalogue of operations and procedures defines minimum thresholds for treatment. In the opinion of the authors a department caring for inpatients with acute rheumatic diseases must, as a minimum, have the facilities and equipment necessary for offering thermotherapeutic treatment. Staff trained in physical therapeutic procedures and occupational therapy is also crucial. Moreover, it is desirable that the staff should be trained in manual therapy.

  18. Overview of experimental research on nuclear structure in department of modern applied physics

    International Nuclear Information System (INIS)

    Zhu Shengjiang

    1999-01-01

    The experimental research on nuclear structure in Department of Modern Applied Physics, Tsinghua University has been summarized. The main research results in high spin states of nuclear structure, as well as some low spin states, have been reported

  19. All basic condensed matter physics phenomena and notions mirror ...

    Indian Academy of Sciences (India)

    biology an opportunity to explore a variety of condensed matter phenomena and situations, some of which have ... The biological matter such as the tiniest of life, an amoeba, is alive ..... and black-holes, nature fascinates physicists. It is the ...

  20. Examining the Values of Students in the Physical Education and Sport Departments

    Science.gov (United States)

    Gullu, Mehmet

    2016-01-01

    In this study, the values of students in the physical education and sport departments were examined according to their gender, age, grade, and departments. The questionnaire method was used in the study. As the data collection tool, the Portrait Values Questionnaire was applied. The study group consisted of a total of 389 students 126 of whom were…

  1. Health Physics Department. Annual progress report 1 January - 31 December 1988

    International Nuclear Information System (INIS)

    1989-06-01

    The report describes the work of the Health Physics Department at Risoe during 1988. The activities cover dosimetry, instrumentation, radioecology, risk by nuclear activities and nuclear emergency preparedness. Lists of staff and publications are included. The emphasis in the report has been placed on basic research and contractual work. However, service functions do constitute a substantial work load for the department. (author)

  2. Health Physics Department. Annual progress report 1 January - 31 December 1987

    International Nuclear Information System (INIS)

    1988-08-01

    The report describes the work of the Health Physics Department at Risoe during 1987. The activities cover dosimetry, instrumentation, radioecology, risk by nuclear activities and nuclear emergency preparedness. Lists of staff and publications are included. The main emphasis in the report has been placed on scientific and contractual work. However, service functions do constitute a substantial work load for the department. (author)

  3. Wind Energy and Atmospheric Physics Department annual progress report for 2000

    DEFF Research Database (Denmark)

    2001-01-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risø National Laboratory in 2000. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviateatmospheric aspects of environmental problems...

  4. Dark clouds in particle physics and cosmology: the issues of dark matter and dark energy

    International Nuclear Information System (INIS)

    Zhang Xinmin

    2011-01-01

    Unveiling the nature of dark matter and dark energy is one of the main tasks of particle physics and cosmology in the 21st century. We first present an overview of the history and current status of research in cosmology, at the same time emphasizing the new challenges in particle physics. Then we focus on the scientific issues of dark energy, dark matter and anti-matter, and review the recent progress made in these fields. Finally, we discuss the prospects for future research on the experimental probing of dark matter and dark energy in China. (authors)

  5. IPEN's Nuclear Physics and Chemistry Department - Progress report - 1995-1996

    International Nuclear Information System (INIS)

    1997-01-01

    The biannual progress report of 1995-1996 of IPEN's Nuclear Physics and Chemistry Department - Brazilian organization - introduces the next main topics: neutron activation and radiochemical analysis; nuclear structure and reactions; neutron diffraction; hyperfine interactions; applied physics and instrumentation; publications; academic activities; services; and personnel

  6. An Investigation of the Class Management Profiles of Students of Physical Education and Sports Teaching Departments

    Science.gov (United States)

    Baydar, Hacer Özge; Hazar, Muhsin; Yildiz, Ozer; Yildiz, Mehtap; Tingaz, Emre Ozan; Gökyürek, Belgin

    2016-01-01

    The objective of this research is to examine and analyze the class management profiles of 3rd and 4th grade students of Physical Education and Sports Teaching Departments of universities in Turkey based on gender, grade level and university. The research population comprised 375 students (170 females and 205 males) of Physical Education and Sports…

  7. IPEN's Nuclear Physics and Chemistry Department - Progress report - 1995-1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The biannual progress report of 1995-1996 of IPEN's Nuclear Physics and Chemistry Department - Brazilian organization - introduces the next main topics: neutron activation and radiochemical analysis; nuclear structure and reactions; neutron diffraction; hyperfine interactions; applied physics and instrumentation; publications; academic activities; services; and personnel.

  8. Forty years of the Department of Nuclear Physics, 1961-2001

    International Nuclear Information System (INIS)

    Anon

    2001-01-01

    A brief report of activities of the Department of Nuclear Physics and Biophysics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava during forty years of history is given. A review o personnel, research programmes, graduates and master thesis, curriculum of the master study, as well as of important scientific projects is given

  9. IPEN's Nuclear Physics and Chemistry Department - Progress report - 1995-1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The biannual progress report of 1995-1996 of IPEN's Nuclear Physics and Chemistry Department - Brazilian organization - introduces the next main topics: neutron activation and radiochemical analysis; nuclear structure and reactions; neutron diffraction; hyperfine interactions; applied physics and instrumentation; publications; academic activities; services; and personnel.

  10. Intense Ion Beams for Warm Dense Matter Physics

    International Nuclear Information System (INIS)

    Heimbucher, Lynn; Coleman, Joshua Eugene

    2008-01-01

    The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory is exploring the physical limits of compression and focusing of ion beams for heating material to warm dense matter (WDM) and fusion ignition conditions. The NDCX is a beam transport experiment with several components at a scale comparable to an inertial fusion energy driver. The NDCX is an accelerator which consists of a low-emittance ion source, high-current injector, solenoid matching section, induction bunching module, beam neutralization section, and final focusing system. The principal objectives of the experiment are to control the beam envelope, demonstrate effective neutralization of the beam space-charge, control the velocity tilt on the beam, and understand defocusing effects, field imperfections, and limitations on peak intensity such as emittance and aberrations. Target heating experiments with space-charge dominated ion beams require simultaneous longitudinal bunching and transverse focusing. A four-solenoid lattice is used to tune the beam envelope to the necessary focusing conditions before entering the induction bunching module. The induction bunching module provides a head-to-tail velocity ramp necessary to achieve peak axial compression at the desired focal plane. Downstream of the induction gap a plasma column neutralizes the beam space charge so only emittance limits the focused beam intensity. We present results of beam transport through a solenoid matching section and simultaneous focusing of a singly charged K + ion bunch at an ion energy of 0.3 MeV. The results include a qualitative comparison of experimental and calculated results after the solenoid matching section, which include time resolved current density, transverse distributions, and phase-space of the beam at different diagnostic planes. Electron cloud and gas measurements in the solenoid lattice and in the vicinity of intercepting diagnostics are also presented. Finally, comparisons of

  11. Intense Ion Beam for Warm Dense Matter Physics

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Joshua Eugene [Univ. of California, Berkeley, CA (United States)

    2008-01-01

    The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory is exploring the physical limits of compression and focusing of ion beams for heating material to warm dense matter (WDM) and fusion ignition conditions. The NDCX is a beam transport experiment with several components at a scale comparable to an inertial fusion energy driver. The NDCX is an accelerator which consists of a low-emittance ion source, high-current injector, solenoid matching section, induction bunching module, beam neutralization section, and final focusing system. The principal objectives of the experiment are to control the beam envelope, demonstrate effective neutralization of the beam space-charge, control the velocity tilt on the beam, and understand defocusing effects, field imperfections, and limitations on peak intensity such as emittance and aberrations. Target heating experiments with space-charge dominated ion beams require simultaneous longitudinal bunching and transverse focusing. A four-solenoid lattice is used to tune the beam envelope to the necessary focusing conditions before entering the induction bunching module. The induction bunching module provides a head-to-tail velocity ramp necessary to achieve peak axial compression at the desired focal plane. Downstream of the induction gap a plasma column neutralizes the beam space charge so only emittance limits the focused beam intensity. We present results of beam transport through a solenoid matching section and simultaneous focusing of a singly charged K+ ion bunch at an ion energy of 0.3 MeV. The results include a qualitative comparison of experimental and calculated results after the solenoid matching section, which include time resolved current density, transverse distributions, and phase-space of the beam at different diagnostic planes. Electron cloud and gas measurements in the solenoid lattice and in the vicinity of intercepting diagnostics are also presented. Finally

  12. Annual progress report for 1999. Wind Energy and Atmospheric Physics Department

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, S.E.; Skrumsager, B. [eds.

    2000-06-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory in 1999. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the departments is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 1999 is presented, including lists of publications, lectures, committees and staff members. (au)

  13. Annual progress report for 1999. Wind Energy and Atmospheric Physics Department

    International Nuclear Information System (INIS)

    Larsen, S.E.; Skrumsager, B.

    2000-06-01

    The report describes the work of the Wind Energy and Atmospheric Physics Department at Risoe National Laboratory in 1999. The research of the department aims to develop new opportunities in the exploitation of wind energy and to map and alleviate atmospheric aspects of environmental problems. The expertise of the departments is utilised in commercial activities such as wind turbine testing and certification, training programmes, courses and consultancy services to industry, authorities and Danish and international organisations on wind energy and atmospheric environmental impact. A summary of the department's activities in 1999 is presented, including lists of publications, lectures, committees and staff members. (au)

  14. Proceedings of the 19th International Conference on Applied Physics of Condensed Matter

    International Nuclear Information System (INIS)

    Vajda, J.; Jamnicky, I.

    2013-01-01

    The 19. International Conference on Applied Physics of Condensed Matter was held on 19-21 June, 2013 on Strbske Pleso, Strba, Slovakia. The specialists discussed various aspects of modern problems in: New materials and structures, nanostructures, thin films, their analysis and applications; Nuclear science and technology, influence of irradiation on physical properties of materials, radiation detection; Physical properties and structural aspects of solid materials and their influencing; Computational physics and theory of physical properties of matter; Optical phenomena in materials, photovoltaics and photonics, new principles in sensors and detection methods. Contributions relevant of INIS interest (forty contributions) has been inputted to INIS.

  15. Consolidating Pre-Service Physics Teachers' Subject Matter Knowledge Using Didactical Reconstructions

    Science.gov (United States)

    Mäntylä, T.; Nousiainen, M.

    2014-01-01

    In the Department of Physics, University of Helsinki, there are advanced physics courses designed for the needs of pre-service physics teachers. The starting point is that after introductory and intermediate physics courses, pre-service physics teachers know laws and definitions but the knowledge is quite fragmented and does not form coherent…

  16. Investigation of Students' Multiple Intelligence Domains in Three Different Departments of the School of Physical Education and Sports

    Science.gov (United States)

    Ürgüp, Sabri; Aslan, Sinan

    2015-01-01

    The majority of the schools of physical education and sports in Turkey consist of three departments, which are physical education and sports teaching department, coaching education and sports management departments. All of these departments are applying similar entrance examinations, and mostly similar curriculum and learning styles to the…

  17. Public Relations for Physics Departments: Convincing the Community that Quarks are Cool

    Science.gov (United States)

    Levine, Alaina G.

    2002-03-01

    A strong public relations program can be of great importance to a physics department. Not only can effective PR improve the reputation of an individual department, but it can also serve the greater physics community by convincing the public that quarks, quantum dots, and nanostructures are cool. Building a solid reputation with the many constituents that a physics department serves can lead to greater media exposure, improved quality of student applicants, community and industrial partnerships, and even financial support. It isn’t difficult to create a strategic PR program, but it does take planning and commitment of resources. I will discuss the techniques and tactics of effective media, community, alumni, and internal relations, with special emphasis placed on establishing connections with media outlets, creating and publicizing outreach programs for the community, initiating a newsletter, organizing an external board of advisors, and developing an effective alumni relations program. The University of Arizona Physics Department serves as a case study, but other physics departments with similar communications programs will also be incorporated.

  18. Perceived Mattering to the Family and Physical Violence within the Family by Adolescents

    Science.gov (United States)

    Elliott, Gregory C.; Cunningham, Susan M.; Colangelo, Melissa; Gelles, Richard J.

    2011-01-01

    Mattering is the extent to which people believe they make a difference in the world around them. This study hypothesizes that adolescents who believe they matter less to their families will more likely threaten or engage in intrafamily physical violence. The data come from a national sample of 2,004 adolescents. Controlling for respondents' age,…

  19. Experimental and Computational Techniques in Soft Condensed Matter Physics

    Science.gov (United States)

    Olafsen, Jeffrey

    2010-09-01

    1. Microscopy of soft materials Eric R. Weeks; 2. Computational methods to study jammed Systems Carl F. Schrek and Corey S. O'Hern; 3. Soft random solids: particulate gels, compressed emulsions and hybrid materials Anthony D. Dinsmore; 4. Langmuir monolayers Michael Dennin; 5. Computer modeling of granular rheology Leonardo E. Silbert; 6. Rheological and microrheological measurements of soft condensed matter John R. de Bruyn and Felix K. Oppong; 7. Particle-based measurement techniques for soft matter Nicholas T. Ouellette; 8. Cellular automata models of granular flow G. William Baxter; 9. Photoelastic materials Brian Utter; 10. Image acquisition and analysis in soft condensed matter Jeffrey S. Olafsen; 11. Structure and patterns in bacterial colonies Nicholas C. Darnton.

  20. Proceedings of the 14. National Meeting on Condensed Matter Physics

    International Nuclear Information System (INIS)

    1991-01-01

    Studies on atomic and molecular physics, crystallography, statistical physics and critical phenomena, instrumentation, liquid crystals, magnetism, metals and alloys, magnetic resonance, superconductivity and semi-conductors are presented. (M.C.K.)

  1. Searching for Dark Matter at the Stawell Underground Physics Laboratory

    Directory of Open Access Journals (Sweden)

    Urquijo Phillip

    2016-01-01

    Full Text Available facility to be built in 2016, located 1 km below the surface in western Victoria, Australia. I will discuss the status of the proposed SABRE experiment, which will be comprised of a pair of high purity 50-60 kg NaI crystal detectors with active veto shielding to be located in labs in the Northern and Southern Hemispheres respectively. I also discuss projects beyond SABRE, including directional dark matter detectors, which will be used to determine the origin of any true dark matter signals.

  2. Searches for dark matter and new physics with unconventional signatures

    Science.gov (United States)

    Wulz, C.-E.; CMS Collaboration

    2017-07-01

    Selected results on searches for dark matter and unconventional signatures with the CMS detector are presented. Dark matter searches in channels with one or two jets, single photons, vector bosons, or top and bottom quarks combined with missing momentum in the final states are described. Unusual signatures such as displaced objects, disappearing or kinked tracks, delayed or stopped particles have also been explored. The analyses were performed with proton-proton data recorded at LHC centre-of-mass energies up to 13TeV.

  3. Nuclear and Condensed Matter Physics: VI Regional CRRNSM Conference. AIP Conference Proceedings, No. 513 [APCPCS

    International Nuclear Information System (INIS)

    Messina, A.

    2000-01-01

    This book contains 102 scientific contributions in the areas of nuclear and condensed matter physics. The conference was attended by 144 physicists, most of them belonging to the Sicilian Universities of Palermo, Catania and Messina

  4. Context Matters: Systematic Observation of Place-Based Physical Activity

    Science.gov (United States)

    McKenzie, Thomas L.

    2016-01-01

    Physical activity is place-based, and being able to assess the number of people and their characteristics in specific locations is important both for public health surveillance and for practitioners in their design of physical activity spaces and programs. Although physical activity measurement has improved recently, many investigators avoid or…

  5. A physics department's role in preparing physics teachers: The Colorado learning assistant model

    Science.gov (United States)

    Otero, Valerie; Pollock, Steven; Finkelstein, Noah

    2010-11-01

    In response to substantial evidence that many U.S. students are inadequately prepared in science and mathematics, we have developed an effective and adaptable model that improves the education of all students in introductory physics and increases the numbers of talented physics majors becoming certified to teach physics. We report on the Colorado Learning Assistant model and discuss its effectiveness at a large research university. Since its inception in 2003, we have increased the pool of well-qualified K-12 physics teachers by a factor of approximately three, engaged scientists significantly in the recruiting and preparation of future teachers, and improved the introductory physics sequence so that students' learning gains are typically double the traditional average.

  6. At LEP, a new Physics. The dark matter

    International Nuclear Information System (INIS)

    Bouquet, A.; Haissinski, J.; Perrottet, M.; Renard, F.M.; Sadoulet, B.; Savoy, C.; Treille, D.

    1990-01-01

    Different observational and theoric reasons of thinking that the major portion of universe matter is dark, are examined, with a particular attention about the milky way halo question. Among the proposed explanations, the interpretation in terms of WINPs (weakly interacting massive particles) and the indirect detection possibilities by their astrophysic consequences are principally presented [fr

  7. Supernova Neutrino Physics with Xenon Dark Matter Detectors

    NARCIS (Netherlands)

    Reichard, S.; Lang, R.F.; McCabe, C.; Selvi, M.; Tamborra, I.

    2017-01-01

    The dark matter experiment XENON1T is operational and sensitive to all flavors of neutrinos emitted from a supernova. We show that the proportional scintillation signal (S2) allows for a clear observation of the neutrino signal and guarantees a particularly low energy threshold, while the

  8. Becoming a Health and Physical Education (HPE) Teacher: Student Teacher "Performances" in the Physical Education Subject Department Office

    Science.gov (United States)

    Rossi, Tony; Sirna, Karen; Tinning, Richard

    2008-01-01

    This study considered how physical education teacher education students "perform" their "selves" within subject department offices during the practicum or "teaching practice". The research was framed by a conceptual framework informed by the work of Goffman on "performance" and "front". The findings revealed three common performances across the…

  9. Health physics department annual progress report 1 January - 31 December 1983

    International Nuclear Information System (INIS)

    1984-08-01

    The report describes the work of the Health Physics Department at Risoe during 1983. The activities cover dosimetry, instrumentation, radioecology, risk by nuclear activities and nuclear emergency preparedness. Lists of staff and publications are included. A great deal of the work in the department is of minor interest to people outside Risoe as it represents service functions. Therefore, the main emphasis in the report has been placed on scientific and contractual work. (author)

  10. Progress Report for Period Ending December 1961. Department of Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Tell, B [ed.

    1962-08-15

    This is the second Progress Report from the Department for Reactor Physics of Aktiebolaget Atomenergi, which is issued for the information of institutions and persons interested in the progress of the work. In this report the activities of the General Physics Section have been included, since this section nowadays belongs to the department. This is merely an informal progress report, and the results and data presented must be taken as preliminary. Final results will be submitted for publication either in the regular technical journals or as monographs in the series AE-reports.

  11. Multidrug-resistant bacteria infection and nursing quality management application in the department of physical examination.

    Science.gov (United States)

    Xu, Li; Luo, Qiang; Chen, Liangzhen; Jiao, Lingmei

    2017-09-01

    The main problem of clinical prevention and control of multi drug resistant bacteria infection is to strengthen the monitoring of pathogenic bacteria spectrum, this study research on the multi drug-resistant bacteria infection and nursing quality management application in the department of physical examination. The results of this study showed that the number of patients with multiple drug resistant infections showed an increasing trend. Therefore, once the patients with multiple drug-resistant bacteria infection are found, the prevention and control of the patients with multiple drug-resistant bacteria should be strictly followed, and the patient's medication care should be highly valued. Also, the nurses need to be classified based on the knowledge and skill characteristics of the nurses in the department of physical examination, and compare the nursing effect before and after classification and grouping. The physicians and individuals receiving physical examinations in the department of physical examination had a higher degree of satisfaction for nursing effect after classification compared with those before classification. Classification and grouping management helps improve the nursing quality and overall quality of the nurses in the department of physical examination.

  12. High energy physics. Ultimate structure of matter and energy

    International Nuclear Information System (INIS)

    1979-04-01

    Some of the principle discoveries and insights and their development up to today are sketched. It is shown how one layer after another was discovered by penetrating farther into the structure of matter. Covered are the mounting energy scale, discoveries at high energy frontier, the families of quarks and leptons, the four forces of nature, some achievements of the past few years, particle accelerators and experimental apparatus. A glossary of terms is included

  13. SOLAR NEUTRINO PHYSICS: SENSITIVITY TO LIGHT DARK MATTER PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Ilidio [Centro Multidisciplinar de Astrofisica, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Silk, Joseph, E-mail: ilidio.lopes@ist.utl.pt, E-mail: ilopes@uevora.pt, E-mail: silk@astro.ox.ac.uk [Institut d' Astrophysique de Paris, UMR 7095 CNRS, Universite Pierre et Marie Curie, 98 bis Boulevard Arago, Paris 75014 (France)

    2012-06-20

    Neutrinos are produced in several neutrino nuclear reactions of the proton-proton chain and carbon-nitrogen-oxygen cycle that take place at different radii of the Sun's core. Hence, measurements of solar neutrino fluxes provide a precise determination of the local temperature. The accumulation of non-annihilating light dark matter particles (with masses between 5 GeV and 16 GeV) in the Sun produces a change in the local solar structure, namely, a decrease in the central temperature of a few percent. This variation depends on the properties of the dark matter particles, such as the mass of the particle and its spin-independent scattering cross-section on baryon-nuclei, specifically, the scattering with helium, oxygen, and nitrogen among other heavy elements. This temperature effect can be measured in almost all solar neutrino fluxes. In particular, by comparing the neutrino fluxes generated by stellar models with current observations, namely {sup 8}B neutrino fluxes, we find that non-annihilating dark matter particles with a mass smaller than 10 GeV and a spin-independent scattering cross-section with heavy baryon-nuclei larger than 3 Multiplication-Sign 10{sup -37} cm{sup -2} produce a variation in the {sup 8}B neutrino fluxes that would be in conflict with current measurements.

  14. Dark matter physics in neutrino specific two Higgs doublet model

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Seungwon; Nomura, Takaaki [School of Physics, Korea Institute for Advanced Study,85 Hoegiro, Dongdaemun-gu, Seoul 02455 (Korea, Republic of)

    2017-03-10

    Although the seesaw mechanism is a natural explanation for the small neutrino masses, there are cases when the Majorana mass terms for the right-handed neutrinos are not allowed due to symmetry. In that case, if neutrino-specific Higgs doublet is introduced, neutrinos become Dirac particles and their small masses can be explained by its small VEV. We show that the same symmetry, which we assume a global U(1){sub X}, can also be used to explain the stability of dark matter. In our model, a new singlet scalar breaks the global symmetry spontaneously down to a discrete Z{sub 2} symmetry. The dark matter particle, lightest Z{sub 2}-odd fermion, is stabilized. We discuss the phenomenology of dark matter: relic density, direct detection, and indirect detection. We find that the relic density can be explained by a novel Goldstone boson channel or by resonance channel. In the most region of parameter space considered, the direct detections is suppressed well below the current experimental bound. Our model can be further tested in indirect detection experiments such as FermiLAT gamma ray searches or neutrinoless double beta decay experiments.

  15. Proceedings of the 10. National Meeting on Condensed Matter Physics

    International Nuclear Information System (INIS)

    1987-01-01

    Papers on: amorphous materials; atomic and molecular physics; biophysics; crystallography; defects, growth and characterization of crystals; statistical physics; instrumentation; liquid crystals; magnetism; science of materials/mechanical properties; metals and alloys; optic; magnetic resonance; and semiconductors are presented. (M.C.K.) [pt

  16. Theoretical studies in medium-energy nuclear and hadronic physics. [Indiana Univ. Nuclear Theory Center and Department of Physics

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, C J; Macfarlane, M H; Matsui, T; Serot, B D

    1993-01-01

    A proposal for theoretical nuclear physics research is made for the period April 1, 1993 through March 31, 1996. Research is proposed in the following areas: relativistic many-body theory of nuclei and nuclear matter, quasifree electroweak scattering and strange quarks in nuclei, dynamical effects in (e,e[prime]p) scattering at large momentum transfer, investigating the nucleon's parton sea with polarized leptoproduction, physics of ultrarelativistic nucleus[endash]nucleus collisions, QCD sum rules and hadronic properties, non-relativistic models of nuclear reactions, and spin and color correlations in a quark-exchange model of nuclear matter. Highlights of recent research, vitae of principal investigators, and lists of publications and invited talks are also given. Recent research dealt primarily with medium-energy nuclear physics, relativistic theories of nuclei and the nuclear response, the nuclear equation of state under extreme conditions, the dynamics of the quark[endash]gluon plasma in relativistic heavy-ion collisions, and theories of the nucleon[endash]nucleon force.

  17. List of selected publications from Risoe's Health Physics Department 1957-1989

    International Nuclear Information System (INIS)

    Heikel Vinther, F.

    1991-01-01

    This list includes scientific and technical papers written by staff members of the former Health Physics Department at Risoe National Laboratory. The first part includes papers in periodicals, proceedings etc. in order of chronology while the second and third part include Riso-R and Riso-M reports respectively arranged according to report numbers. (author)

  18. Health Physics Department annual progress report 1 January - 31 December 1985

    International Nuclear Information System (INIS)

    1986-10-01

    The report describes the work of the Health Physics Department at Risoe during 1985. The activities cover dosimetry, instrumentation, radioecology, risk by nuclear activities and nuclear emergency preparedness. Lists of staff and publications are included. The main emphasis in the report has been placed on scientific and contractual work. Of lesser importance, but still quite significant, are the service functions. (author)

  19. Health Physics Department annual progress report 1 January - 31 December 1984

    International Nuclear Information System (INIS)

    1985-05-01

    The report describes the work of the Health Physics Department at Risoe during 1984. The activities cover dosimetry, instrumentation, radioecology, risk by nuclear activities and nuclear emergency preparedness. Lists of staff and publications are included. The main emphasis in the report has been placed on scientific and contractual work. Of lesser importance, but still quite significant, are the service functions. (author)

  20. 4. International conference on materials science and condensed matter physics. Abstracts

    International Nuclear Information System (INIS)

    2008-09-01

    This book includes more than 200 abstracts on various aspects of: materials processing and characterization, crystal growth methods, solid-state and crystal technology, development of condensed matter theory and modeling of materials properties, solid-state device physics, nano science and nano technology, heterostructures, superlattices, quantum wells and wires, advanced quantum physics for nano systems

  1. 5th International Heidelberg Conference on Dark Matter in Astro- and Particle Physics

    CERN Document Server

    Arnowitt, Richard; DARK 2004; Dark Matter in Astro- and Particle Physics

    2006-01-01

    The search for dark matter in the universe has established itself as one of the most exciting and central fields of astrophysics, particle physics and cosmology. The lectures and talks in this book emphasize the experimental and theoretical status and future perspectives, stressing in particular the interplay between astro- and particle physics.

  2. Eighteenth Workshop on Recent Developments in Computer Simulation Studies in Condensed Matter Physics

    CERN Document Server

    Landau, David P; Schüttler, Heinz-Bernd; Computer Simulation Studies in Condensed-Matter Physics XVIII

    2006-01-01

    This volume represents a "status report" emanating from presentations made during the 18th Annual Workshop on Computer Simulations Studies in Condensed Matter Physics at the Center for Simulational Physics at the University of Georgia in March 2005. It provides a broad overview of the most recent advances in the field, spanning the range from statistical physics to soft condensed matter and biological systems. Results on nanostructures and materials are included as are several descriptions of advances in quantum simulations and quantum computing as well as.methodological advances.

  3. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 12. Molecule Matters - Dinitrogen. A G Samuelson J Jabadurai. Volume 16 Issue 12 ... Author Affiliations. A G Samuelson1 J Jabadurai1. Department of Inroganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India.

  4. Challenges in QCD matter physics -The scientific programme of the Compressed Baryonic Matter experiment at FAIR

    Czech Academy of Sciences Publication Activity Database

    Ablyazimov, T.; Abuhoza, A.; Adak, R. P.; Adamczyk, M.; Kugler, Andrej; Kushpil, Vasilij; Mikhaylov, Vasily; Petráček, V.; Pospíšil, V.; Prakash, Arun; Škoda, L.; Svoboda, Ondřej; Tlustý, Pavel

    2017-01-01

    Roč. 53, č. 3 (2017), č. článku 60. ISSN 1434-6001 Institutional support: RVO:61389005 Keywords : FAIR * RHIC * LHC Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nuclear physics Impact factor: 2.833, year: 2016

  5. Educational, research and implementation activities in the Department of Atomic Physics at Plovdiv University

    International Nuclear Information System (INIS)

    Balabanov, N.; Antonov, A.; Hristov, H.

    2004-01-01

    The Department of Atomic Physics at Plovdiv University has 40 year long experience in educating students in Atomic and Subatomic Physics. We aim at making the knowledge gained in nuclear physics part of the culture of our students. At the core of our educational activities lies our long and successful experience in studying the characteristics of atomic nuclei. In cooperation with JINR-Dubna we have studied the nuclei of approximately 40 percent of the periodic table elements. These studies also serve as a basis for the diverse implementation activities of the Department, which have an impressive geographical spread. In recent years our research has been focusing more specifically on radio-ecological issues with the valuable support of the Nuclear Regulatory Agency (NRA). Future more intense support on behalf of NRA's together with more dynamic links with other specialized units, such as the Kozloduy NPP in the first place, would considerably contribute to optimizing the effect of our overall activity. (authors)

  6. Ultrasonic spectroscopy applications in condensed matter physics and materials science

    CERN Document Server

    Leisure, Robert G

    2017-01-01

    Ultrasonic spectroscopy is a technique widely used in solid-state physics, materials science, and geology that utilizes acoustic waves to determine fundamental physical properties of materials, such as their elasticity and mechanical energy dissipation. This book provides complete coverage of the main issues relevant to the design, analysis, and interpretation of ultrasonic experiments. Topics including elasticity, acoustic waves in solids, ultrasonic loss, and the relation of elastic constants to thermodynamic potentials are covered in depth. Modern techniques and experimental methods including resonant ultrasound spectroscopy, digital pulse-echo, and picosecond ultrasound are also introduced and reviewed. This self-contained book includes extensive background theory and is accessible to students new to the field of ultrasonic spectroscopy, as well as to graduate students and researchers in physics, engineering, materials science, and geophysics.

  7. Perceptions of Value-Congruence with One's Department Chair: Does Match Matter?

    Science.gov (United States)

    Virick, Meghna; Strage, Amy

    2016-01-01

    Although studies have examined numerous factors that predict junior faculty success, previous research has paid little attention to the role played by department chairs. Drawing on theory from person-environment fit theory and value congruence, we sought to examine the implication of a match versus mismatch between faculty members and their chairs…

  8. Final Report: High Energy Physics Program (HEP), Physics Department, Princeton University

    Energy Technology Data Exchange (ETDEWEB)

    Callan, Curtis G. [Princeton University; Gubser, Steven S. [Princeton University; Marlow, Daniel R. [Princeton University; McDonald, Kirk T. [Princeton University; Meyers, Peter D. [Princeton University; Olsen, James D. [Princeton University; Smith, Arthur J.S. [Princeton University; Steinhardt, Paul J. [Princeton University; Tully, Christopher G. [Princeton University; Stickland, David P. [Princeton University

    2013-04-30

    The activities of the Princeton Elementary particles group funded through Department of Energy Grant# DEFG02-91 ER40671 during the period October 1, 1991 through January 31, 2013 are summarized. These activities include experiments performed at Brookhaven National Lab; the CERN Lab in Geneva, Switzerland; Fermilab; KEK in Tsukuba City, Japan; the Stanford Linear Accelerator Center; as well as extensive experimental and the- oretical studies conducted on the campus of Princeton University. Funded senior personnel include: Curtis Callan, Stephen Gubser, Valerie Halyo, Daniel Marlow, Kirk McDonald, Pe- ter Meyers, James Olsen, Pierre Pirou e, Eric Prebys, A.J. Stewart Smith, Frank Shoemaker (deceased), Paul Steinhardt, David Stickland, Christopher Tully, and Liantao Wang.

  9. Neutron scattering in soft matter physics and chemistry

    International Nuclear Information System (INIS)

    White, J.W.

    1999-01-01

    Recent experiments area of soft matter science show that self assembly on the micron scale as well as the nanometer scale can be directed chemically. This lecture illustrates how such processes can be studied using the contrast variation available in neutron scattering through isotopic replacement and the techniques of neutron small angle scattering and neutron reflectivity. Related dynamical information at nanometer resolution and on time scales between a nanosecond and a few tenths of a picosecond will become accessible with brighter neutron sources. The examples presented concern the template induced crystallisation of zeolites, the liquid crystal template induced synthesis of mesoporous materials and the structure of thin films at the air water interface. (J.P.N.)

  10. Indus-I beamlines for condensed matter physics

    International Nuclear Information System (INIS)

    Nandedkar, R.V.

    2001-01-01

    Full text: A 450 MeV electron storage ring Indus-I is now operational. This storage ring gives synchrotron radiation in soft x-ray vacuum ultra violet (VUV) and to visible region. On this storage ring six beamlines are now being set up for atomic and molecular spectroscopy experiments, solid state spectroscopy experiments and soft and VUV reflectivity experiments. In this talk, present status of beamlines which condense matter physicists will be interested in will be given along with some commissioning experiments. These beam lines are based on a toroidal grating monochromators in the range 40 - 1000 A with moderate energy resolution. Some experiments which can be conducted using these beam lines will be discussed

  11. Physical considerations relevant to HZE-particle transport in matter.

    Science.gov (United States)

    Schimmerling, W

    1988-06-01

    High-energy, highly charged (HZE) heavy nuclei may seem at first sight to be an exotic type of radiation, only remotely connected with nuclear power generation. On closer examination it becomes evident that heavy-ion accelerators are being seriously considered for driving inertial confinement fusion reactors, and high-energy heavy nuclei in the cosmic radiation are likely to place significant constraints on satellite power system deployment and space-based power generation. The use of beams of heavy nuclei in an increasing number of current applications, as well as their importance for the development of the state of the art of the future, makes it necessary to develop at the same time a good understanding of their transport through matter.

  12. Physics of neutrino flavor transformation through matter-neutrino resonances

    Science.gov (United States)

    Wu, Meng-Ru; Duan, Huaiyu; Qian, Yong-Zhong

    2016-01-01

    In astrophysical environments such as core-collapse supernovae and neutron star-neutron star or neutron star-black hole mergers where dense neutrino media are present, matter-neutrino resonances (MNRs) can occur when the neutrino propagation potentials due to neutrino-electron and neutrino-neutrino forward scattering nearly cancel each other. We show that neutrino flavor transformation through MNRs can be explained by multiple adiabatic solutions similar to the Mikheyev-Smirnov-Wolfenstein mechanism. We find that for the normal neutrino mass hierarchy, neutrino flavor evolution through MNRs can be sensitive to the shape of neutrino spectra and the adiabaticity of the system, but such sensitivity is absent for the inverted hierarchy.

  13. Final Progress Report to the Department of Energy's Office of Science on the Committee on Nuclear Physics

    International Nuclear Information System (INIS)

    2001-01-01

    The Committee on Nuclear Physics (CNP), under the National Research Council's Board on Physics and Astronomy (BPA), conducted an assessment of the field as part of the BPA's survey of physics in the last decade, titled ''Physics in a New Era.'' The CNP report was published by the National Academy Press in early 1999 under the title ''Nuclear Physics: The Core of Matter, The Fuel of Stars.''

  14. Twentieth ANZIP condensed matter physics meeting. Conference handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Theoretical and experimental short communications included in these proceedings cover recent achievements in high temperatures superconductivity, superconducting devices, nuclear techniques in studies of the structure of solids, lattice models and dynamics, physics studies of surfaces, interfaces and thin films. Separate abstracts have been prepared for 180 items in INIS scope

  15. Mind over matter: The intellectual content of experimental physics

    International Nuclear Information System (INIS)

    Telegdi, V.L.

    1990-01-01

    The author presents a new way of teaching experimental physics using Selenyi's experiment on dipole radiation, Michelson's optical demonstration of the earth rotation, the direct measurement of the helicity of the electron neutrino by Goldhaber, grodzins, and Sunyar and the determination of the helicity of the muonic neutrino by Grenas et al. (HSI)

  16. Twentieth ANZIP condensed matter physics meeting. Conference handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    Theoretical and experimental short communications included in these proceedings cover recent achievements in high temperatures superconductivity, superconducting devices, nuclear techniques in studies of the structure of solids, lattice models and dynamics, physics studies of surfaces, interfaces and thin films. Separate abstracts have been prepared for 180 items in INIS scope

  17. Twentieth ANZIP condensed matter physics meeting. Conference handbook

    International Nuclear Information System (INIS)

    1996-01-01

    Theoretical and experimental short communications included in these proceedings cover recent achievements in high temperatures superconductivity, superconducting devices, nuclear techniques in studies of the structure of solids, lattice models and dynamics, physics studies of surfaces, interfaces and thin films. Separate abstracts have been prepared for 180 items in INIS scope

  18. Verbal and physical violence in emergency departments: a survey of nurses in Istanbul, Turkey.

    Science.gov (United States)

    Pinar, Rukiye; Ucmak, Firdevs

    2011-02-01

    The aim of this study was to determine the perceived verbal and physical violence and related factors experienced by nurses in emergency settings. Studies on violence in emergency departments indicate an increasing frequency of these incidents. However, little is known about the violence experienced by the Turkish nurses working in emergency departments. Survey. The study population included 255 nurses. Data were collected using a questionnaire. Verbal violence was reported with a frequency of 91.4%. Of the nurses, 74.9% had been exposed to physical violence in at least several episodes during the previous 12 months. Patients' relatives were the main perpetrators, followed by patients, most of whom were male. After experiencing violence, most of the nurses reported that, they had felt fear and only 3% described that they took sick leave, while 80% did not report the incidences of violence they experienced. The nurses described that, after a violent incident, they sought support mainly from their colleagues in emergency departments rather than from the administration. Over half of the nurses (65%) felt safe 'none of the time' in emergency departments, and 89.8% of them described that patients and patient relatives may potentially exhibit violent behaviours towards the staff when they are first admitted to emergency department, while 73.7% believed that the staffing pattern and physical environment of their emergency departments were not adequate to prevent violence. Most of the nurses (83.5%) stated that they should be provided with the training that will help them prevent and manage violence as part of their in-service education, whereas 82.7% of them had not received any such training. The findings have implications for occupational health and safety from both employer and employee perspective. © 2010 Blackwell Publishing Ltd.

  19. At LEP, a new Physics. The dark matter

    International Nuclear Information System (INIS)

    Bouquet, A.; Haissinski, J.; Perrottet, M.; Renard, F.M.; Sadoulet, B.; Savoy, C.; Treille, D.

    1990-01-01

    The starting of LEP (European Large Electron-Positron storage rings) took place, in July 1989 and the 5 reports introduced during the 21th Summer School on Particle Physics (Ecole de Gif) locate, after a rapid recall of standard model, the problems that LEP will have to resolve in a more or less long time, LEP 100 or LEP 200. These reports are indexed separately [fr

  20. Prevention Research Matters-Communities Working to Improve Physical Activity

    Centers for Disease Control (CDC) Podcasts

    2018-02-15

    We know that children who are physically active every day are less likely to develop chronic diseases as adults, including obesity. Dr. Sandy Slater, a researcher with the University of Illinois, Chicago Prevention Research Center, discusses how a park improvement project in Chicago helped engage communities to improve areas for play and activity.  Created: 2/15/2018 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 2/15/2018.

  1. From quantum physics to consciousness. Cosmos, spirit, and matter

    International Nuclear Information System (INIS)

    Goernitz, Thomas; Goernitz, Brigitte

    2016-01-01

    The present book is a consequent continuation and deepening of a new concept layed down ba Thomas and Brigitte Goernitz in several writings. Starting from quantum theory they describe the evolution of the spirituality from the origin of the cosmos until the origin of the consciousness. Obtained was this knowledge by profund physical and mathematical research lasting for decades and in cooperation lasting for years with scientists and philosophers, especially with Carl Friedrich v. Weizsaecker.

  2. Department F3. Condensed matter research and materials sciences. Progress report 1989

    International Nuclear Information System (INIS)

    Gaeggeler, H.W.; Lorenzen, R.

    1990-04-01

    The report deals with work done during 1989 in the field of muon spectroscopy, neutron scattering, cryogenic detectors, accelerator mass spectrometry, geochemistry, trace elements, aerosol chemistry, heavy elements, cement products, defect physics, irradiation damages in fusion reactor materials, and superconductivity. 135 figs., 15 tabs. 417 refs

  3. The research of condensed matter physics by using intense proton accelerator

    International Nuclear Information System (INIS)

    Endoh, Yasuo

    1990-01-01

    The present article covers the application of intense protons to basic condensed matter physics. Major recent neutron scattering activities in condensed matter physics are first outlined, emphasizing the fact that the contribution of accelerator base science has a tremendous impact on this basic science. Application of spallation neutrons to condensed matter physics is discussed in relation to such subjects as high energy (epithermal) excitations and small angle neutron scattering. Then the specific subject of high Tc superconductor is addressed, focusing on how neutrons as well as muons provide experimental results that serve significantly in exploring the mechanism of exotic high Tc superconductivity. Techniques for neutron polarization must be developed in the future. The neutron spin reflectivity ratio has been shown to be a sensitive probe of surface depth profile of magnetization. Another new method is neutron depolarization to probe bulk magnetic induction throughout a slab which neutrons pass through. (N.K.)

  4. Multimedia Tutorial In Physics For Foreign Students Of the Engineering Faculty Preparatory Department

    Directory of Open Access Journals (Sweden)

    P. G. Matukhin

    2016-05-01

    Full Text Available Foreign students study physics and Russian as a foreign language at the preparatory Department. They are to be trained to study different courses. During only one year the teachers of physics and Russian should help students from Asia, Africa and Latin America to get ready to study in the university. To help students in a short time to learn physical terms, to understand physics by ear, to read and write, teachers are developing the online multimedia tutorial. It is placed on the cloud OneDrive. Tutorial includes the main themes in the Mechanics. They are physical processes and phenomena, units, physical quantities, kinematics, laws of mechanics and others. The Power Point presentation slides contain information on the topics. These slides help students learn to read Russian texts on physics. There are hyperlinks to sound files on slides. Listening to those recordings, students gain the skills of physical texts listening. After each module we placed the test. Students can prepare for it using the simulator. Tests and exercise equipment made in the form of EXCEL spreadsheets. We provide our students the opportunity to view, read and listen, the tutorial files via their own mobile devices. Thus they can study physics in Russian in the classroom, or at home, but in the library, in the Park etc. Also they have access to it when they are not in Russia, and in their native countries. The tutorial presented seems to be considered as the first attempt to develop the online multimedia aimed to assist foreign students to get success in their efforts to study physics in Russian. It helps our students to learn physics in Russian faster and better. Determined are the directions of further development and improvement of the tutorial.

  5. Field-matter interaction in atomic and plasma physics, from fluctuations to the strongly nonlinear regime

    International Nuclear Information System (INIS)

    Benisti, D.

    2011-01-01

    This manuscript provides a theoretical description, sometimes illustrated by experimental results, of several examples of field-matter interaction in various domains of physics, showing how the same basic concepts and theoretical methods may be used in very different physics situations. The issues addressed here are nonlinear field-matter interaction in plasma physics within the framework of classical mechanics (with a particular emphasis on wave-particle interaction), the linear analysis of beam-plasma instabilities in the relativistic regime, and the quantum description of laser-atom interaction, including quantum electrodynamics. Novel methods are systematically introduced in order to solve some very old problems, like the nonlinear counterpart of the Landau damping rate in plasma physics, for example. Moreover, our results directly apply to inertial confinement fusion, laser propagation in an atomic vapor, ion acceleration in a magnetized plasma and the physics of the Reversed Field Pinch for magnetic fusion. (author)

  6. Physics of antimatter-matter reactions for interstellar propulsion

    International Nuclear Information System (INIS)

    Morgan, D.L. Jr.

    1986-01-01

    At the stage of the antiproton-nucleon annihilation chain of events relevant to propulsion the annihilation produces energetic charged pions and gamma rays. If annihilation occurs in a complex nucleus, protons, neutrons, and other nuclear fragments are also produced. The charge, number, and energy of the annihilation products are such that annihilation rocket engine concepts involving relatively low specific impulse (I/sub sp/ ≅ 1000 to 2000 s) and very high I/sub sp/ (3 x 10 7 s) appear feasible and have efficiencies on the order of 50% for annihilation energy to propulsion energy conversion. At I/sub sp/'s of around 15,000 s, however, it may be that only the kinetic energy of the charged nuclear fragments can be utilized for propulsion in engines of ordinary size. An estimate of this kinetic energy was made from known pieces of experimental and theoretical information. Its value is about 10% of the annihilation energy. Control over the mean penetration depth of protons into matter prior to annihilation is necessary so that annihilation occurs in the proper region within the engine. Control is possible by varying the antiproton kinetic energy to obtain a suitable annihilation cross section. The annihilation cross section at low energies is on the order of or larger than atomic areas due to a rearrangement reaction, but it is very low at high energy where its value is closer to nuclear areas

  7. Seventeenth Workshop on Computer Simulation Studies in Condensed-Matter Physics

    CERN Document Server

    Landau, David P; Schütler, Heinz-Bernd; Computer Simulation Studies in Condensed-Matter Physics XVI

    2006-01-01

    This status report features the most recent developments in the field, spanning a wide range of topical areas in the computer simulation of condensed matter/materials physics. Both established and new topics are included, ranging from the statistical mechanics of classical magnetic spin models to electronic structure calculations, quantum simulations, and simulations of soft condensed matter. The book presents new physical results as well as novel methods of simulation and data analysis. Highlights of this volume include various aspects of non-equilibrium statistical mechanics, studies of properties of real materials using both classical model simulations and electronic structure calculations, and the use of computer simulations in teaching.

  8. Noise study in condensed matter physics-Towards extension to surrounding fields

    International Nuclear Information System (INIS)

    Maeda, Atsutaka

    2006-01-01

    I briefly review noise studies in condensed matter physics, such as the shot noise measurement in metals, the dynamic-coherent-volume investigation in charge-density waves, the macroscopic quantum tunneling in superconductors, and the experimental investigation of dynamic phase diagram of driven vortices in high-T c superconductors. With these examples, one finds that the noise studies have played many crucial roles in condensed matter physics. I also discuss a recent theoretical suggestion that noise measurements in Josephson junction may clarify the origin of the dark energy in the universe

  9. Progress report of the Nuclear Physics Department (1.10.1983 - 30.9.1984)

    International Nuclear Information System (INIS)

    1985-01-01

    This progress report presents the experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1983 to September 20, 1984. These studies concern the structure of nuclei and the nuclear reaction mechanisms. The experiments have been carried at the 9 MV tandem Van de Graaff, the 700 MeV electron linac, the synchrotron SATURNE, the heavy ion accelerator GANIL, the SARA facility at Grenoble, and the secondary beams at CERN [fr

  10. Progress report of the Nuclear Physics Department (1.10.1982 - 30.9.1983)

    International Nuclear Information System (INIS)

    1984-04-01

    This progress report presents the experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1982 to September 30, 1983. These studies concern the structure of nuclei and hypernuclei and various reaction mechanisms. They have been performed with the 9 MV tandem Van de Graaff, with the 700 MeV electron linac, at the synchrotron SATURNE, the heavy ion accelerator GANIL, the SARA facility at Grenoble and the secondary beams at CERN [fr

  11. Progress report of the Nuclear Physics Department (1 Oct 1978 - 30 Sep 1979)

    International Nuclear Information System (INIS)

    1980-01-01

    This progress report presents the experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1978 to September 30, 1979. These studies concern the structure of nuclei and hypernuclei and various reaction mechanisms. They have been performed with the 8,5 MV tandem Van de Graaff, with the 600 MeV electron linac, and with different accelerators belonging to other laboratories [fr

  12. Progress report of the Nuclear Physics Department (1.10.1980-30.9.1981)

    International Nuclear Information System (INIS)

    1982-04-01

    This progress report presents the experiments and the technological studies carried out at the Nuclear Physics Department of Saclay from October 1, 1980 to September 30, 1981. These studies concern the structure of nuclei and hypernuclei and various reaction mechanisms. They have been performed with the 8.5 MV tandem Van de Graaff, with the 600 MeV electron linac, at the synchrotron SATURNE and with different accelerators belonging to other laboratories [fr

  13. Facebook Addiction Levels of Students in the Physical Education and Sport Department

    OpenAIRE

    Cetin YAMAN

    2016-01-01

    Time spent using various technological equipment increases every day with rapid technology development. Unfortunately, technology addiction is becoming an important issue. Especially with the development and ubiquity of mobile technologies, social media addiction is expanding. The aim of this study is to measure the Facebook addiction levels of 274 students at the Physical Education and Sports Teaching Department in a public university in Turkey and to examine their Facebook ad...

  14. Getting the astrophysics and particle physics of dark matter out of next-generation direct detection experiments

    International Nuclear Information System (INIS)

    Peter, Annika H. G.

    2010-01-01

    The next decade will bring massive new data sets from experiments of the direct detection of weakly interacting massive particle dark matter. Mapping the data sets to the particle-physics properties of dark matter is complicated not only by the considerable uncertainties in the dark-matter model, but by its poorly constrained local distribution function (the 'astrophysics' of dark matter). I propose a shift in how to think about direct-detection data analysis. I show that by treating the astrophysical and particle-physics uncertainties of dark matter on equal footing, and by incorporating a combination of data sets into the analysis, one may recover both the particle physics and astrophysics of dark matter. Not only does such an approach yield more accurate estimates of dark-matter properties, but it may illuminate how dark matter coevolves with galaxies.

  15. Group theory Application to the physics of condensed matter

    CERN Document Server

    Dresselhauss, M S; Jorio, A

    2007-01-01

    Every process in physics is governed by selection rules that are the consequence of symmetry requirements. The beauty and strength of group theory resides in the transformation of many complex symmetry operations into a very simple linear algebra. This concise and class-tested book has been pedagogically tailored over 30 years MIT and 2 years at the University Federal of Minas Gerais (UFMG) in Brazil. The approach centers on the conviction that teaching group theory in close connection with applications helps students to learn, understand and use it for their own needs. For this reason, the theoretical background is confined to the first 4 introductory chapters (6-8 classroom hours). From there, each chapter develops new theory while introducing applications so that the students can best retain new concepts, build on concepts learned the previous week, and see interrelations between topics as presented. Essential problem sets between the chapters also aid the retention of the new material and for the consolid...

  16. Some problems of quantum cosmology and dark matter physics

    Science.gov (United States)

    Wang, Jin

    The quantum cosmology is studied of the string universe obtained by embedding the Robertson-Walker metric in the nonlinear sigma model. It was found that initially the universe exists in a series of metastable bound states with the scale factor taking discrete values. Then it tunnels through a barrier and comes out in an inflationary state. This tunneling (or evolution in imaginary time) also has the effect of heating up the matter field so that we have a condition of chaotic inflation. The asymptotic solutions agree with those obtained from the classical Einstein equations. Quantum cosmology was considered of a 4-D universe using the effective action of superstrings. Both Hartle-Hawking and Vilenkin boundary conditions were applied to the solution of Wheeler-DeWitt equation. Under certain conditions (fermions added) the universe was found to tunnel through to the Lorentzian regime from the Euclidean regime and time is dynamically generated. Chudnovsky and Vilenkin's idea was applied to possible existence of cosmic strings in the Sun. Stellar evolution with cosmic strings at solar age gives a radius and luminosity of the star which are in contradiction with observation. The astrophysical bound was studied on the change of gravitational constant with time. It was found that (G/G) less than 10-12yr-1 is the condition that has to be satisfied in order not to cause the conflict with observation. The effect was studied of axions on the steller evolution of a 10 solar mass star model. If the axion mass is larger than .1 ev the star's age is significantly different at late stages, compared to the star without axions. It is argued that if cosmions (or WIMPS) solve the solar neutrino problem, then they must also play an important role in the evolution of low mass star main sequence stars. If they do so, then a simple (long mean free path) model for the interaction of cosmions with baryons leads to changes in the structure of the nuclear-burning core which may in principle

  17. BES-HEP Connections: Common Problems in Condensed Matter and High Energy Physics, Round Table Discussion

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, Eduardo [Univ. of Illinois, Urbana, IL (United States); Maldacena, Juan [Inst. for Advanced Study, Princeton, NJ (United States); Chatterjee, Lali [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Office of High Energy Physics; Davenport, James W [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Office of Basic Energy Sciences

    2015-02-02

    On February 2, 2015 the Offices of High Energy Physics (HEP) and Basic Energy Sciences (BES) convened a Round Table discussion among a group of physicists on ‘Common Problems in Condensed Matter and High Energy Physics’. This was motivated by the realization that both fields deal with quantum many body problems, share many of the same challenges, use quantum field theoretical approaches and have productively interacted in the past. The meeting brought together physicists with intersecting interests to explore recent developments and identify possible areas of collaboration.... Several topics were identified as offering great opportunity for discovery and advancement in both condensed matter physics and particle physics research. These included topological phases of matter, the use of entanglement as a tool to study nontrivial quantum systems in condensed matter and gravity, the gauge-gravity duality, non-Fermi liquids, the interplay of transport and anomalies, and strongly interacting disordered systems. Many of the condensed matter problems are realizable in laboratory experiments, where new methods beyond the usual quasi-particle approximation are needed to explain the observed exotic and anomalous results. Tools and techniques such as lattice gauge theories, numerical simulations of many-body systems, and tensor networks are seen as valuable to both communities and will likely benefit from collaborative development.

  18. 7th International Conference on Physics of Liquid Matter : Modern Problems

    CERN Document Server

    Chalyi, Alexander

    2018-01-01

    This book presents a collection of selected lectures discussing current problems in molecular physics and reviews the main cutting-edge advances in condensed and soft matter physics. It offers deep insights and a powerful basis for scientists and engineers to study complicated problems in physics, chemistry, biology, and medicine. The unification of experimental, theoretical, and computational methods allows milestone results to be achieved in areas such as ionic and ionic-electronic liquids, magnetic liquid systems, liquid systems with nanoparticles, structural phase transitions and critical phenomena, and small-angle neutron and X-ray scattering in liquids and liquid systems.   The lectures selected for this book were held at the 7th International Conference “Physics of Liquid Matter: Modern Problems” (PLMMP-2016), 27–31 May in Kiev, Ukraine.

  19. Quantum simulations with photons and polaritons merging quantum optics with condensed matter physics

    CERN Document Server

    2017-01-01

    This book reviews progress towards quantum simulators based on photonic and hybrid light-matter systems, covering theoretical proposals and recent experimental work. Quantum simulators are specially designed quantum computers. Their main aim is to simulate and understand complex and inaccessible quantum many-body phenomena found or predicted in condensed matter physics, materials science and exotic quantum field theories. Applications will include the engineering of smart materials, robust optical or electronic circuits, deciphering quantum chemistry and even the design of drugs. Technological developments in the fields of interfacing light and matter, especially in many-body quantum optics, have motivated recent proposals for quantum simulators based on strongly correlated photons and polaritons generated in hybrid light-matter systems. The latter have complementary strengths to cold atom and ion based simulators and they can probe for example out of equilibrium phenomena in a natural driven-dissipative sett...

  20. Tumultuous atmosphere (physical, mental), the main barrier to emergency department inter-professional communication.

    Science.gov (United States)

    Jafari Varjoshani, Nasrin; Hosseini, Mohammad Ali; Khankeh, Hamid Reza; Ahmadi, Fazlollah

    2014-08-22

    A highly important factor in enhancing quality of patient care and job satisfaction of health care staff is inter-professional communication. Due to the critical nature of the work environment, the large number of staff and units, and complexity of professional tasks and interventions, inter-professional communication in an emergency department is particularly and exceptionally important. Despite its importance, inter-professional communication in emergency department seems unfavorable. Thus, this study was designed to explain barriers to inter-professional communication in an emergency department. This was a qualitative study with content analysis approach, based on interviews conducted with 26 participants selected purposively, with diversity of occupation, position, age, gender, history, and place of work. Interviews were in-depth and semi-structured, and data were analyzed using the inductive content analysis approach. In total, 251 initial codes were extracted from 30 interviews (some of the participants re-interviewed) and in the reducing trend of final results, 5 categories were extracted including overcrowded emergency, stressful emergency environment, not discerning emergency conditions, ineffective management, and inefficient communication channels. Tumultuous atmosphere (physical, mental) was the common theme between categories, and was decided to be the main barrier to effective inter-professional communication. Tumultuous atmosphere (physical-mental) was found to be the most important barrier to inter-professional communication. This study provided a better understanding of these barriers in emergency department, often neglected in most studies. It is held that by reducing environmental turmoil (physical-mental), inter-professional communication can be improved, thereby improving patient care outcomes and personnel job satisfaction.

  1. Soft matter food physics—the physics of food and cooking

    Science.gov (United States)

    Vilgis, Thomas A.

    2015-12-01

    This review discusses the (soft matter) physics of food. Although food is generally not considered as a typical model system for fundamental (soft matter) physics, a number of basic principles can be found in the interplay between the basic components of foods, water, oil/fat, proteins and carbohydrates. The review starts with the introduction and behavior of food-relevant molecules and discusses food-relevant properties and applications from their fundamental (multiscale) behavior. Typical food aspects from ‘hard matter systems’, such as chocolates or crystalline fats, to ‘soft matter’ in emulsions, dough, pasta and meat are covered and can be explained on a molecular basis. An important conclusion is the point that the macroscopic properties and the perception are defined by the molecular interplay on all length and time scales.

  2. Soft matter food physics—the physics of food and cooking

    International Nuclear Information System (INIS)

    Vilgis, Thomas A

    2015-01-01

    This review discusses the (soft matter) physics of food. Although food is generally not considered as a typical model system for fundamental (soft matter) physics, a number of basic principles can be found in the interplay between the basic components of foods, water, oil/fat, proteins and carbohydrates. The review starts with the introduction and behavior of food-relevant molecules and discusses food-relevant properties and applications from their fundamental (multiscale) behavior. Typical food aspects from ‘hard matter systems’, such as chocolates or crystalline fats, to ‘soft matter’ in emulsions, dough, pasta and meat are covered and can be explained on a molecular basis. An important conclusion is the point that the macroscopic properties and the perception are defined by the molecular interplay on all length and time scales. (report on progress)

  3. Get 150 minutes/week of moderate physical activity: It doesn’t matter how

    Science.gov (United States)

    Researchers at the National Cancer Institute have shown that people who engage in more minutes of moderate-intensity physical activity enjoy health benefits (measured here by likelihood of dying during the study period), but it does not matter how those minutes are accumulated.

  4. Neutrino and dark matter physics with sub-keV germanium detectors

    Indian Academy of Sciences (India)

    2014-11-04

    Nov 4, 2014 ... the recent results on spin-independent couplings of light WIMPs from the ... the studies of low-energy neutrino and dark matter physics. .... vs. SAT. 12 (shaping time is 12 μs with partial integration) signals, for both calibration.

  5. The Large Hadron Collider project: organizational and financial matters (of physics at the terascale)

    NARCIS (Netherlands)

    Engelen, J.

    2012-01-01

    n this paper, I present a view of organizational and financial matters relevant for the successful construction and operation of the experimental set-ups at the Large Hadron Collider of CERN, the European Laboratory for Particle Physics in Geneva. Construction of these experiments was particularly

  6. Neutrino and dark matter physics with sub-keV germanium detectors

    Indian Academy of Sciences (India)

    2014-11-04

    Nov 4, 2014 ... Germanium detectors with sub-keV sensitivities open a window to study neutrino physics to search for light weakly interacting massive particle (WIMP) dark matter. We summarize the recent results on spin-independent couplings of light WIMPs from the TEXONO experiment at the Kuo-Sheng Reactor ...

  7. The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect

    NARCIS (Netherlands)

    Spaldin, Nicola A.; Fiebig, Manfred; Mostovoy, Maxim

    2008-01-01

    The concept of toroidal moments in condensed-matter physics and their long-range ordering in a so-called ferrotoroidic state is reviewed. We show that ferrotoroidicity as a form of primary ferroic order can be understood both from microscopic (multipole expansion) and macroscopic (symmetry-based

  8. 1997 report of the scientific evaluation committee of DAPNIA (Department of astrophysics, particle physics, nuclear physics and instrumentation)

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    The DAPNIA is a department of CEA, its main characteristic is to manage scientific teams working on astrophysics, nuclear physics, elementary particles and instrumentation. Every 2 years DAPNIA's activities are submitted to an evaluation made by a scientific committee whose members are experts independent from CEA. This committee reviews the work done, gives an opinion about the options chosen for the projects to come and writes out a report. In 1997 the committee had a very positive opinion of the work done by DAPNIA teams. The contributions to various and important national or international programs have been successful, we can quote: Ulysse mission, soho, iso, integral for spatial programs, aleph, delphi, H1 at Hera, atlas, cms, na48, nomad, babar, antares for particle physics and spiral, smc, compass for nuclear physics. The committee advises DAPNIA to favour more contacts between the theoreticians and the experimentalists who work on quantum chromodynamics and hadron physics. The committee shows its concern about improving the balance between the means dedicated to instrumentation designing and those dedicated to the analysis and interpretation of the experimental data collected. (A.C.)

  9. The expanding world of physics at Manitoba : a hundred years of progress : Department of Physics and Astronomy, University of Manitoba

    International Nuclear Information System (INIS)

    Connor, R.D.

    2004-01-01

    The century covered by this book has seen scientific developments unprecedented in human history, so an endeavour has been made to describe something of the careers in physics of our departmental members past and present. The prologue tells of the lack of decisions, academic and governmental, which delayed until 1904 the arrival of the first university professors, who even then could be appointed only through a private benefaction. Chapters I-IV give the general development from 1904 to the present while Chapter V describes the work of the major groups in the department. A review of each group is followed by a brief selection of the work of the individual members. Few, if any, can hope to keep up with the many facets of the subject today, so a glimpse at what is going on at the cutting edge of the whole field may reveal something of the state of physics at the beginning of the twenty-first century. The final chapter (VI) tells of the department's service and outreach beyond the classroom and the honours and awards gained by the individual members.

  10. Physical violence among elderly: analysis of admissions to an emergency department.

    Science.gov (United States)

    Kılıç Öztürk, Yasemin; Düzenli, Erhan; Karaali, Cem; Öztürk, Faruk

    2017-01-01

    Physical violence is defined as deliberate use of physical force likely to result in trauma, bodily injury, pain, or impairment. Present study is pioneering effort to evaluate mechanisms and sociodemographic features of physical violence targeting the elderly in Turkey and to investigate preventive measures. Database records and forensic reports were analyzed in this retrospective study of 54 elderly patients with trauma as result of physical violence who were admitted to emergency department of Şanlıurfa Training and Research Hospital between January 2012 and July 2013. Of the 54 patients evaluated, 50 (92.4%) were male. History of experiencing previous violence was described by 55.6% (n=30) of the patients. Instances of repeat violence and firearm injuries most often occurred in the home (p=0.006, p=0.007). Need for surgical treatment was also greater among cases that occurred in the home (p=0.016). Firearm injury, recurrent violence, and surgical treatment rates were higher among cases that occurred in the home. Urgent preventive measures are especially needed for the elderly who have already been victims of physical violence.

  11. Physical design correlates of efficiency and safety in emergency departments: a qualitative examination.

    Science.gov (United States)

    Pati, Debajyoti; Harvey, Thomas E; Pati, Sipra

    2014-01-01

    The objective of this study was to explore and identify physical design correlates of safety and efficiency in emergency department (ED) operations. This study adopted an exploratory, multimeasure approach to (1) examine the interactions between ED operations and physical design at 4 sites and (2) identify domains of physical design decision-making that potentially influence efficiency and safety. Multidisciplinary gaming and semistructured interviews were conducted with stakeholders at each site. Study data suggest that 16 domains of physical design decisions influence safety, efficiency, or both. These include (1) entrance and patient waiting, (2) traffic management, (3) subwaiting or internal waiting areas, (4) triage, (5) examination/treatment area configuration, (6) examination/treatment area centralization versus decentralization, (7) examination/treatment room standardization, (8) adequate space, (9) nurse work space, (10) physician work space, (11) adjacencies and access, (12) equipment room, (13) psych room, (14) staff de-stressing room, (15) hallway width, and (16) results waiting area. Safety and efficiency from a physical environment perspective in ED design are mutually reinforcing concepts--enhancing efficiency bears positive implications for safety. Furthermore, safety and security emerged as correlated concepts, with security issues bearing implications for safety, thereby suggesting important associations between safety, security, and efficiency.

  12. 19th International School on Condensed Matter Physics (ISCMP): Advances in Nanostructured Condensed Matter: Research and Innovations

    International Nuclear Information System (INIS)

    2017-01-01

    We are pleased to introduce the Proceedings of the 19 th International School on Condensed Matter Physics “Advances in Nanostructured Condensed Matter: Research and Innovations” (19 th ISCMP). The school was held from August 28 th till September 2 nd , 2016 in Varna, Bulgaria. It was organized by the Institute of Solid State Physics of the Bulgarian Academy of Sciences (ISSP-BAS), and took place at one of the fine resorts on the Bulgarian Black Sea “Saints Constantine and Helena”. The aim of this international school is to bring together top experimentalists and theoreticians, with interests in interdisciplinary areas, with the younger generation of scientists, in order to discuss current research and to communicate new forefront ideas. This year special focus was given to discussions on membrane biophysics and quantum information, also not forgotten were some traditionally covered areas, such as characterization of nanostructured materials. Participants from 12 countries presented 28 invited lectures, 12 short oral talks and 44 posters. The hope of the organizing committee is that the 19 th ISCMP provided enough opportunities for direct scientific contacts, interesting discussions and interactive exchange of ideas between the participants. The nice weather certainly helped a lot in this respect. The editors would like to thank all authors for their high-quality contributions and the members of the international program committee for their commitment. The papers submitted for publication in the Proceedings were refereed according to the publishing standards of the Journal of Physics: Conference Series. The Editorial Committee members are very grateful to the Journal’s staff for the continuous fruitful relations and for giving us the opportunity to present the work from the 19 th ISCMP. Prof. DSc Hassan Chamati, Assist. Prof. Dr. Alexander A. Donkov, Assoc. Prof. Dr. Julia Genova, and Assoc. Prof. Dr. Emilia Pecheva (paper)

  13. Space Matters: Physical-Digital and Physical-Virtual Codesign in inSpace

    DEFF Research Database (Denmark)

    Reilly, D.; Voida, S.; McKeon, M.

    2010-01-01

    The physical and social cues on which we rely during collaboration can vanish in the digital realm. inSpace focuses on physical-digital codesign, leveraging an approach grounded in social behavior patterns.......The physical and social cues on which we rely during collaboration can vanish in the digital realm. inSpace focuses on physical-digital codesign, leveraging an approach grounded in social behavior patterns....

  14. THE COMPARISON OF EMOTIONAL INTELLIGENCE AND HAPPINESS OF THE PRESERVICE TEACHERS IN THE DEPARTMENT OF PHYSICAL EDUCATION AND SPORTS TEACHING WITH SOME PRESERVICE TEACHERS IN OTHER DEPARTMENTS

    Directory of Open Access Journals (Sweden)

    Emre Ozan TİNGAZ

    2014-07-01

    Full Text Available The aim of this study is to compare the emotional intelligence and happiness of students who receive education in the departments of physical education and sports teaching, primary school mathematics teaching, music teaching and art teaching. This study was carried out via using relational screening model. The sample of the study was comprised of the students who received education in the departments of physical education and sports teaching, primary school mathematics teaching, music teaching and art teaching in Gazi University in the academic years of 2013 - 2014. The population of th is study included 434 students in total (N=434.The number of female students is (N=308 while the number of male students is (N=124. In this study, three different measure tools were used. These are Oxford Happiness Scale, Schutte Emotional Intelligence Scale and Personal Information Form. According to the result of the study, average of happiness values of the students in the department of physical education and sports teaching (114.33 ± 17.53 was found higher than the average values of the students in the department of primary school mathematics teaching. Average of use of Emotions and Evaluation of Emotions in the students who are in the department of music teaching (24,07±3,05 was found higher than the average values of the students in the department of primary school mathematics teaching.

  15. Contributions from the Department of Wind Energy and Atmospheric Physics to EWEC `99 in Nice, France

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Gunner C; Westermann, Kirsten; Noergaard, Per [eds.

    1999-03-01

    The first conference following the merger of the series of European Union Wind Energy Conference and the European Wind Energy Conferences - EWEC`99 - was held in Nice, France during the period 1-5 March 1999. About 600 delegates, mainly from Europe but also from other parts of the world, attended the conference. The conference contributions included 96 oral presentations and 305 posters. The Department of Wind Energy and Atmospheric Physics contributed with 29 oral presentations and 36 posters with members of the department as authors or co-authors. The present report contains the set of these papers available at the deadline 19 March 1999. The contributions cover a wide spectrum of subjects including wind resources, aerodynamics, reliability and load assessment, grid connection, measurement methods, innovative wind turbines and market aspects. (au)

  16. Proceedings of the 18th International Conference on Applied Physics of Condensed Matter

    International Nuclear Information System (INIS)

    Vajda, J.; Jamnicky, I.

    2012-01-01

    The 18th International Conference on Applied Physics of Condensed Matter was held on 20-22 June, 2012 on Strbske Pleso, Strba, Slovakia. The specialists discussed various aspects of modern problems in: Nuclear science and technology, influence of irradiation on physical properties of materials, radiation detection; New materials and structures, nanostructures, thin films, their analysis and applications; Physical properties and structural aspects of solid materials and their influencing; Optical phenomena in materials, photovoltaics and photonics, new principles in sensors and detection methods. Contributions relevant of INIS interest (forty-eight contributions) has been inputted to INIS.

  17. Salamfestschrift. A collection of talks from the conference on highlights of particle and condensed matter physics

    International Nuclear Information System (INIS)

    Ali, A.; Ellis, J.; Randjbar Daemi, S.; eds)

    1994-01-01

    The book contains papers, mainly on particle physics, presented at the meeting held between 8 and 12 March 1993 at the ICTP in Trieste to honor Professor Abdus Salam. The articles have been grouped in 6 chapters: Standard Model (6 papers), Beyond the Standard Model (4 papers), Astro-Particle Physics and Cosmology (3 papers), Strings and Quantum Gravity (5 papers), Mathematical Physics and Condensed Matter (2 papers), Salam's Collaborators and Students (13 papers). A separate abstract was prepared for each paper. Refs, figs and tabs

  18. Screening injured children for physical abuse or neglect in emergency departments: a systematic review.

    Science.gov (United States)

    Woodman, J; Lecky, F; Hodes, D; Pitt, M; Taylor, B; Gilbert, Ruth

    2010-03-01

    Screening markers are used in emergency departments (EDs) to identify children who should be assessed for possible physical abuse and neglect. We conducted three systematic reviews evaluating age, repeat attendance and injury type as markers for physical abuse or neglect in injured children attending EDs. We included studies comparing markers in physically abused or neglected children and non-abused injured children attending ED or hospital. We calculated likelihood ratios (LRs) for age group, repeat attendance and injury type (head injury, bruises, fractures, burns or other). Given the low prevalence of abuse or neglect, we considered that an LR of 10 or more would be clinically useful. All studies were poor quality. Infancy increased the risk of physical abuse or neglect in severely injured or admitted children (LRs 7.7-13.0, 2 studies) but was not strongly associated in children attending the ED (LR 1.5, 95% CI: 0.9, 2.8; one study). Repeat attendance did not substantially increase the risk of abuse or neglect and may be confounded by chronic disease and socio-economic status (LRs 0.8-3.9, 3 studies). One study showed no evidence that the type of injury substantially increased the risk of physical abuse or neglect in severely injured children. There was no evidence that any of the markers (infancy, type of injury, repeated attendance) were sufficiently accurate (i.e. LR >or= 10) to screen injured children in the ED to identify those requiring paediatric assessment for possible physical abuse or neglect. Clinicians should be aware that among injured children at ED a high proportion of abused children will present without these characteristics and a high proportion of non-abused children will present with them. Information about age, injury type and repeat attendances should be interpreted in this context.

  19. Attitudes of Students Studying in Coaching And Sport Management Department Towards Playing Games Involving Physical Activity

    Directory of Open Access Journals (Sweden)

    Hüseyin ÖZTÜRK

    2016-12-01

    Full Text Available This study has been prepared to determine attitudes of students studying in Coaching and Sport Management departments towards playing game including physcical activity. The sample of study consists of 388 students having sudied in Gaziantep University Coaching and Sport Management Department in 2014-2015 academic year.So as to determine the attitudes of students, the’’Playfulnessscale" was used. Statistical analysis of the data obtained in this study was made by using the SPSS 22.0 software packages. While evaluating the data for statistical analyzes, for frequency, percentage, mean, standard deviation, and comparison of two independent groups the t-test was used and for comparison of more than two independent groups ANOVA and LSD multiple comparison tests were used. According to results of study, It seems that statistically there is no significant difference between student’s genders,ages and their attitudes towards palying game including physical activity and according to their departments there is no significant difference among their attitudes but there is a significant difference between the fundimension and social cohesion dimension.

  20. Development of an Easy-to-Use Tool for the Assessment of Emergency Department Physical Design

    Directory of Open Access Journals (Sweden)

    Alireza Majidi

    2014-03-01

    Full Text Available Physical design of the emergency department (ED has an important effect on its role and function. To date, no guidelines have been introduced to set the standards for the construction of EDs in Iran. In this study we aim to devise an easy-to-use tool based on the available literature and expert opinion for the quick and effective assessment of EDs in regards to their physical design. For this purpose, based on current literature on emergency design, a comprehensive checklist was developed.  Then, this checklist was analyzed by a panel consisting of heads of three major EDs and contradicting items were decided. Overall 178 crude items were derived from available literature. The Items were categorized in to three major domains of Physical space, Equipment, and Accessibility. The final checklist approved by the panel consisted of 163 items categorized into six domains. Each item was phrased as a “Yes or No” question for ease of analysis, meaning that the criterion is either met or not. 

  1. Proceedings 21. International Conference on Applied Physics of Condensed Matter and of the Scientific Conference Advanced Fast Reactors

    International Nuclear Information System (INIS)

    Vajda, J.; Jamnicky, I.

    2015-01-01

    The 21. International Conference on Applied Physics of Condensed Matter was held on 24-26 June, 2015 on Strbske Pleso, Strba, Slovakia. The Scientific Conference the Advanced Fast Reactors was part of the 21 st International Conference on APCOM 2015. The specialists discussed various aspects of modern problems in: Physical properties and structural aspects of solid materials and their influencing; Advanced fast reactors; Physical properties and structural aspects of solid materials and their influencing; Nuclear science and technology, influence of irradiation on physical properties of materials, radiation detection; Computational physics and theory of physical properties of matter; interdisciplinary physics of condensed matter; Nuclear science and technology, influence of irradiation on physical properties of materials, radiation detection; Optical phenomena in materials, photovoltaics and photonics, new principles in sensors and detection methods. Fifty seven contributions relevant of INIS interest has been inputted to INIS.

  2. Condensed matter physics of biomolecule systems in a differential geometric framework

    DEFF Research Database (Denmark)

    Bohr, Henrik; Ipsen, J. H.; Markvorsen, Steen

    2007-01-01

    In this contribution biomolecular systems are analyzed in a framework of differential geometry in order to derive important condensed matter physics information. In the first section lipid bi-layer membranes are examined with respect to statistical properties and topology, e.g. a relation between...... vesicle formation and the proliferation of genus number. In the second section differential geometric methods are used for analyzing the surface structure of proteins and thereby understanding catalytic properties of larger proteins....

  3. Condensed matter physics of biomolecule systems in a differential geometric framework

    DEFF Research Database (Denmark)

    Bohr, H.; Ipsen, John Hjort; Markvorsen, S

    2007-01-01

    In this contribution biomolecular systems are analyzed in a framework of differential geometry in order to derive important condensed matter physics information. In the first section lipid bi-layer membranes axe examined with respect to statistical properties and topology, e.g. a relation between...... vesicle formation and the proliferation of genus number. In the second section differential geometric methods are used for analyzing the surface structure of proteins and thereby understanding catalytic properties of larger proteins....

  4. NDM06: 2. symposium on neutrinos and dark matter in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Akerib, D; Arnold, R; Balantekin, A; Barabash, A; Barnabe, H; Baroni, S; Baussan, E; Bellini, F; Bobisut, F; Bongrand, M; Brofferio, Ch; Capolupo, A; Enrico, Carrara; Caurier, E; Cermak, P; Chardin, G; Civitarese, O; Couchot, F; Kerret, H de; Heros, C de los; Detwiler, J; Dracos, M; Drexlin, G; Efremenko, Y; Ejiri, H; Falchini, E; Fatemi-Ghomi, N; Finger, M Ch; Finger Miroslav, Ch; Fiorillo, G; Fiorini, E; Fracasso, S; Frekers, D; Fushimi, K I; Gascon, J; Genest, M H; Georgadze, A; Giuliani, A; Goeger-Neff, M; Gomez-Cadenas, J J; Greenfield, M; H de Jesus, J; Hallin, A; Hannestad, St; Hirai, Sh; Hoessl, J; Ianni, A; Ieva, M B; Ishihara, N; Jullian, S; Kaim, S; Kajino, T; Kayser, B; Kochetov, O; Kopylov, A; Kortelainen, M; Kroeninger, K; Lachenmaier, T; Lalanne, D; Lanfranchi, J C; Lazauskas, R; Lemrani, A R; Li, J; Mansoulie, B; Marquet, Ch; Martinez, J; Mirizzi, A; Morfin Jorge, G; Motz, H; Murphy, A; Navas, S; Niedermeier, L; Nishiura, H; Nomachi, M; Nones, C.; Ogawa, H; Ogawa, I; Ohsumi, H; Palladino, V; Paniccia, M; Perotto, L; Petcov, S; Pfister, S; Piquemal, F; Poves, A; Praet, Ch; Raffelt, G; Ramberg, E; Rashba, T; Regnault, N; Ricol, J St; Rodejohann, W; Rodin, V; Ruz, J; Sander, Ch; Sarazin, X; Scholberg, K; Sigl, G; Simkovic, F; Sousa, A; Stanev, T; Strolger, L; Suekane, F; Thomas, J; Titov, N; Toivanen, J; Torrente-Lujan, E; Tytler, D; Vala, L; Vignaud, D; Vitiello, G; Vogel, P; Volkov, G; Volpe, C; Wong, H; Yilmazer, A

    2006-07-01

    This second symposium on neutrinos and dark matter is aimed at discussing research frontiers and perspectives on currently developing subjects. It has been organized around 6 topics: 1) double beta decays, theory and experiments (particularly: GERDA, MOON, SuperNEMO, CUORE, CANDLES, EXO, and DCBA), 2) neutrinos and nuclear physics, 3) single beta decays and nu-responses, 4) neutrino astrophysics, 5) solar neutrino review, and 6) neutrino oscillations. This document is made up of the slides of the presentations.

  5. NDM06: 2. symposium on neutrinos and dark matter in nuclear physics

    International Nuclear Information System (INIS)

    Akerib, D.; Arnold, R.; Balantekin, A.; Barabash, A.; Barnabe, H.; Baroni, S.; Baussan, E.; Bellini, F.; Bobisut, F.; Bongrand, M.; Brofferio, Ch.; Capolupo, A.; Carrara Enrico; Caurier, E.; Cermak, P.; Chardin, G.; Civitarese, O.; Couchot, F.; Kerret, H. de; Heros, C. de los; Detwiler, J.; Dracos, M.; Drexlin, G.; Efremenko, Y.; Ejiri, H.; Falchini, E.; Fatemi-Ghomi, N.; Finger, M.Ch.; Finger Miroslav, Ch.; Fiorillo, G.; Fiorini, E.; Fracasso, S.; Frekers, D.; Fushimi, K.I.; Gascon, J.; Genest, M.H.; Georgadze, A.; Giuliani, A.; Goeger-Neff, M.; Gomez-Cadenas, J.J.; Greenfield, M.; H de Jesus, J.; Hallin, A.; Hannestad, St.; Hirai, Sh.; Hoessl, J.; Ianni, A.; Ieva, M.B.; Ishihara, N.; Jullian, S.; Kaim, S.; Kajino, T.; Kayser, B.; Kochetov, O.; Kopylov, A.; Kortelainen, M.; Kroeninger, K.; Lachenmaier, T.; Lalanne, D.; Lanfranchi, J.C.; Lazauskas, R.; Lemrani, A.R.; Li, J.; Mansoulie, B.; Marquet, Ch.; Martinez, J.; Mirizzi, A.; Morfin Jorge, G.; Motz, H.; Murphy, A.; Navas, S.; Niedermeier, L.; Nishiura, H.; Nomachi, M.; Nones, C.; Ogawa, H.; Ogawa, I.; Ohsumi, H.; Palladino, V.; Paniccia, M.; Perotto, L.; Petcov, S.; Pfister, S.; Piquemal, F.; Poves, A.; Praet, Ch.; Raffelt, G.; Ramberg, E.; Rashba, T.; Regnault, N.; Ricol, J.St.; Rodejohann, W.; Rodin, V.; Ruz, J.; Sander, Ch.; Sarazin, X.; Scholberg, K.; Sigl, G.; Simkovic, F.; Sousa, A.; Stanev, T.; Strolger, L.; Suekane, F.; Thomas, J.; Titov, N.; Toivanen, J.; Torrente-Lujan, E.; Tytler, D.; Vala, L.; Vignaud, D.; Vitiello, G.; Vogel, P.; Volkov, G.; Volpe, C.; Wong, H.; Yilmazer, A.

    2006-01-01

    This second symposium on neutrinos and dark matter is aimed at discussing research frontiers and perspectives on currently developing subjects. It has been organized around 6 topics: 1) double beta decays, theory and experiments (particularly: GERDA, MOON, SuperNEMO, CUORE, CANDLES, EXO, and DCBA), 2) neutrinos and nuclear physics, 3) single beta decays and nu-responses, 4) neutrino astrophysics, 5) solar neutrino review, and 6) neutrino oscillations. This document is made up of the slides of the presentations

  6. 29th Workshop on Recent Developments in Computer Simulation Studies in Condensed Matter Physics

    International Nuclear Information System (INIS)

    2016-01-01

    Thirty years ago, because of the dramatic increase in the power and utility of computer simulations, The University of Georgia formed the first institutional unit devoted to the application of simulations in research and teaching: The Center for Simulational Physics. Then, as the international simulations community expanded further, we sensed the need for a meeting place for both experienced simulators and newcomers to discuss inventive algorithms and recent results in an environment that promoted lively discussion. As a consequence, the Center for Simulational Physics established an annual workshop series on Recent Developments in Computer Simulation Studies in Condensed Matter Physics. This year's highly interactive workshop was the 29th in the series marking our efforts to promote high quality research in simulational physics. The continued interest shown by the scientific community amply demonstrates the useful purpose that these meetings have served. The latest workshop was held at The University of Georgia from February 22-26, 2016. It served to mark the 30 th Anniversary of the founding of the Center for Simulational Physics. In addition, during this Workshop we celebrated the 60 th birthday of our esteemed colleague Prof. H.-Bernd Schuttler. Bernd has not only contributed to the understanding of strongly correlated electron system, but has made seminal contributions to systems biology through the introduction of modern methods of computational physics. These Proceedings provide a “status report” on a number of important topics. This on-line “volume” is published with the goal of timely dissemination of the material to a wider audience. This program was supported in part by the President's Venture Fund through the generous gifts of the University of Georgia Partners and other donors. We also wish to offer thanks to the Office of the Vice-President for Research, the Franklin College of Arts and Sciences, and the IBM Corporation for partial

  7. 6. International conference on materials science and condensed matter physics. Abstracts

    International Nuclear Information System (INIS)

    2012-09-01

    This book includes abstracts of the communications presented at the 6th International Conference on Materials Science and Condensed Matter Physics. The aim of this event is two-fold. First, it provides a nice opportunity for discussions and the dissemination of the latest results on selected topics in materials science, condensed-matter physics, and electrical methods of materials treatment. On the other hand, this is an occasion for sketching a broad perspective of scientific research and technological developments for the participants through oral and poster presentations. The abstracts presented in the book cover certain issues of modern theoretical and experimental physics and advanced technology, such as crystal growth, doping and implantation, fabrication of solid state structures; defect engineering, methods of fabrication and characterization of nanostructures including nanocomposites, nanowires and nano dots; fullerenes and nano tubes; quantum wells and superlattices; molecular-based materials, meso- and nano electronics; methods of structural and mechanical characterization; optical, transport, magnetic and superconductor properties, non-linear phenomena, size and interface effects; condensed matter theory; modelling of materials and structural properties including low dimensional systems; advanced materials and fabrication processes, device modelling and simulation of structures and elements; optoelectronics and photonics; microsensors and micro electro-mechanical systems; degradation and reliability, advanced technologies of electro-physico-chemical methods and equipment for materials machining, including modification of surfaces; electrophysical technologies of intensification of heat- and mass-transfer; treatment of biological preparations and foodstuff.

  8. The Relationship between Application of Information, Communication Technology and Organizational Effectiveness in Physical Education Departments of Universities of Tehran

    OpenAIRE

    Hamid Ghasemi; Abolfazl Farahani; Maryam Mashatan

    2012-01-01

    The purpose of this study was to determine the relationship between use of information communication technology (ITC) and organizational effectiveness in physical education departments of the University of Tehran carried out through the correlation method and the field research. All employees of Physical Education departments comprised our statistical population of whom 114 were randomly taken as the survey sample. We administered researcher-made information and communication technology (α=0....

  9. EXAMINING OCCUPATIONAL ANXIETY LEVELS OF PHYSICAL EDUCATION AND SPORTS TEACHER DEPARTMENT STUDENTS

    Directory of Open Access Journals (Sweden)

    Ayşe Feray Özbal

    2017-12-01

    Full Text Available The aim of this study was to examine the occupational anxiety levels of physical education and sports teacher department students in terms of age, gender, university, grade level, mother’s and father’s educational levels and family income. A total of 511 students (208 female, 303 male from 6 different universities participated in the study. Independent samples t-test for gender and age variables; One-way Analysis of Variance (ANOVA was used for grade level, university, mother’s and father’s education levels and family income. Significant differences were found in Interaction With Students, Occupational Exam subscales in terms of gender; Interaction With Students and Individual Self-Development subscales in terms of age (p.05. As a result, It can be concluded that the significant difference between gender groups is derived from social values, and the difference in age groups is due to lack of occupational qualification.

  10. The Chemistry Departement of the Institute for Nuclear Physics Research, Amsterdam, The Netherlands

    International Nuclear Information System (INIS)

    Lindner, L.

    1977-01-01

    In 1946, the Institute for Nuclear Physics Research (IKO) in Amsterdam was founded as a typical post World War II effort to cope with the surge in scientific research, primarily in the USA. At present, the Institute encompasses almost 250 workers - including a Philips research group - out of which nearly 30 are members of the Chemistry Department. In the beginning, the investigations dealt with more or less conventional tracerwork using long-lived radionuclides produced in nuclear reactors. This changed rapidly with the synchrocyclotron coming into operation in 1947. The present can be best characterized as a sort of a transition state. Emphasis has been laid upon more typical chemical aspects of the research program: a shift from ''nuclear'' chemistry to ''radio'' chemistry. The future is determined by the 500 MeV linear electron accelerator, dubbed MEA (Medium Energy Accelerator) already under construction. (T.G.)

  11. Forum: What Has Actually Changed in Physics Departments in the Situation for Women, Graduate Students and Other People?

    Science.gov (United States)

    Mulvey, Patrick; Ivie, Rachel; Campbell, David; Murnane, Margaret; Kirby, Kate; Catlla, Anne

    2006-03-01

    The decade of the 90's was a period of intense scrutiny of climate issues in physics departments, e.g. the status of women, the job situation for new Ph.D.'s and postdocs, and the preparation of physicists for careers inside and outside of physics. There were many conference sessions on these topics, and both APS members and leadership instigated important efforts to focus on specific areas. These efforts included the program of visiting committees to departments to examine the situation for women by the Committee on the Status of Women in Physics, the AIP's various studies of a statistical nature, and the creation by the APS of a Committee on Careers and the Forum on Graduate Student Affairs, as well as the recent APS-AAPT task force on graduate education. This forum patterned after similar sessions 10 years ago - will examine how physics departments have changed as a result of such efforts. It will begin with short (12-minute) talks by a panel of experts to describe what has happened in key areas. The greater part of the session will be a period of observations, questions, and discussion from the audience and the panel together. The purpose is to have an interchange on these interrelated topics from which we can all learn. THE TOPICS TO BE INTRODUCED IN THE SHORT TALKS AT THE BEGINNING OF THE SESSION ARE: 1) changes in graduate enrollment, composition, and subsequent jobs (Patrick Mulvey); 2) women in physics and astronomy departments 2005 (Rachel Ivie); 3) changes in graduate curricula and environment (David Campbell); 4) CSWP site visits to physics departments what’s been accomplished and learned (Margaret Murnane); 5) survey of ethical issues in physics departments and the physics profession: results and reactions (Kate Kirby); and (6) physics departments from the point of view of younger physicists (Anne Catlla). The bulk of the session will be a public forum, on these and related issues, among the audience and the panel.

  12. Nicotine dependence matters: examining longitudinal association between smoking and physical activity among Canadian adults.

    Science.gov (United States)

    Azagba, Sunday; Asbridge, Mark

    2013-11-01

    A number of studies point to the inverse relationship between physical activity and smoking; however, none has examined the role of nicotine dependence in physical activity participation among smokers. This study examined whether levels of nicotine dependence modify the association between leisure time physical activity and smoking status. The study used longitudinal data on 6795 adults from the Canadian National Population Health Survey (2004-2010). Generalized estimating equations were used to examine the association between physical activity, smoking, and nicotine dependence. We found that nicotine dependent smokers were significantly less likely to be physically active compared to non-smokers. Specifically, using the Fagerstrom Test for Nicotine Dependence, nicotine dependent smokers (OR 0.65, 95% CI 0.55-0.76) were less likely to be physically active while no significant difference was found for non-dependent smokers (OR 0.90, 95% CI 0.80-1.02) compared to non-smokers. Nicotine dependence matters in shaping engagement in physical activity among daily smokers. Efforts directed at promoting smoking cessation through nicotine dependence treatment intervention may provide additional benefits to health and well-being through an increased participation in physical activity. © 2013.

  13. Perception of Physical Child Abuse Among Parents and Professionals in a French Emergency Department.

    Science.gov (United States)

    Bailhache, Marion; Alioum, Ahmadou; Salmi, Louis-Rachid

    2017-04-01

    France has not prohibited all forms of corporal punishment, and the point at which an act is regarded as physical abuse is not clearly determined. The aim of our study was to compare perception of a caregiver's violent behavior toward his child by professionals and parents in an emergency department and determine characteristics associated with that perception. A cross-sectional study was conducted from November 2013 to October 2014 in the emergency department of the pediatric university hospital in Bordeaux, France. An anonymous self-administered questionnaire, including vignettes describing hypothetical situations of violent interaction between a parent and child, and items related to sociodemographic and family characteristics, was administered to professionals and parents. Vignettes included varying child's age and behavior, frequency of caregiver's behavior, hitting with/without an object, and targeted child's body part. Violent behavior was restricted to hitting for reasons of feasibility. Respondents were asked to rate the acceptability of situations on a 100-mm visual analog scale. Analyses were multivariate mixed Poisson regressions. A total of 1,001 participants assessed the vignettes. Participants were predominantly females (64%), married or living with a partner (87%), with a median age of 34 years. Professionals assessed vignettes as acceptable significantly more than parents (mean rating 2.8 times higher; p children were less tolerant. Such findings indicate the need for additional research to better appreciate consequences and severity of violent behavior toward children, and the need to educate parents and professionals.

  14. 7. International conference on materials science and condensed matter physics. Abstracts

    International Nuclear Information System (INIS)

    2014-09-01

    This book includes the abstracts of the communications presented at the 7th International Conference on Materials Science and Condensed Matter Physics, traditional biennial meeting organized by the Institute of Applied Physics of the Academy of Sciences of Moldova (IAP) which celebrates this year its 50th anniversary. The conference reports have been delivered in a broad range of topics in materials science, condensed matter physics, electrochemistry reflecting the research results of the scientific staff and Ph.D. students from the IAP as well as those by distinguished guests from different countries. The abstracts cover special issues of modern theoretical and experimental physics and advanced technology, such as advances in condensed matter theory; theory of low dimensional systems; modelling of materials and structural properties; ordering and phase transitions; quantum optics and electronics; strong correlated electronic systems; crystal growth; electronic processes and transport properties of semiconductors and superconductors; ordering processes in magnetic and multiferroic systems; interaction of light and matter, and optical phenomena; properties of composites, meta materials and molecular materials; crystal engineering of solid state structures; metal-organic materials; porous materials; advanced materials with magnetic, luminescent, nonlinear optical , thermoelectric, catalytic, analytic and pharmaceutical properties; defects engineering and mechanical properties; crystallography of organic, inorganic and supramolecular compounds; advanced physics of nanosystems; methods of nanostructures and nanomaterials fabrication and characterization; electronic properties of quantum wells, superlattices, nanowires and nanodots; meso- and nanoelectronics, optical processes in nanostructures; emerging phenomena in nanocomposites and nanomaterials; device modelling and simulation, device structures and elements; photovoltaics: crystals, thin films, nanoparticles

  15. Scientometric data. The Department of Nuclear Physics and the field of cluster radioactivities

    International Nuclear Information System (INIS)

    Poenaru, N.D.

    1999-01-01

    The first attempts to make a quantitative evaluation of scientific activity in the Department of Nuclear Physics date from the seventies. Progress Reports for two-year period have been published regularly since 1972. On this basis we are now able to follow the evolution of the number and visibility of the publications. The number of articles published in refereed journals per graduated person was around 0.4 per year; after 1990 it increases rapidly over unity, reflecting not only the local efforts but also the increased contributions of international cooperation. Similar evolution can be noticed for participation with invited talks, oral contributions and posters at various scientific international conferences, workshops, and summer schools. For the field of cluster radioactivities, which has been opened by a team of researchers from our Institute and the Institute of Theoretical Physics of the Frankfurt am Main University, we can give some specific examples of the most cited publications, showing that their impact during a certain period of time, has been much stronger than mean value of the impact parameter of the corresponding journals. (author)

  16. Implementation of U.S. Department of Energy physical protection upgrades in Lithuania and Uzbekistan

    International Nuclear Information System (INIS)

    Haase, M.; Romesberg, L.; Showalter, R.; Soo Hoo, M.S.; Corey, J.; Engling, E.

    1996-01-01

    Since 1994, the U.S. Department of Energy (DOE) has provided cooperative assistance to the non-nuclear weapons states of the Former Soviet Union. This effort, within DOE's program of Material Protection, Control, and Accounting (MPC ampersand A), identified the Institute of Nuclear Physics (INP) in Uzbekistan and the Ignalina Nuclear Power Plant (INPP) in Lithuania as sites for cooperative MPC ampersand A projects. The INP, located just outside of Tashkent, is the site of a 10-megawatt WWR-SM research reactor. This reactor is expected to remain operational as a major nuclear research and isotope production reactor for Central Asia. The INPP, located 100 kilometers northeast of the capital city of Vilnius, consists of two Russian-made RBMK reactors with a combined power output of 3,000 megawatts (electric). This power plant has been the subject of international safety and security concerns, which prompted DOE's cooperative assistance effort. This paper describes U.S. progress in a multi-national effort directed at implementing physical protection upgrades in Lithuania and Uzbekistan. The upgrades agreed upon between DOE and the INP and between DOE and the INPP have been designed to interface with upgrades being implemented by other donor countries. DOE/INPP upgrade projects include providing training on U.S. approaches to physical protection, access control through the main vehicle portal, a hardened central alarm station, and improved guard force communications. DOE/INP upgrade projects in Uzbekistan include an access control system, a hardened fresh fuel storage vault, an interior intrusion detection and assessment system, and an integrated alarm display and assessment system

  17. Proceedings of the thirty first convention of Orissa Physical Society and national seminar on recent trends in condensed matter physics: souvenir

    International Nuclear Information System (INIS)

    2014-01-01

    This conference covers issues relevant to condensed matter physics. The research in this area has laid the foundation for development of science and technology in wide areas of energy, information, communication etc. Papers relevant to INIS are indexed separately

  18. 132nd International School of Physics "Enrico Fermi" : Course on Dark Matter in the Universe

    CERN Document Server

    Primack, Joel R; Provenzale, A; International School of Physics "Enrico Fermi" : Course on Dark Matter in the Universe; Scuola Internazionale di Fisica "Enrico Fermi"

    1996-01-01

    Physics and astrophysics came to dark matter through many different routes, finally accepting it, but often with some distaste. It has been noticed that the existence of dark matter is yet another displacement of humans from the centre of the Universe: not only do our planet and our sun have no central position in the Universe, not only are humans just animals (although with a 'specialized' central nervous system), but even the material of which we are made is only a marginal component of the cosmic substance! If this is the right attitude to take, scientists feeling distaste for dark matter are much like Galileo Galilei's colleagues who refused to look through the telescope to watch the Medici planets. Nevertheless, astronomers, when required to take a ballot in favour of some cosmological model, often still vote for 'pure baryonic' with substantial majorities, although most cosmologists assume that a 'cold' component of dark matter plays a role in producing the world as we observe it. Among the many subject...

  19. Particle Physics Foundations of Dark Matter, Dark Energy, and Inflation (2/3)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Ninety-five percent of the present mass-energy density of the Universe is dark. Twenty-five percent is in the form of dark matter holding together galaxies and other large scale structures, and 70% is in the form of dark energy driving an accelerated expansion of the universe. Dark matter and dark energy cannot be explained within the standard model of particle physics. In the first lecture I will review the evidence for dark matter and the observations that point to an explanation in the form of cold dark matter. I will then describe the expected properties of a hypothetical Weakly-Interacting Massive Particle, or WIMP, and review experimental and observational approaches to test the hypothesis. Finally, I will discuss how the LHC might shed light on the problem. In the second lecture I will review the theoretical foundations and observational evidence that the dominant component of the present mass density of the Universe has a negative pressure, which leads to an accelerated expansion of the Universe...

  20. Particle Physics Foundations of Dark Matter, Dark Energy, and Inflation (3/3)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Ninety-five percent of the present mass-energy density of the Universe is dark. Twenty-five percent is in the form of dark matter holding together galaxies and other large scale structures, and 70% is in the form of dark energy driving an accelerated expansion of the universe. Dark matter and dark energy cannot be explained within the standard model of particle physics. In the first lecture I will review the evidence for dark matter and the observations that point to an explanation in the form of cold dark matter. I will then describe the expected properties of a hypothetical Weakly-Interacting Massive Particle, or WIMP, and review experimental and observational approaches to test the hypothesis. Finally, I will discuss how the LHC might shed light on the problem. In the second lecture I will review the theoretical foundations and observational evidence that the dominant component of the present mass density of the Universe has a negative pressure, which leads to an accelerated expansion of the Universe...

  1. Particle Physics Foundations of Dark Matter, Dark Energy, and Inflation (1/3)

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Ninety-five percent of the present mass-energy density of the Universe is dark. Twenty-five percent is in the form of dark matter holding together galaxies and other large scale structures, and 70% is in the form of dark energy driving an accelerated expansion of the universe. Dark matter and dark energy cannot be explained within the standard model of particle physics. In the first lecture I will review the evidence for dark matter and the observations that point to an explanation in the form of cold dark matter. I will then describe the expected properties of a hypothetical Weakly-Interacting Massive Particle, or WIMP, and review experimental and observational approaches to test the hypothesis. Finally, I will discuss how the LHC might shed light on the problem. In the second lecture I will review the theoretical foundations and observational evidence that the dominant component of the present mass density of the Universe has a negative pressure, which leads to an accelerated expansion of the Universe...

  2. Graduate Medical Education Funding and Curriculum in Physical Medicine and Rehabilitation: A Survey of Physical Medicine and Rehabilitation Department Chairs.

    Science.gov (United States)

    Perret, Danielle; Knowlton, Tiffany; Worsowicz, Gregory

    2018-03-01

    This national survey highlights graduate medical education funding sources for physical medicine and rehabilitation (PM&R) residency programs as well as perceived funding stability, alignment of the current funding and educational model, the need of further education in postacute care settings, and the practice of contemporary PM&R graduates as perceived by PM&R department/division chairs. Approximately half of the reported PM&R residency positions seem to be funded by Centers of Medicare and Medicaid Services; more than 40% of PM&R chairs believe that their residency program is undersized and nearly a quarter feel at risk for losing positions. A total of 30% of respondents report PM&R resident experiences in home health, 15% in long-term acute care, and 52.5% in a skilled nursing facility/subacute rehabilitation facility. In programs that do not offer these experiences, most chairs feel that this training should be included. In addition, study results suggest that most PM&R graduates work in an outpatient setting. Based on the results that chairs strongly feel the need for resident education in postacute care settings and that most graduates go on to practice in outpatient settings, there is a potential discordance for our current Centers of Medicare and Medicaid Services graduate medical education funding model being linked to the acute care setting.

  3. Annual Report on Scientific Activities in 1997 of Department of Physics and Nuclear Techniques, Academy of Mining and Metallurgy, Cracow

    International Nuclear Information System (INIS)

    Wolny, J.; Olszynska, E.

    1998-01-01

    The Annual Report 1997 is the review of scientific activities of the Department of Nuclear Physics and Techniques (DNPT) of the Academy of Mining and Metallurgy, Cracow. The studies connected with: radiometric analysis, nuclear electronics, solid state physics, elementary particle and detectors, medical physics, physics of environment, theoretical physics, nuclear geophysics, energetic problems, industrial radiometry and tracer techniques have been broadly presented. The fill list of works being published and presented at scientific conferences in 1997 by the staff of DNPT are also included

  4. Nuclear Physics Department: Progress report from the 1st October 1988 to the 30th September 1990

    International Nuclear Information System (INIS)

    1990-01-01

    The work performed at the Nuclear Physics Department, from the 1st October 1988 to the 30th September 1990, are summarized. The investigations are carried out in the fields of heavy ion physics, intermediate energy physics and accelerators using superconducting cavities. Theoretical and experimental studies accomplished in the following fields are included: hot nuclei, exotic nuclei, giant resonances, fission, inelastic scattering, electroproduction of pions, polarization of deuterons, central collisions [fr

  5. Fourth American Physical Society Topical Conference on Shock Waves in Condensed Matter

    CERN Document Server

    Shock Waves in Condensed Matter

    1986-01-01

    The Fourth American Physical Society Topical Conference on Shock Waves in Condensed Matter was held in Spokane, Washington, July 22-25, 1985. Two hundred and fifty scientists and engineers representing thirteen countries registered at the conference. The countries represented included the United States of America, Australia, Canada, The People's Repub­ lic of China, France, India, Israel, Japan, Republic of China (Taiwan), United Kingdom, U. S. S. R, Switzerland and West Germany. One hundred and sixty-two technical papers, cov­ ering recent developments in shock wave and high pressure physics, were presented. All of the abstracts have been published in the September 1985 issue of the Bulletin of the American Physical Society. The topical conferences, held every two years since 1979, have become the principal forum for shock wave studies in condensed materials. Both formal and informal technical discussions regarding recent developments conveyed a sense of excitement. Consistent with the past conferences, th...

  6. Topological Aspects of Condensed Matter Physics : Lecture Notes of the Les Houches Summer School : Session CIII

    CERN Document Server

    Chamon, Claudio; Goerbig, Mark O; Moessner, Roderich; Cugliandolo, Leticia F

    2017-01-01

    Topological condensed matter physics is a recent arrival among the disciplines of modern physics of a distinctive and substantive nature. Its roots reach far back, but much of its current importance derives from exciting developments in the last half-century. The field is advancing rapidly, growing explosively, and diversifying greatly. There is now a zoo of topological phenomena–the quantum spin Hall effect, topological insulators, Coulomb spin liquids, non-Abelian anyonic statistics and their potential application in topological quantum computing, to name but a few–as well as an increasingly sophisticated set of concepts and methods underpinning their understanding. The aim of this Les Houches Summer School was to present an overview of this field, along with a sense of its origins and its place on the map of advances in fundamental physics. The school comprised a set of basic lectures (Part I) aimed at a pedagogical introduction to the fundamental concepts, which was accompanied by more advanced lectur...

  7. Physical Exercise Habits Correlate with Gray Matter Volume of the Hippocampus in Healthy Adult Humans

    Science.gov (United States)

    Killgore, William D. S.; Olson, Elizabeth A.; Weber, Mareen

    2013-12-01

    Physical activity facilitates neurogenesis of dentate cells in the rodent hippocampus, a brain region critical for memory formation and spatial representation. Recent findings in humans also suggest that aerobic exercise can lead to increased hippocampal volume and enhanced cognitive functioning in children and elderly adults. However, the association between physical activity and hippocampal volume during the period from early adulthood through middle age has not been effectively explored. Here, we correlated the number of minutes of self-reported exercise per week with gray matter volume of the hippocampus using voxel-based morphometry (VBM) in 61 healthy adults ranging from 18 to 45 years of age. After controlling for age, gender, and total brain volume, total minutes of weekly exercise correlated significantly with volume of the right hippocampus. Findings highlight the relationship between regular physical exercise and brain structure during early to middle adulthood.

  8. Using soil organic matter fractions as indicators of soil physical quality

    DEFF Research Database (Denmark)

    Pulido Moncada, Mansonia A.; Lozano, Z; Delgado, M

    2018-01-01

    The objective of this study was to evaluate the use of chemical and physical fractions of soil organic matter (SOM), rather than SOM per se, as indicators of soil physical quality (SPQ) based on their effect on aggregate stability (AS). Chemically extracted humic and fulvic acids (HA and FA) were...... used as chemical fractions, and heavy and light fractions (HF and LF) obtained by density separation as physical fractions. The analyses were conducted on medium-textured soils from tropical and temperate regions under cropland and pasture. Results show that soil organic carbon (SOC), SOM fractions...... and AS appear to be affected by land use regardless of the origin of the soils. A general separation of structurally stable and unstable soils between samples of large and small SOC content, respectively, was observed. SOM fractions did not show a better relationship with AS than SOC per se. In both...

  9. Quantum physics of light and matter photons, atoms, and strongly correlated systems

    CERN Document Server

    Salasnich, Luca

    2017-01-01

    This compact but exhaustive textbook, now in its significantly revised and expanded second edition, provides an essential introduction to the field quantization of light and matter with applications to atomic physics and strongly correlated systems. Following an initial review of the origins of special relativity and quantum mechanics, individual chapters are devoted to the second quantization of the electromagnetic field and the consequences of light field quantization for the description of electromagnetic transitions. The spin of the electron is then analyzed, with particular attention to its derivation from the Dirac equation. Subsequent topics include the effects of external electric and magnetic fields on the atomic spectra and the properties of systems composed of many interacting identical particles. The book also provides a detailed explanation of the second quantization of the non-relativistic matter field, i.e., the Schrödinger field, which offers a powerful tool for the investigation of many-body...

  10. CAREER opportunities at the Condensed Matter Physics Program, NSF/DMR

    Science.gov (United States)

    Durakiewicz, Tomasz

    The Faculty Early Career Development (CAREER) Program is a Foundation-wide activity, offering prestigious awards in support of junior faculty. Awards are expected to build the careers of teacher-scholars through outstanding research, excellent education and the integration of education and research. Condensed Matter Physics Program receives between 35 and 45 CAREER proposals each year, in areas related to fundamental research of phenomena exhibited by condensed matter systems. Proposal processing, merit review process, funding levels and success rates will be discussed in the presentation. NSF encourages submission of CAREER proposals from junior faculty members from CAREER-eligible organizations and encourages women, members of underrepresented minority groups, and persons with disabilities to apply. NSF/DMR/CMP homepage: https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=5666

  11. Particle physics and cosmology beyond the Standard Model: inflation, dark matter and flavour

    International Nuclear Information System (INIS)

    Heurtier, L.

    2015-01-01

    This thesis has been focusing on beyond the Standard Model aspects of particle physics and their implication in cosmology. We have gone through this work along the timeline of the Universe History focusing on three major topics that are the inflationary period, the dark matter relic density production and detection, and finally the question of flavor changing constraints on low energy supersymmetric theories. In the first part of this thesis, after reviewing the theoretical and phenomenological aspects of both the Big Bang theory and the theory of Inflation we will study in detail how describing Inflation in a high energy supersymmetric theory. The second part of this thesis is dedicated to dark matter. We have studied phenomenological aspects of simple models, extending the present Standard Model with simple abelian symmetries, by assuming that the constituent of dark matter would be able to exchange information with the visible sector by the help of a mediator particle. We have studied in particular possible interactions of heavy or light dark matter with respectively the strong and the electroweak sectors of the Standard Model. Our models are strongly constrained of course by experiments. The third part of this work will be dedicated to a different aspect of beyond Standard Model theories, that is the treatment of the flavour changing processes of particle physics. The Minimal Supersymmetric Standard Model (MSSM), as one of these possible enlargement of the Standard Model, introduces new processes of flavour changing that are highly constrained by experiment. We present some works in which we consider the possibility of adding so called Dirac Gauginos to the MSSM to render flavour changing weaker in the theory, and propose different flavour patterns theories

  12. Interplay between the b →s l l anomalies and dark matter physics

    Science.gov (United States)

    Kawamura, Junichiro; Okawa, Shohei; Omura, Yuji

    2017-10-01

    Recently, the LHCb Collaboration has reported the excesses in the b →s l l processes. One of the promising candidates for new physics to explain the anomalies is the extended Standard Model (SM) with vectorlike quarks and leptons. In that model, Yukawa couplings between the extra fermions and SM fermions are introduced, adding extra scalars. Then, the box diagrams involving the extra fields achieve the b →s l l anomalies. It has been known that the excesses require the large Yukawa couplings of leptons, so that this kind of model can be tested by studying correlations with other observables. In this paper, we consider the extra scalar to be a dark matter (DM) candidate, and investigate DM physics as well as the flavor physics and the LHC physics. The DM relic density and the direct-detection cross section are also dominantly given by the Yukawa couplings, so that we find some explicit correlations between DM physics and the flavor physics. In particular, we find the predictions of the b →s l l anomalies against the direct detection of DM.

  13. A fresh approach to forecasting in astroparticle physics and dark matter searches

    Science.gov (United States)

    Edwards, Thomas D. P.; Weniger, Christoph

    2018-02-01

    We present a toolbox of new techniques and concepts for the efficient forecasting of experimental sensitivities. These are applicable to a large range of scenarios in (astro-)particle physics, and based on the Fisher information formalism. Fisher information provides an answer to the question 'what is the maximum extractable information from a given observation?'. It is a common tool for the forecasting of experimental sensitivities in many branches of science, but rarely used in astroparticle physics or searches for particle dark matter. After briefly reviewing the Fisher information matrix of general Poisson likelihoods, we propose very compact expressions for estimating expected exclusion and discovery limits ('equivalent counts method'). We demonstrate by comparison with Monte Carlo results that they remain surprisingly accurate even deep in the Poisson regime. We show how correlated background systematics can be efficiently accounted for by a treatment based on Gaussian random fields. Finally, we introduce the novel concept of Fisher information flux. It can be thought of as a generalization of the commonly used signal-to-noise ratio, while accounting for the non-local properties and saturation effects of background and instrumental uncertainties. It is a powerful and flexible tool ready to be used as core concept for informed strategy development in astroparticle physics and searches for particle dark matter.

  14. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond

    Science.gov (United States)

    Casola, Francesco; van der Sar, Toeno; Yacoby, Amir

    2018-01-01

    The magnetic fields generated by spins and currents provide a unique window into the physics of correlated-electron materials and devices. First proposed only a decade ago, magnetometry based on the electron spin of nitrogen-vacancy (NV) defects in diamond is emerging as a platform that is excellently suited for probing condensed matter systems; it can be operated from cryogenic temperatures to above room temperature, has a dynamic range spanning from direct current to gigahertz and allows sensor-sample distances as small as a few nanometres. As such, NV magnetometry provides access to static and dynamic magnetic and electronic phenomena with nanoscale spatial resolution. Pioneering work has focused on proof-of-principle demonstrations of its nanoscale imaging resolution and magnetic field sensitivity. Now, experiments are starting to probe the correlated-electron physics of magnets and superconductors and to explore the current distributions in low-dimensional materials. In this Review, we discuss the application of NV magnetometry to the exploration of condensed matter physics, focusing on its use to study static and dynamic magnetic textures and static and dynamic current distributions.

  15. 6th International Conference on Physics of Liquid Matter : Modern Problems

    CERN Document Server

    Lebovka, Nikolai

    2015-01-01

    These proceedings comprise invited and contributed papers presented at PLMMP-2014, addressing modern problems in the fields of liquids, solutions and confined systems, critical phenomena, as well as colloidal and biological systems. The book focuses on state-of-the-art developments in contemporary physics of liquid matter. The papers presented here are organized into four parts: (i) structure of liquids in confined systems, (ii) phase transitions, supercritical liquids and glasses, (iii) colloids, and (iv) medical and biological aspects and cover the most recent developments in the broader field of liquid state including interdisciplinary problems.

  16. Tablet Computer Literacy Levels of the Physical Education and Sports Department Students

    Directory of Open Access Journals (Sweden)

    Gulten HERGUNER

    2016-04-01

    Full Text Available Education systems are being affected in parallel by newly emerging hardware and new developments    occurring in technology daily. Tablet usage especially is becoming ubiquitous in the teaching‐learning processes in recent years. Therefore, using the tablets effectively, managing them and having a high level of tablet literacy play an important role within the education system. This study aimed at determining the tablet literacy levels of students in the Physical Education and Sports Teaching department at Sakarya University in Turkey, and examining this data with regard to various variables. Some 276 students participated in the study. Findings of the study suggest that the sample has a high tablet literacy level. While no significant difference was found in the tablet literacy  by gender, the students in the 2nd grade are noted to have higher levels of tablet literacy compared to the students in 3rd and 4th grades and tablet owners are more tablet literate when compared to non‐owners. A significant but low level correlation was found between the tablet usage time and tablet literacy.  

  17. Activities of JAERI's health physics department for the criticality accident of JCO

    International Nuclear Information System (INIS)

    Yamamoto, Katsumune; Kitano, Kyoshiro; Murakami, Hiroyuki; Yamaguchi, Takenori; Tsunoda, Masahiko

    2000-01-01

    This report describes early health physics activities from September 30 to October 1 taken by the authors' department after the JCO accident. They firstly knew the accident at around 12:20 (about 2 hr after the criticality). The activities involved the planning of schedule for ending the criticality; calculation of scheduled dose for the work to end it; dose measurement around JCO site; loaning out of devices for measuring neutron and of personal dose-meter; collection and radioactivity measurement of dust and soil, and of drinking water; and examination for contamination of people around the site, of their houses inside and of school gardens and equipments. The dose was scheduled to be firstly 20 mSv and then changed to 50 mSv due to the actual measurement at the accident site. The working time was to be 3 min at the site. The work was on either the dose or time. Radiation monitoring outside the JCO site revealed the presence of Na-24 and Cs-138: neutron dose was 10 times as high as γ-ray dose. The time course of dose rate change was found to be in parallel with the progress of works to end the criticality. (K.H.)

  18. Department of Energy ALARA implementation guide. Response to the Health Physics Society

    Energy Technology Data Exchange (ETDEWEB)

    Connelly, J.M. [Dept. of Energy, Washington, DC (United States)

    1995-03-01

    In the August 1993 Health Physics Society (HPS) newsletter, the HPS Scientific and Public Issues Committee published a Position Statement entitled {open_quotes}Radiation Protection of the Public and the Environment.{close_quotes}. In this article, this HPS committee made the statement that they were deeply concerned by the trend for agencies to incorporate the ALARA concept as a regulatory requirements, without providing specific guidance as to what it means and how to implement it consistently. The HPS position paper was in response to the DOE notice on proposed rulemaking for Title 10 Code of Federal Regulations Part 834, {open_quotes}Radiation Protection of the Public and the Environment{close_quotes} (10 CFR 834). In the notice of proposed rulemaking for 10 CFR 834, the Department of Energy (DOE) defined ALARA as follows: {open_quotes}As used in this part, ALARA is not a dose limit, but rather a process which has the objective of attaining doses as far below the applicable limit of this part as is reasonably achievable{close_quotes} (10 CFR 834.2, p. 16283 of the Federal Register). The HPS position paper continues, {open_quotes}The section goes on to elaborate on what is meant by a process without providing sufficient guidance to assure uniform applicability of the process.{close_quotes}. Although this concern is directed towards the ALARA process as it relates to the environment, the Office of Health, which is responsible for occupational workers, shares the same definition for ALARA.

  19. Facebook Addiction Levels of Students in the Physical Education and Sport Department

    Directory of Open Access Journals (Sweden)

    Cetin YAMAN

    2016-04-01

    Full Text Available Time spent using various technological equipment increases every day with rapid technology development. Unfortunately, technology addiction is becoming an important issue. Especially with the development and ubiquity of mobile technologies, social media addiction is expanding. The aim of this study is to measure the Facebook addiction levels of 274 students at the Physical Education and Sports Teaching Department in a public university in Turkey and to examine their Facebook addiction levels against a number of variables. Descriptive method was used within the framework of the study and the “Facebook Addiction Survey” developed by Çam and İşbulan (2012 was used as the data collection instrument. The results of the study show the students had low levels of Facebook addiction. On the other hand, when the Facebook addiction level mean scores were compared, male students were seen to have higher scores than female students. Students in the 3rd grade had higher mean scores than those in the 1st and 2nd grades. Although Facebook addiction is not a problem among the students, proactive action is needed to enhance student awareness of the problem and ensure future teachers can be role models in an addiction‐free academic environment.  

  20. Short-term Effect of Fine Particulate Matter on Children?s Hospital Admissions and Emergency Department Visits for Asthma: A Systematic Review and Meta-analysis

    OpenAIRE

    Lim, Hyungryul; Kwon, Ho-Jang; Lim, Ji-Ae; Choi, Jong Hyuk; Ha, Mina; Hwang, Seung-Sik; Choi, Won-Jun

    2016-01-01

    Objectives: No children-specified review and meta-analysis paper about the short-term effect of fine particulate matter (PM2.5) on hospital admissions and emergency department visits for asthma has been published. We calculated more precise pooled effect estimates on this topic and evaluated the variation in effect size according to the differences in study characteristics not considered in previous studies. Methods: Two authors each independently searched PubMed and EMBASE for relevant studi...

  1. Spectroscopic characteristics of soil organic matter as a tool to assess soil physical quality in Mediterranean ecosystems

    Science.gov (United States)

    Recio Vázquez, Lorena; Almendros, Gonzalo; Knicker, Heike; López-Martín, María; Carral, Pilar; Álvarez, Ana

    2014-05-01

    In Mediterranean areas, the loss of soil physical quality is of particular concern due to the vulnerability of these ecosystems in relation to unfavourable climatic conditions, which usually lead to soil degradation processes and severe decline of its functionality. As a result, increasing scientific attention is being paid on the exploration of soil properties which could be readily used as quality indicators, including organic matter which, in fact, represents a key factor in the maintenance of soil physical status. In this line, the present research tackles the assessment of the quality of several soils from central Spain with the purpose of identifying the physical properties most closely correlated with the organic matter, considering not only the quantity but also the quality of the different C-forms. The studied attributes consist of a series of physical properties determined in field and laboratory conditions-total porosity, aggregate stability, available water capacity, air provision, water infiltration rate and soil hydric saturation-.The bulk organic matter was characterised by solid-state 13C NMR spectroscopy and the major organic fractions (lipids, free particulate organic matter, fulvic acids, humic acids and humin) were quantified using standard procedures. The humic acids were also analysed by visible and infrared spectroscopies. The use of multidimensional scaling to classify physical properties in conjunction with molecular descriptors of soil organic matter, suggested significant correlations between the two set of variables, which were confirmed with simple and canonical regression models. The results pointed to two well-defined groups of physical attributes in the studied soils: (i) those associated with organic matter of predominantly aromatic character (water infiltration descriptors), and (ii) soil physical variables related to organic matter with marked aliphatic character, high preservation of the lignin signature and comparatively low

  2. Double beta and dark matter search-window to new physics beyond the Standard Model of particle physics

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.

    1999-01-01

    Nuclear double beta decay provides an extraordinarily broad potential to search beyond Standard Model physics, probing already now the TeV scale, on which new physics should manifest itself. These possibilities are reviewed here. First, the results of present generation experiments are presented. The most sensitive one of them - the Heidelberg-Moscow experiment in the Gran Sasso - probes the electron mass now in the sub eV region and will reach a limit of ∼ 0.1 eV in a few years. Basing to a large extend on the theoretical work of the Heidelberg Double Beta Group in the last two years, results are obtained also for SUSY models (R-parity breaking, sneutrino mass), leptoquarks (leptoquark-Higgs coupling), compositeness, right-handed W boson mass, test of special relativity and equivalence principle in the neutrino sector and others. These results are comfortably competitive to corresponding results from high-energy accelerators like TEVATRON, HERA, etc. One of the enriched 76 Ge detectors also yields the most stringent limits for cold dark matter (WIMPs) to date by using raw data. Second, future perspectives of ββ research are discussed. A new Heidelberg experimental proposal (GENIUS) is described which would allow to increase the sensitivity for Majorana neutrino masses from the present level at best 0.1 eV down to 0.01 eV or even 0.001 eV. Its physical potential would be a breakthrough into the multi-TeV range for many beyond standard models. Its sensitivity for neutrino oscillation parameters would be larger than of all present terrestrial neutrino oscillation experiments and of those planned for the future. It could probe directly the atmospheric neutrino problem and the large angle, and for almost degenerate neutrino mass scenarios even the small angle solution of the solar neutrino problem. It would further, already in a first step using only 100 kg of natural Ge detectors, cover almost the full MSSM parameter space for prediction of neutralinos as cold

  3. Annual progress report of the physical chemistry department. Basic research 1987

    International Nuclear Information System (INIS)

    1988-01-01

    Basic research for 1987 in physical chemistry of the French Atomic Energy Commission are reviewed. Topics include molecular chemistry, isotopic geochemistry, molecular photophysics, laser photochemistry, solid and surface physical chemistry. A list of publications and thesis is given [fr

  4. The Use of Computer Competencies of Students in the Departments of Physical Education and Sport Teaching, and School Teaching

    Science.gov (United States)

    Okan, Ilyas

    2016-01-01

    This study aims to reveal the levels of the use of computer, which is nowadays one of the most important technologies, of teacher candidate studying in the departments of Physical Education and Sport Teaching, and School teaching; also aims to research whether there is differences according to various criteria or not. In research, data were…

  5. The US Department of Energy Nuclear Data and Low Energy Physics Programs: Aspects of current operational status and future direction

    International Nuclear Information System (INIS)

    Whetstone, S.L.; Meyer, R.A.

    1991-01-01

    The Nuclear Data and Low-Energy Programs are operated within the Division of Nuclear Physics of the US Department of Energy. The data program supports a range of activities including large scale data measurements, nuclear cross section modelling, and nuclear data compilation and dissemination. The US nuclear data needs and prospects for the future of this effort are currently being addressed and its present status is reviewed. Possibilities for the next generation nuclear data accessibility will be discussed and examples presented. The Low-Energy Nuclear Physics Program supports investigations into low-energy nuclear structure and neutrino physics. Among examples of the latter that are covered is the Sudbury Neutrino Observatory

  6. Health Physics Department annual progress report 1 January - 31 December 1986

    International Nuclear Information System (INIS)

    1987-05-01

    The report describes the work of the Healths Physsics Department at Risoe during 1986. The activities cover dosimetry, instrumentation, radioecology, risk by nuclear activities and nuclear emergency preparedness. Lists of staff and publications are included. The emphasis in the report has been placed on scientific and contractual work. However, service functions do constitute a substantial work load for the department. (author)

  7. Study of author’s applied physical training program for military officers-graduates of reserve officers’ departments

    Directory of Open Access Journals (Sweden)

    A.I. Yavorskyy

    2016-04-01

    Full Text Available Purpose: to test effectiveness of applied physical training program for military officers, called up to military service after graduation from reserve officers’ departments. Material: the research was conducted on the base of Educational center 184 from June 2014 to December 2015. In the research 80 military officers participated (n=30 - graduates of military higher educational establishments; n=26, n=24 - graduates of reserve officers’ departments of 22-27 years’ age. Results: we fulfilled analysis of military officers’ physical fitness by exercises, which characterize general physical fitness and military applied skills (100 meters’ run, chin ups, 3000 meters’ run, passing obstacles course, grenade throws for distance and for accuracy, 5 km march-rush. We worked out the program, the essence of which implies ensuring of physical fitness and acceleration of reserve officers-graduates’ adaptation to professional (combat functioning. Conclusions: it was proved that implementation of the author’s program influenced positively on perfection of general physical qualities and military applied skills of military officers-graduated of reserve officers’ departments (р-0.05-0.001.

  8. Assessment that Matters: Integrating the "Chore" of Department-Based Assessment with Real Improvements in Political Science Education

    Science.gov (United States)

    Deardorff, Michelle D.; Folger, Paul J.

    2005-01-01

    Assessment requirements often raise great concerns among departments and faculty: fear of loss of autonomy, distraction from primary departmental goals, and the creation of alien and artificial external standards. This article demonstrates how one political science department directly responded to their own unique circumstances in assessing their…

  9. The Art of the Motorcycle and the History of Art (and Condensed Matter Physics)

    Science.gov (United States)

    Falco, Charles

    Many topics in physics are such that they are difficult to present in ways that the general public finds engaging. In this talk I will discuss two topics I have worked on, directly related to my research in optical and condensed matter physics, that continue to have widespread appeal. In 1871 Louis Guillaume Perreaux installed a compact steam engine in a commercial bicycle and thus produced the world's first motorcycle. The 145 years since the Michaux-Perreaux have resulted in standard production motorcycles incorporating such materials as carbon-fiber composites, maraging steels, and ''exotic'' alloys of magnesium, titanium and aluminum that can exceed 190 mph straight from the show room floor. As a result of 'The Art of the Motorcycle' exhibition I co-curated at the Solomon R. Guggenheim Museum the public has learned the evolution of motorcycles is interwoven with developments in materials physics. In a second topic, discoveries I made with the renowned artist David Hockney convincingly demonstrated optical instruments were in use - by artists, not scientists - nearly 200 years earlier than commonly thought possible, and for the first time account for the remarkable transformation in the reality of portraits that occurred early in the 15th century. By learning a few principles of geometrical optics the public gains insight into the working process of artists such as van Eyck, Bellini and Caravaggio. Acknowledgement: Portions of this work done in collaboration with David Hockney.

  10. Plutonium metallurgy: The materials science challenges bridging condensed-matter physics and chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, A.J. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)], E-mail: schwartz6@llnl.gov

    2007-10-11

    Although there exists evidence of metallurgical practices dating back over 6000 years, studies of Pu and Pu alloys have been conducted for barely 60 years. During the time of the Manhattan Project and extending for some time afterward, the priority to produce the metal took precedence over the fundamental understanding of the metallurgical principals. In the past decade or so, there has been a resurgence in the basic metallurgy, condensed-matter physics, and chemistry of Pu and Pu alloys. These communities have made substantial progress, both experimentally and theoretically in many areas; however, many challenges still remain. The intent of this brief overview is to highlight a number important challenges that we face in the metallurgy of Pu including phase transformations and phase stability, aging, and the connection between electronic structure and metallurgy.

  11. Fundamentals of Condensed Matter Physics Marvin L. Cohen and Steven G. Louie

    Energy Technology Data Exchange (ETDEWEB)

    Devanathan, Ram

    2017-06-01

    This graduate level textbook on Condensed Matter Physics is written lucidly by two leading luminaries in this field. The volume draws its material from the graduate course in condensed matter physics that has been offered by the authors for several decades at the University of California, Berkeley. Cohen and Louie have done an admirable job of guiding the reader gradually from elementary concepts to advanced topics. The book is divided into four main parts that have four chapters each. Chapter 1 presents models of solids in terms of interacting atoms, which is appropriate for the ground state, and excitations to describe collective effects. Chapter 2 deals with the properties of electrons in crystalline materials. The authors introduce the Born-Oppenheimer approximation and then proceed to the periodic potential approximation. Chapter 3 discusses energy bands in materials and covers concepts from the free electron model to the tight binding model and periodic boundary conditions. Chapter 4 starts with fixed atomic cores and introduces lattice vibrations, phonons, and the concept of density of states. By the end of this part, the student should have a basic understanding of electrons and phonons in materials. Part II presents electron dynamics and the response of materials to external probes. Chapter 5 covers the effective Hamiltonian approximation and the motion of the electron under a perturbation, such as an external field. The discussion moves to many-electron interactions and the exchange-correlation energy in Chapter 6, the widely-used Density Functional Theory (DFT) in chapter 7, and the dielectric response function in Chapter 8. The next two parts of the book cover advanced topics. Part III begins with a discussion of the response of materials to photons in Chapter 9. Chapter 10 goes into the details of electron-phonon interactions in different materials and introduces the polaron. Chapter 11 presents electron dynamics in a magnetic field and Chapter 12

  12. A large scale double beta and dark matter experiment: On the physics potential of GENIUS

    International Nuclear Information System (INIS)

    Klapdor-Kleingrothaus, H.V.; Hirsch, M.

    1997-01-01

    The physics potential of GENIUS, a recently proposed double beta decay anddark matter experiment is discussed. The experiment will allow to probe neutrino masses down to 10 -(2-3) eV. GENIUS will test the structure of the neutrino mass matrix, and therefore implicitly neutrino oscillation parameters comparable or superior in sensitivity to the best proposed dedicated terrestrial neutrino oscillation experiments. If the 10 -3 eV level is reached, GENIUS will even allow to test the large angle MSW solution of the solar neutrino problem. Even in its first stage GENIUS will confirm or rule out degenerate or inverted neutrino mass scenarios, which have been widely discussed in the literature as a possible solution to current hints on finite neutrino masses and also test the ν e ν μ hypothesis of the atmospheric neutrino problem.GENIUS would contribute to the search for R-parity violating SUSY and right-handed W-bosons on a scale similar or superior to LHC. In addition, GENIUS would largely improve the current 0νββ decay searches for R-parity conserving SUSY and leptoquarks. Concerning cold dark matter (CDM) search, the low background anticipated for GENIUS would, for thefirst time ever, allow to cover the complete MSSM neutralino parameter space, making GENIUS competitive to LHC in SUSY discovery. If GENIUS could find SUSY CDM as a by-product it would confirm that R-parity must be conserved exactly. GENIUS will thus be a major tool for future non-accelerator particle physics. (orig.)

  13. Upgrading the Teaching Laboratory of the Physics and Technology Department of the Bronx Community College

    National Research Council Canada - National Science Library

    Abdellatif, Nasser

    2001-01-01

    Most of the Equipments requested through this grant offer have been delivered. It has indeed had a profound positive effect on the teaching learning process within the department, the school and the community as a whole...

  14. Physics in the Andean Countries: A Perspective from Condensed Matter, Novel Materials and Nanotechnology

    Science.gov (United States)

    Prieto, P.

    2009-05-01

    panorama reveals the scarcity of collaboration among the Andean nations, one which does not manage inclusion in international statistics. Said isolated research processes in the countries of the region may be responsible for the scant productivity in R&D in the fields of condensed matter, novel materials, and nanotechnology. Countries like Panama, Bolivia, Ecuador, and Peru have increased their investments in research on environmental issues and medicine; while productivity and development in Physics have not been consolidated as state policy in R&D. In conclusion, we will see the results of specific follow up to research in the fields of condensed matter, novel materials, and nanotechnology from an interdisciplinary perspective, describing the research themes in said fields, patents, and registrations. Reference: http://www.ricyt.org/ La Red de Indicadores de Ciencia y Tecnolog'ia -Iberoamericana e Interamericana- (RICYT)

  15. Ambient fine particulate matter air pollution and leisure-time physical inactivity among US adults.

    Science.gov (United States)

    An, R; Xiang, X

    2015-12-01

    There is mounting evidence documenting the adverse health effects of short- and long-term exposure to ambient fine particulate matter (PM2.5) air pollution, but population-based evidence linking PM2.5 and health behaviour remains lacking. This study examined the relationship between ambient PM2.5 air pollution and leisure-time physical inactivity among US adults 18 years of age and above. Retrospective data analysis. Participant-level data (n = 2,381,292) from the Behavioral Risk Factor Surveillance System 2003-2011 surveys were linked with Wide-ranging Online Data for Epidemiologic Research air quality data by participants' residential county and interview month/year. Multilevel logistic regressions were performed to examine the effect of ambient PM2.5 air pollution on participants' leisure-time physical inactivity, accounting for various individual and county-level characteristics. Regressions were estimated on the overall sample and subsamples stratified by sex, age cohort, race/ethnicity and body weight status. One unit (μg/m(3)) increase in county monthly average PM2.5 concentration was found to be associated with an increase in the odds of physical inactivity by 0.46% (95% confidence interval = 0.34%-0.59%). The effect was similar between the sexes but to some extent (although not always statistically significant) larger for younger adults, Hispanics, and overweight/obese individuals compared with older adults, non-Hispanic whites or African Americans, and normal weight individuals, respectively. Ambient PM2.5 air pollution is found to be associated with a modest but measurable increase in individuals' leisure-time physical inactivity, and the relationship tends to differ across population subgroups. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  16. Does size matter? An investigation of how department size and other organizational variables influence on publication productivity and citation impact

    Energy Technology Data Exchange (ETDEWEB)

    Aksnes, D.W.; Rørstad, K.; Piro, F.N.

    2016-07-01

    In this study, we investigate whether university department size is important in determining publication productivity and citation impact. Drawing on a unique dataset containing a variety of different variables at department levels, we are able to provide a richer picture of the research performance than what typically has been the case in many previous studies. In addition to analyzing the basic question of how size relates to scientific performance, we address whether the funding profile of the departments plays a role, whether the scientific performance is influenced by the composition of the academic personnel (in terms of gender, academic positions, recruiting personnel and the share of doctoral degree holders). The study shows that virtually no size effect can be identified and highly productive and highly cited units are found among both small, medium and large departments. For none of the organizational variables we are able to identify statistically significant relationships in respect to research performance at an overall level. We conclude that the productivity and citation differences at the level of departments cannot generally be explained by the selected variables for department size, funding structure and the composition of scientific personnel. (Author)

  17. Toward the fundamental theory of nuclear matter physics: The microscopic theory of nuclear collective dynamics

    International Nuclear Information System (INIS)

    Sakata, F.; Marumori, T.; Hashimoto, Y.; Tsukuma, H.; Yamamoto, Y.; Terasaki, J.; Iwasawa, Y.; Itabashi, H.

    1992-01-01

    Since the research field of nuclear physics is expanding rapidly, it is becoming more imperative to develop the microscopie theory of nuclear matter physics which provides us with a unified understanding of diverse phenomena exhibited by nuclei. An estabishment of various stable mean-fields in nuclei allows us to develop the microscopie theory of nuclear collective dynamics within the mean-field approximation. The classical-level theory of nuclear collective dynamics is developed by exploiting the symplectic structure of the timedependent Hartree-Fock (TDHF)-manifold. The importance of exploring the single-particle dynamics, e.g. the level-crossing dynamics in connection with the classical order-to-chaos transition mechanism is pointed out. Since the classical-level theory os directly related to the full quantum mechanical boson expansion theory via the symplectic structure of the TDHF-manifold, the quantum theory of nuclear collective dynamics is developed at the dictation of what os developed on the classical-level theory. The quantum theory thus formulated enables us to introduce the quantum integrability and quantum chaoticity for individual eigenstates. The inter-relationship between the classical-level and quantum theories of nuclear collective dynamics might play a decisive role in developing the quantum theory of many-body problems. (orig.)

  18. Effective approaches in and beyond the MSSM: applications to Higgs physics and dark matter observables

    International Nuclear Information System (INIS)

    Drieu la Rochelle, G.

    2012-01-01

    We have developed in this thesis a method to shed some light on the features of supersymmetry in view of Higgs physics and observables pertaining to dark matter: the effective approach. We have thus investigated the BMSSM framework, an extension of the MSSM - Minimal Supersymmetric Standard Model - that encompasses many different extensions of the MSSM. It turns out that allowing for extra-physics that affect the Higgs sector of the MSSM produces a much richer Higgs phenomenology compared to the MSSM. An important development that we have carried out in the aim of exploiting the LHC performance in the BMSSM framework is the recasting of the Standard Model analyses to BSM (Beyond the Standard Model) theories. Precisely, we have evaluated the accuracy of some approximations as for instance the quadrature sum of different signals to combine the statistical significances and the use of the inclusive predicted cross-sections instead of the exclusive ones. We have also seen that limits on the cross-sections that are obtained by a combination of different subchannels are generically model-dependent. We have then turned to another set of constraints on supersymmetric theories that consists in the dark matter observables. Our work has focused on the precise computation of the relic density in the MSSM. We have decided to introduce once again an effective approach, but whereas the one implemented in the BMSSM aimed at accounting for extra physics beyond the MSSM, this specific one was built to account for radiative corrections brought by MSSM particles. We have performed the implementation of different effective vertices and assessed the robustness of the approach in the case of annihilation of neutralinos to fermions. We have found that the full one-loop result was very well approximated in the case of a bi no-like neutralino, where the discrepancy between both calculations was found to be less than 2%. We have also discussed the case of the Higgsino's-like neutralino with

  19. Association Euratom - DTU, Technical University of Denmark, Department of Physics - Annual Progress Report 2011

    DEFF Research Database (Denmark)

    The programme of the Research Unit of the Fusion Association Euratom – DTU, Technical University of Denmark (until 31-12- 2011: Association Euratom – Risø DTU) covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport...... temperature superconductors. Other activities are system analysis, initiative to involve Danish industry in ITER contracts and public information. A summary is presented of the results obtained in the Research Unit during 2011....

  20. Moderate Physical Activity Mediates the Association between White Matter Lesion Volume and Memory Recall in Breast Cancer Survivors.

    Directory of Open Access Journals (Sweden)

    Gillian E Cooke

    Full Text Available Increased survival rates among breast cancer patients have drawn significant attention to consequences of both the presence of cancer, and the subsequent treatment-related impact on the brain. The incidence of breast cancer and the effects of treatment often result in alterations in the microstructure of white matter and impaired cognitive functioning. However, physical activity is proving to be a successful modifiable lifestyle factor in many studies that could prove beneficial to breast cancer survivors. This study investigates the link between white matter lesion volume, moderate physical activity, and cognition in breast cancer survivors following treatment compared to non-cancer age-matched controls. Results revealed that brain structure significantly predicted cognitive function via mediation of physical activity in breast cancer survivors. Overall, the study provided preliminary evidence suggesting moderate physical activity may help reduce the treatment related risks associated with breast cancer, including changes to WM integrity and cognitive impairment.

  1. The Effects of the A Matter of Balance Program on Falls and Physical Risk of Falls, Tampa, Florida, 2013

    OpenAIRE

    Chen, Tuo-Yu; Edwards, Jerri D.; Janke, Megan C.

    2015-01-01

    Introduction This study investigated the effects of the A Matter of Balance (MOB) program on falls and physical risk factors of falling among community-dwelling older adults living in Tampa, Florida, in 2013. Methods A total of 110 adults (52 MOB, 58 comparison) were enrolled in this prospective cohort study. Data on falls, physical risk of falling, and other known risk factors of falling were collected at baseline and at the end of the program. Multivariate analysis of covariance with repeat...

  2. Analysis of prejudices and attitudes of students in the department of physical therapy against people with disabilities.

    Science.gov (United States)

    Park, Yung Keun; Kim, Je Ho

    2017-12-01

    [Purpose] The purpose of this study is to examine prejudices and attitudes of students in the department of physical therapy, in order to suggest basic data for constructing an effective program to develop a positive attitude toward people with disabilities and lower social distance from them. [Subjects and Methods] For this study, students in the department of physical therapy participate in the survey examining prejudices and attitude towards people with disabilities. [Results] First, there were statistically significant differences in the prejudice against people with disabilities among student groups divided by whether they had contact on a frequent basis currently with those who have disabilities. Second, there were statistically significant differences in the prejudice against people with disabilities among student groups divided by whether they had an experience of being harmed by people with disabilities. Third, there was a correlation among prejudices against people with disabilities with each other that is articulated in the eighth domain. Finally, as a result of regression analysis, the students' attitudes towards people with disabilities were explained appropriately by the prejudices about performance of daily tasks and NIMBY (Not In My Back Yard) syndrome. [Conclusion] It is crucial to create an environment where University students in the department of physical therapy can have positive interactions with people with disabilities, to reduce the overall prejudices, and specifically, the prejudices about performance of daily tasks and about NIMBY syndrome.

  3. Physics of intense light ion beams and production of high energy density in matter. Annual report 1994

    International Nuclear Information System (INIS)

    Bluhm, H.J.

    1995-06-01

    This report presents the results obtained in 1994 within the FZK-program on 'Physics of intense ion beams and pulsed plasmas'. It describes the present status of the 6 MW, 2 TW pulsed generator KALIF-HELIA, the production and focussing of high power ion beams and numerical simulations and experiments related to the hydrodynamics of beam matter interaction. (orig.) [de

  4. Reasoning Using Particulate Nature of Matter: An Example of a Sociochemical Norm in a University-Level Physical Chemistry Class

    Science.gov (United States)

    Becker, Nicole; Rasmussen, Chris; Sweeney, George; Wawro, Megan; Towns, Marcy; Cole, Renee

    2013-01-01

    In college level chemistry courses, reasoning using molecular and particulate descriptions of matter becomes central to understanding physical and chemical properties. In this study, we used a qualitative approach to analyzing classroom discourse derived from Toulmin's model of argumentation in order to describe the ways in which students develop…

  5. [Winter workshop on universalities in condensed matter physics, Les Houches, France, March 15-24, 1988]: [Foreign trip report

    International Nuclear Information System (INIS)

    Hu, Bambi.

    1988-01-01

    This paper reports on the travel of Bambi Hu to France for a workshop on Universalities in Condensed Matter Physics. A very brief discussion is given on the workshop. His paper titled ''Problem of Universality in Phase Transitions in Low-Symmetry Systems,'' is included in this report

  6. PREFACE: 10th Summer School on Theoretical Physics 'Symmetry and Structural Properties of Condensed Matter'

    Science.gov (United States)

    Lulek, Tadeusz; Wal, Andrzej; Lulek, Barbara

    2010-03-01

    This volume contains the Proceedings of the Tenth Summer School on Theoretical Physics under the banner title 'Symmetry and Structural Properties of Condensed Matter' (SSPCM 2009). The School was organized by Rzeszow University of Technology, Poland, in cooperation with AGH University of Science and Technology, Cracow, Poland, and took place on 2-9 September 2009 in Myczkowce, Poland. With this meeting we have reached the round number ten of the series of biannual SSPCM schools, which started in 1990 and were focused on some advanced mathematical methods of condensed matter physics. The first five meetings were held in Zajaczkowo near Poznan, under the auspices of The Institute of Physics of Adam Mickiewicz University, and the last five in Myczkowce near Rzeszów, in the south-eastern part of Poland. Within these two decades several young workers who started at kindergarten lectures at SSPCM, have now reached their PhD degrees, professorships and authority. Proceedings of the first seven SSPCM meetings were published as separate volumes by World Scientific, and the last two as volumes 30 and 104 of Journal of Physics: Conference Series. The present meeting is also the third of the last schools which put the emphasis on quantum informatics. The main topics of our jubilee SSPCM'09 are the following: Information processing, entanglement, and tensor calculus, Integrable models and unitary symmetry, Finite systems and nanophysics. The Proceedings are divided into three parts accordingly. The school gathered together 55 participants from seven countries and several scientific centers in Poland, accommodating again advanced research with young collaborators and students. Acknowledgements The Organizing Committee would like to express its gratitude to all participants for their many activities during the School and for creating a friendly and inspiring atmosphere within our SSPCM society. Special thanks are due to all lecturers for preparing and presenting their talks and

  7. Research in experimental elementary particle physics. A proposal to the U.S. Department of Energy

    International Nuclear Information System (INIS)

    White, Andrew P.; Kaushik De; Draper, Paul A.; Ransom Stephens

    1995-01-01

    We report on the activities of the High Energy Physics Group at the University of Texas at Arlington for the period 1994-95. We propose the continuation of the research program for 1996-98 with strong participation in the detector upgrade and physics analysis work for the D0 Experiment at Fermilab, prototyping and pre-production studies for the muon and calorimeter systems for the ATLAS Experiment at CERN, and detector development and simulation studies for the PP2PP Experiment at Brookhaven

  8. Association Euratom - DTU, Technical University of Denmark, Department of Physics - Annual Progress Report 2012

    DEFF Research Database (Denmark)

    The programme of the Research Unit of the Fusion Association Euratom – DTU, Technical University of Denmark covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium...... and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. Within fusion technology there are activities on fusion materials research (Tungsten and ODSFS). Other activities are system analysis...

  9. Association Euratom - DTU, Technical University of Denmark, Department of Physics - Annual Progress Report 2013

    DEFF Research Database (Denmark)

    The programme of the Research Unit of the Fusion Association Euratom – DTU, Technical University of Denmark covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium...... and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. Within fusion technology there are activities on fusion materials research (Tungsten and ODSFS). Other activities are system analysis...

  10. Assessment of soil organic matter persistence under different land uses applying a physical fractionation procedure

    Science.gov (United States)

    Giannetta, Beatrice; Plaza, César; López-de-Sá, Esther G.; Vischetti, Costantino; Zaccone, Claudio

    2017-04-01

    The understanding of the mechanisms involved in the build-up of soil organic matter (SOM) pools with long residence time is tightly linked to the comprehension of C dynamics. Organo-mineral associations are known to be strongly correlated with the accumulation of selective preserved C forms. Adsorption to minerals, as well as occlusion within aggregates, may affect SOM protection in different ways depending on its molecular structure and pedo-climatic conditions. In this research, we investigated changes in quantity and quality of SOM pools characterized by different protection mechanisms in coniferous and broadleaved forest soils, grassland soils, technosols and an agricultural soil with different organic amendments, in order to evaluate the influence of both land use and organic matter nature on physical and/or chemical stabilization of SOM. In particular, free (FR), intra-macroaggregate (MA), intra-microaggregate (MI), and mineral-associated (Min) fractions were separated in order to define physical and chemical mechanisms responsible for the SOM protection against degradation. All these SOM fractions were analyzed for organic C and total N concentration, and their stability assessed by thermogravimetric analysis (TD-TGA). Preliminary data show that, for all land uses, most of the organic C (40-60%) is found in the Min pool, followed by FR (20-40%)>MI MA. With the only exception of the FR, no significant correlations were found between the C/N ratio and a thermal stability index (H550-400/400-250) of each fraction; at the same time, a highly significant and positive correlation was found between these two parameters in all fractions isolated from agricultural soils. In particular, the thermal stability index measured in all Min fractions may be related to the more marked presence of labile compounds in this pool relative to recalcitrant compounds. Conversely, FR OM could not always represent a fresh and readily decomposable fraction.Furthermore, OM associated

  11. DOE Closeout Report from SUNY Albany High Energy Physics to Department of Energy Office of Science.

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Jesse [SUNY Albany; Jain, Vivek

    2014-08-15

    A report from the SUNY Albany Particle Physics Group summarizing our activities on the ATLAS experiment at the Large Hadron Collider. We summarize our work: on data analysis projects, on efforts to improve detector performance, and on service work to the experiment.

  12. Research supported by the department of energy Task C: Experimental high energy physics. 1995 Final report

    International Nuclear Information System (INIS)

    Brau, J.

    1996-01-01

    This report describes work of the University of Oregon high-energy physics group related to the Stanford Linear Detector, LEP's OPAL detector, the NuTeV experiment at Fermilab, the SSC's GEM detector, and top-quark studies at the Next Linear Collider. 160 refs., 53 figs., 12 tabs

  13. Leading by example: a local health department-community collaboration to incorporate physical activity into organizational practice.

    Science.gov (United States)

    Yancey, Antronette K; Lewis, Lavonna B; Sloane, David C; Guinyard, Joyce Jones; Diamant, Allison L; Nascimento, Lori M; McCarthy, William J

    2004-01-01

    A multisectoral model promoting sociocultural environmental change to increase physical activity levels among African Americans in Los Angeles County, California, was developed and implemented. This model represents a true collaboration between a local health department and a community lead agency. Community organizations serving targeted areas of the county participated in one or more interventions incorporating physical activity into routine organizational practice, which centered around modeling the behaviors promoted ("walking the talk"). In the current study, level of organizational support for physical activity integration was assessed, as reflected in the extent of organizational commitment associated with each intervention. Individual-level data, characterizing the sociodemography, health status, and health behaviors of organization staff, members, and clients, are presented to document the average risk burden in the targeted population. Nearly half of the more than 200 participating organizations actively embraced incorporating physical activity into their regular work routines, with more than 25 percent committed at the highest level of involvement. Broad capacity and support for organizational integration of physical activity was demonstrated, with the observed level of commitment varying by organization type. Similar to the successful evolution of tobacco control, some of the responsibility ("cost") for physical activity adoption and maintenance can and should be shifted from the individual to organizational entities, such as workplaces.

  14. Statistical Physics

    CERN Document Server

    Mandl, Franz

    1988-01-01

    The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition E. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw The Physics of Stars Second Edition A. C. Phillips Computing for Scient

  15. Does location matter for a scheduling department? A longitudinal case study on the effects of relocating the schedulers

    NARCIS (Netherlands)

    De Snoo, C.; Van Wezel, W.; Wortmann, J. C.

    2011-01-01

    Purpose - The purpose of this paper is to explore the importance of physical proximity between schedulers and operators within manufacturing firms. In literature, a small distance between interdependent employees is assumed to be a prerequisite for a high level of coordination. This study

  16. 75 FR 11942 - In the Matter of U.S. Department of Commerce, National Institute of Standards and Technology...

    Science.gov (United States)

    2010-03-12

    ... safety program content and implementation; (7) The failure to demonstrate that the total effective dose... and filling a senior-level safety-executive position to oversee the NIST central safety organization... organization, including resources for additional staff and equipment for health physics; (7) Establishing and...

  17. Academic Training Lecture Regular Programme: Particle Physics Foundations of Dark Matter, Dark Energy, and Inflation (1/3)

    CERN Multimedia

    2012-01-01

    Particle Physics Foundations of Dark Matter, Dark Energy, and Inflation (1/3), by Dr. Edward (Rocky) Kolb (University of Chicago).   Wednesday, May 9, 2012 from 11:00 to 12:00 (Europe/Zurich) at CERN ( 500-1-001 - Main Auditorium ) Ninety-five percent of the present mass-energy density of the Universe is dark.  Twenty-five percent is in the form of dark matter holding together galaxies and other large scale structures, and 70% is in the form of dark energy driving an accelerated expansion of the universe.  Dark matter and dark energy cannot be explained within the standard model of particle physics.  In the first lecture I will review the evidence for dark matter and the observations that point to an explanation in the form of cold dark matter.  I will then describe the expected properties of a hypothetical Weakly-Interacting Massive Particle, or WIMP, and review experimental and observational approaches to test the hypothesis.  Finally, I will discus...

  18. Hypothetical Dark Matter/Axion rockets: What can be said about Dark Matter in terms of space physics propulsion

    International Nuclear Information System (INIS)

    Beckwith, Andrew

    2009-01-01

    This paper discusses dark matter (DM) particle candidates from non-supersymmetry (SUSY) processes and explores how a DM candidate particle in the 100-400 GeV range could be created. Thrust from DM particles is also proposed for Photon rocket and Axion rockets. It would use a magnetic field to convert DM particles to near photonlike particles in a chamber to create thrust from the discharge of the near-photon-like particles. The presence of DM particles would suggest that thrust from the emerging near-photon-like particle would be greater than with conventional photon rockets. This amplifies and improves on an 'axion rocket ramjet' for interstellar travel. It is assumed that the same methodology used in an axion ramjet could be used with DM, with perhaps greater thrust/power conversion efficiencies.

  19. Simulating the physical properties of dark matter and gas inside the cosmic web

    Science.gov (United States)

    Dolag, K.; Meneghetti, M.; Moscardini, L.; Rasia, E.; Bonaldi, A.

    2006-08-01

    Using the results of a high-resolution, cosmological hydrodynamical re-simulation of a supercluster-like region, we investigate the physical properties of the gas located along the filaments and bridges which constitute the so-called cosmic web. First, we analyse the main characteristics of the density, temperature and velocity fields, which have quite different distributions, reflecting the complex dynamics of the structure-formation process. Then we quantify the signals which originate from the matter in the filaments by considering different observables. Inside the cosmic web, we find that the halo density is about 10-14 times larger than cosmic mean; the bremsstrahlung X-ray surface brightness reaches at most 10-16 erg s-1 cm-2 arcmin-2 the Compton-y parameter due to the thermal Sunyaev-Zel'dovich effect is about 10-6 the reduced shear produced by the weak lensing effect is ~0.01-0.02. These results confirm the difficulty of an observational detection of the cosmic web. Finally, we find that projection effects of the filamentary network can affect the estimates of the properties of single clusters, increasing their X-ray luminosity by less than 10 per cent and their central Compton-y parameter by up to 30 per cent.

  20. Physical properties of compressive knits compound with different matters impregnated by microcapsules moisturizing

    Directory of Open Access Journals (Sweden)

    Fadhel Jaâfar

    2011-01-01

    Full Text Available The compressive knits include a very varied group of different device functions, from the more merely (protection to the more developed (scars improvement, skin hydration…. We combined two therapy forms the pressure and the hydration of burned skin. We essayed to reunite the advantages of two techniques pressure and hydration in only one and the same instrument in the form of compressive knit with microencapsulated surface. The compressive knits are elaborated with different textile matters such us Cotton/Spandex, Polyester/Spandex, Polyamide/Spandex, Viscose/Spandex and Cotton/Polyester/Spandex. The hydration product chosen in this application is the Jojoba Oil. The microcapsules were prepared according to the Phase Separation Method. The physical properties such us the Pressure, the Mass per Area, the Thickness, the Air Permeability and the Adiathermic Power are tested. According to the results, we conclude that the knits are compressive, comfort, smooth, no allergen, thinness and washable. The raw materials selected for the samples studied are biocompatible with human skin.

  1. At least eighty percent of brain grey matter is modifiable by physical activity: A review study.

    Science.gov (United States)

    Batouli, Seyed Amir Hossein; Saba, Valiallah

    2017-08-14

    The human brain is plastic, i.e. it can show structural changes in response to the altered environment. Physical activity (PA) is a lifestyle factor which has significant associations with the structural and functional aspects of the human brain, as well as with the mind and body health. Many studies have reported regional/global brain volume increments due to exercising; however, a map which shows the overall extent of the influences of PAs on brain structure is not available. In this study, we collected all the reports on brain structural alterations in association with PA in healthy humans, and next, a brain map of the extent of these effects is provided. The results of this study showed that a large network of brain areas, equal to 82% of the total grey matter volume, were associated with PA. This finding has important implications in utilizing PA as a mediator factor for educational purposes in children, rehabilitation applications in patients, improving the cognitive abilities of the human brain such as in learning or memory, and preventing age-related brain deteriorations. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Les Houches Summer School of Theoretical Physics : Session 72, Coherent Atomic Matter Waves

    CERN Document Server

    Westbrook, C; David, F; Coherent Atomic Matter Waves

    2001-01-01

    Progress in atomic physics has been so vigorous during the past decade that one is hard pressed to follow all the new developments. In the early 1990s the first atom interferometers opened a new field in which we have been able to use the wave nature of atoms to probe fundamental quantum me chanics questions as well as to make precision measurements. Coming fast on the heels of this development was the demonstration of Bose Einstein condensation in dilute atomic vapors which intensified research interest in studying the wave nature of matter, especially in a domain in which "macro scopic" quantum effects (vortices, stimulated scattering of atomic beams) are visible. At the same time there has been much progress in our understanding of the behavior of waves (notably electromagnetic) in complex media, both periodic and disordered. An obvious topic of speculation and probably of future research is whether any new insight or applications will develop if one examines the behavior of de Broglie waves in ana...

  3. Studying the physical basis of global warming: thermal effects of the interaction between radiation and matter and greenhouse effect

    International Nuclear Information System (INIS)

    Besson, Ugo; De Ambrosis, Anna; Mascheretti, Paolo

    2010-01-01

    We present a teaching module dealing with the thermal effects of interaction between radiation and matter, the infrared emission of bodies and the greenhouse effect devoted to university level and teacher education. The module stresses the dependence of the optical properties of materials (transparency, absorptivity and emissivity) on radiation frequency, as a result of interaction between matter and radiation. Multiple experiences are suggested to favour a progressive construction of knowledge on the physical aspects necessary to understand the greenhouse effect and global warming. Some results obtained with university students are briefly reported.

  4. Studying the physical basis of global warming: thermal effects of the interaction between radiation and matter and greenhouse effect

    Energy Technology Data Exchange (ETDEWEB)

    Besson, Ugo; De Ambrosis, Anna; Mascheretti, Paolo [Department of Physics ' A Volta' , University of Pavia, Via A Bassi 6, 27100 Pavia (Italy)], E-mail: ugo.besson@unipv.it, E-mail: anna.deambrosisvigna@unipv.it

    2010-03-15

    We present a teaching module dealing with the thermal effects of interaction between radiation and matter, the infrared emission of bodies and the greenhouse effect devoted to university level and teacher education. The module stresses the dependence of the optical properties of materials (transparency, absorptivity and emissivity) on radiation frequency, as a result of interaction between matter and radiation. Multiple experiences are suggested to favour a progressive construction of knowledge on the physical aspects necessary to understand the greenhouse effect and global warming. Some results obtained with university students are briefly reported.

  5. Models in Physics, Models for Physics Learning, and Why the Distinction May Matter in the Case of Electric Circuits

    Science.gov (United States)

    Hart, Christina

    2008-01-01

    Models are important both in the development of physics itself and in teaching physics. Historically, the consensus models of physics have come to embody particular ontological assumptions and epistemological commitments. Educators have generally assumed that the consensus models of physics, which have stood the test of time, will also work well…

  6. Mineralization of organic matter in gray forest soil and typical chernozem with degraded structure due to physical impacts

    Science.gov (United States)

    Semenov, V. M.; Zhuravlev, N. S.; Tulina, A. S.

    2015-10-01

    The dynamics of the organic matter mineralization in the gray forest soil and typical chernozem with structure disturbed by physical impacts (grinding and extraction of water-soluble substances) were studied in two long-term experiments at the constant temperature and moisture. The grinding of soil to particles of 0.1, day-1) and difficultly mineralizable (0.01 > k 3 > 0.001, day-1) fractions in the active pool of soil organic matter. The results of the studies show that the destruction of the structural-aggregate status is one of the reasons for the active soil organic matter depletion and, as a consequence, for the degradation of the properties inherent to the undisturbed soils.

  7. From condensed matter to Higgs physics. Solving functional renormalization group equations globally in field space

    Energy Technology Data Exchange (ETDEWEB)

    Borchardt, Julia

    2017-02-07

    By means of the functional renormalization group (FRG), systems can be described in a nonperturbative way. The derived flow equations are solved via pseudo-spectral methods. As they allow to resolve the full field dependence of the effective potential and provide highly accurate results, these numerical methods are very powerful but have hardly been used in the FRG context. We show their benefits using several examples. Moreover, we apply the pseudo-spectral methods to explore the phase diagram of a bosonic model with two coupled order parameters and to clarify the nature of a possible metastability of the Higgs-Yukawa potential.In the phase diagram of systems with two competing order parameters, fixed points govern multicritical behavior. Such systems are often discussed in the context of condensed matter. Considering the phase diagram of the bosonic model between two and three dimensions, we discover additional fixed points besides the well-known ones from studies in three dimensions. Interestingly, our findings suggest that in certain regions of the phase diagram, two universality classes coexist. To our knowledge, this is the first bosonic model where coexisting (multi-)criticalities are found. Also, the absence of nontrivial fixed points can have a physical meaning, such as in the electroweak sector of the standard model which suffers from the triviality problem. The electroweak transition giving rise to the Higgs mechanism is dominated by the Gaussian fixed point. Due to the low Higgs mass, perturbative calculations suggest a metastable potential. However, the existence of the lower Higgs-mass bound eventually is interrelated with the maximal ultraviolet extension of the standard model. A relaxation of the lower bound would mean that the standard model may be still valid to even higher scales. Within a simple Higgs-Yukawa model, we discuss the origin of metastabilities and mechanisms, which relax the Higgs-mass bound, including higher field operators.

  8. Considerations concerning the physics of nuclear matter under extreme conditions and an accelerator for relativistic heavy ions

    International Nuclear Information System (INIS)

    Blasche, K.; Bock, R.; Franzke, B.; Greiner, W.; Gutbrod, H.H.; Povh, B.; Schmelzer, C.; Stock, R.

    1977-01-01

    The future problems of heavy-ion physics in the 10 GeV/U range are dealt with: the dynamics of relativistic nuclear collisions, phase transitions, nuclear matter, quantum electrodynamics of extremely strong fields, and astrophysical aspects. In the second part, the project of a heavy-ion accelerator in the 10 GeV/U range to be coupled to the present GSI UNILAC accelerator is discussed. (WL) [de

  9. Many-Body Quantum Theory in Condensed Matter Physics-An Introduction

    International Nuclear Information System (INIS)

    Logan, D E

    2005-01-01

    This is undoubtedly an ambitious book. It aims to provide a wide ranging, yet self-contained and pedagogical introduction to techniques of quantum many-body theory in condensed matter physics, without losing mathematical 'rigor' (which I hope means rigour), and with an eye on physical insight, motivation and application. The authors certainly bring plenty of experience to the task, the book having grown out of their graduate lectures at the Niels Bohr Institute in Copenhagen over a five year period, with the feedback and refinement this presumably brings. The book is also of course ambitious in another sense, for it competes in the tight market of general graduate/advanced undergraduate texts on many-particle physics. Prospective punters will thus want reasons to prefer it to, or at least give it space beside, well established texts in the field. Subject-wise, the book is a good mix of the ancient and modern, the standard and less so. Obligatory chapters deal with the formal cornerstones of many-body theory, from second quantization, time-dependence in quantum mechanics and linear response theory, to Green's function and Feynman diagrams. Traditional topics are well covered, including two chapters on the electron gas, chapters on phonons and electron-phonon coupling, and a concise account of superconductivity (confined, no doubt judiciously, to the conventional BCS case). Less mandatory, albeit conceptually vital, subjects are also aired. These include a chapter on Fermi liquid theory, from both semi-classical and microscopic perspectives, and a freestanding account of one-dimensional electron gases and Luttinger liquids which, given the enormity of the topic, is about as concise as it could be without sacrificing clarity. Quite naturally, the authors' own interests also influence the choice of material covered. A persistent theme, which brings a healthy topicality to the book, is the area of transport in mesoscopic systems or nanostructures. Two chapters, some

  10. Solid Matter

    CERN Document Server

    Angelo, Joseph A

    2011-01-01

    Supported by a generous quantity of full-color illustrations and interesting sidebars, Solid Matter introduces the basic characteristics and properties of solid matter. It briefly describes the cosmic connection of the elements, leading readers through several key events in human pre-history that resulted in more advanced uses of matter in the solid state. Chapters include:. -Solid Matter: An Initial Perspective. -Physical Behavior of Matter. -The Gravity of Matter. -Fundamentals of Materials Science. -Rocks and Minerals. -Metals. -Building Materials. -Carbon Earth's Most Versatile Element. -S

  11. Physics

    CERN Document Server

    Cullen, Katherine

    2005-01-01

    Defined as the scientific study of matter and energy, physics explains how all matter behaves. Separated into modern and classical physics, the study attracts both experimental and theoretical physicists. From the discovery of the process of nuclear fission to an explanation of the nature of light, from the theory of special relativity to advancements made in particle physics, this volume profiles 10 pioneers who overcame tremendous odds to make significant breakthroughs in this heavily studied branch of science. Each chapter contains relevant information on the scientist''s childhood, research, discoveries, and lasting contributions to the field and concludes with a chronology and a list of print and Internet references specific to that individual.

  12. Verbal abuse and physical assault in the emergency department: Rates of violence, perceptions of safety, and attitudes towards security.

    Science.gov (United States)

    Partridge, Bradley; Affleck, Julia

    2017-08-01

    Emergency Department (ED) workers are prone to occupational violence, however the extent and impact of this may not be evenly felt across all roles in the ED. Explore: 1) the rate of verbal abuse and physical assaults experienced by ED staff, 2) perceptions of safety, 3) attitudes towards security officers, and 4) formal reporting of incidents. 330 ED workers were surveyed at four public hospitals in one metropolitan health service district in Queensland, Australia, including 179 nurses, 83 medical staff, 44 administration staff, 14 allied health, and 9 operational. Nurses were more likely to have been physically assaulted in the last six months and were less likely to feel safe. Most ED staff across all roles experienced verbal abuse. Nurses were better than medical staff at reporting instances of occupational violence although overall reporting across all roles was low. Staff who thought that security officers respond to incidents quickly and are a visible presence in the ED were more likely to feel safe in the ED. Workers in the ED, particularly nurses, experience high rates of verbal abuse and physical aggression and there may be a case for having designated security guards in the ED. Copyright © 2017 College of Emergency Nursing Australasia. Published by Elsevier Ltd. All rights reserved.

  13. Testing Einstein's gravity and dark energy with growth of matter perturbations: Indications for new physics?

    Science.gov (United States)

    Basilakos, Spyros; Nesseris, Savvas

    2016-12-01

    The growth index of matter fluctuations is computed for ten distinct accelerating cosmological models and confronted by the latest growth-rate data via a two-step process. First, we implement a joint statistical analysis in order to place constraints on the free parameters of all models using solely background data. Second, using the observed growth rate of clustering from various galaxy surveys we test the performance of the current cosmological models at the perturbation level while either marginalizing over σ8 or having it as a free parameter. As a result, we find that at a statistical level, i.e., after considering the best-fit χ2 or the value of the Akaike information criterion, most models are in very good agreement with the growth-rate data and are practically indistinguishable from Λ CDM . However, when we also consider the internal consistency of the models by comparing the theoretically predicted values of (γ0,γ1), i.e., the value of the growth index γ (z ) and its derivative today, with the best-fit ones, we find that the predictions of three out of ten dark energy models are in mild tension with the best-fit ones when σ8 is marginalized over. When σ8 is free we find that most models are not only in mild tension, but also predict low values for σ8. This could be attributed to either a systematic problem with the growth-rate data or the emergence of new physics at low redshifts, with the latter possibly being related to the well-known issue of the lack of power at small scales. Finally, by utilizing mock data based on an large synoptic survey telescope-like survey we show that with future surveys and by using the growth index parametrization, it will be possible to resolve the issue of the low σ8 but also the tension between the fitted and theoretically predicted values of (γ0,γ1).

  14. Melting of heterogeneous vortex matter: The vortex 'nanoliquid'

    Indian Academy of Sciences (India)

    E ZELDOV2, A SOIBEL3, F de la CRUZ4,CJ van der BEEK5,. M KONCZYKOWSKI5, T ... 2Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot. 76100, Israel ..... heterogeneous nature of the vortex nanoliquid.

  15. Prof. John Wood, Chief Executive Designate, Dr Gordon Walker, Directorate, Chief Executive, Prof. Ken J. Peach, Head of the Particle Physics Department, CLRC Rutherford Appleton Laboratory, United Kingdom

    CERN Multimedia

    Patrice Loïez

    2001-01-01

    L. to. r.: Dr. Ian Wilson, CLIC Deputy Study Leader, Prof. Ken J. Peach, Head of the Particle Physics Department, Prof. John Wood, Chief Executive Designate, Dr. Gordon Walker, Directorate, Chief Executive

  16. A Comparative Study of Students' Happiness Levels and Thinking Styles in Physical Education and Sport Teaching, and Other Departments, in Turkey

    Science.gov (United States)

    Tingaz, Emre Ozan; Hazar, Muhsin; Baydar, Hacer Özge; Gökyürek, Belgin; Çakiroglu, Temel

    2018-01-01

    The objectives of this research were to compare the happiness and thinking styles of undergraduate students in the Physical Education and Sports Teaching Department and different departments, and to examine the relations between the students' happiness levels and their thinking styles. Using the correlational study design 661, undergraduate…

  17. Telemedicine Physical Examination Utilizing a Consumer Device Demonstrates Poor Concordance with In-Person Physical Examination in Emergency Department Patients with Sore Throat: A Prospective Blinded Study.

    Science.gov (United States)

    Akhtar, Moneeb; Van Heukelom, Paul G; Ahmed, Azeemuddin; Tranter, Rachel D; White, Erinn; Shekem, Nathaniel; Walz, David; Fairfield, Catherine; Vakkalanka, J Priyanka; Mohr, Nicholas M

    2018-02-22

    Telemedicine allows patients to connect with healthcare providers remotely. It has recently expanded to evaluate low-acuity illnesses such as pharyngitis by using patients' personal communication devices. The purpose of our study was to compare the telemedicine-facilitated physical examination with an in-person examination in emergency department (ED) patients with sore throat. This was a prospective, observational, blinded diagnostic concordance study of patients being seen for sore throat in a 60,000-visit Midwestern academic ED. A telemedicine and a face-to-face examination were performed independently by two advanced practice providers (APP), blinded to the results of the other evaluator. The primary outcome was agreement on pharyngeal redness between the evaluators, with secondary outcomes of agreement and inter-rater reliability on 14 other aspects of the pharyngeal physical examination. We also conducted a survey of patients and providers to evaluate perceptions and preferences for sore throat evaluation using telemedicine. Sixty-two patients were enrolled, with a median tonsil size of 1.0. Inter-rater agreement (kappa) for tonsil size was 0.394, which was worse than our predetermined concordance threshold. Other kappa values ranged from 0 to 0.434, and telemedicine was best for detecting abnormal coloration of the palate and tender superficial cervical lymph nodes (anterior structures), but poor for detecting abnormal submandibular lymph nodes or asymmetry of the posterior pharynx (posterior structures). In survey responses, telemedicine was judged easier to use and more comfortable for providers than patients; however, neither patients nor providers preferred in-person to telemedicine evaluation. Telemedicine exhibited poor agreement with the in-person physical examination on the primary outcome of tonsil size, but exhibited moderate agreement on coloration of the palate and cervical lymphadenopathy. Future work should better characterize the importance of

  18. Dark matter and the solar neutrino problem: Can particle physics provide a single solution

    International Nuclear Information System (INIS)

    West, G.B.

    1989-01-01

    We show how a relatively simple extension of the standard model can give a ''natural'' explanation for both the solar neutrino and dark matter problems. What is required is a new stable neutral lepton with a mass in the 4--8 GeV range. One possibility is a fourth generation neutrino interacting with matter either electromagnetically or via higgs-exchange (in addition, of course, to Z degree-exchange). In the former case, a new charged lepton with mass ∼10GeV would be required in order to generate a sufficiently large magnetic moment. The present experimental situation makes this possibility rather doubtful. In the latter case, a light higgs with mass ∼1GeV is required; this is still not ruled out experimentally. In any case, direct (or indirect) detection of dark matter will, during the next year, seal the fate of this model. 29 refs

  19. Proceedings of the 14. National Meeting on Condensed Matter Physics. v.2

    International Nuclear Information System (INIS)

    1991-01-01

    Studies on atomic and molecular physics, crystallography, statistical physics and critical phenomena, instrumentation, liquid crystals, magnetism, metals and alloys, magnetic resonance, superconductivity and semi-conductors are presented. (M.C.R.)

  20. Self-Efficacy Expectations in Teacher Trainees and the Perceived Role of Schools and Their Physical Education Department in the Educational Treatment of Overweight Students

    Science.gov (United States)

    Martinez-Lopez, Emilio; Zagalaz Sanchez, Maria; Ramos Alvarez, Manuel; de la Torre Cruz, Manuel

    2010-01-01

    This study is about the relation between self-efficacy expectations and the attitude towards child and youth obesity, as well as the role of the school in this matter. A questionnaire was given to a sample of 436 trainee physical education teachers from eight universities in Andalusia (Spain). The questionnaire was a version of "Teaching…

  1. Utility of the History and Physical Examination in the Detection of Acute Coronary Syndromes in Emergency Department Patients

    Directory of Open Access Journals (Sweden)

    Zachary DW Dezman

    2017-05-01

    Full Text Available Chest pain accounts for approximately 6% of all emergency department (ED visits and is the most common reason for emergency hospital admission. One of the most serious diagnoses emergency physicians must consider is acute coronary syndrome (ACS. This is both common and serious, as ischemic heart disease remains the single biggest cause of death in the western world. The history and physical examination are cornerstones of our diagnostic approach in this patient group. Their importance is emphasized in guidelines, but there is little evidence to support their supposed association. The purpose of this article was to summarize the findings of recent investigations regarding the ability of various components of the history and physical examination to identify which patients presenting to the ED with chest pain require further investigation for possible ACS. Previous studies have consistently identified a number of factors that increase the probability of ACS. These include radiation of the pain, aggravation of the pain by exertion, vomiting, and diaphoresis. Traditional cardiac risk factors identified by the Framingham Heart Study are of limited diagnostic utility in the ED. Clinician gestalt has very low predictive ability, even in patients with a non-diagnostic electrocardiogram (ECG, and gestalt does not seem to be enhanced appreciably by clinical experience. The history and physical alone are unable to reduce a patient’s risk of ACS to a generally acceptable level (<1%. Ultimately, our review of the evidence clearly demonstrates that “atypical” symptoms cannot rule out ACS, while “typical” symptoms cannot rule it in. Therefore, if a patient has symptoms that are compatible with ACS and an alternative cause cannot be identified, clinicians must strongly consider the need for further investigation with ECG and troponin measurement.

  2. Low-energy neutrino and dark matter physics with sub-keV

    Indian Academy of Sciences (India)

    The TEXONO-CDEX Collaboration (Taiwan experiment on neutrino–China dark matter experiment) explores high-purity germanium (HPGe) detection technology to develop a sub-keV threshold detector for pursuing studies on low mass weakly interacting massive particles (WIMPs), properties of neutrino and the ...

  3. Solid state insurrection how the science of substance made American physics matter

    CERN Document Server

    Martin, Joseph D

    2018-01-01

    Solid state physics—the study of the physical properties of solid matter—was far and away the most populous subfield of Cold War American physics. But despite prolific contributions to consumer and medical technology, such as the transistor and magnetic resonance imaging, it garnered much less professional prestige and public attention than nuclear and particle physics. Solid State Insurrection argues that solid state physics was nonetheless essential to securing the vast social, political, and financial capital Cold War physics enjoyed. Solid state’s technological bent, and its challenge to the “pure science” ideal many physicists cherished, helped physics as a whole respond more readily to Cold War social, political, and economic pressures. Solid state research kept physics economically and technologically relevant, sustaining its lofty cultural standing and policy influence long after the sheen of the Manhattan Project had faded. By placing solid state at the center of the story of twentieth cent...

  4. Fundamental movement skills proficiency in children with developmental coordination disorder: does physical self-concept matter?

    Science.gov (United States)

    Yu, Jie; Sit, Cindy H P; Capio, Catherine M; Burnett, Angus; Ha, Amy S C; Huang, Wendy Y J

    2016-01-01

    The purpose of this study was to (1) examine differences in fundamental movement skills (FMS) proficiency, physical self-concept, and physical activity in children with and without developmental coordination disorder (DCD), and (2) determine the association of FMS proficiency with physical self-concept while considering key confounding factors. Participants included 43 children with DCD and 87 age-matched typically developing (TD) children. FMS proficiency was assessed using the Test of Gross Motor Development - second edition. Physical self-concept and physical activity were assessed using self-report questionnaires. A two-way (group by gender) ANCOVA was used to determine whether between-group differences existed in FMS proficiency, physical self-concept, and physical activity after controlling for age and BMI. Partial correlations and hierarchical multiple regression models were used to examine the relationship between FMS proficiency and physical self-concept. Compared with their TD peers, children with DCD displayed less proficiency in various components of FMS and viewed themselves as being less competent in physical coordination, sporting ability, and physical health. Physical coordination was a significant predictor of ability in object control skills. DCD status and gender were significant predictors of FMS proficiency. Future FMS interventions should target children with DCD and girls, and should emphasize improving object control skills proficiency and physical coordination. Children with DCD tend to have not only lower FMS proficiency than age-matched typically developing children but also lower physical self-concept. Self-perceptions of physical coordination by children with DCD are likely to be valuable contributors to development of object control skills. This may then help to develop their confidence in performing motor skills. Children with DCD need supportive programs that facilitate the development of object control skills. Efficacy of training

  5. Research into condensed matter using large-scale apparatus. Physics, chemistry, biology. Progress report 1992-1995. Summarizing reports

    International Nuclear Information System (INIS)

    1996-01-01

    Activities for research into condensed matter have been supported by the German BMBF with approx. 102 million Deutschmarks in the years 1992 through 1995. These financial means have been distributed among 314 research projects in the fields of physics, chemistry, biology, materials science, and other fields, which all rely on the intensive utilization of photon and particle beams generated in large-scale apparatus of institutions for basic research. The volume in hand first gives information of a general kind and statistical data on the distribution of financial means, for a number of priority research projects. The project reports are summarizing reports on the progress achieved in the various projects. (CB) [de

  6. Constraints on light mediators: confronting dark matter searches with B physics

    CERN Document Server

    Schmidt-Hoberg, Kai; Winkler, Martin Wolfgang

    2013-01-01

    Light scalars appear in many well-motivated extensions of the Standard Model including supersymmetric models with additional gauge singlets. Such scalars could mediate the interactions between dark matter and nuclei, giving rise to the tentative signals observed by several dark matter direct detection experiments including CDMS-Si. In this letter, we derive strong new limits on light scalar mediators by using the LHCb, Belle and BaBar searches for rare $\\Upsilon$ and B decays. These limits rule out significant parts of the parameter space favored by CDMS-Si. Nevertheless, as current searches are not optimized for investigating weakly coupled light scalars, a further increase in experimental sensitivity could be achieved by relaxing requirements in the event selection.

  7. Constraints on light mediators. Confronting dark matter searches with B physics

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt-Hoberg, Kai [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Staub, Florian [Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Bonn Univ. (Germany). Physikalisches Inst.; Winkler, Martin Wolfgang [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-11-15

    Light scalars appear in many well-motivated extensions of the Standard Model including supersymmetric models with additional gauge singlets. Such scalars could mediate the interactions between dark matter and nuclei, giving rise to the tentative signals observed by several dark matter direct detection experiments including CDMS-Si. In this letter, we derive strong new limits on light scalar mediators by using the LHCb, Belle and BaBar searches for rare {Upsilon} and B decays. These limits rule out significant parts of the parameter space favored by CDMS-Si. Nevertheless, as current searches are not optimized for investigating weakly coupled light scalars, a further increase in experimental sensitivity could be achieved by relaxing requirements in the event selection.

  8. The Role of Physical and Human Landscape Properties on Carbon Composition of Organic Matter in Tropical Rivers

    Science.gov (United States)

    Ballester, M. R.; Krusche, A. V.; Victoria, R. L.; Richey, J. E.; Deegan, L.; Neill, C.

    2011-12-01

    To evaluate physical and human controls organic matter carbon composition in tropical rivers, we applied an integrated analysis of landscape properties and riverine isotopic composition. Our goal was to establish the relationships between basin attributes and forms and composition of dissolved and particulate organic matter in rivers. A GIS template was developed as tool to support the understanding of the biogeochemistry of the surface waters of the Ji-Paraná (Western Amazonia) and the Piracicaba (southeastern of Brazil)rivers. Each basin was divided into drainage units, organized according to river network morphology and degree of land-use impact. The delineated drainage areas were individually characterized in terms of topography, soils and land use using data sets compiled as layers in ArcGis and ERDAS-IMAGINE software. DOM and POM carbon stable isotopic composition were determined at several sites along the main tributaries and small streams. The effects of these drivers on the fluvial carbon was quantified by a multiple linear regression analysis, relating basin characteristics and river isotopic composition. The results showed that relatively recent land cover changes have already had an impact on the composition of the riverine DOM and POM, indicating that, as in natural ecosystems, the vegetation plays a key role in the composition of the riverine organic matter in agricultural systems.

  9. Physical fitness testing of students did not specialized departments in the selection and admission to the department of military-sports-round

    Directory of Open Access Journals (Sweden)

    Buryanovaty A.N.

    2012-09-01

    Full Text Available Modern progress of military-sports-round trends are considered. Influence of informing tests is rotined on a selection and put in the separation of military-sports-round. 180 (n = 180 students of the not special faculties took part in research. On results testing 18 students which rotined the level of preparedness above average were selected. 72 students were yet selected with a low level, 54 - below the average and to 36 middle. The optimum distributing has testing and it is counted on two days. It is set that the selection of these tests helps to define the level of physical preparedness of students and take away physically geared-up for future fruitful work. Directions and examples of planning of educational training process are rotined for achievement of certain results.

  10. Motivation for physical activity in children: a moving matter in need for study.

    Science.gov (United States)

    Pannekoek, Linda; Piek, Jan P; Hagger, Martin S

    2013-10-01

    Motivation for physical activity in children below the age of 12 years is a largely underrepresented issue in contemporary research. Although engagement in sufficient physical activity is highly important for children's current and later health, relatively little is known of the factors that motivate children to be physically active. Various theories have been developed in an attempt to explain motivation toward physical activity in adults. Recent developments have focussed on integrating constructs of these theories in order to attain a comprehensive account of motivated behavior. The relationships between different motivational constructs have generally been investigated in healthy adolescents and adults. This manuscript outlines why more theoretically driven research into children's motivation toward physical activity is needed. Constructs stemming from various motivational theories and their interrelationship as evidenced in youth and adults will be summarized. The current state of research on the applicability of these motivational constructs to children, and the generalizability of the interrelationship between the constructs to child samples will be outlined. A deeper insight into the motivational determinants of physical activity participation in children could inform the design of interventions to facilitate the development of physically active lifestyles that persist at older ages. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Does Teaching Experience Matter? The Beliefs and Practices of Beginning and Experienced Physics Teachers

    Science.gov (United States)

    Caleon, Imelda S.; Tan, Yuen Sze Michelle; Cho, Young Hoan

    2018-02-01

    This study utilized multiple data sources to examine the beliefs about learning and teaching physics and the instructional practices of five beginning teachers and seven experienced teachers from Singapore. Our study was implemented in the unique context of teachers teaching the topic of electricity to students grouped according to academic abilities. The topic of electricity is one of the most difficult physics topics for students to understand and for teachers to teach. It was found that the experienced teachers, compared to the beginning teachers, tended to have beliefs about teaching and learning physics that are closer to constructivist views. The majority of the teachers, particularly the beginning teachers, espoused beliefs about learning physics that were incongruent with their beliefs about teaching physics. Although transmission-oriented and teacher-directed practices dominated the classroom lessons of both groups of teachers, more elements of constructivist instruction were found in the classroom lessons of the experienced teachers. It was also found that the classroom practices of the teachers, especially those in their inductive years of teaching, were more aligned with their beliefs about learning physics than their beliefs about teaching physics.

  12. Proceedings of the specialists' meeting on 'nuclear spectroscopy and condensed matter physics using short-lived nuclei'

    International Nuclear Information System (INIS)

    Kobayashi, Yoshio; Shibata, Michihiro; Ohkubo, Yoshitaka

    2016-02-01

    The research reactor at Research Reactor Institute, Kyoto University is a very useful neutron generator, providing us neutron-rich unstable nuclei by bombarding nuclei with those neutrons. The produced unstable nuclei exhibit aspects distinct from those of stable ones. Nuclear structure studies on a variety of excited states reflecting dynamic nuclear properties are one of fascinating research subjects of physics. On the other hand, some radioactive nuclei can be used as useful probes for understanding interesting properties of condensed matters through studies of hyperfine interactions of static nuclear electromagnetic moments with extranuclear fields. Concerning these two research fields and related areas, the 2nd symposium under the title of 'Nuclear Spectroscopy and Condensed Matter Physics Using Short-lived Nuclei' was held at the Institute for two days on November 4 and 5 in 2015. We are pleased that many hot discussions were made. The talks were given on the followings: 1) Nuclear spectroscopic experiments, 2) TDPAC (time-differential perturbed angular correlation), 3) β-NMR (nuclear magnetic resonance), 4) Moessbauer spectroscopy, 5) muon, etc. This issue is the collection of 17 papers presented at the entitled meeting. The 6 of the presented papers are indexed individually. (J.P.N.)

  13. Studying the intended uses of the social networks by the students of the department of physical education and sport

    Directory of Open Access Journals (Sweden)

    Eynur Baybars Recep

    2017-01-01

    Full Text Available The objective of this research is to study the intended uses of the social networks by the students of the Department of Physical Education and Sport (DPES. A total of 407 DPES students have been participated into the research; 25,6% of them were women and 74.4% were men. The data collection tool used for the study was the Scale for the Intended Uses of the Social Networks. With regard to the research statistics, the independent variable t-test and ANOVA have been used; and in order to evaluate the diversity of the subgroups, Bonferroni and Tamhane (α=0,05 have been used. The analysis has revealed that on the basis of the social networking sites for which the males show a higher usage tendency according to the gender variable (p0,05. It has been seen that the Twitter users show a higher tendency in terms of the research and content subdimensions (p<0,05; and that the Instagram and other social network users show a higher tendency in terms of keeping in touch and content sharing (p<0,05. The research has revealed that the intended social network uses by the students arises mostly from the social network services, besides certain cultural influence.

  14. Public Outreach of the South Texas Health Physic Society and Texas A and M University Nuclear Engineering Department

    International Nuclear Information System (INIS)

    Berry, R. O.

    2003-01-01

    In a cooperative effort of the members of the South Texas Chapter of the Heath Physics Society (STC-HPS) and the Texas A and M University Nuclear Engineering Department, great efforts have been made to reach out and provide educational opportunities to members of the general public, school age children, and specifically teachers. These efforts have taken the form of Science Teacher Workshops (STW), visits to schools all over the state of Texas, public forums, and many other educational arenas. A major motivational factor for these most recent efforts can be directly tied to the attempt of the State of Texas to site a low-level radioactive waste facility near Sierra Blanca in West Texas. When the State of Texas first proposed to site a low level radioactive waste site after the Low-Level Radioactive Waste Policy Act of 1980 was passed, many years of political struggle ensued. Finally, a site at Sierra Blanca in far West Texas was selected for study and characterization for a disposal site for waste generated in the Texas Compact states of Maine, Vermont and Texas. During this process, the outreach to and education of the local public became a paramount issue

  15. U.S. Department of Energy physical protection upgrades at the Latvian Academy of Sciences Nuclear Research Center, Latvia

    International Nuclear Information System (INIS)

    Haase, M.; Hine, C.; Robertson, C.

    1996-01-01

    Approximately five years ago, the Safe, Secure Dismantlement program was started between the US and countries of the Former Soviet Union (FSU). The purpose of the program is to accelerate progress toward reducing the risk of nuclear weapons proliferation, including such threats as theft, diversion, and unauthorized possession of nuclear materials. This would be accomplished by strengthening the material protection, control, and accounting systems within the FSU countries. Under the US Department of Energy''s program of providing cooperative assistance to the FSU countries in the areas of Material Protection, Control, and Accounting (MPC and A), the Latvian Academy of Sciences Nuclear Research Center (LNRC) near Riga, Latvia, was identified as a candidate site for a cooperative MPC and A project. The LNRC is the site of a 5-megawatt IRT-C pool-type research reactor. This paper describes: the process involved, from initial contracting to project completion, for the physical protection upgrades now in place at the LNRC; the intervening activities; and a brief overview of the technical aspects of the upgrades

  16. Low-energy neutrino and dark matter physics with sub-keV ...

    Indian Academy of Sciences (India)

    2012-11-15

    Nov 15, 2012 ... importance in the present-day particle physics and cosmology. The origin ... detection technology is well-matured to scale up detector mass ... available 1 kg coaxial HPGe [1], partially customized 4 × 5 g ultralow background.

  17. Physical systems conceptual pathways between flat space-time and matter

    CERN Document Server

    Belkind, Ori

    2012-01-01

    This book offers a new philosophical interpretation of classical mechanics and the Special Theory of Relativity, in which motions of parts and wholes of physical systems are taken to be fundamental, prior to spacetime, material properties and laws of motion.

  18. Theses of reports of International Conference 'Physics of the condensed matter state at low temperatures'

    International Nuclear Information System (INIS)

    Neklyudov, I.M.

    2006-01-01

    The main topics of this conference deal with: fundamental base of superconductivity; superconductors with high critical parameters and applied superconductivity; quantum phenomena in condensed media; physics of strength and plasticity; electronic and magnetic properties of metals

  19. Magnetization of neutron star matter and implications in physics of soft gamma repeaters

    Energy Technology Data Exchange (ETDEWEB)

    Kondratyev, V N [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-01-01

    The magnetization of neutron star matter is considered within the thermodynamic formalism. The quantization effects are demonstrated to result in sharp abrupt magnetic field dependence of nuclide magnetic moments. Accounting for inter-nuclide magnetic coupling we show that such anomalies give rise to erratic jumps in magnetotransport of neutron star crusts. The properties of such a noise are favorably compared with burst statistics of Soft Gamma Repeaters. PACS: 97.60.Jd, 21.10.Dr, 26.60.+c, 95.30.Ky. (author)

  20. The matter-wave laser interferometer gravitation antenna (MIGA: New perspectives for fundamental physics and geosciences

    Directory of Open Access Journals (Sweden)

    Canuel B.

    2014-01-01

    Full Text Available We are building a hybrid detector of new concept that couples laser and matter-wave interferometry to study sub Hertz variations of the strain tensor of space-time and gravitation. Using a set of atomic interferometers simultaneously manipulated by the resonant optical field of a 200 m cavity, the MIGA instrument will allow the monitoring of the evolution of the gravitational field at unprecedented sensitivity, which will be exploited both for geophysical studies and for Gravitational Waves (GWs detection. This new infrastructure will be embedded into the LSBB underground laboratory, ideally located away from major anthropogenic disturbances and benefitting from very low background noise.

  1. Neighbourhood food and physical activity environments in England, UK: does ethnic density matter?

    Directory of Open Access Journals (Sweden)

    Molaodi Oarabile R

    2012-06-01

    Full Text Available Abstract Background In England, obesity is more common in some ethnic minority groups than in Whites. This study examines the relationship between ethnic concentration and access to fast food outlets, supermarkets and physical activity facilities. Methods Data on ethnic concentration, fast food outlets, supermarkets and physical activity facilities were obtained at the lower super output area (LSOA (population average of 1500. Poisson multilevel modelling was used to examine the association between own ethnic concentration and facilities, adjusted for area deprivation, urbanicity, population size and clustering of LSOAs within local authority areas. Results There was a higher proportion of ethnic minorities residing in areas classified as most deprived. Fast food outlets and supermarkets were more common and outdoor physical activity facilities were less common in most than least deprived areas. A gradient was not observed for the relationship between indoor physical activity facilities and area deprivation quintiles. In contrast to White British, increasing ethnic minority concentration was associated with increasing rates of fast food outlets. Rate ratios comparing rates of fast food outlets in high with those in low level of ethnic concentration ranged between 1.28, 95% confidence interval 1.06-1.55 (Bangladeshi and 2.62, 1.46-4.70 (Chinese. Similar to White British, however, increasing ethnic minority concentration was associated with increasing rate of supermarkets and indoor physical activity facilities. Outdoor physical activity facilities were less likely to be in high than low ethnic concentration areas for some minority groups. Conclusions Overall, ethnic minority concentration was associated with a mixture of both advantages and disadvantages in the provision of food outlets and physical activity facilities. These issues might contribute to ethnic differences in food choices and engagement in physical activity.

  2. Big Bang Nucleosynthesis: Impact of Nuclear Physics Uncertainties on Baryonic Matter Density

    International Nuclear Information System (INIS)

    Smith, Michael Scott; Roberts, Luke F.; Hix, William Raphael; Bruner, Blake D.; Kozub, R.L.; Tytler, David; Fuller, George M.; Lingerfelt, Eric J.; Nesaraja, Caroline D

    2008-01-01

    We performed new Big Bang Nucleosynthesis simulations with the bigbangonline.org suite of codes to determine, from the nuclear physics perspective, the highest achievable precision of the constraint on the baryon-to-photo ratio η given current observational uncertainties. We also performed sensitivity studies to determine the impact that particular nuclear physics measurements would have on the uncertainties of predicted abundances and on the η constraint.

  3. Big Bang Nucleosynthesis: Impact of Nuclear Physics Uncertainties on Baryonic Matter Density Constraints

    International Nuclear Information System (INIS)

    Smith, Michael S.; Roberts, Luke F.; Hix, W. Raphael; Bruner, Blake D.; Kozub, Raymond L.; Tytler, David; Fuller, George M.; Lingerfelt, Eric; Nesaraja, Caroline D.

    2008-01-01

    We performed new Big Bang Nucleosynthesis simulations with the bigbangonline.org suite of codes to determine, from the nuclear physics perspective, the highest achievable precision of the constraint on the baryon-to-photo ratio η given current observational uncertainties. We also performed sensitivity studies to determine the impact that particular nuclear physics measurements would have on the uncertainties of predicted abundances and on the η constraint

  4. Big Bang Nucleosynthesis: Impact of Nuclear Physics Uncertainties on Baryonic Matter Density Constraints

    International Nuclear Information System (INIS)

    Smith, Michael Scott; Bruner, Blake D; KOZUB, RAYMOND L.; Roberts, Luke F.; Tytler, David; Fuller, George M.; Lingerfelt, Eric; Hix, William Raphael; Nesaraja, Caroline D

    2008-01-01

    We ran new Big Bang Nucleosynthesis simulations with the bigbangonline.org suite of codes to determine, from the nuclear physics perspective, the highest achievable precision of the constraint on the baryon-to-photo ratio eta given current observational uncertainties. We also ran sensitivity studies to determine the impact that particular nuclear physics measurements would have on the uncertainties of predicted abundances and on the eta constraint

  5. Current trends in non-accelerator particle physics: 1, Neutrino mass and oscillation. 2, High energy neutrino astrophysics. 3, Detection of dark matter. 4, Search for strange quark matter. 5, Magnetic monopole searches

    International Nuclear Information System (INIS)

    He, Yudong

    1995-07-01

    This report is a compilation of papers reflecting current trends in non-accelerator particle physics, corresponding to talks that its author was invited to present at the Workshop on Tibet Cosmic Ray Experiment and Related Physics Topics held in Beijing, China, April 4--13, 1995. The papers are entitled 'Neutrino Mass and Oscillation', 'High Energy Neutrino Astrophysics', 'Detection of Dark Matter', 'Search for Strange Quark Matter', and 'Magnetic Monopole Searches'. The report is introduced by a survey of the field and a brief description of each of the author's papers

  6. Neutrino physics with dark matter experiments and the signature of new baryonic neutral currents

    International Nuclear Information System (INIS)

    Pospelov, Maxim

    2011-01-01

    New neutrino states ν b , sterile under the standard model interactions, can be coupled to baryons via the isoscalar vector currents that are much stronger than the standard model weak interactions. If some fraction of solar neutrinos oscillate into ν b on their way to Earth, the coherently enhanced elastic ν b -nucleus scattering can generate a strong signal in the dark matter detectors. For the interaction strength a few hundred times stronger than the weak force, the elastic ν b -nucleus scattering via new baryonic currents may account for the existing anomalies in the direct detection dark matter experiments at low recoil. We point out that for solar-neutrino energies, the baryon-current-induced inelastic scattering is suppressed, so that the possible enhancement of a new force is not in conflict with signals at dedicated neutrino detectors. We check this explicitly by calculating the ν b -induced deuteron breakup, and the excitation of a 4.4 MeV γ line in 12 C. A stronger-than-weak force coupled to the baryonic current implies the existence of a new Abelian gauge group U(1) B with a relatively light gauge boson.

  7. Electronics department

    International Nuclear Information System (INIS)

    1979-01-01

    This report summarizes the activities in 1978 of some of the groups within the Electronics Department. The work covered includes plant protection and operator studies, reliability techniques, application of nuclear techniques to mineral exploration, applied laser physics, computing and, lastly, research instrumentation. (author)

  8. 5. International conference on materials science and condensed matter physics and symposium 'Electrical methods of materials treatment'. Abstracts

    International Nuclear Information System (INIS)

    2010-09-01

    This book includes abstracts of the communications presented at the 5th International Conference on Materials Science and Condensed-Matter Physics and at the Symposium dedicated to the 100th anniversary of academician Boris Lazarenko, the prominent scientist and inventor, the first director of the Institute of Applied Physics of the Academy of Sciences of Moldova. The abstracts presented in the book cover a vast range of subjects, such as: advanced materials and fabrication processes; methods of crystal growth, post-growth technological processes, doping and implantation, fabrication of solid state structures; defect engineering, engineering of molecular assembly; methods of nanostructures and nano materials fabrication and characterization; quantum wells and superlattices; nano composite, nanowires and nano dots; fullerenes and nano tubes, molecular materials, meso- and nano electronics; methods of material and structure characterization; structure and mechanical characterization; optical, electrical, magnetic and superconductor properties, transport processes, nonlinear phenomena, size and interface effects; advances in condensed matter theory; theory of low dimensional systems; modelling of materials and structure properties; development of theoretical methods of solid-state characterization; phase transition; advanced quantum physics for nano systems; device modelling and simulation, device structures and elements; micro- and optoelectronics; photonics; microsensors and micro electro-mechanical systems; microsystems; degradation and reliability, solid-state device design; theory and advanced technologies of electro-physico-chemical and combined methods of materials machining and treatment, including modification of surfaces; theory and advanced technologies of using electric fields, currents and discharges so as to intensify heat mass-transfer, to raise the efficiency of treatment of materials, of biological preparations and foodstuff; modern equipment for

  9. The Physics of Augustine: The Matter of Time, Change and an Unchanging God

    Directory of Open Access Journals (Sweden)

    Thomas Nordlund

    2015-03-01

    Full Text Available Scientific questions posed by St. Augustine, early father of the Christian church, are presented as a part of a proposed undergraduate course for religion and philosophy students. Augustine regularly seasons his religious, philosophical and moral investigations with analysis focused on the physical nature of the universe and how it can be quantified: “And yet, O Lord, we do perceive intervals of time, and we compare them with each other, and we say that some are longer and others are shorter” (Confessions, Book 11. The physical analysis is sometimes extended, pressing the attention and grasp of the unsuspecting student of religion or philosophy. Though Augustine emphasizes that true knowledge comes from faith and revelation, his physical inquiries imply that he values such analysis as a way toward truth. In contrast, Master of Divinity programs, which train the majority of Western Christian ministers, require little science experience and usually no physics. Serious investigation of Augustine’s physical explorations reveal an alternative way of understanding scripture, especially Jesus’ sayings: could the master engineer who created the universe sometimes be speaking in straightforward scientific terms?

  10. The non-local universe the new physics and matters of the mind

    CERN Document Server

    Nadeau, Robert

    2002-01-01

    Classical physics states that physical reality is local, or that a measurement at one point in space cannot cannot influence what occurs at another beyond a fairly short distance. Until recently this seemed like an immutable truth in nature. However, in 1997 experiments were conducted in which light particles (photons) originated under certain conditions and traveled in opposite directions to detectors located about seven miles apart. The amazing results indicated that the photons "interacted" or "communicated" with one another instantly or "in no time," leading to the revelation that physical reality is non-local--a discovery that Robert Nadeau and Menas Kafatos view as "the most momentous in the history of science.". In pursuing this groundbreaking argument, the authors provide a fascinating history of developments that led to the discovery of non-locality and the sometimes heated debate between the great scientists responsible for these discoveries. What this new knowledge reveals, the authors conclude, is...

  11. Missed connections: A case study of the social networks of physics doctoral students in a single department

    Science.gov (United States)

    Knaub, Alexis Victoria

    Gender disparity is an issue among the many science, technology, engineering, and mathematics (STEM) fields. Although many previous studies examine gender issues in STEM as an aggregate discipline, there are unique issues to each of the fields that are considered STEM fields. Some fields, such as physics, have fewer women graduating with degrees than other fields. This suggests that women's experiences vary by STEM field. The majority of previous research also examines gender and other disparities at either the nationwide or individual level. This project entailed social network analysis through survey and interview data to examine a single physics department's doctoral students in order to provide a comprehensive look at student social experiences. In addition to examining gender, other demographic variables were studied to see if the results are truly associated with gender; these variables include race/ethnicity, year in program, student type, relationship status, research type, undergraduate institute, and subfield. Data were examined to determine if there are relationships to social connections and outcome variables such as persistence in completing the degree and the time to degree. Data collected on faculty were used to rank faculty members; data such as h-indices and number of students graduate over the past 5 years were collected. Fifty-five (55) of 110 possible participants completed the survey; forty-three are male, and twelve are female. Twenty-eight of the fifty-five survey participants were interview; twenty-three are male, and five are female. Findings for peer networks include that peer networks are established during the first year and do not change drastically as one progresses in the program. Geographic location within the campus affects socializing with peers. Connections to fellow students are not necessarily reciprocated; the maximum percentage of reciprocated connections is 60%. The number of connections one has varies by network purpose

  12. Physical and chemical evolution of reduced organic matter in the ISM

    Science.gov (United States)

    Jenniskens, Peter; Blake, David F.

    1995-01-01

    Icy mantles on interstellar grains have been a topic of study in airborne astronomy. Recent laboratory analog studies of the yield of organic residue from UV photolyzed ices have shown that this mechanism can be the most significant source of complex reduced organic matter in the interstellar medium. However, the total yield is a function of the occurrence of heating events that evaporate the ice, i.e. T is greater than 130 K, and the mechanism for such events is debated. Recently, we proposed that the recombination of radicals in the ice does not need high temperature excursions and, instead, occurs during a structural transformation of water ice at temperatures in the range 38 - 68 K.

  13. Cryogenic phonon-mediated particle detectors for dark matter searches and neutrino physics

    International Nuclear Information System (INIS)

    Lee, A.T.J.

    1993-01-01

    This work describes the development of cryogenic phonon-mediated particle detectors for dark matter searches and neutrino detection. The detectors described in this work employ transition-edge sensors, which consist of a meander pattern of thin-film superconductor on a silicon substrate. When phonons from a particle interaction in the crystal impinge on the sensor in sufficient density, sections of the line are driven normal and provide a measurable resistance. A large fraction of the thesis describes work to fully characterize the phonon flux from particle interactions. In one set of experiments, ∼25% of the phonon energy from 59.54 keV gamma-ray events was found to propagate open-quotes ballisticallyclose quotes (i.e., with little or no scattering) across a 300 μm thick crystal of silicon. Gamma-rays produce electron recoils in silicon whereas with dark matter and neutrino experiments nuclear recoils are also of interest. Two experiments were done to measure the ballistic component that arises from neutron events, which interact via nuclear recoil. Measurements indicate that the fraction of energy that is ballistic is ∼50% greater for nuclear recoils than for electron recoils. Two novel detectors were fabricated and tested in an attempt to improve the sensitivity of the detectors. In the first detector, relatively large Al pads were linked by 2 μm wide Ti lines in a meander pattern. Phonons impinging on the Al pads create quasiparticles which diffuse in the Al pad until they are trapped in the lower gap Tl links. The sensitivity of the detector was found to be increased by this open-quotes funnelingclose quotes action. A second detector was built that incorporates 0.25 μm wide lines defined by direct electron-beam exposure of the photoresist. If the superconducting line is sufficiently narrow, single phonons are capable of driving sections normal which should improve the sensitivity and linearity of the detector

  14. Annual report of the Laboratory of Condensed Matter Physics, and the Biophysics Group, 1985

    International Nuclear Information System (INIS)

    1987-01-01

    Research on photoemission and photoluminescence in quantum wells; photoemission assisted by electric fields; the electrochemistry of the semiconductor-electrolyte interface; transport properties of MESFET's; fractal physics; amorphous silicon; superionic and mixed conductors; solids chemistry and NMR; internal motion of nucleic acids; cardiophysiology; imaging of microscopic internal motions; and Ap4A metabolism is presented [fr

  15. Annual report of the Laboratory for Condensed Matter Physics, and the Biophysics Group

    International Nuclear Information System (INIS)

    1986-01-01

    Research on photoemission and photoluminescence in quantum wells; photoemission assisted by electric fields; the electrochemistry of the semiconductor-electrolyte interface; MESFET's; fractal physics; amorphous silicon; superionic and mixed conductors; solids chemistry and NMR; internal motion of nucleic acids; cardiophysiology; imaging of microscopic internal motions; and Ap4A metabolism is presented [fr

  16. Children's After-School Physical Activity Participation in Hong Kong: Does Family Socioeconomic Status Matter?

    Science.gov (United States)

    Cheung, Peggy PY

    2017-01-01

    Objective: This study aimed to examine the association between parental socioeconomic status (SES) and children's physical activity (PA) behaviour during after-school hours. Design: Cross-sectional study. Methods: Participants included 663 schoolchildren (aged between 10 and 13 years) and their parents from nine primary schools in Hong Kong.…

  17. To Move More and Sit Less: Does Physical Activity/Fitness Knowledge Matter in Youth?

    Science.gov (United States)

    Chen, Senlin; Liu, Yang; Schaben, Jodee

    2017-01-01

    Purpose: The purpose of this study was to examine physical activity (PA)/fitness knowledge and its association with PA and sedentary behavior in youth. Method: Eighth grade students from five schools (N = 660) in a midwestern state completed a PE Metrics written test and the Youth Activity Profile to assess PA/fitness knowledge, PA (at school and…

  18. Change in neighborhood traffic safety: does it matter in terms of physical activity?

    NARCIS (Netherlands)

    Jongeneel-Grimen, Birthe; Busschers, Wim; Droomers, Mariël; van Oers, Hans A. M.; Stronks, Karien; Kunst, Anton E.

    2013-01-01

    There is limited evidence on the causality of previously observed associations between neighborhood traffic safety and physical activity (PA). This study aims to contribute to this evidence by assessing the extent to which changes over time in neighborhood traffic safety were associated with PA.

  19. Does Teaching Experience Matter? The Beliefs and Practices of Beginning and Experienced Physics Teachers

    Science.gov (United States)

    Caleon, Imelda S.; Tan, Yuen Sze Michelle; Cho, Young Hoan

    2018-01-01

    This study utilized multiple data sources to examine the beliefs about learning and teaching physics and the instructional practices of five beginning teachers and seven experienced teachers from Singapore. Our study was implemented in the unique context of teachers teaching the topic of electricity to students grouped according to academic…

  20. Physical Exercise Keeps the Brain Connected: Biking Increases White Matter Integrity in Patients With Schizophrenia and Healthy Controls.

    Science.gov (United States)

    Svatkova, Alena; Mandl, René C W; Scheewe, Thomas W; Cahn, Wiepke; Kahn, René S; Hulshoff Pol, Hilleke E

    2015-07-01

    It has been shown that learning a new skill leads to structural changes in the brain. However, it is unclear whether it is the acquisition or continuous practicing of the skill that causes this effect and whether brain connectivity of patients with schizophrenia can benefit from such practice. We examined the effect of 6 months exercise on a stationary bicycle on the brain in patients with schizophrenia and healthy controls. Biking is an endemic skill in the Netherlands and thus offers an ideal situation to disentangle the effects of learning vs practice. The 33 participating patients with schizophrenia and 48 healthy individuals were assigned to either one of two conditions, ie, physical exercise or life-as-usual, balanced for diagnosis. Diffusion tensor imaging brain scans were made prior to and after intervention. We demonstrate that irrespective of diagnosis regular physical exercise of an overlearned skill, such as bicycling, significantly increases the integrity, especially of motor functioning related, white matter fiber tracts whereas life-as-usual leads to a decrease in fiber integrity. Our findings imply that exercise of an overlearned physical skill improves brain connectivity in patients and healthy individuals. This has important implications for understanding the effect of fitness programs on the brain in both healthy subjects and patients with schizophrenia. Moreover, the outcome may even apply to the nonphysical realm. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Non-equilibrium phenomena in confined soft matter irreversible adsorption, physical aging and glass transition at the nanoscale

    CERN Document Server

    2015-01-01

    This book presents cutting-edge experimental and computational results and provides comprehensive coverage on the impact of non-equilibrium structure and dynamics on the properties of soft matter confined to the nanoscale. The book is organized into three main sections: ·         Equilibration and physical aging: by treating non-equilibrium phenomena with the formal methodology of statistical physics in bulk, the analysis of the kinetics of equilibration sheds new light on the physical origin of the non-equilibrium character of thin polymer films. Both the impact of sample preparation and that of interfacial interactions are analyzed using a large set of experiments. A historical overview of the investigation of the non-equilibrium character of thin polymer films is also presented. Furthermore, the discussion focuses on how interfaces and geometrical confinement perturb the pathways and kinetics of equilibrations of soft glasses (a process of tremendous technological interest). ·         Irr...

  2. Dynamic aspects of soil organic matter and its relationship to the physical properties and fertility of soils

    International Nuclear Information System (INIS)

    Wagner, G.H.

    1980-01-01

    Soil organic matter plays a critical role in determining the physical, chemical, and biological nature of soils. Its dynamic nature is explored with reference to the cycling of C and N in the biosphere. Optimum soil structure is developed under a grass sod, but adequate water stable aggregates can be maintained under proper cultivation to ensure deep root penetration, rapid water infiltration for storage in the rooting zone, and the prevention of surface crusting. Perhaps the most important role of organic material is its prevention of soil erosion by directly stabilizing the soil during the growing season, providing residues for protection between crops, and improving surface aggregation to make the soil less subject to erosion. (author)

  3. Quantum physics of light and matter a modern introduction to photons, atoms and many-body systems

    CERN Document Server

    Salasnich, Luca

    2014-01-01

    The book gives an introduction to the field quantization (second quantization) of light and matter with applications to atomic physics. The first chapter briefly reviews the origins of special relativity and quantum mechanics and the basic notions of quantum information theory and quantum statistical mechanics. The second chapter is devoted to the second quantization of the electromagnetic field, while the third chapter shows the consequences of the light field quantization in the description of electromagnetic transitions.In the fourth chapter it is analyzed the spin of the electron, and in particular its derivation from the Dirac equation, while the fifth chapter investigates the effects of external electric and magnetic fields on the atomic spectra (Stark and Zeeman effects). The sixth chapter describes the properties of systems composed by many interacting identical particles by introducing the Hartree-Fock variational method, the density functional theory, and the Born-Oppenheimer approximation. Finally,...

  4. Mind matters: cognitive and physical effects of aging self-stereotypes.

    Science.gov (United States)

    Levy, Becca R

    2003-07-01

    In the first part of this article, a wide range of research is drawn upon to describe the process by which aging stereotypes are internalized in younger individuals and then become self-stereotypes when individuals reach old age. The second part consists of a review of the author's cross-cultural, experimental, and longitudinal research that examines the cognitive and physical effects of aging self-stereotypes. The final section presents suggestions for future research relating to aging self-stereotypes.

  5. Physical constitution matters for athletic performance and salary of NBA players

    OpenAIRE

    Bakkenbüll, Linn-Brit

    2017-01-01

    Basketball is one of the most practised sports in the world, especially in America. America has the most famous professional basketball league, the National Basketball Association (NBA). This study examines whether there is a relationship between the physical constitution of professional basketball players and their athletic performance in the 2015/16 NBA season. Regression results show that the relative wingspan influences the athletic performance in a significantly positive way whereas the ...

  6. Saclay Center of Nuclear Studies, Direction of Materials and Nuclear Fuels, Department of Physico-Chemistry, Division of Physical Chemistry. 1968 Annual report

    International Nuclear Information System (INIS)

    Schmidt, M.; Clerc, M.; Le Calve, J.; Bourene, M.; Lesigne, B.; Gillois, M.; Devillers, C.; Arvis, M.; Gilles, L.; Moreau, M.; Sutton, J.; Faraggi, M.; Desalos, J.; Tran Dinh Son; Barat, F.; Hickel, B.; Chachaty, C.; Forchioni, A.; Shiotani, M.; Larher, Y.; Maurice, P.; Le Bail, H.; Nenner, T.

    1969-03-01

    This document is the 1968 annual report of research activities at the Physico-Chemistry Department (Physical Chemistry Division), part of the Directorate of Materials and Nuclear Fuels of the CEA Saclay center of nuclear studies. The report is divided into two main parts: radiolysis and photolysis studies (gaseous phase, condensed phase), and general physico-chemical studies (sorption, molecular jets)

  7. Atoms and light. Matter radiation interaction. DEA in quantum physics, year 2003. 2nd year Master: Fundamental concepts in Physics, Cursus: Quantum Physics. Year 2006-2007

    International Nuclear Information System (INIS)

    Fabre, Claude

    2003-01-01

    This document contains two nearly identical courses on the interaction between matter and electromagnetic radiation. The second one addresses a few more issues in sub-paragraphs, but follows the same organisation and plan. A first part addresses tools in quantum optics. It presents phenomenological approaches (the Lorentz and Einstein models), the semi-conventional approach (isolated atom, effect of the environment with the Bloch equations, interaction with a non-monochromatic field, oscillator force), the quantum description of the free electromagnetic field (corpuscular aspect of the thermal radiation field, decomposition of the conventional electromagnetic field into modes, quantification of free radiation, radiation kinetic moment and pulse, radiation stationary states, value of the electric field in a quantum state), the interaction between atom and quantum field (interaction Hamiltonian, interaction process, photo-detection). The second part addresses some phenomena of quantum optics such as spontaneous emission, quasi-resonant interactions in two-level systems, three-level systems, fluctuations and correlations in the matter-radiation interaction. Appendices contain elements on atom structure, and on the density matrix

  8. The Merger of Two Compact Stars: A Tool for Dense Matter Nuclear Physics

    Directory of Open Access Journals (Sweden)

    Alessandro Drago

    2018-03-01

    Full Text Available We discuss the different signals, in gravitational and electromagnetic waves, emitted during the merger of two compact stars. We will focus in particular on the possible contraints that those signals can provide on the equation of state of dense matter. Indeed, the stiffness of the equation of state and the particle composition of the merging compact stars strongly affect, e.g., the life time of the post-merger remnant and its gravitational wave signal, the emission of the short gamma-ray-burst, the amount of ejected mass and the related kilonova. The first detection of gravitational waves from the merger of two compact stars in August 2017, GW170817, and the subsequent detections of its electromagnetic counterparts, GRB170817A and AT2017gfo, is the first example of the era of “multi-messenger astronomy”: we discuss what we have learned from this detection on the equation of state of compact stars and we provide a tentative interpretation of this event, within the two families scenario, as being due to the merger of a hadronic star with a quark star.

  9. Critical point in the phase diagram of primordial quark-gluon matter from black hole physics

    Science.gov (United States)

    Critelli, Renato; Noronha, Jorge; Noronha-Hostler, Jacquelyn; Portillo, Israel; Ratti, Claudia; Rougemont, Romulo

    2017-11-01

    Strongly interacting matter undergoes a crossover phase transition at high temperatures T ˜1012 K and zero net-baryon density. A fundamental question in the theory of strong interactions, QCD, is whether a hot and dense system of quarks and gluons displays critical phenomena when doped with more quarks than antiquarks, where net-baryon number fluctuations diverge. Recent lattice QCD work indicates that such a critical point can only occur in the baryon dense regime of the theory, which defies a description from first principles calculations. Here we use the holographic gauge/gravity correspondence to map the fluctuations of baryon charge in the dense quark-gluon liquid onto a numerically tractable gravitational problem involving the charge fluctuations of holographic black holes. This approach quantitatively reproduces ab initio results for the lowest order moments of the baryon fluctuations and makes predictions for the higher-order baryon susceptibilities and also for the location of the critical point, which is found to be within the reach of heavy-ion collision experiments.

  10. Department of Defense Physical Strength and Job Performance Survey: Report on the Ability of First-Term Enlisted Personnel to Perform Physically Demanding Work

    National Research Council Canada - National Science Library

    Cooper, Barrie

    2002-01-01

    ... to perform physically demanding tasks. Within each service, 10 occupational specialties with moderate to high strength requirements were identified as the target populations for the DOD Physical Strength mid Job Performance Survey...

  11. Physical and physiological characteristics in male team handball players by playing position - Does age matter?

    Science.gov (United States)

    Nikolaidis, P T; Ingebrigtsen, J; Póvoas, S C; Moss, S; Torres-Luque, G

    2015-04-01

    The purpose of this study was to examine the variation in physical and physiological characteristics according to playing position in adolescent and adult male team handball (TH) players. Adolescent (N.=57, aged 14.9±1.4 yr) and adult (N.=39, 26.6±5.7 yr) players were examined for anthropometric characteristics, somatotype and body composition, and performed the physical working capacity test, a force-velocity test, the Wingate anaerobic test (WAnT), sit-and-reach test, handgrip strength test, squat jump (SJ), countermovement vertical jump without (CMJ) and with arm-swing, and a 30-s Bosco test. Eccentric utilization ratio (EUR) was calculated as the ratio CMJ to SJ. In adult players, there were significant differences between wings and the other positions with regard to anthropometric and body composition parameters (body mass, -17.9% to -13.2%; height, -5.3% to -4.3%; and fat-free mass, -13.7% to -9.9%) and anaerobic power assessed by WAnT (peak power, -20.5% to -15.2%; and mean power, -20% to -14.8%); however, these characteristics did not differ significantly in adolescents, in which the only statistically significant difference was found between goalkeepers and the other positions in EUR (+8.1%). Therefore, the differences in physical and physiological characteristics between playing positions are age-dependent. As adult players in this study were taken from players competing in the top Greek league, findings could serve as a base for talent identification and development for future studies. Moreover, knowledge about positional differences might enhance the ability to make tailored position-specific training programs among adult and adolescent players in the future.

  12. Research on condensed matter and atomic physics using major experimental facilities and devices: Physics, chemistry, biology. Reports on results. Vol. 2. 3. Solid state physics and materials science

    International Nuclear Information System (INIS)

    1993-01-01

    This report in three volumes substantiates the contents of the programme survey published in September 1989. The progress reports cover the following research areas: Vol. I, (1). Atomic and molecular physics - free atoms, molecules, macromolecules, clusters, matrix-isolated atoms and molecules. (2) Physics and chemistry of surfaces and interfaces - epitaxy, surface structure, adsorption, electrical, magnetic, and optical properties, thin films, synthetic layer structure. Vol. II, (3). Solid-state physics, and materials science -structural research, lattice dynamics, magnetic structure and dynamics, electronic states; load; spin and pulse density fluctuations; diffusion and internal motion, defects, unordered systems and liquids. Vol. III, (4). Chemistry - bonding and structure, kinetics and reaction mechanisms, polymer research, analysis and synthesis. (5). Biology, - structure and dynamics of biological macromolecules, membrane and cell biology. (6) Development of methods and instruments - neutron sources, synchrotron sources, special accelerators, research with interlinked systems and devices. (orig.) [de

  13. PHYSICS

    CERN Multimedia

    Chris Hill

    2012-01-01

    The months that have passed since the last CMS Bulletin have been a very busy and exciting time for CMS physics. We have gone from observing the very first 8TeV collisions produced by the LHC to collecting a dataset of the collisions that already exceeds that recorded in all of 2011. All in just a few months! Meanwhile, the analysis of the 2011 dataset and publication of the subsequent results has continued. These results come from all the PAGs in CMS, including searches for the Higgs boson and other new phenomena, that have set the most stringent limits on an ever increasing number of models of physics beyond the Standard Model including dark matter, Supersymmetry, and TeV-scale gravity scenarios, top-quark physics where CMS has overtaken the Tevatron in the precision of some measurements, and bottom-quark physics where CMS made its first discovery of a new particle, the Ξ*0b baryon (candidate event pictured below). Image 2:  A Ξ*0b candidate event At the same time POGs and PAGs...

  14. On the history of the Linear Accelerator Department at the Institute for Theoretical and Experimental Physics (ITEP, Moscow)

    International Nuclear Information System (INIS)

    Lazarev, N. V.

    2006-01-01

    These memoirs are devoted to the Institute's anniversary and present the history of the Linear Accelerator Department at ITEP. Some studies are described in which I was involved. During more than 40 years. I worked with Professor I.M. Kapchinsky (1919-1993), a world-renowned scientist, the founder of the department. References are given to Kapchinsky's monographs and to some of the works that were performed under his supervision and were published in proceedings of accelerator conferences. Many active scientists, engineers, and technicians are mentioned who participate in the achievements of the department, which made a significant contribution to the development of accelerator science and engineering in Russia and worldwide

  15. Gender matters in the transition to employment for young adults with physical disabilities.

    Science.gov (United States)

    Lindsay, Sally; Cagliostro, Elaine; Albarico, Mikhaela; Mortaji, Neda; Srikanthan, Dilakshan

    2017-10-17

    The purpose of this study was to explore the role of gender in the transition to employment for young adults with physical disabilities. This study drew on in-depth interviews with a purposive sample of 33 participants (23 youth and 10 clinicians). The youth in our sample included 13 females (mean age 22.9) and 10 males (mean age 21.3) who had various types of physical disabilities. The person-environment-occupation (PEO) model informed our analysis. Our research showed several similarities and some differences between young males and females with physical disabilities as they transition to employment and adulthood at the person, environment, and occupational level. At the person level, issues included managing their condition, self-advocacy, and willingness to ask for help. At the environment level, themes focused on parental and social support, accommodations, stigma and discrimination, and transportation challenges. Finally, in the occupation component of the PEO model, we found that males and females with disabilities had different levels of engagement in employment. Although most clinicians commented on gender differences, many reported that they did not tailor their clinical practice accordingly. Gender sensitive vocational approaches are needed for youth with disabilities as they transition to employment. Implications for rehabilitation Clinicians, educators, and parents should encourage independence and self-advocacy skills among youth so that they are prepared to ask for accommodations that they need to succeed in a work environment. Clinicians and educators should present a variety of career and job options to youth, including science, technology, engineering, and math disciplines, an area where youth with disabilities, particularly females, are under-represented. Males may feel less able to self-advocate and seek support and may need additional assistance from clinicians, educators, and parents. Clinicians should tailor their vocational rehabilitation

  16. Mastery-style homework exercises in introductory physics courses: Implementation matters

    Science.gov (United States)

    Gutmann, Brianne; Gladding, Gary; Lundsgaard, Morten; Stelzer, Timothy

    2018-06-01

    Encouraged by positive clinical results at the University of Illinois, mastery-style homework was integrated into a large semester-long preparatory physics course via an online homework system that used narrated animated video solutions as correctives. This paper discusses the impact and evolution of the homework in its first two years. The first iteration revealed that students were frustrated and did not engage with the system in an effective way. Intending to reduce that frustration and quell negative behavior, the mastery requirement was relaxed, transfer between versions was reduced, and the addition of a direct discussion with students about the homework were implemented in its second year. The results showed that details of implementation can substantially affect students' behavior; large and statistically significant effects were observed as a reduction in frustration (with self-identified "frustrated" students dropping from 60% in 2014 to 30% in 2015) and improvement in performance (average student mastery rate of 59% to 69%).

  17. 138th International School of Physics "Enrico Fermi" : Unfolding the Matter of Nuclei

    CERN Document Server

    Ricci, R A

    1998-01-01

    The nucleus and its constituents are a challenging problem. The lectures collected in this book present a broad and comprehensive review of the current knowledge about nuclei.They cover topics such as searching for signatures of the quarks in nuclei with electromagnetic probes and, at much higher energies, for signatures of the quark-gluon plasma in ultrarelativistic nuclear collisions. The attempts to obtain new nuclei in the laboratory are also discussed, as well as the central role played by nuclear physics in the development of weak interactions. Progress in all these areas rests on a deeper theoretical handling of the nuclear and nucleon’s structure. The latter can also be addressed by relying on numerical solutions of QCD on a discrete space-time lattice. The advancement of computational capabilities has spurred a growing interest in this approach. Finally, the book deals with different paths toward solving non-perturbative QCD.

  18. Structure studies by electron microscopy and electron diffraction at Physics Department, University of Oslo, 1976-1985

    International Nuclear Information System (INIS)

    Gjoennes, J.K.; Olsen, A.

    1985-08-01

    The paper describes the reasearch activities and plans at the electron microscopy laboratorium, Physics Departmen, University of Oslo. Since the first electron microscope was installed in 1968, the research has covered inorganic structures, physical metallurgy, as well as theory of electron scattering and the development of methods in this field. The current plans involve efforts in the development of crystallographic and spectroscopic methods

  19. Objectively measured physical activity in Danish after-school cares: Does sport certification matter?

    Science.gov (United States)

    Domazet, S L; Møller, N C; Støckel, J T; Ried-Larsen, M

    2015-12-01

    Inactivity and more sedentary time predominate the daily activity level of many of today's children. In Denmark, certified sport after-school cares have been established in order to increase children's daily physical activity (PA) level. This cross-sectional study aimed to investigate the activity level among participants in certified sport after-school cares vs regular after-school cares. The study was carried out in 2011 in 10 after-school cares (5 sport/5 regular) throughout Denmark, whereof 475 children aged 5-11 years participated. PA level was assessed using Actigraph GT3X and GT3X+ activity monitors worn by the children for at least 8 consecutive days. Anthropometry and cardiorespiratory fitness were measured as well. A multivariate regression analysis was carried out to check for the differences in the PA level across the two care systems. However, there did not appear to be any differences in overall PA or in time-specific day parts (e.g., during after-school care). The activity levels were quite similar across after-school cares and were mutually high during time spent in the care facility. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Exposure of children to airborne particulate matter of different size fractions during indoor physical education at school

    Energy Technology Data Exchange (ETDEWEB)

    Branis, Martin; Hytychova, Adela [Charles University in Prague, Faculty of Science, Institute for Environmental Studies, Albertov 6, 128 43 Prague 2 (Czech Republic); Safranek, Jiri [Charles University in Prague, Faculty of Physical Education, Department of outdoor sports, Jose Martiho 31, 162 52 Prague 6 (Czech Republic)

    2009-06-15

    Although moderate regular aerobic exercise is recommended for good health, adverse health consequences may be incurred by people who exercise in areas with high ambient pollution, such as in the centres of large cities with dense traffic. The exposure of children during exercise is of special concern because of their higher sensitivity to air pollutants. The size-segregated mass concentration of particulate matter was measured in a naturally ventilated elementary school gym during eight campaigns, seven to ten days long, from November 2005 through August 2006 in a central part of Prague (Czech Republic). The air was sampled using a five-stage cascade impactor. The indoor concentrations of PM{sub 2.5} recorded in the gym exceeded the WHO recommended 24-hour limit of 25 {mu}g m{sup -3} in 50% of the days measured. The average 24-h concentrations of PM{sub 2.5} (24.03 {mu}g m{sup -3}) in the studied school room did not differ much from those obtained from the nearest fixed site monitor (25.47 {mu}g m{sup -3}) and the indoor and ambient concentrations were closely correlated (correlation coefficient 0.91), suggesting a high outdoor-to-indoor penetration rate. The coarse indoor fraction concentration (PM{sub 2.5-10}) was associated with the number of exercising pupils (correlation coefficient 0.77), indicating that human activity is its main source. Considering the high pulmonary ventilation rate of exercising children and high outdoor particulate matter concentrations, the levels of both coarse and fine aerosols may represent a potential health risk for sensitive individuals during their physical education performed in naturally ventilated gyms in urban areas with high traffic intensity. (author)